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Preface

Cancer is prevailingly viewed as a disease of evolving genomic instability and abnormal

epigenomic modifications. Pioneering work has discovered and chromosomally mapped the genomic

locations of oncogenes and tumor suppressor genes responsible for cancer initiation, progression,

and metastasis. Through the efforts of cancer genome projects in the United States (e.g., The Cancer

Genome Atlas research network, TCGA) and worldwide (International Cancer Genome Consortium,

ICGC) and many other research groups, abundant genomic, transcriptomic, and proteomic data

have been generated using state-of-the-art high-throughput sequencing technologies. As such, we are

witnessing mutation signatures, gene copy number alterations, and aberrant gene expression profiles in

specific types of cancer. Advances in sequencing technology and dramatic decreases in its cost offer the

potential to accurately inspect the cancer genome at the level of single cells and with spatial resolution

to understand cancer heterogeneity, the tumor microenvironment, spatial relationships, and the

mechanisms of evolving drug resistance. Cutting-edge computational approaches and bioinformatics

algorithms, such as artificial intelligence, machine learning, and deep learning methods, provide

powerful toolkits to systematically identify clinically relevant biomarkers for early cancer diagnosis,

prognosis, and stratification for precision cancer therapy.

This Special Issue reprint includes reviews and original research articles written by leading

research scientists who are experts in multidisciplinary fields pertaining to a variety of cancer

types, including lung cancer, gastric cancer, breast cancer, and brain tumors. This reprint covers

a range of basic cancer research to translational and clinical research and is suited for a broad

readership in the cancer research community, including graduate students, postdoctoral fellows,

and physicians–scientists.

We would like to thank all of the authors who made excellent contributions to this Special Issue.

Thanks to Ms. Zella Zhu from MDPI for her editorial assistance.

Wei Wu and Trever G. Bivona

Editors
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Simple Summary: Technological advancements and emerging high throughput molecular data have
transformed biology into a more quantitative and multidisciplinary discipline. This has accelerated
the translation of laboratory based findings into applied and clinically relevant applications and
therapeutics. A shared practice for quantifying and statistical rank-ordering the effects of such
translational applications and for understanding their underlying mode-of-action is now critical. In
this manuscript, we discuss some of the major types of quantitative translational research and the
best practices. We propose that adherence to these guidelines will improve assay design and reduce
missteps in translational biomarker and therapeutics clinical application and adoption.

Abstract: Bioscience is an interdisciplinary venture. Driven by a quantum shift in the volume of
high throughput data and in ready availability of data-intensive technologies, mathematical and
quantitative approaches have become increasingly common in bioscience. For instance, a recent
shift towards a quantitative description of cells and phenotypes, which is supplanting conventional
qualitative descriptions, has generated immense promise and opportunities in the field of bench-to-
bedside cancer OMICS, chemical biology and pharmacology. Nevertheless, like any burgeoning field,
there remains a lack of shared and standardized framework for quantitative cancer research. Here, in
the context of cancer, we present a basic framework and guidelines for bench-to-bedside quantitative
research and therapy. We outline some of the basic concepts and their parallel use cases for chemical–
protein interactions. Along with several recommendations for assay setup and conditions, we also
catalog applications of these quantitative techniques in some of the most widespread discovery
pipeline and analytical methods in the field. We believe adherence to these guidelines will improve
experimental design, reduce variabilities and standardize quantitative datasets.

Keywords: quantitative biology; chemical biology; bench-to-bedside; OMICS; IC50; high throughput
screen (HTS)

1. Introduction

“What is life?”, once asked quantum physicist and Nobel laureate Erwin Schrödinger,
when he prophesized that behind the mystical nature of life there must remain a quantifiable
mathematical elegance [1]. Not long after, James Watson and Francis Crick presented the
first mathematical model for the ‘molecule of life’-DNA [2]. Ever since then, from a
systems biology point of view, the quest to generate mathematical models to quantify
biological processes as reactions, to quantify stimuli and response as input and output
has emerged. Over the years, due to a remarkable expansion in high throughput data
acquisition and in our ability to analyze, biological research has become vastly more
quantitative. In vitro research coupled with powerful statistical analysis have successfully
recapitulated patient and in vivo biology indicating the power of quantitative biology in
the field of biochemistry, molecular and cellular biology and cancer research and treatment.
This has also caused a paradigm shift towards massively automated and computation-
heavy annotation and analysis in many disease contexts such as cancer biology [3]. For

Cancers 2022, 14, 5254. https://doi.org/10.3390/cancers14215254 https://www.mdpi.com/journal/cancers1
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example, quantitative chemical biology research has transformed our understanding of
tumor genomics, prediction of novel candidate therapies against cancer and improved
personalized targeted therapy for cancer patients. In last decade alone, worldwide chemical
biology efforts have resulted in an avalanche of clinical trials and FDA-approved therapies
against many different types of tumors, subsequently increasing patient longevity and
decreasing therapy toxicity [4].

The broader goal of quantitative chemical biology research is to model the pharma-
cokinetics and pharmacodynamics of chemicals in diseased patients, but in a much more
conducive and tractable in vitro system initially. Modern chemical biology research takes
advantage of our ability to screen unbiasedly through a wide array of compounds in sys-
tems such as in patient-derived cell lines, patient derived xenografts (PDXs) or purified
protein-ligand binding assays [5]. Furthermore, modeling drug response by high through-
put screening (HTS) is followed by identifying candidate biomarkers, signaling pathways
and molecular targets. Chemical biology research also focuses on improving the response
of the drugs through modifications of chemical structure followed by quantitative structure
activity relationship (QSAR) studies or through drug synergy assays. Quantitative chemical
biology is making a reality what once was science fiction [6]. Yet, there are gaps that must
be addressed to better translate quantitative cancer research into clinical implementation.
Here, in this review, we outline individual aspects of chemical biology research and their
quantitative frameworks. We also summarize progress in this area of cancer research,
highlight key gaps, and propose concrete steps forward.

2. Modeling Drug Dose Response

The goal of quantitative biology is to quantify biological processes and chemical
biology to discern the effect of chemicals on biological systems. Proteins are the functional
molecules of life, important for carrying out most biological reactions and in return for
steering biological processes. Hence, a major focus of chemical systems biology is to model
the response of different doses and kinetics of chemical perturbagens on enzymes.

For example, enzyme inhibitors are often pharmacological agents that competitively
and reversibly inhibits substrate binding and enzyme activity [7]. The kinetic behavior for
many enzymes can be explained with a Michaelis-Menten (MM) model for enzyme-ligand
or enzyme-substrate binding and catalysis:

E + S
k1
�

k−1

ES
k2→ E + P

where E stands for enzyme, S stands for substrate and P stands for product. ES is an
enzyme-substrate complex that is formed prior to the catalysis. Formation of ES requires
only binding and hence is reversible, indicated by equivalent rate constant k1 and k−1 for
forward and reverse rate for the event. On the other hand, the overall rate-limiting and
irreversible step in the reaction is the breakdown of the ES complex to yield product, which
can proceed with rate constant k2.

Reaction velocity from this reaction can be described as a function of substrate concen-
tration using the following formula, which is typically referred to as the Michaelis-Menten
(MM) equation:

v = ([S]Vmax)/([S] + Km)

where, v = rate of reaction during initial velocity condition; Vmax = maximal reaction
rate; S = substrate concentration; Km = Michaelis-Menten constant. Interestingly, since
the value of Km at 0.5 Vmax condition equals to [S], Km is often termed as the substrate
concentration at half maximal velocity (Figure 1a).

A MM equation is different from an enzyme substrate reaction progress curve that
often describes a kinetic equilibrium. It is important to note that the MM model plot
in Figure 1a does not describe activity of the enzyme under a continuous time variable;

2
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instead, velocity, v is calculated separately for corresponding individual substrate values
(Figure 1b) [8]. Hence, many different measurements of v are calculated each under
initial velocity conditions with varying substrate concentrations at or below the Km value
(Figure 1a). Measurement at the initial velocity conditions ensures that the equation is
insensitive to the effect of velocity variation during reaction progression. However, the
equation predicts saturation of reaction rate at Vmax and an initial logarithmic increase in
velocity as a function of substrate concentration (Figure 1a) [7].

Figure 1. Reaction kinetics and velocity plots. (a) Michaelis-Menten reaction rate is plotted as a
function of substrate concentration. Reaction rate is saturated at Vmax. (b) Reaction progress curve
for initial velocity measurement under a varying concentration of substrates and enzyme as indicated.

Formation of product, post-enzyme-substrate mixture is the quantitative estimate of
reaction rate and when tracked and plotted over a period indicates the reaction progress
rate (Figure 1b). However, initial velocity of the enzymatic reaction is separate from the
velocity of reaction during reaction progression. Initial velocity represents the reaction rate
when less than 10% of the substrate has been depleted or less than 10% of the product has
formed. Under these conditions, it can be safely assumed that the substrate concentration
does not significantly change and does not reach saturation limit for enzymatic activity.
Furthermore, it can also be assumed that, in such conditions, the contribution of reverse
reaction is minimal [8].

The MM equation is a first order reaction which results in a linear increase in v until
the reaction saturates due to maximal occupancy of enzyme with substrate. This is a classic
example of 1:1 substrate enzyme interaction consistent with the ‘lock and key’ model.
However, for enzymes with multiple substrates, cooperativity amongst the substrates for
enzyme binding and requirement of maximal enzyme site occupancy for enzyme activity
results in an initial lag time for reaction initial velocity followed by an exponential increase
in enzyme activity and subsequent saturation. In this case, the reaction follows a multi-
order non-linear and sigmoidal reaction kinetics, often consistent with a so-called ‘induced
fit’ model, determined by what is called a hill coefficient. The higher the hill coefficient the
sharper the inflexion of the hill curve (Figure 2) [9].

Figure 2. Hill co-efficient and sigmoidal curve. The light blue curve represents a classical Michaelis-
Menten reaction kinetics, whereas the darker blue curve represents transformation of the Michaelis-
Menten reaction kinetics in presence of cooperativity and hill coefficient. The steeper slope that the
inflexion of the sigmoidal curve has the higher the hill coefficient for co-operativity.

3
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3. Determination of IC50 for Inhibitors

The measurement of enzyme activity in the linear initial velocity condition is often
time not possible due to multiple reasons, lack of a measurable assay read out being
one of them. In these cases, the enzyme or a linked biomarker response is measured at
a fixed time point as a function of varying substrate concentration. This concentration-
response plot is similar to the Michaelis-Menten plot except that response is not calculated
at initial velocity condition (Figure 3a). Furthermore, for enzyme inhibitors the curve simply
follows an upside-down version of the concentration response plot for an enzyme substrate
(Figure 3b) [10]. Effects of an inhibitor on enzymatic reaction can often be determined
by plotting a dose/concentration response plot where x-axis represents varying doses of
the inhibitor and y-axis represents corresponding reaction rate estimates. Notably, in this
setting, the enzyme and substrate concentration are kept constant. The dose response plots
are widely applied in pharmacology and chemical biology. For example, it is often the first
assay to be performed to identify a candidate list of active/lead compounds by screening
a library of known or unknown ones. It is also applied for determination of ideal dose
range and therapeutic window as well as for structure activity relationship (SAR) assay
for chemical/functional group variation of a desired compound’s backbone for activity
enhancements. C The 4-parameter logistic nonlinear regression model (4PL) for data fitting,
that describes the sigmoid-shaped response pattern, is an example of this type of model
(Figure 3a,b) [10]. For example, in Figure 3a light blue curve represents a concentration
response plot for an enzyme inhibitor.

Figure 3. IC50, EC50 and AUC measurements from dose response plots. (a) Dose response plots
for AC50 (dark blue) and IC50 (light blue). (b) AUC calculation of a dose response plot. The figure
also represents the theoretical (red) and relative/tested (green) IC50 measurements from the dose
response curves. The theoretical (solid black line) activity represented as plate control and maximum
activity tested (broken black line) can also be different.

Analogous to MM constant (Km), substrate concentration required to result in 50%
activity is called EC50 (effective concentration to reach 50% activity). On the contrary, the
concentration of compound that results in 50% inhibition of maximal activity is termed the
IC50 (inhibitor concentration yielding 50% inhibition) [11]. In this review, we discuss the
IC50 calculation often deployed in cancer biology, where instead of inhibitor binding to
the target of interest (target-based), biologists measure the inhibitor response on cellular
viability (phenotype/cell based).

Some criteria for successful concentration-response curves are listed in the discus-
sion below.

1. Well defined top and bottom plateau values need to be established. To do so, it is
important to use sufficient range of inhibitor concentrations. These parameters are
critical for the mathematical models used to fit the data

2. A minimum of 8–10 inhibitor concentration data points for an accurate IC50 determi-
nation should be used

4
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3. Concentration ranges for the inhibitors should be spaced equally
4. The concentration data point counts and the range should be chosen so that half the

data points on the IC50 curve are above the IC50 value and half are below the IC50
value. This is difficult for IC50 measurements for compounds for which there exist
no prior knowledge. In this case, the inhibitors should be tested for response using
a broader range of doses followed by final IC50 estimation using narrower range
of doses

5. Enzyme concentration should always be kept constant and the lower limit for deter-
mining an IC50 is half of the enzyme concentration

6. Well readable and quantifiable screening strategies for measuring the response should
be employed. The quantification should be benchmarked under different experimental
conditions. For example, cellular viability can be measured by viable cell adenosine
triphosphate (ATP) level using the reagent cell titer glo (CTG)

7. At least three replicates for each data point should be collected. For cellular viabilities
these replicates need to be biological replicates

8. Criteria for reporting IC50′s are the maximum % inhibition should be greater than
50%; top and bottom values should be within 15% of theory; the 95% confidence limits
for the IC50 should be within a 2–5-fold range. Relative and absolute IC50 and EC50
is described in Figure 3b.

Depending on necessity, a wide array of reagents can be used as a replacement
of CTG for cell viability measurements. For example, dye coating and dye exclusion -
based experimental setup requires use of crystal violet, trypan blue, eosin, congo red and
erythrosine B staining. For non-ATP and nicotinamide adenine dinucleotide phosphate
(NADPH) -based colorimetric assay MTT, MTS, XTT, WST staining reagents are used
(PMID: 9869118, 28470513) [12,13]. For cellular protein and enzyme level as a proxy for
viability LDH and SRB assays are widely accepted. On the other hand, alamar blue and
CFDA-AM are two commonly used fluorometric cell viability assay (PMID: 28470513) [13].
Additionally, immunofluorescence and flow cytometry-based assays (e.g., Brdu, annexin 5)
are also commonly used for the purpose of determining viable cells (PMID: 28573164) [14].

The concentration-response curve response does not plateau at the baseline (e.g., 0%)
or does not saturate at the highest point (e.g., 100%). This may happen due to inter sample
heterogeneity (e.g., bimodal response samples) or due to technical issues. In this case,
the theoretical IC50 values is different from the test IC50 values calculated, giving rise to
inaccurate IC50 estimates. In those cases, area under curve (AUC) calculation can offer a
more accurate estimate of the response [15].

4. HTS Using Pharmaco-Chemical Library

A holy grail in oncology is so-called ‘magic bullet’ therapies that perturb only diseased
cells/proteins but leave normal healthy cells/proteins untouched. Over the course of
time, our understanding of proteins, as the functional molecules of cells, has immensely
improved and has resulted in interest to target them in pathophysiological conditions [16].
For example, we have undertaken technologically sophisticated high throughput screening
for pharmacological compounds that perturb or ameliorate the activity of a protein molecule
and thereby correct a disease phenotype.

In such a drug screening experiment, the efficacy of several pharmacological agents
are evaluated either against a disease phenotype or against an enzyme activity. The former
is called a phenotypic screen whereas the latter is known as the target-based screen. The
goal of these screening approaches is to identify, from a wide an array of initial compound
list, a smaller and tractable number of candidate compounds (often called ‘leads’) [17].

To find novel therapeutics against a disease, phenotypic screening, where a myriad
compounds are tested for reduction of a disease phenotype, is most commonly employed.
Phenotypic screening is unbiased and agnostic about the mechanism of action (MOA)
or the molecular target for the tested agents. Therefore, subsequent analysis for target
deconvolution is required for comprehensive understanding of the effect of the compound.

5
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In this regard, a more focused version of screening called target-based screening can be
applied. wherein this case, pharmacological agents are tested against a single or handful
of molecular targets; targets that have already been identified as a causal mechanism of
disease pathology. Target-based screenings are usually less time consuming, but difficult
to design. Moreover, target-based screening approaches are a non-starter for diseases for
which a knowledge deficiency exist (Table 1) [18]. Both approaches have their pros and
cons. Below is a comparison of phenotypic screenings and target-based screening (Table 1):

Table 1. Comparison between phenotypic and target-based screening.

Phenotypic Screening Target Based Screening

Molecular targets Not known Known

MOA
Not known, but can be targeted
based on signaling pathways Known

Assay type
Cell viability (e.g., luminescence
read out live cells)

Direct binding assays (e.g.,
fluorescence read out in FRET)

Assay scale Relatively difficult to scale up Easily scalable into
high throughput

Biological relevance Highly relevant to biology May not be relevant to
functional biology

Quantification methods Not available Structure activity
relationship (SAR)

Novel target scope High Low

For HTS, the concept of combinatorial chemistry was developed in the mid 1980′s, with
Geysen’s multi-in technology where hundreds of thousands of peptides were synthesized
on solid support in parallel [19,20]. Subsequently, one-bead one- compound (OBOC)
combinatorial peptide libraries and solution-phase mixtures of combinatorial peptide
libraries and phage display libraries were introduced. However, it was not until mid-90 s,
when the first example of a small-molecule combinatorial library was reported [21].

Combinatorial chemistry has been used for both drug lead discovery and optimization.
The highly focused parallel synthesis of small-molecule libraries (hundreds to thousands
of compounds), when developed in conjunction with computational chemistry, are particu-
larly useful for optimization of drug leads [10].

Recommendations and challenges for IC50 calculations in HTS:
Doubling time: IC50 is best calculated in an isogenic setting, where response of the

cells to a particular perturbation is best compared with that of a response without the
perturbation. However, in absence of an isogenic system, classifying IC50 spectrum of
many different cell lines into high and low, leads to a possibility that the difference in IC50
is due to doubling time differences (Figure 3a). For example, cells with higher metabolic
activity and doubling time, are prone to up taking the compound faster and hence will be
killed faster, resulting in an IC50 smaller than cells that grow slower. Hence, regression
analysis of IC50 and doubling time is required to rule out this phenomenon where, ideally,
no significant correlation between the doubling time and IC50 is preferred.

Number of cells or seeding confluency: To balance for the doubling time often cells
are seeded in a manner so that by the time they are ready for measuring the effect of the
drug they are of around 90% confluency. Quite intuitively, it has been observed that, higher
confluency of seeding requires a higher dose of compound to kill 100% of the cells. The
effect is often described as a drug sync/sponge effect. Hence, the initial seeding densities
of the cells required, needs to be accurately estimated by empirical trials [10].

Edge effect: Screening platforms often use small multi-well formats (e.g., 384 and
96-wells). It has been reported that the wells in the plate that are situated at the edge of the
plates are exposed to external stimulus such as temperature un-uniformly than that of the
wells in the middle. Hence, edge wells are usually exempted from using during the IC50
calculation in these plates.

6
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Vehicle effect: Each perturbation must be compared with a vehicle treatment cohort.
Often the Vehicle treatments can result in some response alone (Figure 3b). At long as the
response is below 10%, the response is considered acceptable. The vehicle can also result in
some confounding cellular effect above a certain dose; hence it is very important to keep
the vehicle dose within the limits of acceptable range. The lead compounds being tested
should have the same amount of vehicle in volume for comparative analysis. If compounds
involved in a screening assay were dissolved in various vehicles, the screen must consist of
many different ‘vehicles alone’ controls for comparative analysis as well.

5. Biomarker Prediction

One of the major limitations of phenotypic screens is the lack of understanding of any
molecular targets for the drug itself. Hence, target discovery from phenotypic screen has
been a major challenge in the field of chemical biology. Since the advent of high throughput
genomics technologies, many computational approaches have been undertaken to correlate
drug phenotype response to cellular genomic, epigenetic, transcriptomic, proteomic and
metabolic features [22–24].

National Cancer Institute (NCI) initiated a Drug sensitivity Dialogue for Reverse Engi-
neering Assessment and Methods (DREAM7; Available online: http://dreamchallenges.
org/ (accessed on 12 August 2022) project to gather momentum and bolster enthusiasm
for this very important challenge of predicting biomarkers from drug sensitivity and vice
versa. The Challenges is one of the first of kind- a community-based collaborative com-
petition oriented towards crowdsourcing solution and open-data sharing [22,23]. The
DREAM7 Challenge also benchmarks many drug sensitivity prediction methods. For ex-
ample, kernel-based prediction methods, which depend on machine learning algorithm for
pattern matching (e.g., support vector machine or SVM), differ from feature-based methods,
which depends on a feature map generated by training dataset, in terms of utilization of
the user-defined feature map [22,23,25,26].

In NCI-DREAM7 Challenge, for training datasets a multi-OMICS (e.g., copy number
variation, DNA methylation, point mutations, transcriptional and protein level estimates)
approach was pursued. Interestingly, the predictive models that used multi-omics profiles
outperformed a single-OMICS prediction model, which suggests genomic, epigenomic, and
proteomic profiles provide complementary signal for drug response prediction [24,27,28].
Importantly, prediction algorithms validated previous biological knowledge for breast
cancer and provided insight into non-linear feature relationships during modeling [22,23].

One useful approach is a regularized regression model known as elastic net [29].
One of the major problems of these biological datasets is the asymmetry of the matrices.
The columns of the matrices containing various treatments (<200) were much too small
in number than the rows of the matrices that contain genomic features (>5000), which
poses a computational challenge for regression model often known as ‘p >> n ratio prob-
lem’ [24,25,30]. Ordinary regression models due to this asymmetric in matrices generates
overfitting solutions resulting in false positive/type1 errors. To solve this, the elastic net
generates sparser biomarkers based on a regularized regression model where the equation
balances between lasso and ridge regressions. Furthermore, the resulting solutions can be
represented as a heatmap (Figure 4a) [15,30–32].

The best-performing algorithm was based on the Bayesian efficient multiple kernel
learning (BEMKL) model. BKMEL uses a kernelized regression model that makes use of
both multi-task and multi-view learning algorithms [23,26]. In Multiple kernel learning
(MKL) algorithm, pairwise similarities of cell line OMICS profile constitute an initial
kernel and are subsequently combined into a compound kernel. In multi-task learning
(MTL), on the other hand, the model is trained simultaneously for all the drugs and thus
differ from the stepwise kernel generation strategy employed in MKL. BKMEL introduces
hyper-parameters and an error term/bias to account for poor intersection of multi-OMICS
datasets [22,23].
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Figure 4. From heatmap to actionable OMICS feature selection. (a) Heatmap representation of a
typical regularized regression (elastic net) driven dose response versus biomarker plot. IC50 of many
different drugs in a panel of cell lines is plotted on the first row and the other row 2 represents
anti-correlative biomarkers and row 3 represents correlative biomarkers. Biomarker solutions are
rank ordered based on their score. (b) Heatmap representation of chemigenomic interaction in an
isogenic setting. Many genetic alterations in ‘Cell line X’ is presented on rows whereas columns
represent viability of the genetically modified cells under different compounds (columns).

6. IC50 Measurements in Isogenic Settings

Biomarker prediction depend on a correlation between features and drug response.
However, these methods do not essentially establish causality. To address this, incorpo-
rating tumor associated alterations in an isogenic system is increasingly being pursued
for comprehensive chemogenomic analysis [33]. In this setting, a patient derived cell line
or organoid of interest is genetically subjected to very specific genetic modifications and
subsequently drug responses are measured across the board to determine the effect of the
genetic alterations. The resulting viabilities can be represented as a heatmap (Figure 4b).
On many occasions, these have contributed crucial understanding of oncogenic addiction,
specificity of crosstalk between pathways and genetic interactions in cancer. Recently,
the ease of activating or perturbing genetic alterations using CRISPR based technologies
have paved the way for new opportunities for high throughput chemogenomic interaction
analyses [34–40].

7. Signaling Pathway Analysis and Target Discovery

In biological response versus feature correlation analyses, instead of enrichment of
a single biomarkers, enrichment of a list of functionally related group of genes is more
informative. As a result, increasingly the classical gene-based approaches that ignore
the modular nature of most human traits is being replaced with a more functionally
holistic pathway enrichment approach. In this regard, statistically computing overlapping
between experimental OMICS datasets (such as exome, methylome, RNAseq, quantitative
proteomic, metabolomic, etc.) and curated pathway databases (e.g., GO, ENCODE, KEGG,
REACTOME, etc.) have become routine [41–45]. The computational analyses depend on
either hypergeometric tests (ENRICHR) or a signal to noise based (S2N) analysis (BROAD
institute GSEA) [45–47].

In pathway analysis, a set of candidate/query genes are compared against a library of
curated ‘gene sets’ each of which includes genes that are bundled due to their participation
in a signaling pathway or biological function). The candidate/query gene sets are usually
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composed of genes that are differentially upregulated or downregulated in an OMICS
dataset such as gene expression, proteomics, etc. (Figure 5). The prototypical enrichment
or overrepresentation (ORA) analysis is usually performed via comparing the test gene
set with that of the curated gene set using hypergeometric test, where null hypothesis
represents a baseline or random-chance representation probability [48–51]. Overlapping is
considered significant if the hypergeometric test produces a significant p value (Figure 5).
Hypergeometric test can be done in presence or absence of weighted or ranked gene sets
as well. However, this method does not consider the topology of a signaling network. In
biological pathways, genes/proteins tend to perform in a network where each gene/protein
can be thought to be as a ‘node’ (drawn as circles) and their regulation between one another
is signified by ‘edges’ (drawn as lines) (Figure 5). From this network point of view, minor
variation in gene/protein neighborhood and directionality of reaction contributes to a
vastly different biological function. Hence, while considering overrepresentation, curated
databases that incorporate directionality and neighborhood information (such as Reactome,
KEGG, WikiPathways, etc.) produces better signaling pathway analysis (Figure 5) [42,43,52].
More recently, even more granular context specific sub-circuitry and subnetwork based
over representation analysis have become increasingly useful and is called mechanistic
pathway activity (MPA) based pathway analysis. For this analysis, the curated database
not only has the topology information it also has positivity and negativity information for
the nodes in play (Figure 5) [53–56].

Figure 5. Pathway analysis methods. Comparison of test dataset with curated databases can be
performed in many ways- based on over representation, pathway topology-based, mechanistic-
pathway activity.

8. Form Pathway to Target Discovery

Pathway analysis, based on correlation, generates a single or a few candidates signal-
ing pathways as target of the drug. However, it neither establish causality nor pinpoint
a single gene/protein as a target. Hence, for target discovery the goal is to home in on
a single protein–protein interaction (PPI) from protein interaction signaling networks; a
single enzyme target for cascade of enzymatic reaction; a single gene target for a gene
regulatory network [34,57,58]. Causal relationships of a perturbagen often needs to be
established by genetic manipulation of the candidate genes/proteins one at a time [59].

9
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Recent technological advances, including genomics, proteomics, small interfering RNA
CRISPR, and mouse knockout models have allowed us to measure the effect of shortlisted
candidate pathway regulators on the cellular phenotype, which allows us to identify a
targetable protein [18,59].

Computational biology and structural biology have been instrumental in deciphering
drug-protein and protein–protein interactions in absence and presence of the perturbagens.
If a single protein is thought as a hub, then the protein that interacts with it and forms a
PPI network constitute the interactome for the protein of interest [60,61].

Structural biology is crucial for PPI research. X-ray crystallography, protein-based
nuclear magnetic resonance (NMR) spectroscopy has made it possible to generate and study
3D structure and active site pockets of protein molecules. Computer simulated docking of
perturbagens, often known as in silico docking, often faithfully recapitulates the biological
ligand/inhibitor binding pocket on the protein [58,61]. However, 3D structures generated
through these methods often are static and fails to recapitulate the dynamic nature of the
protein-ligand interaction. Furthermore, crystallization of the protein itself requires many
modifications of the protein molecule such as truncation and/or mutations [58]. Although
far from perfect, in the last few years, significant improvement in dynamic structural
simulations such as monte carlo simulations have raised remarkable promise for in silico
simulations for protein-ligand/inhibitor interaction [62].

9. Quantitative Structure Activity Relationship (QSAR) and Physicochemical
Properties of Drugs

Quantitative Structure-Activity Relationship modeling is one of the major computa-
tional tools employed in medicinal chemistry [63,64]. In QSAR analysis a structural element
(called a molecular descriptor) of the lead chemical compound is modified and the response
in activity is measured [65]. The goal, this way, is to generate an array of activity response
and curate and finetune the best response. Modification of molecular descriptor of the
compound can be based on its chemical 2D structure as well as 3D topography [63,66].

One of the major challenges with QSAR equations is that of faithfully predicting the
effect of multiple modifications at once. For example, two colinear molecular descriptors
independently may result in improvement in QSAR response; however, when introduced
together may result in antagonistic response. This indicates the importance of experimental
validation of QSAR response to avoid such confounder effect.

Moreover, applications of the concept of drug-likeness, which compares physical
properties of candidate pharmacological chemicals (such as lipophilicity) with that of other
validated compounds and approved drugs to predict pharmacodynamics and pharma-
cokinetics of the candidate drug [66]. These in silico predictions help both the final in vivo
preclinical and clinical validation experiments, by helping decide the range of doses and
time-period to be tested.

10. Drug Synergy

For any complex disorders, rational design of multi-targeted drug combinations is a
promising strategy not only to improve individual drug potency and efficacy, but also to
tackle resistance to individual drugs. A drug combination is usually classified as synergistic
or antagonistic, depending on the deviation of the observed combination response from
the expected effect calculated based on a reference model of non-interaction [67]. There are
many metrics for drug combination measurements. Combination effect measurements can
vary due to the experimental design. For example, before the advent of high throughput
platforms single dose combination therapy was widespread [15,40,68]. However, the field
has moved towards a much more sophisticated and comprehensive methods of combining
the doses of the drugs (Figure 6) [68–71].
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Figure 6. Drug synergy measurement methods. (a) Synergy measured by visualizing left-shifting
of dose response curve of Drug 1 in presence of the Drug 2. (b) Cartoon illustrating comprehensive
checkerboard- style experimental setup where combinatorial doses are marked as purple and only
Drug 1 as red and only Drug 2 as blue. (c) Isobologram analysis indicates multiple possible outcomes
for drug interaction analysis- for additivity diagonal, independence rectangular, for synergy concave
and for antagonistic convex isobolograms.

Often, synergy is calculated by generating comprehensive dose response under a
varying level of Drug 1 and Drug 2 (Figure 6a) [72]. These generate a symmetric matrix and
often called checkerboard dose combinations (Figure 6b). However, due to effort intensive
nature of this setup, synergy is often calculated by measuring dose response curve of cells
under Drug 2, in the presence of a few doses of a test compound, Drug 1 [68,72,73]. The
graph looks like few dose–response curves in the same plot and they superimpose in top
of each other in absence of synergy or antagonism and shift left or right in presence of
synergy and antagonism, respectively, (often called a multiple-ray plot). Synergy can also
be measured using just a single dose of Drug 1 and Drug 2. However, quantification of
synergy under those condition is difficult [72,73]. For any two compounds Drug 1 and
Drug 2, following is a summary of ways for quantifying the synergy.

Statistical independence/Bliss: This quantification is applicable for synergy calculation
even using a single dose. However, Synergy calculation using a few doses, or a single dose
is also possible. This can be calculated by calculating the probability/percentage of killing
under each individual drug treatment-

Pa+b = 1 − (Pa × Pb)

where Pa = probability of killing cells by drug 1; Pb = probability of killing cells by drug 1
and Pa+b = probability of killing cells together.

The other quantification methods for synergy are quantified by measuring and adding
maximum response by each drug alone and then measuring the effect of the combined
dose. If combined effect of maximum dose is more than that of the additive effect, the
interaction is called synergistic.

Gaddum pharmacological interaction: In presence of the Drug B; the dose response
curve of Drug 1 shifts on the left and the new IC50 value is α, lower than that of the IC50 in
absence of Drug 2. Gaddum pharmacological interaction measures difference in this IC50
as a measure of synergy (Figure 6a) [74].

Isobologram analysis: In checkerboard comprehensive synergy analysis, a response-
surface plot generated as such allows generation of isobologram graphs (such as contour
plots in geography) by connecting identical level of toxicities in the different drug com-
binations [75,76]. For example, if Drug 1 alone causes 20% toxicity and Drug 2 causes
20%; Drug 1 and 2 together causes 40% toxicity then the isobologram would go through a
rectangle line as all the 20% toxicity values would fall in that isobologram line. However,
this visualization does not aptly explain the additive effect of two drugs (Figure 6b,c).
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Lowe additive model analysis: In comprehensive analysis, Drug 1 will interact with
Drug 1 as in an additive manner [77,78]. From this expectation, If Drug 1 and Drug 2
behaves as though their effect is additive the isobologram would go through a diagonal
line. Similarly, if the combination results in better response than each compound alone then
the isobologram would go through a concave line and similarly for antagonistic interaction,
a convex line.

The Chou Talay combination index from this can be calculated using the formula for
this is (Figure 6c):

Combination index (CI) =
a

IC50_A
+

b
IC50_B

CI > 1 means antagonism; CI < 1 means synergistic interaction and CI = 0 means
additive interaction (Figure 6c) [79]

11. Case Study

In this section, we now describe an experimental example that illustrates the concepts
discussed above. In this example, an investigator found a cellular receptor tyrosine kinase
called Fibroblast Growth Factor Receptor 1 (FGFR1) and its downstream pathway to
be upregulated in a subset of non-small cell lung cancer (NSCLC) samples (Figure 5).
Additionally, the investigator found that genetic suppression of FGFR1 reduces the viability
of NSCLC cells by performing crystal violet and cell titer glo (CTG)-based viability assays
(described in Section 3). Hence, the investigator concluded that this particular subset of
NSCLCs required FGFR1 for cell proliferation.

Establishment of this causal relationship between the FGFR1 pathway and cell viability
motivated the investigator to next test existing chemical perturbagens of the FGFR1 path-
way, such as Infigratinib, using the CTG assay (Figure 3). Unfortunately, the investigator
found that although the effect is specific, the response to the FGFR inhibitor has a narrow
therapeutic window indicated by some toxicity even in normal cells and also requires a
high dose for therapeutic effects. Hence, the investigator decided that one next step would
be to design an improved inhibitor for this pathway of interest.

The next goal was to test a library of chemical compounds which contain both struc-
turally diverse as well as structurally similar compounds with slight functional group
variation compared to Infigratinib. The library was tested in a panel of ~100 NSCLC
patient-derived cell lines with 3 replicates for each data point and 12 doses of 3 times serial
dilution from the highest dose. The highest dose used for any compound is empirically
determined (e.g., 33 μM for Infigratinib). The compound response patterns were also
clustered in an unbiased manner. In an ideal case, this cluster should reflect biologically
relevant information. For example, small molecules with shared MOA should cluster
together. As expected, AZD4547, another FGFR inhibitor was in the same functional clade
as Infigratinib. A candidate list of 10 compounds was rank ordered from this experiment
and further validated in vitro. These 10 compounds include candidate leads from both the
same (such as other FGFR inhibitors) and different functional clades (such as AKT inhibitor
MK-2206) as Infigratinib.

Leads that parsed into a different functional clade (and hence employ different MOAs),
and yet worked potently against FGFR1 upregulated NSCLC provided novel insights. For
example, these small molecules might exhibit on-target blockade of the FGFR pathway
up or downstream of the FGFR receptor tyrosine kinase (e.g., AKT inhibitor MK-2206).
Additionally, some small molecules could also function in a synthetic lethal-like manner,
where they exhibit potent responses against FGFR1 upregulated NSCLC by acting indirectly
against additional pathways required for NSCLC tumor survival in this molecular context
(e.g., PARP inhibitors).

Although the compound screen was informative in identifying novel leads, no single
agent perturbation was sufficiently potent to elicit a complete response (near 100% cell
death). Hence, the investigator next applied these 10 lead compounds in dual combi-
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nations (10 × 10 = 100 unique combinations) and then measured the viability response
again in a high throughput manner. The compound combination effect was then mathe-
matically classified as synergistic, antagonistic, or additive as explained above (Figure 6).
The investigator identified potent synergy between FGFR and Mitogen-activated protein
kinase (MAPK) pathway inhibitors (e.g., Trametinib). Combined application of these small
molecules exhibited a more complete effect against FGFR1 upregulated NSCLC cells.

Interestingly, this compound screen could also be carried out in an unbiased manner
in the absence of the pathway information mentioned above. Given the availability of
molecular feature dataset for each individual cell lines (such as genomic, transcriptomic,
proteomic and/or other), mathematical models can then be applied to uncover associations
between cell viability response and genomic feature variables (Figure 4). In this way, it is
also possible to identify therapeutic and MOA hypotheses in an unbiased manner even in
the absence of any candidate pathway a priori.

We use this example to demonstrate scenarios where these tools can be directly applied.
There are many possible combinations of ways these techniques can further be used in
the field.

12. Bench-to-Bedside Translation

Preclinical research, despite certain limitations, is a powerful approach to predict
in vivo clinical responses [5,80]. However, translating observations identified in preclincial
systems into actionable therapies in vivo involves a range of additional validations. For
example, pharmacogenomic analysis carried out in patient-derived cell lines are often
validated in patient derived xenografts (PDXs) and preclinical animal models (a process
often called ‘T1-T4 stage’ validations) [81,82]. Once a concordant observation is achieved in
many different such models, the therapy is advanced into clinical trials. However, despite
this hierarchy of validation process, clinical trials often show discouraging outcomes [83].
Hence, a goal of translational research is to sequentially narrow down as many candidate
therapies as possible. In this regard, as our ability to test thousands of compounds and
natural products in hundreds of cell lines and animal models has proven useful [15,84].

Preclinical research has also paved the way for predicting pharmacokinetics and
pharmacodynamics of drugs. For example, the effective dose of a drug required in the
patient can be measured accurately by comparing QSAR and IC50 properties of drugs with
other optimized drugs. Moreover, doses of a wide variety of drugs measured in isogenic
cell lines settings can successfully recapitulate the dose spectrum required in syngeneic
mouse models and even in human patients [15,71,85].

Although, the link between IC50 at the cellular level and in vivo at the plasma con-
centrations may sometimes be complicated, a general equation linking in vivo doses and
effective concentrations is:

(D/τ) = (CL/F) × Ctarget

where: D = Dose, τ = dosing interval, CL = body clearance of the drug, F = bioavailabilty
(fractions absorbed) of the drug by the selected route of administration and Ctarget = total
plasma concentration required for desired effect [86]. The Ctarget is usually greater than
IC50, since desired response often is more than just 50% of inhibition of the system.

Furthermore, precise in vitro genetic modification of patient derived T-cells has re-
sulted in breakthrough efficacy in the form of immunotherapy [87]. In this regard, the
efficacy of immunotherapeutic agents- ‘checkpoint inhibitors’, have also been widely facili-
tated by mechanistic insight gained by in vitro and preclinical research [88].

13. Challenges and Scopes

Quantitative chemical biology research is not without limitations. For example, HTS
performed in cell lines has not often faithfully recapitulated the complexity of the microen-
vironment, cell-tissue heterogeneity and host-microbiome interactions in mouse models
or human patients [89,90]. To address this, the field is increasingly experimenting with
3D and co-culture driven models [91,92]. As mentioned before, a caveat of biomarker and
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candidate target prediction approaches is that it often is correlative and lacks causality.
With the advent of artificial intelligence, the use of machine learning is proving useful to
predict causal biomarkers more accurately for therapy [23]. However, machine learning
is limited in its ability to nullify batch artifacts as well as to combine different OMICS
data—challenges to be addressed in the future.

For causality analysis, the recent advent in CRISPR technology has made it possible
to perform high throughput loss of function genetic screens and couple that information
with chemical perturbagen screens in order to improve target discovery [34,59]. Variations
of CRISPR technologies, such CRISPRa, has made it possible to conduct gain of function
screens in this context as well [37,38,59].

One of the major limitations of current cancer therapies is the emergence of resistance.
Accumulating evidence indicates not only mutation of the drug target but also the presence
of co-occurring mutations and heterogenous genetic and epigenetic background of tumors
as causative factors promoting drug resistance [93,94]. Acquisition and analysis of -OMICS
data serially to characterize tumor evolution during treatment has the potential to provide
target-driven therapeutic approaches. One goal would be to predict the trajectory of tumor
evolution during treatment based on preclinical and clinical data and deploy and adapt the
therapy regimen accordingly [83,95].

14. Conclusions

In this review, we have attempted to summarize recent developments in quantitative
chemical biology and outlined parameters for such quantitative assays. Successful imple-
mentation of cancer therapeutics requires a comprehensive understanding and analysis of
both -OMICS data and pharmacodynamic-pharmacokinetic responses [83]. We hope that
an improved quantitative understanding of chemical biology will transform aggressive
cancers into chronic or curable conditions through more accurate clinical use of current and
future systemic therapies.
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Simple Summary: Long non-coding RNAs (LncRNAs) are non-protein coding molecules longer
than 200 nucleotides. They play essential roles in normal cell function and development, and can
contribute to diseases such as cancer when dysregulated. Although lncRNAs have oncogenic or
tumor-suppressive properties in lung cancer and can serve as stable biomarkers, this is still an
understudied field. Here, we discuss recent evidence for lncRNAs role in lung cancer development,
therapy resistance, biomarker potential, and therapeutic strategies. We conclude that understanding
the interplay between non-coding and coding molecules in lung cancer should be explored further
and may open up new avenues for treatment.

Abstract: Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for
proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal
cell physiology and organism development. Therefore, deregulation of their activities is involved in
disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late
stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as
important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs
are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage
cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for
lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers
for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic
approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of
lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular
mechanisms of cancer initiation, development, and progression, and could open up a new avenue for
cancer treatment.

Keywords: LncRNAs; lung cancer; metastasis; therapy resistance; biomarkers; alternative therapies

1. Introduction

Long non-coding RNAs (LncRNAs) are broadly defined as RNAs that usually do
not encode for proteins and that are longer than 200 nucleotides. These are messenger
RNA (mRNA)-like molecules that are transcribed by polymerase II, 5′ capped, and have
a 3′ poly-A tail. Because they can form complex secondary structures, they often have
functions. Many lncRNAs are preferentially found in the nucleus, where they participate in
the regulation of chromatin organization and transcription, often by forming lncRNA-DNA
triplex [1–3], as well as through the formation of nuclear speckles and regulation of splicing.
In the cytoplasm, lncRNAs can regulate mRNA stability, bind to other non-coding RNAs,
and modulate protein post-translational modifications and protein function [4–8].

LncRNAs have been studied in mammals since the early 1990s due to their involve-
ment in developmental processes. For example, the Xist (X-inactive specific transcript)
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lncRNA contributes to reshaping the architecture of chromatin to achieve X chromosome-
silencing in early embryonic development [9]. The H19 lncRNA is involved in genomic
imprinting and regulation of the insulin growth factor 2 (IGF2) and other genes involved
in embryonic growth [10,11]. The study of HOX genes, master regulators of embryonic
development, led to the discovery of the lncRNA HOTAIR (Homeobox transcript antisense
intergenic RNA). HOTAIR is transcribed from the antisense strand of the HOXC gene.

HOTAIR has been reported to repress the transcription of the HOXD loci via interaction
with PRC2 (polycomb repressive complex 2) [12], although in vivo models developed later
report conflicting results regarding HOXC or HOXD genes regulation by HOTAIR [13,14].
Because of the importance of physiological context to understand lncRNA molecular
function, more recently, other groups have reported exclusively in vivo approaches using
animal models of lncRNA genetic ablation. For example, a comprehensive study developed
18 knock-out (KO) mouse models for less well-known lncRNAs with human orthologs.
Certain lncRNAs’ expression was highly tissue-specific (such as Fendrr, Manr and linc–Cox2
expressed mainly in lung), supporting a unique physiological role, while other lncRNAs
were more ubiquitously expressed. Three of the analyzed lncRNAs were required for
embryonic development (Fendrr, Mdgt, Peril), speaking to their fundamental functions [15].
Thus, the involvement of lncRNAs in normal cell physiology and organism development
suggests that these may also control disease-related processes such as cancer.

Lung cancer is the leading cause of cancer-related mortality in the U.S., and non-
small cell lung cancer (NSCLC) is the most common subtype. Lung cancer is commonly
diagnosed in late stages, where patients present distant metastasis with 9% having a 5-year
survival rate [16]. Although the development of targeted therapies (e.g., tyrosine kinase
inhibitors, TKIs) has improved patient outcomes, their clinical efficacy is often limited
by both innate and acquired resistance, permitting tumor progression and recurrence
leading to poor survival rates [17]. It is imperative to better understand molecular drivers
of tumorigenesis, metastasis, and therapy resistance in lung cancer to develop improved
therapeutic strategies. LncRNAs are emerging as important molecules in cancer due to their
oncogenic or tumor-suppressive functions. Here, we summarize the latest works providing
in vivo evidence available for the role of lncRNAs in lung cancer, therapy resistance, and
their potential as biomarkers.

