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Preface

In recent years, with the rapid development of advanced machine learning, artificial intelligence,

robot technology, networked control methods, deep space exploration, and other fields, successful

applications in fuzzy control systems or even nonlinear dynamics systems (FCS/NDSs) have

emerged. The modeling, analysis, and optimal control of FCS/NDSs have received considerable

attention in the last two decades. As usual, the design and analysis of classic dynamics systems rely

on deterministic mathematical models. However, dynamical systems are riddled with nonlinearity,

complexity and time-delay properties, which make it difficult to ensure system optimization. Certain

linearization assumptions are often employed to obtain the optimal theoretical closed-form solution

in FCS/NDSs, which are inconsistent with real engineering applications. Therefore, these advanced

nonlinear sciences motivate us to explore new solutions of abundant problems in FCS/NDSs.

In this Special Issue, the final 10 accepted papers have been peer-reviewed. These papers can be

categorized into nonlinear intelligent control, and the following is a brief description of each paper in

this Special Issue.

Thanh Binh Nguyen and Hyoung-Kyu Song, in their paper titled ‘Further Results on Robust

Output-Feedback Dissipative Control of Markovian Jump Fuzzy Systems with Model Uncertainties’,

investigate an improved criterion to synthesize dissipative observer-based controllers for Markovian

jump fuzzy systems under model uncertainties. They present the first attempt to apply double-fuzzy

summation-based Lyapunov functions for the observer-based control scheme of the Markov jump

fuzzy system regarding the mismatched phenomenon. The obtained observer-based controller

ensures that the closed-loop system is stochastically stable, and the dissipative performances produce

less conservative results compared to preceding works via two numerical examples.

Binshuang Zheng et al., in their paper titled ‘A Comprehensive Method to Evaluate Ride

Comfort of Autonomous Vehicles under Typical Braking Scenarios: Testing, Simulation and Analysis’,

explore the sensing requirement parameters of the road environment during the vehicle braking

process to highlight the advantages of autonomous vehicles (AVs) in modern traffic. Based on the

texture information obtained using a field measurement, the braking model of an AV was built in

Simulink, and the ride comfort under typical braking scenarios was analyzed using CarSim/Simulink

co-simulation. The results showed that the proposed brake system for the AV displayed a better

performance than the traditional ABS when considering pavement adhesion characteristics.

Jie Fu et al., in their paper titled ‘Application of Fuzzy PID Based on Stray Lion Swarm

Optimization Algorithm in Overhead Crane System Control’, introduce the LSO algorithm and

add the stray operator, which effectively improves its global search performance. By combining

SLSO and fuzzy PID and comparing them with other methods, this paper confirms that even

without targeted optimization by professionals, the optimization algorithm can find the appropriate

parameter configuration for fuzzy PID, which can be effectively used in the crane anti-swing problem.

Wei Zhang et al., in their paper titled ‘A More Efficient and Practical Modified Nyström

Method’, propose an efficient Nyström method with theoretical and empirical guarantees. In parallel

computing environments and for sparse input kernel matrices, their algorithm can theoretically have

computation efficiency comparable to that ofthe conventional Nyström method,. Additionally, they

derive an important theoretical result with a compacter sketching matrix and faster speed, at the cost

of some accuracy loss compared to existing state-of-the-art results. Faster randomized SVD and more

efficient adaptive sampling methods are also proposed, which have wide application in many

machine learning and data mining tasks.

vii



Muhammad Bilal Khan et al., in their paper titled ‘Some New Properties of Convex

Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and

Related Inequalities’, define a novel class of convex mappings on planes using a fuzzy inclusion

relation, known as coordinated up and down convex fuzzy-number-valued mapping. Several new

definitions are introduced by placing some moderate restrictions on the notion of coordinated up

and down convex fuzzy-number-valued mapping. Other uncommon examples are also described

using these definitions, which can be viewed as applications of the new outcomes. Moreover,

Hermite–Hadamard–Fejér inequalities are acquired via fuzzy double Aumann integrals, and the

validation of these outcomes is discussed with the help of nontrivial examples and suitable choices

of coordinated up and down convex fuzzy-number-valued mappings.

Bo Song et al., in their paper titled ‘Epidemic Spreading on Weighted Co-Evolving Multiplex

Networks’, propose a novel weighted co-evolving multiplex network model to describe the

interaction between information diffusion in online social networks and epidemic spreading in

adaptive physical contact networks. Considering the difference in the connections between

individuals, the heterogeneous rewiring rate, which is proportional to the strength of the connection,

is introduced in the model. The simulation results show that the maximum infection scale decreases

as the information acceptance probability grows, and the final infection decreases as the rewiring

behaviors increase.

Muhammad Bilal Khan et al., in their paper titled ‘Weighted Fractional Hermite–Hadamard

Integral Inequalities for up and down -Convex Fuzzy Mappings over Coordinates’, introduce a

new class of convexity, as well as prove several Hermite–Hadamard-type interval-valued integral

inequalities in the fractional domain. This produces several known classes of convexity. Additionally,

they create some new fractional variations in the Hermite–Hadamard ( ) and Pachpatte types

of inequalities using the concepts of coordinated - -convexity and double Riemann–Liouville

fractional operators.

Shuxia Jing et al., in their paper titled ‘Dissipative Fuzzy Filtering for Nonlinear Networked

Systems with Dynamic Quantization and Data Packet Dropouts’, discusse the dissipative filtering

problem for discrete-time nonlinear networked systems with dynamic quantization and data packet

dropouts. The Takagi–Sugeno (T–S) fuzzy model is employed to approximate the considered

nonlinear plant. The purpose of this paper is to design full- and reduced-order filters, such that

the stochastic stability and dissipative filtering performance of the filtering error system can be

guaranteed. The collaborative design conditions for the desired filter and the dynamic quantizers

are expressed in the form of linear matrix inequalities.

Yuhua Xu et al., in their paper titled ‘Key Vulnerable Nodes Discovery Based on Bayesian Attack

Subgraphs and Improved Fuzzy C-Means Clustering’, propose a key vulnerable node discovery

method based on Bayesian attack subgraphs and improved fuzzy C-means clustering. The optimal

number of clusters is adaptively adjusted according to the variance idea, and fuzzy clustering

is performed based on the extracted clustering features. Finally, the key vulnerable nodes are

determined by setting the feature priority.

Chenlei Liu and Zhixin Sun, in their paper titled ‘A Multi-Agent Reinforcement

Learning-Based Task-Offloading Strategy in a Blockchain-Enabled Edge Computing Network’,

propose a blockchain-enabled mobile edge computing task-offloading strategy based on multi-agent

reinforcement learning. They propose a deep reinforcement learning algorithm based on multiple

agents sharing a global memory pool using the actor–critic architecture, which enables each agent

to acquire the experience of another agent during the training process to enhance the collaborative

capability among agents and overall performance. In addition, they integrate attenuatable Gaussian

viii



noise into the action space selection process in the actor network to avoid falling into the local

optimum.

Lijuan Zha, Jian Liu, and Jinliang Liu
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Further Results on Robust Output-Feedback Dissipative
Control of Markovian Jump Fuzzy Systems with
Model Uncertainties

Thanh Binh Nguyen and Hyoung-Kyu Song *

Department of Information and Communication Engineering and Convergence Engineering for Intelligent Drone,
Sejong University, Seoul 05006, Korea
* Correspondence: songhk@sejong.ac.kr; Tel.: +82-2-3408-3890

Abstract: This paper investigates an improved criterion to synthesize dissipative observer-based
controllers for Markovian jump fuzzy systems under model uncertainties. Since fuzzy-basis functions
include some immeasurable state variable or uncertain parameters, there are differences in the fuzzy-
basis functions between controller and plant, which is a mismatched phenomenon. This work presents
the first attempt for applying double-fuzzy summation-based Lyapunov functions for the observer-
based control scheme of the Markov jump fuzzy system regarding the mismatched phenomenon. To
be specific, the dissipative conditions are formulated in terms of uncertain parameterized bilinear
matrix inequalities. Based on the improved relaxation techniques, a linear-matrix-inequality (LMI)-
based algorithm is proposed in the framework of sequence linear programming matrix method. The
obtained observer-based controller ensures that the closed-loop system is stochastically stable, and
the dissipative performances produce less conservative results compared to preceding works via two
numerical examples.

Keywords: markov jump fuzzy systems; dissipative control; mismatched phenomenon; model
uncertainties

MSC: 93C42; 93E15

1. Introduction

The development of control engineering is faced with a class of hybrid systems with
probabilistic sudden changes to their behavior, named the stochastic hybrid system. The
systems have attracted a huge consideration from many control theorists due to their
abilities in showing hybrid dynamics with probabilistic changes. Markov jump systems
(MJSs) whose jumping parameters are governed by the Markov process belong to the class
of the stochastic hybrid system, and have expressed great potential to represent random
abrupt variations such as component fault or failures, sudden environmental changes, and
changing subsystem interconnections. In the view of realistic problems, discrete-time MJSs
have played important roles to implement digital experiments including network control
systems [1–3], power systems [4–6] and communication systems [7,8].

The Takagi–Sugeno (T-S) fuzzy model is well known as an effective tool to describe
nonlinear dynamics via an average sum of given linear models. Recent years have wit-
nessed a massive increase of studies related to the systematic control design of nonlinear
systems using The T–S fuzzy model [9–11] According to this trend, the T-S fuzzy model
has been investigated intensively to cover various nonlinear control problems [12,13]. In
many situations, all state variables are not fully measurable. The observer-based fuzzy
control scheme needs to estimate FBFs and state variables, then establish fuzzy control
laws [13–15]. When the premise variables of the T–S fuzzy system are related to the im-
measurable state, that leads to a mismatched phenomenon between fuzzy-basis functions

Mathematics 2022, 10, 3620. https://doi.org/10.3390/math10193620 https://www.mdpi.com/journal/mathematics1
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(FBFs) in the plant and those of the controller, there have been fruitful works devoted to
observer-based output-feedback control synthesis, such as stability and stabilization [16,17],
H∞ and dissipative control [18,19].

Over the past decade, the extensions of the T-S fuzzy model to MJSs has established the
framework of Markov jump fuzzy systems (MJFSs), and particularly to the output-feedback
control of MJFSs [20,21]. However, So far as we know, in the presence of model uncertainties,
there has been little progress toward the output-feedback scheme with consideration to the
mismatched phenomenon. Studies on [22] have used interval type 2 fuzzy MJFSs to deal
with the mismatched phenomenon, while [21] presenting a sliding mode output-feedback
with uncertain transition rates. The authors in [23] present a two-step LMI-based method
to design dissipative output-feedback controllers for MJFS. To improve the dissipative
performance, the work in [24] develops a single-step LMI-based method regarding sensor
failures. Lately, relaxed results for observed-based controllers for discrete-time MJFSs
have been investigated in [25] by nonparallel distributed compensation (non-PDC) scheme.
However, a common limitation of the above studies is relaxed attempts to overcome the
conservatism of the output-feedback scheme by a single-step or two-step LMI solution.
As reported in [13], the two-step approach has much conservatism and sensitivity due to
the weak selection of decision variables in the first step [23], while the single-step requires
excessive use of free weighting matrices [24]. Thus, it is necessary to develop an innovative
method based on the progress of relaxation techniques and modified Lyapunov functions.

Motivated by these discussions, this paper presents improved results of the output-
feedback dissipative control of MJFSs with model uncertainties. By taking advantage of
the mode-fuzzy-dependent Lyapunov functions in terms of a double-fuzzy summation,
our work can obtain better computed dissipative performance compared to existing results.
In short, besides proposing the dissipative observer-based controller for the discrete-time
MJFSs regarding the model uncertainties and mismatched phenomenon, our contributions
also contain:

• The model uncertainties and mismatch phenomenon entail difficulties in handling
multiple parameterized matrix inequalities when deriving LMI-based dissipative
conditions. Thus, a refined relaxation process with the sequence linear programming
matrix method (SLPMM) is proposed to solve dissipative conditions by LMI-based
algorithm.

• Apart from this, our work takes advantage of the double-fuzzy summation-based
mode-fuzzy-dependent Lyapunov functions to relax the dissipative conditions. The
Lyapunov function collaborates with the relaxation process to release less conservative
LMI-based dissipative conditions compared to [13,23,24,26]. The results are verified
through two illustrative examples.

In accordance with the contributions, this work can be applied to stabilize the nonlin-
ear systems with jumping and certainties in system parameters, e.g., tracking control of
unmanned ground vehicles over network communications with packet losses and stabiliza-
tion power grids under sudden load changes.

The notations X ≥ Y and X > Y mean that X−Y is positive semi-definite and positive
definite, respectively. In symmetric block matrices, the asterisk (∗) is used as an ellipsis for
terms induced by symmetry. E{·} denotes the mathematical expectation; L2[0, ∞) stands
for the space of square summable sequences over [0, ∞); diag(·) stands for a diagonal
matrix with diagonal entries; col(v1, v2, · · · , vn) = [vT

1 vT
2 · · · vT

n ]
T for scalar or vector

vi; ⊗ denotes the Kronecker product; He{P} = P + PT for a square matrix P ; N1 \N2
indicates the set of elements in the set N1, but not in the set N2; and n(N) denotes the
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number of elements in set N. For N = {a1, a2, · · · , as}, the following matrix expansion
notation is used:[Mi

]d

i∈N = diag
(Ma1 , · · · ,Mas

)
,

[Mi
]

i∈N =

⎡⎢⎣ Ma1
...

Mas

⎤⎥⎦,
[
Mij

]
i,j∈N

=

⎡⎢⎣Ma1a1 · · · Ma1as
...

. . .
...

Masa1 · · · Masas

⎤⎥⎦
whereMi andMij are real matrices with appropriate dimensions or scalar values.

The rest of the paper is sketched as follows. The next section presents problem state-
ments and fundamental definitions of MJFSs, and the preceding useful results exploited in
the paper. Section 3 includes control synthesis for LMI-based dissipative conditions of the
concerned observer-based controller. The last section shows two numerical implementa-
tions to verify the validity and effectiveness of the proposed method.

2. Preliminaries

For a given complete probability space (Ω,F ,P), consider a discrete-time homo-
geneous Markov chain ψ as a sequence of random variables ψ0, ψ1, . . . whose values
belong to a finite set of state Nψ = {1, 2, · · · , s} and satisfy Markov properties. Let
πpq = Pr

(
ψk+1 = q|ψk = p

)
be a time-invariant one-step probability of jumping from

state (or mode) p to q. Accordingly, we have πpq ∈ [0, 1] and ∑r
q=1 πpq = 1. Based on the

definitions, let us consider a class of Markovian jump fuzzy systems (MJFSs) as follows:⎧⎪⎨⎪⎩
xk+1 =

(
A(ψk, ξ) + ΔA(ψk, k)

)
xk +

(
B(ψk, ξ) + ΔB(ψk, k)

)
uk + E(ψk, ξ)dk,

zk = G(ψk, ξ)xk + H(ψk, ξ)uk + J(ψk, ξ)dk,

yk = C(ψk, ξ)xk + D(ψk, ξ)dk,

(1)

in which xk ∈ Rnx , uk ∈ Rnu , yk ∈ R
ny , zk ∈ Rnz , and dk ∈ Rnd represent for the

state variable, the control input, the measured output, the performance output, and the
bounded-energy disturbance (belonging to L2[0, ∞)), respectively. In addition, ψk is the
discrete-time homogeneous Markov chain standing for sudden changes in system matrices
Ap(ξ), Bp(ξ), Ep(ξ), Gp(ξ), Hp(ξ), Jp(ξ) where⎡⎣ A B E

C 0 D
G H J

⎤⎦(ψk = p, ξ) =

⎡⎣ Ap(ξ) Bp(ξ) Ep(ξ)
Cp(ξ) 0 Dp(ξ)
Gp(ξ) Hp(ξ) Jp(ξ)

⎤⎦ =
r

∑
i=1

ξi

⎡⎣ Api Bpi Epi
Cpi 0 Dpi
Gpi Hpi Jpi

⎤⎦,
where Api, Bpi, Cpi, Dpi, Epi, Gpi, Hpi, and Jpi are constant system matrices with appropriate
dimensions. To be more specific, r indicates the number of fuzzy rules, and we denote
the fuzzy-basis function vector as ξ = ξ(�(xk)) (or simply ξk) =

[
ξ1(�(xk)), ξ2(�(xk)), . . . ,

ξr(�(xk))
]T ∈ Rr where �(xk) = [�1(xk), �1(xk), . . . , �d(xk)]

T ∈ Rd stands for premise
variable. Please note that ξi(�(xk)) denotes the ith element of fuzzy-basis vector ξ who
fulfill ∑r

i=1 ξi = 1 and ξi ∈ [0, 1] for all i ∈ Nξ = {1, 2, · · · , r}.
In this paper, we assume that the model uncertainties ΔA(ψk, k) and ΔB(ψk, k) can be

decomposed into matrix multiplications of the following forms:{
ΔA(ψk = p, k) = ΔAp(k) = Ta,pUa(k)Ya,p,
ΔB(ψk = p, k) = ΔBp(k) = Tb,pUb(k)Yb,p

(2)

where Ta,p, Tb,p, Ya,p and Yb,p are given constant matrices with appropriate dimensions;
Ua(k) and Ub(k) are time-varying matrices with Ua(k)UT

a (k) ≤ I, Ub(k)UT
b (k) ≤ I.

Since the premise variable vector depends on several immeasurable state variables
xk or on uncertain parameters, fuzzy control laws to be designed is impossible to share

3
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the same premise variables with the plant (1). In this light, we deal with the mismatched
phenomenon by the observer-based fuzzy in the following form:{

x̂k+1 = Ap(ξ̂)x̂k + Bp(ξ̂)uk + Lp(ξ̂)
(
yk − Cp(ξ̂)x̂k

)
,

uk = Kp(ξ̂)x̂k,
(3)

where ψk = p and x̂k ∈ Rnx stands for the observed state; ξ̂ = ξi(�(x̂k)) = col(ξ1(�(x̂k)),
ξ2(�(x̂k)), · · · , ξr(�(x̂k))) represents for the observed fuzzy-basis function vector calculated
on the controller side based on observed states at time step k; Lp(ξ̂) and Kp(ξ̂) are the
fuzzy-dependent matrices needed to be designed, respectively; and

Ap(ξ̂) =
r

∑
i=1

ξ̂i Api, Bp(ξ̂) =
r

∑
i=1

ξ̂iBpi, Cp(ξ̂) =
r

∑
i=1

ξ̂iCpi.

Furthermore, let ek = xk − x̂k, ζk = [x̂T
k , eT

k ]
T ∈ R2nx×2nx , and ξ̃ =

[
ξ̃1, ξ̃2, · · · , ξ̃r

]T

with ξ̃i = ξi − ξ̂i, the closed-loop control system of (1) and (3) is represented as follows:{
ζk+1 = Āp(ξ̃, ξ, ξ̂)ζk + Ep(ξ, ξ̂)dk,

zk = Gp(ξ, ξ̂)ζk + Jp(ξ)dk,
(4)

where Āp(ξ̃, ξ, ξ̂) = Ap(ξ̃, ξ, ξ̂) +

[
0 0

ΔAp(k) + ΔBp(k)Kp(ξ̂) ΔAp(k)

]
,

Ap(ξ̃, ξ, ξ̂) =

[
Ap(ξ̂) + Bp(ξ̂)Kp(ξ̂) + Lp(ξ̂)Cp(ξ̃) Lp(ξ̂)Cp(ξ)

Ap(ξ̃) + Bp(ξ̃)Kp(ξ̂)− Lp(ξ̂)Cp(ξ̃) Ap(ξ)− Lp(ξ̂)Cp(ξ)

]
,

Ep(ξ, ξ̂) =

[
Lp(ξ̂)Dp(ξ)

Ep(ξ)− Lp(ξ̂)Dp(ξ)

]
,

Gp(ξ, ξ̂) =
[

Gp(ξ) + Hp(ξ)Kp(ξ̂) Gp(ξ)
]
.

Before going ahead, this paper presents the following definitions for stochastic analy-
ses.

Definition 1 ([27,28]). For dk ≡ 0, the closed-loop system (4) is stochastically stable if for any
ζ0 = [x̂T

0 , eT
0 ]

T and φ0, the following inequality holds

E

{
∞

∑
k=0
‖ζk‖2

∣∣∣ζ0, φ0

}
< ∞. (5)

Definition 2 ([29,30]). For given real matrices Z , S and D such that Z = −ZT
1 Z1, Z1 ∈

R
nq×nz(nq ≤ nz), S ∈ Rnd×nz , and D = DT ∈ Rnd×nd , let us define a quadratic energy supply

rate as follows

Q(zk, dk) =

[
zk
dk

]T[ Z (∗)
S D

][
zk
dk

]
=

[
zk
dk

]T[ Z (∗)
S D

][
Gp(ξ, ξ̂) Jp(ξ)

0 I

][
ζk
dk

]
. (6)

Then, for ζ0 ≡ 0, system (4) is said to be (Z ,S ,D)-γ-dissipative if the following condition holds
for γ > 0 and T > 0:

T

∑
k=0

E
{
Q(zk, dk)

}
≥ γ

T

∑
k=0

E
{

dT
k dk

}
, (7)

4
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where γ stands for the dissipative performance level.

Remark 1. It follows [22,31] that there are two particular performances deduced from the (Z ,S ,D)-
γ-dissipativity (7): (i) H∞-performance by Z = −I, S = 0, and D = (γ2 + γ)I, (ii) passivity
performance by Z = 0, S = I, and D = 2γI.

The mismatch phenomenon here is the difference between fuzzy basic functions in the
system model ξi(�(xk)) and the observed-based controller ξi(�(x̂k)). The difference tends
to ruin the stability of the closed-loop system (4) if it is not considered in the controller
design. Thus, this paper aims to design the observed-based controller (3) that guarantees
the stochastic stability and dissipative performance of the closed-loop system (4) with the
following constraint:

−1 ≤ αi ≤ ξi(�(xk))− ξi(�(x̂k)) ≤ ᾱi ≤ 1, ∀i ∈ Nξ = {1, 2, · · · , r}, (8)

where ᾱi and αi are given scalars. Next, the following well-known lemmas are used

Lemma 1 ([32]). For any matrixMij =MT
ij , the condition 0 ≤ ∑r

i=1 ∑r
j=1 ξiξ jMij holds if

0 ≤Mii, ∀i ∈ Nξ , (9)

0 ≤ 1
r− 1

Mii +
1
2
(Mij +Mji), ∀(i, j) ∈ Nξ ×Nξ \ {j}. (10)

Lemma 2 ([33]). Let real matrices M =MT, N1, N2 and U with appropriate dimensions and
UUT ≤ I. The inequality 0 > A+ He{N1UN2} is true if

0 >

[ M+ βN1N T
1 (∗)

N2 −βI

]
. (11)

3. Control Synthesis

To establish the dissipative condition of a closed-loop system (4), this paper considers
a Lyapunov function in the following form:

Vk = V(ζk, ψk) = ζT
k P(ξ̂, ψk)ζk, (12)

where P(ξ̂k, ψk = p) = Pp(ξ̂k) = PT
p (ξ̂) > 0, the double-fuzzy summation Pp(ξ̂) =

∑r
i=1 ∑r

j=1 ξ̂i ξ̂ jPpij, and symmetric matrices Ppij. The Lyapunov function does not require
Ppij > 0 for all (p, i, j) ∈ Nψ ×Nξ ×Nξ \ {i}. The conditions can be relaxed by Lemma 1.

Then, by letting ξ̂+ = ξ(�̂k+1) and Pp(ξ̂
+) =

s

∑
q=1

πpqPh(ξ̂
+), we can obtain

E{ΔVk} = E
{

V(ζk+1, ψk+1 = h
∣∣ψk = p)

}−V(ζk, ψk = p)

= ζT
k+1Pp(ξ̂

+)
(
Ap(ξ̃, ξ, ξ̂)ζk + Ep(ξ, ξ̂)dk

)− ζT
k Pp(ξ̂)ζk. (13)

Lemma 3. Suppose that there exist symmetric matrices 0 < Pp(ξ̂) ∈ R2nx×2nx and 0 < Ph(ξ̂
+) ∈

R2nx×2nx such that for all p ∈ Nψ:

0 >

⎡⎣ −Pp(ξ̂) (∗) (∗)
−SGp(ξ, ξ̂) −He

{S Jp(ξ)
}
+ γI −D (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I

⎤⎦
+
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0
]T

Pp(ξ̂
+)
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0
]
. (14)

Then, closed-loop system (4) is stochastically stable and (Z ,S ,D)-γ-dissipative.
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Proof. The formulation (6) can be rearranged as follows

Q(zk, dk) =

[
ζk
dk

]T([ 0 (∗)
SGp(ξ, ξ̂) He

{S Jp(ξ)
}
+D

]
−
[

GT
p (ξ, ξ̂)ZT

1
JT
p (ξ)ZT

1

][ Z1Gp(ξ, ξ̂) Z1 Jp(ξ)
])[ ζk

dk

]
.

Following (13), it yields

E
{

ΔVk + γdT
k dk −Q(zk, dk)

}
= ζ̄T

k Ψk ζ̄k, (15)

where ζ̄k = col(ζk, dk) = col(x̂k, ek, dk),

Ψk =
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂)
]T

Pp(ξ̂
+)
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂)
]

+
[ Z1Gp(ξ, ξ̂) Z1 Jp(ξ)

]T[ Z1Gp(ξ, ξ̂) Z1 Jp(ξ)
]

+

[ −Pp(ξ̂) (∗)
−SGp(ξ, ξ̂) −He

{S Jp(ξ)
}
+ γI −D

]
. (16)

Furthermore, from (15), it follows that ∑T
k=0 ζ̄T

k Ψk ζ̄k = ∑T
k=0 E{ΔVk} −∑T

k=0 E{Q(zk, dk)−
γdT

k dk} = E{VT+1 −V0} −∑T
k=0 E{Q(zk, dk)} − γ ∑T

k=0 E{dT
k dk}. As a result,

• for dk ≡ 0, it follows from (13) that

E{ΔVk} = ζT
k
(
ĀT

p (ξ̃, ξ, ξ̂)Pp(ξ̂
+)Āp(ξ̃, ξ, ξ̂)− Pp(ξ̂)

)
ζk.

Thus, condition Ψk < 0 guarantees that E{ΔVk} < 0, i.e., E{ΔVk} ≤ −ε‖ζk‖2 for a
small scalar ε > 0. Sum up the inequality from 0 to T, it holds that

E

{
T

∑
k=0

∥∥ζk
∥∥2
∣∣∣ζ0, φ0

}
≤ 1

ε
E{V0} < ∞,

for all T > 0, then, closed-loop system (4) with dk ≡ 0 is stochastically stable by
Definition 1.

• for V0 = 0 (i.e., x0 ≡ 0), with the inequality Ψk < 0, it has E{VT+1}−∑T
k=0 E{Q(zk, dk)}

−γ ∑T
k=0 E{dT

k dk} < 0 or ∑T
k=0 E{Q(zk, dk)} − γ ∑T

k=0 E{dT
k dk} > E{VT+1} ≥ 0.

With the two particular cases, Ψk < 0 implies the stochastic stability and (Z ,S ,D)-γ-
dissipative performance of the closed-loop system (4). Finally, the condition 0 > Ψk can be
converted into (14) according to the Schur’s complement.

The following lemma aims to address the encountered relaxation problem for Lemma 3
with fewer dimensions of slack matrix variables and the asymmetric range of mismatch
level (8).

Lemma 4. For given a double-parameterized LMI in the following form:

0 > Φ0 +
r

∑
i=1

ξiHe
{

ΓT
1 Φ1,iΓ2

}
+

r

∑
i=1

ξ̂iΦ2,i

+
r

∑
i=1

r

∑
j=1

ξi ξ̂ jHe
{

ΓT
1 Φ3,ijΓ2

}
+

r

∑
i=1

r

∑
j=1

ξ̂i ξ̂ jΦ4,ij (17)

subject to

α� ≤ ξ̃� = ξ� − ξ̂� ≤ ᾱ�, (18)

6
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where Φ0 ∈ Rp×p, Φ1,i ∈ Rn1×n2 , Φ2,i ∈ Rp×p, Φ3,ij ∈ Rn1×n2 , and Φ4,ij ∈ Rp×p; Γ1 ∈ Rn1×p

and Γ2 ∈ Rn2×p are full rank matrices, the condition (17) subjected to (18) holds if there exist
matrices Sij = ST

ij ∈ Rn1×n1 and Ni ∈ Rn1×n2 such that:

0 > Φ̄ii, (19)

0 >
1

r− 1
Φ̄ii +

1
2
(
Φ̄ij + Φ̄ji

)
, (20)

for all (i, j) ∈ Nξ × (Nξ \ {i}), where

Φ̄ij =

⎡⎢⎢⎣ Φ0 + He
{

ΓT
1
(
Φ1,i + Φ3,ij

)
Γ2
}
+ Φ2,i + Φ4,ij +

r

∑
�=1

α�ᾱ�Ω
T
1 S�iΓ1 (∗)[

(Φ1,� + Φ3,�i + Ni)Γ2 − 1
2 (α� + ᾱ�)S�iΓ1

]
�∈Nξ

[
S�i

]d

�∈Nξ

⎤⎥⎥⎦.

Proof. Since ∑r
�=1 ξ̃� = 0, it stands that ∑r

�=1 ∑r
i=1 ξ̃� ξ̂iHe

{
ΓT

1 NiΓ2
}
= 0 by which we can

rewrite (17) as

0 > Φ0 + Z(ξ̂) + He

{
r

∑
�=1

ξ̃�Γ
T
1 Z�(ξ̂)Γ2

}
, (21)

where Z(ξ̂) = ∑r
i=1 ξ̂i

(
He
{

ΓT
1 Φ1,iΓ2

}
+ Φ2,i

)
+∑r

i=1 ∑r
j=1 ξ̂i ξ̂ j

(
He
{

ΓT
1 Φ3,ijΓ2

}
+ Φ4,ij

)
, and

Z�(ξ̂) = Φ(1)
� + ∑r

i=1 ξ̂iΦ
(3)
�i + ∑r

i=1 ξ̂i Ni. In accordance with the above expressions and

He

{
r

∑
�=1

ξ̃�Γ
T
1 Z�(ξ̂)Γ2

}
= He

{(
ξ̃ ⊗ Γ1

)T
[
Z�(ξ̂)Γ2

]
�∈Nξ

}
,

the condition (21) is rearranged as

0 >

[
I

ξ̃ ⊗ Γ1

]T
⎡⎣ Φ0 + Z(ξ̂) (∗)[

Z�(ξ̂)Γ2

]
�∈Nξ

0

⎤⎦[ I
ξ̃ ⊗ Γ1

]
. (22)

Meanwhile, since (19) implies S�i = ST
�i < 0, it follows from (18) that

0 ≤
r

∑
i=1

ξ̂i

r

∑
�=1

(
ξ̃� − ᾱ�

)(
ξ̃� − α�

)
ΓT

1 S�iΓ1

=

[
I

ξ̃ ⊗ Γ1

]T

⎡⎢⎢⎢⎢⎢⎣
r

∑
i=1

ξ̂i

(
r

∑
�=1

α�ᾱ�Γ
T
1 S�iΓ1

)
(∗)[

− 1
2

r

∑
i=1

ξ̂i(α� + ᾱ�)S�iΓ1

]
�∈Nξ

[
r

∑
i=1

ξ̂iS�i

]d

�∈Nξ

⎤⎥⎥⎥⎥⎥⎦
[

I
ξ̃ ⊗ Γ1

]
. (23)

Supported by the S-procedure, the combination of (22) with (23) ensures

0 >

⎡⎢⎢⎢⎢⎢⎣
Φ0 + Z(ξ̂) +

r

∑
i=1

ξ̂i

(
r

∑
�=1

α�ᾱ�Γ
T
1 S�iΓ1

)
(∗)

[
Z�(ξ̂)Γ2 − 1

2

r

∑
i=1

ξ̂i(α� + ᾱ�)S�iΓ1

]
�∈Nξ

[
r

∑
i=1

ξ̂iS�i

]d

�∈Nξ

⎤⎥⎥⎥⎥⎥⎦
=

r

∑
i=1

r

∑
j=1

ξ̂i ξ̂ jΦ̄ij, (24)

7
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and by Lemma 1, condition (19) implies (24).

Remark 2. To deal with presence of two different types of parameters in (17) induced by the
mismatch phenomenon, Lemma 4 presents a relaxation technique based on parameterized-LMIs
given in Lemma 1 to avoid the excessive use of free slack matrix variables. Compared to other
relaxation techniques for the mismatch phenomenon, our work concerns asymmetric range of
mismatch level (18) and reduces dimensions of slack matrix variables by introducing constant
matrices Γ1 and Γ2.

With the help of Lemma 4, the following theorem presents a parameter-independent
criteria from Lemma 3

Theorem 1. Suppose that there exist scalars γ > 0 and β, matrices 0 < Ppi = PT
pi ∈ R2nx×2nx ,

0 < X = XT ∈ R2nx×2nx , 0 < X̄ = X̄T ∈ R2nx×2nx , Kpi ∈ Rnu×nx , Lpi ∈ R
nx×ny , Npi ∈

R
(2nx+nd)×(2nx+nd+nq), and Sp�i = ST

p�i ∈ R(2nx+nd)×(2nx+nd) such that the following inequalities
hold for all p ∈ Nψ, (m, i, j) ∈ Nξ ×Nξ ×Nξ \ {i}:

0 < Ppii, 0 <
1

r− 1
Ppii +

1
2
(

Ppij + Ppji
)
, (25)

0 < X−Λpii, 0 <
r

r− 1
X− 1

r−1
Λpii− 1

2
(
Λpij+Λpji

)
, (26)

0 > Φ̄pmii, 0 >
1

r− 1
Φ̄pii +

1
2
(
Φ̄pij + Φ̄pji

)
, ∀j ∈ Nξ \ {i}, (27)

XX̄ = I, (28)

where Λpij = ∑s
q=1 πpqPqij,

Φ̄pmij =

⎡⎢⎢⎣Φ(0)
p +He

{
ΓT

1

(
Φ(1)

pi +Φ(3)
pij

)
Γ2

}
+Φ(2)

pi + Φ(4)
pij +

r

∑
�=1

α�ᾱ�Γ
T
1 Sp�iΓ1 (∗)[ (

Φ(1)
p� + Φ(3)

p�i + Npi

)
Γ2 − 1

2 (α� + ᾱ�)Sp�iΓ1

]
�∈Nξ

[
Sp�i

]d

�∈Nξ

⎤⎥⎥⎦,

Φ(0)
p = diag

(
0, γI−D,−I,−X̄ + βdiag

(
0, Ta,pTT

a,p + Tb,pTT
b,p

)
,−βI

)
,

Φ(1)
pi =

⎡⎢⎣ −GT
piST GT

piZT
1 0 AT

pi
−GT

piST GT
piZT

1 0 AT
pi

−JT
piST JT

piZT
1 0 ET

pi

⎤⎥⎦, Φ(2)
pi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 (∗) (∗)
0 0 0 0 0
0 0 0 0 0[

Api 0
−Api 0

]
0 0 0 0[

Ya,p Ya,p
0 Sb,qKpi

]
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ(3)
pij =

⎡⎢⎣ −KT
pj H

T
piST KT

pjH
T
piZT

1 CT
piL

T
pj KT

pjB
T
pi − CT

piL
T
pj

0 0 CT
piL

T
pj −CT

piL
T
pj

0 0 DT
piL

T
pj −DT

piL
T
pj

⎤⎥⎦,

Φ(4)
pij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Ppij 0 0 (∗) 0
0 0 0 0 0
0 0 0 0 0[

BpiKpj−LpjCpi 0
−BpiKpj + LpjCpi 0

]
0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, ΓT

1 =

⎡⎢⎢⎣
I 0
0 I
0 0
0 0

⎤⎥⎥⎦ ∈ R
n1×(2nx+nd),

Γ2 =

⎡⎣ 0 I 0 0
0 0 I 0
0 0 0 I

⎤⎦ ∈ R
(nd+nq+nx)×n1 , n1 = 4nx + nd + nq.

8
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The closed-loop system (4) is (Z ,S ,D)-γ-dissipative with the following observer and control gains

Kp(ξ̂) =
r

∑
i=1

ξ̂iKpi, Lp(ξ̂) =
r

∑
i=1

ξ̂iLpi. (29)

Proof. Following the definition of the Lyapunov function (12), Pp(ξ̂+) = ∑r
i=1 ∑r

j=1 ξ̂+i ξ̂+j Ppij

which in turn leads to Λp(ξ̂) = ∑r
i=1 ∑r

j=1 ξ̂i ξ̂ jΛpij. Then, by (25) and Lemma 1, it follows
that Λp(ξ̂) > 0 and Pp(ξ̂+) > 0. Furthermore, with the help of (26) and Lemma 1, it has
∑r

i=1 ∑r
j=1 ξ̂+i ξ̂+j

(
X−Λpij

)
> 0 and then

Pp(ξ̂
+) =

r

∑
i=1

r

∑
j=1

ξ̂+i ξ̂+j Λpij < X = X̄−1.

Thus, condition (14) satisfies if

0 >

⎡⎣ −Pp(ξ̂) (∗) (∗)
−SGp(ξ, ξ̂) −He

{S Jp(ξ)
}
+ γI −D (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I

⎤⎦
+
[

Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0
]TX̄−1[ Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0

]
. (30)

Moreover, the inequality (30) is guaranteed by Schur’s complement

0 >

⎡⎢⎢⎣
−Pp(ξ̂) (∗) (∗) (∗)

−SGp(ξ, ξ̂) −He
{S Jp(ξ)

}
+ γI −D (∗) (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I (∗)
Āp(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0 −X̄

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−Pp(ξ̂) (∗) (∗) (∗)

−SGp(ξ, ξ̂) −He
{S Jp(ξ)

}
+γI−D (∗) 0

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I (∗)
Ap(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0 −X̄

⎤⎥⎥⎦

+ He

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣

0 0
0 0
0 0

Ta,p Tb,p

⎤⎥⎥⎦[Ua(k) 0
0 Ub(k)

]⎡⎢⎢⎢⎣
YT

a,p 0
YT

a,p KT
p (ξ̂)YT

b,p
0 0
0 0

⎤⎥⎥⎥⎦
T⎫⎪⎪⎪⎬⎪⎪⎪⎭.

Then, buy using Lemma 2, the above inequality can be deduced from

0 >

⎡⎢⎢⎢⎢⎢⎣
−Pp(ξ̂) (∗) (∗) (∗) (∗)

−SGp(ξ, ξ̂) −He
{S Jp(ξ)

}
+γI−D (∗) (∗) (∗)

Z1Gp(ξ, ξ̂) Z1 Jp(ξ) −I 0 0
Ap(ξ̃, ξ, ξ̂) Ep(ξ, ξ̂) 0 −X̄ + βTp 0

Up(ξ̂) 0 0 0 −βI

⎤⎥⎥⎥⎥⎥⎦. (31)

where Yp(ξ̂) =

[
Ya,p Ya,p
0 Yb,pKp(ξ̂)

]
and Tp = diag

(
0, Ta,pTT

a,p + Tb,pTT
b,p

)
. It can be rear-

ranged in the form of (17) as follows:

0 > Φ(0)
p +

r

∑
i=1

ξiHe
{

ΓT
1 Φ(1)

pi Γ2

}
+

r

∑
i=1

ξ̂iΦ
(2)
pi

+
r

∑
i=1

r

∑
j=1

ξi ξ̂ jHe
{

ΓT
1 Φ(3)

pij Γ2

}
+

r

∑
i=1

r

∑
j=1

ξ̂i ξ̂ jΦ
(4)
pij . (32)

9
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In accordance with Lemma 4, the inequality (32) is ensured by (27) and (28).

The following algorithm based on SLPMM [34] is presented to solve the set of condi-
tions in Theorem 1.

Remark 3. In contrast with the cone complementarity linearization (CCL) method [35], the
SLPMM [34] can provide the non-decreasing sequence {Ji}i∈N and also point out feasibility of the
problem. Consequently, we can define a terminal condition by giving a threshold for decrease of
sequence {Ji}i∈N when the problem is infeasible.

4. Illustrative Examples

The simulation part is carried out using MATLAB software, MathWorks, Inc., Seoul,
Korea. The LMI problem (33) and (34) in Algorithm 1 are numerically solved by LMI solver
in Robust Control Toolbox, MATLAB. To use the LMI solver, we program our code using the
MATLAB script files in a computer with i7 CPU Intel and 16 GB RAM DDR4. The coding
program can be found in https://github.com/thanhbinh91/Ro-OuFe-DissCtrl-MJFSs,
accessed on 2 October 2022.

Algorithm 1 SLPMM to solve Theorem 1

1: Initialize matrices X0 and X̄0 that satisfy

LMIs: (25)–(27) and
[

X0 (∗)
I X̄0

]
≥ 0. (33)

2: Chose a sufficiently small real number ε > 0 for the error bound of the solution
precision and i = 0. For given positive scalars β > 0 and γ > 0.

3: for i = i + 1 do
4: Find Ppij, Kpi, Lpi, X∗ and X̄∗ by solving the optimization problem:

J ∗i = min Tr{XiX̄ + X̄iX}
s.t. (25), (26), (27) and

[
X (∗)
I X̄

]
≥ 0. (34)

5: if
∣∣J ∗i − 4nx

∣∣ < ε then
6: return Ppij, Kpi, Lpi as a solution of Theorem 1 with respect to performance γ .
7: end if

8: Find σ∗ = minσ∈[0,1]Tr
{(

Xi+σ
(
X∗−Xi

))
(X̄i+σ(X̄∗−X̄i))

}
.

9: if σ∗ 
= 0 then
10: Xi+1 = (1− σ∗)Xi + σ∗X∗, X̄i+1 = (1− σ∗)X̄i + σ∗X̄∗,
11: else return set of conditions in Theorem 1 is infeasible.
12: end if
13: end for

Example 1 (Improved results). Without jumping parameter (no Markov process), let us consider
the truck-trailer system, used in [13,26,36] with the sampling time Ts = 2.0 [s], length between
center of truck and trailer to connection point and maximum velocity �1 = 5.5 [m] and �2 = 2.8 [m],
and maximum velocity v = −1.0 [m/s].

10
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A1 =

⎡⎢⎢⎢⎢⎢⎣
1− vTs

�1
0 0

vTs

�1
1 0

(vTs)2

�1
vTs 1

⎤⎥⎥⎥⎥⎥⎦, A2 =

⎡⎢⎢⎢⎢⎢⎣
1− vTs

�1
0 0

vTs

�1
1 0

δ
(vTs)2

�1
δvTs 1

⎤⎥⎥⎥⎥⎥⎦, B1 = B2 =

⎡⎢⎢⎣
vTs

�2
0
0

⎤⎥⎥⎦,

E1 = E2 =

⎡⎣ 0
0.2
0.1

⎤⎦, C1 =

⎡⎣ 1 0 1
0 2 1
1 2 2

⎤⎦, C2 =

⎡⎣ 1 0 1
0 1 1
1 1 1

⎤⎦,

D1 = D2 = 0, G1 =
[

0.1 0 0
]
, G2 =

[ −0.1 0 0
]
,

H1 = H2 = −0.1, J1 = 3, J2 = −3, (35)

where δ = 0.01/π. There are two fuzzy-basis functions defined as

ξ1(�k) =

{(
sin(�k)− δ�k

)
/
(
(1− δ)�k

)
, �k 
= 0,

1, �k = 0,

ξ2(�k) = 1− ξ1(�k), (36)

where �k is premise variable is established as follows:

�k = x2,k +
v · Ts

2�2
x1,k.

with x1,k and x2,k stands for sampling at time step k of the angle difference between the truck and
trailer, and the angle of trailer, respectively.

The above setups aim at a particular case where the output-feedback controller is
synthesized with the matched fuzzy-basis functions, i.e., no mismatched phenomenon
(αi ≡ 0 set in (8)), to asymptotically stabilize the truck-trailer system (36). Accordingly, the
comparison of the smallestH∞ performance indices obtained by [12,13,26] and Theorem 1
is shown in Table 1. To create the comparison, LMI-based conditions in Theorem 1 are
solved by Algorithm 1 with β = 0.02. It is shown in Table 1 that Theorem 1 provides much
improved results (the lower the better) in comparison with preceding works [12,13,26].
For more details, Theorem 1 releases about 98%, 51% and 15% better H-index than that
of [12,13,26], respectively. With γmin = 3.18, Algorithm 1 provides the following solution

F1 =
[
2.921 −1.568 0.076

]
, F2 =

[
2.152 −0.510 0.034

]
,

L1 =

⎡⎣ 0.9655 −1.0692 0.2855
−0.8570 −0.6130 0.7821

0.2938 −1.1399 0.5619

⎤⎦, L2 =

⎡⎣ 0.9205 −0.9312 0.2135
−0.6855 −0.1369 0.6408
−0.2100 −0.2520 0.4045

⎤⎦.

In accordance with the following initial setups

x̂0 =
[

0 0 0
]T , x0 =

[
0.2 −0.3 0.1

]T , dk = e−0.3k sin(k), for k ≥ 0,

state behavior and control input are shown in Figure 1a–d, in which Figure 1a–c present the
asymptotic convergence of x1,k, x2,k and x3,k. Moreover, the observed states x̂1,k, x̂2,k and x̂3,k
asymptotically track the real x1,k, x2,k and x3,k, respectively. In addition, Figure 1d shows
the behavior of control input that proves the well-defined control problem. Eventually,
Figure 1 shows the availability and validity of the observer and controller gains designed
by Theorem 1 for (35),

11
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Table 1. A comparison of minimumH∞-performance indices in Example 1 between several studies.

Methods [12] [Th. 3] [26] [Th. 1] [13] [Th. 3.4] [23] [Th. 9] [24] [Cor. 1] Th. 1

ᾱi = αi = 0 6.27 4.77 3.63 3.54 Infeasible 3.18

0 10 20 30 40 50
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-0.4

-0.2

0

0.2

0.4

(a) (b)

0 10 20 30 40 50

-0.5

0
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(c)

0 10 20 30 40 50

-1

-0.5

0

0.5

1

(d)

Figure 1. Time evolution of the truck-trailer system (35): (a–c) real and observed state and (d) control
input.

Example 2 (Relaxed practical example). Let us consider the following single-link robot arm
system with plant mode ψ(t) ∈ Nψ = {1, 2, 3}, adopted in [37]:⎧⎨⎩ϕ̈(t) =−M(ψ(t))ga�

J(ψ(t))
sin(ϕ(t))− cv ϕ̇(t)

J(ψ(t))
+

1
J(ψ(t))

u(t) + d(t),

y(t) = ϕ(t),
(37)

where ϕ(t), ϕ̇(t), y(t), u(t), and d(t) stands for the angle, angular velocity, the controlled torque
input, the load torque of the arm, and the measurement noise, respectively; and payload mass
M(ψ(t)), inertia moment J(ψ(t)), arm length � = 0.5 [m], the gravity acceleration ga = 9.81
[m/s2], and viscous friction coefficient cv = 2.0 [N.s/m]. Then, by defining x(t) = [x1(t) x2(t)]T =
[ϕ(t) ϕ̇(t)]T and d(t) and performing the same process with the sampling time Ts = 0.1 as
in [38,39], we can obtain the following discrete-time T-S fuzzy model for (37) with p ∈ Nψ =
{1, 2, 3}:

12
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Ap1 =

⎡⎣ 1 Ts

−Ts Mpga�

Jp
1− Tscv

Jp

⎤⎦, Ap2 =

⎡⎣ 1 Ts

− δTs Mpga�

Jp
1− Tscv

Jp

⎤⎦,

Bp1 = Bp2 =

[
0
Ts
Jp

]
, Ep1 = Ep2 =

[
0
Ts

]
,

Cp1 = Cp2 =
[

1 0
]
, Dp1 = Dp2 =

[
0 0.05

]
,

Gp1 = Gp2 =
[

1 0
]
, Hp1 = Hp2 = 0.1, Jp1 = Jp2 = 0,

where δ = 0.01/π, M1 = M(ψ(t) = 1) = 1.0 [kg], M2 = M(ψ(t) = 2) = 1.5 [kg],
M3 = M(ψ(t) = 3) = 2.0 [kg], J1 = J(ψ(t) = 1) = 1.0 [kg.m/s2], J2 = J(ψ(t) = 2) =
2.0 [kg.m/s2], and J3 = J(ψ(t) = 3) = 2.5 [kg.m/s2]. In addition, for x1,k ∈ (−π, π), we define
FBFs as

ξ1(x1,k) =

⎧⎪⎨⎪⎩
sin(x1,k)− δx1,k

(1− δ)x1,k
, x1,k 
= 0,

1, x1,k = 0,

ξ2(x1,k) = 1− ξ1(x1,k),

and the mismatched FBFs were given by ξ̂1 = ξ1(x̂1,k) and ξ̂2 = 1− ξ̂1.

Furthermore, the transition probabilities are chosen similarly [23]:

[
πpq

]
p,q∈Nψ

=

⎡⎣ 0.8 0.1 0.1
0.2 0.7 0.1
0.5 0.2 0.3

⎤⎦. (38)

Based on the setup as [23], a comparison of (Z = −0.01,D = 5,S = 0.2)-dissipative
andH∞-performance indices obtained by Algorithm 1 and preceding studies, are shown
in Table 2. Intuitively, Theorem 1 provides higher dissipative indices (the higher the
better) compared to [23] and lower H∞-indices compared to [23,24]. In particular, since
mismatched level increases ᾱi = −αi = 0.1, 0.2, our advantages are shown clearly, i.e., at
ᾱi = −αi = 0.2 [23] failed to obtain a solution and our result is 18% less than that of [24]. In
the case where ᾱi = −αi = 0.2, Theorem 1 provides a solution for dissipative performance
at γmin = 3.64:[

F11 F21 F31
F12 F22 F32

]
=

[
0.9701 −1.5750 2.1238 −6.2871 4.0832 −7.5086
−2.7655 −2.2250 −5.4372 −6.0615 −7.0027 −7.5363

]
,

[
L11 L21 L31
L12 L22 L32

]
=

⎡⎢⎢⎣
1.2946 1.5475 1.8345
−1.3860 −1.0266 −0.4478
1.5122 1.4357 1.3936
0.4437 1.1962 1.2943

⎤⎥⎥⎦.

With x̂0 =
[

0 0 0
]T , x0 =

[
0.2 −0.3 0.1

]T , and dk = e−0.4k sin(k), the time
evolution of the single-link robot arm is shown in Figure 2. As can be seen in the Figure 2a,b,
real state variables asymptotically converge, and the observed error converges to zero as
time increases. Despite sudden changes in system mode, the closed-looped systems are
asymptotic stable.
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Table 2. Three performance levels for different mismatch phenomena ᾱi = −αi in (8).

Dissipativity H∞ Performance

Th. 1 [23] [24] Th. 1 [23] [24]

ᾱi = −αi = 0 (matched) 4.65 4.30 - 1.61 1.85 1.71

ᾱi = −αi = 0.1 4.38 2.89 - 2.42 5.13 3.64

ᾱi = −αi = 0.2 3.64 Infeasible - 4.78 Infeasible 5.78
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Figure 2. Time evolution of single-link robot arm (37): (a,b) real and observed state variables and (c)
control input, (d) system mode.

5. Conclusions

This paper addresses the problem of observer-based dissipative control design for
MJFSs under model uncertainties and a mismatched phenomenon entailed by the output-
feedback scheme of fuzzy systems. The (Z ,S ,D)-dissipative conditions first were formu-
lated in terms of multiple parameterized matrix inequalities. In light of proper relaxation
techniques, the conditions were cast into parameter-independent bilinear matrix inequali-
ties. Then we proposed an LMI-based algorithm to obtain the observer-based dissipative
controller. The key success of our work is an achievement of much less conservative dis-
sipative performance compared to other studies via the refined relaxation process and
double-fuzzy summation Lyapunov function. The better results and validity of the LMI-
based algorithm were verified via two numerical examples with different mismatch levels.
In light of the success, future works should take asynchronous phenomena of operation
mode between controller and plant into account to cover more realistic problems.
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Abstract: To highlight the advantages of autonomous vehicles (AVs) in modern traffic, it is necessary
to investigate the sensing requirement parameters of the road environment during the vehicle braking
process. Based on the texture information obtained using a field measurement, the braking model
of an AV was built in Simulink and the ride comfort under typical braking scenarios was analyzed
using CarSim/Simulink co-simulation. The results showed that the proposed brake system for the
AV displayed a better performance than the traditional ABS when considering pavement adhesion
characteristics. The braking pressure should be controlled to within the range of 4 MPa~6 MPa on a
dry road, while in wet road conditions, the pressure should be within 3 MPa~4 MPa. When steering
braking in dry road conditions, the duration of the “curve balance state” increased by about 57.14%
compared with wet road conditions and the recommended curve radius was about 100 m. The slope
gradient had a significant effect on the initial braking speed and comfort level. Overall, the ride
comfort evaluation method was proposed to provide theoretical guidance for AV braking strategies,
which can help to complement existing practices for road condition assessment.

Keywords: autonomous vehicles; texture information; ride comfort; multiple logistic regression
analysis; braking scenarios

MSC: 9M37; 65K99

1. Introduction

With the significant improvement of intelligent technology, the concept of human-
oriented experiences in the field of transportation continues to develop [1]. To highlight
the advantages of autonomous vehicles (AVs) in modern traffic under the precondition
of driving safety, ride comfort will become a hot topic in the development of AVs in the
future [2]. Ride comfort mainly depends on the vehicle body vibration frequency and road
condition (e.g., textural properties of road surfaces, road distresses and road geometry
features). The emergency braking, steering process, continuous braking and other operation
actions, which are influenced by road geometry features, will have an impact on passenger
psychology and physiology. Thus, it is impossible to accurately quantify ride comfort.

So far, many researchers have carried out studies on ride comfort from different
perspectives, such as CAE simulation, laboratory tests and human physiology [3,4]. In 1935,
the ride comfort of a vehicle was first studied from the perspective of an evaluation index,
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including Janeway’s J evaluation standard, Dickman’s K coefficient method, M. J. Griffin’s
“total ride value method” and the widely used ISO-2631 standard. A comparative analysis
of existing comfort indexes is shown in Table 1. To improve the ride comfort of vehicles, an
assisted driving system was developed using a simulation method to appropriately modify
the vehicle driving path so that it was better adapted to the driving road environment [5].
With ADAMS/car software, the dynamic simulation analysis of the vehicle was carried out
by Tang [6]; then, the root mean square value of the weighted acceleration at various speeds
was calculated to analyze the impact of vehicle speed on road comfort for a certain road
contour. For a more practical study of human comfort, Kumar recommended evaluating
the railway ride comfort index according to the ISO-2631 standard [7]. Genser [8] proposed
a methodology that included a high-precision road surface model and accurate virtual
chassis acceleration data to detect an AV’s ride comfort under different situations (such as
preventable, over-, or underestimated) by utilizing the thresholding procedure. According
to current research results [9–12], ride comfort is the result of a complex human–vehicle–
road–environment system, which is mainly influenced by factors such as the vehicle braking
time, vehicle body parameters and road traffic environment. Therefore, there is still no
unified evaluation standard for the ride comfort of vehicles, especially for AVs.

Table 1. Comparative analysis of existing comfort indexes.

Index Content Drawback

Janeway comfort factor J

J = 1
6 Af3; f = 1 ∼ 6 Hz

J = Af2; f = 6 ∼ 20 Hz
J = 20Af; f = 20 ∼ 60 Hz

where A is the vibration amplitude and f is the
vibration frequency.

Vibration time is not taken into account.

Dieckmann index K
K = a·f 2,

where a is the vibration amplitude and f is the
vibration frequency.

Only the case of unidirectional vibration is considered.

Spering index Wz

Wz = 2.7× 10
√

Z3 f 2F( f ),
where Z is the vibration amplitude, f is the

vibration frequency and F(f ) is the frequency
correction factor.

Pavement performance is not considered.

IRI comfort threshold value

Connection between IRI (International
Roughness Index) and comfort threshold value

is established by considering the human
psychological response.

The threshold is statistically based on the probability
distribution of the experimental data, which has certain

limitations and a singularity.

Braking deceleration

According to ergonomic theory, taking into
account the degree of influence of the size of the
deceleration on the braking strength, the comfort

level is divided into four levels.

This method is used more often in braking and
steering control.

ISO 2631-1 driving comfort standard

Comfort is evaluated using the root mean square
value of acceleration within a 1~80 Hz vibration

frequency range

aw =
[

1
T

∫ T
0 a2

wz(t)dt
]1/2

kwp < 9.0,

VDV =
[∫ T

0 a4
wz(t)dt

]1/4
kwp > 9.0,

where kwp is the vibration waveform peak
coefficient and aw is the weighted acceleration

root-mean-square.

The variable influences of vehicle type and its
dynamics parameters, dry and wet road conditions,

vehicle speed and road type are neglected.

Vehicle-integrated vibration comfort

By combining the vehicle driving scenario, road
texture parameters and vehicle dynamics

parameters, an integrated vibration comfort was
proposed based on the international standard

ISO 2361/CD-1991 “Total Ride Value Method”.

ISO regulations do not take into account the impact of
vibration below 1 Hz on passenger comfort, and a

longer period in the vibration environment does not
reflect the actual objective feeling.

With the rapid development of driverless technology, the comfort issues caused by
the overall vibration of a vehicle body and road unevenness have gradually become hot
topics. More and more researchers are focusing on improving aspects of autonomous
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vehicles, such as the suspension system [13,14], seats [15] and tires [16]. In order to improve
ride comfort on a rough road, a genetic algorithm was used to minimize the vibration
level of the system and a heuristic vehicle suspension parameter modeling method was
proposed [17]. Taking the driving simulator as the test object, Tatsuno [18] studied the
application of autonomous functions, such as lane change control, to reduce the vehicle
body vibration and discussed the effect of reducing the exposure of the vehicle body
vibration on improving the ride comfort. Considering the importance of ride comfort
under emergency braking, a vehicle emergency braking system model was established
based on CarSim/Simulink co-simulation and a fuzzy control strategy with vehicle safety
distance as the index was proposed [19]. Recently, the brake control system design of
autonomous vehicles has become quite mature. For an autonomous vehicle, the collision
avoidance systems, which contain a longitudinal layered brake controller, slide-mode
controller and lane changing/steering controller, can automatically maintain a safe distance
and emergency braking behavior [20,21]. European research institutes demonstrated and
studied driving stability based on an autonomous vehicle control system and put forward
many new concepts, including lane detection and stability discrimination [22,23]. As
one of the main influential factors that affect ride comfort, the increased rutting potential
because of the AV movement for strictly defined wheel paths can be expected to induce
hydroplaning and road safety issues because of water accumulation along the wheel
paths [24]. Regarding this problem, related research toward a smarter detection of friction
in real-time was recently reviewed [25]. Meanwhile, some recent studies about intelligent
tires focused on AVs, which can communicate the road status in real time and provide
parameters for adjusting vehicle driving behavior. For example, Matsuzaki [26] designed a
scheme for identifying the friction coefficient of tire–road contact surfaces during driving,
while Gupta developed an experimental setup to identify the road surface in real time [27].

