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Preface

This reprint, containing articles published in the Special Issue of the Journal Universe, is devoted

to the centenary of Alexander Friedmann’s prediction of the universe’s expansion. This prediction

was made by him in 1922 for the case of the closed universe and in 1924 for the open universe on

the basis of Einstein’s general theory of relativity. Later, it was confirmed experimentally and became

the basis of modern cosmology. In a broader context, one may say that Friedmann’s prediction of the

expansion of the universe radically changed our picture of the world, as compared with all previous

epochs, and marked the beginning of the new era in understanding of the world around us. The

present reprint contains both research and review articles devoted to all aspects of expanding the

universe, including the problem of its origin from the cosmological singularity, inflationary stage of

the universe’s evolution, cosmological scenario of the hot universe, modern stage of the universe’s

expansion, astrophysics of expanding the universe, acceleration of the universe’s expansion, dark

matter, and dark energy. Several unresolved problems and planned experiments are also discussed

in this reprint.

Galina L. Klimchitskaya, Vladimir M. Mostepanenko, and Sergey V. Sushkov

Editors
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Centenary of Alexander Friedmann’s Prediction of Universe
Expansion and the Prospects of Modern Cosmology
Galina L. Klimchitskaya 1,2 , Vladimir M. Mostepanenko 1,2,3,* and Sergey V. Sushkov 3

1 Central Astronomical Observatory, Pulkovo of the Russian Academy of Sciences,
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2 Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
3 Kazan Federal University, 420008 Kazan, Russia; sergey_sushkov@mail.ru
* Correspondence: vmostepa@gmail.com

Abstract: In this Editorial to the Special Issue “The Friedmann Cosmology: A Century Later”, we
consider an outstanding character of Friedmann’s prediction of Universe expansion, which laid
the foundation of modern cosmology. The list of the main discoveries made in cosmology during
the last one hundred years is followed by a formulation of the standard cosmological model. The
articles contributing to the Special Issue are considered in relation to this model, and to several
alternative theoretical approaches. Special attention is paid to unresolved problems, such as the
nature of dark matter and dark energy, Hubble tension and the pre-inflationary stage of the Universe
evolution. The conclusion is made that astrophysics and cosmology are on the threshold of new
fundamental discoveries.

1. Introduction

In this Editorial to the Special Issue “The Friedmann Cosmology: A Century Later”,
we analyze the role played by the fact that our Universe is expanding in the modern picture
of the World, briefly list the main discoveries made in cosmology and astrophysics of the
expanding Universe during the last 100 years, and characterize the topics of the contributing
articles. Special attention is paid to the main unresolved problems and different approaches
to their resolution.

Alexander Friedmann made his famous prediction that the Universe expands with
time, starting from a point called the cosmological singularity, in his article [1] published
in 1922 for the case of finite space volume. In 1924, he obtained the same result [2] for the
Universe possessing an infinitely large spatial volume, which is the case for our Universe
according to modern astronomical observations. Friedmann obtained his results by solving
Einstein’s equations of the general theory of relativity with no additional assumption that
the obtained model of the Universe should be static. In this way, he acted as a mathematician
by looking for what is contained in the fundamental equations of the general theory of
relativity, whether or not this is in agreement with the concepts of Ptolemy, Copernicus,
and Newton, who believed that the Universe is static. Note that in the article [1] the
author name was written as A. Friedman, but Albert Einstein, in his note [3] (which he
later recognized as mathematically mistaken), cited [1] as written by A. Friedmann. In the
second article on cosmology [2], Alexander Friedmann used just this version of his name in
the Latin alphabet, which became commonly accepted over a century.

Before Friedmann, the cosmological solutions to Einstein’s equations with the cosmo-
logical constant were obtained by Einstein himself [4] (the static solution) and de Sitter [5]
(the empty Universe). However, it was Friedmann who demonstrated that, for the homo-
geneous and isotropic space, even in the presence of an additional cosmological term in
Einstein’s equations, the static solution arises in only one exceptional case.

Friedmann’s papers [1,2] laid the foundation of modern cosmology. Although during
the first years after publication his results were unnoticed, they were later rediscovered
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by Lemaître [6], Robertson [7], and Walker [8]. More importantly, the Universe expansion
should manifest itself as moving of all galaxies away from an observer on the Earth,
leading to the redshift of light emitted by them. This effect was systematically studied by
Lemaître [6] and Hubble [9] as an experimental confirmation of the Universe expansion.

In the next decades, the development of modern cosmology was marked by a forma-
tion of the theory of the Hot Universe, which is also often called the Big Bang Universe,
developed by Gamov [10]. In the framework of this theory, Gamov and his collaborators
explained the origin of physical elements in the process of primordial nucleosynthesis [11]
(see also the modern review [12]). A big success of the theory of the Hot Universe was
the prediction [13], and subsequent discovery in 1965 [14], of the relic radiation or cosmic
microwave background radiation. This discovery can be considered as a final confirmation
of the Big Bang theory and, in particular, of the Friedmann prediction that the initial state
of the Universe evolution is the cosmological singularity. Later on, a lot of papers have
been published about the properties of relic radiation and its interaction with electrons
and the intergalactic medium (see Refs. [15–19] for reviews). On the theoretical side, it was
shown [20,21] that any solution of Einstein’s equations describing the Big Bang possesses
the initial singularity.

The theory of the Hot Universe does not describe the very early stages of its evolution
below and just after the Planck time, where the quantum effects come into play. Thus, an
application of the standard general theory of relativity to the period down to cosmological
singularity results in serious problems. One of them, called the horizon problem, states
that at Planck time the Universe should consist of about 1089 causally disconnected parts,
in contradiction with the fact that the relic radiation has the same temperature in all points
and in all directions.

The problems in the description of the evolution of the Universe near the cosmological
singularity were partially solved by the model of inflation proposed in the beginning of
1980s. According to this model, the initial expansion of the Universe goes on exponentially
fast. This happens under the influence of either the so-called inflaton scalar field [22–28]
or the vacuum polarization effects of quantized fields [29,30]. According to the model of
inflation, the usual elementary particles were created during the period of reheating after
the end of the exponentially fast expansion, when the inflaton field oscillated near the
minimum of its potential [28,31,32]. The theory of reheating is based on the effect of the
exponential growth of the number of boson pairs created from vacuum by the periodic in
time fields [33,34]. It was elaborated on by many authors [35–46].

One more great discovery in the physics of the expanding Universe was made in 1998,
when two groups of researchers [47,48] working with the redshift data of supernovae in
binary systems arrived to the conclusion that the expansion of the Universe is accelerating.
This result could be explained by the existence of a new form of matter, which constitutes
of approximately 68% of the Universe energy and was called dark energy. As opposed to
usual and dark matter, dark energy is characterized by negative pressure (see Ref. [49] for
a review). There are many models of dark energy proposed in the literature, describing
it using the cosmological constant [50], classical scalar field called a quintessence [51,52],
scalar–tensor gravity [53–55], and hypothetical elementary particles, whose properties
depend on the density of matter in the environment [56–58].

2. The Standard Cosmological Model

Friedmann’s seminal works [1,2] and further developments described in the previous
section lie into the basis of the ΛCDM model, which is the standard model of contemporary
cosmology (see, for example, Ref. [59]). Here, Λ is the cosmological constant, and the ab-
breviation CDM for the cold dark matter means that this form of matter, which contributes
approximately 28% of the Universe’s energy, is assumed to consist of non-relativistic par-
ticles (e.g., of axions [60,61]). This model assumes that the general theory of relativity is
the correct theory of gravity on cosmological scales, and the space-time geometry of the
homogeneous and isotropic expanding Universe is described by the Friedmann metric (see
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Section 2 of Ref. [62] belonging to this Special Issue, where the Friedmann equations and
their solutions possessing the cosmological singularity are presented and discussed in the
cases of closed, open, and quasi-Euclidean spaces).

As a result, the ΛCDM cosmological model provides a reasonably good account
of (i) the existence and structure of the cosmic microwave background; (ii) the large-
scale structure in the distribution of galaxies; (iii) the observed abundances of hydrogen
(including deuterium), helium, and lithium; and (iv) the accelerating expansion of the
Universe, observed in the light from distant galaxies and supernovae.

The ΛCDM model became the leading cosmological model following the observations
of accelerating expansion in 1998 [47,48], and was quickly supported by other observations.
Thus, in 2000, the BOOMERanG microwave background experiment measured the total
(matter–energy) density to be close to 100% of the critical one [63], whereas in 2001, the
2dFGRS galaxy redshift survey measured the matter density to be near 25% [64]. The large
difference between these values supports a positive value of Λ describing the dark energy.
Much more precise spacecraft measurements of the microwave background from WMAP
in 2003–2010 [65] and Planck in 2013–2015 [66,67] have strongly supported the standard
cosmological model, and pinned down the values of its parameters, most of which are now
constrained below 1 percent uncertainty.

The enormous success of observational cosmology, achieved in the last 30 years, espe-
cially the final results of the cosmic Planck mission that appeared in 2018, have successfully
confirmed those previously put forward and developed cosmological theoretical ideas
about the history of the Universe as its passage in the past through the stage of the hot
Big Bang (including primary cosmological nucleosynthesis, recombination and generating
anisotropy and polarization of the cosmic microwave background radiation). Also, it was
proved that the Universe had a cold quasi-de Sitter (inflation) epoch, during which spatial
inhomogeneities of the matter distribution were formed due to the quantum gravitational
effects. In fact, galaxies and all compact objects were formed from these primordial inhomo-
geneities. Moreover, the physical properties of the effective sort of matter, which supported
the inflation on the earlier epochs of the Universe evolution, are similar from the qualitative
point of view to the properties of the dark energy in the late-time Universe (it seems to be
reasonable to indicate this cosmic substratum as a primordial dark energy).

No less fundamental results have been achieved in astrophysics of compact relativistic
objects, namely black holes and neutron stars. Specifically, the mass of the supermassive
black hole in the center of our Galaxy (the object Sgr A*) was measured exactly by the
motion of nearby stars around it. Next, the observational picture of the shadow of a
supermassive black hole in the M87 galaxy was obtained, and the processes of merging
of black holes and neutron stars in binary systems have been discovered and investigated
using the gravitational (and electromagnetic, in the latter case) radiation from them. Finally,
it has been observed that the velocity of gravitational waves coincides with that of light
with a great accuracy.

Below, we briefly list the articles included in this jubilee Special Issue devoted to the
centenary of Friedmann’s cosmology in their relation to the standard cosmological model
and some research directions beyond them.

3. Current Research Topics in Cosmology

We start with several articles that are devoted to a few novel aspects of the general
theory of relativity. All of them use the theoretical formalism belonging to the standard
cosmological model, but deal with some nonstandard situations and exotic forms of matter.
Thus, Ref. [68] considers particles of negative and zero energy, which can exist inside the
horizon of a Schwarzschild black hole, and in Miln’s and Gödel’s cosmological models.
The situations of this kind have already been considered previously [69–71], but here they
arise in especially simple and widely used cases. Another article of this Special Issue [72]
investigates the properties of traversable wormholes, which can be determined in the closed
Friedmann Universe by the dust-like matter. The solutions of Einstein’s equations of such
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type were considered in the literature [73–78], but some exotic kinds of matter were used
as their source (e.g., the so-called phantom scalar field).

The article [79] suggests an expression for the generalized entropy depending on four
parameters which contains all the known entropies considered so far (see, for example,
refs. [80–83]) as particular cases. It is shown that by adding the scalar field with a power-
type potential one obtains a viable model of inflation consistent with the Planck data.
The next article of the Special Issue considers an isotropization of the Kantowski–Sachs
cosmological model with radiation and a running cosmological constant energy density [84].
Previously this effect was investigated in the Kantowski–Sachs model without taking the
running cosmological constant into account (see, e.g., refs. [85–90]). It is shown that in
some cases the effect of running leads to a quicker isotropization.

Article [91] demonstrates that it is possible to construct the non-singular cosmolog-
ical model for the spatially flat Friedmann Universe if taking the phantom and tachyon
scalar fields into account. This is in line with previous attempts to find the non-singular
cosmological models and black holes (see Refs. [92–95] for a review). Another article [96]
investigates the phase transitions of the physics of elementary particles, which can occur
during the collisions of particles near the horizons of black holes. Specifically, the transition
between quark–gluon plasma and hadrons, the electroweak and the grand unification
phase transitions are considered [28,97–99]. The back reaction of the energy density of
phase transitions on the space-time metric is investigated. One more article [100] studies
the evolution of the Friedmann cosmological model under an impact of the nonlinear
spinor field.

Several articles belonging to this Special Issue deal with different non-Einsteinian
theories of gravitation, including teleparallel gravity [101–103]. Strictly speaking, the for-
malisms used in these articles are beyond the standard cosmological model. Thus, in [104],
which deals with the alternative theories of gravitation, the two variants of teleparallel
gravity are considered. It is shown that the corresponding cosmological models are, in fact,
the same as in Einstein’s general theory of relativity. This makes the choice between them
the subject of convention [105,106].

One more article [107] published in this Special Issue is devoted to the elaboration
of a new, improved model on inflation in the framework of F(R) modified gravity, where
R the scalar curvature of space-time. The theories of this kind are often considered in the
literature (see, e.g., refs. [108–110]). They are, in fact, equivalent to the scalar–tensor theories of
gravity [109,111]. It is shown that the obtained model demonstrates a very good agreement
with the measurements of relic radiation. The scalar–tensor theories of the Brans–Dicke
class [112–114] are also applied in another paper belonging to this Special Issue [115] for the
construction of a cosmological model with a constant scale factor, which reproduces some
properties of the standard cosmological model. The homogeneous isotropic cosmological
model, which demonstrates a transition from the decelerated expansion in the past to the
present acceleration, is constructed in ref. [116] on the basis of F(R, T) modified gravity
theory, where T is the trace of the stress–energy tensor of matter. The alternative theories of
gravitation of this kind have often been considered in the literature in recent years [117–120].

Two more articles using the alternative theories of gravity are devoted to a new ana-
lytically solvable isotropic cosmological model [121] and to the model of primordial black
holes determined by field fluctuations in extra dimensions [122]. The first of these arti-
cles [121] uses the so-called extended Einstein-aether-axion theory [123,124] and considers
the homogeneous Universe filled with axionic dark matter. The second article [122] uses the
formalism of f (R) gravity and investigates the possibility that some supermassive black
holes may originate from a collapse of the domains of dark energy with extremely high
energy density, caused by the quantum fluctuations of the minimally coupled scalar field
in the compacted inner space (see ref. [125] for a review on the primordial black holes).

Several further articles published in this jubilee Special Issue are devoted to the
astrophysics of the Friedmann Universe. Thus, review [126] discusses the role of neutrinos
at different stages of the evolution of the Friedmann Universe. This includes the impact
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of neutrinos on the Universe expansion rate, its chemical and isotopic composition, the
anisotropy of relic radiation, and formation of the large-scale structure. Special attention is
paid to possible existence of the so-called sterile neutrinos, which are hypothetical neutrino-
type particles not possessing the isospin charge and only interacting with other elementary
particles gravitationally [127–130].

Article [131] is devoted to the critical discussion of tension concerning the value of the
Hubble constant H0, which is the proportionality coefficient between the proper distance to
the remote galaxy and the speed of its separation. Although, in the standard cosmological
model, the value of H0 is expressed via the main parameters of this model, different
approaches to its measuring [66,132] result in the values that do not overlap, leading to a
5σ tension. The extensive literature devoted to the H0 tension discussed in ref. [131] did
not bring a resolution to this problem yet.

The physical nature of dark energy is still unknown, and there are many theoretical
approaches to its understanding, which are reviewed in ref. [133]. These are the most
common approach describing the dark energy by means of the cosmological constant,
as well as the approaches using the concept of a quintessence and scalar–tensor modi-
fications of the general theory of relativity, exploiting the chameleon, symmetron- and
environment-dependent dilaton fields and corresponding hypothetical particles. In fact,
only the description of dark energy in terms of cosmological constant is in the frames
of the standard cosmological model, whereas all others are beyond it. There are many
experimental tests for the hypothetical constituents of dark energy. One of them is based
on measuring the Casimir force between two closely spaced macrobodies, which should be
modified by the presence of dark energy. This approach already significantly strengthened
the constraints on axions as the hypothetical constituents of dark matter [134–137]. In the
case of dark energy, however, the problem is more complicated because the respective
interaction potentials are not fixed uniquely, but are different in different models [138–140].

The theoretical aspects of wormhole solutions of Einstein’s equations are discussed in
many papers (see Ref. [72] belonging to this Special Issue, mentioned above). To the present
time, however, wormholes were not observed, in spite of the fact that some authors tried to
find their observational features [141–144]. In this Special Issue, it was suggested [145] that
one should consider the acceleration of matter into a wormhole possessing a monopole
magnetic field. It is shown that the resulting spectrum is characterized by some unique
features, which allow for distinguishing it from the spectrum of, e.g., a Kerr black hole.

The next group of articles published in this Special Issue is devoted to some quantum
aspects of cosmology. These articles can be naturally divided into two subgroups. The
first one considers the quantum effects on the background of classical curved space-time,
whereas the second one deals with the quantization of gravitation, i.e., with quantum
gravity. We begin with the articles belonging to the first group.

The most well-known quantum effect occurring in the expanding Friedmann Universe
is the creation of particles of matter fields from the vacuum state. This effect is discussed
in [62]. It is considered in comparison to similar effects occurring in an external electromag-
netic field. The creation of particle–antiparticle pairs in the homogeneous isotropic models
of the Universe plays the most important role in the early stages of its evolution. Thus, it
plays a decisive role in the process of reheating after inflation, i.e., during the period of time
when all of the standard elementary particles have been created [32]. There are different
methods used in the theoretical description of the particle creation in the external gravita-
tional field. One of them uses the concept of adiabatic particles [146,147], while another
one is based on the diagonalization of the Hamiltonian of a quantized field [148–150].

One more (phenomenological) method describing the effect of particle creation in
the Riemannian space-time is suggested in [151] published in this Special Issue. For this
purpose, the action of an ideal fluid in Euler’s variables is used, where the conservation
law for the number of particles is replaced with the creation law [152,153].

An important quantum process is the conversion of gravitons to photons and vice
versa in the presence of an external magnetic field. This process was considered by several
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authors in flat space-time (see, e.g., refs. [154–156]). It is, however, of much importance
in applications to the relic gravitational waves produced at the inflationary stage of the
Universe’s evolution in the primordial magnetic field, where the space-time geometry
was essentially non-Euclidean. Just this case is investigated in [157], which is included in
the jubilee Special Issue, where the transformation between gravitons and photons in the
presence of a magnetic field is considered in curved space-time. Next, the results obtained
for an arbitrary metric are simplified for the case of the Friedmann Universe. In so doing,
the gravitational waves are considered as small perturbations of the background space-time.
It is shown that the conversion effect is present only if the electromagnetic wave vector is
perpendicular to the magnetic field. An important conclusion is made that the effect of
conversion of gravitons into photons in the primordial magnetic field cannot significantly
diminish the amplitude of relic gravitational waves.

One more article of this Special Issue [158] investigates the motion of a quantum
particle in the Cornell potential on the background of an open Friedmann cosmological
model. This subject is of evident interest because this potential was used earlier to ensure
the confinement of quarks inside both mesons and hadrons [159]. It is shown that, due to
the space curvature, the Cornell potential becomes a potential well of finite depth, making
both the bound and scattering states possible.

Finally, one more article devoted to the quantum effects in curved space-time considers
the mathematical aspects of quantum field theory in the de Sitter and anti-de Sitter space-
times [160]. In this article, it is shown that the correlation functions of quantum scalar
field in Minkowski, de Sitter, and anti-de Sitter space-times have some similarities (see the
previous results on this subject [161–163]).

The second subgroup of articles devoted to quantum aspects of cosmology deals
with the quantization of gravitational field, i.e., with quantum gravity. It is common
knowledge that, up to the present, there is no satisfactory theory of this kind, in spite of
numerous attempts undertaken by many scientists over several decades to construct it (see
the monographs and reviews [164–168]). At the same time, there are a few approaches,
including the most famous by DeWitt [169–171], which apply the quantum theory of
gravitation in the one-loop approximation to description of the Universe in terms of the
wave function. Article [172] published in this Special Issue considers the DeWitt boundary
condition imposed on the wave function of the Universe. The obtained results might be
considered as a first step towards quantum gravity, leading to a non-singular cosmological
model.

Another version of quantum gravity, called the Euclidean quantum gravity [173], is
used in [174] to construct a new version of the no-boundary initial state of the Universe.

4. Conclusions

In the foregoing, we have considered the fundamental role of Alexander Friedmann’s
prediction of Universe expansion for modern cosmology, and briefly listed the major
achievements in understanding of our Universe and its evolution made during one hundred
years after this prediction. This evolution resulted in the formulation of the standard
cosmological model ΛCDM, which provides a satisfactory explanation for most of the
physical phenomena discovered by the modern astronomy and astrophysics. Many articles
published in this Special Issue devoted to Friedmann’s prediction of Universe expansion
investigate some physical phenomena in the framework of this model.

Though the ΛCDM model, based on the general theory of relativity, Friedmann
cosmology and the concept of the cosmological constant are sufficient to explain many
available experimental and observational data, new data appear that have no explana-
tion in the framework of this model, such as the Hubble tension and the CMB dipole
anisotropy [175]. In addition, ΛCDM has no explicit physical theory for the origin and
physical nature of dark matter and dark energy. As a result, it became clear that we are
faced with a fundamental alternative today. Numerous attempts undertaken in order to
quantitatively understand all modern cosmological discoveries, including primary dark
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energy (which is found to be unstable) and dark matter, either go beyond the Standard
Model of elementary particle physics, modify Einstein gravity, or use a combination of
both of these approaches. It has also become timely to make the next step to the past of our
Universe, and investigate possible variants of its pre-inflationary history and the artifacts
remaining from them. This requires new astrophysical experiments in space and the further
elaboration of quantum gravity. As seen from the above, many articles published in this
jubilee Special Issue go beyond the standard cosmological model and look for the new
approaches to these unresolved problems.

In the near future, one could expect new fundamental discoveries in astrophysics and
cosmology that will shed additional light on the structure and evolution of our Universe.
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Abstract: Particles with negative energies are considered for three different cases: inside the horizon
of a Schwarzschild black hole, Milne’s coordinates in flat Minkowski space–time (Milne’s universe
using nonsynchronous coordinates) and in the cosmological Gödel model of the rotating universe.
It is shown that, differently from the Gödel model with a nondiagonal term, where it occurs that
negative energies are impossible, they are present in all other cases considered in the paper. Particles
with zero energy are also possible in the first two cases.

Keywords: negative energy; zero energy; black hole; Milne universe; Gödel universe

1. Introduction

In 1922, Alexander Friedmann, in Petrograd, Russia, predicted an expansion of the
Universe. Today, Friedmann’s model of the Universe is called the Standard Model. Many
observations confirm this model to be correct. The new world of galaxies and the stages
of the Universe’s evolution were discovered. New phenomena, such as black holes, relict
radiation and many others, are actively investigated. Trajectories of particles with negative
and zero energy are examples of such new phenomena. The possibility of relativistic
particles with negative energy is important because it makes it possible to obtain large
energy in interactions or decays of bodies. A simple example of this situation was proposed
by R. Penrose in the case of the decays of particles in the ergospheres of rotating black
holes [1,2].

It appears that in order to have negative energy of the relativistic particle with nonzero
mass, one must have a very strong external field leading to large potential energy, as is
the case for rotating black holes. However, it is well known that the value of the energy
depends on the choice of the reference frame and the time coordinate or Killing vector in
case of conserved energy. It leads to the situation whereby states with negative energies
in the relativistic case occur in the case of a rotating coordinate system outside the static
limit [3], where an effect analogical to the Penrose effect is found to be observable [4], and
in a nonsynchronous coordinate system in cosmology [5,6].

It seems from these examples that negative energies arise in the case of the existence
of nondiagonal terms in a metrical tensor (gravymagnetism), but, in this paper, we show
that in the Gödel Universe, in spite of the presence of such terms, negative energies are
absent. The negative energies are present in cases of the movement inside of the horizon of
the Schwarzschild black hole and in Milne’s universe where nondiagonal terms are present
in a nonsynchronous coordinate frame.

Universe 2023, 9, 217. https://doi.org/10.3390/universe9050217 https://www.mdpi.com/journal/universe13
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2. Negative Energy in Nonrotating Black Hole

A nonrotating black hole of mass M in Schwarzschild coordinates is described by
the metric

ds2 =
(

1− rg

r

)
c2dt2 − dr2

1− rg
r

− r2
(

dθ2+ sin2θ dϕ2
)

, (1)

where rg = 2GM/c2 is the gravitational radius of the black hole, G is the gravitational
constant, and c is the light velocity. The geodesic complete space–time of the nonrotating
black hole can be described in Kruskal–Szekeres coordinates, {u, v} ∈ (−∞,+∞), which,
in region u > |v| ≥ 0, are connected with the Schwarzschild coordinate in r > rg in the
following way:

u =

√
r
rg
− 1 exp

(
r

2rg

)
cosh

ct
2rg

, v =

√
r
rg
− 1 exp

(
r

2rg

)
sinh

ct
2rg

. (2)

For r < rg and v > |u| ≥ 0, the transformation from the Schwarzschild coordinate into the
Kruskal–Szekeres coordinates has the form

u =

√
1− r

rg
exp

(
r

2rg

)
sinh

ct
2rg

, v =

√
1− r

rg
exp

(
r

2rg

)
cosh

ct
2rg

. (3)

Schwarzschild coordinates are singular at r = rg. Regarding their connection with Kruskal–
Szekeres coordinates for other u, v, see [7], Section 31.5.

Any possible movement of physical bodies and particles must satisfy the condition
ds2 > 0 leading to

r > rg ⇒
∣∣∣∣
dr
dt

∣∣∣∣ ≤ c
(

1− rg

r

)
, (4)

r < rg ⇒
∣∣∣∣
dr
dt

∣∣∣∣ ≥ c
( rg

r
− 1
)

. (5)

For r < rg, the coordinate ct is space and r/c is the time coordinate.
Geodesic equations in Schwarzschild coordinates in the plane θ = 0 are [8]

dt
dλ

=
r

r− rg

E
c2 ,

dϕ

dλ
=

J
r2 ,

(
dr
dλ

)2
=

E2

c2 +
rg − r

r3 J2 +
rg − r

r
m2c2, (6)

where E is the energy of a moving particle (measured by the static observer in r, θ, φ
coordinates), J is the conserved projection of the particle’s angular momentum on the axis
orthogonal to the plane of motion, m is the particle mass, and λ is an affine parameter on
the geodesic. For massive particles, λ = τ/m, where τ is the proper time.

In an external region of the black hole (r > rg) for any physical object, the time
coordinate t is always increasing and so the energy E of the particle is positive (see (6).
Inside the horizon of the black (r < rg), where t is space-like (gtt < 0), one has movement
as in increasing as in decreasing t. As is seen from the first formula in (6) for a particle
moving inside the horizon in the direction of a decrease in the coordinate t, the energy E of
the particle will be positive, while, for increasing coordinate t, the energy E is negative. For
constant t inside the black hole, E = 0 due to formula (6).

Surely, t inside of the black hole is space-like and E is proportional to the t-component
of the momentum. Inside a black hole, one can use other reference frames and correspond-
ing energies [9]. However, for the observer outside the black hole, the conserved E along
all trajectories of the free fall is equal (see formula (88.9) in [10]) to

E = mc2

√(
1− rg

r

)/(
1− v2

c2

)
, (7)
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where v is the velocity measured by the observer at rest in the Schwarzschild coordinates.
Thus, we can call E inside the black hole, following [7], the “energy at infinity”. For a
discussion of other ways to determine the energy within the horizon and the movement of
particles there, see, for example, the articles [9,11–13].

In Figure 1, the trajectories for radial movement with positive, zero and negative
energies in Kruskal–Szekeres coordinates are represented by red, green and blue lines.
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Figure 1. Trajectories of particles with positive (B+H+F+), zero (M±ON±) and negative (B−H−F−)
energy, t±1 = ∓0.5rg/c. On the left, one can see it falling from the rest at |E| = 0.5mc2; on the right,
|E| = mc2 with the corresponding initial velocity from the point r = 1.15rg. On lines (M±ON±), the
coordinate t = ±rg/c.

As one can see from (2) and (3), the coordinate lines of constant t in Kruskal–Szekeres
coordinates are straight lines through the origin of the coordinates. In region II, coordinate
t decreases when moving from H+ to F+ (positive E) and increases when moving from H−

to F− (negative value of E). Direct lines (M±ON±) correspond to constant t = ±rg/c and
therefore E = 0.

Let us consider the problem of the back influence of falling particles on the metric of
the black hole space–time. For macroscopic bodies with 4-velocity (ui), with the energy
density ε and pressure p in space–time with metric gik, the energy–momentum density
tensor is [10]

Tik = (ε + p)uiuk − pgik, (8)

i, k = 0, 1, 2, 3. The trace of the energy–momentum tensor

Ti
i = ε− 3p (9)

is invariant and it will be negative for ε− 3p < 0—in particular, for dust-like matter (p = 0)
with negative energy ε < 0. The back influence of falling particles with negative energy
will be determined by the energy–momentum tensor in the right-hand side of the Einstein
equations. The notion of the existence of particles with negative energies as it is known
was used by S. Hawking to predict the Hawking effect for black holes [14].

For a discussion of other ways to determine the energy within the horizon and the
movement of particles there, see, for example, works

3. Negative and Zero Energies in Flat Space–Time

The geodesic line equations can be obtained for space–time with metric gik from
the Lagrangian

L =
gik
2

dxi

dλ

dxk

dλ
, (10)
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where λ is the affine parameter on the geodesic [8]. The energy of the particle E is equal to
the zero covariant component of the momentum (pi) multiplied on the light velocity

pi =
∂L

∂
(

dxi

dλ

) = gik
dxk

dλ
, (11)

E = cp0 = cg0k
dxk

dλ
. (12)

Defining the affine parameter for the massive particle as λ = τ/m, where τ is the proper
time of the moving particle, one obtains

pi pi = m2c2 (13)

and the energy of the particle is

E = mcg0k
dxk

dτ
. (14)

Using notation (ζ i) = (1, 0, 0, 0) for the translation in the time coordinate generator,
one can write (12) for the energy of the particle as

E = c(p, ζ). (15)

If the metric components do not depend on the time coordinate x0, then ζ is the time-like
Killing vector and the energy E is conserved on the geodesic. For time-like vector ζ and a
massive particle, one has [15]

√
(ζ, ζ) ≤ E

mc2 < +∞ (16)

and the energy (15) is positive. For space-like vector ζ, as it takes place in the ergosphere
of a rotating black hole, the arbitrary positive and negative values are possible (see [15],
p. 325).

Note that in spite of the invariance of the scalar product (15), the value (14) of the
energy depends on the choice of the reference frame. This occurs due to the fact that by
changing the reference frame in which the physical measurements are made, the observer
is changing vector ζ. The analysis of the situation in a rotating coordinate system in flat
space–time is provided in [3].

In Minkowski space–time in the Galilean coordinate system or any other coordinate
system with g00 = 1, g0α = 0, (α = 1, 2, 3), the energy (12) is

E = c2 dt
dλ

(17)

and it is always positive in movement “forward” in time because in the future light cone,
one has dt/dλ > 0.

Consider the coordinate system in which the metric of flat space–time has the form of
the metric of the expanding homogeneous isotropic Universe—the Milne universe [16]:

ds2 = c2dt2 − c2t2
(

dχ2 + sinh2 χdΩ2
)

, (18)

where dΩ2 = dθ2 + sin2 θ dϕ2, and coordinate χ is changing from 0 to +∞. In new coordinates

T = t cosh χ, r = ct sinh χ, cT > r > 0 (19)

the interval (18) takes the form of a Minkowski interval

ds2 = c2dT2 − dr2 − r2 dΩ2. (20)
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This space–time with coordinate t ≥ 0, χ ≥ 0 corresponds to the future cone in coordinates
cT, r.

The radial distance between points χ = 0 and χ in metric (18) is D = ctχ. Taking D as
the radial coordinate [17], one obtains the interval as

ds2 =

(
1− D2

c2t2

)
c2dt2 + 2

D
t

dtdD− dD2 − c2t2 sinh2
(

D
ct

)
dΩ2. (21)

From the condition ds2 ≥ 0, one obtains that if D is larger than Ds = ct, no physical object
can be at rest in coordinates t, D, θ, φ. The value Ds corresponds to χ = 1 and it plays the
role of the static limit for the rotating black hole in Boyer–Lindquist [18] coordinates.

The energy of the particle with mass m in coordinates t, D, θ, φ is

E = cg0k
dxk

dλ
= mc2 dt

dτ

(
1− D2

c2t2 +
D
c2t

dD
dt

)
= mc2 dt

dτ

(
1 + χt

dχ

dt

)
. (22)

From (18), one obtains, for any physical object, the inequality

t
∣∣∣∣
dχ

dt

∣∣∣∣ ≤ 1. (23)

Thus, a particle can have negative energy only for χ > 1, i.e., out of the static limit, if

dχ

dt
< − 1

χt
. (24)

Note that the components of metric (21) depend on time and the energy (22) in
general is not conserved on the geodesics. If the energy is zero, then the particle is moving
noninertial according to the law

dχ

dt
= − 1

χt
⇔ χ =

√
χ2

0 − 2 log(t/t0), t ∈
[
t0, t0 exp((χ2

0 − 1)/2)
]
. (25)

The trajectory of such movement for case χ0 = 2, t0 = 0.11 is represented by the curve in
Figure 2 in coordinates T, r (see (19)).

0.5 1
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0.5

1

cT

0.5 1

r

0.5

1

cT

Figure 2. Possible region of movement of particle with negative and zero energies in the reference
frame t, D in flat coordinate T, r.

In the event that the inertial movement trajectory in these coordinates is a straight line,
the possible region of movement of particles with negative and zero energies in the reference
frame t, D is defined in the coordinate T, r by conditions 1 ≤ cT/r ≤ coth 1 ≈ 1.313.
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Velocities of movement in coordinates T, r and t, χ satisfy condition [19]

t
dχ

dt
=

dr
dT
− c tanh χ

c− dr
dT

tanh χ

. (26)

Thus, for
χ tanh χ ≥ 1 (27)

particles at rest in inertial frame T, r will have negative energies in the frame t, D. This
region can be seen in Figure 2 as the region above the blue line in the red district. Zero
energy of the particle at rest in T, r coordinates is possible only if the blue line is defined by
the root of equation χ tanh χ = 1, i.e., χ ≈ 1.1997.

Thus, one can see that for a specific choice of coordinates, one can obtain negative and
zero energies for particles at rest in an inertial frame.

Note that for small distances (D/(ct) = χ� 1), the metric (21) becomes the metric of
a comoving spherical coordinate system of Minkowski space–time

ds2 = c2dt2 − dD2 − D2dΩ2, (28)

and the energy (22) will be equal to the usual energy in the inertial system of flat space–time

Eu = mc2 dt
dτ
≈ mc2 dT

dτ
, (29)

because, for χ� 1, one has t ≈ T.
The decay of the body on two bodies, one with negative energy and the other with the

positive energy being larger than the energy of the initial decaying one, corresponds to the
Penrose process. This process occurs outside the static limit on distance D > ct. However,
later, these two products of the decay move inside the static limit, and, during flight in
the direction of the origin, where the metric is that of Minkowski space, they change their
energies in such a manner that the result will be the same as in the inertial frame. In fact,
due to (22)

E = Eu + mc2χt
dχ

dτ
. (30)

Here, Eu is the energy in the reference frame t, χ, such that g0i = 0, i 6= 0, and g00 does not
depend on time. Thus, Eu is conserved. At the point of decay, both energies E and Eu are
conserved. When body 2 with the positive energy arrives at the coordinate origin χ = 0, its
energy E (30) will be equal to Eu and no growth in the energy will be observed.

Body 1, with the negative energy E due to (22) after decay, will have a negative value
of velocity dχ/dt larger (in absolute value) than that of body 2. This means that it will
arrive at the origin before the arrival of body 2. Its energy in the origin of the coordinate
frame will be also positive and the full energy of 1 and 2 will be equal to that of the decaying
body. Thus, at the origin, one will not observe any effect that makes this situation similar
to the situation for Kerr’s black hole.

In fact, for rotating black hole [1], as in the case of rotating coordinate system [4], the
energy is conserved. In this case, when body 2 travels out of the ergosphere, far from it,
body 1, with negative energy, moves further inside the horizon of the black hole or goes to
infinity in case of rotating coordinates in Minkowski space. Thus, the energy of the body
with positive energy, due to the conservation of the energy, will be always larger than that
of the initial decaying body.

Note that the existence of states with negative energies for Milne’s metric leads to an
effect similar to the Hawking effect [14] for the Schwarzschild metric. Particle creation in
quantum theory will occur and the detector of particles checks them (see Section 5.3 in [20]).

18



Universe 2023, 9, 217

This will be the creation of virtual particles (see Section 9.8 in [21]) so no change in the
metric due to them can be observed.

4. Negative Energy in Gödel Universe

The metric of the Gödel cosmological model of the rotating Universe proposed in 1949
(see [22] or [23]) can be written as

ds2 = c2dt2 − dx2
1 +

exp
(

2
√

2ωx1/c
)

2
dx2

2 + 2 exp
(√

2ωx1/c
)

cdtdx2 − dx2
3, (31)

where ω is constant. Such a metric is the exact solution of Einstein’s equation with back-
ground matter as an ideal liquid without pressure and negative cosmological constant Λ

Rik −
1
2

Rgik + Λgik = −8π
G
c4 Tik, (32)

where
−Λ =

(ω

c

)2
= 4π

G
c2 ρ, Tik = ρc2uiuk, (33)

ui = δi
0. Here, ω has the sense of the angular velocity of rotation of the vector of fluid of

the background matter ui.
Taking, instead of t, x1, x2, new coordinates t′, r, φ,

exp
(√

2ωx1/c
)
= cosh 2r + cos φ sinh 2r, (34)

ωx2 exp
(√

2ωx1/c
)
= sin φ sinh 2r, (35)

tan
1
2

(
φ + ωt−

√
2t′
)
= exp(−2r) tan

φ

2
, (36)

one writes the interval (31) in the form [22,24]

ds2 = 2
( c

ω

)2(
dt′2 − dr2 + (sinh4 r− sinh2 r)dφ2 + 2

√
2 sinh2 rdφdt′

)
− dx2

3, (37)

where −∞ < t′ < ∞, 0 ≤ r < ∞, 0 ≤ φ < 2π and identifying φ = 0 and φ = 2π.
Now, consider the general case of space–time t′, r, φ, z with the interval

ds2 = a2
[(

dt′ + Φ(r)dφ
)2− dr2− dz2− R2(r)dφ2

]
, (38)

where a is constant, −∞ < t < ∞, 0 ≤ r < ∞, −∞ < z < ∞, 0 ≤ φ ≤ 2π, and identifying
φ = 0 and φ = 2π. Let us say Φ(r) > 0 and R(r) > 0 for r > 0. For Gödel Universe
a =
√

2c/ω, z = x3/a and

Φ(r) =
√

2 sinh2 r, R(r) = sinh r cosh r. (39)

The metrical tensor is

(gik) = a2




1 Φ 0 0

Φ Φ2 − R2 0 0

0 0 −1 0

0 0 0 −1




, (40)
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(gik) =
1

a2R2(r)




R2 −Φ2 Φ 0 0

Φ −1 0 0

0 0 −R2 0

0 0 0 −R2




, (41)

where indexes i, k = 0, 1, 2, 3 correspond to t′, φ, r, z. Note that for any r > 0, the metrical
tensor is not degenerate det (gik) = −a8R2(r) < 0. The degeneration for r = 0 in the Gödel
Universe is coordinate degeneracy. The eigenvalues of the gik tensor are

λ1,2 =
a2

2

(
Φ2 − R2 + 1±

√
(Φ2 − R2 + 1)2 + 4R2

)
,

λ3,4 = −a2. (42)

For r > 0, one has
λ1 ≥ a2, 0 > λ2 ≥ −a2R2. (43)

Note that although gφφ is positive for Φ(r) > R(r), the signature of gik for all r > 0 is the
standard (+,−,−,−).

Possible movement of particles is defined by ds2 ≥ 0, so, for the interval (38), one has

dt′2 +
(

Φ2(r)− R2(r)
)

dφ2 + 2Φ(r)dφdt′ − dr2 − dz2 ≥ 0. (44)

It is important that for any coordinate system with interval (38), the physical body for
any values of r, φ, z can be at rest, i.e., there is no static limit. However, in (38), there is
nondiagonal term dt′dφ as in Kerr’s metric. However, differently from the case of rotating
coordinate system [3], there is the possibility of a change in the sign before dφ2.

From (44), one obtains

(
dt′

dφ

)2

+ 2Φ(r)
dt′

dφ
+ Φ2(r)− R2(r) ≥ 0. (45)

The solution of this inequality is the union of two intervals

dt′

dφ
∈ (−∞,−(Φ(r) + R(r))] ∪ [R(r)−Φ(r),+∞). (46)

Considering cases of different signs of dφ, one obtains the following sets of solutions of (45):

dφ ≥ 0⇒ dt′ ≥ (R−Φ)dφ ∨ dt′ ≤ −(R + Φ)dφ, (47)

dφ ≤ 0⇒ dt′ ≥ −(R + Φ)dφ ∨ dt′ ≤ (R−Φ)dφ. (48)

These sets define light “cones” of the future and past for the metric (38). The form of these
cones in cases Φ� R, Φ = R and Φ > R is shown in Figure 3 for the Gödel Universe with

Φ(r) > R(r) ⇔ r > r0 = log(1 +
√

2). (49)

Let us find limitations on possible values of the energy of particles moving in such
a Universe. The coordinate t′ is dimensionless, so the “physical energy” of the particle is
expressed through the time component of the momentum as

E = p0
c
a
= g0k

c
a

dxk

dλ
. (50)
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For the frame with coordinates (38), the covariant t′, φ, z components are conserved, because
the components of the metric depend only on r. Thus, the conserved energy on the geodesic
for the interval (38) is

E = ca
(

dt′

dλ
+ Φ(r)

dφ

dλ

)
. (51)

From (47) and (48), for the case of movement “forward” in time, i.e., in the future light
cone, one obtains

dt′ + Φdφ ≥ R|dφ|, (52)

so

E ≥ caR
|dφ|
dλ

. (53)

It means that for a particle moving in the future cone in the Gödel Universe, the energy is
not negative.

For movement “back in time”, the energy is limited from above by

E ≤ −caR
|dφ|
dλ

(54)

and so it can be less than or equal to zero. However, such movement physically is in-
consistent. The “time machine” effect in the Gödel Universe corresponds to continuous
movement in the future cone. Thus, for r > r0, where Φ(r) > R(r) closed loops (they are
not geodesic lines) r = const, z = const, called Gödel cycles, from φ = 0 to φ = 2π, are
closed time-like curves [24]. Particles moving along such a cycle are moving “forward” in
time but, due to the identification of values φ different on 2π, it occurs in the past after the
whole cycle. Its energy is positive due to (53). Such a “time machine” is different from that
moving in the past by the sign of the particle energy.
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Figure 3. Light “cones” of future (blue color) and past (yellow color) for Gödel Universe in coordinates
t′, φ for cases r = 10−3 (left), r = r0 (center) and r = 2r0 (right).

5. Conclusions

Three different cases are investigated concerning the possibility of the existence of
particles with negative and zero energies.

1. Schwarzschild black hole of the mass M. Trajectories of particles with negative
and zero energies exist inside the horizon of the black hole, which can be shown in
Kruskal–Szekeres coordinates.

2. Flat space–time in Milne’s coordinates. Here, one also has the possibility of the
existence of particles with negative and zero energies if a nonsynchronous system of
coordinates is used.

3. Gödel cosmological model with rotation. Here, we proved that, in this model, in
Gödel’s coordinates, particles with negative and zero energies do not exist.

As for observations of the discussed effects, one can say that even the well-established
Penrose and Hawking effects are still not observed. However, we hope that in the future
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development of observational astrophysics, one will see the consequences of the existence
of negative and zero energies.
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Abstract: We study the properties of evolving wormholes able to exist in a closed Friedmann dust-
filled universe and described by a particular branch of the well-known Lemaître–Tolman–Bondi
solution to the Einstein equations and its generalization with a nonzero cosmological constant and
an electromagnetic field. Most of the results are obtained with pure dust solutions. It is shown, in
particular, that the lifetime of wormhole throats is much shorter than that of the whole wormhole
region in the universe (which coincides with the lifetime of the universe as a whole), and that the
density of matter near the boundary of the wormhole region is a few times smaller than the mean
density of matter in the universe. Explicit examples of wormhole solutions and the corresponding
numerical estimates are presented. The traversability of the wormhole under study is shown by a
numerical analysis of radial null geodesics.

Keywords: wormholes; Friedmann universe; Tolman’s solution; dustlike matter; general relativity

1. Introduction

A century ago, Alexander Friedmann obtained his famous models of the expanding
universe [1] that amazingly remain quite relevant nowadays, after all these years of active
development of the theory, experiment and observations. We are happy to submit our
contribution to the journal issue dedicated to this centennial anniversary, where we discuss
how a Friedmann universe may be a home for such a hypothetic and exotic kind of
geometry, whose studies also possess a long and rich history, as are wormholes.

A wormhole is one of the types of strongly curved geometries, the geometry resem-
bling a spatial tunnel between either distant regions of the same universe or different
universes. Such spatial geometries within solutions to the gravitational field equations
were first discussed in [2–5], but those wormholes turned out to be not traversable for sub-
luminal particles and even photons, which were thus unable to travel from one “end of the
tunnel” to the other, to say nothing on their ability to return back. The first exact solutions
describing traversable wormholes seem to have appeared in [6,7] in 1973 in the framework
of general relativity (GR) with a massless phantom scalar field (a hypothetic field with
a wrong sign of kinetic energy) as a source. An evolving version of such scalar-vacuum
solutions was also found [8], as well as examples of higher-dimensional static wormhole
solutions [9,10]. Great interest in these objects has been raised by the paper of Morris and
Thorne [11] (1988) who showed that a static wormhole throat considered in the framework
of GR requires the existence of so-called “exotic” matter, violating the null energy condition
(NEC). A phantom scalar field is a simple example of such matter.

By now, wormholes have been considered in different theories of gravity and in the
presence of different kinds of matter. Thus, in [6] static, spherically symmetric wormhole
solutions are presented both in GR and a class of scalar-tensor theories, with or without
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an electromagnetic field. Wormholes in the Einstein–Maxwell-dilaton theory have been
described in [12–15]. Other sources in GR used for wormhole construction include a
Chaplygin gas [16] and various versions of phantom energy and quintessence, in particular,
those with the stress–energy tensor (SET) of a perfect fluid [17–23]. It was shown [23]
that static, spherically symmetric wormholes with two flat or AdS asymptotic regions are
impossible in GR with any source possessing isotropic pressure, and, as a result, perfect-
fluid wormholes can only contain their source in a bounded region of space surrounded by
vacuum, with a thin shell on the boundary. It should also be mentioned that many authors
consider wormhole models built using thin shells of exotic matter as the only (or main)
source, the first of them being probably [24,25]. In [26,27], examples of static traversable
wormholes are given in Einstein–Dirac–Maxwell theory, being obtained without explicitly
introducing exotic matter, which means that the Dirac spinor fields themselves exhibit
exotic properties [28].

The necessity of exotic matter is a basic problem of wormhole physics, at least in
the case of static configurations in GR [11,29] and a broad class of scalar-tensor theories
of gravity and f (R) theories [30]. It is therefore natural that many authors try to replace
such matter with entities appearing in various extensions of GR, and above all, it concerns
static, spherically symmetric configurations. Thus, such wormhole solutions of asymp-
totically safe gravity were recently discussed in [31]. In brane world gravity, it has been
shown that the role of exotic matter may be played by the so-called tidal contribution
to the effective SET due to the influence of the bulk [32], with a number of particular
examples. In Ref. [33], the most general constraints have been obtained on additional terms
inherent to various modified theories of gravity, including geometric modifications, such
that wormhole geometries could be constructed in such theories without exotic matter.
In [34,35], particular wormhole solutions of f (R, T) gravity (T being the trace of the stress–
energy tensor) and some teleparallel gravity theories, respectively, were discussed, not
only concerning the validity of the energy conditions, but also as a description of possible
objects in galactic dark energy halos.

It turns out that rotational degrees of freedom may in principle replace exotic matter
for wormhole construction. Thus, some examples of rotating cylindrically symmetric worm-
hole models without NEC violation have been built in the framework of
GR [36–38]. The recently found static solutions [26,27] involve Dirac fields with a spin; one
can also recall wormhole solutions in the Einstein–Cartan theory [39] containing no exotic
matter but a nonzero torsion. Stationary rotating wormhole models with axial symmetry
in GR have also been obtained [40–43]; however, the NEC is still violated in these models
of rotating wormholes.

Dynamic wormholes can also exist without NEC violation, at least in a finite time
interval, in configurations without static early-time or late-time asymptotic behavior.
Such wormhole models in GR with cosmological-type metrics are known, being sup-
ported by electromagnetic fields described by some particular examples of nonlinear
electrodynamics [44,45]. A number of dynamic wormhole models [20,46–50] were obtained
by adding a time-dependent scale factor to an otherwise static metric; some others used
the thin shell formalism [51]. A family of dynamic wormhole solutions to the Einstein–
Maxwell-scalar equations was obtained in [52]. General properties of arbitrary dynamic
wormholes are discussed in [53–55].

Overviews of various problems of wormhole physics can be found, for example,
in [56,57]; see also the recent special issue of the Universe journal [58].

In this paper, we continue our study of possible traversable wormholes in GR sourced
by such a classical and nonexotic source as dustlike matter, with or without an electromag-
netic field [59,60]. For electrically neutral dust, the general dynamic spherically symmetric
solution of GR was obtained by Lemaître and Tolman in 1933–1934 [61,62] and later studied
by Bondi [63–66]. It is generally called the Tolman or LTB solution. The first attempt to
construct a wormhole by selecting a special form of arbitrary functions in this solution was
made in [59].
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An extension of the LTB solution including a radial electromagnetic field was discussed
in [67–72] (see also references therein), where a complete solution was achieved under some
additional conditions, while in the general case, relevant integrals of the Einstein–Maxwell
equations were obtained and discussed. For arbitrary electric charge distributions and
arbitrary initial data, the problem was solved by Pavlov [73], and the solutions were further
studied in [74]; a further extension to plane and hyperbolic symmetries of space-time were
considered in [75–77]; see also references therein.

In the present study, we only consider configurations with an external magnetic (or
electric) fields and electrically neutral dust; however, if there is a wormhole, its every
entrance can comprise a “charge without charge” [4,5] due to electric or magnetic lines
of force threading the throat. Similar models with a special choice of initial data were
studied in [78,79], while here, we do not restrict the initial data but consider the possible
existence of such wormholes in the cosmological context, being inscribed in Friedmann
models describing a matter-dominated stage of evolution, with the possible inclusion of a
cosmological constant, which then describes dark energy.

Concerning dynamic wormholes, it is necessary to recall that there are different
definitions of dynamic wormhole throats, which coincide with each other for static space-
times; see, e.g., [53–55,80–82]. Following papers [46–48], we here choose the simplest
definition based on the properties of 3-geometry of spatial sections of space-time. This
definition can in general be ambiguous due to the freedom of choosing such spatial sections
(or clock synchronization), but in the problem under consideration, it looks most natural
and intuitively clear.

The paper is organized as follows. In Section 2, we briefly describe the class of
solutions to be studied. In Section 3, we consider the conditions for possible existence of
throats and traversable wormholes. Section 4 describes a particular family of wormhole
solutions with a wide enough range of parameters, to be used in Section 5 for placing
them in the cosmological context. The corresponding numerical estimates are obtained in
Section 6, indicating the possible existence and observable properties of such wormholes in
our universe. Section 7 is a conclusion.

2. Extended LTB Solution

Let us consider a generalization of the original LTB solution [61–63], describing the dy-
namics of a spherically symmetric distribution of electrically neutral dustlike matter in the
presence of an external (global) electric or magnetic field and a cosmological constant. Let
us, for certainty, speak of a magnetic field that looks more realistic astrophysically, keeping
in mind that any further results can be easily reinterpreted in terms of an electric field.

If we choose a reference frame comoving to neutral dust particles, it is consequently a
geodesic reference frame for them, and the metric can be written in the synchronous form
(see, e.g., [65])

ds2 = dτ2 − e2λ(R,τ)dR2 − r2(R, τ)dΩ2, (1)

where τ is the proper time along the particle trajectories labeled by different values of the
radial coordinate R, λ(R, τ) and r(R, τ) are functions of τ and R.

The SET of dustlike matter reads Tν[d]
µ = ρuµuν, where ρ is the energy density and uν

the velocity four-vector. The only nonzero component of this SET in the comoving reference
frame, where (uν) = (1, 0, 0, 0), is T0[d]

0 = ρ. For the electromagnetic field in the metric (1),
the SET has the form

Tν
µ
[em] =

q2

8πGr4 diag(1, 1, −1, −1), (2)

where q can be interpreted as an electric or magnetic charge in suitable units [83,84].
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Nontrivial components of the Einstein equations with a cosmological constant Λ may
be written as

1 + 2rr̈ + ṙ2 − e−2λr′2 =
q2

r2 + Λr2, (3)

1 + ṙ2 + 2rṙλ̇− e−2λ(2rr′′ + r′2 − 2rr′λ′) = 8πGρr2 +
q2

r2 + Λr2, (4)

ṙ′ − λ̇r′ = 0, (5)

where the dot stands for ∂/dt and the prime for ∂/dR. The conservation law for dust
matter, ∇νTν[d]

0 = 0 ⇒ ρ̇ + ρ(λ̇ + 2ṙ/r) = 0, leads to

ρ =
1

8πG
F′(R)
r2r′

⇐⇒ F(R) = 8πG
∫

ρr2r′dR, (6)

where F(R) is an arbitrary function, which according to (6) may be said to describe the initial
mass distribution. On the other hand, Equation (5) is readily integrated in τ with the result

e2λ =
r′2

1 + f (R)
, (7)

where f (R) > −1 is one more arbitrary function. With (7), Equation (3) is rewritten as

2rr̈ + ṙ2 = f (R) +
q2

r2 + Λr2, (8)

and its first integral is

ṙ2 = f (R) +
F(R)

r
− q2

r2 +
Λ
3

r2, (9)

where (as can be easily verified) the function F(R) is the same as in Equation (6). This
expression reveals the physical meaning of f (R) as a function characterizing the initial
radial velocity (ṙ) distribution of dust particles. Furthermore, if Λ = 0, only under the
condition f ≥ 0 can the particle reach large values of r, so that f > 0 and f = 0 correspond
to hyperbolic and parabolic type of motion, respectively. In the case f (R) < 0 (elliptic
motion), the particle can at most reach a radius corresponding to the condition ṙ = 0 in
Equation (9). With Λ 6= 0, things are more involved, and the boundary of finite motion
is shifted.

Further integration of Equation (9) with Λ 6= 0 leads to elliptic integrals. In what
follows, for simplicity, we assume Λ = 0, so that only elementary functions are necessary
to describe the solution (to be called for brevity the q-LTB solution). Also, in what follows
we will only need the description of elliptic motion, f < 0. In this case, integration
of Equation (9) gives

±[τ − τ0(R)] =
1
h

√
−hr2 + Fr− q2 +

F
2h3/2 arcsin

F− 2hr√
F2 − 4hq2

, (10)

where h(R) := − f (R) > 0, and τ0(R) is one more arbitrary function that corresponds to a
choice of spatial sections of our space-time, or, in other words, to clock synchronization
between different dust layers with fixed values of R (Lagrangian spheres). It is easy to see
that elliptic motion is possible only with F2 − 4hq2 ≥ 0.

For the solution (10), there is a convenient parametric representation (see, e.g., [65,79]),

r =
F
2h

(1− ∆ cos η),

± [τ − τ0] =
F

2h3/2 (η − ∆ sin η), ∆ =

√
1− 4hq2

F2 , (11)
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where 0 < ∆ ≤ 1, and ∆ = 1 corresponds to the original LTB solution without an
electromagnetic field. Notably, if q 6= 0, hence ∆ < 1, the model has no singularities
characterized by r = 0, i.e, shrinking of a Lagrangian sphere to a point. Other kinds of
singularities, called shell-crossing or shell-sticking singularities, and characterized by r′ = 0
while F′ 6= 0 (see (6) and (18)), are not excluded.

An important special case of the LTB solution (q = 0, ∆ = 1) is Friedmann’s closed
isotropic cosmological model with dust matter, which corresponds to the following choice
of arbitrary functions [65]:

F(χ) = 2a0 sin3 χ, h(χ) = sin2 χ, a0 = const (12)

(here, the radial coordinate R = χ is a “radial angle” on a 3D sphere), so that

r = r(η, χ) = a(η) sin χ, a(η) = a0(1− cos η), τ = a0(η − sin η), (13)

where a(η) is the cosmological scale factor, and it is taken τ0 = 0.