2. Role of lncRNAs in Lung Cancer

Because of the role of lncRNAs in regulating a diverse array of cellular functions, dereg-
ulation of their activities is involved in cancer. Some mechanisms reported for lncRNAs
functions in cancer are as follows: acting as miRNA sponges to modulate activity on their
targets; interacting with histone-modifier enzymes to modulate known oncogene/tumor
suppressor gene expression; interacting with transcription factors to repress/activate their
transcriptional programs; acting as anti-sense molecules for tumor suppressor mRNAs,
among other mechanisms [2,18]. Importantly, regulation of lncRNA expression and func-
tion in cancer follows similar principles to that of known oncogenes and tumor suppressors,
as it can be mediated by DNA methylation [19], amplification or deletion [20], and mutation
or SNPs of DNA sequences [21,22]. In this section, we provide examples of well-studied
lncRNAs that are reported to have oncogenic or tumor-suppressive roles in lung cancer, as
well as those with controversial functions.

MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) was one of the
first lncRNAs described to be associated with cancer. In 2003, Ji et al. analyzed the gene
expression profile in human primary lung cancer tumors that subsequently metastasized
or those that did not metastasize and compared their transcriptional signatures. They
identified a Metastasis-Associated Lung Adenocarcinoma Transcript 1, named MALAT1,
for its higher expression in primary tumors that metastasized. They also found a significant
correlation between higher level of MALAT1 expression in stage I lung cancer and worse sur-
vival outcomes [23]. Several studies since then have described MALAT1 function in normal
physiology and cancer [24–26]. Three independent groups developed an in vivo approach
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to describing MALAT1 physiological function. They found that Malat1 is highly abundant
in several mouse tissues and highly conserved across species. Genetic perturbation of the
Malat1 locus in mice (using genetic deletion [27,28] or genetic inactivation approaches [29])
did not alter animal development, nuclear speckle formation, splicing, or mRNA stability.
However, they described a role for Malat1 in controlling neighboring genes expression
in a tissue-specific manner that was not consistent between the three studies, especially
that of Neat1, another lncRNA [28,29]. In the context of lung cancer, MALAT1-silencing
did not show effects on lung cancer cell proliferation or viability in vitro [27]. To further
understand the role of MALAT1 in lung cancer metastasis, Gutschner et al. implanted
EBC-1 lung cancer cells into nude mice and treated them with subcutaneous administration
of an anti-sense oligonucleotide (ASO) targeting MALAT1. After five weeks of treatment,
all primary tumors were excised. Metastasis nodules were analyzed at 12 weeks, indicating
fewer and smaller metastatic nodules in the treated group, suggesting a role for MALAT1 in
promoting metastasis. Through additional in vitro studies, they report MALAT1 inhibition
results in aberrant expression of metastasis-associated genes in cell lines [30]. Although
these studies support a role for MALAT1 in promoting metastasis and regulating certain
genes expression, other evidence exists for different roles. Kim et al. describe an elegant
study that challenges previously reported roles for MALAT1 in metastasis. Using the
Malat1 knock-out (KO) mouse model developed by Nakagawa et al. (LacZ and Poly-A
sequences were used as transcriptional terminators inserted 69 bp downstream of the
transcription start site of Malat1 without deletion of the DNA sequence), Kim et al. crossed
these mice with a breast cancer model driven by MMTV-PyMT that mimics human disease.
Surprisingly, they found a 7.2-fold increase in metastatic foci and 31-fold increase in the
percent of lung areas with metastatic lesions in Malat1-KO mice as compared to Malat1
WT mice, suggesting a role for Malat1 in suppressing breast cancer metastasis to the lung.
This phenotype was rescued by transgenic expression of Malat1, suggesting that the RNA
product itself diminished metastasis. Additionally, they identified Malat1 interaction with
TEAD (transcriptional enhanced associate domain) proteins in mouse-derived tumors and
cell lines, which suppressed TEAD-YAP interaction and, therefore, inhibited their pro-
metastatic transcriptional program [31]. This study and others highlight the importance of
context (lung model vs. breast model) as well as experimental methodology to approach
lncRNAs’ functional characterization (such as lncRNA genomic DNA loss vs. RNA loss
reviewed in detail elsewhere [24]). Of note, DNA elements themselves within a lncRNA
locus may be responsible for regulatory functions that are independent from transcript
function [32–35]. In summary, MALAT1 promotes metastasis in lung cancer, but may show
opposite functions in different types of cancer depending on cellular context.

The GAS5 (growth arrest-specific 5) gene was first described as a G0-specific gene that
is inhibited by serum and growth factors [36]. In vivo, Gas5 genetic deletion (Gas5+/−) in
mice decreased bone mass and impaired bone repair, leading to osteoporosis. Mechanisti-
cally, Gas5 positively influenced proper cell differentiation through interaction with UPF1
(a DNA/RNA helicase) to accelerate SMAD7 mRNA decay [37]. In lung cancer, GAS5 was
found down-regulated in 72 NSCLC tumor samples as compared to their paired adjacent
normal tissues, suggesting a tumor-suppressive role. Additionally, low GAS5 expression
was correlated with larger tumor size, lower differentiation levels, and higher staging of
tumor–node metastasis [38]. A xenograft model of GAS5 overexpression (OE) showed
that GAS5 OE markedly decreased tumor size compared with control [38]. Although this
study did not explore a mechanism for GAS5-mediated tumor suppression, other studies
implicate a role for GAS5 as a miRNA sponge to negatively influence cell cycle activator
genes [39] or positively influence PTEN levels [40]. Additionally, a recent study revealed
GAS5 is partially localized to the mitochondria where it modulates energy homeostasis
by promoting the de-acetylation of malate dehydrogenase, suppressing breast cancer [41].
Taken together, a role for GAS5 in halting the cell cycle as well as promoting cell differentia-
tion in normal cells supports its tumor-suppressive role reported in lung cancer. Besides
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GAS5, other lncRNAs have been studied for their tumor-suppressive functions, such as
MEG3 and TUG1, reviewed elsewhere [42].

LUCAT1 (Lung Cancer-Associated Transcript 1), first identified as smoke-induced and
cancer-associated lncRNA1 (SCAL1) [43], has higher expression in lung cancer as compared
to normal controls, and is also found to be overexpressed in several cancer types [44]. To
our knowledge, a LUCAT1-deficient mouse model has not been reported. Additionally,
patients with tumors that express high levels of LUCAT1 showed poorer overall survival as
compared to those with lower LUCAT1 expression. Moreover, high LUCAT1 levels were
associated with late staging in tumor–lymph node metastasis and higher tumor volume.
In NSCLC cell lines A549 and SPC-A1, LUCAT1 modulates p21 and p57 expression by
promoting loci methylation through PRC2 [45].

More recently, a role for LUCAT1 in regulating immune responses has been described.
LUCAT1 genetic deletion in myeloid cells is found to enhance interferon-mediated gene
transcription. LUCAT1 acts as an immune suppressor by interacting with STAT1 and
chromatin in the nucleus. It may also act by inhibiting NF-kB functions [46]. These findings
suggest a tumor-promoting role for LUCAT1 that is tumor-cell-intrinsic, in addition to
a potential non-cell autonomous mechanism via the inhibition of immune surveillance,
although this mechanism remains to be explored in the lung cancer context.

HOTAIR has been vastly studied in cancer contexts [47,48]. In NSCLC, tumor samples
and cell lines expressed higher HOTAIR levels as compared to normal counterparts [49].
Additionally, high HOTAIR levels correlated with higher tumor grade and presence of
lymph node metastases [49,50]. In vitro, HOTAIR has been reported as a direct target of the
hypoxia-inducible-factor-1α (HIF-1α), therefore enhancing A549 NSCLC cells’ proliferation,
migration, and invasion [51]. In vivo, tail vein injections of SPC-A1 cells with or without
siRNA targeting HOTAIR showed that the knock-down condition reduced the number
of metastasis nodules found in the lungs of immunocompromised mice [49]. HOTAIR-
silencing resulted in a decrease in matrix metalloproteinases (MMPs, which promote
invasion and migration) expression and an increase in HOXA5 levels (a tumor suppressor)
in cell lines, suggesting HOTAIR acts through the regulation of expression of cancer-related
genes [49]. Although this xenograft assay does not account for all steps required for a
tumor cell to achieve metastatic colonization (extravasation, survival in blood, seeding
of new site, proliferation in new site), and they measured colonization of lungs using a
lung cancer cell line (same tissue), it raises the possibility that HOTAIR may be involved
in the seeding and survival of cancer cells. Additionally, the absence of a competent
immune system challenges interpretation of these results. Development of a HOTAIR
transgenic mouse model to understand in vivo implications in lung cancer initiation and
progression is necessary, similar to a HOTAIR inducible system recently reported for breast
cancer [52]. This model showed that sustained HOTAIR overexpression promotes breast
cancer metastasis to lungs. Overall, with the data available, HOTAIR seems to play an
oncogenic role in lung cancer; however, robust mechanisms through which this lncRNA
function remain to be uncovered.

Most studies focus on the contribution of a single lncRNA to cancer phenotypes. How-
ever, whether the lncRNAs described above are expressed simultaneously in tumors with
unique or redundant functions remains to be explored in depth. For example, Esposito et al.
showed that at least 80 oncogenic lncRNAs are active in NSCLC through a lncRNA-focused
CRISPR screen. By further dissecting the role of two candidate lncRNAs, CHiLL1 and
GCAWKR, they showed these have distinct cellular localization and non-overlapping tar-
gets. Importantly, ASOs targeting both these lncRNAs yielded additive effects, suggesting
that they have cooperating functions in NSCLC progression [53]. LncRNAs are generally
expressed at lower levels than protein-coding genes [54]. Because of this, we speculate
that lncRNAs with redundant functions may be expressed simultaneously to compensate
for a higher expression of their targets in disease conditions. By examining available
TCGA lung adenocarcinoma datasets containing mRNA expression data, we did not find
significant correlations (negative or positive) among the expression of lncRNAs described
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here. However, such an analysis in combination with functional studies could shed light on
mutual exclusivity relationships between certain lncRNAs. Additionally, whether certain
lncRNAs are predominantly expressed at different stages of tumor progression remains
to be explored. A new online resource, lncRNAfunc https://ccsm.uth.edu/lncRNAfunc
(accessed on 7 May 2023), provides insights on differentially expressed lncRNAs across
different cancer types and stages available in TCGA, as well as functional predictions [55].
Although this analysis did not detect any correlations between the lncRNAs mentioned
here and lung cancer stages, possibly due to lack of sufficient sample sizes, these lncRNAs
did show correlation with stage in other cancers; for example, LUCAT1 was correlated with
cancer stage in kidney cancer.

In summary, lncRNAs have oncogenic and tumor-suppressive roles in lung cancer,
illustrated in Figure 1. LncRNAs interact with protein-coding molecules, resulting in the
activation or inactivation of specific signaling pathways in cancer cells. We speculate more
lung-cancer-specific lncRNAs will be identified with genome-wide transcriptomic studies.

Figure 1. Illustration of roles of lncRNAs in lung cancer. GAS5 acts as a miRNA sponge to activate
their mRNA targets and inhibit cancer cell proliferation, therefore acting as a tumor suppressor.
LUCAT1 can promote cancer cell proliferation via epigenetic silencing of p21 and p57 loci. Addition-
ally, LUCAT1 may create a pro-tumorigenic microenvironment by inhibiting interferon-mediated
responses through the sequestration of STAT1. HOTAIR can promote cancer cell proliferation and
metastasis via the recruitment of PRC2 to methylate loci and repress gene expression, such as HOXA5
which is a tumor suppressor. MALAT1 stimulates lung cancer metastasis by potential recruitment
of transcription factors (TF) to promoters of metastasis-associated genes. Green arrows represent
positive influence. Red arrows represent inhibition. Created with Biorender.com (accessed on 4
June 2023).

3. LncRNAs in Lung Cancer Therapy Resistance

The role of non-coding RNAs in resistance to cancer therapies has been
documented [48,56,57]. Mechanistically, lncRNAs can contribute to therapy resistance by
promoting cell survival pathways (including autophagy, DNA repair), inhibiting apoptosis
and cell cycle checkpoints, increasing self-renewal capacity and epithelial to mesenchymal
transition (EMT), modulating the tumor microenvironment as well as the cellular xeno-
biotic stress response (drug efflux mechanisms), among others [48,58]. Here, we provide
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evidence for the roles of the lncRNAs discussed above in resistance to chemotherapy, radio-
therapy, and targeted therapy in lung cancer. Additionally, we discuss new advances in
understanding the role of lncRNAs in immune checkpoint therapy in lung cancer.

3.1. Role of lncRNAs in Resistance to Chemotherapy, Radiotherapy, and Targeted Therapy
in Lung Cancer

In a tumor xenograft model, silencing of MALAT1 in cisplatin resistant A549 cells led
to decreased growth in nude mice (subsequently treated with cisplatin), as compared to
non-targeting control. Similarly, overexpression of MALAT1 in cisplatin-sensitive A549
lung cancer cells increased tumor volume as compared to empty vector control [59]. These
data suggest a role for MALAT1 in promoting cisplatin resistance in lung cancer. The
authors suggest that modulation of STAT-3 function by MALAT1 drives this phenotype,
although a direct interaction was not confirmed [59]. While additional lung-cancer-focused
studies are lacking, the MALAT1 role in cisplatin resistance was also found in a xenograft
model of oral squamous cell carcinoma [60]. In radiotherapy, MALAT1 also promotes
resistance, although this function has not been explored in lung cancer. In a xenograft
model of esophageal squamous cell carcinoma, MALAT1 levels were found to be reduced
upon radiation in tumors that respond to treatment. Additionally, overexpressing MALAT1
in xenografts did not decrease their size upon radiation exposure, while controls showed
regression [61]. Furthermore, in colorectal carcinoma cell lines, MALAT1 knockdown
enhanced radiosensitivity [62]. Therefore, MALAT1 can impact sensitivity to radiation
therapy in cancer. To our knowledge, there are no robust in vivo studies addressing the role
of MALAT1 in lung cancer targeted therapy resistance (TKIs), only those in cell lines. Cheng
et al. characterized differentially expressed lncRNAs in gefitinib (EGFR TKI)-sensitive
PC9 cells and gefitinib-resistant PC9 cells. They found H19 and BC200 lncRNAs to be
up-regulated in resistant cells vs. sensitive ones, while MALAT1 and HOTAIR were down-
regulated in the resistant setting. These data suggest that MALAT1 may promote sensitivity
to targeted therapy in lung cancer cells [63]. However, opposite roles for MALAT1 in
targeted therapy resistance in other cancers have been described. For example, MALAT1 is
overexpressed in Sutinib-resistant renal cell carcinoma tumors vs. sensitive tumors [64].
These findings suggest MALAT1 plays a role in therapy resistance that can be highly context-
specific in regard to the type of therapy (cisplatin vs. targeted therapy) or cancer primary
site (lung vs. kidney) and support the need to study these functions and mechanisms in
physiologically relevant settings.

GAS5, a tumor-suppressive lncRNA, plays a role in the sensitization of lung cancer
cells to therapy. In cisplatin-resistant A549 and H1299 cells, GAS5 overexpression reduced
IC50 (half-maximal inhibitory concentration) values to cisplatin. In vivo, cisplatin-resistant
A549 cells stably overexpressing GAS5 yielded lower tumor volumes when injected into
nude mice as compared to vector controls [65]. Additionally, a role for GAS5 has been
reported in sensitivity to targeted therapy (gefitinib, EGFR TKI). A xenograft mouse model
of GAS5 overexpression (OE), GAS5 OE plus gefitinib, gefitinib alone, or vehicle, showed
that GAS5 OE plus gefitinib yielded the best tumor size reduction outcomes. This suggests
that GAS5 can synergize with targeted therapy to achieve better clinical outcomes [38].
Lastly, roles for GAS5 in sensitizing lung cancer cells to radiotherapy have also been
reported [66]. This evidence suggests GAS5 as a promising target to sensitize lung tumors
to cancer therapy.

LUCAT1 can contribute to cisplatin resistance in NSCLC. Shen et al. describe a role
of LUCAT1 as sponge of miR-514-3p, whose target is ULK1, a protein involved in au-
tophagy. Therefore, LUCAT1 promotes cisplatin resistance by modulating autophagy [67].
Although further investigation in the context of lung cancer is limited, LUCAT1 is known
to promote resistance to DNA-damaging agents in colorectal carcinomas [68]. Because
LUCAT1 has been recently reported to play a role in immune cell regulation [46,69], its role
in immune checkpoint blockade therapies should be explored in detail as a possible target
for combination therapy.
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The role of HOTAIR in therapy resistance, similar to findings described for MALAT1,
can be complex. For example, HOTAIR was found in higher levels in cisplatin-resistant
NSCLC tumors as compared to sensitive ones [50]. In radiotherapy, HOTAIR can promote
resistance to radiation therapy through the inhibition of p21 in cervical cancer [70], it can
modulate β-catenin signaling in Lewis lung cancer tumors [71], and it modulates Akt
signaling in breast cancer cell lines [72]. In contrast, in targeted therapy, HOTAIR was
reported down-regulated in tumors derived from acquired and primary resistant states
to EGFR-TKIs as compared to treatment naïve tumors. Here, higher levels of HOTAIR
expression were correlated with better survival outcomes [73]. Consistent with these
findings, HOTAIR was down-regulated in gefinitib-resistant PC9 cells vs. sensitive ones [63].
However, another study reports higher HOTAIR expression in gefitinib-resistant PC9 cells
as compared to gefitinib-sensitive cells [74]. Lastly, in vitro assays suggest that HOTAIR
may mediate Crizotinib (ALK/ROS1 inhibitor) resistance through the up-regulation of
autophagy [75]. Taken together, HOTAIR promotes resistance to cisplatin and radiotherapy
in lung cancer. In targeted therapy, the type of drug and differences in experimental
methodologies employed may account for the confounding role of HOTAIR.

Programmed cell death is crucial in attaining effective therapeutic responses regardless
of the type of therapy employed. LncRNAs play a significant role in modulating cell death
through several mechanisms, influencing therapeutic failure and resistance. For instance,
certain lncRNAs can inhibit pro-apoptotic proteins such as P53, BAX and PARP-1, while
others can promote anti-apoptotic proteins such as BCL-2 directly or through activating
MYC [76–78]. Both mechanisms lead to the inhibition of apoptosis, contributing to therapy
resistance. Ferroptosis is another type of programmed cell death that uses iron-dependent
accumulation of reactive oxygen species (ROS) to induce death. LncRNAs can interfere
with ferroptosis by modifying levels of key proteins, such as inhibiting ACSL4 or increasing
GPX4 [79]. Pyroptosis is a type of cell death that triggers an inflammatory response and
its role in cancer is controversial. LncRNAs can also exert an impact on pyroptosis. In
particular, XIST can sequester SMAD2 in the cytoplasm, impeding the transcription of
NLRP3, an essential mediator of pyroptosis. This finding was associated with an increased
resistance to cisplatin in NSCLC [78]. In summary, understanding the role of lncRNAs in
regulating programmed cell death, including apoptosis, ferroptosis and pyroptosis, is key
for shedding light on their contribution to therapy resistance and developing strategies to
overcome it.

3.2. Role of lncRNAs in Immunotherapy Responses in Lung Cancer

The role of lncRNAs in resistance to immune checkpoint inhibitors (ICI) is emerging as
a field of study in many cancers [80]. ICIs target immune inhibitory molecules such as PD-1,
PD-L1, and CTLA-4 with the goal of re-activating immune surveillance and tumor-cell
killing [81]. Even though these therapies have favorable outcomes in certain tumor types,
an effective and durable response in lung cancer is achieved only in ~25% of cases [82].
Therefore, understanding the underlying molecular mechanisms of response or resistance
to ICIs is critical to improve lung cancer outcomes.

MALAT1 may be involved in regulating responses to immunotherapy. In a study of 113
NSCLC tumor samples, MALAT1 expression was positively correlated with PD-L1 mRNA
as well as PD-L1 protein levels [83]. Here, the authors propose MALAT1 acts as a sponge
of miR-200a-3p, whose target is PD-L1 [83]. Similarly, another study proposed LINC01140
directly represses two miRNAs (miR-377 and miR-155-5p) whose target is PD-L1. There-
fore, LINC01140 expression promotes PD-L1 expression and a potential pro-tumorigenic
microenvironment [84]. In a co-culture assay, LINC01140-silencing in lung cancer cells
promoted higher IFN-γ secretion from cytokine-induced killer cells, as compared to non-
targeting control. In a xenograft model, lung cancer cells with knock-down of LINC01140
were injected into immunocompromised mice and received peritumoral administration
of cytokine-induced killer cells upon tumor establishment. Further tumor growth was
inhibited in the knock-down condition as compared to non-targeting controls. Importantly,
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higher levels of pro-inflammatory cytokines were found in the circulation of mice injected
with LINC01140 knock-down tumor cells compared to controls [84]. Moreover, a recent
study reports an unbiased approach to understanding lncRNAs’ relationship to the tumor
immune microenvironment and prediction of response to immune checkpoint therapy in
NSCLC [85]. Based on lncRNAs that were correlated with immune-checkpoint expression,
and taking into account overall survival data, Zhang et al. identified a signature of ten
lncRNAs that they used to separate patients into “low”- and “high”-risk groups. They
analyzed immune infiltrates in tumor samples and found a significantly higher density of
T-cells (CD4+ and CD8+) and dendritic cells in the low-risk group (suggesting responsive-
ness to immunotherapy), while macrophages were higher in the high-risk group tumors
(suggesting unresponsiveness to immunotherapy) [85]. Although the gold-standards for
prediction of immunotherapy response are still levels of immune-checkpoint molecules, the
evidence discussed here suggests there is potential for lncRNAs to function as biomarkers
to predict immunotherapy response in lung cancer, as well as to be therapeutic targets in
combination with immune checkpoint inhibitors.

More recently, the cGAS/STING pathway has gained importance in modulating cancer
immunotherapy responses. This pathway provides a defense against microbial pathogens
and malignant cells [86]. Therefore, approaches to activate it have recently emerged, such
as STING agonists. These approaches have shown to synergize with immunotherapy
(anti PD-L1) and achieve better responses in cancer [87]. Importantly, lncRNAs can also
regulate the cGAS/STING pathway. In NSCLC, the lncRNA PCAT1 was reported to
activate the transcription of SOX2, therefore inhibiting cGAS/STING-dependent interferon
responses and causing immunosuppression [88]. In non-cancer contexts, MALAT1 has
been reported to activate cGAS/STING through CREB, therefore promoting inflammatory
lung conditions [89]. It is imperative to continue researching the role of lncRNAs in
modulating cGAS/STING as their de-regulation may impact cancer patient responses
to immunotherapy.

In summary, the lncRNAs discussed above have all been reported to modulate re-
sistance to cancer therapies (illustrated in Figure 2), although evidence for some therapy
types is limited to other cancer settings. A caveat in the data presented is the focus on
association studies, in vitro and xenograft assays (immunocompromised mice) without
strong mechanistic insights.

 

Figure 2. Illustration of lncRNAs contribution to therapy resistance. LncRNAs can induce survival
pathways through activation of several proteins such as β-catenin, STAT3, MYC, or ULK1. LncRNAs
inhibit cell death by inducing anti-apoptotic proteins such as BCL-2 or inhibiting pro-apoptotic
proteins such as P53, BAX, PARP-1, and NLRP3. LncRNAs promote increase in PD-L1 levels by
inhibiting miRNAs that target PD-L1. PCAT1 induces SOX2 to inhibit cGAS/STING pathway and
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diminish interferon responses, thereby modulating immune-therapy efficacy. LncRNAs may inhibit
cell cycle checkpoints by modulating p21, although this has not been explored in the context of
lung cancer. Green arrows represent induction, red arrows represent inhibition. Created with
Biorender.com (accessed on 4 June 2023).

4. LncRNAs as Biomarkers in NSCLC

LncRNAs are highly stable molecules that can be found in the systemic circulation.
They are resistant to degradation due in part to their secondary structures, transport by
exosomes, and stabilizing post-translational modifications [90,91]. Therefore, the study
of lncRNAs in circulation is a plausible non-invasive method of detecting and following
cancer progression. Currently, the most commonly used biomarkers for NSCLC diagnosis
from circulation are carcinoembryonic antigen (CEA), cytokeratin-19 fragment (CYFRA21-
1), squamous cell carcinoma antigen (SCCA), prolactin (PRL), and carbohydrate antigen 125
(CA125), which can be used individually or combined as a signature [92,93]. Additionally,
lncRNAs can also be stably found in urine [94] and even in nasal mucosa [95], although the
latter has not been explored in the context of cancer. In this section, we review evidence for
the potential of lncRNAs as disease biomarkers in lung cancer.

Exosomes are small vesicles that facilitate the transfer of cargo from one cell to another.
One of the first lncRNAs found in exosomes was PARTICLE. It was observed not only in
exosomes isolated from the MDA-MB-361 metastatic breast adenocarcinoma cell line but
also in plasma samples obtained from patients exposed to radiation [2]. In lung cancer,
exosomal lncRNAs have been found to play a significant role in cancer development
and metastasis. For example, the exosomal lncRNA UFC1 was demonstrated to enhance
lung cancer cell proliferation and metastasis by interacting with EZH2 and subsequently
reducing PTEN expression [96]. Due to their packaging into exosomes, lncRNAs exhibit
increased stability and can travel to distant sites, having significant potential effects in
biological processes of both cancer and non-cancer cells. For instance, as reported for
miRNAs, exosomal lncRNAs may sustain proliferation of cancer cells at the same time
that they modify pre-metastatic niches by remodeling the microenvironment towards
tumor-promoting immune cells or fibroblasts, as well as increasing vessel leakiness and
angiogenesis [97]. A specific example is exosomal HOTAIRM1, which has been observed to
modulate the expression of SPON2, an extracellular matrix protein, in cancer-associated
fibroblasts. This modulation promotes cancer cell migration and invasion [98]. Additionally,
PCAT6 derived from NSCLC exosomes influences macrophages polarization, promoting
the shift towards M2 phenotypes that support tumor growth [99]. These findings highlight
the pivotal role of exosomal lncRNAs in intercellular communication and their implications
in cancer progression.

Tang et al. analyzed lncRNAs expression in the blood from 232 patients diagnosed
with NSCLC as compared to healthy controls. Expression levels of three lncRNAs (RP11-
397D12.4, AC007403.1, ERICH1-AS1) were higher in disease versus health states. Impor-
tantly, this expression pattern was stable even after freeze–thaw cycles [100]. In a similar
study, the lncRNAs SPRY4-IT1, ANRIL, and NEAT1 were found overexpressed in NSCLC
versus healthy controls (N = 50/group), and were detected stably after several freeze–thaw
cycles and after the samples’ exposure to room temperature for up to 24 h [101]. A more re-
cent study analyzed exosomal lncRNAs from the blood of NSCLC patients vs. tuberculosis
patients and healthy controls. They report higher levels of RP5-977B1 in NSCLC compared
to the two non-cancer groups. The diagnostic power of this lncRNA was greater than
that of conventional biomarkers such as CEA and CYFRA21-1, and additionally worked
for early-stage NSCLC, speaking to the promise of lncRNAs to detect early disease [102].
HOTAIR has also been evaluated for its diagnostic value for pathological staging of NSCLC.
It was determined to have a power similar to that of biomarkers CEA and CYFRA21-1 [103].
ESCCAL-1 is an oncogenic lncRNA, initially identified in esophageal cancer [104]. The
results from a large cohort lung cancer screen show that ESCCAL-1 has increased expres-
sion in serum samples from lung cancer patients as compared to serum from patients with
benign nodules or healthy individuals. These studies support the use of elevated lncRNAs
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expression individually or as signatures as biomarkers to predict disease or as staging tools
in NSCLC. Clinical trials that evaluate the use of lncRNAs as biomarkers are currently
ongoing for other cancers, according to the ClinicalTrials.gov database (accessed on 12
April 2023).

Comparable to tumor-promoting lncRNAs, tumor-suppressive lncRNAs such as GAS5
also show potential as biomarkers in NSCLC. Liang et al. compared GAS5 levels in the
plasma of 90 NSCLC patients vs. 33 healthy controls. They detected significantly lower
levels of GAS5 in plasma derived from cancer patients. Additionally, they measured the
dynamics of GAS5 before and after surgery, detecting an increase in GAS5 levels seven
days after the patients had surgery [105]. As discussed above, GAS5 has a clear tumor-
suppressive role in lung cancer; therefore, these studies are consistent and support the use
of GAS5 as biomarker for diagnosis and for responses to clinical intervention.

5. LncRNAs as Therapeutic Targets

The main approaches to targeting lncRNAs are similar to protein-coding genes: in-
hibiting oncogenic lncRNAs or restoring the function of tumor-suppressive lncRNAs. Here,
we briefly describe advances in lncRNA therapeutics as well as some challenges.

Therapeutic approaches to target lncRNAs with oncogenic functions mainly use
ASOs (anti-sense oligonucleotides). The core mechanisms of action of ASOs involve
promoting the cleavage of their RNA targets, impeding their translation, or modulating
splicing [106]. There are several types of ASOs depending on their chemical modifications,
such as locked nucleic acids and morpholinos, that may make them more resistant to
degradation, provide better cellular availability, and lower off-target events [106]. As
mentioned in the sections above, ASOs are a strategy widely used in cell line and animal-
based assays to elucidate lncRNAs role in cancer [30]. Although ASOs that target miRNAs
have entered clinical trials [7,107], to our knowledge, there are no therapies in clinical
trials targeting lncRNAs directly. Small molecules are another strategy to interfere with
oncogenic lncRNAs function [108]. For example, quercetin, a recently developed small
molecule, binds to a MALAT1 triplex and modulates its transcript levels and functions
in vitro [3]. Another small molecule recently identified, AC1NOD4Q, blocks the interaction
between HOTAIR and EZH2 (a PRC2 subunit), impeding methylation of downstream
targets [109]. Moreover, emerging strategies to silence lncRNAs in pre-clinical models use
CRISPR-based approaches, although these have not reached the clinical setting [110].

Restoring the function of tumor-suppressive lncRNAs can be achieved via gene ther-
apy or administration of synthetic RNA molecules approaches. Although gene therapy
has not reached the clinic for lncRNAs as targets, there are pre-clinical models exploring
it in non-cancer contexts. For example, the lncRNA LeXis has been explored for exoge-
nous administration using an adeno-associated virus vector in a murine model of familial
hypercholesterolemia [111].

A main limitation in translating lncRNA targeting approaches into the clinic is their
relatively poor sequence conservation between humans and other species [112]. How-
ever, it is noteworthy that MALAT1 sequence exhibits significant conservation among
various species [113], rendering it a compelling candidate for in-depth investigation into
its potential as a therapeutic target. Furthermore, it is worth noting that lncRNAs are
highly tissue-specific thereby minimizing the likelihood of off-target effects when em-
ployed for therapeutic purposes. Several pre-clinical models have been used to explore
MALAT1 targeting, including genetically engineered mouse models, patient-derived cell
lines, organoids, and xenografts. For instance, in a MMTV-PyMT breast cancer mouse
model, subcutaneous delivery of Malat1 ASO led to metastasis reduction and higher levels
of cancer cell differentiation compared to non-targeting controls. Similarly, in a 3D breast
cancer organoid model, Malat1 ASOs inhibited branching morphogenesis [114]. In lung can-
cer, systemic administration of Malat1 ASO in nude mice yielded a marked reduction in the
colonization of patient-derived lung cancer cells in the lungs, as compared to non-targeting
controls [30].
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A more recent approach to targeting lncRNAs is the use of nanoparticles containing
siRNA against a specific oncogenic lncRNA or nanoparticle-conjugated tumor-suppressive
lncRNAs. Nanoconjugates of the tumor suppressor MEG3 delivered intrahepatically to
animals with liver cancer showed improvement in histopathology and tumor-associated
biomarkers that was superior to that achieved with unconjugated MEG3. Although this
study did not analyze differences in blood retention or side effects, it is important to
consider these factors when assessing the superiority of nanoparticles as therapeutic ap-
proaches [115]. In another study, siRNA targeting DANCR, a tumor-promoting lncRNA,
packed into nanoparticles was delivered systemically into breast cancer-bearing nude
mice. This approach was effective in suppressing tumor progression with no significant
changes in animal body weight and in morphology and histology of liver, kidneys, and
lungs [116]. Although this strategy has not been used in in vivo models of lung cancer,
its use in cell lines shows promising results as it was effective in silencing DANCR and
reducing migration and invasion in vitro, supporting its further exploration in animal
models [117].

There are several other challenges for RNA-based therapies reported from the field of
miRNAs. For example, in the phase-I clinical trial for MRX34, a double-stranded miR-34a
mimic encapsulated in liposomal nanoparticles, serious adverse events were immune-
mediated toxicities, such as cytokine release syndrome, which resulted in four patient
deaths and caused the trial to terminate early [118]. The delivery of these therapies is
another challenge, as they may accumulate in detoxifying organs such as kidneys and liver,
causing associated toxicities [119,120]. Additionally, off-target events and on-target events
in non-tumor tissues can account for toxicities. Therefore, there is a need to detect immune-
related toxicities in pre-clinical studies and design strategies to reduce their prevalence in
order to engineer delivery strategies that target organs of interest with lower off-site effects,
as well as to increase target molecule specificity.

6. Conclusions/Perspectives

In summary, lncRNAs regulate key biological pathways of lung cancer such as tumor
development, metastasis, and resistance to current therapies, summarized in Figure 1
and Table 1. Although the lncRNAs described in this review have been studied for at
least 10 years, several aspects (such as roles in immunotherapy responses) remain to be
explored in the context of lung cancer (Table 1). Because of the ability of lncRNAs to
modulate function of other biomolecules, a comprehensive approach to studying their role
in signaling pathways is necessary and should take into account the interactome between
coding and non-coding molecules. Such approach has been recently reported for neural
cell differentiation processes using CRISPRi and single-cell RNA-seq approaches [121].
Additionally, with the increasing access to single-cell sequencing technologies, it would
be important to question cell of origin of lncRNAs expression within a tumor, such as for
LUCAT1, reported to modulate immune responses.

LncRNAs have highly context-dependent roles. Therefore, robust in vivo studies
to dissect mechanisms that account for physiological functions of lncRNAs are essential.
Additionally, studies should be conducted in the presence of a competent immune system.
Assays relying on xenografts (using immunocompromised mice) have two important
caveats: (1) they do not account for potential physical interactions between tumor cells and
microenvironment that may alter outcomes; and (2) they fail to predict potential side effects
of lncRNA-targeting therapies that are immune-system-dependent. This gap in knowledge
presents an opportunity for the field to develop such approaches.

29



Cancers 2023, 15, 3135

T
a

b
le

1
.

Su
m

m
ar

y
of

ro
le

s
of

ln
cR

N
A

s
G

A
S5

,M
A

LA
T1

,L
U

C
A

T1
,a

nd
H

O
TA

IR
in

no
rm

al
ph

ys
io

lo
gy

an
d

in
lu

ng
ca

nc
er

.

L
n

cR
N

A
N

o
rm

a
l

F
u

n
ct

io
n

R
o

le
in

L
u

n
g

C
a
n

ce
r

R
o

le
in

C
h

e
m

o
th

e
ra

p
y

R
o

le
in

R
a
d

io
th

e
ra

p
y

R
o

le
in

T
a
rg

e
te

d
T

h
e
ra

p
y

R
o

le
in

Im
m

u
n

o
th

e
ra

p
y

P
o

te
n

ti
a
l

a
s

B
io

m
a
rk

e
r

In
L

u
n

g
C

a
n

ce
r

G
A

S5
C

el
lc

yc
le

in
hi

bi
ti

on
[3

6]
,

ce
ll

di
ff

er
en

ti
at

io
n

[3
7]

Tu
m

or
su

pp
re

ss
or

[3
8]

Pr
om

ot
es

se
ns

it
iv

it
y

to
ci

sp
la

ti
n

[6
5]

Pr
om

ot
es

se
ns

it
iv

it
y

[6
6]

Pr
om

ot
es

se
ns

it
iv

it
y

to
EG

FR
TK

I[
38

]
N

ot
ex

pl
or

ed
Ye

s—
lo

w
er

le
ve

ls
in

N
SC

LC
[1

05
]

M
A

LA
T1

R
eg

ul
at

io
n

of
ne

ig
hb

or
in

g
ge

ne
s

ex
pr

es
si

on
[2

8,
29

]
O

nc
og

en
e

[2
3,

30
]

Pr
om

ot
es

re
si

st
an

ce
to

ci
sp

la
ti

n
[5

9]
N

ot
ex

pl
or

ed
M

ay
pr

om
ot

e
se

ns
it

iv
it

y:
D

ow
n-

re
gu

la
te

d
in

EG
FR

-T
K

I
re

si
st

an
tP

C
9

ce
lls

[6
3]

M
ay

be
as

so
ci

at
ed

w
it

h
th

er
ap

eu
ti

c
fa

ilu
re

:
co

rr
el

at
ed

w
it

h
PD

-L
1

ex
pr

es
si

on
[8

3]

Ye
s—

hi
gh

er
le

ve
ls

in
N

SC
LC

[1
22

]

LU
C

A
T1

In
hi

bi
ti

on
of

im
m

un
e

re
sp

on
se

s
[4

6,
69

]
O

nc
og

en
e

[4
3,

45
]

Pr
om

ot
es

re
si

st
an

ce
to

ci
sp

la
ti

n
[6

7]
N

ot
ex

pl
or

ed
N

ot
ex

pl
or

ed
N

ot
ex

pl
or

ed
Ye

s—
hi

gh
er

le
ve

ls
in

LU
A

D
[1

23
]

H
O

TA
IR

R
eg

ul
at

io
n

of
H

O
X

ge
ne

s
ex

pr
es

si
on

[1
2–

14
]b

y
re

cr
ui

tm
en

to
f

hi
st

on
e-

m
od

ifi
er

en
zy

m
es

[1
24

]

O
nc

og
en

e
[4

9,
50

,7
2]

Pr
om

ot
es

re
si

st
an

ce
to

ci
sp

la
ti

n
[5

0]
Pr

om
ot

es
re

si
st

an
ce

[7
1]

C
on

tr
ov

er
si

al
ro

le
s:

•
D

ow
n-

re
gu

la
te

d
in

EG
FR

-T
K

I
re

si
st

an
tt

um
or

s
[7

3]
;

•
D

ow
n-

re
gu

la
te

d
in

EG
FR

-T
K

I
re

si
st

an
tP

C
9

ce
lls

[6
3]

;
•

U
p-

re
gu

la
te

d
in

EG
FR

-T
K

I
re

si
st

an
tP

C
9

ce
lls

[7
4]

;
•

Pr
om

ot
es

re
si

st
an

ce
to

C
ri

zo
ti

ni
b

(A
LK

/R
O

S1
in

hi
bi

to
r)

[7
5]

.

N
ot

ex
pl

or
ed

Ye
s—

hi
gh

er
le

ve
ls

in
N

SC
LC

[1
03

]

TK
I=

ty
ro

si
ne

-k
in

as
e

in
hi

bi
to

r,
N

SC
LC

=
no

n-
sm

al
lc

el
ll

un
g

ca
nc

er
,L

U
A

D
=

lu
ng

ad
en

oc
ar

ci
no

m
a.

30



Cancers 2023, 15, 3135

Lastly, even though the role of lncRNAs in therapy resistance is documented, a role
in the persister cell state (minimal residual disease) has not been explored. Such studies
could shed light on important survival mechanisms that drive therapeutic failure and
disease recurrence. LncRNAs show promise as disease biomarkers based on their highly
stable nature in circulation. An important aspect to explore deeper is their potential to
detect disease in early stages and temporal circular detection of lncRNAs to monitor the
therapeutic response. Such an approach could be implemented for routine surveillance in
advanced cancer patient groups.
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Simple Summary: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Due
to the absence of specific early symptoms, most of CRC patients are often diagnosed at late stages.
Different screening and diagnostic biomarkers are currently used for risk stratification and early
detection of CRC, which might prolong the overall survival. High-throughput technologies have
witnessed rapid advancements in the last decade. Consequently, the development of multiple
omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, microbiomics,
and lipidomics, has been widely applied to develop novel biomarkers that could contribute to the
clinical management of CRC. In this paper, we aim to summarize the recent advances and future
perspectives in using multi-omics technologies in CRC research, and reveal the potential implications
of multi-omics for discovering novel biomarkers and enhancing clinical evaluations.

Abstract: Colorectal cancer (CRC) is common Cancer as well as the third leading cause of mortality
around the world; its exact molecular mechanism remains elusive. Although CRC risk is significantly
correlated with genetic factors, the pathophysiology of CRC is also influenced by external and internal
exposures and their interactions with genetic factors. The field of CRC research has recently benefited
from significant advances through Omics technologies for screening biomarkers, including genes,
transcripts, proteins, metabolites, microbiome, and lipidome unbiasedly. A promising application of
omics technologies could enable new biomarkers to be found for the screening and diagnosis of CRC.
Single-omics technologies cannot fully understand the molecular mechanisms of CRC. Therefore, this
review article aims to summarize the multi-omics studies of Colorectal cancer, including genomics,
transcriptomics, proteomics, microbiomics, metabolomics, and lipidomics that may shed new light
on the discovery of novel biomarkers. It can contribute to identifying and validating new CRC
biomarkers and better understanding colorectal carcinogenesis. Discovering biomarkers through
multi-omics technologies could be difficult but valuable for disease genotyping and phenotyping.
That can provide a better knowledge of CRC prognosis, diagnosis, and treatments.

Keywords: colorectal cancer; multi-omics; biomarkers

1. Introduction

Colorectal cancer (CRC) is the third most common cancer accounting for 10.2% of
new cases and 9.2% of Cancer-related mortality, thus accounting for the second most
deadly cancer globally [1]. It has been reported that the overall survival rate of metastatic
CRC (mCRC) at 5 years over the first examination lowers from 87–90% in stages I–II, and
68–72% in stages III; in stage IV, the rate drops to 11–14% [2]. Most CRC treatment options
currently rely on cancer staging, patient performance status, RAS, BRAF, ERBB2, and
mismatch repair (MMR) status assessments using tumour samples taken during surgery
or core biopsy [3,4]. At present, for patients with mCRC, it is recommended to determine

Cancers 2022, 14, 5545. https://doi.org/10.3390/cancers14225545 https://www.mdpi.com/journal/cancers37
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KRAS/NRAS and BRAF mutation status, as well as HER2 amplification and microsatellite
instability high (MSI)/mismatch repair (MMR) status (if not performed already) [4]. Recent
studies have demonstrated that immune checkpoint inhibitor therapy is effective in treating
dMMR/MSI-H mCRC tumours at advanced stages of the disease [5]. The discovery of new
molecular biomarkers in CRC and other cancers has begun to follow the approval of tumour-
agnostic drugs, including NTRK1-3 translocations and high tumour mutational burdens
(TMBs) [6,7]. As opposed to metastatic cancer, there are still no validated biomarkers
indicating which patients are more likely to benefit from adjuvant cytotoxic therapy in
stage II or III CRC, except for microsatellite instability (MSI) [8]. Additionally, postoperative
treatments are often administered following metastatic resections, despite the absence of
predictive biomarkers [3,4]. Currently, Colonoscopy, tissue biopsy, and fecal occult blood
test (FOBT) are the major techniques used in CRC screening and detection. However, in the
case of Colonoscopy or biopsy, these techniques are invasive, causing discomfort for the
patient, or in the case of FOBT, they may also have low sensitivity [9–11]. Therefore, it is
demonstrated that a less invasive test with higher sensitivity is needed in clinical practice.

In particular, high throughput “multi-omics” technologies, including genomics, tran-
scriptomics, proteomics, microbiomics, and metabolomics, provide less or noninvasive
approaches for diagnosing CRC. Each method offers a unique advantage for the discovery
of novel diagnostic cancer biomarkers, such as Genomics, which is incredibly efficient for
evaluating CRC vulnerability and the disease’s genetic risk. However, it has little diagnostic
potential since DNA sequences seldom translate directly to phenotype due to epigenetic,
post-transcriptional, and post-translational alterations [12]. Transcriptomics and proteomics
have great therapeutic potential as they are more closely tied to organisms’ physiological
states. Still, their diagnostic power is not as good as that of metabolomics, which enables
quick and precise phenotypic characterization of the organism and its metabolic pathways
as well as the potential to evaluate how host and gut bacterial metabolites interact, which
is a crucial step in the CRC progression [13]. Additionally, a number of recent research
have shown that the gut microbial community and microbial metabolites play a crucial role
in the emergence of CRC [14,15]. Recent years have seen the emergence of lipidomics as
a research tool and a multi-omics technology that holds great promise. As a result, this
tool has been demonstrated to be useful for both the quantification of cellular lipids and
their characterization. This is not only for disease diagnosis but also for other mechanistic
studies [16,17]. The mechanism of CRC initiation and progression has remained largely
enigmatic despite the discovery of more diagnostic methods and potential therapies; many
challenges remain unresolved due to the lack of new biomarkers and the heterogeneity
of tumours. After the completion of the human genome project, omics science has rev-
olutionized CRC research [18]. In order to enable personalized medicine and to define
CRC treatment, the identification of novel biomarkers has become an essential part of
molecular diagnosis and treatment [19]. The use of new biomarkers in clinical practice is
still challenging despite developments in the molecular analysis [20]. However, genomic
advances have made significant contributions to understanding cancer biology over the
past few years [21]. In oncology, the structure and functions of the genome, as well as
mechanisms governing genes’ expression, have been extensively investigated since the
completion of the Human Genome Project and the development of next-generation se-
quencing (NGS) techniques [21,22]. A constantly expanding understanding of genomic
hallmarks of malignant transformation provides a new perspective on pathogenesis and
targeted treatment of particular tumours [23,24]. Genomics, transcriptomics, proteomics,
metabolomics, microbiomics, and lipidomics, make a significant contribution to a funda-
mental change toward a multiparametric, innovative, immunological, and stromal model,
which helps us to understand how CRC develops and categorizes it into various molecular
subtypes for clinical diagnosis as well as the emergence of new biomarkers and therapeutic
strategies [25], (Figure 1).
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Figure 1. Graphical representation of different multi-omics-based approaches in discovering novel
CRC biomarkers and therapeutic targets.