However, most of the studies ignored problems such as the influence of road adhesion
characteristics on ride comfort during the braking process [28]. As is well known, the
adhesion characteristics of the road surface directly affect the skid resistance performance,
which has become the main objective factor that affects the braking stability of AVs [29–31].
In the braking process of AVs, even though both the anti-skid braking system (ABS) and
traction control system (TCS) play a role, phenomena such as speed fluctuation, vehicle
rollover and slippage can still occur, which indicates that the braking system of traditional
vehicles is not suitable for the ride comfort of AVs. Thus, in order to forecast ride comfort
during realistic braking strategies, it is necessary to investigate the sensing characteristics
of road information in the braking process of AVs based on the vehicle dynamics theory.

In view of the above research shortcomings, we aimed to propose an evaluation
method for ride comfort to provide theoretical guidance for braking strategies and a braking
system design for autonomous vehicles according to theoretical analysis and numerical
simulation. First, pavement texture information, as the main objective influencing factor
of the ride comfort of AVs, was directly obtained using field testing. The braking comfort
index in the international standard ISO was applied to evaluate and classify the ride
comfort level of AVs under typical braking scenarios in this study. Based on the change
rule of comfort level, reasonable strategies to improve the braking comfort of AVs were
proposed. The predictive model of an autonomous vehicle comfort index was obtained
through multiple logistic regression analysis. An evaluation system for the ride comfort
of AVs was established and the sensing requirement parameters of road information
based on ride comfort were determined in this study. The chapter structure of this study
is shown in Figure 1.
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Figure 1. Research framework of this study.

2. Field Testing

2.1. Field Testing of Road Surface Texture Information

Dense-graded asphalt concrete (AC-13) was selected in this study, and the gradation
design of asphalt mixtures was shown in Table 2. Then, the AC asphalt pavement (Figure 2a)
had its surface textures captured on site using the research team’s automated close-range
photogrammetry system (ACRP system) [32]. After preprocessing the gathered photos, the
reverse reconstruction method was applied to rebuild the three-dimensional (3D) images
of the surface texture of the asphalt pavement, and the 3D model of the surface texture
of the asphalt pavement was constructed (Figure 2b). After preprocessing the reverse-
reconstructed 3D model of the surface texture of the asphalt pavement with GeoMagic and
MeshLab, it was possible to extract 3D elevation data for the surface texture of the road
from the 3D model, which contained (x, y, z) 3D coordinate values (Figure 2c).

Table 2. Gradations for AC asphalt pavement.

Components

Sieve Size (mm) Passing Rate of Each Sieve (%)

0.075 0.15 0.3 0.6 1.18 2.36 4.75 9.5 13.2 16

AC-13 6 10 13.5 19 26.5 37 53 76.5 95 100
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(a) (b) (c)

Figure 2. Acquisition of road surface texture information: (a) testing range of the pavement texture;
(b) reconstructed digital pavement model; (c) 3D coordinate values.

2.2. Calculation of the Dynamic Friction Coefficient

A power spectral distribution (PSD) solver was created in MATLAB using the PSD
calculation model in the Persson friction theory and the 3D texture data (x, y, z) discussed
in Section 2.1 [33–35]. Considering the random variables of the fractal road surface as
discrete points, additional filtering, windowing and sampling window compensation of
the coordinate values were required in the procedure of resolving the power spectrum [36].

In order to create a wet pavement surface, water was uniformly sprayed on the dry
surface until the concave asperities were sealed with water [37,38]. The PSD of the wet and
dry pavement surfaces were both calculated, as shown in Figure 3a.

C(q) =
1

(2π)2

∫
〈h(x)h(0)〉eiqxdx (1)

where x is the wave vector direction; h(0) is the surface elevation of the origin point; h(x)
is the surface elevation with the average elevation as the starting point; <...> represents
the average across the plane; q is the wave vector, which could be obtained using the
wavelength λ; and e is a universal constant.
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Figure 3. Acquisition of asphalt pavement texture information: (a) 2D-PSD of the pavement texture;
(b) dynamic friction coefficient curves.

In fact, when there is a water film on the road surface, the traditional method of
calculating the PSD is not applicable, and the calculated road surface PSD is already
inaccurate. This is because there is a water film barrier between the tire and the road,
where the water film has a great lifting effect on the tire when the vehicle is driving at a
high speed [39], and thus, there will be a larger untouched area between the vehicle tire
rubber and the fractal surface of the asphalt pavement, which is one of the reasons for the
significant decrease in the anti-skid performance of a vehicle during rainy weather.
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The untouched area between the vehicle tire rubber and the fractal surface of the
asphalt pavement is defined as the “anti-skid non-contribution area”. The asphalt pavement
surface texture morphology and the “anti-skid non-contribution area” under dry and wet
conditions were visualized, as shown in Figure 4. It can be seen that during the driving
process in the wet condition, there is an unconnected area between the tire and the road
due to the water stasis barrier and the water film lifting action, and these areas are called
“anti-skid non-contribution areas”.

(a) (b) (c)

Figure 4. Pavement texture morphology visualization under different conditions: (a) dry pavement;
(b) wet pavement; (c) anti-skid non-contribution area.

The friction coefficient curve, which was obtained using the Persson friction coeffi-
cient formula, varied with speed under different pavement conditions (dry and wet) (see
Figure 2b). The curve tended to be gentler above 40 km/h, indicating that at relatively
high speeds, the actual tire–road contact area stabilized. The friction coefficient of the wet
state of the road surface was lower than that of the dry state, and the higher the speed, the
greater the difference between the two states’ friction coefficients (dry and wet pavement).

2.3. Peak adhesion Coefficient of the Asphalt Pavement

Referring to the tire hydroplaning model built by the research group [40,41], the
dynamic friction coefficient curves (in Figure 3b) between the tire and pavement under
various road conditions were integrated into the built hydroplaning model. We set the
tire’s internal pressure to 240 kPa and the load to 3.922 kN. We also set the tire slip rate
to approximately 15% and changed the rolling speed of the tire model while keeping
other parameters constant. After that, the peak adhesion coefficient curve for various road
conditions was determined, as shown in Figure 5.
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Figure 5. Peak adhesion coefficient curves of asphalt pavement.

The peak adhesion coefficient of the road surface gradually dropped with increasing
vehicle speed, and the peak adhesion coefficient of the road surface was distributed as
a convex parabola. The fundamental reason for this was that the tire’s rolling radius
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expanded at high speed, which increased the contact area between the tire and the road
surface. Therefore, the adhesion force provided by the road surface was reduced. Obviously,
the peak adhesion coefficient on a wet road was slightly lower than that on a dry road,
which was mainly determined by the contribution rate of the road surface’s texture.

3. Braking Model

3.1. Braking Control Model

Based on the various peak adhesion coefficients of the road surface determined in real
time, the appropriate braking deceleration was obtained. The required brake deceleration
was converted into the desired brake pressure threshold by the anti-brake system model.
Through the use of a brake pedal simulator, the electronic control unit (ECU) system of an
AV determines the braking pressure. After determining the present brake situation, the
brake actuator sends a brake signal to the pressure controller. To complete the vehicle’s
autonomous braking procedure after a quick response, the brake system on the wheel sends
the actual braking force to the tire in real time.

3.1.1. Braking Algorithm

The braking model of an AV was mainly adopted to calculate the wheel cylinder
braking force under the condition of safe braking, that is, the calculation of the braking
pressure Pdes of the wheel cylinder. By considering driving straight on a road under good
conditions, a mathematical model of forward braking dynamics was established. We set
the vehicle deceleration behavior on a horizontal road in the model and ignored ramp
resistance Fi. On this basis, air resistance and rolling resistance were considered. However,
the slope resistance, a small amount of the acceleration resistance and the internal friction of
the system were neglected [42]. Combined with Newton’s second law, the inverse braking
model for an AV was obtained:

Pdes =

∣∣∣mades +
1
2 CD Aρv2 + mg f

∣∣∣(
Tb f + Tbr

)
/rrPb

(2)

where Tbf and Tbr are the braking torques for the front and rear wheels, respectively; rr is
the tire rolling radius; and Pb represents the tire braking pressure.

According to the reverse braking model (Equation (2)) of an AV, the desired brake
pressure Pdes of the wheel cylinder was calculated. Then, the unit module of the reverse
braking model was created in MATLAB/Simulink for the following CarSim/Simulink
co-simulation, as shown in Figure 6a. The vehicle current speed v and pavement adhesion
coefficient μh obtained above were integrated into the braking model. Regarding safety
braking, the braking pressure Pdes of the required wheel cylinder could be calculated in
real time. The created braking model of an AV was integrated into CarSim to replace the
original braking model of a conventional vehicle.

In order to make the automatic steering behavior of an AV closer to the driver’s
operability, the adaptive braking control approach was implemented by the system to alter
the state of the vehicle in real time, which ensured that the vehicle would pass through the
curved section at the optimal speed along the optimal travel path (in Figure 6b). During
the steering process, the car drove at the ideal speed limit to ensure braking comfort and
safety. Under the optimized state of the permitted lateral offset distance, the car drove off
the curve with the shortest braking time to achieve the best braking effect according to the
ideal braking force based on road surface adhesion characteristics. The steering system
calculated the driving speed in real time to avoid exceeding the speed limit so that the
autonomous vehicle ran along the intended path.
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Figure 6. Brake system of the AV: (a) reverse brake control algorithm based on MATLAB/Simulink;
(b) schematic diagram for the steering braking control system.

3.1.2. Validation of the Braking Model

Simulink was used to build a model of the brake control algorithm based on the
proposed brake system for the AV. The precision of the brake system in comparison to the
conventional ABS brake system was then validated through co-simulation using CarSim.
An excellent road condition was used in the simulation, and a peak adhesion coefficient of
0.90 was chosen for the AC-13 asphalt pavement in a dry state. The initial driving speed
was set to 120 km/h at the start of braking, the throttle percentage was 0 degrees and the
simulation time step was 20 s.

The conventional ABS braking vehicle was subjected to a constant braking pressure of
10 MPa in order to reflect its maximum braking effectiveness. The autonomous car used
an adaptive braking control system to brake with the anticipated braking force depend-
ing on the characteristics of the adhesion of the road surface. The braking performance
curves of the vehicle under two scenarios were determined using the simulation results
and are displayed in Figure 7a,b. It is clear that the autonomous vehicle’s braking perfor-
mance surpassed that of the conventional ABS. The braking distance was decreased by
10.92 percent, while the braking time was lowered by 10.95 percent. It can be observed from
a comparison of the lateral acceleration–time curves for the two scenarios (in Figure 7c)
that the autonomous car had roughly consistent lateral acceleration while braking, whereas
a standard ABS vehicle had variable lateral acceleration.
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Figure 7. Braking performance analysis compared with a traditional vehicle: (a) speed–time curve;
(b) braking distance–time curve; (c) lateral acceleration curve.

The traditional ABS frequently switched between solenoid valves during the braking
process to maintain the tire slip rate within the ideal range of 10–20%. As a result, the tire
slip rate fluctuated more frequently without consideration of the road characteristics, which
led to extremely poor braking performance and a bad passenger experience. Based on the
road adhesion characteristics, the braking system of the autonomous vehicle calculated the
expected braking pressure at the real-time position and applied it to the tires so that the
vehicle drove with the optimal braking deceleration. The tire slip rate of the autonomous
vehicle was basically maintained at approximately 12.0% and the fluctuation range was
very small.

When the actual tire–road contact characteristics are taken into account in the braking
system of an AV, it can better reflect the vehicle braking stability requirements. It was found
that the braking system performance of the AV outperformed traditional ABS. The results
showed that the proposed braking system is suitable for AVs and has high accuracy.

In accordance with the aforementioned created autonomous vehicle model and pave-
ment model, the simulation analysis under various operating conditions was carried out in
CarSim. Meanwhile, the model written in MATLAB/Simulink was integrated into CarSim
to replace the original braking model (in Figure 8). In this study, the braking scenarios of
emergency braking and braking on curved and slope sections were analyzed in wet or dry
road conditions.
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Figure 8. Calculation diagram of the CarSim/Simulink co-simulation.

3.2. Modeling Parameter Settings

(1) Travel path modeling
The reference path, pavement geometry and pavement roughness attributes are key

elements of the pavement model in a simulation. As illustrated in Figure 9, the segmentation
approach was used to input the pavement’s linear key points coordinate data, converting
the created reference path into (x, y) coordinates to lessen the workload associated with
data entry. The pavement geometry properties (road width, number of lanes, elevation, etc.)
were mapped to the matching (x, y) coordinates in the CarSim pavement model database.
The adhesion coefficient of the continuous point on the road surface, which was acquired
in real time, was also imported.

Figure 9. Reference travel route setting.

(2) Vehicle parameters
We selected the common SUV type used in a city as the simulation vehicle model; the

vehicle body parameters are shown in Table 3. The specific aerodynamic parameters were
set in the simulation, including the vehicle’s windward surface area (the SUV vehicle was
taken to have an area of 3.3 m2) and air density (taken as 1.206 kg/m3). The vehicle tires
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acted as the only contact parts between the vehicle and the pavement. Theoretically, the
force generated from the tire–road interaction ensures the braking safety of the vehicle. To
make the vehicle simulation analysis comparable to a real-world situation, the adhesion
characteristic curve for the tire–road interaction calculated by our research group was
imported into CarSim [43].

Table 3. Parameter settings of the vehicle body.

Items Value Items Values

Vehicle mass 2257 kg Distance between the centroid
and front axis 1330 mm

Vehicle length 4475 mm Axle spacing 3140 mm
Vehicle width 2029 mm Roll inertia Ixx 846.6 kg·m2

Vehicle height 1966 mm Pitch inertia Iyy 3524.9 kg·m2

Centroid height 780 mm Yaw inertia Izz 3524.9 kg·m2

Due to the large difference between the autonomous vehicle and the traditional
manned vehicle in terms of the braking system, an algorithm for an autonomous vehicle
braking model was written using Matlab/Simulink co-simulation to ensure the simula-
tion accuracy. Then, the written model was imported into CarSim to replace the initial
braking model.

(3) Sensing parameter settings
The AEB (autonomous emergency brake) system of the autonomous vehicle was

simulated. The POP UP Windows subroutine was created using the CarSim interface to
display the car driving data using MATLAB. The engine speed, vehicle speed, throttle
position and brake percentage were among the selectable statistics. Additionally, the
effective maximum brake pressure of the wheel cylinder was divided by the present brake
pressure to get the braking percentage. Figure 10a displays a dynamic visualization of the
simulation findings.

(a) (b)

Figure 10. Simulation results of the dynamic visualization subroutine: (a) autonomous vehicle
braking parameters; (b) vehicle equipped with radar monitoring.

In the simulation, a short-range laser radar was utilized to detect automobiles and
pedestrians in proximity to the vehicle, and the long-range laser radar was customized to
detect the traffic situation in the distance. The two radars’ respective effective ranges were
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150 m and 30 m, and their horizontal viewing angles were 9 deg and 80 deg. Additionally,
Figure 10b illustrates that both of the two radars’ vertical viewing angles were 9 deg.

4. Braking Scenario Simulations

4.1. Emergency Braking on a Straight Road

If an autonomous vehicle is in an emergency during the driving process, in order to
avoid a collision, it is necessary to trigger the brake as soon as the vehicle sensor recognizes
the danger. Then, the braking force is continuously exerted on the wheel cylinder to stop
the vehicle as soon as possible. In the case of emergency braking, only considering safety
without passenger comfort, a 500 m long straight road was built in the simulation.

First, the braking effect of an SUV traveling at a speed of 120 km/h on a rainy day was
tested. The friction coefficient curve of the road surface calculated using the PSD power
spectral density of “anti-skid non-contribution area for skid resistance” on a rainy day was
imported. The obstacle ahead was set to be detected in the fourth second. Meanwhile,
the vehicle started emergency braking. At the beginning of the fourth second, a braking
pressure of 10 MPa was applied instantaneously, as shown in Figure 11.

(a) (b) (c)

Figure 11. Emergency brake simulation scene on a straight road: (a) constant speed; (b) emergency
brake; (c) stopped.

The vertical force of the front wheel rose suddenly while that of the rear wheel fell
suddenly. Meanwhile, the car body leaned forward. When the braking pressure was
applied instantaneously, the tires were quickly locked and then began to skid. Then, the
ABS of the vehicle began to operate and the vertical force curves of the wheels began
to oscillate repeatedly. Similarly, the simulation results with different braking pressure
settings of 8 MPa, 6 MPa, 4 MPa, 2 MPa, 1 MPa and 0.5 MPa were also calculated.

4.2. Steering Braking on a Curved Section

In the simulation, a 700 m long road with both straight and curved sections was
constructed. A 30 s simulation time was chosen. On both sides of the fictitious road, there
were signs indicating the speed limit, safety precautions and lane changes. The model
car initially moved at a constant speed of 100 km/h. In addition, the vehicle received a
long-range radar, camera and other sensors at the same time. The car could dynamically
identify the road surroundings while driving with sensors installed.

The road was identified by the sensors, and an automatic optimal cornering speed
was implemented to modify the brake cylinder pressure in real time. At the same time, the
lateral acceleration was not more than 0.35 g to ensure the stability of the vehicle when
turning. The braking simulation visual interface is shown in Figure 12. Additionally, the
adhesion coefficients for wet and dry roads were set to 0.60 and 0.90, respectively.
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(a) (b) (c) 

Figure 12. Brake simulation on a curved section: (a) constant speed; (b) steering deceleration;
(c) acceleration driving.

4.3. Braking Simulation on a Sloped Road

It is well known that there is frequent braking when driving uphill and downhill. The
vehicle brake can easily fail and there is a blind spot in the onboard camera. In order to
maintain a sufficient safety distance and braking comfort, the autonomous vehicle must
maintain enough distance in front before starting braking. Braking characteristics on a
sloped road were analyzed by considering passenger comfort during the vehicle braking
process in this study.

Based on the vehicle dynamics model mentioned above, four slope gradients (5◦, 10◦,
15◦ and 20◦) were selected in the simulation, taking the dry road condition with good skid
resistance as an example (the pavement peak adhesion coefficient was taken as 0.8065).
Keeping the other parameters constant, the scene visualization of braking on a sloped road
was obtained, as shown in Figure 13.

(a) (b) (c)

Figure 13. Brake simulation process on a sloped road: (a) uniform acceleration; (b) brake with a
certain deceleration; (c) stopped.

5. Results and Discussion

5.1. Evaluation Index of the Braking Comfort

The comfort index (CI) of AVs is specified in International Standard ISO 2631-1 [44].
Without considering the lateral movement, the calculation equation of the comfort index
can be simplified to

CI =

[
1
m

m

∑
i=0

a2
i

]1/2

(3)

where ai is the ith statistically determined acceleration value and m is the total number of
statistics. In successive simulation trials, the acceleration values were measured at equal
time intervals (Δt = 1 s), which is consistent with the statistical frequency of comfort (within
0.5 Hz~80.0 Hz). Six comfort levels were defined in accordance with the comfort index’s
range and the International Standard ISO 2631-1, as shown in Table 4. The comfort of
operating a vehicle lies between two comfort levels when the CI level ranges overlap.
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Table 4. Comfort evaluation level for autonomous vehicle braking.

Levels CI Range (m/s2) Description of Vehicle Comfort Color

0 >2.0000 Extremely uncomfortable
1 1.2500~2.5000 Very uncomfortable
2 0.8000~1.6000 Uncomfortable
3 0.5000~1.0000 Fairly uncomfortable
4 0.3150~0.6300 A little uncomfortable
5 <0.5000 Comfortable

5.1.1. Calculation of Braking Comfort Index

On a dry or wet road, the speed–time relationship was obtained according to the
simulation results. Then, the ride comfort level was evaluated for each different braking
scenarios according to Equation (3) and Table 4. Taking emergency braking on a straight
road as an example, the simulation results are as follows.

The calculation results of the comfort index of the autonomous vehicle during the
emergency braking process on dry and wet road conditions are shown in Tables 5 and 6.

Table 5. Comfort level of emergency braking on a dry road.

Time Interval
(s)

Comfort Index CIP with Different Braking Pressures (m/s2)

CI0.5 CI1.0 CI2.0 CI4.0 CI6.0 CI8.0 CI10.0

Δt1 5 5 5 5 5 5 5
Δt2 5 5 5 5 5 5 5
Δt3 5 5 5 5 5 5 5
Δt4 5 5 5 5 5 5 5
Δt5 5 4 3 2 1~2 1~2 1~2
Δt6 5 4 3 2 1~2 1~2 1~2
Δt7 5 4 3 2 1~2 1~2 1~2
Δt8 5 4 3~4 2 1~2 1~2 1~2
Δt9 5 4 3~4 2 5 5 5
Δt10 5 4 5 5 5 5 5
Δt11 5 4 3~4 5 5 5 5
Δt12 5 4 3~4 5 5 5 5
Δt13 5 4 3~4 5 5 5 5
Δt14 5 4 4 5 5 5 5
Δt15 5 4 5 5 5 5 5
Δt16 5 4 5 5 5 5 5
Δt17 5 4 5 5 5 5 5
Δt18 5 4 5 5 5 5 5
Δt19 5 4 5 5 5 5 5
Δt20 5 5 5 5 5 5 5
Δt21 5 5 5 5 5 5 5
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Table 6. Comfort level of emergency braking on a wet road.

Time Interval
(s)

Comfort Index CIP with Different Braking Pressure (m/s2)

CI0.5 CI1.0 CI2.0 CI4.0 CI6.0 CI8.0 CI10.0

Δt1 5 5 5 5 5 5 5
Δt2 5 5 5 5 5 5 5
Δt3 5 5 5 5 5 5 5
Δt4 5 5 5 5 5 5 5
Δt5 5 4 3 2 2 2 2
Δt6 5 4 3 2 2 2 2
Δt7 5 4 3 2 2 2 2
Δt8 5 4 3~4 2 2 2 2
Δt9 5 4 3~4 2 2 2 2
Δt10 5 4 3 2 2 2 2
Δt11 5 4 3~4 5 5 5 5
Δt12 5 4 3~4 5 5 5 5
Δt13 5 4 3~4 5 5 5 5
Δt14 5 4 4 5 5 5 5
Δt15 5 4 5 5 5 5 5
Δt16 5 4 5 5 5 5 5
Δt17 5 4 5 5 5 5 5
Δt18 5 4 5 5 5 5 5
Δt19 5 4 5 5 5 5 5
Δt20 5 4 5 5 5 5 5
Δt21 5 4 5 5 5 5 5

5.1.2. Evaluation of Ride Comfort Levels

(1) Emergency Braking on a Straight Road
From Tables 4 and 5, when the braking pressure was 0.5 MPa or 1.0 MPa, the ride

comfort was always in a good state within a specific braking time range (ΔT = 20 s), and the
comfort level was always 5 or 4. However, the vehicle braking behavior was not completed
at the end of 20 s, and its braking comfort was subsequently not evaluated. As the brake
pressure changed from 2 MPa to 10 MPa, the following was found:

• The comfort index CI of an autonomous vehicle on a dry road during the period
of constant speed (in the time domain of Δt1~Δt4) was within the range of 0–0.315,
indicating that straight travel at a certain safe speed with real-time perception of the
surrounding environment produced ride comfort that was suitable for the passenger’s
subjective feelings and provided a good riding experience. Due to the low coefficient
of adhesion on the wet road, the braking time of the vehicle under the same braking
pressure and same initial speed increased, and the braking distance increased in turn.
Compared with the dry road condition, braking comfort was poor and the passengers
were prone to fatigue.

• When the braking pressure was 2 MPa, the braking time was extended in the case of
an initial speed of 120 km/h. During the period of 5–19 s, the comfort level was 4,
meaning that the passengers felt slightly uncomfortable but the comfort was within an
acceptable range. However, the longer braking time caused the ABS to start frequently
and cause passenger fatigue, and there was a high probability of collision and rear-end
collision in the emergency braking environment.

• When the braking pressure changed from 4 MPa to 10 MPa, the comfort level was 5
during the constant speed driving phase. During the brake deceleration process, the
comfort level appeared in the range of level 2 (brake pressure was equal to 4 MPa) or
level 1~level 2 (brake pressure was more than 4 MPa), indicating that the vibration
frequency of the vehicle during braking was large, and the uneven distribution of the
vertical pressure of the left and right tires resulted in a large fluctuation.

(2) Steering braking on a curved section
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As for the sections with different curve radii, the evaluation of ride comfort level in
dry and wet road conditions was carried out. The following was found:

• The best curve radius in terms of comfort was 200 m at a speed of 100 km/h, and the
CI index was less than 4. This meant that the comfort met the passenger requirement,
and the advantage of the AV was demonstrated.

• Compared with the wet road condition, a dry road could provide greater lateral
friction because of the good adhesion, which mostly counteracted the centrifugal
force generated by the vehicle on the curved section. Thus, the ride comfort during
the steering process was greatly improved, and thus, the duration of the “curve
balance state” on the dry road lasted longer, i.e., an increase of approximately 57.14%
compared with the wet road condition, as shown in Figure 14. In addition, the “curve
balance state” was defined as the duration of ride comfort level 5 during the steering
braking process.

• As the radius of the curve increased, the braking comfort of the vehicle during cor-
nering was relatively good. This was because the curve length increased with the
increased radius of the curved section. The autonomous vehicle used an adaptive
control system to navigate the curved segment at the best speed; for curves with a
bigger radius, a speed buffering process was in place. Road alignment design might
be based on the comfort evaluation results.
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Figure 14. The duration of the “curve balance state” with various radii.

From Figure 14, the “curve balance state” duration slightly increased with the radius
increase when the curve radius R was ≤100 m, but the variation was not significant. When
the radius R was >100 m, the “curve balance state” duration increased significantly. This
shows that the curve radius was a significant factor that influenced the ride comfort of AVs
during the steering braking process. In order to improve the ride comfort of the vehicle,
it is recommended that the curve radius R should be ≥100 m and the brake deceleration
should start at least 100 m from the entrance of the curved section.

According to Figure 13, when the curve radius R was ≤100 m, the “curve balancing
state” duration increased somewhat with the radius increase, but the difference was not
statistically significant. The “curve balance state” time greatly increased when the radius R
was >100 m. This demonstrated how the curve radius had a big impact on how comfortable
an AV will ride when steering and stopping. It is advised that the curve radius R should be
≥100 m and the brake deceleration should commence at least 100 m from the beginning of
the curved segment in order to increase the ride comfort of the vehicle.

(3) Braking on a sloped road
According to the simulation results of the comfort level under different braking speeds

and slope gradients, the change law of vehicle comfort was analyzed. The following
was found:
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• When the slope gradient i = 10◦ and the initial speed was 80 km/h, or when the slope
gradient i = 20◦ and the initial speed was 60 km/h, the ride comfort level was not
greater than 3, indicating that the road slope gradient had a significant effect on the
initial braking speed and comfort level. Compared with the slope gradient of 10◦, the
ride comfort was poor for a slope with a gradient of 20◦, which was consistent with
the vehicle braking dynamics characteristics.

• Under the conditions of a small slope gradient and low initial speed (such as i = 10◦
and v0 = 60 km/h) or a large slope gradient and high initial speed (such as i = 20◦ and
v0 = 80 km/h), after perceiving obstacles ahead, because the frictional force on the
road surface was insufficient to counteract the inertial force generated by the vehicle
body mass, the vehicle started to drive at a uniform acceleration (a = g*sin(i)). Then,
the safe braking distance was sensed dynamically and the automatic control mode
was activated to adjust the wheel cylinder pressure. Braking deceleration started at the
fifth second. In order to prevent the vehicle from rolling over on the sloped road, the
vertical pressures of the front and rear tires were automatically controlled to achieve a
stable state. At this stage, the vehicle generated a large vibration frequency, and thus,
the comfort was poor, with an evaluation level of 2.0.

• As the vehicle mass and the position of the mass center were the same, the braking
process on a slope mainly depended on the comprehensive effect of the slope and the
initial speed. In a similar braking environment, an AV needs to automatically adjust
the wheel cylinder braking pressure according to the initial speed and road slope
gradient to adapt to the road alignment to achieve a safe braking behavior.

5.2. Prediction of the Ride Comfort
5.2.1. Multiple Logistic Regression Model

A logistic regression model was used to study the relationship between multiple
independent and dependent variables and establish a probabilistic prediction model for
discrimination or classification. Logistic regression models are used in a wide range of
fields, including machine learning, most medical fields [45] and the social sciences [46].
For a logistic regression model, the most prominent advantage is its simplicity and
strong interpretability [47,48].

In order to fit the actual probability of occurrence, there must be a correlation between
the selected independent variable and the dependent variable, and each variable is mu-
tually exclusive. Compared with multiple linear regression, logistic regression analysis
has the advantages of requiring a low number of assumptions and having a high model
accuracy. Therefore, a logistic regression model was applied to build the comfort predic-
tion model of the AV. First, a single-factor analysis was performed for each variable. On
this basis, the factors with statistical significance were selected for multivariate uncondi-
tional logistic regression analysis, and the optimal model was obtained using the stepwise
regression method [49].

Based on the variation range of comfort levels (from level 1 to level 5) under different
braking scenarios in Section 5.1.2, level 5 as the highest dependent variable result was
selected as the reference group, and the braking comfort of the AV was regarded as a
binary dependent variable yi, where yi = 0 represented level 5 and yi = 1 represented level
1~level 4. In addition, each independent variable X = (X1, X2, . . . , Xn) was regarded as a
quantitative or qualitative variable in the logistic regression model, which was applicable
to both continuous and discrete variables [50]. Thereby, the probability P(Yi) that the ith

comfort level occurred was denoted as Pi:

Pi = P(yi = 1|X1, X2, . . . , Xn ) (4)

The expression of the binary logistic regression model was as follows:

log it(Pi) = ln
(

Pi
1− Pi

)
= α + β1X1i + . . . + βnXni (5)
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Then, the probability for different comfort levels was

Pi =
exp(α + β1X1i + . . . + βnXni)

1 + exp(α + β1X1i + . . . + βnXni)
(6)

where α is a constant and the βi are the regression coefficients representing the correlation
between the independent and dependent variables. In addition, Pi/(1 − Pi) = exp(β) is
the odds ratio or the relative risk, which is an important index to measure the influence
degree of the independent variable on the dependent variable. For each additional unit
of the independent variable, the probability of a certain comfort level of the dependent
variable will increase by exp(βi) units.

In this study, the Hosmer–Lemesshow was used to test whether the theoretical fre-
quency distribution predicted by the logistic regression model conformed to the actual
theoretical frequency distribution. In addition, the model was globally tested according to
the conditional parameter likelihood ratio test and non-significant variables were excluded.

5.2.2. Prediction Model of the Ride Comfort

Based on Section 5.2, the discrete comfort index of each time interval (Δt = 1.0 s) under
different braking pressures was acquired. In addition, the braking pressure (X1i) and time
(X2i) were the only considered independent variables. Obviously, the tire force during the
braking process showed a strong nonlinear characteristic. The binary classification logistic
regression analysis was applied to obtain the prediction model of ride comfort for the AV
on a straight road during an emergency braking process, which can be expressed as

log it
(

Pj
)
= f (P, Δt, k1) (7)

where Pj is the probability of the jth comfort level (j represents the four levels of ride
comfort, that is level 1~level 4), P is the vehicle braking pressure, Δt is the time interval
of acceleration acquisition during the vehicle braking process, and k1 is the influence
coefficient related to the sensor and vehicle type.

The multiple logistic regression model was applied to predict the probability of differ-
ent ride comfort levels. The regression analysis results are shown in Table 7. Among them,
the t-test was the significance test of a single independent variable. The constants and the
significance level PL of the independent variables were less than 0.05, indicating that the
coefficient of each variable was significant as shown in Table 8.

Table 7. Results of the logistic regression analysis on a dry road.

Prediction Model Regression Coefficient Standard Error t PL > |t| 95% Confidence Interval

Level 2

Constant −1.5291 0.6514 −2.35 0.019 −2.8060~−0.2523

P 0.2545 0.0835 3.05 0.002 0.0909~0.4181

Δt −0.1429 0.4649 −3.07 0.002 −0.2341~−0.0518

Level 3

Constant −0.7336 0.8356 −0.88 0.038 −2.3713~−0.9041

P −0.3676 0.2001 −1.84 0.015 −0.0542~0.3509

Δt −0.0722 0.0708 −1.02 0.031 −0.2110~0.0667

Level 4

Constant −0.3744 0.7033 −0.53 0.029 −1.7528~1.0039

P −0.8316 0.2528 −3.29 0.001 −1.3270~−0.3362

Δt 0.0571 0.0479 1.19 0.023 −0.0368~0.1510
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Table 8. Hausman test result of the prediction model.

Model Test Coefficient chi2 df Snell R-Squared PL > chi2 Significance

Level 2 −2.561 6

0.2209

1.000 For Ho

Level 3 −2.376 6 1.000 For Ho

Level 4 −1.503 6 1.000 For Ho

Level 5 14.951 3 0.002 Against Ho

Note: df is the number of degrees of freedom.

According to the regression analysis results in Table 5, the comfort evaluation model
of the AV during emergency braking on a straight road under a dry road condition was
obtained as follows:

log itPj=Level2 = −1.5291 + 0.2545Pi − 0.1429Δti
log itPj=Level3 = −0.7336− 0.3676Pi − 0.0722Δti
log itPj=Level4 = −0.3744− 0.8316Pi + 0.0571Δti

(8)

Based on Equation (8), it can be seen that the influence of braking pressure on ride
comfort in the level 2 model showed a linear growth trend, while the level 3 and level
4 models showed non-linear decreasing trends with increasing braking pressure. The-
oretically, when the brake pressure is too high, the vertical pressure of the tire will be
generated instantly, which makes passengers feel highly uncomfortable. However, if the
braking pressure is too small to complete the braking process within the effective time, this
inevitably leads to a collision and a rear-end accident. Therefore, it is suggested that the
braking pressure should be controlled to within the range of 4~6 MPa. Considering the
comfort and safety during the vehicle braking process, the braking pressure on a wet road
should be within 3~4 MPa. Similarly, the prediction models under other braking scenarios
were also obtained as follows:

• Emergency braking on a wet road:

log itPj=Level1 = −3.5729 + 0.3758Pi − 0.2051Δti
log itPj=Level2 = −1.6798 + 0.1484Pi − 0.1522Δti
log itPj=Level3 = −0.8187− 0.3722Pi − 0.0872Δti
log itPj=Level4 = −0.1853− 0.7846Pi + 0.0198Δti

(9)

• Steering braking on a curved section:

(a) On a dry road:

log itPj=Level3 = 1.1966− 0.0203Ri − 0.1391Δti
log itPj=Level4 = 0.7108− 0.0070Ri − 0.1115Δti

(10)

(b) On a wet road:

log itPj=Level3 = 1.4319− 0.0208Ri − 0.1447Δti
log itPj=Level4 = 1.0882− 0.0088Ri − 0.1153Δti

(11)

• Braking on a sloped road:

log itPj=Level2 = −0.9641 + 0.1028ii + 0.6780v0i − 0.2537Δti
log itPj=Level3 = 1.0819− 0.0228ii + 0.5295v0i − 0.2454Δti
log itPj=Level4 = 0.7255− 0.0204ii + 1.1721v0i − 0.2801Δti

(12)
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Considering the influence of the road surface adhesion characteristics on the vehicle
braking behavior, the sensing parameters of the road environment for vehicle comfort
under different braking scenarios were obtained, as shown in Table 9.

Table 9. Sensing parameters of the road environment based on ride comfort.

Braking Scenarios Road Conditions
Evaluation Function of

Comfort Level
Prediction Model

Sensing Parameters of
Road Environment

Emergency braking
Dry road

logit (Pj) = f (P, Δt, k1)
Equation (8) Brake pressure,

adhesion characteristicsWet road Equation (9)

Steering braking
Dry road

logit (Pj) = f (R, Δt, k2)
Equation (10) Radius, travel path and

adhesion characteristicsWet road Equation (11)

Braking on slope
section Dry road logit (Pj) = f (i, v0, Δt, k3) Equation (12)

Slope gradient,
adhesion characteristics

and initial speed

Note: k2 and k3 are influence coefficients related to traffic environment, road conditions, weather, etc.

6. Conclusions

In this study, based on the braking characteristics of an AV and sensing requirements,
the brake model of an AV was built in Simulink. Then, with the consideration of the
asphalt pavement adhesion characteristics, the ride comfort during emergency braking on
a straight road and steering braking on curved and sloped sections were analyzed using
CarSim/Simulink co-simulation. According to multiple logistic regression analysis, the
ride comfort prediction models for the AV under different braking scenarios were built in
this study. The main research results are as follows:

(1) Based on the Persson friction theory model, the concept of the “anti-skid non-
contribution area” was proposed by considering the water stasis barrier and the water film
lifting action. When the speed exceeded 40 km/h, the dynamic friction coefficient curve
tended to be mild, suggesting that the actual tire–road contact area stabilized when the
speed was relatively high. The peak adhesion coefficient of asphalt pavement gradually
decreased with increased vehicle speed, which was distributed in a convex parabola.
Moreover, the peak adhesion coefficient on a wet road was slightly lower than that on a dry
road, which was mainly determined by the contribution rate of the road surface texture.

(2) By considering the road surface adhesion characteristics, the brake control algo-
rithm model was built in Simulink. Compared with the traditional ABS, the proposed
brake system of the autonomous vehicle had better performance, where the braking time
was shortened by 10.95% and the equivalent braking distance was decreased by 10.92%
under the same braking condition.

(3) During the period of constant speed, the comfort index for emergency braking
on a dry road was within the range of 0–0.315, that is, level 5, while the comfort level
appeared in the range of level 2 (P = 4 MPa) or level 1~level 2 (P ≥ 4 MPa) during the
brake deceleration process. It was suggested that the braking pressure should be controlled
within the range of 4 MPa~6 MPa on a dry road, while on a wet road, the pressure should
be within 3 MPa~4 MPa.

(4) As for steering braking on a curved section, the comfort level was negatively
correlated with the radius R of the curve, indicating that the ride comfort was better as the
radius was greater. The “curve balance state” was defined as the duration of ride comfort
level 5 during the steering braking process. On a dry road, the duration of the “curve
balance state” increased by approximately 57.14% compared with wet road conditions.
Considering the passenger comfort requirements and road conditions, the recommended
radius of the curved road should be about 100 m.

(5) Compared with the slope gradient of 10◦, the ride comfort was poor on a slope
with a gradient of 20◦, which was consistent with the vehicle braking dynamics character-
istics. When the initial speed was constant, the probability of obtaining level 2 gradually
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increased with the increase in the slope gradient, while comfort at level 3 and level 4 had a
negative correlation.

Further, the sensing system for an AV should be improved to ensure braking com-
fort by considering the road environment parameters, such as the road surface adhesion
characteristics, road alignment and weather. Moreover, the simulation method is suitable
for different types of tires and vehicles. Due to the limited paper length, a typical SUV
vehicle was selected as the vehicle model. However, the braking principles for different
types of autonomous vehicles (such as buses and trucks (especially heavy trucks)) are
different. Thus, the specific braking strategies for different types of tires and vehicles under
unmanned conditions will be further investigated in the following research. Meanwhile,
the proposed model will be integrated with this innovative mobility pattern in the fol-
lowing research. The proposed ride comfort evaluation method can be referred to when
building the following AV model, such as the braking model, braking strategies under
typical braking scenarios and influence on braking stability of the anti-skid road surface.
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Abstract: To solve the problem of crane anti-swing, fuzzy PID is a common method. However, the
parameter configuration of fuzzy PID requires a lot of time and effort from professionals. Based on
this, we introduce the LSO algorithm and add the stray operator, which effectively improves its global
search performance. By combining SLSO and fuzzy PID and comparing them with other methods,
this paper confirms that even without the targeted optimization by professionals, the optimization
algorithm can find the appropriate parameter configuration for fuzzy PID which can be effectively
used in the crane anti-swing problem.
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1. Introduction

Fuzzy logic control provides a system theory method for experts to construct lan-
guage information and convert it into control strategies, which can solve many complex
control problems that cannot establish accurate mathematical model systems, so it is an
effective method to deal with imprecision and uncertainty in reasoning system and control
systems [1–5]. Because of this, the parameter setting of fuzzy control has always depended
on the personal ability of experts.

PID control is widely used in various fields because of its advantages of simple struc-
ture, strong stability, and convenient adjustment [6–10]. As the core content of control
system design, PID parameter tuning is the key factor to determine the control effect.
In general, PID parameter tuning can be divided into theoretical calculation tuning and
engineering tuning. The former is mainly based on the mathematical model of the system
and determines the controller parameters through theoretical calculation, but it still needs
to be adjusted and modified on site. The latter mainly adjusts the parameters manually ac-
cording to field operation experience. Because operator experience is not easy to accurately
describe, various semaphores and evaluation indicators in the control process are not easy
to quantitatively express, the adjustment process is not controllable, and the optimization
effect is extremely dependent on personal ability.

Overhead cranes are indispensable in the construction of bridges, docks, and other
buildings. An overhead crane is a typical underactuated system. During the usage, because
the sling cannot fully control the load, the swing of the load may collide with other objects.
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At present, an overhead crane must be operated by experienced workers. However, due to
the inaccuracy of manual operation, it is still impossible to avoid safety accidents. Therefore,
the construction industry needs to design a stable and efficient anti-interference controller
for the bridge crane system and realize automatic control of the bridge crane system. There
are many studies in this field [11–14].

There are many examples of the combination of fuzzy control and PID [15–17], among
which Sun et al. applied it to anti-swing control of an overhead crane, and achieved good
control results [18]. This avoids the problem of the parameter optimization of PID, but
also ushers in new problems. The parameter optimization of fuzzy control is more difficult
than PID. This not only requires optimization personnel to have rich practical experience
but also requires certain knowledge of fuzzy mathematics, which undoubtedly raises the
application threshold of fuzzy control.

In 2016, the lion swarm optimization algorithm was proposed [19]. The lion swarm
optimization algorithm is a nature-inspired algorithm based on the special lifestyle of lions
and their cooperative behaviors [20]. Compared with some algorithms, the lion swarm
optimization algorithm is a new meta-heuristic algorithm, which has the characteristics of
simple operation, fast convergence speed, and a small amount of calculation. Subsequently,
LSO has been continuously optimized or applied in various fields [21–24]. Although LSO
has the characteristics of fast convergence speed and a small amount of calculation, it is
still easy to fall into local optimization to a certain extent. Strengthening the algorithm is
very important for the optimization performance of complex systems, and there are many
papers worthy of reference in this regard [25–29].

PID does not perform well in the control of overhead cranes due to the difficulty in
handling the control of nonlinear systems. After the introduction of fuzzy PID, although
the x-performance is improved, the dependence of fuzzy PID on expert experience limits
its control performance and generalization capability. To improve the performance of
the fuzzy PID controller, we proposed an SLSO algorithm-based fuzzy PID controller
for overhead crane systems. The contribution can be summarized as follows: (1) a stray
operation is introduced to improve the LSO algorithm, which can enhance the population
diversity and further reduce the risk of falling into local optimization, to improve the
convergence accuracy of the algorithm. (2) Adaptive parameter adjustment based on
the SLSO algorithm is designed to eliminate the dependency on experts. In addition,
the effectiveness of adaptive fuzzy parameter configuration was verified via anti-swing
experiments of the overhead crane.

This paper is divided into six sections. The Section 1 is a general introduction. Sec-
tion 2 elaborates on the theoretical model and control formulation of an overhead crane.
Section 3 introduces the LSO algorithm and our improvement, and conducts a comparison
experiment with other algorithms on the test function. Section 4 describes how the SLSO
algorithm is combined with fuzzy PID and applied to the control of overhead cranes.
Section 5 gives the results and analysis of the simulation experiments. Section 6 provides a
summary of this paper and an outlook for future work.

2. Introduction of the Overhead Crane System Model

As shown in Figure 1, the control system controls the horizontal movement of the
trolley on the bridge, and the movement and swing of the load can only be indirectly
controlled by controlling the movement of the trolley.

According to Euler Lagrange method, the dynamic model of an overhead crane is as
follows:

(ml + mc)
..
x + mll(

..
θ cos θ −

.
θ

2
sin θ) = u (1)

ml cos θ + mll
..
θ + ml g sin θ = 0 (2)
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where x and θ denote the displacement of the trolley and the swing angle of the load, ml
and mc, respectively, represent the mass of the load and the trolley, l is the length of the
sling, u is the control force exerted on the trolley, and g is the acceleration of gravity.

Setting
.
x = x1,

..
x = x2,

.
θ = x3,

..
θ = x4, the following differential equations can be

obtained by transformation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

.
x1 = x2
.
x2 = ml g cos x3 sin x3+mll

.
x2

3 sin x3+u
ml+mc−ml cos2 x3.

x3 = x4
.
x4 = mll

.
x2

3 cos x3 sin x3+(ml+mc)g sin x3+u cos x3
l(ml+mc−ml cos2 x3)

(3)

Figure 1. The structure diagram of an overhead crane.

3. The Stray Lion Swarm Optimization Algorithm

This section will employ many symbols, and their meanings are shown in Table 1.

Table 1. The nomenclature list.

Symbols/Abbreviations Meaning

xk
i the i-th individual in the k-th generation population

pk
i the historical best position of the i-th individual from the 1st to the k-th generation

gk the best position of the k-th generation population
pk

c the individual randomly selected from the k-th generation lioness group
pk

m the individual randomly selected from the k-th generation lion group
q,γ random value, q ∼ N(0, 1), γ ∼ U(0, 1)

α f ,αc disturbance factor
f k[i] the value of the stray individual at the i-th dimension in the k-th generation

3.1. Standard Lion Swarm Optimization Algorithm

In order to search for better solutions, the Lion King will conduct a range search based
on the historical optimal solution. The formula for updating the position is as follows:

xk+1
i = gk(1 + γ‖pk

i − gk‖) (4)

A lioness randomly selects another lioness to cooperate with, and the formula for
updating the position is as follows:

xk+1
i =

pk
i + pk

c
2

(1 + α f γ) (5)
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There are three updating strategies for young lions, namely follow the lioness, follow
the lion king, or leave the location of the group to search for the updated location in reverse.
The formula is as follows:

xk+1
i =

⎧⎪⎪⎨⎪⎪⎩
gk+pk

i
2 (1 + αcγ), 0 ≤ q ≤ 1

3
pk

m+pk
i

2 (1 + αcγ), 1
3 < q ≤ 2

3
gk+pk

i
2 (1 + αcγ), 2

3 < q ≤ 1

(6)

where xk
i refers to the i-th individual in the k-th generation population; γ is a random

number generated according to the normal distribution N(0, 1); pk
i is the historical best

position of the i-th individual from the 1st to the k-th generation; gk is the best position of the
k-th generation population; pk

c is randomly selected from the k-th generation lioness group;
pk

m is randomly selected from the k-th generation lion group; q is the uniform random value
generated according to the uniform distribution U [0, 1]; gk = low + up− gk; low and up
are the minimum value and maximum value of each dimension within the range of lion
activity space; α f and αc are the disturbance factor. The calculation method is as follows:

α f = 0.1(up− low)× exp (−30t
T

)
10

(7)

αc = 0.1(up− low)× (
T − t

T
) (8)

where t is the current number of iterations and T is the maximum number of iterations.

3.2. Stray Lion Swarm Optimization Algorithm

Although LSO has the advantages of high search efficiency and fast convergence
speed, it still cannot solve the problem where swarm intelligence can easily fall into local
optimization. In the LSO, most individuals will iterate with the lion king as the core, so it is
difficult to escape when they fall into the local optimal solution.

In this paper, a stray individual is introduced as optimization interference, which can
effectively avoid falling into local optimal solutions and obtain better optimization results
on the premise of ensuring the population size.

3.2.1. Stray Operation in SLSO

The stray individual introduced in this paper deviates from the algorithm as far as
possible in scope. At the same time, to avoid the individual falling into an extremely bad
state, it is necessary to introduce a certain random quantity to ensure the effect. The formula
for each generation of the stray individual is as follows:

f k[i] = ((up[i]− low[i])× γ + 2low[i] + up[i]− gk[i])/2 (9)

where f k[i] is the value of the stray individual at the i-th dimension in the k-th generation.
up[i]/low[i] is the upper/lower limit at the i-th dimension. gk[i] is the value of the lion
king at the i-th dimension in the k-th generation.

3.2.2. Iteration Strategy of the Lion Swarm in SLSO

To avoid the negative impact of dissociated individuals on the population, this paper
sets a participation probability. When the probability is met, the cubs and females will be
updated according to the new formula. In general, this probability is set to 0.1. Formula (11)
is the new iterative strategy of the female lion, and Formula (12) is the new iterative strategy
of the young lion.

xk+1
i =

pk
i + f k

2
(10)
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xk+1
i =

⎧⎪⎪⎨⎪⎪⎩
gk+ f k

2 , 0 ≤ q ≤ 1
3

xk
i + f k

2 , 1
3 < q ≤ 2

3
xk

i + f k

2 , 2
3 < q ≤ 1

(11)

where f k is the stray individual in the k-th generation. xk+1
i = low + up− xk

i .

3.2.3. Convergence Proof of SLSO

The SLSO algorithm is improved based on the LSO algorithm, and this paper first
makes a proof of the convergence of the LSO algorithm. The proof refers to reference [30].

(1) Markov chain model of the LSO algorithm

The position update of each individual is obtained by Gaussian sampling, where the
position update distribution of the lion king is xi(t + 1) ∼ N(g, |pi, g|2) .

The position update distribution of the lioness is xi(t + 1) ∼ N( Pi+Pc
2 , α2

f ).
The position update distribution of the young lion is as follows:

xi(t + 1) ∼

⎧⎪⎨⎪⎩
N( g+pi

2 , α2
c ), q < 1/3

N( pc+pi
2 , α2

c ), 1/3 ≤ q < 2/3
N( g+pi

2 , α2
c ), 2/3 ≤ q < 1

In which q = rand [0,1).
To illustrate the Markov chain model of the LSO algorithm, the following definitions

and mathematical descriptions are given.

Definition 1. Lion swarm state and state space. The set of all states in the pride constitutes the
state space of the pride, denoted as follows:

|s = (x1, x2, · · · , xi, · · · xN)|xi = (xi1, xi2, · · · , xid, · · · , xiD), 1 ≤ i ≤ N, 1 ≤ d ≤ D

Definition 2. State transfer of individuals, For ∀xi ∈ s, xj ∈ s, the lion is transferred from state xi
to state xj in one step, denoted as Ts(xi) = xj.

Theorem 1. Transfer probability of the LSO algorithm:

P(Ts(xi) = xj) =

⎧⎨⎩
Pm(Ts(xi) = xj), lion− king
Pf (Ts(xi) = xj), lioness
Pc(Ts(xi) = xj), young− lion

Proof. The corresponding one-step transfer probabilities are different because of the
different ways to update the positions of the three lions. The lions’ positions can be
viewed as a set of points in the hyperspace, and the position update process is a point set
transformation in the hyperspace. For computational convenience, let the changed point
set obey a uniform distribution U(−1,1) so that the transfer probability of the male lion can
be obtained. The transfer probability of the lion king is shown as follows:

Pm(Ts(xi) = xj) =

{
1

2(|g−pi |) , xj ∈ [g−
∣∣∣g− pi

∣∣∣, g+
∣∣∣g− pi

∣∣∣]
0, esle

(12)
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The transfer probability of the lioness is shown as follows:

Pm(Ts(xi) = xj) =⎧⎨⎩ 1
2α f (|pc−pi|) , xj ∈ [ pi+pc

2 − α f

∣∣∣∣pc − pi

∣∣∣∣, pi+pc
2 + α f

∣∣∣∣pc − pi

∣∣∣∣]
0, esle

(13)

The transfer probability of the young lion is shown as follows:

Pc(Ts(xi) = xj) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2αc(|g−pi |) , xj ∈ [ pi+g
2 − αc

∣∣∣g− pi

∣∣∣, pi+g
2 + αc

∣∣∣g− pi

∣∣∣]
1

2αc(|pm−pi |) , xj ∈ [ pi+g
2 − αc

∣∣∣pm − pi

∣∣∣, pi+g
2 + αc

∣∣∣pm − pi

∣∣∣]
1

2(|g−pi |) , xj ∈ [ pi+g
2 −

∣∣∣g− pi

∣∣∣, pi+g
2 +

∣∣∣g− pi

∣∣∣]
(14)

�

Definition 3. State transfer probabilities of lion swarm. For ∀si ∈ S and ∀sj ∈ S, S is the set of
lion pride states, and the probability of a lion pride transferring from si to sj in one step, denoted as

Ts(si) = sj, is P(Ts(si) = sj) =
N
∏
i=1

P(Ts(si) = xi
j).

where N is the number of individuals in the pride, and xi
j is the state corresponding to

individual xi. The one-step transfer probability of the pride state in the LSO algorithm is
the simultaneous transfer of the states of all lions in the pride.

(2) Convergence analysis of the LSO algorithm

According to the authors in [31], the definitions of Markov chain, finite Markov chain,
and chi-square Markov chain are no longer given in this paper; see [31] for details.

Theorem 2. The population sequence generated by the LSO algorithm {s(t), t ≥ 0} is a finite
chi-square Markov chain, where t is the number of iterations.

Proof.

1. According to Definition 3, in the population sequence {s(t), t ≥ 0}, ∀s(t) ∈ S and
∀s(t + 1) ∈ S, the transfer probability P(Ts(s(t)) = s(t + 1)) is determined by the
transfer probability P(Ts(x(t)) = x(t + 1)) of all lions.

2. According to Theorem 1, the state transfer probability of any lion in the pride is
only related to the state at moment t and other randomly selected individuals in the
population at moment t. Therefore, P(Ts(x(t)) = x(t + 1)) is only related to the state
at moment t, but not to t.

3. According to 1 and 2, it can be seen that the population sequence generated by the
LSO algorithm has Markov property, and because the state space {s(t), t ≥ 0} of
the lion population is finite, according to the definition of finite Markov chain, the
population sequence {s(t), t ≥ 0} generated by the LSO algorithm constitutes a finite
Markov chain.

4. According to Theorem 1, P(Ts(s(t)) = s(t + 1)) is also only related to the state at
moment t of s, but not to t. Therefore, the population sequence produced by the LSO
algorithm {s(t), t ≥ 0} is a finite chi-square Markov chain.

�

According to the authors in [32], it is known that the stochastic algorithm converges
globally, and the LSO algorithm is a stochastic search algorithm, so this paper will deter-
mine the convergence of the LSO algorithm according to the convergence criterion of the
stochastic algorithm.
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(3) Convergence proof of LSO algorithm

Definition 4. The set of optimal states of the lion population is G. Let the optimal solution of the
optimization problem < A, f > be g∗, and define the set of optimal states of the lion swarm as
follows: G = {s = (x1, x2, · · · xi, · · · , xN)| f (xi = f (g∗), xi ∈ S, s ∈ S)}. If G = S, then every
solution in the feasible space is not only a feasible solution, but also an optimal solution. At this
point, the iteration is meaningless, the following discussion of G ⊂ S.

Theorem 3. The optimal set of lion states G of the lion group algorithm is a closed set on the state
space S.

Proof. ∀si ∈ G, sj /∈ G, sj ∈ S, the transfer probability of Ts(si) = sj is P(Ts(si) = sj) =
N
∏
i=1

P(Ts(si) = xi
j).

At least one lion state in G is optimal, and let g∗ ∼ xi0k be the optimal state, i.e., at
least ∃xi0k ∈ G, P(TS(xi0k) = xjk) = 0.

At this point, P(Ts(si) = sj) = 0, so the set of optimal lion swarm states G is a closed
set on the state space S. �

Theorem 4. There is no nonempty closed set M in the state space S of the lion population such that
M ∩ G = ϕ.

Proof. Suppose there exists a nonempty closed set M in the state space S, and M ∩ G = ϕ,
let si = s(g∗, g∗, · · · , g∗) ∈ G, sj = (xj1,xj2, · · · , xjd) ∈ M, and we have f (xj) > f (g∗).

According to the Chapman–Kolmogorov equation, we can obtain the result as follows:

Pl
sj ,si

= ∑
sr1∈S

· · · ∑
srl−1∈S

P(TS(sj) = sr1)P(TS(sr1) = sr2) · · · P(TS(srl−1) = sri) (15)

The algorithm will satisfy the conditions (12)–(14) in Theorem 1 after finitely many
iterations of m. Therefore, the one-step transfer probability of each term of the expansion
in Equation (15) satisfies P(Ts(src+j) = src+j+1) > 0 when the step size is large enough.

Therefore, Pl
sj ,si

> 0, which yields that M is not a closed set. Thus, the Markov chain of
lion group states is not approximately separable, and the z-state space S does not contain
closed sets other than G. �

Theorem 5. Assume that the Markov chain has a nonempty closed set E and there does not exist
another nonempty closed set O, such that E ∩O = ϕ, when j ∈ E, there is lim

k→∞
P(xk = j) = πj.

When j /∈ E, there is lim
k→∞

P(xk = j) = 0.

Proof. For the proof process, please refer to [33]. �

Theorem 6. When the iterations within the lion group tend to infinity, the lion group state must
enter the optimal set of states G.

Proof. From Theorems 3–5, Theorem 6 holds. �

Theorem 7. The LSO algorithm can converge to the global optimum.

Proof. The LSO algorithm is stochastic, so the LSO algorithm satisfies the condition of
global convergence of stochastic algorithms H1 [33], and we know from Theorem 6 that the
probability that the LSO algorithm does not search for the global optimal solution for an

infinite number of consecutive times is 0. Then, we have
∞
∏

k=0
(1− uk[B]) = 0.
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where uk[B] is the probability measure of the k-th iteration of the LSO algorithm to
search for a solution to the set B, which satisfies the global convergence condition of the
most taboo algorithm H2 [33]. For the LSO algorithm at each iteration, the update of the
individual historical optimum takes the retention mechanism of the optimal individual,
when the iteration tends to infinity. lim

k→∞
P(xk ∈ Rε,M) = 1. {xk}∞

k=0 is the sequence

generated by the iteration of the LSO algorithm, according to the global convergence of
the stochastic search algorithm. It can be concluded that the LSO algorithm is globally
convergent. �

Theorem 8. The SLSO algorithm is globally convergent.

Proof. The dissociation operator only sets up a stray individual outside the population
and jointly searches for non-optimal solutions within the population at low probability
(probability = 0.1). This means that the population sequence convergence of the SLSO
algorithm with size n is equivalent to the population sequence convergence of the LSO
algorithm with size 10n/9. The SLSO algorithm proposed in this article still meets the
following requirements:

1. The population evolution direction in the SLSO algorithm is monotonic, i.e., F(X(n +
1)) ≤ F(X(n))

2. The population sequence of the SLSO algorithm {X(n), n /∈ N+} is a homogeneous
Markov chain

3. The Markov chain of the SLSO algorithm {X(n), n /∈ N+} converges with probability 1

to a subset of the satisfactory population M M0 = M∗
0 =

{
Y = (y1, . . . , yNp)

∣∣∣yi ∈ M∗
}

in the solution space, i.e., lim
n→∞

P(X(n) ∈ M∗
0

∣∣∣X(0) = X0) = 1 .