3. Possible Throats

As is clears from (6), to keep the density positive, it is necessary to require F′/r′ > 0,
but it does not mean that both F′ > 0 and r′ > 0. Therefore, one can admit the existence of
regular maximum or minimum values of r (at fixed τ), which can be interpreted as equators
and throats, respectively.

As already mentioned, among different definitions of a wormhole throat in dynamic
space-times, we choose the definition [46–48] according to which a throat in a space-time
with the metric (1) is a regular minimum of the spherical radius r(R, τ) at a fixed value of τ
(hence, a fixed spatial section of space-time). Then, as always, a wormhole is understood as
a space-time region that contains a throat and extends to sufficiently large r(R, τ) on both
sides from this throat. Further on, we try to build wormhole configurations based on the
q-LTB solution. To carry this out, let us first of all determine the conditions characterizing a
wormhole throat [60].

The 3D spatial metric of a spatial section τ = const is

dl2
(3) =

r′2dR2

1 + f (R)
+ r2(R)dΩ2. (14)

where r(R) = r(R, τ)
∣∣
τ=const, and the coordinate R is still arbitrary. To formulate the throat

conditions, let us choose the manifestly admissible Gaussian coordinate l, measuring length
in the radial direction, such that dl = |gRR|1/2dR. Then, at a throat, we must have

dr
dl

= 0,
d2r
dl2 > 0 (15)

(for a generic minimum of r, ignoring possible high-order ones, with d2r/dl2 = 0). From
the first condition, it follows that on the throat, R = Rth,

dr
dl

=
√

1 + f (Rth) = 0 ⇒ f (Rth) = −1, or h(Rth) = 1. (16)

Thus, it is clear that only elliptic models (10) are compatible with wormhole existence.
Next, to keep the metric (1) nondegenerate, it must be in general 1 + f = 1− h > 0, while
h = 1 is only admissible at a particular value of R; therefore, R = Rth should be a maximum
of h(R), such that h′(Rth) = 0 and h′′(Rth) < 0. Then, the second condition (15) implies

d2r
dl2

∣∣∣
R=Rth

= − h′

2r′
∣∣∣
R=Rth

> 0. (17)

27



Universe 2023, 9, 465

Thus, h′(R) vanishes at R = Rth together with r′(R), with a finite limit of their ratio. The
conditions (16) and (17) lead to restrictions on the arbitrary functions F(R) and h(R).

As follows from (6), the dust density tends to infinity, thus indicating a singularity, if
either r → 0 or r′ → 0, except for cases where both r′ → 0 and F′ → 0 at finite r, keeping
finite the ratio F′/r′, precisely what happens at a wormhole throat. That the space-time
remains regular under these circumstances can be confirmed by calculating the Kretschman
scalar K,

K(R, t) = 3
F′2

r′2r4
− 8

F′F
r′r5 + 12

F2

r6 + 20
F′q2

r′r6 − 48
Fq2

r7 + 56
q4

r8 . (18)

Thus, at possible throats, all three derivatives—r′, F′, and h′—vanish, with finite limits
of their ratios.

From (11), we obtain the following expression for the derivative r′ on a constant-τ
section of our space-time:

r′ =
Fh′N1(R, η) + 2hF′N2(R, η)

4∆h2(1− ∆ cos η)
,

N1(R, η) = cos η − 3∆ + 3∆2(η sin η + cos η) + ∆3(−2 + cos2 η),

N2(R, η) = − cos η + 2∆− ∆2(cos η + η sin η). (19)

At a throat R = Rth, the ratios F′/r′ and h′/r′ are finite and nonzero (though with
different signs); r′, h′, and F′ are small quantities of the same order of magnitude.

We can summarize the throat conditions as follows:

h = 1, h′ = 0, h′′ < 0,

F′ = 0, r′ = 0,
h′

r′
< 0,

F′

r′
> 0. (20)

Also, we have everywhere F2 − 4hq2 > 0 and ∆ ≤ 1.

For further analysis, let us consider the limit lim
R→Rth

Fh′

F′h
= −B such that B = const ≥ 0.

Then, for r′ near the throat, we obtain

r′
∣∣∣
R→Rth

≈ F′(2N2 − BN1)

4∆(1− ∆ cos η)
, (21)

It vanishes either if F′ = 0 or if N∗ = 2N2 − BN1 = 0. The density (6) on the throat
is given by

ρ(Rth, η) =
∆(1− ∆ cos η)

2πGr2(2N2 − BN1)

∣∣∣∣
Rth

, (22)

and it blows up where N∗ = 2N2 − BN1 = 0 while the other factors are positive (F > 0
by assumption). Meanwhile, N∗ has different signs at the ends and the middle of the
range of η:

N∗
∣∣∣
η=0,2π

= −(1− ∆)2[2 + B(1− ∆)] ≤ 0,

N∗
∣∣∣
η=π

= (1 + ∆)2[2 + B(1 + ∆)] > 0. (23)

Therefore, we inevitably obtain N∗ = 0, hence a singularity, at (at least) two values
of η say, η1 < π and η2 > π, for any ∆ < 1 (q 6= 0). These are so-called shell-crossing
singularities forming due to r′ → 0, while r is finite.
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In the case q = 0, ∆ = 1 (pure dust), we see that N∗ vanishes at η1,2 = 0, 2π and is
positive at η ∈ (0, 2π).

Thus a nonsingular evolution period for a throat R = Rth, with finite density ρ > 0,
takes place at times η1 < η < η2 at which N∗ > 0. For other Lagrangian spheres R = const,
we obtain similar but other time limits due to R dependence of the functions F and h.

The above relations lead to general restrictions on the dust densities in the wormhole
solutions. For example, consider the solution with q = 0 at η = π, that is, at maximum ex-
pansion. In this case, r = F(R)/h(R), and 2N2 = −N1 = 8, and according to (6), we obtain

ρ
∣∣∣
η=π

=
1

8πG
F′

r2r′
=

1
8πG

F′h4

F2(F′h− Fh′)
=

h
8πGr2(

(
1− rh′/F′

) . (24)

In all wormhole solutions, h ≤ 1; furthermore, h′/F′ < 0 near the throat, and let us
suppose that this is also true at other values of R (F′ < 0 at r′ > 0 would give negative
matter densities; while a changing sign of h′ is still possible). Then, (24) leads to the
simple inequality

ρ ≤ 1
8πGr2 ≈ 6.8×1026 g

cm3
cm2

r2 . (25)

For example, at the throat, we have h = 1 and −rh′/F′ = B > 0. This inequality
actually admits very large density values: thus, if the throat radius is 1 km, we have the
restriction ρ . 1016 g/cm3, a supernuclear density, which is hard to imagine with dustlike
matter. We can also notice that the throat density values are diminished by large values
of B.

4. A Particular Family of Wormhole Solutions

Let us select a family of LTB wormhole solutions, choosing the following simple
functions of R in agreement with the requirements (20):

h(R) =
1

1 + R2 , F(R) = 2b(1 + R2)k, ⇒ ∆ =

√
1− q2

b2(1 + R2)2k+1 , (26)

with the constants b, k > 0. This choice of h(R) is made without loss of generality due to
arbitrariness of the R coordinate (under the assumption that h(R) behaves monotonically
at R > 0 and R < 0), while the choice of F(R) is significant. In particular, since both h(R)
and F(R) are even functions, the wormhole is symmetric with respect to its throat R = 0.
To describe a possible asymmetry while keeping the same form of h(R), one can choose an
asymmetric function F(R) respecting the requirements (20), for example, replacing 1 + R2

in the expression for F(R) with 1 + R2 + ξR3, ξ = const. Still, in what follows, we will only
discuss the solutions determined by (26).

In (26), the constant b specifies a length scale, and we have

r(R, η) = b(1 + R2)k+1 (1− ∆ cos η), τ − τ0(R) = b(1 + R2)k+3/2 (η − ∆ sin η), (27)

r′(R, η) =
bR(1 + R2)k(2kN2 − N1)

∆(1− ∆ cos η)
, (28)

with N1,2 defined in Equation (19). The density ρ (6) and the quantity d2r/dl2 at
R = 0 then read

ρ(R, η) =
k∆

2πGb2(1 + R2)2k+3(1− ∆ cos η)(2kN2 − N1)
, (29)

d2r
dl2

∣∣∣∣
R=0

=
∆ (1− ∆ cos η)

b(2kN2 − N1)

∣∣∣∣
R=0

. (30)
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As already noted, different signs of the derivatives of h(R) and f (R), under the
condition 2N2(R, η)− N1(R, η) > 0, provide the fulfillment of the throat conditions (20) at
R = 0 and, by continuity, in some its neighborhood, but the same is not guaranteed at all R
and η.

The time dependence of the throat radius rth and the density ρth on the throat were
studied in [60]. Here, for completeness, we reproduce some figures from [60]. Thus, Figure 1
shows the time dependence of the throat radius, while the density ρth is shown in Figure 2
for k = 1 and different values of q, where dashed lines show the asymptotes of the function.
Finite positive density values are observed for only a finite period of time η ∈ (η1, η2)
while 2N2− N1 > 0, between two singularities at which ρ and K diverge. Outside this time
interval, in the case q 6= 0, the matter density changes its sign along with d2r/dl2, therefore
the throat conditions hold together with the condition ρ > 0.

Figure 1. Time dependence of the throat radius for q = 0, 0.5, 0.8 in terms of η (left) and in terms
of τ (right).

Figure 2. Time dependence of the functions 2πb2ρ (thin lines) and r(0, τ) (thick lines) on the throat
R = 0 for q = 0, 0.95, 0.99 in the model (26). Dashed lines show the asymptotes. For other values of q
the plots look in a similar way.

Thus we observe a good wormhole behavior of our solution within the time interval
η ∈ (η1, η2). As the charge decreases, this interval increases; and at q = 0, we obtain η1 = 0,
η2 = 2π. Outside the throat (at R 6= 0), the plots look almost the same, but the singularities
occur at other time instants.

5. Matching to a Dust-Filled Friedmann Universe
5.1. General Observations

Now, let us look how the wormhole solution discussed above can be inscribed into
the closed Friedmann isotropic space-time characterized by the relations (12) and (13). At
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that, we can note [60] that to join two LTB space-time regions, characterized by different
functions F(R) and h(R), at some hypersurface Σ corresponding to a fixed value of the
radial coordinate R = R∗, one should first of all identify Σ as viewed from different sides.
Hence, the metric tensor must be continuous on Σ. With the metric (1) it simply leads to
[r2(R, τ)] = 0 (as usual, square brackets denote jumps when crossing the transition surface
Σ), while by (1) gττ ≡ 1 on both sides and does not lead to any further requirements.

Next, to avoid the emergence of a shell of matter on the junction surface Σ, according
to the Darmois–Israel matching conditions [85,86], one should require continuity of the
second quadratic form on Σ. When applied to the metric (1), this requirement leads to
[ e−λg′ττ ] = 0 (which holds trivially due to gττ ≡ 1) and [ e−λr′] = 0. As a result, with (7)
and (11), we obtain

[r] = 0, [ e−λr′] = 0 ⇒ [h] = 0, [F] = 0. (31)

Thus, to match two LTB solutions on a surface Σ (R = R∗), it is sufficient to identify
the values of F(R∗) and h(R∗) in these solutions. It is important that by Equation (11), the
above matching conditions hold at all times at which both solutions remain regular. Also,
there is no necessity to worry about the choice of the radial coordinates on different sides
of Σ because both quantities r and e−λr′ are insensitive to the choice of the coordinate R,
and at reparametrizations of R the arbitrary functions h(R) and F(R) behave as scalars and
preserve their values.

Now, let us apply the conditions (31) to the Friedmann solution (12) and (13) with
q = 0 and an arbitrary wormhole solution described above, also putting q = 0, and let
us specify the junction surface Σ by some values of the radial coordinates χ = χ∗ and
R = R∗ > 0 (here and henceforth, we mark by an asterisk the values of different quantities
on Σ). We then obtain for the wormhole solution

h∗ = sin2 χ∗, F∗ = 2a0 sin3 χ∗ ⇒ F∗ = 2a0h3/2
∗ . (32)

Consider, as before, the instant of maximum expansion, η = π, then r = F/h, and
according to (32), we obtain

F∗ = r∗h∗ = 2a0h3/2
∗ ⇒ h∗ = r2

∗/(4a2
0). (33)

For the density, we can apply Equation (24); hence, on Σ, we have

ρ∗
∣∣∣
η=π

=
h∗

8πGr2∗
(
1− r∗h′∗/F′∗

) =
1

32πGa2
0
(
1− r∗h′∗/F′∗

) . (34)

Assuming, as before, that everywhere in the wormhole solution F′/h′ < 0, we arrive
at the inequality

ρ∗
∣∣∣
η=π

<
1

32πGa2
0
≈ 5.5×10−30 g

cm3 (35)

if we assume a0 ∼ 1028 cm, approximately the size of the visible part of the universe.
On the other hand, in the Friedmann solutions (12) and (13), the matter density is

ρFr(η) =
3

4πGa2
0(1− cos η)3

, ρFr

∣∣∣
η=π

=
3

32πGa2
0

. (36)

Thus according to (35), the wormhole matter density at the junction surface Σ is not
only very small, but it is even a few times smaller (by at least a factor of three) than the
cosmological matter density. In other words, the wormhole region is, at least close to Σ, a
region of smaller density, maybe resembling a void. This observation was made for the
instant η = π, but it remains true at all times since the η dependence is the same for the
wormhole and cosmological solutions.
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Some more general observations can be made. As follows from the throat conditions
(20), h(R) has a maximum with h = hth = 1, while F(R) has a minimum; therefore, according
to (11),

F(R) ≥ F(0) = rth

∣∣∣
η=π

, (37)

where, for simplicity, h(R) and F(R) are assumed to be monotonic in the ranges R > 0
and R < 0. Considering, as before, the instant of maximum expansion, η = π, from
Equations (32) and (33), we obtain at the junction surface R = R∗:

F∗ = 2a0h3/2
∗ , r∗

∣∣∣
η=π

=
F∗
h∗
⇒ r∗ = F1/3

∗ (2a0)
2/3, (38)

Equations (37) and (38) lead to

r∗ > (2a0)
2/3r1/3

th = 7.4× 1018
( rth

cm

)1/3
cm, (39)

rth 6 r3∗
(2a0)2 = 2.5× 10−57 r3∗

cm3 cm, (40)

where rth and r∗ are taken at maximum expansion, η = π. We see that the length scales
of the wormhole region r∗ and its throat rth are substantially different in cases of physical
interest, r∗ � a0. Furthermore, the throat lifetime is ∆τth = 2πrth/c, while the lifetime of
the wormhole region coincides with that of the universe, ∆τ∗ = 2πa0/c ≈ 2× 1018 s, and
thus, we have ∆τth � ∆τ∗. All these estimates (25), (35) and (39) are based on our general
assumptions about the model. Numerical estimates for a specific choice of the functions
h(R) and F(R) will be made below.

5.2. Estimates for a Particular Model

Now, to obtain further estimates, let us describe the wormhole region by
Equations (26) and (27); then, the junction conditions (31) lead to

R∗ = cot χ∗, b = a0(sin χ∗)3+2k, (41)

which ensures matching at R∗ > 0. Since the functions involved in (26) are even, a similar
kind of matching can be applied at R∗ < 0. The resulting composite model then consists of
two closed evolving dust-filled Friedmann universes, connected by means of a wormhole,
thus forming a dumbbell-like configuration, or otherwise, we can suppose that negative
values of R lead to the same Friedmann universe at some different location.

Some numerical estimates are in order. Taking, as before, a0 ∼ 1028 cm, let us also
assume that the wormhole region is small as compared to the whole universe; hence,
χ∗ � 1, and sin χ∗ ≈ χ∗. Accordingly,

R∗ = 1/χ∗, h∗ = χ2
∗, F∗ = 2bχ−2k

∗ , b = a0χ2k+3
∗ . (42)

Note that in the wormhole solution r(R, η) = b(1 + R2)(1− cos η), and R = 0 is the
throat, so 2b is the maximum value of the throat radius, 2b = r(0, π).

Relationships for the wormhole parameters are easily calculated. Equations (24) and (26)
imply rh′/F′ = −1/k, and we obtain for the matter density

ρth =
c2

32πGb2
k

k + 1
≈ 1.3× 1026 k

k + 1
g

cm3
cm2

b2 , (43)

ρ∗ =
c2

32πGa2
0

k
k + 1

≈ 1.3× 10−30 k
k + 1

g
cm3 . (44)
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The junction conditions (41) imply

r∗ = 2a0

(
b
a0

)1/(2k+3)
. (45)

The minimum value of r∗ for given b corresponds to the limit k → 0, specifically.
r∗ > 2a2/3

0 b1/3 (39).
Tables 1 and 2 show some estimates of the wormhole parameters, such as the throat

radius rth = 2b, matter density ρth on the throat and the radius r∗ of the whole wormhole
region in the cases k = 0.1 and k = 1. The density at the junction surface does not depend
on b and equals ρ∗ = 1.2× 10−31 g/cm3 for k = 0.1, and ρ∗ = 6.7× 10−31 g/cm3 for k = 1.
We see that the wormhole region has the size of parsecs or more even for small throats.
Near the throat, the density is super-nuclear for b = 1 km, it is of white-dwarf order near
a throat of planetary size, and reasonably small near a throat of 1 pc. At the junction, the
density ρ∗ is smaller than the mean cosmological density, as should be the case according
to our general observations.

Table 1. Estimates of matter density ρth at the throat and the radius r∗ of the wormhole region for
different throat radii rth, in the case k = 0.1, ρ∗ = 1.2× 10−31 g/cm3.

rth r∗ ρth [g/cm3]

1.6× 10−33 cm (Planck length) 1.6× 104 km (Earth) 1.9× 1091

1 km 1021 cm = 338 pc 4.9× 1015 (nuclear density)
10 km (neutron star) 700 pc 4.8× 1013

6.4× 103 km (Earth) 5.1 Kpc 1.4× 108 (white dwarf)
2.3× 105 km 16 Kpc (Milky Way) 94× 103

695× 103 km (Sun) 23 Kpc 104

107 km (super BH) 52 Kpc 49
7× 107 km 96 Kpc 1 (H2O)

1 pc 5.7 Mpc 5.1× 10−12

6.5 pc 10 Mpc (galaxy cluster) 1.9× 10−13

10 Kpc 100 Mpc (void) 4.8× 10−20 (interstellar
medium)

Table 2. Estimates of matter density ρth at the throat and the radius r∗ of the wormhole region for
different throat radii rth, in the case k = 1, ρ∗ = 6.7× 10−31 g/cm3.

rth r∗ ρth [g/cm3]

1.6× 10−33 cm (Planck length) 1.2× 1011 km 1092

2 cm 16 Kpc (Milky Way) 7× 1025

1 km 0.14 Mpc 2.7× 1016 (nuclear density)
10 km (neutron star) 0.2 Mpc 2.7× 1014

1.6× 104 km 1 Mpc 108 (white dwarf)
695× 103 km (Sun) 2.1 Mpc 5.6× 104

107 km (super BH) 3.6 Mpc 268
1.6× 108 km 6.2 Mpc 1 (H2O)
1.7× 109 km 10 Mpc (galaxy cluster) 8.6× 10−3

1 pc 71 Mpc 2.8× 10−11

6.7 pc 100 Mpc (void) 8.6× 10−13 (interstellar
medium)

6. Wormhole Lifetime and Traversability

Now, we would like to consider the radial motion of photons in the model (26) of a
dust layer, assuming that it is bounded by |R| < R∗ and is located between two copies
of Friedmann space-time. It is clear that a photon radially falling to such a wormhole
and reaching the throat has no other way than to travel further in the direction of another
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universe or maybe a distant part of the same universe. The question is whether or not it
will go out from the dust layer in this “other” universe rather than a singularity. In other
words, whether the wormhole (or the wormhole part of space-time) is traversable.

Further on, we will consider the motion of photons under different choices of the
arbitrary function τ0(R) in the solution (11) with ∆ = 1 while in the Friedmann solution
we fix τ0 ≡ 0. It should be noted here that for a particular LTB solution taken separately,
the choice of τ0(R) means nothing else than clock synchronization, or in other words, the
choice of spatial sections of the same space-time in the same reference frame. However,
in a composite model like ours, unifying two different LTB solutions, this choice is more
meaningful, and different τ0(R) corresponds to different synchronization of events in one
region relative to events in the other region. Thus, fixing τ0(R) ≡ 0 in the wormhole
solution, we make a physical assumption that the wormhole throat emerges simultaneously
with the whole Friedmann universe, while τ0(R) > 0 means that this happens later from
the viewpoint of an observer located in this universe. We will consider both options.

6.1. Radial Motion of Photons in the Case τ0 = 0

From the metric (1), it follows for null radial geodesics that

dR
dτ

= ±
√

1− h
|r′| , (46)

where the derivative r′ = r′(R, τ) can be found from Equation (27):

r′(R, τ) =
bR(R2 + 1)k

1− cos η

[
4k + 5− 4(k + 1) cos η − (2k + 3)η sin η − cos2 η

]
. (47)

The plus sign in Equation (46) corresponds to the photon motion through the worm-
hole from R < 0 to R > 0, and the minus sign to the opposite motion. Due to the symmetry
of the model, it is sufficient to consider, for example, the plus sign.

Let us calculate the time derivative of the spherical radius r(τ, R(τ)) along a light ray
R = R(τ):

d
dτ

r(τ, R(τ)) =
∂r
∂τ

+
∂r
∂R

dR
dτ

= ±
√

f +
F
r
±
√

1− h, , (48)

where R = R(τ) describes the radial motion of a photon (46); the first ± sign corresponds
to the expansion (+) of the dust shells at η ∈ (0; π) or their contraction (−) at η ∈ (π; 2π);
the second ± sign corresponds to photon motion from the throat (+), or to the throat (−). It
is clear that dr/dτ < 0 or > 0 means convergence or divergence of light rays. Note that at
the throat, h(0) = 1, the photons move parallel to dust particles: dr(τ, R(τ))/dτ = ∂r/∂τ.

It is instructive to define an apparent horizon as the location of turning points for
radial light rays, that is, the set of events where the light rays stop diverging and start to
converge, or vice versa, hence,

d
dτ

r(τ, R(τ)) = 0. (49)

Using Equations (27) and (48), Equation (49) is rewritten in the form

cot
η

2
± R = 0, (50)

and finally, we have the parametric equations for the apparent horizon

r =
2k+1b

(1− cos η)k , τ =
2k+3/2b(η − sin η)

(1− cos η)k+3/2 . (51)
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The condition (49) can be satisfied only if the terms in Equation (50) have different
signs. Thus, at the expansion stage η ∈ (0; π), there is an apparent horizon for photons
moving towards the throat (±R < 0), while at the contraction stage η ∈ (π; 2π), on the
contrary, for photons moving from the throat (±R > 0). There are actually two apparent
horizons, depending on the direction of motion.

The results of numerical integration of Equations (46) or (48) are shown in Figures 3–7.
Figure 3 shows the set of null radial geodesics (blue curves) in the case k = 0.1, presented
in the coordinates (R, τ). The graph uses a log-10 scale for just the τ axis. The red line in
the figure presents the singularity η = 2π. There is also a singularity at the initial time
τ → 0 (η → 0), it is not presented. The photons begin their motion at the time instant with
τ/b = 10−7, close to the origin of the universe, and move from the region R < 0 to R > 0
through the wormhole region. The throat R = 0 is shown in brown and exists for a short
time as compared to the universe lifetime. Some of the photons pass through the throat,
others fall to the singularity instead of reaching the throat. Further on, this solution must
be glued at some R = R∗ to the external Friedmann space-time, and the table on the right
shows the correspondence between the parameter R∗ and the radius r∗.

throat           singularity           light

R∗ b [cm] r∗ [cm]
10 6.2× 1024 2.0× 1027

102 4.0× 1021 2.0× 1026

103 2.5× 1018 2.0× 1025

104 1.6× 1015 2.0× 1024

105 1.0× 1012 2.0× 1023

106 6.3× 108 2.0× 1022

107 4.0× 105 2.0× 1021

108 251 2.0× 1020

Figure 3. The figure shows the τ-dependence of the radial coordinate R of photons at their radial
motion (eight blue curves). The brown horizontal line presents the throat R = 0; the red line depicts
the singularity η = 2π. The table shows the correspondence between the junction coordinate R = R∗,
the throat size b, and the radius r∗ of the wormhole region. The curves from top to bottom correspond
to the following initial data at the moment τ/b = 10−7: R = 2.3, −198, −9.7× 103, −9.6× 105,
−3.7× 106, −1.0× 107, −1.1× 107, −1.6× 1011.

Of greatest interest are large values of the parameter R∗ (see Tables 1 and 2 above);
however, for small enough R∗ = 1 (χ∗ = π/4, a0 = 4

√
2b), the results are qualitatively

similar and more suitable for illustration. Figure 4 shows the dynamics of the throat R = 0
(brown curve), dust layers of the wormhole region |R| 6 R∗ (black point curves), the
junction surfaces R = ±R∗ (black curve), external Friedmann space-time χ > χ∗ (blue
curve) in the case R∗ = 1, presented in the coordinates (τ/b, r/b). The left panels (a) and
(c) correspond to the model with k = 0.1; the right ones (b) and (d) correspond to that with
k = 1. The results are presented in two scales: panels (a), (b) correspond to the usual scale;
(c) and (d) correspond to an enlarged scale and clarify the dynamics at early times.The
green curves correspond to photons launched on the sphere R = −R∗ and moving from the
region R < 0 to R > 0. The geodesics in the left panels (a) and (c) are results of numerical
integration in the case k = 0.1 with the following initial data at R = −1: τ/b = 0.64, 1.17,
1.39, 1.44, 1.45, 1.52. The right panels (b) and (d) present geodesics with the following initial
data at R = −1: τ/b = 0.172, 0.395, 0.406, 0.407, 0.414. The matter layers begin and end
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their evolution at the singularity (red line). The purple curve corresponds to the apparent
horizon in the region R > 0.

k=1
R*=1

k=1
R*=1

k=0.1
R*=1

k=0.1
R*=1

(a) (b)

(c) (d)

Figure 4. Illustrated are the dynamics of the throat R = 0 (brown curve), the junction surfaces
R = ±R∗ (black curve), and dust layers of the internal wormhole region |R| 6 R∗ (black point
curves) and the external Friedmann universe χ > χ∗ (blue curves) in the case R∗ = 1. Green curves
correspond to photons moving from the region R < 0 to R > 0. The left figures (a,c) correspond
to the model with k = 0.1; the right ones (b,d) correspond to that with k = 1. The results are
presented in two scales. The top figures (a,b) correspond to the usual scale, while the bottom figures
(c,d) correspond to an enlarged scale and clarify the dynamics at early times. The photons start their
motion on the sphere R = −R∗, pass through the throat, and some of them leave the wormhole
region in a finite time and move further in the Friedmann space-time. The dashed-dotted green
curves correspond to the motion in the region χ ∈ (π/2; π) of the Friedmann universe. The red line
presents the singularity r = 0, and the black dashed curve corresponds to the apparent horizon.

Note that to describe the motion in the (τ, r) coordinates, in fact, a set of two diagrams
is required, but due to their identity, only one of them is shown. Each diagram in the
figures actually depicts two identical space-time regions R 6 0 and R > 0, connected by
the throat R = 0.

Figure 5a,b show the time dependence of the radius r(τ, R)/b for photon paths
(green curves) with the following parameter values: (a) k = 0.1, b = 1012 cm, R∗ = 105,
r∗ = 2× 1023 cm, and (b) k = 0.1, b = 1 pc, R∗ = 937, r∗ = 2× 1023 cm, respectively.
Unlike the previous figure, these values b correspond to a realistic scale of the model
(see Tables 1 and 2). The photons are launched on the junction surface R = −R∗ at dif-
ferent times and move from R < 0 to R > 0. Not all photons cross the throat and get to
R > 0, and some of them reach the junction surface R = R∗ in finite time and enter the
outer space-time. In the left panel, the photons start from R = −R∗ with the initial data
τ/b = 0.026, 0.085, 0.11, 1.7. In the right panel, the photons start from R = −R∗ at the
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times τ/b = 0.14, 0.42, 0.44, 0.54. For example, the value τ/b = 0.42 cm corresponds to the
time t = τb/c = 1.4 year. We can conclude that the wormhole is traversable at least during
a short time of its evolution.

τ=0.026
τ=0.085
τ=0.11
τ=1.7

k=0.1
b=1012 cm
r*=2∙10

23 cm

(a) (b)

Figure 5. Dynamics of the wormhole throat R = 0 (brown curve), the junction surface R = ±R∗
(black curve), photon trajectories (green curves) in the cases: (a) k = 0.1, b = 1012 cm, R∗ = 105,
r∗ = 2× 1023 cm; (b) k = 0.1, b = 1 pc, R∗ = 937, r∗ = 2.1× 1025 cm. The photons are launched on
the surface R = −R∗ at different times: (a) τ/b = 0.026, 0.085, 0.11 and 1.7; (b) τ/b = 0.14, 0.42, 0.44,
0.54. One of the curves does not reach the throat, the rest ones pass through the throat, and two of
them reach the junction surface R = R∗.

6.2. Radial Motion of Photons in the Case τ0 6= 0

Now let us consider radial null geodesics in the case (27), where τ0(R) is a nonzero
even function of R. The meaning of τ0(R) is the time τ (by the clock of an observer in
Friedmann space-time) at which the dust layer corresponding to a value of the R coordinate
begins to evolve. In particular, τ0(0) is the instant at which emerges the wormhole throat
R = 0; this τ0(0) can take arbitrary values from the interval 0 6 τ0(0) 6 τmax, where
τmax = τ

∣∣
η=2π,R=R∗

= 2πb(1 + R2∗)k+3/2 is the lifetime of the universe. Different dust
layers must not collide; therefore we must have r′ 6= 0 everywhere outside the throat.
This condition is sufficient for the absence of a singularity, so that the density (6) and the
Kretschmann scalar (18) are finite. Let the function τ0(R) vanish at the boundary R = R∗
of the wormhole region, so that it does not affect the junction conditions.

The inequality r′ 6= 0 is satisfied if we consider the following example of the function
τ0(R):

τ0(R) = A
[
(R2
∗ + 1)k+3/2 − (R2 + 1)k+3/2

]
, 0 6 A 6 2πb. (52)

The derivative r′ of the function r(R, τ) has the form

r′ =
R(R2 + 1)k

1− cos η

{
A(2k + 3) sin η + b

[
4k + 5− cos2 η − 4(k + 1) cos η − (2k + 3)η sin η

]}
, (53)

where, as can be directly verified, the expression in curly brackets is positive; hence,
the condition r′ 6= 0 is satisfied at R > 0 or R < 0, and the density ρ is everywhere
finite and positive.

In this model, the lifetime of the wormhole throat remains unchanged, equal to
2πb, but different values of the parameter A correspond to different emergence times
of the wormhole throat (Figure 6). In particular, in the case A = 0, the throat begins to
evolve simultaneously with all dust layers. If we assume A = 2πb, the throat collapses
simultaneously with all dust layers (such fine tuning looks quite incredible but still possible
in principle). Under the condition 0 < A < 2πb, the throat emerges and collapses at
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intermediate times during the lifetime of the universe. Smaller values of the parameter k
correspond to a more compact wormhole region. Figure 6 corresponds to the case R∗ = 1
(a0/b = 4

√
2); however, realistic values of the parameters a0 and b do not change the

qualitative picture of the system dynamics.

(a) (b) (c)

Figure 6. The figure shows the dynamics of the dust layers in the case k = 1, R∗ = 1 for different
values of the parameter A: (a) A = 0, (b) A = πb/5, (c) A = 2πb/3.

Obviously, there are photons passing through the wormhole in the case of a thin dust
region |R| 6 R∗. However, as follows from the numerical estimates in Table 1, the case of a
thin dust region is of little interest. As noted in the section above, the model is traversable
with τ0(R) = 0 (A = 0). The value A = 2πb corresponds to the case where the wormhole
and the whole universe collapse simultaneously. It is quite similar to the case A = 0,
and differs only by the direction of motion; in this case, the wormhole region is always
traversable, at least for photons starting at times sufficiently close to the collapse time. Due
to the continuity of the equations, the traversability is also expected for A close enough to
zero or 2πb.

The results of our numerical analysis are shown in Figure 7 for the case k = 0.1,
A = 2πb/3 in two versions. The throat emerges and collapses at some intermediate times
during the universe evolution since the parameter A significantly differs from its minimum
(A = 0) and maximum (A = 2πb) values. Figure 7a corresponds to small enough R∗ = 1;
in this case the results are qualitatively similar and more suitable for illustration.

1 
 

 
Figure 7. Dynamics of dust layers and radial photon trajectories. (a) A = 2πb/3, k = 0.1, R∗ = 1.
(b) A = 2πb/3, k = 0.1, R∗ = 937, b = 3 pc, r∗ = 3.5 Mpc.

Figure 7b is obtained for values more consistent with cosmic scales, namely b = 3 pc,
r∗ = 3.5 Mpc, R∗ = 937. The inset in the right panel illustrates the behavior of the
trajectories on a larger scale. In this case, there are no geodesics passing through the whole
wormhole area |R| 6 R∗. However, the throat is halfway traversable; photons from the
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universe R < 0 can get into the region R > R∗ if they are emitted close enough to the throat.
The trajectories are shown in blue for photons passing through the throat and reaching
R = −R∗ or R = R∗; the green color shows trajectories passing through the throat but not
leaving the wormhole area.

As a result of our numerical analysis, we can conclude the following. In the general
case, the wormhole region |R| 6 R∗ can be traversable, but only under a particular choice
of the throat parameters and initial conditions. For any value of the junction surface R∗,
there are always light rays passing through the wormhole, at least for A close enought to
zero or 2πb. If the throat emerges in the middle part of the universe lifetime, photons from
the universe R < 0 can get into the region R > R∗ if emitted close enough to the throat.

6.3. Multiple Wormholes in a Multi-Universe

Schematically, an evolving dust-filled configuration with a wormhole connecting
two closed Friedmann universes can be constructed as follows (see Figure 8). One takes
two copies of such universes, cuts off from each universe a three-dimensional spherical
region, and glues to the spherical boundaries being mouths of a dust-filled wormhole. This
configuration evolves synchronously with the proper cosmic time τ, which is supposed
to be the same in all regions, from the initial cosmological singularity to the final one. It
is worth noting that the wormhole mouths inscribed into closed Friedmann universes are
existing in the entire cosmological cycle and evolving synchronously with the universe’s
evolution, i.e., growing at the expansion phase and shrinking at contraction. On the other
hand, the wormhole throat situated between the two mouths is only open during a small
interval of the universe’s evolution. Figure 8 shows an example where a throat appears at
the moment of initial singularity, then it grows, achieves its maximum size, and after that,
it shrinks and disappears. In Figure 6, one can see other examples where wormhole throats
appear during cosmological evolution.

Figure 8. An evolving wormhole connecting two Friedmann universes.

The model with one dust-filled wormhole connecting two closed Friedmann universes
can be naturally generalized. We can suppose that the “mother” Friedmann universe is
born with multiple mouths of wormholes associated to “daughter” universes. As a result,
we obtain a model of a multi-universe as a system of closed Friedmann universes connected
by evolving dust-filled wormholes (see Figure 9).

Here it is necessary to stress once more that the multi-universe with multiple worm-
holes evolves synchronously with unified proper cosmic time τ, which is supposed to be
the same in all regions. Such a high correlation between different regions can be explained
if one supposes that the multi-universe is born from the quantum spacetime foam on
sub-Planckian scales as a single quantum state.

One more point worth being stressed is the following. Strictly speaking, the Fried-
mann universe with an inscribed wormhole mouth is already neither homogeneous nor
isotropic. A distant observer will see a wormhole mouth as a compact object bending
photon trajectories. In addition, a wormhole mouth will introduce distortions into the
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spectrum of the almost isotropic cosmic microwave background radiation. The scale of
anisotropy must be proportional to an angular size of the mouth. In principle, these both
effects could be potentially observable, therefore, one might verify the model of dust-filled
wormholes in the Friedmann universe using astrophysical methods. Particular predictions
of this kind require a further study.

Figure 9. Multiple wormholes in the multi-universe.

7. Concluding Remarks

In this paper, we have continued our study begun in [60] and described in some
detail different features of evolving wormholes able to exist in a Friedmann universe in the
simplest case of purely dust solutions. However, it is evident that adding small values of the
cosmological constant Λ cannot qualitatively change such local issues as the existence and
properties of wormholes. Meanwhile, a nonzero Λ drastically changes the global dynamics:
Λ > 0 launches a stage of accelerated expansion of the Universe, which must probably
encompass the wormhole region. It is important that such wormhole regions can exist not
only at a matter-dominated stage of the Universe evolution but also at its accelerated stage.
In particular, examples of solutions to the Einstein equations describing wormholes in a de
Sitter universe are known, and it has been noticed that such wormholes, if they existed at
an inflationary stage, could greatly extend the causal connection of different parts of the
universe [23].

On the other hand, the inclusion of a sufficiently small charge q 6= 0 also cannot
strongly change the local picture of a wormhole. However, globally, the Universe cannot be
precisely homogeneous and isotropic in the presence of a vector field. Also, a charge (or an
effective charge due to a wormhole) on one “pole” inevitably leads to an opposite charge
on the other, where the lines of force again converge. There can be a similar wormhole
mouth at this other pole and one more universe beyond it, and so on. The whole picture
will resemble a “churchkhela,” wonderful Georgian dessert, see Figure 10. As before, there
can also be natural generalizations in the spirit of Figure 9, not to mention that some of
the wormholes may connect different parts of the same universe. Possible observational
signatures of such objects, in particular, concerning the properties of cosmic microwave
background and cosmic magnetic fields, can be a subject of further studies. It may be of
particular interest to compare the characteristics of our wormhole models with the observed
parameters of cosmic voids and other local inhomogeneities in our universe.
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Figure 10. Multiple universes connected by magnetic wormholes.
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Abstract: In spirit of the recently proposed four-parameter generalized entropy of apparent horizon,
we investigate inflationary cosmology where the matter field inside of the horizon is dominated
by a scalar field with a power law potential (i.e., the form of φn where φ is the scalar field under
consideration). Actually without any matter inside of the horizon, the entropic cosmology leads
to a de-Sitter spacetime, or equivalently, an eternal inflation with no exit. Thus in order to achieve
a viable inflation, we consider a minimally coupled scalar field inside the horizon, and moreover,
with the simplest quadratic potential. It is well known that the φ2 potential in standard scalar field
cosmology is ruled out from inflationary perspective as it is not consistent with the recent Planck
2018 data; (here it may be mentioned that in the realm of “apparent horizon thermodynamics”, the
standard scalar field cosmology is analogous to the case where the entropy of the apparent horizon
is given by the Bekenstein–Hawking entropy). However, the story becomes different if the horizon
entropy is of generalized entropic form, in which case, the effective energy density coming from the
horizon entropy plays a significant role during the evolution of the universe. In particular, it turns
out that in the context of generalized entropic cosmology, the φ2 potential indeed leads to a viable
inflation (according to the Planck data) with a graceful exit, and thus the potential can be made back
in the scene.

Keywords: entropic cosmology; generalized entropy; apparent horizon; inflation; scalar field

1. Introduction

The growing interest in different entropy functions towards black hole thermody-
namics as well as towards cosmology [1–28] leads to the proposal of generalized entropy,
depending on number of parameters, which generalizes all the known and apparently
different entropies (like the Bekenstein–Hawking entropy [29,30], the Tsallis entropy [31],
the Rényi entropy [32], the Barrow entropy [33], the Sharma–Mittal entropy [34], the Ka-
niadakis entropy [35] and the Loop Quantum gravity entropy [36]) for a suitable regime
of the parameters [37–40]. Such interest in entropic cosmology becomes stronger when
the entropic dark energy seems to be equivalent to holographic dark energy with suit-
able holographic cut-offs [41]. Initially, a six-parameter dependent generalized entropy of
the form

S6(α±, β±, γ±) =
1

α+ + α−

[(
1 +

α+
β+

Sγ+

)β+

−
(

1 +
α−
β−

Sγ−
)−β−

]
, (1)

was proposed in [37], where S = A/(4G) is the Bekenstein–Hawking entropy (with A
being the area of the apparent horizon and G is the Newton’s gravitational constant) and
{α±, β±, γ±} are the parameters. However, soon after [37], a conjecture was made in [38],
which stated that the minimum number of parameters required in a generalized entropy
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function that can generalize all the aforementioned entropies is equal to four. In particular,
the four-parameter generalization is given by

S4(α±, β, γ) =
1
γ

[(
1 +

α+
β

S
)β

−
(

1 +
α−
β

S
)−β

]
, (2)

where {α±, β, γ} are the parameters which are considered to be positive in order to make
S4 like a monotonic increasing function with respect to S. As a supporting argument of the
conjecture, a counter example was shown in [38] by an entropy function containing less
than four parameters (having three parameters, in particular) of the form

S3(α, β, γ) =
1
γ

[(
1 +

α

β
S
)β

− 1

]
, (3)

which is not able to generalize all the known entropies; particularly, S3 does not represent
Kaniadakis entropy in any situation. All the above entropies {S6, S4, S3} possesses a
singularity in a different type of cosmological scenario, particularly in a bouncing context.
Such diverging behaviour is common to all the known entropies (like the Tsallis entropy,
the Rényi entropy, the Barrow entropy, the Sharma–Mittal entropy, the Kaniadakis entropy
and the Loop Quantum gravity entropy) as well as the Bekenstein–Hawking entropy itself
diverges in a bouncing scenario (at the instant of bounce). A possible explanation of this
issue is given in [39], where the authors proposed a singular-free generalized entropy
containing five parameters of the form

S5(α±, β, γ, ε) =
1
γ

[{
1 +

1
ε

tanh
(

εα+
β

S
)}β

−
{

1 +
1
ε

tanh
(

εα−
β

S
)}−β

]
, (4)

which is singular-free during the entire cosmological evolution of the universe even at
a bouncing instant (in the context of bounce cosmology) and is able to generalize all the
entropies known so far. According to the conjecture stated in [39], the minimum number of
parameters required in a non-singular generalized entropy function that is able to generalize
all the previously known entropies is equal to five. Based on universe’s evolution, in
particular, whether the universe passes through a non-singular bounce (or not) during its
cosmic evolution, the minimal constructions of generalized version of entropy is given
by the four-parameter [38] and the five-parameter [39] generalized entropy, respectively.
Various representatives of {S6, S4, S3, S5} and their convergence to the known entropies
are schematically shown in Table 1. The wide applications of the generalized entropies
towards cosmology as well as towards black holes are addressed in [38,40,42–46]. Here, it
also deserves mention that the microscopic interpretation of such generalized entropies
were not known until recently, when some of our authors gave a statistical description of
the same in microcanonical, canonical and grand-canonical ensemble [47,48].

Based on the above arguments, we will work with four-parameter generalized entropy
in the present work, which contains the minimum number of parameters and also gener-
alizes all the known entropies so far. In particular, we will concentrate on early universe
cosmology with four-parameter generalized entropy, where the matter fields inside of the
apparent horizon are dominated by a minimally coupled scalar field with a power law type
potential. Actually, without the matter fields inside the horizon, the entropic cosmology
results in a de-Sitter spacetime, or equivalently, an eternal inflation having no exit. Thus,
in order to have a viable inflation, one needs to take either of the following approaches—
(a) the entropic parameters vary with the cosmic expansion of the universe, or (b) by some
matter fields inside the horizon. In the context of generalized entropy, the first possibility
has been studied in [38], while the second approach will be examined in the present work
where the matter fields are taken to be a scalar field with a power law potential. Such a
form of scalar potential is motivated by the fact that the simplest φ2 potential (where φ is
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the scalar field under consideration) in standard scalar field cosmology is ruled out from
inflationary perspective as it is not consistent with the recent Planck 2018 data; (note that
this is particular case of FRW cosmology [49], actually in the realm of “apparent horizon
thermodynamics”, the standard scalar field cosmology is analogous to the case where
the entropy of the apparent horizon is given by the Bekenstein–Hawking entropy, which
produces the usual Friedmann equations from the thermodynamic law of the apparent
horizon). However the story becomes different if the horizon entropy is of the generalized
entropic form, in which case, the effective energy density coming from the horizon entropy
plays a significant role during the evolution of the universe. Motivated by this, we intend to
examine the status of the φ2 potential in the context of entropic inflation where the horizon
entropy is given by the four-parameter generalized entropy.

Table 1. Schematic table to summarize various representatives of the generalized entropies and
their convergence to the known entropies. Here, ST = Tsallis entropy, SB = Barrow entropy,
SR = Rényi entropy, SSM = Sharma–Mittal entropy, SK = Kaniadakis entropy and
Sq = Loop Quantum gravity entropy.

S3

γ = α SSM
α→ ∞ ST, SB

α, β→ 0 with α
β finite SR

β→ ∞, γ = α Sq

S5

ε, α− → 0, α+ = γ SSM

ε→ 0, α− = 0, α+ → ∞, γ =
(

α+
β

)β
ST, SB

ε, β→ 0, α− = 0, α+ = γ with α+
β finite SR

ε, α− → 0, β→ ∞, α+ = γ Sq

ε→ 0, β→ ∞, α+ = α− SK

S4

α− = 0, α+ = γ SSM
α+ → ∞, α− = 0 ST, SB

α− = 0, α+ = γ, β→ 0 with α+
β finite SR

β→ ∞, α− = 0, α+ = γ Sq

β→ ∞, α+ = α− SK

S6

α− = 0, α+ = γ+β+ SSM
α+ = α− → 0, γ+ = γ− ST, SB

α+, β+ → 0, γ+ = 1 with α+
β+

finite SR

β+ → ∞, α− = 0, γ+ = 1 Sq

β± → 0, α+ = α−, γ± = 1 SK

The paper is organized as follows: the modified Friedmann equations for four-
parameter generalized entropy is discussed in Section 2. Then after giving a brief review of
φn inflationary potential with the Bekenstein–Hawking entropy (i.e in standard scalar field
cosmology) in Section 3, we will examine the status of the same inflationary potential with
4-parameter generalized entropy as the horizon entropy in Section 4. The paper ends with
some conclusions in Section 5.

2. Modified Cosmology with Generalized Entropy

We consider a spatially flat and isotropic universe described by the Friedmann–
Lemaître–Robertson–Walker (FRLW) metric

ds2 = −dt2 + a(t)
(

dr2 + r2
(

dθ2 + sin2 θ dφ2
))

. (5)

It can be rewritten in the following way

ds2 = habdxadxb + r̃2
(

dθ2 + sin2 θ dφ2
)

, (6)
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defining r̃(r, t) = a(t)r, hab = diag(−1, a2) and x0 = t , x1 = r. The apparent horizon is
defined by hab∂a r̃∂b r̃ = 0, which in the case of a spatially flat FLRW background has the
solution [50–52]

rh =
1
H

. (7)

In this background we see that the apparent horizon is equivalent to the cosmological hori-
zon, that is the Hubble radius. Consequently, we can define a temperature T = |κ|/(2π),
where κ is the surface gravity defined by [50]

κ =
1

2
√
−h

∂a

(√
−hhab∂b r̃

)∣∣∣
r̃=rh

, (8)

which can be rewritten as

κ = − 1
rh

(
1− ṙh

2Hrh

)
, (9)

and it leads to a temperature

T =
1

2πrh

∣∣∣∣1−
ṙh

2Hrh

∣∣∣∣ . (10)

As in the case of the Bekenstein-Hawking entropy we can then associate a generalized
entropy Sg to the apparent horizon in order to find the field equations. The first principle
of thermodynamics states [51,52]

TdSg = −dE + WdV , (11)

where V is the volume of the apparent horizon, E = ρV is the total internal energy inside of
the horizon and W = 1

2 (ρ− p) represents the work density regarding the thermodynamic
law. The right side of this equation takes the expression as follows:

TdSg = −Vdρ− 1
2
(ρ + p)dV . (12)

To express this differential equation in terms of the apparent horizon we rewrite

TdSg = T
∂Sg

∂S
dS =

1
G

∣∣∣∣1−
ṙh

2Hrh

∣∣∣∣
∂Sg

∂S
drh (13)

and

−Vdρ− 1
2
(ρ + p)dV = −4π

3
r3

h

(
dρ− ρ̇

drh
2Hrh

)
, (14)

where we used the conservation equation of the matter fields ρ̇ + 3H(ρ + p) = 0. At this
point equaling the two terms we can derive the field equation for a general dynamical
apparent horizon rh

∂Sg

∂S
ṙh

r3
h
= −4πG

3
ρ̇ , (15)

which, for the choice of rh = 1/H along with the conservation relation of matter fields,
becomes

Ḣ
(

∂Sg

∂S

)
= −4πG(ρ + p) , (16)
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which is considered to be the second Friedmann equation in the context of generalized
entropic cosmology. The integration of such equation leads to the first Friedmann equation
corresponding to the generalized entropy we are considering as

∫
d
(

H2
)(∂Sg

∂S

)
=

8πG
3

ρ +
Λ
3

, (17)

where Λ, known as the cosmological constant, appears as an integration constant. The
above two equations represent the general Friedmann equations based on the apparent
horizon thermodynamics for any form of horizon entropy.

For the three-parameter and the four-parameter generalized entropy, Equation (16)
takes the following form:

Ḣ

{
α

γ

(
1 +

α

β
S
)β−1

}
= −4πG(ρ + p) , (18)

and

Ḣ

{
1
γ

[
α+

(
1 +

α+
β

S
)β−1

+ α−

(
1 +

α−
β

S
)−β−1

]}
= −4πG(ρ + p) , (19)

respectively. Moreover the first Friedmann equation, i.e., Equation (17), yields

βGH4

πγ(2− β)

(
βGH2

πα

)−β

2F1

(
1− β, 2− β, 3− β,− βGH2

πα

)
=

8πG
3

ρ +
Λ
3

, (20)

for S3, and

βGH4

πγ

[
1

2 + β

(
βGH2

πα−

)β

2F1

(
1 + β, 2 + β, 3 + β,− βGH2

πα−

)

+
1

2− β

(
βGH2

πα+

)−β

2F1

(
1− β, 2− β, 3− β,− βGH2

πα+

)]
=

8πG
3

ρ +
Λ
3

, (21)

for S4; where 2F1 (arguments) symbolizes the Hypergeometric function. Owing to the
above equations, we may argue that the generalized entropy generates an effective energy
density (along with the normal matter fields) in the Friedmann equation; for instance, the
energy density coming from the S4 is given by,

ρg =
3

8πG

{
H2 − βGH4

πγ

[
1

2 + β

(
βGH2

πα−

)β

2F1

(
1 + β, 2 + β, 3 + β,− βGH2

πα−

)

+
1

2− β

(
βGH2

πα+

)−β

2F1

(
1− β, 2− β, 3− β,− βGH2

πα+

)]}
,

and consequently, Equation (21) can be written as,

H2 =
8πG

3
(
ρ + ρg

)
+

Λ
3

.

Similarly the energy density corresponding to the 3-parameter generalized entropy can be
determined from Equation (20).

The energy density coming from the generalized entropy plays a significant role
during the evolutionary course of the universe. However, without any matter fields inside
of the horizon, Equation (19) (or Equation (18)) shows Ḣ = 0 leading to H = constant.
This argues that the entropic cosmology, in absence of matter fields, results in a de-Sitter
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spacetime, or equivalently, an eternal inflation having no exit. Therefore, in order to obtain
a viable inflation, one needs to incorporate either of the following possibilities—(a) the
entropic parameters slowly vary with the cosmic expansion of the universe (one may
see [53] where the authors studied a energy scale-varying entropic index that could lead
to new physics in the early universe), or (b) some matter fields inside of the horizon. In
the present work, we will concentrate on the second possibility, where the matter field is
taken to be a minimally coupled scalar field with a power law potential. Such form of the
scalar potential in the context of generalized entropy is well motivated, as discussed in the
introduction. However before moving to the case of the generalized entropy of the apparent
horizon, we will discuss the status of φn potential (from inflationary perspective) with the
Bekenstein–Hawking entropy in order to understand the role of the generalized entropy
during the early evolution of the universe. These are the subjects of the next sections
(Moreover, the cases with varying entropic parameters, in the context of three-parameter
and four-parameter generalized entropies, are addressed in Appendix A).

3. Status of φn Inflationary Potential with Bekenstein–Hawking Entropy

In this section we will investigate whether a φn type of potential, in the case where the
entropy of the apparent horizon is given by the Bekenstein–Hawking entropy, can lead to a
viable inflation during the early universe. As a result, the Equations (16) and (17) read as
(by considering Sg = S)

H2 =
8πG

3

{
φ̇2

2
+ V(φ)

}
(22)

Ḣ = −4πGφ̇2 , (23)

respectively, and the continuity equation for the scalar field becomes

φ̈ + 3Hφ̇ + ∂φV = 0 . (24)

The above equations are similar to that of in the standard scalar field cosmology—this
is however expected, as the Bekenstein–Hawking entropy leads to the usual Friedmann
equations in the realm of entropic cosmology. By the slow roll approximation, i.e., by
assuming that the potential energy during inflation dominates all the other forms of
energies, the first and second Friedmann equations become

H2 =
8πG

3
V(φ) and Ḣ = −4πGφ̇2 , (25)

respectively, and moreover, the continuity equation is approximated as,

φ̇ = −
(

1
3H

)
∂φV = 0 . (26)

Consequently the slow roll parameters take the following form,

ε(t) =
3
2

φ̇2

V(φ)
and η(t) = −

√
3

8πG
1

V(φ)

φ̈

φ̇
. (27)

For the scalar potential to be of the form like V(φ) = V0φn, the dynamical equation for the
scalar field from Equation (26) obtains the expression

φ̇ ' − 1
3H

∂φV = −nV0

3

(
8πG

2
V0

)− 1
2
φ

n
2−1 , (28)
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by using which, into Equation (27), we obtain the slow roll parameters in terms of scalar
field as follows:

ε(φ) =
n2

16πG
φ−2 and η(φ) =

n(n− 2)
16πG

φ−2 , (29)

respectively, where both ε(φ) and η(φ) are inversely proportional to φ, i.e., both of the
slow roll parameters increases with the decreasing value of the scalar field. Such behaviour
of ε(φ) actually helps to trigger a viable inflation. In particular, a considerably large
value of φ makes ε(φ) less than unity, which confirms an accelerated stage of the universe.
However as the scalar field rolls down (from a larger value to a smaller value, governing
by Equation (26)), ε(φ) increases, and at a certain instance of time, ε(φ) becomes unity,
which indicates the end of inflation. Let us consider that ε(φ) becomes unity at φ = φ f , i.e.,
ε(φ f ) = 1, which, along with Equation (29), yields the following form of φ f (in terms of
model parameters):

φ2
f =

n2

16πG
. (30)

The total number of e-folds of inflationary epoch is given by

Nf =
∫ φ f

φc

H
φ̇

dφ ' −
∫ φ f

φc

3H2

∂φV
dφ = −4πG

n

(
φ2

f − φ2
c

)
=

4πG
n

(
φ2

c −
n2

16πG

)
, (31)

where in the last step we used the condition ε(φ f ) = 1. Here, φc is the scalar field at the
time of horizon crossing of the CMB mode (∼ 0.05Mpc−1 at which we are interested to
determine the observable parameters). Inverting Equation (31), we immediately obtain φc
in terms of Nf as,

φc =

√
n

16πG
(4Nf + n) , (32)

so that we can then compute the slow roll parameters at the instant of horizon crossing of
the CMB scale modes, and they are given by,

ε(φc) =
n

4Nf + n
and η(φc) =

n− 2
4Nf + n

. (33)

These will be used to compute the spectral tilt for primordial curvature perturbation (ns)
and the tensor-to-scalar ratio (r) that are defined by

ns = 1− 6ε + 2η

∣∣∣∣
φ=φc

and r = 16ε

∣∣∣∣
φ=φc

, (34)

respectively, at the horizon crossing instant. Using the expressions of ε(φc) and η(φc) into
the bove equation along with a little bit of simplification yields the final forms of ns and r
as follows:

ns = 1− 4(n + 1)
4Nf + n

and r =
16n

4Nf + n
. (35)

Having Equation (35) in hand, we now examine the status of φn potential with the
Bekenstein–Hawking entropy of the apparent horizon, in respect to the Planck 2018 data
which puts a constraint on the observable indices as [54]:

ns = 0.9649± 0.0042 and r < 0.064 . (36)

It is evident from Equation (35) that both the ns and r depend on n and Nf. In Figure 1 we
plot the region of validity for the inflationary indices in the case of the Bekenstein–Hawking
entropy in the n-Nf space (we will concentrate around Nf = 60, which is consistent with
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the resolution of the horizon problem). It may be noted that we consider n ≥ 1 in the plot,
as n < 1 generates some singularity problem in the scalar field equation (through ∂V

∂φ ) when
the scalar field passes through φ = 0. We see from this plot that the two regions barely
overlaps in a small region (near at n = 1) far from the expected value of ns, which can be
considered statistically negligible. Therefore, in the scenario where the horizon entropy
is given by the Bekenstein–Hawking entropy and the scalar field inside the horizon has a
φn form of potential, there is no choice of the parameter n that provides the simultaneous
agreement of {ns, r} with the Planck observation.