The aim of this review is to summarize the recent developments in multiple multi-
omics technologies in the exploration of CRC biomarkers signatures via genomics, tran-
scriptomics, proteomics, microbiomics, metabolomics, and lipidomics. These promising
multi-omics base CRC biomarkers could be useful for clinical research.

2. Genomics of CRC

Genomic science comprises the study of an individual’s entire set of DNA (including all
of their genes) [26]. An individual’s genomes are a comprehensive collection of information
that enables them to grow and develop [27]. Using genomic analysis, researchers may
better understand gene interactions, environmental effects, and how several conditions,
such as cancer and diabetes, develop [28]. The development of these new approaches may
facilitate disease diagnosis, treatment, and prevention [29]. During carcinogenesis, genetic
and epigenetic changes occur that contribute to the identification of ideal biomarkers of
CRC [30]. There is growing evidence that genetic changes play a key role in tumorigenesis.
Due to this, genomics is becoming a powerful tool for finding genetic markers that can
be used to diagnose and prognosis cancer, as well as improving our understanding of
the disease. High-throughput next-generation sequencing is a genomic technique for
sequencing an organism’s DNA [31]. Multiple- biomarker panels are usually more sensitive
than single biomarkers, as demonstrated by many research studies over the last few
years [32]. For illustration, Ghatak S et al. used differential gene expression analysis in
five independent in silico CRC cohorts and immunohistochemistry in one clinical cohort to
validate their results. The authors developed a novel biomarker for early diagnosis and
prognosis of cancer based on a five-panel gene signature [33]. All five in silico datasets
showed that four genes (PTGS2, BDNF, CTNNB1, and GSK3B) were highly upregulated.
One gene (HPGD) was substantially downregulated in primary tumour tissues compared
to neighbouring normal tissues. Based on independent clinical validation cohorts, this
five-gene signature was significantly associated with poor overall survival (AUC = 0.82)
among colon cancer patients.

An epigenetic change happens when modified nucleotide sequences in the genome
appear to be altered beyond their original form [34]. Gene expression is regulated by
epigenetic mechanisms such as DNA methylation, histone modification, and nucleosome
positioning Inhibitions in these regulatory processes promote malignant transformation
by impairing gene function [35,36]. There is abnormal methylation of the CpG promoter
during CRC, which leads to promoter hypermethylation in the promoters of tumour sup-
pressor genes and the silencing of the transcriptional activity of DNA repair genes, which is
accompanied by a loss of methylation (hypomethylation) that contributes to oncogene acti-
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vation, chromosome instability, and microsatellite instability [37,38]. There is evidence that
CRC biomarkers such as methylation in cfDNA and CTCs may be useful for the noninva-
sive diagnosis of CRC [39,40]. In addition, the epigenetic modification of 5-methylcytosine
(5mC) has been associated with the emergence of several disorders, including CRC. An
increasing number of studies suggest that 5mC can be used in diagnoses and prognosis of
colorectal Cancer [41–47]. Furthermore, members of the ten-eleven translocation family
catalyze the production of 5-hydroxymethylcytosine (5hmC), a persistent byproduct of
DNA epigenetic regulation. The change of 5hmC, a new epigenetic biomarker, is linked
to several disorders, particularly Cancer [48–53]. There is evidence that 5hmC plays an
important role in the progression of CRC [47,53]. However, it has rarely been studied
as a potential diagnostic marker for the early detection of CRC. The potential genomics
biomarkers are shown in Table 1.

Table 1. Potential multi-omics base Genomics biomarkers in CRC.

Biomarker Sample Type Change Application References

CBX8, CD96 datasets downregulated diagnostic [54]

MTUS1 tissue downregulated diagnostic and prognostic [55]

SDC2, NDRG4 stool upregulated Screening [56]

SOX21 stool upregulated diagnostic [57]

BDNF, PTGS2, GSK3B and CTNNB1 tissue upregulated prognostic and diagnostic [33]

HPGD tissue downregulated prognostic and diagnostic [33]

YWHAB, MCM4, and FBXO46 datasets overexpress prognostic [58]

DPP72 datasets lower expression prognostic [58]

SDC2, TFPI2 stool hypermethylated screening [59]

SNORD15B, SNORA5C tissue upregulated diagnostic and prognostic [60]

GALR1 tissue hypermethylation screening [61]

LRRC19 datasets downregulated prognosis [62]

KRAS, BRAF, PIK3CA tissue mutation detection [63]

3. Transcriptomics of CRC

A transcriptomic study analyzes an organism’s entire RNA content. Transcription
represents an overview of the cell’s activity at a particular moment due to the information in
DNA [64]. In recent years, transcriptomics has made unprecedented progress in molecular
genetics [21,65]. At certain developmental stages and under certain physiological or
pathological conditions, transcriptomes represent all RNA molecules produced in a cell
from the genome [66,67]. It consists of protein-coding RNAs (pcRNAs), also known as
messenger RNAs (mRNAs), and non-coding RNAs (ncRNAs), of which each molecule
exhibits a wide range of cellular functions and responses to external stimuli [68–71]. As a
result of epigenetic changes and genomic instability, transcriptome changes may occur in
CRC. In CRC, ncRNAs play an important role in angiogenesis, migration, differentiation,
and apoptosis. Therefore, the study of ncRNAs is one of the most prominent areas of
RNA research. Numerous studies have provided evidence that ncRNA expression is
abnormal in CRCs. A study of ncRNA stability in stool, plasma, and serum may provide
new possibilities for developing new methods of detecting ncRNAs, and it has been
demonstrated that among ncRNAs, microRNAs have significant impacts on CRC [72,73].
By using next-generation sequencing, deep sequencing of CRC tumours was performed to
examine the miRNA transcriptome results demonstrating that CRC patients had increased
levels of miRNA-615-3p and miRNA-10b-5p expression in both the right and left side of
the colons correspondingly. Additionally, five miRNAs were found to be significantly
elevated in CRC patients in the study, including miR-143-3p, miR-22-3p, miR-192-5p, miR-
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21-5p and miR-10a-5p [74]. Several studies have been conducted to identify novel miRNA
as biomarkers, and several studies have demonstrated an important role for miR-92a
and miR-429 in CRC pathogenesis [75,76]. In contrast, several miRNA molecules have
been demonstrated to have significant diagnostic value for advanced neoplasia, including
miR-17-92, miR-135, miR-143, and miR-145.

Moreover, a recent study improved and facilitated exosome-miRNA identification in
blood using SHERLOCK-based miRNA detection. It revealed that miR-23a, miR 126,
miR-940 and miR-1290, are the best good prognostic indicators for the initial stages
of CRC [77]. Several miRNAs including MiR-192a, miR-29a, miR-19a-3p, miR-92a-3p,
miR-125b, miR-422a and miR-223-3p, have been considering significant CRC marker. How-
ever, miR-21 has been studied extensively for diagnosing CRC [78]. In another study,
miR-429 was found to reside at the centre of a miRNA-target gene network, indicating
that it plays a critical role in cancer development. The miRNA samples from 28 patients
with CRC markedly showed an increase in miR-32 levels. It has been determined that
miR-32 expression and CRC lymphatic invasion and metastasis are correlated by the cancer
genome atlas (TCGA), and a negative association was also observed between miR-32 and
bone morphogenetic protein 5 (BMP5) [79]. By inhibiting EPST11 activation, BMP5 acts
as a tumour suppressor. Alteration in BMP5 levels triggers the epithelial-mesenchymal
transition, which stimulates tumorigenesis. Sporadic CRC tissues show a positive cor-
relation between BMP5 expression and E-cadherin expression. Yamada et al. identified
four lncRNAs, including CRCAL-1, CRCAL-2, CRCAL-3, and CRCAL-4, which differ in
expression among normal mucosa and CRC patients through RNA sequencing [80]. The
findings of this research highlight the implication of RNA-Seq for identifying new lncRNAs
in colorectal cancer. CRC tissue also showed downregulation of NONHSAT074176.2 under
GO and KEGG analysis, which may serve as a valuable diagnostic biomarker [81].

A fusion transcript (FT) is a chimeric RNA that comes from a single gene product or the
trans-splicing of a transcript made by two gene products. FTs play an important role in the
regulation of cancerous cells. It has been reported that transcripts from COMMD10-AP3S1,
CTB-35F21.1-PSD2, and AKAP13-PDE8A are the most frequently reported transcripts in
CRC. According to another study, higher levels of NFATC3-PLA2G15 fusion transcript
were detected in 19 pairs of CRC tumours and adjacent normal tissue samples. As a
result of the knockdown of NFATC3-PLA2G15, invasion and proliferation are inhibited
in cancer cells, suggesting that NFATC3-PLA2G15 FTs may influence CRC progression;
these impact findings show that this fusion transcript can serve as a novel biomarker
for CRC [82] TGFRN-NOTCH2 fusion transcripts were the only transcripts detected in
CRC and adjacent normal tissues from deep transcriptome sequencing. RT-PCR analysis
confirmed the findings, suggesting that PTGFRN-NOTCH2 may be an FT gene in CRCs
and may serve as a potential biomarker [83].

Furthermore, single-cell RNA sequencing (scRNA-seq) assesses the transcriptomic
status of specific populations of single cells compared with RNA sequencing (RNA-seq) in
which transcript levels are measured across different cell types [84,85]. In microdroplets
and microwells, thousands of single cells can be simultaneously barcoded and handled
at the same time [84]. Several technologies have been developed that measure mRNAs
that are isolated from a single cell, including Quartz-Seq, Smart-seq, Smart-seq2, and
CEL-seq [84,86,87]. These different types of mRNA sequencing technologies with distinct
purposes. Smart-seq, for example, detects full-length transcripts. During Quartz-Seq,
samples are analyzed and pooled according to the 30 end of transcripts and the CEL-Seq
barcodes before linear amplification of mRNA [86]. In a recent study, the transcriptional
profiles of 371,223 cells from colorectal cancer and neighbouring normal tissues were taken
from 28 tumours with mismatch repair proficiency, and 34 tumours with mismatch repair
deficient [88]. a significant finding of this study is that there is a structured arrangement of T
cells within a tumour. In summary, the authors have provided a large number of individuals
with colorectal cancer with datasets that contain information about cellular states, gene
networks, and tumour transformations [88,89]. The results of scRNA-seq studies are
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promising because, for each cell type in a tumour, alterations may be associated with
patient characteristics, diagnostic methods, therapeutic approaches, and prognosis. In the
near future, scRNA-seq could be used clinically to develop customized treatment regimens
for each patient based on their genetic information [90]. The potential transcriptomics
biomarker is shown in Table 2.

Table 2. Potential multi-omics base transcriptomics biomarkers in CRC.

Biomarker Sample Type Change Application References

miR-92a, miR-21 serum upregulated diagnostic and prognostic [91]

hsa_circ_0000567 CRC tissue and cell lines downregulated diagnostic [92]

hsa-circ-0006282 plasma upregulated Diagnostic [93]

hsa_circ_000592,
hsa_circ_0001900 and

hsa_circ_0001178
plasma upregulated diagnostic [94]

miR-129-1-3p
mmiR-566 urine upregulated detection [95]

GPR55 CRC tissue and cell lines downregulated prognostic [96]

miR-1290 plasma upregulated prognostic [97]

miR-320d plasma downregulated diagnostic [98]

miR-103a-3p, miR-127-3p,
miR-17-5p, miR151a5p,

miR-181a-5p, miR-18a-5p
and miR-18b-5p

plasma upregulated diagnostic [99]

CCAT2, CCAT1, H19,
MALAT1, MEG3, HULC,

HOTAIR, PCAT1,
PTENP1 and TUSC7

stool upregulated detection [100]

miR-214, miR-199a-3p,
miR-196a, miR-106a,

miR-183, miR-134,
miR-92a, miR-96, miR-20a,

miR-21,
miR-17, miR-7.

stool upregulated screening [101]

miR-138, miR-143,
miR-29b, miR-9,

miR-146a, miR-127-5p,
miR-938, miR-222.

stool downregulated screening [101]

4. Proteomics of CRC

Proteins regulate many biological processes, and gene mutations could alter their ex-
pression. As well as serving as a source of potential biomarkers, the proteome is also the
functional translation of the genome. Compared to the normal proteome, cancer proteome
biomarkers are up- or downregulated; Thus, researchers have recently focused their attention
on identifying differences between cancerous and normal cells in terms of their expression
characteristics. To develop new classification tools for CRC, diagnostic, prognostic, and
predictive biomarkers must be developed to detect proteins involved in its development and
progression and observe the effects of protein perturbations and modifications.

Many proteomic techniques have been employed in order to find putative diagnostic
biomarkers. According to Ghazanfar et al. [102], protein expression in fresh freeze sam-
ples of colorectal cancer tissue (12 individuals) was analyzed using gel electrophoresis in
combination with mass spectrometry, demonstrating that number of proteins has been up-
regulated in colorectal Cancer. These include actin beta-like 2 (ACTBL2). Another study by
Hao et al. [103], using high-resolution Fourier transform mass spectrometry, revealed that
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colorectal tumour tissue overexpressed dipeptidase 1 (DPEP1) Based on the examination
of 22 pairs of normal tissues adjacent to cancerous tissue. Yamamoto and colleagues used
a global proteomic approach to study formalin-fixed and paraffin-embosted (FFPE) CRC
tissue with liquid chromatography (LC)/mass spectrometry (MS). They found a higher
concentration of cyclophilin A, annexin A2, and aldolase A in cancerous tissues versus
non-cancer tissues [104]. Similarly, in another study, fibroblasts associated with cancer
progression were identified from human and mouse tissue. As a result of this study, it has
been demonstrated that the proteins LTBP2, OLFML3, CDH11, CDH11, CALU, and FSTL1
play an important role in the migration and invasion of CRCs and have been implicated as
stromal biomarkers [105].

Among the potential biomarkers of colorectal Cancer, blood-based markers are some
of the most promising for performing early detection and surveillance of CRC because
obtaining the specimens is relatively easy and noninvasive with minimal risk [106,107].
A targeted liquid chromatography-tandem mass spectrometry analysis was performed
on 213 healthy subjects and 50 colorectal cancer patients by Ivancic et al. [108]. This
study identified five proteins, including inter-alpha-trypsin inhibitor heavy-chain fam-
ily member 4, leucine-rich alpha-2-glycoprotein 1, EGFR, hemopexin, and superoxide
dismutase 3, that play a significant role in detecting CRC with 89% specificity and over
70%sensitivity. Furthermore, A protein panel for early detection of CRC was discovered by
Bhardwaj et al. [109], by using liquid chromatography/multiple reaction monitoring-mass
spectrometry in plasma samples from 96 CRC patients, and 94 controls, using a blood-
based profile of five markers, osteopontin, serum paraoxonase lactonase 3, transferrin
receptor protein 1, mannan-binding lectin serine protease 1, and amphiregulin. Demon-
strated promising performance in screening for colorectal Cancer. Additionally, a number
of members of the Serpin family including SERPINC1 (antithrombin-3, AT-III), SERPINA3
(alpha-1 antichymotrypsin, AACT), and SERPINA1 (alpha-1 antitrypsin, A1AT), have
been identified as potential biomarkers for colorectal carcinoma and adenomatous polyps
by using multiplexed quantification isobaric tags for absolute and relative quantitation
(iTRAQ), [110]. The importance of CC chemokines (CCL15, CCL4 and CCL2) has also been
assessed in CRC however further research is needed for their utility as diagnostic and
clinical markers [111].

Numerous LC-MS-based research has been conducted demonstrating different CRC
biomarkers. For instance, Quesada-Calvo et al. [112] suggested KNG1, Sec24C, and OLFM4
as diagnostic biomarkers out of 561 proteins with different expression levels. One other
study demonstrated that ACTBL2, Annexin A2, Aldose A, DPEP1, and cyclophilin A
could also serve as a biomarker for the early detection and treatment of CRC and provide
new therapeutic targets [102–104]. As a biomarker source, circulating proteins are widely
accepted as a better diagnostic tool for many diseases, particularly CRC [113]. Western
blot (WB) and ELISA verification studies demonstrate that MRC1 and S100A9 are higher
in CRC patients’ serum compared to healthy individuals [114]. Furthermore, Ivancic et al.
demonstrated that serum samples containing LRG1, EGFR, ITIH4, HPX, and SOD3 could
detect CRC with 89% specificity and 70% sensitivity. According to these findings, GC, CRP,
CD44, and ITIH3 proteins may be able to differentiate CRC depending on its stage [108].
Additionally, Bhardwaj and colleagues [109] showed five protein signatures, including
MASP1, AREG, PON3, TR, and OPN, compared with FDA-approved biomarkers derived
from blood superior diagnostic performance. CXCL-1 (C-X-C motif ligand 1) and CXCL-
8 (C-X-C motif ligand 8) and their receptors have also demonstrated a potential role as
biomarkers for CRC prognosis and diagnosis [115], Pczek S et al. conducted a study
in which increased levels of CXCL-8 were found in CRC patients when compared to
normal subjects. The findings of their research revealed enhanced versatility of CXCL-8 as
compared to CEA in CRC diagnosis [116]. The potential proteomics biomarkers are shown
in Table 3.
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Table 3. Potential multi-omics based proteomics biomarkers in CRC.

Biomarker Sample Type Change Application References

CHD 9 tissue upregulated prognostic [117]

ACTBL2 tissue upregulated diagnostic [102]

CDK3, CDK5, and CDK8 tissue upregulated diagnostic [118]

STK4 or MST1 serum downregulated detection [119]

MRC1 and S100A90 serum upregulated diagnostic [114]

CEACAM-7 tissue downregulated predictive [120]

CEA plasma upregulated predictive and prognostic [121]

SPG20 and STK31 blood upregulated diagnostic [122]

TPM3 tissue/plasma upregulated detection [123]

FJX1 serum upregulated prognostic and diagnostic [124]

NOP14 datasets upregulated Prognosis [125]

SPARCL1 datasets Downregulated diagnosis [126]

5. Microbiomics of CRC

Microbiomics is an emerging field of omics technologies that examines a symbiotic
or pathological relationship between microbial communities [127]. Many microorganisms
exist in the human microbiota (microbiome), such as bacteria, viruses, fungi, etc. [128–132].
An individual’s gut microbiome is composed of microorganisms and their genetic materials.
Over 3 million genes exist in the gastrointestinal tract, which is 150 times more than the
human genome. In the gastrointestinal tract, 1013 to 1014 different microorganisms live,
and over 30 million genes exist. Approximately 7000 different strains of bacteria comprise
the gut microbiome in adults [133]. Gut microbiome signatures in CRC were studied using
different approaches by various researchers. Various methods enrich 16S rRNA for variable
regions in stool DNA, from amplifying and sequencing the V1, V2, and V4 regions to
shot-gun metagenomic sequencing. Here are various methods to enrich 16S rRNA for
variable regions in stool DNA, from amplification and sequencing of the V1, V2, and V4
regions to shot-gun metagenomic sequencing [134–136]. Various qPCR methods have been
used to quantitate the abundance of target microbial genes in samples of interest [137–139].

Gut microbiomes have shown a significant role in the treatment of CRC; As an example,
the gut microbiome may be able to be used for screening, diagnosis, prediction and/or
predictive biomarkers. Alternatively, it might be a changeable factor affecting systemic CRC
treatment efficacy or prevention [127,140]. The gut microbiota is a screening marker among
asymptomatic individuals with high-risk adenomas or CRC. The Fusobacterium nucleatum
bacteria, for example, can be examined in faecal samples from patients with adenomas and
CRC to serve as a screening biomarker. Detecting and screening for CRC early may also be
possible based on metabolic markers and genotoxic metabolites of specific strains [139].

Recent research published in a nature journal examined 33 cancer patients’ blood and
tissue samples. It revealed that the blood contained specific gut-derived pathogenic bacte-
rial DNA that may be used to distinguish various types of tumours [141]. Therefore, the
authors concluded that further research should be undertaken on this possible microbiome-
based tumour diagnosis tool. In addition, the study of pathogenic bacteria (intestinal
flora), and their metabolites have been linked to CRC, and the correlation analysis of gut-
microbiome and metabolomics have shown a promising role in CRC prevention, treatment
and diagnosis [142]. This common gastrointestinal malignancy has also become a hotspot
of research in recent years [143,144]. Chen F et al. investigated the macro genomic and
metabolomic compositions of serum collected from normal patients, colorectal adenomas,
and CRC patients. A total of 885 differential metabolites were found in the serum associated
with intestinal bacteria. This led to the Identification of eight serum metabolites that were
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reproducible and were used to develop categorical diagnostic models for healthy/colorectal
adenoma (AUC = 0.84) and healthy/colorectal Cancer (AUC = 0.93) [145].

Some common metabolites of intestinal bacteria in the blood, bile acids, such as
short-chain fatty acids and oxotrimethylamine, could be biomarkers for early CRC detec-
tion [146–148]. According to research by Huang Y et al. [149], Fusobacterium nucleatum
plays a major role in promoting colorectal carcinogenesis by increasing tumour-associated
metabolites, including 12a hydroxy3oxycholic acid and phosphorylcholine in the serum.
Another area of active research is the discovery of biomarkers from microbial metabolomes,
as some metabolites derived from the microbiota are associated with colorectal cancer.
Microbial metabolites have been identified in several studies as potential biomarkers for
CRC; for example, using GC-MS, an analysis of stool metabolites was conducted for CRC
patients using a GC-MS technique with the result that there was a higher concentration of
acetate and a lower concentration of butyrate and ursodeoxycholic, acid (UDCA) in their
stool [150]. Another GC-MS metabolomic study was conducted in CRC tissue in which
19 differentiating metabolites were identified, along with pathway enrichment analyses
that demonstrated that CRC patients exhibit a significant disruption of several metabolism
pathways, including short-chain fatty acid metabolism, secondary bile acid metabolism,
and carbohydrate metabolism [151]. Using NMR, a combined examination of tumour tissue
and feces revealed a decrease in butyrate levels in patients with CRC; Fecal and tissue sam-
ples had AUCs of 0.692 and 0.717, respectively for diagnosing CRC from normal subjects,
An AUC of 0.843 was reported for fecal acetate, which was the strongest indicator of diag-
nostic performance [152]. According to an MS-based metabolomic analysis in CRC cohorts,
polyamine-based metabolites also showed a significant upregulation (N1-acetylspermidine,
citrulline, arginine and ornithine) [153]. Integrating microbiome and metabolome data has
demonstrated that fecal abundances of microbial-associated polyamines (cadaverine and
putrescine) may play a role in colorectal cancer diagnosis [154]. CRC screening can benefit
from metabolic markers, as demonstrated in these examples. The potential microbiomics
and metabolomics biomarkers are shown in the Table 4.

Table 4. Potential multi-omics base microbiomics and metabolomics biomarkers in CRC.

Biomarker Sample Change Application References

F.nucleatum, P. anaerobius
and P. Micra stool increase detection [155]

P. micra,
Streptococcus anginosus stool increase diagnosis [156]

P. Micra
F. nucleatum stool increase diagnosis [157]

norvaline and myristic acid stool upregulated diagnosis [158]

menaquinone-10 stool upregulated diagnosis [159]

F. nucleatum stool upregulated detection [160]

Oleic acid stool Upregulated screening [161]

Succinate, Butyrate,
Lactate, Glutamate, and

Alanine.
tumour tissue/feces Upregulated

(excluding Butyrate downregulated) detection [152]

Biomarker Sample Change Application References

Cholesteryl esters, Sphingomyelins stool Upregulated diagnosis [134]

Fusobacterium, Parvimonas
and Staphylococcus stool increase diagnosis [134]

Pyruvic acid, lysine, glycolic acid,
fumaric acid, ornithine blood upregulated detection [162]
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Table 4. Cont.

tryptophan, Palmitoleic acid, lysine,
3hydroxyisovaleric acid blood decrease detection [162]

octadecanoic acid, citric acid,
hexadecanoic acid, and propanoic

acid-2-methyl-1-(1,1-
dimethylethyl)-2-methyl-1,3-

propanediyl
este

urine downregulated screening [163]

Hydroxyproline dipeptide, tyrosine,
tryptophan, pseudouridine,

glucuronic acid, glycine, histidine,
glucose, 5-oxoproline, threonic acid,

and isocitric acid

urine upregulated screening [163]

6. Metabolomics of CRC

Metabolomics is a new research area in the omics arena. Refers to an in-depth in-
vestigation of low molecular weight substances formed by metabolism in a biological
fluid, including metabolic substrates and products, small peptides, lipids, vitamins, and
other protein cofactors. In biomarker discovery, metabolomics is one of the fast-growing
fields [164,165]. Furthermore, unlike genomics, transcriptomics, and proteomics, it rep-
resents the connections between genes and the environment, which allows it to be more
precise in describing multifactorial diseases [164,166]. Many biological specimens can
be used for metabolomics, most of which can be obtained using noninvasive techniques.
Although biomarkers and metabolites can vary from study to study and even between spec-
imens and colorectal cancer levels, they remain useful for diagnosing colorectal cancer [167].
Targeted metabolomics involves quantifying the metabolites linked with particular path-
ways associated with a specific state of disease [168]. In contrast, the untargeted approach
was used in many samples and did not undergo any bias; it often measures as many
metabolites as possible [169]. Due to its unique insight into disease origin and development
processes, the metabolome remains a key component of disease research. Metabolomics
may provide valuable information about the pathology of CRC, identify predictive biomark-
ers, and evaluate the severity of the disease by examining the metabolomic fingerprint in
detail [170]. The metabolomics approach based on urine metabolites can be used to identify
cancer biomarkers to distinguish patients with early-stage and advanced-stage colorectal
cancer [171]. Lactosylceramide has also been identified as a key metabolite distinguishing
Crohn’s disease from ulcerative colitis in untargeted metabolomics [172].

Several metabolomic research studies have been carried out in a small cohort of col-
orectal cancer patients using several biological samples such as blood, urine, stool, and
tissue [173,174]. A comparison was made between metabolic profiles of healthy individuals,
as well as of individuals with benign polypoid pathology [175] employing nuclear mag-
netic resonance (NMR) or gas- and liquid-chromatography coupled to mass spectrometry
(GC-MS, LC-MS) as analytical tools. Several studies have shown a negative correlation
between stool and urine metabolites in patients with advanced colon cancer. The study’s
authors conducted a comparison of plasma, stool, and urine metabolic profiles [176]. There
have been studies conducted that identified 154 different metabolites, including those
that are produced during the tricarboxylic acid (TCA) cycle, urea cycle, polyamine path-
ways, glycolysis and amino acids, among others. With the progression of Cancer, the
concentrations of these metabolites increased, with the greatest difference found in stage
IV. Moreover, polyps and CRC samples were discriminated by metabolite analysis [177].
Ning et al. carried out a research study that revealed 11 upregulated and four downregu-
lated metabolites in urine samples collected from CRC patients and healthy subjects, as
shown in Table 4. Patients with CRC who were examined for pathways involved in these
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metabolites showed increased glycolysis, and amino acid metabolism while showing a
decrease in lipid metabolism [163].

Another research has been conducted; they studied the relationships between metabo-
lites and health status in healthy individuals and CRC patients using GC-MS analysis based
on a metabolomics-based approach. This study identified several polyamines (putrescine,
cadaverine) as potential biomarkers for cancer prognosis [154]. By observing metabolomic
alterations in patients with CRC, another study utilizing gas chromatography-mass spec-
trometry (GC-MS) found that stool fatty acids, particularly increased oleic acid, may be
used to screen CRC [161]. UHPLC-MS analysis of stool samples from CRC patients revealed
different sphingolipid and cholesteryl esters levels [134]. A recent study of CRC tissues and
stools conducted through the proton nuclear magnetic resonance (1H NMR) technology
showed that butyrate was downregulated in CRC tissue and stools. At the same time,
alanine, lactate, glutamate, and succinate were upregulated [152]. As metabolomics have
been made a great contribution to drug discovery, UPLC-MS base metabolites biomarkers
from natural compounds have also played an essential role in disease treatments [178], for
instance our recent pharmacodynamic metabolomics base study using mice serum revealed
that flavonoids and anthraquinones have a role in CRC treatment [179]. A combination
of several multi-omics technologies could provide a powerful strategy for making valid
conclusions about biomarker signatures for Colorectal Cancer. So far, no single Omics
technology offers enough information to demonstrate the detailed molecular mechanism
and validation of biomarker signatures.

7. Lipidomics of CRC

The field of lipidomics is one of the newest branches of multi-omics technologies.
With the help of various analytical techniques, this technology can classify and analyze
almost all cellular lipids, to understand their role and characteristics within biological
systems. It has been studied on a larger scale for lipid species molecules. Several kinds
of disease-specific biomarkers have been found through lipidomics, and the lipid species
are linked to disease severity [180,181]. Regarding CRC, A very recent study, by Zayt-
seva et al. suggested that fatty acid metabolism might be used as a strong predisposition in
CRC. It emphasized the significance of targeting lipid dysregulation in future therapeutic
strategies [182]. Many studies have been conducted to examine the complex lipid profile
of serum tissue samples; Consequently, a specific CRC lipidome has been the subject of
ongoing discussions that may have implications for clinical treatment. The elevated levels
of VLCFA (Very Long-chain Fatty acids) and lower levels of LCFA (long-chain fatty acids)
have been observed in CRC patients’ serum. It was explained that ELOVLs (Elongation
of Very Long-chain Fatty acids Protein) may increase VLCFA elongation by increasing
saturated or monosaturated fatty acids [183,184]. Based on LC-MS analysis, it was found
that saturated triacylglycerols accounted for the majority of perturbations that occurred
in CRC progression. The authors attributed these perturbations to LD (lipid droplet) ac-
cumulation [185]. According to another study, glycolipids, glycerophosphocholine, and
acylcarnitines serum concentrations decreased in CRC patients [186]. In a recent study,
Ecker et al. also found an independent prognostic marker in triglyceride lipidomic tissue
signatures capable of discriminating against patients and can be used as a prognostic
indicator. Through quantitative lipidomics analysis, the author demonstrated altered levels
of glycerol, glycerophospholipids and sphingolipids in matched tumour samples. It has
been shown that glycerol and sphingolipids can discriminate among patients with distinct
mismatch repair proficient and deficient statuses, oncogenic mutations (KRAS/BRAF), or
grading [187]. Several diseases have multidimensions and networks of lipid molecules
fused with genes and proteins in the molecular mechanism. Lipidomics platforms can be
used to analyze and characterize these compounds. Furthermore, common and traditional
disease diagnoses can be more difficult to identify therapeutic targets. However, lipidomics
technology offers the possibility of easier diagnosis for certain types of diseases. A diagno-
sis of the disease can be made by lipidomics based on existing biomarkers as therapeutic
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agents [188,189]. It is also possible to study various protein-lipid interactions, lipid-lipid
interactions, and lipid-gene interactions, enabling the development of better diagnostic
procedures for advanced diseases. A lipidomics approach has been considered better than
traditional approaches for disease investigation because it provides an understanding of
systemic metabolisms and their mechanisms and precisely identifies therapeutic targets
and diagnostic biomarkers [190].

8. Future Perspectives and Conclusions

It is well acknowledged that early cancer diagnosis would enhance patient prognosis
and provide a greater knowledge of the disease, decrease mortality, and increase patient
satisfaction. There has been a significant advancement in identifying new biomarkers in
recent years, paving the way for a more personalized approach to the clinical diagnosis
and treatment of CRC [19]. Several DNA, RNA, and protein-based cancer biomarkers have
been developed recently through high-throughput research in cancer biomarkers that can
be discovered from readily available biological samples such as blood, serum, urine, stool,
and tissues. Technological advancements have improved the sensitivity and specificity of
cancer-specific biomarkers in CRCs. However, traditional biomarkers in clinical practice
do not have high specificities and sensitivity. Therefore, in order to develop an accurate
and clinically useful test, it is recommended to discover multiple biomarker panels instead
of a single biomarker. By identifying prospective new therapeutic intervention targets
that might contribute to the diagnosis of CRC, it is possible to develop an alternative to
conventional methods of early detection of cancer.

With the recent developments in high-throughput sequencing technologies, Increas-
ingly, cancer researchers are relying on “multi-omics” data sets. Multi-omics combines a
range of omics data sets, including genomics, proteomics, transcriptomics, metabolomics,
and microbiomes, for analysis [191,192]. By combining quantitative analyses of multi-omics
data and clinical features, we can get insight into alterations at the molecular level and gain
a more comprehensive, systemic comprehension of various biological pathways [192,193].
By integrating multi-omics approaches, we can simultaneously uncover how information
flows between different levels of omics. It will, therefore, help us to bridge and close the gap
between genotypes and phenotypes data. With the advent of this Technology, colorectal
cancer can be diagnosed, prognosed, treated, and prevented with greater accuracy in the
future. Due to the huge amount of data available, multi-omics and big data analytics
are required to interconnect all available information. In particular, integrating patient
demographic, genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiota
data could assist in developing new biomarkers discovery and clinical outcomes prediction.

Another emerging field of multi-omics technologies is microbiomics which offers
a non-traditional tool with potential applications in more significant comprehension of
tumour biology. Identifying microbial metabolites correlated with the development of
colorectal tumours has significant implications for identifying new treatment targets and
possible biomarkers for disease screening [194]. There has been significant progress in
recently using intestinal bacteria and their metabolites as early detection markers for CRC.
The association between CRC and gut bacteria and their metabolites has received much
attention recently. Moreover, the gut microbiota’s microbial metabolite composition is
frequently renewed and changes depending on the diet, making it more amenable to
therapeutic intervention in developing CRC. New paradigms in CRC diagnosis, preven-
tion, and treatment will be provided by elucidating the role of microbial metabolites [15].
CRC prevention, comprehensive treatment planning, and minimizing adverse effects of
treatment will be significantly impacted by the gut microbiome in the near future. Indi-
viduals’ gut microbiomes vary according to their geographic location, ethnicity, dietary
habits, and lifestyles. In the future, clinical research will need to include several factors that
contribute to the microbiota of patients, including geography, race, sex, and diet, as well
as how systemic cancer treatment affects the microbiome, especially chemotherapy and
immunotherapy [195].
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In recent years, lipidomics has been actively used in the research community and
regarded as a cutting-edge example of multi-Omics Technology. Particularly useful in
analyzing the structure and function of lipid molecules to analyze changes in their dynamic
composition during certain pathological and physiological changes. The alterations in
lipid metabolism have also been linked to several kinds of cancer development and pro-
gression. Despite this, there is a limited understanding of the metabolic changes of lipids
in cancer due to their structural diversity and characteristics, distinct from those of other
biomolecules. Several analytical tools in cancer research have been used in lipidomic analy-
sis to determine lipid composition at a large scale. Additionally, in cohort studies, glycero-,
glycerophospho-, and sphingolipid levels have been significantly changed between tu-
mours and normal tissue. A marked difference between cancerous and non-diseased tissue
in sphingomyelin and triacylglycerol (TG) species [187]. Recent research demonstrated
that GZMs (granzymes) proteins have a significant role in carcinogenesis, their role as new
biomarkers for CRC prognosis and diagnosis will need further exploration [196]. Further-
more, it is imperative to emphasize the importance of lipidomics and proteomics research
for discovering novel biomarkers and diagnosing CRCs. Integrating lipidomics with other
omics, such as metabolomics, microbiomics, proteomics, etc., would provide a powerful
tool that could help researchers identify novel therapeutic targets and biomarkers.

Many studies have been conducted using different multi-omics techniques and clini-
cal samples to discover novel biomarkers. However, clearing up the mechanism of how
markers are generated and their diagnostic value, a critical factor in drug discovery, re-
mains a challenge. Combining multiple experimental approaches and then integrating
the results is a valuable strategy to generalize human cancer’s complexity from experi-
mental models [197]. The integration of multiple omics, such as genomics, proteomics,
and metabolomics, will help us understand tumours and advance antitumor drug de-
velopments [198–200]. In addition, numerous studies have confirmed that developing
high-throughput sequencing technologies has revolutionized multi-omics research. It is
expected that multi-omics applications will increase in scope with the optimization and
maturity of various technologies, making it possible to develop novel biomarkers for CRC
due to multi-omics research.

Although multi-omics methods have great potential, there are still limitations and
challenges to overcome. The first problem is that omics methods are expensive and require
specialized equipment and high-level data analysis skills. There can also be problems in
the collection of data and verification of the data because of unreliable data quality, inaccu-
rate data sources, and nonstandard sampling. Currently, there are no standard research
platforms or bioinformatics methods for the processing of large-scale omics datasets. Data
processing and analysis are the biggest challenges in metabolomics studies because biolog-
ical organisms contain thousands of metabolites. Additionally, numerous obstacles will
need to be overcome in order to translate biomarker discoveries into clinical applications
for CRC. It is still difficult to evaluate the specificity and sensitivity of candidate biomarkers
due to the absence of strategies and selection panels. Due to the fact that most patient data
come from different laboratories, it is also difficult to validate biomarker candidates in large
cohorts of patients. To establish potential diagnostic biomarkers, further validation may be
obtained through meta-analysis. Another obstacle to overcome is the heterogeneity of the
patient population and their sporadic cancers. By performing advanced MS at single-cell
resolution, this problem may be tackled by understanding the biological and molecular
heterogeneity of disease states.
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Abbreviations

CBX8 Chromobox 8
CD96 CD96 Molecule
8MTUS1 Microtubule Associated Scaffold Protein 1
SDC2 Syndecan 2
NDRG4 NDRG Family Member 4
SOX21 SRY-Box Transcription Factor 21
BDNF Brain-Derived Neurotrophic Factor
PTGS2 Prostaglandin–Endoperoxide Synthase 2
GSK3B Glycogen Synthase Kinase 3 Beta
CTNNB1 Catenin Beta 1
HPGD 15-Hydroxyprostaglandin Dehydrogenase
YWHAB Tyrosine 3–Monooxygenase/Tryptophan 5–Monooxygenase Activation Protein Beta
MCM4, Minichromosome Maintenance Complex Component 4
FBXO46 F-Box Protein 46
DPP7/2 Dipeptidyl Peptidase 7
SDC2 Syndecan 2
TFPI2 Tissue Factor Pathway Inhibitor 2
SNORD15B Small Nucleolar RNA, C/D Box 15B
SNORA5C Small Nucleolar RNA, H/ACA Box 5C
GALR1 Galanin Receptor 1
LRRC19 Leucine-rich repeat-containing protein 19
GPR55 G protein-coupled receptor 55
CCAT2 Colon Cancer Associated Transcript 2
CCAT1 Colon Cancer Associated Transcript 1
H19 H19 Imprinted Maternally Expressed Transcript
MALAT1 Metastasis Associated Lung Adenocarcinoma Transcript 1
MEG3 Maternally Expressed 3
HULC Hepatocellular Carcinoma Up-Regulated Long Non-Coding RNA
HOTAIR HOX Transcript Antisense RNA
PCAT1 Prostate Cancer Associated Transcript 1
PTENP1 Phosphatase And Tensin Homolog Pseudogene 1
TUSC7 Tumour Suppressor Candidate 7
CHD 9 Chromodomain Helicase DNA Binding Protein 9
ACTBL2 Actin Beta Like 2
CDK3, Cyclin Dependent Kinase 3
CDK5 Cyclin Dependent Kinase 5
CDK8 Cyclin-dependent kinase 8
STK4 or MST1 serine/threonine kinase 4 or Macrophage Stimulating 1
MRC1 Mannose Receptor C-Type 1
S100A90 S100 Calcium Binding Protein A9
CEACAM-7 CEA Cell Adhesion Molecule 7
CEA Carcinoembryonic antigen
SPG20 spastic paraplegia 20
STK31 Serine/Threonine Kinase 31
TPM3 Tropomyosin 3
FJX1 Four-Jointed Box Kinase 1
NOP14 Nucleolar protein 14
SPARCL1 Secreted protein acidic and rich in cysteine-like 1
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Simple Summary: Hepatocellular carcinoma (HCC) is one of the most prevalent and devastat-
ing malignancies worldwide. An ongoing phase-II clinical trial assesses the efficacy of a novel
sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus
immunotherapy strategy as an induction therapy for unresectable HCC patients. This study aims to
investigate the potential association between radiomic features extracted from pre-treatment multi-
phasic MR images and treatment response following the novel intervention strategy. In this study,
Four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness
and uniformity were identified as the contributors to the treatment response for a 3-month timepoint.
Additional arterial phase (AP)-derived radiomic features and tumor morphology were also shown to
have strong associations with treatment response for a 6-month timepoint. The success of this study
would demonstrate the feasibility of pre-treatment identification of responsive HCC patients, paving
the way toward effective and personalized oncology for HCC management.

Abstract: This study aims to investigate the association of pre-treatment multi-phasic MR-based
radiomics and dosimetric features with treatment response to a novel sequential trans-arterial
chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy reg-
imen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with
unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions
on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic
features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-
volume-histograms. A two-sided independent Mann–Whitney U test was used to assess the clinical
association of each feature, and the classification performance of each significant independent feature
was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics
that characterize the temporal change in intratumoral randomness and uniformity were the only
contributors to the treatment response association (p-value = 0.038–0.063, AUC = 0.690–0.766). For the
6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations
with the treatment response (p-value = 0.047–0.070, AUC = 0.699–0.788), additional AP-derived
radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor
morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with
treatment response (p-value = 0.028–0.074, AUC = 0.719–0.773). This pilot study successfully demon-
strated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the
novel treatment regimen.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent and devastating malig-
nancies worldwide, ranking as the 4th leading cause of cancer-related deaths. It accounts for
80–90% of the sufferers of primary liver cancer, and its highest incidences occur in eastern
and southeastern Asia and northern Africa [1,2]. Surgical resection and liver transplanta-
tion have been the gold standard curative therapies. Unfortunately, most HCC patients
present intermediate to advanced disease at diagnosis [3]. As such, more than 70% of liver
cancer patients are considered ineligible for such curative interventions [4], partly due to
the presentation of large-sized tumors, poor liver function, or organ shortage. The median
survival remains at approximately 16 months for intermediate-stage HCC patients, and half
a year for advanced-stage HCC patients, respectively [5], reflecting grievous survivorship
in this vulnerable HCC sub-population.

Over the past decades, three key additional regimens have been developed in
the hope of serving either as a bridging therapy before liver transplantation or as a
curative alternative for unresectable HCC patients; they are Trans-Arterial Chemoem-
bolization (TACE), Stereotactic Body Radiotherapy (SBRT) and Immune Checkpoint
Blockade (ICB).

TACE has been widely adopted as a first-line treatment for intermediate-stage HCC [6].
It works by interrupting the major source of oxygen and nutrition supply to the cancer cells
from the hepatic arteries, meanwhile selectively delivering cytotoxic chemotherapeutic
agents for cancer eradication [7]. However, its efficacy is limited in patients with poor
baseline liver function and larger tumor burden, hence TACE alone is often not sufficient
for thorough cancer cell elimination in advanced-stage HCC patients [8]. On the other
hand, SBRT kills cancer cells non-invasively by delivering an ultra-high radiation dose
in a few fractions (usually ≤ 5) to the tumor in a highly precise and conformal manner,
under real-time liver and tumor motion monitoring [9]. The survival benefits of SBRT in
HCC have been well-documented in the literature for early stage tumors [10,11]. Recently,
efforts have been made to investigate the efficacy of sequential TACE-SBRT in intermediate
and advanced-stage HCC on the grounds of the reported potential synergism between
TACE and radiotherapy [12–18]. For instance, Chiang et al. reported a promising efficacy
of combined TACE-SBRT treatments in Barcelona Clinic Liver Cancer (BCLC) system stage
B-C HCC patients, yielding an objective response rate of 68% and a 1-year local control rate
of 93.6% [19]. However, intra-hepatic and distant dissemination remains a key challenge for
managing this subgroup of unresectable HCC patients. Sequential SBRT-immunotherapy
has demonstrated improved local tumor control and distant abscopal effect [20], potentially
compensating for the deficiency of the sequential TACE-SBRT regimen. Our pilot studies
have shown the satisfactory efficacy and safety of combined SBRT and immunotherapy for
HCC patients [21,22].