Therefore, it can be inferred that the SLSO algorithm in this paper converges.
The relevant symbols are common symbols for the convergence proof of swarm

intelligence algorithms, and there will be no expansion explanation here. �

3.3. Numerical Experiments

To verify the performance of the SLSO presented in this paper, six well-known bench-
mark functions are used. For comparison, the standard LSO, standard GA, and standard
PSO algorithms are adopted during the test process.

For a fair comparison, the population = 50, dimension = 10, number of iterations = 100,
and each algorithm runs 50 times for each test function. Some of these benchmark functions
are lower than 10 dimensions. Since the goal of this paper is to optimize the parameter
configuration of ADRC, all benchmark functions have been increased to 10 dimensions
for calculation. We take the average of the results of 50 runs as the result to eliminate
the uncertain factors in the search process. The final iteration result is compared with the
number of iterations used to achieve the optimized iteration result, and the results are
shown in Table 2. Information on these benchmark functions is shown in Table 2, too.

Table 2. Comparative results of benchmark functions.

Function
Name

SLSO Standard LSO GA PSO Min
ValueAvg_Result Std Avg_Result Std Avg_Result Std Avg_Result Std

Schwefel 3.55 × 103 5.05 × 104 3.66 × 103 6.36 × 10 3.64 × 103 5.75 3.61 × 103 1.44 × 10 0
Styblinski

Tang −2.69 × 10 6.01 × 10−4 −1.48 × 10 4.21 −8.58 2.92 −2.68 × 10 1.02 × 10−10 −2.903534

Beale 1.01 × 10−5 1.53 × 10−5 2.23 × 10−5 1.58 × 10−1 2.69 × 10−3 4.37 × 10−3 5.69 × 10−5 2.81 × 10−11 0
Easom −9.99 × 10−1 3.15 × 10−5 −9.84 × 10−1 8.89 × 10−2 −1.07 × 10−2 7.57 × 10−2 −2.00 × 10−2 1.41 × 10−1 −1

Eggholder −9.42 × 102 2.66 × 10 −8.95 × 102 6.58 × 10 −8.66 × 102 1.12 × 102 −7.12 × 102 9.21 × 10 −959.6407
Holder_table −1.85 × 10 4.74 × 10−1 −1.82 × 10 1.13 −1.74 × 10 1.52 −1.83 × 10 4.15 × 10−1 −19.2085
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Please note that it is not that there are no more experiments, but that most of the test
functions are not difficult to optimize for LSO. Therefore, we only select functions with
poor LSO performance to show the improvement effect.

Figure 2 shows the convergence curves of four algorithms with benchmark functions,
and shows the performance of the SLSO more intuitively and clearly. From Figures 2–7,
we can find that in Function Eason, the LSO obtains a worse result than GA, but the SLSO
obtains a better result than the other three methods.

Figure 2. Schwefel.

Figure 3. Styblinski-Tang.

Figure 4. Beale.
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Figure 5. Eason.

Figure 6. Eggholder.

Figure 7. Holder-table.

In Function Styblinski_Tang, Beale, Eggholder, and Holder_table, the LSO works
worse than PSO, but better than GA. However, after being improved, it works better
than PSO.

In Function Schwefel, we can find that LSO works worst, and the SLSO works best.
We can find that in Table 2, the standard deviation of the results of the function

based on the SLSO algorithm for finding the best is smaller than that of the LSO-based,
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which means that SLSO can find the optimal solution more stably, rather than relying on
randomness.

In conclusion, SLSO can not only further improve the optimization results of LSO, but
also perform well in the face of functions where LSO is not good at optimizing. Therefore,
we can think that the improvement in this paper not only improves the accuracy of the
algorithm, but also improves the applicability of the algorithm, and the improvement effect
is ideal.

4. Designing of SLSO-Based Fuzzy PID

4.1. Fuzzy PID of Overhead Crane

The structure of fuzzy PID is shown in Figure 8. By calculating the system error e(t)
and error change rate ec(t), and combining them with expert experience, the change rates
of Kp, Ki and Kd can be deduced through fuzzy rules.

Figure 8. The diagram of fuzzy PID.

The value ranges of e(t), ec(t) and the fuzzy domains of Kp, Ki, and Kd are [−10, 10],
[−10, 10], and [−6, 6], respectively. Generally speaking, fuzzy rules include {NB, NM, NS,
NZ, ZO, PZ, PS, PM, PB}, and may contain different numbers of fuzzy rules according to
different situations. The update method of Kp, Ki, and Kd is shown in Formula (16).

Kp = K′p + ΔKp, Ki = K′ i + ΔKi, Kd = K′d + ΔKd (16)

The fuzzy rules of Kp, Ki, and Kd are shown in Tables 3–5.

Table 3. Fuzzy RULES of Kp.

e(t)()
Δkp
ec(t)

NB NM NS Z PS PM PB

NB PB PB PB PB PM PS Z
NM PM PM PS PS PS Z Z
NS PM PS Z Z Z NS NM
Z PS PS Z Z Z NM NB
PS NM NS Z Z Z PS PM
PM Z Z PS PM PM PB PB
PB Z PS PB PB PB PB PB
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Table 4. Fuzzy RULES of Ki.

e(t)()
Δki
ec(t)

NB NM NS Z PS PM PB

NB PB PB PB PB PM PS Z
NM PB PB PB PM PS Z Z
NS PB PM PS PS Z NS NM
Z NM NS Z Z Z NS NM
PS NM NS Z PS PS PM PB
PM Z Z PS PM PM PB PB
PB Z PS PB PB PB PB PB

Table 5. Fuzzy RULES of Kd.

e(t)()
Δkd
ec(t)

NB NM NS Z PS PM PB

NB PB PM PS PB NB NB NB
NM PM PS Z PS NB NS Z
NS PB PM Z PS PS PM PB
Z PB Z PS PS PS PM PB
PS PB PM PS Z PS PM PB
PM Z NS NM NS Z PS PM
PB NB NB NB NS PS PM PB

4.2. SLSO-Based Fuzzy PID

The fuzzy rule setting of fuzzy PID can be obtained quickly according to expert
experience, but the value setting needs repeated debugging.

In this paper, SLSO is introduced to the interval design of fuzzy numbers.
For PID control, three rules require fuzzy control, each with two input parameters

and one output parameter. Each parameter has seven situations and is controlled by seven
arrays. Due to the symmetry of the parameters themselves, each parameter requires six
numbers to control.

The interval of parameters is determined; therefore, the optimization of fuzzy rules
can be transformed into the segmentation of the interval, and the number of segmented
nodes is the number we need. Therefore, we patrol through seven numbers, with a range
of values in the range (0–100). The ratio of the seven numbers is equivalent to the length
ratio between the divided partitions within the interval. In this way, we can obtain the six
numbers of the segmentation interval.

In summary, each interval needs 7 parameters, each fuzzy rule needs 3 intervals, this
experiment has 3 fuzzy rules, so each individual needs to have 63 dimensions to optimize
the parameters of the fuzzy rule. Then, the basic PID parameters also need to be optimized,
which means that the length of each individual is 66.

The objective function is set as the product of the actual travel distance and the
cumulative swing angle.

The steps are as follows:

Step 1 Establish the overhead crane control system.
Step 2 Set the individual length to 66, where the first and the second mean Kp and Kd,

the left mean values of fuzzy rules. The population number to 30, and the number
of iterations to 1000 to initialize the population.

Step 3 Analyze individual values, generate FIS files, read them into the base workspace,
start Simulink, read the output of the simulation, and calculate individual fitness.

Step 4 Set i = i + 1, update individual values according to SLSO.
Step 5 If the obtained parameters meet the termination criteria or i = I_itermax, stop the

algorithm and output the result. Otherwise, return to Step 3.

51



Mathematics 2023, 11, 2170

Step 6 Save the best individual as FIS files.

where the FIS file is a file type, which is used to save fuzzy rules and values.

5. Simulation Experiment

Generally speaking, in fuzzy PID, a set of fuzzy rules contains dozens of intervals.
To verify the validity of the proposed method, fuzzy PID control based on SLSO, fuzzy

PID control without adjustment, adaptive PID based on the DE algorithm (hereinafter
referred to as PID-DE), and the traditional PID control method are simulated under different
conditions. The conditions are shown in Table 6.

Table 6. Specific experimental conditions.

Conditions 1 2 3 4 5 6

ml/kg 7 7 7 12 12 12

xd 6 12 20 6 12 20

The parameters of the overhead crane are set as MT = 22 kg, l = 1 m, g = 9.81 m/s2.
The parameters of traditional PID are set to (60, 0, 60), and the parameters of PID-DE refer
to the relevant paper [34]. In addition, the relevant parameters of other methods are listed
below.

The values of fuzzy PID are based on SLSO and which, without adjustment, are shown
in Tables 7–10. In addition, the parameters of fuzzy PID based on SLSO are optimized and
set to (31.7, 0, 44.5). The parameters of fuzzy PID without optimization are set to (50, 0,
50) because the up limit is 100 and the low limit is 0 in the process of optimizing the PID
parameters using the SLSO algorithm.

Table 7. Values of fuzzy PID rules Kp based on SLSO.

Name NB NM NS Z

e(t) [−5.829,−4.457] [−5.829,−4.457,−4.114,−2.742] [−4.114,−2.742,−2.4,−1.658] [−2.4,−1.658,1.658,2.4]
ec(t) [−5.143,−4.286] [−5.143,−4.286,−3.429,−2.571] [−3.429,−2.571,−1.714,−0.857] [−1.714,−0.857,0.857,1.714]
Δkp [−8.571,−7.143] [−8.571,−7.143,−5.714,−4.286] [−5.714,−4.286,−2.857,−1.429] [−2.857,−1.429,1.429,2.857]

Name PS PM PB
e(t) [1.658,2.4,2.743,4.114] [2.742,4.114,4.457,5.829] [4.457,5.829]
ec(t) [0.857,1.714,2.571,3.429] [2.571,3.429,4.286,5.143] [4.286,5.143]
Δkp, [1.429,2.857,4.286,5.714] [4.286,5.714,7.143,8.571] [7.143,8.571]

Table 8. Values of fuzzy PID rules Ki based on SLSO.

Name NB NM NS Z

e(t) [−5.143,−4.286] [−5.143,−4.286,−3.429,−2.571] [−3.429,−2.571,−1.714,−0.857] [−1.714,−0.857,0.857,1.714]
ec(t) [−5.073,−4.226] [−5.073,−4.226,−3.339,−2.54] [−3.339,−2.54,−1.614,−0.757] [−1.614,−0.757,0.757,1.614]
Δki [−9.667,−7.0] [−9.667,−7.0,−6.334,−3.666] [−6.334,−3.666,−3.0,−0.333] [−3.0,−0.333,0.333,3.0]

Name PS PM PB
e(t) [0.857,1.714,2.571,3.429] [2.571,3.429,4.286,5.143] [4.286,5.143]
ec(t) [0.757,1.614,2.54,3.339] [2.54,3.339,4.226,5.073] [4.226,5.073]
Δki, [0.333,3.0,3.666,6.334] [3.666,6.334,7.0,9.667] [7.0,9.667]
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Table 9. Values of fuzzy PID rules Kd based on SLSO.

Name NB NM NS Z

e(t) [−5.8,−4.2] [−5.8,−4.2,−3.832,−2.232] [−3.832,−2.232,−1.832,−0.232] [−1.832,−0.232,0.232,1.832]
ec(t) [−5.76,−3.84] [−5.76,−3.84,−3.36,−1.44] [−3.36,−1.44,−0.96,0.96] [−1.44,−0.96,0.96,1.44]
Δkd [−9.667,−7.0] [−9.667,−7.0,−6.334,−3.666] [−6.334,−3.666,−3.0,−0.3333] [−3.0,−0.333,0.333,3.0]

Name PS PM PB
e(t) [0.2,1.832,2.232,3.832] [2.232,3.832,4.2,5.8] [4.2,5.8]
ec(t) [−0.96,0.96,1.44,3.36] [1.44,3.36,3.84,5.76] [3.84,5.76]
Δkd, [0.333,3,3.0,3.666,6.334] [3.666,6.334,7.0,9.667] [7.0,9.667]

Table 10. Values of fuzzy PID rules without optimization.

Name NB NM NS Z

e(t) [−5.25,−4.5] [−5.25,−4.5,−3.75,−3] [−3.75,−3,−2.25,−1.5] [−2.25,−0.75,0.75,2.25]
ec(t) [−5.15,−4.3] [−5.15,−4.3,−3.44,−2.58] [−3.44,−2.58,−1.72,−0.86] [−1.72,−0.86,0.86,1.72]
Δkp [−8.58,−7.15] [−8.58,−7.15,−5.72,−4.28] [−5.72,−4.29,−2.86,−1.43] [−2.86,−1.43,1.43,2.86]

Name PS PM PB
e(t) [1.5,2.25,3,3.75] [3,3.75,4.5,5.25] [4.5,5.25]
ec(t) [0.86,1.72,2.58,3.44] [2.58,3.44,4.3,5.15] [4.3,5.15]
Δkp, [1.43,2.86,4.29,5.72] [4.29,5.72,7.15,8.58] [7.15,8.58]

The clear values of fuzzy PID rules are shown in Tables 7–9. In addition, the values of
fuzzy PID without optimization are shown in Table 10, where parameters are the average
points of the interval. Because the values of fuzzy PID without optimization are set by
average, we just show the values of Kp; the values of Ki and Kd are the same as Kp.

Introducing the parameters obtained by the SLSO algorithm, the comparative simula-
tion experiment is implemented, and the simulation results are shown below.

From Figures 9–14, we can see that, compared to PID without optimized parameters,
fuzzy PID without targeted configuration of fuzzy rules has advantages over ordinary PID
in swing-angle control, but its anti-swing performance is worse than the PID-DE. In terms
of distance control, its oscillation amplitude is larger than that of ordinary PID. This can
prove that fuzzy control lacks usability without parameter optimization.

Figure 9. The results of condition 1.
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Figure 10. The results of condition 2.

Figure 11. The results of condition 3.

Figure 12. The results of condition 4.
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Figure 13. The results of condition 5.

Figure 14. The results of condition 6.

However, in the fuzzy PID, where only basic rules are specified and specific parameters
are optimized by the algorithm, its distance control completely exceeds the PID-DE. Most
intuitively, the distance of the fuzzy PID almost does not exceed the maximum distance,
which is very important in practical applications, meaning that collisions will not occur.

At the same time, the swing angle of the fuzzy PID is also well controlled, which
means that the suspended object can reach the endpoint in a very stable attitude.

We conducted comparative experiments on both distance and counterweight dimen-
sions, and the experimental results showed that in both cases, the fuzzy PID control based
on SLSO parameter configuration can achieve a good anti-swing effect.

6. Conclusions

In this paper, an SLSO-based fuzzy PID controller is designed to suppress the swing
of load during the operation of an overhead crane. To configure the parameter effectively, a
modified lion swarm algorithm, which is based on the stray strategy, verifies the effective-
ness of the improvement on several functions. By implementing simulation experiments
and compared to other adaptive PID methods, the proposed method can dampen the load
angle amplitude and residual swing. More precisely, in distance control, the percentages
of invalid distance for the four methods of fuzzy PID-SLSO, fuzzy PID-non-optimization,
PID-DE, and PID are 3.31%, 35.83%, 10.85%, and 37.03%, respectively. In addition, in the
swing control, the swing angle of PID is set to 1, and the swing amplitudes of the four
methods are 52.87%, 79.63%, 66.37%, and 100%, respectively. The numerical results show
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that the fuzzy PID-SLSO algorithm proposed in this paper has an excellent anti-swing
control effect in an overhead crane system. This proposed method can also be applied
to other under-actuated control systems, such as inverted pendulum systems, pendulum
robots, and autonomous surface vehicles.
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Abstract: In this paper, we propose an efficient Nyström method with theoretical and empirical
guarantees. In parallel computing environments and for sparse input kernel matrices, our algorithm
can have computation efficiency comparable to the conventional Nyström method, theoretically.
Additionally, we derive an important theoretical result with a compacter sketching matrix and faster
speed, at the cost of some accuracy loss compared to the existing state-of-the-art results. Faster
randomized SVD and more efficient adaptive sampling methods are also proposed, which have wide
application in many machine-learning and data-mining tasks.
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1. Introduction

The Nyström method is a widely used technique to speed up kernel machines. Its
efficiency in computation has attracted much attention in the past few years [1–8]. Given a
kernel matrix K ∈ Rn×n, the Nyström method tries to approximate the kernel by random
sampling to save computation cost. At the cost of computational efficiency, it suffers from
a relatively large matrix approximation error in real applications [9,10]. Given the target
rank k and target precision parameter 0 < ε ≤ 1, Wang and Zhang [4] gave a theoretical
analysis that, with the Nyström method, it is impossible to obtain a 1 + ε bound relative to
‖K−Kk‖2

F unless the number of sampled columns c > Ω(
√

nk/ε). Here, Kk denotes the
best rank-k approximation to the kernel matrix K. Several modified Nyström methods were
proposed in recent years [3,4,11,12]. In the work of [11], a modified Nyström method just
needs k/ε columns of the kernel matrix to obtain a 1+ ε bound relative to ‖K−Kk‖2

F. To the
best of our knowledge, it is the fastest algorithm, costing O(nk2) + TMultiply(nnz(K) log n)
to achieve a 1+ ε relative error of ‖K−Kk‖2

F, where nnz(K) means the number of non-zero
entries of K. Although these modified Nyström methods are superior in approximation
accuracy, it needs a much higher computational burden compared to the conventional
Nyström method.

In this paper, we propose a much faster modified Nyström method which runs in
O(n

1
2 k3/ε

5
2 ) + TMultiply(O(nnz(K) log n) time to achieve a 1 + ε bound relative to ‖K−

Kk‖2
F. When ε >

√
2− 1, our algorithm will be accelerated to

O(k3) + TMultiply(O(nnz(K) log n),

which is guaranteed by Lemma 3. Our algorithm is given in Algorithm 3. It needs
TMultiply(O(nnz(A) log n)) times to conduct matrix multiplication which is easily imple-
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mented in parallel. The computation complexity of matrix multiplication in Algorithm 3 is
near linear in input sparsity. In addition, for the arithmetic operations which are hard to
implement in parallel, such as SVD, pseudoinverse and QR decomposition, Algorithm 3
needs O(n

1
2 k3/ε

5
2 ) time which is sublinear in the input size n. At the cost of sacrificing

a certain accuracy, O(k3) can be reached with the same computational complexity as the
conventional Nyström method, needing O(k3) arithmetic operations when sampling O(k)
columns. Our empirical studies further validate the efficiency of our algorithm.

In this paper, we improve several key algorithms which constitute a faster modified
Nyström method. We summarized our contributions as follow.

• First and most importantly, we propose an efficient modified Nyström method with
theoretical guarantees.

• Second, a more computationally efficient adaptive sampling method is proposed in
Lemma 2. Adaptive sampling is a cornerstone of column selection, CUR decomposi-
tion and the Nyström method [4,5,11,13], and it is also very popular in other matrix
problems [14].

• Finally, our proposed practical Nyström method can achieve computation efficiency
in real applications, as shown by our experiments.

The rest of this paper is structured as follows. In Section 2, we provide the notations
used in this study. Section 3, several key algorithms that constitute the modified Nyström
are improved. Section 4 gives our modified Nyström method. We conduct empirical
analysis and comparison in Section 5, and conclude our work in Section 6. All detailed
proofs are omitted except computation complexity analysis.

2. Notation and Preliminaries [15]

Firstly, we introduce the notation and concepts that will be utilized here and hereafter.
Im is used to represent the identity m×m matrix. Sometimes we just use I for simplicity.
We also use 0 to signify a zero vector or a zero matrix with an appropriate size. The number
of non-zero entries in A is indicated by the notation nnz(A).

Let k ≤ ρ and ρ = rank(A) ≤ min{m, n}. The singular value decomposition (SVD) of
A may be expressed as

A =
ρ

∑
i=1

σiuiv
T
i =

[
Uk Uk⊥

][ Σk 0

0 Σk⊥

][
VT

k
VT

k⊥

]
,

where the top k singular values are represented by Uk (m× k), Vk (n× k) and Σk (k× k). The
best (or closest) rank-k approximation to A is denoted by Ak = UkΣkVT

k . The i-th greatest
singular value of A is denoted by σi = σi(A). The SVD is the same as the eigenvalue
decomposition when A is symmetric positive semi-definite (SPSD), in which case we obtain
UA = VA.

Furthermore, let A† be the Moore–Penrose inverse of A, defined as A† = VρΣ−1
ρ UT

ρ .
When A is non-singular, the matrix inverse is the same as the Moore–Penrose inverse.

The matrix norms are defined in the manner as follows. Assume that the spectral norm
is ‖A‖2 = maxx∈Rn ,‖x‖2=1, ‖Ax‖2 = σ1 and the Frobenius norm is ‖A‖F = (∑i,j a2

ij)
1/2 =

(∑i σ2
i )

1/2.
When given the matrices, A ∈ Rm×n and C ∈ Rm×r with r > k, we explicitly define

matrix Πζ
C,k(A) as the closest representation of A in the column space of C with the rank

of the most k. The function Πζ
C,k(A) minimizes the residual ‖A− Â‖ζ across all Â in the

column space of C. Here, “ζ” denotes either the spectral norm or the Frobenius norm.
When given three matrices, A ∈ Rm×n, X ∈ Rm×p, and Y ∈ Rq×n, the projection of A

onto X’s column space is represented as XX†A = UXUT
XA ∈ Rm×n, and the one onto Y’s

row space is denoted by AY†Y = AVYVT
Y ∈ Rm×n.

We now give the definition of leverage score sampling and subspace embedding,
which are key tools to construct our Nyström algorithm.
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Definition 1 (Leverage score sampling, [13,15]). Allow V ∈ Rn×k to be column orthonormal
with n > k, and vi,∗ to signify the i-th row of V. Allow �i = ‖vi,∗‖2

F/k. Given that the �i are
leverage scores, let r be an integer in the range 1 ≤ r ≤ n. Create the sampling matrix Ω ∈ Rn×r

and the rescaling matrix D ∈ Rr×r as follows. Pick an index i from the set of {1, 2 . . . , n} with
probability �i, for each column j = 1, . . . , r of Ω and D, separately and with replacements. Let
Ωij = 1 and Djj = 1/

√
�ir. The number of operations required by this procedure is O(nk + n).

This procedure is designated as

[Ω, D] = LeverageScoreSampling(V, r).

Definition 2 ([16]). Assuming ε > 0 and δ > 0, define a distribution on �× n matrix S as Π ,
where � depends on n, d, ε and δ. Assume that, any given n× d matrix A, with a probability of
at least 1− δ, a matrix S chosen from distribution Π is a (1 + ε) �2-subspace embedding for A.
Meaning that, for every x ∈ Rd, ‖SAx‖2

2 = (1± ε)‖Ax‖2
2 with probability 1− δ. After that, we

designate Π as an (ε, δ)-oblivious �2-subspace embedding.

The sparse subspace embedding matrix S and subsampled Hadamard matrix H are the
two most popular subspace embedding matrices. For an n× k matrix A with k dimension
subspace, we can construct a sparse subspace embedding matrix S for A with m = O(k2/ε2)
rows, and the subsampled Hadamard matrix H with m = O(k log k)/ε2 [16]. Combining S

with H still has the property.
Let’s discussed the computational costs about the matrix operations mentioned above.

Matrix multiplication is an intrinsic parallel operation; hence, it can be easily implemented
in parallel efficiently just as many mathematical software do. However, SVD decomposition
and QR decomposition are much harder to implement in parallel. Hence, we denote the
time complexity of such a matrix multiplication by TMultiply. For a general m×n matrix A

with m ≥ n, computing the full SVD requires O(mn2) flops, whereas computing the trun-
cated SVD of rank k (k < n), requires O(mnk) flops. Additionally, computing A† requires
O(mn2) flops, too. Given a m×m Hadamard–Walsh transform matrix H, TMultiply(Õ(mn))
is the cost for the Hadamard–Walsh transform HA, which is substantially quicker than
TMultiply(O(m2n)) for the typical matrix multiplication. A sparse subspace embedding
matrix S for an n× d matrix A, SA needs TMultiply(O(nnz(A))) arithmetic operations.

3. Main Lemmas and Theorems

In this part, we will outline our principal theorems and lemmas, which are the key tools
to implement Algorithm 3. In addition, these lemmas and theorems are of independent
interest and have wide application.

First, we give a fast randomized SVD method which is depicted in Algorithm 1 which
is the fastest randomized SVD method as far as we know.

Lemma 1. Given matrix A ∈ Rm×n, target rank k and error parameter 0 < ε ≤ 1, Z is returned
from Algorithm 1; then, the following formula holds with high probability.

‖A− ZZTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F

In addition, Z can be computed in Õ(k3/ε5) + TMultiply(O(nnz(A)) + Õ(mk2/ε4 + k3/ε3)).
We denote Algorithm 1 as

Z = SparseSVD(A, k, ε).
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Algorithm 1 Sparse SVD

1: Input: a real matrix A ∈ Rm×n, error parameter ε and target rank k;
2: Compute ART , where R = ΠS ∈ Rc×n with c = O(k log k/ε). S ∈ Rs×n is a sparse subspace

embedding matrix with s = O(k2 + k/ε) and Π ∈ Rc×s is a subsampled randomized Hadamard
matrix with c = O(k log k/ε);

3: Compute an orthonormal basis U for ART by U = ARTC−1, where C is the Cholesky decompo-
sition of RATART ;

4: Compute Γ = UTAWT ∈ Rc×d, where W = HF ∈ Rd×n with d = O(k log k/ε3). F ∈ Rn×t is
a sparse subspace embedding matrix with t = O(k2 log2 k/ε3) and H ∈ Rd×t is a subsampled
randomized Hadamard matrix with d = O(k log k/ε3).

5: Compute the SVD of Γ and let Δ ∈ Rc×k contain the top k left singular vectors of Γ;
6: Output: Z = UΔ.

Proof. Lemma A2 shows that ‖A − UUTA‖2
F ≤ (1 + ε)‖A − Ak‖2

F, where U is of
O(k log k/ε) columns. Applying Lemma A1 and replacing V with U, we can obtain
the result that

‖A− ZZTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F

For computation time analysis, computing ART takes TMultiply(O(nnz(A) + Õ(mk(k +
ε−1))), and then TMultiply(Õ(mk2/ε2 + k3/ε3)) computes the U = AC−1, where C is the
Cholesky decomposition of ATA. Computing UT(AWT) requires TMultiply(O(nnz(A) +

mk2/ε3 + mk2/ε4)). Computing the SVD of Γ requires Õ(k3/ε5). In addition, computing
Z = UΔ requires TMultiply(Õ(mk2/ε3)). Hence, Algorithm 1 takes

Õ(k3/ε5) + TMultiply(O(nnz(A)) + Õ(mk2/ε4 + k3/ε3))

computation complexity.

A faster adaptive sampling, Algorithm 2, is developed based on the work of [13].
Boutsidis and Woodruff [13] tried to compute norms of each column of GB = GA −
GC1C†

1A. To further reduce the computation cost, we introduce the sketched GB̂ =
GA−GC1(RC1)

†(RA) to approximate GB. By such sketching, GC1(RC1)
†(RA) can be

computed more efficiently than GC1C†
1A.

Algorithm 2 Adaptive Sampling

1: Input: a real matrix A ∈ Rm×n, C1 ∈ Rm×c1 and the number of selected columns c;
2: Construct B̂ = A− C1(RC1)

†(RA), where R = ΠS ∈ Rt×m with t = 2c1 log c1. S ∈ Rs×m is a
sparse subspace embedding matrix with s = c2

1 + 2c1 and Π ∈ Rt×s is a subsampled randomized
Hadamard matrix;

3: Construct B̃ = GB̂ where G ∈ Rg×m is a normalized Gaussian matrix with g = 9 log n;
4: Compute sampling probabilities pj = ‖b̃j‖2

F/‖B̃‖2
F for j = 1, . . . , n, where b̃j is the j−th column

of B̃ ;
5: Output: Obtain C2 by selecting c columns from A in c i.i.d. trials; in each trial the index j is

chosen with probability pj.

Lemma 2. Given A ∈ Rm×n, C1 ∈ Rm×c1 and V ∈ Rr×n such that rank(V) = rank(AV†V) =
ρ, with ρ ≤ c ≤ n, let C2 ∈ Rm×c2 be returned from Algorithm 2 containing c2 columns of A.
Then, the matrix C = [C1, C2] ∈ Rm×(c1+c2) satisfies that for any integer k > 0, and with a high
probability which is at least 0.9.

‖A− CC†AV†V‖2
F ≤ ‖A−AV†V‖2

F +
40ρ

c2
‖A− C1C†

1A‖2
F.

In addition, this randomized algorithm can be implemented in

Õ(c3
1) + TMultiply(O(nnz(A) log n + Õ(nc2

1 + nc1 log n + c3
1))
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computation time. We denote this randomized algorithm as

C2 = AdaptiveSampling(A, V, C1, c2).

Proof. Let B = A − C1C†
1A be the residual matrix and bi is the i-th column of B. By

Theorem A4, with high probability, it holds that

‖B‖2
F ≤ ‖B̂‖2

F ≤ (1 + 2ε)‖B‖2
F = 2‖B‖2

F‖bi‖2
F ≤ ‖b̂i‖2

F ≤ (1 + 2ε)‖bi‖2
F = 2‖bi‖2

F

Besides, by the JL property of G, we have 1
3‖b̂i‖F ≤ ‖b̃i‖F ≤ 4

3‖b̂i‖F. Hence, after utilizing
the below distribution for sampling,

pi =
‖b̃i‖F

‖B̃‖F
≥ 2

3
· 3

4
· ‖b̂i‖2

F
‖B̂‖2

F
≥ 1

2
· 1

2
· ‖bi‖2

F
‖B‖2

F
=

1
4
‖bi‖2

F
‖B‖2

F

Using Lemma A3, we obtain

E

[
‖A− CC†AV†V‖2

F

]
≤ ‖A−AV†V‖2

F +
4k
c2
‖A− C1C†

1A‖2
F.

Using the Markov inequality, we have that

‖A− CC†AV†V‖2
F ≤ ‖A−AV†V‖2

F +
40ρ

c2
‖A− C1C†

1A‖2
F.

holds with a probability of at least 0.9.
As to the running time, it needs TMultiply(O(nnz(A)) + Õ(nc2

1)) arithmetic opera-
tions to compute RA. To compute RC1 costs TMultiply(O(nnz(C1)) + Õ(c3

1)). To com-
pute (RC1)

†, it requires Õ(c3
1). In addition, computing GA and GC1 require TMultiply

(O(nnz(A) log n)) and TMultiply(mc1 log n), respectively. In addition, to compute
(GC1)(RC1)

†(RA) needs

TMultiply(Õ(nc1 log n + c2 log n))

computation. In addition, GA−GC1(RC1)
†RA needs another TMultiply(O(n log n)) arith-

metic operations. Thus, all these need Õ(c3
1) + TMultiply(O(nnz(A) log n + Õ

(nc2
1 + nc1 log n + c3

1))

Lemma 3 ([15,17]). Given the matrices C ∈ Rm×c, A ∈ Rm×n and R ∈ Rn×r, let’s suppose
that S is the leverage-score sketching matrix of C with s = O(c/ε + c log c) rows, and T is the
leverage-score sketching matrix of R with t = O(r/ε + r log r) columns. Let

U� = C†AR† = argmin
U

‖A− CUR‖F

and
Û = (SC)†SAT(RT)†,

then we can obtain
‖A− CÛR‖F ≤ (1 + ε)‖A− CU�R‖F.

The number of sampled rows in Lemma 3 is independent on the input dimension of A

and is linear to c. By losing some accuracy, a much faster algorithm can be implemented.

4. Practical Modified Nyström Method

We use our new lemmas and theorems developed in Section 3 to implement an efficient
modified Nyström algorithm.
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4.1. Description of The Algorithm

A n× n real symmetric matrix A, an error parameter 0 < ε < 1 and a target rank k
are the inputs of Algorithm 3. Meanwhile, a matrix C ∈ Rn×c with c = O(k/ε + k log k)
columns of A, and a matrix U ∈ Rc×c are the results. There are primarily 3 steps in
Algorithm 3: (i) using the definition of the leverage score sampling, it samples a number
of columns of A to obtain C1 ; and using the adaptive sampling method to obtain C2 and
R2; (ii) it calculates the leverage scores of C using the method in [18]; and (iii) it constructs
the intersection matrix U. Note that Û in Lemma 3 is asymmetric even when A is positive
semi-definite. Thus, when applied to kernel approximation, we need to construct a positive
semi-definite U shown in Algorithm 3.

Algorithm 3 Practical Nyström

1: Input: a real symmetric matrix A ∈ Rn×n, error parameter ε and target rank k;
2: Z = SparseSVD(A, k, 1);
3: [Ω, Γ] = LeverageScoreSampling(Z,O(k log k)) and construct C1 = AΩ;
4: C2 = AdaptiveSampling(A, VT

k , C1,O(k/ε)) and C3 = AdaptiveSampling(A, VT
k , C1,O(k/ε)),

constructing C = [C1, C2, C3] ∈ Rn×O(k/ε+k log k);
5: Compute approximate leverage scores of C using the method of [18] and construct the leverage

sketch matrix S1 and S2 of n× s size, where s = O( c
ε + c log c);

6: Compute Û = (S1C)†S1AST
2 (C

TST
2 )

†.

7: Compute U = ΠHs
+
(Û) by conducting eigenvalue decomposition of Ũ = Û+ÛT

2 and setting the
negative eigenvalues of Û to zero.

8: Output: C and U.

4.2. Analysis of Running-Time

Here, we provide a detailed analysis of the Algorithm 3’s arithmetic operations.

1. The computation complexity of Algorithm 3 is Õ(k3) + TMultiply(O(nnz(A) log n +

Õ(nk2 + nk log n + k3)) to find O(k/ε + k log k) columns of A to construct C.

(a) To obtain Z ∈ Rn×k from Theorem 1, it takes Õ(k3) + TMultiply(O(nnz(A)) +

Õ(nk2 + k3)).
(b) To obtain the leverage score and sample C1 and C2, it takes TMultiply(O(nk)).
(c) To construct C3 and R2 Lemma 2, it takes Õ(k3) + TMultiply(O(nnz(A) log n +

Õ(nk2 + nk log n + k3)).

2. The computation complexity of Algorithm 3 is O(k3/ε4) + TMultiply(O(nk2/ε2) +

Õ(nk2 + k3/ε5)) to construct U when s = O( c
ε + c log c) is the row dimension of S1

and S2 in Algorithm 3.

(a) To obtain the leverage scores of C, it takes O(k3/ε3) + Tmultiply(O(n(k/ε)2 +

Õ(nk2)).
(b) To compute (ST

1 C)† and (ST
2 C)†, it takes Õ(k3/ε4).

(c) To compute matrix multiplication, it takes TMultiply(O(k3/ε5)).
(d) To compute the eigenvalue decomposition of U, it takes Õ(k3/ε3).

The algorithm’s overall asymptotic arithmetic operation is

TMultiply(O(nnz(A) log n + nk2/ε2 + k3/ε5) + Õ(nk2 + nk log n + k3/ε4)).

4.3. Error Bound

Primary approximate result regarding Algorithm 3 is shown as the following theorem.

Theorem 1. Given an error parameter ε and a target rank k, run Algorithm 3, then the below
inequality holds with high probability.

‖A− CUCT‖F ≤ (1 + ε)‖A−Ak‖F
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5. Empirical Study

In this section, we compare our Practical Nyström algorithm with the uniform+adaptive
algorithm [11,19], near-optimal+adaptive algorithm [4,11,13] and conventional Nyström
using just uniform sampling. All algorithms were implemented in Matlab and experiments
were conducted on a workstation with 32 cores of 2G Hz and 24G RAM.

On each data set, we give the approximation error and the execution duration of each
algorithm. The approximation error is

Approximation Error =
‖A− CUCT‖F

‖A‖F
,

where U is the intersection matrix defined in the Nyström method.
On three data sets we test all three algorithms, and the results are listed in Table 1.

We create a RBF kernel matrix A for each dataset, with aij = exp(
‖xi−xj‖2

2
2γ2 ), where xi and

xj are data instances and γ is the parameter of the RBF kernel function. By the definition
of A, the size n of A is the number of instances of the dataset. Thus, the kernel matrices
in our experiments are of large sizes. We set γ different values for each data set as Table 1
describes. However, the effectiveness of our algorithm does not depend on the setting
of γ. For each data set, we set k = 10, 30 and 50. We sampled c = ak columns from A

and a ranges from 8 to 26. We ran each algorithm 5 times and report the average value of
approximation error and running time. All results are illustrated in Figures 1–3.

Table 1. A summary of the datasets for kernel approximation.

Data Set a9a USPS PenDigits

#instance 32,561 11,305 7494

γ 5 4 30

Source UCI TKH96a UCI
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Figure 1. Results of the Nyström algorithms on the a9a dataset. In the first column, we set k = 10,
and c = ak with a = 8, . . . , 26. In the middle column, we set k = 30, and c = ak. In the right column,
we set k = 50, and c = ak.
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Figure 2. Results of the Nyström algorithms on the pendigit dataset. In the first column, we set
k = 10, and c = ak with a = 8, . . . , 26. In the middle column, we set k = 30, and c = ak. In the right
column, we set k = 50, and c = ak.
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Figure 3. Results of the Nyström algorithms on the usps dataset. In the first column, we set k = 10,
and c = ak with a = 8, . . . , 26. In the middle column, we set k = 30, and c = ak. In the right column,
we set k = 50, and c = ak.

As evidenced by the empirical results in the figures, it is clear that our approach
is efficient. In terms of accuracy, Our approach is comparable to the state-of-the-art
algorithm—the near-optimal+adaptive algorithm [4,11,13]. As to the running time, our
approach is much faster than near-optimal+adaptive algorithm and uniform+adaptive
algorithm. Our algorithm’s running time grows slower than the near-optimal+adaptive
algorithm and uniform+adaptive algorithm. The advantage of the running time of our
algorithm grows as the dimension of kernel matrix A increases. Calculating kernel matrix
A of size 7494× 7494 from the ‘PenDigits’ data set, our alogrithm is twice as fast as the near-
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optimal+adaptive algorithm. As to the ‘a9a’ data set of 32,561 instances, our algorithm is
four times faster than near-optimal+adaptive. In addition, as c increases, the running-time
superiority of our algorithm also increases. Our algorithm also has similar a advantage
over the uniform+adaptive algorithm. Hence, our algorithm is suitable to scale to kernel
matrices of high dimensions.

6. Conclusions

In this paper, we proposed an efficient modified Nyström method with a theoretical
and emperical guarantee. In a high-level parallel-computation environment with sparse
input matrices, our Nyström method can achieve comparable computation efficiency
compared to the conventional Nyström method, theoretically. Hence, our Nyström method
is suitable for machine-learning algorithms in big-data setting. In addition, we give a
sketching generalized matrix approximation which extends the previous work [12]. Faster
randomized SVD and more efficient adaptive sampling methods are proposed which have
wide application in lots of areas. In addition, our modified Nyström algorithm can be easily
extended to CUR decomposition which leads to more efficient CUR decomposition.
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Appendix A. Key Theorems Used in Our Proofs

Theorem A1 ([15,20]). There is t = Θ(ε−2) for matrix A ∈ Rm×n and orthonormal U ∈ Rm×k,
thus, for a t×m leverage-score sketching matrix S for orthonormal U,

P

[
‖ATSTSU−ATU‖2

F < ε2‖A‖2
F‖U‖2

F

]
≥ 1− δ,

for any fixed δ > 0.

Theorem A2 ([15,20]). There is t = O(kε−2 log k), for any rank k matrix A ∈ Rm×n with row
leverage scores, such that leverage-score sketching matrix S ∈ Rt×m is an ε-embedding matrix for
matrix A, i.e.,

‖SAx‖2
2 = (1± ε)‖Ax‖2

2

Theorem A3 ([15,20]). Given that A is a matrix with m rows and C is a matrix with m rows as
well as rank k. S is a subspace embedding for C with error parameter ε0 ≤ 1/

√
2, and it is also the

t×m leverage-score sketching matrix of C with O(k/ε) rows. Then if Ŷ and Y� are respectively
the solutions to

minY = ‖S(CY−A)‖2
F

and
minY = ‖S(CY−A)‖2

F

then, the below two formulas hold with a probability of at least 0.99.

‖CŶ−A‖F ≤ (1 + ε)‖CY� −A‖F
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‖C(Ŷ− Y∗)‖F ≤ 2
√

ε‖CY∗ −A‖F

Theorem A4 ([15,20]). Given that A is a matrix with m rows, and C is a matrix with m rows as
well as rank k, where R = ΠS ∈ Rt×n with t = 2k log k/ε. Π ∈ Rt×s is a subsampled randomized
Hadamard matrix and S ∈ Rs×m is a sparse subspace embedding matrix with s = k2 + 2k/ε. Then
if Ŷ and Y� are respectively the solutions to

minY = ‖R(CY−A)‖2
F

and
minY = ‖R(CY−A)‖2

F

then, the below two formulas hold with a probability of at least 0.99.

‖CŶ−A‖F ≤ (1 + ε)‖CY� −A‖F

‖C(Ŷ− Y∗)‖F ≤ 2
√

ε‖CY∗ −A‖F

Lemma A1 ([13,15]). Let A ∈ Rm×n and V ∈ Rm×c. Assume that given a particular rank
parameter k and an accuracy parameter 0 < ε < 1,

‖A−ΠF
V,k(A)‖2

F ≤ ‖A−Ak‖2
F.

V is a QR-decomposition, and let V = QY where Q ∈ Rm×c and Y ∈ Rc×c. Let Γ =
QTAWT ∈ Rc×�, where WT ∈ Rn×� is a sparse subspace embedding matrix, and � = O(c2/ε2).
Let Δ ∈ Rc×k contain the top k left singular vectors of Γ. Then, it holds that

‖A−QΔΔTQTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

with high probability.

Lemma A2 ([16]). Given matrix Rm×n, R = ΠS ∈ Rc×n is a subspace embedding matrix with
c = O(k log k/ε). S ∈ Rn×s is a sparse subspace embedding matrix with s = O(k2 + k/ε) and
Π ∈ Rc×s is a subsampled randomized Hadamard matrix with c = O(k log k/ε). Let U be the
orthonormal basis of ART. Then, it holds that

‖A−UUTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

with high probability.

Lemma A3 ([4,15,16]). Given A ∈ Rm×n, R1 ∈ Rr1×n and C ∈ Rm×c such that

rank(C) = rank(CC†A) = ρ,

with ρ ≤ c ≤ n, given R1 ∈ Rr1×n and the defined residual

B = A−AR†
1R1 ∈ R

m×n.

For i = 1, . . . , m, let pi be the probability distribution such that for each i:

pi ≥ α‖bi‖2
F/‖B‖2

F,

where bi is the i-th row of B. Sample r2 rows from A in c2 i.i.d. trials, where in each trial the
i-th column is chosen with probability pi. Let R2 ∈ Rr2×n contain the r2 sampled rows and let
R = [RT

1 , RT
2 ]

T. Then

E‖A− CC†AR†R‖2
F ≤ ‖A− CC†A‖2

F +
ρ

αr2
‖A−AR†R‖2

F.
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Theorem A5 ([13,15]). Given three matrices C ∈ Rm×c, A ∈ Rm×n and R ∈ Rr×n, we have

C†AR† = argmin
U

‖A− CUR‖F

Theorem A6 ([15,21]). Given a matrix A = AZZT + E ∈ Rm×n, where ZTZ = Ik and Z ∈
Rn×k, let S ∈ Rn×t be any matrix such that rank k = (ZTS). Let C = AS ∈ Rm×r. Then

‖A− CC†A‖2
ζ ≤ ‖A−Πζ

C,k(A)‖2
ζ

≤‖A− C(ZTS)†ZT‖2
ζ ≤ ‖E‖2

ζ + ‖ES(ZTS)†‖2
ζ .

Appendix B. Theorem 1 Proof

We first provide an essential lemma before proving the theorem.

Lemma A4 ([15]). Given any Z ∈ Rm×p, C ∈ Rm×q and A ∈ Rm×n, assumeR(Z) ⊆ R(C) ⊆
R(A). Let X ∈ Rn×n be a projection matrix. Then

‖A− CC†AX‖F ≤ ‖A− ZZ†AX‖F.

Now we start to prove Theorem 1.

Proof. According to Theorem A6, we have

‖A− C1C†
1A‖2

F ≤ ‖A−ΠF
C1,k(A)‖2

F ≤ ‖E‖2
F + ‖ES(ZTS)†‖2

F.

Let S = ΩΓ and E = A−AZZT , then we have

‖E‖2
F ≤ 2‖A−Ak‖2

F (A1)

because of Lemma A1 with error parameter ε = 1. In addition, ST is a row leverage score
sketching matrix of Z, where Γ, Ω and Z are calculated in Algorithm 3. Additionally, ST is
also a subspace embedding matrix of Z with error parameter ε0 = 1/2. Inferring from the
fact that (ZTS)† = (ZTS)T(ZTSSTZ)−1, we obtain

‖ES(ZTS)†‖2
F = ‖ESSTZ(ZTSSTZ)−1‖2

F

≤ ‖ESSTZ‖2
F‖(ZTSSTZ)−1‖2

2 (A2)

≤ 1
4k log k

‖E‖2
F‖Z‖2

F‖(ZTSSTZ)−1‖2
2 (A3)

≤ 1
log k

‖E‖2
F, (A4)

where Equation (A2) follows from the fact that ‖AB‖F ≤ ‖A‖2‖B‖F, and Equation (A3)
follows from Theorem A1 with error parameter ε = 4k log k and EZ = A(I− ZZT)Z = 0.
Due to Theorem A2 with error parameter ε0 = 1/2, Equation (A4) can be obtained. Because
we have

‖STZ‖2
2 = (1± ε0)‖Z‖2

2 = (1± ε0).

therefore,
‖(ZTSSTZ)−1‖2

2 ≤ (1− ε0)
−2 = 4.

Due to Theorem A2, S needs t = 4k log k columns as a subspace embedding matrix of
Z with error parameter ε0 = 1/2. Theorem A2 also leads to ε = 4k log k in the proof of
Equation (A3). Now we have

‖A− C1C†
1A‖2

F ≤ ‖E‖2
F +

1
log k

‖E‖2
F ≤ 4‖A−Ak‖2

F, (A5)
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where the last inequality follows from Equation (A1) and 1/ log k ≤ 1.
Using Lemma 2, we need to sample O( k

ε ) columns from A such that Ĉ = [C1, C2] has
the property

‖A− ĈĈ†A‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

Lemma A1 shows that there exists an othonormal matrix Qk with rank k in the range
of Ĉ such that

‖A−QkQT
k A‖2

F ≤ (1 + ε)‖A− ĈĈ†A‖̂2
F. (A6)

[C3] = AdptiveSampling(A, Qk, C1, k/ε), and we define C̃ = [C1, C3], then by Lemma A3,
it holds that

‖A− C̃C̃†AQT
k Qk‖2

F

≤‖A−QkQT
k A‖2

F + ε‖|A− C1C†
1A‖2

F

≤(1 + ε)‖A− ĈĈ†A‖2
F + 4ε‖A−Ak‖2

F

≤(1 + ε)2‖A−Ak‖2
F + 4ε‖A−Ak‖2

F

=(1 + 6ε)‖A−Ak‖2
F.

By rescaling the ε, we can obtain a (1 + ε) relative error bound. Since R(Qk) ⊆ R(Ĉ) ⊆
R(A), Lemma A4 leads to

‖A− C̃C̃†A(Ĉ†)TĈT‖2
F ≤ ‖A− C̃C̃†AQT

k Qk‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

Inferring from the fact that R(Ĉ) ⊆ R(C) ⊆ R(A) and R(C̃) ⊆ R(C) ⊆ R(A),
utilizing Lemma A4 twice, we reach the result that

‖A− CC†A(C†)TCT‖2
F ≤ ‖A− C̃C̃†A(Ĉ†)TĈT‖2

F ≤ (1 + ε)‖A−Ak‖2
F.

S is a leverage-score sketching matrix of C, when s = O( c
ε + c log c) is the row

dimension of S; by Theorem 3 of [12], we have,

‖A− CUCT‖2
F ≤ ‖A− CÛC�‖2

F ≤ (1 + ε)‖A− CC†A(C†)TCT‖2
F.

By rescaling ε, we achieve the final result that

‖A− CUCT‖F ≤ (1 + ε)‖A−Ak‖F.
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Abstract: The symmetric function class interacts heavily with other types of functions. One of these
is the convex function class, which is strongly related to symmetry theory. In this study, we define a
novel class of convex mappings on planes using a fuzzy inclusion relation, known as coordinated up
and down convex fuzzy-number-valued mapping. Several new definitions are introduced by placing
some moderate restrictions on the notion of coordinated up and down convex fuzzy-number-valued
mapping. Other uncommon examples are also described using these definitions, which can be
viewed as applications of the new outcomes. Moreover, Hermite–Hadamard–Fejér inequalities are
acquired via fuzzy double Aumann integrals, and the validation of these outcomes is discussed
with the help of nontrivial examples and suitable choices of coordinated up and down convex
fuzzy-number-valued mappings.

Keywords: fuzzy-interval-valued function on coordinates; coordinated up and down convex
fuzzy-number-valued mapping; fuzzy double integral; Hermite–Hadamard–Fejér-type inequalities

MSC: 26A33; 26A51; 26D10

1. Introduction

Convex functions are distinguished from other function classes by their widespread
application in mathematics, statistics, optimization theory, and applied sciences. This is
due to the analytic inequalities, particularly those of the Hermite–Hadamard, Fejér, Hardy,
Simpson, and Ostrowski types, that have been established using this concept [1–17]. The
concept of a convex function is one of the core theorems of inequality theory, detailed
as follows:

Definition 1. The real-valued mapping Y : K → R is called a convex mapping on convex set K if

Y(τ + (1− τ)s) ≤ τ �Y( ) + (1− τ)�Y(s), (1)

for all , s ∈ K, τ ∈ [0, 1]. If Equation (1) is reversed, then Y is called a concave mapping on K. Y
is affine if and only if it is both a convex and concave mapping.

The Hermite–Hadamard inequality, which is a key component of the widespread use
and geometrical interpretation of convex functions, has piqued the interest of researchers in
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fundamental mathematics. This inequality has piqued the interest of multiple scholars from
around the world due to its numerous applications, particularly in the domains of numerical
analysis, engineering, physical science, and chemistry. The idea of inequality has advanced
rapidly in recent years. For convex functions, several inequalities can be found; however,
Hermite–Hadamard’s inequality is one of the most extensively and intensively studied
conclusions. It is worthwhile to consider how closely related the theories of inequality and
convexity are. As a result of this reality, the concept of inequality becomes more appealing.
Many new expansions, generalizations, and definitions of novel convexity have been given
in recent years, as have corresponding advancements in the theory of convexity inequality,
particularly integral inequality theory. Formally, the Hermite–Hadamard inequality is
as follows:

For a convex mapping Y : K → R on convex set K, the HH inequality is written as

Y
(

ρ + μ

2

)
≤ 1

μ− ρ

∫ μ

ρ
Y( )d ≤ Y(ρ) + Y(μ)

2
, (2)

for all ρ, μ ∈ K, with ρ ≤ μ. If Y is concave, then Equation (2) is reversed.
If it is a concave function, the inequality in Equation (2) holds in both directions. Based

on geometry, the Hermite–Hadamard inequality provides an upper and lower estimate
for the integral mean of any convex function defined in a closed and limited domain
that encompasses the function’s ends and midpoint. Because of the importance of this
inequality, multiple modifications of it have been studied in the literature for various classes
of convexity, including harmonically convex, exponentially convex, s-convex, h-convex,
and co-ordinate convex functions [18–33].

Moore [34] was the first to consider interval analysis. Moore [35] researched interval
methods for obtaining the upper and lower bounds of accurate values of the integrals
of interval-valued functions and studied the integration of interval-valued functions in
1979. Bhurjee and Panda [36] devised a framework for determining effective solutions
to a broad multi-objective fractional programming problem whose parameters in the
objective functions and constraints are intervals. Zhang et al. [37] expanded the ideas
of invexity and pre-invexity to interval-valued functions, resulting in KKT optimality
requirements for LU-pre-invex and invex optimization problems with an interval-valued
objective function. Zhao et al. [38] defined the interval double integral and provided
Chebyshev-type inequalities for interval-valued functions. Interval analysis has practical
applications in economics, chemical engineering, beam physics, control circuit design,
global optimization, robotics, error analysis, signal processing, and computer graphics
(see [39–58]).

Budak et al. [59] defined the interval-valued right-sided Riemann–Liouville fractional
integral and derived H-H-type inequalities for such integrals. Sharma et al. [60] pro-
posed interval-valued pre-invex functions and proved fractional H-H-type inequalities for
them. Zhao et al. [61,62] recently developed the concept of interval-valued coordinated
convex functions on coordinates and proved H-H-type inequalities for these interval-
valued coordinated convex functions. Furthermore, Budak et al. [63] introduced a new
concept of interval-valued fractional integrals on coordinates and used these fractional
integrals to analyze H-H-type inequalities for interval-valued coordinated convex functions.
Kara et al. [64] demonstrated that the product of two interval-valued convex functions on
coordinates has H-H–Fejér-type inclusions. We refer to [65–76] and the references therein
for more information on the links between the various types of coordinated fuzzy-number-
valued mappings, interval-valued functions, and integral inequalities. Similarly, most of the
authors work in the field of fuzzy calculus as well as fuzzy fractional calculus. Therefore,
we refer the readers to [77–97] and the references therein, which will help in understanding
fuzzy theory.

Motivated and inspired by the above ongoing research, this manuscript is divided
into four sections. In the second section, we recall some classical and preliminary notions
and results which will be helpful in discussing the main outcomes. In the third section,
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some new estimates of integral inequalities via fuzzy double Aumann integrals and a
newly defined coordinated class of convex fuzzy-number mappings on up and down fuzzy
relations are presented. Some interesting examples are also given to illustrate the main
outcomes. In the final section, some conclusions and future plans are discussed.

2. Preliminaries

First, we will review the fundamental notions of fuzzy mathematics. Additional
information can be found in the following references: Anastassiou [77]; Anastassiou and
Gal [78]; Gal [79]; Goetschel and Voxman [82]; Gal [83]; and Wu and Zengtai [84].

Let Λ ∈ E0 be a fuzzy number. Then, this fuzzy number is also represented as q-level
sets [Λ]q defined as {{ς ∈ R|Λ(ς) ≥ q}, q ∈ (0, 1]

{ς ∈ R|Λ(ς) > q}, q = 0,
(3)

which is a bounded and closed interval of R and denoted as

[Λ]q = [Λ∗(q), Λ∗(q)].

For Λ, λ ∈ E0 and � ∈ R, the sum Λ⊕ λ, product Λ⊗ λ, scalar product ��Λ, and
sum with the scalar are uniquely defined as, for all q ∈ [0, 1], we obtain

[Λ⊕ λ]q = [Λ]q + [λ]q, (4)

[Λ⊗ λ]q = [Λ]q × [λ]q, (5)

[��Λ]q = �·[Λ]q. (6)

[�⊕Λ]q = � + [Λ]q. (7)

For ψ ∈ E0, such that Λ = λ⊕ ψ, via this result, we then determine the existence of
Hukuhara difference between Λ and λ, and we can say that ψ is the H-difference between
Λ and λ and is denoted as Λ� λ. If H-difference exists, then

(ψ)∗(q) = (Λ� λ)∗(q) = Λ∗(q)− λ∗(q), (ψ)∗(q) = (Λ� λ)∗(q) = Λ∗(q)− λ∗(q). (8)

For [Z∗, Z∗], [Q∗, Q∗] ∈ RI , where RI is the space of all closed and bounded intervals
of real numbers R, the Hausdorff–Pompeiu distance between the intervals [Z∗, Z∗] and
[Q∗, Q∗] is defined as

dH([Z∗, Z∗], [Q∗, Q∗]) = max{|Z∗ −Q∗|, |Z∗ −Q∗|}. (9)

It is a known fact that (RI , dH) is a complete metric space [82].

Theorem 1 ([82]). The space E0 dealing with a supremum metric, i.e., for
∼
ψ,

∼
� ∈ E0

d∞

(∼
ψ,

∼
�
)
= sup

0≤λ≤1
dH

([∼
ψ
]q

,
[∼
�
]q)

, (10)

is a complete metric space, where H denotes the well-known Hausdorff metric in the space of intervals.

Remark 1 ([86,87]). Let RI be the space of all closed and bounded intervals of real numbers R. The
relation “ ≤I” is defined in RI as

[Λ∗, Λ∗] ≤I [λ∗, λ∗] if and only if Λ∗≤ λ∗, Λ∗≤ λ∗,
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for all [Λ∗, Λ∗], [λ∗, λ∗] ∈ RI , and it is known as the left and right relation.

The inclusion “ ⊆ ” means that

Λ ⊆I λ if and only if [Λ∗, Λ∗] ⊆I [λ∗, λ∗], if and only if λ∗ ≤ Λ∗, Λ∗ ≤ λ∗.

It is known as the up and down relation.

Proposition 1 ([86]). If Λ, λ ∈ E0, then relation “ ≤F ” is defined in E0 as

Λ ≤F λ if and only if [Λ]q ≤I [λ]
q for all q ∈ [0, 1],

and this relation is known as the left and right fuzzy relation.

Proposition 2 ([80]). If Λ, λ ∈ E0, then relation “ ⊇F ” is defined in E0 as

Λ ⊇F λ if and only if [Λ]q ⊇I [λ]
q for all q ∈ [0, 1],

and this relation is known as the up and down fuzzy relation.

Definition 2 ([90]). The IVM Y : Δ = [μ, σ]× [ς, ν]→ R+ is said to be a coordinated convex
function on Δ if

Y(τμ + (1− τ)σ, sς + (1− s)ν)
≤ τsY(μ, ς) + τ(1− s)Y(μ, ν) + (1− τ)sY(σ, ς) + (1− τ)(1− s)Y(σ, ν),

(11)

for all (μ, σ), (ς, ν) ∈ Δ, τ and τ, s ∈ [0, 1]. If inequality Equation (11) is reversed, then Y is
called a coordinated concave IVM on Δ.

Definition 3 ([87]). The FN-V-M
∼
Y : [ς, ν]→ E0 is said to be an up and down convex FN-V-M

on [ς, ν] if
∼
Y(τ + (1− τ)ω) ⊇F τ �

∼
Y( )⊕ (1− τ)�

∼
Y(ω), (12)

for all , ω ∈ [ς, ν], τ ∈ [0, 1], where
∼
Y( ) ≥F

∼
0. If

∼
Y is an up and down concave FN-V-M

on [ς, ν], then inequality Equation (12) is reversed.