1.0 1.2 1.4 1.6 1.8 2.0
20

40

60

80

100

n

N
f

Figure 1. Region of validity for the observable indices ns (Purple) and r (Orange) given in
Equation (35) in the n-Nf space. The purple region corresponds to the constraints region of ns

while the purple line represents its central value.

4. Status of φn Inflationary Potential with Generalized Entropy

As showed in Section [3] that the simple V(φ)∼φ2 potential with the Bekenstein–
Hawking entropy for the apparent horizon does not lead to a viable inflation from the
perspective of the Planck 2018 data. However the story of the φ2 inflaton potential may
become different in generalized entropic cosmology, in which case, the entropic energy
density arising from the generalized entropy contributes a significant role during the
universe’s evolution. Thus we will investigate the status of V(φ)∼φ2 potential in the
context of generalized entropic cosmology, where the presence of entropic energy density
results in a different cosmological scenario compared to that of in the Bekenstein–Hawking
entropic scenario. In particular, we will consider that the horizon entropy is of the form of
four-parameter generalized entropy and the matter fields inside of the horizon is dominated
by a scalar field having V(φ)∼φn potential.

For the case of four-parameter generalized entropy, the first Friedmann Equation (21),
without any cosmological constant, is given by:

βGH4

πγ

[
1

2 + β

(
βGH2

πα−

)β

2F1

(
1 + β, 2 + β, 3 + β,− βGH2

πα−

)

+
1

2− β

(
βGH2

πα+

)−β

2F1

(
1− β, 2− β, 3− β,− βGH2

πα+

)]
=

8πG
3

ρ . (37)
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The cosmological constant during the early phase of the universe is suppressed compared
to the inflaton energy density and, thus, one can safely neglect the Λ in studying the
inflationary dynamics of the universe. Since during the inflation the typical energy scale
is of order ∼ 10−4MPl (where MPl = 1/

√
8πG with G being the Newton’s gravitational

constant), we consider GH2 � 1 during the early universe. As a consequence, we can
expand the hypergeometric functions appearing in Equation (37), thanks to the relation
2F1(a, b, c, x) = 1 + ab

c x + O(x2), leading to

1
2− β

βGH4

πγ

(
βGH2

πα+

)−β(
1− (1− β)(2− β)

3− β

βGH2

πα+

)
=

8πG
3

ρ , (38)

on solving which, at the leading order in GH2, we obtain

H2 =

(
8πG

3
γ

α+

(
βG

πα+

)β−1
(2− β) ρ

) 1
2−β

. (39)

Moreover the second Friedmann Equation (16), due to GH2 � 1, takes the following form

α+
γ

(
α+
β

π

GH2

)β−1
Ḣ = −4πG(ρ + p) . (40)

As mentioned earlier that we will consider a minimally coupled scalar field as the matter
field inside of the horizon, for which, the corresponding energy density (ρ) and the pressure
(p) are given by

ρ =
φ̇2

2
+ V(φ) and p =

φ̇2

2
−V(φ) , (41)

respectively, where φ is the scalar field under consideration and V(φ) is its potential.
Therefore, Equations (39) and (40) become

H2 =

(
8πG

3
γ

α+

(
βG

πα+

)β−1
(2− β)

{
φ̇2

2
+ V(φ)

}) 1
2−β

. (42)

and
α+
γ

(
α+
β

π

GH2

)β−1
Ḣ = −4πGφ̇2 . (43)

The above two equations along with the continuity equation of the scalar field, i.e.,

φ̈ + 3Hφ̇ + ∂φV = 0 . (44)

govern the cosmological dynamics in the present context. Due to the slow roll approxima-
tion during the early universe, in particular

φ̈� Hφ̇ and
φ̇2

2
� V , (45)

Equations (42) and (43) read as

H2 =

[
8πG

3
γ

α+

(
βG

α+π

)β−1
(2− β)V(φ)

] 1
2−β

(46)

Ḣ = −2πGγ

α+

(
βGH2

α+π

)β−1

φ̇2 , (47)
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and moreover, the conservation equation is approximated as

φ̇ ' − 1
3H

∂φV . (48)

Therefore the first and the second slow roll parameters (defined by ε(t) = − Ḣ
H2 and

η(t) = − Ḧ
2HḢ ) take the following form

ε(t) =
3

4(2− β)

φ̇2

V(φ)
(49)

η(t) = −
[

8πG
3

γ

α+

(
βG

α+π

)β−1
(2− β)V(φ)

] 1
2(2−β) [ φ̈

φ̇
+

1− β

4(2− β)

∂φV
V(φ)

φ̇

]
, (50)

where for the second parameter we have used Equation (48). At this stage, let us consider
the power law form of the scalar potential, i.e., V(φ) = V0φn (with V0 and n being two
positive constants). For this scalar potential, we can compute the expression of φ̇ from
Equation (48), and is given by,

φ̇ ' −V0

3
n A−

1
2(2−β) φ

3−2β
2(2−β)

n−1 , (51)

where we have

A ≡ 8πG
3

γ

α+

(
βG

α+π

)β−1
(2− β)V0 . (52)

Plugging back the above expression of φ̇ into Equation (49) yields the slow roll parameters
in terms of φ as follows:

ε(φ) =
V0n2

12(2− β)
A−

1
2−β φ

1−β
2−β n−2 (53)

η(φ) =
V0

2
n
(

7− 5β

4(2− β)
n− 1

)
A−

1
2−β φ

1−β
2−β n−2 , (54)

where A is given above in Equation (52). It seems that the positivity of ε demands β < 2.
Moreover the above expression of ε(φ) clearly points that the model parameters (β and n)
need to obey the following constraint relation, namely

(
1− β

2− β

)
n < 2 (55)

in order to have a successful inflation with an exit. This is because that under Condition (55),
ε(φ) remains less than unity for a considerably large positive value of φ and triggers an
accelerating stage of the universe; however, as the scalar field rolls down along the potential,
ε(φ) increases and moves to unity at a certain value of φ = φ f (say) which indicates the
end of inflation. Thus as a whole—owing to Condition (55)—ε(φ) depends on the inverse
power of φ, which proves to be suitable for obtaining a successful inflation with a graceful
exit. The end point of inflation, i.e ε(φ f ) = 1, immediately leads to φ f from Equation (53)
as follows:

A
1

2−β φ
2− 1−β

2−β n
f =

V0n2

12(2− β)
. (56)

Consequently, the e-fold duration of the inflationary era is given by,

∫ Nf

0
dN =

∫ tf

tc
Hdt =

∫ φ f

φc

H
φ̇

dφ , (57)
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from which, using the conservation equation, we obtain

Nf ' −
∫ φ f

φc

3H2

∂φV
dφ =

3

V0n
(

2− 1−β
2−β n

)A
1

2−β

(
φ

2− 1−β
2−β n

c − φ
2− 1−β

2−β n
f

)
. (58)

Here, φc is the scalar field at the beginning of inflation (i.e., at N = 0) which is considered
to be the horizon-crossing instant of the large CMB scale mode (∼0.05 Mpc−1). By using
Equations (56) and (58), one can easily obtain the expression for φc as follows:

φc =

[
A−

1
2−β

(
nV0

3

(
2− 1− β

2− β
n
)

N f +
V0n2

12(2− β)

)] 1

2− 1−β
2−β

n
. (59)

Clearly φc > φ f , due to the constraint in Equation (55), as expected. Substituting the above
form of φc into Equation (53) along with a little bit of simplification lead to the slow roll
parameters, evaluated at the instant of horizon crossing, as

ε(φc) =
n

n + 4(2− β)
(

2− 1−β
2−β n

)
Nf

(60)

η(φc) =
(7− 5β)n− 4(2− β)

n + 4(2− β)
(

2− 1−β
2−β n

)
Nf

, (61)

respectively. Consequently, the scalar spectral index and the tensor-to-scalar ratio are
obtained as

ns = 1− 6ε + 2η

∣∣∣∣
φ=φc

= 1 +
2(4− 5β)n− 8(2− β)

n + 4(2− β)
(

2− 1−β
2−β n

)
Nf

,

r = 16ε

∣∣∣∣
φ=φc

=
16n

n + 4(2− β)
(

2− 1−β
2−β n

)
Nf

. (62)

Here, we compute the observable indices at the instant of horizon crossing of the large-
scale CMB modes on which we are interested to corroborate the theoretical predictions
with the Planck 2018 data. According to the Planck result, the ns and r are constrained
by Equation (36). From Equation (62), it may be noted that ns and r is influenced by the
entropic parameter β and that the dependence by the potential is given by the exponent
n. Moreover, ns and r also depend on the inflationary e-folding number Nf. Actually, the
other entropic parameters, in particular α± and γ, are packed within A (see Equation (52))
and these arise in the final expression of the observable indices through Nf. One can easily
choose α± and γ in such a way that Nf becomes around ≈60. Therefore the important
constraint that we need to take care is on the parameter β. In Figure 2 and Figure 3, we plot
the region of validity of {ns, r} (in respect to the Planck 2018 constraint) in the β-Nf space
for the case n = 1, and the case n = 2 respectively. The presence of an intersection between
β and Nf (around Nf = 60) shows the possibility of the agreement of the four-parameter
generalized entropic inflation with the Planck data. In both the figures, the gray shadowed
region, corresponding to β > 2, is not acceptable since it leads to negative values of ε (as
demonstrated after Equation (53)).

Thus as a whole, the power law inflaton potential (for n = 1 as well as for n = 2)
turns out to produce a viable inflation with a graceful exit and is also consistent with the
Planck data in the case where the apparent horizon has the four-parameter generalized
entropy, unlike to the case of the Bekenstein–Hawking entropy, which fails to show the
simultaneous compatibility of the inflationary indices with the observation.
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Figure 2. Region of validity of the observable indices ns (purple) and r (orange) given in Equation (62)
in respect to the Planck data. Here we take n = 1. The gray shadowed region, corresponding to
β > 2, is not acceptable since it leads to negative values of ε. The purple region corresponds to the
allowed region of ns while the purple line represents its central value (i.e., ns = 0.9649).
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Figure 3. Region of validity of the observable indices ns (purple) and r (orange) given in Equation (62)
in respect to the Planck data. Here we take n = 2. The gray shadowed region, corresponding to
β > 2, is not acceptable since it leads to negative values of ε. The purple region corresponds to the
allowed region of ns while the purple line represents its central value (i.e., ns = 0.9649).

5. Conclusions

We examine the status of the simplest quadratic inflaton potential in the realm of en-
tropic cosmology where the entropy of the apparent horizon is given by the four-parameter
generalized entropy and the matter fields inside of the horizon is dominated by a mini-
mally coupled scalar field with a φn type of potential (where φ is the scalar field under
consideration). Actually the quadratic potential (i.e., for n = 2) in standard scalar field
cosmology fails to produce a viable inflation, in particular, the φ2 potential is not compatible
with the inflationary observables based on the recent Planck 2018 data. Here, it is good to
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mention that in the language of entropic cosmology, the standard scalar field cosmology is
analogous to the case where the horizon has Bekenstein–Hawking entropy, which results in
the usual Friedmann equations. However the story becomes different when the apparent
horizon acquires the four-parameter generalized type of entropy, in which case, the en-
tropic energy density plays a significant role during the evolutionary course of the universe.
The appearance of the generalized entropy actually generates an effective energy density
which modifies the Friedmann equations, and consequently the cosmic evolution of the
universe, compared to the standard cosmological scenario. As a result, it turns out that with
the four-parameter generalized entropy of the apparent horizon, the φ2 potential results
in—(1) an inflation era described by a quasi de-Sitter evolution of the Hubble parameter,
which has an exit at around 55-60 e-folding number, (2) the inflationary observable quan-
tities like the spectral index for primordial scalar perturbation and the tensor-to-scalar
ratio are simultaneously compatible with the recent Planck data for suitable values of the
entropic parameters, (3) for the same parameter values, the the typical energy scale of the
universe at the onset of inflation becomes of the order ∼ 10−4 (in Planck units). Therefore,
this work clearly shows that the φ2 potential can be made back into the inflationary scenario
provided the apparent horizon has the four-parameter generalized type of entropy.

Regarding the four-parameter generalized entropy, a valid question may be raised
about its uniqueness, in particular, whether the S4 in Equation (2) is the unique four-
parameter generalized entropy or one may construct another four-parameter entropy
function that also accommodates all the known entropies. However the uniqueness prop-
erty of S4 is out of the motivation of this work, and thus we expect to study it in some
future work.
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Appendix A. Generalized Entropic Inflation with Varying Entropic Parameters

In this section, we will show that, beside the consideration of matter fields inside of
the horizon, one can get a proper inflation (with a graceful exit) in the context of entropic
cosmology by considering the entropic parameters to vary with the cosmic expansion of the
universe. In particular, we will concentrate on the three-parameter and the four-parameter
generalized entropy, namely the S3 and the S4, where the parameter γ is considered to vary
with the cosmic time. Thus γ = γ(N) where N represents the e-fold number. The running
behavior of γ can be described by quantum gravity as, actually, in the sector of gravity,
the degrees of freedom may increase if the spacetime fluctuates at high energy scales. In
the absence of matter fields inside of the apparent horizon, i.e, ρ = p = Λ = 0, and for
γ = γ(N), the thermodynamic law on the apparent horizon states:

0 = TdSg(S, γ(N)) =
∂Sg

∂S
dS +

∂Sg

∂γ
γ′(N)dN , (A1)

where a prime indicates the differentiation with respect to N, and Sg = {S3, S4}. Taking
into account the dependence of the entropy on γ and defining σ(N) ≡ γ′/γ we find

1
Sg

∂Sg

∂S
dS =

∂ ln Sg

∂S
dS = σ(N)dN , (A2)
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integrating which we find

Sg = exp
(∫ N

0
σ(N′)dN′

)
. (A3)

At this stage, we will take a certain form of γ(N) as follows:

γ(N) =





γ0 exp
(∫ N f

N σ(N′)dN′
)

N ≤ N f

γ0 N > N f

, with σ(N) ≡ σ0 + e−(Nf−N) , (A4)

where σ0 is a constant. The second term in the expression of σ(N) becomes effective only

when N ≈ N f , i.e., near the end of inflation. The term e−(N f−N) in the σ(N) is actually
considered to ensure an exit from inflation era and thus proves to be an useful one to make
the inflationary scenario viable. In the case of the three-parameter entropy, Equation (A3)
leads to the relation

(
1 +

απ

βGH2

)β

− 1 = exp
(∫ N

0
σ(N′)dN′

)
, (A5)

which for GH2 � 1 gives the asymptotic solution for the Hubble parameter

H(N) = 4πMPl

√
α

β

(
1 + exp

(∫ N

0
σ(N′)dN′

))− 1
2β

. (A6)

In order to apply the standard inflationary analysis we compute the slow-roll parameter in
terms of the e-fold parameter ε(N) as

ε(N) ≡ −H′(N)

H(N)
=

1
2β

σ(N)[
1 + exp

(
−
∫ N

0 σ(N′)dN′
)] , (A7)

and
ε′(N)

ε(N)
=

e−(N f−N)

σ(N)
+

σ(N)

1 + exp
(∫ N

0 σ(N′)dN′
) , (A8)

where we used the explicit expression of Equation (A4) to simplify the result. In order to
impose some constraints on the model parameters we compute various observable indices
such as the primordial curvature perturbation ns and the tensor-to-scalar ratio r obtained
as

ns = 1− 2ε− 2
ε′

ε

∣∣∣∣
N=0

and r = 16ε

∣∣∣∣
N=0

. (A9)

We compute these indices in the instant of horizon crossing of the large scale CMB modes,
which corresponds to the beginning of inflation N = 0.

In the case of the three-parameter entropy with Hubble parameter of Equation (A6)
along with σ(N) defined in Equation (A4) the observable indices have the expressions

ns = 1−
(

1 +
1

2β

)(
σ0 + e−N f

)
− 2

1 + eN f σ0
and r =

4(σ0 + e−N f )

β
. (A10)

Since the e-fold number of inflation Nf will be taken to be ∼55–60 we will neglect the terms
e−N f . We can then impose an end to the inflation era with the condition

ε(Nf) =
1 + σ0

2β(1 + e−1−Nfσ0)
= 1 , (A11)
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from which we obtain an inter-relation between β and σ0 that can then reduce the number
of parameters inside the observable indices. This substitution gives

ns = 1− σ0
(
2 + σ0 + e−1−Nfσ0

)

1 + σ0
and r =

8σ0
(
1 + e−1−Nfσ0

)

1 + σ0
, (A12)

which shows that both the ns and r depend on σ0 and Nf. Since these observable indices are
functions of only two variables we can directly check their validity in respect to the Planck
2018 data. In Figure A1 we plot the region of validity of {ns, r} given in Equation (A12) in
σ0-Nf space. As we can see from Figure A1, there is no overlapped region between σ0, and
thus the three-parameter generalized entropy with varying parameters does not provide a
inflationary scenario that is compatible with the Planck data.
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Figure A1. Region of validity for ns (blue) and r (orange) in case of the three-parameter generalized
entropy with varying parameters (by using Equation (A12)) in respect to the Planck data.
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Figure A2. Region of validity for ns (blue) and r (orange) in case of the four-parameter generalized
entropy with varying parameters (by using Equations (A18) and (A19)) in respect to the Planck data.
Here, we take Nf = 58.
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In the case of the four-parameter entropy, Equation (A3) leads to

(
1 +

α+π

βGH2

)β

−
(

1 +
α−π

βGH2

)−β

= exp
(∫ N

0
σ(N′)dN′

)
, (A13)

in the limit GH2 � 1 we can safely neglect the plus one in parenthesis and solve the
equation for H(N)

H(N) = 4πMPl

√
α+
β

[
1
2

exp
(∫ N

0 σ(N′)dN′
)(

1 +

√
1 + 4

(
α+
α−

)β
exp

(
−2
∫ N

0 σ(N′)dN′
))]− 1

2β

. (A14)

For this Hubble parameter the slow roll parameter is

ε(N) =
1

2β

σ(N)√
1 + 4

(
α+
α−

)β
exp

(
−2
∫ N

0 σ(N′)dN′
) , (A15)

and
ε′(N)

ε(N)
=

e−(N f−N)

σ(N)
+

σ(N)

1 + 1
4

(
α+
α−

)−β
exp

(
2
∫ N

0 σ(N′)dN′
) . (A16)

Again we will impose the condition on the end of inflation as

ε(N f ) =
1 + σ0

2β

√
1 + 4

(
α+
α−

)β
e−2−2N f σ0

= 1 , (A17)

which leads to an interrelation between the parameters (α+/α−)
β and σ0. Using such a

relation, we obtain the observable indices in the context of four-parameter generalized
entropy with varying parameters as follows:

ns = 1−
2σ0

√
1 + 4

(
α+
α−

)β
e−2−2Nfσ0

(1 + σ0)

√
1 + 4

(
α+
α−

)β
−

8σ0

(
α+
α−

)β

1 + 4
(

α+
α−

)β
, (A18)

and

r =
16σ0

√
1 + 4

(
α+
α−

)β
e−2−2Nfσ0

(1 + σ0)

√
1 + 4

(
α+
α−

)β
, (A19)

respectively. Equations (A18) and (A19) clearly indicate that both the ns and r depend on σ,
(α+/α−)

β and Nf. For a fixed Nf, particularly around Nf = 55–60, which is consistent with
the resolution of the horizon problem, we find the constraints imposed for these variables
in order to obtain viable inflation [54]. The validity of these constraints is shown by the
intersection of the two regions in Figure A2 for Nf = 58.

Thus, as a whole, it turns out that in the context of entropic cosmology with varying
entropic parameters, the four-parameter generalized entropy can provide a viable infla-
tion consistent with the Planck data, unlike the three-parameter generalized entropy that
fails to show the simultaneous compatibility of primordial inflationary indices with the
Planck result.
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Abstract: The simplest anisotropic model of the early universe is the one with two conformal factors,
which can be identified as the Kantowski–Sachs metric, or the reduced version of the Bianchi-I metric.
To fit the existing observational data, it is important that the anisotropy is washed out in the early
stage of the evolution. We explore the possible effects of the running cosmological constant on the
dynamics of isotropy in the case of space filled by radiation.

Keywords: early universe; anisotropic models; running cosmological constant

1. Introduction

Two important theoretical challenges for the theoretical background of modern cos-
mology are to construct the basis for a possible variation of the equation of state of dark
energy and to explain the initial conditions of the universe. One of the important aspects of
the last task is to elaborate a mechanism for making the universe isotropic, at least after the
initial stage of its evolution, which leaves observational traces.

The most natural candidate to be dark energy is the cosmological constant Λ (see,
e.g., [1]), which has a fixed equation of state PΛ = −ρΛ between “pressure” and “energy
density” components. If the future observational data show a deviation from this value,
it may be either interpreted as a non-constant cosmological term or as the presence of a
qualitatively new essence filling the universe, which may be a replacement or a complement
to the cosmological constant. The non-constant cosmological term may be a consequence
of the vacuum quantum effects of matter fields (see, e.g., the review [2] for a qualitative
discussion and further references). The corresponding quantum contributions to the action
of gravity are certainly rather complicated (e.g., necessarily non-polynomial) if expressed
via curvature tensors and nonlocal form factors [3]. This explains why these terms have
never been calculated with the existing quantum field theory techniques based on the
weak field expansions. For the same reason, the presence of these quantum contributions
cannot be ruled out. In this situation, one can rely on the phenomenological approaches,
e.g., based on the assumption of quadratic decoupling in the lower-derivative sector of the
gravitational effective action [4,5], or assuming and using the covariance of the effective
action [6]. All these approaches converge to the IR (low-energy) running of the form

ρΛ(µ) = ρ0
Λ +

3ν

8πG
(
µ2 − µ2

0
)
, (1)

where G is the Newton constant and ρ0
Λ is the value of the density of the cosmological

constant at the fiducial value µ0 of the scale parameter µ. The limits on the magnitude
of the phenomenological parameter ν were established in [7,8] in different types of the
cosmological models based on Equation (1). These limits were obtained by analyzing
cosmic perturbations and making comparison with the observational data. In both cases,
this analysis requires an identification of the artificial scale parameter µ of the minimal
subtraction renormalization scheme with a certain physical quantity, as discussed in [3].
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In the cosmological setting, some physical arguments based on quantum field theory
and also the scale-setting procedure [9] hint at the identification of µ with the Hubble
parameter H. On top of this, the covariance-based arguments imply that, under the
derivative expansion, the effective action cannot be odd in metric derivatives. For the
background cosmological metric, this gives Equation (1), and the same result follows from
the assumption of quadratic IR decoupling in the beta function of ρΛ.

The IR running implies that there is an effective action of gravity that can be sepa-
rated into the nonlocal parts responsible for the IR running of the cosmological constant,
the quantum corrections to the Einstein–Hilbert term (the running of the Newton constant),
and the terms which can be attributed to quantum corrections in the higher-derivative
sectors. The last terms can be directly calculated (see, e.g., [10] for review and references),
but are not very relevant for the late cosmology owing to the Planck suppression of the
higher-derivative terms. Thus, the covariance of the effective action assumes that the
lower-energy sector should satisfy certain conservation laws on its own. In this respect,
the cosmological applications of Equation (1) can be separated into the models admitting
the energy exchange between the vacuum and matter sectors and the ones without such
an exchange. It was argued in [11–14] that the models of the first type are physically
inappropriate for the late universe. On the other hand, the phenomenological limits on
the parameter ν in Equation (1) derived from the metric perturbations and LSS data [7]
are much stronger in these models, as was also confirmed in more recent work [15] by
analyzing another set of cosmological observables (see also [16] and references therein).
According to the most recent work, in the early universe (and certainly not in the later
stages of the evolution) there is no suppression of the creation of particles from the vac-
uum [11–13], making the exchange of energy between different parts of the gravitational
action less relevant. In this case, one can use the basic cosmological models based on the
running [17] instead of the more complicated models of the type considered in [14].

Despite a lot of the relevant information in cosmology being obtained from linear
cosmic perturbations, there is at least one special situation when one needs to perform a
non-perturbative analysis. This concerns the answer to the question of why the initial stage
of the universe can be described by the isotropic metric. To address this problem, one needs
to start with the anisotropic model and see whether and how the isotropy is restored in a
given model of gravity. Since the issue arises for the very early universe, the matter fields
can be described by pure radiation, which is a dominating component in this epoch, even
taking into account the symmetry restoration and the corresponding huge (compared to
the present one) magnitude of the cosmological constant [1,18].

In the present work, we report on the first (at least, up to our knowledge) theoretical
investigation of the effect of the running of the cosmological constant density Equation (1)
on the isotropization of the early universe. For this initial work we use the simplest model
including only radiation and the cosmological constant in the gravity theory based on
Einstein’s GR with the running cosmological constant. It is worthwhile to explain this
point in a more detailed form. Let us remember that we are discussing the very early
universe, where the typical values of the Hubble parameter are greater than the masses,
at least for the lightest massive particles, of the Standard Model. For smaller Hubble
values, the creation of particles from the vacuum is suppressed, as was noted long ago
in [11–13]. On the other hand, even for values of the Hubble parameter of the order of the
electron mass, the Einstein equations tell us that the typical temperature of the CMB is huge
compared to the masses of the heaviest particles of the Standard Model [5] and, probably,
compared to the heaviest possible candidates for the dark matter constituents. Thus, in this
regime, all kinds of matter, including baryonic and dark matter, can be regarded as having
the equation of state of radiation.

The running of the Newton constant and other terms in the action of gravity are not
taken into account, as they are less relevant in the given physical situation in the early
universe, when the energy exchange between the vacuum and matter sectors of the action
are not suppressed [15]. Finally, to explore the anisotropy we use the simplest version of
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the Bianchi type I metric, which is also a version of the Kantowski–Sachs (KS) model [19].
This metric has only two conformal factors and enables one to explore the main qualitative
features of the anisotropic running cosmology in the most economic and explicit way.
It is worth noting that isotropization in the KS cosmological models without running
was previously explored in many papers, including [20–22], where the isotropization of
the metric was first discovered (see also [23–31] for further investigations in different
models and [32,33] for a more complete set of references). It is worth noting the quantum
mechanism of isotropization (see, e.g., [34–36]; there are also many other papers on this
issue and a review in the book [37]).

The rest of this work is organized as follows. In Section 2, we formulate the back-
ground for the anisotropic running cosmology, that includes the identification of scale and
derivation of the main formulas for the dynamics of the conformal factors. Let us note that
the generalization to more complicated metrics, such as the general Bianchi-I, is expected
to be straightforward. Section 3 reports on the numerical results for the dynamics of the
conformal factors. Finally, in Section 4 we draw our first conclusions and discuss possible
extensions of the present work.

2. Theoretical Background of the Anisotropic Running Cosmology

The basis of our investigation will be Einstein’s equations with the cosmological constant,

Gαβ = 8πG Tαβ + Λgαβ, (2)

where gαβ is the metric tensor, the Newton constant G is assumed to be scale-independent,
as explained above, and Λ = 8πGρΛ depends on the scale parameter µ according to
Equation (1). Here, and in what follows, we adopt the units with c = 1 for the speed of
light in a vacuum.

Consider the Kantowski–Sachs metric,

ds2 = − dt2 + a2(t)dr2 + b2(t)
[
dθ2 + sin2 θdφ2], (3)

where r, θ, and φ are spherical coordinates, and a(t) and b(t) are the two scale factors.
The growth of these functions with time characterizes the expansion of the universe. In the
model (3), the radial part can expand differently to the angular parts. Since there are only
two functions, this is one of the simplest possible anisotropic models. The spatial sections
of this model have positive curvature.

The energy–momentum tensor for the perfect fluid is given by

Tαβ =
(
ρ f + p f

)
uαuβ + pgαβ, (4)

where ρ f and p f are, respectively, the energy density and pressure of the fluid and uα is
the four-velocity of the fluid. Since we are interested in the very early universe, the matter
contents may be approximately described by radiation, so the equation of state for our
perfect fluid should be

p f =
ρ f

3
. (5)

One may identify the isotropization of metric (3) in two different ways. In a more
simple way, after some time a(t) would tend to b(t). The second way is to see that the ratio
between the scale factors tends to a constant after some time, showing that the scale factors
would have the same expansion rate.

Using the KS metric (3) in the Einstein tensor on the left-hand side of Equation (2), we
arrive at a system of three ordinary differential equations:

64



Universe 2024, 10, 83

2ȧḃ
ab

+
ḃ2

b2 +
1
b2 = 8πGρt, (6)

2bb̈ + ḃ2 + 1 = − 8πGb2 pt, (7)

ä
a
+

ȧḃ
ab

+
b̈
b

= − 8πGpt. (8)

In these equations, ρt and pt are the total energy density and pressure, as will be detailed below.
Since there are only two variables, a(t) and b(t), we can restrict the consideration by

Equation (6) and the difference between Equation (8) multiplied by ab2 and Equation (7)
multiplied by a. Thus, the equations which we will work with are1

2bȧḃ + aḃ2 + a = 8πGab2ρt, (9)

b2 ä− abb̈ + bȧḃ− aḃ2 − a = 0. (10)

To simplify notation, in what follows we use units with 8πG/3 = 1. Together with
c = 1, this means physical time t is measured in Planck units. This is certainly a very small
unit, but for the very early universe this may be a useful choice. Concerning the right-hand
side of Equation (2), we meet the sum of the radiation and the contribution of the variable
cosmological constant Equation (1). A useful representation is using “energy density” and
“pressure” of the vacuum. Then, we may arrive at the total energy density and pressure of
the model, in the forms

ρt = ρ f + ρΛ, pt =
1
3

ρ f − ρΛ, (11)

where we used the relation (5) for the radiation and the relation pΛ = −ρΛ. Let us note that
this relation between the “energy density” and “pressure” of the vacuum corresponds to
the natural separation of the effective action of the vacuum into the cosmological constant
sector, Einstein–Hilbert sector, and higher-derivative part. In the isotropic metric case,
this separation, which was already mentioned in the Introduction, can be performed
using global scaling. The cosmological constant and the corresponding nonlocal quantum
corrections should have the same scaling, and this means the equation of state pΛ = −ρΛ.
The interested reader may find more details in [38].

The next problem is an identification of µ that would enable us to use the result in
Equation (1) and then in Equation (11). We shall use the usual choice of µ ∼ H, and the
definition of an average H suggested in [29],

H =
1
3

( ȧ
a
+ 2

ḃ
b

)
. (12)

This choice has several advantages. In the QFT framework, the running of vacuum param-
eters, including the cosmological constant, corresponds to the effect of quantum matter
fields on the external (classical) gravitational background. This means (see, e.g., [10] for the
introduction) that one has to deal with the Feynman diagrams with external gravitational
lines. As was discussed in [4,5], and numerous subsequent publications, the phenomeno-
logically acceptable running presumes that in the cosmological constant sector there is a
quadratic decoupling. Let us stress that this is a phenomenological assumption since such
a decoupling was verified only in the higher-derivative sectors of the vacuum action [10]
(see further references to the original works therein). In our case of an isotropic metric,
there may be lines corresponding to different conformal factors. In case the magnitudes in
the two terms are of the same order, it boils down to the usual identification from [4,5,9].
On the other hand, if the ratios ȧ/a and ḃ/b are very different, the choice Equation (12)
guarantees that the larger version of the Hubble parameter gives a greater contribution,
as required. From the phenomenological side, this definition looks natural and enables one
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to implement the running Equation (1) in the anisotropic setting. The generalization to the
Bianchi-I model is straightforward.

The energy conservation condition gives the equation

ρ̇ f + ˙ρΛ + 3H(p f + ρ f + pΛ + ρΛ) = 0. (13)

In the units we use, the running corresponds to the relation

ρΛ = ρ0
Λ + ν(H2 − H2

0). (14)

Taking in account Equation (5), the equation of state for the cosmological constant, and
the definition of the Hubble parameter (12), after some calculations we find the following
energy conservation Equation (13):

ρ̇ f a3b3 +
4
3

ρ f
(
ȧa2b3 + 2ḃa3b2) + 2ν

9

[
ȧäab3 − ȧ3b3 − 4a3ḃ3

+ 4a3bḃb̈ + 2a2b2(ȧb̈ + äḃ)− 2a2bȧḃ2 − 2ab2 ȧ2ḃ
]
= 0. (15)

For the total energy density of ρt, and using Equation (9), we arrive at the equation

(18− 4ν)abȧḃ + (9− 4ν)a2ḃ2 − νb2 ȧ2 + 9a2 = 9a2b2(ρ f + ρ0
Λ − νH2

0
)
. (16)

It is worth noting that here ρ f is the energy density of radiation, which is one of the variables
that has the dynamics to be defined from the equations, and ρ0

Λ is the initial point of the
renormalization group flow.

3. Numerical Results for the Anisotropic Metric

Solving the system of Equations (10), (15), and (16), one can explore the dynamics
of the relevant functions a(t), b(t), and ρ f (t). Let us report on the corresponding numeri-
cal analysis.

Differently from previous work [7], we do not consider cosmic perturbations; however,
the background geometry is more complicated owing to anisotropy. On the other hand, we
know that the metric in the universe filled by radiation becomes isotropic in a very short
time; hence, our interest concerns the very early universe. In this case, the limitations on
the sign and magnitude of the parameter ν, which were established in [7] (also in [8] for
another model with running cosmological constant), do not apply anymore, and hence, we
can assume much greater values of ν, both positive and negative. Following this logic, we
studied different cases, varying the values of the parameters, including ν, in the first place.
One of our targets is the isotropization of metric (3), i.e., evaluation of the ratio b/a.

The results of the numerical analysis can be seen in the figures. Let us first summarize
the general features of different models, characterized by different values of the parameter
ν and different initial data. We found that for the physically relevant solutions, i.e., when
the value of ν is small, both a(t) and b(t) always expand and that ρ f (t) always tends to
zero, starting from a given initial value.

Consider the case when initially the model is strongly anisotropic, that is, we choose
b(t = 0) = 100 and a(t = 0) = 1. For the numerical analysis, we used the initial values

ρ0
Λ = H0 = 1, ȧ(t = 0) = 1, ρ f (t = 0) = 2, (17)

while the value of ḃ(t = 0) varied. In Figures 1 and 2, we show some plots obtained by the
variation of ν. One can see both a(t) and b(t) are rapidly growing with time, and it looks
like the anisotropy does not change significantly, for all values of ν. Let us note that we
took much greater values of |ν| compared to the upper bounds derived in [7,8]. There were
two reasons for this. The first one was that for values of the order 10−6, which are typical
for models of the first type (with the exchange of energy between vacuum and matter [7]),
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the plots are not visually distinguishable from the one for ν = 0. The second reason was
that the isotropization occurs very fast when the values of the Hubble parameter are very
large. Obviously, this makes sense only assuming that the isotropization takes place in
the very early universe, where typical energies are very high. This means, there is no
decoupling of the highest-mass particles, providing small values of ν [4,5] and, therefore,
there is no contradiction in assuming the values of order one. The same thinking concerns
the sign, which was advocated as being positive in [7]. In the effective decoupling-based
framework formulated in [5] (see also [2,3]), this sign is defined by the spin of the highest-
mass particles in the spectrum beyond the Minimal Standard Model. And if the scale of
decoupling dramatically changes, we have to take into account the possibility of fermion
domination and, therefore, consider also the negative values of ν.

Following these arguments, we chose the values for the parameters, initial conditions,
and the values of ν to produce the graphs demonstrating qualitative properties of the
solutions. Figures 1, 2, 3 and 4 show, respectively, the time dependencies a(t), b(t), ρ f (t),
and the ratio b(t)/a(t) for four different large positive values of ν. Similarly, Figures 5–8
show the time variations of the same quantities a(t), b(t), ρ f (t) and b(t)/a(t) for four
different negative values of ν. Furthermore, Figures 9–12, illustrate the behavior of a(t),
b(t), ρ f (t), and b(t)/a(t) for four different positive and negative values of ν. Observing
these plots we can see the general situation, i.e., how the running of the cosmological
constant density may affect the process of isotropization. These general features are
formulated in the next section.

Figure 1. Variation in a(t) for four different positive values of ν.
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Figure 2. Variation in b(t) for four different positive values of ν.

Figure 3. Variation in ρ f (t) for four different positive values of ν.
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Figure 4. Variation in b(t)/a(t) for four different positive values of ν.

Figure 5. Variation in a(t) for four different negative values of ν.
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Figure 6. Variation in b(t) for four different negative values of ν.

Figure 7. Variation in ρ f (t) for four different negative values of ν.
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Figure 8. Variation in b(t)/a(t) for four different negative values of ν.

Figure 9. Variation in a(t) for seven different positive and negative values of ν.
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Figure 10. Variation in b(t) for seven different positive and negative values of ν.

Figure 11. Variation in ρ f (t) for seven different positive and negative values of ν.
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Figure 12. Variation in b(t)/a(t) for seven different positive and negative values of ν.

On the basis of the numerical analysis one notes that there may be a value of ν where
the tendencies related to the running stop working. As an illustration, we show this
situation in Figures 13–16, corresponding to ρ0

Λ = 1 and a huge unphysical value ν = 8. In
this case, the term with ν in the Friedmann Equation (16) dominates over the basic term
ρ0

Λ. We included these plots just to illustrate the general situation that may happen in the
region of “quantum dominance”, where the running becomes very strong.

Figure 13. Variation in a(t) for a large positive value of ν.
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Figure 14. Variation in b(t) for a large positive value of ν.

Figure 15. Variation in ρ f (t) for a large positive value of ν.
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Figure 16. Variation in b(t)/a(t) for a large positive value of ν.

In Figure 13, the scale factor a(t) expands slowly and then the universe starts to
contract. When the time gets close to t = 4, an exponential expansion starts and continues
until it abruptly stops the expansion due to a final singularity at t ≈ 3.93. Figure 14 shows
the behavior of the second scale factor b(t), which also slowly expands until it reaches a
maximum value at approximately t = 0.5. After that, a contraction begins until it reaches a
zero value and gives rise to a singularity, similar to a big crunch, at the same value of time
t ≈ 3.93. Figure 15 demonstrates ρ(t) with the same values of the parameters. It is easy to
see that we meet (quite naturally) a singularity at the same point. To complete this part,
in Figure 16 one can observe that the ratio b(t)/a(t) remains approximately constant and
then begins to decrease at some point. This stage lasts until the same point, t ≈ 3.93, when
b(t) goes to zero.

4. Conclusions

We have considered the effect of the running cosmological constant in the early
universe on the isotropization of the KS metric. As was argued in previous publications on
the running cosmology models [15] (based on the previous ideas and restrictions of [11–14]),
in the early universe the running of the Newton constant is a sub-dominating effect, which
can be neglected, in the leading approximation. Thus, we treated the Newton constant G as
a non-running quantity.

The most important qualitative result of our work is that, different from the cosmic
perturbations [7], small values of the phenomenological parameter ν do not affect the
dynamics of the anisotropic conformal factors, at least in the framework of the KS metric
model [19]. Taking into account the bound for ν derived from the perturbations, one
could conclude that the possible running of the cosmological constant is irrelevant for the
dynamics of anisotropic parameters, but this would be a misleading statement. The reason
is that in the very early universe the metric becomes isotropic very fast and, therefore,
the two kinds of deviation from the homogeneous and isotropic cosmology occur at distinct
epochs. And, in the very early universe we can assume that the values of ν do not satisfy
the aforementioned bound. Assuming that this parameter is of the order one, we can see
how the running of Λ affects the isotropization.
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Concerning the anisotropic model and the role of the running in isotropization of the
metric, we can see that the model tends towards an isotropic configuration in the course of
evolution for all values of ν which are considered. Also, one notes that for smaller values of
ν, the ratio b(t)/a(t) tends to a constant value quicker. On top of this, the aforementioned
constant value is greater for smaller values of ν. It is worth noting that since both conformal
factors depend only on time, these results do not depend on the choice of coordinates.
Another conclusion one can draw from the plots in Figures 1–12 is that the smaller the value
of ν, the faster the expansion of the scale factors a(t) and b(t). Furthermore, independent of
the isotropy, the fluid density ρ f goes to zero faster for smaller values of ν. Both tendencies
hold for both positive and negative values of the parameter ν.

Finally, we conclude that the running of the cosmological constant in the model with
energy exchange between the vacuum and matter (radiation, in our case) sectors describes
the accelerated expansion and, for a moderate value of the phenomenological parameter ν,
does not contradict very fast isotropization of the initially anisotropic model. After that,
the evolution occurs in the isotropic way, except the dynamics of the cosmic perturbations,
which were analyzed in detail in [8].

The last observation concerns the possible extensions and continuations of this work.
Despite the KS metric results looking convincing, it would be interesting to perform the
same, or maybe a more detailed analysis, for the Bianchi type I, or even more general,
metric. In this respect, we note that the previous investigations of Wald [26] showed that
the qualitative difference, in the case of a constant vacuum energy, is expected only starting
from the Bianchi type IX metric. It would be interesting to see whether this feature holds
for the running cosmological constant, maybe using the dynamical systems approach as
suggested in [27].

On the other hand, since the anisotropy under discussion concerns only the very early
universe, when typical energies are extremely high, it would certainly be interesting to
include a consideration of the effects of higher-derivative terms, starting from R2. We hope
to address this issue in future work.
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Abstract: We apply a very simple procedure to construct non-singular cosmological models for flat
Friedmann universes filled with minimally coupled scalar fields or by tachyon Born–Infeld-type
fields. Remarkably, for the minimally coupled scalar field and the tachyon field, the regularity of
the cosmological evolution, or in other words, the existence of bounce, implies the necessity of
the transition between scalar fields with standard kinetic terms to those with phantom ones. In
both cases, the potentials in the vicinity of the point of the transition have a non-analyticity of the
cusp form that is characterized by the same exponent and is equal to 2

3 . If, in the tachyon model’s
evolution, the pressure changes its sign, then another transformation of the Born–Infeld-type field
occurs: the tachyon transforms into a pseudotachyon, and vice versa. We also undertake an analysis
of the stability of the cosmological evolution in our models; we rely on the study of the speed of
sound squared.

Keywords: Friedmann universe; regular cosmology; tachyons; scalar fields

1. Introduction

For many years, the cosmological singularity has been one of the most attractive prob-
lems in general relativity. Starting from Robertson’s seminal work [1], the initial singularity
issue of Friedmann-type cosmologies was under scrutiny. Launching the singularity-to-
maximal-radius-and-back cyclic evolution was already considered there. It seemed that
touching the singularity did not bother him too much. Thereafter, generalization to the
case of not only homogeneous and isotropic spacetimes was explored [2–5], resulting in
the proof of some general theorems and the discovery of the oscillatory (BKL) approach
to the cosmological initial singularity [6], also known as the Mixmaster Universe [7]. The
investigation of arising (rather soft) future singularities at the finite scale factor was done
further [8] and still maintains interest [9–14]. Regarding such soft future singularities, the
condition of their crossing becomes important; see, e.g., [15,16]. The idea of the possible
crossing of the so-called Big Bang–Big Crunch singularity appears rather counterintuitive in
contrast to the crossing of the soft singularities. Thus, the desire to find models free of such
singularities is understandably strong, and this direction is prevalent. However, the idea of
the possible transition from a Big Crunch–Big Bang transition was also studied in some
cosmological models. Let us point out here the string or pre-Big Bang scenario [17–19],
wherein the accelerated expansion of the universe is driven by the kinetic energy of the
dilaton field. From the cosmological singularity’s point of view, its presence is essential,
since by making the transition from the string frame—where the dilaton is non-trivially
coupled to gravity—to the Einstein frame, the observable evolution of the universe can be
drastically changed: what looks like an expansion in one frame can look like a contraction
in another one. An alternative treatment is to reformulate the theory, relying on the role of
scalar fields, to define the finite variables as the scale factor shrinks to zero. That suggests
a natural way to match the solutions before and after the singularity crossing and was
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inspired by superstring theories [20–22]. The importance of such features is significant in
other approaches as well [23–29].

While the activity of the description of crossing a singularity in cosmology becomes
intensive, attempts to find cosmological non-singular models still conserve their charm;
see, e.g., [30–32]. Even more active is the search for regular black hole solutions. The study
of non-singular black holes started a long time ago [33], and for recent reviews, see [34,35].
One can write down a singularity-free metric ansatz from the Schwarzschild black hole
by a simple substitution of the radial coordinate r as r →

√
r2 + b2, as was proposed by

Simpson and Visser [36]. That results in the following spacetime:

ds2 =

(
1− 2m√

r2 + b2

)
dt2 −

(
1− 2m√

r2 + b2

)−1
dr2 −

(
r2 + b2)dΩ2

2, (1)

where b is a parameter, and the singularity at r = 0 is replaced by a regular minimum of the
area function at r = 0: a sphere of radius b. If b > 2m, this spacetime represents a wormhole
with a throat at r = 0; if b < 2m, one has a black hole with two horizons at r = ±

√
4m2 − b2,

and the b = 2m case corresponds to an extremal black hole with a single horizon at r = 0.
At the hypersurface r = 0 in the black hole case, the coordinates change their temporal and
spatial assignments, which corresponds to a bounce in one of the two scalar factors of the
Kantowski–Sachs universe: the so-called black bounce. Afterward, a Vaidya spacetime [37],
charged black-bounce spacetimes [38], and Kerr black holes [39] were “regularized” in this
Simpson–Visser spirit. This one-parameter extension (1) is sustained by a phantom scalar
field and a magnetic field within nonlinear electrodynamics, as was established in [40].

Generally, in the majority of works devoted to the construction of regular black holes,
one can use the method that many years ago was called the “G-method” by Synge [41];
see also a recent e-print [42]. Using this method, one chooses a metric, substitutes it into
the left-hand side of the Einstein equations, and then sees what happens on the right-hand
side. The G-method is opposed to the “T-method”, for which one chooses the form of the
matter in the right-hand side of the Einstein equations and then tries to find the metric that
satisfies this system of equations by substituting it into the left-hand side. The advantage
of the G-method consists of the fact that it always works (in contrast with the T-method).
Unfortunately, the right-hand side of the Einstein equations that arises as the result of the
application of the G-method does not always have some reasonable physical sense that can
be identified with some known fields or other types of matter. The remarkable example
of a regular black hole sustained by a minimally coupled phantom scalar field with an
explicitly known potential was found in [43]. Some properties of this solution were studied
in further detail [44], and it was also used [45] in an attempt to construct a regular rotating
black hole.

Recently, Bronnikov explored [46] the regularized version of the Fisher solution [47],
which has been rediscovered many times in different contexts [48–55]. One can observe
an interesting transition from the standard scalar field to the phantom one there. Herein,
we can note that the Friedmann cosmological models have a simpler structure than the
Schwarzschild-like black holes. That gives some hope that, using an analogy with the
Simpson–Visser prescription [36] in cosmology, one can obtain rather simple cosmological
solutions with the matter content, which can be analyzed, at least qualitatively. Indeed,
this was done in paper [44]. It was shown that when considering a non-singular metric
of the flat Friedmann universe filled with a minimally coupled scalar field, one can find
two interesting qualitative features of the model: First, at some moment, the standard
scalar field becomes a phantom one, i.e., the kinetic term changes its sign. Second, even
if we cannot find an explicit expression for the scalar field potential, we can state that it
should be non-analytical, or, more precisely, it should have a cusp. Remarkably, a similar
phenomenon was observed in the study of the opportunity of the so-called phantom divide
line crossing [56,57], and the forms of the cusps of the potentials coincide.
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As is well known, cosmological models with minimally coupled scalar fields are not
the only kind of scalar field models. Some time ago, in the context of string-inspired
cosmological models, the so-called tachyon fields were studied [58–62]. These tachyon
fields arising in string theory [58] are not connected with the tachyon particles flying with
superluminal velocities [63]. Nevertheless, we shall use the term “tachyons”, which has
already become traditional in the cosmological literature. These tachyons indeed represent
scalar fields with non-trivial kinetic terms of the type that was first studied by Born and
Infeld [64]. It is interesting to note that the birth of Born–Infeld non-linear electrodynamics
was at least in part motivated by the desire to eliminate the singularity of the electric field of
a point-like electric charge. Remarkably, sharing with the linear Maxwell electrodynamics
the electric–magnetic duality and the physical propagation of waves, the Born–Infeld theory
manages to tame the divergence of the Coulomb self-energy [65]. Indeed, the expression
for the electric field of the point-like charge Q has the form

~E =
Q√

r4 + Q2
~er. (2)

Thus, one has regularization, which in a way reminds one to put “by hands” into the
Simpson–Visser-like metrics for black holes and cosmological models. However, here in (2),
the charge Q plays the role of both the source of the electric filed and of the regularizing
quantity. The effective density of the electric point-like charge acquires a finite radius,
which is connected with the dimensional parameter b in the definition of the Born–Infeld
action [64]. Later, it was discovered that this action appears as an effective action in
supersymmetric theories [66,67] as well as in string theory [68]. The attempts to construct a
Born–Infeld-type extension of gravity, despite not being unique and well-motivated, are
under investigation; see the recent review [69].

The interest in cosmological models with tachyons was mainly connected with their
possible role as a source of dark energy. However, further studies have shown that the
presence of non-trivial kinetic terms in these models can imply the appearance of some very
unusual properties. For example, a tachyon cosmological model with a particular potential
depending on trigonometrical functions was studied, and two interesting phenomena were
discovered: the self-transformation of the tachyon field into a pseudo-tachyon field and the
appearance of a particular type of soft future cosmological singularity, which was called
“Big Brake” in [12]. Thus, taking into account the richness of the cosmological models based
on the presence of Born–Infeld-type fields, it is interesting to study regular flat Friedmann
cosmological universes filled with such fields and to see what kind of effects one can
observe there. This is the main goal of the present paper. Its structure is the following:
in the second section, we present known results for a regular flat Friedmann universe
filled with a minimally coupled scalar field [44]; in the third section, we consider a flat
Friedmann universe filled with a tachyon field. The last section contains a discussion of the
obtained results.

2. Regular Friedmann Universes and Scalar Fields

The well-known exact solution for a flat Friedmann universe with a massless scalar
field φ is

ds2 = dt2 − t2/3(dx2
1 + dx2

2 + dx2
3
)
, φ̇ =

√
2
3

1
t

. (3)

Hereafter, dots refer to time derivatives. Following the Simpson–Visser recipe [36], one can
write down the regularized one from (3) as:

ds2 = dt2 −
(
t2 + b2)1/3(dx2

1 + dx2
2 + dx2

3
)
. (4)
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A straightforward calculation provides us with the Ricci tensor components:

R0
0 =

2t2 − 3b2

3
(
t2 + b2

)4 , R1
1 = R2

2 = R3
3 = − b2

3
(
t2 + b2

)2 , (5)

and the Ricci scalar:

R =
2t2 − 6b2

3
(
t2 + b2

)2 . (6)

Then, the Einstein equations immediately afford the expressions for the energy density and
the isotropic pressure of matter as

ρ =
t2

3
(
t2 + b2

)2 , p =
t2 − 2b2

3
(
t2 + b2

)2 . (7)

Considering spacetime that is filled with a spatially homogeneous scalar field with some
potential V(φ), namely,

ρ =
1
2

φ̇2 + V(φ), p =
1
2

φ̇2 −V(φ), (8)

one can compare these expressions and gain

φ̇ = ±
√

2
3

√
t2 − b2

t2 + b2 , (9)

V =
b2

3
(
t2 + b2

)2 . (10)

Equation (9) can be integrated, providing the field φ as a function of time t. However,
we are not able to invert the result and find t as an explicit function of φ, and thus we
cannot use Equation (10) to find the explicit form of the potential in terms of the scalar
field. Nonetheless, the Formulas (9) and (10) provide us with rather interesting information.
One can see that the expression (9) makes sense only if |t| ≥ b. What would happen at
|t| < b? In this situation, the kinetic energy of φ changes sign, and the standard scalar field
transition to a phantom one appears. Therefore, one can observe an analogous effect to that
explored in [46]. The behavior in the vicinity of t = b can be defined through t = b + τ,
τ << b, resulting in

dφ

dτ
=

√
τ√

3b3
, → φ(τ) = φ0 +

2τ3/2

3
√

3b3
, (11)

where φ0 is an integration constant. Accordingly,

τ = 3b
(

φ− φ0

2

)2/3
. (12)

Replacing in the expression the potential with (12), one can find the behavior near the
vicinity of the critical point, and by keeping the leading terms, we have

V(φ) =
1

12b2

(
1− 6

(
φ− φ0

2

)2/3
)

. (13)

The presence of cusp type’s non-analyticity in the expression above is responsible for the
transition from the standard scalar field to its phantom counterpart and vice versa.
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One can also consider a slightly more general model:

ds2 = dt2 − t2α
(
dx2

1 + dx2
2 + dx2

3
)
, (14)

in which the dynamics evolve a perfect fluid with the equation-of-state parameter as follows:

w =
2− 3α

3α
. (15)

This is the well-known particular solution for the flat Friedmann model with a minimally
coupled scalar field and exponential potential. To eliminate the cosmological singularity,
one can modify metric (14) in a Simpson–Visser spirit as

ds2 = dt2 −
(
t2 + b2)α(dx2

1 + dx2
2 + dx2

3
)
; (16)

the corresponding Ricci tensor components are

R0
0 = −3α

(
(α− 1)t2 + b2)
(
t2 + b2

)2 , R1
1 = R2

2 = R3
3 = −α

(
(3α− 1)t2 + b2)
(
t2 + b2

)2 , (17)

and the Ricci scalar is

R = −6α
(
(2α− 1)t2 + b2)
(
t2 + b2

)2 . (18)

Now the expressions for energy density and pressure read

ρ =
3α2t2

(
t2 + b2

)2 , p = −α
(
(3α− 2)t2 + 2b2)
(
t2 + b2

)2 , (19)

and the corresponding expressions for the potential and the time derivative of the scalar
field realizing the evolution (16) are

V(φ) =
α
(
(3α− 1)t2 + b2)
(
t2 + b2

)2 , φ̇2 =
2α
(
t2 − b2)

(
t2 + b2

)2 . (20)

In the absence of the regularizing parameter b = 0, we can get from Equation (20) the
known expression for the exponential potential:

V(φ) = α
(
3α− 1

)
exp

(
−
√

2
α

(
φ− φ0

)
)

. (21)

Nevertheless, if b > 0, one can see that, just as in the previous case, the transition from
the standard scalar field to the phantom one (or vice versa) takes place. Now, we can
again consider the vicinity of the instant t = b. Proceeding in a similar way, we obtain the
following expression for the behavior of the potential in the vicinity of the cusp:

V(φ) =
α

4b2

(
3α− 2 · 32/3

α1/3

(
φ− φ0

2

)2/3
)

. (22)

This expression has the same non-analyticity (∼(φ− φ0)
2/3) as that seen in the expression

(13), and when α = 1
3 , these expressions coincide.

3. Regular Friedmann Universes and Tachyons

Let us now again consider a regular flat Friedmann universe with the metric (16).
The expressions for the components of the Ricci tensor, Ricci scalar, energy, and pressure
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are given by Equations (17)–(19). However, now the universe is filled by the tachyon
(Born–Infeld-type) field with the Lagrangian [58]:

L = −V(T)
√

1− T,µT,µ (23)

where T is the tachyon field, and the function V(T) will be called the “potential” of the
tachyon field. In the framework of our Friedmann model, we shall consider a spatially
homogeneous tachyon field T = T(t), and the Lagrangian (23) will take the simple form

L = −V(T)
√

1− Ṫ2. (24)

The energy density and the pressure for this field are

ρ =
V(T)√
1− Ṫ2

, p = −V(T)
√

1− Ṫ2. (25)

The analogue of the Klein–Gordon equation now looks as follows:

T̈
1− Ṫ2 +

3αt(
t2 + b2

) Ṫ +
V,T

V
= 0. (26)

Comparing the expressions (25) for the tachyon field with the corresponding components
of the energy–momentum tensor coming from Friedmann’s equations (19), we obtain

Ṫ2 =
ρ + p

ρ
=

2
(
t2 − b2)

3αt2 , (27)

V(T) =
√
−ρp =

√
3α3t2

(
(3α− 2)t2 + 2b2

)

(
t2 + b2

)2 . (28)

One can solve Equation (27), to find a solution

T(t) = T0 ±

√
2
(
t2 − b2

)

3α

(
1− b√

t2 − b2
arctan

√
t2 − b2

b

)
. (29)

Let us note here that this solution automatically satisfies Equation (26) due to the
Bianchi identities. This feature is typical for the reconstruction techniques for the poten-
tials of both the minimally coupled and the tachyon fields; see, e.g., ref. [12] and the
references therein. We cannot invert Equation (29) and find the cosmic time parameter
t as a function of the tachyon field T. Thus, as a result, we cannot find an explicit form
of the tachyon potential (28) as a function of T. Let us compare this situation with that
of the singular cosmology for which the regularizing parameter b = 0. In this case, the
universe expands (or contracts) following a simple power law, and Equations (27) and (28)
become simpler:

Ṫ2 =
ρ + p

ρ
=

2
3α

, V(T) =
√
−ρp =

√
3α3
(
3α− 2

)

t2 . (30)

Integrating Equation (30), we get

T(t) = T0 ±
√

2
3α

t, (31)
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and inverting Equation (31), one obtains

t = ±
√

3α

2
(
T − T0

)
. (32)

Substituting expression (32) into Equation (30), we find the explicit form of the tachyon potential:

V(T) =

√
4α(3α− 2)

3(
T − T0

)2 . (33)

A tachyon model with potential (33) was considered in papers [59,60]. Such a model
has a particular exact solution that describes a universe expanding according to the power
law with a negative effective pressure. In our terms, it corresponds to the parameter α
such that α > 2

3 . To have a flat Friedmann universe expanding according to the power law
but with positive pressure, i.e., with the parameter α < 2

3 , one can introduce another type
of the Born–Infeld-type field, which is called a “pseudotachyon” and is described by the
following Lagrangian [12]:

L = V(T)
√

Ṫ2 − 1. (34)

Furthermore, it was shown that it is possible to construct a potential of the tachyon field
with the Lagrangian (24) such that the dynamics drive the universe to the point where the
transformation of the tachyon field into a pseudotachyon field is unavoidable and arises in
a natural way.