Notably, for the first time in history, there is an ongoing phase-II clinical trial con-
ducted by our group that aims to assess the efficacy of a novel sequential TACE-SBRT-
Immunotherapy strategy as an induction therapy for unresectable HCC patients [23], the
results are greatly anticipated. While exciting, the potential toxicities associated with this
novel aggressive treatment are yet to be reported. In the era of personalized medicine,
there is a pressing demand to discriminate between responders and non-responders prior
to treatment commencement for the sake of avoiding ineffective and toxic therapies in
non-responders and enhancing individualized oncologic care delivery.

The field of radiomics has been caught in the spotlight of attention within the medical
community [24–31]. It involves high-throughput extraction of quantitative features from
medical images for divulging intrinsic biological and genetic characteristics [32]. The
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capability of radiomics has been extensively reported in various cancer prediction tasks,
including cancer prognosis [33], disease differentiation [34], and treatment response [35,36],
highlighting the high potential of radiomics in informing decision-making in a wide
spectrum of oncologic care. Apart from this, several research groups have reported im-
proved predictive power when combining both radiomics and radiation dosimetric param-
eters [37,38]. Particularly, for HCC management, multi-phasic contrast-enhanced magnetic
resonance (MR) images are routinely used for obtaining dynamic information on disease
pathology and physiology. The role of multi-phasic MR-based radiomics in HCC has been
widely studied for predicting micro-vascular invasion [39,40], cancer recurrence [41–43],
disease diagnosis [44,45], and treatment response [46–49]. Nevertheless, radiomics studies
on treatment response prediction in unresectable HCC patients are scarce [49]. Further,
there is no study assessing the association between radiomic features extracted from pre-
treatment multi-phasic MR images and treatment response following the novel sequential
TACE-SBRT-Immunotherapy regimen.

In this pilot study, we aimed to investigate the association of pre-treatment multi-
phasic MR-based radiomics and dosimetric features with treatment response to the se-
quential TACE-SBRT-Immunotherapy regimen in unresectable HCC sub-population, who
were prospectively enrolled in the first-of-its-kind phase-II clinical trial [23]. The success of
this study would demonstrate the feasibility of pre-treatment identification of responsive
HCC patients for this novel regimen, paving the way towards effective and personalized
oncology for HCC management worldwide in the long run.

2. Materials and Methods

2.1. Patient Data

The present study was approved by the Human Subjects Ethics Subcommittee of
The Hong Kong Polytechnic University and Institutional Review Board of the University
of Hong Kong/Hospital Authority Hong Kong West Cluster. Apart from this, patient
data that were analyzed in this study were prospectively enrolled in an ongoing phase-II
clinical trial conducted by The University of Hong Kong, entitled “Sequential TransAr-
terial hemoembolization and stereotactic Radiotherapy Followed by ImmunoTherapy
for downstaging hepatocellular carcinoma for hepatectomy (START-FIT)” [23]. A total
number of 26 newly diagnosed HCC patients, who were treated with sequential TACE-
SBRT-Immunotherapy at the Department of Clinical Oncology of Queen Mary Hospital
(QMH) between May 2019 to October 2021, were retrospectively analyzed. The inclusion
criteria included: (1) diagnosis of unresectable HCC confirmed pathologically according
to the American Association for the Study of Liver Diseases (AASLD) practice guideline
2010; (2) male or female between 18 and 80 years old; (3) tumor size between 5 and
15 cm, and the number of lesions less than 3; (4) portal vein involvement; (5) Child–
Pugh liver function class A-B7; (6) liver volume minus intrahepatic gross-tumor-volume
(GTV) > 700 cc; (7) no prior TACE; and (8) no prior systemic therapy nor immunother-
apy, TACE or RT. The specific contraindications of SBRT were: any HCC tumor >15 cm;
total maximum sum of HCC diameter >20 cm; more than 3 discrete hepatic nodules;
direct tumor extension into the stomach, duodenum, small bowel, large bowel, and main
branch of biliary tree.

2.2. Treatment Details

SBRT was performed by using 6 MV or 10 MV photon beams delivered from a linear
accelerator within 21–35 days after TACE. The prescribed dose ranged from 27.5 Gy to
50 Gy in 5 fractions, depending on normal tissue constraints. The time interval between
fractions was limited to 24 to 72 h, with radiation delivered to all targets within 5 to 15 days.
Varian External Beam Planning Software (Varian Medical Systems, Palo Alto, CA, USA)
was used for treatment planning. The dosing scheme aimed at using the highest allowable
prescription dose for the tumor target, while fulfilling the constraints of surrounding
organs-at-risk (OARs). TACE and immunotherapy procedures were performed according
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to the routine treatment protocol in QMH. For TACE, an emulsion of a mixture of cisplatin
with lipiodol in a volume ratio of 1 to 1 was prepared and injected into the tumor by
femoral artery puncture. The amount of TACE used was based on tumor size, number, and
arterial blood flow. For immunotherapy, Avelumab was administered via IV injection two
weeks after SBRT; the amount of dose required was based on the patient’s body weight
and toxicity.

2.3. Clinical Endpoint

The clinical endpoint of this study was defined as the response rate at 3 and 6 months
after SBRT, according to the modified Response Evaluation Criteria in Solid Tumors ((mRE-
CIST) version 1.1) criteria. The response rates were categorized into: (1) Complete response
(CR) that represents the disappearance of any intratumoral arterial enhancement in all
target lesions; (2) partial response (PR) that represents at least a 30% decrease in the sum of
diameters of viable target lesions; (3) stable disease (SD) that represents any cases that do
not qualify for either partial response or progressive disease; and (4) progressive disease
(PD) that represents an increase of at least 20% in the sum of the diameters of viable (en-
hancing) target lesions. In this study, the treatment response of each lesion was assessed by
a radiologist with 15 years of experience. Prior to subsequent analysis, patients with (1) CR
and (2) PR were grouped into a respondent group, while those with (3) SD and (4) PD were
grouped into a non-respondent group.

2.4. MRI Acquisition and Segmentation

The pre-intervention gadoxetic acid-enhanced MRI was obtained by using either
1.5T GE Signa system (version: HD16. GE Healthcare, Milwaukee, WI) or Philips 3T MRI
Achieva scanner (Philips Healthcare, Best, The Netherlands) with a 12 or 16 channel,
phased-array body coil. The image sets were acquired according to the START-FIT and
LI-RADS ver. 2017 protocol, including axial arterial phase (AP) and portal venous phase
(PVP) T1W image sets. A demonstrative example of AP and PVP MRI is shown in
Figure 1a,b.

The segmentations (including gross tumor targets and OARs) were manually de-
lineated on the axial planning CT slice-by-slice by an experienced clinical oncologist
(with >15 years of experience). The contours of the lesions were subsequently trans-
formed into other image sets by rigid registration for further processing. The transferred
tumor lesions on the pre-intervention MR image sets were defined as the volumes of
interest (VOIs).

2.5. Dosimetric Features

Dosimetric features of each lesion were obtained from the dose-volume histograms
(DVHs) using the treatment planning system, including volume of GTV and planning-
target-volume (PTV), prescription dose, minimum and maximum dose, mean dose, relative
GTV volumes (in percentage) receiving specific doses (V5 to V50 in 5 Gy increments),
minimum doses to relative liver volumes (D10% to D90% in 10% increments). In total,
33 dosimetric features were calculated for each lesion. A demonstrative example of DVH
and dose distribution is shown in Figure 1c,d.

2.6. Image Preprocessing and Radiomic Features Extraction

The MR images with VOIs were imported into a python-based pipeline developed
by The Hong Kong Polytechnic University, which was employed previously by other
studies [50–53]. Before extracting the radiomics features, multiple pre-processing steps
were performed. In order to tackle the parameter variations between image series, isotropic
resampling was performed by linear interpolation to obtain a 1 × 1 × 1 mm3 voxel size.
Inhomogeneity correction was performed by the N4 bias field correction algorithm to
correct the locally varying intensity. Image intensities were then normalized by shifting
and rescaling each image into a mean of zero and a standard deviation of 100 to maintain
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consistent voxel values across patients. They were further discretized by a fixed bin count
of 100 to reduce the noise of image textures.

 

Figure 1. A 76-year-old male patient was diagnosed with advanced-staged HCC. (a) Axial AP T1W
MR image with the VOI, (b) Axial PVP T1W MR image with the VOI. SBRT of 30 Gy was prescribed
in 5 fractions to the tumor. (c) DVH of gross tumor volume (GTV) and planning target volume (PTV)
generated from the treatment planning system and (d) Dose distribution of the SBRT treatment plan.

In this study, radiomics features were extracted from each lesion on both arterial
phase (AP) T1W and portal venous phase (PVP) T1W MR images using the Pyradiomics
(version 2.2.0) package. Delta phase (DeltaP) radiomics features were calculated by dividing
feature values extracted from AP images by those extracted from PVP images. Multiple
types of Radiomics features were extracted, including shape and size features (n = 14),
first-order features (n = 18), and second-order texture features (n = 73). The texture features
were calculated from gray-level co-occurrence matrices ((GLCMs): n = 22), gray-level
run-length matrices ((GLRLMs): n = 16), gray-level size zone matrix (GLSZM: n = 16),
gray-level dependence matrices ((GLDMs): n = 14), and neighboring gray tone difference
matrices ((NGTDMs): n = 5). In total, 287 radiomic features were calculated for each lesion.
The meaning of each radiomic feature parameter for Pyradiomics can be found in the link:
https://pyradiomics.readthedocs.io/en/latest/features.html.

2.7. Statistical Analysis

For each of the studied endpoints, a two-sided independent Mann–Whitney U test was
employed to assess the clinical association between treatment response (i.e., respondent
or non-respondent) and features in each of the studied feature categories (i.e., AP, PVP,
DeltaP radiomic features, and dosimetric features). Features with p-values of <0.05 were
considered statistically significant. Moreover, independent endpoint-associated features
were identified by using multiple feature selection procedures for each feature category.
Ten independent features were first selected by using K-Means clustering from the original
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feature sets with a cluster number of ten. Cluster centroids were randomly initialized with
100 iterations to reduce potential bias. Independent features were then identified by the
most significant features from the Mann–Whitney U test within each cluster. p-values were
adjusted with false discovery rate (FDR) by using Benjamini–Hochberg (BH) multiple test
correction among the identified ten independent features. Features with an FDR-adjusted
p-value of <0.1 were reported. To further assess the predictability of each significant
independent feature, logistic regression analysis was applied; the area under the receiver
operator characteristic (ROC) curve (AUC), sensitivity, and specificity were then reported.
Prior to regression analysis, all features were re-scaled to a mean of 0 and a standard
deviation of 1.

Apart from this, a two-sided independent student t-test was used to determine whether
there existed a statistically significant difference in patient demographic variables between
the respondent and non-respondent groups. All statistical analyses were implemented
using R software (version 4.2.1. The R Foundation, Vienna, Austria) and SPSS 26.0 (IBM,
Chicago, IL, USA).

3. Results

3.1. Patient Characteristics

Table 1 summarizes patient characteristics. In total, 26 patients (male/female: 25/1;
mean age: 67 ± 7.6 years) were included in the present study. Among the 26 patients,
14 had a single lesion, 8 had two lesions, and 4 had three lesions, resulting in a total of
42 lesions. The average diameter of the largest tumor nodule was 9.4 ± 3.7 cm.

Table 1. Patient characteristics.

Total Number of Patients 26

Gender
• Male 25
• Female 1

Age (y), mean ± SD 67.0 ± 7.6
• 50–59 5
• 60–69 10
• 70–79 10
• >79 1

Diameters of largest tumor nodule (cm), mean ± SD 9.4 ± 3.7

Sum of diameter of tumor nodule (cm), mean ± SD 12.6 ± 5.6

Medical History
• Hepatitis B 17
• Hepatitis C 4
• Alcoholics 2

Vascular invasion
• Portal vein involvement 6
• Hepatic vein involvement 14

CP Score
• A5 19
• A6 6
• B7 1

BCLC Stage
• Stage A 3
• Stage B 7
• Stage C 16

Lesion numbers
• 1 lesion 14
• 2 lesions 8
• 3 lesions 4
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3.2. Lesion Characteristics and Response Rate

Table 2 displays the overall characteristics and response rates of the lesions in re-
spondent and non-respondent groups in both studied timepoints. For the 3-month as-
sessment, respondents were identified in 18 lesions (42.9%, CR: n = 3; PR: n = 15), while
non-respondents were identified in 24 lesions (57.1%, SD: n = 16; PD: n = 8). No statistically
significant difference in GTV and PTV volumes was observed between groups. For the
6-month assessment, respondents and non-respondents were identified in 28 lesions (66.7%,
CR: n = 13; PR: n = 15) and 14 lesions (33.3%, SD: n = 6; PD: n = 8), respectively. There were
significant differences between respondent and non-respondent groups in average GTV
volumes (295.4 ± 376.2 cm3 vs. 732.2 ± 728.2 cm3, p = 0.014) and average PTV volumes
(418.4 ± 479.6 cm3 vs. 940.4 ± 857.0 cm3, p = 0.015).

Table 2. Characteristics and response rates of the lesions in respondent and non-respondent groups
in both studied timepoints.

3 Months 6 Months

Respondent
Group
(n = 18)

Non-Respondent
Group
(n = 24)

p-Value
Respondent

Group
(n = 28)

Non-Respondent
Group
(n = 14)

p-Value

GTV size (cc) *, mean ± SD 374.3 ± 426.5 491.0 ± 634.6

0.504

295.4 ± 376.2 732.2 ± 728.2

0.014

• <5 cc 3 3 4 2
• 5–200 cc 5 11 12 3
• 200–500 cc 5 1 6 1
• 500–1000 cc 3 4 4 3
• >1000 cc 2 5 2 5

PTV size (cc), mean ± SD 510.1 ± 534.9 654.1 ± 758.3.0 0.496 418.4 ± 479.6 940.4 ± 857.0 0.015

Prescribed Dose for SBRT,
mean ± SD 34.3 ± 4.7 32.9 ± 5.2

0.377

33.9 ± 4.7 32.7 ± 5.5

0.449

• 27.5 Gy 1 4 2 3
• 30 Gy 7 11 12 6
• 35 Gy 4 3 5 2
• 40 Gy 6 5 9 2
• 45 Gy - 1 - 1
• 50 Gy - - - -

Response Rate
• CR 3 - 13 -
• PR 15 - 15 -
• SD - 16 - 6
• PD - 8 - 8

* GTV was defined as VOI in this study.

3.3. Clinical Associations between Features and Treatment Response

Table 3 summarizes the statistically significant features identified from the two-sided
independent Mann–Whitney U test for 3-month and 6-month response rate, respectively.
Based on the results from Table 3, there was an inclination that different modalities of the
pre-treatment multi-phasic MR images (AP, PVP, DeltaP) contain specific types of radiomic
predictors associated with the response rate in HCC patients treated by the sequential
TACE-SBRT-Immunotherapy regimen.

For 3-month response rate assessment, as shown in Table 3a, a total of 17 radiomic
features were found to have a significant association with the 3-month response rate
(p < 0.048), mostly uniformity- and entropy-related features (n = 13/17, 76%). Moreover,
DeltaP-derived radiomic features accounted for the largest proportion (n = 15/17, 88%),
followed by PVP-derived radiomic features (n = 2/17, 12%). However, it is worth noting
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that no shape and size features, dosimetric features, and AP-derived radiomic features were
found to be significantly different between the respondent and non-respondent groups.

For the 6-month response rate assessment, as indicated in Table 3b, a total of 34 features
(Radiomic features: n = 31; Shape and size features: n = 2; Dosimetric features: n = 1) were
found to demonstrate significant clinical associations (p < 0.049). Among the 31 radiomic
features, AP-derived radiomic features accounted for the largest proportion (n = 16/31,
52%), which was absent for the 3-month timepoint (Table 3a); this was followed by DeltaP-
derived (n = 14/31, 45%), and PVP-derived (n = 1/31, 3%) radiomic features. Similar to
the results from the 3-month response rate assessment, uniformity- and entropy-related
features dominated (n = 13/31, 42%), especially in DeltaP-derived features (n = 9/14,
64%). Intriguingly, a considerable proportion of high gray level emphasis-related fea-
tures (n = 8/31, 25%) demonstrated a statistically significant association with the 6-month
response assessment, particularly in AP-derived features (n = 7/16, 43%).

Table 4 showcase a list of independent predictors that were determined to demonstrate
the significant clinical association with the 3-month and 6-month response rate assessment,
respectively. Based on the results from Table 4, previous findings of the inclination shown
in Table 3 remained consistent and valid.

For the 3-month response rate assessment, 4 DeltaP-derived radiomic features were
determined as independent predictors (FDR-adjusted p-value < 0.1, ranging from 0.038
to 0.063), as shown in Table 4a. The 4 predictors were mostly uniformity- and entropy-
related features (GLCM_Joint Entropy, GLRLM_Run Entropy, GLSZM_Gray-Level Non-
Uniformity Normalized and GLSZM_Small Area Emphasis), yielding AUC between 0.690
and 0.766. On the other hand, no shape and size features, dosimetric features, AP-derived,
and PVP-derived radiomic features were identified as independent predictors (Table 4a).

Table 3. (a) A list of statistically significant features identified from two-sided independent Mann–
Whitney U test for 3-month treatment response assessment. (b) A list of statistically significant
features identified from two-sided independent Mann–Whitney U test for 6-month treatment re-
sponse assessment.

(a)

Features p-Value

PVP radiomic features
First-order feature

Uniformity 0.048
Second-order feature

GLCM_Sum Entropy 0.040
DeltaP radiomic features

First-order feature
Entropy 0.045

Uniformity 0.029
Second-order feature

GLCM_Difference Variance 0.011
GLCM_Joint Energy 0.040
GLCM_Joint Entropy 0.037
GLCM_Sum Entropy 0.033

GLRLM_Gray-Level Non-Uniformity 0.031
GLRLM_Gray-Level Non-Uniformity Normalized 0.037

GLRLM_Run Entropy 0.010
GLSZM_Gray-Level Non-Uniformity Normalized 0.010
GLSZM_Size Zone Non-Uniformity Normalized 0.003

GLSZM_Small Area Emphasis 0.003
GLDM_Dependence Entropy 0.029

GLDM_Gray-Level Non-Uniformity 0.019
NGTDM_Contrast 0.029
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Table 3. Cont.

(b)

Features p-Value

Shape and size features
Major Axis Length 0.018

Maximum 3D Diameter 0.049
AP radiomic features

First-order feature
Kurtosis 0.008

Maximum 0.017
Uniformity 0.040

Second-order feature
GLCM_Auto-correlation 0.004

GLCM_Joint Average 0.004
GLRLM_Gray-Level Non-Uniformity 0.049

GLRLM_Gray-Level Non-Uniformity Normalized 0.046
GLRLM_High Gray-Level Run Emphasis 0.004

GLRLM_Long Run High Gray-Level Emphasis 0.021
GLRLM_Short Run High Gray-Level Emphasis 0.004

GLSZM_Gray-Level Non-Uniformity 0.049
GLSZM_High Gray-Level Zone Emphasis 0.005

GLSZM_Small Area High Gray-Level Emphasis 0.005
GLDM_High Gray-Level Emphasis 0.004

GLDM_Small Dependence High Gray-Level Emphasis 0.021
NGTDM_Coarseness 0.049

PVP radiomic features
Second-order feature

GLSZM_High Gray-Level Zone Emphasis 0.046
DeltaP radiomic features

First-order feature
Entropy 0.012

Maximum 0.024
Median 0.049

Minimum 0.014
Range 0.038

Uniformity 0.030
Second-order feature

GLCM_Joint Entropy 0.030
GLCM_Sum Entropy 0.013

GLRLM_Gray-Level Non-Uniformity 0.026
GLRLM_Gray-Level Non-Uniformity Normalized 0.030

GLRLM_Run Entropy 0.009
GLSZM_Gray-Level Non-Uniformity Normalized 0.002

GLDM_Gray-Level Non-Uniformity 0.002
NGTDM_Contrast 0.010
Dosimetric features
V35Gy Percentage 0.035

For the 6-month response rate assessment, 9 features (Radiomic features: n = 8; Shape
and size features: n = 1) were determined as independent predictors (FDR-adjusted p-
value < 0.1, ranging from 0.028 to 0.074), as shown in Table 4b. Among the radiomic
predictors, 4 were DeltaP-derived radiomic features, in which 3 were uniformity- and
entropy-related features (GLCM_Joint Entropy, GLRLM_Run Entropy, GLSZM_Gray-Level
Non-Uniformity Normalized), yielding AUC between 0.699 and 0.788. On the other hand,
4 radiomic predictors were derived from AP MR images, in which 2 were High Gray
Level Emphasis-related radiomic features (GLRLM_Short Run High Gray-Level Emphasis,
GLDM_Small Dependence High Gray-Level Emphasis), yielding AUC between 0.719 and
0.773. Moreover, a shape feature of Major Axis Length of the HCC lesions was selected
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as an independent predictor (FDR-adjusted p-value = 0.074), with an AUC of 0.724. No
PVP-derived radiomic features and dosimetric features were identified as independent
predictors (Table 4b).

Table 4. A list of independent predictors that demonstrated significant clinical association with the
(a) 3-month and (b) 6-month response rate assessment. Statistical significance is indicated by false
discovery rate (FDR)-adjusted p-value, after applying the Benjamini–Hochberg (BH) procedure for
multiple test corrections. AUC, sensitivity, specificity, and p-value obtained from logistic regression
for each of these independent significant predictors are also reported. The superscript a denotes
FDR-adjusted p-values obtained after applying the BH procedure.

(a)

Features
FDR-Adjusted

p-Value a AUC Sensitivity Specificity

DeltaP radiomic features
Second-order feature

GLCM_Joint Entropy 0.063 0.690
(0.527–0.843) 0.625 0.667

GLRLM_Run Entropy 0.044 0.734
(0.573–0.869) 0.625 0.667

GLSZM_Gray-Level
Non-Uniformity Normalized 0.038 0.734

(0.566–0.881) 0.625 0.667

GLSZM_Small Area Emphasis 0.038 0.766
(0.600–0.912) 0.625 0.667

(b)

Features
FDR-Adjusted

p-Value a AUC Sensitivity Specificity

Shape and size features

Major Axis Length 0.074 0.724
(0.529–0.891) 0.714 0.607

AP radiomic features
First-order feature

Kurtosis 0.028 0.750
(0.589–0.895) 0.786 0.643

Maximum 0.028 0.727
(0.564–0.879) 0.714 0.607

Second-order feature
GLRLM_Short Run High

Gray-Level Emphasis 0.028 0.773
(0.606–0.917) 0.857 0.679

GLDM_Small Dependence
High Gray-Level Emphasis 0.055 0.719

(0.533–0.859) 0.786 0.643

DeltaP radiomic features
First-order feature

Range 0.047 0.699
(0.518–0.865) 0.786 0.643

Second-order feature

GLCM_Joint Entropy 0.070 0.707
(0.527–0.877) 0.643 0.571

GLRLM_Run Entropy 0.047 0.747
(0.593–0.883) 0.714 0.607

GLSZM_Gray-Level
Non-Uniformity Normalized 0.047 0.788

(0.633–0.909) 0.786 0.643

4. Discussion

Unresectable HCC patients present a vulnerable sub-population of liver cancer pa-
tients. Over the years, different forms of combined sequential treatments, such as the
TACE-SBRT and SBRT-Immunotherapy have been investigated as either a curative alter-
native or a bridging therapy for subsequent liver transplantation. For the first time in
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history, a novel sequential TACE-SBRT-Immunotherapy is being introduced in the hope
of integrating the potential synergisms among these three treatment modalities, for this
HCC subgroup in an ongoing phase-II clinical trial [23]. While exciting, the clinical ben-
efits may be restricted only to a small portion of patients, especially when it comes to
immunotherapy [54,55]. In the era of personalized medicine, there is a tremendous demand
for pre-treatment discrimination between responsive and non-responsive candidates in
order to avoid ineffective and toxic therapies in non-respondents.

In this pilot study, we successfully identified four independent predictors (All were
DeltaP-derived radiomics) for 3-month response rate (FDR-adjusted p-value < 0.1, ranging
from 0.038 to 0.063, Table 4a), and nine (four were DeltaP-derived; four were AP-derived;
and one HCC shape feature) for 6-month response rate (FDR-adjusted p-value < 0.1, ranging
from 0.028 to 0.074, Table 4b) to the sequential TACE-SBRT-Immunotherapy regimen in
this prospectively enrolled unresectable HCC sub-population, paving the way towards
effective and safe oncologic care delivery in the long run.

Results of the present study underscored that different modality of the pre-treatment
multi-phasic MR-based radiomics (AP, PVP, and DeltaP) appears to contain specific types
of textural predictors associated with the response rate in unresectable HCC patients
treated by this novel aggressive regimen (Tables 3 and 4). Specifically, the DeltaP-derived
uniformity-related and entropy-related radiomic features were significantly associated
with treatment response rate at both 3-month and 6-month timepoints; and the AP-derived
high gray level emphasis-related radiomic features demonstrated a significant clinical
association, particularly at the 6-month timepoint (Tables 3 and 4).

The four AP-derived radiomic features that emerged to demonstrate significant as-
sociation for 6-month response rate (“GLRLM_Short Run High Gray-Level Emphasis”,
“GLDM_Small Dependence High Gray-Level Emphasis”, “Kurtosis”, “Maximum”) were
related to the hyperintense signal intensity (i.e., the arterial-enhanced signal) on the AP
image (Table 4b). “GLRLM_Short Run High Gray-Level Emphasis” measures the joint
distribution of the short homogeneous runs with high gray-level, with a higher value indi-
cating a greater concentration of high gray-level values within the lesion; “GLDM_Small
Dependence High Gray-Level Emphasis” reflects the joint distribution of small dependence
with higher gray-level values within the lesion; “Kurtosis” is a first-order statistics that
informs the ‘peakedness’ of the distribution of values within the entire lesion, with a higher
value implicating that the mass of the distribution is concentrated towards the tails; and
another first-order measure of “Maximum” that tells the maximum gray-level intensity
within the lesion. Although the biological meaning of these features in the context of HCC
remains to be fully elucidated, they are all related to characteristics and spatial distribution
of hyperintense signals within the lesion on AP images. This can be possibly ascribed by the
fact that AP hyper-enhancement of tumor is a crucial property of HCC lesion [56], which re-
flects the tumor’s capability in generating new blood vessels (termed as neo-angiogenesis),
an ability to drive more nutrition and oxygen supply exclusively from the hepatic arteries.
In fact, “Kurtosis” has been frequently correlated to the response rate in various cancer
types. For instance, Hou et al. conducted a radiomic study for the prediction of tumor
response following systemic treatment of chemoradiotherapy in patients with esophageal
carcinoma and reported that “Kurtosis” was identified as one of the most dominant features
in their combined radiomic models for PR and CR prediction [57]. Moreover, Wang et al.
applied radiomics for predicting tumor response to systemic induction chemotherapy in
patients with nasopharyngeal carcinoma and reported “Kurtosis” as one of the predictive
biomarkers in their MR-based prediction models [58]. Although this study presents a
novel sequential TACE-SBRT-Immunotherapy, we speculated that these radiomic features
characterizing baseline arterial-enhanced signal may be indicative of HCC responsiveness
to treatment perturbations and deserve further in-depth investigations in the future.

Previous studies on multi-phasic MR-based radiomics for tumor response prediction
in HCC patients have mainly focused on TACE treatment [47–49], while those on SBRT
and immunotherapy regimens are scarce or absent. For TACE, Kuang et al. conducted a
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retrospective radiomics study to predict the response of small-sized HCC lesions following
TACE and reported 11 AP-derived and 11 T2-weighted radiomic features as final predic-
tors [47]. More recently, Liu et al. examined the predictive power of multi-phasic MRI
for predicting HCC response following TACE treatment, and reported that 17 AP-derived
and three PVP-derived radiomic features, along with radiomic features from other MR
sequences [48]. However, these studies present a varying degree of disparity in study
design compared with the present work in terms of target population [47], treatment
regimen [47,48], and source images of radiomic features [47,48]. Therefore, a direction
comparison of textual predictors between their studies and the present work appears to be
infeasible and offers little scientific significance. Nonetheless, it is worth noting that the
shape features of HCC seem to be predictive of treatment response despite the mentioned
heterogeneity in study design between studies. In this study, the “Maximum 3D Diameter”
was also found to demonstrate a significant association with treatment response to the
sequential TACE-SBRT-Immunotherapy in the 6-month timepoint (Table 3b). Moreover, the
“Major Axis Length”, another measure of baseline tumor burden which measures the largest
axis length of the HCC-enclosing ellipsoid, was determined as an independent predictor
(Table 4b). This finding is in line with the two previous studies where the “Maximum 3D
Diameter” [47] and “Maximum 2D Diameter Row” [48] were found to be predictive of
TACE treatment. Indeed, this result is also in concordance with the dynamic-CT-based
study conducted by Park et al., where smaller tumor size was a significant predictor for
complete response in HCC patients following TACE treatment [59].

On the other hand, Delta radiomics is a novel concept that reflects the dynamic vari-
ation in radiomic features in longitudinal images, highlighting intratumoral changes in
imaging features and hence implicating the underlying tumoral physiological function.
Compared with non-Delta radiomic features, Delta radiomics has recently been found to
demonstrate higher reproducibility between scanners and institutions in phantom studies,
potentially providing a more generalizable predictive capability, which has gained increas-
ing popularity in the research community [60,61]. Nardone et al. provided a comprehensive
systematic review of the Delta radiomics studies in the body of literature [60]. In the con-
text of treatment response prediction, it has demonstrated ground-breaking evidence in
numerous types of cancer following immunotherapy, including but not limited to renal cell
cancer [62], pancreatic cancer [63], and non-small cell lung cancer [64–67]. Notably, to our
best understanding, this study is one of the very first to report the potential of MR-based
Delta radiomics in associating with treatment response in HCC.

Intriguingly, four DeltaP-derived radiomic features that were selected as independent
significant predictors (Table 4b) were all related to randomness and uniformity of the
spatial distribution of texture within the lesion. They were “GLCM_Joint Entropy” which
measures randomness in signal intensity in neighboring voxels; “GLRLM_Run Entropy”
which measures randomness in the distribution of run lengths and gray levels, with a
higher value reflecting greater textual heterogeneity; “GLSZM_Gray-Level Non-Uniformity
Normalized” which depicts the similarity of normalized gray-level intensity, with a lower
value correlating with a greater similarity; and “Range” which tells the range of signal
intensities within the lesion. These textual reflect the temporal change in the random-
ness and uniformity within the lesion between the AP and PVP MR scans, providing a
better understanding of the intratumoral heterogeneity in time dimension upon arrival
of the imaging contrast agent. Hence, these textual predictors may be indicative of the
aggressiveness of HCC lesions and their responsiveness upon treatment perturbation. In
fact, the radiomic features of “entropy” and “uniformity” have been well-recognized as of
high prognostic value in various cancer types, including but not limited to HCC [68,69],
esophageal cancer [70], lung cancer [71], and squamous cell carcinoma of head and neck
cancer [72]. For instance, Liu et al. selected “Gray-Level Non-uniformity” as one of the
radiomic predictors, which had the largest weight among other predictors, for overall
survival prediction in HCC patients [68]. Another study conducted by Ganeshan et al.
revealed that a higher hepatic entropy and lower uniformity often reflect a more complex
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tumor heterogeneity [73]. Along this line of thinking, Mulé et al. analyzed pre-treatment
contrast-enhanced CT-based textures for overall survival prediction in advanced HCC
patients following treatment with Sorafenib [69]. They reported a significant correlation
between tumor heterogeneity and entropy at both AP and PVP phases, and particularly, the
PVP-derived entropy was determined to be an independent prognostic factor [69]. These
findings may partly explain why the four entropy- and uniformity-related features were
determined to be of a significant clinical association with treatment response.

On the other hand, it is worth noting that the studied dosimetric data from the
SBRT plan appeared to be not predictive of HCC treatment response prediction in this
study. The dose parameter of V35Gy was identified as a significant predictor only for the
6-month timepoint under univariate analysis (Table 3b), which might imply that a dose
threshold 35 Gy was required to trigger tumor responses. The biological effective dose
for 35 Gy in five fractions was calculated as 59.5 Gy (α/β = 10), which was the minimum
effective dose fractionation scheme mentioned in a systematic review and meta-analysis [74].
However, it was not shown predictive after multiple test corrections (Table 4b). In our
study, SBRT was prescribed based on the isotoxic principle that the radiation dose was
individualized based on tumor size, volume, and proximity of organ-at-risk. Such strategy
was commonly adopted in treating large-sized, locally advanced HCC and often resulted in
a heterogeneous dose [75,76]. Our study showed that the dose of 27.5–30 Gy was equally
effective in terms of tumor response. The potential explanation is that immunotherapy
may have sensitized the tumor to radiotherapy and that lower radiation doses can attain
similar local control, as demonstrated in the pre-clinical study [77]. With this regard, it
is interesting to note that while dosimetric parameters have been predictive mainly in
the areas of toxicity prediction [37,38,78–81], there is scarce or none in treatment response
prediction. The underlying reasons remain unknown, and it definitely represents an
interesting research area for future scrutinization.

From a public health standpoint, the findings of this study demonstrated the feasibility
of using cost-effective radiomics techniques in associating with treatment response in a
highly vulnerable sub-population of HCC patients following a novel aggressive treatment.
Patients in this subgroup often suffer not only from HCC but also other liver-related dis-
eases, such as portal hypertension and ascites due to liver cirrhosis [82]. Taken together
with the desperately poor survival rate, tremendous burdens have been placed on this
patient subgroup and the healthcare system. Although the pioneering sequential TACE-
SBRT-Immunotherapy regimen offers both local-regional and whole-body systemic therapy
to this subgroup, the underlying toxicity profile remains unclear. In the long term, the
results of this study may provide valuable insights into pre-treatment identification of re-
sponding and non-responding candidates for this novel treatment, so as to avoid ineffective,
toxic, and costly therapies to refractory patients, while streamlining medical resourcing
allocations within the healthcare system. Several limitations of this study should be ac-
knowledged. First, the cohort of patients was small due to the stringent patient inclusion
criteria for receiving the novel aggressive treatment in the prospective clinical trial. This
limitation diminishes the strength of our results and prevents the possibility of using ma-
chine learning, AI algorithms or other sophisticated classification techniques for prediction
model development [28]. Despite this, we were able to identify specific types of radiomic
predictors from different multi-phasic MR images that can predict tumor response during
sequential TACE-SBRT-Immunotherapy regimen, and provide classification performance
at the individual feature level. More importantly, the key novelty of this present work
lies in that we demonstrated the feasibility of using multi-phasic MR-based radiomics for
predicting tumor response to the novel aggressive therapy in a vulnerable subgroup of
HCC patients. Notably, patient recruitment in the clinical trial is continuously undertaken,
and a larger-cohort study is anticipated and will be part of our future plan. Moreover,
the reproducibility of radiomic features against tumor segmentation variability, and the
correlation between radiomic features and genetic data were not investigated in this study.
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Moving forward with a larger cohort of patients, these should be considered when it comes
to building robust predictive models for clinical use in the future.

5. Conclusions

In this pilot study, we successfully demonstrated that four DeltaP-derived radiomic
features (characterizing temporal change in intratumoral randomness and uniformity),
four AP-derived radiomic features (reflecting baseline tumoral arterial-enhanced signal
pattern), and a tumor morphology (denoting initial tumor burden), were determined to
be significantly associated with the 6-month response rate in unresectable HCC lesions
following aggressive TACE-SBRT-Immunotherapy regimen, while the DeltaP-derived
radiomics were the only contributors to the response rate at 3-month timepoint. While
results indicated a potential for pre-treatment discrimination between responding and non-
responding unresectable HCC candidates for this novel treatment, a larger study cohort is
warranted in the future to validate the results of this work.
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Simple Summary: Identifying biomarkers of survival from a large-scale cohort of Glioblastoma Multi-
forme (GBM) pathology images is hindered by heterogeneity of tumor signature compounded by age
being the single most important confounder in predicting survival in GBM. The main contributions
of this manuscript are to define (i) metrics for identifying tumor subtypes of tumor heterogeneity and
(ii) relevant statistics for incorporating age for evaluating competing hypotheses. As a result, the GBM
cohort are stratified based on interpretable morphometric features with or without preconditioning
on published genomic subtypes.

Abstract: Tumor Whole Slide Images (WSI) are often heterogeneous, which hinders the discovery of
biomarkers in the presence of confounding clinical factors. In this study, we present a pipeline for
identifying biomarkers from the Glioblastoma Multiforme (GBM) cohort of WSIs from TCGA archive.
The GBM cohort endures many technical artifacts while the discovery of GBM biomarkers is challenged
because “age” is the single most confounding factor for predicting outcomes. The proposed approach
relies on interpretable features (e.g., nuclear morphometric indices), effective similarity metrics for
heterogeneity analysis, and robust statistics for identifying biomarkers. The pipeline first removes
artifacts (e.g., pen marks) and partitions each WSI into patches for nuclear segmentation via an extended
U-Net for subsequent quantitative representation. Given the variations in fixation and staining that can
artificially modulate hematoxylin optical density (HOD), we extended Navab’s Lab method to normalize
images and reduce the impact of batch effects. The heterogeneity of each WSI is then represented either as
probability density functions (PDF) per patient or as the composition of a dictionary predicted from the
entire cohort of WSIs. For PDF- or dictionary-based methods, morphometric subtypes are constructed
based on distances computed from optimal transport and linkage analysis or consensus clustering with
Euclidean distances, respectively. For each inferred subtype, Kaplan–Meier and/or the Cox regression
model are used to regress the survival time. Since age is the single most important confounder for
predicting survival in GBM and there is an observed violation of the proportionality assumption in the
Cox model, we use both age and age-squared coupled with the Likelihood ratio test and forest plots
for evaluating competing statistics. Next, the PDF- and dictionary-based methods are combined to
identify biomarkers that are predictive of survival. The combined model has the advantage of integrating
global (e.g., cohort scale) and local (e.g., patient scale) attributes of morphometric heterogeneity, coupled
with robust statistics, to reveal stable biomarkers. The results indicate that, after normalization of
the GBM cohort, mean HOD, eccentricity, and cellularity are predictive of survival. Finally, we also
stratified the GBM cohort as a function of EGFR expression and published genomic subtypes to reveal
genomic-dependent morphometric biomarkers.

Keywords: Glioblastoma Multiforme; tumor heterogeneity; biomarker; whole slide imaging; TCGA
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1. Introduction

The tumor signature observed in whole slide imaging (WSI) is often heterogeneous,
which reflects a complex gene expression program that is unique to each patient. Tumor
heterogeneity (TH) can be based on distinct morphological and phenotypic profiles, such
as morphology and gene expression. TH is also a strong factor in the tumor burden, with
implications for patients’ prognosis and treatment. The goal of our study is to investigate
whether biomarkers of tumor heterogeneity can be captured based on computed nuclear
indices and their organization in WSIs of the Glioblastoma Multiforme (GBM) dataset in
The Cancer Genome Atlas (TCGA). GBM is a Grade IV cancer with a five-year survival
rate of 9% [1], in which TH should play an important role. The genomic subtypes of GBM
have been characterized [2], providing additional constraints for heterogeneity analysis.
However, characterizing heterogeneity is not without challenges in a TCGA dataset, as
there may be artifacts in WSI (e.g., pen marks), technical variations in sample preparation
and staining, and computational strategies for associating heterogeneity to the outcome
need to be developed. Furthermore, the confounding factor of age is the single most
important variable in predicting survival in GBM. Therefore, any prediction of biomarkers
must incorporate rigorous statistical criteria for validation. In fact, learning survival from
histology images has been quite challenging, and coupling with CNN has continued to
make incremental improvements [3].

Analysis of WSI has benefited from the integration of various technologies, including
whole slide scanning, annotations, and filtering to remove artifacts. Recent advances in com-
putational histopathology, which is based on cytological analysis (such as nuclear atypia
and cellular density) and automated feature learning, have also contributed significantly
to this field. These techniques enable classification, such as tumor grading and detection
of micrometastasis, or association via regression to an outcome such as survival. Deep
learning is now the preferred method for image-based analysis and representation [4]. For
instance, cytological analyses use nuclear segmentation that extends U-Net [5,6] coupled
with adversarial training [7], which is highly effective, particularly in identifying vesicular
nuclear phenotypes [8] that traditional methods [9] could not detect. Although a thor-
ough review of nuclear segmentation and feature-based representation for computational
histopathology is beyond the scope of this manuscript, this article provides a summary of
several studies focused on the analysis of low-grade glioma and GBM.

Mobadersany et al. [10] developed a pipeline for training a modified VGG19 model
to learn features and associate them with survival using manually selected regions of
interest from a WSI. Each image is assigned a risk vector for input to a Cox proportional
hazards layer, which computes a loss function for model construction [3]. This approach
was applied to diffused gliomas, resulting in a significant prognostic outcome. Chen et
al. [11] integrated CNN for feature-based representation, graph-convolutional network
following nuclear segmentation, and an attention mechanism to predict tumor grading
or survival. Their pipeline was also applied to diffused gliomas with improved statistical
analysis. Kong et al. [12] stratified patients based on transcriptomics and morphometric
indices computed from tumor biopsy and histology, respectively. Zhang et al. [13] used
multi-kernel learning to integrate histopathology and multi-OMIC data (e.g., gene ex-
pression, methylation) to perform prognostic tasks. However, the performance of these
techniques is hindered as a result of (a) the absence of color normalization across the cohort,
(b) not adjusting for age as a strong confounder, (c) failing to incorporate TH in predictive

models, and (d) not addressing the sole special needs of GBM. Although some researchers
have stratified GBM patients based on aggressive versus non-aggressive therapies and/or
integration with molecular data [9,12], the strict utility of histology and TCGA clinical data,
such as age, has been lacking. Moreover, from a translational perspective, it would be
more valuable to predict the outcome from a low-cost histology section or, at most, coupled
with one or two transcripts from an interpretative representation (e.g., nuclear chromatin
content, cellularity). These are the issues we aim to investigate.
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The overall process and an example of TH are shown in Figure 1. Each WSI underwent
artifact and background removal, followed by segmentation of nuclei in each patch, and
optical density-based normalization for feature extraction. An important step was to
normalize the color images, based on an extension from Navab’s Lab, to ensure optical
density could be used as a biomarker. Computed indices were then combined to represent
TH using two alternative strategies for computing subtypes. These subtypes were then
analyzed rigorously using a likelihood ratio and forest plots to predict survival. The
premise for using alternative representations is that differences in TH can be quantified,
revealing phenotypes that are typically masked by averaging or other higher-order statistics.
Section 2 outlines the computational methodologies for representing WSIs, while Section 3
lists statistically significant biomarkers predicted using morphometric analysis, both in the
absence and presence of genomic subtypes. Finally, Section 4 provides additional insights
into our findings and concludes the manuscript.

2. Methods

2.1. Preprocessing the WSIs

The GBM cohort contains not only technical variations due to sample preparation
and staining, but also technical anomalies such as pen marks and out-of-focus images.
Initially, we attempted to filter out pen marks using PyHist [14], which utilizes an edge
filter and graph cut segmentation. However, this approach did not effectively identify
many regions containing pen marks. Therefore, we chose to annotate a dataset of pen
marks and create a support vector machine (SVM) classifier that identifies patches of
224-by-224 containing pen marks based on their concatenated RGB pixel histogram (i.e., a
vector of 768 × 1). With 625 annotated images and a 90–10 training and testing split, we
achieved a training accuracy of 97%. PyHist was effective in removing other artifacts
(e.g., blur) and white regions (e.g., background), and we also used it to partition each WSI
into 224-by-224 regions.

Figure 1. Eash WSI is represented in the context of tumor heterogeneity for biomarker discovery:
(a) a WSI is partitioned to patches of 224-by-224, where each patch is analyzed for pen marks or
other aberrations; (b) nuclei are segmented in patches; (c) H&E optical density is normalized in
each patch; (d) nuclei organization is quantified in each patch; (e,f) computed indices from nuclei
and their organizations are used for the dictionary- and PDF-based representations. (g) Predictive
morphometric indices of survival are identified.
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2.2. Nuclear Segmentation

Segmentation of nuclei in H&E stained images can be challenging due to technical
variations such as sample preparation and staining, biological heterogeneity such as nu-
clear atypia and pleomorphism, and variations in Hematoxylin optical density (HOD)
and texture such as vesicular phenotype. This important topic has been addressed by
numerous researchers [6–8]. In our implementation, we modified an earlier approach for
segmenting 3D organoids [15] using the U-Net architecture with a modified loss func-
tion that integrates a potential field for delineating touching nuclei. We annotated and
extended H&E stained images from previous datasets [8,9] and complemented the data
augmentation step with local/global contrast adjustment for nuclei/background optical
density. For local contrast adjustment, we randomly selected between 10–20% of nuclei
and modulated their color intensities, as well as the background regions. This step was
crucial because the GBM cohort is diverse in terms of nuclear chromatin or protein contents,
contributing to tumor heterogeneity. We started with 57 annotated training images, each
no less than 1000-by-700 pixels. Following data augmentation, the sample size increased to
200,000 patches, each sized 224-by-224. Using the leave-one-out method, we computed an
Aggregated Jaccard Index (AJI) [16] of 0.62 for the 57 annotated images.