Theorem 2 ([85]). Let
∼
Y,
∼
S : [ς, ν]→ E0 be two up and down convex FN-V-Ms. Then, from the

q-levels, we obtain the collection of IVMs Yq, Sq : [ς, ν] ⊂ R→ R
+
I given as

Yq( ) = [Y∗( , q), Y∗( , q)] and Sq( ) = [S∗( , q), S∗( , q)] for all ∈ [ς, ν] and for

all q ∈ [0, 1]. If
∼
Y⊗ ∼

S is a fuzzy Riemann integrable, then

1
ν− ς

� (FR)
∫ ν

ς

∼
Y( )⊗ ∼

S( )d ⊇F

1
3
�

∼
M(ς, ν)⊕ 1

6
�
∼
N (ς, ν), (13)

and

2�
∼
Y
(

ς + ν

2

)
⊗ ∼

S

(
ς + ν

2

)
⊇F

1
ν− ς

� (FR)
∫ ν

ς

∼
Y( )⊗ ∼

S( )d ⊕ 1
6
�

∼
M(ς, ν)⊕ 1

3
�
∼
N (ς, ν). (14)

where
∼
M(ς, ν) =

∼
Y(ς)⊗ ∼

S(ς)⊕
∼
Y(ν)⊗ ∼

S(ν),
∼
N (ς, ν) =

∼
Y(ς)⊗ ∼

S(ν)⊕
∼
Y(ν)⊗ ∼

S(ς), and
Mq(ς, ν) = [M∗((ς, ν), q), M∗((ς, ν), q)] and Nq(ς, ν) = [N∗((ς, ν), q), N∗((ς, ν), q)].

Theorem 3 ([85]). Let
∼
Y : [ς, ν]→ E0 be an up and down convex FN-V-M with ς < ν. Then,

from the q-levels, we obtain the collection of IVMs Yq : [ς, ν] ⊂ R→ R
+
I given as
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Yq( ) = [Y∗( , q), Y∗( , q)] for all ∈ [ς, ν] and for all q ∈ [0, 1]. If
∼
Y ∈ YR([ς, ν],q)

and Ω : [ς, ν]→ R, Ω( ) ≥ 0, symmetric with respect to ς+ν
2 , and

∫ ν
ς Ω( )d > 0, then

∼
Y
(

ς + ν

2

)
⊇F

1∫ ν
ς Ω( )d

� (FR)
∫ ν

ς

∼
Y( )Ω( )d ⊇F

∼
Y(ς)⊕

∼
Y(ν)

2
. (15)

If
∼
Y is an up and down concave FN-V-M, then inequality Equation (15) is reversed.

If Ω( ) = 1 , then via Equation (15) we obtain following inequality:

∼
Y
(

ς + ν

2

)
⊇F

1
ν− ς

� (FR)
∫ ν

ς

∼
Y( )Ω( )d ⊇F

∼
Y(ς)⊕

∼
Y(ν)

2
. (16)

Theorem 4 ([36]). If Y : [ς, ν] ⊂ R→ RI is an IVM given as ( ) [Y∗( ), Y∗( )], then Y
is Riemann-integrable on [ς, ν] if and only if Y∗ and Y∗ are both Riemann-integrable on [ς, ν],
such that

(IR)
∫ ν

ς
Y( )d = [(R)

∫ ν

ς
Y∗( )d , (R)

∫
ν

ς
Y∗( )d ]. (17)

The collection of all Riemann-integrable real-valued functions and Riemann-integrable
IVMs is denoted asR[ς,ν] and TR[ς,ν], respectively.

Note that Theorem 5 is also true for interval double integrals. The collection of all
double-integrable IVMs is denoted as TOΔ, respectively.

Theorem 5 ([38]). Let Δ = [μ, σ]× [ς, ν]. If Y : Δ → RI is ID-integrable on Δ, then we obtain

(ID)
∫ σ

μ

∫ ν

ς
Y( , ω)dωd = (IR)

∫ σ

μ
(IR)

∫ ν

ς
Y( , ω)dωd . (18)

Definition 4 ([91]). A fuzzy-interval-valued map
∼
Y : Δ = [μ, σ]× [ς, ν]→ E0 is called an FN-

V-M on coordinates. Then, from the q-levels, we obtain the collection of IVMs Yq : Δ ⊂ R2 → RI
on coordinates given as Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)] for all ( , ω) ∈ Δ. Herein, for
each q ∈ [0, 1], the end-point real-valued functions Y∗(., q), Y∗(., q) : [μ, σ]× [ς, ν]→ R are
called the lower and upper functions of Yq.

Definition 5 ([91]). Let
∼
Y : Δ = [μ, σ]× [ς, ν] ⊂ R2 → E0 be a coordinated FN-V-M. Then,

∼
Y( , ω) is said to be continuous at ( , ω) ∈ Δ = [μ, σ]× [ς, ν] if for each q ∈ [0, 1], both the
end-point functions Y∗(( , ω), q) and Y∗(( , ω), q) are continuous at ( , ω) ∈ Δ.

Definition 6 ([91]). Let
∼
Y : Δ = [μ, σ]× [ς, ν] ⊂ R2 → E0 be an FN-V-M on coordinates.

Then, the fuzzy double integral of
∼
Y on Δ = [μ, σ]× [ς, ν], denoted as (FD)

∫ σ
μ

∫ ν
ς

∼
Y( , ω)dωd ,

is defined level-wise as[
(FD)

∫ σ
μ

∫ ν
ς

∼
Y( , ω)dωd

]q
= (ID)

∫ σ
μ

∫ ν
ς Yq( , ω)dωd

= (IR)
∫ σ

μ (IR)
∫ ν

ς Yq( , ω)dωd ,
(19)

for all q ∈ [0, 1], and
∼
Y is FD-integrable on Δ if (FD)

∫ σ
μ

∫ ν
ς

∼
Y( , ω)dωd ∈ E0. Note that

if the end-point functions are Lebesgue-integrable, then
∼
Y is a fuzzy double-Aumann-integrable

function on Δ.
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Theorem 6 ([91]). Let
∼
Y : Δ ⊂ R2 → E0 be an FN-V- M on coordinates. Then, from the q-levels, we

obtain the collection of IVMs Yq : Δ ⊂ R2 → RI given as Yq( , ω) = [Y∗(( , ω),q), Y∗(( , ω), q)]

for all ( , ω) ∈ Δ = [μ, σ]× [ς, ν] and for all q ∈ [0, 1]. Then,
∼
Y is FD-integrable on Δ if and only

if Y∗(( , ω), q) and Y∗(( , ω),q) are both D-integrable on Δ. Moreover, if
∼
Y is FD-integrable on

Δ, then [
(FD)

∫ σ
μ

∫ ν
ς

∼
Y( , ω)dωd

]
q =

[
(FR)

∫ σ
μ (FR)

∫ ν
ς

∼
Y( , ω)dωd

]q
= (IR)

∫ σ
μ (IR)

∫ ν
ς Yq( , ω)dωd

= (ID)
∫ σ

μ

∫ ν
ς Yq( , ω)dωd

(20)

for all q ∈ [0, 1].

3. Main Results

In this section, we will first propose the new class of coordinated convex functions with
the up and down fuzzy relation, which are known as coordinated UD-convex FN-V-Ms.
Secondly, we will present HH–Fejér inequalities with the help of this new class and double
fuzzy integrals as well as verify them with the support of some useful examples.

Definition 7. The FN-V-M
∼
Y : Δ → E0 is said to be a coordinated UD-convex FN-V-M on Δ if

∼
Y(τμ + (1− τ)σ, sς + (1− s)ν)

⊇F τs�
∼
Y(μ, ς) ⊇F τ(1− s)�

∼
Y(μ, ν)⊕ (1− τ)s�

∼
Y(σ, ς)⊕ (1− τ)(1− s)�

∼
Y(σ, ν),

(21)

for all (μ, σ), (ς, ν) ∈ Δ, and τ, s ∈ [0, 1], where
∼
Y( ) ≥F

∼
0. If inequality Equation (21) is

reversed, then
∼
Y is called a coordinated concave FN-V-M on Δ.

The straightforward proof of Lemma 1 will be omitted herein.

Lemma 1. Let
∼
Y : Δ → E0 be a coordinated FN-V-M on Δ. Then,

∼
Y is a coordinated UD-

convex FN-V-M on Δ if and only if two coordinated UD-convex FN-V-Ms exist,
∼
Y : [ς, ν]→ E0 ,

∼
Y (ω) =

∼
Y( , ω) and

∼
Yω : [μ, σ]→ E0 ,

∼
Yω(ς) =

∼
Y(ς, ω)

Proof. From the definition of the coordinated FN-V-M, it can be easily proved. �

From Lemma 1, we can easily note that each UD-convex FN-V-M is a coordinated
UD-convex FN-V-M. However, the converse is not true (see Example 1).

Theorem 7. Let
∼
Y : Δ → E0 be an FN-V-M on Δ. Then, from the q-levels, we obtain the collection

of IVMs Yq : Δ → R
+
I ⊂ RI given as

Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)], (22)

for all( , ω) ∈ Δ and for all q ∈ [0, 1]. Then,
∼
Y is a coordinated UD-convex FN-V-M on Δ if

and only if for all q ∈ [0, 1], Y∗(( , ω), q) and Y∗(( , ω), q) are coordinated UD-convex and
concave functions, respectively.

Proof. Assume that for each q ∈ [0, 1], Y∗( , q) and Y∗( , q) are coordinated UD-convex
on Δ. Then, from Equation (21), for all (μ, σ), (ς, ν) ∈ Δ, τ and s ∈ [0, 1], we obtain

Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q)
≤ τsY∗((μ, ς), q) + t(1− s)Y∗((μ, ν), q) + s(1− t)Y∗((μ, ς), q) + (1− τ)(1− s)Y∗((μ, ν), q),
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and

Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q)
≥ τsY∗((μ, ς), q) + t(1− s)Y∗((μ, ν), q) + s(1− t)Y∗((μ, ς), q) + (1− τ)(1− s)Y∗((μ, ν), q),

Then, via Equations (4), (6) and (22), we obtain

Yq((τμ + (1− τ)σ, sς + (1− s)ν))
= [Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q), Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q)],

⊇I τs[Y∗((μ, ς), q), Y∗((μ, ς), q)] + t(1− s)[Y∗((μ, ν), q), Y∗((μ, ν), q)]
+s(1− τ)[Y∗((μ, ς), q), Y∗((μ, ς), q)] + (1− τ)(1− s)[Y∗((μ, ν), q), Y∗((μ, ν), q)].

That is,
∼
Y(τμ + (1− τ)σ, sς + (1− s)ν)

⊇F τs�
∼
Y(μ, ς)⊕ τ(1− s)�

∼
Y(μ, ν)⊕ (1− τ)s�

∼
Y(σ, ς)⊕ (1− τ)(1− s)�

∼
Y(σ, ν),

Hence,
∼
Y is a coordinated UD-convex FN-V-M on Δ.

Conversely, let
∼
Y be a coordinated UD-convex FN-V-M on Δ. Then, for all (μ, σ),

(ς, ν) ∈ Δ, τ and s ∈ [0, 1], we obtain

∼
Y(τμ + (1− τ)σ, sς + (1− s)ν)

⊇F τs�
∼
Y(μ, ς)⊕ τ(1− s)�

∼
Y(μ, ν)⊕ (1− τ)s�

∼
Y(σ, ς)⊕ (1− τ)(1− s)�

∼
Y(σ, ν)

Therefore, from Equation (22), for each q ∈ [0, 1], we obtain

Yq((τμ + (1− τ)σ, sς + (1− s)ν))
= [Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q), Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q)].

Again, via Equation (22), we obtain

τsYq(μ, ς) + τ(1− s)Yq(μ, ν) + (1− τ)sYq(σ, ς) + (1− τ)(1− s)Yq(σ, ν)
= τs[Y∗((μ, ς), q), Y∗((μ, ς), q)] + t(1− s)[Y∗((μ, ν), q), Y∗((μ, ν), q)]

+s(1− τ)[Y∗((μ, ς), q), Y∗((μ, ς), q)] + (1− τ)(1− s)[Y∗((μ, ν), q), Y∗((μ, ν), q)],

for all , ω ∈ Δ and τ ∈ [0, 1]. Then, via the coordinated UD-convexity of
∼
Y, for all

, ω ∈ Δ and τ ∈ [0, 1], we obtain

Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q)
≤ τsY∗(μ, ς) + τ(1− s)Y∗(μ, ν) + (1− τ)sY∗(σ, ς) + (1− τ)(1− s)Y∗(σ, ν),

and

Y∗((τμ + (1− τ)σ, sς + (1− s)ν), q)
≥ τsY∗(μ, ς) + τ(1− s)Y∗(μ, ν) + (1− τ)sY∗(σ, ς) + (1− τ)(1− s)Y∗(σ, ν),

for each q ∈ [0, 1]. Hence, the result follows. �

Example 1. We consider the FN-V-Ms
∼
Y : [0, 1]× [0, 1]→ E0 defined as

∼
Y( )(m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
m− oω

5− ω
m ∈ [ ω, 5](

6+e
)
(6+eω)−m(

6+e
)
(6+eω)−5

m ∈
(

5,
(

6 + e
)
(6 + eω)

]
0 otherwise,

(23)
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and then, for each q ∈ [0, 1], we obtain Yq( , ω) = [(1− q) ω + 5q, (1− q)(6 + e )(6 + eω)
+5q]. The end-point functions Y∗(( , ω), q) and Y∗(( , ω), q) are coordinated convex and concave

functions for each q ∈ [0, 1], respectively. Hence,
∼
Y( , ω) is an up and down coordinated

convex FN-V-M.

From Example 1, it can be easily seen that each coordinated UD-convex FN-V-M is not
a UD-convex FN-V-M.

Corollary 1. Let
∼
Y : Δ → E0 be an FN-V-M on Δ. Then, from the q-levels, we obtain the collection

of IVMs Yq : Δ → R
+
I ⊂ RI given as

Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)], (24)

for all ( , ω) ∈ Δ and for all q ∈ [0, 1]. Then,
∼
Y is a coordinated left-UD-convex (concave)

FN-V-M on Δ if and only if for all q ∈ [0, 1], Y∗(( , ω), q) and Y∗(( , ω), q) are coordinated
convex (concave) and affine functions on Δ, respectively.

Corollary 2. Let
∼
Y : Δ → E0 be an FN-V-M on Δ. Then, from the q-levels, we obtain the collection

of IVMs Yq : Δ → R
+
I ⊂ RI given as

Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)], (25)

for all ( , ω) ∈ Δ and for all q ∈ [0, 1]. Then,
∼
Y is a coordinated right-UD-convex (concave)

FN-V-M on Δ if and only if for all q ∈ [0, 1], Y∗(( , ω), q) and Y∗(( , ω), q) are coordinated
affine and convex (concave) functions on Δ, respectively.

Theorem 8. Let Δ be a coordinated convex set, and let
∼
Y : Δ → E0 be an FN-V- M. Then, from

the q-levels, we obtain the collection of IVMs Yq : Δ → R
+
I ⊂ RI given as

Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)], (26)

for all ( , ω) ∈ Δ and for all q ∈ [0, 1]. Then,
∼
Y is a coordinated UD-concave FN-V-M on Δ if

and only if for all q ∈ [0, 1], Y∗(( , ω), q) and Y∗(( , ω), q) are coordinated concave and convex
functions, respectively.

Proof. The demonstration of the proof of Theorem 8 is similar to the demonstration of the
proof of Theorem 7. �

Example 2. We consider the FN-V-Ms
∼
Y : [0, 1]× [0, 1]→ E0 defined as

∼
Y( )(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m−

(
6−e

)
(6−eω)(

6−e
)
(6−eω)−25

, m ∈
[(

6− e
)
(6− eω), 25

]
35 ω−m
35 ω−25 , m ∈ (25, 35 ω]

0, otherwise.

(27)

Then, for each q ∈ [0, 1], we obtain Yq( , ω) = [(1− q)(6− e )(6− eω) + 25q,
35(1− q) ω + 25q]. The end-point functions Y*(( , ω), q) and Y*(( , ω), q) are coordi-

nated concave and convex functions for each q ∈ [0, 1]. Hence,
∼
Y( , ω) is a coordinated up

and down concave FN-V-M.
In the next results, to avoid confusion, we will not include the symbols (R), (IR),

(FR), (ID), and (FD) before the integral sign.
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Theorem 9. Let
∼
Y : Δ → E0 be a coordinated UD-convex FN-V-M on Δ. Then, from the q-levels, we

obtain the collection of IVMs Yq : Δ → R
+
I given as Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)] for

all ( , ω) ∈ Δ and for all q ∈ [0, 1]. Then, the following inequality holds:

∼
Y
(

μ+σ
2 , ς+ν

2

)
⊇F

1
2 �

[
1

σ−μ �
∫ σ

μ

∼
Y
(

, ς+ν
2

)
d ⊕ 1

ν−ς �
∫ ν

ς

∼
Y
(

μ+σ
2 , ω

)
dω

]
⊇F

1
(σ−μ)(ν−ς)

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)dωd

⊇F
1

4(σ−μ)
�
[∫ σ

μ

∼
Y( , ς)d ⊕ ∫ σ

μ

∼
Y( , ν)d

]
⊕ 1

4(ν−ς)
�
[∫ ν

ς

∼
Y(μ, ω)dω⊕ ∫ ν

ς

∼
Y(σ, ω)dω

]
⊇F

∼
Y(μ,ς)⊕

∼
Y(σ,ς)⊕

∼
Y(μ,ν)⊕

∼
Y(σ,ν)

4 .

(28)

If Y( ) is a concave FN-V-M, then

∼
Y
(

μ+σ
2 , ς+ν

2

)
⊆F

1
2

[
1

σ−μ �
∫ σ

μ

∼
Y
(

, ς+ν
2

)
d ⊕ 1

ν−ς �
∫ ν

ς

∼
Y
(

μ+σ
2 , ω

)
dω

]
⊆F

1
(σ−μ)(ν−ς)

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)dωd

⊆F
1

4(σ−μ)
�
[∫ σ

μ

∼
Y( , ς)d ⊕ ∫ σ

μ

∼
Y( , ν)d

]
⊕ 1

4(ν−ς)
�
[∫ ν

ς

∼
Y(μ, ω)dω⊕ ∫ ν

ς

∼
Y(σ, ω)dω

]
⊆F

∼
Y(μ,ς)⊕

∼
Y(σ,ς)⊕

∼
Y(μ,ν)⊕

∼
Y(σ,ν)

4

(29)

Proof. Let
∼
Y : [μ, σ]→ E0 be a coordinated UD-convex FN-V-M. Then, via hypothesis,

we obtain

4�
∼
Y
(

μ + σ

2
,

ς + ν

2

)
⊇F

∼
Y(τμ + (1− τ)σ, τς + (1− τ)ν)⊕

∼
Y((1− τ)μ + τσ, (1− τ)ς + τν).

By using Theorem 7, for every q ∈ [0, 1], we obtain

4Y∗
((

μ+σ
2 , ς+ν

2

)
, q
)

≤ Y∗((τμ + (1− τ)σ, τς + (1− τ)ν), q) + Y∗(((1− τ)μ + τσ, (1− τ)ς + τν), q),
4Y∗

((
μ+σ

2 , ς+ν
2

)
, q
)

≥ Y∗((τμ + (1− τ)σ, τς + (1− τ)ν), q) + Y∗(((1− τ)μ + τσ, (1− τ)ς + τν), q).

By using Lemma 1, we obtain

2Y∗
((

, ς+ν
2

)
, q
)
≤ Y∗(( , τς + (1− τ)ν), q) + Y∗(( , (1− τ)ς + τν), q),

2Y∗
((

, ς+ν
2

)
, q
)
≥ Y∗(( , τς + (1− τ)ν), q) + Y∗(( , (1− τ)ς + τν), q),

(30)

and

2Y∗
((

μ+σ
2 , ω

)
, q
)
≤ Y∗((τμ + (1− τ)σ, ω), q) + Y∗(((1− τ)μ + tσ, ω), q),

2Y∗
((

μ+σ
2 , ω

)
, q
)
≥ Y∗((τμ + (1− τ)σ, ω), q) + Y∗(((1− τ)μ + tσ, ω), q).

(31)

From Equations (30) and (31), we obtain

2
[
Y∗
((

, ς+ν
2

)
, q
)

, Y∗
((

, ς+ν
2

)
, q
)]

⊇I [Y∗(( , τς + (1− τ)ν), q), Y∗(( , τς + (1− τ)ν), q)]
+[Y∗(( , (1− τ)ς + τν), q), Y∗(( , (1− τ)ς + τν), q)],
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and
2
[
Y∗
((

μ+σ
2 , ω

)
, q
)

, Y∗
((

μ+σ
2 , ω

)
, q
)]

⊇I [Y∗((τμ + (1− τ)σ, ω), q), Y∗((τμ + (1− τ)σ, ω), q)]
+[Y∗((τμ + (1− τ)σ, ω), q), Y∗((τμ + (1− τ)σ, ω), q)],

It follows that

Yq

(
,

ς + ν

2

)
⊇I Yq( , τς + (1− τ)ν) + Yq( , (1− τ)ς + τν) (32)

and

Yq

(
μ + σ

2
, ω

)
⊇I Yq(τμ + (1− τ)σ, ω) + Yq(τμ + (1− τ)σ, ω) (33)

Since Yq( , .) and Yq(., ω) are both coordinated UD-convex-IVMs, from Theorem 7
and inequality Equation (6), for every q ∈ [0, 1], and inequality Equations (32) and (33), we
then obtain

Yq

(
,

ς + ν

2

)
⊇I

1
ν− ς

∫ ν

ς
Yq( , ω)dω ⊇I

Yq( , ς) + Yq( , ν)

2
. (34)

and

Yq

(
μ + σ

2
, ω

)
⊇I

1
σ− μ

∫ σ

μ
Yq( , ω)d ⊇I

Yq(μ, ω) + Yq(σ, ω)

2
. (35)

Dividing double inequality Equation (34) by (σ− μ) and integrating with respect to
on [μ, σ], we obtain

1
σ− μ

∫ σ

μ
Yq

(
,

ς + ν

2

)
d ⊇I

1
(σ− μ)(ν− ς)

∫ σ

μ

∫ ν

ς
Yq( , ω)dωd ⊇I

1
2(σ− μ)

[∫ σ

μ
Yq( , ς)d +

∫ σ

μ
Yq( , ν)d

]
(36)

Similarly, dividing double inequality Equation (35) by (ν− ς) and integrating with respect to
on [ς, ν], we obtain

1
ν− ς

∫ ν

ς
Yq

(
μ + σ

2
, ω

)
dω ⊇I

1
(σ− μ)(ν− ς)

∫ σ

μ

∫ ν

ς
Yq( , ω)dωd ⊇I

1
2(ν− ς)

[∫ ν

ς
Yq(μ, ω)dω +

∫ ν

ς
Yq(σ, ω)dω

]
(37)

By adding Equations (36) and (37), we obtain

1
2

[
1

σ−μ

∫ σ
μ Yq

(
, ς+ν

2

)
d + 1

ν−ς

∫ ν
ς Yq

(
μ+σ

2 , ω
)

dω
]
⊇I

1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)dωd

⊇I
1

4(σ−μ)

[∫ σ
μ Yq( , ς)d +

∫ σ
μ Yq( , ν)d

]
+ 1

4(ν−ς)

[∫ ν
ς Yq(μ, ω)dω +

∫ d
ς Yq(σ, ω)dω

] (38)

Since
∼
Y is an FN-V-M, via inequality Equation (38), we then obtain

1
2

[
1

σ−μ �
∫ σ

μ

∼
Y
(

, ς+ν
2

)
d ⊕ 1

ν−ς �
∫ ν

ς

∼
Y
(

μ+σ
2 , ω

)
dω

]
⊇F

1
(σ−μ)(ν−ς)

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)dωd

⊇F
1

4(σ−μ)
�
[∫ σ

μ

∼
Y( , ς)d ⊕ ∫ σ

μ

∼
Y( , ν)d

]
⊕ 1

4(ν−ς)
�
[∫ ν

ς

∼
Y(μ, ω)dω⊕ ∫ ν

ς

∼
Y(σ, ω)dω

] (39)

From Theorem 7 and the left side of inequality Equation (16), for each q ∈ [0, 1], we obtain

Yq

(
μ + σ

2
,

ς + ν

2

)
⊇I

1
σ− μ

∫ σ

μ
Yq

(
,

ς + ν

2

)
d , (40)

Yq

(
μ + σ

2
,

ς + ν

2

)
⊇I

1
ν− ς

∫ ν

ς
Yq

(
μ + σ

2
, ω

)
dω. (41)

Adding inequality Equation (40) and inequality Equation (41), we obtain
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Yq

(
μ + σ

2
,

ς + ν

2

)
⊇I

1
2

[
1

σ− μ

∫ σ

μ
Yq

(
,

ς + ν

2

)
d +

1
ν− ς

∫ ν

ς
Yq

(
μ + σ

2
, ω

)
dω

]
.

Since
∼
Y is an FN-V-M, it follows that

∼
Y
(

μ + σ

2
,

ς + ν

2

)
⊇F

1
2

[
1

σ− μ
�
∫ σ

μ

∼
Y
(

,
ς + ν

2

)
d ⊕ 1

ν− ς
�
∫ ν

ς

∼
Y
(

μ + σ

2
, ω

)
dω

]
(42)

Now, from Theorem 7 and the right side of inequality Equation (16), for every q ∈ [0, 1],
we obtain

1
σ− μ

∫ σ

μ
Yq( , ς)d ⊇I

Yq(μ, ς) + Yq(σ, ς)

2
(43)

1
σ− μ

∫ σ

μ
Yq( , ν)d ⊇I

Yq(μ, ν) + Yq(σ, ν)

2
(44)

1
ν− ς

∫ ν

ς
Yq(μ, ω)dω ⊇I

Yq(μ, ν) + Yq(μ, ς)

2
(45)

1
ν− ς

∫ ν

ς
Yq(σ, ω)dω ⊇I

Yq(σ, ν) + Yq(σ, ς)

2
(46)

By adding inequalities Equations (43)–(46), we obtain

1
4(σ−μ)

[∫ σ
μ Yq( , ς)d +

∫ σ
μ Yq( , ν)d

]
+ 1

4(ν−ς)

[∫ ν
ς Yq(μ, ω)dω +

∫ ν
ς Yq(σ, ω)dω

]
⊇I

Yq(μ,ς)+Yq(σ,ς)+Yq(μ,ν)+Yq(σ,ν)
4

Since Y is an FN-V-M, it follows that

1
4(σ−μ)

�
[∫ σ

μ

∼
Y( , ς)d ⊕ ∫ σ

μ

∼
Y( , ν)d

]
⊕ 1

4(ν−ς)
�
[∫ ν

ς

∼
Y(μ, ω)dω⊕ ∫ ν

ς

∼
Y(σ, ω)dω

]
⊇F

∼
Y(μ,ς)⊕

∼
Y(σ,ς)⊕

∼
Y(μ,ν)⊕

∼
Y(σ,ν)

4

(47)

By combining inequalities Equations (41), (42), and (47), we obtain the desired result. �

Remark 2. From inequality Equation (28), the following exceptional results can be acquired:
Let Y∗(( , ω), q) 
= Y∗(( , ω), q) with q = 1. Then, we can derive the following inclusion (see [61]):

Y
(

μ+σ
2 , ς+ν

2

)
⊇ 1

2

[
1

σ−μ

∫ σ
μ Y

(
, ς+ν

2

)
d + 1

ν−ς

∫ ν
ς Y

(
μ+σ

2 , ω
)

dω
]

⊇ 1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Y( , ω)dωd

⊇ 1
4(σ−μ)

[∫ σ
μ Y( , ς)d +

∫ σ
μ Y( , ν)d

]
+ 1

4(ν−ς)

[∫ ν
ς Y(μ, ω)dω +

∫ ν
ς Y(σ, ω)dω

]
⊇ Y(μ,ς)+Y(σ,ς)+Y(μ,ν)+Y(σ,ν)

4 .

(48)

Let Y∗(( , ω), q) = Y∗(( , ω), q) with q = 1. Then, we can derive the following inclusion (see [90]):

Y
(

μ+σ
2 , ς+ν

2

)
≤ 1

2

[
1

σ−μ

∫ σ
μ Y

(
, ς+ν

2

)
d + 1

ν−ς

∫ ν
ς Y

(
μ+σ

2 , ω
)

dω
]

≤ 1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Y( , ω)dωd

≤ 1
4(σ−μ)

[∫ σ
μ Y( , ς)d +

∫ σ
μ Y( , ν)d

]
+ 1

4(ν−ς)

[∫ ν
ς Y(μ, ω)dω +

∫ ν
ς Y(σ, ω)dω

]
≤ Y(μ,ς)+Y(σ,ς)+Y(μ,ν)+Y(σ,ν)

4 .

(49)
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Example 3. We consider the FN-V-Ms
∼
Y : [0, 2]× [0, 2]→ E0 defined as

Y( , ω)(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m− ω
5− ω

, m ∈ [ ω, 5](
2+
√ )

(2+
√

ω)−m(
2+
√ )

(2+
√

ω)−5
, m ∈

(
5,
(

2 +
√ )(

2 +
√

ω
)]

0, otherwise,

(50)

and then, for each q ∈ [0, 1], we obtain Yq( , ω) =
[
(1− q) ω + 5q, (1− q)

(
2 +

√ )(
2 +

√
ω
)
+ 5q

]
.

The end-point functions Y∗(( , ω), q), Y∗(( , ω), q) are coordinated concave functions for each q ∈ [0, 1].

Hence,
∼
Y( , ω) is a coordinated concave FN-V-M.

Yq

(
μ + σ

2
,

ς + ν

2

)
= [1 + 4q, 9− 4q]

1
2

[
1

σ−μ

∫ σ
μ Yq

(
, ς+ν

2

)
d + 1

ν−ς

∫ ν
ς Yq

(
μ+σ

2 , ω
)

dω
]

=
[
1 + 4q, 1

3

((
9 + 2

√
2
)
q− 2

√
2 + 6

)]
,

1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)dωd =

[
1 + 4q, 1

9

((
1 + 24

√
2
)
q− 24

√
2 + 44

)]
1

4(σ−μ)

[∫ σ
μ Yq( , ς)d +

∫ σ
μ Yq( , ν)d

]
+ 1

4(ν−ς)

[∫ ν
ς Yq(μ, ω)dω +

∫ ν
ς Yq(σ, ω)dω

]
,

=
[
1 + 4q, 8−5

√
2

3 (1− q) + 9+2
√

2
3 q+ 6−2

√
2

3

]

Yq(μ, ς) + Yq(σ, ς) + Yq(μ, ν) + Yq(σ, ν)

4
=

⎡⎢⎣1 + 4q,
(1− q)

(
2−√2

)2
+ 4(1− q)

(
2−√2

)
+ 4(1− q) + 20q

4

⎤⎥⎦
That is

[1 + 4q, 9− 4q] ⊇I

[
1 + 4q,

1
3

((
9 + 2

√
2
)
q− 2

√
2 + 6

)]

⊇I

[
1 + 4q,

1
9

((
1 + 24

√
2
)
q− 24

√
2 + 44

)]
⊇I

[
1 + 4q,

8− 5
√

2
3

(1− q) +
9 + 2

√
2

3
q+

6− 2
√

2
3

]

⊇I

⎡⎢⎣1 + 4q,
(1− q)

(
2−√2

)2
+ 4(1− q)

(
2−√2

)
+ 4(1− q) + 20q

4

⎤⎥⎦
Hence, Theorem 9 has been verified.
We will now obtain some HH inequalities to produce coordinated UD-convex FN-V-Ms. These

inequalities are refinements of some Pachpatte-type inequalities on coordinates.

Theorem 10. Let
∼
Y,
∼
S : Δ = [μ, σ]× [ς, ν] ⊂ R2 → E0 be two coordinated UD-convex FN-V-Ms on Δ,

whose q-levels Yq, Sq : [μ, σ]× [ς, ν]→ R
+
I are defined as Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)]

and Sq( , ω) = [S∗(( , ω), q), S∗(( , ω), q)] for all ( , ω) ∈ Δ and for all q ∈ [0, 1]. Then, the
following inequality holds:

1
(σ−μ)(ν−ς)

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)⊗ ∼

S( , ω)dωd

⊇F
1
9 �

∼
P(μ, σ, ς, ν)⊕ 1

18 �
∼
M(μ, σ, ς, ν)⊕ 1

36 �
∼
N (μ, σ, ς, ν).

(51)

where
∼
P(μ, σ, ς, ν) =

∼
Y(μ, ς)⊗ ∼

S(μ, ς)⊕
∼
Y(μ, ν)⊗ ∼

S(μ, ν)⊕
∼
Y(σ, ς)⊗ ∼

S(σ, ς)⊕
∼
Y(σ, ν)⊗ ∼

S(σ, ν),

∼
M(μ, σ, ς, ν) =

∼
Y(μ, ς)⊗ ∼

S(μ, ν)⊕
∼
Y(μ, ν)⊗ ∼

S(μ, ς)⊕
∼
Y(σ, ς)⊗ ∼

S(σ, ν)⊕
∼
Y(σ, ν)⊗ ∼

S(σ, ς),

⊕(μ, ς)⊗ ∼
S(σ, ς)⊕

∼
Y(σ, ν)⊗ ∼

S(μ, ν)⊕
∼
Y(σ, ς)⊗ ∼

S(μ, ς)⊕
∼
Y(μ, ν)⊗ ∼

S(σ, ν)
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∼
N (μ, σ, ς, ν) =

∼
Y(μ, ς)⊗ ∼

S(σ, ν)⊕
∼
Y(σ, ς)⊗ ∼

S(μ, ν)⊕
∼
Y(σ, ν)⊗ ∼

S(μ, ς)⊕
∼
Y(σ, ς)⊗ ∼

S(μ, ν)

and for each q ∈ [0, 1],
∼
P(μ, σ, ς, ν),

∼
M(μ, σ, ς, ν), and

∼
N (μ, σ, ς, ν) are defined as follows:

Pq(μ, σ, ς, ν) = [P∗((μ, σ, ς, ν), q), P∗((μ, σ, ς, ν), q)]

Mq(μ, σ, ς, ν) = [M∗((μ, σ, ς, ν), q), M∗((μ, σ, ς, ν), q)]

Nq(μ, σ, ς, ν) = [N∗((μ, σ, ς, ν), q), N∗((μ, σ, ς, ν), q)].

Proof. Let
∼
Y and

∼
S be two coordinated UD-convex FN-V- Ms on [μ, σ]× [ς, ν]. Then,

∼
Y(τμ + (1− τ)σ, sς + (1− s)ν)

⊇F τs�
∼
Y(μ, ς)⊕ τ(1− s)�

∼
Y(μ, ν)⊕ (1− τ)s�

∼
Y(σ, ς)⊕ (1− τ)(1− s)�

∼
Y(σ, ν),

and
∼
S(τμ + (1− τ)σ, sς + (1− s)ν)

⊇F τs� ∼
S(μ, ς)⊕ τ(1− s)� ∼

S(μ, ν)⊕ (1− τ)s� ∼
S(σ, ς)⊕ (1− τ)(1− s)� ∼

S(σ, ν).

Since
∼
Y and

∼
S are both coordinated UD-convex FN-V-Ms, then via Lemma 1, the following exist:

∼
Y : [ς, ν]→ E0 ,

∼
Y (ω) =

∼
Y( , ω) ,

∼
S : [ς, ν]→ E0 ,

∼
S (ω) =

∼
S( , ω),

and ∼
Yω : [μ, σ]→ E0 ,

∼
Yω( ) =

∼
Y( , ω) ,

∼
Sω : [μ, σ]→ E0 ,

∼
Sω( ) =

∼
S( , ω).

Since
∼
Y ,

∼
S ,

∼
Yω and

∼
Sω are FN-V-Ms, then via inequality Equation (13), we obtain

1
σ−μ �

∫ σ
μ

∼
Yω( )⊗ ∼

Sω( )d

⊇F
1
3 �

[∼
Yω(μ)⊗

∼
Sω(μ)⊕

∼
Yω(σ)⊗

∼
Sω(σ)

]
⊕ 1

6

[∼
Yω(μ)⊗

∼
Sω(σ)⊕

∼
Yω(σ)⊗

∼
Sω(μ)

]
,

and

1
ν−ς

∫ ν
ς

∼
Y (ω)⊗ ∼

S (ω)dω

⊇F
1
3 �

[∼
Y (ς)⊗ ∼

S (ς)⊕
∼
Y (ν)⊗ ∼

S (ν)

]
⊕ 1

6

[∼
Y (ς)⊗ ∼

S (ν)⊕
∼
Y (ς)⊗ ∼

S (ν)

]
.

For each q ∈ [0, 1], we obtain

1
σ−μ

∫ σ
μ Yqω( )×Sqω( )d

⊇I
1
3
[
Yqω(μ)×Sqω(μ) + Yqω(σ)×Sqω(σ)

]
+ 1

6
[
Yqω(μ)×Sqω(σ) + Yqω(σ)×Sqω(μ)

]
,

and

1
ν−ς

∫ ν
ς Yq (ω)×Sq (ω)dω

⊇I
1
3
[
Yq (ς)×Sq (ς) + Yq (ν)×Sq (ν)

]
+ 1

6
[
Yq (ς)×Sq (ν) + Yq (ς)×Sq (ν)

]
.

The above inequalities can be written as

1
σ−μ

∫ σ
μ Yq( , ω)×Sq( , ω)d ⊇I

1
3 [Yq(μ, ω)×Sq(μ, ω) + Yq(σ, ω)×Sq(σ, ω)]

+ 1
6 [Yq(μ, ω)×Sq(σ, ω) + Yq(σ, ω)×Sq(μ, ω)],

(52)

and

1
ν−ς

∫ ν
ς Yq( , ω)×Sq( , ω)dω ⊇I

1
3 [Yq( , ς)×Sq( , ς) + Yq( , ν)×Sq( , ν)]

+ 1
6 [Yq( , ς)×Sq( , ς) + Yq( , ν)×Sq( , ν)].

(53)
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Firstly, we will solve inequality Equation (52). Integrating both sides of the inequality with
respect to ω on the interval [ς, ν] and dividing both sides by ν− ς, we obtain

1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)×Sq( , ω)dωd

⊇I
1

3(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(μ, ω) + Yq(σ, ω)×Sq(σ, ω)]dω

+ 1
6(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(σ, ω) + Yq(σ, ω)×Sq(μ, ω)]dω.

(54)

Now, via inequality Equation (13), for each q ∈ [0, 1], we obtain

1
(ν−ς)

∫ ν
ς Yq(μ, ω)×Sq(μ, ω)dω ⊇I

1
3
∫ ν

ς [Yq(μ, ς)×Sq(μ, ς) + Yq(μ, ν)×Sq(μ, ν)]dω

+ 1
6
∫ ν

ς [Yq(μ, ς)×Sq(μ, ν) + Yq(μ, ς)×Sq(μ, ν)]dω.
(55)

1
(ν−ς)

∫ ν
ς Yq(σ, ω)×Sq(σ, ω)dω ⊇I

1
3
∫ ν

ς [Yq(σ, ς)×Sq(σ, ς) + Yq(σ, ν)×Sq(σ, ν)]dω

+ 1
6
∫ ν

ς [Yq(σ, ς)×Sq(σ, ν) + Yq(σ, ς)×Sq(μ, ν)]dω
(56)

1
(ν−ς)

∫ ν
ς Yq(μ, ω)×Sq(σ, ω)dω ⊇I

1
3
∫ ν

ς [Yq(μ, ς)×Sq(σ, ς) + Yq(μ, ν)×Sq(σ, ν)]dω

+ 1
6
∫ ν

ς [Yq(μ, ς)×Sq(σ, ν) + Yq(μ, ν)×Sq(σ, ς)]dω.
(57)

1
(ν−ς)

∫ ν
ς Yq(σ, ω)×Sq(μ, ω)dω ⊇I

1
3
∫ ν

ς [Yq(σ, ς)×Sq(μ, ς) + Yq(σ, ν)×Sq(μ, ν)]dω

+ 1
6
∫ ν

ς [Yq(σ, ς)×Sq(μ, ν) + Yq(σ, ν)×Sq(μ, ς)]dω.
(58)

From Equations (55)–(58) and inequality Equation (54), we obtain

1
(σ− μ)(ν− ς)

∫ σ

μ

∫ ν

ς
Yq( , ω)×Sq( , ω)dωd ⊇I

1
9

Pq(μ, σ, ς, ν) +
1

18
Mq(μ, σ, ς, ν) +

1
36
Nq(μ, σ, ς, ν).

That is,

1
(σ− μ)(ν− ς)

�
∫ σ

μ

∫ ν

ς

∼
Y( , ω)⊗ ∼

S( , ω)dωd ⊇F

1
9
� ∼

P(μ, σ, ς, ν)⊕ 1
18
�

∼
M(μ, σ, ς, ν)⊕ 1

36
�
∼
N (μ, σ, ς, ν).

Hence, this concludes the proof of the theorem. �

Theorem 11. Let
∼
Y,
∼
S : Δ = [μ, σ]× [ς, ν] ⊂ R2 → E0 be two UD-convex FN-V-Ms. Then, from the q-levels,

we obtain the collection of IVMs Yq, Sq : Δ ⊂ R2 → R
+
I given as Yq( ) = [Y∗(( , ω), q), Y∗(( , ω), q)]

and Sq( ) = [S∗(( , ω), q), S∗(( , ω), q)] for all ( , ω) ∈ Δ and for all q ∈ [0, 1]. Then, the following
inequality holds:

4�
∼
Y
(

μ+σ
2 , ς+ν

2

)
⊗ ∼

S
(

μ+σ
2 , ς+ν

2

)
⊇F

1
(σ−μ)(ν−ς)

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)⊗ ∼

S( , ω)dωd ⊕ 5
36 �

∼
P(μ, σ, ς, ν)⊕ 7

36 �
∼
M(μ, σ, ς, ν)⊕ 2

9 �
∼
N (μ, σ, ς, ν).

(59)

where
∼
P(μ, σ, ς, ν),

∼
M(μ, σ, ς, ν), and

∼
N (μ, σ, ς, ν) are given in Theorem 10.

Proof. Since
∼
Y,
∼
S : Δ → E0 are two UD-convex FN-V-Ms, then from inequality Equation (14) and

for each q ∈ [0, 1], we obtain

2Yq

(
μ+σ

2 , ς+ν
2

)
×Sq

(
μ+σ

2 , ς+ν
2

)
⊇I

1
σ−μ

∫ σ
μ Yq

(
, ς+ν

2

)
×Sq

(
, ς+ν

2

)
d + 1

6

[
Yq

(
μ, ς+ν

2

)
×Sq

(
μ, ς+ν

2

)
+ Yq

(
σ, ς+ν

2

)
×Sq

(
σ, ς+ν

2

)]
+ 1

3

[
Yq

(
μ, ς+ν

2

)
×Sq

(
σ, ς+ν

2

)
+ Yq

(
σ, ς+ν

2

)
×Sq

(
μ, ς+ν

2

)]
,

(60)

and
2Yq

(
μ+σ

2 , ς+ν
2

)
×Sq

(
μ+σ

2 , ς+ν
2

)
⊇I

1
ν−ς

∫ ν
ς Yq

(
μ+σ

2 , ω
)
×Sq

(
μ+σ

2 , ω
)

dω

+ 1
6

[
Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ς
)
+ Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ν
)]

+ 1
3

[
Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ν
)
+ Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ς
)]

.

(61)
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Summing inequalities Equations (60) and (61) and then multiplying the result by 2, we obtain

8Yq

(
μ+σ

2 , ς+ν
2

)
×Sq

(
μ+σ

2 , ς+ν
2

)
⊇I

2
σ−μ

∫ σ
μ Yq

(
, ς+ν

2

)
×Sq

(
, ς+ν

2

)
d + 2

ν−ς

∫ ν
ς Yq

(
μ+σ

2 , ω
)
×Sq

(
μ+σ

2 , ω
)

d

+ 1
6

[
2Yq

(
μ, ς+ν

2

)
×Sq

(
μ, ς+ν

2

)
+ 2Yq

(
σ, ς+ν

2

)
×Sq

(
σ, ς+ν

2

)]
+ 1

6

[
2Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ς
)
+ 2Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ν
)]

+ 1
3

[
2Yq

(
μ, ς+ν

2

)
×Sq

(
σ, ς+ν

2

)
+ 2Yq

(
σ, ς+ν

2

)
×Sq

(
μ, ς+ν

2

)]
+ 1

3

[
2Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ν
)
+ 2Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ς
)]

.

(62)

Now, with the help of integral inequality Equation (14), for each integral on the right-hand side of
Equation (62), we obtain

2Yq

(
μ, ς+ν

2

)
×Sq

(
μ, ς+ν

2

)
⊇I

1
ν−ς

∫ ν
ς Yq(μ, ω)×Sq(μ, ω)dω + 1

6 [Yq(μ, ς)×Sq(μ, ς) + Yq(μ, ν)×Sq(μ, ν)]

+ 1
3 [Yq(μ, ς)×Sq(μ, ν) + Yq(μ, ν)×Sq(μ, ς)]

(63)

2Yq

(
σ, ς+ν

2

)
×Sq

(
σ, ς+ν

2

)
⊇I

1
ν−ς

∫ ν
ς Yq(σ, ω)×Sq(σ, ω)dω + 1

6 [Yq(σ, ς)×Sq(σ, ς) + Yq(σ, ν)×Sq(σ, ν)]

+ 1
3 [Yq(σ, ς)×Sq(σ, ν) + Yq(σ, ν)×Sq(σ, ς)]

(64)

2Yq

(
μ, ς+ν

2

)
×Sq

(
σ, ς+ν

2

)
⊇I

1
ν−ς

∫ ν
ς Yq(μ, ω)×Sq(σ, ω)dω + 1

6 [Yq(μ, ς)×Sq(σ, ς) + Yq(μ, ν)×Sq(σ, ν)]

+ 1
3 [Yq(μ, ς)×Sq(σ, ν) + Yq(μ, ν)×Sq(σ, ς)].

(65)

2Yq

(
σ, ς+ν

2

)
×Sq

(
μ, ς+ν

2

)
⊇I

1
ν−ς

∫ ν
ς Yq(σ, ω)×Sq(μ, ω)dω + 1

6 [Yq(σ, ς)×Sq(μ, ς) + Yq(σ, ν)×Sq(μ, ν)]

+ 1
3 [Yq(σ, ς)×Sq(μ, ν) + Yq(σ, ν)×Sq(μ, ς)].

(66)

2Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ς
)

⊇I
1

σ−μ

∫ σ
μ Yq( , ς)×Sq( , ς)d + 1

6 [Yq(μ, ς)×Sq(μ, ς) + Yq(σ, ς)×Sq(σ, ς)]

+ 1
3

[
Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ς
)
+ Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ς
)] (67)

2Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ν
)

⊇I
1

σ−μ

∫ σ
μ Yq( , ν)×Sq( , ν)d + 1

6 [Yq(μ, ν)×Sq(μ, ν) + Yq(σ, ν)×Sq(σ, ν)]

+ 1
3

[
Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ν
)
+ Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ν
)] (68)

2Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ν
)

⊇I
1

σ−μ

∫ σ
μ Yq( , ς)×Sq( , ν)d + 1

6 [Yq(μ, ς)×Sq(μ, ν) + Yq(σ, ς)×Sq(σ, ν)]

+ 1
3

[
Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ν
)
+ Yq

(
μ+σ

2 , ς
)
×Sq

(
μ+σ

2 , ν
)]

.

(69)

2Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ς
)

⊇I
1

σ−μ

∫ σ
μ Yq( , ν)×Sq( , ς)d + 1

6 [Yq(μ, ν)×Sq(μ, ς) + Yq(σ, ν)×Sq(σ, ς)]

+ 1
3

[
Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ς
)
+ Yq

(
μ+σ

2 , ν
)
×Sq

(
μ+σ

2 , ς
)]

.

(70)

From Equations (63)–(70), we obtain

8Yq

(
μ+σ

2 , ς+ν
2

)
×Sq

(
μ+σ

2 , ς+ν
2

)
⊇I

2
σ−μ

∫ σ
μ Yq

(
, ς+ν

2

)
×Sq

(
, ς+ν

2

)
d + 2

ν−ς

∫ ν
ς Yq

(
μ+σ

2 , ω
)
×Sq

(
μ+σ

2 , ω
)

d

+ 1
6(ν−ς)

∫ ν
ς Yq(μ, ω)×Sq(μ, ω)dω + 1

6(ν−ς)

∫ ν
ς Yq(σ, ω)×Sq(σ, ω)dω

+ 1
6(σ−μ)

∫ σ
μ Yq( , ς)×Sq( , ς)d + 1

6(σ−μ)

∫ σ
μ Yq( , ν)×Sq( , ν)d

+ 1
3(ν−ς)

∫ ν
ς Yq(μ, ω)×Sq(σ, ω)dω + 1

3(ν−ς)

∫ ν
ς Yq(σ, ω)×Sq(μ, ω)dω

+ 1
3(σ−μ)

∫ σ
μ Yq( , ς)×Sq( , ν)d + 1

3(σ−μ)

∫ σ
μ Yq( , ν)×Sq( , ς)d

+ 1
18 Pq(μ, σ, ς, ν) + 1

9Mq(μ, σ, ς, ν) + 2
9Nq(μ, σ, ς, ν).

(71)
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Now, with the help of integral inequality Equation (14) for the first two integrals on the right-
hand side of Equation (71), we obtain the following relation:

2
σ−μ

∫ σ
μ Yq

(
, ς+ν

2

)
×Sq

(
, ς+ν

2

)
d

⊇I
1

(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)×Sq( , ω)dωd

+ 1
3(σ−μ)

∫ σ
μ [Yq( , ς)×Sq( , ς) + Yq( , ν)×Sq( , ν)]d

+ 1
6(σ−μ)

∫ σ
μ [Yq(ς, )×Sq( , ν) + Yq( , ν)×Sq( , ς)]d ,

(72)

2
ν−ς

∫ ν
ς Yq

(
μ+σ

2 , ω
)
×Sq

(
μ+σ

2 , ω
)

d

⊇I
1

(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)×Sq( , ω)dωd

+ 1
3(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(μ, ω) + Yq(σ, ω)×Sq(σ, ω)]dω

+ 1
6(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(σ, ω) + Yq(σ, ω)×Sq(μ, ω)]dω.

(73)

From Equations (72) and (73), we obtain

8Yq

(
μ+σ

2 , ς+ν
2

)
×Sq

(
μ+σ

2 , ς+ν
2

)
⊇I

1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)×Sq( , ω)dωd

+ 1
3(σ−μ)

∫ σ
μ [Yq( , ς)×Sq( , ς) + Yq( , ν)×Sq( , ν)]d

+ 1
6(σ−μ)

∫ σ
μ [Yq( , ς)×Sq( , ν) + Yq( , ν)×Sq( , ς)]d

+ 1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)×Sq( , ω)dωd

+ 1
3(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(μ, ω) + Yq(σ, ω)×Sq(σ, ω)]dω

+ 1
6(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(σ, ω) + Yq(σ, ω)×Sq(μ, ω)]dω

+ 1
6(ν−ς)

∫ ν
ς Yq(μ, ω)×Sq(μ, ω)dω + 1

6(ν−ς)

∫ ν
ς Yq(σ, ω)×Sq(σ, ω)dω

+ 1
6(σ−μ)

∫ σ
μ Yq( , ς)×Sq( , ς)d + 1

6(σ−μ)

∫ σ
μ Yq( , ν)×Sq( , ν)d

+ 1
3(ν−ς)

∫ ν
ς Yq(μ, ω)×Sq(σ, ω)dω + 1

3(ν−ς)

∫ ν
ς Yq(σ, ω)×Sq(μ, ω)dω

+ 1
3(σ−μ)

∫ σ
μ Yq( , ς)×Sq( , ν)d + 1

3(σ−μ)

∫ σ
μ Yq( , ν)×Sq( , ς)d

+ 1
18 Pq(μ, σ, ς, ν) + 1

9Mq(μ, σ, ς, ν) + 2
9Nq(μ, σ, ς, ν).

It follows that

8Yq

(
μ+σ

2 , ς+ν
2

)
×Sq

(
μ+σ

2 , ς+ν
2

)
⊇I

2
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)×Sq( , ω)dωd

+ 2
3(σ−μ)

∫ σ
μ [Yq( , ς)×Sq( , ς) + Yq( , ν)×Sq( , ν)]d

+ 1
3(σ−μ)

∫ σ
μ [Yq( , ς)×Sq( , ν) + Yq( , ν)×Sq( , ς)]d

+ 2
3(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(μ, ω) + Yq(σ, ω)×Sq(σ, ω)]dω

+ 1
3(ν−ς)

∫ ν
ς [Yq(μ, ω)×Sq(σ, ω) + Yq(σ, ω)×Sq(μ, ω)]dω

+ 1
18 Pq(μ, σ, ς, ν) + 1

9Mq(μ, σ, ς, ν) + 2
9Nq(μ, σ, ς, ν).

(74)

Now, using integral inequality Equation (13) for the integrals on the right-hand side of Equation
(74), we obtain the following relation

1
σ−μ

∫ σ
μ Yq( , ς)×Sq( , ς)d

⊇I
1
3 [Yq(μ, ς)×Sq(μ, ς) + Yq(σ, ς)×Sq(σ, ς)] + 1

6 [Yq(μ, ς)×Sq(σ, ς) + Yq(σ, ς)×Sq(μ, ς)],
(75)

1
σ−μ

∫ σ
μ Yq( , ν)×Sq( , ν)d

⊇I
1
3 [Yq(μ, ν)×Sq(μ, ν) + Yq(σ, ν)×Sq(σ, ν)] + 1

6 [Yq(μ, ν)×Sq(σ, ν) + Yq(σ, ν)×Sq(μ, ν)]
(76)

1
σ−μ

∫ σ
μ Yq( , ς)×Sq( , ν)d

⊇I
1
3 [Yq(μ, ς)×Sq(μ, ν) + Yq(σ, ς)×Sq(σ, ν)] + 1

6 [Yq(μ, ς)×Sq(σ, ν) + Yq(σ, ς)×Sq(μ, ν)],
(77)

1
σ−μ

∫ σ
μ Yq( , ν)×Sq( , ς)d

⊇I
1
3 [Yq(μ, ν)×Sq(μ, ς) + Yq(σ, ν)×Sq(σ, ς)] + 1

6 [Yq(μ, ν)×Sq(σ, ς) + Yq(σ, ν)×Sq(μ, ς)],
(78)

1
ν−ς

∫ ν
ς Yq(μ, ω)×Sq(μ, ω)dω

⊇I
1
3 [Yq(μ, ς)×Sq(μ, ς) + Yq(μ, ν)×Sq(μ, ν)] + 1

6 [Yq(μ, ς)×Sq(μ, ν) + Yq(μ, ν)×Sq(μ, ς)],
(79)
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1
ν−ς

∫ ν
ς Yq(σ, ω)×Sq(σ, ω)dω

⊇I
1
3 [Yq(σ, ς)×Sq(σ, ς) + Yq(σ, ν)×Sq(σ, ν)] + 1

6 [Yq(σ, ς)×Sq(σ, ν) + Yq(σ, ν)×Sq(σ, ς)],
(80)

1
ν−ς

∫ ν
ς Yq(μ, ω)×Sq(σ, ω)dω

⊇I
1
3 [Yq(μ, ς)×Sq(σ, ς) + Yq(μ, ν)×Sq(σ, ν)] + 1

6 [Yq(μ, ς)×Sq(σ, ν) + Yq(μ, ν)×Sq(σ, ς)],
(81)

1
ν−ς

∫ ν
ς Yq(σ, ω)×Sq(μ, ω)dω

⊇I
1
3 [Yq(σ, ς)×Sq(μ, ς) + Yq(σ, ν)×Sq(μ, ν)] + 1

6 [Yq(σ, ς)×Sq(μ, ν) + Yq(σ, ν)×Sq(μ, ς)].
(82)

From Equations (75)–(82) and inequality Equation (74), we obtain

4Yq

(
μ+σ

2 , ς+ν
2

)
×Sq

(
μ+σ

2 , ς+ν
2

)
⊇I

1
(σ−μ)(ν−ς)

∫ σ
μ

∫ ν
ς Yq( , ω)×Sq( , ω)dωd + 5

36 Pq(μ, σ, ς, ν) + 7
36Mq(μ, σ, ς, ν) + 2

9Nq(μ, σ, ς, ν)

That is,

4
∼
Y
(

μ+σ
2 , ς+ν

2

)
⊗ ∼

S
(

μ+σ
2 , ς+ν

2

)
⊇F

1
(σ−μ)(ν−ς)

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)⊗ ∼

S( , ω)dωd ⊕ 5
36 �

∼
P(μ, σ, ς, ν)⊕ 7

36 �
∼
M(μ, σ, ς, ν)⊕ 2

9 �
∼
N (μ, σ, ς, ν).

We will now obtain the HH–Fejér inequality for coordinated UD-convex FN-V-Ms by means of
FOR in the following result. �

Theorem 12. Let
∼
Y : Δ = [μ, σ]× [ς, ν]→ E0 be a coordinated UD-convex FN-V-M with μ < σ and ς < ν.

Then, from the q-levels, we obtain the collection of IVMs Yq : Δ → R
+
I given as

Yq( , ω) = [Y∗(( , ω), q), Y∗(( , ω), q)] for all ( , ω) ∈ Δ and for all q ∈ [0, 1]. Let Ω : [μ, σ]→ R

with Ω( ) ≥ 0,
∫ σ

μ Ω( )d > 0, and W : [ς, ν]→ R with W(ω) ≥ 0,
∫ ν

ς W(ω)dω > 0, be two

symmetric functions with respect to μ+σ
2 and ς+ν

2 , respectively. Then, the following inequality holds:

∼
Y
(

μ+σ
2 , ς+ν

2

)
⊇F

1
2

[
1∫ σ

μ
Ω( )d

� ∫ σ
μ

∼
Y
(

, ς+ν
2

)
Ω( )d ⊕ 1∫ σ

μ
W(ω)dω

� ∫ σ
μ

∼
Y
(

μ+σ
2 , ω

)
W(ω)dω

]
⊇F

1∫ σ

μ
Ω( )d

∫ σ

μ
W(ω)dω

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)Ω( )W(ω)dωd

⊇F
1

4
∫ σ

μ
Ω( )d

�
[∫ σ

μ

∼
Y( , ς)d ⊕ ∫ σ

μ

∼
Y( , ν)d

]
⊕ 1

4
∫ σ

μ
W(ω)dω

�
[∫ ν

ς

∼
Y(μ, ω)dω⊕ ∫ ν

ς

∼
Y(σ, ω)dω

]
⊇F

∼
Y(μ,ς)⊕

∼
Y(σ,ς)⊕

∼
Y(μ,ν)⊕

∼
Y(σ,ν)

4

(83)

Proof. Since
∼
Y is a coordinated UD-convex FN-V-M on Δ, and it follows those functions, then via

Lemma 1, the following exist:

∼
Y : [ς, ν]→ E0 ,

∼
Y (ω) =

∼
Y( , ω) ,

∼
Yω : [μ, σ]→ E0 ,

∼
Yω( ) =

∼
Y( , ω).