Let us come back to a flat Friedmann universe with metric (16) and non-singular
evolution, i.e., with b > 0. We shall first consider the model with α > 2

3 . In this case, the
pressure is always negative, and the expression for the potential (28) is well defined. Using
the obtained expression (27), one can find that

√
1− Ṫ2 =

√
1− 3

3α
+

b2

3αt2 (35)

is also well defined at α > 2
3 . However, we see that at |t| < b, the right-hand side of

Equation (27) becomes negative. That means that at the moment in time when t = ±b,
we encounter the transformation of the tachyon field into the phantom tachyon field with
the Lagrangian:

L = −V(T)
√

1 + Ṫ2. (36)

Thus, the universe at |t| > b is driven by the tachyon field, while at |t| < b, it is driven
by the phantom tachyon field. Note that the transformation between these two types of
Born–Infeld-type fields also occurs if α < 2

3 .
It is interesting to look at the form of the potential in the vicinity of the point of this

transition using the same method that was used in the preceding section for the analysis
of the models with minimally coupled scalar fields. Straightforward calculations show
that in the vicinity of the phantom–non-phantom transition point, the potential has the
following behavior:

V =
3α2

b2 −
3α
(
3α + 1

)

b3

(
αb
2

)1/2(
T − T0

)2/3. (37)

Note that we again have the same exponent 2
3 as in Equation (13) for the potential of the

scalar field.
In the case when α < 2

3 , we have a couple of additional particular time moments

t = ±
√

2
2− 3α

b (38)
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during which both the expression under the square root in the formula for the potential
(28) and the expression under the square root for the kinetic structure (35) change their
signs. This situation is exactly as described in [12], and it corresponds to the transition
from the tachyon field to the pseudotachyon one. Below, Figure 1 graphically represents
the transitions between different regimes in the model with α < 2

3 . It is easy to see that for
α ≥ 2

3 , the transition from tachyon to pseudotachyon is absent.

+∞−∞

Pseudotachyon

−
√

2b√
2− 3α

Tachyon

−b

Phantom tachyon

b

Tachyon Pseudotachyon

√
2b√

2− 3α

Figure 1. Possible transitions between different regimes in the tachyon model (23) with α < 2
3 .

It is well known that cosmological solutions avoiding singularities, i.e., solutions with
bounces, suffer from instability. While detailed analysis of cosmological perturbations
represents a rather cumbersome task that lies beyond the scope of the present paper, we
can undertake the study of the speed of sound squared for a cosmological model with
the metric (16). This analysis will be relevant for both the scalar model of the preceding
section and the tachyon model. We have the expressions for the time dependencies of the
pressure and energy densities with respect to time; see Equations (7) and (19). Using these
expressions, one can find

c2
s =

dp′t2

dρ′t2
=

(2− 3α)t2 − 3(2− α)b2

3α(t2 − b2)
. (39)

Now we are able to study the time behavior of the speed of sound squared for models with
different values of the parameter α, characterizing our cosmological evolution.

Let us start with the case α > 2, which, in the model with the non-regularized metric,
i.e., at b = 0, corresponds to a Friedmann universe filled with a perfect fluid with negative
pressure and an equation-of-state parameter w ≤ − 2

3 . First of all, we note that at all values
of parameter α, the denominator of the expression (39) is positive at t2 > b2 and negative
at t2 < b2. For α > 2, by catching the sign of the numerator, one can easily see that

c2
s < 0 if t2 > b2 or t2 <

3(2− α)

2− 3α
b2, while c2

s > 0 if
3(α− 2)
3α− 2

b2 < t2 < b2. (40)

Then, if the time belongs to interval (40), where the speed of sound squared is positive, we
may ask ourselves when c2

s is subluminal and when it is superluminal. A simple analysis
shows that

c2
s < 1 if

3(α− 2)
3α− 2

b2 < t2 <
3(α− 1)
3α− 1

b2; and if
3(α− 1)
3α− 1

b2 < t2 < b2, (41)

one has a superluminal velocity for the propagation of the perturbations.
One can consider the case 1 < α ≤ 2, which matches a perfect fluid with a negative

pressure with the equation-of-state parameter− 2
3 ≤ w < − 1

3 . A similar analysis shows that
c2

s < 0 at t2 > b2. The speed of sound squared is positive, subluminal, and superluminal,
correspondingly, at

t2 <
3(α− 1)
3α− 1

b2 and
3(α− 1)
3α− 1

b2 < t2 < b2. (42)

The next case is 2
3 ≤ α ≤ 1, which agrees with a perfect fluid with negative pressure

and equation-of-state parameter − 1
3 ≤ w ≤ 0, and c2

s < 0 at t2 > b2 and positive, but it is
superluminal at t2 < b2.
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The case 1
3 ≤ α < 2

3 corresponds to a perfect fluid with positive pressure and equation-
of-state parameter 0 < w ≤ 1, leading to

c2
s < 0 if b2 < t2 <

3(2− α)

2− 3α
b2; c2

s < 1 if t2 >
3(2− α)

2− 3α
b2, and c2

s > 1 if t2 < b2.

(43)
This particular case, namely 1

3 ≤ α < 2
3 , is presented graphically below in Figure 2.

+∞−∞

0 < c2
s < 1

−
√

6− 3α

2− 3α
b

c2
s < 0

−b

c2
s > 1

b

c2
s < 0 0 < c2

s < 1

√
6− 3α

2− 3α
b

Figure 2. The corresponding squared speed of sound to the possible transformations in the tachyon
model (23), which is shown in Figure 1.

Finally, in the case of 0 < α < 1
3 , suited for the equation of state with w > 1, we have

c2
s < 0 if b2 < t2 <

3(2− α)

2− 3α
b2, and

c2
s > 1 if t2 < b2 or

3(1− α)

1− 3α
b2 < t2; c2

s < 1 if
3(2− α)

2− 3α
b2 < t2 <

3(1− α)

1− 3α
b2.

(44)

Let us now switch off the regularization, i.e., set b = 0. As follows from Equation (39),

c2
s =

2− 3α

3α
; (45)

the speed of sound squared is positive if α < 2
3 , i.e., if the pressure is positive, and it is

subluminal if α > 1
3 , i.e., the pressure is smaller than the energy density. We have seen

that in any case, the inclusion of the parameter b and regularizing the metric introduces
instabilities into the cosmological solutions. Such a situation looks rather natural. One can
remember that, for example, in a very simple cosmological model of a closed Friedmann
universe filled with a minimally coupled scalar field, for which the potential includes only
a massive term that is quadratic in field, there are solutions with bounces, but they are
actually unstable. This model was studied in detail by many authors; see, e.g., refs. [70–77].
Thus, it looks like a very challenging task to obtain a cosmological model with non-singular,
stable evolution.

One can ask themselves: what can be the value of the regularizing parameter b? As a
matter of fact, because of the purely theoretical nature of our toy model, it is difficult to
make some reasonable estimations. One can say only that any, even the most tiny nonzero
value, of b does the job of eliminating the cosmological singularity. On the other hand, the
smaller the value of b, the less distorting its effects are on other aspects of cosmological
evolution. Thus, with a more complicated and realistic nonsingular cosmological model,
one can hope to find a bound from above on the values of regularizing parameters when
comparing the model with observational data.

4. Discussion

We applied a simple procedure for the construction of cosmological models free from
singularities to flat Friedmann universes filled with minimally coupled scalar fields or
by tachyon Born–Infeld-type fields. The form of the regular metric for the Friedmann
universes, which we have used in the paper [44] and in the present paper, was inspired
by the prescription used in the paper [36] for the construction of regular black holes.
Remarkably, for both cases—the minimally coupled scalar field and the tachyon field—the
regularity of the cosmological evolution, or in other words, the existence of bounce, implies
the necessity of the transition between scalar fields with standard kinetic terms to those with
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phantom ones. In both cases, the potentials of the minimally coupled scalar field and the
tachyon in the vicinity of the point of the transition have a non-analyticity of the cusp form
that is characterized by the same exponent and is equal to 2

3 . If in the tachyon model we
choose the evolution such that the pressure changes its sign, then another transformation
of the Born–Infeld-type field occurs: the tachyon transforms into a pseudotachyon, and
vice versa.

It is worth noting that a transition between these two types of scalar fields was also
investigated in the articles [56,57,78] in a rather different context. The starting point there
was the observation that the equation of the state of effective dark energy models in the
late universe can change its form across the value w = −1. This phenomenon is called
the “crossing of the phantom divide line” in the literature. Onward, the authors of [56],
inspired by [79], proposed a model wherein this effect is realized in the presence of a single
scalar field; see also the earlier work [78]. For this to be achieved in [56], it was necessary
to have a cusp in the potential of the scalar field, and its initial conditions needed to be
chosen in a special way. Further details of this model were explored in [57]. Remarkably,
the form of the cusp found in [56] coincides with that found in [44] for a minimally couple
scalar field and, in the present paper, for a tachyon field. Enigmatically for us, the exponent
2
3 arises everywhere.

We would like to mention some other curious facts concerning Born–Infeld-like fields.
First, as was noticed in the paper [61], a cosmological model with a tachyon with constant
potential exactly coincides with that based on the Chaplygin gas [80] with an equation of
state p = −A/ρ, where A is a positive constant; see also [81–83]. An analogous observation
was made in [12]: a model based on a pseudotachyon with constant potential is equivalent
to a model based on a perfect fluid, which was called “anti-Chaplygin gas” and has an
equation of state p = B/ρ, where B is a positive constant. Remarkably, an equation of state
of this type was obtained from the so-called wiggly strings [84,85]. The anti-Chaplygin gas
appears to be a rather convenient tool for studying future soft singularities.

Concluding the paper, we would like to say that the study of regular cosmological
models free of singularities, just like the investigation of regular black holes, brings some
interesting results and reveals some unusual features of General Relativity and its modifi-
cations and generalizations. However, eliminating the singularities rather often implies
the appearance of some cumbersome and not quite natural types of matter. Thus, in our
opinion, the idea that the singularities in General Relativity are not its drawback but its
distinguishing feature, which should be accepted and for which adequate language for their
treatment should be developed, is very attractive. We complete our text with a reference
to an old paper by Charles Misner in which this idea was expressed in a very clear and
convincing way [86]. In particular, he wrote, “We should stretch our minds, find some
more acceptable set of words to describe the mathematical situation, now identified as
‘singular’, and then proceed to incorporate this singularity into our physical thinking until
observational difficulties force revision on us. The concept of a true initial singularity
(as distinct from an indescribable early era at extravagant but finite high densities and
temperatures) can be a positive and useful element in cosmological theory”.
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Abstract: During particle collisions in the vicinity of the horizon of black holes, it is possible to achieve
energies and temperatures corresponding to phase transitions in particle physics. It is shown that the
sizes of the regions of the new phase are of the order of the Compton length for the corresponding
mass scale. The lifetime is also on the order of the Compton time. It is shown that the inverse
influence of the energy density in the electro-weak phase transition in collisions on the space–time
metric can be neglected.

Keywords: black hole; symmetry breaking; phase transitions

1. Introduction

The works of A.A. Friedman [1,2], written 100 years ago, in which solutions were
obtained for an expanding homogeneous isotropic universe [3], are the theoretical basis of the
modern standard cosmological model. The discovery in 1965 of relic radiation [4,5] indicates
that in the model of the expanding early Universe, there were times when the temperature of
matter was so high that phase transitions predicted by the theory of elementary particles could
occur. There are three such phase transitions in the standard model of particle physics [6–8]:

(1) Between quark–gluon plasma and hadrons at the energies E of the order of 200 MeV.
The corresponding temperature T = E/kB ≈ 1012 K, where kB ≈ 1.38 · 10−23 J/K is
the Boltzmann constant, may have taken place in the expanding Universe during the
order of 10−6 s after the Big Bang.

(2) An electro-weak phase transition at energies of the order of EW ≈ 100 GeV. The
corresponding temperature TW ≈ 1015 K could have taken place during the order of
10−12 s after the Big Bang.

(3) The grand unification phase transition at energies.

EGUT ≈ 1016 GeV. The temperature corresponding to the energy of the grand unifi-
cation phase transition TGUT = EGUT/kB ≈ 1029 K may not have been achieved in the
early universe in models with an inflationary stage in which the heating temperature is
significantly lower than TGUT. In models with a radiation-dominant stage in the early
Universe, the temperature TGUT could be reached at times of the order of 10−38 s.

The study of the properties of matter at such temperatures and the phenomena at
these phase transitions is of undoubted theoretical interest. Is it possible to achieve such
temperatures in experiments on the Earth? The maximum high temperature for macro-
scopic parts of the substance is achieved at the time of nuclear explosion and can be on
the order of 108 K. This is significantly less than the temperature of even the quark–gluon
phase transition [9].
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The highest temperature achieved in experiments on Earth refers to microscopic quan-
tities of matter and is obtained when heavy element nuclei collide in particle accelerators.
A temperature of 4 · 1012 K was obtained from a collision of gold nuclei in Brookhaven
National Laboratory (United States) in 2010 [10]. In 2012, it was reported that a temperature
of 5 · 1012 K was reached when the lead nuclei collided at the Large Hadron Collider [11]. At
such temperatures, hadron matter transforms into the quark–gluon plasma state. However,
such temperatures are more than two orders of magnitude less than the temperature of the
electro-weak phase transition.

Thus, macroscopic amounts of matter in the state of phase transition of elementary
particle physics in laboratories on Earth cannot be obtained, and microscopic amounts can
be obtained only for the phase transition in the quark–gluon plasma state.

Is it possible to observe matter at the temperatures of the phase transitions of particle
physics in astrophysical processes at present? Brightly luminous accretion discs formed
when matter falls into black holes have a visible temperature of hundreds of millions of
Kelvin degrees [12]. As shown in our work [13], in the processes of collisions of particles
near the horizon of black holes, it is possible to achieve energies in the system of the center
of mass of colliding particles on the order of the energy scale of the electro-weak phase
transition? A summary of these results is presented in Section 2.

Here we will consider questions about the size of the regions of the phase transition
region obtained in a collision and the lifetime of such a region. To do this, in Section 3,
we apply formulas for the energy density and radiation intensity of a gas of relativistic
particles. The possibility of obtaining an electro-weak phase transition in a macroscopic
volume during a collision in the vicinity of supermassive black holes is studied in Section 4.
The influence of the matter energy–momentum tensor in the phase transition region on the
space–time metric will be evaluated in Section 5.

2. The High-Energy Collisions Near the Horizon of Black Holes

The Kerr metric of a rotating black hole [14] in the Boyer–Lindquist coordinates [15]
has the following form:

ds2 =
ρ2∆
Σ2 c2dt2 − sin2θ

ρ2 Σ2 (dϕ−ωdt)2 − ρ2

∆
dr2 − ρ2dθ2, (1)

where

ρ2 = r2 +
a2

c2 cos2θ, ∆ = r2 − 2GMr
c2 +

a2

c2 , (2)

Σ2 =

(
r2 +

a2

c2

)2

− a2

c2 sin2θ ∆, ω =
2GMra

Σ2c2 , (3)

G is the gravitational constant, c is the speed of light and M and aM are the mass and
angular momentum of the black hole, respectively. We accept that 0 ≤ a ≤ GM/c. The
event horizon of the Kerr black hole has the radial coordinate

r = rH ≡
G
c2

(
M +

√
M2 −

( ac
G

)2
)

. (4)

According to [16], the squared energy of a collision of two particles with a mass m
with the angular momenta L1 and L2 in the center-of-mass system, which are nonrelativistic
at infinity and are freely incident on a black hole with the angular momentum aM, is given
by the expression
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E2
c.m

m2c4 =
2

x(x2 − 2x + A2)

[
2A2(1 + x)− 2A(l1 + l2)− l1l2(x− 2) + 2(x− 1)x2 (5)

−
√

2(A−l2)2− l2
2 x + 2x2

√
2(A−l1)2− l2

1 x + 2x2

]
,

where x = rc2/GM, l = Lc/GmM and A = ac/GM. Expression (5) has a singularity on the
event horizon. In the general case, the limit value of the collision energy for two particles
with masses m1, m2, energies E1, E2 and angular momenta J1, J2 is

E2
c.m(r → rH) =

c6(J1H J2− J2H J1)
2

G2M2(J1H− J1)(J2H− J2)
+ m2

1c4
[

1 +
J2H− J2

J1H− J1

]
+ m2

2c4
[

1 +
J1H− J1

J2H− J2

]
, (6)

where JnH = 2EnrH/A. If the angular momentum of one of the particles tends to JnH , then
the expression for the energy (6) diverges. This is the so-called Banados–Silk–West effect.
Note that despite the unlimited increase in collision energy in the center of mass system,
the energy that can be extracted at a large distance from a black hole cannot exceed E1 + E2
(assuming no Penrose effect [17]). This follows from the law of energy conservation.

A particle having a critical angular momentum value can travel from infinity to the
event horizon of a black hole only in the case of an extremely rotating black hole A = 1.
In other cases, particles with large angular momentum values are prevented from falling
onto the horizon by the potential barrier of the effective potential. As shown in [18,19], the
super high center-of-mass energy can be achieved in multiple collisions near nonextreme
black holes. To reach the horizon, particles incident from infinity should have an angular
momentum low in absolute value. The angular momentum of one of the particles necessary
for a high-energy collision can be acquired either in multiple collisions or in the interaction
with the electromagnetic field of the accretion disk. A similar effect for electrically charged
black holes was discovered in [20]. Real astrophysical black holes are surrounded by
matter (for example, they have an accretion disk). The possibility of particles colliding with
unlimited energy near the horizon of such “dirty” black holes also takes place [21].

The value of the collision parameters corresponding to the temperature of the elemen-
tary particles phase transitions may depend on the type of black holes. In the case of Kerr
black holes, the estimates for the distance from the horizon, where the collision energies
required for phase transitions of elementary particles, can be achieved are given in our
work [13]. So, for elementary particles with a mass m, the value of the temperature T is
reached near the extreme rotating black hole at the distance

r− rH ≈ 2rH

(
mc2

kBT

)2

. (7)

For the proton mass, the electro-weak temperature can be reached at the distance r −
rH = 2× 10−4rH . This amounts to tens of centimeters for stellar-mass black holes and
hundreds of thousands of kilometers for supermassive black holes. In the mechanism of
multiple collisions near the horizon of (not extreme) rotating black holes, such temperatures
can be achieved at larger distances [13]. Therefore, collisions in which phase transition
temperatures are reached can, in principle, occur in the vicinity of stellar-mass black holes
for elementary particles and in the case of supermassive black holes for macroscopic bodies.

Next, we estimate the size of the phase transition region and the lifetime of the state
with the new phase.

3. Size and Lifetime of the New Phase

The energy density of the photon gas can be calculated by the known formula:
(see (63,14) in [22])

ε =
4σ

c
T4, (8)
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where σ is the Stefan–Boltzmann constant,

σ =
π2k4

B

60h̄3c2
≈ 5.67 · 10−8 W

m2 ·K4 , (9)

and h̄ is the reduced Planck constant. At ultra-high temperatures, other elementary particles
should also contribute to the energy density of matter. Their contribution is taken into
account using the factor geff, which describes the number of effective massless degrees of
freedom of particles of the standard model of particle physics.

ε = geff
π2k4

B

30h̄3c3
T4 = geff

2σ

c
T4. (10)

Under this definition, the photon’s contribution to geff is two, according to the photon’s
two polarization states. In the general case, one has the following [6]

geff = ∑
i= bosons

gi

(
Ti
T

)4
+

7
8 ∑

i= fermions
gi

(
Ti
T

)4
. (11)

Here, it is assumed that the equilibrium temperature Ti of particles of type i may differ
from T. For example, in the Universe at present the temperature of cosmic microwave
background radiation is equal to 2.7 K, and estimates for the temperature of the neutrino
gas give 1.95 K. Photon gas after the moment of the last collisions of the cosmological
neutrinos with cosmological plasma at energies of 2–3 MeV was still heated up in the
annihilation process of cosmological positrons with electrons.

The value of geff in the standard model of particle physics depends on temperature.
For T in the interval 1 MeV < T < 100 MeV, which takes neutrinos into account, electrons
and positrons lead to geff = 10.75. At temperatures above 300 GeV, all standard model
particles (photons, W±, Z0 bosons, eight gluons, three generations of quarks and leptons
and the Higgs boson) must contribute to (10), which leads [6] to the value of geff = 106.75.
The graph of geff, which depends on temperature, is presented in [6] on page 65, Figure 3.5.

Denoting kBT = mc2, where m is the characteristic mass scale, we obtain from (10) for
the energy density of radiation of all types of particles

ε = geff
π2m4c5

30h̄3 = geff
π2

30
mc2

l 3
C

, (12)

where lC = h̄/mc is the (reduced) Compton wavelength corresponding to the mass m. The
pressure corresponds to a value three times less

p =
ε

3
= geff

π2

90
mc2

l 3
C

. (13)

The size R0 of the area in which the heated drop of a new phase of matter can form
after a collision is estimated from the relation

Ec.m. =
4
3

πR3
0ε, (14)

It is assumed that the region of the new phase is a sphere with the radius R0. Then, one
obtains

R0 =
lC
π

3

√
45

2geff

Ec.m.

mc2 . (15)

Assuming that the collision energy is of the order of magnitude Ec.m. ∼ geff mc2, we find
that the size of the region phase transition is of the order of the Compton wavelength lC for
a particle of mass m.
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Let us estimate the lifetime of a drop of a new phase formed as a result of a collision,
generalizing the formula for the radiation intensity of the black body to the case of the
presence of additional degrees of freedom described by the quantity geff

J = geff
π2k4

B

120h̄3c2
T4 =

geff
2

σT4. (16)

Let us write the energy balance equation for an infinitesimal time interval dt

d(εV) = −JSdt, (17)

where V is the volume of new phase drop and S is its surface area. When obtaining estimates
by the order of magnitude, we assume that the drop is spherical, and the radius may depend
on time due to expansion into the surrounding space. We also assume that during the life of
a drop of a new phase, thermodynamic equilibrium takes place in it, and, therefore, we can
talk about the temperature of the entire drop, the dependence of temperature on time and
use formulas for the equilibrium state of the corresponding relativistic gas. Then, from (17),
we obtain

R
3

dε = −(Jdt + εdR). (18)

Using (10) and (16), we obtain the equation

16
3

R
c

dT
T

= −
(

1 +
4
c

dR
dt

)
dt. (19)

By integrating this equation, we obtain

T(t) = T(t0) exp


− 3c

16

t∫

t0

(
1 +

4
c

dR
dt

)
dt
R


. (20)

If the drop radius does not change, i.e., R ≈ R0 = const, then the solution is

T(t) = T(t0) exp
[
− 3

16
c(t− t0)

R0

]
. (21)

Thus, the temperature decreases exponentially, and the lifetime of the new phase is of the
order τ ≈ R0/c. Since, according to the Equation (15), the size of the new phase region is
assumed to be Compton, the lifetime corresponds to Compton time τC = h̄/(mc2) for a
particle of a mass m, corresponding to the phase transition energy.

Taking into account the possible expansion of the area of the new phase, the lifetime of
the new phase can only decrease. Let us give formulas under the assumption of a constant
expansion rate dR/dt = v ≈ const. Then,

R(t) = R0 + v(t− t0) (22)

and, after the integration of (19), we obtain a dependence of the temperature of the region
with a new phase on the time as follows

T(t) = T(t0)

(
1 +

v(t− t0)

R0

)− 3
16 (4+ c

v )
. (23)

In the limit v/c→ 0, one obtains the expression (21).
Thus, the lifetime of the new phase obtained in a collision of elementary particles has

the order of Compton time h̄/(mc2) for a particle of the characteristic mass scale m. For
the quark–gluon phase transition, this time is τ ≈ 3 · 10−24 s. For the electro-weak phase
transition, this time is τ ≈ 7 · 10−27 s.
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4. Phase Transition in Macroscopic Volume

To perform a quark–gluon or electro-weak phase transition in a macroscopic volume,
it is necessary to collide with ultra-relativistic energies of macroscopic amounts of matter.
When ordinary macroscopic bodies collide with such energies, the regions of the new phase
can make up a macroscopic volume only if the density of the bodies is comparable to
the Compton density characteristic of the phase transition of the mass m (see (12)). Only
in this case, the lifetime of the new phase can significantly exceed the Compton time τC.
Such density of matter occurs only in neutron stars. Collisions of macroscopic objects with
ultra-relativistic velocities are possible in the vicinity of the horizon of extremal rotating
black holes [13]. The collision of compact objects with star masses near supermassive black
holes was considered in [23].

When falling towards the event horizon of a black hole, macroscopic bodies can be
destroyed by tidal gravitational forces. Let us estimate the mass of black holes in which it is
possible to fall to the event horizon of neutron stars without destruction by tidal forces. For
evaluation, we assume that a star is destroyed if the tidal forces for the points of the center
of mass and the surface exceed the force of attraction of the points of the surface to the
center of the falling body. Let us assume that the falling object (neutron star) is a uniform
ball of a density ρ and radius R. Also, let us consider only the nonrotating black hole and
radial tidal forces. Then the condition for falling to the horizon without destruction has
the form

2GM
r3

g
R <

G4πρR3

3R2 (24)

or (after simple transformations)

M >
c3

4G3/2

√
3

πρ
,

M
M�

> 1.9 · 108
√

ρw

ρ
, (25)

where M� is the Sun mass, ρw = 103 kg/m3 is the water density. Neutron stars have the
density ρ ∼ 1017–1018 kg/m3. Therefore, neutron stars fall to the horizon of black holes
with a mass of M > 20M� without destruction. Of course, a collision with ultra-relativistic
velocities of neutron stars in the vicinity of a massive black hole should be considered a
very unlikely event. Estimates in [13] show that in the collision near the vicinity of the
horizon of an extremal rotating black hole with a mass of 109M� at points with a radial
coordinate rH + 7 · 105 km, the maximum collision energy in the center-of-mass system can
reach 100 mc2. In nucleon–nucleon collisions, this is the electro-weak unification energy.
The masses of neutron stars range from one to three solar masses, and their radii are
about 10–20 km. The gravitational radius of a black hole with a mass of 100 solar masses
is approximately 300 km. Therefore, with such collision energy of two neutron stars, a
black hole should form, and it will not be possible to obtain a substance in a state of an
electro-weak phase transition outside the event horizon.

Thus, it is impossible to obtain the macroscopic quantities of a substance with an
electro-weak phase transition with a lifetime significantly exceeding the Compton time for
the electro-weak scale due to collisions in the vicinity of black holes.

5. The Influence of Spontaneous Symmetry Breaking on the Space–Time Metric

Let us consider a real scalar field with self-action [24]

V(ϕ) = −µ2

2
ϕ2 +

λ2

4
ϕ4 +

µ2

4λ2 . (26)

Here, µ = µ̃c/h̄, µ̃ is a mass parameter and λ is the dimensionless self-action constant.
Stable equilibrium states of such a field are located at two points

ϕ = ±ϕ0, ϕ0 =
µ

λ
. (27)
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The potential function (26) can be written as

V(ϕ) =
λ2

4

(
ϕ2 − ϕ2

0

)2
. (28)

Both lower states have zero energy, and the unstable equilibrium with ϕ = 0 has an energy
density of

ε = h̄cV(0) = h̄c
µ4

4λ2 . (29)

Using the representation ϕ = ϕ0 + χ, one obtains

V(χ) = λ2 ϕ2
0χ2 + λ2 ϕ0χ3 +

λ2

4
χ4. (30)

Thus, the mass of the χ field is
√

2λϕ0 =
√

2µ. In the case of the Higgs boson, mH =
125.3 GeV, and we have

εH = h̄cV(0) = h̄c
m4

Hc4

16h̄4λ2
=

1
16λ2

mHc2

(lH
C )3

, (31)

where lH
C = h̄/(mHc).

For the electro-weak interaction, quantum corrections lead to limitation [24]

λ ≥ α =
e2

4πε0h̄c
≈ 1

137
, (32)

where e is the elementary electric charge and ε0 is the electric constant.
To estimate the inverse influence of the scalar field on the curvature of space–time, we

use Einstein’s equations

Rik −
1
2

Rgik + Λgik = −8π
G
c4 (T

(0)
ik + Tik), (33)

where Λ is the cosmological constant, T(0)
ik is the energy–momentum tensor of the back-

ground matter. The energy–momentum tensor for a constant scalar field with minimal
coupling to curvature is [25]

Tik = gik h̄cV(ϕ) (34)

and is similar to the contribution of an additional cosmological constant. Upon the appear-
ance of a non-zero cosmological constant under spontaneous symmetry breaking, this was
indicated in the work [26]. Phase transition in electro-weak interactions was discussed in
cosmology by Kirzhnits and Linde [27,28], Weinberg [29] and others. Estimates of changes
in the value of the cosmological constant during phase transitions in the early Universe
were made in work [30].

If there is only a constant scalar field and the energy–momentum tensor of the back-
ground matter is equal to zero T(0)

ik = 0, then the solution to Einstein’s Equation (33) will
be the de Sitter space–time. In de Sitter space, one has

Rik =
R
4

gik, (35)

and it follows from (33) that

R = 4
(

Λ + l2
Pl 8πV(ϕ)

)
, (36)

where lPl is the Planck length
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lPl =

√
Gh̄
c3 = 1.6162 · 10−35 m. (37)

For the electro-weak case under ϕ = 0, from (31), we have

R = 4

(
Λ +

π

2λ2
l2
Pl

(lH
C )4

)
. (38)

For the radius of curvature, we obtain

r ∼ (lH
C )2

lPl
∼ 0.1 m. (39)

This value is many orders of magnitude greater than the Compton wavelength of the
particle and the size of the region in which the phase transition occurs. It should be
expected that in order for special collisions with ultra-high energy to occur, in the volumes
r3, there must be a large number of particles falling onto the black hole. Their total mass
will be much greater than the mass of the electro-weak scale. Thus, the inverse effect of
energy density in the electro-weak phase transition in collisions on the space–time metric
can be neglected.

6. Conclusions

An integral part of the standard model of particle physics is the mechanism of sponta-
neous symmetry breaking. The discovery at the Large Hadron Collider of the Higgs boson
in 2012 makes us take seriously the possibility of a phase transition from one vacuum to
another at high temperatures, as is the case in quantum nonrelativistic many-body theory,
where the ground state plays the role of the vacuum. In our work [13], it was shown that
in the processes of collisions of particles near the horizon of black holes, it is possible to
achieve energies in the system of the center of mass of the order of the energy scale of the
electro-weak phase transition.

In this article, we showed that the region of the phase transition in such collisions
is microscopic. In the order of magnitude, the size of the region is equal to the Compton
wavelength of the Higgs boson. Using formulas for black body radiation, we show that
the lifetime of such region is of the order of the Compton time for the electro-weak phase
transition scale.

During a phase transition, such as in the case of spontaneous symmetry breaking,
the energy–momentum tensor corresponds to the emergence of an effective cosmological
constant. It is shown that for phase transitions occurring during particle collisions, its
influence on the space metric in the phase transition region can be neglected.

Note that despite the short time existence and microscopic volumes of a new phase
of matter during an electro-weak phase transition in collisions in the vicinity of the black
hole horizon, its very existence is of fundamental importance for the study of elementary
particle physics in the ultra-high energy region, which is unattainable on Earth.
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Abstract: Within the scope of a Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model
we study the role of a nonlinear spinor field in the evolution of the universe. In doing so, we exploit
the FLRW models given in both Cartesian and spherical coordinates. It is found that if the FLRW
model is given in the spherical coordinates the energy-momentum tensor (EMT) of the spinor field
possesses nontrivial non-diagonal components, which is not the case for Cartesian coordinates. These
non-diagonal components do not depend on either the spinor field nonlinearity or the parameter k
that defines the type of curvature of the FLRW model. The presence of such components imposes
some restrictions on the spinor field. The problem is studied for open, flat and close geometries
and the spinor field is used to simulate different types of sources including dark energies. Some
qualitative numerical solutions are given.

Keywords: Alexander Friedmann; expanding universe; accelerated expansion; dark energy; spinor
field; energy-momentum tensor

1. Introduction

The isotropy of cosmic microwave background (CMB) radiation, first detected by the
Cosmic Background Explorer (COBE) satellite [1], and further supported by the Wilkinson
Microwave Anisotropy Probe (WMAP) data [2], together with the assumption that we are
not in any special position in Universe, underlines the Cosmological Principle. According
to this principle we live in a homogeneous and isotropic Universe which mean all the
space-time points of our Universe can be treated as the center of the Universe and all
the directions are equal. Such a Universe is given by a FLRW model. The present day
experimental data suggest that our Universe is indeed isotropic one and homogeneous in
large scale. That is why the study of present day Universe is dominated by the FLRW model.
Exact solution to the Einstein equation found by Russian mathematician A.A. Friedmann
suggested that our Universe is expanding. He also observed that there can be three types of
solutions: closed, flat and open [3,4]. But those days physicists believed that the Universe
is static and unchanging. So Einstein dully rejected Friedmann solutions and introduced
cosmological constant into the system to secure a steady solution to his equation. Recall that
before Einstein the Universe was thought to be geocentric or heliocentric, which possesses
center. But it was Einstein who first told that there is no specific point and any point of the
space-time can be the center of the Universe, thus bringing revolutionary changes about the
idea of space-time. Even he failed to accept the concept of a Universe that is changing with
time. In 1929 Edwin Hubble experimentally showed that the Universe is expanding and
there are many galaxies outside our milky way [5]. It buried the idea of a static Universe.
Further this model was independently developed by Lemaitre [6], Robertson [7–9] and
Walker [10]. So this model is also known as FLRW model. The FLRW model has not only
mathematical simplicity, but also experimental support.

Thanks to its ability to simulate different kinds of matter such as perfect fluid, dark
energy etc. spinor field is being used by many authors not only to describe the late time
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acceleration of the expansion, but also to study the evolution of the Universe at different
stages [11–17]. It was found that the spinor field is very sensitive to spacetime geometry.
Depending on the concrete type of metric the spinor field may possess different types
of nontrivial non-diagonal components of the energy-momentum tensor. As a result the
spinor field imposes various kinds of restrictions on both the spacetime geometry and
the spinor field itself [18]. Recently spinor field is used in astrophysics to see whether its
specific behavior can shed any new light in the study of the objects like black hole and
wormhole. Such studies were carried out within the scope of spherically symmetric [19,20]
and cylindrically symmetric spacetime [21,22].

Since the present-day universe is surprisingly isotropic and the presence of nontrivial
non-diagonal components of the spinor field leads to the severe restrictions on the spinor
field, we have studied role of a spinor field in Friedmann-Lemaitre-Robertson-Walker
(FLRW) model as well. But in those cases the space-time was given in Cartesian coordinates.
In order to see influence of the coordinate transformations on spinor field some works were
done by us earlier [23,24]. In this paper we will compare the results founded for FLRW
model given in Cartesian and spherical coordinates and study the behavior of the spinor
field under such coordinate transformations.

2. Basic Equation

Let us consider the action of the gravitational and nonlinear spinor field in the form

S =
∫ √

−g
[

R
2κ

+ Lsp

]
dΩ, (1)

where κ = 8πG is Einstein’s gravitational constant, R is the scalar curvature. The spinor
field Lagrangian Lsp is given by [25]

Lsp =
ı
2

[
ψ̄γµ∇µψ−∇µψ̄γµψ

]
−mψ̄ψ− λF(K). (2)

Here, the nonlinear term F(K) is constructed as some arbitrary functions of invariants
generated from the real bilinear forms, where K takes one of the following expressions
{I, J, I + J, I − J}. Here I = S2 and J = P2 are the invariants of bilinear spinor forms with
S = ψ̄ψ and P = ıψ̄γ̄5ψ being the scalar and pseudo-scalar, respectively. In (2) λ is the
self-coupling constant. The covariant derivatives of spinor field takes the form [25]

∇µψ = ∂µψ−Ωµψ, ∇µψ̄ = ∂µψ̄ + ψ̄Ωµ, (3)

with Ωµ being the spinor affine connections defined by [25]

Ωµ =
1
4

(
γ̄aγβ∂µe(a)

β − γργβΓρ
µβ

)
. (4)

In (4), Γβ
µα is the Christoffel symbol and the Dirac matrices in curve and flat space–time γ

and γ̄ are connected to each other in the following way

γβ = e(b)β γ̄b, γα = eα
(a)γ̄

a. (5)

Here, the tetrad vectors e(b)β are related to the metric in the following way

gµν(x) = e(a)
µ (x)e(b)ν (x)ηab, (6)

and eα
(a) are the inverse to e(a)

µ (x):
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eα
(a)e

(a)
β = δα

β, eα
(a)e

(b)
α = δb

a . (7)

Here, ηab = diag(1, −1, −1, −1) is the Minkowski spacetime. The γ matrices obey the
following anti-commutation rules

γµγν + γνγµ = 2gµν, γµγν + γνγµ = 2gµν. (8)

Varying the Lagrangian (2) with respect to ψ̄ and ψ, respectively, we obtain the follow-
ing spinor field equations

ıγµ∇µψ−mψ− λDψ− ıλGγ̄5ψ = 0, (9)

ı∇µψ̄γµ + mψ̄ + λDψ̄ + ıλGψ̄γ̄5 = 0, (10)

where D = 2FKS, G = 2FKP. It can be shown that in view of the spinor field equations (9)
and (10) the spinor field Lagrangian (2) can be expressed as

L = λ(2KFK − F), FK = dF/dK.

In this report, we consider the spinor field that depends only on time, i.e., ψ = ψ(t). In view
of (3), the energy momentum tensor of the spinor field is defined in the following way [25].

T ρ
µ =

ı
4

gρν

(
ψ̄γµ∂νψ + ψ̄γν∂µψ− ∂µψ̄γνψ− ∂νψ̄γµψ

)

− ı
4

gρνψ̄

(
γµΩν + Ωνγµ + γνΩµ + Ωµγν

)
ψ − δ

ρ
µL. (11)

It should be noted that the non-diagonal components of the EMT arises thanks to the
second term in (11).

The gravitational field is given by isotropic and homogeneous cosmological model
proposed by Friedmann, Lemaitre, Robertson and Walker. We consider two cases when the
model is given in Cartesian and spherical coordinates. We do it to show that the spinor
field is even sensible to the coordinate transformations. Variation of the action (1) with
respect to gµν leads to Einstein equation

Gν
µ = −κTν

µ . (12)

In what follows, we consider the homogeneous and isotropic cosmological gravitational
field given by FLRW model.

Case I Let us first consider the FLRW model given in Cartesian coordinates:

ds2 = dt2 − a2(t)
[
dx2 + dy2 + dz2

]
, (13)

where the scale factor a(t) is a function of time only. This case was thoroughly studied
in [18,26].

In view of (6) we choose the tetrad in the form

e(0)0 = 1, e(1)1 = a(t), e(2)2 = a(t), e(3)3 = a(t).

Then, from (4) we find the following expressions for spinor affine connection

Ω0 = 0, Ω1 =
ȧ
2

γ̄1γ̄0, Ω2 =
ȧ
2

γ̄2γ̄0, Ω3 =
ȧ
2

γ̄3γ̄0. (14)
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Thanks to the fact that, in this case Ω1 = Ω2 = Ω3 the EMT of the spinor field possesses
only diagonal components with [18]:

T0
0 = mspS + λF(K), T1

1 = T2
2 = T3

3 = λ(F(K)− 2KFK). (15)

The absence of non-diagonal components of the EMT leads to the fact that the spinor field
does not impose any kind of restriction either on the space-time geometry or on the spinor
field. The spinor field equation in this case takes the form

ıγ̄0
(

ψ̇ +
3
2

ȧ
a

ψ

)
−mspψ− λDψ− ıλGγ̄5ψ = 0, (16)

ı
(

˙̄ψ +
3
2

ȧ
a

ψ̄

)
γ̄0 + mspψ̄ + λDψ̄ + ıλGψ̄γ̄5 = 0. (17)

The foregoing system was solved exactly and given in explicit form in [18]. The Einstein
field Equation (12) in this case coincide with those considered in the case II for k = 0. The
Einstein equation was solved for different types on nonlinearity.

Case II Let us now consider the case when the FLRW model is given in spherical coordi-
nates [27]:

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2dϑ2 + r2 sin2 ϑdφ2
]

, (18)

with k taking the values +1, 0 and −1 which corresponds to a close, flat and open universe,
respectively. The purpose of doing this is to show that the spinor field is not only sensitive
to space-time geometry, given by different metrics, but also to coordinate transformations.
In view of (6), we choose the tetrad in the form

e(0)0 = 1, e(1)1 =
a√

1− kr2
, e(2)2 = ar, e(3)3 = ar sin ϑ.

Then, from (5) we find the following γ matrices

γ0 = γ̄0, γ1 =

√
1− kr2

a
γ̄1, γ2 =

γ̄2

ar
, γ3 =

γ̄3

ar sin ϑ
.

Further from γµ = gµνγν one finds the γµ as well. From (4) in this case we find the
following expressions for spinor affine connection

Ω0 = 0, (19)

Ω1 =
1

2
√

1− kr2
ȧγ̄1γ̄0, (20)

Ω2 =
1
2

rȧγ̄2γ̄0 +
1
2

√
1− kr2γ̄2γ̄1, (21)

Ω3 =
1
2

ȧr sin ϑγ̄3γ̄0 +
1
2

√
1− kr2 sin ϑγ̄3γ̄1 +

1
2

cos ϑγ̄3γ̄2. (22)

In view of (19)–(22), the spinor field equations can be written as

ψ̇ +
3
2

ȧ
a

ψ +

√
1− kr2

ar
γ̄0γ̄1ψ +

cot ϑ

2ar
γ̄0γ̄2ψ + ı(m + λD)γ̄0ψ + λGγ̄5γ̄0ψ = 0, (23)

˙̄ψ +
3
2

ȧ
a

ψ̄−
√

1− kr2

ar
ψ̄γ̄0γ̄1 − cot ϑ

2ar
ψ̄γ̄0γ̄2 − ı(m + λD)ψ̄γ̄0 + λGψ̄γ̄5γ̄0 = 0, (24)

The solution to the spinor field equation can be given in the form [18]

ϕ(t) = Texp
(
−
∫ t1

t
A1dτ

)
, (25)
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where we introduce ϕ = a3/2ψ. In the foregoing expression T = ϕ(t1) is the solution at t = t1.
In case of a nonzero spinor mass one can assume ϕ(t1) = col

(
e−ımt1 , e−ımt1 , eımt1 , eımt1

)
,

whereas for a massless spinor field ϕ(t1) = col
(

ϕ0
1, ϕ0

2, ϕ0
3, ϕ0

4
)

with ϕ0
i being constants. In

(25) the matrix A1 ≡ A with m = 0 or D1 = D, where

A =




−ıD1 0 −λG B1
0 −ıD1 B∗1 −λG

λG B1 ıD1 0
B∗1 λG 0 ıD1


 (26)

with D1 = (m + λD), B1 = −
√

1−kr2

ar + ı cot ϑ
2ar and B∗1 = −

√
1−kr2

ar − ı cot ϑ
2ar . It can be shown

that det A =
(
D2

1 + λ2G2 − B1B∗1
)2. We can choose the nonlinearity in such a way that the

corresponding determinant becomes nontrivial.
In this case from (11) we find the following non-trivial components of the energy

momentum tensor of the spinor field

T0
0 = mS + λF, (27)

T1
1 = T2

2 = T3
3 = −λ(2KFK − F), (28)

T1
3 =

a cos ϑ

4
√

1− kr2
A0, (29)

T0
1 =

cot ϑ

4r
√

1− kr2
A3, (30)

T0
2 = −3

4

√
1− kr2 A3, (31)

T0
3 =

3
4

√
1− kr2 sin ϑA2 − 1

2
cos ϑA1. (32)

From (27)–(32), we conclude that the diagonal components of the EMT are the same as
in previous case. Moreover, in this case the energy-momentum tensor of the spinor field
contains nontrivial non-diagonal components. The non-diagonal components

• do not depend on the spinor field nonlinearity;
• occur due to the spinor affine connections;
• appear depending on space-time geometry as well as the system of coordinates;
• impose restrictions on spinor field and/or space-time geometry;
• depend on the value of k which defines the type of curvature, though do not vanish

ever for k = 0.

It should be emphasized that for a FRW model given in Cartesian coordinates the EMT
have only diagonal components with all the non-diagonal one being identically zero [26].
So in this case the non-diagonal components arise as a result of coordinate transformation.
Let us also note that all the cosmological space-time given by diagonal metrics such as
Bianchi type VI, VI0, V, I I I, I LRS− BI and FRW, possess the same diagonal components
of EMT, while possess nontrivial non-diagonal elements who differ from each other for
different cases [18]. Moreover non-diagonal metrics such as Bianchi type I I, VII I and IX
also have nontrivial non-diagonal components of EMT. Hence we see that the appearance
of the non-diagonal components of the energy-momentum tensor takes place either due to
coordinate transformations or space-time geometry.

The components of the EMT of the spinor field contains some spinor field invariants.
To define those invariants we write the system of equations for the invariants of the
spinor field
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Ṡ0 + 2GA0
0 = 0, (33)

Ṗ0 − 2(m +D)A0
0 = 0, (34)

Ȧ0
0 + 2GS0 + 2(m +D)P0 + 2

√
1− kr2

ar
A1

0 +
cot ϑ

ar
A2

0 = 0, (35)

Ȧ1
0 + 2

√
1− kr2

ar
A0

0 = 0, (36)

Ȧ2
0 +

cot ϑ

ar
A0

0 = 0, (37)

that gives the following relation between the invariants:

P2
0 − S2

0 +
(

A0
0

)2
−
(

A1
0

)2
−
(

A2
0

)2
= C0, C0 = Const. (38)

In (33)–(38) the quantities with a subscript “0” are related to the normal ones as follows:
X0 = Xa3. From (38) we can conclude that since C0 is an arbitrary constant, the each term
of (38) should be constant as well.

Let us recall that the Einstein tensor Gν
µ corresponding to the metric (18) possesses only

nontrivial diagonal components. Hence from (12) we obtain the following non-diagonal
expressions

0 = Tν
µ , µ 6= ν. (39)

In view of (29)–(32) from (39), one dully finds that

A0 = 0, A3 = 0, A1 = (3/2)
√

1− kr2 tan ϑA2. (40)

It is worth noting that, if the FRW model given by the Cartesian coordinates the non-
diagonal components of EMT are identically zero, hence relation such as (40) does not exist.

We are now ready to consider the diagonal components of the Einstein system of
equations which for the metric (18) takes the form

2
ä
a
+

(
ȧ2

a2 +
k
a2

)
= 8πGT1

1 , (41)

3
(

ȧ2

a2 +
k
a2

)
= 8πGT0

0 . (42)

The system (41) and (42) coincides the corresponding system for the FLRW metric given by
cartesian coordinates in case of k = 0. One can solve (42) to find a, but to take into account
both equations (42) and (41) it is better to combine them and rewrite (41). In view of (27)
and (28) then we obtain

ä = −κ

6
(mS− 2λF + 6λKFK)a. (43)

The equation (43) does not contain k that defines the type of space-time curvature, hence it
is true for both cases. But in order to take this very important quantity k into account we
have to exploit (42) as the initial condition for ȧ:

ȧ = ±
√
(κ/3)(mS + λF)a2 − k, (44)

Now, we can solve (43) with the initial condition given by (44). It comes out that these
equations are consistent if one takes sign “−” in (44). Alternatively, one can solve (44), but
for the system to be consistent he has to check whether the result satisfies (43). Exploiting
(33)–(37) it was shown that [18,26]
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K =
V2

0
a6 , V0 = const., (45)

which is true for K = {J, I + J, I − J} for a massless spinor field, whereas, for K = I it is
valid both for massless and massive spinor field. Thus, S, K, hence F(K) are the functions
of a. Hence given the spinor field nonlinearity the foregoing equation can be solved either
analytically or numerically. The first integral of (43) takes the form

ȧ =

√∫
f (a)da + Cc, (46)

where we define f (a) = − κ
3 (mS− 2λF + 6λKFK)a and Cc is a constant which should be

defined from (44). The solution to the equation (46) can be given in quadrature

∫ da√∫
f (a)da + Cc

= t. (47)

In what follows we solve the system (41) and (42) numerically and in doing so we
rewrite the system in the following way

ȧ = Ha, (48)

Ḣ = −3
2

H2 − 1
2

k
a2 −

κ

2
λ(2KFK − F), (49)

H2 =
κ

3
(mS + λF)− k

a2 , (50)

where H is the Hubble constant. As one sees, in the foregoing system the first two are
differential equations, whereas the third one is a constraint, which we use as the initial
condition for H:

H = ±
√

κ(mS + λF)/3− k/a2. (51)

Since the expression under the root must be non-negative, it imposes some restrictions on
the choice of the initial value of a as well.

3. Numerical Solutions

In what follows we solve the system (48)–(50) numerically. In doing so, we consider
several cases nonlinearity of the spinor field, that describes various types of sources such
as perfect fluid and dark energy.

3.1. Barotropic Equation of State

It should be noted that prior to 1998, when the late time accelerated mode of expansion
of the Universe was detected, perfect fluid was the most popular form of matter used
to study the evolution of the Universe. But after 1998 cosmologists first considered Λ-
term to explain the new phenomenon, then in analogy with perfect fluid they proposed
quintessence which can be implemented by the barotropic equation of state (EoS). This
equation gives a linear dependence between the pressure and energy density and was
exploited by many authors [28–31]. The spinor description of perfect fluid, quintessence,
Λ-term, phantom matter etc. were simulated by the nonlinear term [18,26]

F(S) = λS1+W −mspS, λ = const., (52)

in the spinor field Lagrangian (2). Depending on the value of W, the Equation (52) can give
rise to both perfect fluid, such as dust, radiation etc. and dark energy such as quintessence,
cosmological term, phantom matter etc. For W ∈ [0, 1], it describes a perfect fluid. The
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value W = −1 represents a typical cosmological constant (Λ-term) [32–34], whereas W ∈
[−1, −1/3] gives rise to a quintessence, while for W < −1 it ascribes a phantom matter.

Let us now solve (48)–(50) numerically for the nonlinear term given by (52). We
consider both massive and massless spinor field. The values of W are taken to be 1/3,−1/2
and −1 describing the radiation, quintessence and cosmological constant, respectively. For
simplicity we set S0 = 1, G = 1, λ = 0.5 here and in the cases to follow. We also set msp = 0
for a massless and msp = 1 for a massive spinor field.

In Figure 1 we have illustrated the evolution of the Universe filled with radiation,
given by a massless spinor field. In the figures the blue solid line stands for a closed
universe given by k = 1, red dash-dot line stands for a flat universe with k = 0 and black
long dash line stands for an open universe with k = −1.

Figure 1. Evolution of the FRW Universe (scale factor a) in presence of a radiation given by a massless
spinor field. Here solid blue, dash-dot red and long dash black lines correspond to k = 1, 0, −1,
respectively.

We have also considered the case with the spinor field nonlinearity describing a
quintessence (W = −1/2) and cosmological constant (W = −1). Both massive and
massless spinor fields are taken into account. Since in both cases the energy density is
less than the critical density, independent to the value of k we have only open type of
universe. The behavior of the evolution is qualitatively same as that of in case of a modified
Chaplygin gas. The corresponding figures will be similar to those in Figure 2, only the rate
of expansion being much slower.

3.2. Chaplygin Gas

In order to combine two different physical concepts such as dark matter and dark
energy, and thus reduce the two physical parameters in one, a rather exotic equation of
state was proposed in [35] which was further generalized in the works [36,37]. It was
shown that such kind of dark energy can be modeled by the massless spinor field with the
nonlinearity [18]

F =
(

A + λS1+α
)1/(1+α)

, (53)

where A is a positive constant and 0 < α ≤ 1.
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We have solved (48)–(50) numerically for the nonlinear term given by (53). We consider
only massless spinor field setting msp = 0. The parameters S0, G and λ were taken as in
previous case. We have also set A = 1/2 and α = 1/3.

As in case of quintessence and cosmological constant, the evolution of the universe
filled with Chaplygin gas is qualitatively same as in case of a modified Chaplygin gas
which are illustrated in Figure 2. The expansion rate in this case is higher than the previous
case but slower than in the case to follow.

Figure 2. Evolution of the FRW Universe (scale factor a) in presence of a modified Chaplygin gas
given by a massless spinor field. As one sees, due to the presence of dark energy for all values of
k we have open universe. Here solid blue, dash-dot red and long dash black lines correspond to
k = 1, 0, −1, respectively.

3.3. Modified Chaplygin Gas

Though the dark energy and the dark matter act in a completely different way, many
researchers suppose that they are different manifestations of a single entity. Following
such an idea a modified Chaplygin gas was introduced in [38] and was further developed
in [39]. The modified Chaplygin gas can be generated by a massless spinor field with the
nonlinearity given by [18]

F =

[
A

1 + W
+ λS(1+α)(1+W)

]1/(1+α)

. (54)

with W being a constant, A > 0 and 0 ≤ α ≤ 1. In fact, mathematically it is a combination
of quintessence and Chaplygin gas. We have solved (48)–(50) numerically for the nonlinear
term given by (54). Since we consider only massless spinor field, we set msp = 0. For
simplicity we set S0, G, λ, A, and α as in previous cases. Beside that we set W = −1/2.

In Figure 3 we have illustrated the evolution of the universe when the universe is
filled with nonlinear spinor field simulating a modified Chaplygin gas.
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Figure 3. Evolution of the FRW Universe (scale factor a) in presence of a modified quintessence given
by a massless spinor field. In this case the value of k plays definite role. Here solid blue, dash-dot red
and long dash black lines correspond to k = 1, 0, −1, respectively.

3.4. Modified Quintessence

A modified Quintessence was proposed in order to avoid eternal acceleration of the
universe. In some cases it gives cyclic universe that pops up from a Big Bang singularity,
expands to some maximum value and then decreases and finally ends in Big Crunch. In
some cases it might be periodic without singularity. A spinor description of a modified
quintessence was proposed in [31]

p = W(ε− εcr), W ∈ (−1, 0), (55)

with εcr being some critical energy density. The model gives rise to cyclic or oscillatory
universe. Setting εcr = 0 one obtains ordinary quintessence. As one sees from (55), the
pressure is negative as long as ε > εcr. Since with the expansion of the universe the energy
density decreases, at some moment of time ε becomes less than εcr, i.e., ε < εcr. This leads
to the positive pressure and the contraction of the universe. It can be shown that a modified
quintessence can be modeled by a spinor field nonlinearity

F = λS1+W +
W

1 + W
εcr. (56)

In this case while solving the system (48)–(50) we consider values of the parameters as
in case of quintessence. For critical density we set εcr = 1.

In Figure 3 we have illustrated the evolution of the universe when the universe is
filled with nonlinear massless spinor field simulating a modified quintessence. It should be
emphasized that in this case both massless and massive the spinor field can be considered.

4. Conclusions and Discussions

Within the scope of a FLRW cosmological model we have studied the role of a nonlinear
spinor field in the evolution of the universe. It is found that if the FLRW model is given
in spherical coordinates the spinor field possesses nontrivial non-diagonal components of
the EMT, whereas is case of Cartesian coordinates these components are trivial. Since the
Einstein tensor in this case is diagonal, the presence of nontrivial non-diagonal components
of the EMT imposes some restrictions on the components of spinor field. Corresponding
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equations are solved and the results are graphically illustrated for the cases when the
universe is filled with radiation, modified Chaplygin gas and modified quintessence.

As it was already noticed, the coordinate transformation from Cartesian to spherical
coordinates gives rise to non-diagonal components of EMT that owe to spinor affine
connections. This very fact suggestes that the definition of spinor affine connections need
if not modification then serious reconsideration. It should be noted that there were a few
opinions regarding the generalization of Dirac spinor in general relativity proposed by
Fock [40–42], Pauli [43], Sommerfeld [44], Wigner [45] and others. We plan to address this
issue in near future.
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Abstract: We consider homogeneous and isotropic cosmological models in the framework of three
geometrical theories of gravitation. In Einstein’s general relativity, they are given in terms of the
curvature of the Levi-Civita connection in torsion-free metric spacetimes; in the teleparallel equivalent
of general relativity, they are given in terms of the torsion of flat metric spacetimes; and in the
symmetric teleparallel equivalent of general relativity, they are given in terms of the nonmetricity of
flat torsion-free spacetimes. We argue that although these three formulations seem to be different, the
corresponding cosmological models are in fact equivalent and their choice is conventional.