2.3. Image Normalization

The TCGA histology cohort lacks standardization in terms of staining, which may not
be a significant issue for preprocessing or segmentation, but can affect feature extraction.
To address this, we proposed that an improved color normalization approach would yield a
more reliable HOD and protein readout for biomarker discovery. We applied a state-of-the-
art technique in color normalization [17] to normalize WSIs across the entire cohort, which
involves incorporating an L1 regularization term in the loss function for non-negative
matrix factorization (NMF) to estimate the source image’s stain matrix, and then mapping
the deconvolved image back into a RGB space using a target image’s stain matrix. We also
utilized the nuclear mask to aid in rapid convergence and ensure consistent ordering of
the two stained channels following NMF. The color normalization method [17] maps each
candidate H&E-stained image in the RGB space to a single target image that corresponds
to the desired staining, after which we use NMF to estimate HOD. An example of color
normalization is shown in Figure 2. In the results section, we compared this approach with
a classical method for color decomposition [18] and found that rigorous normalization
associates HOD as a statistically validated biomarker predictive of survival.

Figure 2. H&E stain is heterogeneous between patients. Two patches from two WSIs indicate a diverse
staining signature. They are normalized for quantifying HOD and visualized in the RGB space.
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2.4. Computation of the Morphometric Indices

A number of morphometric indices per nucleus were computed following color
correction. Indices included were: nuclear size; HOD content; cellularity (a measure of
cellular density computed from Delaunay Triangulation); eccentricity (e.g., elongation)
(a measure of spindle geometry); and solidity (a measure of nuclear pleomorphism).

2.5. Association of the Morphometric Indices with Survival

Predicting biomarkers, based on heterogeneity, requires a representation and a distance
metric for computing stable clusters or tumor subtypes. Each tumor subtype is then
examined for whether it is predictive of survival.

2.5.1. Representation

Our motivation is to capture heterogeneity while maintaining reduced dimensionality,
for example, using a single morphometric index at a time, in support of interpretation. To
achieve this, we chose to represent each index either as a PDF or an ensemble of vocabularies.
In the first case, a “cohort PDF” was constructed and binned for each morphometric index.
Then, each patient’s PDF was projected onto the cohort PDF, ensuring that each patient’s
PDF was on the same scale for computing distance. In the second case, the median of each
computed index per patch and per WSI was first aggregated across the entire cohort to
construct stable clusters. Once stable clusters (e.g., vocabularies) across the entire cohort
were constructed, each WSI was represented in terms of the frequencies of each cluster.

2.5.2. Distance Metrics and Clustering

Clustering based on the dictionary- and PDF-based methods are summarized below.
This is an important step since using the first-order statistics (e.g., mean) of the PDF did
not reveal any significant biomarkers.

The dictionary method (e.g., alphabet), which involves using the Euclidean distance
to compute distances between computed features, is advantageous due to its simplicity. To
cluster data, pairwise distances were computed and consensus clustering was performed
by varying the number of clusters from two to four. This particular implementation
of consensus clustering injected noise in each iteration, which helped reveal more stable
clusters. The clustering results based on optimal transport were visualized using a similarity
matrix, cumulative density function (CDF), and Silhouette plots (a visual measure of the
quality of clusters), as shown in Figure 3. Pinhole images of each cluster for the eccentricity
and cellularity index were shown in Figures 4 and 5, respectively. For clustering, a random
subset of 1000 samples was selected and k-means was iteratively performed on them. This
process was repeated 10 times to obtain the centroids of the final clusters, which were
determined by aggregating the median values corresponding to each sampled dataset for
consensus clustering. The stability of each cluster was determined by the change in the
CDF between the number of clusters and their silhouette scores. Subsequently, the learned
alphabets were projected back into each WSI to create a patient signature based on the
frequency of composition of each vocabulary, resulting in a vector (e.g., [0.34, 0.33, 0.33]) for
three alphabets. This vector representation was then used as a continuous variable input
to a Cox Hazard model to associate an increase in the percentage for each variable of the
vector to a hazard ratio. Figure 6 illustrates this entire process.

Using the euclidean distance metric to measure the distance between the PDFs of
two WSIs is inaccurate because it ignores the order of probabilities in a vector. In this study,
we used the optimal transport method, also known as earth mover distance, to compute
the distance between two PDFs. Optimal transport is a linear programming problem
that we implemented using the Python Optimal Transport Toolbox. After computing
pairwise distances between WSIs (i.e., PDFs), we performed linkage analysis [19,20] to
reveal subpopulations. Figure 7 displays similarity matrices based on the optimal transport
distance metric from PDF-based representations, and corresponding Kaplan–Meier curves
(a probabilistic representation of a patient to survive up to a time) using three computed
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morphometric indices of nuclear size (e.g., area, left column) solidity (middle column), and
total chromatin (right column).

2.5.3. Statistical Analysis of Morphometric Indices for Biomarker Validation

Various statistical techniques, such as Kaplan–Meier curves, can be used to evaluate
the predictive strength of each morphometric index on survival. However, the association
between a computed index and survival may be biased if there are unaccounted variables
(e.g., age) that strongly predict survival but are not balanced among the clusters formed by
an index. To avoid such bias, we combined the age confounder with one morphometric
index at a time in a regression model. For PDF-based representations of patients, we
estimated a Kaplan–Meier curve for each index and then used the Cox regression model to
estimate the hazard ratio and its p-value. However, when age was included, we observed
evidence of a violation of the proportionality assumption in the Cox model (a statistical
model for survival outcome with at least one predictor) [21], as hazards were not propor-
tional with a p-value of 0.01. By including both age and age-squared, we found no evidence
of a violation of the proportionality assumption, and an improved p-value. Therefore, we
chose to use the likelihood ratio with age and age-squared in all our analyses.

Figure 3. Dictionary-based learning identified two and three subpopulation (e.g., clusters) of patients
based on cellularity and eccentricity indices, respectively. (top row): Computed similarity matrices;
(middle row) the cumulative Density Function (CDF) of similarity matrices shows the quality of the
number of clusters for each index (e.g., a flat horizontal line indicates a low number of misclassified
samples between clusters). (bottom row) Silhouette plots of 800,000 randomly sampled nuclei show
the similarity of patients within a cluster (e.g., a silhouette score less than 1) and a red dashed
indicating the average silhouette score.
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Figure 4. Representative patches showing low, medium, and high eccentricities corresponding to
clusters 1, 2, and 3 from the dictionary-based method.

Figure 5. Representative patches showing low, and high cellularities corresponding to clusters 1 and
2 from the dictionary-method.
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Figure 6. Steps in the dictionary-based method for representing heterogeneity: (a) each WSI is
partitioned into patches; (b) each patch is quantified in terms of nuclear indices and organization;
(c) each computed index (e.g., HOD content, nuclear size) is aggregated across the entire cohort for
dictionary-based learning (e.g., alphabets, which are four in this example); and (d) each WSI is then
represented as a composition of learned alphabets.

Figure 7. Optimal transport identifies subpopulations of patients, based on PDF representation, for
survival analysis. Top row: similarity matrices identified by linkage analysis; Bottom row: Kaplan–
Meier plots, hazard ratio, and computed p-values for three computed morphometric indices of nuclear
size, solidity, and total chromatin.

The Likelihood-ratio test (LRT) is one of the three standard approaches for statistical
hypothesis testing that evaluates the goodness of fit of two competing statistical models by
comparing their likelihoods. In our study, we used the LRT to compare the Cox regression
model, which included only age and age-squared (the “null” model), to the model that
included age, age-squared, and the morphometric index (the “alternative” model). If
adding an index, such as nuclear size, improved the model’s fitness compared to the model
without the index, the p-value of the likelihood ratio test would be small (<0.05), indicating
evidence that the index is significantly associated with survival even after controlling for
age. Conversely, if the index did not improve the model’s fitness compared to using only
age and age-squared, the likelihoods of the null and alternative models would be similar,
and the likelihood ratio test would yield a large p-value (>0.05). When the LRT yields
a small p-value, it provides evidence that the index is predictive of survival, but it does
not provide information on the size of the effect or whether the range within the index is
significantly different. Therefore, for each condition where the LRT p-value is less than 0.05,
we also computed the 95% confidence intervals and tested pairwise differences between the
hazard ratios corresponding to the levels of the variable of interest. In some cases, hazard
ratios could not be estimated and were excluded from figures because either the patient’s
survival time was close to zero or censored.
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2.5.4. Computing Resources

The machine learning models were trained on a local server, which was equipped
with 8 NVIDIA GeForce RTX 2080 Ti GPUs, each with 12GB of RAM, 256 GB of RAM, and
a 64-core CPU. The model development and validation were performed using python
3 and the TensorFlow 2.2 framework. The source code has been made available at
https://github.com/gwinkelmaier/GBM-biomarkers (accessed date 31 March 2023).

3. Results

3.1. Biomarker Discovery
3.1.1. Biomarkers of Nuclear Morphometric Indices

Tables 1 display age-adjusted biomarkers based on PDF- and dictionary-based rep-
resentations, respectively. The PDF representation includes biomarkers such as average
chromatin content (e.g., HOD), nuclear size, solidity, and total chromatin (e.g., total HOD)
per nucleus. Notably, our results show that the method in [17], from Navab’s Lab, yielded
a statistically significant biomarker approximation of chromatin content, whereas the clas-
sical method based on known densities [18] did not. Additionally, the dictionary method
uncovered eccentricity (e.g., elongation) and cellularity. Figure 8 illustrates the forest plots
for predicted morphometric indices based on PDF-based methods without preconditioning.
Finally, Table 2 displays predicted morphometric indices from both PDF and dictionary-
based representations. This was achieved by (a) estimating the parameters of a Cox-Hazard
model by integrating morphometric indices from both representations and (b) comparing
the learned model with the baseline model of only age and age-squared, leading directly to
a p-value.

Table 1. Predicted morphometric biomarkers and their p-values from patients in the TCGA-GBM cohort.

Morphometric Index Number of Clusters p-Value

(a) PDF model

Area 2 0.026
Area 3 0.016
Area 4 0.013
Mean HOD 3 0.016
Mean HOD 4 0.006
Solidity 3 0.014
Solidity 4 0.007
Total HOD 2 0.044
Total HOD 3 0.037
Total HOD 4 0.025

(b) Dictionary model

Cellularity 2 0.008
Cellularity 3 0.040
Eccentricity 2 0.002
Eccentricity 3 0.005
Eccentricity 4 0.011
Mean HOD 2 0.019
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Table 2. Predicted morphometric biomarkers and their p-values for the combined model without
genomic preconditioning.

Nuclear Morphometric Index Number of Clusters p-Value

Cellularity 2 0.025
Eccentricity 2 0.007
Eccentricity 3 0.013
Eccentricity 4 0.019
Mean HOD 4 0.028

Figure 8. The forest plot indicates biomarkers associated with the subpopulation at risk using the
PDF-based representation without any genomic preconditioning. The asterisks **, ***, and **** denote
the number of stratifications per morphometric index.

3.1.2. Biomarkers of Morphometric Indices Preconditioned on Genomics Signature

The same set of tests from the previous section was applied following stratification
based on published genomics subtypes [2] or EGFR expression (e.g., high versus low
expression rendered by linkage analysis).

There are four significant genomic subtypes: mesenchymal, proneural, neural, and
classical. Tables 3 display age-adjusted biomarkers based on these subtypes, computed
from both PDF- and dictionary-based representations. The corresponding forest plot for
the classical subtype in the PDF-based representation is shown in Figure 9, and Table 4
shows predicted biomarkers from the combined representation. For instance, nuclear size
is a biomarker for the neural subtype, total HOD is a biomarker for the classical subtype,
and solidity is a biomarker for the neural and mesenchymal subtypes. Therefore, there is
evidence that each genomic subtype can highlight specific biomarkers, leading to further
stratification of the patient population.

Table 3. Predicted morphometric biomarkers for the PDF- and dictionary-based models precondi-
tioned on genomic subtypes.

Nuclear Morphometric Index
Number

of Clusters

p-Value

Neural Proneural Mesenchymal Classical

(a) PDF method

Area 2 0.021 - - -
Area 3 0.020 - - 0.009
Area 4 0.018 - - 0.006
Mean HOD 4 0.024 - - -
Solidity 3 0.006 - - -
Solidity 4 <0.001 - 0.009 -
Total HOD 2 - - - 0.019
Total HOD 3 - - - 0.008
Total HOD 4 - - - 0.008

(b) Dictionary method

Area 4 - - - 0.040
Total HOD 2 <0.001 - - -
Total HOD 3 0.008 - - -
Total HOD 4 0.003 - - -
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Table 4. Predicted morphometric biomarkers and their p-values for the combined model precondi-
tioned on genomic subtypes.

Nuclear Morphometric Index
Number

of Clusters

p-Value

Neural Proneural Mesenchymal Classical

Area 2 0.04 - - -
Area 4 - - - 0.043
Mean HOD 4 - 0.031 - -
Solidity 3 0.010 - - -
Solidity 4 0.004 - 0.048 -
Total HOD 2 0.001 - - -
Total HOD 3 0.012 - - -
Total HOD 4 0.004 - - 0.036

Aberrant overexpression of EGFR is a dominant feature of GBM. As a result, patient
data were initially stratified based on low and high EGFR expression, followed by the
proposed analysis as described in the Methods section. Tables 5 and 6 present predicted
biomarkers for the subpopulation of patients with high or low EGFR expression. Table 7
shows predicted biomarkers based on combined models of the PDF- and dictionary-based
method preconditioned on EGFR expression. Note that Table 7 is quite similar to Table 2
as only a subset of patients with matched transcriptome data was used in this analysis.
Additionally, Tables 7 do not share a morphometric index, which serves as an internal con-
trol. The corresponding forest plot of morphometric biomakers, computed from the PDF
representation and preconditioned on low EGFR expression, is shown in Figure 10.

Table 5. Predicted morphometric biomarkers for the PDF- and dictionary-based models precondi-
tioned on patients with high EGFR expression.

Nuclear Morphometric Index Number of Clusters p-Value

(a) PDF model

Total HOD 4 0.048

(b) Dictionary model

Area 2 0.007
Area 3 0.009
Area 4 0.025

Table 6. Predicted morphometric biomarkers for the PDF- and dictionary-based models precondi-
tioned on patients with low EGFR expression.

Nuclear Morphometric Index Number of Clusters p-Value

(a) PDF model

Area 4 0.031
Cellularity 4 0.018

(b) Dictionary model

Cellularity 2 0.035
Total HOD 2 0.001
Total HOD 3 0.003
Total HOD 4 0.009
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Figure 9. Using the PDF method, pre-conditioned on the classical subtype, the forest plot indicates
the subpopulation at risk. The asterisks **, ***, and **** denote the number of stratifications per
morphometric index.

Figure 10. Using the PDF method, pre-conditioned on a high EGFR expression, the forest plot
indicates the subpopulation at risk. For example, Area cluster two has an 52% decreased risk of
death compared to Area cluster zero. The asterisks **** denote the number of stratifications per
morphometric index.

Table 7. Predicted morphometric biomarkers and their p-values for the combined model precondi-
tioned on the EGFR transcript.

Nuclear Morphometric Index Number of Clusters p-Value

(a) Biomarkers for patients with matched transcriptome data

Cellularity 2 0.047
Cellularity 3 0.033
Cellularity 4 0.019
Eccentricity 2 0.040
Mean HOD 3 0.010
Mean HOD 4 0.004

(b) Biomarkers of patients stratified with high EGFR expression

Area 3 0.004
Area 4 0.005

Cellularity 3 0.031
Cellularity 4 0.009

(c) Biomarkers of patients with low EGFR expression

Cellularity 2 0.034
Cellularity 4 0.018
Mean HOD 3 0.015
Mean HOD 4 0.021
Total HOD 2 0.001
Total HOD 3 0.002

4. Discussion

This manuscript presents our extended and applied methodologies for identifying
biomarkers in GBM while taking into account tumor heterogeneity. Our approach involves
using age-adjusted representations of nuclear morphometric features or their organization
in WSIs and utilizing linear associations to improve interpretation while reducing the
number of parameters. We suggest that incorporating the Cox Hazard Model in the loss
function (as done in [22]) increases the likelihood of finding associations by noise or chance.
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Therefore, we advocate for using linear associations instead, as they offer simplicity and
using a single computed index at a time improves interpretability and robustness. Lastly,
we statistically explored viable patient pathology stratifications by preconditioning on
either EGFR expression or genomic subtypes.

The methodological innovations used in this study included image normalization,
representation and distance metrics, integration of age as a confounder, and the utility of
age-squared to satisfy the proportionality assumption of statistical models. Image normal-
ization is an important step in using HOD as a biomarker because of technical variations in
sample preparation and staining. Navab’s Lab provided the foundation for normalizing
each patch in a WSI to a reference template. NMF enabled the readout of the HOD per
nucleus using the nuclear mask computed from the segmentation step. Nuclear masks
provided the required initialization for NMF, making convergence rapid without needing
a ranking based on the blue channel. Alternatively, image normalization based on clas-
sical color deconvolution [18] did not reveal HOD as a biomarker. Because tumors are
heterogeneous, the study designed representations based on the PDF or dictionary-based
method for each morphometric index in WSIs. The PDF method represents each WSI
in terms of its own nuclear morphometric architecture. In contrast, the dictionary-based
method represents each WSI in terms of learned alphabets that represent the entire cohort.
The PDF method identifies biomarkers that are globally persistent within a WSI because
attributes with a low frequency of occurrence can diffuse with the PDF representation. The
two methods are complementary. While the distance measures for the dictionary-based
method can be Euclidean, a distance measure based on optimal transport is introduced
to compute distances between pairwise PDFs followed by linkage analysis. In GBM, age
is the single most important predictor of the outcome. In the absence of the utility of
age as a confounder, many biomarkers are either erroneously predicted or the propor-
tionality assumption of the Cox Hazard model is violated. However, by using both age
and age-squared, a more rigorous statistical analysis can be achieved. For example, since
both the dictionary- and PDF-based methods predicted the age-adjusted HOD index as
a biomarker, this index is more stable. A larger value of HOD content, a surrogate index
for nuclear hyperchromasia, is consistently associated with a higher hazard ratio, which
could be due to a higher rate of proliferation. Using the dictionary-based method, increased
cellularity (e.g., hypercellularity) is also associated with a higher rate of proliferation and a
higher HR. Another biomarker in the PDF method is solidity, which is a surrogate index
for pleomorphism. Figure 8 suggests that lower pleomorphism corresponds to a better
HR, where higher pleomorphism is associated with a higher tumor grade and worse prog-
nosis. These observations are consistent with key diagnostic points in GBM, including
cytological criteria of astrocytoma (e.g., GFAP, spindle-shape nuclei) and anaplasia (e.g.,
hypercellularity, pleomorphism, nuclear hyperchromasia) [23].

In conclusion, the computational pipeline has stratified tumor heterogeneity within
the TCGA GBM cohort and has identified interpretable biomarkers that align with GBM
diagnostic criteria [23]. This pipeline provides a valuable platform for evaluating emerging
therapies for the treatment GBM patients. The same pipeline can also be applied to
other tumor types. For example, it can be applied to WSI collected from Low-Grade
Glioma (LGG) because of the similarities of the microanatomy. However, it may require
additional extensions if it is to be applied to other organs, such as the breast or pancreas
with glandular structures. In these types of organs, normal gland structures and stromal
regions need to be delineated prior to the analysis of the tumor regions. This step requires
another computational module that can be facilitated by annotation and training of the
corresponding regions of the microanatomy.
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Simple Summary: The methyltransferase KMT5A is suggested as an oncogene in prostate cancer
but the mechanisms underlying its oncogenic properties are poorly understood. This study uncovers
genes and cellular pathways which are regulated by KMT5A in prostate cancer to obtain a better
understanding of whether or not therapeutic targeting is viable. In particular, we focus on the key cell
cycle protein, CDC20, which we reveal to be a KMT5A-regulated gene via two mechanisms; 1. the
methylation of histone H4K20 within the CDC20 promoter to enhance CDC20 transcription and 2. the
inhibition of p53 via direct methylation to release CDC20 transcriptional repression. Furthermore, we
demonstrate that KMT5A and CDC20 are positively correlated in clinical samples of prostate cancer.
Due to the roles that KMT5A and CDC20 play in cell cycle regulation and DNA repair processes, we
propose that targeting the methylation activity of KMT5A will provide therapeutic benefits where
these two oncogenic proteins are overexpressed.

Abstract: The methyltransferase KMT5A has been proposed as an oncogene in prostate cancer and
therefore represents a putative therapeutic target. To confirm this hypothesis, we have performed a
microarray study on a prostate cancer cell line model of androgen independence following KMT5A
knockdown in the presence of the transcriptionally active androgen receptor (AR) to understand
which genes and cellular processes are regulated by KMT5A in the presence of an active AR. We
observed that 301 genes were down-regulated whilst 408 were up-regulated when KMT5A expression
was reduced. KEGG pathway and gene ontology analysis revealed that apoptosis and DNA damage
signalling were up-regulated in response to KMT5A knockdown whilst protein folding and RNA
splicing were down-regulated. Under these conditions, the top non-AR regulated gene was found
to be CDC20, a key regulator of the spindle assembly checkpoint with an oncogenic role in several
cancer types. Further investigation revealed that KMT5A regulates CDC20 in a methyltransferase-
dependent manner to modulate histone H4K20 methylation within its promoter region and indirectly
via the p53 signalling pathway. A positive correlation between KMT5A and CDC20 expression was
also observed in clinical prostate cancer samples, further supporting this association. Therefore, we
conclude that KMT5A is a valid therapeutic target for the treatment of prostate cancer and CDC20
could potentially be utilised as a biomarker for effective therapeutic targeting.

Keywords: CDC20; biomarker; KMT5A; p53; prostate cancer
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1. Introduction

Prostate cancer is the most common cancer in men in the UK. Whilst androgen receptor
(AR)-targeting therapies have yielded significant patient benefits, relapse to treatment is a
significant clinical problem. Hence, there is an urgent need to develop alternative therapeu-
tics to treat advanced disease. The lysine methyltransferase, KMT5A, plays an oncogenic
role in a number of cancers [1–3]. Indeed, KMT5A siRNA-mediated knockdown inhibits
prostate cancer cell proliferation and KMT5A has been identified as an AR-interacting pro-
tein that is required for the transcription of the AR-regulated gene, prostate specific-antigen
(PSA), via the promotion of mono-methylation on histone H4 at lysine 20 (H4K20Me1) at
the PSA promoter [4]. Furthermore, KMT5A plays a role in the epithelial–mesenchymal
transition (EMT) and enhances the invasiveness of prostate cancer cell line models, in-
dependent of the AR through its interplay with ZEB1 [5]. Initially identified as the sole
methyltransferase responsible for H4K20Me1, KMT5A was subsequently shown to methy-
late numerous other non-histone proteins, including p53 [6]. A greater understanding of
KMT5A in the context of prostate cancer is required to determine whether or not it is a
bona fide therapeutic target.

KMT5A activity is regulated via post-translational mechanisms during specific phases
of the cell cycle. During the late S phase and at the G2/M transition, the levels of KMT5A
are at their peak and found localised to mitotic chromosomes. As the cell moves through
prophase to anaphase, KMT5A is phosphorylated at serine 29 by cdk1/cyclin B. This results
in KMT5A dissociation from chromatin and stabilisation via the inhibition of KMT5A
association with the APCcdh1 E3 ubiquitin ligase [7]. During anaphase, KMT5A is dephos-
phorylated by cdc14a/b, which in turn permits protein turnover to reduce KMT5A protein
levels at G1. During G1, KMT5A levels are sustained, however, during the G1/S transition,
SCFskp2 ubiquitin ligase targets KMT5A for protein turnover resulting in undetectable
KMT5A protein. Interestingly, KMT5A interacts with the proliferating cell nuclear antigen
(PCNA) at DNA replication foci and is essential for correct DNA replication [8] suggesting
a high turnover rate of chromatin bound KMT5A by CRL4cdt2 [7]. The alterations in the
levels of KMT5A throughout the cell cycle are mirrored by H4K20Me1 levels suggesting
that methyltransferase activity is predominantly regulated by cellular KMT5A levels.

Cell cycle division 20 homologue (CDC20) is a cell cycle regulatory protein implicated
in the spindle assembly checkpoint (SAC) and is required for cells to progress through
mitosis. Specifically, CDC20 functions as a substrate recognition molecule and activator of
APC to result in the ubiquitin-mediated turnover of its substrates. In particular, APCCDC20

functions during metaphase to anaphase to result in the destruction of cyclin B and securin,
thereby allowing sister chromatids to segregate. CDC20 activity is inhibited by the mitotic
checkpoint complex (MCC) and is only released to target its substrates once microtubule
binding to the kinetochore and appropriate tension is achieved, thereby preventing genomic
instability. Interestingly, there are suggestions that CDC20 may play a role in the DNA
damage repair pathway via RAP80 [9] and REV1 [10] down-regulation. Furthermore, DNA
damage-induced p53 can directly inhibit the expression of CDC20 by associating with the
CDC20 promoter region and causing chromatin remodelling [11]. In addition, p21 can
inhibit CDC20 mRNA by associating with CDE-CHR elements in the CDC20 promoter [12].
The depletion of PHF8, an H4K20Me1 demethylase, results in prolonged G2 and defective
mitosis and it is itself a substrate of APCCDC20 [13] further suggesting that chromatin
remodelling can be influenced by CDC20 levels.

CDC20 has been proposed to exhibit an oncogenic role in a number of cancers includ-
ing prostate cancer [14]. Indeed, biochemical recurrence-free survival is lower in patients
with high levels of CDC20 compared to patients with low CDC20 expression [15]. CDC20
itself is a target for ubiquitination by the E3 ligase SPOP, which is commonly mutated and
non-functional in prostate cancers, providing an explanation for elevated CDC20 levels [16].
Furthermore, CDC20 expression is associated with resistance to docetaxel [16,17] and is
implicated in the wnt/Beta-catenin pathway which is oncogenic in advanced prostate
cancer [17,18].
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The aim of this study was two-fold; the first aim was to use pathway analysis to
provide further evidence that KMT5A regulates oncogenic pathways and is a valid ther-
apeutic target in prostate cancer and the second was to identify individual genes that
are regulated by KMT5A in a model of castration-resistant prostate cancer as potential
biomarkers for KMT5A activity. Indeed, we show that a number of oncogenic pathways
are down-regulated upon KMT5A knockdown and we identified and validated CDC20 as a
KMT5A-regulated gene.

2. Materials and Methods

2.1. Antibodies

Antibodies used in this study included KMT5A (cell signalling), CDC20 (Ab190711,
and AbCam), PARP1/2 (clone H250, sc-7150, Santa Cruz Biotechnology, Dallas, TX, USA),
MDM2 (Clone N-20, sc-813, Santa Cruz Biotechnology), p21 (ab-4, Calbiochem), p53
(pAb-421#OP03, Calbiochem), p53-S15-P (cell signalling), p53-K382-Ac (ab75754, AbCam),
H4K20Me1 (Ab9051, AbCam), H4 (07-108, Merck, Darmstadt, Germany), anti-phospho-
histone H2AX (Ser139) (clone JBW301, Millipore Corp., Burlington, MA, USA) α-tubulin
(clone DM1A, T9026, Sigma, St. Louis, MO, USA), and GAPDH (clone 1E6D9, Proteintech,
Rosemont, IL, USA).

2.2. Compounds

Dihydrotestosterone (DHT) (Sigma) was prepared in ethanol at a final concentration
of 10 mM and stored at −80 ◦C. KMT5A inhibitors UNC0379 (S7570, Selleckchem, Houston,
TX, USA) and Ryuvidine (2609, R&D Systems, Minneapolis, MN, USA) were purchased in
powder form and resuspended in DMSO to a final concentration of 50 mM and 20 mM,
respectively. Solutions were stored at −80 ◦C for no longer than 1 month. Nutlin 3 was
provided by Prof. John Lunec (Newcastle Cancer Centre).

2.3. Cell Culture

LNCaP cells, a model of androgen dependence, and AR negative PC3 cells were
purchased from American Type Culture Collection (Manassas, VA, USA); LNCaP-AI cells,
a model of androgen independence, were generated in-house as described previously [19].
Cells were maintained as previously described [20].

Short tandem repeat profiling was used to authenticate the cell lines used in this study
(NewGene, Newcastle upon Tyne, UK). MycoAlert (Lonza, UK) was used to routinely test
for the presence of mycoplasma.

2.4. siRNA

The reverse transfection of cell lines with siRNA sequences (25 nM) was carried out
using Lipofectamine RNAiMAX (Invitrogen) in accordance with the manufacturer’s pro-
tocol. Either qPCR or Western blotting confirmed successful knockdown. Non-silencing
(N/S): UUCUCCGAACGUGUCACGU[dT][dT]; siKMT5A_1: CCAUGAAGUCCGAG-
GAACA[dT][dT]; siKMT5A_2: GATGCAACTAGAGAGACA[dT][dT]; siCDC20_1 CG-
GAAGACCUGCCGUUACA[dT][dT]; siCDC20_2: GGGCCGAACUCCUGGCAAA[dT][dT].

2.5. Western Blotting and Quantitative Polymerase Chain Reaction

Western [21] and qPCR analysis [20] were performed as described previously. Primer
sequences are detailed in Supplementary Table S1.

2.6. Microarray

Cellular RNA was extracted using Trizol® (Invitrogen, Waltham, MA, USA) and
quality-checked using Agilent Bioanalyzer 2100 prior to analysis using Illumina HT-12 v4.0
Expression BeadChip (Oxford Genomics Centre, The Wellcome Trust Centre for Human
Genetics, University of Oxford, Oxford, UK).
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R package ‘Lumi’ was used for array processing, background correction, normalisation
and quality control checks. Variance-stabilising transformation was used to convert probe
intensity values to VSD (variance-stabilised data). The array normalisation method used
was the robust spline normalisation (RSN) method. Outlier samples, poor quality probes
(detection threshold < 0.01) and probes that were not detected were removed from down-
stream analysis. R package ‘Limma’ was then used to perform a differential expression
analysis with p-values adjusted using the Benjamini–Hochberg method [22] to take into
account the false discovery rate (FDR). Analysis was performed by the Bioinformatics
Support Unit (Newcastle University).

Data can be found at GSE233350.

2.7. RNA-Seq Analysis

Fastq files were downloaded from NCBI GEO (GSE211638, [23]), and RNA-STAR [24]
analysis was performed to align raw reads to genome build GRCh37/hg19; QC checks
were performed with FastQC. Gene counts were generated using ht-seq count [25] and
Gencode v19. Differential expression analysis was carried out using the DESeq2 [26]
package (R/Bioconductor) to compare the vehicle versus 10 nM DHT-treated samples.

2.8. Chromatin Immunoprecipitation Assays

LNCaP-AI and LNCaP cells were reverse-transfected with either 25 nM N/S or a pool
of 2 KMT5A-targeting siRNAs for 72 h in steroid-depleted media followed by chromatin
immunoprecipitation as described by Schmidt et al. [27].

For immunoprecipitations, 2 μg of H4K20Me1 (Ab9051, AbCam) or 2 μg of a non-
specific isotype control (DAKO) was used. qPCR analysis of immunoprecipitated DNA was
performed using primers specific to the CDC20 promoter (Fwd: 5′-CCGCTAGACTCTCGTG
ATAGC-3′; Rev: 5′-TGGCTCCTTCAAAATCCAAC-3′) as previously described [28]. The
average fold difference of the % input between experimental arms for at least three inde-
pendent experiments is presented.

2.9. Sulforhodamine B Growth Analysis

Cellular growth was assessed as described [21].

2.10. Gamma H2AX Assay

Knockdown was carried out over 72 h in LNCaP-AI and LNCaP cells using either N/S
or KMT5A-targeting siRNA. Cells were harvested and stained for phospho-histone H2AX
(Ser139) as previously described [21].

3. Results

3.1. Identification of KMT5A-Regulated Genes in Androgen-Independent Prostate Cancer

KMT5A has been proposed as a therapeutic target in prostate cancer; however, in
this context, KMT5A is still largely understudied. Indeed, no study has identified which
genes KMT5A can regulate in castration-resistant prostate cancer. To this end, KMT5A
mRNA was knocked down using two independent siRNA sequences in the LNCaP-AI cell
line model of androgen independence. After 72 h of knockdown under steroid-depleted
conditions, the androgen, DHT (10 nM), was applied for 24 h prior to RNA isolation and
analysis using an Illumina Human HT-12 microarray.

The significant knockdown of KMT5A, with both siRNAs, was confirmed within the
microarray data set as >80% prior to further analysis (Figure 1A). In the presence of an
active AR found after stimulation with DHT for 24 h, we found 408 genes up-regulated and
310 genes down-regulated. (Supplementary Tables S2 and S3). Of these genes, 29% have pre-
viously been shown to be AR-regulated in LNCaP cells (Supplementary Tables S2 and S3) [23].
In order to understand which cellular pathways and biological processes are affected under
these conditions, the gene lists generated were used in KEGG pathway analysis and gene
ontology analysis using DAVID [29,30]. We did observe a level of inconsistency between
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the siRNA oligos even though the level of KMT5A knockdown was consistent (Figure 1A),
a common issue when using siRNAs to assess multiple gene expressions, highlighting the
importance of further validation studies on any target identified. Hence, all genes which
showed a statistically significant change irrespective of the siRNA sequence were included
in gene lists for this analysis to enhance confidence in the pathways and genes identified.
This analysis revealed the significant up-regulation of PI3K-Akt signalling, apoptosis, p53
signalling and signal transduction whilst the pathways found to be significantly down-
regulated included splicing, protein folding, cell division and transcriptional regulation
(Supplementary Tables S4–S7). Taken together, the cellular processes and genes altered in
this analysis further support our hypothesis that KMT5A is a potential therapeutic target
for prostate cancer.

Figure 1. KMT5A-regulated genes in LNCaP-AI cells. (A) LNCaP-AI cells reverse-transfected with
25 nM siRNA targeting KMT5A or a non-silencing control (N/S) in steroid-depleted media. After
72 h, 10 nM DHT was added to the cells for a further 24 h. RNA was isolated, quality-checked, and
its gene expression profiles determined using Illumina HT-12 v4.0 Expression BeadChip Microarray.
Three independent experimental repeats were performed. Data analysis confirmed successful KMT5A
knockdown. (B) Table of genes ranked for their down-regulation in response to KMT5A knockdown
in the presence of DHT stimulation. Genes which were down-regulated more than KMT5A are
shown (full gene lists can be found in the Supplementary Information). *GSE211638 [23]. (C) CDC20
expression levels in response to KMT5A knockdown as determined via microarray analysis. One-way
ANOVA with Dunnett’s multiple comparisons test. * p < 0.05; ** p < 0.01.

In terms of individual genes which were down-regulated in response to KMT5A knock-
down, CDC20 was identified as the sixth most down-regulated gene after AR-regulated
genes such as KRT8 and SPDEF (Figure 1B,C). Due to its role in the cell cycle and previ-
ous characterisation as an oncogene [14,17], this gene was chosen for further study as a
potential pharmacodynamic biomarker for KMT5A therapeutic targeting and a KMT5A
effector protein.
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3.2. KMT5A Depletion Reduces CDC20 Expression

In order to validate CDC20 as a KMT5A-regulated gene, further experiments were
conducted in both LNCaP-AI cells and the parental, androgen-sensitive LNCaP cell line.
KMT5A-targeting siRNAs were transfected into both cell lines in steroid-depleted media for
72 h prior to stimulation with 10 nM DHT or the vehicle for a further 24 h. qPCR confirmed
a significant reduction in the expression of CDC20 in LNCaP-AI cells (Figure 2A) when
KMT5A was knocked down (p < 0.01) (Figure 2B), which is consistent with our microarray
data (Figure 1C). In addition, parental LNCaP cells also exhibited a significant reduction in
CDC20 expression (Figure 2C) irrespective of DHT stimulation upon significant KMT5A
knockdown (p < 0.001) (Figure 2D). Furthermore, a robust reduction in CDC20 protein
levels was consistently observed in both cell lines (Figure 2E,F) confirming that CDC20
is regulated by KMT5A, at the level of transcription, in both cell lines irrespective of
AR activation.

Figure 2. CDC20 is a KMT5A-regulated gene. (A) LNCaP-AI cells were reverse transfected with
25 nM siRNAs targeting KMT5A or a non-silencing control (N/S) in steroid-depleted media. After
72 h, 10 nM DHT or a vehicle control was added to the cells for a further 24 h. RNA was isolated
and CDC20 mRNA and (B) KMT5A mRNA were quantified via qPCR. The same experiment was
performed in (C) LNCaP cells, and CDC20 levels and (D) KMT5A knockdown were confirmed via
qPCR. Data are expressed as the mean fold change over 3 independent experiments, +/− SEM.
(E) Determination of the protein levels of CDC20 and KMT5A via Western blotting in LNCaP-AI
and (F) LNCaP cells. Alpha-tubulin was used as a loading control. Data shown are representative of
3 independent experiments. Two-way ANOVA with Dunnett’s multiple comparisons test; ** p < 0.01;
*** p < 0.001; **** p < 0.001. The uncropped blots are shown in File S1.

3.3. CDC20 Depletion Does Not Enhance KMT5A Protein Expression

KMT5A is phosphorylated to protect it from ubiquitin-mediated degradation by
APCcdh1 during late mitosis [7]. In addition, due to the similarity in recognition mechanisms
between CDH1 and CDC20 for targeting proteins to the APC complex, it was suggested
that CDC20 may also bind and recognise KMT5A in the absence of phosphorylation [7].
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This raised the question of whether or not a feedback mechanism exists between these
two proteins to help maintain correct cell cycle progression. To test this theory, CDC20
was knocked down in our cell line models and KMT5A levels were assessed at both the
transcript and protein level. Interestingly, when KMT5A protein levels were examined
subsequent to CDC20 knockdown, no change was observed (Figure 3A,B), suggesting that
KMT5A protein turnover does not take place when CDC20 is present in the cell. However, a
decrease in KMT5A transcripts by ~50% was observed in both cell lines (Figure 3C,D) upon
the robust depletion of CDC20 (Figure 3E,F) although this was not statistically significant.
Therefore, it was concluded that CDC20 did not play a significant role in KMT5A protein
regulation under our experimental conditions and that KMT5A sits upstream of CDC20.

Figure 3. CDC20 knockdown does not affect KMT5A protein levels. (A) LNCaP-AI cells and
(B) LNCaP cells reverse-transfected with 25 nM siRNA targeting CDC20 or a non-silencing control
(N/S) for 72 h prior to analysis via Western blot analysis. Alpha-tubulin was used as a loading
control. (C) LNCaP-AI and (D) LNCaP cells reverse-transfected with 25 nM siRNA targeting CDC20
or a non-silencing control (N/S) for 72 h prior to RNA isolation and qPCR analysis for KMT5A and
(E,F) CDC20 mRNA levels. HPRT1 was used as a housekeeping gene. Data are expressed as mean
fold change +/− SEM. One-way ANOVA was used to determine statistical significance. * p < 0.05;
** p < 0.01; **** p < 0.0001. The uncropped blots are shown in File S1.

3.4. KMT5A Expression Correlates with CDC20 Expression in Prostate Cancer Patients

To confirm whether or not our in vitro findings could be translated into clinical speci-
mens of prostate cancer, we interrogated publicly available datasets to confirm a positive
correlation between CDC20 and KMT5A transcripts. Upon the interrogation of data sets
available in cBioportal [31,32], we found a significant positive correlation between KMT5A
and CDC20 transcripts in a number of data sets. In a cohort of 65 treatment-naïve radical
prostatectomies [33] a positive correlation between CDC20 and KMT5A transcripts was
observed (Spearman = 0.45; p = 0.0002) (Figure 4A). Similarly, in the MCTP dataset [34], a
positive correlation was also observed (Spearman = 0.23; p = 0.024) (Figure 4B). However,
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this dataset contains samples from primary (blue) and metastatic prostate cancer (red).
Upon the correlation analysis of these individual sample types, it was observed that the
correlation between CDC20 and KMT5A was strongest in the primary prostate samples
(Spearman = 0.28; p = 0.033; n = 59) and no statistically significant correlation was observed
in the metastatic samples (Spearman = 0.034; p = 0.85; n = 35), although the sample numbers
were lower. However, in the metastatic cohort reported by Robinson et al. [35] a statisti-
cally significant correlation was observed between CDC20 and KMT5A (Spearman = 0.22;
p = 0.016; n = 118) (Figure 4C). Furthermore, significant correlations were observed in
bone metastases (Spearman = 0.41; p = 0.0003; n = 72) (Figure 4D) and liver metastases
(Spearman = 0.408; p = 0.011; n = 38) (Figure 4E) in the samples from Abida et al. [36].
Interestingly, the highest positive correlation between CDC20 and KMT5A expression was
seen in prostate neuroendocrine carcinoma samples (Spearman = 0.68; p < 0.0001; n = 49)
(Figure 4F) [37]. Taken together, this suggests that the positive correlation between KMT5A
and CDC20 observed in our cell line models is also observed in advanced prostate cancer.

Figure 4. KMT5A and CDC20 are positively correlated in clinical prostate cancer samples. Correlation
in expression between KMT5A and CDC20 was carried out in publicly available datasets in cBioportal.
(A) Treatment naïve radical prostatectomies (n = 65) from [33] (B) Both primary and metastatic
prostate cancer (n = 94) from [34] (C) Metastatic prostate adenocarcinoma samples (n = 150) from [35]
(D) Bone metastatic prostate adenocarcinoma samples (n = 72/266) and (E) Liver metastatic prostate
adenocarcinoma samples (n = 38) from [36] (F) Prostate neuroendocrine carcinoma samples (n = 49)
from [37]. Spearman correlation (two-tailed) was calculated using Graphpad software v6.

3.5. KMT5A Inhibition Reduces CDC20 Expression and Reduces Prostate Cancer Cell Proliferation

KMT5A plays a role in the cell cycle and as such, knockdown of KMT5A has been
shown to inhibit cellular proliferation [38,39]. Indeed, we observed a reduction in pro-
liferation upon KMT5A knockdown in both the cell line models used in this study
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(Supplementary Figure S1A–C). In particular, proliferation was most affected under steroid
depleted conditions. Furthermore, as expected, knockdown of CDC20 resulted in a ro-
bust and significant inhibition of cellular proliferation (Supplementary Figure S1D,E).
Together this provides supporting evidence that both proteins play a role in prostate cancer
cell proliferation.

In order to confirm that the methyltransferase activity of KMT5A is important for the
regulation of CDC20 expression in prostate cancer cell lines we used two molecules that
have shown inhibitory activity against KMT5A, namely UNC0379 and Ryuvidine [40,41]
(Supplementary Figure S2). Firstly, we determined the GI50 values for LNCaP and LNCaP-
AI cells (Figure 5A). Interestingly, we found that Ryuvidine was a more potent inhibitor than
UNC0379 in LNCaP cells, However, in LNCaP-AI cells there was not such a large difference
in efficacy. Secondly, we used a titration of doses of both inhibitors and investigated
the dose dependent effects on both KMT5A and its target histone mark, H4K20Me1. We
observed that UNC0379 resulted in a robust decrease in H4K20Me1 levels in LNCaP-
AI and a modest reduction in LNCaP cells when total H4 levels are taken into account.
This coincided with a decrease in KMT5A protein levels in LNCaP cells whilst KMT5A
levels showed minimal change in LNCaP-AI cells. Ryuvidine also demonstrated a dose
dependent reduction in KMT5A activity in LNCaP cells whilst a decrease in H4K20Me1
was more difficult to achieve in LNCaP-AI cells thereby reflecting the sensitivity differences
to Ryuvidine between these two cell lines (Supplementary Figures S2 and S3).

Using the GI50 concentrations for each drug in LNCaP-AI cells we investigated the
levels of CDC20 by Western blotting, demonstrating that both drugs result in CDC20
reduction (Figure 5B). Furthermore, when the more potent Ryuvidine was used in LNCaP
cells at the GI50 dose a reduction in CDC20 levels was observed (Figure 5C). Together, this
led us to conclude that KMT5A enzymatic activity is important in the regulation of CDC20
protein levels.

3.6. KMT5A Knockdown Reduces H4K20Me1 at the CDC20 Promoter

In order to confirm that KMT5A can directly regulate the expression of CDC20 via the
mono-methylation of its only histone target, H4K20, chromatin immunoprecipitation assays
were performed in both LNCaP-AI and LNCaP cells subsequent to KMT5A knockdown
using a siRNA pool of siKMT5A_1 and siKMT5A_2. Upon KMT5A knockdown in both
cell lines growing in steroid depleted media, a significant reduction in H4K20Me1 was
observed at the CDC20 promoter region (Figure 6A,B). This led us to conclude that KMT5A
can directly modulate the expression of CDC20 via the methylation of H4K20 within the
promoter region.