Thus, from inequality Equation (15), for each q ∈ [0, 1], we obtain

Yq

(
ς + ν

2

)
⊇I

1∫ ν
ς W(ω)dω

∫ ν

ς
Yq (ω)W(ω)dω ⊇I

Yq (ς) + Yq (ν)

2
,

and

Yqω

(
μ + σ

2

)
⊇I

1∫ σ
μ Ω( )d

∫ σ

μ
Yqω( )Ω( )d ⊇I

Yqω(μ) + Yqω(σ)

2

The above inequalities can be written as

Yq

(
,

ς + ν

2

)
⊇I

1∫ ν
ς W(ω)dω

∫ ν

ς
Yq( , ω)W(ω)dω ⊇I

Yq( , ς) + Yq( , ν)

2
, (84)

87



Mathematics 2023, 11, 2851

and

Yq

(
μ + σ

2
, ω

)
⊇I

1∫ σ
μ Ω( )d

∫ σ

μ
Yq( , ω)Ω( )d ⊇I

Yq(μ, ω) + Yq(σ, ω)

2
. (85)

Multiplying Equation (84) by Ω( ) and then integrating the result with respect to on [μ, σ],
we obtain

∫ σ

μ
Yq

(
,

ς + ν

2

)
Ω( )d ⊇I

1∫ ν
ς W(ω)dω

∫ σ

μ

∫ ν

ς
Yq( , ω)Ω( )W(ω)dωd ⊇I

∫ σ

μ

Yq( , ς) + Yq( , ν)

2
Ω( )d . (86)

Now, multiplying Equation (85) byW(ω) and then integrating the result with respect to ω on
[ς, ν], we obtain

∫ ν

ς
Yq

(
μ + σ

2
, ω

)
W(ω)dω ⊇I

1∫ σ
μ Ω( )d

∫ σ

μ

∫ ν

ς
Yq( , ω)Ω( )W(ω)d dω ⊇I

∫ σ

μ

Yq(μ, ω) + Yq(σ, ω)

2
W(ω)dω (87)

Since
∫ σ

μ Ω( )d > 0 and
∫ σ

μ W(ω)dω > 0, then by dividing Equations (86) and (87) by∫ σ
μ Ω( )d > 0 and

∫ σ
μ W(ω)dω > 0, respectively, we obtain

1
2

[
1∫ σ

μ
Ω( )d

∫ σ
μ Yq

(
, ς+ν

2

)
Ω( )d + 1∫ σ

μ
W(ω)dω

∫ σ
μ Yq

(
μ+σ

2 , ω
)
W(ω)dω

]
⊇I

1∫ σ

μ
Ω( )d

∫ σ

μ
W(ω)dω

∫ σ
μ

∫ ν
ς Yq( , ω)Ω( )W(ω)dωd

⊇I

[
1∫ σ

μ
Ω( )d

∫ σ
μ

Yq( ,ς)+Yq( ,ν)
4 Ω( )d + 1∫ ν

ς
W(ω)dω

∫ σ
μ

Yq(μ,ω)+Yq(σ,ω)
4 W(ω)dω

]
.

(88)

Now, from the left part of double inequalities Equations (84) and (85), we obtain

Yq

(
μ + σ

2
,

ς + ν

2

)
⊇I

1∫ ν
ς W(ω)dω

∫ ν

ς
Yq

(
μ + σ

2
, ω

)
W(ω)dω, (89)

and

Yq

(
μ + σ

2
,

ς + ν

2

)
⊇I

1∫ σ
μ Ω( )d

∫ σ

μ
Yq

(
,

ς + ν

2

)
Ω( )d (90)

Summing inequalities Equations (89) and (90), we obtain

Yq

(
μ + σ

2
,

ς + ν

2

)
⊇I

1
2

[
1∫ σ

μ Ω( )d

∫ σ

μ
Yq

(
,

ς + ν

2

)
Ω( )d +

1∫ ν
ς W(ω)dω

∫ ν

ς
Yq

(
μ + σ

2
, ω

)
W(ω)dω

]
. (91)

Similarly, from the right part of Equations (84) and (85), we obtain

1∫ ν
ς W(ω)dω

∫ ν

ς
Yq(μ, ω)W(ω)dω ⊇I

Yq(μ, ς) + Yq(μ, ν)

2
, (92)

1∫ ν
ς W(ω)dω

∫ ν

ς
Yq(σ, ω)W(ω)dω ⊇I

Yq(σ, ς) + Yq(σ, ν)

2
, (93)

and
1∫ σ

μ Ω( )d

∫ σ

μ
Yq( , ς)Ω( )d ⊇I

Yq(μ, ς) + Yq(σ, ς)

2
. (94)

1∫ σ
μ Ω( )d

∫ σ

μ
Yq( , ν)Ω( )d ⊇I

Yq(μ, ν) + Yq(σ, ν)

2
. (95)

Adding Equations (92)–(95) and dividing by 4, we obtain

1
4
∫ ν

ς
W(ω)dω

[∫ ν
ς Yq(μ, ω)W(ω)dω +

∫ ν
ς Yq(σ, ω)W(ω)dω

]
+ 1

4
∫ σ

μ
Ω( )d

[∫ σ
μ Yq( , ς)Ω( )d +

∫ σ
μ Yq( , ν)Ω( )d

]
⊇I

Yq(μ,ς)+Yq(μ, ν)+Yq(σ,ς)+Yq(σ, ν)
4

(96)
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Combining inequalities Equations (88), (91), and (96), we obtain

Yq

(
μ+σ

2 , ς+ν
2

)
⊇I

1
2

[
1∫ σ

μ
Ω( )d

∫ σ
μ Yq

(
, ς+ν

2

)
Ω( )d + 1∫ ν

ς
W(ω)dω

∫ ν
ς Yq

(
μ+σ

2 , ω
)
W(ω)dω

]
.

⊇I
1∫ σ

μ
Ω( )d

∫ σ

μ
W(ω)dω

∫ σ
μ

∫ ν
ς Y( , ω)Ω( )W(ω)dωd

⊇I
1

4
∫ ν

ς
W(ω)dω

[∫ ν
ς Yq(μ, ω)W(ω)dω +

∫ ν
ς Yq(σ, ω)W(ω)dω

]
+ 1

4
∫ σ

μ
Ω( )d

[∫ σ
μ Yq( , ς)Ω( )d +

∫ σ
μ Yq( , ν)Ω( )d

]
⊇I

Yq(μ,ς)+Yq(μ, ν)
2 +

Yq(σ,ς)+Yq(σ, ν)
2 +

Yq(μ,ς)+Yq(σ,ς)
2 +

Yq(μ,ν)+Yq(σ,ν)
2 .

That is,

∼
Y
(

μ+σ
2 , ς+ν

2

)
⊇F

1
2

[
1∫ σ

μ
Ω( )d

� ∫ σ
μ

∼
Y
(

, ς+ν
2

)
Ω( )d ⊕ 1∫ σ

μ
W(ω)dω

� ∫ σ
μ

∼
Y
(

μ+σ
2 , ω

)
W(ω)dω

]
⊇F

1∫ σ

μ
Ω( )d

∫ σ

μ
W(ω)dω

� ∫ σ
μ

∫ ν
ς

∼
Y( , ω)Ω( )W(ω)dωd

⊇F
1

4
∫ σ

μ
Ω( )d

�
[∫ σ

μ

∼
Y( , ς)d ⊕ ∫ σ

μ

∼
Y( , ν)d

]
⊕ 1

4
∫ σ

μ
W(ω)dω

�
[∫ ν

ς

∼
Y(μ, ω)dω⊕ ∫ ν

ς

∼
Y(σ, ω)dω

]
⊇F

∼
Y(μ,ς)⊕

∼
Y(σ,ς)⊕
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4 ,

Hence, this concludes the proof. �

Remark 3. From inequality Equation (56), the following exceptional results can be acquired:
If W(ω) = 1 = Ω( ), one can then obtain inequality Equation (36).
Let Y∗(( , ω), q) 
= Y∗(( , ω), q) with q = 1. Then, one can derive following inclusion [61]:
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2

)
⊇ 1
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μ Y

(
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2 , ω
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4 .

(97)

Let
∼
Y be a left coordinated UD-convex FN-V-M. Then, we can achieve the following outcome (see [91]):
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(98)

Let
∼
Y be a left coordinated UD-convex FN-V-M and W(ω) = 1 = Ω( ). Then, we can achieve the

following outcome (see [91]):
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Let Y∗(( , ω), q) 
= Y∗(( , ω), q) with q = 1 and W(ω) = 1 = Ω( ). Then, we acquire following
inequality (see [90]):
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(100)

Let Y∗(( , ω), q) = Y∗(( , ω), q) with q = 1. Then, we can derive the following inclusion:
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(101)

4. Conclusions

In this paper, we introduced and studied a new class of generalized convex fuzzy mappings
on coordinates involving the up and down fuzzy relation, which are known as coordinated up and
down convex fuzzy mappings. Several new versions of integral inequalities for this class of functions
were obtained. It is interesting to note that most of the classes and other results are also exceptional
cases of our defined class and main results, and these exceptional cases of our results are discussed as
applications. For the validation of our main outcomes in this paper, some examples were also proved.
In future, this concept will be explored in the field of quantum calculus.
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24. Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 1, 82. [CrossRef]
25. Alomari, M.; Darus, M.; Kirmaci, U.S. Refinements of Hadamard–type inequalities for quasi-convex functions with applications

to trapezoidal formula and to special means. Comput. Math. Appl. 2010, 59, 225–232. [CrossRef]
26. Zhang, X.M.; Chu, Y.M.; Zhang, X.H. The Hermite-Hadamard type inequality of GA-convex functions and its applications.

J. Inequal. Appl. 2010, 2010, 507560. [CrossRef]
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93. Khan, M.B.; Treant, ǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type

Inequalities. Symmetry 2022, 14, 1901. [CrossRef]
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Abstract: The individual behaviors driven by information diffusion show an undeniable impact
on the process of epidemic spreading and have been continuously evolving with the dynamic
processes. In this paper, a novel weighted co-evolving multiplex network model is proposed to
describe the interaction between information diffusion in online social networks and epidemic
spreading in adaptive physical contact networks. Considering the difference in the connections
between individuals, the heterogeneous rewiring rate, which is proportional to the strength of the
connection, is introduced in our model. The simulation results show that the maximum infection
scale decreases as the information acceptance probability grows, and the final infection decreases
as the rewiring behaviors increase. Interestingly, an infection peak appears in our model due to the
interaction between information diffusion and epidemic spread.

Keywords: co-evolving multiplex networks; epidemic spread; information diffusion; nonlinear
differential systems

MSC: 65Q10

1. Introduction

Information diffusion, i.e., positive information (e.g., authoritative information, news)
and negative information (e.g., rumors and gossip) [1], is always accompanied by virus
spreading on social networks or cascading failures on transportation networks, power grids,
etc. To describe and analyze the coupling of information diffusion and virus spread/cascading
failures, the study on multiplex networks becomes increasingly important as a result of
the interactions among different real-world systems [2–5]. Both the difference in network
structures of real-world systems and the interactions among different dynamic spread
processes in real-world systems can be well described in the multiplex network model [6–10].

The impact of information diffusion on epidemic spread in multiplex networks has
been widely studied in recent years [1,2]. The emergence and changing of information-
related states enrich the whole epidemic spread process in social networks. First, the states
of nodes have become more diversified since a single node owns two states at the same
time; one is describing the physical state, and the other is describing the information-
related state. And the increase in the node’s states leads to the diversity of the propagation
process. Furthermore, information diffusion leads to adaptive behavioral changes among
individuals in response to epidemic outbreaks. When a public health event occurs on social
networks, e.g., Coronavirus-2019 [11], people who had the awareness of prevention or
received the relative information would actively take self-protective measures, such as
wearing masks and washing their hands frequently. Then, a multiplex network with static

Mathematics 2023, 11, 3109. https://doi.org/10.3390/math11143109 https://www.mdpi.com/journal/mathematics94



Mathematics 2023, 11, 3109

network structures evolved into an adaptive multiplex network with a dynamic physical
layer [12].

Although the interplay between information diffusion and biological infections has
been extensively investigated within the framework of multiplex networks, there are still
new challenges in the study of dynamic processes in multiplex networks. First, informa-
tion diffusion affects not only the epidemic spread, but also the physical contact network
structure. After accepting information, individuals are supposed to change their behavior
to avoid infection; as a result, the physical network structure changes. Since the relation-
ship between individuals is highly heterogeneous, individual behaviors are different in
physical contact networks [13]. Moreover, most of the existing studies were focused on
the impact of information diffusion on the epidemic spread, while epidemic spread also
affects information diffusion, which is often ignored. As a matter of fact, information
and epidemics are interacting and co-evolving. When the epidemic outbreaks, with the
increasing number of patients, the epidemic itself receives more and more attention, and the
relevant information spreads faster. That is to say, the probability of information diffusion
changes as the virus spreads.

A weighted co-evolving multiplex network model with multiple time-varying param-
eters can be used to describe and analyze the challenges above. A two-layer multiplex
network consisting of an information layer and a physical contact layer is introduced to
describe the dynamic interaction between an online social (or communication) network and
social contact network, where different dynamical processes can be supported. In online
social networks, individuals exchange information related to disease, and a time-varying
information acceptance rate is defined to describe the impact of the infection in social con-
tact networks. While in a social physical network, actors also exchange biological elements
that can carry on diseases. An aware and healthy individual can actively disconnect from
infected neighbors and reconnect with healthy ones. The reconnecting rate between aware
and unaware healthy nodes is time-varying due to the increase in aware ones. In addition,
the heterogeneity of individual relationships in social contact networks cannot be ignored;
therefore, both the infection rate and rewiring rate are closely related to the relationship,
e.g., intimacy, social distance.

This paper presents a new mean-field model to describe the interaction between
information dissemination and biological infections. Due to the new challenges, new
nonlinear equations are necessary to extend the Susceptible–Infected–Susceptible (SIS)
model and evaluate the impact of rewiring and weighted network links on the reliability of
the adaptive weighted networks:

1. A novel weighted co-evolving multiplex network model is proposed to describe the
interaction between information diffusion in online social networks and epidemic
spreading in adaptive physical contact networks.

2. Two co-evolutionary processes have been considered in our model, the co-evolving of
information diffusion and epidemic spreading between two layers and the co-evolving
of epidemic spreading and network structure in the physical contact network.

3. Considering the difference in the connections between individuals, the heterogeneous
rewiring rate, which is proportional to the strength of the connection, is introduced in
our model.

4. Monte Carlo simulations in weighted co-evolving multiplex network models are
carried out to describe and analyze the interaction between information diffusion and
epidemic spreading.

The rest of this paper is organized as follows. In Section 2, the related works are
reviewed. In Section 3, the structure of a weighted co-evolving multiplex network is
described. Simulations have been conducted in different network structures to analyze
and investigate the effect of network structure properties on propagation in weighted
co-evolving multiplex networks in Section 4, followed by conclusions in Section 5.
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2. Related Work

Many real-world systems are composed of multiple interacting subsystems, which
can be described by multiplex networks, to provide an expressive model for modeling
real-world complex networks [14], such as multi-layer social networks with multiple social
platforms interacting, and multi-layer transportation networks with multiple transportation
channels cooperating and coupling. Furthermore, the interplay or co-evolution of dynamics
between networks with different structures was simulated and analyzed by multiplex
network models [1–7]. Granell et al. [10] pioneered the analysis of the interrelation between
two processes accounting for the spreading of an epidemic, and the information awareness
to prevent its infection, on top of multiplex networks. Soriano-Paños et al. [8] proposed a
two-layer multiplex network to study the interplay between information spreading and
opinion formation in social systems. Velásquez-Rojas et al. [9] studied the dynamics of
the voter model for opinion formation intertwined with that of the contact process for
disease spreading in multiplex networks and found that the opinion dynamics has striking
consequences on the statistical properties of disease spreading. Xia et al. [15–17] proposed
a new coupled disease spreading model on a two-layered multiplex network, where one
layer denotes the underlying topology for the epidemics and the other one represents the
corresponding topology for the awareness spread and extended the multiplex network
model of awareness disease dynamics to a susceptible–infected–recovered (SIR) epidemic
process that results in permanent immunity after infection.

In recent years, the interaction between epidemic spreading and related information
diffusion on multiplex networks has received widespread attention, as it can help model,
predict, and control the spread of an epidemic. Clara et al. [10] presented an analysis
of the interrelation between two processes accounting for the spread of an epidemic,
and the information awareness to prevent its infection, on top of multiplex networks.
Zhou et al. [18] developed a set of nonlinear differential equations that have a linearly
growing state–space size to describe the epidemic spreading process in multilayer complex
networks, including the spreading of viruses and information in computer networks and
the spreading of multiple pathogens in a host population. Wang et al. [1] proposed a
novel epidemic model based on two-layered multiplex networks to explore the influence
of positive and negative preventive information on epidemic propagation. Wu et al. [19]
proposed an aware–susceptible–infected model (ASI) to explore the effect of information
literacy on the spreading process in multiplex networks by using the microscopic Markov
chain method.

So far, however, most of the existing research assumed that information diffusion
does not change the social network structure. In fact, as the information diffuses, some
individuals who have risk awareness often change their behavior to avoid being infected,
which leads to changes in the network structure. In single-layer networks, there has been
extensive research on the collaborative evolution of network structure and propagation.
Gross et al. [20] first proposed an adaptive network wherein susceptible nodes are able
to avoid contact with the infected by rewiring their network connections, and they found
that the interplay between dynamics and topology can have important consequences for
the spreading of infectious diseases and related applications. Subsequently, more research
has been conducted on adaptive networks. Adaptive (weighted) networks have become
increasingly important, as a result of the proliferation of cloud computing [21,22], vehicular
ad hoc networks (VANETs) [23], and social networks [24].

At present, based on the literature we have searched, there is relatively little research
on the information and epidemic spreading in multiplex adaptive networks. Peng et al. [12]
first developed a highly integrated effective degree approach to modeling epidemic and
awareness-spreading processes on multiplex networks coupled with awareness-dependent
adaptive rewiring. They derived a formula for the threshold condition of contagion
outbreak and provided a lower bound for the threshold parameter to indicate the effect
of adaptive rewiring. In this paper, based on the influence of information dissemination
on both epidemic transmission and physical contact network structure, the influence
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of structural and propagation dynamics of physical contact networks on information
dissemination is further introduced into the weighted co-evolving multiplex network
model, based on the consideration of the influence of information dissemination on both
epidemic transmission and physical contact network structure.

3. The Weighted Co-Evolving Multiplex Networks Model

Consider a two-layer network of N nodes connected by L1 and L2 links on each layer,
respectively. The upper network describes the information diffusion network, and the
lower network describes the individual contact network. Multiplex networks explicitly
incorporate multiple channels of connectivity in a system, and they provide a natural
description for systems in which entities have a different set of neighbors in each layer.
Here, we use the two-layer network to describe and study the co-evolving of two different
dynamical processes and the adaptive changing of the physical contact network structure.

3.1. Description of the Co-Evolving Processes in Multiplex Network

The coupling of multiplex networks brings rich co-evolutionary processes, as shown
in Figure 1. The first co-evolution is the interaction between information diffusion and
epidemic spreading. At the initial stage of epidemic spreading, the relevant information
is very little and unconcerned. With the explosion of virus transmission, there is more
and more information, from which people can obtain methods and strategies to address
epidemics. In this process, the epidemic spreading process promotes information diffusion,
which in turn can inhibit the epidemic spreading. The second co-evolution hidden inside
the physical contact network is the network structure and the epidemic spreading, which
is the so-called adaptive network in the single-layer network study. After accepting infor-
mation, individuals who awaken the risk awareness change their own behavior to protect
themselves, which means that the epidemic spread and network structure interact in the
physical contact layer. We introduce the two co-evolution processes in detail, including the
changing rules for the states of nodes and edges.

Figure 1. Interactions of inter-layer and inner-layer in multiplex network. Two co-evolutionary
processes are shown in Figure 1: the first one is the interaction between information diffusion and
epidemic spreading, and the second one hidden inside the physical contact network is the network
structure and the epidemic spreading.
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3.1.1. Co-Evolving of Information Diffusion and Epidemic Spreading between Two Layers

Consider a two-layer network of N nodes connected by L1 and L2 links on each layer,
respectively. The upper information layer describes the online social (or communication)
network, and the lower physical contact layer describes the social contact network, as
shown in Figure 2. In the information diffusion layer, the Unaware–Aware (UA) model,
where the node’s state is unaware (U) or aware (A) of the existence of the epidemics and
its prevention, is applied. In the UA model, U-state individuals do not have information
about how to prevent infection, while A-state individuals reduce their risk to be infected.
A U-state individual becomes aware with a probability α after communication with aware
neighbors. Here, we assume that the A-state individual would remain aware of the infection
due to the continuous spread of the epidemic.

Figure 2. Schematic diagram of network state transition. The upper layer in the figure is the informa-
tion layer (L1), a U-state individual becomes aware with a probability α(t) after communication with
an aware neighbor. The lower layer is the physical contact layer (L2). In L2, a healthy individual with
risk awareness would disconnect the links with the infected person in a certain probability rw = r(w).

Different from the existing research, we take the impact of epidemic spreading on
information diffusion into account. The probability of people acquiring information is not
immutable, i.e., it is closely related to the spreading processes and the states of neighbors
in the network. For example, when the scale of infected individuals becomes larger, people
show stronger awareness and obtain information from more channels, which leads to faster
information spreading. Therefore, we assume that a U-state individual becomes aware with
a time-vary probability α(t), which is proportional to the infection density, i.e., α(t) ∼ I(t).

3.1.2. Co-Evolving of Epidemic Spreading and Network Structure in the Physical
Contact Network

Here, we use the SIS epidemic model in physical contact networks to simulate the
epidemic spreading process [25–27]. There are three different states of node i: Susceptible
with awareness (SA), susceptible without awareness (SU), and infected (IA), who always
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have awareness. An SA-state node can be infected with probability β1 f (w) by an IA-state
neighbor, while the probability is β2 f (w) if it is a SU-state node. f (w) is a function positively
related to the weight of the link, and β1 < β2. IA-state ones return to SA-state with
probability γ. The change in node states is shown in Figure 2.

The awareness can not only decrease the probability to be infected, but also make
individual behaviors change to isolated from infected ones. A healthy individual with risk
awareness would disconnect their links with the infected person in a certain probability rw.
The higher the link weight, the harder it is to disconnect, i.e., rw ∼ 1/w. In order to ensure
the functional completion of the network, we assume that a healthy person in the network
who disconnected an edge has to find a healthy person to connect, as shown in Figure 2. For
example, healthy employees will transfer work tasks from infected employees to healthy
ones. In this way, a weighted co-evolving multiplex model is built, where information and
virus propagation interact.

Figure 3 presents the operations of a node in a weighted co-evolving multiplex net-
work. A healthy node without awareness can obtain information from its neighbor with
awareness. A healthy node is more likely to be infected by an infected neighbor it inter-
acts with frequently, i.e., the one with a larger link-weight, than by one it interacts with
infrequently. Once one of its neighbors is infected, the node can observe the misbehaviors
of the neighbor and rewire its link to bypass the infected neighbor, thereby preventing
the propagation of the attacks or failures. As a result, the topology of the network keeps
changing in response to the infection, quarantining infected individuals and counteracting
the vulnerability explorations.

Figure 3. The flowchart of a node regarding a w-weighted link.

3.2. Mathematical Description of the Weighted Co-Evolving Multiplex Networks Model

Every node i has a certain probability of being in one of the three states at time t,
denoted by [SA], [SU ], and [IA], respectively. We provide the definition of the notations
used in the model in Table 1, including node density, edge density in different states, and
relevant parameters in the model.
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Table 1. The notation used in the model formulation and analytical approximation.

Term Definition

[SA] Fraction of aware susceptible nodes
[SU ] Fraction of unaware susceptible nodes
[IA] Fraction of aware infected nodes

[SA IA]w
Fraction of links between an aware susceptible node and an aware infected node
with w-weight

[SU IA]w
Fraction of links between an unaware susceptible node and an aware infected
node with w-weight

[SASA]w Fraction of links between two aware susceptible nodes with w-weight
[SUSU ]w Fraction of links between two unaware susceptible nodes with w-weight

[SUSA]w
Fraction of links between an unaware susceptible node and an aware
susceptible node with w-weight

[IA IA]w Fraction of links between two aware infected nodes with w-weight

β1 f (w)
Rate that an unaware susceptible node infected by an infected neighbor though
a link with weight w

β2 f (w)
Rate that an aware susceptible node infected by an infected neighbor though a
link with weight w

α The rate that an unaware node accepts the information and becomes aware
rw The rewiring rate that is proportional to the link weight w

brw

The rate at which [SA IA]w link becomes [SASA]w link due to the rewiring, and b

is the scale parameter. Here, we set b = [SA ]
[SA ]+[SU ]

. Then, the rate at which SA IA

link becomes SUSA link due to the rewiring is (1− b)rw = [SU ]
[SA ]+[SU ]

rw.

• Change the process of node state over time:

d[SA]

dt
= γ[IA]−∑

w
β1 f (w)[SA IA]w + α ∑

w
([SU IA]w + [SUSA]w) (1)

d[SU ]

dt
= −∑

w
β2 f (w)[SU IA]w − α ∑

w
([SU IA]w + [SUSA]w) (2)

d[IA]

dt
= −γ[IA] + ∑

w
β1 f (w)[SA IA]w + ∑

w
β2 f (w)[SU IA]w (3)

We call the system of Equations (1)–(3) the node-state changing model. On the right-
hand side (RHS) of Equation (1), the first term accounts for the recovery of IA-state
node at rate γ. The second term indicates the infection process, where an SA-state
node is infected by an IA-state neighbor through the w-weighted link at rate β1 f (w).
The third term indicates the information transmission process, where the SU-state
individuals receive information from an A-state neighbor at rate α and change their
state to SA. Here, we assume that the probability of individuals accepting information
and being aware of risks increases with the spread of infection α ∼ p1 I(t), where
p1 ∈ [0, 1] is an adjustment parameter and α is proportional to I(t). On the RHS of
Equation (2), the first term and second term are the infection process and information
transmission process, respectively. A SU-state node is infected by an IA-state neighbor
through the w-weighted link at rate β2 f (w), where β2 > β1 indicates that people with-
out risk awareness are more likely to be infected. On the RHS of Equation (3), the first
term is the recovery process and the second and third terms are the infection process.

• Change the process of link state over time:

d[SA IA ]w
dt = −β1 f (w)[SA IA]w + ∑

w′
f (w′)(β1[SASA IA]ww′ + β2[SASU IA]ww′

− β1[IASA IA]w′w) + 2γ[IA IA]w − γ[SA IA]w + α[SU IA]w − rw[SA IA]w
(4)
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d[SU IA ]w
dt = ∑

w′
f (w′)(β1[SUSA IA]ww′ − β2[IASU IA]w′w + β2[SUSU IA]ww′)

− β2 f (w)[SU IA]w − γ[SU IA]w − α[SU IA]w
(5)

d[SASA ]w
dt = −β1 ∑

w′
f (w′)[SASA IA]ww′ + γ[SA IA]w + α[SUSA]w + brw[SA IA]w (6)

d[SU SU ]w
dt = −β2 ∑

w′
f (w′)[SUSU IA]ww′ (7)

d[SUSA ]w
dt = −∑

w′
f (w′)(β1[SUSA IA]ww′ + β2[IASUSA]w′w) + γ[SU IA]w

−α[SUSA]w + (1− b)rw[SA IA]w
(8)

d[IA IA ]w
dt = ∑

w′
f (w′)(β1[IASA IA]ww′ + β2[IASU IA]ww′) + β1 f (w)[SA IA]w

+β2 f (w)[SU IA]w − 2γ[IA IA]w
(9)

Equations (4)–(9) characterize the time-varying numbers of links weighted by different
weights and connecting nodes in different states. The reasons for the changes in
the states of the links can be broadly divided into three, the infection and recovery
process associated with the physical contact layer, the information diffusion process
associated with the dissemination of the information layer, and the rewiring process
of the physical contact layer. For example, Equation (4) captures the time-changing
number of the w-weighted links connecting an aware susceptible node and an aware
infected node. The first term on the RHS of Equation (4) results from the infection of
the susceptible ends of the links with the probability of β1 f (w). The second term is the
number of previous w-weighted SASA/SASU links which become SASA links due to
the infection at one end of the links through a w′ weighted link with the probability of
β1 f (w′)/β2 f (w′). [ABC]ww′ denotes the number of triplets A− B− C, with edge AB
weighted w and edge BC weighted w′, A, B, C ∈ {SU , SA, IA}. The third and fourth
term on the RHS of Equation (4) results from the recovery of the infected ends of the
links with the probability of γ. The fifth term on the RHS of Equation (4) results from
the information diffusion with the probability of α, and the last term results from
rewiring to bypass an infected node with the probability of rw.
Specifically, in the stable state, due to information dissemination, all nodes eventually
become risk-aware, so there are only two types of state left in the network, namely
[SA] and [IA]. In addition, all nodes and links in different states achieve dynamic

stability, i.e., ( d[SA ]
dt , d[IA ]

dt , d[SA IA ]
dt , d[SASA ]

dt , d[IA IA ]
dt ) = (0, 0, 0, 0, 0). The Equation of state

in the stable state satisfies

γ[IA]−∑
w

β1 f (w)[SA IA]w= 0 (10)

ζβ1
[SASA]w − [SA IA]w

SA ∑
w′

f (w′)[SA IA]w′ − (β1 f (w) + γ+rw)[SA IA]w + 2γ[IA IA]w = 0 (11)

−ζβ1
[SASA]w

SA ∑
w′

f (w′) + (γ + brw)[SA IA]w= 0 (12)

β1 f (w)[SA IA]w − 2γ[IA IA]w + ζβ1
[SA IA]w

SA ∑
w′

f (w′)[SA IA]w′ = 0 (13)

Based on the approximation in [13], [ABC]ww′ = ζ
[AB]w [BC]w′

B , A, B, C ∈ {SU , SA, IA},
b = 1.
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An interesting result is shown in Equations (10)–(13). In a stable state, all nodes
already have risk awareness, and we can see from the equations that the probability of
information acceptance shows no impact on the final stable state of the network. That
is, the result of our analysis is that the probability of information acceptance does not
affect the final infection scale. Due to the isolation effect of the rewiring process on the
infected nodes from susceptible ones, the rewiring rate shows an important impact on
the final infection of the network.
We can see from the equations that information diffusion has changed the rules of
epidemic spread and also changed the network structure. Conversely, the epidemic
spreading affects the probability of information acceptance, i.e., the rules of informa-
tion diffusion. Therefore, information diffusion, epidemic dynamics, and network
structure interact with each other. In the next section, we conduct simulation experi-
ments on the above processes through Monte Carlo methods to further explore the
relationships among them.

4. Simulation Results

In this section, simulations are applied to analyze the propagation dynamics processes
on the proposed multi-layer dynamic network model. Figures are plotted based on discrete-
time Monte Carlo simulations of 100 iterations. Therefore, each data point in the figures is
the average result of 100 independent runs. For each of the runs, a single infected node is
randomly chosen at t = 0, as the initial point of infection.

Firstly, we constructed a two-layer network of size N = 500, where the information
dissemination layer is a scale-free network [28], and the physical contact layer is a BBV-
weighted scale-free network [29]. First, we establish a fully connected network with n
initial nodes and assign each edge of the network the initial weight w0. In our simulation,
we set n = 3, w0 = 1. In each time interval, add a new node with m edges, which are
preferentially attached to existing nodes with a greater strength. Here, we set m = 3. The
strength preference probability can be defined as ∏new→i =

si
∑j sj

, where si represents the
strength of node i, which can be expressed by si = ∑j wij with wij representing the weight
of the edge between nodes i and j. When the new node j is linked to an existing node i, the
weights of the edge between node i and its existed neighbors, such as node j, evolve as
wij → wij + Δwij, where Δwij = δ

wij
si

and δ is a constant. The average degree of both layers
is 〈k〉 = 6 and the average weight of the physical contact layer is 〈w〉 = 6. The degree
distribution, node strength distribution, and weight distribution of the BBV network all
conform to the power-law distribution, and the degree and strength of the nodes have a
positive correlation, as shown in Figure 4.

We aim to investigate the interplay between propagation processes on the multi-layer
network. As described in the previous section, we use the UA model for information
diffusion and the SIS model to describe the epidemic spread. The acceptance of positive
epidemic-related information is closely related to the level of epidemic infection; here,
the information acceptance probability of an unaware node from an aware neighbor is
set as α(t) = p1 I(t), p1 ∈ [0, 1]. In the physical contact network, the rewiring rate is
set to r(w) = p2

1
w , p2 ∈ [0, 1]. Both p1 and p2 are the adjustment parameters of α(t)

and r(w), respectively. And the larger p1/p2 is, the higher the information acceptance
probability/rewiring rate. We explore the relationship between information dissemination
and epidemic transmission processes through the changes in p1 and p2.
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Figure 4. The distribution characteristics of the BBV network. The degree distribution, node strength
distribution, and weight distribution of the BBV network all conform to the power-law distribution,
and the degree and strength of the nodes have a positive correlation.

We first study the impact of information diffusion on the epidemic spread, as shown
in Figure 5. The curves show the changes in the number of infected individuals I(t) over
time t under different p1 in each subplot. We can see from each subplot that the maximum
infection scale, i.e., peaks of the curves, decreases with the increase in p1. When p1 grows,
the information acceptance probability becomes larger. Then, the number of SA-state nodes
that can be infected with a smaller probability increases, and infection velocity becomes
slower. However, we can see from each of the subplots that the probability of information
acceptance shows no impact on the final infection of the network, which is consistent with
our theoretical analysis result in Section 3.

Interestingly, each curve in Figure 5 shows an infection peak due to the fact that all
infected individuals are risk-aware, i.e., IA-states, and the IA-state nodes revert to the
SA-state with the recovery probability γ. Therefore, the SA-state nodes in the network are
increasing continuously, and the infection in the network is slowed down before reaching
stability. When the recovering process disappears, i.e., γ = 0, the peak disappears, as
shown in Figure 6 (the red curve).
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Figure 5. Theimpact of information diffusion on the epidemic spread under different parameter p2

in rewiring rate rw. Curves are the number of infected individuals I(t) over time t as p1 increases.
In each subplot, we can see that the final infection (I(t = 40)) is almost the same, which means that
the information diffusion has no impact on the final infection. But a high probability of receiving
information can reduce the speed of epidemic spread.

Figure 6. Comparison of infection processes with and without recovery process. Here, we set p1 = 0.8,
p2 = 0.
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We can also see from Figure 5 that, with the increase in the rewiring parameter p2,
the infection in the network has been greatly improved. We can see from Figure 5a–d
that, as p2 increases, the final infection (I(t = 40)) in the network significantly decreases.
When p2 = 0, the number of final infections is about 200; however, when p2 = 0.4/0.6,
the final infection disappears. Furthermore, we continue to study the impact of rewiring
behaviors on the epidemic spread process. Figure 7 shows the impact of rewiring behaviors
on the epidemic spread under different information acceptance parameters p1. Curves
are the number of infected individuals I(t) over time t as p2 increases. We can see from
each subgraph that as p2 increases, the scale of infections in the network decreases. The
rewiring behavior has effectively inhibited the prevalence of the virus as it blocks the path
of infection. Especially in the initial stage of infection, the higher the rewiring rate, the
easier it is for the infection to eventually die out.

Figure 7. Theimpact of rewiring behaviors on the epidemic spread under different parameters p1

in information acceptance rate. Curves are the number of infected individuals I(t) over time t as
p2 increases. We can see from each subplot that the final infection was greatly inhibited with the
increase in the rewiring parameter p2.

Compared to the impact of information dissemination on the infection process, the
rewiring behavior has a greater impact on the final infection scale, as shown in Figure 8.
When we increase the rewiring parameter p2, the final infection scale (t = 100) continuously
decreases. As shown in Figure 8, when p2 > 0.32, the final infection of the network
approaches 0.

Another ongoing collaborative evolution is the structure of physical contact networks:
both the degree distribution and weight distribution evolve along with the rewiring process.
Adaptive rewiring of high-risk links leads to the breakdown of edges that connect a
susceptible node with risk awareness and an infected one, and meanwhile, this gives
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rise to the formation of low-risk links connecting toward a randomly chosen susceptible
node. As demonstrated in Figure 9, the degree distribution of the physical contact network
exhibits time-varying scaling behaviors: In the initial stage without rewiring (Case of t = 0
in Figure 8), both the node degree and link weights follow a perfect power law, while
as the rewiring process unfolds, the degree/weight values become closer to the average
degree/weight, approximating a Poisson distribution.

Figure 8. Thefinal infection I(p2) under different rewiring parameters p2.

Figure 9. Theimpact of rewiring behaviors on network structure.
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5. Conclusions

Information diffusion is an inevitable influencing factor in the process of epidemic
spread, and in turn, epidemic spreading also affects information diffusion. This paper uses
a two-layer network model to describe and analyze the interaction between information
dissemination and epidemic transmission. Our model considers two co-evolutionary
processes: the co-evolving of information diffusion and epidemic spreading between two
layers and the co-evolving of epidemic spreading and network structure in the physical
contact network. Considering the difference in the connections between individuals, the
heterogeneous rewiring rate, which is proportional to the strength of the connection, is
introduced in our model. Simulation results show that the epidemics spreading is closely
related to the information diffusion and rewiring strategy. The maximum infection scale
decreases as the information acceptance probability grows, and the final infection decreases
as the rewiring behaviors increase. Interestingly, an infection peak appears in our model
due to the interaction between information diffusion and epidemic spread.

The weighted co-evolving multiplex network model we propose is used to describe
the dynamic interaction between information diffusion and epidemic spreading, which
is more diverse in real life. Therefore, we hope to have a more realistic model based
on our model to deepen the research on spreading dynamic interactions in real-world
systems. In fact, besides social networks, a significant number of real-world systems, e.g.,
communication networks, transportation networks, and power networks, own multiplex
network structures. For example, information diffusion can help drivers better understand
road conditions and avoid traffic congestion in transportation networks. The information
exchange in the communication network can help decision makers to appropriately load
redistribution in a timely manner, thereby avoiding cascading failures in the power grid.
The model we propose in this paper can be extended to more scenarios and will hopefully
be used to study problems of multiplex network coexistence and cooperative evolution in
these scenarios.
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∼
G

Δ γ ∈ [0, 1], G∗((x, y), γ) G∗((x, y), γ)
Δ
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∼
G : Δ → F0 Δ γ

Gγ : Δ → R
+
I ⊂ RI

Gγ(x, y) = [G∗((x, y), γ), G∗((x, y), γ)],

(x, y) ∈ Δ γ ∈ [0, 1]
∼
G

Δ γ ∈ [0, 1], G∗((x, y), γ) G∗((x, y), γ)
Δ

Δ
∼
G : Δ → F

+
0

γ Gγ : Δ → R
+
I ⊂ RI

Gγ(x, y) = [G∗((x, y), γ), G∗((x, y), γ)],

(x, y) ∈ Δ γ ∈ [0, 1]
∼
G Δ

γ ∈ [0, 1], G∗((x, y), γ) G∗((x, y), γ)

�

∼
G : [0, 1]× [0, 1]→ F

+
0

∼
G(x, y)(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ− (6− ex)(6− ey)

(6− ex)(6− ey)− 25
, σ ∈ [(6− ex)(6− ey), 25]

35xy− σ

35xy− 25
, σ ∈ (25, 35xy]

0, otherwise.

γ ∈ [0, 1], Gγ(x, y) = [(1− γ)(6− ex)(6− ey) + 25γ, 35(1− γ)xy
+ 25γ] G∗((x, y), γ) and G∗((x, y), γ)

γ ∈ [0, 1]
∼
G(x, y)

∼
G : Δ → F

+
0 Δ, : [0, 1]→ R+

γ Gγ : Δ → R
+
I , which Gγ(x, y) =

[G∗((x, y), γ), G∗((x, y), γ)] (x, y) ∈ Δ γ ∈ [0, 1]
∼
G ∈ FOΔ
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1
2( 1

2 )

∼
G
( e+g

2 , u+v
2
)

⊇F

Γ(α+1)
2 ( 1

2 )(g−e)
α

[
Iα
e+

∼
G
(
g, u+v

2
)⊕ Iα

g−
∼
G
(
e, u+v

2
)]⊕ Γ(β+1)

2 ( 1
2 )(v−u)

β

[
Iβ
u+

∼
G
( e+g

2 , v
)⊕ Iβ

v−
∼
G
( e+g

2 , u
)]

⊇F

Γ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊕ Iα, β

e+ ,v−
∼
G(g, u)⊕ Iα, β

g− ,u+
∼
G(e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)

]
⊇F

βΓ(α+1)
(g−e)α

[
Iα
e+

∼
G(g, u)⊕ Iα

e+

∼
G(g, v)⊕ Iα

g−
∼
G(e, u)⊕ Iα

g−
∼
G(e, v)

]
× ∫ 1

0 κβ−1[ (κ) + (1− κ)]dκ

⊕ αΓ(β+1)
(v−u)β

[
I β
u+

∼
G(e, v)⊕ Iβ

v−
∼
G(g, u)⊕ Iβ

u+

∼
G(g, v)⊕ Iβ

v−
∼
G(g, u)

]
× ∫ 1

0 τα−1 (τ) + (1− τ)dτ

⊇F αβ

[∼
G(e, u)⊕

∼
G(g, u)⊕

∼
G(e, v)⊕

∼
G(g, v)

]
× ∫ 1

0 κβ−1[ (κ) + (1− κ)]dκ
∫ 1

0 τα−1[ (τ) + (1− τ)]dτ.

∼
G(x, y) ,

1
2( 1

2 )

∼
G
( e+g

2 , u+v
2
)

⊆F

Γ(α+1)
2 ( 1

2 )(g−e)
α

[
Iα
e+

∼
G
(
g, u+v

2
)⊕ Iα

g−
∼
G
(
e, u+v

2
)]⊕ Γ(β+1)

2 ( 1
2 )(v−u)

β

[
Iβ
u+

∼
G
( e+g

2 , v
)⊕ Iβ

v−
∼
G
( e+g

2 , u
)]

⊆F

Γ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊕ Iα, β

e+ ,v−
∼
G(g, u)⊕ Iα, β

g− ,u+
∼
G(e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)

]
⊆F

βΓ(α+1)
(g−e)α

[
Iα
e+

∼
G(g, u)⊕ Iα

e+

∼
G(g, v)⊕ Iα

g−
∼
G(e, u)⊕ Iα

g−
∼
G(e, v)

]
× ∫ 1

0 κβ−1[ (κ) + (1− κ)]dκ

⊕ αΓ(β+1)
(v−u)β

[
I β
u+

∼
G(e, v)⊕ Iβ

v−
∼
G(g, u)⊕ Iβ

u+

∼
G(g, v)⊕ Iβ

v−
∼
G(g, u)

]
× ∫ 1

0 τα−1[ (τ) + (1− τ)]dτ

⊆F αβ

[∼
G(e, u)⊕

∼
G(g, u)⊕

∼
G(e, v)⊕

∼
G(g, v)

]
× ∫ 1

0 κβ−1[ (κ) + (1− κ)]dκ
∫ 1

0 τα−1[ (τ) + (1− τ)]dτ.

∼
G : [e, g]→ F0

1
2
(

1
2

) ∼G( e+ g

2
,
u+ v

2

)
⊇F

∼
G(τe+ (1− τ)g, τu+ (1− τ)v)⊕

∼
G((1− τ)e+ τg, (1− τ)u+ τv).

γ ∈ [0, 1]

1
2( 1

2 )
G∗
(( e+g

2 , u+v
2
)
, γ
)

≤ G∗((τe+ (1− τ)g, τu+ (1− τ)v), γ) + G∗(((1− τ)e+ τg, (1− τ)u+ τv), γ),
1

2( 1
2 )

G∗
(( e+g

2 , u+v
2
)
, γ
)

≥ G∗((τe+ (1− τ)g, τu+ (1− τ)v), γ) + G∗(((1− τ)e+ τg, (1− τ)u+ τv), γ).

1
( 1

2 )
G∗
((

x, u+v
2
)
, γ
) ≤ G∗((x, τu+ (1− τ)v), γ) + G∗((x, (1− τ)u+ τv), γ),

1
( 1

2 )
G∗
((

x, u+v
2
)
, γ
) ≥ G∗((x, τu+ (1− τ)v), γ) + G∗((x, (1− τ)u+ τv), γ),
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1
( 1

2 )
G∗
(( e+g

2 , y
)
, γ
) ≤ G∗((τe+ (1− τ)g, y), γ) + G∗(((1− τ)e+ τg, y), γ),

1
( 1

2 )
G∗
(( e+g

2 , y
)
, γ
) ≥ G∗((τe+ (1− τ)g, y), γ) + G∗(((1− τ)e+ τg, y), γ).

1
( 1

2 )

[
G∗
((

x, u+v
2
)
, γ
)
, G∗

((
x, u+v

2
)
, γ
)]

⊇I [G∗((x, τu+ (1− τ)v), γ), G∗((x, τu+ (1− τ)v), γ)]

+[G∗((x, (1− τ)u+ τv), γ), G∗((x, (1− τ)u+ τv), γ)],

1
( 1

2 )

[
G∗
(( e+g

2 , y
)
, γ
)
, G∗

(( e+g
2 , y

)
, γ
)]

⊇I [G∗((τe+ (1− τ)g, y), γ), G∗((τe+ (1− τ)g, y), γ)]

+[G∗((τe+ (1− τ)g, y), γ), G∗((τe+ (1− τ)g, y), γ)],

1(
1
2

)Gγ

(
x,

u+ v

2

)
⊇I Gγ(x, τu+ (1− τ)v) + Gγ(x, (1− τ)u+ τv),

1(
1
2

)Gγ

(
e+ g

2
, y
)
⊇I Gγ(τe+ (1− τ)g, y) + Gγ(τe+ (1− τ)g, y).

Gγ(x, .) Gγ(., y)
γ ∈ [0, 1]

1
β ( 1

2 )
Gγx

(
u+v

2
) ⊇I

Γ(β)

(v−u)β

[
Iβ
u+

Gγx(v) + I
β
v− Gγx(u)

]
⊇I

[
Gγx(u) + Gγx(v)

]∫ 1
0 κβ−1[ (κ) + (1− κ)]dκ

1
α ( 1

2 )
Gγy

( e+g
2
) ⊇I

Γ(α)
(g−e)α

[
Iα
e+

Gγy(g) + Iα
g−Gγy(e)

]
⊇I

[
Gγy(e) + Gγy(g)

]∫ 1
0 τα−1 (τ) + (1− τ)dτ

Gγx(w) = Gγ(x, w)

1
β ( 1

2 )
Gγ

(
x, u+v

2
) ⊇I

Γ(β)

(v−u)β

[Iα
u+

Gγ(x, v) + Iα
v−Gγ(x, u)

]
⊇I [Gγ(x, u) + Gγ(x, v)]

∫ 1
0 κβ−1[ (κ) + (1− κ)]dκ.

1
β ( 1

2 )
Gγ

(
x, u+v

2
) ⊇I

1
(v−u)β

[ ∫ v
u (v− κ)β−1Gγ(x, κ)dκ +

∫ v
u (κ − u)β−1Gγ(x, κ)dκ

]
⊇I [Gγ(x, u) + Gγ(x, v)]

∫ 1
0 κβ−1[ (κ) + (1− κ)]dκ.

(g−x)α−1

(g−e)α

x [e, g],
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1
β(g−e)α ( 1

2 )

∫ g
e Gγ

(
x, u+v

2
)
(g− x)α−1dx

⊇I
1

(g−e)α(v−u)β

∫ g
e

∫ v
u (g− x)α−1(v− κ)β−1Gγ(x, κ)dκdx +

∫ g
e

∫ v
u (g− x)α−1(κ − u)β−1Gγ(x, κ)dκdx

⊇I
1

(g−e)α

[∫ g
e (g− x)α−1Gγ(x, u)dx +

∫ g
e (g− x)α−1Gγ(x, v)dx

]∫ 1
0 κβ−1[ (κ) + (1− κ)]dκ.

(x−e)α−1

(g−e)α

x [e, g],

1
β(g−e)α ( 1

2 )

∫ g
e Gγ

(
x, u+v

2
)
(x− e)α−1dx

⊇I
1

(g−e)α(v−u)β

∫ g
e

∫ v
u (x− e)α−1(v− κ)β−1Gγ(x, κ)dκdx

+ 1
(g−e)α(v−u)β

∫ g
e

∫ v
u (x− e)α−1(κ − u)β−1Gγ(x, κ)dκdx

⊇I
1

(g−e)α

[∫ g
e (x− e)α−1Gγ(x, u)dx +

∫ g
e (x− e)α−1Gγ(x, v)dx

]∫ 1
0 κβ−1[ (κ) + (1− κ)]dκ.

Γ(α+1)
2 ( 1

2 )(g−e)
α

[Iα
e+

Gγ

(
g, u+v

2
)]

⊇I
Γ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
e+ ,u+Gγ(g, v) + Iα, β

g− ,u+Gγ(g, u)
]

⊇I
βΓ(α+1)
(g−e)α

[Iα
e+

Gγ(g, u) + Iα
e+

Gγ(g, v)
]∫ 1

0 κβ−1[ (κ) + (1− κ)]dκ.

Γ(α+1)
2 ( 1

2 )(g−e)
α

[
Iα
g−Gγ

(
e, u+v

2
)]

⊇I
Γ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
g− ,u+Gγ(e, v) + Iα, β

g− ,v−Gγ(e, u)
]

⊇I
βΓ(α+1)
(g−e)α

[
Iα
g−Gγ(e, u) + Iα

g−Gγ(e, v)
]∫ 1

0 κβ−1[ (κ) + (1− κ)]dκ.

γ Gγ : Δ → R
+
I

Γ(α+1)
2 ( 1

2 )(g−e)
α

[
Iα
e+

∼
G
(
g, u+v

2
)]

⊇F

Γ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊕ Iα, β

g− ,u+
∼
G(g, u)

]
⊇F

βΓ(α+1)
(g−e)α

[
Iα
e+

∼
G(g, u)⊕ Iα

e+

∼
G(g, v)

]∫ 1
0 κβ−1[ (κ) + (1− κ)]dκ.

Γ(α+1)
2 ( 1

2 )(g−e)
α

[
Iα
g−
∼
G
(
e, u+v

2
)]

⊇F

βΓ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
g− ,u+

∼
G(e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)

]
⊇F

βΓ(α+1)
(g−e)α

[
Iα
g−
∼
G(e, u)⊕ Iα

g−
∼
G(e, v)

]∫ 1
0 κβ−1[ (κ) + (1− κ)]dκ.
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∼
Gy(z) =

∼
G(z, y)

Γ(β+1)

2 ( 1
2 )(v−u)

β

[
Iβ
u+

∼
G
( e+g

2 , v
)]

⊇F

Γ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊕ Iα, β

g− ,u+
∼
G(e, v)

]
⊇F

αΓ(β+1)
(v−u)β

[
Iβ
u+

∼
G(e, v)⊕ Iβ

u+

∼
G(g, v)

]
.

Γ(β+1)
2 ( 1

2 )(v−u)
α

[
Iβ
v−
∼
G
( e+g

2 , u
)]

⊇F

Γ(α+1)Γ(β+1)
(g−e)α(v−u)β

[
Iα, β
e+ ,v−

∼
G(g, u)⊕ Iα, β

g− ,v−
∼
G(e, u)

]
⊇F

αΓ(β+1)
(v−u)β

[
Iβ
v−
∼
G(e, u)⊕ Iβ

v−
∼
G(g, u)

]
.

γ ∈ [0, 1]

1
2
(

1
2

)Gγ

(
e+ g

2
,
u+ v

2

)
⊇I

Γ(β + 1)(
1
2

)
(v− u)

β

[
Iβ
u+

Gγ

(
e+ g

2
, v
)
+ Iβ

v−Gγ

(
e+ g

2
, u
)]

1
2
(

1
2

)Gγ

(
e+ g

2
,
u+ v

2

)
⊇I

Γ(α + 1)(
1
2

)
(g− e)

α

[
Iα
e+Gγ

(
g,

u+ v

2

)
+ Iα

g−Gγ

(
e,
u+ v

2

)]

1
2( 1

2 )
Gγ

( e+g
2 , u+v

2
) ⊇I

Γ(α+1)

( 1
2 )(g−e)

α

[
Iα
e+

Gγ

(
g, u+v

2
)
+ Iα

g−Gγ

(
e, u+v

2
)]

+ Γ(β+1)

( 1
2 )(v−u)

β

[
Iβ
u+

Gγ

( e+g
2 , v

)
+ Iβ

v−Gγ

( e+g
2 , u

)]
.

Gγ : Δ → R
+
I γ ∈ [0, 1]

1
2( 1

2 )

∼
G
( e+g

2 , u+v
2
)

⊇F

Γ(α+1)

( 1
2 )(g−e)

α

[
Iα
e+

∼
G
(
g, u+v

2
)⊕ Iα

g−
∼
G
(
e, u+v

2
)]⊕ Γ(β+1)

( 1
2 )(v−u)

β

[
Iβ
u+

∼
G
( e+g

2 , v
)⊕ Iβ

v−
∼
G
( e+g

2 , u
)]

.

γ ∈ [0, 1]

Γ(β)

(v− u)β

[
Iβ
u+

Gγ(e, v) + Iβ
v− Gγ(e, u)

]
⊇I [Gγ(e, u) + Gγ(e, v)]×

∫ 1

0
κβ−1[ (κ) + (1− κ)]dκ

Γ(β)

(v− u)β

[
Iβ
u+

Gγ(g, v) + Iβ
v− Gγ(g, u)

]
⊇I [Gγ(g, u) + Gγ(g, v)]×

∫ 1

0
κβ−1[ (κ) + (1− κ)]dκ

Γ(α)

(g− e)α

[
Iα
e+Gγ(g, u) + Iα

g− Gγ(e, u)
]
⊇I [Gγ(e, u) + Gγ(g, u)]×

∫ 1

0
τα−1 (τ) + (1− τ)dτ
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Γ(α)

(g− e)α

[
Iα
e+Gγ(g, v) + Iα

g− Gγ(e, v)
]
⊇I [Gγ(e, v) + Gγ(g, v)]×

∫ 1

0
τα−1 (τ) + (1− τ)dτ

αβ

βΓ(α+1)
(g−e)α

[
Iα
e+

Gγ(g, u) + Iα
g−Gγ(e, u) + Iα

e+
Gγ(g, v) + Iα

g−Gγ(e, v)
]

+ αΓ(β+1)
(v−u)β

[
Iβ
u+

Gγ(e, v) + Iβ
v−Gγ(e, u) + Iβ

u+
Gγ(g, v) + Iβ

v−Gγ(g, u)
]

⊇I [Gγ(e, u) + Gγ(e, v) + Gγ(g, u) + Gγ(g, v)]× ∫ 1
0 κβ−1[ (κ) + (1− κ)]

dκ
∫ 1

0 τα−1 (τ) + (1− τ)dτ.

Gγ : Δ → R
+
I γ

βΓ(α+1)
(g−e)α

[
Iα
e+

∼
G(g, u)⊕ Iα

g−
∼
G(e, u)⊕ Iα

e+

∼
G(g, v)⊕ Iα

g−
∼
G(e, v)

]
⊕ αΓ(β+1)

(v−u)β

[
Iβ
u+

∼
G(e, v)⊕ Iβ

v−
∼
G(e, u)⊕ Iβ

u+

∼
G(g, v)⊕ Iβ

v−
∼
G(g, u)

]
⊇F

[∼
G(e, u)⊕

∼
G(e, v)⊕

∼
G(g, u)⊕

∼
G(g, v)

]
× ∫ 1

0 κβ−1[ (κ) + (1− κ)]

dκ
∫ 1

0 τα−1 (τ) + (1− τ)dτ.

�

∼
G : [0, 2]× [0, 2]→ F0

G(x, y)(σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ−(2−√x)(2−√y)
4−(2−√x)(2−√y)

, σ ∈ [(2−√x
)(

2−√y
)
, 4
]

(2+
√

x)(2+
√

y)−σ

(2+
√

x)(2+
√

y)−4
, σ ∈ (4,

(
2 +

√
x
)(

2 +
√

y
)]

0, otherwise,

γ ∈ [0, 1], Gγ(x, y) =
[
(1− γ)

(
2−√x

)(
2−√y

)
+ 4γ, (1− γ)(

2 +
√

x
)(

2 +
√

y
)
+ 4γ

]
G∗((x, y), γ) G∗((x, y), γ)

122



γ ∈ [0, 1],
∼
G(x, y)

Gγ

( e+g
2 , u+v

2
)
= [(1− γ) + 4γ, 9(1− γ) + 4γ],

Γ(α+1)
4(g−e)α

[
Iα
e+

∼
G
(
g, u+v

2
)⊕ Iα

g−
∼
G
(
e, u+v

2
)]⊕ Γ(β+1)

4(v−u)β

[
Iβ
u+

∼
G
( e+g

2 , v
)⊕ Iβ

v−
∼
G
( e+g

2 , u
)]

=
[
(1− γ)

(
2−

√
2

4 −
√

2
8 π

)
+ 4γ, (1− γ)

(
2 +

√
2

4 +
√

2
8 π

)
+ 4γ

]
Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

[
Iα, β
e+ ,u+Gγ(g, v)⊕ Iα, β

e+ ,v−Gγ(g, u)⊕ Iα, β
g− ,u+Gγ(e, v)⊕ Iα, β

g− ,v−Gγ(e, u)
]

=
[
(1− γ)

(
33
8 −

√
2−

√
2

2 π + π
8 + π2

32

)
+ 4γ, (1− γ)

(
33
8 +

√
2 +

√
2

2 π + π
8 + π2

32

)
+ 4γ

]
Γ(α+1)
8(g−e)α

[
Iα
e+

∼
G(g, u)⊕ Iα

e+

∼
G(g, v)⊕ Iα

g−
∼
G(e, u)⊕ Iα

g−
∼
G(e, v)

]
⊕ Γ(β+1)

8(v−u)β

[
Iβ
u+

∼
G(e, v)⊕ Iβ

u+

∼
G(g, v)⊕ Iβ

v−
∼
G(e, u)⊕ Iβ

v−
∼
G(g, u)

]
=

[
34
√

2+(
√

2−4)π−24

8
√

2
(1− γ) + 4γ,

34
√

2+(
√

2+4)π+24

8
√

2
(1− γ) + 4γ

]
Gγ(u,g)+Gγ(σ,g)+Gγ(u,v)+Gγ(σ,v)

4 =
[
(1− γ)

(
9
2 − 2

√
2
)
+ 4γ, (1− γ)

(
9
2 + 2

√
2
)
+ 4γ

]
.

[(1− γ) + 4γ, 9(1− γ) + 4γ] ⊇I

[
(1− γ)

(
2−

√
2

4 −
√

2
8 π

)
+ 4γ, (1− γ)

(
2 +

√
2

4 +
√

2
8 π

)
+ 4γ

]
⊇I

[
(1− γ)

(
33
8 −

√
2−

√
2

2 π + π
8 + π2

32

)
+ 4γ, (1− γ)

(
33
8 +

√
2 +

√
2

2 π + π
8 + π2

32

)
+ 4γ

]
⊇I

[
34
√

2+(
√

2−4)π−24

8
√

2
(1− γ) + 4γ,

34
√

2+(
√

2+4)π+24

8
√

2
(1− γ) + 4γ

]
⊇I

34
√

2+(
√

2−4)π−24

8
√

2
(1− γ) + 4γ.