Keywords: philosophy of spacetime; Friedmann cosmology; teleparallel gravity; symmetric
teleparallel gravity

1. Introduction

At present, the ΛCDM model is considered as the most adequate large-scale descrip-
tion of the visible universe. It is based on the Friedmann solution of equations of Einstein’s
general relativity (GR) with cosmological constant Λ, which is considered to describe hypo-
thetical dark energy, and also contains hypothetical dark matter. The essential parameters
of the model can be estimated from observations with ever-improving precision.

However, not everybody acknowledges the success of the ΛCDM model as there are
several observational results that are difficult to accommodate in it [1]. The hypothetical
dark energy was introduced to explain a totally unexpected discovery of accelerating
expansion of the universe during the last 6 billion years. The equally hypothetical dark
matter was introduced to explain the observed rotation velocities of stars in galaxies, and is
also required to give an account of structure formation and gravitational lensing. However,
particles of dark matter have up to now never been observed and they cannot be identified
with any particles from the standard model of particle physics.

There are several directions to understand the situation. Physicists who are used to
investigating different theories of gravitation are inclined to modify the Einstein general
relativity for obtaining predictions close to observations without using hypothetical entities.
Philosophers of physics are eager to spot the roots of difficulties in the standard model of
cosmology. We are not going to give an overview of the modified theories of gravitation
since there is already a wealth of literature on that topic [2,3]. Instead, we will discuss
some features of current cosmological models that raise questions. We shall proceed from
a recent paper [4], which claims that the standard model of cosmology is in a great part
conventional. Conventionalism in physics tries to separate those parts of theories that
do not describe real properties of objects under consideration but are simply definitions
or conventions that can be replaced by different ones, as far as observational results are
retained. The idea was implicitly presented by Duhem [5], elaborated by Poincaré [6] and
explained in detail by Popper [7].

The present paper considers the contemporary standard model of cosmology from
the point of view of conventionalism, putting focus upon the alternative geometric for-
mulations. We consider theories where gravitation is given not in terms of curvature of
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the connection as in general relativity (GR), but in terms of torsion or nonmetricity of
the connection. If the curvature and nonmetricity of the corresponding connection are
taken to vanish, but the torsion is not, it is known as the teleparallel equivalent of general
relativity (TEGR) [8,9]. If the curvature and torsion of the connection are taken to vanish,
we obtain the Symmetric teleparallel equivalent of general relativity (STEGR) [10]. The
Lagrangians of these three theories differ only by a total derivative term, so their local
equations of motion coincide, and one can envision a geometric trinity of gravity [11,12]. A
reader interested in the mathematical details of teleparallel theories can refer to reviews
like [13,14]. Let us mention that an analogous set of equivalences can be also shown in the
nonrelativistic case [15,16], as well as in extended f (R)-type case [17], or including both
torsion and nonmetricity simultaneously [18].

The paper is structured as follows. In Section 2, we briefly review the paper by Mer-
ritt [4], where the conventions of ΛCDM cosmology are compared with those characterized
by Popper [7]. Then, we the discuss problems of theoretical and interpretational equiva-
lence in physics as presented by Weatherall [19], Dürr [20] and Coffey [21]. In Section 3, we
flesh out how the spatially flat Friedmann ΛCDM model is described in GR, TEGR and
STEGR. At the end, Section 4 is devoted to a discussion that summarizes the results and
outlines some avenues beyond ΛCDM which deserve a closer look.

2. Conventionalism in Physics and Cosmology
2.1. Merritt on Conventions in the ΛCDM Model

Merritt [4] proceeds from Popper’s idea that science as distinct from non-science
can be characterized by its falsifiability: universal statements of theory can be logically
contradicted by an intersubjective singular existential statement. Popper was worried
that if scientific theories contain conventions that can be freely changed, their criterion
of falsifiability cannot be applied. He indicates that a conventionalist can use at least
two strategies for preventing falsifiability: (i) introducing ad hoc hypotheses that explain
potentially falsifying observations, (ii) changing some ostensive definitions that change the
content of the theory.

The first strategy is explicitly used for proposing the dark matter hypothesis. In order
to explain the difference in observed rotation velocities of stars in galaxies and galaxies
in clusters of galaxies in comparison with theoretical predictions using known theories of
gravity and observed masses, it was proposed to assume existence of additional quantities
of non-luminous matter, dubbed dark matter. However, the essence and physical properties
of dark matter remain mysterious.

Less explicit is the role of introducing hypothetical dark energy for explaining the
observed accelerating expansion of the universe. The simplest way to explain it is to
complement the Einstein equations of gravitation with a cosmological constant term. It does
not change the general interpretation of the theory, but allows cosmological solutions which
conform with observations. However, a more detailed interpretation of the cosmological
constant is ambiguous [22]. It can be considered as a homogeneous and isotropic perfect
fluid, but then its pressure must be negative with an absolute value equal to its energy
density. In a sense, the cosmological constant is referred to as a a new typeof perfect fluid.

In both cases, hypothetical entities are introduced for explaining specific observational
evidence. Up to now, these entities defy additional observational conformations or refuta-
tions. However, they seem to be a solid part of the received view of the universe. As Merritt
concludes: “rather than conceive of dark matter and dark energy as postulates invoked
in response to falsifying observations—cosmologists interpret those same observations as
tantamount to the discovery of dark matter and dark energy”.

2.2. A Peculiar Feature of Cosmological Science

In cosmological science, there is no possibility to provide experiments or to compare
observations of different scenarios. There is only one visible universe and our efforts
attempt to find its description. Popper is interested not only in possibilities to falsify a
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theory, but even more in finding satisfactory theories. He admits that the aim is in fact not
achievable: “Science does not rest on a solid bedrock. The bold structure of its theories
rises, as it were, above a swamp. The piles are driven down from above into the swamp,
but nor down to any natural or ‘given’ base, and if we stop driving the piles deeper, it is
not because we have reached firm ground. We simply stop when we are satisfied that the
piles are firm enough to carry the structure, at least for the time being” [7] (ch.5, sec. 30). In
fact, he does not deny that some piles may be conventional, i.e., changeable, although this
may be an obstacle to possible falsification of the theory.

In what follows, we argue that there is yet another basic property of the theory of
the Friedmann cosmology that can be freely chosen: the geometric framework, a curved
torsion-free metric spacetime or a metric spacetime with torsion and flat connections or a flat
torsion-free spacetime with nonmetricity. This follows from the fact that the corresponding
Lagrangians differ only by boundary terms that vanish in Friedmann cosmology, and
local equations of motion can be transformed into each other. This is reminiscent of the
geometric conventionality presented by Poincaré [6]: an infinite Euclidean background
can be transformed into a finite non-Euclidean background by introducing universal
distorting forces. Poincaré concluded that corresponding sets of geometric axioms are just
conventions for allowing us to choose a mathematical framework to be applied. The choice
is not determined by experiments or observations, although it must be in line with their
results.

2.3. Empirical Equivalence and Theoretical Equivalence

Although GR, TEGR and STEGR are locally empirically equivalent, this does not
mean that they are equivalent in all aspects. There may be other important differences
in the theories that do not affect experimental or observational results. Theories may
include concepts and theoretical terms that are essentially different; they may attribute
different structures to the world, etc. It follows that empirically equivalent but theoretically
inequivalent theories may contain conventional parts.

Theoretical equivalence as distinct from empirical equivalence can be described using
a formal approach [23], but there are also other ways to consider it. For instance, Coffey [21]
proposed that theoretical equivalence of empirically equivalent theories means that they
agree on what the physical world is fundamentally like [21]. Note that this is not the view of
Poincaré’s geometric conventionalism. A short review of different possibilities to introduce
theoretical equivalence was recently presented by Weatherall [19]. He admits that empirical
equivalence is a necessary condition for two theories to be theoretically equivalent, but
need not be a sufficient one.

Dürr [20] considers the case of a theory T together with an empirically equivalent
but incompatible alternative account T′ of relevant data. Then, T and T′ are not simply
different representations of the same theory, since they assert contradictory facts about
the world. Dürr indicates two ways for this to occur. Firstly, the same mathematical
equations can obtain different interpretations, e.g., GR formalism is usually interpreted
geometrically, but can also be interpreted field-theoretically, as presented by Feynman [24]
and Weinberg [25]. If the inequivalent interpretations are considered to be sufficient for
theoretical inequivalence, then we have here two distinct theories of gravitation, although
usually physicists consider them to be equivalent with respect to their physical content.
Secondly, T and T′ can have distinct equations, as in the case of Dirac–von Neumann and
Bohmian quantum mechanics, which clearly are two distinct theories, although empirically
equivalent.

TEGR and GR describe the underlying spacetime differently although empirically
equivalently; in TEGR, mathematical formalism is interpreted as describing a flat spacetime
with a non-vanishing torsion, and in GR, the related formalism is interpreted as describing
a curved spacetime with a vanishing torsion. In TEGR, the inertial and gravitational forces
are described separately, distinct from GR, where they are united via the principle of
equivalence. It follows that TEGR and GR are not interpretationally equivalent. At the
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same time, the symmetric teleparallel connection endowed with nonmetricity but lacking
curvature and torsion arises in STEGR as a Stueckelberg field for diffeomorphisms, meaning
it is just a gauge field, i.e., yet another aspect open for interpretation.

Knox [26] argues that if we accept spacetime functionalism, i.e., take into account only
those features of the physical world that are functionally relevant in producing empirical
evidence, then GR and TEGR can be considered as postulating the same spacetime ontology,
since they pick out the same inertial reference frames for gravitational and non-gravitational
physics (the limitations of this approach are pointed out by Read and Menon [27]). In
Knox’s opinion, GR and TEGR are empirically and ontologically equivalent, and they ought
to be considered rather as different formulations of the same physics and not two different
theories. Her complicated deliberations demonstrate that identity of theories is not an easy
problem. Recently, Wolf and Read [28] investigated isolated gravitational systems and
systems with boundaries and argued that in this respect, GR and TEGR are equivalent.

If we admit that GR, TEGR and also STEGR can be considered as having equiva-
lent physical content, then we can choose their geometric framework and consider it as
conventional. We will return to these issues in Section 4.

3. Friedmann Cosmology in Different Formulations of General Relativity
3.1. Geometric Preliminaries

To back up and illustrate the discussion, we introduce some maths. In differential
geometry, general metric-affine spacetimes are described by two quantities that are in prin-
ciple independent: the metric gµν, which encodes distances and angles, and the connection
Γλ

σρ, which defines parallel transport and covariant derivatives, e.g.,

∇µT λ
ν = ∂µT λ

ν + Γλ
αµT α

ν − Γα
νµT λ

α . (1)

The generic affine connection can be decomposed into three parts,

Γλ
µν =

{
λ

µν

}
+ Kλ

µν + Lλ
µν , (2)

where the Christoffel symbols of the Levi-Civita connection depend on the metric gµν,

{
λ

µν

}
≡ 1

2
gλβ
(
∂µgβν + ∂νgβµ − ∂βgµν

)
, (3)

while contortion
Kλ

µν ≡
1
2

gλβ
(
Tµβν + Tνβµ − Tβµν

)
, (4)

and disformation
Lλ

µν ≡ −
1
2

gλβ
(
Qµβν + Qνβµ + Qβµν

)
(5)

encode the independent aspect of the connection. The last two quantities are defined via
torsion (antisymmetric)

Tλ
µν ≡ Γλ

νµ − Γλ
µν (6)

and nonmetricity (symmetric)

Qρµν ≡ ∇ρgµν = ∂ρgµν − Γβ
µρgβν − Γβ

νρgµβ . (7)

Note that torsion and nonmetricity, as well as curvature

Rσ
ρµν ≡ ∂µΓσ

νρ − ∂νΓσ
µρ + Γα

νρΓσ
µα − Γα

µρΓσ
να (8)

and its contractions Rµν = Rρ
µρν, R = gµνRµν, are strictly speaking all properties of the

connection.
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Friedmann cosmology is based on the cosmological principle which expects that at
sufficiently large scales, the Universe is homogeneous and isotropic in space, i.e., it is
characterised by the Killing vectors of translations ζTi and rotations ζRi , given in spherical
coordinates as

ζ
µ
Tx

=
(

0 χ sin θ cos φ χ
r cos θ cos φ − χ

r
sin φ
sin θ

)
, (9a)

ζ
µ
Ty

=
(

0 χ sin θ sin φ χ
r cos θ sin φ χ

r
cos φ
sin θ

)
, (9b)

ζ
µ
Tz

=
(
0 χ cos θ − χ

r sin θ 0
)

, (9c)

ζ
µ
Rx

=
(

0 0 sin φ
cos φ
tan θ

)
, (9d)

ζ
µ
Ry

=
(

0 0 − cos φ
sin φ
tan θ

)
, (9e)

ζ
µ
Rz

=
(
0 0 0 −1

)
, (9f)

where χ =
√

1− kr2 describes the curvature of the 3D space. The symmetry is obeyed
when the Lie derivatives of the metric and affine connection along these vectors vanish [29],

£ζ gµν = 0 , £ζΓλ
µν = 0 . (10)

For the sake of simplicity, in this paper, let us focus only upon the spatially flat case, where
k = 0. It is well known that the metric which satisfies this condition is the Friedmann–
Lemaître–Robertson–Walker (FLRW), conveniently written as

ds2 = −dt2 + a(t)2
(

dr2 + r2dθ2 + r2 sin2 θdφ2
)

, (11)

where a(t) is the scale factor that describes the expansion of space. For a connection with
the same symmetries, there are different options to satisfy Equation (10), depending on the
extra assumptions made about curvature, torsion and nonmetricity, as discussed below.
The matter energy momentum tensor consistent with the cosmological symmetry is given
in the same coordinates by

Tµν =




ρ(t) 0 0 0
0 a2(t)p(t) 0 0
0 0 r2a2(t)p(t) 0
0 0 0 r2a2(t)p(t) sin2 θ


 , (12)

where ρ is the energy density and p is the pressure of the matter.

3.2. General Relativity

In general relativity, one assumes the connection is torsion-free (Tλ
µν = 0) and metric-

compatible (Qρµν = 0), which leaves only the Levi-Civita part
{

λ
µν

}
nonvanishing on the

right-hand side of Equation (2). The gravitational field as described by spacetime geometry
follows Einstein’s field equations,

LC

Rµν −
1
2

gµν

LC

R = κ2Tµν , (13)

while the matter constituents obey the continuity equation

LC

∇µT µ
ν = 0 , (14)

which in the case of a massive point particle, leads to

m
(

duµ

dτ
+
{

µ
ρσ

}
uρuσ

)
= 0 . (15)
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Here, m is the mass, uµ the four-velocity and τ is the proper time of the particle. The last
equation is simultaneously the geodesic equation of the metric (giving the shortest distance),
as well as the autoparallel curve of the Levi-Civita connection,

uν
LC

∇νuµ = 0 , (16)

which says that the particle moves “straight” in the direction of the tangent vector uν of its
trajectory. The connection coefficients

{
µ

ρσ

}
in the second term of Equation (15) encode

both the inertial effects (a fictional force arising when “straight” motion is described in
curvilinear coordinates) and gravitational effects (external force accelerating the particle)
together, a fundamental insight of Einstein called the equivalence principle.

In cosmology, it is straightforward to compute the Levi-Civita connection compo-
nents (3) from metric (11)

{
µ

ρσ

}
=







0 0 0 0
0 aȧ 0 0
0 0 aȧr2 0
0 0 0 aȧr2 sin2 θ







0 H 0 0
H 0 0 0
0 0 −r 0
0 0 0 −r sin2 θ







0 0 H 0
0 0 1

r 0
H 1

r 0 0
0 0 0 − sin θ cos θ







0 0 0 H
0 0 0 1

r
0 0 0 cot θ

H 1
r cot θ 0





 , (17)

where the four matrices in columns are labelled by the first index µ, and the entries of the
matrices are specified by the last two indices ρσ. Here, the dot represents a derivative with
respect to time t, and the Hubble function H = ȧ

a measures the relative expansion rate of
space. The connection coefficients (17) obey the cosmological symmetry by construction,
and the respective Lie derivatives (10) vanish. From the connection, we can further calculate
the curvature tensor (8) and its contractions. Substituting these, as well as the matter energy–
momentum (12), into Einstein’s Equation (13) yields the Friedmann equations,

3H2 = κ2ρ , 2Ḣ + 3H2 = −κ2 p , (18)

and substitution into the continuity Equation (14) yields

ρ̇ + 3H(ρ + p) = 0 . (19)

The solutions of these equations for different types of matter combinations (relativis-
tic/radiation, nonrelativistic/dust, cosmological constant, inflaton field, etc.) describe the
evolution of the Universe at large scales. The massive particles moving in the Universe
follow Equation (15) with the inertia and background expansion encoded in (17).

3.3. Teleparallel Equivalent of General Relativity

After accomplishing the remarkably successful geometrisation of the gravitational field
in general relativity, Einstein endeavoured to find a unified geometric theory that would
also include electromagnetism. In one of his attempts [30,31], he introduced a spacetime
with teleparallelism, where the curvature (8) of the connection vanishes and vectors do not
change their direction when parallel-transported along a closed loop. Such connections
endowed with torsion (6) were first investigated by Weitzenböck a few years before [32].
Realizing that such a theory cannot accommodate electromagnetism properly, Einstein gave
up the idea. However, the concept of teleparallel spacetimes was later invoked by Møller
in the search for a description of the energy of gravitational fields [33,34], and then revived
by Hayashi and Nakano to construct a possible gauge theory for the spacetime translation
group [35], which eventually lead to the development of the teleparallel equivalent of
general relativity [8,9] and its extensions [36].
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In the teleparallel equivalent of general relativity, one assumes the connection
TP

Γλ
µν

is “flat” in the sense of identically zero curvature (
TP

Rσ
ρµν = 0) and metric-compatible

(
TP

Qρµν = 0). In the decomposition of the connection (2), this introduces some extra tor-
sional components in the Levi-Civita part. It is important to realize that the Levi-Civita
components depend on the metric and when considered among themselves can still be
characterised by nontrivial curvature. The role of the extra torsional components in the con-
nection is to “compensate” the Levi-Civita connection in making the overall curvature (8)
vanish.

By introducing the torsion scalar

TP

T =
1
2

TP

Tρ
µν

TP

Sρ
µν (20)

where the torsion conjugate (or superpotential) is defined as

TP

Sρ
µν =

TP

Kµν
ρ − δ

µ
ρ

TP

Tσ
σν + δν

ρ

TP

Tσ
σµ , (21)

the field equations of TEGR can be written as follows [37]

LC

∇ρ

TP

S(µν)
ρ −

TP

tµν = κ2Tµν . (22)

An interesting aspect of this form is that the symmetric tensor

TP

tµν =
1
2

TP

S(µ
ρσ

TP

Tν)ρσ −
1
2

gµν

TP

T (23)

appears in the equations in an analogous position as the energy momentum tensor of the
matter. We might be tempted to interpret it as the energy momentum of the gravitational
field1, which acts as a self-source to the dynamics, like the nonlinear self-coupling term in
the Yang–Mills equations. Although all geometric tensors that enter here are computed
from the teleparallel connection, with a clever use of the geometric identities, it is possible
to show that Equation (22) exactly matches Einstein’s field Equation (13). In other words,
when all the terms in Equation (22) are expanded out in full, only the Levi-Civita part of
the connection remains, while the torsional components of the connection cancel each other
out. Hence, given a matter energy momentum, both GR and TEGR predict exactly the
same evolution for the metric field. There is no equation to give the torsional part of the
connection independent dynamics.

In the TEGR constructions, the matter sector is typically assumed to remain unaltered,
i.e., maintaining couplings to the metric and Levi-Civita connection only. This guarantees
that the continuity Equation (14) holds as before2. Hence, the massive particles still follow
the geodesics of the metric (15), but using the relation (2) we can rewrite it as

m
(

duµ

dτ
+

TP

Γµ
ρσuρuσ

)
= m

TP

Kµ
ρσuρuσ . (24)

This form suggests an interesting interpretation. Namely, the right-hand side with contor-
tion tensor looks like a force term (akin to the Lorentz force in electrodynamics), while the
left-hand side says that in the absence of the force, a massive particle will move “straight”
along an autoparallel of the teleparallel connection. Still, both GR and TEGR prescribe iden-
tical paths for the particle motion through spacetime. Thus, GR and TEGR are equivalent
in the sense that they predict the same physical outcomes, but adding an extra connection
allows one to present Equations (22) and (24) in a form where interpretation is more in line
with the other well-established and understood theories of physics.

Let us take the Friedmann cosmology example. It can be confirmed that the following
connection [29]
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TP

Γρ
µν =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
H 0 0 0
0 0 −r 0
0 0 0 −r sin2 θ







0 0 0 0
0 0 1

r 0
H 1

r 0 0
0 0 0 − sin θ cos θ







0 0 0 0
0 0 0 1

r
0 0 0 cot θ

H 1
r cot θ 0





 (25)

is teleparallel, as the curvature (8) and nonmetricity (7) are zero and it obeys the cosmological
symmetry, whereby the Lie derivatives with respect to the generators of spatial homogeneity
and isotropy vanish, Equations (9) and (10). Substituting this connection, the metric (11) and
matter (12) into Equation (22) reproduces the Friedmann Equation (17) in general relativity
exactly, with

TP

tµν =




3H2 0 0 0
0 −ȧ2 0 0
0 0 −r2 ȧ2 0
0 0 0 −r2 sin2 (θ)ȧ2


 . (26)

The last quantity vanishes for a constant scale factor a, as an expectedly empty space would
not be a source of its own evolution.

For the particle motion, the “force” term on the right-hand side of Equation (24) is set
by the contortion (4), and can easily be found by the subtraction of (17) from (25),

TP

Kµ
ρσ =







0 0 0 0
0 −aȧ 0 0
0 0 −aȧr2 0
0 0 0 −aȧr2 sin2 θ







0 −H 0 0
0 0 0 0
0 0 0 0
0 0 0 0







0 0 −H 0
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 −H
0 0 0 0
0 0 0 0
0 0 0 0





 . (27)

It should not be a surprise that when there is no expansion (ȧ = 0) and the metric reduces
to Minkowski, the contortion vanishes and the particle will feel no gravitational “force”,
although there are still inertial effects present in the connection (25) on the left-hand side of
(24) since we use spherical coordinates.

3.4. Symmetric Teleparallel Equivalent of General Relativity

From the discussion above, it is not hard to envision another option to present an
alternative formulation of general relativity by employing nonmetricity instead of torsion,
although the history of this idea dates not that far back [53]. In the symmetric telepar-

allel equivalent of general relativity [10,11,14], one assumes the connection
STP

Γλ
µν is “flat”

(
STP

Rσ
ρµν = 0) and torsion-free (

STP

Tρ
µν = 0). Thus, in the decomposition of connection (2), we

have extra nonmetricity-related components in the Levi-Civita part. Again, the Levi-Civita
components considered among themselves can still be characterised by a nontrivial curva-
ture, and the role of the extra nonmetricity components is to make the overall curvature (8)
vanish.

By introducing the nonmetricity scalar

STP

Q =
1
2

STP

Qρ
µν

STP

Pρ
µν (28)
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where the nonmetricity conjugate (or superpotential) is defined as3

STP

Pρ
µν = − 1

2

STP

Qρ
µν +

STP

Q(µ
ρ

ν) +
1
2

gµν

STP

Qρα
α −

1
2

(
gµν

STP

Qα
ρα + δρ

(µ

STP

Qν)α
α

)
, (29)

the field equations of STEGR can be written in the following form (adopted from [54])

LC

∇ρ

STP

Pρ
µν −

STP

t µν = κ2Tµν (30)

Here, the symmetric tensor

STP

t µν =−
STP

Lρ
αρ

STP

Pα
µν +

STP

Lα
µρ

STP

Pρ
αν +

STP

Lα
νρ

STP

Pρ
µα

− 1
2

STP

Pρµν

STP

Qρσ
σ −

1
2

STP

Pνρσ

STP

Qµ
ρσ +

STP

Pρσµ

STP

Qρσ
ν +

1
2

gµν

STP

Q (31)

again appears in the equations in an analogous position to the energy momentum tensor
of the matter and we might be tempted to interpret it as a kind of energy momentum of
the gravitational field. Although all geometric tensors in the field equations are computed
from the teleparallel connection, with a clever use of the geometric identities, it is possible
to show that Equation (31) matches Einstein’s field Equation (13) exactly. Indeed, when
all the terms in Equation (22) are expanded out in full, only the Levi-Civita part of the
connection remains, while the nonmetricity components of the connection cancel each other
out. Hence, given a matter energy momentum, both GR and STEGR predict exactly the
same evolution for the metric field. There is no equation to give the nonmetricity part of
the connection independent dynamics.

Leaving the matter sector in STEGR unaltered from GR, i.e., maintaining couplings to
the metric and Levi-Civita connection only4, guarantees that the continuity Equation (14)
holds as before. Hence, the massive particles still follow the geodesics of metric (15), but
using the relation (2), we can rewrite it as

m
(

duµ

dτ
+

STP

Γµ
ρσuρuσ

)
= m

STP

Lµ
ρσuρuσ . (32)

Analogously to the torsional case, the right-hand side with the disformation tensor looks
like a force term, while the left-hand side says that in the absence of the force, a massive
particle will move “straight” along an autoparallel of the symmetric teleparallel connection.
Yet, both GR and STEGR prescribe identical paths for the particle motion through spacetime.
Therefore, GR and STEGR are equivalent in the sense that they predict the same physical
outcomes, but adding an extra connection allows one to present Equations (31) and (32) in
a form where interpretation is more in line with the other well-established and understood
theories of physics.

The options for the symmetric teleparallel connection that obey cosmological sym-
metry (9) and (10) were determined in refs. [56,57]. It turns out that for spatially flat
connections there are three sets of solutions. Perhaps the simplest of those is set 1 (in the
notation of refs. [58,59])

STP

Γρ
µν =







γ(t) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 −r 0
0 0 0 −r sin2 θ







0 0 0 0
0 0 1

r 0
0 1

r 0 0
0 0 0 − sin θ cos θ







0 0 0 0
0 0 0 1

r
0 0 0 cot θ

0 1
r cot θ 0





 (33)

121



Universe 2024, 10, 1

where γ(t) is a free function. Substituting this connection, metric (11) and matter (12) into
Equation (31) reproduces the Friedmann Equation (17) in general relativity exactly, with

STP

t µν =




3γH 0 0 0
0 −a2(2H2 + γH

)
0 0

0 0 −a2r2(2H2 + γH
)

0
0 0 0 −a2r2 sin2 (θ)a2(2H2 + γH

)


 . (34)

Again, the last quantity vanishes for s constant scale factor a, which is consistent with the
expectation that empty space does not act as a source of itself. Although the free function
γ(t) enters (34), it cancels out in the full field in Equation (31). This is not a surprise, as this
function is not present in GR, and GR equations do not contain anything to determine it.

For the particle motion, the “force” term on the right-hand side of Equation (32) is set
by the disformation and can be found by computing (5) from (33), yielding

STP

Lµ
ρσ =







γ 0 0 0
0 −Ha2 0 0
0 0 −r2Ha2 0
0 0 0 −r2Ha2 sin2 (θ)







0 −H 0 0
−H 0 0 0

0 0 0 0
0 0 0 0







0 0 −H 0
0 0 0 0
−H 0 0 0

0 0 0 0







0 0 0 −H
0 0 0 0
0 0 0 0
−H 0 0 0





 . (35)

Interestingly, when there is no expansion (ȧ = 0) and the metric reduces to Minkowski, the
disformation will still depend on the arbitrary function γ. This does not affect the actual
particle trajectory, though, as in the equations of particle motion (32), the γ terms drop out.
We may take γ to vanish identically without any constraints from the equations. This just
illustrates how adding the non-Riemannian part to make the overall connection vanish
contains an aspect of arbitrariness, as the split between inertia and force is up to our liking
at this stage.

The two other symmetric teleparallel connections that obey the cosmological sym-
metries are rather similar [56,57]. They both introduce an arbitrary function, which by
assumption cannot be zero. The cosmological field equations and particle motion equations
are quite analogous to the previous case, and do not introduce qualitatively new features
for our purposes. It can just be remarked that the free function γ of set 1 does not appear
in the cosmological equations of extended symmetric teleparallel theories either [56,57],
but the functions present in the alternative sets 2 and 3 become dynamical and can easily
trigger a finite-time singularity in the extended theories [59].

3.5. General Teleparallel Equivalent of General Relativity (GTEGR)

Besides only activating torsion, as in teleparallel gravity, or only activating nonmetric-
ity, as in symmetric teleparallel gravity, one may also entertain the option of having both a
torsion and nonmetricity different from zero, while the curvature is still restricted to vanish.
In such a setting, it is possible to formulate the general teleparallel equivalent of general
relativity which gives the same equations and predictions as GR [18]. For this theory, the
connections with cosmological symmetries were determined in ref. [60], and considerations
in relation to the notion of energy were given in ref. [61]. In view of the present paper,
GTEGR does not add qualitatively new features, and we will not go deeper into the details
here.

4. Discussion

In this paper, we argue that there are at least three conventional elements in the
standard ΛCDM cosmology; in addition to (1) dark matter and (2) dark energy, there is
also (3) the type of geometry. The conventionality of the first two entities is discussed by
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Merritt [4]. They are introduced with the aim of evading consequences of observations
that can falsify the standard ΛCDM cosmology. However, in principle, it is possible that
dark matter particles can be detectable by some non-gravitational means, or the effects
otherwise attributed to dark matter can be explained by a suitable (ultra-low acceleration)
modification to the gravitational force law testable in some other experiments as well.
Similarly, it is conceivable that the source of dark energy can be independently identified
as some new classical field or a quantum field theory or quantum gravity effect. Thus, in
principle, it is possible to break the ad hoc nature of dark matter and dark energy. The
character of the third element seems to be different however.

The third convention emerges if we take into account that local properties of the stan-
dard cosmology can be given in different geometrical frameworks that are observationally
equivalent. We can write the same equations in GR with a Levi-Civita connection that has
curvature in TEGR with a teleparallel connection that has an identically zero curvature but
nontrival torsion; in STEGR with a symmetric teleparallel connection that is endowed with
nonzero nonmetricity but vanishing curvature; or in GTEGR with a general teleparallel
connection where the curvature is zero but both torsion and nonmetricity can be present.
Despite invoking these different geometric structures, Einstein’s field equations and particle
motion equations reduce to the same immediate mathematical content in all formulations
and predict the same physical outcomes for given initial conditions.

The situation is reminiscent of the geometric conventionality presented by Poincaré [6],
who envisioned how an infinite Euclidean background can be transformed into a finite non-
Euclidean background by introducing universal distorting forces. Poincaré concluded that
the corresponding sets of geometric axioms are neither synthetic a priori nor experimental
facts; they are conventions that allow us to choose the mathematical framework to be
applied. The choice is not determined by experiments or observations, although it must be
in line with their results and, last but not least, must avoid contradictions.

In the modern teleparallel version of geometric conventionalism, as we saw in Section 3,
the split between the “source” and “kinetic” terms of the Einstein’s field equations, or
the “inertia” and “force” terms in the particle motion equations, is a convention, up to
the choice of the formulation or different choices of connection classes within a given
formulation. It may even be up to the choice of an arbitrary function in a particular class
of connections within a given formulation. To be more precise, the metric structure in
geometry can be related to a physical observable as giving a distance between spacetime
points. It also defines the light cones that determine which points can be causally connected.
Thus, the different formulations of GR do not diverge about the metric, otherwise the
empirical equivalence would be broken. On the other hand, the different formulations
prescribe different connections in setting up the underlying geometry. The basic role of the
connection is to define which path is “straight”, whereby any physicist immediately recalls
Newton’s first law. However, as soon as one departs from the absolute space of Newton
and intermingles gravity with geometry, the “straightness” of particle motion becomes
ambiguous. Even if for one connection some path (a collection of points) is “straight”, i.e.,
autoparallel as defined by that connection, for another connection, the same path (the same
collection of points) is not “straight” any more, while the deviation can be attributed to a
corresponding “force” acting on the particle. Empirically, what is available for observation
is the path, not its “straightness”. The choice of the connection is a convention, in spite of
how contrary to the usual GR intuition this statement is. If we can choose which type of
geometry we use, then none of them can be considered as describing the “real” spacetime,
at least from the point of view of local equations of motion.

At this point, one may object that the Levi-Civita connection is the unique connection
obtainable from the metric and it is the minimal but sufficient choice to describe all phe-
nomena within the purview of GR and its empirical equivalents. Hence, to keep the list
of agents in the game as short as possible, by the principle of Occam’s razor, we can drop
the extra non-Riemannian parts of connection as they are superfluous, do not contribute
any observable effects and are not even determined by the equations. While this view has
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its merits, a counterargument can compare the choice of the connection to the choice of a
gauge in electrodynamics. Although different gauge choices of the vector potential imply
the same electric and magnetic field strengths and the same motion for a charged particle,
in some gauges, the practical computations can become much more economical to perform.
Similarly, it may happen that a good choice of the connection can considerably simplify the
gravitational calculations. For example, in symmetric teleparallelism, there always exists
a coordinate system where the connection vanishes identically in the whole spacetime,
and thus the covariant derivatives reduce to plain partial derivatives, called a ‘coincident
gauge’ [10].5 In practical terms, if picking a good extra connection would help in running
the numerical simulations in gravity or assist in a consistent quantisation of gravity, the
blade of Occam’s razor could be turned the other way.

Given that GR, TEGR, STEGR and GTEGR are empirically equivalent, it remains to
ask whether they are also theoretically equivalent? The answer, of course, depends on the
philosophical definition of the notion of theoretical equivalence. Instead of delving deeply
into that discussion, let us instead mention a few aspects from a more physical point of
view. Since the theories are still under active investigation and development, the following
remarks only reflect the present state of understanding (of the authors).

First, the fundamental theories of physics obey the action principle, whereby a single
mathematical expression encodes all information about the theory, as the equations, con-
served quantities and other features can be derived from it. The actions of GR and those of
TEGR, STEGR and GTEGR differ by their respective boundary terms [10,11,14]. This means
that their field equations are fully equivalent in the usual spacetimes without boundaries, as
in the case of Friedmann cosmology. That explains why Equations (13), (22) and (30) match.
In more complicated situations of spacetimes with boundaries like the braneworld models,
the presence of a boundary might require extra source terms in the action. However, the
question of how the correspondence between the different formulations actually works out
in that case has not received much attention yet. In addition, there is a broader issue of
whether the equations of motion are all that are relevant in physics. While the boundary
term in the action does not affect the field equations in the bulk, it can still play a role
in something. For example, the correct account of the black hole entropy and thus the
establishment of generalised thermodynamics wholly depends on the boundary term in
the GR action [28]. The investigation into black hole thermodynamics in the teleparallel
context has barely begun [45,46,63,64], and we do not know whether a consistent account
can be given in all the formulations.

The second issue is the well-established problem of gravitational energy, where
Noether’s theorem applied to GR does not yield a local quantity that would be both
covariant and conserved [65]. At best, one can entertain global integral quantities for
asymptotically flat spacetimes. Since the early days [33], the hope of finding a consistent
definition of energy for the gravitational field has been one motivating factor in the inves-
tigations of teleparallel theories, and there are different proposals and arguments in the
recent literature [38–51]. At the present moment, there is not yet a consensus on whether a
universal definition of gravitational energy–momentum can be given, how it is given and
whether it can be given in all or only in a specific formulation of the otherwise empirically
equivalent family of formulations. Although different assignments of energy to spacetime
configurations may not alter any of the observable predictions, it could be that a certain
formulation of the theory is preferable in terms of elegance and consistency with the rest of
physical theories. Or it could be that in the end, all formulations turn out to be equivalent
also in this respect.

Third, the equivalence discussed so far concerns just the local properties of the theory,
represented by the field equations and motion of test particles. The global properties of the
corresponding spacetimes, including the effects of topology, have not yet been investigated
much. It is a well-known fact in topology that not all spaces admit global parallelization.
Even in the case of Friedmann cosmology, the metric (11) is compatible with different
topologies by clever global indentifications, and such scenarios are not completely ruled
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out by current observations [66]. Thus, it remains an open problem how the teleparallel
constructions would fare in nontrivial topologies, and whether the equivalence would
still stand.

5. Conclusions

We think that it is not surprising that our cosmological standard model contains so
many parts that are fixed by conventions. Much more surprising is the fact that not all of
our cosmological knowledge is a conventional narrative only.
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Notes
1 The issue of gravitational energy-momentum in teleparallel gravity has seen quite some developments and arguments [38–51],

but we do not intend to make a strong claim here.
2 Modification of the matter sector with added couplings to the non-Riemannian part of the connection typically introduces new

terms in the continuity equation and particle motion equation [52], breaking the equivalence with GR.
3 Often in the literature the factor 1

2 in (28) is moved into the definition (29).
4 For simple scalar, spinor and vector fields, we may actually replace the Levi-Civita connection with the symmetric teleparallel

connection [55].
5 In these coordinates, the metric typically becomes more complicated though, which can considerably curb the benefits in

calculational economy [62].

References
1. Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 2022, 95, 101659. [CrossRef]
2. Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rep.

2019, 796, 1–113. [CrossRef]
3. Saridakis, E. N.; Lazkoz, R.; Salzano, V.; Vargas Moniz, P.; Capozziello, S.; Beltrán Jiménez, J.; De Laurentis, M.; Olmo, G. J.

Modified Gravity and Cosmology: An Update by the CANTATA Network; Springer: Berlin/Heidelberg, Germany, 2021. [CrossRef]
4. Merritt, D. Cosmology and convention. Stud. Hist. Philos. Mod. Phys. 2017, 57, 41–52. [CrossRef]
5. Duhem, P. La Thèorie Physique: Son Objet et sa Structure; M. Rivière: Paris, France, 1914.
6. Poincaré, H. La Science et l’Hypothèse; Flammarion: Paris, France, 1902.
7. Popper, K.R. The Logic of Scientific Discovery; Basic Books: New York, NY, USA, 1959.
8. Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [CrossRef]
9. Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully

invariant approach. Class. Quant. Grav. 2019, 36, 183001. [CrossRef]
10. Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 044048. [CrossRef]
11. Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev.

D 2018, 97, 124025. [CrossRef]

125



Universe 2024, 10, 1

12. Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [CrossRef]
13. Capozziello, S.; De Falco, V.; Ferrara, C. Comparing equivalent gravities: Common features and differences. Eur. Phys. J. C 2022,

82, 865. [CrossRef]
14. Heisenberg, L. Review on f (Q) Gravity. arXiv 2023, arXiv:2309.15958.
15. Wolf, W.J.; Read, J. The Non-Relativistic Geometric Trinity of Gravity. arXiv 2023, arXiv:2308.07100.
16. Wolf, W.J.; Sanchioni, M.; Read, J. Underdetermination in Classic and Modern Tests of General Relativity. arXiv 2023,

arXiv:2307.10074.
17. Capozziello, S.; De Falco, V.; Ferrara, C. The role of the boundary term in f(Q, B) symmetric teleparallel gravity. Eur. Phys. J. C

2023, 83, 915. [CrossRef]
18. Beltrán Jiménez, J.; Heisenberg, L.; Iosifidis, D.; Jiménez-Cano, A.; Koivisto, T.S. General teleparallel quadratic gravity. Phys. Lett.

B 2020, 805, 135422. [CrossRef]
19. Weatherall, J.O. Part 2: Theoretical equivalence in physics. Philos. Compass 2018, 14, e12591. [CrossRef]
20. Duerr, P.M. Theory (In-)Equivalence and conventionalism in f (R) gravity. Stud. Hist. Philos. Sci. 2021, 88, 10–29. [CrossRef]

[PubMed]
21. Coffey, K. Theoretical equivalence as interpretational equivalence. Br. J. Philos. Sci. 2014, 65, 821–844. [CrossRef]
22. Koberinski, A.; Falck, B.; Smeenk, C. Contemporary Philosophical Perspectives on the Cosmological Constant. Universe 2023,

9, 134. [CrossRef]
23. Quine, W.V.O. On empirically equivalent systems of the world. Erkenntnis 1975, 9, 313–328. [CrossRef]
24. Feynman, R.P. Feynman Lectures on Gravitation; Addison–Wesley Publishing Company: Boston, MA, USA, 1995.
25. Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons, Inc.:

Hoboken, NJ, USA, 1972.
26. Knox, E. Newton–Cartan theory and teleparallel gravity: The force of a formulation. Stud. Hist. Philos. Mod. Phys. 2011,

42, 264–275. [CrossRef]
27. Read, J.; Menon, T. The limitations of inertial frame spacetime functionalism. Synthese 2021, 199 (Suppl. 2), S229–S251. [CrossRef]
28. Wolf, W.J.; Read, J. Respecting Boundaries: Theoretical equivalence and structure beyond dynamics. Eur. J. Philos. Sci. 2023,

13, 1–28. [CrossRef]
29. Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Phys. Rev. D

2019, 100, 084002. [CrossRef]
30. Einstein, A. Riemann-Geometrie mit Aufrechthaltung des Begriffes des Fernparallelismus. In Sitzungsberichte der Preussischen

Akademie der Wissenschaften, Physikalisch-Mathematische Klasse; Berlin, Germany, 1928; pp. 217–221.
31. Einstein, A. Neue Möglichkeit für eine einheitliche Feldtheorievon Gravitation und Elektrizität. In Sitzungsberichte der Preussische

Akademie der Wissenschaften, Physikalisch-Mathematische Klasse; Berlin, Germany, 1928; pp. 224–227.
32. Weitzenböck, R. Invariantentheorie; Noordhoff: Groningen, The Netherlands, 1928.
33. Møller, C. Conservation laws and absolute parallelism in general relativity. In Volume 1: Det Kongelige Danske Videnskabernes

Selskab, Matematisk-Fysiske Skrifter; Munksgaard: Copenhagen, Denmark, 1961.
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Abstract: A new (improved) model of inflation and primordial black hole (PBH) formation is pro-
posed by combining the Starobinsky model of inflation, Appleby–Battye–Starobinsky (ABS) model
of dark energy, and a quantum correction in the modified F(R) gravity. The energy scale parameter
in the ABS model is taken to be close to the inflationary scale, in order to describe double inflation
instead of dark energy. The quantum correction is given by the term quartic in the spacetime scalar
curvature R with a negative coefficient (−δ) in the F(R) function. It is demonstrated that very good
agreement (within 1σ) with current measurements of the cosmic microwave background (CMB)
radiation can be achieved by choosing the proper value of δ, thus solving the problem of low values
of the tilt of CMB scalar perturbations in the earlier proposed model in arXiv:2205.00603. A large (by a
factor of 107 against CMB) enhancement in the power spectrum of scalar perturbations is achieved by
fine tuning the parameters of the model. It is found by numerical analysis that it can lead to formation
of asteroid-size PBHs with masses up to 1020 g, which may form dark matter in the current universe.

Keywords: inflation; primordial black holes; dark matter

1. Introduction

This year is the centennial anniversary of Friedmann’s prediction for expanding uni-
verse, which was based on a nonstationary solution to Einstein’s equations. In recent years,
the expanding universe was extended by other important features, such as cosmological
inflation, dark matter, and dark energy.

A paradigm of inflation in the early universe, proposed a long time ago [1,2] as a
possible solution to internal problems in theoretical cosmology (flatness, horizon, initial con-
ditions, and structure formation), is currently well supported by precision measurements
of the cosmic microwave background (CMB) radiation by WMAP and Planck satellite mis-
sions combined with recent BICEP/Keck data [3–5]. The original (1980) Starobinsky model
of inflation [6] gives a simple theoretical description of inflation by using only gravitational
interactions, which is in very good agreement with the current CMB measurements. It is,
therefore, natural to extend the Starobinsky model of inflation by including more features,
such as production of primordial black holes (PBH). The PBH formation may explain the
origin of black holes and dark matter in the current universe [7–12].

In modern terms, see, e.g., Refs. [13–15] for more details, the Starobinsky model is a
special case among modified gravity theories with the action:

S =
M2

Pl
2

∫
d4x
√
−g F(R) . (1)

Universe 2023, 9, 323. https://doi.org/10.3390/universe9070323 https://www.mdpi.com/journal/universe128



Universe 2023, 9, 323

The Starobinsky F-function of spacetime scalar curvature R is given by:

FS(R) = R +
R2

6M2 , (2)

where MPl = (8πG)−1/2 = 2.435× 1018 GeV is the reduced Planck mass and M is the only
(mass) parameter. The known CMB amplitude determines M ≈ 1.3× 10−5MPl, so that the
Starobinsky model has no free parameters.

An F(R)-gravity model is well known to be equivalent to the quintessence (scalar-
tensor) gravity model in terms of the inflaton scalar field φ with the scalar potential V(R(φ))
in the parametric form, see, e.g., Refs. [16,17] for a derivation:

V(R) = M2
Pl

F′R− F
2(F′)2 , φ(R) =

√
3
2

MPl ln F′ , (3)

where the primes denote the derivatives with respect to the given variable (R). It is usually
impossible to analytically derive the inverse function R(φ) from a given function φ(R),
with the notable exception being the Starobinsky case (2), where one obtains a simple and
well-known answer:

VS(φ) =
3
4

M2
PlM

2

[
1− exp

(
−
√

2
3

φ/MPl

)]2

. (4)

To form PBH out of a gravitational collapse of large (curvature) perturbations in the
early universe, one needs a large enhancement of the power spectrum of scalar pertur-
bations by six or seven orders of magnitude against the CMB spectrum. In the context
of single-field models of inflation, it can be achieved in the double inflation scenario via
engineering a near-inflection point in the inflaton scalar potential at lower (than inflation)
scales [10,18]. The potential (4) does not have an inflection point and, hence, does not lead
to PBH production. However, one can modify the Starobinsky F(R)-gravity function (2)
by extra terms that lead to an inflection point. This should be done in agreement with
CMB observables, leading to constraints on eligible F-functions. Moreover, there are other
conditions, such as absence of ghosts and singularities, and the correct Newtonian limit.
Once all the necessary conditions are satisfied, one has to achieve the required enhancement
of the power spectrum and generate PBH with the masses beyond the Hawking radiation
limit of 1015 g because, otherwise, all those PBH would evaporate before the present times.

These problems were partially solved in Ref. [19] by adding to the F(R)-gravity
function (2) the additional terms known in the literature as the Appleby–Battye–Starobinsky
(ABS) model of dark energy [20], and described by the F-function:

FABS(R) = (1− g)R + gEAB ln




cosh
(

R
EAB
− b
)

cosh(b)


 , (5)

where the Appleby–Battye parameter EAB has been introduced as:

EAB =
R0

2g ln(1 + e2b)
(6)

with the new dimensional scale R0 and the dimensionless positive parameters g and b.
The function (5) was carefully chosen in Ref. [20] in order to meet the no-ghost (stability)
conditions in modified F(R) gravity, which are given by:

F′(R) > 0 and F′′(R) > 0 , (7)
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it avoids singularities, obeys the Newtonian limit, and mimics a positive cosmological
constant representing the dark energy for R� R0 with proper values of the parameters g
and b defining the shape of the scalar potential. To describe the present dark energy in the
universe, the parameter R0 representing the vacuum value of the scalar curvature should
be very small,

√
R0 ∼ 10−33 eV and, hence, the AB-parameter should be small too.

The shape of the F-function (5), thus, leads to a meta-stable de Sitter vacuum after
inflation and, hence, a near-inflection point in the potential. In Ref. [19], the dark energy
value of

√
R0 was replaced by a much higher value of the order M below the inflationary

scale Hinf. ∼ 1014 GeV.1 The new model with the F-function:

Fmodified(R) = FABS(R) +
R2

6M2 (8)

leads to the desired enhancement of the power spectrum of scalar perturbations and the
formation of PBH with the asteroid-size masses of an order of 1019 g, which may form the
whole dark matter in the present universe. In order to obtain these results, the parameters g
and b were fine tuned, but agreement with the observed CMB tilt ns of scalar perturbations
was not good enough (outside 1σ but within 3σ lower) in Ref. [19].

In this communication, we propose the improved (new) model of Starobinsky inflation
and PBH formation, having very good agreement (within 1σ) to CMB measurements.
The new model is defined in Section 2 by combining phenomenological and theoretical
considerations. Inflation is studied in Section 3. The power spectrum is derived in Section 4
together with the PBH masses. Section 5 contains our Conclusion.

2. The New Model

Our improved modified gravity model is (phenomenologically) defined by the
F-function:

F(R) = (1− g1)R + gEAB ln




cosh
(

R
EAB
− b
)

cosh(b)


+

R2

6M2 − δ
R4

48M6 , (9)

where we have changed the coefficient at the first term with another parameter g1 6= g and
have added the new term quartic in R with the new parameter δ. The AB parameter EAB
is still defined by Equation (6), where R0 = βM2 with yet another parameter β. All the
parameters (g1, g, b, β, δ) are dimensionless by definition.

The significance of each term in Equation (9) can be explained as follows.
The second term in Equation (9) becomes approximately linear in R both for small and

large values of R/EAB, and thus, correlates with the first term linear in R. Hence, in the
low-curvature regime for small values of R/EAB, consistency with gravity measurements
inside the Solar system requires the Einstein–Hilbert effective action, which implies the
following relation:

g1 = −g tanh b . (10)

Starobinsky inflation is essentially governed by the third term quadratic in R in
Equation (9), which leads to inflaton slow-roll (SR) in the high-curvature regime for the
values of R/M2 between 220 and 10 [17]. The scalar potential (4) of the Starobinsky
model has an infinite plateau, which allows arbitrary duration of inflation, measured by
a number Ne of e-folds. However, the Starobinsky inflation is unstable against quantum
gravity corrections of the higher order in the scalar curvature. As was demonstrated in
Refs. [21–23], the leading superstring-inspired quantum correction should be quartic in
R, while it eliminates the infinite plateau in the Starobinsky potential and, hence, restricts
the maximal number of e-folds. In order to be consistent with CMB measurements, the
value of the δ-coefficient should be small enough, for instance, |δ| < 3.9× 10−6 according
to Ref. [21].

130



Universe 2023, 9, 323

It was assumed in Ref. [21] that the coefficient in front of the R4 term is positive,
which led to the inflaton scalar potential going down and hilltop inflation. In this paper,
this coefficient is taken to be negative (−δ < 0), which leads to the potential going up
before inflation, see the next Section. The quartic term with δ > 0 in Equation (9) is also
responsible for raising the CMB values of the scalar tilt ns in the improved model (9) against
those in Ref. [19], as is demonstrated below. A similar effect was noticed in the modified
E-type inflationary models of alpha-attractors and PBH formation, proposed in Ref. [24].

PBH formation may happen at the energy scales below the inflationary scale, which
are governed by the parameter

√
R0 of the order M. Hence, the parameter β in Equation (9)

should be of the order one. The remaining parameters g and b are also of the order one,
while their values should be tuned in order to generate a large peak ∼ 10−2 in the power
spectrum of scalar perturbations. This can only be done numerically by scanning the
parameter space, as in Refs. [19,24].

We found that in the model (9), the parameters (β, g, b) must be fine tuned to very
specific values, namely:

β ≈ 3.00, g ≈ 2.25 and b ≈ 2.89, (11)

because, otherwise, a peak in the power spectrum is either absent, too small, or too high.
It is easy to verify that the first and second derivatives of the F-function (9) are positive:

F′(R) = 1 + g tanh(b) + g tanh

(
R

EAB
− b

)
+

R
3M2 −

δR3

12M6 > 0 (12)

and

F′′(R) =
g

EAB
sech2

(
R

EAB
− b

)
+

1
3M2 −

δR2

4M6 > 0 , (13)

for the given values of the parameters and the relevant values of R < 240M2.

3. Inflaton Potential and Slow-Roll

According to Equations (3) and (9), the scalar potential V(φ) of the inflaton field φ in
the parametric form (with the parameter R) is given by:

V(R)
M4

Pl
=

1
2

e−2
√

2
3 φ/MPl ×

×



gR tanh

(
R

EAB
− b

)
− gEAB ln




cosh
(

R
EAB
− b
)

cosh(b)


+

R2

6M2 −
δR4

16M6



 ,

(14)

where

exp

(√
2
3

φ

MPl

)
= 1 + g tanh(b) + g tanh

(
R

EAB
− b

)
+

R
3M2 −

δR3

12M6 . (15)

The function φ(R) in Equation (15) cannot be inverted in a useful analytic form, so
we employ numerical calculations with Mathematica in what follows. The profiles of the
inflaton potential V(φ) for the selected values of R0 and δ are given in Figure 1.

The plot on the left-hand side of Figure 1 demonstrates that the potential has two
plateaus at different scales; it is going up for δ > 0 before inflation, while the value of the
parameter δ determines the location where the potential goes up at the beginning of SR
inflation. The height of the higher (Starobinsky) plateau is determined by M, the height
of the lower plateau is controlled by R0, the length of the lower plateau is controlled by g,
and the flatness of the lower plateau is controlled by b. The plot on the right-hand side of
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Figure 1 shows a shallow meta-stable de Sitter minimum (dip), a near-inflection point, and
a small bump (local maximum).
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Figure 1. The inflaton potential for selected values of R0 and δ at fixed g = 2.25 and b = 2.89 with V0 = 3
4 M2

Pl M
2

(on the left). The potential for low values of φ/MPl are shown on the right.

The inflaton potential V(φ) for selected values of g at fixed R0 = 4M2 and b = 2.89 is
displayed in Figure 2. This figure shows that duration of the second inflation (length of
the lower plateau) is sensitive to the value of the parameter g. The longest lower plateau
corresponds to g ≈ 3.0.
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Figure 2. The inflaton potential for selected values of g at fixed R0 = 4M2 and b = 2.89.

The SR conditions are given by smallness of the standard SR parameters, εsr � 1 and
|ηsr| � 1, where:

εsr(φ) =
M2

Pl
2

(
V′(φ)
V(φ)

)2

and ηsr(φ) = M2
Pl

V′′(φ)
V(φ)

. (16)

A duration of inflation is defined by the number N of e-folds:

N =
∫ tend

tin

H(t)dt ≈ 1
M2

Pl

∫ φin

φend

V(φ)

V′(φ)
dφ , (17)

where H(t) is the Hubble function. The CMB observable (tilt) ns of scalar perturbations and
the tensor-to-scalar ratio r are related to the values of the SR parameters at the horizon exit
with the standard pivot scale k∗ = 0.05 Mpc−1, which (in our model) is close to the scale at
the beginning of SR inflation by MPlδt ≈ 2 or δN ≈ 1 or δφ/MPl ∼ 10−2. Hence, φin can be
identified with φexit at the horizon exit in a derivation of the CMB tilts, leading to:

ns = 1 + 2ηsr(φin)− 6εsr(φin) and r = 16εsr(φin). (18)
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The running SR parameters for selected values of R0 and δ are displayed in Figure 3.
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Figure 3. The SR parameter εsr(φ) (on the left) and the SR parameter ηsr(φ) (on the right) for selected values
of R0 and δ at fixed g = 2.25 and b = 2.89. The end of Starobinsky inflation is reached at φend ≈ 2.98MPl when
εsr(φend) ≈ 1.

It follows from Figure 3 that the peak in εsr(φ) is sensitive to the value of R0, while the
tails of ηsr(φ) are sensitive to the value of δ. Therefore, the value of δ affects the value of ns,
and then the value of r becomes weakly dependent upon δ, in agreement with Ref. [21].

The standard equations of motion of inflaton field φ(t) read:

φ̈ + 3Hφ̇ + V′(φ) = 0, 3H2 =
1

M2
Pl

[
1
2 φ̇2 + V(φ)

]
, (19)

where the dots denote the derivatives with respect to time t. These equations can be
numerically solved with given initial conditions φin and φ̇in. Due to the attractor type of
Starobinsky inflation the dependence upon initial conditions is weak [25]. A solution with
the initial conditions φin = 7.01MPl and φ̇in = 0 leading to φexit/MPl = 6.98 is given in
Figure 4, where the Hubble function has two plateaus.
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Figure 4. The evolution of inflaton field φ(t) and Hubble function H(t) with the initial conditions φin = 7.01 MPl

and φ̇in = 0, and the parameters δ = 2.7 · 10−8 and R0 = 3.0 M2.

Inflaton slowly rolls along both plateaus; between them, there is a period of ultra-slow-
roll (USR) where dynamics are different [26,27]. Namely, the acceleration term should be
kept, but the potential term can be ignored in the first equation of motion (19). Because of
that, it is more illuminating to use the Hubble flow parameters outside the CMB region,
which are defined by:

εH = − Ḣ
H2 , ηH = εH −

ε̇H
2εH H

. (20)

The evolution is given in Figure 5. In the USR regime, the parameter εH becomes very
small. The parameter ηH drops below −6, while the corresponding hole (dip) defines the
duration of the USR regime.
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Figure 5. The evolution of the Hubble flow parameters εH(t) and ηH(t) with the initial conditions φin = 7.01 MPl

and φ̇in = 0, and the parameters δ = 2.7 · 10−8 and R0 = 3.0 M2.