3.7. p53 Mediates KMT5A Regulation of CDC20 Expression

Whilst KMT5A methyltransferase activity is important in regulating the expression
of CDC20 via the regulation of H4K20Me1 within the CDC20 promoter, KMT5A can also
methylate non-histone proteins, including p53, to regulate functional activity. Interestingly,
in our pathway analysis we uncovered some pathways within which CDC20 can be modu-
lated. In particular, p53 directly down-regulates CDC20 expression via association with
its promoter in response to DNA damage [11]. Secondly, in the absence of DNA damage,
p53 can regulate CDC20 expression via a CDE-CHR element, independent of p21, when
p53 is over-expressed [11,14,42]. To determine whether or not DNA damage in response to
KMT5A knockdown was influencing this mechanism, we investigated the levels of γ-H2AX
in both LNCaP-AI and LNCaP cells after KMT5A knockdown. Consistent with other re-
ports [39], KMT5A knockdown resulted in an increased level of DNA damage as denoted by
a robust ~3.5 fold and ~2 fold increase in γ-H2AX levels in LNCaP-AI cells and LNCaP cells,
respectively (Figure 7A), further suggesting that p53 could be a mediator of KMT5A effects
on CDC20 levels. Indeed, KMT5A is well-known to methylate p53 at K382 to reduce p53
activation [6], and the down-regulation of KMT5A in response to DNA damage has been
shown to result in the conversion of this mono-methylation state into a di/tri- methylation
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state on K382 to increase p53 stability [6,43]. Therefore, we hypothesised that knockdown of
KMT5A would shift the equilibrium from mono-methylated p53 to acetylated p53, thereby
resulting in p53 activation and the subsequent repression of CDC20 expression. To test this
theory, KMT5A was knocked down in both LNCaP-AI and LNCaP cells prior to Western
blotting for changes in p53 post-translational modifications and MDM2. We observed no
alterations in total p53 protein levels in either cell line with siKMT5A_2; however, p53 levels
were increased with siKMT5A_1. Nonetheless, a robust increase in acetylation at K382 and
an increase in p53-phosphorylation at serine 15 which is associated with enhanced DNA
binding was still observed with both siRNA sequences (Figures 7B,C and S6). To confirm
that p53 activation results in the down-regulation of CDC20 protein levels, we treated
both LNCaP-AI and LNCaP cells with the MDM2 inhibitor, Nutlin 3. In both cell lines,
CDC20 protein levels were reduced when p53 was activated (Figure 7D). Taken together,
this suggests that p53 activation via KMT5A knockdown results in the repression of CDC20.

3.8. CDC20 Is Down-Regulated by Protein Turnover in the Absence of p53

As p53 signalling was found to be up-regulated in our KEGG pathway analysis
(Supplementary Table S4), we questioned whether or not KMT5A was able to regulate
CDC20 if p53 was not present. As p53 loss is a common phenomenon in cancers, this
raised questions regarding the applicability of CDC20 as a KMT5A biomarker for those
patients whose tumours lack p53 expression. To investigate further, we performed KMT5A
knockdowns in p53 null, PC3 cells and performed Western blotting and qPCR analyses of
CDC20 levels. Surprisingly, KMT5A knockdown was still able to robustly reduce CDC20
protein levels in this cell line (Figure 8A). However, CDC20 mRNA levels were unaffected
(Figure 8B) suggesting that CDC20 post-translational changes occurred causing alterations
in protein turnover in the absence of p53. Therefore, if a protein biomarker read-out could
be used then CDC20 may remain as a valid KMT5A activity biomarker.

Figure 5. Cont.
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Figure 5. KMT5A inhibitors restrict prostate cancer cell growth and down-regulate CDC20.
(A) LNCaP-AI and LNCaP cells treated with a dose range of UNC0379 or Ryuvidine and GI50 con-
centrations determined via SRB assay after 3 doubling times. Data are expressed as mean % growth
inhibition +/− SEM from 3 independent experiments. Mean GI50 values are tabulated +/− SD.
(B) LNCaP-AI cells treated with either UNC0379 (7 μM) or Ryuvidine (1 μM or 2.77 μM) for 48 h prior
to protein analysis via Western blotting. (C) LNCaP cells were treated with Ryuvidine (0.7 μM) for
48 h prior to protein analysis via Western blotting. Data shown are representative of 3 independent
experiments. The uncropped blots are shown in File S1.

Figure 6. H4K20Me1 is reduced at the CDC20 promoter in response to KMT5A knockdown. KMT5A
was knocked down in (A) LNCaP-AI and (B) LNCaP cells growing in steroid depleted media for 72 h.
Chromatin was collected, and immunoprecipitation for was H4K20Me1 carried out. Isolated DNA
was purified and primers targeting the CDC20 promoter region were used to determine the levels of
H4K20Me1 association with this region. Experiments were performed 3 times and data are expressed
as the mean fold change relative to the non-silencing control, +/− SEM. IgG was used as a negative
control. Student’s t-test * p < 0.05.
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Figure 7. KMT5A regulates CDC20 via p53 activation. (A) LNCaP-AI and LNCaP cells reverse
transfected with either a pool of 3 KMT5A-targeting siRNAs or a non-silencing (N/S) control for
72 h prior to the assessment of γ-H2AX via flow cytometry. Scatter plots for experimental replicates
can be found in Supplementary Figure S4. (B) LNCaP-AI and LNCaP cells reverse-transfected with
2 independent siRNA sequences for 72 h prior to Western blotting analysis for CDC20, p53, p-p53,
p53-Ac, MDM2, and KMT5A. (C) Densitometry of Western blots shown in (B). The background
was subtracted from the intensity values prior to intensity normalisation against an appropriate
loading control. Intensities for post-translationally modified proteins were normalised to total protein
intensity. Additional experimental repeats can be found in Supplementary Figure S6. (D) LNCaP-AI
and LNCaP cells were treated with Nutlin 3 (5 μM) for 0 and 16 h prior to Western blotting analysis.
Western blot data shown is representative of 3 independent experiments. Two-way ANOVA test was
used to determine statistical significance for data shown in (A). ** p < 0.01 The uncropped blots are
shown in File S1.
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Figure 8. KMT5A regulates protein turnover in the absence of p53. (A) KMT5A was knocked down
with 2 independent siRNAs for 72 h. Protein was collected and analysed via Western blotting for
KMT5A and CDC20, and α-tubulin was used as a loading control. (B) Expression of CDC20 and
KMT5A in a parallel experiment analysed via qPCR. Data are shown as the mean fold change relative
to that of N/S controls over 3 experimental repeats, +/− SEM. One-way ANOVA was used to
determine statistical significance. *** p < 0.01; ns: not significant. The uncropped blots are shown in
File S1.

4. Discussion

Alternative therapeutic targets are urgently required for the treatment of advanced
prostate cancers which have relapsed after current standard-of-care therapies. As the
androgen receptor remains a driver of disease in therapy relapse, proteins which positively
modulate the transcriptional activity of the androgen receptor are proposed as putative
therapeutic targets. The protein methyltransferase KMT5A has been shown to interact
with the androgen receptor [4] and was proposed to offer therapeutic benefits to prostate
cancer patients. However, the mechanisms by which KMT5A contributes to prostate cancer
progression remains poorly understood.

We uncovered that KMT5A can regulate the levels of the cell cycle regulator protein
CDC20 both directly at the chromatin level via the modulation of histone methylation, and
indirectly via the methylation of the tumour suppressor protein, p53. This relationship
between CDC20 and KMT5A is supported by a significant positive correlation between
KMT5A and CDC20 transcripts in prostate cancer patients (Figure 4). Whilst this rela-
tionship is independent of the androgen receptor (Figures 2 and S5), both proteins are
described as oncogenes in prostate cancer. Critically, there are no reports describing the
methylation-specific regulation of CDC20.

KMT5A is the only known methyltransferase to monomethylate histone H4K20. As the
H4K20Me1 mark is traditionally associated with a compact chromatin landscape and gene
repression [44–47], it is counterintuitive that KMT5A should function to facilitate CDC20
transcription. However, KMT5A-mediated H4K20Me1 is now well-documented to function
as a transcriptional activator for some genes [48,49]. Where this has been observed, there is
generally a transcription factor which is implicated, for example TWIST [48]. Furthermore,
H4K20Me1 is associated with actively transcribing gene bodies [50] and more recently has
been found to result in chromatin accessibility in highly transcribed genes throughout the
cell cycle [51]. A role for KMT5A in the pause and release of RNA pol II has also been
revealed [52], further supporting the complex role of KMT5A in the positive regulation of
gene transcription.
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The methylation-dependent regulation of p53 activity by KMT5A is key to ensuring
transcriptional activation [6,43], further highlighting the ability of KMT5A to influence
gene expression programmes at multiple levels. Consistently, we observed that knockdown
of KMT5A resulted in enhanced p53 acetylation at K382, which can only occur if this
residue is not methylated. Importantly, it is the subsequent phosphorylation event at
S15 which facilitates the association of p53 with DNA which is enhanced upon KMT5A
knockdown. This would permit the recruitment of HDAC1 and mSin3a to the CDC20
promoter to allow chromatin remodelling to occur and thereby inhibit the transcription
of CDC20 [11]. Importantly, we observed slightly different effects with each KMT5A-
targeting siRNA in this experiment with regard to the ability of KMT5A knockdown
to stabilise p53, making the interpretation of p53 post-translational modifications more
complex. However, densitometry confirmed that both p53 phosphorylation and acetylation
do increase with KMT5A knockdown with both siRNA sequences (Figure 7C). Therefore, it
appears that there are two complementary mechanisms working together at the CDC20
promoter modulated by KMT5A to ensure the timely expression of this gene.

Both KMT5A and CDC20 are essential cell cycle regulator proteins. KMT5A is reg-
ulated by ubiquitin-mediated protein turnover specifically at the G1/S transition and
between metaphase and anaphase [7] whilst CDC20 regulates the SAC to control the
progression from metaphase to anaphase and ensure the successful separation of sister
chromatids. It is thought that the methylation of H4K20 is key to successful mitosis with
the turnover of KMT5A being the major mode of H4K20 methylation regulation. Indeed,
H4K20Me-mediated chromosome condensation is important in this process and KMT5A
knock out studies resulted in chromosome decondensation leading to cell cycle arrest at
G2/M [46]. Furthermore, H4K20Me1 is required for kinetochore assembly at centromeres
via the recruitment of CENP-T [53]. Hence, it is logical to hypothesise that a lack of KMT5A,
resulting in a decrease in H4K20Me1, will result in impaired kinetochore assembly and
thereby will invoke the SAC preventing CDC20 from facilitating the onset of the anaphase.
Therefore, due to the importance of tightly regulating CDC20 to ensure effective mitosis,
the modulation of CDC20 levels themselves by KMT5A would provide a failsafe way to
prevent a mitotic catastrophe.

CDC20 is required for nuclear movement prior to the anaphase where its activity, as
part of the APCCDC20 complex, results in the destruction of cyclin B and the inactivation of
CDK1. Interestingly, the CDK1-mediated phosphorylation of KMT5A at serine 29 has been
reported to occur during metaphase resulting in the removal of KMT5A from chromatin,
holding it in a stabilised state without affecting methylase activity. It is not until anaphase
that dephosphorylation by cdc14a/b permits KMT5A protein turnover via APCcdh1 [7].
Furthermore, APCCDC20 targets the H4K20Me1 demethylase, PHF8, for ubiquitin-mediated
destruction [13] further highlighting the important relationship between CDC20 and the
enzymes which modulate the H4K20 methylation state.

CDC20 has been found to be overexpressed in a number of cancers, including prostate
cancer [15,54], and there are a number of studies which demonstrate the relevance of CDC20
to prostate cancer development and progression. For example, CDC20 has been identified as
a hub gene, alongside CDK1, in castration-resistant prostate cancer [55], and contributes to
cell migration, disease progression and a poorer prognosis in metastatic prostate cancer [56]
with another study showing that CDC20, alongside PLK1 and cyclin A, plays a critical
role in prostate cancer metastasis [57]. CDC20 and PLK1 are both located at chromosomal
region 9p, which is often amplified in cancer. Indeed, high expressions of CDC20, PLK1
and CDK1 correlate with prostate cancer occurrence [58] and worse biochemical recurrence
survival rates [59]. Furthermore, CDC20 is a target protein of the Speckle-type POZ protein
(SPOP), which functions to promote ubiquitin-mediated protein turnover. SPOP is mutated
in up to 15% of prostate cancers [60] and these mutations have been shown to result in
an inability of SPOP to associate with CDC20, preventing CDC20 protein turnover and
consequently resistance to CDC20 inhibitors [16]. Both SPOP mutation [61] and CDC20
overexpression are important in docetaxel resistance with the inhibition or knockdown
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of CDC20 being able to resensitise cells to docetaxel [62] highlighting the importance of
CDC20 as a therapeutic target in prostate cancer at several disease stages. With inhibitors
for both CDC20 and KMT5A being developed, it would be important to determine whether
or not they are able to synergise with each other in drug-resistant models of prostate cancer.

KMT5A has an important role in the DNA damage repair pathway where it is recruited
to double-strand breaks to deposit H4K20Me1 to facilitate Suv4-20-mediated H4K20Me2,
which is required for 53BP1 binding and successful repair by NHEJ [63,64]. In addition, the
ubiquitination of KMT5A by RNF8 increases KMT5A association with RNF168 which in
turn promotes H2A ubiquitination [65]. The ubiquitination of these and other chromatin
components results in the recruitment of BRCA1/BARD1/Abraxas and RAP80 to sites
of γH2AX to allow the repair process to take place. Interestingly, RAP80 is a target of
CDC20 and its overexpression prevents mitotic progression irrespective of DNA dam-
age [9]. This again supports a connection between the functions of KMT5A and CDC20
in cellular processes. Additionally, the role of KMT5A in the suppression of important
anti-tumourigenic processes such as the positive regulation of the apoptotic process and
the response to gamma and ionising irradiation are also highlighted suggesting the utility
of KMT5A inhibition in combination with other DNA damage-inducing therapeutics such
as radiotherapy or cytotoxic agents.

The cellular processes regulated by KMT5A identified in this study are consistent with
those already described such as genome integrity, cell cycle progression, gene transcription
and DNA damage repair. However, some novel processes were identified including RNA
splicing and mRNA processing which require further investigation. This is particularly
important in prostate cancer where aberrant RNA splicing, particularly of the androgen
receptor, is associated with therapy resistance and poor prognosis [66].

5. Conclusions

A number of key oncogenic signalling pathways are regulated by the methyltransferase
KMT5A. Here, we provide evidence of the role of KMT5A in both metaphase to anaphase
control via the regulation of CDC20 and propose that close links between mitosis and DNA
damage repair processes are present via this relationship. As both CDC20 and KMT5A
are up-regulated in cancer via a number of mechanisms, the relationship between the
two proteins may be dysregulated, thereby promoting genomic instability. This presents
an opportunity to identify beneficial therapeutic combinations to treat patients based
on a number of criteria such as SPOP mutation status, KMT5A expression status and
therapeutic resistance.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers15143597/s1. Supplementary Figure S1. KMT5A and
CDC20 knockdown inhibits proliferation of prostate cancer cells. Supplementary Figure S2. KMT5A
inhibition by UNC0379 reduces KMT5A levels and H4K20Me1. Supplementary Figure S3. KMT5A
inhibition by Ryuvidine reduces KMT5A levels and H4K20Me1. Supplementary Figure S4. KMT5A
knockdown causes DNA damage. Supplementary Figure S5. KMT5A levels remain constant in
response to DHT stimulation. Supplementary Figure S6. Acetylation and phosphorylation of p53
occurs upon KMT5A knockdown. Table S1. qPCR primers. Table S2. Genes significantly up-regulated
by KMT5A knockdown. Table S3. Genes significantly down-regulated by KMT5A knockdown.
Table S4. KEGG pathways down-regulated in response to KMT5A knockdown in the presence of
DHT stimulation. Table S5. KEGG pathways up-regulated in response to KMT5A knockdown in the
presence of DHT stimulation. Table S6. Biological processes down-regulated in response to KMT5A
knockdown in the presence of DHT stimulation. Table S7. Biological processes up-regulated in
response to KMT5A knockdown in the presence of DHT stimulation. File S1. Uncut blots.
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Simple Summary: The acute oral mucositis (AOM) is a prevalent side effect of radiation therapy
for nasopharyngeal carcinoma (NPC). Severe AOM could impair the survival and quality of life
for NPC patients. Accurate method to predict the incidence of severe AOM can aid clinicians
in adjusting the treatment plan to improve the outcomes for NPC patients. We integrated multi-
modalities, multi-omics and multi-regions data with two methods, integrate the original data or
combine data after feature selection. The performance of models using each data integration method
with different modalities, types of data and VOIs were analyzed. We developed a best-performing
model with mean AUC at 0.81 ± 0.10 to predict the incidence of severe AOM for NPC patients
following radiation therapy.

Abstract: (1) Background: Acute oral mucositis is the most common side effect for nasopharyngeal
carcinoma patients receiving radiotherapy. Improper or delayed intervention to severe AOM could
degrade the quality of life or survival for NPC patients. An effective prediction method for severe
AOM is needed for the individualized management of NPC patients in the era of personalized
medicine. (2) Methods: A total of 242 biopsy-proven NPC patients were retrospectively recruited in
this study. Radiomics features were extracted from contrast-enhanced CT (CECT), contrast-enhanced
T1-weighted (cT1WI), and T2-weighted (T2WI) images in the primary tumor and tumor-related
area. Dosiomics features were extracted from 2D or 3D dose-volume histograms (DVH). Multiple
models were established with single and integrated data. The dataset was randomized into training
and test sets at a ratio of 7:3 with 10-fold cross-validation. (3) Results: The best-performing model
using Gaussian Naive Bayes (GNB) (mean validation AUC = 0.81 ± 0.10) was established with
integrated radiomics and dosiomics data. The GNB radiomics and dosiomics models yielded mean
validation AUC of 0.6 ± 0.20 and 0.69 ± 0.14, respectively. (4) Conclusions: Integrating radiomics and
dosiomics data from the primary tumor area could generate the best-performing model for severe
AOM prediction.

Keywords: multimodal data integration; radiomics; dosiomics; nasopharyngeal carcinoma;
acute mucositis
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1. Introduction

Nasopharyngeal carcinoma (NPC) is a kind of malignant epithelial head and neck
(H&N) cancer. It originates from the nasopharyngeal mucosal lining with high incidence in
Southeast Asia [1]. Over 95% of NPC cases are non-keratinizing squamous cell carcinoma
that is highly sensitive to radiation [2]. Radiotherapy with/without chemotherapy (CRT
or RT, respectively) is the primary treatment for NPC patients to achieve disease control.
Although advanced radiation strategies such as intensity-modulated RT (IMRT) are widely
applied to reduce the recurrence rate of tumor with decreased radiation-induced side
effects [3,4], radiation toxicity is still a trouble for NPC patients undergoing radiation
therapy [5,6]. The radiation damages DNA and cellular components, which could cause
mitotic cell death, apoptosis, and cytokine cascade in the human body. These cascades
of events could eventually and inevitably lead to toxicity effects [7]. Most NPC patients
suffer from dermatitis, mucositis, dysphagia, and xerostomia during and after RT/CRT.
Among these acute toxicity effects, acute oral mucositis (AOM) is the most common painful
symptomatic complication for NPC patients [8].

More than 60% of H&N patients have experienced AOM following RT-based anti-
cancer therapies. Approximately 65% of these patients have developed severe AOM
(≥grade 3) [8]. The AOM is typically characterized by atrophy, swelling, erythema, and
ulceration. It often impairs patients’ functional status and quality of life (QoL) [9]. The
soreness of AOM initially leads to open-mouth difficulty, which further causes decreased
food and water intake, loss of weight, and systematic infection. Patients who have devel-
oped severe AOM with painful experiences would receive a reduced dose of chemotherapy.
Some patients even tend to break the RT regime. Severe AOM can exacerbate the morbidity
of patients, which may finally contribute to worsen QoL and increase mortality [10]. It
therefore is necessary to analyze the critical contributors to the oral mucositis.

Previous studies have focused on analyzing one type of data, such as genetic data
and clinical variables, for predicting severe AOM. Various factors have been identified
to correlate with the incidence and severity of oral mucositis, for instance, genetic back-
ground [11,12], dose of RT [13,14], chemo-drugs [15–17], and nutritional status [18]. Among
these factors, the dose of RT is a critical factor influencing the severity of AOM. Additional
chemotherapy, especially with some AOM-associated agents, for instance, alkylating agents
and antimetabolites, could exacerbate the events. Besides, AOM patients are more likely
to have weight loss during the treatment scheme [19,20]. Saito et al. [20,21] reported that
low BMI is a risk factor for severe AOM. Andy et al. [21] indicated that patients with ad-
vanced tumors are prone to experience AOM. Moreover, a recent two-stage genome-wide
association study [12] showed that four single nucleotide polymorphisms (SNPs) might
be correlated with acute mucositis. However, they failed to validate their results in the
validation stage. Clinicogenomic variables alone are inadequate to accurately predict the
incidence, correlations, and severity of AOM for NPC patients after RT.

In addition to the genomics information, contrast-enhanced computed tomography
(CECT), magnetic resonance imaging (MRI), and dose files routinely acquire clinical data
for NPC patients with RT plans [22,23]. Radiomics and dosiomics are two quantitative
information-extraction methods to provide minable texture and dose-distribution infor-
mation for clinical prognosis prediction. Traditional experiences have demonstrated that
single or double sources of data had limited prediction power for acute AOM. Integration
of complementary data from multiple types of datasets can lead to an intricate outcome
than a simple summation of information [24]. Integration of multimodal data from mul-
tiple sources, for instance, clinical, radiomics, and dosiomics for NPC patients, has the
potential to overcome the boundaries of conventional medical analysis [25–31]. Unfor-
tunately, few studies have reported the possibilities of radiomics or dosiomics for AOM
prediction [13,32,33]. To the best of our knowledge, there are no studies in the literature
assessing whether the data fusion of multi-regions and multimodalities could enhance their
capability of severe AOM prediction.
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In this study, we aimed to analyze multimodal data, including clinical, radiomics, and
dosiomics information, to predict the incidence of severe AOM in NPC patients following
RT/CRT. The radiomics and dosiomics data were extracted from multi-regions related
to RT treatment. These data were also extracted from multimodalities of images (CECT,
contrast-enhanced T1-weighted, and T2-weighted MRI). In daily clinical practice, clinicians
could benefit from adjusting treatment plans before RT for patients with a higher possibility
of developing severe AOM to achieve personalized diagnosis and treatment.

2. Materials and Methods

Patient data. All patient data were retrospectively collected from NPC patients who
underwent CRT or RT at Hong Kong Queen Elizabeth Hospital from 2012 to 2015. Informed
consent of patients was waived due to the nature of the retrospective study. NPC patients
were recruited based on the following inclusion and exclusion criteria. The inclusion criteria
were: (1) NPC patients with pathological validation and absence of distant metastasis and
co-existing tumors of other types at diagnosis, (2) patients treated with a total RT dose of
60–70 Gy, and (3) patients with a completed set of clinical, image, and radiation dosimetry
data. The exclusion criteria were: (1) patients aged less than 18, (2) patients without original
image or clinical data; and (3) patients for whom exact standard terminology criteria for
adverse events (CTCAE) evaluation for AOM had not been recorded. Symptoms in grades
1 and 2 were defined as mild AOM, and grades 3 and 4 as severe AOM [34] All the patients
were negative of oral mucositis according to the CTCAE grading system before receiving
radiation therapy.

Clinical variables included (1) treatment information: TNM stage, treatment, past
health condition, allergy history, vision condition, hearing condition, and CTCAE evalua-
tion for AOM and (2) demographic data: age, gender, body weight, height, body mass index
(BMI), and smoking and drinking habits. All clinical variables were acquired one week
before RT commencement, except the CTCAE evaluation results, which were recorded
4–5 weeks after RT commencement. The equation for BMI is defined as follows:

Body mass index (BMI) = weight/height2 (1)

Patients were maintained in a supine position during the imaging examination. Details
of imaging acquisition are summarized in Tables A1 and A2.

Image pre-processing. In this study, the imaging pre-processing steps were based on
our previous work [28] and are in accordance with the Image Biomarker Standardisation
Initiative (IBSI) guidelines [35]. Specifically, (1) voxel size resampling: all images (CECT
and MRI) were resampled to a voxel size of 1 × 1 × 1 mm3; (2) volume of interest (VOI)
re-segmentation: CECT images were re-segmented to confine the Hounsfield unit (HU) to
(–150,180) to eliminate the non-soft tissue in the VOI; (3) image filtering: a Laplacian of
Gaussian (LoG) filter with three levels of Gaussian radius parameter was used under fine
(1 mm), medium (3 mm), and coarse (6 mm) scales; (4) quantization of gray levels: gray-
level intensities of the images were fixed to 50 bins; and (5) inhomogeneity correction of
image pixel value: N4B bias correction in the “N4 Bias Field Correction Image Filter” in
SimpleITK (v1.2.4) was implemented, in particular, to MRI images.

Radiomics and dosiomics feature extraction. Feature extraction was performed using
our in-house platform based on publicly available SimpleITK (v1.2.4) and PyRadiomics
(v2.2.0) [36,37]. All VOIs were delineated by an experienced senior clinician [38]. The gross
tumor volumes (GTVs) were contoured based on CECT with the assistance of MRI images.

Radiomics. The gross tumor volume of the NPC primary tumor (GTVnp) and the
gross tumor volume of nodal lesions (GTVn) were selected as the main VOIs for radiomics
feature extraction. Features with or without LoG filters were both involved. All these fea-
tures were extracted from CECT, contrast-enhanced T1 weighted (cT1WI), and T2 weighted
(T2WI) images (for details, please refer to Figure 1). Meaning of each VOI for different
image modalities were listed in Table 1.
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Figure 1. VOI examples for NPC patients with CECT examination. (a) Region of GTVnp (orange),
axial view. (b) Region of GTVn (blue) and PTVn_70 Gy (red), axial view. (c) Region of PTVn_60 Gy
(green), coronal view. (d) DVH curve of four VOIs.

Table 1. VOIs and image modalities.

VOIs Descriptions of VOI Imaging Modalities/Images

GTVnp Gross tumor volume of primary NPC tumor CECT, cT1WI, T2WI, DVH
GTVn Metastatic lymph nodes area CECT, DVH

PTVn_70Gy Regions of nodal planning target volume with DVH
the prescribed dose level of 70Gy

PTVn_60Gy PTVn with the prescribed dose level of 60Gy DVH

Three categories of radiomics features were extracted: shape, first-order statistics, and
texture features. The texture features can be further categorized into gray-level difference
matrix (GLDM), gray-level cooccurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size-zone matrix (GLSZM), and neighboring gray-tone difference
matrix (NGTDM) classes.
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Dosiomics. Except for GTVnp and GTVn, the region of the high-dose nodal planning
target volume (PTVn_70Gy) and region of the low-dose nodal planning target volume
(PTVn_60Gy) were also added to the dosiomics analysis (please refer to Figures 1 and A2
and Table 1 for more details).

Two-dimensional (2D) and three-dimensional (3D) dose–volume histograms (DVHs)
of each studied VOI were extracted from dose files for dosiomics feature extraction. All
dosiomics features were extracted based on Gabry et al.’s previous study [39]. Features
that reflect dose distribution, for instance, mean dose, spatial dose gradient, and spatial
dose spread were extracted accordingly. All the calculation algorithms have been listed in
a previous publication by Buettner et al. [40].

Model development and evaluation. The statistical analysis, model training, and
evaluation were conducted in Jupyter 6.4.12 and SPSS 25. The receiver operating charac-
teristic (ROC) curve and area under the ROC curve (AUC) with 10-fold validation was
performed to evaluate model performance. The CTCAE grade scale of patients in mucositis
was dichotomized between severe AOM (grade ≥ 3) and mild AOM (grade ≤ 2) as the
prediction endpoint. Patients were stratified based on CTCAE grade to training and testing
groups at a 7:3 ratio (details in Figure 2).

Figure 2. Scheme of feature selection and modeling. Training and validation sets were separated
before data analysis. The training set of data was used for feature selection. The validation set of data
was used for model evaluation. To further manipulate the numerical and categorical data, reduce
the interactions, and solve the collinearity problems, random forest (RF) selection was applicated for
radiomics, dosiomics, and integrated data. Three linear or non-linear models were developed with
independent validation data sets with selected features. The area under the curve (AUC) was set as
the main evaluation method for the model performance.
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Single-modal models. The data sources for single-modal models were restricted to
single modality of data (radiomics, dosiomics, or clinics), single modality of imaging (CECT,
cT1WI, T2WI, and DVH), and single region of patients (GTVnp, GTVn, PTVn_60Gy, and
PTVn_70Gy). Each single data set had two steps in this stage: (1) feature selection and
model training in the training group set and (2) AUC evaluation in validation groups.

For clinical data, chi-square and Mann–Whitney U tests were employed for binary
and non-binary variables for univariate analysis. p values < 0.05 was considered to be
statistically significant. All radiomics and dosiomics data were standardized with the
MinMax scaler before selection. For radiomics and dosiomics data, we first identified
significant features between severe and mild AOM patients in the training set with Mann–
Whitney U tests. After that, random forest (RF) was used to rank the importance of the
significant features considering both feature interactions and nonlinearities. The optimal
feature number was set according to the best RF training model score. Three models,
including logistic regression (LR), Gaussian Naïve Bayes (GNB), and extreme gradient
boosting (XGBoost), were applied to evaluate the combined predictive value of these
selected features in the independent validation set. All VOIs data were analyzed separately
at the single model stage.

Multimodal data integration. Clinical data after multivariant analysis (LR) with
p value < 0.05 were selected for data integration. Dosiomics and radiomics data from
different VOIs and image modalities were integrated with two methods: (1) dosiomics and
radiomics data were combined together before feature selection and (2) the features selected
from the RF model were merged and directly combined without a further feature-selection
step (please refer to Figure 2 for more details). All the data-integration methods are listed
in Table 2.

Table 2. Data resources and integration/combination methods.

Name of Model Methods

GTVnp_RD Integration of radiomics and dosiomics GTVnp data before feature selection

GTVnp_R_CECTcT1T2 Integration of radiomics GTVnp data from CECT, cT1WI, T2WI before feature selection

GTVnp_R_CECTcT1 Integration of radiomics GTVnp data from CECT and cT1WI before feature selection

GTVnp_R_cT1T2 Integration of radiomics GTVnp data from cT1WI and T2WI before feature selection

GTVnp_R_cT1 Single radiomics data from CT1WI
GTVnp_R_CECT Single radiomics data from CECT
GTVnp_R_T2 Single radiomics data from T2WI
GTVnp_D Single dosiomics data from GTVnp
GTVn_RD Integration of radiomics and dosiomics data from GTVn before feature selection

GTVn_R Single radiomics data from GTVn
GTVn_D Single dosiomics data from GTVn
PTVn_D Integration of 60 and 70 Gy dosiomics data before feature selection
PTVn_60Gy_D Single dosiomics data from PTVn_60Gy
PTVn_70Gy_D Single dosiomics data from PTVn_70Gy
R Integration of all radiomics data before feature selection
D Integration of all dosiomics data before feature selection
C Single clinical data
C&D Combine selected clinical and dosiomics data for modeling
C&R Combine selected clinical and radiomics data for modeling
RD Integration of radiomics and dosiomics data before feature selection
C&RD Combine selected clinical and RD data for modeling
C&GTVnp RD Combine selected clinical and GTVnp RD data for modeling
R&D Combine selected radiomics and dosiomics data for modeling
C&R&D Combine selected clinical, radiomics and dosiomics data for modeling
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Shapley Additive Explanations (SHAP), an explainable artificial intelligence (AI)-
based tool, was applied for further explanation of feature importance for the model with
the best AUC result and specific features [41].

3. Results

3.1. Patient Characteristics

A total of 397 continuous patients were collected based on their final diagnosis with
pathological validation. Of these patients, with a median age of 54 (range 26–86 years),
242 were enrolled for further analysis following the inclusion and exclusion criteria (details
in Figure A1). All patients were negative for oral mucositis with CTCAE graded 0 before
radiation therapy. Univariate analysis results of demographic and clinical characteristics
for those patients are listed in Table 3.

Table 3. Demographic and clinical characteristics for all patients.

Characteristics
AOM < Grade 3

(Mild AOM)
AOM ≥ Grade 3
(Severe AOM)

p Value

Total Number 191 (78.9%) 51 (21.1%)
Age, mean ± SD, years 54.89 ± 12.25 50.9 ± 10.60 0.036 *
18–65 149 (61.6%) 44 (18.1%)
≥65 42 (17.4%) 7 (2.9%) 0.192
Gender
Male 135 (55.8%) 41 (16.9%)
Female 56 (23.1%) 10 (4.1%) 0.167
Treatment 0.004 *
RT alone 27 (11.2%) 0
CRT 164 (67.8%) 51 (21.1%)

0.031 *T stage
T1 15 (6.2%) 3 (0.1%)
T2 8 (3.3%) 5 (2.1%)
T3 137 (56.6%) 28 (11.6%)
T4 31 (12.8%) 15 (6.2%)
N stage 0.091
N1 28 (11.2%) 1 (0.4%)
N2 142 (58.7%) 45 (18.6%)
N3 20 (8.2%) 5 (2.1%)
Pathology
Non-keratinizing squamous cell 175 (72.3%) 48 (19.8%) 0.556
Keratinizing squamous-cell carcinoma 16 (6.6%) 3 (1.3%) 0.487
Past health condition
Past health good 92 (38.0%) 27 (11.2%)
Basic diseases/cancer 99 (40.9%) 24 (9.9%) 0.545
Allegory of History
No known drug allergies 176 (72.7%) 46 (19.0%)
Allergy history 15 (6.2%) 5 (2.1%) 0.653
Vision
Normal 189 (78.1%) 51 (21.1%)
With eye impairment 2 (0.8%) 0 0.463
Hearing
Normal 186 (76.9%) 48 (19.8%)
With hearing impairment 5 (2.1%) 3 (1.2%) 0.247
Habits
Smoking 9 (3.7%) 6 (2.5%)

0.044 *Non-smoker 182 (75.2%) 45 (18.6%)
Drinking 4 (1.7%) 1 (0.4%)
No alcohol consumption 187 (77.3%) 50 (20.7%) 0.953
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Table 3. Cont.

Characteristics
AOM < Grade 3

(Mild AOM)
AOM ≥ Grade 3
(Severe AOM)

p Value

Height, mean ± SD, cm 163.4 ± 8.5 165.0 ± 8.0 0.561
Body weight, mean ± SD, kg

63.1 ± 11.9 66.2 ± 14.61st week of RT 1.599
2nd week of RT 62.0 ± 11.8 64.9 ± 14.5 1.5
3rd week of RT 61.2 ± 11.4 63.9 ± 14.1 0.116
4th week of RT 60.2 ± 11.3 62.8 ± 14.0 1.418
BMI
1st week of RT
<25 131 (54.1%) 32 (13.2%)
≥25 60 (24.8%) 19 (7.9%) 0.429
2nd week of RT
<25 131 (54.1%) 51 (21.1%)
≥25 60 (24.8%) 22 (9.1%) 0.116
3rd week of RT
<25 131 (54.1%) 31 (12.8%)
≥25 55 (22.7%) 20 (8.3%) 0.153
4th week of RT
<25 142 (58.7%) 34 (14.0%)
≥25 49 (20.2%) 17 (7.0%) 0.274

* p < 0.05. All the above data are derived from biopsy-proven primary NPC patients without the existence of
distant metastasis or co-existing tumors of other type at diagnosis.

3.2. Feature Extraction and Model Development
3.2.1. Feature Extraction

In this study, a total of 1544 radiomics features, 386 features each for four modalities
of imaging, were extracted from raw and LoG-filtered images. A total of 836 dosiomics
features (210 for GTVn, 211 for GTVnp, 204 for PTVn_60Gy, and 211 for PTVn_70Gy) were
extracted from dose images.

3.2.2. Models

For the clinical data, four variables, including age, RT treatment alone, T stage, and
smoking habits, were selected after univariate analysis. The logistic regression (LR) model
was established with these variables. T stage and smoking habits had statistical significance
in the LR model with a p-value < 0.05 (details in Table 4).

Table 4. Logistic regression results for single clinical data model.

Variables p-Value 95% Confidence Interval

Lower 95% Bound Upper 95% Bound

Age (18, 65) 0.802 0.345 2.274
T 0.007 *
T 1 0.591 0.149 2.96
T 2 0.069 0.881 29.854
T 3 0.024 * 0.195 0.891
RT alone 0.998 0 .
Smoker 0.043 * 1.037 10.683

* p < 0.05.

Radiomics and dosiomics features extracted from various VOIs were put into Mann–
Whitney U tests and RF classifier step by step. RF selection results of the threshold and
feature numbers are listed in Table A3.

Nine categories of single-modal models (C, PTVn_70Gy_D, PTVn_60Gy_D, GTVn_D,
GTVnp_D, GTVn_R, GTVnp_R_T2, GTVnp_R_CECT, and GTVnp_R_cT1) were established
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with single modal, single modality, and single VOI data. The best validation AUC was
at 0.75 ± 0.12 (training AUC = 0.73 ± 0.01) of a GNB model (GTVnp_R_cT1) with ra-
diomics data from GTVnp of cT1WI. Seven groups of models with data integrated before
feature selection (raw-data integration) were generated with the best AUC of a GNB model
(GTVnp_RD) at 0.81 ± 0.01 (training AUC = 0.79 ± 0.01). This best-performing model
was constructed with features selected from radiomics and dosiomics data in the region of
GTVnp. In addition, six sets of combined data after feature selection were also used for mod-
eling. A best LR model (C&R&D) with AUC at 0.79 ± 0.14 (training AUC = 0.81 ± 0.02)
was set with the simply combined data of selected clinical, dosiomics, and radiomics
features (details of mean 10-fold validation AUC results are listed in Figure 3).

Figure 3. 10-fold validation AUC results for the test set. (a) The AUC plot of GNB model for the
GTVnp_R_cT1 data set. (b) The AUC plot of GNB model for the GTVnp_RD data set. (c) The AUC
plot of LR model for the C&R&D data set. (d) The heatmap of mean AUC results for all models.

The SHAP analysis showed the importance of the five features in the GTVnp_RD
model for prediction of severe AOM. Four of the five features were derived from cT1WI.
All five features are texture features. No dosiomics features were selected after the feature
selections (details in Figure 4).
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Figure 4. Feature importance of SHAP for XGBoost model of GTVnp_RD. From the highest to the
lowest level, the features are categorized in GLSZM, log sigma 60 mm 3D GLCM, original GLDM,
GLDM, and log sigma 10 mm 3D GLCM.

4. Discussion

In our study, we used simply combined and data-fusion methods to manage multi-
modalities of data (clinical, radiomics, and dosiomics), multimodalities of imaging (CECT,
cT1WI, and T2WI), and multi-regional information (GTVn, GTVnp, and PTVn) to predict
the incidence of severe AOM. Multiple models were established to evaluate and determine
which method was effective for clinical decision-making. Comparison of the AUC between
models showed that the simple combination of single-modal data of selected features had
the most stable performance (C&R&D), with an average AUC of 0.77 ± 0.17. In addition,
data-fusion methods, integrating radiomics and dosiomics data before selection proce-
dures, resulted in the best-performing model (GTVnp_RD), with the best test AUC of
0.81 ± 0.01. This is also the best AUC among the existing AOM prediction models from
previous studies.

The feature numbers in the C&R&D model and GTVnp RD were 29 and 5, respectively.
Obviously, data fusion was more efficient for training a model with one-sixth the number
of features to achieve stronger model predictability. To better explain the correlations of
the selected features and severe AOM for NPC patients, a SHAP plot was applied for the
GTVnp_RD XGBoost model. In this model, radiomics features extracted from GTVnp in
cT1WI images yielded the highest and majority prediction value for severe AOM.

Poolakkad and his colleagues established a machine learning (ML) model of 253 H&N
patients’ clinical data with the best AUC of 0.79 for AOM prediction [42]. Most clinical
data selected in their study were late after the CRT scheme, for example, the anti-neoplastic
chemotherapy-induced pancytopenia, co-morbidity score, and agranulocytosis. It is worth
noting that the features and variables selected in our study were all from the data collected
before implementation of the RT regimen. Clinicians could predict the severe AOM before
the commencement of RT planning. Personalized treatment strategies adjustment could be
achieved using the developed prediction model.

Strictly speaking, the concept of dosiomics is originated from radiomics. The data
for dosiomics and radiomics are similar in terms of the feature calculation algorithm [43].
The clinical data are different from the “-omics” data in nature. Therefore, instead of
integrating raw clinical data with other data, the combination of selected clinical data
was only applied in this study. Compared with less increase of AUC for the combination
of clinical data with integrated RD data, the clinical data could enhance the prediction
capability of single-modal models. The single radiomics models (R) and single clinical
models (C) have limited prediction performance with average AUC of three models (LR,
GNB, and XGBoost) at 0.63 ± 0.06 and 0.63 ± 0.64, respectively. When combining the
clinical data with the selected radiomics features, the model (C&R) outperformed both R
and C models with average AUC at 0.74 ± 0.03.
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The single dosiomics models yielded poor performance, with most AUCs under 0.7 in
the validation data set. In a previous study, dose distribution correlated with the incidence
and severity of AOM [44]. Dean et al. [45] developed an RF model with a testing AUC of
0.71 ± 0.09, using a dose–volume histogram, spatial dose metrics from the oral cavity, and
clinical data. In the current study, the best dosiomics model had the mean testing AUC of
0.69 ± 0.14. Different tumor-related VOIs may present different prediction value for severe
AOM. The difference in VOI selection between the two studies might shed some light on
the discrepancy in the findings. The oral cavity directly represents the dose distribution in
the oral mucosa, which might be more accurate than the GTVn, GTVnp, PTVn 60 Gy, or
PTVn 70 Gy. The VOI of the oral cavity requires specific contouring. It is worth noting that
contouring of the oral cavity is not a common practice in the participating hospital of this
study. Extra contouring is labor-intensive work in daily clinical practice. Our study only
selected the routine VOI broadly used for RT planning, which could support our model to
be applied from bench to bedside for clinical decision-making. Besides, the DVH is prone
to over-simplifying the dose distribution [46]. It is recommended to combine or integrate
dosiomics data with other modalities of data. When incorporating dosiomics data with
other data types, the best mean validation AUC could surge to 0.81 ± 0.01.

At present, there exists no effective preventive measures for the occurrence of severe
AOM in NPC patients undergoing RT. Nevertheless, it is feasible to mitigate the severity of
this affliction: (1) Use of alternative radiation techniques, such as proton therapy, may be
considered to reduce the risk of oral mucositis while maintaining treatment efficacy [34,47].
(2) Shortening the duration of chemotherapy. For advanced NPC patients who need to accept
both radiotherapy and chemotherapy, shortening the exposition time to chemotherapy agents
has shown lower mucosal toxicity [48]. (3) Photobiomodulation is a supportive treatment
for the protection of high-risk mucositis patients [49]. (4) Supportive care interventions:
preemptive or proactive use of supportive care interventions, such as oral hygiene measures,
pain management, or nutritional support, may be considered to prevent or reduce the severity
of AOM [50].

The limitations of our study were: (1) The mucositis grade levels of our patients had
an imbalanced distribution. This might have had a negative influence on the data analysis
work. The imbalanced results were the nature of the clinical situation. Patients were
stratified into the training and validation groups according to the severity of OM, which
could offset the imbalance problem [18,19,34]. (2) Potential bias of smoking information:
in our study, the number of smoking patients might be underestimated due to the nature
of this patient-reported outcome. This data were reported by patients at the time of their
hospital visit and recorded in the nursing consultation notes. (3) The severity of AOM
was scaled with standard terminology criteria for adverse events (CTCAE) in v3 or v4.03,
almost equivalent to mucositis. Various criteria are available for mucositis grading, such
as the those of the Radiation Therapy Oncology Group (RTOG) and the World Health
Organization (WHO). These scales have excellent concordance with bundled scores of
3 and 4 to describe severe AOM [51]. The CTCAE is easily conducted by clinicians and
nurses and broadly applied in the hospital. (4) The correlations of contributors under
AOM for NPC patients are complex. For clinical decision-making, genome information,
other clinical information such as fermented-food consumption and EBV infection, and
pathological image may also play critical roles. The limited data resources for multimodal
data integration are common challenges in the data-mining field. The radiomics data in our
study also provided relevant genomic information. Compared with gene test results, the
CECT and MRI examination images collected in our research are clinical routines used by
clinicians to set the RT plan for NPC patients. These noninvasive examinations could serve
as high-throughput screening tools for further application of severe AOM prediction in the
future. (5) Other selection of VOIs: for practical consideration, we have not added the VOIs
of the oral cavity, tongue, pharyngeal muscles, etc., which may hold potential predictive
value for AOM. Further investigation is recommended to incorporate this information to
enhance the accuracy of the analysis.
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5. Conclusions

AOM is a challenging and distressing complication in NPC patients following RT.
Prediction of severe AOM is necessary for timely prevention and intervention, which
would further improve the QoL and survival of patients. In this study, we adopted
multimodal data (clinical, radiomics, and dosiomics), multimodality of imaging (CECT,
cT1WI, and T2WI), and multi-regional information (GTVn, GTVnp, and PTVn) to develop
a best-performance model for severe AOM prediction. The simple combination of selected
information and data fusion were applied in our work. The results demonstrated that
the fusion of radiomics and dosiomics data from the primary tumor could generate the
most effective and best-performing model (mean AUC = 0.81 ± 0.01). The data resources
and VOIs selected in this study are routinely used in clinical practice, which has excellent
potential for further clinical support. Further validation work on a large cohort is warranted
to validate model generalizability.
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Appendix A

Figure A1. Schematic diagram of patient selection.
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Appendix B

CECT. All patients were scanned in the CT stimulator (16-slice Brilliance Big 1Bore CT,
Philips Medical Systems, Cleveland, OH) at Queen Elizabeth Hospital in Hong Kong. The
scanned regions were from vertex to 5 cm below the sternoclavicular notch. The contrast-
enhanced images were acquired at 30 s after intravenous injection of 70 mL iodinated
contrast agents. The detailed acquisition parameters are listed in Table A1.