α = 1 β = 1 (τ) = τ, (κ) = κ

∼
G
( e+g

2 , u+v
2
)

⊇F
1
2

[
1

g−e
∫ g
e

∼
G
(
x, u+v

2
)
dx⊕ 1

v−u
∫ v
u

∼
G
( e+g

2 , y
)
dy
]
⊇F

1
(g−e)(v−u)

∫ g
e

∫ v
u

∼
G(x, y)dydx

⊇F
1

4(g−e)

[∫ g
e

∼
G(x, u)dx⊕ ∫ g

e

∼
G(x, v)dx

]
⊕ 1

4(v−u)

[∫ v
u

∼
G(e, y)dy⊕ ∫ v

u

∼
G(g, y)dy

]
⊇F

∼
G(e,u)⊕

∼
G(g,u)⊕

∼
G(e,v)⊕

∼
G(g,v)

4 .

α = 1 β = 1 (τ) = τ, (κ) = κ,
∼
G
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∼
G
( e+g

2 , u+v
2
)

≤F
1
2

[
1

g−e
∫ g
e

∼
G
(
x, u+v

2
)
dx⊕ 1

v−u
∫ v
u

∼
G
( e+g

2 , y
)
dy
]
≤F

1
(g−e)(v−u)

∫ g
e

∫ v
u

∼
G(x, y)dydx

≤F
1

4(g−e)

[∫ g
e

∼
G(x, u)dx⊕ ∫ g

e

∼
G(x, v)dx

]
⊕ 1

4(v−u)

[∫ v
u

∼
G(e, y)dy⊕ ∫ v

u

∼
G(g, y)dy

]
≤F

∼
G(e,u)⊕

∼
G(g,u)⊕

∼
G(e,v)⊕

∼
G(g,v)

4 .

(τ) = τ, (κ) = κ, G∗((x, y), γ) 
= G∗((x, y), γ) γ = 1

G
( e+g

2 , u+v
2
)

⊇ Γ(α+1)
4(g−e)α

[
Iα
e+

G
(
g, u+v

2
)
+ Iα

g−G
(
e, u+v

2
)]

+ Γ(β+1)
4(v−u)β

[
Iβ
u+

G
( e+g

2 , v
)
+ Iβ

v−G
( e+g

2 , u
)]

⊇ Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

[
Iα, β
e+ ,u+G(g, v) + Iα, β

e+ ,v−G(g, u) + Iα, β
g− ,u+G(e, v) + Iα, β

g− ,v−G(e, u)
]

⊇ Γ(α+1)
8(g−e)α

[
Iα
e+

G(g, u) + Iα
e+

G(g, v) + Iα
g−G(e, u) + Iα

g−G(e, v)
]

+ Γ(β+1)
8(v−u)β

[
I β
u+

G(e, v) + Iβ
v−G(e, u) + Iβ

u+
G(g, v) + Iβ

v−G(g, u)
]

⊇ G(e,u)+G(g,u)+G(e,v)+G(g,v)
4 .

(τ) = τ, (κ) = κ G∗((x, y), γ) 
= G∗((x, y), γ) γ = 1

G
( e+g

2 , u+v
2
)

⊇ 1
2

[
1

g−e
∫ g
e G

(
x, u+v

2
)
dx + 1

v−u
∫ v
u G

( e+g
2 , y

)
dy
]
⊆ 1

(g−e)(v−u)
∫ g
e

∫ v
u G(x, y)dydx

⊇ 1
4(g−e)

[∫ g
e G(x, u)dx +

∫ g
e G(x, v)dx

]
+ 1

4(v−u)
[∫ v

u G(e, y)dy +
∫ v
u G(g, y)dy

]
⊇ G(e,u)+G(g,u)+G(e,v)+G(g,v)

4 .

∼
G (τ) = τ, (κ) = κ G∗((x, y), γ)

= G∗((x, y), γ) γ = 1

G
( e+g

2 , u+v
2
)

≤ Γ(α+1)
4(g−e)α

[
Iα
e+

G
(
g, u+v

2
)
+ Iα

g−G
(
e, u+v

2
)]

+ Γ(β+1)
4(v−u)β

[
Iβ
u+

G
( e+g

2 , v
)
+ Iβ

v− G
( e+g

2 , u
)]

≤ Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

[
Iα, β
e+ ,u+ G(g, v) + Iα, β

e+ ,v− G(g, u) + Iα, β
g− ,u+ G(e, v) + Iα, β

g− ,v− G(e, u)
]

≤ Γ(α+1)
8(g−e)α

[
Iα
e+

G(g, u)GIα
e+

G(g, v) + Iα
g− G(e, u) + Iα

g− G(e, v)
]
.

+ Γ(β+1)
8(v−u)β

[
I β
u+

G(e, v)
∼
+ Iβ

v− G(e, u) + Iβ
u+

G(g, v) + Iβ
v− G(g, u)

]
≤ G(e,u)+G(g,u)+G(e,v)+G(g,v)

4 .

∼
G,

∼
J : Δ → F

+
0 Δ 1, 2 :

[0, 1]→ R+ γ Gγ,Jγ : Δ → R
+
I ,
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Gγ(x, y) = [G∗((x, y), γ), G∗((x, y), γ)] Jγ(x, y) = [J∗((x, y), γ), J ∗((x, y), γ)]

(x, y) ∈ Δ γ ∈ [0, 1]
∼
G⊗

∼
J ∈ FOΔ

Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊗

∼
J (g, v)⊕ Iα, β

e+ ,v−
∼
G(g, u)⊗

∼
J (g, u)

]
⊕ Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
g− ,u+

∼
G(e, v)⊗

∼
J (e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)⊗

∼
J (e, u)

]
⊇F

∼
M(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(1− κ) 2(1− κ) + 1(1− τ)

2(1− τ) 1(κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(1− κ)+

1(τ) 2(τ) 1(κ) 2(κ)]dτdκ

⊕∼P(e, g, u, v)
∫ 1

0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(1− κ) 2(1− κ) + 1(1− τ)

2(τ) 1(1− κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(κ) + 1(1− τ)

2(τ) 1(κ) 2(κ)]dτdκ

⊕
∼
N (e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(κ) 2(1− κ) + 1(1− τ) 2(1− τ)

1(1− κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(κ) + 1(τ) 2(τ) 1(κ) 2(1− κ)]dτdκ

⊕
∼
Q(e, g, u, v)

∫ 1
0 τα−1β−1[ 1(τ) 2(1− τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(1− κ)

2(κ) + 1(1− τ) 2(τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(1− κ)]dτdκ.
∼
G

∼
J Δ

Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊗

∼
J (g, v)⊕ Iα, β

e+ ,v−
∼
G(g, u)⊗

∼
J (g, u)

]
⊕ Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
g− ,u+

∼
G(e, v)⊗

∼
J (e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)⊗

∼
J (e, u)

]
⊆F

∼
M(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(1− κ) 2(1− κ) + 1(1− τ)

2(1− τ) 1(κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(1− κ)+

1(τ) 2(τ) 1(κ) 2(κ)]dτdκ

⊕∼P(e, g, u, v)
∫ 1

0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(1− κ) 2(1− κ)+

1(1− τ) 2(τ) 1(1− κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(κ) + 1(1− τ)

2(τ) 1(κ) 2(κ)]dτdκ

⊕
∼
N (e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(κ) 2(1− κ) + 1(1− τ) 2(1− τ)

1(1− κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(κ) + 1(τ) 2(τ) 1(κ) 2(1− κ)]dτdκ

⊕
∼
Q(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(1− κ)

2(κ) + 1(1− τ) 2(τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(1− κ)]dτdκ
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∼
M(e, g, u, v) =

∼
G(e, u)⊗

∼
J (e, u)⊕

∼
G(g, u)⊗

∼
J (g, u)⊕

∼
G(e, v)⊗

∼
J (e, v)⊕

∼
G(g, v)⊗

∼
J (g, v),

∼
P(e, g, u, v) =

∼
G(e, u)⊗

∼
J (g, u)⊕

∼
G(g, u)⊗

∼
J (e, u)⊕

∼
G(e, v)⊗

∼
J (g, v)⊕

∼
G(g, v)⊗

∼
J (e, v),

∼
N (e, g, u, v) =

∼
G(e, u)⊗

∼
J (e, v)⊕

∼
G(g, u)⊗

∼
J (g, v)⊕

∼
G(e, v)⊗

∼
J (e, u)⊕

∼
G(g, v)⊗

∼
J (g, u),

∼
Q(e, g, u, v) =

∼
G(e, u)⊗

∼
J (g, v)⊕

∼
G(g, u)⊗

∼
J (e, v)⊕

∼
G(e, v)⊗

∼
J (g, u)⊕

∼
G(g, v)⊗

∼
J (e, u),

γ ∈ [0, 1],
∼
M(e, g, u, v)

∼
P(e, g, u, v)

∼
N (e, g, u, v),

∼
Q(e, g, u, v)

Mγ(e, g, u, v) = [M∗((e, g, u, v), γ), M∗((e, g, u, v), γ)],

Pγ(e, g, u, v) = [P∗((e, g, u, v), γ), P∗((e, g, u, v), γ)],

Nγ(e, g, u, v) = [N∗((e, g, u, v), γ), N∗((e, g, u, v), γ)],

Qγ(e, g, u, v) = [Q∗((e, g, u, v), γ), Q∗((e, g, u, v), γ)].

∼
G

∼
J 1 2 [e, g] × [u, v]

∼
G(τe+ (1− τ)g, κu+ (1− κ)v)

⊇F 1(τ) 1(κ)
∼
G(e, u)⊕ 1(τ) 1(1− κ)

∼
G(e, v)⊕ 1(1− τ) 1(κ)

∼
G(g, u)⊕ 1(1− τ)

1(1− κ)
∼
G(g, v),

∼
G(τe+ (1− τ)g, (1− κ)u+ κv)

⊇F 1(τ) 1(1− κ)
∼
G(e, u)⊕ 1(τ) 1(κ)

∼
G(e, v)⊕ 1(1− τ) 1(1− κ)

∼
G(g, u)⊕

1(1− τ) 1(κ)
∼
G(g, v),

∼
G((1− τ)e+ τg, κu+ (1− κ)v)

⊇F 1(1− τ) 1(κ)
∼
G(e, u)⊕ 1(1− τ) 1(1− κ)

∼
G(e, v)⊕ 1(τ) 1(κ)

∼
G(g, u)⊕

1(τ) 1(1− κ)
∼
G(g, v),

∼
G((1− τ)e+ τg, (1− κ)u+ κv)

⊇F 1(1− τ) 1(1− κ)
∼
G(e, u)⊕ 1(1− τ) 1(κ)

∼
G(e, v)⊕ 1(τ) 1(1− κ)

∼
G(g, u)⊕

1(τ) 1(κ)
∼
G(g, v),
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∼
J (τe+ (1− τ)g, κu+ (1− κ)v)

⊇F 2(τ) 2(κ)
∼
J (e, u)⊕ 2(τ) 2(1− κ)

∼
J (e, v)⊕ 2(1− τ) 2(κ)

∼
J (g, u)⊕ 2(1− τ)

2(1− κ)
∼
J (g, v),

∼
J (τe+ (1− τ)g, (1− κ)u+ κv)

⊇F 2(τ) 2(1− κ)
∼
J (e, u)⊕ 2(τ) 2(κ)

∼
J (e, v)⊕ 2(1− τ) 2(1− κ)

∼
J (g, u)⊕

2(1− τ) 2(κ)
∼
J (g, v),

∼
J ((1− τ)e+ τg, κu+ (1− κ)v)

⊇F 2(1− τ) 2(κ)
∼
J (e, u)⊕ 2(1− τ) 2(1− κ)

∼
J (e, v)⊕ 2(τ) 2(κ)

∼
J (g, u)⊕

2(τ) 2(1− κ)
∼
J (g, v),

∼
J ((1− τ)e+ τg, (1− κ)u+ κv)

⊇F 2(1− τ) 2(1− κ)
∼
J (e, u)⊕ 2(1− τ) 2(κ)

∼
J (e, v)⊕ 2(τ) 2(1− κ)

∼
J (g, u)⊕

2(τ) 2(κ)
∼
J (g, v),

∼
G

∼
J 1 2 [e, g] × [u, v]

γ ∈ [0, 1]

Gγ(τe+ (1− τ)g, κu+ (1− κ)v)×Jγ(τe+ (1− τ)g, κu+ (1− κ)v)

+Gγ(τe+ (1− τ)g, (1− κ)u+ κv)×Jγ(τe+ (1− τ)g, (1− κ)u+ κv)

+Gγ((1− τ)e+ τg, κu+ (1− κ)v)×Jγ((1− τ)e+ τg, κu+ (1− κ)v)

+Gγ((1− τ)e+ τg, (1− κ)u+ κv)×Jγ((1− τ)e+ τg, (1− κ)u+ κv)

⊇I Mγ(e, g, u, v)[ 1(1− τ) 2(1− τ) 1(1− κ) 2(1− κ) + 1(1− τ) 2(1− τ)

1(κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(1− κ) + 1(τ) 2(τ) 1(κ) 2(κ)]

+Pγ(e, g, u, v)[ 1(τ) 2(1− τ) 1(1− κ) 2(1− κ) + 1(1− τ) 2(τ) 1(1− κ) 2(1− κ)

+ 1(τ) 2(1− τ) 1(κ) 2(κ) + 1(1− τ) 2(τ) 1(κ) 2(κ)]

+Nγ(e, g, u, v)[ 1(1− τ) 2(1− τ) 1(κ) 2(1− κ) + 1(1− τ) 2(1− τ) 1(1− κ)

2(κ) + 1(τ) 2(τ) 1(1− κ) 2(κ) + 1(τ) 2(τ) 1(κ) 2(1− κ)]

+Qγ(e, g, u, v)[ 1(τ) 2(1− τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(1− κ) 2(κ)+

1(1− τ) 2(τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(1− κ)].

τα−1κβ−1

[0, 1]× [0, 1] τ, κ
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∫ 1
0

∫ 1
0 τα−1κβ−1Gγ(τe+ (1− τ)g, κu+ (1− κ)v)×Jγ(τe+ (1− τ)g, κu+ (1− κ)v)dτdκ

+
∫ 1

0

∫ 1
0 τα−1κβ−1Gγ(τe+ (1− τ)g, (1− κ)u+ κv)×Jγ(τe+ (1− τ)g, (1− κ)u+ κv)dτdκ

+
∫ 1

0

∫ 1
0 τα−1κβ−1Gγ((1− τ)e+ τg, κu+ (1− κ)v)×Jγ((1− τ)e+ τg, κu+ (1− κ)v)dτdκ

+
∫ 1

0

∫ 1
0 τα−1κβ−1Gγ((1− τ)e+ τg, (1− κ)u+ κv)×Jγ((1− τ)e+ τg, (1− κ)u+ κv)dτdκ

⊇I Mγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(1− κ) 2(1− κ)

+ 1(1− τ) 2(1− τ) 1(κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(1− κ)

+ 1(τ) 2(τ) 1(κ) 2(κ)]dτdκ

+Pγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(1− κ) 2(1− κ)

+ 1(1− τ) 2(τ) 1(1− κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(κ)

+ 1(1− τ) 2(τ) 1(κ) 2(κ)]dτdκ

+Nγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(κ) 2(1− κ)

+ 1(1− τ) 2(1− τ) 1(1− κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(κ)

+ 1(τ) 2(τ) 1(κ) 2(1− κ)]dτdκ

+Qγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(κ) 2(1− κ)

+ 1(τ) 2(1− τ) 1(1− κ) 2(κ) + 1(1− τ) 2(τ) 1(κ) 2(1− κ)

+ 1(τ) 2(1− τ) 1(κ) 2(1− κ)]dτdκ

∫ 1
0

∫ 1
0 τα−1κβ−1Gγ(τe+ (1− τ)g, κu+ (1− κ)v)×Jγ(τe+ (1− τ)g, κu+ (1− κ)v)dτdκ

+
∫ 1

0

∫ 1
0 τα−1κβ−1Gγ(τe+ (1− τ)g, (1− κ)u+ κv)×Jγ(τe+ (1− τ)g, (1− κ)u+ κv)dτdκ

+
∫ 1

0

∫ 1
0 τα−1κβ−1Gγ((1− τ)e+ τg, κu+ (1− κ)v)×Jγ((1− τ)e+ τg, κu+ (1− κ)v)dτdκ

+
∫ 1

0

∫ 1
0 τα−1κβ−1Gγ((1− τ)e+ τg, (1− κ)u+ κv)×Jγ((1− τ)e+ τg, (1− κ)u+ κv)dτdκ

= Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
e+ ,u+Gγ(g, v)×Jγ(g, v) + Iα, β

e+ ,v−Gγ(g, u)×Jγ(g, u)
]

γ ∈ [0, 1],
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Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
e+ ,u+Gγ(g, v)×Jγ(g, v) + Iα, β

e+ ,v−Gγ(g, u)×Jγ(g, u)
]

⊇I Mγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(1− κ) 2(1− κ)

+ 1(1− τ) 2(1− τ) 1(κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(1− κ)

+ 1(τ) 2(τ) 1(κ) 2(κ)]dτdκ

+Pγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(1− κ) 2(1− κ)

+ 1(1− τ) 2(τ) 1(1− κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(κ)

+ 1(1− τ) 2(τ) 1(κ) 2(κ)]dτdκ

+Nγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(κ) 2(1− κ)

+ 1(1− τ) 2(1− τ) 1(1− κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(κ)

+ 1(τ) 2(τ) 1(κ) 2(1− κ)]dτdκ

+Qγ(e, g, u, v)
∫ 1

0

∫ 1
0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(κ) 2(1− κ)

+ 1(τ) 2(1− τ) 1(1− κ) 2(κ) + 1(1− τ) 2(τ) 1(κ) 2(1− κ)

+ 1(τ) 2(1− τ) 1(κ) 2(1− κ)]dτdκ.

Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊗

∼
J (g, v)⊕ Iα, β

e+ ,v−
∼
G(g, u)⊗

∼
J (g, u)

]
⊕ Γ(α)Γ(β)

(g−e)α(v−u)β

[
Iα, β
g− ,u+

∼
G(e, v)⊗

∼
J (e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)⊗

∼
J (e, u)

]
⊇F

∼
M(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(1− κ) 2(1− κ) + 1(1− τ)

2(1− τ) 1(κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(1− κ)+

1(τ) 2(τ) 1(κ) 2(κ)]dτdκ

⊕∼P(e, g, u, v)
∫ 1

0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(1− κ) 2(1− κ) + 1(1− τ)

2(τ) 1(1− κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(κ) + 1(1− τ)

2(τ) 1(κ) 2(κ)]dτdκ

⊕
∼
N (e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(1− τ) 2(1− τ) 1(κ) 2(1− κ) + 1(1− τ) 2(1− τ)

1(1− κ) 2(κ) + 1(τ) 2(τ) 1(1− κ) 2(κ) + 1(τ) 2(τ) 1(κ) 2(1− κ)]dτdκ

⊕
∼
Q(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 2(1− τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(1− κ)

2(κ) + 1(1− τ) 2(τ) 1(κ) 2(1− κ) + 1(τ) 2(1− τ) 1(κ) 2(1− κ)]dτdκ.

�

(τ) = τ, (κ) = κ α = 1, β = 1

1
(g−e)(v−u)

∫ g
e

∫ v
u

∼
G(x, y)⊗

∼
J (x, y)dydx

⊇F
1
9

∼
M(e, g, u, v)⊕ 1

18

[∼
P(e, g, u, v)⊕

∼
N (e, g, u, v)

]
⊕ 1

36

∼
Q(e, g, u, v).
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∼
G (τ) = τ, (κ) = κ

α = 1 β = 1

1
(g−e)(v−u)

∫ g
e

∫ v
u

∼
G(x, y)⊗

∼
J (x, y)dydx

≤F
1
9

∼
M(e, g, u, v)⊕ 1

18

[∼
P(e, g, u, v)⊕

∼
N (e, g, u, v)

]
⊕ 1

36

∼
Q(e, g, u, v).

G∗((x, y), γ) 
= G∗((x, y), γ) γ = 1 (τ) = τ, (κ) = κ

Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

[
Iα, β
e+ ,u+G(g, v)×J (g, v) + Iα, β

e+ ,v−G(g, u)×J (g, u)
]

+ Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

[
Iα, β
g− ,u+G(e, v)×J (e, v) + Iα, β

g− ,v−G(e, u)×J (e, u)
]

⊇
(

1
2 − α

(α+1)(α+2)

)(
1
2 − β

(β+1)(β+2)

)
M(e, g, u, v) + α

(α+1)(α+2)

(
1
2 − β

(β+1)(β+2)

)
P(e, g, u, v)

+
(

1
2 − α

(α+1)(α+2)

)
β

(β+1)(β+2)N (e, g, u, v) + β
(β+1)(β+2)

α
(α+1)(α+2)Q(e, g, u, v).

(τ) = τ, (κ) = κ, G∗((x, y), γ) 
= G∗((x, y), γ) γ = 1

1
(g− e)(v− u)

∫ g
e

∫ v
u G(x, y)×J (x, y)dydx

⊇ 1
9
M(e, g, u, v) +

1
18

[P(e, g, u, v) +N (e, g, u, v)] +
1
36

Q(e, g, u, v).

G∗((x, y), γ) = G∗((x, y), γ) J∗((x, y), γ) = J ∗((x, y), γ) γ = 1
(τ) = τ, (κ) = κ

Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

[
Iα, β
e+ ,u+G(g, v)×J (g, v) + Iα, β

e+ ,v−G(g, u)×J (g, u)
]

+ Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

[
+Iα, β

g− ,u+G(e, v)×J (e, v) + Iα, β
g− ,v−G(e, u)×J (e, u)

]
≤
(

1
2 − α

(α+1)(α+2)

)(
1
2 − β

(β+1)(β+2)

)
M(e, g, u, v) + α

(α+1)(α+2)

(
1
2 − β

(β+1)(β+2)

)
P(e, g, u, v)

+
(

1
2 − α

(α+1)(α+2)

)
β

(β+1)(β+2)N (e, g, u, v) + β
(β+1)(β+2)

α
(α+1)(α+2)Q(e, g, u, v).

∼
G,

∼
J : Δ → F

+
0 Δ : [0, 1]

→ R+ γ Gγ,Jγ : Δ → R
+
I , which

Gγ(x, y) = [G∗((x, y), γ), G∗((x, y), γ)] Jγ(x, y) = [J∗((x, y), γ), J ∗((x, y), γ)]

(x, y) ∈ Δ γ ∈ [0, 1]
∼
G⊗

∼
J ∈ FOΔ
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1
2αβ 1

2( 1
2 ) 2

2( 1
2 )

∼
G
( e+g

2 , u+v
2
)⊗ ∼

J ( e+g
2 , u+v

2
)

⊇F

Γ(α)Γ(β)

2(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊗

∼
J (g, v)⊕ Iα, β

e+ ,v−
∼
G(g, u)⊗

∼
J (g, u)

]
⊕ Γ(α)Γ(β)

2(g−e)α(v−u)β

[
Iα, β
g− ,u+

∼
G(e, v)⊗

∼
J (e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)⊗

∼
J (e, u)

]
⊕
∼
M(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ)

2(1− κ)]+ 1(τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]]dτdκ

⊕∼P(e, g, u, v)
∫ 1

0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ)+

2(τ) 2(1− κ)] + 1(τ) 1(1− κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ)+

2(τ) 2(κ)]dτdκ

⊕
∼
N (e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ)

2(κ)]+ 1(τ) 1(1− κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]]dτdκ

⊕
∼
Q(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]]dτdκ.
∼
G

∼
J Δ

1
2αβ 1

2( 1
2 ) 2

2( 1
2 )

∼
G
( e+g

2 , u+v
2
)⊗ ∼

J ( e+g
2 , u+v

2
)

⊆F

Γ(α)Γ(β)

2(g−e)α(v−u)β

[
Iα, β
e+ ,u+

∼
G(g, v)⊗

∼
J (g, v)⊕ Iα, β

e+ ,v−
∼
G(g, u)⊗

∼
J (g, u)

]
⊕ Γ(α)Γ(β)

2(g−e)α(v−u)β

[
Iα, β
g− ,u+

∼
G(e, v)⊗

∼
J (e, v)⊕ Iα, β

g− ,v−
∼
G(e, u)⊗

∼
J (e, u)

]
⊕
∼
M(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ)

2(1− κ)]+ 1(τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]]dτdκ

⊕∼P(e, g, u, v)
∫ 1

0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ)+

2(τ) 2(1− κ)] + 1(τ) 1(1− κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ)+

2(τ) 2(κ)]]dτdκ

⊕
∼
N (e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]]dτdκ

⊕
∼
Q(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ)+

2(τ) 2(κ)]+ 1(τ) 1(1− κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]]dτdκ.
∼
M(e, g, u, v)

∼
P(e, g, u, v)

∼
N (e, g, u, v),

∼
Q(e, g, u, v)

∼
G,

∼
J : Δ → F0

γ ∈ [0, 1],
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Gγ

( e+g
2 , u+v

2
)×Jγ

( e+g
2 , u+v

2
)

= Gγ

(
τe+(1−τ)g

2 + (1−τ)e+τg
2 , κu+(1−κ)v

2 + u+v
2

)
×Jγ

(
τe+(1−τ)g

2 + (1−τ)e+τg
2 , κu+(1−κ)v

2 + (1−κ)u+κv
2

)
⊇I 1

2
(

1
2

)
2

2
(

1
2

)
×
[

Gγ(τe+ (1− τ)g, κu+ (1− κ)v) + Gγ((1− τ)e+ τg, κu+ (1− κ)v)

+Gγ(τe+ (1− τ)g, (1− κ)u+ κv) + Gγ((1− τ)e+ τg, (1− κ)u+ κv)

]

×
[ Jγ(τe+ (1− τ)g, κu+ (1− κ)v) + Jγ((1− τ)e+ τg, κu+ (1− κ)v)

+Jγ(τe+ (1− τ)g, (1− κ)u+ κv) + Jγ((1− τ)e+ τg, (1− κ)u+ κv)

]

⊇I 1
2
(

1
2

)
2

2
(

1
2

)
×

⎡⎢⎢⎢⎢⎢⎣
Gγ(τe+ (1− τ)g, κu+ (1− κ)v)×Jγ(τe+ (1− τ)g, κu+ (1− κ)v)

+Gγ((1− τ)e+ τg, κu+ (1− κ)v)×Jγ((1− τ)e+ τg, κu+ (1− κ)v)

+Gγ(τe+ (1− τ)g, (1− κ)u+ κv)×Jγ(τe+ (1− τ)g, (1− κ)u+ κv)

+Gγ((1− τ)e+ τg, (1− κ)u+ κv)×Jγ((1− τ)e+ τg, (1− κ)u+ κv)

⎤⎥⎥⎥⎥⎥⎦
+ 1

2
(

1
2

)
2

2
(

1
2

)
×⎡⎢⎢⎢⎢⎢⎢⎣

1(τ) 1(κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]

+ 1(τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

+ 1(1− τ) 1(κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

+ 1(1− τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(κ) + 2(τ) 2(1− κ)]

⎤⎥⎥⎥⎥⎥⎥⎦Mγ(e, g, u, v)

+ 1
2
(

1
2

)
2

2
(

1
2

)
×⎡⎢⎢⎢⎢⎢⎢⎣

1(τ) 1(κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

+ 1(τ) 1(1− κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(1− τ) 1(κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]

+ 1(1− τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

⎤⎥⎥⎥⎥⎥⎥⎦Pγ(e, g, u, v)

+ 1
2
(

1
2

)
2

2
(

1
2

)
×⎡⎢⎢⎢⎢⎢⎢⎣

1(τ) 1(κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]

+ 1(1− τ) 1(κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(1− τ) 1(1− κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

⎤⎥⎥⎥⎥⎥⎥⎦Nγ(e, g, u, v)

+ 1
2
(

1
2

)
2

2
(

1
2

)
×⎡⎢⎢⎢⎢⎢⎢⎣

1(τ) 1(κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

+ 1(1− τ) 1(κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

⎤⎥⎥⎥⎥⎥⎥⎦Qγ(e, g, u, v).

τα−1κβ−1

[0, 1]× [0, 1] τ, κ
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∫ 1
0

∫ 1
0 τα−1κβ−1Gγ

( e+g
2 , u+v

2
)×Jγ

( e+g
2 , u+v

2
)
dτdκ

⊇I 1
2
(

1
2

)
2

2
(

1
2

)

×∫ 1
0

∫ 1
0 τα−1κβ−1

⎡⎢⎢⎢⎢⎢⎢⎣

Gγ(τe+ (1− τ)g, κu+ (1− κ)v)×Jγ(τe+ (1− τ)g, κu+ (1− κ)v)

+Gγ((1− τ)e+ τg, κu+ (1− κ)v)×Jγ((1− τ)e+ τg, κu+ (1− κ)v)

+Gγ(τe+ (1− τ)g, (1− κ)u+ κv)×Jγ(τe+ (1− τ)g, (1− κ)u+ κv)

+Gγ((1− τ)e+ τg, (1− κ)u+ κv)×Jγ((1− τ)e+ τg, (1− κ)u+ κv)

⎤⎥⎥⎥⎥⎥⎥⎦dτdκ

+ 1
2
(

1
2

)
2

2
(

1
2

)
Mγ(e, g, u, v)

×∫ 1
0

∫ 1
0 τα−1κβ−1

⎡⎢⎢⎢⎢⎢⎢⎣
1(τ) 1(κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]

+ 1(τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

+ 1(1− τ) 1(κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

+ 1(1− τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(κ) + 2(τ) 2(1− κ)]

⎤⎥⎥⎥⎥⎥⎥⎦dτdκ

+ 1
2
(

1
2

)
2

2
(

1
2

)
Pγ(e, g, u, v)

×∫ 1
0

∫ 1
0 τα−1κβ−1

⎡⎢⎢⎢⎢⎢⎢⎣
1(τ) 1(κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

+ 1(τ) 1(1− κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(1− τ) 1(κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]

+ 1(1− τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

⎤⎥⎥⎥⎥⎥⎥⎦dτdκ

+ 1
2
(

1
2

)
2

2
(

1
2

)
Nγ(e, g, u, v)

×∫ 1
0

∫ 1
0 τα−1κβ−1

⎡⎢⎢⎢⎢⎢⎢⎣
1(τ) 1(κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ) + 2(1− τ) 2(1− κ)]

+ 1(1− τ) 1(κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(1− τ) 1(1− κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

⎤⎥⎥⎥⎥⎥⎥⎦dτdκ

+ 1
2
(

1
2

)
2

2
(

1
2

)
Qγ(e, g, u, v)

×∫ 1
0

∫ 1
0 τα−1κβ−1

⎡⎢⎢⎢⎢⎢⎣
1(τ) 1(κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]

+ 1(1− τ) 1(κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(1− κ) + 2(1− τ) 2(κ)]

⎤⎥⎥⎥⎥⎥⎦
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1
αβ Gγ

( e+g
2 , u+v

2
)×Jγ

( e+g
2 , u+v

2
)

⊇F

Γ(α)Γ(β) 1
2( 1

2 ) 2
2( 1

2 )
(g−e)α(v−u)β

[
Iα, β
e+ ,u+Gγ(g, v)×Jγ(g, v) + Iα, β

e+ ,v−Gγ(g, u)×Jγ(g, u)
]

+
Γ(α)Γ(β) 1

2( 1
2 ) 2

2( 1
2 )

(g−e)α(v−u)β

[
Iα, β
g− ,u+Gγ(e, v)×Jγ(e, v) + Iα, β

g− ,v−Gγ(e, u)×Jγ(e, u)
]

+2 1
2
(

1
2

)
2

2
(

1
2

)
Mγ(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(τ) 2(1− κ) + 2(1− τ)

2(κ) + 2(1− τ) 2(1− κ)] + 1(τ) 1(1− κ)[ 2(τ) 2(κ) + 2(1− τ) 2(1− κ)+

2(1− τ) 2(κ)]]dτdκ

+2 1
2
(

1
2

)
2

2
(

1
2

)
Pγ(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(1− τ) 2(1− κ)+

2(τ) 2(κ) + 2(τ) 2(1− κ)] + 1(τ) 1(1− κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ)+

2(τ) 2(κ)]]dτdκ

+2 1
2
(

1
2

)
2

2
(

1
2

)
Nγ(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(τ) 2(κ) + 2(1− τ)

2(1− κ) + 2(1− τ) 2(κ)] + 1(τ) 1(1− κ)[ 2(τ) 2(1− κ) + 2(1− τ) 2(κ)+

2(1− τ) 2(1− κ)]]dτdκ

+2 1
2
(

1
2

)
2

2
(

1
2

)
Qγ(e, g, u, v)

∫ 1
0 τα−1κβ−1[ 1(τ) 1(κ)[ 2(1− τ) 2(κ) + 2(τ) 2(1− κ) + 2(τ) 2(κ)]

+ 1(τ) 1(1− κ)[ 2(1− τ) 2(1− κ) + 2(τ) 2(κ) + 2(τ) 2(1− κ)]]dτdκ,

γ ∈ [0, 1] �

(τ) = τ, (κ) = κ α = 1, β = 1

4
∼
G
( e+g

2 , u+v
2
)⊗ ∼

J ( e+g
2 , u+v

2
)

⊇F
1

(g−e)(v−u)
∫ g
e

∫ v
u

∼
G(x, y)⊗

∼
J (x, y)dydx⊕ 5

36

∼
M(e, g, u, v)

⊕ 7
36

[∼
P(e, g, u, v)

∼
+
∼
N (e, g, u, v)

]
⊕ 2

9

∼
Q(e, g, u, v).

∼
G (τ) = τ, (κ) = κ

α = 1 β = 1

4
∼
G
( e+g

2 , u+v
2
)⊗ ∼

J ( e+g
2 , u+v

2
)

≤F
1

(g−e)(v−u)
∫ g
e

∫ v
u

∼
G(x, y)⊗

∼
J (x, y)dydx⊕ 5

36

∼
M(e, g, u, v)

⊕ 7
36

[∼
P(e, g, u, v)

∼
+
∼
N (e, g, u, v)

]
⊕ 2

9

∼
Q(e, g, u, v).

G∗((x, y), γ) 
= G∗((x, y), γ) (τ) = τ, (κ) = κ γ = 1

4 G
( e+g

2 , u+v
2
)×J ( e+g

2 , u+v
2
)

⊇ 1
(g−e)(v−u)

∫ g
e

∫ v
u G(x, y)×J (x, y)dydx + 5

36M(e, g, u, v)

+ 7
36 [P(e, g, u, v) +N (e, g, u, v)] + 2

9 Q(e, g, u, v).
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G∗((x, y), γ) 
= G∗((x, y), γ) γ = 1 (τ) = τ, (κ) = κ

4G
( e+g

2 , u+v
2
)×J ( e+g

2 , u+v
2
)

⊇ Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

⎡⎢⎣ I
α, β
e+ ,u+ G(g, v)×J (g, v) + Iα, β

e+ ,v− G(g, u)×J (g, u)

+Iα, β
g− ,u+ G(e, v)×J (e, v) + Iα, β

g− ,v− G(e, u)×J (e, u)

⎤⎥⎦
+
[

α
2(α+1)(α+2) +

β
(β+1)(β+2)

(
1
2 − α

(α+1)(α+2)

)]
M(e, g, u, v)

+
[

1
2

(
1
2 − α

(α+1)(α+2)

)
+ α

(α+1)(α+2)
β

(β+1)(β+2)

]
P(e, g, u, v)

+
[

1
2

(
1
2 − β

(β+1)(β+2)

)
+ α

(α+1)(α+2)
β

(β+1)(β+2)

]
N (e, g, u, v)

+
[

1
4 − α

(α+1)(α+2)
β

(β+1)(β+2)

]
Q(e, g, u, v).

G∗((x, y), γ) = G∗((x, y), γ) J∗((x, y), γ) = J ∗((x, y), γ) γ = 1
(τ) = τ, (κ) = κ

4G
( e+g

2 , u+v
2
)×J ( e+g

2 , u+v
2
)

≤ Γ(α+1)Γ(β+1)
4(g−e)α(v−u)β

⎡⎢⎣ I
α, β
e+ ,u+G(g, v)×J (g, v) + Iα, β

e+ ,v−G(g, u)×J (g, u)

+Iα, β
g− ,u+G(e, v)×J (e, v) + Iα, β

g− ,v−G(e, u)×J (e, u)

⎤⎥⎦.

+
[

α
2(α+1)(α+2) +

β
(β+1)(β+2)

(
1
2 − α

(α+1)(α+2)

)]
M(e, g, u, v)

+
[

1
2

(
1
2 − α

(α+1)(α+2)

)
+ α

(α+1)(α+2)
β

(β+1)(β+2)

]
P(e, g, u, v)

+
[

1
2

(
1
2 − β

(β+1)(β+2)

)
+ α

(α+1)(α+2)
β

(β+1)(β+2)

]
N (e, g, u, v)

+
[

1
4 − α

(α+1)(α+2)
β

(β+1)(β+2)

]
Q(e, g, u, v).

s
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Abstract: This paper discusses the dissipative filtering problem for discrete-time nonlinear networked
systems with dynamic quantization and data packet dropouts. The Takagi–Sugeno (T–S) fuzzy model
is employed to approximate the considered nonlinear plant. Both the measurement and performance
outputs are assumed to be quantized by the dynamic quantizers before being transmitted. Moreover,
the Bernoulli stochastic variables are utilized to characterize the effects of data packet dropouts
on the measurement and performance outputs. The purpose of this paper is to design full- and
reduced-order filters, such that the stochastic stability and dissipative filtering performance for the
filtering error system can be guaranteed. The collaborative design conditions for the desired filter and
the dynamic quantizers are expressed in the form of linear matrix inequalities. Finally, simulation
results are used to illustrate the feasibility of the proposed filtering scheme.

Keywords: dissipative filtering; T–S fuzzy systems; dynamic quantization; data packet dropouts

MSC: 93C42

1. Introduction

In recent years, there has been a surge in academic interest in networked systems. The
fundamental reason is that, due to their benefits of low cost, easy maintenance, and high
reliability, networked systems are gradually replacing traditional control systems and taking
center stage in the development of control systems [1]. Nowadays, networked systems are
used in industries such as autonomous vehicles, industrial process control, smart homes, and
others, with great success [2]. However, because of network restrictions, networked systems
invariably generate some issues such as quantization, data packet dropouts, and so on [3].
These issues not only cause networked systems to run less efficiently, but they additionally
possess the potential to cause instability. One of the primary sources of these issues is signal
quantization inaccuracy and data packet dropouts. Among them, one of these causes of
networked systems’ poor operating efficiency and instability is quantization error. Therefore,
it is crucial to deal with the analysis and design problems for networked systems subject to
signal quantization and data packet dropouts. Over the past several years, a great number
of achievements have been reported on these topics. The analysis and design problems for
networked systems with quantization were addressed in [4–11]. The analysis and design
problems for networked systems with data packet dropouts were studied in [8–12].

As is well known, nonlinearities exist in many practical physical systems [13]. There-
fore, nonlinear control systems have attracted the attention of many scholars. As an effective
means to deal with nonlinear systems, the Takagi–Sugeno (T–S) fuzzy model approach has
received extensive attention from many international scholars and a series of important re-
sults have been published in the open literature (see, e.g., [14–16] and references therein). In
recent years, based on the T–S fuzzy model approach, the study on networked systems has
also attracted attention and some important results have been achieved (see, e.g., [17–20]
and references therein). Particularly, based on the T–S fuzzy model approach, the control
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problem of nonlinear networked systems with quantization was studied in [21–26] and
the control problem of nonlinear networked systems subject to data packet dropouts was
addressed in [27–29].

In addition, the filtering problem is considered to be an important issue in the study
of control theory because the state variables that can reflect the inside of the system are not
always available in the vast majority of practical systems. Scholars at home and abroad have
undertaken enormous research on the filtering problem and many significant results have
been proposed. For linear networked systems, the filter design problem was researched
in [30–32]. For nonlinear systems, the resilient mixed H∞ and energy-to-peak filtering
problem and the H∞ filtering problem with D stability constraints were addressed based
on the T–S fuzzy model approach in [33] and [34], respectively. For nonlinear networked
systems, based on the T–S fuzzy model approach, the event-triggeredH∞ filtering problem
was addressed with the effect of weighted try-once-discard protocol in [35]. Particularly,
based on the T–S fuzzy model approach, the filtering problem for nonlinear networked
systems with the effect of quantization was investigated in [36–41] and the filtering problem
for nonlinear networked systems with the effects of data packet dropouts was considered
in [39–43]. However, it should be noted that most of the above literature is about H∞
filtering. As pointed out in [23,44], the dissipative performance is more general than the
H∞ performance. As a result, the study of the dissipative filtering problem is significant
for nonlinear networked systems. As far as the author knows, there is no relevant research
on the dissipative filtering problem for nonlinear discrete-time networked systems under
the effects of dynamic quantization and data packet dropouts on the measurement output
and the performance output, simultaneously, which motivated the current research.

This paper considered the quantized dissipative filtering problem of discrete-time
nonlinear networked systems with data packet dropouts based on the T–S fuzzy model
strategy. The primary contributions of this paper can be summarized as follows.

(1) According to the T–S fuzzy model approach, the dissipative filtering problem is inves-
tigated for discrete-time nonlinear networked systems subject to dynamic quantization
and data packet dropouts.

(2) In this paper, both the effects of dynamic quantization and data packet dropouts on
the measurement output and performance output are considered, simultaneously.
Moreover, a more general adjusting strategy is proposed for the dynamic parameter
of the dynamic quantizer.

(3) By introducing a dimension adjustment matrix, the design conditions for both the de-
sired full- and reduced-order dissipative filters are proposed in the unified framework
of linear matrix inequalities.

The rest of this paper is organized as follows. The filtering problem to be investigated
is formulated in Section 2. In Section 3, the main results on the design of the dissipative
filter with dynamic quantization and data packet dropouts are presented. In Section 4, an
example is provided to demonstrate the effectiveness of the developed filtering strategy.
Finally, the conclusion of this paper is provided in Section 5.

Notations: The notations used in this paper are standard. Rn and Rm×n indicate
the n-dimensional Euclidean space and the set of all real matrices of dimension m × n,
respectively. I is used to denote the identity matrix with compatible dimensions. |·|
stands for Euclidean vector norm. The symbols diag{· · · } and ∗ are utilized to denote
block-diagonal matrix and symmetric element in the matrix, respectively. AT and A−1

represent the transpose matrix and inverse matrix of matrix A, respectively. λmin(A) stands
for the smallest eigenvalue of the matrix A and l2[ 0, ∞) denotes the space of the square
integrable vectors over [ 0, ∞).

2. Problem Formulation

2.1. Nonlinear Plant

In this paper, a discrete-time T–S fuzzy model is used to approximate the nonlinear
plant under consideration and ith is formulated as follows
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Plant Rule i: IF n1(t) is M1i and n2(t) is M2i and . . . and np(t) is Mpi, THEN

x(t + 1) = Aix(t) + Biw(t)
y(t) = Cix(t) + Diw(t)
z(t) = Eix(t) + Fiw(t)

(1)

where Mτi with i = 1, 2, . . . , s and τ = 1, 2, . . . , p are the fuzzy sets, s stands for the
number of fuzzy rules, and n(t) = [n1(t), n2(t), . . . , np(t)] stands for the premise variable.
x(t) ∈ Rnx and y(t) ∈ Rny stand for the system state and the measurement output,
respectively, z(t) ∈ Rnz stands for the performance output, and w(t) ∈ Rnw stands for the
noise signal belonging to l2[ 0, ∞). Ai ∈ Rnx×nx , Bi ∈ Rnx×nw , Ci ∈ Rny×nx , Di ∈ Rny×nw ,
Ei ∈ Rnz×nx , and Fi ∈ Rnz×nw are the system matrices.

Denote

bi(n(t)) =
p

∏
τ=1

Mτi(nτ(t)), i = 1, 2, . . . , s (2)

where Mτi(nτ(t)) is the grade of membership of nτ(t) in Mτi.
Throughout this paper, it is assumed that

bi(n(t)) > 0,
s

∑
i=1

bi(n(t)) > 0, i = 1, 2, . . . , s. (3)

Let

pi(n(t)) =
bi(n(t))

∑s
i=1 bi(n(t))

, i = 1, 2, . . . , s. (4)

Then

pi(n(t)) ≥ 0,
s

∑
i=1

pi(n(t)) = 1, i = 1, 2, . . . , s. (5)

Moreover, the T–S fuzzy model can be further represented as

x(t + 1) = A(p)x(t) + B(p)w(t)
y(t) = C(p)x(t) + D(p)w(t)
z(t) = E(p)x(t) + F(p)w(t)

(6)

where
A(p) =

s
∑

i=1
pi(n(t))Ai, B(p) =

s
∑

i=1
pi(n(t))Bi,

C(p) =
s
∑

i=1
pi(n(t))Ci, D(p) =

s
∑

i=1
pi(n(t))Di,

E(p) =
s
∑

i=1
pi(n(t))Ei, F(p) =

s
∑

i=1
pi(n(t))Fi.

2.2. Dynamic Quantizers and Data Dropouts

In order to reduce the frequency of information exchange and the burden of communi-
cation, the measurement output y(t) and the performance output z(t) will be quantized
by the dynamic quantizer developed in [6], respectively. According to [6], the quantized
measurement output and the quantized performance output can be formulated as

gας(t)(ς(t)) = ας(t)gς

(
ς(t)
ας(t)

)
, ς = y, z. (7)

In (7), ας(t) > 0 stands for the dynamic parameter of the quantizer and gς(ς(t)/ας(t))
stands for a static quantizer satisfying∣∣∣∣gς

(
ς(t)
ας(t)

)
− ς(t)

ας(t)

∣∣∣∣ ≤ Δς, IF
∣∣∣∣ ς(t)
ας(t)

∣∣∣∣ ≤ Rς (8)
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∣∣∣∣gς

(
ς(t)
ας(t)

)
− ς(t)

ας(t)

∣∣∣∣ > Δς, IF
∣∣∣∣ ς(t)
ας(t)

∣∣∣∣ > Rς (9)

whereRς stands for the range of the quantizer and Δς denotes the bound of the quantiza-
tion error.

As an important challenge in networked systems, the effects of data packet dropouts
will also be considered in this paper. Two independent Bernoulli stochastic variables ε and
ρ will be employed to characterize the effects of data packet dropouts on the quantized
measurement output and quantized performance output. In this way, the measurement
output and performance output signals received by the filter can be indicated as

y(t) = εαy(t)gy

(
y(t)
αy(t)

)
, αy(t) > 0 (10)

z(t) = ραz(t)gz

(
z(t)
αz(t)

)
, αz(t) > 0. (11)

This implies that the quantized measurement output (quantized performance output)
is successfully transmitted when ε = 1 (ρ = 1), and that the quantized measurement
output (quantized performance output) is unsuccessfully transmitted when ε = 0 (ρ = 0).
Moreover, we assume that ε and ρ satisfy

Prob{ε = 1} = E{ε} = ε̄
Prob{ε = 0} = 1− ε̄
Prob{ρ = 1} = E{ρ} = ρ̄
Prob{ρ = 0} = 1− ρ̄

(12)

with known constants 0 ≤ ε̄ ≤ 1 and 0 ≤ ρ̄ ≤ 1.

Remark 1. As claimed in [38,43], in the study of the filtering problem for networked systems, both
the measurement and performance outputs should be transmitted by an unreliable communication
network. Therefore, the effects of both the dynamic quantization and data packet dropouts on the
measurement and performance outputs are considered in this paper. In contrast with the results
in [38] where only the effects of quantization are considered, and the results in [43] where only the
effects of data packet dropouts are considered, the problem studied in this paper is more general for
networked systems.

2.3. Filtering Error Systems

In this paper, the structure of the employed filter is provided as

x f (t + 1) = Âx f (t) + B̂y(t)
z f (t) = Êx f (t)

(13)

where x f (t) ∈ Rnx denotes the state of the filter and z f (t) ∈ Rnz stands for the output of the
filter. Â ∈ Rnx×nx , B̂ ∈ Rnx×ny , and Ê ∈ Rnz×nx stand for the parameters of the designed
filter. The structure of the filter in (13) is general, which can be utilized to investigate the
full-order filtering problem with nx = nx and the reduced-order filtering problem with
1 ≤ nx < nx.

Then, we can express the filtering error system as

φ(t + 1) = (Aa + ε̃Ab)φ(t) + (Ba + ε̃Bb)w(t)
+ (Ha + ε̃Hb)ry(t)

e(t) = (Ca + ρ̃Cb)φ(t) + (Da + ρ̃Db)w(t)
+ (ρ̄ + ρ̃)rz(t)

(14)
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where φT(t) = [xT(t) xT
f (t)], e(t) = z(t)− z f (t), and

Aa =

[
A(p) 0

ε̄B̂C(p) Â

]
, Ab =

[
0 0

B̂C(p) 0

]
,

Ba =

[
B(p)

ε̄B̂D(p)

]
, Bb =

[
0

B̂D(p)

]
,

Ha =

[
0

ε̄B̂

]
, Hb =

[
0
B̂

]
,

Ca =
[

ρ̄E(p) −Ê
]
, Cb =

[
E(p) 0

]
,

Da = ρ̄F(p), Db = F(p),
ry(t) = αy(t)

(
gy

(
y(t)

αy(t)

)
− y(t)

αy(t)

)
,

rz(t) = αz(t)
(

gz

(
z(t)

αz(t)

)
− z(t)

αz(t)

)
,

ε̃ = ε− ε̄, ρ̃ = ρ− ρ̄.

Next, we will provide the definitions on the dissipativity and stochastic stability of
the filtering error system (14), which will be needed in the process of dissipative filtering
performance analysis.

Definition 1 ([27,37,43]). For any initial condition φ(0), if there exists a matrix Y > 0 such that

E

{
∞
∑

t=0
|φ(t)|2

∣∣∣φ(0)} < φT(0)Yφ(0) (15)

holds. Then, the filtering error system in (14) is stochastically stable with w(t) = 0.

Definition 2 ([44]). For zero initial condition, the filtering error system in (14) is strictly dissipa-
tive with the dissipativity performance bound γ > 0, such that

�

∑
t=0

E
{(

eT(t)J1e(t) + eT(t)J2w(t) + wT(t)

×JT
2 e(t) + wT(t)(J3 − γI)w(t)

)} ≥ 0
(16)

holds with � ≥ 0. In (16), J1 = JT
1 ∈ Rnz×nz ≤ 0, J2 ∈ Rnz×nw , and J3 = JT

3 ∈ Rnw×nw are
known matrices and −J1 = JT

11 J11 with J11 ∈ Rnz×nz ≥ 0.

Finally, the purpose of this paper is to design the filter in the form of (13), such that the
filtering error system in (14) is stochastically stable in the sense of Definition 1 and strictly
dissipative in the sense of Definition 2.

3. Main Results

3.1. Filtering Performance Analysis

In this subsection, it is assumed that the filter (13) studied in this paper is known.
Based on the Lyapunov approach, a significant dissipative filtering performance analysis
criterion for the filtering error system (14) will be presented in the following theorem.

Theorem 1. Suppose that the quantization ranges Ry and Rz, the quantization error bounds
Δy and Δz, and the constants ρ̄, ε̄, γ > 0, 0 < c1y ≤ c2y, 0 < d1y ≤ d2y, 0 < c1z ≤ c2z,
0 < d1z ≤ d2z, satisfying c1yd1y ≥ 1 and c1zd1z ≥ 1 are provided. The filtering error system
in (14) is stochastically stable with the provided dissipative filtering performance γ, if there exist
matrix P > 0, positive scalars oy, oz, ζy, and ζz satisfying

c1ς

Rς
≤ oς ≤ c2ς

Rς
, ς = y, z (17)
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⎡⎢⎢⎣
Υ11 ∗ ∗ ∗
Υ21 Υ22 ∗ ∗
Υ31 0 −I ∗
Υ41 0 0 Υ44

⎤⎥⎥⎦ < 0 (18)

where

Υ11 =

⎡⎢⎢⎣
−P ∗ ∗ ∗
−JT

2 Ca Ω22 ∗ ∗
0 0 −ζy I ∗
0 −ρ̄J2 0 −ζz I

⎤⎥⎥⎦,

Υ21 =

[
Aa Ba Ha 0

ε̂Ab ε̂Bb ε̂Hb 0

]
,

Υ31 =

[
J11Ca J11Da 0 ρ̄J11

ρ̂J11Cb ρ̂J11Db 0 ρ̂J11

]
,

Υ41 =

[
σyC σyD 0 0
σzE σzF 0 0

]
,

Ω22 = −JT
2 Da − DT

a J2 − (J3 − γI),

Υ22 = −diag{P−1, P−1}, Υ44 = −diag{ζy
−1 I, ζz

−1 I}, ε̂ = (ε̄(1− ε̄))1/2, ρ̂ = (ρ̄(1− ρ̄))1/2,
C = [C(p) 0 ], D = D(p), E = [ E(p) 0 ], F = F(p), σy = (c2yd2yΔy)/Ry, σz =
(c2zd2zΔz)/Rz, and the adjusting strategy for the dynamic parameters αy(t) and αz(t) are pro-
vided as:

d1ςoς|ς(t)| ≤ ας(t) ≤ d2ςoς|ς(t)|, ς = y, z. (19)

Proof. For the filtering error system (14), the Lyapunov function is established as

V(φ(t)) = φT(t)Pφ(t), P > 0. (20)

Then, one can be obtain that

E{V(φ(t + 1))} −V(φ(t))− E
{(

eT(t)J1e(t) + eT(t)
×J2w(t) + wT(t)JT

2 e(t) + wT(t)(J3 − γI)w(t)
)}

= E{((Aa + ε̃Ab)φ(t) + (Ba + ε̃Bb)w(t)
+(Ha + ε̃Hb)ry(t))T P((Aa + ε̃Ab)φ(t)
+(Ba + ε̃Bb)w(t) + (Ha + ε̃Hb)ry(t))

}
−φT(t)Pφ(t)− E{((Ca + ρ̃Cb)φ(t)
+(Da + ρ̃Db)w(t) + (ρ̃ + ρ̄)rz(t))T J1
((Ca + ρ̃Cb)φ(t) + (Da + ρ̃Db)w(t)
+(ρ̃ + ρ̄)rz(t)) + ((Ca + ρ̃Cb)φ(t)
+(Da + ρ̃Db)w(t) + (ρ̃ + ρ̄)rz(t))T J2w(t)
+wT(t)JT

2 ((Ca + ρ̃Cb)φ(t)
+(Da + ρ̃Db)w(t) + (ρ̃ + ρ̄)rz(t))
+wT(t)(J3 − γI)w(t)}
= ηT(t)

(
E
{
([ Aa Ba Ha 0 ] + ε̃[ Ab Bb Hb 0 ])T

P([ Aa Ba Ha 0 ] + ε̃[ Ab Bb Hb 0 ])
−([ Ca Da 0 ρ̄I ] + ρ̃[ Cb Db 0 I ])T J1
([ Ca Da 0 ρ̄I ] + ρ̃[ Cb Db 0 I ])
−([ Ca Da 0 ρ̄I ] + ρ̃[ Cb Db 0 I ])T

J2[ 0 I 0 0 ]− [ 0 I 0 0 ]T JT
2 ([ Ca Da 0 ρ̄I ]

+ρ̃[ Cb Db 0 I ])
}
− diag{P, J3 − γI, 0, 0}

)
η(t)

= ηT(t)Φ0η(t)

(21)
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where ηT(t) = [ φT(t) wT(t) rT
y (t) rT

z (t) ] and

Φ0 = [ Aa Ba Ha 0 ]T P[ Aa Ba Ha 0 ]
+ ε̂2[ Ab Bb Hb 0 ]T P[ Ab Bb Hb 0 ]
− [Ca Da 0 ρ̄I ]T J1[Ca Da 0 ρ̄I ]
− ρ̂2[Cb Db 0 I ]T J1[Cb Db 0 I ]
− [Ca Da 0 ρ̄I ]T J2[ 0 I 0 0 ]
− [ 0 I 0 0 ]T JT

2 [Ca Da 0 ρ̄I ]
− diag{P, J3 − γI, 0, 0}.

As in [4], based on the online adjusting strategy in (19) and the conditions in (8) and
(17), we have

rT
y (t)ry(t) ≤ σ2

y yT(t)y(t)
rT

z (t)rz(t) ≤ σ2
z zT(t)z(t)

(22)

which can be further expressed as

ηT(t)Φ1η(t) ≥ 0
ηT(t)Φ2η(t) ≥ 0

(23)

with
Φ1 = [ σyC σyD 0 0 ]T [ σyC σyD 0 0 ]− diag{0, 0, I, 0},
Φ2 = [ σzE σzF 0 0 ]T [ σzE σzF 0 0 ]− diag{0, 0, 0, I}.

By utilizing the Schur complement to (18), we obtain

Φ0 + ζyΦ1 + ζzΦ2 < 0. (24)

According to the S-Procedure in [6,36], we have that ηT(t)Φ0η(t) < 0 based on (21),
(23), and (24), i.e.,

E{V(φ(t + 1))} −V(φ(t))− E
{(

eT(t)J1e(t) + eT(t)
×J2w(t) + w(t)T JT

2 e(t) + wT(t)(J3 − γI)w(t)
)}

< 0
(25)

Then, by summing up (25) from t = 0 to t = � with � ≥ 1, one can obtain

E{V(φ(� + 1))} −V(φ(0))−∑
�
t=0 E

{(
eT(t)J1e(t) + eT(t)

×J2w(t) + w(t)T JT
2 e(t) + wT(t)(J3 − γI)w(t)

)}
< 0

(26)

By considering E{V(φ(� + 1))} ≥ 0 and V(φ(0)) = 0, we have

∑
�
t=0 E

{
(eT(t)J1e(t) + eT(t)J2w(t) + w(t)T

×JT
2 e(t) + wT(t)(J3 − γI)w(t)

)} ≥ 0
(27)

Therefore, according to Definition 2, one can obtain that the given dissipative filtering
performance bound γ > 0 of the filtering error system in (14) can be guaranteed.

Next, for w(t) = 0, the stochastic stability of the filtering error system in (14) will
be discussed.

For w(k) = 0, the inequality in (25) reduces to

E{V(φ(t + 1))} −V(φ(t)) < E
{

eT(t)J1e(t)
}

. (28)

By considering the fact that J1 ≤ 0, we have that

E{V(φ(t + 1))} −V(φ(t)) = ηT(t)Φ̂0η(t) < 0 (29)
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where ηT(t) = [ φT(t) rT
y (t) rT

z (t) ] and

Φ̂0 = [ Aa Ha 0 ]T P[ Aa Ha 0 ] + ε̂2[ Ab Hb 0 ]T

× P[ Ab Hb 0 ]− [Ca 0 ρ̄I ]T J1[Ca 0 ρ̄I ]
− ρ̂2[Cb 0 I ]T J1[Cb 0 I ]− diag{P, 0, 0}.