4. Power Spectrum of Scalar Perturbations and PBH Masses

The power spectrum Pζ(k) of scalar (curvature) perturbations, as a function of scale k,
is usually derived as a solution to the Mukhanov–Sasaki (MS) Equation [28,29], which is
often possible only numerically. However, we found that the following, well-known simple
analytic formula [12,18,30]:

Pζ(t) =
H2

8M2
Plπ

2εH
(21)

gives a good approximation [19,24]. Our new result is given by Figure 6, which shows a
large enhancement (peak) in the power spectrum by a factor of 107 against the CMB level
(on the left-hand side from the peak).
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Figure 6. The primordial power spectrum Pζ (t) of scalar (curvature) perturbations, derived from Equation (21).

The PBH masses can be estimated from the peak in the power spectrum as follows [31]:

MPBH '
M2

Pl
H(tpeak)

exp

[
2(Ntotal − Npeak) +

∫ ttotal

tpeak

εH(t)H(t)dt

]
, (22)

where Npeak and tpeak stand for the peak event, while Ntotal and ttotal denote the end of the
whole inflation comprising three stages (SR/USR/SR).

According to Equation (22), the PBH masses are exponentially sensitive to the number
of e-folds around the inflection point, ∆N = (Ntotal − Npeak), while the integral in the
exponential describes the subleading correction that is of the order one.

Our findings are summarized in Table 1 where the values of the key observables ns, r,
and MPBH in our model are collected with the fine-tuned parameters b = 2.89 and g = 2.25.
The height of the peak is sensitive to R0, whose value R0/M2 = 3.001 was chosen to obtain
a height equal to 10−2.
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Table 1. CMB observables, PBH masses, and duration of inflation in our model.

φin/MPl δ ns r MPBH, g Npeak Ntotal ∆N

6.36 2.55× 10−7 0.964959 0.0359 5.0× 1019 26 47 21
6.70 8.74× 10−8 0.964905 0.0182 2.0× 1019 34 54 20
7.01 2.70× 10−8 0.964944 0.0095 1.0× 1020 43 65 22
7.07 2.05× 10−8 0.964917 0.0083 2.6× 1018 45 64 19
7.12 1.60× 10−8 0.964925 0.0074 1.0× 1017 47 65 18
7.15 1.36× 10−8 0.964908 0.0070 5.0× 1016 49 66 17
7.20 1.02× 10−8 0.964961 0.0062 1.6× 1015 51 64 13

The tensor-to-scalar ratio r is inside the current observational bound, r < 0.032, except
the first line in the table (given for comparison only). The tilt ns of scalar perturbations
agrees within 1σ with the current CMB measurements [3–5]:

ns = 0.9649± 0.0042 . (23)

To obtain PBH masses beyond the Hawking (black hole) evaporation limit of 1015 g, so
that these PBH can survive in the present universe and form dark matter, the duration ∆N
should be between 17 and 22 e-folds. It also follows from the table that the total duration of
inflation should be between 54 and 66 e-folds.

Increasing the parameter δ allows us to compensate the decreasing scalar tilt ns. When
trying to increase the PBH masses by reducing the total duration of inflation, we find that
the value of the tensor-to-scalar ratio r increases and reaches the maximal observationally
allowed bound. Increasing ∆N even higher is also not possible, because it leads to the
peak height beyond observational constraints. Therefore, it is not possible to increase the
PBH masses beyond the asteroid-size with 1020 g or, equivalently, beyond 10−13MSun in
our model.

5. Conclusions

The main new results of this paper are summarised in the abstract. The modified
gravity framework is entirely based on gravitational interactions, which implies the gravi-
tational origin of both inflation and PBH formation in our approach. The good agreement
(within 1σ) with CMB observations is achieved by fine tuning the parameters of the im-
proved model. The PBH masses found are in the mass window that allows the whole dark
matter composed of PBH of the asteroid size [11,12]. The stochastic gravitational waves
induced by PBH production in the Starobinsky-like gravity were investigated in Ref. [32].

Fine tuning of the parameters in our model is necessary to obtain a significant enhance-
ment of the power spectrum of scalar perturbations leading to the PBH with masses beyond
the Hawking evaporation limit and, hence, the possible PBH dark matter, cf. Ref. [33].

A large peak in the primordial power spectrum may lead to large quantum corrections,
which may rule out the near-inflection mechanism of PBH production in all single-field
models of inflation [34–36]. However, validity of the mechanism based on a near-inflection
point was recently defended in Refs. [37–41]. Modified gravity offers a different perspective
on the issue of quantum corrections when assuming the gravitational origin of inflation (as
in the Starobinsky model) and PBH production in the context of F(R) gravity theories, as in
our paper. Both inflation and PBH formation can be destroyed by adding to the F-function
terms with the higher powers of R describing quantum gravity corrections, with the R4

term being their representative. To avoid that, the coefficients in those terms should be
small enough in order to keep validity of the gravitational effective action described by
Equation (9). Naturally, there should also be a fundamental mechanism in quantum gravity
that keeps these coefficients small; however, this issue is beyond the scope of this paper.
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Abstract: After a century of cosmological observations, we have a solid standard model of cosmology.
However, from a theoretical viewpoint, it is a compelling question if the cosmological data inevitably
require an expanding universe independently of the theoretical framework. The possibility of
obtaining a viable cosmological model with a constant scale-factor is discussed in the context of the
Brans–Dicke class of scalar–tensor theories. It is shown that a flat spatial section requires the presence
of a stiff matter fluid. However, some kinematical properties of the standard cosmological model can
be reproduced. A realistic scenario may require a more complex class of scalar–tensor theories.

Keywords: cosmology; expanding universe; static universe; scalar-tensor theories

1. Introduction

The publication of the article of Alexander Friedmann in 1922 proposing the possibility
of a dynamical universe [1] was one of the most important revolutions in our view of the
cosmos. For the first time, to our knowledge, in the history of science, the universe was
considered as an evolving system. Until Friedmann, the known universe was described
essentially as a static system. Even, the first cosmological model constructed from the
recently proposed new theory of gravity, General Relativity, was static and inevitably
unstable due to the attractive character of the gravitational interaction [2,3]. In spite of the
unstable nature of any static cosmological system, the Friedmann proposal of a dynamical
universe initially received some opposition. It must be remembered that the concept
of galaxies distributed in the universe emerged after a long debate and, only after the
Friedmann article, that the measuring of the spectra of galaxies was obtained showing the
systematic redshift of the spectral lines, an indication of cosmic expansion. Unfortunately,
Friedmann did not live enough to watch the triumph of his speculations about a dynamical
universe with the formulation of the law for the recessions of the galaxies made, mainly,
by Hubble and Lemaître.

Is there any reason to consider the possibility of a static universe? The answer most
probably is no, for two main reasons. First, to explain the redshift of the spectral lines
of distant objects is not simple without a dynamical cosmos. The hypothesis of the tired
light [4,5], for example, has difficulties in incorporating a hot phase and the consequent
primordial nucleosynthesis and the spectrum of the Cosmic Microwave Background Radia-
tion (CMB), besides structure formation. Second, due to the attractive character of gravity,
any static universe would be unstable. This is a feature difficult to circumvent and it is hard
to conceive a model within General Relativity that can change this picture.

Notwithstanding, the previous remarks refer to a completely static universe. It is
possible to conceive of a universe with a constant scale factor, but with some other possible
dynamical quantity [6–10]. This is the case for scalar–tensor theories where gravity is
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coupled to a scalar field: there are specific configurations for which the scale factor is
constant but the scalar field is dynamical. Since in many scalar–tensor theories the scalar
field is connected with the gravitational coupling, a time-dependent scalar field may
imply a cosmical dynamics in spite of a constant scale factor. There are simple examples
where a stable configuration can be obtained with a constant scale factor and a dynamical
gravitational coupling, but they are very particular. This will be discussed in next section.
It is far from obvious how this particular configuration can be generalized in order to have
a realistic cosmological scenario, incorporating the different phases of the evolution of
the universe.

A cosmological scenario without expansion containing at least one static phase has
been discussed by Wetterich, leading to a viable model [11,12]. The Wetterich model also
contains contracting phases. The effects typically identified as being due to the expansion
of the universe (redshift for example) are transferred to a time-dependent mass of the
elementary particles [13–15]. In this model, the cosmic initial singularity can be avoided.
The model is formulated by using a scalar field non-minimally coupled with the geometry
and with the matter sector. A realistic scenario for all the phases of the universe can
be achieved.

The possibility of a cosmological model with a constant scale factor in all cosmological
phases has been qualitatively evoked in Ref. [16]. The static model should be constructed
in the minimal coupled frame, connected with the non-minimal coupled frame through a
conformal transformation. Note that the present approach is substantially different from
that used in refs. [11,12], which considered a non-minimal coupled frame between a scalar
field and geometry, besides a non-trivial coupling with the scalar field in the matter sector.
Evidently, the present approach, formulated in the minimal coupled frame, may be seen as
with less freedom than refs. [11,12]. Nevertheless, it allows a connection to some traditional
theoretical frameworks, like the Jordan–Wagoner–Brans–Dicke theory, as the resulting
theory presented in this paper contains a scalar field minimally coupled to gravity, but non-
trivially coupled to the matter sector. Furthermore, the coupling parameter ω of the kinetic
term of the scalar field is not constant. Our approach also differs from Wetterich’s previous
work [13,14] inasmuch as he works with the original Brans–Dicke (BD) theory [17], where
ω is a constant, and also includes a potential.

In the present text this possibility is investigated in more detail. It is shown that,
at least in the context of BD theory with a dynamical BD parameter ω, as suggested in
ref. [16], it is possible to obtain at most a kinematical consistent background description of
the cosmic evolution. However, it appears important differences concerning how to obtain
equivalent kinematical descriptions between the static model developed here and the
dynamical Friedmann models. In the Friedmann models, the behavior of the scale factor is
essentially dictated by the equation of state of the matter component. In the corresponding
static universe with a dynamical gravitational coupling, a given description of the cosmic
evolution is determined essentially by an appropriate choice of the non-trivial coupling
function of the scalar field kinetic term, denoted by ω(φ). In both cases, expanding or static
universes, a similar cosmic red-shift relation can be obtained by choosing appropriately
ω(φ). In spite of this kinematical equivalence, important phenomena present in the cosmic
history demanding a perturbative analysis, such as the CMB and structure formation, very
probably can not be incorporated in a static scenario, even if a more detailed analysis is
required. In this sense, the analysis to be made here can be seen as a kind of no-go theorem
for a universe with a constant scale factor (but possibly with a dynamical gravitational
coupling) in all its phases. Of course, it is not excluded that different classes of extensions
of the GR theory may change the conclusions presented here.

In the next section we review the Einstein static universe and its instability and the
particular cases of the BD theory with some possible static, stable configurations. From now
on we use the term “static universe” to denote a universe with constant scale factor even
if the gravitational coupling is varying. In Section 3, the Wagoner–Brans–Dicke–Jordan
scalar-tensor theory is discussed both in the Jordan and Einstein frames. In Section 4, it
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is shown how the variation of the mass of elementary particles can lead to a shift in the
spectral lines of the hydrogen atom. In Section 5, it is shown how a static universe in the
Einstein frame can lead to a scenario where the standard cosmological model is reproduced
in the Jordan frame from the kinetic point of view. In Section 6, we conclude with some
final remarks.

2. Stability of Static Models in GR and BD Theories

The static model in the GR and BD theories are briefly revised in what follows. The GR
equations in presence of a cosmological constant Λ are

Rµν −
1
2

gµνR = 8πGTµν + gµνΛ, (1)

Tµν
;µ = 0. (2)

For a static metric, with a spatial curvature k (which can be positive, negative or zero),
a pressureless fluid, a cosmological constant and fixing the constant scale factor equal to
unity, the equations reduce to,

3k = 8πGρ + Λ, (3)

k = Λ, (4)

ρ̇ = 0. (5)

For k = 0, the universe turns out to be completely empty, while for k negative (a
pseudo-sphere), the energy density becomes negative. Only for positive k do we have a
consistent scenario with

4πGρ = Λ > 0. (6)

However, this solution is unstable. The perturbative equations in the synchronous
coordinate condition hµ0 = 0 for a given fluid with density ρ and pressure p are given
by [18],

ḧ + 2Hḣ = 8πGρδ, (7)

δ̇ + (1 + α)

(
θ − ḣ

2

)
= 0, (8)

(1 + α)

[
δθ + (2− 3α)Hθ̇

]
=

v2
s

a2 δ, (9)

These equations are valid even in presence of a cosmological constant. In these
expressions, we have introduced the following definitions:

H =
ȧ
a

, h =
hkk
a2 , δ =

δρ

ρ
, (10)

θ = ∂kδvk , α =
p
ρ

, v2
s =

∂p
∂ρ

. (11)

H is the Hubble function, hkk is the trace of metric fluctuations, δ is the density contrast,
θ is related with the velocity perturbation, α is the equation of state parameter and v2

s is
the sound speed. For a static universe with pressureless fluid (α = v2

s = 0), the perturbed
equations reduce to

δ̈− 4πGδ = 0 , θ̇ = 0 . (12)
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Consequently, the matter perturbation, expressed by the density contrast δ, grows
exponentially, characterizing the instability due to the attractive nature of the gravita-
tional interaction.

The perturbative analysis of the Brans-Dicke cosmological models has been carried
out in ref. [19]. The inflationary case will be considered just as a simple example. The back-
ground solutions for an equation of state p = −ρ are

a(t) ∝ tω+1/2, (13)

φ(t) ∝ t2. (14)

The universe is static if ω = −1/2. For this case, the perturbations behave as

δφ

φ
≡ λ =

1
t

∫ {
c1 J3/2(nt) + c2 J−3/2(nt)

}
, (15)

n denoting the wavenumber of the perturbations. The solution displays a growing
mode and a decreasing mode. Asymptotically, the growing mode behaves as,

λ ∝ t2. (16)

The growing mode is not exponential as in GR case. It presents a mild instability that
is necessary, after all, to induce the formation of structures observed in the universe.

The same properties are verified for a matter dominated universe in a Brans–Dicke
cosmology but with ω = −1.

3. Field Equations in the Jordan and Einstein Frames

The example discussed in the previous section shows that it is possible to have a
static universe in scalar-tensor theories without exponential instabilities. However, it is not
clear how to describe the different expansion phases of the standard model in the static
frame. Our proposal is to consider a dynamical parameter ω(φ). Following the qualitative
discussion presented in ref. [16], our starting point is the Bergmann–Wagoner–Brans–Dicke
theory whose Lagrangian in the original Jordan frame is [17,20]

L =
√
−g
{

φR−ω(φ)
φ;ρφ;ρ

φ

}
+Lm(gµν, Ψ), (17)

with the matter Lagrangian given by Lm(gµν, Ψ), Ψ representing the matter fields. The grav-
itational coupling is dynamical and related to the inverse of the scalar field φ.

The field equations are the following:

Rµν −
1
2

gµνR =
8π

φ
Tµν +

ω(φ)

φ2

(
φ;µφ;ν −

1
2

gµνφ;ρφ;ρ
)
+

1
φ

(
φ;µ;ν − gµν�φ

)
, (18)

�φ =
8πT

3 + 2ω(φ)
− ωφ

3 + 2ω(φ)
φ;ρφ;ρ, (19)

Tµν
;µ = 0. (20)

Now, we perform a conformal transformation, with gµν = φ−1 g̃µν, as indicated in the
Appendix A. The new equations are:

R̃µν −
1
2

g̃µνR̃ = 8πGT̃µν +
(ω(φ) + 3/2)

φ2

(
φ;µφ;ν −

1
2

g̃µνφ;ρφ;ρ
)

, (21)

�̃φ =
8πGφT̃

3 + 2ω(φ)
−
(

φωφ

3 + 2ω(φ)
− 1
)

φ;ρφ;ρ

φ
, (22)

T̃µν
;µ = − g̃νµφ;µT̃

2φ
. (23)
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In writing these equations, we have made the redefinition,

Gρ̃ =
ρ

φ2 , Gp̃ =
p

φ2 , (24)

G being the present value of the cosmological coupling.

4. The Redshift Relation

In the static universe, the mass of the particles must vary with time in order to obtain a
change in the spectral lines, as observed. The mechanism to generate the observed redshift
will now be described.

In the Einstein frame, the energy conservation law for any perfect fluid satisfying
p̃ = αρ̃ in a homogeneous and isotropic spacetime reads,

ρ̃′ + 3H̃(1 + α)ρ̃ = − (1− 3α)

2
φ′

φ
ρ̃, (25)

where the primes mean derivative with respect to τ, and H̃ = b′/b is the Einstein Hubble
function, which is considered to be zero. Integrating this equation for the case of a fluid
composed of massive non-relativistic particles (α = 0), we obtain

ρ̃ = ρ̃0

(
φ0

φ

)1/2

= nm̃, (26)

where n is the particle number density, which is a constant in a static universe, and ρ̃0 is a
constant. Hence, the relation between the constant mass m in the expanding universe and
the varying mass m̃ in the static universe is given by,

m̃ ∝ mφ−1/2. (27)

Assuming that φ is positive and it decreases in time, namely ∞ > φ > 0, the masses
increase with time, meaning that the wavelength of the emitted radiation will decrease with
time. In other words, the electronic transition occurred in the past will have a wavelength
greater than observed today in the laboratory. We remark that a decreasing φ implies a
growing gravitational coupling and a decreasing Planck’s mass. Also, the Planck length
grows with time. Our approach is purely classical but it suggests that the quantum gravity
regime may be achieved at much smaller energy scales as time goes on and the gravitational
interaction becomes stronger.

The relation (27) is equivalent to the invariance of the test particle’s Lagrangian under
the conformal transformation

l = −
∫

mds = −
∫

mφ−1/2ds̃ = −
∫

m̃ds̃. (28)

The spectral lines of the hydrogen atom in the static universe are given by

1
λ
=

∆E
hc

=
m̃Z2e4

4πch̄3

(
1

n2
f
− 1

n2
i

)
, (29)

with ni and n f designating the initial and final electronic principal quantum numbers.
Hence, the wavelength of the emitted photon varies as

λ ∝
1
m̃

∝ φ1/2. (30)

As a consequence, the photons emitted in the past have a higher wavelength compared
with the emissions in the laboratory today.
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The discussion above is an example of how the Jordan and Einstein frames may
describe the same phenomena in a complete different way. For the discussion on the
equivalence of both frames, see ref. [21] and references therein.

5. A Static Universe: General Relations

We will try now to construct a static universe in the Einstein frame. The difficulty
lies in that the conservation law in the Jordan frame implies that each matter component
depends only on the scale factor, making hard to obtain a transition from a cosmic phase to
another. This can be achieved in the Einstein frame due to the second term in (23) and the
presence of the arbitrary function ω(φ).

The metric in the minimal coupled frame is given by,

ds̃2 = dτ2 − b2

1 + k r2

4

(dx2 + dy2 + dz2), (31)

with r2 = x2 + y2 + z2 We shall assume a barotropic equation of state p̃ = αρ̃ with α
constant. The Equations (21)–(23) become:

3H̃2 + 3
k
b

= 8πGρ̃+

(
3 + 2ω

4

)(
φ′

φ

)2

, (32)

2H̃′ + 3H̃2 +
k
b

= −8πGp̃−
(

3 + 2ω

4

)(
φ′

φ

)2

, (33)

φ′′

φ
+ 3H̃

φ′

φ
=

8πG
3 + 2ω

(1− 3α)ρ̃−
(

φωφ

3 + 2ω(φ)
− 1
)(

φ′

φ

)2

, (34)

ρ̃′ + 3H̃(1 + α)ρ̃ = − (1− 3α)

2
φ′

φ
ρ̃. (35)

The primes mean derivative with respect to τ, and H̃ = b′/b. A universe without
expansion in this frame means H̃ = 0, and without loss of generality we fix b = 1.
The previous equations reduce to

3k = 8πGρ̃+

(
3 + 2ω

4

)(
φ′

φ

)2

, (36)

k = −8πGαρ̃−
(

3 + 2ω

4

)(
φ′

φ

)2

, (37)

φ′′

φ
=

8πG
3 + 2ω

(1− 3α)ρ̃−
(

φωφ

3 + 2ω(φ)
− 1
)(

φ′

φ

)2

, (38)

ρ̃′ = − (1− 3α)

2
φ′

φ
ρ̃. (39)

The last equation can be easily integrated as

ρ̃ = ρ̃0φ−
(1−3α)

2 . (40)

Adding (36) and (37), we obtain

4k = 8πG(1− α)ρ̃. (41)

Subtracting (36) and 3× (37),

0 = 8πG(1 + 3α)ρ̃ + (3 + 2ω)

(
φ′

φ

)2

(42)

143



Universe 2024, 10, 92

Three conclusions can be obtained from these relations:

α = 1 → k = 0; (43)

α 6= 1,
1
3
→ ρ̃ = constant→ φ = constant, k > 0 : (44)

α =
1
3
→ ρ̃ = constant→ φ = constant or dynamical, k > 0. (45)

The Einstein static model can be obtained from the previous relation by fixing φ
constant, and a two fluid model, one a matter component (α = 0) and a cosmological
constant (α = −1), leading to

k = 4πGρ̃m, (46)

ρ̃Λ =
ρ̃m

2
. (47)

6. An Example of a Static Universe

Let us consider specifically the case α = 1, leading to k = 0, and evaluate the distance-
redshift relation in this situation.

With the result for the matter density (40), and remembering that with α = 1 and k = 0,
Equation (36) becomes identical to Equation (37), while Equation (38) is just the derivative
of those equations. Hence, there is just one equation to be integrated,

8πGρ̃+

(
3 + 2ω

4

)(
φ′

φ

)2

= 0. (48)

Let us write w(φ) =: −3/2− f (φ). Then, as for α = 1 one obrains ρ̃/ρ̃0 = φ/φ0,
Equation (48) can be written as

f 1/2(φ)

φ3/2 dφ =
√

C1 c dτ, (49)

where C1 = 16πGρ̃0/(φ0c2), remembering that the 0 subscript denotes quantities evaluated
today, and c is the speed of light. With the integration from proper time τ1 when a source
emitted light towards an observer that receives it at τ0, we obtain

I(φ0)− I(φ1) =
√

C1d, (50)

where d is the distance between the source and the observer, which in a flat static universe
is just d = c(τ0 − τ1), and I(φ) is the function resulting from the integral in φ.

Using Equation (50) and writing φ1 = (1 + z)2φ0 we obtain the exact distance–redshift
relation,

d =
I(φ0)− I(φ0(1 + z)2)√

C1
, (51)

For small z we obtain

d =
c f 1/2(φ0)

2
√

Gρ̃0
z + ... , (52)

where the constant in front of z (without c) plays the role of the inverse of the Hubble
constant in this scenario.

As an example, let us take a power law functional form for f , yielding,

ω(φ) = −3
2
− κφn. (53)
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The parameter κ can be fixed equal to unity by absorbing it in the expression for φ.
Equation (48) can be easily integrated, leading to

φ = φ0(±τ)
2

n−1 . (54)

In order to have ∞ > φ > 0 during time evolution, when the exponent is negative the plus
sign must be chosen, implying 0 ≤ τ < ∞, and vice-versa.

In the case of a spatially flat expanding universe dominated by stiff matter and
described by standard GR, we have that 1 + z ∝ a−1(t) ∝ t−1/3, where t is the proper time.
In case of static universes in the Einstein frame of a generalized Brans–Dicke theory as
described above, one has 1 + z ∝ φ1/2(τ) ∝ τ1/(n−1) with respect to the proper time in the
Einstein frame. Hence, in order to have the same proper time dependence, one must have
n = −2.

Some observational tests of the unperturbed universe depend essentially on the behav-
ior of the scale factor. It is possible to choose the functional form of ω(φ) in order to mimic
the scale factor of the standard cosmological model in its different phases by translating the
results in the static Einstein frame to the Jordan frame where the scale factor is a function
of time. First we remember that, with b = 1,

a = φ−1/2, (55)

dt = ±φ−1/2dτ. (56)

Hence, using Equation (54), the scale factor in the Jordan frame is given, in terms of
the cosmic time in the same frame, as

a = a0(t)
1

2−n , (57)

with 0 ≤ t < ∞ for n < 2. The convenient choice of n may lead to the same kinematical
behavior of the standard cosmological model: n = 0 for the radiative phase, n = 1/2 for
the matter dominated phase and 1 < n ≤ ∞ for the dark energy phase (n = 2 corresponds
to a de Sitter phase and n > 2 to a phantom dark energy phase). In this way, the main
phases of the expanding universe can be mapped in the corresponding static models by
choosing conveniently the function ω(φ).

In principle, a more general choice for ω(φ) may lead to smooth transitions between
these phases. For example,

ω(φ) = −3
2
− κ1φ2
√

κ2 + κ3φ3 + κ4φ4
, (58)

interpolates smoothly the radiative phase (φ→ ∞) and a de Sitter phase (φ→ 0) passing
in between by a matter dominated phase. The parameters κi are constants. Since ∞ >
φ > 0, all three main phases of the standard cosmological model would be generated by
this functional form, with a smooth transition between them. The necessary duration of
each phase may be achieved by choosing conveniently the values of the parameters κi.
However, the explicit dependence of φ on τ can not be obtained in terms of elementary
functions, requiring a numerical integration. Below we present a numerical calculation
for the evolution of φ(τ) in two scenarios: one with a continuous transition following (58),
with κ2 = 0 and κ1 = κ3 = κ4 = 1, and the other with a piecewise transition at φ = 1 from
κ2 = κ3 = 0 and κ4 = 1 (radiation) to κ2 = κ4 = 0 and κ3 = 1 (matter), see Figure 1. In both
cases, κ1 = 1. We note that time runs from left to right (from larger to smaller values of τ).
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Figure 1. (Left) Comparison between ω(φ) for the continuous case, (58), where κ1 = κ3 = κ4 = 1 and
κ2 = 0, and the case where there is a sharp transition from κ2 = κ3 = 0 and κ1 = κ4 = 1 (radiation) to
κ2 = κ4 = 0 and κ1 = κ3 = 1 (matter). (Right) Numerical evolution of the scalar field for the two
aforementioned cases.

Among the possible limitations of the scenario sketched above, there is one that is
particularly relevant; namely, the relation with the standard cosmological model established
in the Jordan frame is purely kinematical. Even if we can satisfy some observational
tests connected with Hubble–Lemaître law, a detailed perturbative study must be carried
out in order to verify if, for example, the structure formation and CMB anisotropies are
reproduced, at least in their general lines. This will be object of a separate study.

7. Final Remarks

The possibility to have a static universe compatible with the observational data has
been discussed in this text. By static universe, it is understood here as a universe with a
constant scale factor but with possible other dynamical fields, like a scalar field related
to the gravitational coupling. The Brans–Dicke theory, with a variable ω, was used as an
example. In this case, it has been shown that a spatially flat static universe is possible only
if the content of the universe is given by a stiff matter fluid. A two-fluid model is also
possible, including radiation, but only if there is positive spatial curvature. This can be
verified by generalizing Equation (41) including radiation and stiff matter.

In spite of this deceiving limitation, it is possible that some more complex scalar–
tensor theories may allow us to surmount the limitations of the static model discussed here.
Appealing to other classes of Horndeski theories [22,23] may circumvent the restrictions
given specially by relations (41) and (42). In this case, it is maybe possible to mimic
different phases of the universe in the behavior of the dynamical scale factor by choosing a
convenient function ω(φ). This property may lead to a kinematical equivalence between
the static universe and the standard mode at the background level. Otherwise, the static
universe can be connected only to a given phase in the cosmic history, as in the models
discussed in refs. [11,12], which contain, beside a static phase, contracting universes in
other phases. However, it seems hard to maintain this equivalence at the perturbative level.
This issue must be addressed in a separate analysis.

It is important to remember that the Brans–Dicke theory with a stiff matter fluid has
many peculiarities as discussed in ref. [24]. It must be stressed that we have exploited here
a conformal transformation in order to rewrite the theory formulated in the Jordan frame
in the Einstein frame. The use of disformal transformations my bring other possibilities as
discussed in ref. [25], where a particular attention has been given to the case of a stiff matter
fluid. The use of the unimodular constraint can also lead to a well-posed scenario [26].
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Appendix A. Conformal Transformation

Under the conformal transformation

gµν = φ−1 g̃µν, gµν = φg̃µν, (A1)

the connection transforms as

Γρ
µν = Γ̃ρ

µν −
1
2

(
δ

ρ
µ

∂νφ

φ
+ δ

ρ
ν

∂µφ

φ
− g̃µν g̃ρσ ∂σφ

φ

)
. (A2)

The Ricci tensor and the Ricci scalar takes the form

Rµν = R̃µν +
φ;µ;ν

φ
− 1

2
φ;µφ;ν

φ2 +
1
2

g̃µν

( �̃φ

φ
− 2

φ;ρφ;ρ

φ2

)
, (A3)

R = φ

{
R̃ + 3

�̃φ

φ
− 9

2
φ;ρφ;ρ

φ

}
, (A4)

The energy momentum–tensor becomes

Tµν = (ρ + p)uµuν − pgµν = φ

{
(ρ + p)ũµũν − pg̃µν

}
(A5)

= φ3
{
(ρ̃ + p̃)uµuν − p̃g̃µν

}
, (A6)

with

ρ̃ = ρφ−2, p̃ = pφ−2. (A7)
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Abstract: A Friedmann–Lemaitre–Robertson–Walker space–time model with all curvatures k = 0,±1
is explored in f (R, T) gravity, where R is the Ricci scalar, and T is the trace of the energy–momentum
tensor. The solutions are obtained via the parametrization of the scale factor that leads to a model
transiting from a decelerated universe to an accelerating one. The physical features of the model are
discussed and analyzed in detail. The study shows that f (R, T) gravity can be a good alternative
to the hypothetical candidates of dark energy to describe the present accelerating expansion of
the universe.

Keywords: f (R, T) gravity; dark energy; scale factor

1. Introduction

Observational data such as Planck [1], baryon acoustic oscillations (BAO) [2], the
Wilkinson microwave anisotropy probe (WMAP) [3], large-scale structures (LSS) [4], cos-
mic microwave background radiation (CMBR) [5], and Type-Ia supernova (SNe-Ia) [6–8],
have become a vital pillar in comprehending modern cosmology. These observations
suggest that the universe has undergone a pillar of accelerated expansion twice, viz.,
early inflation [9–11] and late-time acceleration. The inflationary phase has resolved the
flatness and horizon problems [9] as well as the entropy problem partially. Acceleration at
late-times is supposed to be caused by an unknown component known as dark energy (DE)
that occupies approximately two-thirds of the total energy budget of the universe [12,13].
The most widely acknowledged ΛCDM (cold dark matter) model based on Einstein’s
theory of general relativity (GR) explains the late-time acceleration phenomenon via a
cosmological constant (CC), Λ [14,15], which is characterized by an equation of state (EoS)
parameter ω = −1.

Though the standard model explains various physical phenomena, such as the forma-
tion and evolution of the large-scale structure in the early universe and the abundance of
matter and energy [16,17], etc., it experiences setbacks such as coincidence and fine-tuning
problems [18,19]. Due to these setbacks, researchers have proposed some dynamic can-
didates for DE. These include quintessence [20], phantom energy [21,22], tachyons [23],
Chaplygin gas [24], and k-essence [25]. However, due to the lack of evidence of the exis-
tence of any of these forms of DE, a class of researchers are not in favor of accommodating
these hypothetical candidates of DE. Instead of such a theoretical form of energy, they prefer
to seek some other alternatives to explain acceleration at late times. One way is to modify
the action of GR. The modified theories naturally unify early-time inflation and late-time ac-
celeration [26,27]. The most popular modified theories include f (R) theories [28,29], scalar
Gauss–Bonnet gravity f (G) [30], generalized Gauss–Bonnet f (R, G) [31], f (T) theory [32],
f (Q) theory [33], and f (Q, T) gravity [34].
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Among modified gravity theories, initially, the focus was put only on altering the
geometrical part of the EH action. Later, explicit coupling of an arbitrary function of the
Ricci scalar R and the matter lagrangian Lm was introduced, and a maximal extension of
the EH action was proposed [35]. These theories came to be known as the f (R,Lm) gravity
theories [36]. In 2011, Harko et al. [37], through non-minimal general coupling between
geometry and matter, introduced f (R, T) gravity, where T is the trace of the stress–energy
tensor. Exotic imperfect fluids or quantum effects provide the rationale for selecting T as a
Lagrangian argument. The authors argued that the variation of the stress–energy tensor
with respect to the metric is represented by a source term. Consequently, the matter content,
as well as the geometrical part, contribute to cosmic acceleration. Furthermore, neither
ghosts nor Laplacian instabilities exist in this theory [38]. Additionally, the theory has
passed observational tests on intra- and extra-galactic scales. This extraordinary behavior
and observational validity set this theory apart from other theories of gravity by producing
notable signatures and effects. Therefore, f (R, T) gravity has gained a lot of interest
and rose to the top of the list of potential solutions in many contexts on galactic and
intra-galactic scales.

Jamil et al. [39] reconstructed some f (R, T) gravity models and showed that the dust fluid
reproduces ΛCDM, phantom-non-phantom era and phantom cosmology. Azizi [40] studied
wormhole solutions in the framework of f (R, T) gravity. Alvarenga et al. [41] studied the
evolution of scalar cosmological perturbations in the metric formalism. Sharif et al. [42] studied
the energy conditions for the FLRW universe with perfect fluid. Pasqua et al. [43] reconstructed
modified holographic Ricci dark energy. Alves et al. [44] explored gravitational waves in this
theory. Momeni et al. [45] presented a study of the generalized second law of thermodynamics
in the scope of f (R, T) gravity. Das et al. [46] generated a set of solutions describing the interior
of a compact star which admits conformal motion. Using a perfect fluid as the only matter
content, Shabani and Ziaie [47] studied classical bouncing solutions in a flat FLRW background.
Deb et al. [48] explored the physical features of anisotropic strange stars beyond the standard
maximum mass limit in f (R, T) gravity. Elizalde and Khurshudyan [49] discussed the formation
of specific static wormhole models. Ordines and Carlson [50] investigated changes in the earth’s
atmospheric models coming from the f (R, T) modified theory of gravity (for more details,
see [51,52] and the references therein).

On the other hand, it is also well known that prior to the current accelerating expansion,
the universe had undergone a decelerated phase in the past. However, constructing viable
scaling models that allow the universe to transition from a decelerating to an accelerating
phase is still a challenging task. An alternative is to seek the solutions of the field equations
under an assumption which would be consistent with the observed kinematics of the
universe. This phenomenon has piqued the interest of many researchers. Some theorists
working in this area have attempted to study it by constructing cosmological models using
geometrical parameters, such as the parametrization of the deceleration parameter, Hubble
parameter, or scale factor, which can provide the transition from past deceleration to present
acceleration [53–56]. Most of these models have been studied in homogeneous and isotropic
backgrounds [57–65], but some studies have also been considered in homogeneous but
anisotropic backgrounds [66–72].

Knowing the EoS of DE is one of the biggest challenges in theoretical physics [73–77]
as well as in observational cosmology today [78,79]. The observations seem to favor
an evolving EoS for DE [80,81]. Considering all curvatures k = −1, 0,+1, the present
study deals with a transit FLRW model in f (R, T) gravity. We consider a scale factor as
proposed in Ref. [82]. We investigate the nature of matter and its sources, which exhibit
cosmological evolution as suggested by the theoretical background and supported by the
various observations. In particular, we seek to answer whether f (R, T) gravity could be a
possible alternative to various hypothetical forms of DE.

The work is organized as follows. The model and field equations followed by their
solutions are presented in Section 2. The geometrical behavior of the deceleration parameter
is also presented in the same section, and the constraints for a physically realistic scenario
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are obtained therein. Thereafter, the nature of matter is examined. As compared to
GR, in the f (R, T) theory of gravity, due to coupling, some additional terms arise in
the energy–momentum tensor. These extra terms may be considered as coupled matter or
energy, which may behave as either perfect fluid or DE. The nature of this coupled matter
is examined in Section 3. The behaviour of effective matter is studied in Section 4. The
results are summarized in Section 5.

2. The Model in f (R, T) Gravity

The spatially homogeneous and isotropic FLRW space–time metric is given as follows:

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
, (1)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, a is the scale factor, and k represents the geometrical
curvature of the universe, i.e., k = 0 implies a flat universe, k = +1 is a closed universe,
and k = −1 is an open universe. We consider the energy–momentum tensor of the matter
as follows:

Tij = (ρm + pm)uiuj − pgij, (2)

where ρm is the energy density and pm is the thermodynamic pressure of the matter. In
comoving coordinates, ui = δi

0, where ui is the four-velocity of the fluid that satisfies the
condition uiuj = 1.

Harko et al. [37] considered some functional forms of f (R, T) gravity models. The
authors mentioned that in the f (R, T) theory of gravity, the field equations are governed by
the choice of the source of matter. Therefore, by choosing suitable matter fields, a different
cosmological model is obtained by choosing a different functional form for f . In their paper,
those authors took the simplest case, i.e., f (R, T) = 2 f (T) + R, showing the equivalence
with a cosmological model with an effective cosmological constant, which varies with
Hubble parameter, i.e., Λ ∝ H2. It was also shown that gravitational coupling is no longer
constant, but is now a function of time, viz., Ge f f = f ′(T)± G, where a prime represents a
derivative with respect to the argument. Thus, the term 2 f (T) in the gravitational action
modifies the gravitational interaction between matter and curvature. Although there is not
any fundamental basis for considering a liner combination of R and T, the authors showed
that the choice of f (T) = λT for the dust matter leads to the power-law expansion of the
universe, a ∝ tα, where α depends on the coupling parameter λ.

The choice f (R, T) = R + 2λT also corresponds to GR with an additional matter
content on the right side of the field equations. This allows for a wider variety of behaviour,
which reduces to GR when λ = 0. The right side of the field equations are similar (but not
the same) to general relativity, containing a fluid with viscosity or heat conduction. Hence,
the entropy problem could be solved using the f (R, T) theory. Several problems, such as
the fine-tuning problem, coincidence problem, and cosmological constant problem can be
solved by the dynamic Λ in theory, and it can still satisfy observations [83]. The variable
Λ parameter occurring in the theory may be written as a function of T where T is the
trace of Tij, and is sometimes called “Λ(T) gravity”. Hence, this means that a variable Λ
can be derived naturally from f (R, T) gravity via a Lagrangian formulation. However,
the choice f (R, T) = R + 2λT has not always been met with a positive reception by the
scientific community in a few papers [84,85]. Such criticism has been addressed in Ref. [86]
recently. Very recently, Jaekel et al. [87], on some observational grounds, proposed that
f (R, T) = R + λT and f (R, T) = R + eT models should be ruled out. However, their
analysis is biased. Staying on the conservative side, those authors considered the age of the
universe as more than 14.16 Gyrs. Also, there are some other constraints that were followed
in their study. These models are, at the very least, still viable at lower redshift limits, as
shown in Ref. [88]. We shall return further to the comments in Ref. Jaekel et al. [87] later in
the conclusion.

Moreover, it was shown earlier [89] that when reconstructing f (R, T) = R + 2 f (T), an
exponential solution implies that f (R, T) = R + λT. A similar result is true for power-law
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solutions, but in this case, f (R, T) = R + λTα, where α is a constant. It is well known that
the conservation equation does not necessarily hold in f (R, T) gravity—see Appendix A.
Moreover, a scalar field with flat potential was studied earlier in the f (R, T) = R + 2 f (T)
theory of gravity [90], looking for conditions for energy conservation. Surprisingly, it
was found that the expression f (R, T) = R + 2 f (T) had the same form as before, viz.,
f (R, T) = R + 2λT. Hence, this linear form of f (R, T) has a significant physical and
mathematical basis. Whilst being simple, this form allows one to investigate salient points
of this theory. Hence, this simple form is popular with most researchers in the field. In the
present study, we also consider this form.

The field equations in f (R, T) = R + 2 f (T) gravity with the system of units
8πG = 1 = c, are obtained as follows:

Rij −
1
2

Rgij = Tij + 2
(

Tij + pgij

)
f ′(T) + f (T)gij, (3)

where a prime represents the derivative with respect to T. The above equation for
f (T) = λT, i.e., f (R, T) = R + 2λT, where T = ρ− 3p, simplifies as follows:

Rij −
1
2

Rgij = (1 + 2λ)Tij + λ(ρ− p)gij. (4)

For the (1) metric and the energy–momentum tensor (2), the above equation yields
the following:

3H2 + 3
k
a2 = ρm + λ(3ρm − pm), (5)

2Ḣ + 3H2 +
k
a2 = −pm − λ(3pm − ρm). (6)

It is vital to note that in the f (R, T) theory of gravity, both pm and ρm do not reflect
the effective pressure and energy density as in GR. Indeed, the coupling between matter
and f (R, T) gravity adds some additional terms visible on the RHS of the field equations.
Additional contributions can be collected in terms of geometrical effective pressure and
energy density. This can be associated with the dark sector. If the modified gravity sector is
responsible for the late time accelerated phase, then the additional terms can be interpreted
as DE. This is the convention that we adopt in this work. We term the additional terms with
λ as “coupled matter” or “coupled energy”. Therefore, to distinguish the “main” matter
from the “coupled” matter or energy, we write ρ f = λ(3ρm − pm) and p f = λ(3pm − ρm),
which represents the coupled matter or energy.

Now, Einstein’s equations with the cosmological constant Λ on the right-hand side of
the field equations are as follows:

Rij −
1
2

Rgij = Tij + Λgij.

Comparing this with (4), we notice that a variable Λ in f (R, T) gravity may be defined
as follows:

Λ = Λ(T) = −(2pm + T)λ = (ρm − pm)λ.

Hence, we see that variable Λ arises naturally in f (R, T) gravity. Thus, additional
matter–geometry coupling terms work as a variable cosmological parameter. This can
assist in solving the fine-tuning problem, coincidence problem, and cosmological constant
problem. In addition, observations can also be satisfied [83].

Ideally, the solutions of (5) and (6) are supposed to be obtained by solving the conser-
vation equation. However, as far as f (R, T) gravity, as mentioned earlier, is concerned, the
usual conservation equation in GR is not satisfied [37]. However, only in a few cases does
the chosen f (R, T) function lead to a conservation equation holding true. In Ref. [90], two
of the present authors studied such a case. For a complete discussion on this, we would
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like to refer to a recent study [91]. Secondly, if one tries to compute the analogue of the
conservation equation in f (R, T) gravity, this leads to very complicated expressions, and
even more so if one inserts this into the Friedmann Equation (5). This is extremely difficult
to solve; hence, most researchers resort to assuming some form of scale factor, Hubble
parameter, deceleration parameter, equation of state parameter, etc.

The transition from a decelerated phase to an accelerated phase must be present in
any realistic model. However, due to our lack of knowledge of dark energy, constructing
viable scaling models that allow the universe to transition from a decelerating phase to
an accelerating phase is still a challenging task. An alternative is to seek solutions of field
equations under an assumption which would be consistent with the observed kinematics
of the universe. This phenomenon has piqued the interest of many researchers. Some
theorists working in this area have attempted to study it by constructing cosmological
models using geometrical parameters, such as the parametrization of the deceleration
parameter, Hubble parameter, or scale factor, which can provide the transition from past
deceleration to present acceleration, and be consistent with observations. Many researchers
have considered similar geometrical evolutions (for an extensive list, see Refs. given in [92]).
Some authors [68,93–95] have studied another form of the hybrid scale factor, which also
describes the transition from the decelerated to accelerated expansion of the universe.
Apart from these works, there are a plethora of similar works.

We see that Equations (5) and (6) consist of three unknowns, i.e., ρm, pm, and H. Hence,
to determine a solution, one extra assumption is required. We have considered the simple
parametrization of the scale factor as recently studied by Mishra and Dua [82]:

a(t) = exp(αt + β)p, (7)

where α > 0, β > 0, and 0 < p < 1 are arbitrary constants.
Now, let us discuss the scale factor considered here further. The approach to seek

solutions of the field equations under an assumption which would be consistent with the
observed kinematics of the universe is known as cosmography, which has been extensively
studied in the literature. In Ref. [90], two of the present authors cited many such works
conducted earlier. While following this reverse approach, the authors obtained similar
scale factors.

As far as the parameters are concerned in solution (7), we have tried to consider the
most general form. Later, while investigating, we realized that some of the parameters are
just scaling and shifting parameters. Therefore, we dropped them out. If we would have
analyzed without those parameters, it would be a very specific study, and one could argue
why such a particular study must be considered. In any case, there are many papers in the
literature where such parameters are included.

The Hubble parameter, H = ȧ/a yields the following:

H(t) =
αp

(αt + β)1−p . (8)

Using a = a0/(1 + z), where a0 is the present value of a, and z is the redshift, one obtains
the t− z relationship [82]:

αt + β = [A− log(1 + z)]
1
p ,

where A = (αt0 + β)p, t0 is the present time. Using the above t− z relationship, the Hubble
parameter is obtained in terms of redshift z as follows:

H(z) = αp[A− log(1 + z)]1−
1
p . (9)

Similarly, the deceleration parameter, q = −aä/ȧ2, in terms of the redshift, is as follows:

q(z) = −1 +
(

1
p
− 1
)
[A− log(1 + z)]−1, (10)
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where A = (1/p− 1)/(1 + q0), and q0 is the present value of the deceleration parameter.
Recently, using the 51 points H(z) data set [96] and the 1048 points Pantheon SNe-Ia

data set [97] with H0 = 67.77 km s−1 Mpc−1 [98], Mishra and Dua [82] obtained observa-
tional constraints on q0 and p, and reported the best-fitted values q0 ≈ −0.40 and p = 0.47
with the H(z) data set and q0 ≈ −0.54 and p = 0.66 with the Pantheon data set.

Figure 1 plots the deceleration parameter q versus redshift z for the best-fitted values
mentioned above. We observe that the universe transits from deceleration (q > 0) to accel-
eration (q < 0) at a redshift od z = 0.8 for the H(z) data and z = 1.2 for the Pantheon data.

1 2 3 4
z

-1

0

1

2

3

4
q

p=0.66,q0=-0.54 (Pantheon SNeIa)

p=0.47,q0=-0.40 (H(z))

Figure 1. Deceleration parameter q in terms of redshift z with the best-fitted values of p and q0.

We note the following. Firstly, the deceleration parameter for the adopted form of the
scale factor describes a transition from a deceleration in the past to acceleration in the future.
Secondly, the values of p and the current deceleration parameter q0 occur in our equation
for the deceleration parameter q(z). To plot our deceleration parameter, as in Figure 1, we
use the values of q0 and p obtained from observations, as mentioned above. The calculated
values of the transition redshift zt work out to be 0.8 and 1.2. Whilst this is somewhat higher
than the value for the ΛCDM model, it is within the error bounds [99]. Thirdly, the usually
quoted values of qt are based on the ΛCDM model, and values for alternative theories or
models could be somewhat different whilst the model has the required salient features.

The main objectives of our study are as follows:

• Investigating the nature of matter in the presence of which the model can yield the
desired evolution of the universe.

• Examining the role of f (R, T) gravity.
• Comparing and distinguishing outcomes from those of Einstein’s gravity.

Using (7) and (8) in (5) and (6), we obtain the energy density and pressure of matter
as follows:

ρm =
e−2(β+αt)p

[
k(8λ + 3) + α2 pe2(β+αt)p

(β + αt)p−2(2λ− 2λp + 3p(2λ + 1)(β + αt)p)
]

(2λ + 1)(4λ + 1)
, (11)

pm = − ke−2(β+αt)p
+ α2 p(β + αt)p−2[2(3λ + 1)(p− 1) + 3p(2λ + 1)(β + αt)p]

(1 + 4λ)(1 + 2λ)
. (12)

The vital requirement is now to corroborate that the assumption we chose to find a
solution results in a realistic cosmological model, e.g., ρ ≥ 0. We note that ρm ≥ 0 requires
λ ≥ 0 in all the three models k = 0,±1.

Let us examine the behavior of actual matter. The EoS parameter of actual matter
ωm = pm/ρm provides the following:
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ωm = − k(β + αt)2 + α2 pe2(β+αt)p
(β + αt)p(2(3λ + 1)(p− 1) + 3p(2λ + 1)(β + αt)p)

k(8λ + 3)(β + αt)2 + α2 pe2(β+αt)p
(β + αt)p(2λ− 2λp + 3p(2λ + 1)(β + αt)p)

. (13)

Since α is a scaling parameter and β is just a shifting parameter, the only crucial
parameter in this study is p. Therefore, we set α = 1 and β = 0 to study the behavior of the
EoS parameter for the best-fitted values p = 0.47 (H(z) data) and p = 0.66 (Pantheon data).
Figures 2 and 3 depict the behavior of matter with the H(z) and Pantheon data, respectively.
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Figure 2. ωm(t) versus t with p = 0.47 (H(z) data) and λ = 1.
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Figure 3. ωm(t) versus t with p = 0.66 (Pantheon data) and λ = 1.

Analytically, we find that for all three spatial curvature models, ωm = 1
λ + 3 at t = 0,

and ωm → −1 as t→ ∞. Therefore, ωm starts with a finite value ωm ≥ 3 with the evolution
and approaches the cosmological constant at late times. Hence, the matter exhibits a unified
description of all kinds of matter, including stiff matter (ωm ≥ 1), radiation (ωm = 1/3),
dust (ωm = 0), quintessence (−1 < ωm ≤ −1/3), and a cosmological constant (ωm = −1),
in the same order as is required for unified cosmological evolution.
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3. The Behavior of Coupled Matter

The energy density and pressure of coupled matter are obtained as follows:

ρ f =
2λ
[
k(12λ + 5)e−2(β+αt)p

+ α2 p(β + αt)p−2{6p(2λ + 1)(β + αt)p + p− 1}
]

(1 + 4λ)(1 + 2λ)
, (14)

p f =
2λ
[
α2 p(β + αt)p−2{8λ + p

(
− 8λ− 6(2λ + 1)(β + αt)p − 3

)
+ 3} − k(4λ + 3)e−2(β+αt)p

]

(1 + 4λ)(1 + 2λ)
. (15)

In all three spatial curvature models, we note that the energy density of coupled matter
is negative at very early stages of evolution, and turns out to be positive after a particular
length of time. Since ρ f becomes zero at the transition time, it is noteworthy to use the EoS
parameter to study the behavior of coupled matter as ω f = p f /ρ f would diverge at that
instant of time. Alternatively, we study the implications of the energy conditions, which
are stated as follows:

• Null energy conditions (NEC): ρ + p ≥ 0;
• Weak energy conditions (WEC): ρ ≥ 0, ρ + p ≥ 0;
• Strong energy conditions (SEC): ρ + 3p ≥ 0;
• Dominant energy conditions (DEC): ρ ≥ |p|.

Figure 4 shows the behavior of energy density for a flat model, which shows that
the WEC is violated at very early times. We observe the same behavior in closed and
open models. Although the energy density of a field in classical physics is strictly positive,
the energy density in quantum field theory can be negative due to quantum coherence
effects [100]. The Casimir effect [101,102] and squeezed states of light [103] are two familiar
examples which have been studied experimentally. As a result, all the known pointwise
energy conditions in GR, such as the WEC and NEC, are allowed to be violated. Even for a
scalar field in flat Minkowski spacetime, it can be proven that the existence of quantum
states with negative energy density is inevitable [100]. The violation of the WEC of coupled
matter can be advocated by any of such mechanisms.
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Figure 4. ρ f versus t for flat model with p = 0.47 (H(z) data), p = 0.66 (Pantheon data) and λ = 1.

The expression for ρ f + p f is obtained as follows:

ρ f + p f =
4λ
[
ke−2(β+αt)p

+ α2 p(1− p)(β + αt)p−2
]

2λ + 1
. (16)

Since λ > 0 and 0 < p < 1, the above expression implies ρ f + p f ≥ 0 for flat and closed
models. For k = −1, Figure 5 plots p f + ρ f ≥ 0, implying the NEC also holds good for the
open model.
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Figure 5. ρ f + p f versus t for k = −1 with λ = 1.

Further, following is the expression of ρ f − p f ,

ρ f − p f =
8λ
[
2ke−2(β+αt)p

+ α2 p{3p(β + αt)p + p− 1}(β + αt)p−2
]

4λ + 1
. (17)

Figures 6 and 7 plot ρ f − p f with H(z) and Pantheon data, respectively. Due to the
domination of the p − 1 term at very early times, ρ f − p f starts from a negative value,
later it becomes positive, and, after attaining a maximum value, it starts decreasing and
finally approaches zero at late times. Hence, the DEC is satisfied, except during the very
early stages of evolution. This shows that coupled matter behaves as a phantom type of
DE during the very early stage of evolution. Mechanically, phantom matter can originate
from scalar fields with a global minimum in their effective potential [104], from higher-
order curvature terms in higher-order theories of gravity [105–109], from bulk viscous
stress due to particle production [110], in Brans–Dicke and non-minimally coupled scalar
field theories [111], in strange effective quantum field theory [112,113], and by some other
means (for details, see [114]). Most of these disparate prescriptions require the weakly
coupled scalar field to be displaced from its equilibrium state. However, in the present
study, we do not need any such hypothetical form of DE; rather, it is the natural outcome
of matter–geometry coupling of f (R, T) gravity.

1 2 3 4
t

-1

0

1

2

3
ρf (t) - pf (t)

k=-1

k=1

k=0

Figure 6. ρ f − p f versus t with p = 0.47 (H(z) data), and λ = 1.
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Figure 7. ρ f − p f versus t with p = 0.66 (Pantheon data) and λ = 1.

Lastly, we have the follows:

ρ f + 3p f =
8λ
[
α2 p(β + αt)p−2{−2(3λ + 1)(p− 1)− 3(2λ + 1)p(β + αt)p} − ke−2(β+αt)p

]

8λ2 + 6λ + 1
. (18)

Figures 8 and 9 depict the behavior of ρ f + 3p f with H(z) data and Pantheon data,
respectively. In both models, ρ f + 3p f becomes negative at late times. Hence, the SEC was
violated during late-time evolution in all three models. This shows that coupled matter
contributes as a quintessence type of DE and accelerates the expansion of the universe
at late times. Again, it is interesting to note that no physical quintessence kind of matter
is required to drive the late-time acceleration. Rather, the matter–geometry coupling of
f (R, T) gravity plays the role of DE in this model.

Thus, we observed that the main matter behaves as a phantom kind of DE, whereas
the coupled matter acts as a quintessence kind of DE. However, since the model’s evolution
in this study is controlled by effective matter, this makes it more crucial for the study of the
behavior of effective matter together with individual matter sources.
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Figure 8. ρ f + 3p f versus t with p = 0.47 (H(z) data) and λ = 1.
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Figure 9. ρ f + 3p f versus t with p = 0.66 (Pantheon data) and λ = 1.

4. The Behavior of Effective Matter

The energy density and pressure of effective matter can be obtained from ρe f f = ρm + ρ f
and pe f f = pm + p f , which also can be read from Equations (11) and (12) with λ = 0. Simi-
larly, the EoS of effective matter can be read from Equation (13) with λ = 0, which implies
that effective matter behaves similarly to GR. We note that effective matter obeys the WEC
for all three curvature models. The behavior of effective matter with H(z) and Pantheon
data is illustrated in Figures 10 and 11, respectively.

The behavior of effective matter follows the same pattern as the matter discussed in
Section 2. This can be observed by comparing Figures 2 and 3 with Figures 10 and 11.
Therefore, the interpretation made for actual matter applies to the effective one, too. We
note that the overall behavior of the effective matter follows the behavioral characteristics
of the scalar field. Kinetic energy dominates the scalar potential early on in the evolution of
the model. Thus, the scalar field behaves similarly to stiff matter. During inflation, this leads
to extremely fast expansion driven by negative pressure. Just as a cosmological constant
exerts stress at late times, the scalar field does as well as the potential term dominates the
kinetic term during this era. It is important to note that the energy density is different to
that during inflation. However, the effective matter in this study does not accommodate
early inflation, but it effectively comprises the behavior of the hybrid scale factor considered
in this study to transition from a decelerated era to the present accelerating era.
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Figure 10. ωe f f (t) versus t with p = 0.47 (H(z) data).
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Figure 11. ωe f f (t) versus t with p = 0.66 (Pantheon data).

5. Conclusions

In this paper, we studied an FLRW space–time model filled with a perfect fluid in the
framework of f (R, T) gravity, where f (R, T) = R + 2 f (T) for all spatially curved models.
In order to find solutions, we chose parametrization of the scale factor, a(t) = a0e(αt+β)p

,
where α, β > 0 and 0 < p < 1, which yields a deceleration parameter consistent with early
deceleration to a late-time acceleration phase for the parameters that best fit the data, viz.
p = 0.47 (H(z) data) and p = 0.66 (Pantheon data) [82]. The transition takes place at a
redshift of z = 0.8 for the H(z) data and z = 1.2 for the Pantheon data.