Table A1. Acquisition parameters of CECT.

Parameters CECT

Pitch 1
Kilovoltage (kV) 120
Current (mAs) 250–350
Slice thickness (mm) 3
Matrix 512 × 512
Scan time (s) 15

MRI. MRI scans were acquired with an MR scanner (1.5 Tesla, Siemens Avanto,
Germany). T2 weighted imaging with short-tau-inversion-recovery (STIR) sequence and
cT1WI with spin-echo MRI sequence were applied. The detailed acquisition parameters are
listed in Table A2.

Table A2. Parameters of T2WI and T1WI.

Parameters T2-STIR cT1WI

[TR]/[TE] (ms) 7640/97 739/17
FOV (cm2) 24 × 24 24 × 24
Number of acquisitions 1 1
Slice thickness (mm×slices) 4 × 25 3 × 28
Spacing (cm3) 0.75 × 0.75 × 4.4 0.938 × 0.938 × 3.3
Matrix 320 × 320 256 × 256

Appendix C

Table A3. Threshold of RFC selection and feature numbers for further model development.

Modal of Data Threshold Number of Features

GTVnp_RD 0.014 5
GTVnp_R_CECTcT1T2 0.01 8
GTVnp_R_CECTcT1 0.0125 5
GTVnp_R_cT1T2 0.125 5
GTVnp_R_cT1 0.015 4
GTVnp_R_CECT 0.01 19
GTVnp_R_T2 0.03 2
GTVnp_D 0.024 6
GTVn_RD 0.02 7
GTVn_R 0.03 7
GTVn_D 0.06 7
PTVn_D 0.03 3
PTVn_60Gy_D 0.03 12
PTVn_70Gy_D 0.042 1
R 0.012 2
D 0.016 13
RD 0.005 13
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Appendix D

Figure A2. Dose maps of NPC patients undergoing IMRT. (a) 3D view of NPC patient. (b) DVH of
multiple VOIs. (c). Axial view of patient in different VOIs. (d). Coronal view of patient. (e). Sagittal
view of patient.
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Simple Summary: Lymphovascular invasion (LVI) serves as a crucial predictor in gastric cancer,
indicating an increased likelihood of lymph node spread and poorer patient outcomes. Detecting
LVI(+) within gastric cancer histopathology presents challenges due to its elusive nature, leading
to the proposal of a deep learning-based detection method using H&E-stained whole-slide images.
Remarkably, both the classification and detection models demonstrated superior performance, and
their ensemble exhibited outstanding predictive capabilities in identifying LVI areas. This innovative
approach holds promise in precision medicine, potentially streamlining examinations and reducing
discrepancies among pathologists.

Abstract: Lymphovascular invasion (LVI) is one of the most important prognostic factors in gastric
cancer as it indicates a higher likelihood of lymph node metastasis and poorer overall outcome
for the patient. Despite its importance, the detection of LVI(+) in histopathology specimens of
gastric cancer can be a challenging task for pathologists as invasion can be subtle and difficult to
discern. Herein, we propose a deep learning-based LVI(+) detection method using H&E-stained
whole-slide images. The ConViT model showed the best performance in terms of both AUROC
and AURPC among the classification models (AUROC: 0.9796; AUPRC: 0.9648). The AUROC and
AUPRC of YOLOX computed based on the augmented patch-level confidence score were slightly
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lower (AUROC: −0.0094; AUPRC: −0.0225) than those of the ConViT classification model. With
weighted averaging of the patch-level confidence scores, the ensemble model exhibited the best
AUROC, AUPRC, and F1 scores of 0.9880, 0.9769, and 0.9280, respectively. The proposed model is
expected to contribute to precision medicine by potentially saving examination-related time and
labor and reducing disagreements among pathologists.

Keywords: digital pathology; artificial intelligence; gastric cancer; lymphovascular invasion

1. Introduction

Gastric cancer is the most common type of cancer, accounting for 12% of all cancer
cases in Korea according to data from the National Cancer Center in 2018 [1]. In 2020,
more than 1 million (1,089,103) new cases of gastric cancer were estimated worldwide,
resulting in 768,793 deaths [2]. Lymph node metastasis is the most significant prognostic
factor for patients with gastric cancer, and the presence of lymphovascular invasion (LVI)
is the most significant risk factor for lymph node metastasis [3–6]. LVI is defined as the
invasion of vessel walls by tumor cells and/or the presence of tumor emboli within an
endothelial-lined space [7]. Predictive value and prevalence of LVI are highly dependent on
the type of cancer, and the presence of LVI is a recognized prognostic factor in a variety of
solid malignancies, including breast cancer, urothelial carcinoma, and colorectal cancer [8].
Since the proclamation of LVI as an important factor in the prognosis of gastric cancer
by Talamonti et al. [9], the American Joint Committee on Cancer has recommended the
evaluation of LVI [10]. According to the current Japanese guidelines, LVI in gastric cancer is
not clinically useful information except for predicting the possibility of curative endoscopic
resection. LVI is the most significant risk factor associated with lymph node metastases in
individuals with early gastric cancer [6,11–13]. The rate of lymph node metastasis observed
in patients exhibiting LVI (25.7–32.1%) was much higher compared to that in those without
LVI (1.5–2.3%) [6,11,13,14]. In addition, Fusikawa et al. showed that a significant difference
was observed between the values of 79.8% in the LVI(–) group and 67.2% in the LVI(+)
group in advanced cancer [7]. The five-year survival rate of advanced cancers with nodal
metastases is 76.7% in the LVI(–) group and 60.9% in the LVI(+) group [7]. Therefore, LVI
is an independent prognostic marker in gastric cancer and tends to worsen the prognosis,
particularly in cases of advanced malignancy with lymph node metastasis.

The recognition of lymphatic tumor emboli in microscopic sections is dependent on the
pathologist [15]. There is potential for significant inter-observer variations in the diagnosis
of LVI amongst pathologists [16]. Inter-observer disagreement can be expected in the
diagnosis of LVI as retraction artifacts that isolate tumor aggregates can be caused by tissue
shrinkage during fixation, which are easily confused with true tumor emboli during routine
examination of hematoxylin and eosin (H&E) stained sections [17,18]. Tumors may be
artefactually displaced into vessels during specimen cut up or processing [19]. For instance,
Gilchrist et al. noted that when three surgical pathologists were told to assess for LVI in
a pT1-2 N0 M0 histological mastectomy case, all three concurred in only 12 of 35 breast
cancer cases [15,16]. Several attempts have been made to overcome these limitations. The
monoclonal D2-40 antibody can selectively detect lymphatic vessels as it is expressed
in the lymphatic endothelium but not in blood vessels, and D2-40 staining is reportedly
more sensitive than H&E staining for detecting lymphatic invasion (LI) [17,20,21]. Elastin
staining may also be used for a clearer recognition of blood vessels as it identifies the
elastic fibers of blood vessels [22–25]. Inter-observer agreement in the diagnoses of LVI was
improved by adding ancillary D2-40 and elastin staining, regardless of the experience of
the pathologists [4]. However, the assessment of LVI by pathologists is inherently limited
owing to human errors. Examining large areas of tumors for LVI is time-consuming and
challenging because the foci of LVI can be small and subjective. Nonetheless, the presence
of LVI can have a marked impact on disease management, and the identification of a
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genuine single focus is sufficient to label a case as LVI(+). This automated identification of
possible LVI(−)indicating lesions may have significant clinical utility [19].

Digital pathology defines the creation of whole-slide images (WSI) from a histology
slide that can be viewed on a screen to form a diagnostic report [26]. Traditionally, histolog-
ical diagnosis and pathological staging by pathologists have been evaluated using glass
slides and microscopes [26]. Digital pathology is now increasingly being implemented in
laboratories around the world, and digital support management is seen as a key component
of health service planning aimed at improving efficiency, network operation, and qual-
ity [26]. There is great potential for using artificial intelligence (AI) to assist pathologists
and derive new biological insights into disease biology, even in areas imperceptible to
human observers [27]. However, the majority of AI medical devices that have received
FDA approval and have been introduced to the market thus far are primarily focused on
radiology. In contrast, only a limited number of devices have been approved for use in
the field of pathology [28]. Moreover, it is important to explore the potential of these AI
technologies as many pathology departments do not have enough pathologists.

AI algorithms that utilize convolutional neural networks (CNNs) for image analysis
have already shown significant promise in the pathological evaluation of various solid
tumors, including prostate cancer screening in prostate biopsies [29,30], leading to new
evaluations of clinical outcomes, providing [31,32] or predicting the presence of muta-
tions [33] or molecular subtypes [34] in H&E-stained sections. The usefulness of these
algorithms in identifying small regions of prognostic significance in digital WSI has pre-
viously been demonstrated in the context of identifying metastatic breast cancer within
lymph nodes [35,36]. In addition, the AI model can automatically find LVI in the WSI of
testicular cancer [19]. AI model can identify LVI foci better than a human expert (recall
score: 0.68 vs. 0.56).

In this study, we developed an algorithm to identify LVI foci related to the prognosis of
gastric cancer. The image classification and detection models were trained and validated at
both the patch and WSI levels. The ensemble approach was used to combine the predictions
of these sub-models to improve the overall performance of the model. The sub-models were
trained on a dataset of WSI of gastric cancer, with annotations of vascular and lymphatic
vascular invasion. A conceptual diagram of the LVI prediction model is shown in Figure 1.

 

Figure 1. Schematic of the LVI Net. Panel (A) portrays the preprocessing step and annotations, while
Panel (B) illustrates the workflow of the LVI Net. The patch image is input into both the classification
and detection models. Subsequently, the prediction outcomes from these models conducted weighted
averaging, resulting in the computation of the final confidence level (referred to as the ensemble
confidence). This ensemble confidence is then utilized to predict the ultimate diagnosis of LVI(+) or
LVI(−).
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2. Methods

2.1. Patients and Tumor Samples

Gastric adenocarcinoma slides were obtained from 88 patients who underwent endo-
scopic submucosal dissection, subtotal gastrectomy, or total gastrectomy at the Chonnam
National University Hwasun Hospital from 2018 to 2021. The availability of adequate tissue
and the histological diagnosis of gastric cancer were the inclusion criteria. One hundred
WSI were collected from these patient samples. Clinical information was collected from the
electronic medical records maintained in the electronic database of the hospital. This study
was approved by the Institutional Review Board (IRB) of the Chonnam National University
Hwasun Hospital (CNUHH-2021-197) and conducted in accordance with the Declaration
of Helsinki. Informed consent from patients was waived with IRB approval.

2.2. Datasets

The slides were scanned using a Leica-Aperio GT450 Scanner (Leica Biosystems) using
an 40× objective. Using QuPath 0.3.0 tools, the LVI(+) regions were annotated by two
board-certified pathologists. The examples of LVI(+) and LVI(−) are depicted in Figure 2.
We performed CD34 and D2-40 immunohistochemical staining on all slides to confirm
LVI(+) foci and to increase the accuracy of marking LVI(+) foci. For training, validation,
and test splitting, we randomly selected WSI with a 6:2:2 ratio. We patchified WSIs using
conventional digital pathology image analysis (Figure 1, preprocessing panel). LVI(+) foci
were generated based on LVI(+) annotations. The sliding windowing approach generated
LVI(−) patches from the remaining WSI. Without any overlap, we visited all WSI regions
that did not include LVI(+) foci. To handle class imbalances and remove redundancy in
LVI(−) patches, one-third was sampled from all LVI(−) patches. The LVI(+) and LVI(−)
patches were generated at 20×-level (0.5 μm/pixel) with 512 × 512 pixels.

 

Figure 2. Example patch images of LVI(+) and LVI(−). The left panel displays a patch associated
with LVI(+) classification, while the right panel represents LVI(−). LVI foci refer to tumors located
within identifiable white, rounded structures that align anatomically with blood vessels and lymph
nodes. A patch is classified as positive if it contains one or more regions indicating the presence of
LVI. The LVI areas are marked as red boxes.

To conduct external validation, we utilized a publicly accessible classification dataset
that contained patch images pertaining to lymphatic invasion [37]. Comprising 48 WSIs
sourced from 27 patients, this external validation dataset comprised 302 positive instances
and 671 negative instances. The patch images were captured at a 5×-level magnification
(2 μm/pixel) with dimensions of 512 × 512 pixels. Notably, this external validation dataset
was acquired using a distinct scanner (Leica-Aperio AT2) and originated from a different
hospital setting.
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2.3. Model Development

We fine-tuned the image classification and detection models to identify the LVI foci in a
given patch image. The following analysis was conducted using Python 3.8, Pytorch 1.13.1,
and a single A100 GPU.

2.4. Classification Models

We defined the classification problem as a binary classification. The ResNet 50 [38],
EfficeientNet B3 [39], and ConViT (Small) [40] models were fine-tuned on the LVI datasets.
The parameters of the selected image classification models ranged from 20 to 30 M. In an
empirical study, we found that large parameters converged into overfitting because of our
limited dataset volume. We utilized ImageNet [41] pretrained weights with entire layers
that can be updated by considering the modality gap between a conventional RGB and
digital pathology images. Image augmentations were applied, including affine transform,
elastic transform, blurring, brightness, and color jittering. Balanced weight-sampling
methods were applied during training to alleviate data imbalance. The image classification
models were trained using the Adam optimizer (learning rate: 1 × 10−4), cosine annealing
learning rate scheduler, and automated mixed precision.

2.5. Detection Models

The detection model was utilized to classify and localize the desired object in the entire
image simultaneously. A regression operation was applied to localize the object using a
bounding box. We utilized a one-stage object detection model called the YOLO model [42].
YOLO detection uses the concept of an anchor box. The anchor box has a predefined shape
and ratio of the bounding box that is utilized in the bounding box location prediction. For
example, human objects commonly exhibited square shapes with long heights and short
widths. In contrast, the dog objects had square shapes with short heights and log widths.
Anchor-based methods have been actively utilized to ease the prediction performance.
However, in terms of LVI, the shape of LVI was arbitrary; several LVI foci assumed a square
shape, and the others assumed a rectangular shape with variants of size. To compare the
impact of the anchor box assumption on LVI foci detection, we trained both an anchor box
assumption-based detection model (YOLO v3) [43] and detection model without the anchor
box assumption (YOLOX) [44]. To match the number of parameters, the medium size of
YOLOX was selected. The hyperparameters and data augmentations followed the recom-
mendations of each framework. The detection model could detect as many LVI(+) regions
as possible. Therefore, unlike a classification model, a single-patch image can have multiple
prediction confidence scores. To aggregate multiple confidence scores, we computed the
augmented confidence score of each patch image using the maximum operator.

2.6. Ensemble Model

The ensembled confidence score (Cens) is calculated as the weighted average of the
confidence score of the classification model (Ccl f ) and the augmented confidence score of
the detection model (Cdet), according to Equation (1):

Cens =

(
wcl f × Ccl f + wdet × Cdet

)
2

, (1)

where wcl f and wdet denote weighted factors of classification and detection models, re-
spectively. Considering the performances of each model, we empirically set the wcl f to
1.0 and wdet to 1.0, respectively. The ensembled confidence score was treated as a final
confidence score.

2.7. Evaluation Metrics

Generally, to evaluate the classification performance, the true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) are computed by comparing the
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prediction confidence that a model returns and the ground truth. Furthermore, the TP, FP,
FN, and TN, accuracy score, recall (sensitivity), precision (positive predicted value, PPV), F1
score, AUROC, AUPRC are obtained. The detection performance was evaluated based on
the intersection over union (IOU) of the bounding box predicted by the model and ground
truth bounding box. With the IOU threshold, we could determine whether the model
prediction was true or false. Using the precision and recall scores, we can summarize the
detection performance as an average precision (AP) score [45]. The AP50 score corresponded
to the AP score at the IOU threshold of 50%. The classification performance of the detection
model was computed based on the augmented confidence score that aggregated multiple
prediction outputs.

3. Results

3.1. Patient Characteristics

All the patients were LVI(+). The mean age of the patients was 69.6 years (±10.2), and
the majority were men (73.0%) (Table 1). Poorly differentiated tumors comprised 46.0% of
the cases. Despite being LVI(+), 10 patients (18.2%) did not exhibit LNM. The number of
lymph node involvement was 12.0 (±13.7). Perineural invasion was observed in 39 (61.9%)
patients. The clinicopathological features of the cases are summarized in Table 1.

Table 1. Baseline characteristics of the study population.

Variable Total (N = 63)

Age 1 69.6 (10.2)
Sex 2

Male 46 (73.0%)
Female 17 (27.0%)

Lauren Classification 2

Intestinal 36 (57.1%)
Diffuse 12 (19.0%)
Mixed 15 (23.8%)

Grade 2

Well differentiated 3 (4.8%)
Moderately differentiated 31 (49.2%)
Poorly differentiated 29 (46.0%)

T Staging 2

pT1a 2 (3.2%)
pT1b 17 (27.0%)
pT2 5 (7.9%)
pT3 13 (20.6%)
pT4a 23 (36.5%)
pT4b 3 (4.8%)

N Staging 2

pN0 10 (18.2%)
pN1 6 (10.9%)
pN2 13 (23.6%)
pN3a 8 (14.5%)
pN3b 18 (32.7%)

LN Involvement 1 12.0 (13.7)
Perineural Invasion 2

Present 39 (61.9%)
Not identified 24 (38.1%)

IHC Expression of C-erb B2 2

0 36 (57.1%)
1+ 11 (17.5%)
2+ 6 (9.5%)
3+ 7 (11.1%)
Not available 3 (4.8%)

LN, Lymph Node; IHC, Immunohistochemistry. 1 Mean (S.D.); 2 Number of items (Percentage).
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3.2. Patch-Level Analysis

With WSI-level splitting, each WSI was randomly allocated as a training, valid, or
test dataset. Each WSI image had a different prognosis for LVI. Therefore, the number of
LVI foci and patch images was heterogeneous. The dataset configurations are presented
in Table 2. The patch-level analysis was components: classification, detection, and an
ensemble of both classification and detection. Figure 3 illustrated the example outputs of
ground truths, classification focused areas, and detection outputs.

Table 2. Dataset configuration.

# of WSI
# of Positive

Per WSI 1
# of Negative

Per WSI 1

Train set 64 68.77 (90.04) 159.23 (87.54)
Valid set 16 28.50 (25.61) 161.12 (60.69)
Test set 20 105.3 (91.73) 201.4 (102.48)

WSI, Whole slide image; 1 Mean (S.D.).

Figure 3. The output of classification and detection model. The summarization of the classification
and detection results for the same patch image is presented. Panel (A) displays the original image,
while panels (B,C) showcase the classification and detection results, respectively. The heatmap
generated using Grad-CAM highlights the areas of focus by the classification model, with red areas
indicating greater attention. This visual representation indicates that the classification model exhibits
a relatively focused perspective. Conversely, the detection model predicts the object’s location by
enclosing it within a bounding box and provides the confidence level for each prediction. It is evident
that the detection model successfully identifies various dispersed regions within the image.

3.3. Patch-Level Analysis: Classification Models

The patch classification results were outstanding for all classification models without
any considerable performance gap. The ConViT model showed the best performance in
terms of both the area under the receiver operating characteristics (AUROC) and area under
the precision-recall curve (AUPRC) in the classification models (AUROC: 0.9796; AUPRC:
0.9648). The accuracy, precision, recall score, and F1 score were computed with a confidence
score threshold of 0.5.

3.4. Patch-Level Analysis: Detection Models

In detection, the YOLOX model outperformed the YOLO v3 model in both detection
(AP50) and classification metrics. The AP50 of YOLOX and YOLO v3 were 0.55 and 0.66,
respectively. The AUROC and AUPRC values of YOLOX were higher than those for YOLO
v3 (0.9666 vs. 0.9702 for the AUROC and 0.9423 vs. 0.9302 for the AUPRC). However, the
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AUROC and AUPRC of YOLOX computed based on the augmented patch-level confidence
score were slightly lower (AUROC: −0.0094; AUPRC: −0.0225) than those of the ConViT
classification model. In the detection models, the accuracy, precision, recall score, and F1
score were computed with an augmented patch-level confidence score threshold of 0.7.
The threshold was adjusted to be stricter than the value utilized in the image classification
model to mitigate the heavy false positives that could occur during detection.

3.5. Patch-Level Analysis: Ensemble Model

Notably, the YOLOX model exhibited an outstanding F1 score (+0.0039 points com-
pared with that of ConViT) in all benchmark models. Considering the AUROC, AUPRC,
and F1 scores, we attempted to mix the best-performing models in an ensemble approach.
With simple averaging of the patch-level confidence scores, the ensemble model showed
the best AUROC, AUPRC, and F1 scores of 0.9880, 0.9769, and 0.9280, respectively. The
performances are summarized in Table 3.

Table 3. Performance of trained model using the patch images.

Method Model AUROC AUPRC Accuracy F1 Score

Classification

ResNet50 0.9762
(0.9726–0.9798)

0.9593
(0.9447–0.9739)

0.9319
(0.9254–0.9384)

0.8992
(0.8895–0.9089)

EfficientNetB3 0.9731
(0.9693–0.9769)

0.9551
(0.935–0.9752)

0.9281
(0.9217–0.9345)

0.8929
(0.8827–0.9031)

ConViT 0.9796
(0.9765–0.9827)

0.9648
(0.9592–0.9704)

0.9348
(0.9288–0.9408)

0.9025
(0.8935–0.9115)

Detection
YOLOv3 0.9666

(0.9623–0.9709)
0.9302

(0.9203–0.9401)
0.927

(0.9196–0.9344)
0.8977

(0.8868–0.9086)

YOLOX 0.9702
(0.9648–0.9756)

0.9423
(0.9323–0.9523)

0.9353
(0.9278–0.9428)

0.9064
(0.8962–0.9166)

Ensemble 0.988
(0.9852–0.9908)

0.9769
(0.9717–0.9821)

0.9514
(0.9459–0.9569)

0.928
(0.9198–0.9362)

Mean (95% confidence interval).

3.6. WSI-Level Analysis

The WSI consists of multiple patch images, allowing for aggregation of these patches
at the WSI level. The conceptual diagram of WSI-level analysis is shown in Figure 4. Each
patch prediction result was aggregated at the WSI-level, and the WSI-level prediction result
was aggregated once more in the entire test dataset. The WSI-level prediction performance
is summarized in Table 4. The performance was consistent with the results of the patch-
level prediction (Table 3). We adjusted the threshold such that the positive and negative
could be determined as the medium points (0.5); however, this threshold could be rescaled
depending on the interests of the researcher. In our dataset, WSIs generally included
multiple LVI regions. Therefore, we concluded that the benefit of reducing false positives
was more significant. If the LVI region is small, such as in patients with early-stage cancer,
a strategy can be adopted to reduce false negatives by lowering the threshold.

Table 4. Performance of trained model using the whole slide images.

Method
True Negative

Rate 1
False Positive

Rate 1
False Negative

Rate 1
True Positive

Rate 1

ConViT 96.63 (0.03) 3.37 (0.03) 11.88 (0.09) 88.12 (0.09)
YOLOX 94.99 (0.03) 5.01 (0.03) 10.88 (0.12) 89.12 (0.12)

Ensemble 97.56 (0.02) 2.44 (0.02) 10.21 (0.07) 89.79 (0.07)
1 Mean (S.D.).
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Figure 4. The example WSI-level analysis. A WSI-level analysis can be visualized by combining
the results of patch-level analysis. Additionally, it can be illustrated as a WSI-level heatmap, which
utilizes the spatial information of the patch images. In the heatmap representation, red points indicate
regions that exhibit high confidence in being classified as LVI(+) cases, whereas blue points indicate
regions with high confidence in being classified as LVI(−) cases. The image on the right showcases a
magnified view of the area identified as LVI(+), presenting the respective judgments made by both
the classification model and the detection model.

3.7. External Validation

To measure the efficacy of the ensemble approach, we conducted an external validation
using a preexisting dataset. Employing this classification dataset facilitated the application
of our model to ascertain positive or negative LVIs [37]. The ensemble model demonstrated
superior performance compared to both classification and object detection models (Table 5).
Specifically, the AUROC of the ensemble model exhibited improvements of 0.025 (2.8%) and
0.052 (5.9%) in contrast to the classification and detection models, respectively. Furthermore,
the AUPRC of the ensemble model saw enhancements of 0.044 (5.1%) and 0.081 (9.8%),
respectively. Analogous to the internal validation dataset, the ensemble model exhibited
robustness when compared to the classification and detection-only models.

Table 5. Performance of trained model using the external validation dataset.

Method Model AUROC AUPRC Accuracy F1 Score

Classification ConViT 0.9184
(0.8975–0.9393)

0.869
(0.8338–0.9041)

0.8674
(0.8465–0.8883)

0.7896
(0.7543–0.8248)

Detection YOLOX 0.8915
(0.8638–0.9192)

0.8319
(0.7876–0.8763)

0.8592
(0.8364–0.882)

0.7934
(0.7577–0.8291)

Ensemble 0.9438
(0.9258–0.9619)

0.9132
(0.8875–0.939)

0.8983
(0.879–0.9175)

0.8358
(0.8035–0.8681)

Mean (95% confidence interval).

4. Discussion

In this study, we present a deep-learning model for predicting gastric LVI from the
patch images from WSI. Two models were developed: image classification and detec-
tion. The ConViT (classification) and YOLOX (detection) models showed comparable
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performances. The final ensemble model showed outstanding performance in predicting
gastric LVI.

In a previous study, Ghosh et al. demonstrated that a deep-learning model could
predict LVI foci in testicular LVI [36]. They applied the semantic segmentation-based model
(DeeplabV3) [46] to predict the mask of LVI foci; however, the number of LVI(+) foci to train
and evaluate a semantic segmentation model were small. Therefore, the model performance
can be further improved. With few samples of LVI foci included in the test dataset (34 foci),
it could be difficult to determine the generalized performance of LVI prediction.

One of the primary tasks of digital pathology is the detection of mitosis, which often
employs a two-stage framework comprising object detection and classification [47]. This
approach is preferred due to the small size of mitotic objects, which makes the model
predictions highly susceptible to false positives and false negatives. Initially, candidate
regions are identified through object detection, and subsequently refined using classification
techniques. While the sequential application of this two-stage framework may not pose
significant challenges in studies based on limited benchmark datasets, it can prove time-
consuming in typical medical scenarios. Therefore, to address this issue, we propose an
ensemble approach that combines the advantages of the two-stage model while enabling
parallel processing.

In our experimental setting, the classification model ConViT exhibited an outstanding
performance among the candidate classification models. The ConViT model attempted to
fuse the outstanding performance of transformer-based architectures with the advantages
of CNN. The ability of the transformer to focus on global information and the ability of
CNNs to focus on local patterns boosted the prediction performance. The LVI foci had het-
erogeneous shape and size characteristics. In addition, it is essential to determine whether
the LVI is located in the lymph node site or blood vessels. The most common false positives
occurred in detachment artifacts owing to the failure to interpret peripheral contexts.

The detection model also showed comparable performance in detecting LVI foci. The
anchor-free assumption-based model YOLOX was more appropriate because of the varying
sizes and shapes of the LVI foci. The YOLOX model exhibited a comparable performance
with regard to the AUROC and AUPRC than the ConViT model. However, it exhibited
a slightly better performance with regard to the F1 score. The ensemble model exhibited
improved AUROC, AUPRC, and F1 scores compared with the classification and detection-
only model (improved gain: 0.0084, AUROC; 0.012, AUPRC; 0.022, F1 score). Additionally,
the improvement of the ensemble model was also found in the external validation (AUROC:
2.8%; AUPRC: 5.1%).

Our model predicted LVI foci in WSI; in other words, it identified whether LVI foci
existed. However, LVI is essentially a histological finding that suggests the possibility of
metastasis to the lymph nodes. Previous studies have reported models to predict LNM
from pathological slide images of solid tumors, such as breast, colorectal, bladder, and
prostate cancers. Although LNM is one of the most important prognostic factors, a model
for predicting LNM in gastric cancer has not yet been reported. Wang et al. reported a
model for predicting the prognosis of gastric cancer using the histopathology of resected
lymph nodes; however, this was not a model for predicting metastasis to the lymph nodes.
This algorithm, which detects LVI(+) foci, is expected to significantly help pathologists
at the actual reading site, However, predicting LVI(+) in the clinical field is not sufficient
to predict the prognosis of a patient. It is necessary to conduct additional studies on
the association of the LVI(+) foci identified by this algorithm with the number of lymph
node metastases and patient survival prognosis, and thus, further investigation into this
is anticipated.

In addition, semi-supervised and active learning pipelines for generating LVI focal
labeling more easily need to be further developed. Our YOLOX model can predict the LVI
foci using a bounding box. Therefore, we can assume that the prediction results of YOLOX
are newly annotated LVI foci in the other datasets. With the supervision of human experts
who reject or accept newly annotated LVI foci (active learning), the labeled dataset expands
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rapidly. Additionally, in this study, we hypothesized that detection would be sufficient
to predict LVI foci. However, a previous study utilized semantic-segmentation-based
modeling for testicular LVI foci detection. LVI foci share similar patterns despite differences
in organs, such as tumors surrounded by blood vessels or lymph nodes. Therefore, in the
future, we aim to expand our work to compare semantic segmentation, object detection,
and classification models to predict the LVI foci.

Our study has several limitations. First, a number of LVI(+) foci imbalances may exist
for each slide. This data imbalance problem may cause distortion in the learning process.
We applied WSI-level data splitting to resolve the LVI(+) foci imbalance problem. The best
option for data splitting involves splitting the patient-level data. However, we encountered
varying LVI(+) foci depending on the patient status. Furthermore, of the multiple sections
of slides that may be present in a single gastric cancer tissue, we selected no more than five
slides from the same patient. Therefore, patient-level data splitting can be coupled with
a heavy class imbalance that is harmful to supervised learning procedures. To mitigate
this issue, we alternately selected WSI-level splitting. Second, LVI(+) foci always contain
the possibility of false positives or negatives. To reduce false-positive or false-negative
foci marks at the annotation step, we confirmed CD34 and D2-40 immunohistochemical
staining on all slides. In addition, LVI(+) confirmation was performed by two pathologists.
However, annotation marking for foci may be missed because LVI(+) is a relatively small
lesion within the WSI. This results in missed marking annotations for some LVI(+) foci
and marked LVI(+) foci for some artifacts. Similarly, when the trained algorithmic model
predicts LVI(+) positive foci, it may be a false positive. To discriminate false positives, all
areas predicted to be LVI(+) positive foci were individually checked by two pathologists.
Through this process, we were able to improve the accuracy of the model in predicting
LVI(+) foci. Spatial heterogeneity is a crucial factor that must be taken into account in
studies on artificial intelligence learning in digital pathology. Stomach cancer is specifically
recognized as a type of cancerous tissue that exhibits significant and pronounced spatial
heterogeneity within the tissue. Nevertheless, spatial heterogeneity was not a significant
factor that needed to be taken into account for this project. LVI is histopathologically
defined by the presence of tumor emboli within lymphatic/vascular channels and exhibits
morphological features that are rather homogeneous. For instance, the presence of LVI is
not exclusive to stomach cancer but is also observed in various other forms of cancer. These
findings indicate that the scope of this research extends beyond stomach cancer and has
potential for further application to other types of cancer.

5. Conclusions

This research presents an ensemble deep-learning model for detecting vascular and
lymphatic vascular invasion in WSI of histopathology of gastric cancer. The ensemble deep-
learning model has been demonstrated as more robust and accurate than single models,
and it can be used as a valuable tool for pathologists in diagnosing gastric cancer and may
help improve the accuracy of diagnosis and prognosis of the disease. This approach can
be considered an alternative to traditional methods and as a step toward computer-aided
diagnotic systems in histopathology.
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Simple Summary: The N staging system for Nasopharyngeal Carcinoma (NPC) is constantly im-
proving for better survival risk stratification with accumulating clinical evidence. Discovering new
prognostic factors often depends on clinical observations, which often lack comprehensiveness and
precision. This study aimed to propose new quantitative spatial characterizations of LN tumor and
demonstrate their feasibility of improving N stage. Independent anatomical prognostic factors were
discovered and achieved superior risk stratification performance when combined with N stage. This
quantitative approach could be applied to other cancer sites to discover new prognostic or predictive
factors and ultimately benefit precision medicine.

Abstract: This study aims to investigate the feasibility of improving the prognosis stratification of
the N staging system of Nasopharyngeal Carcinoma (NPC) from quantitative spatial characteriza-
tions of metastatic lymph node (LN) for NPC in a multi-institutional setting. A total of 194 and
284 NPC patients were included from two local hospitals as the discovery and validation cohort.
Spatial relationships between LN and the surrounding organs were quantified by both distance and
angle histograms, followed by principal component analysis. Independent prognostic factors were
identified and combined with the N stage into a new prognostic index by univariate and multivariate
Cox regressions on disease-free survival (DFS). The new three-class risk stratification based on the
constructed prognostic index demonstrated superior cross-institutional performance in DFS. The
hazard ratios of the high-risk to low-risk group were 9.07 (p < 0.001) and 4.02 (p < 0.001) on training
and validation, respectively, compared with 5.19 (p < 0.001) and 1.82 (p = 0.171) of N3 to N1. Our
spatial characterizations of lymph node tumor anatomy improved the existing N-stage in NPC
prognosis. Our quantitative approach may facilitate the discovery of new anatomical characteristics
to improve patient staging in other diseases.

Keywords: nasopharyngeal carcinoma; N stage; lymph node tumor; tumor geometry

1. Introduction

Nasopharyngeal carcinoma (NPC) has a high prevalence in southeast Asia [1,2].
With the development of the intensity modulated radiation therapy (IMRT) technique,
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better survival patterns can be achieved for patients with early and late stage NPC, espe-
cially local and regional tumor control [3,4]. However, distant metastasis remained the
primary failure pattern with a high occurrence rate in five years for patients with advanced
lymph node (LN) metastasis [5,6]. In addition, nodal metastasis is associated with poor
prognosis in other head-and-neck cancer (HNC) subtypes, such as paranasal squamous
cell carcinoma [7]. Thus, effective prognosis stratification, especially for the LN tumor, is
necessary to guide more accurate clinical decision-making for personalized treatments [8,9].

N stage, which belongs to the tumor–node–metastasis (TNM) staging system jointly
proposed by the American Joint Committee on Cancer (AJCC) and the Union for Inter-
national Cancer Control (UICC), is one of the most robust and widely used LN classifi-
cations [10]. The current edition (8th) for NPC is based on anatomical characterization,
including size, laterality, and location. However, N stage has been suggested to be less
comprehensive and precise due to the qualitative definitions [11].

Over the past decades, various new LN anatomical descriptors have been proposed
to improve the current N staging system [12]. For instance, parotid lymph node (PLN)
involvement was found to be associated with a poor prognosis in distant metastasis, and
an upgrade to the N3 classification was recommended [13,14]. Besides, the current N-
staging system categorizes retropharyngeal lymph node (RLN) involvement (≤6 cm) as N1
disease. However, Huang et al. suggested an upgrade of patients with bilateral retropharyn-
geal lymph node involvement to N2 due to the distinctive prognostic performance within
N1 [15]. Other anatomical characteristics of LN, such as extra-nodal extension [16–18]
and positive LN numbers [11,19] have been proposed to improve the existing N stage
classification system for NPC.

Despite the tremendous efforts made, the development of a more accurate N staging
system was still hindered by the rather complex LN anatomical environment. In the
era of IMRT, detailed tumor and normal tissue delineations have become the standard
procedure for treatment planning with the increasing availability of advanced imaging
techniques such as MRI and PET [20–22]. Quantitative spatial characterization of metastatic
LN may provide more accurate descriptions of its anatomy, enabling the holistic discovery
of anatomical prognostic factors by a data-driven approach.

Therefore, this study aims to investigate the feasibility of improving the prognosis
stratification of N staging system from quantitative spatial characterizations of metastatic
LN. We designed two types of geometric histograms based on the distances and angles
of LN tumor volume to surrounding normal tissues. Independent prognostic factors
were extracted by principal component analysis and combined into one prognostic index.
A new risk stratification from the combined index was proposed and evaluated on multiple
survival endpoints, including disease-free survival (DFS), overall survival (OS), relapse-free
survival (RFS) and distant metastasis-free survival (DMFS) both internally and externally.
Our methodology may promote accelerated improvement of the LN classification for NPC
and can be potentially generalized to other cancer sites.

2. Materials and Methods

Two cohorts of biopsy-proven NPC patients receiving chemoradiotherapy were ret-
rospectively recruited from Hong Kong Queen Mary Hospital (QMH) between 2013 and
2019 and Hong Kong Queen Elizabeth Hospital (QEH) between 2012 and 2015, respectively.
Informed consents from patients were waived due to the retrospective nature of this study.
The total number of included patients was 194 from QMH and 284 from QEH after exclud-
ing patients with (1) co-existing cancer or distance metastasis before treatment, (2) radiation
therapy only without concurrent chemoradiotherapy, (3) patients in stage N0 who do
not have visible tumor in the lymph node region and (4) incomplete clinical record and
missing segmentations. Patients from the QMH cohort were used for deriving independent
prognostic factors and development of prognostic index, while the QEH cohort was used
solely for external validation.
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Clinical factors, including age, sex, T stage, N stage, M stage, overall stage, chemother-
apy strategy, and survival information were collected from patient folders. The time of
OS, RFS, DMFS, and DFS is defined from the date of treatment to the earliest occurrence
of death from any cause, local or regional tumor recurrence, distant metastasis, and the
combination of above all, respectively. The TNM stage was administered according to the
7th edition of the AJCC protocol for the QEH cohort and switched to the 8th edition after
2017 for the QMH cohort. Treatment planning structure sets were retrieved from the Picture
Archiving and Communication System (PACs) in Digital Imaging and Communications in
Medicine (DICOM) format. The gross tumor volume in LN (GTVn) was contoured from
contrast-enhanced CT fused with MRI in QEH and an extra imaging modality of PET/CT
in QMH by oncologists with at least five years of experience.

Distance and angle histograms were designed to describe the spatial configuration
of GTVn relative to the surrounding organs at risk (OARs). OARs that were consistently
delineated across the two institutions, including SpinalCord, Parotids (combined Left and
Right Parotid), Mandible, Larynx, and Brainstem, were included in this study. Overlap
volume histogram (OVH) was first proposed by Kazhdan et al. for quantifying patient
geometries [23] and successfully applied by Wu et al. to predict the optimal dose-volume
histogram for knowledge-based treatment planning [24]. It summarizes the distances
between OAR and the target volume by recording the fractional OAR volume as a function
of the maximum distance from the PTV surface:

OVH(d) =
counti(r(vi

OAR, SGTVn))

VOAR
, (1)

where r(vi
OAR, SGTVn) is the surface distance defined as the minimum Euclidean distance

from OAR voxel vi
OAR to all the LN tumor surface points vk

GTVn:

r(vi
OAR, SGTVn) = min

k
{‖vi

OAR − vk
GTVn‖|vk

GTVn ∈ SGTVn}. (2)

The surface distance is positive for an OAR voxel outside GTVn and negative when
inside. We used the signed Euclidean distance transform algorithm [25] provided by the
Python package SimpleITK (version 2.1.1) [26] to calculate the surface distance map and
acquired the OVH as the cumulative histogram within the OAR mask. An example GTVn
surface distance map is visualized by the heat map in Figure 1c where the left parotid
(Parotid_L) is drawn as a red contour.

Spatial configuration of the lymph node tumor could not be precisely determined
by distance alone due to the complex organ structures in the head-and-neck region. We
designed the projection overlap volume (POV) histogram to quantify the angular relation-
ships between GTVn and the surrounding OARs. POV is defined as the relative OAR
volume that overlaps with the parallel projection of GTVn:

POV(α) =
∑i χαi

V
, χαi = f (x) =

{
1, if minj θij < α < maxj θij

0, otherwise
, (3)

where V is the voxel volume of the OAR, and θij is the angle from GTVn surface point vj
to OAR voxel point vi on the axial plane. POV histogram is calculated by summing up
the masked OAR sinogram along the angle direction. The masked OAR sinogram is the
modified radon transform of the OAR mask volume around the axial axis; only the voxels
located before GTVn are counted for each OAR mask volume projection. One Parotid_L
masked sinogram is shown in Figure 1d.
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Figure 1. Distance and angle maps based on example GTVn and Parotid_L structures. (a) One axial
slice of the structure masks (white: GTVn, red: Parotid_L) with the overlap region highlighted by
blue. (b) The rendered three-dimensional structures. (c) One axial slice of the GTVn distance map
with annotated contour lines and the Parotid_L contour. (d) One slice of the Parotid_L angle map
masked by the GTVn sinogram edges (white contours).

Dimensions of the OVH and POV histograms were further reduced by principal
component analysis (PCA), where the components that explained the greatest variance
across patients were highlighted. This study included the smallest number of principal
components (PCs) of OVH and POV that explained 75% of the cumulative variance for each
OAR. The coefficients of the principal components (PCs) were extracted as the potential
prognostic factors.

Independent prognostic factors were identified from the selected PCs by univariate
Cox regression on DFS followed by the covariate independency test with N stage through
multivariate Cox regression. The final prognostic index was built by combining the inde-
pendent prognostic factors with N stage through multivariate Cox regression and evaluated
by concordance index (C-index). The confidence interval and p-values for baseline N stage
comparison were determined by 1000-iteration bootstrapping. Risk stratification perfor-
mance was assessed by Kaplan–Meier (KM) analysis, where patients were equally stratified
into high (G1), median (G2), and low (G3) risk groups based on the prognostic index in the
discovery cohort. The stratification thresholds were applied to the testing cohort as well for
the three-grade stratification. Hazard ratios (HRs) with 95% confidence interval (95CI) and
the log-rank p-values between risk groups were acquired from univariate Cox regression.
All Cox regressions and KM analysis were implemented by the Python package lifelines
(version 0.27.0) [27], and the p-value of 0.05 was considered significant.

3. Results

3.1. Baseline Patient Characteristics

Distributions of the baseline patient characteristics for the two cohorts were listed
in Table 1. Consistent distributions of age, sex, overall stage, chemotherapy strategy,
and World Health Organization (WHO) histology were found between the discovery
and validation cohort. The T stage and N stage were significantly different (p ≤ 0.05)
between the two institutions. The median follow-up time of the discovery cohort is 2.5
years and 4.6 years for the validation cohort. Of the 194 discovery patients within the
follow-up period, 22 developed local recurrence, 17 with regional recurrence, 29 with
distant metastases, and 25 died. The three-year DFS, OS, RFS, and DMFS rates were 72.1%,
90.0%, 82.4%, and 82.4%, respectively. In the validation cohort, 34, 25, 44, and 40 patients of
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284 developed local recurrence, regional recurrence, distant metastasis, and death, and the
five-year DFS, OS, RFS, DMFS are 74.3%, 94.0%, 85.0%, and 86.2%.

Table 1. Baseline patient characteristics of the discovery and validation cohort.

Discovery Cohort Validation Cohort p-Value

Age
Mean 53.39 52.16 0.249

Sex
Female 41 70 0.667
Male 153 214

N stage
N1 62 17 0.035
N2 93 228
N3 39 39

Chemotherapy
CCRT 33 178 0.330
CCRT + ACT 78 61
CCRT + ICT 83 43

WHO histology
Type 2 27 74 0.142
Type 3 167 210

Note: Staging was performed according to the 7th edition of the AJCC protocol for the validation cohort
and switched to the 8th edition after 2017 for the discovery cohort. Abbreviations: CCRT, concurrent chemo-
radiotherapy; ACT, adjuvant chemotherapy; ICT, induction chemotherapy; WHO, World Health Organization.

3.2. Prognostic LN Spatial Factors

Thirty-one PCs were extracted from the OVH and POV histograms in total, including
four OVH PC and three POV PC of SpinalCord, five OVH PC and three POV PC of Parotids,
two OVH PC and two POV PC of Brainstem, three OVH OC and three POV PC of Larynx,
and four OVH PC and two POV OC of Mandible. After univariate and multivariate Cox
regressions, two spatial factors including the first PC of spinal cord OVH (OVHSC,PC1) and
the third PC of spinal cord POV (POVSC,PC3) were selected as independently prognostic to
DFS. Between the two spatial factors, OVHSC,PC1 demonstrated a higher discriminability
to DFS with C-index of 0.66 at discovery and 0.56 at external validation, while 0.57 at
discovery and 0.54 at external validation for POVSC,PC3.