Based on (29), it can be obtained that

E{V(φ(t + 1))} −V(φ(t)) ≤ −λmin(−Φ̂0)η
T(t)η(t). (30)

By calculating the mathematical expectation of (30) on both sides and summing up
both sides of (30) from t = 0 to t = � with � ≥ 1, one can obtain that

E
{

φT(� + 1)Pφ(� + 1)
}− φT(0)Pφ(0)

≤ −λmin(−Φ̂0)E
{

∑
�
t=0 |η(t)|2

}
,

(31)

which is equivalent to

E
{

∑
�
t=0 |η(t)|2

}
≤ (λmin(−Φ̂0))

−1(φT(0)Pφ(0)− E
{

φT(� + 1)Pφ(� + 1)
})

.
(32)

For � −→ ∞, we have that E
{

φT(∞)Pφ(∞)
} ≥ 0 and E

{
∑∞

t=0 |η(t)|2
} ≥ E

{
∑∞

t=0 |φ(t)|2
}

.
Then, based on inequality in (32), it can be obtained that

E
{

∑∞
t=0 |φ(t)|2

}
≤ (λmin(−Φ̂0))

−1(φT(0)Pφ(0)
)

= φT(0)(λmin(−Φ̂0))
−1Pφ(0) = φT(0)Yφ(0)

(33)

with Y = (λmin(−Φ̂0))
−1P.

According to ηT(t)Φ̂0η(t) < 0, it can be deduced that Φ̂0 < 0, which implies that
λmin(−Φ̂0) > 0. Based on the above discussions, we have that Y = (λmin(−Φ̂0))

−1P > 0.
Therefore, for w(t) = 0, one can obtain that the filtering error system in (14) is stochastically
stable in accordance with Definition 1.

Remark 2. As pointed out in [4], the adjusting strategy for the dynamic parameters αy(t) and
αz(t) proposed in (19) is more general than the one in [6,11,36] and the one in [21,37]. The adjusting
strategy in [6,11,36] can be obtained from the one in (19) by choosing d1ς = d2ς and the adjusting
strategy in [21,37] can be obtained from the one in (19) by choosing c1ς = 1, d1ς = 1, and d2ς = 2.
Moreover, another advantage of the adjusting strategy in (19) is that the constant oς is independent
of the matrix inequality (18).

3.2. Filter Design

Based on the results developed in Theorem 1, the design results characterized by linear
matrix inequalities for the desired filter in (13) will be proposed in the following theorem.

Theorem 2. Suppose that the quantization ranges Ry and Rz, the quantization error bounds
Δy and Δz, the dimension adjustment matrix K, and the constants ρ̄, ε̄, γ > 0, 0 < c1y ≤ c2y,
0 < d1y ≤ d2y, 0 < c1z ≤ c2z, 0 < d1z ≤ d2z, satisfying c1yd1y ≥ 1 and c1zd1z ≥ 1 are provided.
In the presence of the adjusting strategy for the dynamic parameters αy(t) and αz(t) provided in
(19) with the inequality in (17), the filtering error system in (14) is stochastically stable with the
provided dissipative filtering performance γ, if there exist matrices P1 > 0, P2, P3 > 0, G1, G2, Ã,
B̃, Ẽ, nonsingular matrix G3, and positive scalars ζy, ζz satisfying

Ψi < 0, i = 1, 2, . . . , s. (34)
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where

Ψi =

⎡⎢⎢⎢⎢⎣
Θ11i ∗ ∗ ∗ ∗
Θ21i Θ22 ∗ ∗ ∗
Θ31i 0 Θ22 ∗ ∗
Θ41i 0 0 −I 0
Θ51i 0 0 0 Θ55

⎤⎥⎥⎥⎥⎦,

Θ11i =

⎡⎢⎢⎢⎢⎣
−P1 ∗ ∗ ∗ ∗
−P2 −P3 ∗ ∗ ∗
−ρ̄JT

2 Ei JT
2 Ẽ Λ33 ∗ ∗

0 0 0 −ζy I ∗
0 0 −ρ̄J2 0 −ζz I

⎤⎥⎥⎥⎥⎦,

Λ33 = −ρ̄FT
i J2 − ρ̄JT

2 Fi − (J3 − γI),

Θ21i =

[
Δ11 KÃ Δ13 ε̄KB̃ 0
Δ21 Ã Δ23 ε̄B̃ 0

]
,

Θ31i =

[
ε̂KB̃Ci 0 ε̂KB̃Di ε̂KB̃ 0
ε̂B̃Ci 0 ε̂B̃Di ε̂B̃ 0

]
,

Θ41i =

[
ρ̄J11Ei −J11Ẽ ρ̄J11Fi 0 ρ̄J11
ρ̂J11Ei 0 ρ̂J11Fi 0 ρ̂J11

]
,

Θ51i =

[
ζyσyCi 0 ζyσyDi 0 0
ζzσzEi 0 ζzσzFi 0 0

]
,

Θ22 =

[
P1 − G1 − GT

1 ∗
P2 − G2 − GT

3 KT P3 − G3 − GT
3

]
,

Θ55 = −diag{ζy I, ζz I},
Δ11 = G1 Ai + ε̄KB̃Ci, Δ21 = G2 Ai + ε̄B̃Ci,
Δ13 = G1Bi + ε̄KB̃Di, Δ23 = G2Bi + ε̄B̃Di.

Moreover, the parameters for the filter (13) can be obtained by

Â = G−1
3 Ã, B̂ = G−1

3 B̃, Ê = Ẽ. (35)

Proof. For the nonsingular matrix G, based on −(P− G)T P−1(P− G) ≤ 0 and P > 0, we
have that

−GT P−1G ≤ −G− GT + P (36)

By considering (36) and performing congruence transformation to (18) by diag{I, ĜT ,
I, ζ̂} with Ĝ = diag{G, G} and ζ̂ = diag{ζy I, ζz I}, it can be obtained that⎡⎢⎢⎣

Υ11 ∗ ∗ ∗
Υ21 Υ22 ∗ ∗
Υ31 0 −I ∗
Υ41 0 0 Υ44

⎤⎥⎥⎦ < 0 (37)

where

Υ21 =

[
GT Aa GT Ba GT Ha 0
ε̂GT Ab ε̂GT Bb ε̂GT Hb 0

]
,

Υ22 = diag{ −G− GT + P,−G− GT + P} ,

Υ41 =

[
ζyσyC ζyσyD 0 0
ζzσzE ζzσzF 0 0

]
,

Υ44 = −diag{ζy I, ζz I}.

We assume P =

[
P1 ∗
P2 P3

]
, GT =

[
G1 KG3
G2 G3

]
with G3 is nonsingular and define

Ã = G3 Â, B̃ = G3B̂, and Ẽ = Ê, the inequality in (37) can be expressed as

s

∑
i=1

pi(n(t))Ψi < 0 (38)
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Finally, by considering pi(n(t)) ≥ 0 stated in (5), one can deduce that if the inequality
in (34) is satisfied, then the inequality in (38) holds, which completes the proof.

Next, some discussions on the main results in this paper will be provided.

Remark 3. In Theorem 2, for the provided dimension adjustment matrix K, both the full-order
dissipative filter and the reduced-order dissipative filter design results are presented in a unified
framework characterized by linear matrix inequalities, which can be effectively solved by the LMI
toolbox. In general, the dimension adjustment matrix K can be chosen as K = Inx×nx for full-order
dissipative filter and K =

[
Inx×nx 0nx×(nx−nx)

]T for reduced-order dissipative filter.

Remark 4. The deign results proposed in Theorem 2 on the dissipative filter for nonlinear networked
systems with dynamic quantization and data packet dropouts are general. By selecting J11 = I,
J2 = 0, and J3 = (γ2 + γ)I, the deign results proposed in Theorem 2 can be utilized to design
the H∞ filter. By selecting J11 = 0, J2 = I, and J3 = 2γI, the deign results proposed in
Theorem 2 can be utilized to design the passive filter. By selecting J11 =

√
κ I, J2 = (1− κ)I, and

J3 = (κ(γ2 − γ) + 2γ)I with 0 ≤ κ ≤ 1, the deign results proposed in Theorem 2 can be utilized
to design the mixed passive/H∞ filter.

Remark 5. Based on the results in [8,21], we know that a feasible adjusting rule is necessary for
the dynamic parameter ας(t) due to the use of the unreliable transmission communication network.
As in [4], the adjusting rule for the dynamic parameter ας(t) in this paper is proposed as

ας(t) = floor(d2ςoς|ς(t)| × 10−j)

where j = min
{

j ∈ N+
∣∣(d2ςoς|ς(t)| × 10j

)
> 1

}
and the function floor(h̄) denotes the maxi-

mum integer that is not bigger than h̄.

Remark 6. According to the conclusions in [23], we have that the numerical complexity of the
design results proposed in Theorem 2 is closely related to the number of variables V and the number
of rows L. Moreover, the deign conditions in Theorem 2 can be solved in polynomial time with
complexity proportional to C = V3L, where V = 2 + 2nxnx + 2nxnx +

1
2 nx(nx + 1) + 1

2 nx(nx +
1) + nxnx + nxny + nxnz and L = (3nx + 3nx + 2ny + 4nz + nw)s.

Remark 7. In general,Ry,Rz, Δy, Δz are provided parameters for dynamic quantizers and ε̄, ρ̄
are provided parameters for data packet dropouts. However, how to deal with the dissipative filtering
problem with the unknown parameters Ry, Rz, Δy, Δz, ε̄, and ρ̄ is still a open problem, which
needs further study. Moreover, it should be noted that the conservatism of the results proposed in
Theorem 2 can be further reduced by employing the fuzzy Lyapunov function strategy in [15] and
introducing slack matrix variables via Lemma 4 in [45].

4. Simulation Example

In this section, we will show that the proposed dissipative filtering strategy is effective
via a practical example.

Consider the tunnel diode circuit depicted in Figure 1, which is also employed to study
the l2–l∞ fuzzy filtering problem for nonlinear networked systems with dynamic quantiza-
tion in [36]. As in [36], by choosing x1(t) = vC(t), x2(t) = iL1(t), and x3(t) = iL2(t), state
equations for the tunnel diode circuit can be represented as

Cẋ1(t) = −Wx1(t)−Nx3
1(t) + x2(t) + x3(t)

L1 ẋ2(t) = −x1(t)−R1x2(t) +Vw(t)
L2 ẋ3(t) = −x1(t)−R2x3(t)

(39)
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Figure 1. Tunnel diode circuit.

In this paper, we assume that C = 20 mF, W = 0.002 s, N = 0.01 s, L1 = 1000 mH,
R1 = 10 Ω, V = 1, L2 = 100 mH, R2 = 1 Ω, and |x1(t)| ≤ 3, i.e., 0 ≤ x2

1(t) ≤ 9. Then, the
nonlinear tunnel diode circuit in (39) can be approximated by the following continuous-time
T–S fuzzy model:

Plant Rule 1 : IF x2
1(t) is 0, THEN

ẋ(t) = A1x(t) + B1u(t)
Plant Rule 2 : IF x2

1(t) is 9, THEN
ẋ(t) = A2x(t) + B2u(t)

(40)

where

A1 =

⎡⎣ −0.1 50 50
−1 −10 0
−10 0 −10

⎤⎦, B1 =

⎡⎣ 0
1
0

⎤⎦,

A2 =

⎡⎣ −4.6 50 50
−1 −10 0
−10 0 −10

⎤⎦, B2 =

⎡⎣ 0
1
0

⎤⎦.

Moreover, the membership functions can be provided as

p1(x1(t)) =

⎧⎪⎪⎨⎪⎪⎩
1− x2

1(t)
9 , − 3 ≤ x1(t) ≤ 3

0, otherwise
p2(x1(t)) = 1− p1(x1(t)).

By setting the sampling period T = 0.02 s, we have that

A1 =

⎡⎣ 0.8970 0.8726 0.8726
−0.0175 0.8101 −0.0086
−0.1745 −0.0859 0.7328

⎤⎦,

A2 =

⎡⎣ 0.8170 0.8332 0.8332
−0.0167 0.8104 −0.0083
−0.1666 −0.0833 0.7354

⎤⎦,

B1 =

⎡⎣ 0.0092
0.0181
−0.0006

⎤⎦, B2 =

⎡⎣ 0.0089
0.0181
−0.0006

⎤⎦,

and other relative matrices are supposed to be

C1 = C2 =
[

1 3 2
]
, D1 = D2 = 0.4,

E1 = E2 =
[ −2 −2 −4

]
, F1 = F2 = 0.1.

By applying Theorem 2 with K = I3×3, J1 = −2, J2 = 2, J3 = 2, Ry = Rz = 50,
Δy = Δz = 0.5, ρ̄ = ε̄ = 0.8, c1y = c1z = 1, d1y = d1z = 1, c2y = c2z = 2, d2y = d2z = 2,
and γ = 0.55, the related parameters for the desired full-order dissipative filter can be
obtained as
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Â =

⎡⎣ 0.7820 0.4766 0.5534
0.0017 0.4906 −0.0466
−0.2126 −0.0845 0.6139

⎤⎦, B̂ =

⎡⎣ −0.0809
−0.0552
−0.0111

⎤⎦,

Ê =
[

1.1356 6.0793 5.2254
]
.

For the simulation, we assume that x(0) = x f (0) = [0 0 0]T and w(t) = 5 cos(0.25t)e−0.2t.
The simulation results are presented in Figures 2–7, where the responses of x(t) and x f (t) are
indicated in Figure 2 and Figure 3, respectively, Figure 4 plots the responses of z(t) and z f (t),
Figure 5 shows the trajectory of e(t), and the trajectories of the dynamic parameters αy(t) and
αz(t) are shown in Figure 6 and Figure 7, respectively. The simulation results presented in
Figures 2–7 demonstrate that the proposed dissipative filter design approach in this paper
is effective.

Next, the tunnel diode circuit system (39) will be utilized to investigate the H∞ filter
design problem according to the results developed in Theorem 2, and the other parameters
without detailed definition are same as the first case. Firstly, the effects of quantization error
bound Δy(Δz) and quantization rangeRy(Rz) on the optimized H∞ filtering performance
γmin will be studied with J1 = −1, J2 = 0, and J3 = γ + γ2. The optimized H∞ filtering
performances γmin computed by Theorem 2 with different quantization error bound Δy(Δz)
and quantization range Ry(Rz) are shown in Figure 8 and Figure 9, respectively. As
expected, one can observe that γmin increases as the quantization rangeRy(Rz) decreases
and γmin increases as the quantization error bound Δy(Δz) increases. Moreover, it is well
known that a higher filter order nx will lead to less design conservatism, i.e., a smaller
optimized H∞ filtering performance γmin. Then, we demonstrate this proposition. In
the presence of different filter order nx, the optimized H∞ filtering performances γmin
computed by Theorem 2 with different quantization error bounds and quantization ranges
are shown in Tables 1 and 2, respectively.
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Figure 2. The response of x(t).
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Figure 3. The response of x f (t).
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Figure 4. The responses of z(t) and z f (t).
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Figure 5. The trajectory of e(t).
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Figure 6. The trajectory of the dynamic parameter αy(t).
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Figure 7. The trajectory of the dynamic parameter αz(t).
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Figure 8. OptimizedH∞ filtering performance γmin with different quantization error bound Δy(Δz).

Figure 9. OptimizedH∞ filtering performance γmin with different quantization errorRy(Rz).

Table 1. OptimizedH∞ filtering performance γmin with different quantization error bounds.

Δy = Δz 0.1 0.3 0.5 0.7 0.9

γmin(nx = 3) 0.1984 0.2040 0.2100 0.2163 0.2228

γmin(nx = 2) 0.3189 0.3257 0.3325 0.3393 0.3461

γmin(nx = 1) 0.3425 0.3504 0.3583 0.3664 0.3744

Table 2. OptimizedH∞ filtering performance γmin with different quantization ranges.

Ry = Rz 10 30 50 70 90

γmin(nx = 3) 0.2850 0.2206 0.2100 0.2057 0.2034

γmin(nx = 2) 0.4021 0.3438 0.3325 0.3276 0.3249

γmin(nx = 1) 0.4405 0.3717 0.3583 0.3526 0.3495

Comparative Explanations: In this paper, the developed filtering strategy can effec-
tively solve both the full- and reduced-order dissipative filtering problems for the nonlinear
tunnel diode circuit system in (39) with the effects of dynamic quantization and data packet
dropouts based on the T–S fuzzy model strategy. In contrast with the existing results, the
main advantages of the proposed filtering strategy can be summarized in the following
three aspects.

(1) The proposed dissipative filtering strategy in this paper is more general than the
existing results on fuzzyH∞ filtering for nonlinear networked systems in [34,35,37,39–42],
because it can also be utilized to deal with several kinds of filtering problems, including
passive, H∞, and mixed passive/H∞ filtering problems for the nonlinear tunnel diode
circuit system (39). Particularly, both the effects of dynamic quantization and data packet
dropouts on the measurement output and the performance output have been considered
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simultaneously; it implies that the problem addressed in this paper is more in agreement
with practical circumstances than the ones considered in [36,38,41–43].

(2) In contrast with the quantized filtering problem considered in [38,41], the dynamical
quantization methodology employed herein is more general. This is mainly because the
stochastic stability of the filtering error system can be ensured under a finite number of
quantization levels. By choosing the relevant parameters, the online adjusting strategies
in [36,39] can be obtained from the one developed in (17) and (19), which implies that
the adjusting strategy for the dynamic parameters ας(t) (ς = y, z) provided in this paper
is more general. Moreover, simulation results in Figure 6 and Figure 7 show that the
adjustment of the dynamic parameters ας(t) can be realized based on the online adjusting
strategy developed in this paper.

(3) In contrast with the existing results of the filtering problem for networked sys-
tems where only full-order filtering problems [34,35,38,39,41] or reduced-order filtering
problems [46] were considered, the developed filtering strategy can effectively solve both
the full- and reduced-order filtering problems, which is more general. Moreover, different
from the results in [36], this example illustrates that both full- and reduced-order filter-
ing problems have been solved in the unified framework of linear matrix inequalities by
introducing a dimension adjustment matrix K.

5. Conclusions

In this paper, the dissipative filtering problem has been addressed for discrete-time
nonlinear networked systems with dynamic quantization and data packet dropouts based
on the T–S fuzzy strategy. Both the effects of dynamic quantization and data packet
dropouts have been taken into consideration in both communication channels from the
plant to the filter and from the filter to the plant. The sufficient design conditions for both
the desired full- and reduced-order dissipative filters have been established in the unified
framework of linear matrix inequalities, which guarantees the stochastic stability and the
predefined dissipative filtering performance for the filtering error system subject to dynamic
quantization and data packet dropouts. In addition, a practical simulation example has
been employed to show the effectiveness of the proposed dissipative filtering approach.

However, it is well known that communication delays and cyber attacks, as important
challenges in networked systems, are also considered to be unavoidable in practical cases. In
this paper, we have only addressed dynamic quantization and data packet dropouts, and the
study of the dissipative fuzzy filtering problem for nonlinear networked systems with the
simultaneous consideration of dynamic quantization, data packet dropouts, communication
delays, and cyber attacks deserves further investigation.

Author Contributions: Conceptualization, S.J. and Z.L.; formal analysis, S.J. and Z.L.; methodology,
S.J. and Z.L.; funding acquisition, Z.L.; investigation, writing—original draft preparation and editing,
and writing—review and editing, S.J., C.L. and Z.L.; software, S.J. and C.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62003006, in part by the Science and Technology Project of Hebei Education Depart-
ment under Grant BJK2022053, in part by the Langfang Youth Talent Support Program under
Grant LFBJ202202, in part by the Graduate Innovation Support Program in Hebei Province (CXZ
ZSS2024142), and in part by the Graduate Innovation Support Program in North China Institute of
Aerospace Engineering under Grant YKY-2023-25.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

153



Mathematics 2024, 12, 203

References

1. Liu, J.; Dong, Y.; Zha, L.; Tian, E.; Xie, X. Event-based security tracking control for networked control systems against stochastic
cyber-attacks. Inf. Sci. 2022, 612, 306–321. [CrossRef]

2. Zha, L.; Liao, R.; Liu, J.; Xie, X.; Tian, E.; Cao, J. Dynamic event-triggered output feedback control for networked systems subject
to multiple cyber attacks. IEEE Trans. Cybern. 2022, 52, 13800–13808. [CrossRef] [PubMed]

3. Zhang, X.M.; Han, Q.L.; Ge, X.; Ding, D.; Ding, L.; Yue, D.; Peng, C. Networked control systems: A survey of trends and
techniques. IEEE CAA J. Autom. Sin. 2020, 7, 1–17. [CrossRef]

4. Xiong, J.; Chang, X.H.; Park, J.H.; Li, Z.M. Nonfragile fault-tolerant control of suspension systems subject to input quantization
and actuator fault. Int. J. Robust Nonlinear Control 2020, 30, 6720–6743. [CrossRef]

5. Liberzon, D. Hybrid feedback stabilization of systems with quantized signals. Automatica 2003, 39, 1543–1554. [CrossRef]
6. Chang, X.H.; Xiong, J.; Li, Z.M.; Park, J.H. Quantized static output feedback control for discrete-time systems. IEEE Trans. Industr.

Inf. 2018, 14, 3426–3435. [CrossRef]
7. Yu, K.; Chang, X.H. Quantized output feedback resilient control of uncertain systems under hybrid cyber attacks. Int. J. Adapt.

Control Signal Process. 2022, 36, 2954–2970. [CrossRef]
8. Niu, Y.; Ho, D.W.C. Control strategy with adaptive quantizer’s parameters under digital communication channels. Automatica

2014, 50, 2665–2671. [CrossRef]
9. Su, L.; Chesi, G. Robust stability of uncertain linear systems with input and output quantization and packet loss. Automatica 2018,

87, 267–273. [CrossRef]
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Abstract: Aiming at the problem that the search efficiency of key vulnerable nodes in large-scale
networks is not high and the consideration factors are not comprehensive enough, in order to improve
the time and space efficiency of search and the accuracy of results, a key vulnerable node discovery
method based on Bayesian attack subgraphs and improved fuzzy C-means clustering is proposed.
Firstly, the attack graph is divided into Bayesian attack subgraphs, and the analysis results of the
complete attack graph are quickly obtained by aggregating the information of the attack path analysis
in the subgraph to improve the time and space efficiency. Then, the actual threat features of the
vulnerability nodes are extracted from the analysis results, and the threat features of the vulnerability
itself in the common vulnerability scoring standard are considered to form the clustering features
together. Next, the optimal number of clusters is adaptively adjusted according to the variance
idea, and fuzzy clustering is performed based on the extracted clustering features. Finally, the key
vulnerable nodes are determined by setting the feature priority. Experiments show that the proposed
method can optimize the time and space efficiency of analysis, and the fuzzy clustering considering
multiple features can improve the accuracy of analysis results.

Keywords: Bayesian attack graphs; key vulnerability discovery; community division; fuzzy cluster-
ing

MSC: 93C42

1. Introduction

With the continuous progress of science and technology, the network has become an
indispensable part of modern society. The development of the network has broken the
restrictions of time and space and promoted the dissemination and sharing of information.
Attackers penetrate and hijack data through device vulnerabilities, causing economic
losses to individuals, institutions, large companies, and even countries [1]. Therefore, it
is necessary to analyze the vulnerabilities in network systems and take corresponding
defensive measures to prevent hacker attacks.

The large number and complex types of vulnerabilities in network systems always
threaten the security and stability of the system. Many scholars have applied various
methods to study system vulnerability analysis. Some methods evaluate the vulnerability
threat in the network system by considering the threat characteristics of the vulnerability
itself and the threat of its associated assets [2–5]. However, these methods only evaluate the
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stable vulnerability threat influencing factors, and do not take the actual changing network
environment into account, so the factors considered are not comprehensive enough. In
order to take various factors into account, some scholars use machine learning to evaluate
the threat degree of vulnerabilities [6–10]. These studies combine various characteristic
information of vulnerabilities and train various models to improve the effect of vulnerability
detection. However, these methods only detect the vulnerability of a single device, and
the correlation between the detection results and other vulnerabilities in the network and
the whole attack process is not strong. The attack graph is a graphical security assessment
technique that contains various network configurations and vulnerability information.
It reveals all potential vulnerability combinations and their relationships and lists all
potential attack paths from the perspective of the attacker to reflect the security state of the
network, such as the number of attack paths, the length of the shortest attack path, and
the key vulnerability. Multi-step attacks can be effectively prevented based on the attack
graph [11,12]. To enhance the relevance between vulnerability assessment and network
systems, many studies have conducted network vulnerability analysis based on attack
graphs. They realized the association analysis of key vulnerabilities in network systems by
studying attack graph construction techniques [13,14], node analysis techniques [15–17]
and attack path analysis [18,19]. However, the attack graph does not have the ability of
quantitative analysis. The Bayesian theory is a statistical method to deal with uncertainty
through observation data. The key of Bayesian theory is to predict possible risks in advance
by mathematical methods, and it does not focus on the random attack itself [20]. Many
risk analysis methods based on attack graphs combine Bayesian theory to realize risk
quantification and prediction analysis [21–23]. In the network attack graph with a large
number of nodes, the existing studies have problems such as low efficiency and single
consideration when searching for key vulnerable nodes. These problems coincide with the
advantages of fuzzy C-means (FCM) clustering, which can integrate various characteristics
of vulnerabilities and classify them spontaneously. Thus, a set of key vulnerable nodes
with similar threat degrees can be effectively obtained.

To sum up, the temporal and spatial efficiency of attack graph analysis in large-
scale networks needs to be improved, and the factors taken into account in searching key
vulnerable nodes in network systems are not comprehensive enough. This paper uses the
attack graph combined with the network division to divide the attack graph into multiple
subgraphs for correlation analysis. Based on the analysis results, the actual threat features
of vulnerability nodes are extracted. The actual threat features and inherent threat features
of vulnerabilities are taken as FCM clustering indicators. The main contributions of this
paper are as follows:

1. An analysis method based on Bayesian attack subgraphs is proposed. It divides
the attack graph based on the idea of community division, quantifies the threat of
nodes, constructs and analyzes Bayesian attack subgraphs to form the subgraph
analysis information group, and aggregates information groups to quickly obtain the
final analysis results of all paths so as to improve the spatiotemporal efficiency of
the results;

2. A method based on improved FCM to discover key vulnerable nodes is proposed.
It uses variance to design the total difference value between classes (TDVC) and
determines the optimal number of FCM by maximizing the TDVC. Then, the actual
threat features and inherent threat features of vulnerabilities are extracted based on
the Common Vulnerability Scoring System (CVSS) and the analysis results of the
attack graph. Next, FCM is used to cluster the vulnerability nodes based on the
extracted features so as to improve the accuracy of the results. Finally, the feature
priority is set, and the key vulnerability node cluster with the highest threat level is
found according to the results.

3. The experimental scenario is designed and the data from the National Vulnerability
Database (NVD) are collected for the experiment. The temporal and spatial effi-
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ciency improvement of attack graph analysis and the accuracy improvement of key
vulnerability nodes search results are verified by comparing with other methods.

2. Related Works

At present, there is much research on key vulnerability search. Hao et al. [24] and Tang
et al. [25] train neural network models to identify key vulnerabilities on network devices
using static analysis, but this method is only applicable to a single device and cannot be
dynamically combined with other devices in the network. Li et al. [26] use the Kemeny
constant as a global connectivity measure to identify network key connections and network
decomposition is used to cut off connections to minimize global connectivity measures,
thereby obtaining key vulnerabilities. However, this method is not intuitive enough and
only considers a single influencing factor. Huang et al. [27] build an attack tree and conduct
Bayesian inference to find key vulnerable nodes by tracing the attack path. However, the
application scope of the attack tree is limited and vulnerabilities could not be associated.

To conduct association analysis of network nodes and make the analysis results more
accurate and intuitive, many studies use the attack graph as the basic analysis method to
search for key vulnerabilities. Yang et al. [28] quantify the asset value of the host through the
attribute value and topology perspective on the attack graph and search for key vulnerable
nodes in combination with attack probability. However, this method does not consider
the influence of the location of the vulnerability in the attack path. Li et al. [29] use attack
distance and atomic weight to optimize the complexity of the attack graph and improve
the ant colony algorithm to solve the minimum key attack set through the pheromone
adaptive update principle and local search strategy so as to obtain the key vulnerable
nodes, but this method does not consider the threat characteristics of vulnerability nodes
themselves. Qian et al. [30] optimize the attack graph with maximum hop count and
reachability probability and quantify the reachability probability of vulnerable nodes.
According to the vulnerability measurement value of nodes and paths, the key vulnerable
nodes in the network are found, but this method only considers the attack path with the
highest vulnerability measurement value. Xie et al. [31] use the Bayesian attack graph
model to continuously carry out probabilistic correction learning according to the attack
data, quantify the dynamic risk, and evaluate the risk value of key nodes according
to the quantitative results. However, this method analyzes the complete attack graph
and dynamically adjusts the attack graph model, which reduces the time efficiency of
analysis. Li et al. [32] combine particle the swarm optimization algorithm and a grey wolf
optimization algorithm to find the maximum weight spanning tree from the attack graph,
evaluate the key nodes in the spanning tree based on interpretable structure modeling, and
improve the simulated annealing algorithm. This method optimizes the time efficiency
through heuristic ideas but reduces the accuracy of the result due to the pruning of part of
the edges.

Previous studies have some problems when using the Bayesian attack graph to search
for key vulnerable nodes. Many studies do not consider the threat characteristics of the
vulnerability itself and the threat characteristics in the actual network at the same time,
which leads to the accuracy of the search results of key vulnerable nodes needing to be
improved. Some studies will lead to low search efficiency when they are applied to large-
scale attack graphs, and large-scale attack graphs also need a lot of storage space. Therefore,
this paper proposes a key vulnerable node discovery method based on Bayesian attack
subgraphs and improved FCM. The large-scale network is divided by community division
and the Bayesian attack subgraphs are constructed. The analysis result of the complete
attack graph is formed by aggregating the attack path analysis information inside the attack
subgraphs, and the threat characteristics of nodes are extracted from the result. Then, the
TDVC is designed to adaptively determine the optimal number of clusters, and the FCM is
used to cluster the nodes. Finally, the clustering results are analyzed based on the designed
feature priority to obtain the key vulnerable nodes so as to improve the accuracy of results
and the spatiotemporal efficiency of search analysis.
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3. Key Nodes Discovery Model Based on Attack Subgraph Aggregation Search and
Fuzzy C-Means Clustering

The key vulnerable nodes discovery model based on attack subgraph aggregation
search and fuzzy C-means clustering is mainly divided into three steps: data preprocessing,
attack path aggregation search based on Bayesian attack subgraph, and key vulnerable
nodes discovery based on fuzzy C-means clustering. The overall process of the key node dis-
covery model based on attack subgraph aggregation search and fuzzy C-means clustering
is shown in Figure 1.

Figure 1. Key nodes discovery model based on attack subgraph aggregation search and fuzzy
C-means clustering.

In the data preprocessing stage, the topology graph of the network system is con-
structed, and vulnerability scanning tools such as Nessus are used to obtain the vulnerabil-
ity list existing on the device. At the same time, the vulnerability exploit relationship is
analyzed for the subsequent construction of the attack graph. Since the current attack graph
construction technology generally uses a manual analysis method to obtain the exploitation
relationship between vulnerabilities, this method cannot be effectively implemented when
there are a large number of vulnerabilities, and manual analysis has a strong subjective
will. To make the construction of vulnerability exploitation relationships more accurate, the
model in this paper uses the method based on Word2Vec and TextCNN in reference [33] to
obtain the exploitation relationship between vulnerabilities. Firstly, the basic information
such as permission requirements and description of vulnerabilities is obtained through
the interface provided by the NVD, and then the description information is organized into
a corpus to train the Word2Vec model. The output of the Word2Vec model is used as the
input of TextCNN to train the text classification model. Finally, the permissions obtained
after the vulnerability has been attacked are divided into three categories: other, user, and
root through the text classification model, and the exploitation relationship between the vul-
nerabilities is obtained according to the comparison results of the permissions requirements
of the vulnerability and the permissions obtained after the attack.

In the attack path aggregation search phase based on the Bayesian attack subgraph,
the large-scale network is first divided into multiple communities with close internal
connections by the community division algorithm. Then, the Bayesian attack subgraph
is constructed in each community based on CVSS, network connection relationship, and
vulnerability utilization relationship. Next, the attack path is searched in each subgraph,
and the attack probability and other related information of each path are recorded for the
aggregation of subsequent paths. Finally, the attack path and its information are aggregated
based on the connection relationship between subgraphs to obtain the complete attack
path information. Compared with the search of attack paths on the whole attack graph
directly, the search of attack paths based on the subgraph can not only save the storage
consumption of the attack graph but also improve the search efficiency of attack paths.

In the discovery stage of key vulnerable nodes based on fuzzy C-means clustering, the
sample characteristics during clustering are determined first. Two inherent threat features
and two actual threat features of the vulnerability are selected as sample features in this
method. Inherent threat features include exploitability score and impact score, which
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can be directly obtained according to CVSS. The exploitability index of a vulnerability in
CVSS reflects the difficulty of exploiting the vulnerability, and the impact index reflects
the severity of the consequence of exploiting the vulnerability. Both of them are related to
the severity of the vulnerability, but both of them are fixed characteristics of the vulnera-
bility itself, so their applicability is weak. Therefore, this paper extracts two actual threat
features of vulnerability attack probability and vulnerability occurrence frequency from
the relevant information on attack paths. These two features can reflect the threat degree
of vulnerabilities combined with specific attack paths in different networks and improve
the accuracy of discovering key vulnerable nodes. Then, the optimal number of clusters
is determined by maximizing the difference between the clustering results, and the fuzzy
C-means clustering is realized by setting the membership degree, the maximum number of
iterations, and other parameters. Finally, the feature priority is set to classify the clustering
results so as to obtain the final set of key vulnerable nodes.

4. Attack Path Aggregation Search Based on Bayesian Attack Subgraph

At present, the attack graph analysis scheme involving the attack path is difficult to
implement in large-scale network systems due to its space-time complexity. Therefore, an
attack path aggregation search method based on a Bayesian attack subgraph is proposed
in this paper to improve the spatiotemporal efficiency of this attack graph analysis. The
information obtained based on this method will be used as the key features of subse-
quent clustering algorithms to find key vulnerable nodes. The process of the attack path
aggregation search based on attack subgraphs is shown in Figure 2.

Community 
division

Bayesian attack 
subgraph construction

Subgraph path 
information search

Server Host Attack path 
node

Subgraph path 
information

Complete path 
information

Obtain a connected path 
between the attacker's subgraph 

and the target's subgraph

Choose one attack path 
in each subgraph

Is the complete attack 
path valid?

Concatenate all the path 
information groups

Calculate the complete 
attack path probability

Path information aggregation

Figure 2. The process of the attack path aggregation search based on attack subgraphs.

In this method, the large-scale network is divided into multiple subnetworks using
the network community partitioning algorithm, and the Bayesian attack subgraphs are
constructed in the subnetworks first. All Bayesian attack subgraphs form the whole
Bayesian attack graph. Then, the attack path is searched in each Bayesian attack subgraph,
and the related information of the attack path is recorded. Finally, according to the attack
paths in different attack subgraphs and the related information recorded, the attack paths
and related information of the whole Bayesian attack graph are obtained.

160



Mathematics 2024, 12, 1447

4.1. Bayesian Attack Subgraph Construction

Definition 1 (The Bayesian attack graph BAG). The BAG is a directed acyclic graph defined as
a quintuple < N, E, R, Pa, Ps, Pc >.

1. N is the set of nodes. N =
{

Nbegin ∪ Nmiddle ∪ Ntarget

}
. Nbegin is the set of nodes where the

attacker is located in the Bayesian attack graph. Ntarget is the node set of the attack target.
Nmiddle is the set of the remaining nodes. The value of Ni can be 0 or 1. Ni = 1 means that
the node i has been compromised. Ni = 0 means that the node i is not compromised;

2. E is the set of directed edges between nodes. E = {Ei|i = 1, 2 . . .}. Ek =< i, j > means that
an attacker at node i can attack node j after having sufficient privileges;

3. R is the set of parent–child node relationships in the attack graph. R =
{

ri,par(i)

∣∣∣i = 1, 2, . . .
}

.
par(i) is the set of parents of node i. ri,par(i) = or means that node i can be attacked when any
of its parents has been compromised. ri,par(i) = and means that node i can only be attacked
after all its parents have been compromised;

4. Pa is the set of node breach probabilities. Pa = {Pa(i)|i = 1, 2 . . .}. Pa(i) means the probabil-
ity that node i is successfully attacked;

5. Ps is the set of node selection probabilities. Ps = {Ps(i)|i = 1, 2 . . .}. Ps(i) means the
probability that node i is selected by the attacker as an attack target;

6. Pc is the set of conditional probabilities of nodes. Pc = {Pc(i|Parent(i))|i = 1, 2 . . .}.
Pc(i|Parent(i)) means the conditional probability that the node i will be attacked after its
parent is compromised.

Aiming at the problem of efficiency caused by searching the attack path on the whole
attack graph in traditional methods, this paper adopts the method of attack path analysis
based on Bayesian attack subgraphs. The first step is to partition the network to form
Bayesian attack subgraphs. The construction of Bayesian attack subgraphs includes three
parts: network partition, attack subgraph construction, and node quantification.

Partitioning a large-scale network into multiple subnetworks is the basis for generating
Bayesian attack subgraphs. In this paper, the Lovain algorithm based on modularity
evaluation is used to divide the network. Modularity is used to evaluate the closeness of
the community structure. The modularity gain reflects the comparison of the modularity
of the whole graph when a node is merged from one community to another. The goal of
Lovain algorithm partitioning is to maximize the modularity increment. The calculation
formula of the modularity increment ΔQ is given in Equation (1).

ΔQ =
1

2�
(κi,in − ∑tot κi

�
), (1)

where κi,in is the sum of edge weights between node i and all nodes in the merged target
community. ∑ tot is the sum of edge weights related to nodes in the target community. κi
is the sum of edge weights of node i. � is the sum of all edge weights. In the directed
unweighted graph, the weight of each edge can be regarded as one.

The attack subgraph is constructed based on subnetworks formed by community
division. For each community network, the vulnerabilities of each host are obtained
first. Then, it determines whether there is an exploitation relationship between any two
vulnerabilities i and j on any two connected hosts; if there is, a directed edge Ek =< i, j >
is added between i and j to represent the attack relationship. After all the vulnerabilities
are processed, the vulnerabilities in the subnetwork form N in the corresponding attack
subgraph, and the attack relationship between the vulnerabilities form E.

To use Bayesian theory for analysis in attack subgraphs, vulnerability nodes in each
attack subgraph need to be quantified to form a Bayesian attack subgraph. Each node i
needs to quantify Pa(i) and Ps(i) based on CVSS. Pa(i) is related to the difficulty of the
node i being exploited, and the lower the difficulty, the easier it is to be compromised. Ps(i)
is related to the attack cost of the node i, and the lower the attack cost, the easier it is to be
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selected as an attack object. In CVSS, the attack vector score SAV and the attack complexity
score SAC can measure the difficulty of exploiting the vulnerability, while the privileges
required score SPR and user interaction score SUI can measure the exploitation cost of the
vulnerability. Therefore, Pa(i) and Ps(i) are calculated by Equations (2) and (3), respectively.

Pa(i) = SAV × SAC, (2)

Ps(i) = SPR × SUI , (3)

According to the different relationship ri,par(i) between the node i and its parent node
par(i), the conditional probability Pc(i|Par(i)) will be quantized by different methods based
on Pa and Ps. When ri,par(i) = and, the conditional probability of node i is the probability
that each parent node is compromised multiplied by the probability that node i is also
compromised. When ri,par(i) = or, the conditional probability of node i is the probability
that any parent node is compromised multiplied by the probability that node i is also
compromised. The calculation formulas of Pc(i|Par(i)) in the above two cases are shown
as Equations (4) and (5), respectively. In particular, for the node j that has no parent node
in the entire attack graph, its conditional probability is calculated as Equation (6).

Pc(i|Parent(i)) =
{

0, Nk ∈ Parent(i), Nk = 0
∏ Pa(Parent(i))× Ps(i)× Pa(i)

, (4)

Pc(i|Parent(i)) =
{

0, Nk ∈ Parent(i), Nk = 0
{1−∏[1− Pa(Parent(i))]} × Ps(i)× Pa(i)

, (5)

Pc(j|Parent(j)) = Ps(j)× Pa(j), (6)

4.2. Attack Subgraph Paths Search

Definition 2 (The basic attack path L). L is an attack path inside the Bayesian attack subgraph,
which consists of nodes with an attack relationship. L = (N0, N1, . . . Nn). Ni is the node inside the
Bayesian attack subgraph.

Definition 3 (The attack path information group I). I is the matrix used to record the node
information that appears in the corresponding attack path. I = (i1, . . . in). ik is a two-dimensional
column vector where the first row is the node number and the second row is the depth of the node.

Definition 4 (The path reachability probability P). P describes the possibility of an attacker
attacking through a certain path.

The second step of attack path analysis based on the Bayesian attack subgraph is to
search the basic attack path and its corresponding attack path information group inside
each attack subgraph, which will be used for subsequent path aggregation and then used
as indicators for clustering. Since the analysis speed inside the attack subgraph is better
than the analysis speed in the whole attack graph, and the storage space requirement of the
attack subgraph is lower than that of the whole attack graph, the purpose of improving
the time and space efficiency of the analysis can be achieved. This section will introduce
how to search the attack path and record the attack path information inside the established
Bayesian attack subgraph.

For each attack subgraph, firstly, the set of nodes whose out-degree value and in-
degree value are both 0 are obtained, respectively. Then, the search starts from the node
with in-degree 0 as the initial node, and the node connected to the current node is the next
node on the attack path. The conditional probability of the nodes on the path is multiplied
to calculate the reachability probability P of the basic attack path. After that, the search
continues from the next node until the node with out-degree 0 is reached. Finally, a basic
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attack path is formed, and the information group I corresponding to the basic attack path
is recorded during the search process for subsequent attack path aggregation. The formula
for calculating P is shown as Equation (7).

P = ∏ Pc(i|Parent(i)), (7)

The attack subgraph path search algorithm is shown in Algorithm 1.

Algorithm 1: BasicPathSearch

Input: The Bayesian attack subgraph set BAGs
Output: The basic path set Ls in the Bayesian attack subgraph, the information group set Is, and
the basic path reachability probability set Probs

1. FOR each attack subgraph BAG in BAGs
2. The set Nout of nodes whose out-degree is 0 and the set Nin of nodes whose in- degree is 0

in BAG are counted
3. FOR each node n in Nin
4. Add n to L, store the information of n to I, Prob = Pc(n|Parent(n))
5. FOR n′s each neighbor node n′
6. Add n′ to L, store the information of n′ to I, Prob = Pc(n′|Parent(n′))
7. IF n′ ∈ Nout
8. Add L, I, Prob to the result sets Ls, Is, and Probs, respectively
9. ELSE
10. n = n′

4.3. Attack Paths and Its Information Aggregation

The reachability probability of the attack path in the Bayesian attack graph describes
the possibility of the attacker attacking along the vulnerable nodes on the path. The
larger the reachability probability is, the higher the threat degree of the nodes on the
path is. Therefore, the reachability probability of the attack path is used as an evaluation
index for the subsequent clustering algorithm. This method considers the influence of the
node’s position in the attack path on its threat degree and makes the search results of key
vulnerable nodes more accurate. However, the attack probability is for the attack path, and
cannot be used as the vulnerability node feature for clustering. It needs to combine the
node depth information in the information group to convert it into the characteristics of the
vulnerability node.

The attack path and its information group in the Bayesian attack graph are aggregated
based on the basic attack path L in each attack subgraph, the corresponding path informa-
tion group I and the basic path reachability probability P. Firstly, a directed path from the
subgraph of the attacker to the subgraph of the attack target is selected according to the
connectivity of attack subgraphs. Let the length of the path be L′. Then, a basic path Lk is
selected in each attack subgraph, and the path reachability probability vector P̂ and the
attack relation vector ÂR between paths are constructed based on these paths according to
Equations (8) and (9).

P̂ = (PLk1
, PLk2

, . . . , PLkL′−1
, P

LkL′
), (8)

ÂR =
(

1, arLk1
Lk2

, . . . , arLkL′−1
LkL′

)
, arLkL′−1

LkL′
= 0 or 1, (9)

where PLk1 , PLk2 and so on are the reachability probabilities of the selected basic paths.
L′ is the number of subgraphs in the path between subgraphs. arLk1

Lk2
= 1 indicates

that the tail node of the basic path Lk1 can utilize the head node of the basic path Lk2 .
arLk1

Lk2
= 0 indicates that the tail node of the basic path Lk1 can not utilize the head node

of the basic path Lk2 . ψ is the control variable of the attack path, which is used to control
the effectiveness of the obtained attack path. When ψ = 0, it means that some selected basic
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paths are not connected, that is, the corresponding attack path is invalid. Only valid paths
are taken into account. The calculation formula of ψ is given in Equation (10).

ψ = ∏ ÂR = ∏L′−1
i=0 arLki

Lki+1
, (10)

Finally, the reachability probability P′ of the aggregated attack path is obtained through
Equation (11), and the corresponding information group I′ is obtained by merging the
information groups of each basic path according to Equation (12).

P′ = P̂× ÂR
T

, (11)

I′ =
[
ILk1

, ILk2
, . . . , ILkL′

]
, (12)

The set of all effective attack paths, the set of corresponding attack path reachability
probabilities, and the set of corresponding information groups of the whole attack graph
formed by the aggregation will be used as the indicators of the subsequent clustering algo-
rithm. The attack path aggregation algorithm based on the basic path and its information
group is shown in Algorithm 2.

Algorithm 2: AttackPathAggregation

Input: The attack connection information C between subgraphs, the utilization relation U of
nodes, the basic path reachability probability P, the basic path information group I
Output: The aggregated reachability probability P′ of the attack path and its corresponding
information group I′

1. Select an inter-subgraph path SubBAGPath from the subgraph where the attacker is located
to the subgraph where the attack target is located according to C.

2. ÂR = [1], P̂ = [], ψ = 1, I′ = []
3. FOR each attack subgraph BAG′ in SubBAGPath
4. Select a basic path Lk from BAG′, whose tail node is tail and head node is head, and add

PLk to P̂
5. IF BAG′ is not the attack subgraph where the attacker is located
6. IF U(lastTail, head) = 1
7. arLlast Lk = 1, update ÂR and ψ

8. ELSE
9. BREAK
10. ELSE
11. Llast = Lk
12. lastTail = tail, add ILk to I′

13. P′ = P̂ ∗ ÂR
T

5. Discovery of Key Vulnerable Nodes Based on Improved FCM

When the attack graph is used for security analysis, the threat degree of the vulnera-
bility node is related to various factors, such as the exploitability score and impact score
of the vulnerability node in CVSS, the position of the vulnerability node in the attack
graph, and the occurrence times of the vulnerability node. Only one factor will lead to
inaccurate search results for key vulnerability nodes. Therefore, this paper takes a variety
of factors that affect the vulnerability threat degree as the characteristics of vulnerability
nodes and uses FCM to cluster them. Then, the feature priority is set to find out the set of
key vulnerability nodes with the highest priority. The discovery process of key vulnerable
nodes based on improved FCM is shown in Figure 3.
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Figure 3. The discovery process of key vulnerable nodes based on improved FCM.

Firstly, it is necessary to determine the features of the participating clustering samples,
which are considered from two aspects in this paper. The first is the inherent threat features
of the vulnerability node, including the exploitability score and impact score. The inherent
threat is the threat evaluation standard set by the National Vulnerability Database of the
United States based on CVSS, combined with the damage degree of the vulnerability in
various scenarios. It represents the comprehensive threat degree of the vulnerability. These
two values do not change with the actual network environment of the vulnerability. The
second is the actual threat features of the vulnerable nodes. Due to the vulnerability in
different network environments, the threat degree is different. Its inherent threat cannot
accurately reflect the threat of vulnerabilities in the actual situation. In this paper, an attack
graph is constructed based on the actual network environment to realize the search for
attack path information, which can reflect the actual threat situation of the vulnerability
node in the current network environment. Therefore, this section will extract the actual
threat features of the vulnerability node based on the attack path information, including
the occurrence frequency and attack probability of the vulnerability node.

The occurrence frequency Ocr of the vulnerability node is the total number of occur-
rences of each node in all attack paths, which reflects the possibility that the attacker uses
the node as the entry point to carry out the attack. It can be directly counted in the search
process. The calculation formula of Ocr is shown in Equation (13).

Ocrn =
tot

∑
p=1

Np−1

∑
i=0

Ip
0,i, Ip

0,i =

{
1, Ip

0,i = n
0, Ip

0,i 
= n
, (13)

where Ocrn is the occurrence frequency of node n, tot is the total number of attack paths, Np

is the total number of nodes in the p-th attack path, Ip
0,i is the value of row 0 and column i

in the p-th attack path information group. The attack probability Pb of the vulnerable node
reflects the probability that the node is compromised, which is obtained from the attack
probability of its attack path and the corresponding information group. The calculation
formula of Pb is shown in Equation (14).

Pbn =
∑p

Ip
1,m−d

Ip
1,m

× P′p

number
, (d = Ip

1,i, Ip
0,i = n) and (∀p, ∃j, Ip

0,j = n), (14)

where Pbn is the attack probability of node n, Ip
1,m is the maximum depth of the p-th attack

path, d is the depth of n in the p-th attack path, P′p is the attack probability of the p-th attack
path, number is the number of attack paths including n.

Secondly, the traditional FCM algorithm has no means to determine the optimal
number of clusters, but determining the number of clusters only by subjective methods
will reduce the accuracy of clustering results, making the difference between classes not
obvious, and it is difficult to determine the key vulnerability nodes. To make the difference
in the degree of clustering results obvious, combined with the demand characteristics of this
method, this paper determines the optimal number of clusters based on the discrimination
degree between clusters. For the current clustering results, this method first sets a cluster
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number, calculates the intra-class average vector mj of each class, and obtains the total
average vector m through the intra-class average vector. The calculation formula of m is
shown in Equation (15).

mj =
∑i Fi

dj
, i = 1, 2, . . . , dj, m =

∑C
j=1 mj

C
, (15)

where Fi is the feature vector of the i-th sample in the j-th class, C is the total number of
clusters, and dj is the total number of samples of the j-th class. Then, the optimization
objective is to maximize the sum of the squared Euclidean distance between the average
vector within each class and the total average vector. This value is called the total difference
value between classes (TDVC). Thus, the optimal number of clusters can be obtained. The
optimization objective is shown in Equation (16).

max f (c) =
∑c

j=1
(
mj −m

)2

c
, c ∈ [2, N], (16)

where c is the number of clusters currently set, N is the total number of vulnerability nodes,
and f (c) is the TDVC corresponding to c.

Finally, FCM clustering is carried out after determining the sample features and
the optimal number of clusters. FCM uses membership degree to assign uncertainty to
classification. It allows a data point to belong to more than one class and assigns each
sample to the class with the largest membership degree. This ability makes it better reflect
the fuzziness and complexity of data in the real world. Therefore, the key of FCM is to
determine the cluster center V and the membership degree matrix U. The objective function
of FCM is shown in Equation (17).

Jm =
D

∑
i=1

C

∑
j=1

uα
ij
∥∥xi − vj

∥∥2,
C

∑
j=1

uij = 1, i = 1, 2, . . . D, (17)

where α is the membership factor, i is the sample number, j is the class number, uij is the
membership degree of sample i for class j, xi is the i-th sample, C is the total cluster number,
vj is the j-th cluster center, and D is the total number of samples. FCM constantly updates
U and V to minimize the objective function, thus completing the clustering. Constraints
are added to the objective function by Lagrange multiplier method. Based on this formula,
the partial derivatives of variables u and v are obtained, respectively. Then, the updated
formula for U and V are obtained by setting the derivative to 0. These two formulas are
shown in Equation (18).

uij =
1

∑C
k=1 (

‖xi−vj‖
‖xi−vk‖ )

2
α−1

, vj =
∑D

i=1 uα
ij·xi

∑D
i=1 uα

ij
, (18)

The vulnerability nodes clustering algorithm based on improved FCM is shown in
Algorithm 3.

After the clustering is completed, the priority among features is set according to the
feature characteristics. The clustering results are compared according to priority, and the
nodes in the category ranked first are selected as the key vulnerable node set. Since the
vulnerability impact score and exploitability score are authoritative indicators in CVSS, they
should be considered first, and they have the same importance in CVSS calculation formula.
For the node occurrence frequency and the node attack probability, the attack probability
takes more factors into account, including the path location of the node and the attack path
probability. It can divide the threat degree of the vulnerability node more fine-grained, so
the attack probability is considered when the first three are close. To sum up, the order of
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feature priority is the impact score, exploitability score, occurrence frequency, and attack
probability of the vulnerability.

Algorithm 3: VulnerabilityClusteringByImprovedFCM

Input: The vulnerability node samples samples, the total number of samples D
Output: The number of optimal clusters number, and the corresponding clustering result result

1. Initialize number, result, and the corresponding TDVC value = 0.
2. FOR d = 1, 2, . . . , D
3. Initialize U and V, set the membership factor α, set the number of clusters C = d, set the

maximum number of iterations of the cluster to T
4. WHILE(T > 0)
5. Update U and V by Equation (17)
6. T = T − 1
7. FOR i = 1, 2, . . . , D
8. Set the class of sample i to the class to which the maximum membership degree of

sample i belongs in U
9. FOR c = 1, 2, . . . , C
10. Calculate mc by Equation (15)
11. Calculate m by Equation (15), and calculate the current TDVC fC by Equation (16)
12. IF fC > value
13. value = fC, number = C, update result to the current cluster result

6. Results

6.1. Experimental Scenario

This paper constructs an experimental scenario to verify the effectiveness of the
proposed method. The experimental environment includes web servers, ftp servers, smtp
servers, sql servers and multiple user devices. The vulnerabilities of each device can be
obtained by using the vulnerability scanning tool. Information about vulnerabilities comes
from NVD. Vulnerability quantification is based on CVSS. The attacker launched the attack
from an external network, targeting important data on the SQL server. In addition, to obtain
the utilization relationship between vulnerabilities, this paper uses Word2Vec combined
with TextCNN to conduct a semantic analysis of vulnerability description to obtain the
exploitation relationship. All code is written in Java and Python. Finally, in order to fully
verify the effectiveness of the proposed method, this paper also verifies the effectiveness of
the proposed method under different attack graph scales by extending the network.

6.2. Experimental Process

Firstly, the network topology of the experimental environment is abstracted. Use the
vulnerability scanning tool to obtain vulnerabilities on each device to form a vulnerability
set and prepare the information required for constructing Bayesian attack subgraphs. In
order to obtain the unknown utilization relationship of vulnerabilities during the construc-
tion of the attack graph, the experiment uses NVD’s official interface to obtain description
information of common vulnerabilities and forms a corpus after word segmentation to
train Word2Vec+TextCNN model to predict the utilization consequences of vulnerabili-
ties. The basic score, impact score, exploitability score, and utilization conditions of each
vulnerability in the vulnerability set are obtained from NVD. The utilization relation-
ship is constructed according to the utilization conditions and the predicted utilization
consequences. The vulnerability utilization relationship is shown in Equation (19).⎧⎨⎩

other → NONE
user → NONE, LOW

root → NONE, LOW, HIGH
, (19)

where con1 → con2 indicates that the vulnerability with utilization condition con2 can be
attacked after breaching the vulnerability with utilization consequence con1. The vulnera-
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bility information and predicted exploitation consequences for some of the vulnerabilities
in the vulnerability set are shown in Table 1.

Table 1. Information and predicted utilization consequences of partial vulnerabilities in the vulnera-
bility set.

CVEID
Base
Score

Exploitability
Score

Impact
Score

Utilization
Condition

Utilization
Consequence

CVE-2022-27502 7.8 5.9 1.8 LOW user
CVE-2022-28704 7.2 5.9 1.2 HIGH root
CVE-2022-29525 9.8 5.9 3.9 NONE root
CVE-2022-29797 9.8 5.9 3.9 NONE user
CVE-2022-20148 6.4 5.9 0.5 HIGH user
CVE-2021-32546 8.8 5.9 2.8 LOW other

The Louvain algorithm is used to divide the network into communities. The vul-
nerability on each device is abstracted as an attack graph node. In each community, an
attack subgraph is constructed according to the attack graph nodes, network topology, and
vulnerability utilization relationship. For each attack graph node, its node selection proba-
bility and breach probability are quantified to form multiple Bayesian attack subgraphs.
In each community, the community connection relationship is constructed according to
the network topology and vulnerability utilization relationship to quickly determine the
connection between communities. The partial Bayesian attack subgraph structure is shown
in Figure 4.

Figure 4. Partial Bayesian attack subgraphs.

Then, the method in Section 4 is used to search and aggregate the attack paths and
their information groups in the constructed Bayesian attack subgraphs. The path search
results in the attack subgraph and the aggregated complete path information are shown in
Table 2.

Four features for FCM are extracted according to the aggregated complete attack paths
and vulnerability information. The features of some samples are shown in Table 3.
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Table 2. Part of the attack paths.

Community Attack Probability Information Group

Attack subgraph paths

0 1.91 × 10−4
(

1 23 49 18 29 52 36
1 2 3 4 5 6 7

)
1 2.36 × 10−2

(
89 100 92 99
1 2 3 4

)
2 7.71 × 10−2

(
155 188 162

1 2 3

)

Aggregated paths

- 8.14 × 10−3
(

226 215 198 217 37 189
1 2 3 4 5 6

)
- 3.34 × 10−4

(
226 215 198 217 49 18 64 160 189

1 2 3 4 5 6 7 8 9

)
- 3.94 × 10−5

(
226 215 198 217 127 71 5 58 189

1 2 3 4 5 6 7 8 9

)

Table 3. Feature information of some samples.

Node Number
Exploitability

Score
Impact Score

Occurrence
Frequency

Attack
Probability

1 5.9 1.0 2146 2.43 × 10−7

18 2.7 2.8 27,762 3.39 × 10−7

49 3.6 2.8 15,500 5.39 × 10−7

160 3.6 2.8 15,186 4.46 × 10−7

215 5.9 3.9 118,313 2.51 × 10−6

Next, the improved FCM in Section 5 is used to determine the optimal number of
clusters. According to the optimal cluster number, fuzzy C-means clustering is performed
on the samples, and the result vulnerability set is obtained by analyzing the clustering
results. The experimental results show that when the number of clusters is set to 14, the
total value of the difference degree between classes reaches the maximum, that is, the
optimal cluster number is 14. Some of the results of FCM clustering under the optimal
number of clusters are shown in Table 4.

Table 4. Partial FCM clustering results under the optimal number of clusters.

Class Number Node Number Contained in This Class

1 (141,189,215,217)
2 (1,2,3,8,11,26,51,71,74,121,136)
7 (4,14,28,52,55,63,116,117,120,124,140,182,183,192)

11 (6,9,12,21,30,32,72,78,80,83,87,185)
14 (18,29,39,46,47,155)

Finally, the average value of each feature in each class is calculated, and the clustering
results are compared according to the set feature priority. Firstly, the exploitability score
and the impact score are compared, and the comparison results are shown in Figure 5. It
can be seen that the set of class numbers for which both features take the maximum mean
value at the same time is (1,5,8,13).