Figures 2 and 3 depict the behavior of matter for the H(z) and Pantheon data, respec-
tively. The kinematical dynamics of the model are independent of the theory and were
studied earlier by Mishra and Dua [82] in the Brans–Dicke theory. To eschew repetition,
the kinematical study is not presented in this paper. We found that a physically realistic
cosmological model is possible only for λ ≥ 0. We investigated the role of f (R, T) gravity.

As compared to GR, in f (R, T) gravity, due to coupling, if we look at the field equations
on the right-hand side, there are extra terms. These extra terms may be termed coupled
matter, which may behave either as perfect fluid or DE. First and foremost, we ascertain
that all three spatial curvature models (k = 0,±1) demand a positive coupling constant
(λ ≥ 0) to have a physically realistic scenario, i.e., to obey the WEC. Further, we identified
the nature of the main matter and coupled matter to exhibit the transition from early
deceleration to late time accelerated expansion. The main attributes of the models are the
individual behaviors of primary matter and coupled matter, which are summarized below:

• The primary matter exhibits the characteristics of all kinds of matter, viz., stiff matter
(ωm ≥ 1), radiation (ωm = 1/3), dust (ωm = 0), quintessence (−1 < ωm ≤ −1/3),
and a cosmological constant (ωm = −1), in the same order as is required to depict the
cosmic history, including the transition from a decelerating to an accelerating universe.

• The coupled matter satisfies the NEC throughout the evolution of the universe. How-
ever, it violates the WEC and the NEC during very early stages of evolution. It also
violates the SEC at late times, which shows that the coupled matter contributes to
quintessence DE.

Since effective matter governs how the universe evolves, in this investigation, it was
crucial to study the behavior of effective matter separately from individual matter sources.
Effective matter follows an evolving EoS, as shown in Figures 10 and 11. Effective matter
exhibits a dual nature, i.e., a perfect fluid at early times and exotic matter at late times, which
is consistent with observations. If geometric parameters govern the kinematic behavior in
the f (R, T) theory of gravity, then the way of behaving of the effective matter is not altered.
Hence, as compared to GR, effective matter behaves similarly. It is also noteworthy to
caption that all three spatial curvature models (flat, closed, and open) are indistinguishable
as far as either the individual matter contents or effective matter are concerned.
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It is noteworthy to mention here that Malik et al. [115] considered a more general
form of the scale factor to study the bouncing cosmological scenario. The crucial element
in facilitating a successful bounce is the violation of the NEC around the bouncing point,
which the authors found in their study. However, our model does not violate the NEC at
any stage of evolution. Moreover, the hybrid scale factor explored in the present study is
completely different from that considered by Malik et al. and does not encounter a bounce
at any stage. One can easily verify that the scale factor studied here is not a particular case
of the one considered in [115]. However, there might be a possibility that the present model
is one cycle of a bounce.

Further, we comment on Ref. [87]. Their conclusion is that f (R, T) gravity is not able
to provide a full cosmological scenario and should be ruled out as a modified gravity
alternative to the DE phenomena. This is strongly based on the assumption that the
universe is old enough to accommodate the existence of galactic globular clusters with ages
of at least 14.16 Gyrs. This can be seen in their statement, “stay on the conservative side, let
us consider that the universe should be older than 14.16 Gyrs”. In addition, the authors, in
Equation (24), mentioned the age of the universe as 13.5+0.16

−0.14. However, they considered
only the positive error (upper bound) in their work.

In justification of the above comment, we would like to acknowledge another study [88],
where the authors challenged some of the available f (R, T) models by arguing that, al-
though the low−z evolution of f (R, T) models can be reasonably supported by the available
data, there is considerable discrepancy in high−z (z > 1) dynamics in comparison with
standard ΛCDM cosmology. Thus, the proposal of ruling out f (R, T) = R + λT in Ref. [87]
may be valid for the higher redshift zone. The f (R, T) gravity model studied here is still
viable for lower redshift, i.e., for late times.

We mentioned earlier that if one tries to substitute the analogue of the conservation
equation into the Friedmann Equation (5), solving the resulting equation is difficult. How-
ever, in Ref. [87], the authors conducted a broad study of models with f (R, T) = R + λTn,
where n is a constant. Their conclusion of Section III was that “ f (R, T) cosmologies have a
viable parameter space to describe the late-time cosmological observables”. Our model has
n = 1 in their notation, so it also falls into the category of having “a viable parameter space
to describe the late-time cosmological observables”. Secondly, those authors discussed the
effects of radiation. This approach is highly problematic for at least two reasons: (1) f (R, T)
theory is not valid for pure radiation with T = 0, and (2) as the authors themselves ac-
knowledge, radiation plays a negligible role in the late universe. However, the authors still
wrote evolution equations, including terms with fT , but without making any comments on
how they computed the derivatives of f for T = 0. Even if they initially considered a T 6= 0
model, after substituting T = 0 in the field equations, an incorrect (from the point of view
of the f (R, T) theory) model was obtained. Since the f (R, T) theory is not valid for T = 0,
any pathological behavior shown for this case is not relevant for the understanding of the
theory. Therefore, their study confirms through cosmological observations the validity of
the correctly formulated and applied f (R, T) theory [116].

As a final remark, the model explains late-time acceleration without including any
form of hypothetical exotic matter, indicating that f (R, T) = R + 2λT gravity can be a
good alternative to DE. In the absence of any fundamental physical phenomenon, the
matter–geometry coupling terms simply can be interpreted as a variable cosmological
parameter, which not only explains the current accelerating expansion but can also resolve
problems such as the fine-tuning problem and the coincidence problem, whilst being
consistent with cosmological observations [83].
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Appendix A

In this appendix, we confirm that our model is non-conservative. Setting ν = 0, in
Equation (10) of Ref. [117], the covariant derivative of the field equations in f (R, T) gravity
lead to the following:

ρ̇ + 3H(ρ + p) = − ρ̇

ρ(1 + fT)
[p fT + (ρ− 3p){(ρ + p) fTT + fT}], (A1)

where we considered κ = 1.
For f (R, T) = R + 2λT, the above equation reduces to the following:

ρ̇ + 3H(ρ + p) = −λρ̇(ρ− p)
ρ(1 + 2λ)

. (A2)

Since ρ, p, and H are known in our model, one may verify that the above equation is
violated for our study, which supports the fact that the conservation equation does not hold
in f (R, T) gravity, in general.
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Abstract: Within the framework of the extended Einstein–aether–axion theory, we studied the model
of a two-level aetheric control over the evolution of a spatially isotropic homogeneous Universe filled
with axionic dark matter. Two guiding functions are introduced, which depend on the expansion
scalar of the aether flow being equal to the tripled Hubble function. The guiding function of the
first type enters the aetheric effective metric, which modifies the kinetic term of the axionic system;
the guiding function of the second type predetermines the structure of the potential axion field. We
obtained new exact solutions to the total set of master equations in the model (with and without
cosmological constant), and studied four analytically solvable submodels in detail, for which both
guiding functions are reconstructed and illustrations of their behavior are presented.

Keywords: alternative theories of gravity; Einstein–aether theory; axion

1. Introduction

A century ago Alexander Friedmann formulated the prediction that our Universe
expands, and this event predetermined all further developments in cosmology and space
sciences. While remaining within this general concept, modern cosmology focuses on
describing the details of this expansion; in particular, the rate of expansion at different
epochs. New sensational results obtained from observations made in the last decade have
become the basis for restructuring our ideas about the history of the early Universe. The
discovery of gravitational radiation was the first important event, which made theorists
think about the validity of previous ideas. Indeed, in 2015, the first observation of gravita-
tional waves from the black hole merger [1] presented researchers with a dilemma. In this
event the masses of the colliding black holes were predicted to be of 36 and 29 M(Sun), while
mass values in the range 2.5–10 M(Sun), predicted by the theory of stellar collapse, seemed
to be reasonable. Then, the gravitational wave event indicated, as GW trigger S190521g
(GW 190521) [2] has shown, that the black holes with the masses 85 and 66 M(Sun) collided;
the general consensus is that the mass of at least one of these black holes lies in a mass
range that excludes its birth from being due to the collapse of a star. The discovery of black
hole with so-called intermediate mass of 91.000 M(Sun) [3], the existence of which can not
be explained by the existing theories, completed the formulation of the dilemma: either it is
necessary to abandon this interpretation, or admit that there is a new unknown mechanism
for the formation of black holes. Fortunately, the second trend has triumphed and now
theorists are actively involved in adequately extending the models for the birth of black
holes. Another amazing theory is connected to observations from the newest James Webb
Space Telescope (JWST). New observational data suggest the discovery of an extremely
magnified monster star, estimations of the masses of warm dark matter particles and of
the axion dark matter particles [4] and the abundance of carbon-containing molecules [5].
But the most important event, from our point of view, is the discovery of enormous distant
galaxies that should not exist if one follows the standard model of the early Universe
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evolution. To be brief, the galaxies found in the JWST images [6] appeared to be shockingly
big, and the stars in them too old, and these findings are in conflict with existing models.
In other words, rapid development is predicted in the theory of the evolution of the early
Universe over the next few years, and modifications to the current cosmological models
are highly welcome.

At the moment, the most adequate picture of the Universe contains an early era of
inflation, epochs of the domination of radiation and matter, and a late era of accelerated
expansion. The theorists dream is to unify the entire history of the Universe within the
framework of one cosmological model (see, e.g., [7–13]). The main obstacle to solving this
problem is the difficulty in finding a unified equation of state for cosmic substrates that
determines the rate of evolution of the Universe in the corresponding epoch. One of the
attempts made was the search for the time-dependent parameters of the equation of state,
and the introduction of a cosmological term depending on time. However, such attempts
were considered unsuccessful because cosmological time is not an invariant, and therefore
such equations of state are associated with the loss of covariance in the theory. A similar
problem arises, when one tries to define the equation of state in terms of the redshift
value Z, or equivalently, via the scale factor a(t).

We follow another type of logic. We admit that the parameters of the equation of
state depend on the set of scalars, which are formed on the basis of fundamental fields
inherent to the cosmological model under consideration. To be more precise, we take
the unit timelike vector field U j associated with the four-vector velocity of the dynamic
aether [14–17] and consider the invariants obtained in the course of the decomposition
of its covariant derivative ∇kU j. In other words, we use four differential invariants (the
expansion scalar of the aether flow, Θ = ∇kUk, the squares of the four-vector acceleration,
and of the shear and vorticity tensors, a2, σ2, ω2, respectively), as the arguments of the
parameters included in the equations of state. This means that we follow the paradigm
of aetheric control over the evolution of physical systems (see, e.g., [18–22]). We must
emphasize that, depending on the spacetime symmetry of the model, a part of the listed
arguments can disappear. For instance, for the static spherically symmetrical model, we find
that Θ = 0, σ2 = 0, ω2 = 0, and we construct the guiding functions using a2 only. For the
Gödel spacetime, the only ω2 is non-vanishing. For the spacetime with planar gravitational
waves we have to work with two non-vanishing scalars: Θ and σ2. Spatially isotropic
homogeneous cosmological models are unique in this sense, since for them, only the scalar
Θ is non-vanishing, and this scalar coincides with the tripled Hubble function Θ = 3H(t).
In this context, the function H(t) can be chosen as an appropriate argument of the guiding
parameters of such cosmological models, unifying the paradigm of aetheric control over the
evolution of physical systems on the one hand, and the physical interpretation of the theory
predictions on the other hand. Since the function H has the dimensionality of inverse time
(we consider the units with c = 1), this quantity is often used to determine a specific time
scale in a corresponding cosmological epoch.

In this paper we work within the Einstein–aether–axion model on the Friedmann–
Lemaître–Robertson–Walker spacetime platform, and consider the interaction of the grav-
itational field, the pseudoscalar (axion) field φ, and the unit timelike vector field U j.
Two guiding functions depending on the scalar Θ are introduced into the Lagrangian.
The guiding function of the first type, A(Θ), enters the so-called aetheric effective metric
Gmn=gmn+AUmUn (see [23] for history, mathematical details, and motives); it modifies
the kinetic term associated with the axion field, and thus it controls the evolution of the
kinetic energy of the axionic dark matter in the Universe (see, e.g., [24–29], which present
the history of axions, and [30–34], where various aspects of the problem of axions in cosmol-
ogy are discussed). The guiding function of the second type, Φ∗(Θ), enters the potential
of the axion field, V(φ, Φ∗), thus performing control over the evolution of the potential
energy of the axionic dark matter. The set of master equations for the model is solved
in quadratures and partially in the analytic form; the corresponding functions A(Θ) and
Φ∗(Θ) are reconstructed.
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The paper is organized as follows. Section 2 contains a description of the mathematical
formalism. In Section 3 we analyze the key equations of the spatially isotropic homogeneous
cosmological model and discuss the obtained solutions. Section 4 contains a discussion
and conclusions.

2. The Formalism of the Extended Einstein–Aether–Axion Theory
2.1. The Extended Action Functional and Auxiliary Quantities

The extended Einstein–aether–axion theory is formulated on the basis of the following
action functional:

−S(total) =
∫

d4x
√
−g
{

1
2κ

[
R+2Λ+λ(gmnUmUn−1)+Kab

mn∇aUm∇bUn
]
+

+
1
2

Ψ2
0[V(φ, Φ∗)−Gmn∇mφ∇nφ]

}
. (1)

In this formula, the standard elements of this theory appear, such as the determinant
of the spacetime metric g, the Ricci scalar R, the cosmological constant Λ, the Einstein
constant κ, the Lagrange multiplier λ, the unit timelike vector field Ui, associated with the
velocity four-vector of the aether flow, and the covariant derivative ∇k with the connection
consistent with spacetime metric gmn, i.e., ∇kgmn = 0. Kinetic terms for the vector and
axion fields contain the effective aetheric metric

Kab
mn = C1GabGmn + C2δa

mδb
n + C3δa

nδb
m + C4UaUbGmn , (2)

Gmn = gmn +AUmUn , (3)

where the scalar A(θ) is the guiding function of the first type, and C1, C2, C3, C4 are the
Jacobson coupling constants [14]. The potential of the axion field V(φ, Φ∗) is considered to
have the periodic form

V(φ, Φ∗) =
m2

AΦ2∗
2π2

[
1− cos

(
2πφ

Φ∗

)]
, (4)

where Φ∗(Θ) is the guiding function of the second type, and the parameter Ψ0 relates to
the coupling constant of the axion–photon interaction gAγγ, 1

Ψ0
= gAγγ. The potential (4)

inherits the discrete symmetry 2πφ
Φ∗ →

2πφ
Φ∗ +2πn. This periodic potential has its minima

at φ = nΦ∗. Near the minima, when φ → nΦ∗+ψ and | 2πψ
Φ∗ | is small, the potential takes

the standard form V → m2
Aψ2, where mA is the axion rest mass. When φ=nΦ∗ (n is an

integer), we deal with the axionic analog of the equilibrium state [19], since V|φ=nΦ∗= 0,

and
(

∂V
∂φ

)
|φ=nΦ∗

= 0.

The following decompositions are associated with the unit four-vector U j:

∇k = UkD +
⊥
∇k , D = Us∇s ,

⊥
∇k = ∆j

k∇j , ∆j
k = δ

j
k −U jUk . (5)

Here D is the convective derivative, and ∆j
k is the projector. The covariant derivative

∇kUj can be decomposed as

∇kUj = UkDUj + σkj + ωkj +
1
3

∆kjΘ , (6)

where the four-vector acceleration DUj ≡ aj, the symmetric traceless shear tensor σkj,
the skew–symmetric vorticity tensor ωkj, and the expansion scalar Θ are presented by the
well-known formulas
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DUj=Us∇sUj , σkj=
1
2

(⊥
∇kUj+

⊥
∇jUk

)
−1

3
∆kjΘ , ωkj=

1
2

(⊥
∇kUj−

⊥
∇jUk

)
, Θ=∇kUk . (7)

This decomposition (6) allows us to introduce one linear and three quadratic scalars

Θ = ∇kUk , a2 = DUkDUk , σ2 = σmnσmn , ω2 = ωmnωmn , (8)

and thus the kinetic term of the vector field can be rewritten in the form

Kab
mn(∇aUm)(∇bUn)=[C1(1+A)+C4]a2+(C1+C3)σ

2+(C1−C3)ω
2+

1
3
(C1+3C2+C3)Θ2. (9)

Taking into account the constraints obtained after the detection of the event GRB170817 [35],
we have to put C1+C3 = 0 into (9).

2.2. Master Equations of the Model
2.2.1. Master Equations for the Unit Vector Field

Variations of the extended action functional (1) with respect to the Lagrange multiplier
λ gives the normalization condition

gmnUmUn = 1 . (10)

Variation with respect to the four-vector Ui gives the aetheric balance equations

∇aJ aj = λU j−AκΨ2
0Dφ∇jφ−∇j

(
Ω1

dΦ∗
dΘ

+Ω2
dA
dΘ

)
, (11)

where the following definitions are used:

J aj = Kabjn∇bUn = C1

(
∇aU j −∇jUa

)
+ C2gajΘ + (C4 + C1A)UaDU j , (12)

Ω1 =
κΨ2

0m2
A

2π2

{
Φ∗

[
1− cos

(
2πφ

Φ∗

)]
−πφ sin

(
2πφ

Φ∗

)}
, (13)

Ω2 = −1
2

κΨ2
0(Dφ)2 . (14)

Convolution of (11) with Uj gives us the Lagrange multiplier λ:

λ = Uj∇aJ aj +AκΨ2
0(Dφ)2+D

(
Ω1

dΦ∗
dΘ

+Ω2
dA
dΘ

)
. (15)

2.2.2. Master Equation for the Axion Field

Variation in the extended action functional (1) with respect to the axion field yields
means that

∇m[(gmn +AUmUn)∇nφ] +
m2

AΦ∗
2π

sin
(

2πφ

Φ∗

)
= 0 , (16)

or equivalently,

(1+A)D2φ+[(1+A)Θ + DA]Dφ−DUm
⊥
∇mφ+

⊥
∇m

⊥
∇mφ+

m2
AΦ∗
2π

sin
(

2πφ

Φ∗

)
=0 . (17)

Below, we use the ansatz that, when the axion field is in the equilibrium state, which
corresponds to the basic minimum φ = Φ∗, we obtain the master equation for the guiding
function of the second type Φ∗(Θ), i.e.,

∇m[(gmn +AUmUn)∇nΦ∗] = 0 . (18)

170



Universe 2024, 10, 74

2.2.3. Master Equations for the Gravitational Field

Variation in the extended action functional (1) with respect to the metric gives the
gravity field equation

Rik −
1
2

Rgik −Λgik = T(U)
ik + κT(A)

ik + T(INT)
ik . (19)

The extended stress-energy tensor of the aether T(U)
ik contains the following elements:

T(U)
ik =

1
2

gik Kab
mn∇aUm∇bUn+∇m

[
U(iJk)m−Jm(iUk)−J(ik)Um

]
+ UiUkUj∇aJ aj+ (20)

+C1[(∇mUi)(∇mUk)−(∇iUm)(∇kUm)]+(C4 + C1A)(DUiDUk −UiUkDUmDUm) .

As usual, the parentheses symbolize the symmetrization of indices. The extended
stress-energy tensor of the axion field is of the form:

T(A)
ik = Ψ2

0

[
(1+A)φ̇2

(
UiUk −

1
2

gik

)
+

1
2

gikV
]

. (21)

The part of the total stress-energy tensor associated with the interaction terms contains
the derivatives of the guiding functions A and Φ∗ with respect to their argument Θ:

T(INT)
ik = −gikΘ

(
Ω1

dΦ∗
dΘ

+Ω2
dA
dΘ

)
−∆ik

[
D
(

Ω1
dΦ∗
dΘ

+Ω2
dA
dΘ

)]
. (22)

The Bianchi identity

∇k
[

T(U)
ik + κT(A)

ik + T(INT)
ik

]
= 0 (23)

automatically holds for the solutions to the master equations for the vector and pseu-
doscalar fields.

3. Application to the Spatially Isotropic Homogeneous Cosmological Model
3.1. The Spacetime Platform, Reduced Master Equations, and Their Solutions
3.1.1. Geometric Aspects

Below, we work with the Friedmann–Lemaître–Robinson–Walker type spacetime,
using the metric

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (24)

The four-vector velocity of the aether flow is known to be in the form U j = δ
j
0, and the

corresponding covariant derivative of the vector field has the following decomposition

∇kUi =
1
2

ġik =
ȧ
a

∆ik = H∆ik =
1
3

Θ∆ik . (25)

Clearly, in this case, DUj = 0, σmn = 0, ωmn = 0, Θ = 3H = 3 ȧ
a , and, standardly, the

dot denote the derivative with respect to the cosmological time t.

3.1.2. Solution to the Equations for the Vector Field

Keeping in mind that DUj=0, σmn=0, ωmn=0, we find that the extended Jacobson’s
tensor (12) converts into

Jaj = C2Θgaj , (26)

and the equations for the unit vector field (11) take the form

C2∇jΘ = λUj − κΨ2
0AUjφ̇

2 −∇j

(
Ω1

dΦ∗
dΘ

+ Ω2
dA
dΘ

)
. (27)
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Equation (27) contains only one non-trivial equation, which gives the solution for the
Lagrange multiplier λ:

λ = C2Θ̇ + κΨ2
0Aφ̇2 +

d
dt

(
Ω1

dΦ∗
dΘ

+ Ω2
dA
dΘ

)
. (28)

Thus, the aetheric subset of the total system of master equations is solved.

3.1.3. First Integral of the Reduced Equation for the Axion Field

We suppose that the axion field φ is frozen at the first minimum of the axion potential,
i.e., φ = Φ∗(t). Then we put φ = Φ∗ into (17) and obtain the key equation for Φ∗(t)

(1+A)Φ̈∗+
[

3(1+A) ȧ
a
+ Ȧ

]
Φ̇∗ = 0 , (29)

which admits the first integral with

Φ̇∗(t) =
const

a3(t)[1 +A(t)] = Φ̇∗(t0)

[
a(t0)

a(t)

]3 [1 +A(t0)]

[1 +A(t)] . (30)

The parameter t0 describes the initial time moment; A(t0) is the initial value of the
guiding function of the first type; and Φ̇∗(t0) indicates the initial value of the first derivative
of the guiding function of the second type.

3.1.4. Key Equations for the Gravity Field

When φ=Φ∗, the function Ω1 takes zero value, and the reduced extended equations
of the gravitational field can be converted into one key equation

1
3

Θ2
(

1 +
3
2

C2

)
−Λ =

1
2

κΨ2
0Φ̇2
∗

[
1 +A+ Θ

dA
dΘ

]
. (31)

Since Φ̇∗ has already been found and is of the form (30), we obtain the equation, which
connects the scalar Θ with the reduced scale factor x = a(t)

a(t0)
as follows:

1
3

Θ2
(

1 +
3
2

C2

)
−Λ =

1
2x6 κΨ2

0Φ̇2
∗(t0)[1 +A(t0)]

2
[

1
1 +A −Θ

d
dΘ

(
1

1 +A

)]
. (32)

Then, we assume that C2 > − 2
3 , Λ > 0, and introduce the auxiliary parameters

H∞ =

√
Λ

3(
(
1 + 3

2 C2
)
)

, h2 =
κΨ2

0Φ̇2(t0)[1 +A(t0)]
2

6
(
1 + 3

2 C2
) . (33)

Now we are ready to analyze the main equation of the model for the function H(x)

x6
[

H2 − H2
∞

]
= h2

[
1

1 +A − H
d

dH

(
1

1 +A

)]
. (34)

3.2. Modeling of the Guiding Function of the First Type

When we discuss the structure of the guiding function of the first type we use two as-
sumptions. First, we assume that A = 0, if Θ = 0. Second, we assume that the right-hand
side of the Equation (34) is a regular function of its argument H, and thus we can use the
decomposition

[
1

1 +A − H
d

dH

(
1

1 +A

)]
= 1− γ1H − γ2H2 − 2γ3H3 − 3γ4H4 − ... (35)
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This decomposition allows us to reconstruct the function 1
1+A , which has the form

1
1 +A = 1 + γ1H

[
1 + log

H
H∗

]
+ γ2H2 + γ3H3 + γ4H4 + ... (36)

Here, H∗ is some constant of integration. The key to our consideration is the analysis
of the asymptotic regime (x → ∞ ) of the equation

x6
[

H2 − H2
∞

]
= h2

[
1− γ1H − γ2H2 − 2γ3H3 − 3γ4H4 − ...

]
. (37)

If we restrict ourselves with the term Hm in the right-hand side of (37), we see that,
first, Hm−2 ∝ x6, second, H ∝ x

6
m−2 , and third, a(t) ∝ t−

m−2
6 . In other words, if m > 2,

the Universe collapses asymptotically, and this detail is in contradiction with the main idea
of perpetual expansion. Of course, this point is disputable, but we follow this idea. Now
we deal with the quadratic equation with respect to H

x6
[

H2 − H2
∞

]
= h2

[
1− γ1H − γ2H2

]
, (38)

and its positive solution is

H(x) =

√
γ2

1h4

4(x6 + γ2h2)2 +
H2

∞x6 + h2

x6 + γ2h2 −
γ1h2

2(x6 + γ2h2)
. (39)

With the function H(x), one can reconstruct the scale factor as the function of time
if we use the formal quadrature

t− t0 =
∫ a(t)

a(t0)

1

dx
xH(x)

. (40)

Clearly, there are two asymptotic regimes.
(1) When Λ 6= 0, H → H∞ and thus a(t) ∝ eH∞t.
(2) When Λ = 0, H ∝ 1

x3 and thus a(t) ∝ t
1
3 .

In order to have further progress in calculations, we consider four analytically solv-
able submodels.

3.2.1. First Analytically Solvable Submodel

Let us consider the model with γ1 = − 1
H∞

and γ2 = 0. In this case the function A(H)
satisfies the relationship

1
1 +A = 1− H

H∞

[
1 + log

H
H∗

]
. (41)

In order to simplify the analysis, we assume that H∗ = H∞ and obtain the following
expression for the guiding function of the first type

A =

H
H∞

(
1 + log H

H∞

)

1− H
H∞

(
1 + log H

H∞

) . (42)

Formally speaking, this function takes the infinite value, when the denominator is
equal to zero. But this situation only appears at infinity a = ∞, when H = H∞. Now we
deal with the key equation

H2 − H2
∞ =

h2

H∞x6 (H∞ + H) , (43)
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we omit the negative root H = −H∞, and see that the positive solution is

H(x) = H∞ +
h2

H∞x6 . (44)

We should mention that this model is self-consistent when first, H(t0) > H∞, and
second, h2 = H∞[H(t0)−H∞]. According to the definition in (33) the last requirement links
the values A(t0), Φ̇(t0), and H(t0).

The scale factor a(t) and the Hubble function H(t) can now be presented in the form

a(t) = a(t0)

[(
1 +

h2

H2
∞

)
e6H∞(t−t0) − h2

H2
∞

] 1
6

, (45)

H(t) =
H∞{

1−
[
1− H∞

H(t0)

]
e−6H∞(t−t0)

} . (46)

The acceleration parameter −q(t) can be given by the formula

−q(t) =
ä

aH2 = 1−
(

6h2

h2 + H2
∞

)
e−6H∞(t−t0) (47)

is the monotonic function of time, and it asymptotically tends towards one at t→ ∞.
Finally, we intend to reconstruct the guiding function of the second type Φ∗(H).

The simplest way is the following. First, using the replacements t → x = a(t)
a(t0)

and
d
dt → xH(x) d

dx , we rewrite the relationship (30) as follows

Φ′∗(x) = − Φ̇∗(t0)[1 +A(t0)]

H∞x4

[
−H∞

H
+ 1 + log

(
H

H∞

)]
. (48)

Second, using (44), we integrate (48) and obtain

Φ∗(x) = Φ∗(t0)+
Φ̇∗(t0)[1+A(t0)]

3H∞
<1(x) , (49)

<1(x) ≡
(

1− 1
x3

)
+

1
x3 log

(
1+

h2

H2
∞x6

)
− log

(
1 +

h2

H2
∞

)
+ (50)

+
H∞

|h|

(
arctan

|h|
H∞x3− arctan

|h|
H∞

)
.

Third, using the replacement 1
x6 = H∞

h2 (H − H∞), we recover the function Φ∗(H)
based on the solution (49). The asymptotic value of the reconstructed guiding function is

Φ∗(∞) = Φ∗(t0) +
Φ̇∗(t0)[1 +A(t0)]

3H∞
<1(∞) , (51)

<1(∞) = 1− log
(

1 +
h2

H2
∞

)
−H∞

|h| arctan
|h|
H∞

.

Figure 1 illustrates the details of the function <1(x).
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Figure 1. Illustration of the behavior of the function <1(x) (50), which enters the guiding function
of the second type Φ∗, for three values of the parameter ρ= |h|H∞

. All the curves start with the value
<(1) = 0 and tend monotonically towards their asymptotic values <1(∞) (51).

3.2.2. Second Analytically Solvable Submodel

The second submodel relates to the case when Λ 6= 0, γ1 = 0, and γ2 = α2

H2
∞
> 0. With

these assumptions, the guiding function of the first type

A(H) = − γ2H2

1 + γ2H2 = − α2H2

H2
∞ + α2H2 (52)

is the regular function of the Hubble function H. From the key equation for the gravity
field (38) we obtain

H(x) = H∞

√√√√√
x6 + h2

H2
∞

x6 + α2h2

H2
∞

. (53)

The parameter α2 is connected to the initial value of the Hubble function as follows:

H(t0) ≡ H(x = 1) = H∞

√√√√√
1 + h2

H2
∞

1 + α2h2

H2
∞

. (54)

Clearly, we have to distinguish the cases α2 = 1 and α2 6= 1.
(1) When α2 = 1, we obtain that the Hubble function converts into the constant

H(x) = H(1) = H∞, and we deal with the de Sitter type behavior of the Universe,
for which a(t) = a(t0)eH∞(t−t0). The guiding function of the first type also is constant, as
A = − 1

2 , and the guiding function of the second type behaves as

Φ∗(t) = Φ∗(t0)−
Φ̇2∗(t0)a3(t0)

3H∞
e−3H∞(t−t0) . (55)

(2) When α2 6= 1, the direct integration of (40) yields

e6H∞(t−t∗) =

∣∣∣∣
(z− α)α(z + 1)
(z + α)α(z− 1)

∣∣∣∣ , (56)
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where we used the positive root α = +
√

α2. The auxiliary function z(t) and two new
parameters, z∗ and t∗, are:

z =

√√√√√√
H2

∞

[
a(t)
a(t0)

]6
+ α2h2

H2
∞

[
a(t)
a(t0)

]6
+ h2

, z∗ =

√
H2

∞ + α2h2

H2
∞ + h2 , (57)

t∗ = t0 −
1

6H∞
log
[
(z∗ + 1)(z∗ − α)α

(z∗ − 1)(z∗ + α)α

]
. (58)

According to (57), z → 1 when a → ∞; the corresponding asymptotic behavior is
characterized by the de Sitter-type law

a(t, α)→ a(t0)

(
h

2H∞

) 1
3
∣∣∣∣
1 + α

1− α

∣∣∣∣
α−1

6
eH∞(t−t∗) . (59)

The formulas (56)–(58) give us the implicit representation. The function a(t) has no
extrema; we have illustrated the behavior of the scale factor in the early epoch in Figure 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

15

Figure 2. Illustration of the behavior of the reduced scale factor a(t)
a(t0)

in the early epoch; this function
is presented in the implicit form by (56). Here τ = t−t0.

The guiding function of the second type can be represented in terms of elliptic func-
tions. For instance, if 0 < α < 1, the term

Φ∗(x) = Φ∗(t0)−
Φ̇∗(t0)[1 +A(t0)]

3H∞
<2(x) (60)

contains the special function <2(x), which is equal to

<2(x) =
∫ 1

x3

1
dz




√√√√√
1 + α2 h2

H2
∞

z2

1 + h2

H2
∞

z2
+ α2

√√√√√
1 + h2

H2
∞

z2

1 + α2 h2

H2
∞

z2


 = (61)

=
H∞

h

{
(1 + α2)[F(ϕ, k)−F(ϕ∗, k)]−2[E(ϕ, k)−E(ϕ∗, k)]

}
+

+
2
x3

√
H2

∞x6+α2h2

H2
∞x6+h2 −2

√
H2

∞+α2h2

H2
∞+h2 ,
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where the elliptic functions of the first and second types, respectively,

F(ϕ, k) ≡
∫ ϕ

0

dψ√
1− k2 sin2 ψ

, E(ϕ, k) ≡
∫ ϕ

0
dψ

√
1− k2 sin2 ψ (62)

are characterized by the arguments

ϕ = arctan
(

h
H∞x3

)
, ϕ∗ = arctan

(
h

H∞

)
, k =

√
1− α2 . (63)

The asymptotic value of the guiding function of the second type is

Φ∗(x)=Φ∗(t0)+
Φ̇∗(t0)[1+A(t0)]

3H∞

{
H∞

h

[
(1+α2)F(ϕ∗, k)−2E(ϕ∗, k)

]
+2

√
H2

∞+α2h2

H2
∞+h2

}
. (64)

3.2.3. Third Analytically Solvable Submodel

Now we assume that the cosmological constant is equal to zero, Λ = 0, i.e., H∞ = 0.
Also, we assume that γ1 = 0 and γ2 = ν6

h2 > 0. Again, we find that A(H) is regular

A(H) = − ν6H2

h2 + ν6H2 , (65)

and the Hubble function is in the form

H(x) =
|h|√

x6 + ν6
. (66)

Then, we obtain the reduced scale factor x(t) in the implicit form

3|h|
ν3 (t− t∗∗) =

√
1 +

x6

ν6 − log

[√
1 +

ν6

x6 +
ν3

x3

]
, (67)

where we introduce, for simplicity, the formal parameter t∗∗

t∗∗ = t0 −
1

3|h|
√

1 + ν6 − ν3

3|h| log
(√

1 + ν6 − ν3
)

. (68)

Finally, we obtain the guiding function of the second type as the function of the
reduced scale factor

Φ∗(x) = Φ∗(t0) +
1

3|h| Φ̇∗(t0)[1 +A(t0)] <3(x) . (69)

<3(x) ≡ log




(
x3+
√

ν6+x6
)

(
1+
√

1+ν6
)


− 2

√
1 +

ν6

x6 + 2
√

1 + ν6 .

In the asymptotic limit x → ∞, the function Φ∗(H) has the form

Φ∗(H) = Φ∗(t0)−
1

3|h| Φ̇∗(t0)[1 +A(t0)] log
(

ν3H
2|h|

)
. (70)

Figure 3 illustrates the behavior of the function <3(x).
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Figure 3. Illustration of the behavior of the function <3(x) for three values of the parameter ν.

3.2.4. Special Case

The final interesting submodel relates to the case A = −1, for which the aetheric
effective metric converts into the projector Gmn → ∆mn = gmn−UmUn. For a guiding
function like the first type, the axion field Equation (17) admits the solution depending on
time if, and only if, φ = nΦ∗, and thus V = 0. The equation for the gravity field (31) gives
the de Sitter-type solution H = H∞, and the Equation (29) turns into the identity 0 = 0.
In other words, the second type of guiding function happens to be arbitrarily constant
Φ∗(t) = Φ∗(H∞).

4. Discussion and Conclusions

In the presented work we studied new exact solutions to the master equations for
the extended version of the Einstein–aether–axion theory. The main idea of the theory’s
extension is based on the introduction of two guiding functions A(Θ) and Φ∗(Θ), which
depend on the expansion scalar of the aether flow, Θ = ∇kUk. This choice is dictated
by the fact that, within the Friedmann–Lemaître–Robinson–Walker model, there is only
one non-vanishing invariant reconstructed using the covariant derivative ∇kU j of the
aether four-vector velocity U j. The bonus of this approach is that, in the FLRW model,
Θ = 3H, and thus the aetheric control over the axion system evolution happens to be
described in terms of the Hubble function H(t), which is intrinsic for this model and has a
clear physical meaning. As for why we used namely two guiding functions, we kept in
mind that, generally, the axion system is characterized by two state functions: kinetic and
potential energy. The modification of the kinetic term in the Lagrangian of the extended
theory is performed using the effective aetheric metric Gmn = gmn+AUmUn (see (1)), where
the scalar A(Θ) has been indicated as the first type of guiding function. The modification
of the axion field potential is carried out by the introduction of the guiding function of the
second type Φ∗(Θ), which predetermines the location and depth of the potential minima
(see (4)).

The next question is how one can find A(Θ) and Φ∗(Θ). We have proposed the
following idea. If the axion field is frozen in the first minimum of the potential, i.e., is in
the first equilibrium state φ = Φ∗, we see that the corresponding equation for the axion
field (see (18) and (29)) can be indicated as the master equation for the guiding function of
the second type. Fortunately, the Equation (29)) admits the first integral (30), which can
be put into the equations for the gravity field, thus providing the key Equation (31) to be
self-closed equation for the scalar function Θ(x), or equivalently, for the Hubble function
H(x). When H is found, the guiding function of the second type Φ∗ can be reconstructed
by the direct integration (see the results (49), (60), (61) and (69)).
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Regarding the search for the guiding function of the first type A(Θ), we follow the
idea that, first, the right-hand side of the key equation of the gravity field (34) has to be
a regular function, second, the model has to describe the perpetual Universe expansion
without Big Rip and Big Crunch. From these two requirements, we restore the function
A(H) up to three arbitrary parameters γ1, γ2 and H∗ using the formula

1
1 +A = 1 + γ1H

[
1 + log

H
H∗

]
+ γ2H2 .

The Hubble function H(x) is the solution to the quadratic equation and its positive root
has the form (39) for arbitrary parameters γ1, γ2 and H∗; only the scale factor, as the function
of cosmological time a(t), can be presented in quadratures. In order to obtain the results
presented in the analytical and special functions, we considered four particular submodels,
selecting the listed parameters in a specific way. And our research objectives were achieved.

The last point of discussion is connected with an application of the extended model
for the interpretation of observational data, in particular, for the estimation of the axion
mass. In this context, we would like to draw attention to the equation of the axion field
evolution (17). When the value of the axion field is close to one of the potential minima,
i.e., φ→ nΦ∗+ψ with

∣∣∣ 2πψ
Φ∗

∣∣∣ << 1, we deal with the linear differential equation, in which

the quantity M(Θ)= mA√
1+A plays the role of an effective axion mass depending on the scalar

of expansion of the aether flow Θ. Preliminary analysis shows that, for some choices of
the guiding function A(Θ), this equation admits unstable solutions, which are associated
with the axionization of the early Universe in analogy with the results obtained in [20].
The growth of the number of axions in the early Universe leads to the formation of the
axionic dark matter detected in our epoch; thus, the parameters of the presented extended
model could be linked with the mass density of the relic axions. Clearly, this part of work
should be more detailed;however, it is beyond the scope of this article and is planned to
form the content of the next publication.
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Abstract: The origin and evolution of supermassive black holes (SMBHs) in our universe have
sparked controversy. In this study, we explore the hypothesis that some of these black holes may
have seeded from the direct collapse of dark energy domains with density significantly higher than
the surrounding regions. The mechanism of the origin of such domains relies on the inflationary
evolution of a scalar field acting in D dimensions, which is associated with the cosmological constant
in our four-dimensional spacetime manifold. Inner space quantum fluctuations of the field during
inflation are responsible for the spatial variations of the dark energy density in our space. This
finding holds particular significance, especially considering recent evidence from pulsar timing array
observations, which supports the existence of a stochastic gravitational wave background consisting
of SMBH mergers.

Keywords: primordial black hole; supermassive black hole; cosmological constant; dark energy;
extra dimensions; inflation

1. Introduction

Primordial black holes (PBHs) have been extensively studied over the decades [1–10]
and offer a scenario with the potential to leave distinct imprints on cosmic history.
Depending on the ratio of their abundance relative to the overall dark matter (DM),
fPBH = ΩPBH/ΩDM, the range of possible PBH masses MPBH spans a wide spectrum,
including PBHs of small masses [9] which have undergone scrutiny through various ob-
servations (for comprehensive reviews, refer to [8,10]). Additionally, since PBHs formed
during the early stages of the Universe, they have the capacity to develop bound binaries
via multiple mechanisms [8,11,12]. As these binaries become close, they emit gravitational
waves (GWs) continuously until a final dramatic burst occurs at the point of their ultimate
merger. Notably, for black holes of stellar mass, such mergers have already been detected
by ground-based interferometers [13,14]. Moreover, it is plausible that several of these
observed mergers might be attributed to the coalescence of PBHs [15–20].

PBHs with masses exceeding 102M� hold particular significance due to their impact
on the growth of massive objects during the evolution of the early Universe. Notably, it is
well-established that galactic nuclei host supermassive black holes (SMBHs) with masses
surpassing 106 M� [21–23]. It has been theorized that PBHs could be their progenitors,
achieving such masses through processes like merging, accretion [24–29], or the direct
collapse of primordial fluctuations [30,31]. In the latter scenario, SPBHs are constrained
to constitute less than O(0.1%) of dark matter (DM). As they have been present since the
dawn of the matter-dominated era, they can serve as cosmic seeds, enhancing galaxy
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formation [32,33]. Furthermore, different observations have provided evidence for the
existence of intermediate-mass black holes (IMBHs) with masses ranging from 104 M� to
106 M� [34]. Additionally, a subdominant fraction of dark matter may consist of immensely
massive PBHs, exceeding 1012 M� [35], capable of traversing the intergalactic medium.

SMBHs may be responsible for the generation of early galaxies reported by JWST [36].
They can bind in binary systems which leads to late time merging and radiation of gravita-
tional waves in the nHz frequency range that are detectable by pulsar timing array (PTA)
experiments [37–43]. The results from the PTA observations have been extensively analyzed
and interpreted in numerous studies, including recent ones such as [44–113] and earlier
analyses such as [114–126], which are related to the previously published NANOGrav
signal evidence [127]. These interpretations and effects may independently explain the PTA
gravitational wave signal. They can also be considered in combination with the modeling
of gravitational waves originating from supermassive black hole binaries (SMBHBs).

In this paper, we propose and validate a mechanism for the formation of PBHs based
on the generation of specially varying cosmological constants, which may be generic
for theories with compact extra dimensions. Considering extra dimensions allows us to
examine fluctuations of fields within the internal space during inflation in addition to
fluctuations of ordinary scalar fields. However, the fate of these field fluctuations differs
significantly from those associated with conventional four-dimensional scalar fields. While
conventional field fluctuations transform their energy density into radiation during the
FRW stage through decay into other particle-like species, the energy density associated
with scalar fields within the internal space remains unchanged, effectively stored within
the scalar field itself, manifesting as a cosmological constant. Fluctuations of the scalar
field within the internal space manifest as spatial variations of the local Λ term. Domains
containing an extraordinarily high cosmological constant may collapse into PBHs. After the
end of inflation, the horizon expands and the particle energy density decreases, approaching
its present-day value. Simultaneously, the energy density associated with the Λ term, being
dependent on the Hubble parameter, also decreases over time, converging to its present-day
value, which equals the dark energy density. There must exist a moment in time when both
the energy density of matter and the energy density associated with the Λ term are equal.
Evidently, since the value of Λ varies across space coordinates, this equality primarily
arises within the densest regions, implying the existence of a density contrast close to
unity in domains with high values of Λ. Once such a domain becomes encompassed by
the cosmological horizon, it may evolve into a PBH. We assert that PBHs formed through
the proposed mechanism are cosmologically feasible candidates for seeding SMBHs and
explaining the observed IMBHs.

The flexible metrics characterizing extra dimensions constitute a continuous set of
static classical solutions derived from the generalized Einstein igat [128,129], and they
share fixed Lagrangian parameters. This approach, distinct from the brane world model,
renders the extra dimensions invisible due to their small size. However, unlike Kaluza–
Klein geometries, these dimensions exhibit inhomogeneity. The concept of such geometries
was initially introduced in [130] with further discussion in [131]. Subsequent research, as
presented in [132], applied a top-down approach to elucidate observed physical laws. It
demonstrated that incorporating quantum corrections to initial parameters established at
high energies eases the renormalization procedure.

Investigating the evolution of extra field distributions leading to a static state is a
crucial endeavor. This aspect has been explored in previous works such as [133]. The
outcomes reveal that the resultant metric and field distribution are contingent upon both
model parameters and initial conditions. Notably, the extra-dimensional stationary field
distributions evolve in tandem with the energy density across distinct volumes below the
horizon, which are replicated during inflation. This particular aspect forms the focal point
of our investigation.

Furthermore, our current investigation is grounded in nonlinear f (R) gravity, as
extensively discussed in reviews such as [134,135]. This framework holds significant
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potential for diverse cosmological implications, with one notably remarkable consequence
being the emergence of dark matter [136]. Several viable f (R) models in 4D space aligning
with observational constraints have been proposed in works such as [128,129,137–139].

This paper is structured as follows: In Section 2, we provide a concise overview of the
mathematical setup employed in the extra-dimensional framework under consideration.
Section 3 is dedicated to exploring the distinct behaviors of fluctuations in our space
compared to those in extra dimensions. Section 4 is focused on deriving the conditions
essential for the formation of PBHs and estimating their mass spectrum. The conclusions of
our study are summarized in Section 5.

2. Static Field Distribution in Internal Space

The primary objective of this section is to revisit the foundational concepts of extra-
dimensional frameworks that give rise to a continuum set of static metric distributions.
This issue has been elaborated in our previous papers [133], and we refer the reader to
them for details.

Consider f (R) gravity with a minimally coupled scalar field ζ in a D = 4 + n-
dimensional manifold MD = M4 ×Mn:

S =
mD−2

D
2

∫

MD

dDX
√
|gD|

(
f (R) + ∂Mζ ∂Mζ − 2V(ζ)

)
, (1)

where gD ≡ DetgMN ; M, N = 1, D; XA = (xµ, ya); the coordinate set xµ, µ = 1, 2, 3, 4
describes the four-dimensional space M4, and the set ya, a = 5, 6, . . . , n describes the n-
dimensional manifold Mn, which is assumed to be a closed manifold without boundary;
f (R) is a function of the D-dimensional Ricci scalar R; and mD is the D-dimensional Planck
mass. Below, we will work in the units mD = 1. Note that the main results of this work
hold even for the simplest form of the potential V.

V(ζ) =
1
2

m2ζ2. (2)

The metric is postulated to have the form

ds2 = e2γ(u)
[
dt2 − e2Ht(dv2 + v2dΩ2

2)
]
− du2 − r(u)2dΩ2

n−1. (3)

Such a metric ansatz has been extensively studied within the realm of linear
gravity [140–143], particularly in addressing the hierarchy problem [133,144–146]. Our
approach is based on the concept of compact extra dimensions. A preliminary investigation
suggests that their scale could be as small as 10−28 cm or even smaller. This implies that
the extra dimensions remain invisible to our instruments, and our rulers and clocks do not
measure intervals of space and time at a specific value of u. Instead, all metric functions,
such as the function eγ(u), should be averaged over the extra space. The way to achieve
this is discussed in [133] and briefly presented below.

The equations of motion, see [128,129], represented by

−1
2

δN
M f (R) +

(
RN

M +∇M∇N − δN
M�

)
fR = −TN

M, (4)

fR = d f /dR, TN
M = (∂Mζ)(∂Nζ)− 1

2
(∂Cζ)(∂Cζ)δN

M + V(ζ)δN
M,

possess a continuum set of solutions just as the differential equations do. We choose those
solutions that exhibit homogeneity in the spatial coordinates x and inhomogeneity in the
internal coordinates y. We consider only those solutions that refer to the compact extra
space. This means that the metric function r(u) must have two zeros. This condition is
fulfilled at the coordinates umin and umax, i.e., r(umin) = r(umax) = 0, which is the result of
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numerical calculations. These coordinate values depend on additional conditions which
are different in different space domains.

The parameterization of these solutions is determined by additional conditions, such
as r′(y = 0), r(y = 0), γ(y = 0), γ′(y = 0), ζ(y = 0), and ζ ′(y = 0), which are essential for
solving the second-order differential equations.

After integration over the extra-dimensional coordinates, the action (1) reduces to the
effective action [130]

S =
m2

P
2

∫

mP

d4x
√
|g4|

(
ae f f R2

4 + R4 + ce f f

)
. (5)

The term ce f f represents the cosmological constant Λ:

Λ = −1
2

ce f f , (6)

assuming the scalar function ζ is homogeneous in a 3-dimensional space under horizon.
This value varies in different space regions due to the fluctuations at the inflationary stage.
We are interested in those space domains where the effective parameter Λ is considerably
large as compared to values in the surrounding space. Here, g4 is the determinant of the
4D metric:

ds2
4 = g4,µνdxµdxν = dt2 − e2Htδijdxidxj . (7)

The effective parameters are expressed as follows

m2
P = Vn−1

∫ umax

umin

fR(Rn) e2γ rn−1 du,

ae f f =
Vn−1

2m2
P

∫ umax

umin

fRR(Rn) e4γ rn−1 du, (8)

ce f f [ζ] =
Vn−1

m2
P

∫ umax

umin

(
f (Rn)− ζ(u)′2 −m2ζ(u)2

)
e4γ rn−1 du ,

where Vn−1 =
∫

dn−1x
√
|gn−1| =

2πn/2

Γ(n/2)
is the volume of n− 1-dim sphere.

The right-hand side of Equation (8) is expressed in units where mD = 1. This relation
allows us to articulate the D-dimensional Planck mass in terms of the four-dimensional
Planck mass mP. In this context, we assume that the functions γ(u), r(u), ζ(u), R(u)
constitute a specific solution to the system (4), with details available in [130] for a specific
value of the Hubble parameter H. Figure 1 illustrates some examples of static distributions.
This approximation remains valid during the inflationary period and at the present time,
particularly when the Hubble parameter remains nearly constant.

Our comprehension of the specific value of the energy density, denoted as
ρΛ = Λm2

P/(8π) = −ce f f m2
P/(16π), is quite limited. Observational constraints provide

an upper limit of approximately 10−123m2
P at the present time. Understanding this density

during inflation is even more uncertain, with the sanity bound being ρΛ(H ' 10−6mP)�
H2 ' 10−12m2

P, implying its negligible impact on the inflation rate. Post-inflation, consider-
ing the variation in the Hubble parameter becomes crucial, and establishing a connection
between ρΛ and this parameter remains elusive. Multiple factors contribute to the com-
plexity of this issue, including quantum corrections, the influence of other fields, and the
effects of averaging after the horizon crossing. Furthermore, obtaining an accurate solution
to the dynamic equations during the reheating stage appears challenging. The subsequent
section is dedicated to a detailed discussion of these aspects.
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(a)
(b) (c)

Figure 1. Solution of (4) for the following parameters n = 3, f (R) = 300R2 + R + 0.002, H = 0,
V(ζ) = 0.01 ζ2/2 and boundary conditions r(0) = 50, γ(0) = 0, r′(0) = γ′(0) = R′(0) = 0,
umax = umin ' 43.178, (a) R(0) ' 0.00396, ζ(0) = −2× 10−5, ζ ′(0) = 6× 10−8, (b) R(0) ' 0.00395,
ζ(0) = 2× 10−5, ζ ′(0) = 1.5× 10−6, (c) R(0) ' 0.00396, ζ(0) = −2× 10−6, ζ ′(0) = 2× 10−6. The
parameter u is expressed in D-dimensional Planck units.

Clearly, both the extra dimensions and the scalar field experience fluctuations in
the D-dimensional space. Quantum fluctuations during inflation are expected to induce
significant deviations from their initial values (distributions), especially during the later
stages of inflation when scales much smaller than those relevant for CMB observations exit
the inflating Hubble patches. Specifically, fluctuations in the parameter ce f f during inflation
can lead to spatial variations in the cosmological constant. The cosmological effects of these
variations are the primary focus of investigation in the subsequent sections of the paper.
These fluctuations may be substantial, giving rise to domains where the density of dark
energy is significantly higher compared to the surrounding regions. Such domains could
persist for an extended duration, provided gravity exerts a strong influence.

3. Inflationary Field Dynamics in Extra Space

The evolution of the Universe is significantly influenced by field fluctuations dur-
ing inflation. Following the completion of inflation, the rapid decrease of the Hubble
parameter induces vigorous damped fluctuations of the field, ultimately converging asymp-
totically to one of the minima of its potential. These inhomogeneities, influenced by
gravitational effects, give rise to a large-scale structure after the conclusion of the radiation-
dominated stage.

We consider the presence of extra spatial dimensions, allowing for fluctuations in
fields within this inner space. The destiny of these field fluctuations differs fundamentally
from those inherent to the usual, four-dimensional scalar fields described above. This
distinction arises from the fact that stationary distributions of fields constitute a set of
measured continuum, as established in the early study [130].

Similar to the situation with usual fields, during the FRW epoch, the asymptotic
distribution of the fields in the inner space undergoes variations in causally disconnected
regions due to random fluctuations during inflation. However, a significant distinction
arises: while the energy density of usual fields is transformed into radiation at the FRW
stage through the decay of the fields into other particle-like species, the energy density
associated with the scalar fields in the inner space remains in its initial form, being stored
in the scalar field. Therefore, the evolution of the energy density of the fields in the inner
space is still governed by the Hubble parameter, resulting in a slower decrease compared to
the energy density stored in particle-like species generated from the decay of typical scalar
fields, which could exist during the inflationary epoch. To distinguish between these two
kinds of energy densities, we use the notation ρ for the energy stored in the ordinary fields
fluctuating in the observable three-dimensional space, which is eventually converted into
particle-like species, and ρΛ for the energy remaining stored in the scalar field exhibiting
inhomogeneities in the inner space. By choosing the model parameters such that ρ� ρΛ,
we ensure that the impact of the field distribution in the inner space on the expansion rate,
as well as on the rate of horizon growth, can be safely neglected.
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After the end of inflation, the horizon expands and the particle energy density ρ
decreases, approaching its present-day value ρ(t0). Simultaneously, ρΛ, being dependent
on the Hubble parameter, also decreases over time, converging to the present-day value
ρΛ(t0), which equals the dark energy density. Since ρΛ(t0) > ρ(t0), there must exist a
moment in time, denoted by t∗, when both densities are equal, ρ(t∗) = ρΛ(t∗). Evidently,
since the value ρΛ(t∗) varies across space coordinates, this equality primarily arises within
the densest regions, implying a density contrast δρ/ρ ' 1.

4. Formation of PBHs Induced by Inhomogeneous Cosmological Constants

As indicated in the preceding section, our setup involves the total energy density,
which comprises the 4D energy density ρ, represented either by a scalar field or particle-like
species created after the conversion of this field into radiation at the reheating stage, and
ρΛ, associated with the energy density emerging from the scalar field distribution in the
inner space. During the inflationary stage and for some period afterward, the Universe
was dominated by the 4D energy density, such that ρ � ρΛ, while at the present time,
ρ . ρΛobs , where the current observable value of the dark energy density is given by
ρΛobs ∼ 10−123m4

Pl. Therefore, at some moment t∗ during the evolution of the Universe,
both types of energy density become equal, resulting in

ρ(t∗) = ρΛ(t∗) . (9)

If the equality condition (9) occurs within a causally connected domain, it implies that the
density contrast, expressed in this particular case as

δρ

ρ
(t∗) ≈

ρΛ(t∗)
ρ(t∗) + ρΛobs(t∗)

, (10)

exceeds unity.
Let us consider a scenario in which fluctuations of scalar fields in the internal space

during inflation lead to the formation of a domain with size R(tend), determined at the end
of inflationary epoch tend, filled with a cosmological constant Λ1 that exceeds its observable
average value Λobs. After the inflationary period, during the FRW epoch, the domain of
size R(tend) undergoes simple conformal stretching due to the expansion of the Universe

R(t) =
a(t)

a(tend)
R(tend), (11)

where a(t) is the scale factor. It is evident that at a time t1 & t∗, ensuring δρ
ρ(t∗)

> 1,
the domain reaches a radius of R(t1) as described by Equation (11), acquiring the mass
M1. Subsequently, it becomes encompassed by a Hubble radius H−1(t1) = H1, thereby
becoming detached from the cosmological expansion and initiating collapse. Within about
a Hubble time, it will convert into a black hole (BH) of mass MPBH = ξM1. Below, we
assume that almost the entirety of the energy contained in the domain is deposited into the
BH, so that ξ ' 1.

Since the interior of such a domain can exert repulsive gravity due to its substantial
energy dominance within the encompassing Hubble horizon, it may maintain a negative
pressure, particularly if the density contrast δρ

ρ(t1)
exceeds a threshold of around 10. In

such a scenario, the domain enters the Hubble radius at t1 � t∗ and starts expanding
faster than the background, eventually reaching the inflationary vacuum and potentially
developing a wormhole to a baby universe. Such a wormhole would appear as a BH in
the FRW Universe. In this paper, we focus on the regime with the most plausible collapse
rather than expansion, where t1 ≈ t∗, and thus, the size of the domain filled with Λ1 is
close to the Hubble radius at the moment when local dominance of the cosmological term
occurs, i.e., when the condition δρ

ρ(t∗)
≈ 1 is reached.
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If the cosmological constant Λ1 substantially exceeds its universe-averaged value
Λobs, then the component ρΛobs(t∗) can be neglected in (10). Therefore, the conditions for
reaching a density contrast (10) exceeding unity can be described as

ρΛ1 ≡
Λ1

8πG
& ρ(t1) ≡

3H2
1

8πG
, (12)

where G stands for the Newtonian constant, H1 denotes the Hubble rate at t1, and the Λ
term is measured in units of the Planck mass squire.