As listed in Table 2, POVSC,PC3 contributed the highest positive hazard (HR = 3.35,
95CI: 1.41–7.99), followed by the N stage (HR = 2.26, 95CI: 1.46–3.49). On the other
hand, OVHSC,PC1 had the negative impact of survival hazard (HR = 0.63, 95CI: 0.48–0.83).
Figure 2a presents the distributions of the two spatial factors of the 3-year disease and
non-disease progressed patients at both discovery and validation. Patients who developed
disease progression within three years had significantly lower OVHSC,PC1 (mean: −0.80
vs. −0.07, p = 0.007) and higher POVSC,PC3 (mean: 0.082 vs. 0.057, p = 0.012) at discovery,
but smaller differences were found on the validation cohort (OVHSC,PC1: 0.46 vs. 0.74,
p = 0.032; POVSC,PC3: −0.18 vs. −0.25, p = 0.089). Moreover, the spinal cord OVH appeared
to be overall larger in the validation but smaller for the POV. After binarizing the two
spatial factors by the median values in the discovery cohort, more patients in the validation
cohort fell into the low-risk groups, as indicated by Figure 2b. The odds ratios were 0.30
(p = 0.006) for OVHSC,PC1 and 2.21 (p = 0.052) for POVSC,PC3 in the discovery cohort. They
were less significant for OVHSC,PC1 (odds ratio = 0.60, p = 0.275) but more significant for
POVSC,PC3 (odds ratio = 2.83, p = 0.004) in the validation cohort.
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Figure 2. Continuous and binarized spatial factor distributions and N stage distributions for 3-year
disease progressed and non-disease progressed patients in the discovery and validation cohort.
(a) Box plots of continuous spatial factor distributions. Patients with disease progression within three
years had lower mean OVH principle values and higher mean POV principle values at both discovery
and validation. (b) Mosaic plots of the binarized spatial factor and N stage distributions of patients
with and without 3-year disease progression.

Table 2. Hazard ratios and p-values of the selected spatial factors and N stage from multivariate Cox
regression on disease-free survival.

Covariant HR (95CI) p-Value

OVHSC,PC1 0.63 (0.48–0.83) <0.001
POVSC,PC3 3.35 (1.40–7.99) 0.006
N stage 2.26 (1.46–3.49) <0.001

3.3. Combined Prognostic Index

The combined prognostic index had better discriminability than N stage on all the
survival endpoints but showed statistical significance mainly in DFS and RFS, as reported
in Table 3. C-index in DFS increased from 0.654 (training) and 0.568 (external validation)
to 0.722 (training) and 0.603 (external validation) when combining the two new spatial
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factors with N stage. Such improvement was significant in training (p-value = 0.020) while
much less in external validation (0.086). On the other hand, the training and validation
improvements were both significant in RFS with C-index reaching 0.723 (p-value = 0.020)
and 0.603 (p-value = 0.019), respectively.

Table 3. Concordance index of the proposed geometric prognostic index and N stage in the training
and validation cohort.

Survival Endpoint

Training Cohort Validation Cohort

Prognostic Index (95CI) N Stage (95CI)
p-

Value
Prognostic Index (95CI) N Stage (95CI)

p-
Value

DFS 0.72 (0.65–0.79) 0.65 (0.57–0.73) 0.020 0.60 (0.54–0.67) 0.57 (0.52–0.62) 0.086
OS 0.75 (0.63–0.84) 0.72 (0.64–0.80) 0.245 0.60 (0.48–0.71) 0.58 (0.50–0.67) 0.395
RFS 0.72 (0.62–0.82) 0.64 (0.54–0.73) 0.020 0.60 (0.52–0.69) 0.53 (0.47–0.60) 0.019

DMFS 0.72 (0.63–0.81) 0.65 (0.54–0.76) 0.062 0.57 (0.47–0.67) 0.57 (0.50–0.65) 0.536

Better risk stratifications were achieved by the combined prognostic index in DFS and
DMFS than N stage itself, as shown by the KM curves in Figure 3. Table 4 reports the hazard
ratios and the corresponding p-values between different risk groups as well as the three-
year survival rates in DFS, OS, RFS, and DMFS. On the discovery cohort, the DFS survivals
of the three new risk groups were statistically different (p ≤ 0.05) whereas much lower
statistical significance was found between the N1 and N2 groups (p = 0.139). Higher hazard
ratios were observed between G2 (4.49) and G3 (9.07) to G1 compared to the N stage (N1 vs.
N2: 1.83, N1 vs. N3: 5.19). However, the HR was less between G3 to G2 (1.913) compared
to the one between N3 to N2 (2.988). A similar trend was found in DMFS where G2 (4.11)
and G3 (10.41) were better separated from G1 but worse between G2 and G3 (2.26). In the
validation cohort, the HRs between G2 (DFS: 1.71, p = 0.021; DMFS: 1.72, p = 0.101) and G3
(DFS: 4.02, p < 0.01; DMFS: 2.93, p = 0.014) to G1 also increased significantly compared to
that between N2 (DFS: 0.772, p = 0.518; DMFS: 0.552, p = 0.271) and N3 to N1 (DFS: 1.821,
p = 0.171; DMFS: 1.876, p = 0.216) in both DFS and DMFS. Similarly, a less HR was found
between G2 and G3 (DFS: 2.44, p = 0.006; DMFS: 1.74, p = 0.219) than between N2 and N3
(DFS: 2.66, p ≤ 0.001; DMFS: 3.17, p = 0.001).

The remaining survival endpoints showed heterogeneous patterns under the new risk
stratification (Table 4). Significant HR improvements were observed in OS, but marginal
in RFS for the discovery cohort. On the other hand, RFS showed significantly higher
stratification performance in the validation cohort, but no improvement in OS was observed.
Moreover, the validation cohort demonstrated higher 3-year survival rates on G1 and lower
on G2 for RFS and DMFS, whereas marginal improvement of 3-year survival rates was
found in the discovery cohort.

147



Cancers 2023, 15, 230

Figure 3. Kaplan–Meier curves of the low-(G1), median-(G2), and high-risk (G3) patient groups
based on the new spatial index and the three N stages on (a) disease-free survival and (b) distant
metastasis-free survival. Each plot also contains the hazard ratio (HR) and the corresponding p-value
between each two groups.
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Table 4. Risk stratification performance of the proposed risk groups and N stage in multiple survival
endpoints and discovery and validation cohort.

Survival Endpoint
Proposed Risk Stratification N Stage

Group HR p-Value 3y SR Group HR p-Value 3y SR

Discovery cohort
DFS G1 — — 89.6% N1 — — 87.9%

G2 4.49 0.007 74.6% N2 1.83 0.139 72.6%
G3 9.07 <0.001 52.1% N3 5.19 <0.001 45.6%

OS G1 — — 97.3% N1 — — 100.0%
G2 7.66 0.055 92.7% N2 3.33 0.115 89.4%
G3 13.98 0.011 79.7% N3 11.62 0.002 72.6%

RFS G1 — — 89.6% N1 — — 93.0%
G2 2.23 0.181 85.3% N2 2.64 0.079 79.5%
G3 4.76 0.005 72.2% N3 4.59 0.014 74.9%

DMFS G1 — — 94.0% N1 — — 92.2%
G2 4.11 0.074 86.8% N2 1.52 0.428 84.5%
G3 10.41 0.002 66.5% N3 4.51 0.006 59.8%

Validation cohort r
DFS G1 — — 81.2% N1 — — 76.5%

G2 1.71 0.021 67.2% N2 0.77 0.518 77.8%
G3 4.02 <0.001 45.5% N3 1.82 0.171 52.7%

OS G1 — — 95.2% N1 — — 87.8%
G2 1.36 0.384 93.5% N2 1.56 0.548 95.3%
G3 2.28 0.076 85.9% N3 2.57 0.223 89.0%

RFS G1 — — 88.7% N1 — — 87.8%
G2 1.46 0.219 82.9% N2 0.84 0.736 85.9%
G3 3.69 0.001 62.7% N3 1.20 0.764 78.2%

DMFS G1 — — 89.3% N1 — — 82.4%
G2 1.72 0.101 82.0% N2 0.55 0.271 88.7%
G3 2.93 0.014 76.2% N3 1.88 0.276 73.5%

Note: HR and p-value were relative to the low-risk group (G1) or N1. Abbreviations: HR, hazard ratio; 3y SR:
3-year survival rate; DFS, disease-free survival; OS, overall survival; RFS, relapse-free survival; DMFS, distant
metastasis-free survival; 95CI: 95% confidence interval.

3.4. Representative Cases

To further explain the contribution of the two anatomical factors in better identifying
the risk of disease progression, we selected two representative cases from the discovery
cohort with the same N stage but distinct risks based on the spatial index. The high-risk pa-
tient was classified as G1 and the low-risk one as G3, both having the same N stage (N2) and
chemotherapy strategy (CCRT + ACT). The high-risk patient developed distant metastases
at 32.3 months, while the low-risk patient showed no signs of disease progression for at
least 34.3 months. Figure 4a presents the 2D axial masks and the 3D volumes of GTVn and
three OARs for the high and low-risk patient. Anatomically, both patients had metastatic
retropharyngeal LN, but a significantly larger extent of the right cervical LN tumor was
observed in the high-risk patient. Meanwhile, distinct patterns of the spinal OVH and
POV curves were found, as drawn in Figure 4b, where the selected PC vectors were also
included. The OVH curve of the high-risk patient was significantly higher than that of
the low-risk patient with the largest overlap volume difference emphasized at around the
global minimum (~75 mm) of the first PC vector. The POV at the first local maximum
(~25 degrees) of the PC vector was much higher in the high-risk patient, exceeding the
higher POV of the low-risk patient at the second local maximum (~125 degrees).
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Figure 4. Quantitative anatomical characterizations of the high-risk and low-risk patient. (a) The
axial slice masks and rendered 3D volumes of GTVn (lymph node tumor), Parotid_L, Parotid_R,
and SpinalCord structures. (b) The SpinalCord overlap volume histogram (POV) and projection
overlap volume (POV) of the two patients and the corresponding selected principal component (PC)
vector. Significant differences in lymph node anatomy were captured by the large variations in the
histograms and highlighted by the PCs.

4. Discussion

This study demonstrated the feasibility of discovering new prognostic factors from
quantitative spatial characterization of LN tumor for better LN risk stratification with high
cross-site generalizability. Two histograms precisely characterized the LN tumor anatomy
by distances (OVH) and angles (POV). PCA effectively reduced the high-dimensional
histograms into several informative and independent anatomical factors, and two final
independent prognostic factors were discovered by Cox regressions in DFS. The prognostic
index that combines the independent prognostic spatial factors and the N stage achieved
better new three-level risk stratifications than the N stage itself in DFS and DMFS at both
discovery and external validation.

Only the spinal cord spatial factor OVHSC,PC1 and POVSC,PC3 were identified as the
independent prognostic factors to DFS. OVHSC,PC1 highlights the overlap of the lower
spinal cord with the expansion of isotropic LN tumor by approximately 75 mm (Figure 4b),
indicating a smaller axial expansion of LN. The PC vector of POVSC,PC3 has two peaks at
around 25 and 125 degrees and reaches local minimums at 0 and 180 degrees (Figure 4b).
Higher projection overlaps at the peak angles indicate more volume of LN tumor in the
anterior direction of the spinal cord, whereas the valley angles suggest less involvement
of the LN tumor on the lateral sides. Additionally, both factors are correlated with the
axial extent of the LN tumor due to the thin cylindrical structure of the spinal cord. Such
correlation was also demonstrated by the two example patients in Figure 4a where the
high-risk patient with lower OVHSC,PC1 and higher POVSC,PC3 had a significantly larger
axial extent of cervical LN.

Previous clinical observations on the prognostic power of the anatomy of LN tumors
were highly correlated with our quantitative findings. The results of our survival analysis
suggest an increased risk of disease progression with lower OVHSC,PC1 (adjusted HR = 0.63,
95CI: 0.48–0.83; p ≤ 0.001) and higher POVSC,PC3 (adjusted HR = 3.35, 95CI: 1.41–7.99),
regardless of the N stage. Their independent prognostic power could be explained by the
two example patients in whom the high-risk one developed early distant metastases despite
their identical N stage. As discussed in the previous paragraph, a higher prognostic index
value suggests a higher axial expansion and extent of the LN tumor, which supports the
ongoing discussion of the high prognostic value of the quantitative LN burden. Previous
clinical studies reported the number of metastatic LN regions as an independent predic-
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tor of DMFS [11,19]. For POVSC,PC3, a higher value may also indicate retropharyngeal
LN metastasis with a larger size or bilateral involvement. Retropharyngeal LN has also
been suggested to indicate worse in DFS and DMFS [28,29]. Specifically, the size of the
metastatic retropharyngeal LN with a cutoff axial diameter of 6mm has been identified
as a significant prognostic factor for OS and DMFS [30,31]. It was also suggested that
the bilateral involvement of the retropharyngeal lymph nodes should be upgraded to N2
disease due to the worse 5-year OS and DMFS [15]. These anatomical characteristics have
been partially included in the definition of the N1 classification of the 7th and 8th N staging
system [32], where metastasis is limited above the caudal border of cricoid cartilage and/or
retropharyngeal lymph node(s) does not exceed 6mm in greatest dimension. Our quanti-
tative anatomical factors may provide more precise descriptions of various LN anatomy
characterizations, thus independent of the existing N stage classifications.

The two final spatial factors were predictive of three-year DFS and DMFS at both
discovery and validation. However, the binarization thresholds were less generalizable
from discovery to validation due to the overall different magnitudes of the spatial factor
values. As a result, much higher low-risk patients were classified in the validation cohort
when using the median values in the discovery as the binarization thresholds. The system-
atic cross-institutional variations in the spatial factor magnitudes could be attributed to
the inconsistent spinal cord volume definitions, especially the starting and ending point.
A higher spinal cord extent may lead to a lower relative overlap volume for both OVH and
POV at the same absolute distance and angle, and the resulting PC coefficients are expected
to be smaller. For clinical utility, consistent organ and tumor segmentations are important
to ensure a reliable quantitative spatial characterization. Further adjustments in the spatial
factor definitions for enhanced robustness are needed in future studies.

Despite the promising performance of the spatial characterization of lymph node
tumors in survival prognosis, the analysis involves standardized tumor and OAR segmen-
tations [33] as well as complex computations of distance and angle histograms for thorough
characterization, which often require specific training. The potential long learning curve
for clinicians may hinder the clinical application of the proposed predictors. Integration
of AI-based systems for auto-segmentation [34] and dedicated calculation scripts into the
existing treatment planning system could be one solution for fast implementation in daily
clinical practice. On the other hand, other types of biomarkers, which are easier to imple-
ment in clinics, have been proposed as strong survival predictors for patients with NPC and
other HNC diseases. Systematic inflammation indicators, which can be directly measured
from blood test results, have been reported to be prognostic in multiple HNC subtypes.
For example, pre-treatment neutrophil-to-lymphocyte ratio (NLR) has been investigated,
and a strong statistical correlation was observed with positive neck occult metastasis in
laryngeal squamous cell carcinoma [35]. Another study by Orabona et al. confirmed the
independent prognostic power of the systemic immune-inflammation index (SII) and the
systemic inflammation response index (SIRI) on OS of patients who received malignant
salivary gland tumor surgery [36].

The constructed prognostic index results in improved risk stratifications in DFS and
DMFS compared to the existing N stage both internally and externally. It is consistent
with previous findings on the improved DMFS prognostication of the LN tumor region
number [11] and the involvement of the retropharyngeal LN tumor [15]. Better risk strat-
ifications on OS were only observed on the discovery cohort and RFS on the external
validation cohort. Several reasons could contribute to the heterogeneous results. First,
the thresholds of the prognostic index for the three-class risk classification could be sub-
optimal and less generalizable. The threshold optimization method for risk stratification
requires a more careful design and wide validation for clinical practice. As discussed in the
previous paragraph, the overall magnitudes of the spatial factors were inconsistent, which
may contribute to the reduced generalizability of the prognostic index and the resulting risk
groups. Second, some patient characteristics, such as stages and chemotherapy treatments,
are rather different between discovery and external validation. They may affect the gener-
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alizability of the risk stratification performance due to the different baseline performances.
Third, the sample sizes and follow-up durations are limited, especially in the discovery
cohort. Less patients remained as uncensored samples, resulting in less reliable results.
Increasing the sample size with more complete follow-up information is needed in future
studies to enhance the clinical evidence of our findings.

5. Conclusions

This study used the distance histogram OVH and the newly proposed angle his-
togram POV to quantitatively characterize the anatomy of the LN tumor in relation to
the surrounding spinal cord and parotids. Independent prognostic factors on DFS were
discovered from the principal components of the anatomical histograms and combined
with the N stage into an spatial index. It surpassed the N stage itself in risk discrimination
and stratification. The proposed quantitative approach may facilitate the discovery of new
anatomical characteristics in a more holistic and precise way to improve patient staging in
other diseases.
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Simple Summary: Gastric cancer remains the world’s fifth most lethal malignancy. Perineural
invasion (PNI) is a common growth pattern of gastric cancer. Currently, the diagnosis of PNI relies
on postoperative pathology, which is an invasive approach. In this study, we built a radiomics–
clinicopathological model based on logistic regression analysis to preoperatively predict PNI. The
radiomics–clinicopathological model yielded AUC values of 0.851 (95%CI: 0.769–0.933) in the training
set, 0.842 (95%CI: 0.713–0.970) in the testing set and 0.813 (95%CI: 0.672–0.954) in the validation set.
This proposed model may help clinicians make clinical decisions and provide personalized treatment
to gastric cancer patients. In this research, the value of perineural invasion (PNI) in predicting
prognoses for gastric cancer patients was also studied.

Abstract: Purpose: The aim of this study was to construct and validate a nomogram for preoperatively
predicting perineural invasion (PNI) in gastric cancer based on machine learning, and to investigate
the impact of PNI on the overall survival (OS) of gastric cancer patients. Methods: Data were collected
from 162 gastric patients and analyzed retrospectively, and radiomics features were extracted from
contrast-enhanced computed tomography (CECT) scans. A group of 42 patients from the Cancer
Imaging Archive (TCIA) were selected as the validation set. Univariable and multivariable analyses
were used to analyze the risk factors for PNI. The t-test, Max-Relevance and Min-Redundancy (mRMR)
and the least absolute shrinkage and selection operator (LASSO) were used to select radiomics
features. Radscores were calculated and logistic regression was applied to construct predictive
models. A nomogram was developed by combining clinicopathological risk factors and the radscore.
The area under the curve (AUC) values of receiver operating characteristic (ROC) curves, calibration
curves and clinical decision curves were employed to evaluate the performance of the models.
Kaplan–Meier analysis was used to study the impact of PNI on OS. Results: The univariable and
multivariable analyses showed that the T stage, N stage and radscore were independent risk factors
for PNI (p < 0.05). A nomogram based on the T stage, N stage and radscore was developed. The
AUC of the combined model yielded 0.851 in the training set, 0.842 in the testing set and 0.813 in
the validation set. The Kaplan–Meier analysis showed a statistically significant difference in OS
between the PNI group and the non-PNI group (p < 0.05). Conclusions: A machine learning-based
radiomics–clinicopathological model could effectively predict PNI in gastric cancer preoperatively
through a non-invasive approach, and gastric cancer patients with PNI had relatively poor prognoses.

Keywords: machine learning; radiomics; gastric cancer; perineural invasion
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1. Introduction

Gastric cancer is one of the most lethal cancers, ranking fifth among all cancers in the
world [1]. The current standard treatment for gastric cancer is radical gastrectomy, sup-
plemented by radiotherapy and chemotherapy. However, despite this standard treatment,
the overall survival (OS) of gastric cancer patients remains low [2]. Although significant
progress has been made in chemotherapy and radiotherapy in recent years, radical gastrec-
tomy remains the most effective therapy. Nevertheless, a large number of gastric cancer
patients still experience recurrence and metastasis after radical gastrectomy [3]. Therefore,
it is crucial to identify new prognostic factors that contribute to the poor survival of gas-
tric cancer patients, enabling the development of customized treatment plans to enhance
patients’ OS.

The TNM staging system is currently recognized as a robust prognostic indicator for
gastric cancer [4]. With the continuous study of the clinicopathology and other aspects
of gastric cancer patients, some pathological factors and molecular indicators have been
confirmed to be related to the prognoses of gastric cancer patients [5,6]. Previous studies
suggested that in addition to the TNM stage, perineural invasion (PNI) is an independent
factor that affects the prognosis of patients with gastric cancer [7]. PNI is a tumor growth
pattern that can lead to poor prognoses such as tumor metastasis and peritoneal recur-
rence [8]. In gastric cancer, PNI is primarily defined as the circumstance where at least 33%
of a nerve is surrounded by tumor cells [9]. The incidence of PNI in gastric cancer varies
from 6.9% to 75.6% [10]. Studies have shown that patients with PNI have shorter survival
times compared to those without PNI [11]. Consequently, treatments such as surgery or
neoadjuvant chemoradiotherapy may be affected if PNI occurs. Currently, the assessment
of PNI in gastric cancer relies on post-operative pathology, which is an invasive approach.
Therefore, it would be highly significant to preoperatively predict PNI in gastric cancer
through a non-invasive approach.

Radiomics has played a crucial role in the diagnosis and treatment of diseases in
recent years [12,13]. In gastrointestinal diseases, radiomics is mainly used for tumor stag-
ing, differential diagnosis and prognosis analysis [14,15]. Previous studies have explored
non-invasive methods for preoperatively assessing PNI in gastric cancer. Zheng et al.
investigated the efficacy of radiomics and clinical models based on machine learning for
preoperatively predicting PNI in gastric cancer. They found that their approach performed
well when identifying PNI before surgery [16]. However, their study did not include
enough clinical and pathological factors, and there was no analysis of the impact of PNI on
prognosis. Here, we explored the role of a combined radiomics–clinicopathological model
in predicting PNI in gastric cancer using machine learning, and analyzed the impact of PNI
on prognosis.

2. Materials and Methods

2.1. Patients

This study analyzed clinicopathological and contrast-enhanced computed tomogra-
phy (CECT) data from 162 patients treated at the Second Affiliated Hospital of Nanjing
Medical University from January 2019 to December 2022. The inclusion criteria were as
follows: (1) CECT was performed less than 2 weeks before surgery and (2) the patients had
a pathological diagnosis of gastric cancer. The exclusion criteria were as follows: (1) patients
with unfilled stomachs; (2) patients with poor CECT quality; (3) patients with combined
severe primary disease; and (4) patients with incomplete clinical data or follow-up infor-
mation. The workflow of the inclusion and exclusion is shown in Figure 1. Our study was
approved by the ethics committee of the Second Affiliated Hospital of Nanjing Medical
University (2023-KY-162-01), and the patients’ or their family members’ informed consent
was acquired. Our study adhered to the Image Biomarker Standardization Initiative (IBSI)
guidelines and the Declaration of Helsinki [17].
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Figure 1. Flow diagram of inclusion and exclusion criteria.

Patients’ baseline information was collected, including age, gender, tumor location,
differentiation type, Lauren type, lymphovascular invasion (LVI) status, smoking status,
drinking status, carcinoembryonic antigen (CEA) levels, cancer antigen 125 (CA125) levels,
cancer antigen 199 (CA199) levels and human epidermal growth factor receptor 2 (HER-2)
levels. Pathological diagnoses were confirmed by two pathologists, and when there was a
dispute between the two pathologists, the diagnosis was confirmed by a third pathologist.
These patients were randomly divided into a training set and a testing set with a ratio of
7:3, and 42 patients from the Cancer Imaging Archive (TCIA) with complete pathological
data were also enrolled as a validation set.

The follow-up information of the 162 patients was also collected via telephone or from
outpatient records. The endpoint event was the OS time, which was defined as the time
from the day of the surgery to the day of death due to any cause, or 1 October 2023.

2.2. CT Image Acquisition

We included the arterial phase in this study because the arterial phase of CECT has
better diagnostic performance [18]. All of the patients signed informed consent forms before
enhanced CT examinations were carried out. The patients were required to fast for at least
6 h before the CT examination, and drank 1000 mL of water to keep their stomachs dilated.
All of the patients underwent 64-slice dual source CT. Patients received 1.5 mL/kg of an
iodinated contrast agent (Ioversol Injection 320 mg I/mL, Jiangsu Hengrui Pharmaceuticals
Co. Ltd., Lianyungang, China) at a flow rate of 3.0 mL/sec using an automatic syringe
pump. The arterial-phase imaging and venous-phase imaging followed a 30-s and a 60-s
delay after the intravenous injection, respectively. The scan parameters were as follows:
tube voltage, 120 kV; tube current, 150–300 mA; field of view, 30–50 cm; matrix, 512 × 512;
rotation time, 0.5 s; and pitch, 1.0. The images were reconstructed with section thicknesses
of 2 mm.

2.3. Regions of Interest and Extraction of Radiomics Features

We obtained Digital Imaging and Communications in Medicine (DICOM)-format im-
ages from the Picture Archiving and Communication System (PACS), and two experienced
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radiologists manually drew regions of interest (ROIs), slice by slice, using ITK-SNAP soft-
ware (version 3.8.0) [19]. One radiologist manually drew ROIs for all of the patients, while
the other draw ROIs for 30 randomly selected patients. The Python package PyRadiomics
(version 2.1.2) was used to extract radiomics features from the ROIs [20]. All private patient
information was removed. A Laplace of Gaussian filter with sigma values of 3 mm, 4 mm
and 5 mm was used to reconstruct the images. The Pingouin package was utilized to
calculate the intraclass coefficients (ICCs), and features with ICCs > 0.75 were considered
effective [21].

2.4. Feature Selection and Calculation of Radscores

A total of 1595 features were extracted from ROIs delineated using ITK-SNAP software.
The Synthetic Minority Over-Sampling Technique (SMOTE) was used to manage the
imbalanced data in the training set. A Z-score transformation was used to normalize the
features to the same level. First, a t-test was conducted to identify features that distinguish
the PNI group from the non-PNI group. Second, the Max-Relevance and Min-Redundancy
(mRMR) approach was utilized to filter irrelevant features, and the top 15 features were
selected for further consideration. Finally, the least absolute shrinkage and selection
operator (LASSO) algorithm was used to select features, and a 10-fold cross-validation was
performed to obtain the optimal lambda. The features’ radscores were calculated based on
their coefficients and their values via the following: Radscore = ∑n

i=0 Ci × Xi + b, where Ci
is the coefficient of the i-th selected feature, Xi is the value of the selected feature and b is
the intercept.

2.5. Model Construction and Evaluation

Univariable and multivariable analyses were conducted, combining the radscore and
clinicopathological variables. A nomogram was developed to predict PNI by combining
clinicopathological and radiomics features. The performance of the model was evaluated
based on area under receiver operating characteristics (ROC) curves (AUCs). The calibra-
tion curve measured the consistency between the predicted and actual probabilities of PNI.
Clinical decision curves were used to analyze and evaluate the clinical practicality of the
model. Overall, calibration curves and clinical decision curves were used to evaluate the
model’s efficacy. The workflow of our study is shown in Figure 2.

 

Figure 2. Workflow of perineural invasion prediction. A total of 1595 features were extracted from
arterial phases of each patient. The t-test, Max-Relevance and Min-Redundancy (mRMR) and the least
absolute shrinkage and selection operator (LASSO) were used to select features. Receiver operating
characteristics (ROCs), calibration curves and clinical decision curves were used to evaluate the models.
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2.6. Statistical Analysis

Statistical analyses were performed using Python (version 3.7.0), R software (version
4.2.3) and SPSS (version 22.0) software. Kaplan–Meier analyses were performed to assess
OS. The t-test was used to test normally distributed continuous variables, and the Mann–
Whitney U test was used to test non-normally distributed continuous variables. The
chi-square test and Fisher test were used to test categorical variables. The R package
“glmnet” was used to perform a LASSO algorithm analysis. The R package “rms” was used
to draw the nomogram and the calibration curves. The R package “pROC” was used to
draw ROC curves, and R package “dca.R” was used to analyze clinical decision curves.
The R package “shiny” and “DynNom” were utilized to construct the online nomogram.

3. Results

3.1. Clinical Characteristics

A total of 162 patients were included in this study. The patients were randomly split
into a training set and a testing set with a ratio of 7:3, with 113 patients in the training set
and 49 patients in the testing set. Among the 113 patients, 95 patients were pathologically
diagnosed with PNI and 18 patients were not. In the testing set, 33 patients were diagnosed
with PNI and 16 patients were not. The differences in the clinical and pathological factors
are shown in Table 1. According to the univariable analysis, the tumors’ T stage (p < 0.01),
N stage (p < 0.01) and LVI (p = 0.042) were closely related to PNI. We included the T
stage, N stage and LVI to build clinical models based on a logistic regression. Additionally,
42 patients from TCIA were recruited as the validation set. As shown in Figure 3, the
AUCs of the clinical models with the logistic regression were 0.820 (95%CI: 0.695–0.944) in
the training set and 0.768 (95%CI: 0.596–0.491) in the testing set. The clinical model was
validated using the validation set, and the AUC was 0.669 (95%CI: 0.497–0.842).

Figure 3. (A) ROC curves of three models in the training set. (B) ROC curves of three models in the
testing set. (C) ROC curves of three models in the validation set.
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Table 1. Clinical and pathological characteristics of recruited patients.

Training Set

p
Testing Set

pPNI (+) PNI (−) PNI (+) PNI (−)
N = 95 N = 18 N = 33 N = 16

Age (mean ± SD 1) 66.11 ± 10.85 65.72 ± 8.85 0.194 62.91 ± 11.38 67.8 ± 3.42 0.494

Gender, No. (%) 0.350
0.218

Male 70 (73.7%) 10 (55.6%) 26 (78.8%) 5 (31.3%)
Female 25 (26.3%) 8 (44.4%) 7 (21.2%) 11 (68.7%)

Size, No. (%) 0.191 0.189
<5 cm 45 (47.4%) 12 (66.7%) 18 (54.5%) 13 (81.2%)
≥5 cm 50 (52.6%) 6 (33.3%) 15 (45.5%) 3 (18.8%)

Location, No. (%)

0.315 0.205
Antrum 37 (38.9%) 9 (50%) 7 (21.2%) 4 (25.0%)

Body 27 (28.4%) 2 (11.1%) 5 (15.2%) 5 (31.3%)
Fundus 31 (32.6%) 7 (38.9%) 21 (63.6%) 7 (43.8%)

Tissue differentiation, No.
(%)

0.119 0.075High 51 (53.7%) 5 (27.8%) 18 (54.5%) 9 (56.3%)
Middle 28 (29.5%) 9 (50%) 10 (30.3%) 6 (37.5%)

Low 16 (16.8%) 4 (22.2%) 5 (15.2%) 1 (6.3%)
Lauren type, No. (%)

>0.9 0.051
Intestinal 20 (21.5%) 9 (50.0%) 5 (15.2%) 2 (12.5%)
Diffuse 35 (37.6%) 3 (16.7%) 11 (33.3%) 1 (6.3%)
Mixed 38 (40.9%) 6 (33.3%) 17 (51.5%) 13 (81.3%)

T stage, No. (%)

<0.001 0.008
1 11 (11.6%) 5 (27.8%) 8 (24.2%) 12 (75.0%)
2 7 (7.37%) 7 (38.9%) 2 (6.1%) 3 (18.8%)
3 43 (45.3%) 2 (11.1%) 13 (39.4%) 1 (6.3%)
4 34 (35.8%) 4 (22.2%) 10 (30.3%) 0

N stage, No. (%)

<0.001 0.003
0 7 (7.37%) 10 (55.6%) 5 (15.2%) 3 (18.8%)
1 24 (25.3%) 1 (5.56%) 3 (9.1%) 12 (75%)
2 18 (18.9%) 5 (27.8%) 9 (27.3%) 1 (6.3%)
3 46 (48.4%) 2 (11.1%) 16 (48.5%) 0

LVI 2, No. (%)
0.014 0.001Yes 58 (61.1%) 8 (44.4%) 25 (75.8%) 12 (75%)

No 37 (38.9%) 10 (55.6%) 8 (24.2%) 4 (25%)
HER-2 3, No. (%)

0.847 0.881(0–1+) 54 (74.0%) 11 (61.1%) 19 (57.6%) 5 (31.3%)
(++–+++) 19 (26.0%) 7 (38.9%) 14 (42.4%) 11 (68.7%)

Neutrophils, median (IQR) 4.09 (2.79, 4.69) 3.56 (2.73, 4.27) 0.417 3.63 (3.03, 4.74) 3.19 (2.83, 5.35) 0.706
Lymphocytes, median (IQR) 1.46 (1.14, 1.80) 1.33 (1.19, 1.87) 0.812 1.51 (1.03, 1.96) 1.39 (1.22, 1.82) 1.000

Albumin, median (IQR) 39.80 (36.75, 41.60) 42.00 (35.85, 44.35) 0.460 41.5 (35.9, 45.5) 38.1 (36.45, 40.4) 0.448
CEA 4, No. (%)

0.374 0.545≤10 90(95.2%) 16(88.9%) 27 (81.9%) 14 (87.5%)
>10 5(4.8%) 2(11.1%) 6 (18.2%) 2 (12.5%)

CA125 5, No. (%)
0.133 0.628≤35 83 (87.3%) 16 (88.9%) 19 (57.6%) 10 (62.5%)

>35 8 (12.7%) 2 (11.1%) 14 (42.4%) 6 (37.5%)
CA199 6, No. (%)

0.096 0.545≤37.0 U/mL 71 (74.6%) 15 (83.3%) 27 (81.8%) 10 (62.5%)
>37.0 U/mL 24 (25.4%) 3 (16.7%) 6 (18.2%) 6 (37.5%)

Smoking history, No. (%)
0.983 0.245Yes 8 (12.7%) 2 (11.1%) 29 (87.9%) 4 (25.0%)

No 83 (87.3%) 16 (88.9%) 4 (12.1%) 12 (75.0%)
Drinking history, No. (%)

0.876 0.262Yes 11 (11.6%) 4 (22.2%) 30 (90.9%) 1 (6.3%)
No 84 (88.4%) 14 (77.8%) 3 (9.1%) 15 (93.7%)

Radscore, median (IQR) 1.74 (1.58, 1.99) 1.43 (1.14, 1.60) <0.001 1.90 (1.69, 2.07) 1.50 (1.33, 1.64) <0.001

1 standard deviation; 2 lymphovascular invasion; 3 human epidermal growth factor receptor 2; 4 carcinoembryonic
antigen; 5 cancer antigen 125; 6 cancer antigen 199.

3.2. Radiomics Features Selection and Model Construction

A total of 1595 features were extracted using PyRadiomics, including 14 shape fea-
tures, 306 first-order features and 1275 texture features. The texture features consisted
of 408 gray-level co-occurrence matrix (glcm) features, 238 gray-level dependence matrix
(gldm) features, 272 gray-level run-length matrix (glrlm) features, 272 gray-level size-zone
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matrix (glszm) features and 85 neighboring gray-tone difference matrix (ngtdm) features.
After performing the t-test, 224 features were retained. Subsequently, the Max-Relevance
and Min-Redundancy (mRMR) approach was utilized to select features, and the top fifteen
features were chosen for the least absolute shrinkage and selection operator (LASSO) analy-
sis. A 10-fold cross validation was used to select the optimal “Lambda” value, and the best
“Lambda” value was used to select features (Figure 4). After three rounds of feature selec-
tion, five features (wavelet.HLL_glcm_InverseVariance, original_firstorder_90Percentile,
wavelet.HHH_firstorder_Minimum, wavelet.LLL_firstorder_Median and gradient_gldm_
DependenceNonUniformityNormalized) were ultimately used to build the radiomics mod-
els. The coefficients of the selected features are shown in Table 2. The radiomics model,
based on the five features, exhibited AUC values of 0.829 (95%CI: 0.738–0.921) in the train-
ing set, 0.816 (95%CI: 0.683–0.950) in the testing set and 0.779 (95%CI: 0.625–0.933) in the
validation set (Figure 3).

Figure 4. (A) A 10-fold cross validation was used to select the optimal “Lambda” value. (B) The
different colors referred to different features. The best “Lambda” value was used to select features.

Table 2. The coefficients of the selected features.

Features Coefficients

wavelet.HLL_glcm_InverseVariance 0.17618597
original_firstorder_90Percentile 0.06464257
wavelet.HHH_firstorder_Minimum −2.96234129
wavelet.LLL_firstorder_Median 0.84062825
gradient_gldm_DependenceNonUniformityNormalized 1.20886446

3.3. Construction and Evaluation of Combined Radiomics–Clinicopathological Model

According to the univariable analysis, the T stage, N stage, LVI and radscore were
associated with PNI (p < 0.05). According to the multivariable analysis, the T stage, N
stage and radscore were independent risk factors for PNI (p < 0.05), and the OR values
of the T stage, N stage and radscore were 8.013 (95%CI: 2.604–24.660), 2.882 (95%CI:
1.266–6.564) and 3.040 (95%CI: 1.250–7.397), respectively (Table 3). The combined radiomics–
clinicopathological model based on the T stage, N stage and radscore showed robust efficacy
in predicting PNI. The combined radiomics–clinicopathological model was superior in
predicting PNI compared to both the clinical model and the radiomics model; the AUC
values of the radiomics–clinicopathological model were 0.851 (95%CI: 0.769–0.933) and
0.842 (95%CI: 0.713–0.970) in the training set and testing set, respectively. The AUC
value of the radiomics–clinicopathological model in the validation set was 0.813 (95%CI:
0.672–0.954). The ROC curves of the training set, testing set and validation set are shown
in Figure 3. The detailed model performance is shown in Table 4.
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Table 3. Results of predicted factors and their odds ratio (OR) values in the multivariate analysis.

Predicted Factors OR 1 95%CI 2 p-Value

Age 1.008 0.961–1.057 0.754
Gender 0.786 0.272–2.270 0.656
Size 1.031 0.846–1.258 0.760
Location 1.086 0.638–1.847 0.762
Tissue differentiation 0.646 0.352–1.185 0.158
Lauren type 1.261 0.693–2.296 0.447
T stage 8.013 2.604–24.660 0.001
N stage 2.882 1.266–6.564 0.012
LVI 3 1.344 0.162–11.130 0.784
HER-2 4 0.831 0.302–2.286 0.720
Neutrophils 0.981 0.840–1.146 0.981
Lymphocytes 1.028 0.432–2.448 0.950
Albumin 1.007 0.923–1.100 0.870
CEA 5 1.091 0.925–1.288 0.300
CA-125 6 1.046 0.980–1.116 0.181
CA-199 7 1.027 0.990–1.065 0.154
Smoking history 0.432 0.074–2.531 0.352
Drinking history 2.169 0.260–18.120 0.475
Radscore 3.040 1.250–7.397 0.014

1 odds ratio; 2 confidence interval; 3 lymphovascular invasion; 4 human epidermal growth factor receptor 2;
5 carcinoembryonic antigen; 6 cancer antigen 125; 7 cancer antigen 199.

Table 4. The detailed information for the three models.

Training Set (n = 113) Testing Set (n = 49) Validation Set (n = 42)

AUC (95%CI) ACC SEN SPE AUC (95%CI) ACC SEN SPE AUC (95%CI) ACC SEN SPE

Model1 0.820 (0.695–0.944) 0.832 0.851 0.400 0.768 (0.596–0.941) 0.837 0.851 0.500 0.669 (0.497–0.842) 0.619 0.600 0.667
Model2 0.829 (0.738–0.921) 0.876 0.879 0.833 0.816 (0.683–0.950) 0.836 0.851 0.772 0.779 (0.625–0.933) 0.718 0.737 0.700
Model3 0.851 (0.769–0.933) 0.929 0.886 0.750 0.842 (0.713–0.970) 0.837 0.851 0.818 0.813 (0.672–0.954) 0.744 0.750 0.737

Model1: clinicopathological model; Model2: radiomics model; Model3: combined model; AUC: area under curve;
ACC: accuracy; SEN: sensitivity; SPE: specificity.

As shown in Figure 5, a nomogram of the radiomics–clinicopathological model was
developed. In order to improve the generalizability and clinical application value of the
model, we designed an online nomogram, and the website is as follows: https://lbhengjia.
shinyapps.io/PNI_Predict/ (accessed on 25 January 2024). The calibration curve showed a
good balance between the observed and predicted probability scores. The decision curves
showed that the combined model provided a greater benefit than the clinical and radiomics
models (Figures 6 and 7).

Figure 5. The nomogram of the radiomics-clinicopathological model.
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Figure 6. The calibration curves of the training set (A), testing set (B) and validation set (C).

Figure 7. The decision curves of the training set (A), testing set (B) and validation set (C).

3.4. Survival Analysis

The median OS time of the 162 patients was 542 days (range: 7–1038 days). Of the
162 patients, 34 patients had no PNI, and 3 among them died. In total, 128 patients had
PNI, and there were 33 deaths in this group. As shown in Figure 8, there was a statistically
significant difference in OS between the PNI group and the non-PNI group (p < 0.05).
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Figure 8. Kaplan–Meier analysis of overall survival based on perineural invasion (PNI) status among
162 patients.

4. Discussion

Early onset gastric cancer often lacks specific symptoms, and patients with gastric
cancer often present in advanced stages when seeking medical attention. The overall 5-year
survival rate of patients with advanced gastric cancer is relatively low, and the overall
prognosis is poor. The degree of tumor infiltration, lymph node metastasis and tumor
size are the most critical factors affecting the postoperative survival rate of gastric cancer,
but many related studies have shown that the prognoses of gastric cancer patients are
also related to LVI and PNI [22,23]. Currently, relevant studies have shown that LVI is
one of the independent factors affecting the prognoses of gastric cancer patients, while
there is relatively little research on PNI [24]. PNI is one of the biological features of gastric
cancer. Patients with PNI always have worse outcomes compared to patients without
PNI [25]. Whether PNI is an independent risk factor affecting the prognoses of gastric
cancer patients is still under debate. At the same time, the current criteria of PNI mainly
rely on postoperative pathology, which is an invasive method with a time lag that has
little significance in the selection of a treatment mode. In this research, we developed
a radiomics model to preoperatively predict the PNI of gastric cancer, which has more
guiding significance for the treatment mode and surgical approach. Therefore, this study
attempted to use artificial intelligence methods to non-invasively predict the PNI of gastric
cancer before surgery, and to determine its value in predicting the prognoses of gastric
cancer patients.

In terms of the specific mechanism of the PNI of gastric cancer, Kai Yin et al. confirmed
that the axon guidance molecule promoted gastric cancer cell navigation along peripheral
neuritis [26]. Jia X et al. analyzed the expression of PNI gene signatures in gastric cancer via
a meta-analysis of gene expression profiling, and found that genes regulating cell adhesion
molecules were upregulated and associated with poor survival in gastric cancer [27].
Currently, there is relatively little research on the mechanism of the PNI of gastric cancer,
and more basic experiments are still needed to elucidate this mechanism. At the same time,
there are a few studies that have focused on the preoperative assessment of PNI in patients
with gastric cancer via radiomics. Yardımcı analyzed texture features of gastric cancer
based on multiple machine learning models. However, this study had a small sample size
and did not analyze clinical data, and the models had poor efficacy [28]. In this study, we

164



Cancers 2024, 16, 614

included a cohort of 204 patients and enough clinicopathological risk factors to obtain more
convincing results.

In our study, we found that advanced T stage and N stage classifications were closely
associated with the PNI of gastric cancer, which was consistent with the results of a previous
study [29]. There were no other covariates associated with PNI, and studies with large
sample sizes need to be further developed in the future. The AUC of the clinical model
(including the T stage and N stage) reached 0.820 in the training set and 0.768 in the
testing set, indicating that the above clinical factors provided a high level of accuracy
when predicting PNI. Adding radiomics features to the clinical model could help improve
performance, as the combined model had AUC values of 0.851 and 0.842 in the training
set and testing set, respectively. The combined model was also validated using an external
validation dataset, achieving an AUC value of 0.813. The relatively inferior performance
of the combined model on the validation set compared to the training set and testing set
may be attributed to the smaller sample size and the variable image quality across datasets.
At the same time, our study also found that gastric cancer patients with PNI had poorer
prognoses than those without PNI, which was in line with a previous study [30].

In recent years, the integration of radiomics and machine learning has shown great
potential to advance our understanding of various gastric cancer conditions, especially
PNI. In our research, we focused on exploring the mechanisms of PNI using radiomics and
machine learning methods. By analyzing various shape and texture features in radiomics
images, we could analyze the PNI of tumors from both macro and micro perspectives.
Among the radiomics features we included, there were three wavelet features. These
wavelet features can provide information about the internal vascular structure, tissue
density and microscopic environments of tumors, and can thereby help us better understand
the mechanisms of PNI and improve the model’s predictive ability [31]. By synthesizing
these multi-dimensional data, we can obtain more comprehensive and accurate tumor
features and establish more reliable models to predict the PNI of gastric cancer. Furthermore,
we plan to prospectively validate the developed model’s effectiveness and evaluate its
potential impact on clinical decision making and personalized treatment strategies.

Our study also has many limitations. Firstly, this was a single-center study with
relatively small sample sizes; a multicenter study with large samples needs to be conducted.
Secondly, our study did not investigate the specific mechanism of PNI through basic experi-
ments. Thirdly, the manual delineation of ROIs presented a certain degree of heterogeneity,
and a deep learning model without manual delineation needs to be further developed.

5. Conclusions

Gastric cancer patients with PNI have relatively poor prognoses; radiomics–
clinicopathological models can effectively predict the PNI of gastric cancer, which could
help clinicians in diagnosis and decision making.
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