After that, the node occurrence frequency and the node attack probability of these four
types of nodes are compared. The comparison results are shown in Figure 6a,b, respectively.
It can be seen from the comparison results that the mean value of each feature of Category
1 is the maximum value, so the key vulnerable node set obtained is (141,189,215,217).
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Figure 5. Comparison of the mean values of the exploitability score and the impact score.

 

(a) (b) 

Figure 6. Comparison of the mean values of the node occurrence frequency and the node attack
probability: (a) comparison results of the node occurrence frequency; (b) comparison results of the
node attack probability.

6.3. Experiment Results Analysis

Firstly, in order to verify the effectiveness of the optimization time efficiency of the
attack path aggregation search method based on Bayesian attack subgraphs in this paper,
this section makes an analysis with reference [34] from both theoretical and practical aspects.
Reference [34] uses the method of searching and storing the complete attack graph. Since
we cannot determine the attack graph storage strategy and search strategy of refs. [35,36],
we can not check their time/space consumption.

Suppose that breadth-first search is selected as the basic search algorithm, the graph
structure is stored by the adjacency matrix, and the number of nodes in the attack graph is
N. When the method of reference [34] is used to search, in the worst case, each node and its
neighbors need to be traversed, and the time consumption is N2. When the method in this
paper is used, it is assumed that the attack graph is evenly divided into m subgraphs, and
each subgraph has N/m nodes. Then, the path search efficiency in the subgraph is (N/m)2.
The number of paths in each subgraph is no more than N/m and the aggregation times of
each complete path are no more than m. In the worst case, the number of traversal times to
obtain all complete paths is N, and the total time is (N/m)2 +N. Since m2 > N/(N− 1) > 1,
N/m2 < N− 1, that is (N/m)2 +N < N2. Therefore, the efficiency of the search method
proposed in this paper is theoretically better than the efficiency of the search on the complete
attack graph. Figure 7a,b show the effect of different N on the search efficiency of the two
methods in theory and experiment, respectively.
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(a) (b) 

Figure 7. Comparison of search time consumption between the method in this paper and the method
in reference [34]: (a) comparison of theoretical consumption time of two methods; (b) comparison of
practical consumption time of two methods.

Because the attack graph is divided into four subgraphs in the experiment, m = 4
is taken. It can be seen from Figure 7 that with the increase in the graph scale, the time
consumed by the proposed method increases slightly both in theory and experiment, which
can optimize the search time. The optimization effect of the proposed method on time
efficiency becomes more and more obvious with the increase in the graph scale.

Then, from the perspective of space efficiency, this paper adopts the method of storing
the attack graph based on subgraphs rather than the complete attack graph. Suppose that
the total number of nodes in the attack graph is N, and it is evenly divided into m attack
subgraphs, each subgraph contains N/m nodes. Theoretically, the space consumption of
storing the complete attack graph using the adjacency matrix is N2, and the storage method
based on subgraphs consumes (N/m)2 ×m. Since m > 1, obviously (N/m)2 × m < N2.
Figure 8 shows the comparison of the space consumed by the two methods under different
attack graph scales in the experiment.

Figure 8. Comparison of the space consumed by the two methods under different attack graph
scales [34].

It can be seen from Figure 8 that when the attack graph scale is small, the space
consumption of the two methods is similar. However, with the increase in the graph scale,
the storage method based on subgraphs has a more and more obvious effect on storage
space optimization. When the attack graph has 500 nodes, the space optimization has
reached 75%, so the latter can effectively improve the utilization efficiency of space.
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After that, in order to verify the effectiveness of the method of determining the optimal
cluster number in this paper and the superiority of improved FCM over other clustering
methods, the clustering results of different clustering methods are analyzed. When only
FCM is used for longitudinal analysis, the changes in the TDVC of different cluster numbers
are shown in Figure 9.

Figure 9. The change process of the TDVC of FCM.

It can be seen from Figure 9 that when the number of clusters is 14, the TDVC of clustering
results is the largest. At this time, the difference between classes is the largest, and it is easy to
distinguish the characteristics of various types, and the clustering effect is optimal.

Next, in the experiment, different clustering methods are selected for horizontal
analysis, such as the common k-means clustering, hierarchical clustering and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN). The changes in TDVC for
K-means clustering and hierarchical clustering are shown in Figure 10a,b, respectively.

 

(a) (b) 

Figure 10. The changes in TDVC for K-means clustering and hierarchical clustering: (a) the TDVC
change process of K-means clustering; (b) the TDVC change process of hierarchical clustering.

DBSCAN, as a density clustering algorithm, does not need to specify the number of
clusters in advance to complete clustering. The comparison results of the maximum TDVC
of the three methods and the cluster number corresponding to the maximum TDVC are
shown in Table 5.
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Table 5. Comparison results of the maximum TDVC of the three methods.

Methods
FCM (This
Method)

K-Means
Hierarchical
Clustering

DBSCAN

Maximum TDVC 2.6692 × 109 2.2973 × 109 2.5907 × 109 5.3945 × 107

Corresponding cluster
number 14 3 2 -

It can be seen from Table 5 that the maximum value of the TDVC obtained by the other
clustering methods is lower than the maximum value of FCM. It shows that compared with
other clustering results, the difference between the clusters in the clustering results of FCM
is larger, which is more in line with the requirements of the proposed method. So using
FCM as the clustering method is the optimal choice.

Finally, in order to verify the accuracy of the collection results of key vulnerability
nodes in the proposed method, this experiment compares the results of this paper with
the search results of [35–37], respectively. The search results of key vulnerable nodes, the
reachability of target nodes, and the changes in the number of attack paths after repairing
the four methods are shown in Table 6.

Table 6. Comparison of effectiveness of search results of four methods.

Methods
Key Vulnerability

Node
Target Nodes
Reachability

Number of Remaining
Attack Paths

This paper (92,141,152,189,215,217) unreachable 0
[35] (32,37,130,190,215) reachable 79,983
[36] (141,189,217) reachable 635
[37] (92,141,189,215,217) reachable 13

Reference [35] only considers the CVSS score threat characteristics of vulnerabilities
and takes the node with the highest score as the key vulnerable node. The attack probability
of the attack path of nodes 32, 37, and 30 is only 3.1615 × 10−9. In practice, it can be
regarded as an impossible event that the attacker attacks along this path. Therefore, after
repairing the nodes, the target node is still reachable, and the key vulnerable nodes are
not accurately obtained. Reference [36] considers both the threat of vulnerability itself
and the actual threat and removes part of the attack paths by pruning to improve the
analysis efficiency in large-scale attack graphs. However, the removed attack paths affect
the search accuracy of key vulnerable nodes, and there are 92,152,215 missing nodes. This
results in that although the number of remaining attack paths is greatly reduced after
repairing the key vulnerable nodes, the target nodes are still reachable. After analysis, the
remaining 635 paths all contain one or more of the 92,152,215 nodes. Reference [37] adopts
the current advanced neural network method. The results obtained in the set experimental
environment are (92,141,189,215,217). However, like reference [36], partial pruning paths
reduce the accuracy of search results. This results in a missing node 152 in the search results.
After the key vulnerable nodes obtained by the proposed method are repaired, the target
node is unreachable, which shows the accuracy and effectiveness of the search results.
Because the method in this paper not only considers all attack paths but also considers the
inherent and actual threat characteristics of the vulnerability. The characteristics of this
paper compared with other reference methods are summarized in Table 7.
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Table 7. Comparison of the characteristics of this paper with other references.

Methods
Time

Optimization
Space

Optimization

Consider
Vulnerability

Features

Consider
Actual

Features

Consider All
Paths

Adaptive
Adjustment of

Cluster
Number

Get Key
Vulnerabilities

[19] Yes No Yes Yes Yes No No
[29] Yes No Yes No No No Yes
[31] No No Yes No Yes No Yes
[35] No No Yes No No No Yes
[36] Yes No Yes Yes No No Yes

This paper Yes Yes Yes Yes Yes Yes Yes

7. Conclusions

It is an important problem in network security analysis to obtain the key vulnerable
nodes in large-scale networks quickly and accurately. In this paper, the large-scale network
is divided into multiple subnetworks by the idea of community division, and the Bayesian
attack subgraphs are constructed by quantifying the subgraph nodes. Then, the analysis
results of the attack path information in the subgraph are aggregated to quickly obtain the
analysis results of the complete attack graph. The experimental results show that under
the attack graph scale of 500 nodes, the time consumption of the analysis method based on
subgraphs is only 10% of that of the analysis method based on the complete attack graph,
and the space consumption is only 25% of the latter, which has a great improvement in
time and space efficiency. Next, the optimal number of clusters is adaptively determined by
using the idea of variance, and the actual threat features of the vulnerability nodes in the
network are extracted from the analysis results of the attack graph. The threat features of
the vulnerability themselves proposed in CVSS are combined for fuzzy C-means clustering,
and the key vulnerable nodes are obtained by setting feature priorities according to the
clustering results. Fuzzy clustering can take into account a variety of features that affect the
threat of vulnerabilities, and improve the accuracy of the search results of key vulnerable
nodes. The experimental results confirm the effectiveness of the method in this paper.
However, the method of quantifying the threat value of vulnerable nodes in this paper is
relatively simple, and only CVSS is used as a single quantification standard. In addition,
there is no pruning method in the aggregation process of attack subgraph paths, and the
amount of attack path information in the aggregation process is small, so the accuracy of
the results needs to be improved. In the future, the quantization scheme of node attack
probability will be optimized by Bayesian theory, and the accuracy of key node search
results will be improved by increasing the amount of information in path aggregation.
For the obtained key vulnerable nodes, game theory can also be used to lay out the node
defense scheme.
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Abstract: In recent years, many mobile edge computing network solutions have enhanced data
privacy and security and built a trusted network mechanism by introducing blockchain technology.
However, this also complicates the task-offloading problem of blockchain-enabled mobile edge
computing, and traditional evolutionary learning and single-agent reinforcement learning algorithms
are difficult to solve effectively. In this paper, we propose a blockchain-enabled mobile edge com-
puting task-offloading strategy based on multi-agent reinforcement learning. First, we innovatively
propose a blockchain-enabled mobile edge computing task-offloading model by comprehensively
considering optimization objectives such as task execution energy consumption, processing delay,
user privacy metrics, and blockchain incentive rewards. Then, we propose a deep reinforcement
learning algorithm based on multiple agents sharing a global memory pool using the actor–critic
architecture, which enables each agent to acquire the experience of another agent during the training
process to enhance the collaborative capability among agents and overall performance. In addition,
we adopt attenuatable Gaussian noise into the action space selection process in the actor network to
avoid falling into the local optimum. Finally, experiments show that this scheme’s comprehensive
cost calculation performance is enhanced by more than 10% compared with other multi-agent rein-
forcement learning algorithms. In addition, Gaussian random noise-based action space selection and
a global memory pool improve the performance by 38.36% and 43.59%, respectively.

Keywords: blockchain; mobile edge computing; task offloading; multi-agent reinforcement learning

MSC: 68T07

1. Introduction

Mobile Edge Computing (MEC) is an emerging computing paradigm that deploys
computing resources at the edge of the network to provide low-latency, high-bandwidth,
and customizable services that can deliver computing and storage capabilities at the edge
of the network, close to the data source. In addition, MEC can improve the performance,
efficiency, and security of various applications that require low latency, high bandwidth,
and data privacy, such as augmented reality, smart cities, and autonomous driving. How-
ever, because the mobile edge computing network environment has the characteristics of
openness and dynamics, the network is vulnerable to the threat of malicious node inva-
sion and data attacks. Such attacks can cause problems such as shared data leakage, task
execution interference, and resource allocation anomalies within the network, seriously
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affecting the security of MEC. Therefore, ensuring the safe sharing of data and trustworthy
collaboration of nodes is an important issue that needs to be solved in MEC [1,2].

Blockchain, known as a distributed, tamper-proof, decentralized data storage tech-
nology, was first proposed by Nakamoto in the context of Bitcoin, which enables secure,
transparent, and immutable transactions and transfer of data records between multiple
parties without relying on a trusted third party [3]. Blockchain has been widely used in
various fields, such as digital asset management, supply chain finance, and intelligent
manufacturing. Blockchain-based MEC (BMEC) is a new type of architecture that ap-
plies blockchain technology to MEC systems and can solve many challenges, such as data
security, privacy protection, incentive mechanisms, resource management, etc. [4]. The
in-depth integration of blockchain and MEC has been widely discussed [5]. In telematics
and intelligent transportation systems, blockchain can provide collaborative management
of service resources [6], data security sharing management [7], and collaborative node
identity authentication [8]. In the smart grid, blockchain-based MEC is mainly applied to
system architecture design [9], energy transaction pricing [10], and transaction security [11].
In addition, benefiting from the advantages of blockchain-based MEC, intelligent health
care [12] and artificial intelligence [13] are also beginning to be applied.

Although the blockchain-based MEC system has excellent application prospects and
research value, it also faces some important problems, including task offloading. MEC task
offloading refers to the technology of offloading computing tasks from user devices to edge
nodes or clouds for execution in order to solve the deficiencies of user devices in terms of
resource storage, computational performance, and energy efficiency. For the problem of task
offloading in blockchain-based MEC systems, there are still some limitations in the current
research, mainly with respect to the following aspects: (1) most existing works only consider
the quality of service indicators of traditional mobile edge computing task offloading, such
as task processing latency and energy consumption, but ignore blockchain mechanisms
and user privacy leakage, which makes the problem modeling insufficient [14–16], and
(2) task offloading algorithms are often based on heuristic learning methods or single-
agent reinforcement learning algorithms [17–19]. The analytical performance and solution
efficiency need to be more satisfactory for dynamically changing, high-dimensional, non-
convex task-offloading problems. In this paper, blockchain-based mobile edge computing
task-offloading modeling and a multi-agent reinforcement learning method are investigated,
and the main innovative contributions are summarized as follows:

• We propose a novel task-offloading model for blockchain-based MEC networks that
comprehensively considers the blockchain-specific incentive mechanism and consen-
sus mechanism. It also takes the user privacy metric as the optimization objective,
together with the task service quality as the joint optimization objective, which makes
the modeling of the optimization problem more in line with the practical environment;

• We propose a reinforcement learning algorithm based on a multi-agent global memory
pool. Agents can enhance the overall collaborative ability among the agents by
sharing parameters;

• We adopt attenuatable Gaussian random noise in the action space selection process in
the actor network to enhance the search capability and avoid falling into local optimum;

• We conduct several sets of comparative experiments to validate the performance of
the proposed algorithm in dealing with the task-offloading problem.

This paper is structured as follows. Section 2 investigates state-of-the-art research
related to the research content of this paper. Section 3 presents the proposed blockchain
MEC network task-offloading optimization model to be solved in this paper. Section 4 de-
scribes the principle and process of the reinforcement learning algorithm used in this paper.
Section 5 conducts simulation experiments to evaluate the performance and effectiveness
of the proposed algorithm. Section 6 summarizes the full paper.
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2. Related Works

Blockchain-based MEC networks constitute an emerging research field combining
the decentralization, high security, and tamper-proof features of blockchain and the low-
latency, high-bandwidth, and real-time advantages of MEC to provide ideas for solving
a series of challenges faced by the MEC network structure, such as security, privacy pro-
tection, resource management, and so on. This combination is crucial for building the
next-generation of intelligent, secure, and efficient network environments. It has attracted
many scholars to research its architecture and operation mechanism in depth. Le et al. [20]
established a unified six-layer architecture with high efficiency, security, compatibility,
and flexibility for blockchain-based resource sharing and transactions in mobile access
networks. The proposes architecture contains many new features, such as an enhanced
blockchain structure, secure interaction methods, efficient service mechanisms, and scalable
transaction models. Salim et al. [21] proposed a latency tolerance-based cybertwin-assisted
task-scheduling scheme, where cybertwins using logger functionality and digital asset
functionality exchange smart contracts with cloud operators using digital assets to en-
sure maximum computational resources for efficient job allocation to edge clouds. Sun
et al. [22] considered incentive and cross-server resource allocation in blockchain-driven
MEC, where the blockchain prevents malicious edge servers from tampering with player
information by maintaining a continuous, tamper-proof ledger database. In addition, they
proposed two double auction mechanisms, namely the break even-based double auction
mechanism (DAMB) and the more efficient break-even free double auction mechanism
(BFDA), in which users request multitasking services with declared bids and edge servers
cooperate to serve the users. Ding et al. [23] proposed a new noma-based MEC wireless
blockchain network that minimizes system energy consumption through task offloading
decision optimization, user clustering, computational resources, and transmission power
allocation. Zhang et al. [24] proposed a reliable and efficient system based on edge comput-
ing and blockchain and designed a new group agent strategy based on trust computing
that ensures the edge devices in the process of interaction to ensure reliability and improve
transmission efficiency.

Task offloading is an important computing strategy that allows mobile devices to shift
computationally intensive tasks to be executed on more powerful remote servers or edge
computing nodes to reduce the computational burden and energy pressure on mobile de-
vices while increasing task processing speed and efficiency, which is particularly important
in MEC environments. This is because MEC enables low-latency, high-bandwidth services
by bringing computing resources and storage capacity to the edge of the network, i.e., close
to users and data sources. However, some challenges are still associated with introducing
blockchain technology into MEC networks. The resource allocation process of MEC in-
volves parameters such as latency, resource utilization, service provider profit, service user
satisfaction, and energy. Blockchain parameters such as throughput, block size, block time,
and block reward also need to be considered while designing blockchain-based resource
allocation systems. Blockchain ensures decentralization, transparency, and invariance
but also introduces computational and communication overheads and increases latency.
Therefore, joint optimization of MEC resource allocation and blockchain parameters is
an open challenge [25]. In addition, data sharing and knowledge discovery are essential
requirements for the integration of blockchain and edge computing systems in many ap-
plication scenarios, e.g., the need to comprehensively analyze a large number of patient
medical records in smart health care and the need for vehicles to share GPS positioning
data in the Internet of Vehicles (IoV) in order to correct errors in assisted autonomous
driving. However, as the number of devices increases and device-generated data become
more decentralized, an explosive increase in network nodes drives a huge demand for
data sharing due to the large amount of sensitive information and private data stored in
the system. Therefore, protecting data privacy and security is an important challenge for
blockchain-based MEC [26]. Therefore, exploring the effective combination of blockchain
technology and MEC for a secure, efficient, and scalable task-offloading mechanism re-
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mains an active and challenging research area [27]. For example, Guo et al. [28] used the
Stackelberg game to model the interactions between edge cloud operators and different
collaborative mining networks to obtain the optimal resource prices and device resource
requirements when offloading tasks to the edge cloud. Lin et al. [14] proposed an efficient
Device-to-Device (D2D) network authorization blockchain framework and designed an
elastic resource allocation scheme using Lyapunov optimization theory to achieve high
throughput with limited resources. Zhang et al. [15] proposed an efficient and improved
closed-ended quadratic bidding game for allocating communication and computation
resources under the quality-of-service (QoS) constraints of smart terminals in response to
the optimization problem of joint communication and computation resource allocation,
thus creating an edge cloud resource-sharing model based on blockchain technology and
an auction game. Devi et al. [29] developed a system model to solve the task-offloading
algorithm to minimize the data center’s completion time and energy consumption. In
addition, blockchain-based, energy-aware task scheduling for data centers was proposed to
provide the best solution for minimizing completion time and energy consumption. These
works have investigated blockchain-based task offloading for MEC at the level of heuristic
algorithms and mathematical computational methods such as game theory. However, these
schemes have also become increasingly difficult to apply due to the random mobility of
user terminals in the edge computing network, task uncertainty, and the complexity of
the optimization problem, requiring the consideration of task offloading with multiple
optimization objectives.

In recent years, due to the random mobility of user terminals in edge computing
networks, the uncertainty of tasks, and the complexity of optimization problems, the
task-offloading problem, which needs to consider multiple optimization objectives, has
become increasingly challenging to be solved by traditional heuristics and game-theoretic
methods. Deep reinforcement learning-based methods have gradually been widely applied
to research with the aim of solving the traditional edge computing network task-offloading
problem [30–33] and gradually extended and applied to research on task offloading for
blockchain-based MEC networks. Yang et al. [34] integrated MEC (MEC) into a blockchain-
based industrial IoT system to improve the computational power of industrial IoT devices
with a comprehensive consideration of weighted system cost, including energy consump-
tion and computational overheads, and formulated the posed problem as a Markov Deci-
sion Process (MDP), introducing Deep Reinforcement Learning (DRL) to solve the formal
problem. Although the study demonstrated the effectiveness of the method in small-
scale networks, further validation is needed for scalability and practical deployment in
large-scale networks. Nguyen et al. [35] proposed a new distributed deep reinforcement
learning-based approach employing a multi-agent deep deterministic policy gradient al-
gorithm. Based on this, a game-theoretic solution was built to model the offloading and
mining competition between edge devices as a potential game and prove the existence of a
pure Nash equilibrium. However, the experimental scenarios and parameter settings in the
study may not fully reflect the complexity of practical applications, and further verification
of its generalization ability in different environments is needed. Yao et al. [36] proposed a
blockchain-empowered collaborative task-offloading scheme for cloud-edge-device (CE-
device) computation by modifying the blockchain consensus process to enable participants
to reach a formulaic agreement by solving the task-offloading problem. To this end, each
participant can apply a reinforcement learning-based approach to solve the task-offloading
problem and compete for the block output right by comparing the performance of the
offloading strategies and accepting the best strategy as the offloading solution for the next
period. However, the scenario does not discuss the impact of operations in the blockchain
on the task-offloading strategy. Nguyen et al. [19] proposed a reinforcement learning-based
multi-user task-offloading algorithm to obtain a dynamic blockchain network with MEC
using the optimal offloading strategy. The scheme formulates task offloading and privacy
protection as a joint optimization problem and employs a reinforcement learning-based
Q-network algorithm to learn the offloading strategy, which minimizes the total system cost
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in terms of combined computational latency and energy consumption while guaranteeing
optimal user privacy and mining reward performance. However, the study adopted a
single-agent reinforcement learning scheme, which is questionable for the computational
efficiency of task offloading in complex network environments. Wang et al. [37] proposed
a deep reinforcement learning (DRL)-based support scheme for blockchain-based IoT re-
source orchestration in which IoT edge servers and end users can reach a consensus on
network resource allocation based on blockchain theory. In addition, agents relying on a
policy network can be trained with these resource attributes to fully perceive changes in
the network state and, thus, make dynamic resource allocation decisions. However, the
study only considered the performance metrics of mobile edge computation tasks under a
single user, and the user’s mobile characteristics need to be fully considered. In summary,
these works enrich the research on blockchain–MEC task offloading based on reinforcement
learning but still have certain defects that need to be improved in subsequent research.

This paper investigates a blockchain-based task-offloading model for MEC networks
that takes the incentive mechanism and consensus mechanism of blockchain into account in
the task-offloading problem model and, at the same time, takes the user privacy metric and
the task service quality as the joint optimization objectives so that the optimization problem
is more in line with the practical environment. In addition, an actor–critic reinforcement
learning algorithm based on a shared global memory pool of multiple agents is proposed to
improve the robustness and stability of the performance by sharing parameters. An action
space selection process based on Gaussian noise is added to increase the algorithm’s spatial
search ability to avoid falling into a local optimum.

3. Model

In this section, we propose a blockchain-based MEC system architecture, then provide
a system overview and describe the operational flow and the blockchain consensus process.

3.1. System Model

In this paper, we propose a blockchain mobile edge network task-offloading model.
The specific architecture of this model is shown in Figure 1. The network model mainly
contains a blockchain layer, an edge server layer, and a device layer. The device layer
contains a collection of devices, and different user devices interact with the MEC network
environment, send task offload requests to the edge service node, and receive the offload
policy feedback from the edge service node to complete task offloading. The edge server
layer contains a collection of edge nodes; each node has certain task processing resources,
receiving task-offloading requests sent by users and completing the task-offloading requests
of the devices through cooperation between nodes. The edge service nodes also have the
role of blockchain nodes, which can participate in network consensus and reward allocation
in the blockchain layer and jointly maintain the blockchain that stores network information,
ensuring the security of the network and incentivizing the participation of nodes.

The edge network of this model has a device set (U = {u1, u2, . . . , un}) consisting of n
user devices and an edge node set (E = {e1, e2, . . . , em}) consisting of m edge nodes. For
any user device, ui = (pwli, fli, encmax

i , tkt
i , loct

li = (xt
li, yt

li)) can move along the irregular
trajectory within the time slot and initiate a task-offloading request to the edge server,
where pwli is the total transmission power of the device, fli is the processing speed (the
number of processing cycles per second), encmax

i is the upper energy limit of the device, tkt
i

is the task initiated by the user in time slot t, loct
li is the device localization, and xt

li and yt
li

are the position coordinates.
In addition, the task (tkt

i) of any user device can be expressed as an array ((dt
i , Dt

i , Tdt
i,max),

where dt
i (bit) is the size of the task, Dt

i is the number of computation cycles required for
the computation task (500 CPU computation cycles are required to process the data of a
1 bit task in this paper), and Tdt

i,max is the maximum tolerable delay of the task). Due to the
limitation of energy consumption and computational capability of the device, these tasks
cannot all be computed locally at the same time and need to be partially offloaded to the

181



Mathematics 2024, 12, 2264

edge node by using tkt,l
i and tkt,o

ij to denote the local computation of the task (tkt
i) and its

offloading part to the node (ej), respectively. The sizes of the corresponding offloading task
and computational task cycle are denoted as dt,l

i , Dt,l
i , dt,o

ij , and Dt,o
ij , respectively.

Figure 1. Blockchain-based edge computing network model.

For any edge node, ej = (kj, pwej, fej, locej = (xej, yej)) can receive the task data
offloaded by the device and process the task using its computational resources, then
return the result to the smart device after task processing is completed. kt

j denotes the
number of tokens held by the block node corresponding to the edge node, pwej denotes the
transmission power of the edge node, fej denotes the processing speed of the edge node,
locej denotes the fixed location of the server, and xej and yej are the location coordinates.

In the blockchain of this model, all the mobile edge network nodes also have the
role of blockchain nodes, sharing parameters and recording proof of workload through
the blockchain. The consortium blockchain uses a Proof of Stake (PoS)-based consensus
method to validate the workload of the computing nodes and distribute incentive rewards
to each of the individual nodes involved in the computation of the offloading task.

3.2. Consensus Model

The consensus mechanism in blockchain is the core method to ensure that all partici-
pating nodes agree on the state of the blockchain. Currently, there are two main consensus
mechanisms in mainstream blockchain systems, namely Proof of Work (PoW) and proof of
stake (PoS). In PoW, all entities compete to solve a mathematical puzzle to generate blocks
and receive a reward. However, the process of PoW is very computationally intensive and
only applies to mobile edge network scenarios. PoS is proposed to address the limitations
of PoW, and unlike PoW, the probability of an entity getting the right to publish a block
depends on its equity, i.e., the number of tokens owned by the entity [38]. A comparison of
the two consensus mechanisms is shown in Table 1.
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Table 1. Consensus mechanism comparison.

Characteristic Proof of Work (PoW) Proof of Stake (PoS)

Energy consumption High; requires large amounts of power Low; does not require large amounts of
computing resources

Hardware requirements Requires high-performance hardware No high-performance hardware required

Attack cost High; needs to control 50% of computing High; needs to control 50% of the tokens of
power of the whole network the whole network

Reward mechanism Mining rewards (blockchain currency) Token rewards

Block generation speed Usually slow; affected by computational Usually slow; affected by computational
difficulty difficulty

Degree of decentralization High but tends to be concentrated in mining High; coin holders are more widely distributed
pools

In this paper, the PoS-based consensus mechanism is used to implement the workload
consensus checking of computing nodes. Its execution process is as follows:

(1) Packing node selection: The system selects a negative blockchain node [39] to construct
a new block by periodically selecting the block creation node (eg ∈ E) among all the
nodes with equity based on the number of tokens held by the verifier;

(2) New block creation: The block creation node packages all blockchain network transac-
tions in the system during time slot t into a new block, assuming that the block consists
of the following two parts: the task (tkt

i) offloading data (dt
b) and the block-fixing data

(d0) contained in block bi. The size of the task transaction data is calculated from the
original size conversion of the task, noting the conversion rate as s. Then, the block
size dt

bi
can be expressed as

dt
bi
= dt

b + d0 = sΣej∈Edt,o
ij + d0 (1)

(3) Block validation: The coalition chain calculates the selection probability of the edge
nodes according to the number of tokens owned by the nodes using a Poisson dis-
tribution with parameter λ. The first v nodes according to the order of probability
constitute the set of validation nodes (EV), in which the probability distribution of the
edge node (ej) being selected as a validation node is

pv
j = P(K = kj) =

λK

K!
e−λ (2)

(4) Block addition: Once a new block is recognized by all the validation nodes, it is added
to the blockchain;

(5) Incentive distribution: Based on the incentive mechanism, a certain reward is provided
to the network nodes that participate in the task to compute and verify the new block.

The workflow of the blockchain-based MEC task-offloading system described in this
section is shown in Figure 2.

3.3. Quality of Service Model

In this section, the blockchain-based MEC task-offloading quality of service model
proposed in this paper is described in detail, in addition to description of the design
methodology for quality of service models reported in existing MEC task-offloading re-
search [15,29,33], to simulate a blockchain–mobile edge network within each time slot
The delay and energy consumption generated by user task computation, task offloading
communication, block verification, etc., are investigated to construct a blockchain-based
network quality of service-oriented communication model and a computation model.
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Figure 2. BMEC data process.

3.3.1. Communication Model

In this paper, it is assumed that the size of the task calculation result is much smaller
than the task itself and that the communication overhead required to transmit the result is
negligible. Therefore, this paper mainly considers the two data communication scenarios
of user device task offloading and block verification and calculates the energy consumption
and transmission delay in the communication process.

In this system model, the device and the MEC server are linked through a wireless net-
work, and the transmission rate between them is affected by the transmission environment,
communication resources, and transmission distance. In this paper, we refer to [40,41] and
calculate the channel gain (ht

ij) from any device (ui) to edge node ej in time slot t using the
following formula:

ht
ij =

h0

distt
ij

ϕ
2

(3)

where h0 denotes the initial gain of the channel, ϕ is the path loss exponent, and

distt
ij =

√(
xt

li − xej
)2

+
(
yt

li − yej
)2 denotes the distance from device ui to edge node

ej at time slot t.
The signal-to-interference-plus-noise ratio (SINRt

i,j) from device ui to edge node ej is

SINRt
i,j =

pwt
ij

∣∣∣ht
ij

∣∣∣2
∑e′j∈E\{ej} pwt

ij′
∣∣∣ht

ij′
∣∣∣2 + N0

(4)

where pwt
ij, N0, and B denote the transmission power from device ui to edge node ej in

time slot t, the Gaussian noise in the channel, and the channel communication bandwidth,
respectively. pwli = Σej∈E pwt

ij, and the data transmission rate from device ui to edge node
ej in time slot t is

Rt
ij = B · log2(1 + SINRt

i,j) (5)

Therefore, in the task-offloading communication scenario, the communication delay
(Tdt,o

ij,comm) and energy consumption (Ent,o
ij,comm) of the user device (ui) transmitting the task

offloading to the edge node (ej) during the time slot t is expressed as follows:

Tdt,o
ij,comm =

dt,o
ij

Rt
ij

(6)
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Ent,o
ij,comm = pwt

ijTdt,o
ij,comm = pwt

ij

dt,o
ij

Rt
ij

(7)

During the block consensus process, the block generation node transmits the block to
the validation node for verification. Assuming that the block generation node (eg) and v
validation nodes have a fixed network transmission speed (R) between them, the consensus
verification communication delay (Tdt,v

iv,comm) and energy consumption (Ent,v
iv,comm) between

the block generation node (eg) and the validation node (ev) for block b are

Tdt,v
iv,comm =

dt
bi

R
(8)

Ent,v
iv,comm = pwegvTdt,v

iv,comm = pweg
dt

bi

R
(9)

3.3.2. Computing Model

In this paper, we mainly consider three kinds of computing scenarios, namely local task
computing, task-offloading computing, and block verification computing. The computing
model must determine the processing delay and energy consumption according to the
computing process. It is assumed that the blockchain selects block generation nodes
according to the number of tokens owned by the nodes, and the calculation volume of
generation node selection is ignored in this model.

In the task computation scenario locally executed by the user device, the energy
consumption coefficient of the user device is assumed to be εl = 10−11 [42] in this paper. The
delay (Tdt,l

i,comp) and energy consumption (Ent,l
i,comp) of device ui for local task processing are

Tdt,l
i,comp =

Dt,l
i

fli
(10)

Ent,l
i,comp = εl Dt,l

i ( fli)
2 (11)

In the offloading task scenario executed by edge nodes, this paper assumes that the
edge node provides a separate CPU computing core for each offloading task, i.e., tasks
offloaded on the same edge node have the same task-computing speed, and the number of
offloading tasks that the edge node can host at the same time is related to the number of
CPU cores. The energy consumption factor of the edge node is defined as εo = 10−27 [34].
The delay (Tdt,o

ij,comp) and energy consumption (Ent,o
ij,comp) of the edge node (ej) in computing

the offloading task (to
i ) are

Tdt,o
ij,comp =

Dt,o
ij

fej
(12)

Ent,o
ij,comp = εoDt,o

ij
(

fej
)2 (13)

In the block consensus verification scenario, the delay and energy consumption gener-
ated by block generation are not calculated in this paper because the overall overhead of
block creation is small compared to that of block verification, where there is a large number
of validation links, which has a low impact on the overall performance of the system. When
the edge node performs block validation, assuming that the validation computation period
of block bi is Dt

bi
, the validation delay (Tdt,v

iv,comp) and energy consumption (Ent,v
iv,comp) of the

blockchain validation node (ev) are

Tdt,v
iv,comp =

Dt
bi

fev
(14)
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Ent,v
iv,comp = εoDt

bi
( fev)

2 (15)

3.3.3. Comprehensive Model

In this paper, we comprehensively calculate the delay and energy cost of the blockchain-
based MEC task-offloading model by combining the designed communication and compu-
tation models.

(1) Latency Cost

The time delay in the quality of service model designed in this paper contains two
links, namely task processing and block verification links. When calculating the time delay
of the task processing link, it is assumed that all users start a local task and offload task
processing from the same moment, i.e., local task computation and task offload transmission
are carried out at the same time, so the actual time delay of task processing is the maximum
value of the time delay of local computation and offload processing. The task-offloading
delay consists of the communication delay (Tdt,o

ij,comm) of the user offloading the task to the

edge node and the computation delay (Tdt,o
ij,comp) of the task on the edge node. If the user

offloads the task to more than one edge node, the task-offloading delay is only computed for
the longest processing delay; then, the task offloading delay (Tdt,o

i ) of user ui is denoted as

Tdt,o
i = max

(
Tdt,o

i1,comm + Tdt,o
i1,comp, . . . , Tdt,o

im,comm + Tdt,o
im,comp

)
(16)

Furthermore, the task processing delay (Td′ti ) of user ui is denoted as

Td′ti = max(Tdt,l
i,comp, Tdt,o

i ) (17)

Similarly, when calculating the delay of the block verification link, since the packing
node sends the block to each verification node for block verification at the same time,
the block verification delay (Tdt,v

i ) is the maximum delay processed by each verification
node and is denoted as

Tdt,v
i = max

(
Tdt,v

i1,comm + Tdt,v
i1,comp, . . . , Tdt,v

im,comm + Tdt,v
im,comp

)
(18)

In summary, the delay (Tdt
i ) of the quality of service model for user device ui in time

slot t is
Tdt

i = Td′ti + Tdt,v
i (19)

(2) Energy Cost

In the energy consumption calculation process, the energy consumption of the com-
munication model and the computation model are obtained by summing the processing
energy consumption of each task.

Then, the communication and computation energy of user device ui in time slot t are

Ent,comm
i = Σej∈EEnt,o

ij,comm + Σev∈EV Ent,v
iv,comm (20)

Ent,comp
i = Ent,l

i,comp + Σej∈EEnt,o
ij,comp + Σev∈EV Ent,v

iv,comp (21)

In summary, the energy consumption (Ent
i ) of the quality of service model for user

device ui in time slot t is
Ent

i = Ent,comm
i + Ent,comp

i (22)

3.4. Incentive Reward Model

Previous research [22,43–45] has integrated the incentive mechanism of blockchain
into the study of task pricing and resource allocation of MEC, balancing the allocation of
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edge service resources and value gains by considering game theory and auction theory.
In this paper, the design of the incentive mechanism is simplified, and only the edge nodes
participating in task-offloading computation and block verification are considered to be
provided with incentive tokens in equal proportions according to energy consumption.
Hence, the incentive model favors edge nodes obtaining more incentive tokens to gain
more benefits. In the incentive model, the blockchain uses the β ratio of the unit of energy
converted into obtainable tokens based on the energy consumption of the edge nodes; then,
the tokens generated by agent ui are calculated as

It
i =

{
β ∑ej∈E

(
Ent,o

ij,comp + Ent,v
ij,comp

)
, ej ∈ EV

β ∑ej∈E Encomp,o
ij , ej /∈ EV (23)

3.5. Privacy Model

In this section, we mainly consider that in the process of MEC task offloading, if we
consider the energy consumption and delay factors of task communication and compu-
tation, user terminals often tend to offload a large number of tasks to edge nodes that
are closer to them and have higher levels of resources. However, such a task-offloading
method potentially risks data privacy leakage because MEC tasks usually contain sensitive
private data such as the physical location of the device, identity characteristics, task data,
etc. Suppose that many tasks containing private information are offloaded to an edge node.
In that case, the edge node, out of its curiosity or due to being hijacked by an adversary,
may collect and infer the user’s location and business characteristics based on the user’s
offloading preferences. More seriously, the edge node may predict the user’s private infor-
mation based on these data characteristics, resulting in user privacy leakage [46]. Therefore,
it is necessary to design a privacy metric model to evaluate the degree of privacy leakage
that may be caused by the user in the process of task offloading.

Information entropy is a concept that measures the uncertainty or amount of infor-
mation. Privacy computing models can be utilized to assess and reduce privacy risks.
The information entropy-based privacy measure is advantageous in the task of measuring
the privacy leakage of user data and has been applied in research on MEC task offload-
ing [41,47]. Therefore, this paper uses the privacy metric based on information entropy to
measure the MEC task offloading privacy protection effect.

We define user ui’s task-offloading preference (Pi) and measure the probability that
user ui’s data are exposed to edge nodes by calculating the ratio of user ui’s offloaded task
data volume to the total task data volume (Pi), which is calculated as follows:

Pt
i =

dt,o
i
dt

i
=

Σej∈Edt,o
ij

dt
i

(24)

Based on the user’s task-offloading preference, the concept of privacy entropy is
further adopted to describe the amount of privacy information carried by the offloading
strategy of user ui Ht

i . When there is no task offloading on the user’s terminal, i.e., Pt
i = 0,

the edge node cannot infer the user’s task information. The privacy entropy is at the
maximum value (Hmax), and in this paper, we set the value of maximum entropy to 10. The
privacy entropy of user ui is calculated as

Ht
i =

{ −Pt
i log2Pt

i , 0 < Pt
i < 1

Hmax, Pt
i = 0

(25)

4. Problem Description

This paper’s optimization objectives for task offloading in mobile blockchain edge
networks focus on privacy preservation, quality of service, and incentive reward. Privacy
protection requires maximization of the privacy entropy of the privacy-preserving model
to prevent users from offloading too much private data to the edge servers, leading to
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user privacy leakage. Quality user experience requires minimization of the latency and
energy consumption of offloading user tasks. Incentive rewards require maximization of
the workload of nodes in the blockchain edge network and improvement of the workload
and efficiency of nodes. In this paper, by comprehensively considering offloading privacy,
quality of service, and incentive reward factors, the optimization problem can be formulated
as the maximum value of the comprehensive optimization objective for user device ui and
edge servers within time slot t under the satisfaction of multiple constraints. The specific
optimization objective function and constraints are expressed as follows:

P : max Ct
i = ω1 ∗ Ht

i + ω2 ∗ It
i −ω3 ∗ Tdt

i −ω4 ∗ Ent
i (26)

s.t.Tdt
i ≤ Tdt

i,max (27)

0 ≤ pwt
ij ≤ pwl

i (28)

0 < Pt
i ≤ 1 (29)

Ht
i ≤ Hmax (30)

where ω1, ω2, ω3, and ω4 are the weights of the indicators, which are used to specify
the level of importance of different indicators. Equation (27) means the total task delay
is constrained by the maximum tolerable delay of the task. Equation (28) means the
device-to-node transmission power receives the constraint of the total transmission power.
Equation (29) means the amount of offloaded task data of any user device does not exceed
the constraint of the total task data. Equation (30) means the user’s privacy entropy is
subject to the constraint of the maximum entropy value.

It is not difficult to find that the optimization problem presented in this paper is a
mixed-integer linear programming problem, which are usually NP-hard and, therefore,
difficult to solve with a globally optimal solution. The decision-making process for such
problems occurs in a dynamic environment of long-term optimization, which makes it
difficult for traditional convex optimization algorithms to adapt to unknown environments
and perform adaptive optimization.

5. Algorithm

To address the environmental complexity and multi-objective competitiveness pos-
sessed by the above optimization problem description, this section first proposes an actor–
critic deep reinforcement learning algorithm based on multiple agents sharing a global
memory pool to improve the robustness and stability of performance. Secondly, the opti-
mization problem is reformulated as a Markov process (MDP) by constructing each agent’s
state space, action space, immediate rewards, and state transitions, and the algorithmic
framework structure is described in detail.

5.1. Construction of the Markov Decision Process

In the blockchain mobile edge network task-offloading environment designed in this
paper, each user device acts as a reinforcement learning agent, adopting a decentralized
execution and centralized training model, which enables the agent to make independent
decisions based on its observed and learned strategies. Multiple edge servers form a feder-
ated blockchain, sharing network parameters to jointly hold global information about the
entire system. At the beginning of each time slot, user devices can initiate task processing
requests, sending task and localization information to edge servers. After the edge server
obtains the global network state information through blockchain sharing, it conducts cen-
tralized training. After training, each agent makes distributed local decisions based on
its observations.

188



Mathematics 2024, 12, 2264

In order to solve the above optimization problem, it needs to be converted to the
standard form of the Markov decision process (MDP) when using reinforcement learning
algorithms. The key components of this transformation include defining the state space,
action space, reward space, and state space transitions for each agent.

(1) State Space

The state space (st
i ) of an agent (i) in time slot t consists of the localization

(loct
li = (xt

li, yt
li)) of its corresponding user device (ui) and the amount of requested task

data (dt
i ), i.e., st

i = (lt
li, dt

i). Therefore, the state space (st) of the reinforcement learning
algorithm as a whole is denoted as st = (st

1, . . . , st
n).

(2) Action space

The action space (at
i ) of agent i in time slot t represents the distribution of request data

processing and channel power allocation of user device ui in the current network state,
i.e., at

i = (dt,l
i , dt,o

i1 , . . . , dt,o
im, pwt

i1, . . . , pwt
im).

(3) Reward function

The reward function of the blockchain mobile edge network task-offloading model
aims to maximize the optimization objective function (Ct

i ) of each agent, i.e., maximize the
privacy entropy of the user device to safeguard the privacy of user data, as well as the
blockchain rewards computed by completing the offloaded tasks, and, at the same time,
minimize the task processing latency and energy consumption of the user device in order
to provide the user with a higher quality of service. The reward function at time slot t is
expressed as follows:

rt
i =

{
ω1 ∗ Ht

i + ω2 ∗ It
i −ω3 ∗ Tdt

i −ω4 ∗ Ent
i , Equations (27)–(30)

r0, other
(31)

where r0 is a constant much smaller than 0 that represents the value of the algorithmic base
reward given by the environment if the current policy does not satisfy the constraints of
Equations (27)–(30).

5.2. Algorithmic Framework

The framework of the algorithm proposed in this paper is shown in Figure 3. The
algorithm sets a corresponding agent for each user device, including an actor network,
a critic network, and a random sampler. The actor network and critic network adopt a
dual neural network structure. The current network is responsible for constructing the
actor’s policy network (πi) and the critic’s value network (Qi). The Q value of the critic
network represents the expected reward for taking a particular action in a given state. The
target network is softly updated using the current network parameters (θπ

i and θQ
i ), thus

guaranteeing the stability of network learning.
We assume that the sample value function for the critic target network to compute

time slot t is Qi(st
i , at

i |θQ′
i ); then, the target Q value can be calculated as

qi = rt
i + γQi(st+1, at+1

i |θQ′
i ), (32)

where γ denotes the discount factor.
To update the critic’s current network parameter (θQ

i ), the loss values of the parameters
are computed using a mean-square error function. The mean-square error function can
help the critic network accurately predict the value of a state or state–action pair.

Loss(Qi) = E[(Qi(st, at
i |θQ

i )− qi)
2] =

1
n

n

∑
i=1

(Qi(st, at
i |θQ

i )− qi)
2 (33)
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We minimize Loss(θQ
i ) by gradient descent, and the update method for the θQ

i param-
eter is denoted by

θQ
i ← θQ

i + α∇
θQ

i
Loss(Qi), (34)

where α is the learning rate of the critic’s current network parameter (θQ
i ).

Figure 3. Algorithm structure.

The actor network constructs the action policy (πi) based on the state space (st
i ) of the

reinforcement learning agent in time slot t and the reward function (rt
i ) and generates the

action (at
i ) in the time slot, which can be represented as

at
i = πi(st

i |θπ
i ) (35)

However, using the output of the strategy network directly does not allow the agent to
discover more strategies, so an exploration strategy needs to be constructed by adding noise.

at
i = πi(st

i |θπ
i ) + τNt (36)

where τ denotes the attenuation factor of the noise, which gradually decreases with the
number of iterations of the algorithm to guarantee the stability of network training and Nt
is Gaussian noise obeying a normal random distribution.

The policy objective function of the actor network is

J(πi) = E[Qi(st, at
i |θQ

i )] (37)

Then, the gradient of the objective function of the strategy is expressed as

∇θπ
i

J(πi) = E[∇aπ
i

Qi(st, at
i |θQ

i )∇θπ
i

π(st|θπ
i )] (38)

Then, the update method for the θπ
i parameter is expressed as

θπ
i ← θπ

i + β∇θπ
i

J(πi) (39)

where β is the learning rate of the actor network’s θπ
i parameter.
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In addition, the soft update method for the actor and critic target network parameters
(θπ′

i and θQ′
i ) can be represented as

θπ′
i ← σθπ

i + (1− σ)θπ′
i (40)

θQ′
i ← σθQ

i + (1− σ)θQ′
i (41)

where σ ∈ (0, 1) is the soft update weight.
In order to reduce environmental changes due to policy learning by other agents, this

paper adopts a global memory pool to store the experience samples (st
i , st+1

i , at
i , rt

i ) of each
agent and uses it to train the neural network of the agents. The global memory pool can be
constructed by using the blockchain to realize the sharing of information among agents in
the actual application process.

In order to better understand the idea and process of this paper, the pseudo-code of
the algorithm is shown in Algorithm 1.

Algorithm 1: Actor–Critic Algorithm for Blockchain–MEC Task Offloading
Data: Blockchain-MEC environment parameters, user mobile device states
Result: Task offloading strategies for each user mobile device

1 for agent i ∈ [1, N] do

2 // initialize algorithm parameters
3 initialize actor current network πi with θπ

i
4 initialize critic current network Qi with θQ

i
5 initialize actor and critic target parameter θ′πi ← θπ

i and θ′Qi ← θQ
i

6 clear global memory pool
7 end

8 for iteration ∈ [1, max_iter] do

9 each agent initializes initial state space s0
i

10 for t ∈ [1, T] do

11 for agent i ∈ [1, N] do

12 // select action space
13 get at

i ← πi(st
i |θπ

i ) by action current network
14 // get state space
15 get (st+1

i , rt
i )← env(at

i) by environment
16 // update global memory pool
17 push (st

i , st+1
i , at

i , rt
i ) in the memory pool

18 // update state space
19 st

i ← st+1
i

20 get M samples from memory pool

21 compute yi = rt
i + γQi(st+1, at+1

i |θQ′
i )

22 // calculate parameter gradient and update parameters
23 θQ

i ← θQ
i + α�

θQ
i

Loss(Qi)

24 θπ
i ← θπ

i + β�θπ
i

J(πi)

25 // soft update Actor and Critic network parameters

26 θQ′
i ← δθQ

i + (1− δ)θQ′
i

27 θπ′
i ← δθπ

i + (1− δ)θπ′
i

28 end

29 end

30 end

31 return each device’s optimal migration strategy a∗i and the minimum total target
cost C∗
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5.3. Complexity Analysis

In this paper, the computational complexity of the proposed algorithm is mainly
considered to be the sum of the training time overhead of all the agents. We assume that n
is the number of agents, La is the number of neural network layers of the actor network, Lc
is the number of neural network layers of the critic network, S is the number of samples of
each agent from the global memory pool, I is the number of algorithmic iterations, ds is
the state-space dimension, and da is the action-space dimension. Then, the computational
complexity of the algorithm can be calculated as O(nSI(La + Lc)(ds + da)2).

6. Experiment and Discussion

In this section, our proposed algorithm is evaluated and analyzed through simulation
experiments.

6.1. Experimental Environment

The hardware and software specifications of the experimental environment described
in this paper are shown in Table 2.

Table 2. Hardware and software specifications.

Designation Specification Version

Hardware
CPU AMD Ryzen 7-5800
GPU Nvidia RTX3060
Memory 80 GB RAM

Software

Operation system Windows11
Language python3.7.16
Deep learning framework torch1.10.0
Library function numpy1.21.6

6.2. Parameter Design

In order to realize the simulation of the network model, this paper simulates the
mobile user task-offloading environment in real scenarios in a 1000 × 1000 area (Figure 4)
that contains four blockchain–MEC servers at fixed locations and user mobile devices
moving along the path of black arrows. The servers receive task offload requests from user
mobile devices and specify the user offload policy for the devices through collaborative
planning using multiple servers. The user’s mobile device moves along the non-random
irregular black arrow path with a fixed step size in each time slot. It generates a random
amount of task data, which are offloaded to one or more servers for processing according
to the task-offloading policy.
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Figure 4. Network environment simulation.

The parameters of the reinforcement learning algorithm and blockchain edge network
environment are shown in the following Table 3.

Table 3. Experimental parameter settings.

Parameter Kind Parameter Symbol Description Value

Model parameters

ds State-space dimension 3

da Action-space dimension 10

δ Soft update weights 0.01

α Critic update parameters 0.99

β Actor update parameters 0.95

[ω1, ω2, ω3, ω4] Reward function weights [0.8, 0.09, 0.09, 0.02]

Environmental parameters

[loce1, loce2, loce3, loce4] Edge node location (333, 333), (333, 666),
(666, 333), (666, 666)

pwli User terminal transmission power 1.5

pwej Edge node transmission power 3

fli User terminal processing frequency 10× 108

fej Edge node processing frequency 4× 10× 109

d0 Block header size 2

N0 Wireless channel noise 10× 10−7

B Wireless communication bandwidth 3× 10× 109

R Server wired communication rate 10

6.3. Experimental Analysis
6.3.1. Contrasted Algorithms

In this paper, the following algorithms are selected to be analyzed and compared:

• JODRL-PP [33]: The JODRL-PP (Joint Optimal Deep Reinforcement Learning with Pri-
vacy Preservation) algorithm is a stochastic game-theoretically based task-offloading
problem for multi-access point environments proposed for multi-agent deep reinforce-
ment learning algorithms. The algorithm uses a trusted third party for centralized
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training. It achieves distributed execution to improve the quality of the results while
considering the dynamic changes in a multi-user environment and dealing with the
complexity of multiple users and access points through stochastic game theory.

• IQL [48]: IQL (Independent Q-Learning) is a reinforcement learning algorithm applied
in multi-agent systems. In a multi-agent system, each agent learns its own Q-value
function independently without considering the actions and strategies of other agents
and uses only its own state and action information in the learning process. In the
IQL-based task-offloading algorithm, if an agent does not cache the corresponding
requested service, the agent migrates the task to be executed to another agent that has
cached the service based on the service cache information shared among the agents at
the beginning of each time slot.

• QMIX [49]: QMIX (Q-value Mixing Network) is a value-based multi-agent reinforce-
ment learning algorithm that can be used to train decentralized policies in a centralized
end-to-end manner. In addition, QMIX’s network estimates joint action values as
complex nonlinear combinations of per-agent values conditional only on local ob-
servations. It requires that the joint action values for each agent be monotonic. This
maximizes the joint action values that can be handled in non-strategy learning and
ensures consistency between centralized and decentralized strategies.

• VDN [50]: The VDN (Value-Decomposition Network) is a value decomposition
method for multi-agent systems that decomposes the global value function into local
value functions. Each agent learns only the local value function associated with it.
This network architecture learns to decompose the team value function into the value
functions of agents. It solves the problem of collaborative reinforcement learning
of multiple agents with a single joint reward signal. The VDN algorithm does not
consider the spatial relationship of the type of service request and the state of the
wireless network among agents, and it directly decomposes the joint action value
function into the sum of the local action value functions of all agents.

6.3.2. Results

(1) Experiment 1: Performance Comparison

We set up ten random mobile users in the experimental simulation environment
by recording the reward function during 1000 iterations of the reinforcement learning
algorithm, the result of which is shown in Figure 5. From the figure, we can find that com-
pared with other schemes, the proposed algorithm’s curve of the final stabilization reward
function value is significantly higher than that of other algorithms, and the fluctuation
amplitude after stabilization is smaller.
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Figure 5. Reward function value iteration.

In order to minimize the impact of single-experiment error on the results, we con-
ducted five repetitive experiments. We recorded the average reward function values for
different algorithm configurations for all training cycles, and the comparison results are
shown in Figure 6. From the figure, we can find that the proposed algorithm improves by
more than 40% in performance compared to QMIX, IQL, and VDN and outperforms JODRL-
PP, indicating that the proposed algorithm can obtain a better solution to the problem set in
this paper.

In our experiments, we also recorded the average costs of task processing energy
consumption, task processing latency, user privacy metrics, and blockchain incentive
rewards in the reward function, and the comparison graphs are shown in Figure 7. Through
the comparison, we can find that the proposed algorithm significantly outperforms QMIX,
IQL, and VDN in all costs except blockchain incentive rewards, except that the proposed
algorithm reduces the energy cost by 44.38% and improves the blockchain incentive rewards
by 13.27% compared to the JODRL-PP algorithm. However, the proposed algorithm is
inferior in terms of task processing latency and user privacy metrics.
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Figure 6. Average reward function value comparison.
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Figure 7. (a) Average processing delay comparison; (b) average energy consumption comparison;
(c) average incentive reward comparison; (d) average privacy metric comparison.
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(2) Experiment 2: Performance Comparison under Different User Scales

In order to test the changes of the algorithms in the optimization problem proposed
in this paper under different user sizes, we set the user sizes to 10, 15, 20, 25, and 30 and
recorded the average reward function values of the algorithms under different user sizes in
five groups of repeated experiments. The results are shown in Figure 8. From the figure,
we can find that with increasing user size, the average reward function value of all models
decreases; this is because with the increase in users, the corresponding amount of user tasks
is also raised. The delay and energy consumption required to process the task increase
due to the existence of an upper limit of the user’s privacy metric, and the blockchain
network incentive rewards are subject to the limitation of the amount of nodes to receive the
task. Hence, a decrease in the value of the reward function is a normal phenomenon. The
proposed algorithm still has an optimal average reward function value based on different
agent scales.
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Figure 8. Reward function value iteration for different user scales.

The experimental comparison graphs of the average cost of task processing energy
consumption, task processing delay, user privacy metrics, and blockchain incentive rewards
are shown in Figure 9. The proposed algorithm has advantages in some single cost metrics
in growing user size, and the experimental results are similar to those of Experiment 1.

(3) Experiment 3: Ablation Experiment

In this paper, we design ablation experiments to investigate the effects of Gaussian
noise-based action-space search in the proposed algorithm and the global memory pool
of agents on the performance of the algorithm. As in Experiment 1, we set up 10 random
mobile users in the experimental simulation environment by recording the reward function
value during 1000 iterations of the reinforcement learning algorithm, and the result is
shown in Figure 10. From the figure, we can find that the curve of the proposed algorithm
reaches a stabilization level faster than that of the other two configurations. It exhibits less
fluctuation of the state after stabilization. In addition, the algorithm’s final stabilization
reward function value is significantly higher than that of the other two configurations,
which indicates that the algorithm’s overall performance has been improved.
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Figure 9. (a) Average processing delay comparison; (b) average energy consumption comparison;
(c) average incentive reward comparison; (d) average privacy metric comparison for different agent scales.
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Figure 10. Reward function value iteration.

In addition, we compared the average rewards of different algorithm configurations
through five repetitions of the experiment, as shown in Figure 11. From the figure, it can
be seen that the average reward function value of the proposed algorithm possesses
a significant advantage throughout the training cycle. The performance is improved
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by 38.36% and 43.59% compared to the schemes lacking Gaussian process action-space
selection noise and global memory pool, respectively.
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Figure 11. Average reward function value comparison.

According to the results of the ablation experiments, the introduction of Gaussian
noise-based action-space search and global shared memeory pool significantly improved
the algorithm’s performance. These two improvements enhance the algorithm’s ability
to explore and utilize historical information, thus improving the learning efficiency and
quality of the policy in the long run. This enhancement is significant in complex and
dynamic environments, requiring the algorithm to adapt and discover new and better
strategies quickly.

In summary, the proposed algorithm was analyzed and validated through many com-
parative experiments, and we demonstrated the advantages of the proposed algorithm over
comparative algorithms in terms of global optimization objectives. Through ablation exper-
iments, we analyzed the important role of Gaussian noise-based action-space search and
global shared memory pooling. However, the proposed algorithm still has a disadvantage
in calculating task processing delay cost.

7. Conclusions and Future Works

In this paper, we propose a blockchain-based MEC task offloading strategy based on
multi-agent reinforcement learning that utilizes a global memory pool to enable each agent
to acquire the experience of other agents during the training process in order to enhance the
collaborative ability among agents and the overall performance of the system. Moreover, the
algorithm introduces a search strategy based on decayable Gaussian random noise action
space, improving the agents’ search state space to avoid falling into the local optimum.
In terms of the optimization objective function, this paper comprehensively considers cost
factors such as task execution energy consumption, processing delay, user privacy metrics,
and blockchain incentive rewards and innovatively proposes a blockchain-based MEC
task-offloading model. The experimental results show that compared with other algorithms,
the proposed algorithm improves the performance of the global optimization objective
by more than 10% and has obvious advantages in energy consumption and blockchain
incentive rewards. In addition, the ablation experiments show that the Gaussian process
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action-space selection noise and the global memory pool improve the performance by
38.36% and 43.59%, respectively.

However, this paper is subject to limitation in terms of problem modeling and al-
gorithm design. Firstly, we only used the existing consensus mechanism and simplified
incentive mechanism to simulate the execution process of blockchain on MEC, which still
has a large deviation from the actual scenario. Secondly, we must consider more security
elements of MEC task offloading in the model design. Thirdly, we still need to improve the
algorithm’s execution efficiency. Therefore, further research and optimization of problem
modeling and algorithm design for blockchain-based MEC task offloading are important
research directions for us in the future.
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