Thus, an overdense object with a size given by

l1 = H−1
1 =

√
3

Λ1
(13)

is formed, with its mass as measured by a distant observer being expressed as

M1 '
4πρΛ1

3H3
1

=
2
√

3√
Λ1G

. (14)

This mass is determined by the localized value of the cosmological constant Λ1 within a spe-
cific domain, which surpasses its universe-average value outside the domain. The validity
of Equation (14) in the case of an overdense domain emerging due to fluctuations in extra
dimensions is rigorously proven in Appendix A. Thus, it appears that the Schwarzschild
radius of the above object, given by

RS = 2GM1 = 4

√
3

Λ1
, (15)

exceeds the size of the Λ1 overdense domain given by Equation (13). Hence, assuming that
the spherical shape of the domain is not significantly disturbed, it will be converted into a
BH. To account for the population of unevaporated black holes, it is instructive to express
the mass of such Λ-term-induced PBHs (ΛPBHs) in units of solar masses:

MΛPBH =
3.4× 10−38
√

Λ/m2
Pl

M�. (16)

If we consider that the growth of supermassive black holes (SMBHs) observed today
originated from seed black holes, then this process must have commenced in the early
Universe, approximately 3 million years after the Big Bang, with seeds heavier than 102 M�.
Additionally, there is evidence of the existence of intermediate-mass black holes (IMBHs)
with masses ranging from 102 M� up to about 106 M�. Thus, attributing the seeding objects
with masses from 102 M� to 106 M� to ΛPBHs implies that they appeared as a result of the
collapse of domains containing Λ-terms spanning the range

Λ1 ' 10−78m2
Pl ÷ 10−86m2

Pl . (17)

In the subsequent analysis, we examine the comparability of the spectrum of the population
of ΛPBHs with the constraints on the abundance of PBHs within the considered mass range.

A domain of radius R ≈ H−1
inf , filled with Λ 6= Λobs, that emerges at the time moment

tΛ, during inflation with a total duration tinf, when the Universe is yet to inflate over
∆NΛ = Hinf(tinf − tΛ) = Ninf − NΛ e-folds, undergoes stretching during expansion as

R(∆NΛ) ≈ H−1
inf e∆NΛ . (18)
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The number of domains created in a comoving volume dV within an e-fold interval dNΛ is
determined by

dN = ΓΛH3
infe

3NΛ dVdNΛ, (19)

where ΓΛ represents the formation rate of domains with Λ per Hubble time-space volume
H−4

inf . By expressing NΛ from (18), we can derive the number distribution of domains with
respect to their physical radius R as

dN = ΓΛ
e3NΛ dV

R4 dR. (20)

Therefore, the number density in the physical inflationary volume dVinf = e3NΛ dV is

dn
dR

=
dN

dRdVinf
=

ΓΛ

R4 . (21)

In the context of the setup discussed in this section, where domains of high-density contrast
and obeying the condition (12) are considered, the distribution (21) covers a range of
scales from Rmin ' H−1

inf to Rmax ≡ R(∆NΛ1) ≈ H−1
inf e(Ninf−NΛ1

), where NΛ1 represents the
number of e-folds when the probability of the appearance of at least one domain with Λ1
becomes significant. This probability becomes notable over the course of the progression
of inflation, which lasts for a sufficient number of Ninf e-folds necessary to address the
horizon and flatness problems.

It is worth noting that if inflation were to occur above the TeV scale, the comoving
Hubble scale at the end of inflation would be less than one astronomical unit. Consequently,
a causally connected patch could encompass our entire observable Universe today, which
has a size of about 30 Gpc, if there were more than 40 e-folds of inflation. Similarly, if
inflation occurred at the GUT scale ('1016 GeV), then it would require more than 60 e-folds.
The upper bound on the value of the Hubble scale during slow-roll inflation provided by
Planck [147] is

Hinf = 6× 1013 GeV . (22)

The mass distribution of black holes formed during the collapse of domains with
values of Λ deviating from Λobs is determined by the size distribution (21), scaled with
respect to the expansion of the Universe (11). This distribution can be expressed as

dn = ΓΛ
dR

t3/2
eq R5/2

, (23)

at the equality time teq = 51kyr. A convenient characteristic of this distribution, which
facilitates comparison of the PBH yield with constraints on their abundance in different
mass ranges (see, for instance, Figure 18 in [10]), is the mass density of PBHs per logarithmic
mass interval, expressed in units of the total density of the Universe:

dΩPBH

d ln MPBH
=

1
ρeq

dn
d ln MPBH

MPBH, (24)

where ρeq = m2
Pl/(6πt2

eq) represents the matter density at the time of equality. Using (23),
we can obtain

dn
d ln MPBH

=
(4π)1/2ΓΛ

3
√

3t3/2
eq

ρ1/2
Λ M−1/2

PBH , (25)

where ρΛ is the energy density contained in the domain filled with Λ term which reads as

ρΛ =
Λm2

Pl
8π

. (26)
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where we recall that Λ is expressed in units of m2
Pl. Thus, (24) can be expanded as

dΩPBH

d ln MPBH
=
√

6πΓΛ

(
Λ

m2
Pl

)1/2

t1/2
eq M1/2

PBH ≈ 2.5× 1066ΓΛ

(
Λ

m2
Pl

)1/2(
MPBH

M�

)1/2
. (27)

For those values of Λ within the domains of inhomogeneities, as indicated in (17), the rate
ΓΛ can be approximated as (a detailed derivation is provided in Appendix B):

ΓΛ ' QΛ , (28)

where

Q =
8π2

3
m2

P
H4

inf
. (29)

Substituting this into expression (27) and using relations (16), (28) and (29), we finally obtain

dΩPBH

d ln MPBH
≈ 2.6× 10−26

(
Hinf
mPl

)−4(MPBH

M�

)−1
. (30)

Comparing distribution (30) with the model

ΩPBH ∼ 109β

(
MPBH

M�

)−1/2
(31)

used in [10] to quote the constraints on the density fraction β deposited in PBHs at the
moment of their formation, we arrive at the following condition

Hinf
mPl
' 6× 10−9β−1/4

(
MPBH

M�

)−1/8
. (32)

Condition (32) is useful for assessing the consistency of ΛPBH formation with cos-
mological constraints on the abundance of PBHs across different mass ranges. By analyz-
ing the combined constraints on β for a monochromatic mass function, as presented in
Figure 18 of [10], we can verify the consistency of considering ΛPBHs as candidates for
seeding SMBHs and IMBHs, taking into account the CMB constraints on the inflation scale.
For the seeding masses MΛPBH ≈ 102 M�, the abundance is constrained to the level of
β ≈ 10−14 [10], which is saturated at the inflation energy scale Hinf ' 10−5mPl. At this
level of precision, this can be considered as the saturation point, ensuring that it does not
exceed the CMB Planck limit (22). Similar estimates of the inflation scale can be obtained
for IMBHs in the mass range 102 M� ≤ MΛPBH ≤ 5× 105 M�, where β ≈ 10−15 [10].
For IMBH with masses MΛPBH ≈ 106 M�, the energy scale Hinf ' 10−7mPl saturates the
constraint β ≈ 10−7 [10]. Similarly, the constraint β ≈ 3× 10−7 [10] imposed for the mass
scale MΛPBH ≈ 1010 M�, which is typically relevant for currently observed biggest SMBHs,
is saturated at the inflation scale Hinf ' 10−7mPl. Therefore, it can be concluded that
ΛPBHs are cosmologically consistent for serving as seeds for SMBHs as well as explaining
the observed IMBHs.

Additionally, ΛPBHs with masses as low as MΛPBH ≈ 10−2 M� remain compatible
with the constraint β ' 10−11 [10] imposed by the upper CMB inflation scale limit (22).
This scenario corresponds to Λ1 ' 10−76m2

Pl, where the formation mechanism of ΛPBHs
would generate about 10 times the mass of the Jupiter PBHs. Such PBHs could potentially
account for a component of DM.

5. Concluding Remarks

It is theorized that the large-scale structure of the Universe was shaped by quantum
fluctuations of scalar fields and/or metrics during inflation. These fluctuations, scaled
exponentially with conserved amplitude, gave rise to primordial inhomogeneities, cul-
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minating in the formation of the cosmic web that represents the Universe’s structure. In
theories involving extra dimensions, fluctuations of fields within these dimensions can also
be considered. However, the fate of these field fluctuations differs significantly from those
associated with conventional four-dimensional scalar fields.

While conventional field fluctuations transform their energy density into radiation
during the FRW stage through decay into other particle-like species, the energy density
associated with scalar fields within the internal space remains unchanged, effectively stored
within the scalar field itself, manifesting as a cosmological constant. Fluctuations of the
scalar field within the internal space manifest as spatial variations of the local Λ term.
Domains containing an extraordinarily high cosmological constant may collapse into PBHs.

Upon investigating the mass distribution of such ΛPBHs, we find that it may satisfy
existing cosmological constraints on the abundance of PBHs without conflicting with
the upper bound on the inflation energy scale inferred from CMB measurements, within
the mass range from 10−2 M� up to 1010 M�. Of particular interest is the possibility
of associating ΛPBHs with masses of 102 M� with seeds or supermassive black holes
(SMBHs) and associating those with masses spanning the range from 102 M� to 106 M�
with intermediate-mass black holes (IMBHs). The lightest ΛPBHs of masses 10−2 M� can
potentially contribute to the dark matter budget of the Universe.

The inevitable clustering of PBHs formed by the connected mechanism, driven by
inflationary dynamics, leads to the formation of a Swiss cheese-like special structure of
domains filled with high values of the Λ term. This clustering may impact the characteristics
of the observable spectrum of gravitational waves in the nanohertz frequency band, which
are believed to be a signal from SMBHBs [148].
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Appendix A. Justification of Formula (14) for Mass Measurement by a Distant
Observer

Here, we explore the conditions under which Equation (14) can be reliably used. We
consider a three-dimensional space of volume Λ1 > Λ0. Our objective is to estimate
the mass of such a region as observed by a distant observer. For our estimation, we
make several assumptions: the field distribution varies slowly, allowing us to neglect
its time dependence; we operate far below the inflationary scale, implying that the term
aR2 is negligible; the domain with the higher energy density has approximately spherical
geometry; and the amount of ordinary matter is negligible.

We set the four-dimensional effective action Equation (5) as

S4 =
m2

P
2

∫
dtdvdθdϕ

√
|g4| [aR2 + R− 2Λ(v] (A1)

and assume that the D dimensional metric depends on the radial coordinate v, leading to
the interval in the form

ds2 = A(v)dt2 − 1
B(v)

dv2 − v2dΩ2
2, (A2)
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which evolves the action (A1) into the following expression

S4 =
m2

P
2

∫
dtdvdθdϕ

√
|g4| [R− 2Λ(v)] , (A3)

where the term aR2 is neglected. Now, the situation is essentially simplified, allowing for
the analytical evaluation of the mass using the nontrivial equations of the theory

B′

v
+

B
v2 −

1
v2 + Λ = 0, (A4)

B
v

A′

A
+

B
v2 −

1
v2 + Λ = 0, (A5)

B
2

A′′

A
− B

4
A′2

A2 +
B′

4
A′

A
+

B
2v

A′

A
+

B′

2v
+ Λ = 0. (A6)

Subtracting the first two equations yields

B(v) = A(v) , (A7)

so that Equations (A4) and (A5) are reduced to a single equation

A′

v
+

A
v2 −

1
v2 + Λ = 0, (A8)

with the solution
A(v) =

1
v

∫ v

0

(
1−Λ(v)v2

)
dv− 2C1

v
. (A9)

We assume that the value of Λ remains constant within the sphere of radius l∗, denoted as
Λ(l∗) = Λ1. Therefore, inside the sphere, (A9) is converted into the expression

A(v)|v≤l∗ = 1− Λ1l2∗
3
− 2C1

l∗
. (A10)

Since, in our setup, there is no point-like mass producing the singularity in the center,
C1 = 0, and hence, we obtain the well-known de Sitter metric. For a distant observer in the
Minkowski space we assume Λ(v) = 0 everywhere outside the sphere of radius l∗ so that
one can derive

A(v)|v>l∗ = A(v)|v≤l∗ +
1
v

∫ v

l∗
dv = 1− Λ1l3∗

3v
. (A11)

Thus, the mass of the domain filled with Λ1 reads 2M∞ = Λ1l3∗m2
P/3 and finally can be

expressed as

M∞ =
4πρΛl3∗

3
(A12)

providing the definition Λ1 = 8πρΛ/m2
P. Note that taking into account (A7), (A10) and

(A11), Equation (A6) becomes an identity.

Appendix B. Probability of Domain Formation with Specific Energy Density
during Inflation

To estimate the volume fraction dP(Λ) filled with a specific value of the energy density
ρΛ = Λm2

P/8π, we need to relate the field fluctuations in the extra dimensions during the
inflationary stage to the parameter Λ. Following the approach outlined in [149], we consider
the extra metric as the background one, allowing the parameter ceff to vary together with
the scalar field ζ. The scalar field fluctuates intensively during inflation.
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Therefore, our first approximation is to assume a pure de Sitter metric, such that the
function ζ(x, y) is governed by the equation

ζ ′′ +
(

4γ′ + (n− 1)
r′

r

)
ζ ′ −Vζ = 0. (A13)

This equation, one of Equation set (4), has an asymptote of ζ1(u) in a chosen 3D volume un-
der the horizon. The surrounding 3D space is characterized by another static configuration
ζ0(u) 6= ζ1(u).

The parameter value ceff[ζ0] expressed by the last equation in Equation (8), is assumed
to be small in order to avoid disrupting the dynamics of the inflationary stage. Additionally,
it is assumed to tend to a post-inflationary value of 10−123m2

P. Therefore, the quantity

ceff[ζ1] 6= 0, (A14)

is responsible for the excess energy density.
The scalar field action (1) can be reduced to the standard form

Sscalar =
1
2

∫
d4x
√

g4

∫
dny
√

gn[(∂φ)2 −m2φ2] (A15)

by using the substitution
φ = m

D−2
2 ζ . (A16)

Exact calculation of the probability for a specific fluctuation ζ1(u) is quite difficult.
For estimation purposes, we can use an approximation in the spirit of the Kaluza–Klein
approach, where the scalar field is represented in the form

φ1(x, y) = φ0(y) + δφ(x, y), δφ(x, y) = ∑
a

φ(a)(x)Ya(y), (A17)

with the standard normalization

1 =
∫

dny
√

gnYa(y)2, (A18)

where φ0(y) is an initial static classical part of the scalar field for which ceff = 0, and the
difference δφ(x, y) is decomposed into a series of orthogonal normalized functions Ya. Here,
for convenience, we use the dimensionalities [ζ] = 1, [φ] = m1+n/2, [Ya] = mn/2 → [φ(a)] =
m and neglect the internal n-dimensional metric variation.

Substituting (A17) into (A15), we obtain the action in the form

S = ∑
a

1
2

∫
d4x
√

g4[∂µφ(a)∂µφ(a) − µ2
aφ(a)2] + S[ζ0], µ2

a = m2 + λa , (A19)

at the inflationary stage, where the term S[ζ0] tends to zero at the present time by definition.
The discrete set of eigenvalues λa, a = 0,±1,±2 . . . depends on the specific form of the
extra space metric. Assuming that φ(a) represents long-wave fluctuations that freeze at the
inflationary stage, i.e., φ(a) = const, we obtain the relation between the Lambda term and
the scalar field fluctuation under the horizon stems from the equalities

−2Λ ≡ ceff[ζ(u)] = −∑a µ2
aφ(a)2

m2
P

, (A20)

as follows from (5) and (A19).
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The excitation amplitudes φ(a) act as independent free fields with an initial amplitude
equal to φ0(u) [149]. The probability of finding a set of functions φ(a)

dP({φa}) '
[
∏

a
dφ(a) ·

√
qa/π

]
exp

[
−∑

a
qaφ(a)2

]
, qa =

4π2

3
µ2

a
H4 . (A21)

According to (A20),

∑
a

qaφ(a)2 =
4π2

3
H−4 ∑

a
µ2

aφ(a)2 =
8π2

3
m2

P
H4 Λ (A22)

The final expression for the probability is

dP(Λ) ' dΛ ·Q exp[−QΛ], Q =
8π2

3
m2

P
H4 , (A23)

where the pre-exponent follows from the normalization. The number of domains with
specific Λ is related to the probability as

dn = e3NdP(Λ). (A24)
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Abstract: At least two relics of the Big Bang have survived: the cosmological microwave background
(CMB) and the cosmological neutrino background (CνB). Being the second most abundant particle in
the universe, the neutrino has a significant impact on its evolution from the Big Bang to the present
day. Neutrinos affect the following cosmological processes: the expansion rate of the universe,
its chemical and isotopic composition, the CMB anisotropy and the formation of the large-scale
structure of the universe. Another relic neutrino background is theoretically predicted, it consists
of non-equilibrium antineutrinos of Primordial Nucleosynthesis arising as a result of the decay of
neutrons and tritium nuclei. Such antineutrinos are an indicator of the baryon asymmetry of the
universe. In addition to experimentally detectable active neutrinos, the existence of sterile neutrinos
is theoretically predicted to generate neutrino masses and explain their oscillations. Sterile neutrinos
can also solve such cosmological problems as the baryonic asymmetry of the universe and the nature
of dark matter. The recent results of several independent experiments point to the possibility of the
existence of a light sterile neutrino. However, the existence of such a neutrino is inconsistent with the
predictions of the Standard Cosmological Model. The inclusion of a non-zero lepton asymmetry of the
universe and/or increasing the energy density of active neutrinos can eliminate these contradictions
and reconcile the possible existence of sterile neutrinos with Primordial Nucleosynthesis, the CMB
anisotropy, and also reduce the H0-tension. In this brief review, we discuss the influence of the
physical properties of active and sterile neutrinos on the evolution of the universe from the Big Bang
to the present day.

Keywords: cosmology; neutrino; sterile neutrino; lepton asymmetry; baryon asymmetry; primordial
nucleosynthesis; CMB; H0-tension

1. Introduction

Modern conceptions of the structure of matter are based on the so-called Standard
Model of elementary particle physics and fundamental interactions (see e.g., [1]), the con-
firmation of which was successfully completed with the discovery of the Higgs boson.
However, despite the great predictive power of the Standard Model and its numerous
experimental confirmations, there are a number of problems that cannot be solved within its
framework. A significant portion of these problems are related to observational cosmology.
These include the problem of the baryon asymmetry of the universe [2,3], the unknown
nature of dark matter [4,5] and dark energy [6,7]. Separately, there is the phenomenon of
neutrino oscillations [8,9]: the process of spontaneous transformation of one flavor of neu-
trino into another, due to the presence of a non-zero neutrino mass. This last circumstance
may be the most obvious indication of the need to go beyond the Standard Model.

Modern ideas about the evolution of the universe are based on another standard model:
the ΛCDM cosmological model [10,11]. At the same time, the model is adapted from time
to time as observational data accumulates and theoretical ideas about the structure of
the world develop. Both of these models are closely interconnected today. For example,
elementary particles of the SM (and their properties) played a significant, and sometimes
decisive role at different stages of the evolution of the universe (see Figure 1).
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Having started from a singular state and passed through the inflation stage, in the
first moments of the Big Bang our universe entered the radiation-dominated stage of its
evolution. Most of the time during this stage, it was neutrinos and photons that determined
the dynamics of the expansion of the universe (see Figure 1). This affected the process
of Primordial Nucleosynthesis which took place in the first minutes after the Big Bang,
during which, in addition to the already existing relic neutrinos (CνB), nonequilibrium
antineutrinos appeared from the decays of neutrons and tritium nuclei [12,13]. The discov-
ery of these neutrinos would open a “window” into the first minutes of the hot universe,
and would also allow us to test the existence of the baryon asymmetry of the universe on
the largest scales.
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Figure 1. The contributions to the total energy density of the universe from different components
as a function of the scale factor a(t). The components include photons (ργ), non-relativistic matter
(ρM), which consists of cold dark and baryonic matter, ρM = ρCDM + ρb, neutrinos (ρν) and dark
energy (ρΛ). The values of the cosmological parameters were taken from the Planck results [14].
Vertical dashed lines mark key cosmological milestones: Primordial Nucleosynthesis, radiation-
matter equality (ρrel = ρM), Primordial Recombination, and the moment of transition from the
decelerating to accelerating expansion of the universe (ä(t) = 0). For calculations, we utilised the
neutrino energy density in the following way: two neutrino flavors are precisely massless (ρν0, yellow
curve), and (ρνm, red curve), one neutrino flavor has mass mν = 0.06 eV (the same as utilized in the
Planck analysis [14]). The massless neutrinos behave completely like radiation during the whole
course of the evolution of the universe, while the massive one behaves like radiation in the early
universe and like non-relativistic matter at later stages.

The next process in which we can see the influence of neutrinos is the process of
Primordial Recombination, which took place about 380 thousand years after the Big Bang.
At the end of this process, the CMB anisotropy is formed, the observation and analysis of
which allows us to obtain high precision estimates of key cosmological parameters [14].

Later, having become non-relativistic, the neutrino increases the contribution to the en-
ergy density of the universe of the non-relativistic components, which previously consisted
of cold dark matter (ΩCDM) and baryonic matter (Ωb), and the character of the equation of
state changes from relativistic to non-relativistic, so the neutrino component, in a special
way, influences the formation of the large-scale structure of the universe.

Possible extensions of the Standard Model of elementary particles suggest the existence
of sterile neutrinos. Apparently, the first to introduce the concept of “sterile neutrinos” was
Bruno Pontecorvo in 1967 [15]. Their introduction potentially makes it possible to solve not
only the problems of generating the masses of the active neutrinos and their oscillations,
but also such cosmological problems as the baryon asymmetry of the universe (BAU) and
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the nature of dark matter (see, e.g., [16,17]). At the same time, the physical properties of
both active and possible sterile neutrinos significantly affect the values of the determined
cosmological parameters [18].

The recent results of a number of independent experiments [19,20] indicate the possibil-
ity of the existence of a light sterile neutrino (mνs∼1–3 eV). The presence of such a neutrino
is in poor agreement with the predictions of the Standard Cosmological Model, but these
contradictions can be removed, for example, by introducing a non-zero lepton asymmetry
of the universe, ξν∼10−2, and/or increasing the energy density of active neutrinos. These
changes make it possible to reconcile the possible existence of a light sterile neutrino with
Primordial Nucleosynthesis, the CMB anistropy, and also reduce the H0-tension1.

It should be noted that the results of experiments on the detection of light sterile
neutrinos are not always consistent with each other. For example, in a recent STEREO
collaboration paper [23] the authors reject the hypothesis of the existence of a sterile
neutrino on this mass scale. Therefore, the question of the existence of a light sterile
neutrino cannot be regarded as finally settled.

Detailed discussions on the influence of neutrino properties on cosmological evolution
can be found in large reviews (see, e.g., [24,25]). In our brief review, we emphasise the
aspects related to the modern data on active and possible light sterile neutrinos and their
influence on various cosmological processes.

Nowadays, there is little doubt about the existence of cosmological neutrinos. The
most promising method for their detection is the use of the inverse beta decay of tritium,
proposed by S. Weinberg in 1962 [26]. Unfortunately, due to the drastic smallness of the
their interaction cross sections at low energies, it has not been possible to register them
directly so far. If in the future this can be done, we will directly obtain information about
the first seconds, minutes and hours of the early universe.

2. The Enigmatic Neutrino

Each of the particles of the Standard Model (see Figure 2) deserves a separate story,
but perhaps the most enigmatic particle is still the neutrino, because the explanation of
its amazing properties may require going beyond the Standard Model and will have an
impact on another Standard Model: the ΛCDM cosmological model.

Neutrinos do not have an electrical charge; they are born and participate only in weak
interactions. There are three generations (flavors) of neutrinos, νe, νµ, ντ , corresponding to
the three generations of charged leptons, electron e, muon µ and tau lepton τ (Figure 2).
In the Standard Model, neutrinos are precisely massless particles, but the phenomenon
of neutrino oscillations—the process of spontaneous transformation of neutrinos of one
flavor into another—is a direct indication that neutrinos have mass. The explanation of
this phenomenon requires an extension of the Standard Model of elementary particles.
Although the observed oscillations of neutrinos unambiguously indicate the existence of
their mass, it is still not possible to measure it by direct methods, and only lower and upper
limits on the sum of the neutrino masses have been experimentally obtained [1]:

0.06 eV . ∑ mν . 0.12 eV (1)

The lower limit on the sum of the masses is calculated on the basis of experimental
data on the neutrino squared mass differences ∆m2

ij = m2
i −m2

j , obtained from a number of
independent experiments [1]. The upper limit is estimated by analysing the cosmological
data [14]. However, the unique properties of neutrinos do not end there; in addition,
the following can be pointed out:

• Neutrinos are the second most abundant particles in the universe (after photons).
The density of relic photons in the present era is nγ = 412 cm−3, whereas the density
of relic neutrinos (taking into account three flavors of neutrinos and antineutrinos) is
nν = 336 cm−3.
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• It is the lightest known particle with non-zero mass; the neutrino is more than a million
times lighter than the electron (see Equation (1)).

• They explicitly break the symmetry of right and left; neutrinos are solely left-handed,
antineutrinos are solely right-handed.

• Neutrinos are one of the components of dark matter. Their contribution to the total
energy density of dark matter may be up to 1% in the present cosmological epoch.

• Neutrinos have one of the smallest cross sections for interaction with matter (σ∼10−44 cm2

at MeV energies) which determines their enormous penetrating ability, allowing us to see
the interiors of stars. In the future, they may allow us to study the first seconds, minutes,
and hours of the birth of our universe; the early universe is opaque to electromagnetic
radiation.
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Figure 2. The Standard Model of elementary particle physics is the quark-lepton structure of matter.
It consists of three generations of fermions. Each generation includes two quarks and two leptons
(charged and neutral), which interact with each other via gauge bosons. In this scheme of the quark-
lepton structure of matter, phenomena such as the existence of neutrino masses and their oscillations,
and the nature of dark matter and dark energy find no explanation.

3. Grand Unified Neutrino Spectrum

The first known detection of antineutrinos from nuclear reactors occurred in 1956,
about which Fredericks Reines and Clyde Cowan sent a radiogram to Wolfgang Pauli from
New York to Zurich. Subsequently, solar neutrinos, atmospheric neutrinos resulting from
the interaction of cosmic rays with atmospheric matter (mostly nitrogen and oxygen nuclei),
and, finally, ultra-high energy neutrinos (Eν & 1014 eV), which might originate from active
galactic nuclei, were recorded.

The energy range over which neutrinos are now observed is indeed enormous: from
MeV (106 eV) to PeV (1015 eV) energies (for example, IceCube has detected a few neu-
trinos with energies above 1015 eV [27]), but it can be extended by even more than ten
orders of magnitude due to the theoretically predicted low-energy cosmological neutrinos2

(10−4 . Eν . 10 eV) and ultrahigh-energy cosmogenic neutrinos (Eν & 1016 eV), the latter
arise from the interaction of cosmic rays with the CMB photons, interstellar and intergalactic
matter (see, e.g., [28]).

Figure 3 shows the so-called “Grand Unified Neutrino Spectrum”3, it presents the
theoretical and observational spectra of neutrinos of various natures (data used for plotting
this spectrum can be found in the paper [13]). It can be seen that the most numerous
neutrinos are cosmological ones, which were born in the first moments after the Big Bang.
For example, the flux of solar neutrinos at the Earth’s surface is 64 billion particles per
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square centimetre per second (6.4× 1010 cm−2s−1), while the flux of the CνB neutrinos is at
least three trillion particles cm−2 s−1 (&3× 1012 cm−2s−1).
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Figure 3. Observed and theoretically calculated spectra of neutrinos and antineutrinos generated by
various natural phenomena (local and cosmological). For a detailed discussion of all components of
the overall spectrum, see [29].

The cosmological neutrinos, like the CMB photons, have a thermal equilibrium spec-
trum (shown in Figure 4) which for neutrinos is given by the Fermi–Dirac distribution:

nνdp =
1

(2πh̄)3
4πp2dp

exp(pc/kT) + 1
. (2)

In this paper we will focus on cosmological neutrinos and their impact on various
stages of the evolution of the universe.
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Figure 4. The present-day Planckian spectrum of the CMB photons with temperature Tγ0 = 2.7255 K
and the Fermi–Dirac spectrum of the CνB neutrinos with temperature Tν0 = 1.9454 K, which are related
as follows Tν = (4/11)1/3Tγ (see e.g., [10]). The photon spectrum is hotter due to electron–positron
annihilation that occurred within the first hundred seconds after the Big Bang. The dotted curve shows
what the photon spectrum would be with the temperature of the neutrino (Tγ0 = Tν0 = 1.9454 K).

4. Cosmological Manifestations of Neutrinos
4.1. Radiation-Dominated Epoch, Primordial Nucleosynthesis

In the first moments of the Big Bang, the universe enters the radiation-dominated stage
of its evolution, which lasts about 50 thousand years. At this time, neutrinos, along with
photons, play a crucial role in the dynamics of the expansion of the universe. Primordial
Nucleosynthesis, which took place in the first minutes after the Big Bang, is the earliest
moment in the history of the universe that we can probe. As a result of this process, the first
lightest nuclei and their isotopes (D, He, Li) appeared, forming the primordial chemical
composition of the baryonic matter of the universe. Astronomical observations of the
relative abundance of these elements and their comparison with theoretical predictions
allow us to estimate one of the key cosmological parameters: the baryon/photon ratio,
η = nb/nγ. This quantity is related to the baryon density in the universe ρb(Ωb), as
η = 2.74× 10−8 Ωbh2 (see e.g., [30]). Here Ωb ≡ ρb/ρc is the relative baryon density,
ρc = 3H2

0 /8πGN is the present critical density, H0 is the present value of the Hubble
parameter, GN is the Newton constant, and h, the present value of the Hubble parameter
measured in units of 100 km s−1 Mpc−1.

The most precise estimates of the primordial abundances up to date are as follows:

• Abundance of the primordial 4He (Yp) is estimated via the analysis of the spec-
troscopic samples of dwarf metal-poor galaxies. The analysis yields the estimate
Yp = 0.247± 0.002 [31,32].

• Abundance of the primordial D is estimated via the analysis of the quasar spectra
containing absorption lines of damped Lyman-alpha (DLA) systems associated with
metal-poor intergalactic medium, whose chemical composition is close to the primor-
dial one. The analysis yields D/H = (2.533± 0.024)× 10−5 (see [33] and references
therein). There are circumstances that make it difficult to obtain estimates (and their
uncertainties) for the abundance of primordial deuterium; a discussion of this problem
is presented in [34].
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• Abundance of the primordial 7Li is estimated via the spectral analysis of metal-
poor old stars in the halo of our galaxy. The analysis yields the estimate 7Li/H =
(1.6 ± 0.3)× 10−10 [35,36].

Figure 5 shows the calculated abundances of primordial 4He, D, 7Li as a function of
the abundance of baryons in the universe (dark blue lines) and the observed values of the
primordial abundances, marked via coloured rectangles.
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Figure 5. Dependence of the primordial abundances 4He (Yp), D, 7Li on the baryon–photon ratio η.
The dark blue solid lines correspond to the calculated values in the framework of the standard theory
of Primordial Nucleosynthesis with three types of active neutrinos (∆Neff = 0). Coloured rectangles
indicate observed values of primordial abundances. The vertical turquoise line corresponds to the
value of η estimated as a result of analysis of the CMB anisotropy measured by the Planck satellite [14].
It can be seen that for 4He and D the observational data is consistent with the prediction from the
CMB anisotropy, while the observed abundance of 7Li is significantly lower than the predicted value,
which is referred as the “Lithium problem”. Red dotted lines and red rectangles correspond to the
theory of Primordial Nucleosynthesis in the presence of an additional type of neutrino (∆Neff = 1).

Primordial Nucleosynthesis was historically the first way to estimate the total baryon
density of the universe, other methods allowed astrophysicists to estimate the number of
baryons only in particular astrophysical objects (stars, interstellar and intergalactic gas,
galaxy clusters). However, later another independent way to estimate the total baryon
density of the universe appeared. It is the analysis of the CMB anisotropy formed during
the process of Primordial Recombination, which occurred 380 thousand years after the
Big Bang. The primordial abundance estimates based on this method are also shown in
Figure 5 with the vertical light blue line. It can be seen that for 4He and D the observational
data are consistent with the prediction from the CMB anisotropy [14], while the observed
value 7Li/H = (1.6± 0.3)× 10−10 [35,36] is significantly lower than the predicted value
7Li/H = (4.7± 0.7)× 10−10 [37]. The latter is referred to as the “Lithium problem”, which
still has no explanation.

Independent estimates of the η = nb/nγ based on Primordial Nucleosynthesis and the
CMB anisotropy refer to different cosmological epochs. Therefore they make it possible not
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only to test the ΛCDM model for self-consistency, but also, in the case of a detected discrep-
ancy, can serve as a tool to search for “physics beyond”, which represents a generalisation
and extension of the Standard Models of cosmology and particle physics.

4.2. Antineutrinos of Primordial Nucleosynthesis

In addition to the relic neutrinos from the Big Bang, antineutrinos of Primordial
Nucleosynthesis have recently been theoretically predicted [12,13].

The initial building material for all nuclei synthesised in Primordial Nucleosynthesis
are protons and neutrons. The neutrons, in addition to participation in nuclear trans-
formations during collisions with other nuclei, are also subject to spontaneous β−-decay
(n → p + e− + ν̃e). The lifetime of a neutron relative to this process is τn ' 880.2 s [38].
The electron and antineutrino created in the decay carry away almost all the available decay
energy Qn ' 782.3 keV [39]. Most decays of neutrons occur after neutrino decoupling
(which took place approximately 0.1 s after the Big Bang at temperature T∼2 MeV), so
the antineutrinos produced in these decays are no longer thermalized. Thus, neutron
decays during the course of Primordial Nucleosynthesis are a source of non-thermal an-
tineutrinos which will uniformly and isotropically fill the universe at the end of Primordial
Nucleosynthesis.

Among the nuclei with noticeable mass fractions that are created in Primordial Nucle-
osynthesis, there is a nucleus that, like the neutron, is unstable with respect to β− decay.
This is the tritium nucleus (T). The lifetime of this nucleus is τT ' 17.66 years [40], the decay
energy is QT ' 18.59 keV [39].

The calculated spectra of antineutrinos from decays of neutrons and tritons in the
early universe are presented in Figure 6. The figure shows the spectra of neutrinos and
antineutrinos from all sources generating the largest fluxes in the chosen energy range. It
can be seen that the antineutrino fluxes of Primordial Nucleosynthesis in the energy range
(10−2–10−1) eV exceed the fluxes from all other sources of neutrinos and antineutrinos.
If these nonequilibrium antineutrinos were discovered, we would be able to directly probe
the universe in its first minutes and hours after the Big Bang. At the moment, only the CMB
studies provide such an opportunity, but this corresponds to a much later cosmological
epoch (∼400 thousand years after the Big Bang).
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Figure 6. Spectra of antineutrinos from β−-decays of neutrons (n) and tritium nuclei (t) (red and red
curves). Solid curves show spectra calculated for massless antineutrinos. The dashed curves show the
spectra calculated for antineutrinos with mass mν = 0.01 eV. Note that there is an energy range where
the antineutrino fluxes of Primordial Nucleosynthesis exceed the neutrino fluxes of the Big Bang (blue
curve) and solar neutrinos (yellow solid and dotted curves). The figure is based on our works [12,13].
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4.3. Antineutrinos of Primordial Nucleosynthesis as the Probe of Baryon Asymmetry of
the Universe

Direct observational evidence that allows us to conclude that matter predominates
in the observable part of the universe and antimatter is absent include the absence of
significant annihilation radiation: in the solar system, in our galaxy, and in galaxy clusters,
as well as the composition of cosmic rays. The potential observation of relic antineutrinos
would allow us to see the most distant, causally unconnected regions to date. The discovery
of relic antineutrinos of Primordial Nucleosynthesis could provide evidence of either the
baryon asymmetry of most of the visible universe or detect regions with a predominance
of antimatter, since the existence of such regions would lead to the generation of relic
neutrinos from the decays of antineutrons and antitritium.

5. Sterile Neutrinos as an Extension of the Standard Model of Particle Physics and the
ΛCDM Cosmological Model

One option for expanding the Standard Model of particle physics is to introduce sterile
neutrinos, which do not participate in any Standard Model interactions. The introduction
of such particles provides a solution to several problems at once: (i) they make it possi-
ble to generate masses of active types of neutrinos (electron, muon and tau neutrinos),
(ii) they are suitable for the role of dark matter, (iii) they can become a source for the genera-
tion of the baryon asymmetry of the universe (see e.g., [16,17]). At the same time, the mass
range of sterile neutrinos is not determined; they can be light, on the order of several eV,
and very heavy, up to 1015 GeV. Their role in relation to cosmology is determined by their
mass [41], as follows:

1. Superheavy sterile neutrinos with masses of ∼102–1015 GeV. Such neutrinos are
capable of generating baryon asymmetry in the early universe through the mechanism
described in [42]. Moreover, their lifetime is so short that they will decay even before
the Primordial Nucleosynthesis and thermodynamics will “erase” all traces of their
existence. Today, only the fact of the presence of baryon asymmetry in the universe
could indicate such a possibility (not excluding others).

2. Heavy sterile neutrinos with masses of∼1 keV–102 GeV. Such neutrinos have lifetimes
comparable to or longer than the current age of the universe, and are therefore
good candidates for cold dark matter particles. In addition, at high temperatures
(∼100 GeV), they can lead to the generation of lepton asymmetry due to oscillations
with active neutrinos [43].

3. Light sterile neutrinos with masses of ∼1 eV–1 keV could have a significant impact
on cosmology, which will be discussed in more detail below.

Hints of the possible existence of sterile neutrinos appeared more than ten years
ago in various independent experiments (see e.g., [18]), the latest of which talk about the
possible existence of light (mν,s∼1–3 eV) sterile neutrinos [19,20]. Such sterile neutrinos
may have mixing angles comparable to those of active species. Today, the status of these
experiments is quite controversial, since the results obtained do not always agree with
each other, and sometimes they are said to be completely inconsistent. For example,
in a recent work [23] it is stated that the hypothesis about the existence of a light sterile
neutrino could be rejected. However, there is still a region of parameters of oscillations
of a light sterile neutrino, which formally does not contradict either the results of the
STEREO experiment [23], or the results of the Neutrino-4 experiment [19]. Therefore the
question of the existence of a light sterile neutrino cannot be considered finally decided.
In addition, sterile neutrinos of electron-volt masses do not fit well into the standard ΛCDM
cosmological model. Firstly, the introduction of such neutrinos leads to a discrepancy
between the theoretical predictions of Primordial Nucleosynthesis and observational data
(see Figure 5 and [37,41]). Secondly, such neutrinos remain relativistic at the epoch of
formation of the CMB anisotropy, and, consequently, change the size of the sound horizon,
which also leads to a discrepancy between the observational data and the theoretical model
(this will be discussed below). Thirdly, such sterile neutrinos are so-called “hot-warm

207



Universe 2024, 10, 169

dark matter” (see, e.g., [11]), and can interfere with cosmological structure formation on
small scales, and later become a non-relativistic contribution to it (see e.g., [44]). Fourthly,
constraints on the mixing parameters and mass splitting for electronvolt sterile neutrinos,
obtained on the basis of cosmological data from Primordial Nucleosynthesis, the CMB
anisotropy and baryonic acoustic oscillations (BAO), given in [45], show that in order
for the hypothesis of existence of such particles to be consistent with the ΛCDM model,
mixing parameters should be sufficiently small (|Uα4|2∼10−4–10−2). This contradicts the
experimental results obtained in [19]: |Uα4|2 & 10−1. Thus, there is a strong tension between
the existence of such sterile neutrinos and the standard ΛCDM model. However, there
is a way out of this situation, and below we provide a discussion of possible options for
expanding the ΛCDM model, which allow us to reconcile cosmological observational data
with the hypothesis of the existence of a light sterile neutrino.

Light Sterile Neutrinos at the Radiation-Dominated Stage and During the Era of
Primordial Nucleosynthesis

The existence of a light sterile neutrino will lead to a change in the energy density at
the radiation-dominated stage, which is conveniently parameterized using the so-called
effective number of neutrino species Neff, which, in turn, is determined by the relation:

ρν

ργ
=

7
8

Neff

(
Tν

Tγ

)4
=

7
8

Neff

(
4
11

)4/3
(3)

where ρν and ργ are the energy densities of neutrinos and photons, and the last factor is the
fourth power of the ratio of neutrino and photon temperatures, Tν/Tγ = (4/11)1/3 [10].
The contribution to the energy density from three active types of neutrino Neff ≡ N0

eff =
3.046 [46,47]. By introducing the value ∆Neff, which determines the addition to Neff in the
case of the presence of a light sterile neutrino, and taking into account that the temperature
of sterile and active neutrinos coincides, we can write the total energy density

ρR = ργ

(
1 +

7
8
(Neff + ∆Neff)

(
4

11

)4/3
)

(4)

whence follows:
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(
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)4/3
)−1
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π2

15
T4

ν

]−1 1
π2

∫
p3 fs(p)dp (5)

where ρ
(s)
ν is the energy density of sterile neutrinos, fs(p) is their distribution function,

Tν is the temperature of active neutrinos. The form of the distribution function of sterile
neutrinos depends on the method of their generation. If sterile neutrinos are produced
in some thermal processes, then they would have a Fermi–Dirac distribution function,
like active neutrinos. This will lead to ∆Neff = 1. If the generation of sterile neutrinos is
non-thermal (e.g., via the Dodelson–Widrow mechanism [48]), the distribution function
may be different. However, calculations carried out in the studies [41,49] using current
data on neutrino mixing parameters showed that light sterile neutrinos with a mass of the
order of several eVs become completely thermalized by the neutrino decoupling time due
to oscillations with the active species. Thus, light sterile neutrinos remain in the expanding
universe as an additional relativistic degree of freedom with ∆Neff = 1.

However, it should be noted that the oscillation parameters of light sterile neutrinos
obtained in experiments have quite large uncertainties and thus the reliability of these
results requires further confirmation. For example, explicit PMNS matrix for classical
3-flavor and extended 3 + 1-flavor mixing presented in [50] (Section 11) exhibits orders
of magnitude larger uncertainties in the matrix elements for 3 + 1 mixing. In the case of
significantly smaller mixing angles, the thermalization of sterile neutrinos will be incom-
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plete and, therefore, the number of relativistic degrees of freedom will be in the interval
0 ≤ ∆Neff < 1 (this case is considered in [18]).

In the case of complete thermalization, ∆Neff = 1, which significantly changes the
expansion rate of the universe and, accordingly, the predictions of Primordial Nucleosyn-
thesis. From Figure 5 (top panel) it is clear that the presence of a light sterile neutrino, which
increases the effective number of neutrino species to four, leads to a significant change in
the theoretical prediction of the abundance of 4He, incompatible with observational data
on deuterium and the CMB anisotropy. Nowadays, this is the strictest constraint on the
possible existence of a light sterile neutrino.

A solution to this problem can be found in the case of the existence of non-zero
lepton (neutrino) asymmetry Lν = (nν − nν̄)/(nν + nν̄). Here nν,ν̄ is the number density of
neutrinos and antineutrinos and is defined with the following equation:

nν,ν̄ =
∫ 4πp2

(2πh̄)3
dp

exp
(

E∓ µ
kT

)
+ 1

(6)

Direct substitution of number densities shows that the lepton asymmetry Lν can be
expressed in terms of the dimensionless parameter ξ = µ/kT, where µ is the chemical
potential of the neutrino, as follows:

Lν = − 1
Γ(3) (Li3(−eξ) + Li3(−e−ξ))

(
π2

3
ξ +

ξ3

3

)
(7)

where Li3(x) is the polylogarithm function and Γ(x) is the gamma function. For small
values of ξ this gives:

Lν ≈
π2

9ζ(3)
ξ

(
1 +

ξ2

π2

)
≈ 0.91× ξ (8)

For temperatures above 2 MeV weak interaction reactions proceeded intensively,
including those that determined the neutron–proton ratio:

n + e+ ←→ p + ν̃e

n + νe ←→ p + e−

n ←→ p + e−+ ν̃e

(9)

As long as the rate of weak interactions exceeds the expansion rate of the universe, it
enables the neutron–proton ratio to track its equilibrium value:

(
n
p

)

eq
= exp

(
−∆m

kT

)
(10)

where n and p are number densities of neutron and protons, ∆m = mn −mp = 1.293 MeV.
For temperatures below 2 MeV the rate of weak interactions becomes less than the rate

of expansion of the universe, which leads to the removal of the neutron–proton mixture
from thermodynamic equilibrium with the primordial plasma (so-called “neutron freeze-
out” [37]). Up to the start of Primordial Nucleosynthesis the neutron–proton ratio decreases
slowly due to the β-decay of free neutrons. The evolution of neutron density can be
described via the equation [10]:

dXn

dt
= −λ(n→ p)Xn + λ(p→ n)(1− Xn) (11)

where Xn = n/(n + p). In the equation, the λ are the rates of the corresponding reac-
tions, which depend on the lepton asymmetry (explicit formulae can be found in [51]).
The presence of non-zero lepton asymmetry leads to an increase in the rate λ(n→ p) and a
decrease in the rate λ(p→ n). These reactions in conjunction lead to an overall decrease
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of the neutron–proton ratio, which in turns leads to decreased production of 4He during
Primordial Nucleosynthesis. In the case of non-zero lepton asymmetry the neutron–proton
ratio shifts from its equilibrium value (10) [52]:

n
p
= exp

(
−∆m + µ

kT

)
=

(
n
p

)

eq
× exp(−ξ) (12)

It is worth noting, however, that the presence of non-zero lepton asymmetry itself leads
to an increase in the total energy density of ultrarelativistic particles, and, consequently,
the expansion rate of the universe. The increase of the expansion rate in turn leads to
higher abundance of primordial 4He. Direct calculation shows that this effect is quite small
compared to the previously discussed one [52], and thus the higher 4He yield associated
with the increased expansion rate is offset by the lower neutron–proton ratio at the start of
Primordial Nuclosynthesis.

Of all the primordial elements, 4He is the most sensitive element to the neutron–proton
ratio [30]. This is due to the fact that all the neutrons that existed at the start of Primordial
Nucleosynthesis will either decay to protons, or form primordial nuclei (mainly 4He ones).
Thus the total abundance of primordial helium can be approximated as

Yp ≈
2 n/p

1 + n/p
(13)

where n/p is neutron–proton ratio at start of Primordial Nucleosynthesis, which is eval-
uated using Equation (11). In the case of non-zero lepton asymmetry this equation
transforms to

Yp ≈
2 (n/p)eq × e−ξ

1 + (n/p)eq × e−ξ
(14)

For small values of ξ this equation simplifies:

Yp ≈ Yeq
p

[
1− ξ

(
1− Yeq

p

2

)]
(15)

where Yeq
p is the value of Yp with zero lepton asymmetry and is a function of η and the

effective number of neutrino species Neff. Thus, the presence of the lepton asymmetry leads
to a decreased abundance of primordial 4He.

Using the described methodology for taking non-zero lepton asymmetry into account,
we calculated the abundance of primordial 4He as a function of baryon–photon ratio η,
Ne f f and ξ. The results are presented on the left panel of the Figure 7. In the calculation
we considered three cases: standard Primordial Nuclosynthesis with ∆Ne f f = 0 and ξ = 0
(dark blue curve), Primordial Nuclosynthesis with ∆Ne f f = 1 and ξ = 0 (red curve),
and Primordial Nuclosynthesis ∆Ne f f = 0 and ξ 6= 0 (yellow curve). Fitting the theoretical
calculation to the observed abundance of primordial helium from [32], we found that
the increase of the Yp associated with the presence of a fully-thermalized light sterile
neutrino can be completely compensated by the non-zero lepton asymmetry with the value
ξ = 0.052± 0.001.
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Figure 7. (a) The calculated dependencies of Yp on the baryon-to-photon ratio η10 (η10 = η × 1010).
The red dashed curve shows the dependence Yp(η10) in the presence of one light sterile neutrino
(compare with Figure 5). The yellow dashed curve shows the dependence Yp(η10) in the presence of
lepton asymmetry ξe = 0.05. The dark blue curve shows the dependence Yp(η10) in the standard case.
The cyan stripe indicates the observed abundance of 4He taken from [31]. (b) The panel shows the
value of lepton asymmetry ξ, which allows one to completely compensate for the influence of the
additional relativistic degree of freedom associated with a light sterile neutrino.

6. The Influence of Neutrinos on the Formation of the CMB Anisotropy

After the radiation-dominated era (∼50 thousand years after the Big Bang), comes
the era of dominance of non-relativistic matter: cold dark and baryonic matter. Then, af-
ter approximately 7 billion years, the universe transits from the decelerating to accelerating
expansion, while the neutrino affects the dynamics of the expansion of the universe at each
stage of the evolution. The expansion rate of the universe, characterised by the Hubble
parameter, is defined via the following equation:

H(a) ≡ 1
a

da
dt

= H0

√
ΩΛ + Ωcdma−3 + Ωba−3 + Ωγa−4 + ∑

ν

Ων fν(a) (16)

where H0 is the current value of the Hubble parameter, ΩCDM, Ωb, Ωγ, Ων and ΩΛ are the
fractions of energy densities of cold dark matter, baryons, photons, neutrinos and dark
energy in the universe at the moment, and the functions fν(a) determine the dependence
of the neutrino contribution on the scale factor of the universe, i.e., in the corresponding
cosmological era.

Figure 8, taken from our paper [18], presents the effective number of neutrino species,
taking into account the possible existence of a light sterile neutrino. It can be seen that in the
early stages of the evolution of the universe, all neutrinos are relativistic and therefore make
a significant contribution to the energy density and the expansion rate of the universe, which
in turn determines the size of the sound horizon at the time of Primordial Recombination.
Sterile neutrinos with a mass of 2.7 eV [19] become non-relativistic before the recombination
and even earlier at the radiation-dominated stage, therefore it can be classified as “warm”
dark matter. Sterile neutrinos with a mass of 1 eV [20] become non-relativistic during
the transition from the radiation-dominated to the matter-dominated stage, therefore it
is “hot-warm” dark matter. Active neutrinos with masses less than 0.1 eV become non-
relativistic after the recombination, therefore they compose “hot” dark matter. All these
factors influence the formation of the CMB anisotropy, the study of which makes it possible
to obtain estimates of cosmological parameters with unprecedented accuracy.
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Figure 8. The effective number of relativistic neutrino species taking into account the possible
existence of a light sterile neutrino as a function of cosmological redshift z. Vertical dashed lines
represent the moment of transition from the radiation to the matter dominated stage (R→M) and the
moment of Primordial Recombination (P R). It can be seen that in the early stages of the evolution of
the universe, all neutrinos are relativistic. Sterile neutrinos with a mass of 2.7 eV [19] become non-
relativistic before the recombination and even earlier at the radiation-dominated stage, therefore it can
be classified as “warm” dark matter. Sterile neutrinos with a mass of 1 eV [20] become non-relativistic
during the transition from the radiation-dominated to the matter-dominated stage, therefore it is
“hot-warm” dark matter. Active neutrinos with masses less than 0.1 eV become non-relativistic after
the recombination, therefore they compose “hot” dark matter.

An analysis of the CMB anisotropy (Planck Collaboration, [14]) within the standard
spatially-flat 6-parameter ΛCDM cosmology allows us to estimate key cosmological pa-
rameters: Ωb, ΩCDM, θ∗, ns, As, τ , which represent the present-day values of the baryon
and cold dark matter densities, the angular size of the sound horizon, the scalar spectral
index, the amplitude of scalar perturbations, and the optical depth of the reionized plasma,
respectively. In turn, using the obtained values of these six parameters it is possible to
determine a number of other cosmological quantities (for instance, the Hubble constant H0,
the age of the universe t0, the dark energy density ΩΛ).

The possible existence of sterile neutrinos or/and changes in the physical parameters
of active neutrinos (for instance, Tν 6= Tν0 or Lν 6= 0) can be included into an analysis of the
CMB anisotropy as additional free parameters. It will lead to a noticeable redistribution
of estimates of other cosmological parameters while the model remains consistent with
the observational data on the CMB anisotropy [18]. This effect is shown in Figure 9 and
in Table 1. To assess this effect, the CMB anisotropy data was analysed in the following
cases: standard ΛCDM model, a ΛCDM model with an additional light sterile neutrino,
and a ΛCDM model with non-standard active neutrino temperature [18]. For the analysis
of the CMB anisotropy the neutrinos were treated in the same way as described in the
Planck Collaboration paper [14]: the analysis assumes a normal neutrino mass ordering
and active flavors with masses m1 = m2 = 0 and m3 = 0.06 eV. Additionally, in the
case of a 3 + 1 neutrino mixing scenario, a light sterile neutrino with a mass 2.7 eV [19],
or with a mass of 1 eV [20] was included. The upper panel of Figure 9 demonstrates the
effect of a straightforward addition of sterile neutrinos or a non-standard temperature of
active neutrinos into a model in which other cosmological parameters are fixed at standard
values. It is easy to see that changing the ΛCDM model in this way leads to a very strong
discrepancy between the fit and observational data. It should be noted that similar analyses
of the CMB anisotropy have been carried out previously (see e.g., [45,53–55]). In these
studies, the authors derived constraints on the parameters of sterile neutrinos based on the
CMB anisotropy and other cosmological data. This was achieved either by fixing values of
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the fitted parameters or by imposing certain priors on them. Thus the resulting constraints
on the sterile neutrinos and the effective number of relativistic degrees of freedom turned
out to be relatively small. Lower panels of Figure 9 demonstrate fits of the CMB anisotropy
data in the following cases: (b) the standard ΛCDM model, (c) ΛCDM with the inclusion
of a light sterile neutrino, and (d) ΛCDM with the modified value of active neutrino
temperature. In all three cases, all of the fitted parameters, including six standard ones
and additional parameter associated with the corresponding effect, were set free. It can be
seen that all three fits are in a good consistency with the observational data on the CMB
anisotropy. This consistency is achieved via redistribution of all estimates of the model
parameters (see Table 1).

Figure 9. Observational data on the CMB anisotropy (blue dots) and the results of its fitting with
theoretical models. The goodness-of-fit can be assessed using the reduced χ2 value, which is one of
the output values of the Planck Collaboration code [14]. (a) The best-fits to the observational data
are for models with all standard cosmological parameters having their values fixed. The solid black
curve represents the standard ΛCDM model, the dashed blue curve represents the standard ΛCDM
model with the addition of a light sterile neutrino (for a total of four neutrino flavors), the dashed
red curve represents the standard ΛCDM model with the additional relativistic degree of freedom,
but with three neutrino flavors. (b) The black curve represents the best-fit curve for the standard
ΛCDM model (the same as on panel (a)). (c) The dashed blue curve represents the best-fit for the
ΛCDM model with the addition of a light sterile neutrino, and all key cosmological parameters
set free. (d) The dashed red curve represents the best-fit for the ΛCDM model with the additional
relativistic degree of freedom, and all cosmological key parameters set free. Thus, the hypothesis of
the existence of light sterile neutrinos does not contradict the observed CMB anisotropy.

The resulting estimates of the key cosmological parameters are presented in Table 1.
It should be noted, that both of the non-standard cases can be parameterised in terms
of the effective number of neutrino species Neff. While in the third and in the fourth
columns Neff have similar values (4 and 3.9 correspondingly), the physical reasons behind
the values are completely different. In the third column Neff equals 4 due to a physical
presence of additional particle; a completely thermalised light sterile neutrino. In the
fourth column Neff equals 3.9 due to the higher temperature of the three active flavors
Tν = 2.07 K (see Equation (3)). This fact leads to different cosmological consequences.
The inclusion of a light sterile neutrino not only noticeably changes the estimates of the
cosmological parameters, but also significantly worsens the Hubble tension. On the other
hand, the consideration of a non-standard temperature of active neutrinos leads only
to a slight redistribution of the cosmological parameters (compare the fourth and the
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second columns). Moreover, the increase of the temperature of active neutrinos leads to
agreement between the CMB estimate of H0 = 72.81± 0.62 km s−1 Mpc−1 [18] and the
“late” estimate of the H0 = 73.04± 1.04 km s−1 Mpc−1 [21] (i.e., to the solution of the
Hubble tension). In the analyses presented in [18] it was found that to fully agree between
the two estimates, the neutrino temperature needs to be Tν = 2.07 K, which is slightly
higher than the standard value of Tν0 = 1.94 K [10]. There are different mechanisms for
active neutrino heating, for example it can be due to a decay of keV-mass sterile neutrinos
during the whole course of the evolution of the universe [18], a decay of MeV-mass sterile
neutrinos before Primordial Nucleosynthesis [56], or other special mechanisms.

Thus, the introduction of an eV-mass sterile neutrino into the ΛCDM model is consis-
tent with the CMB anisotropy, but at the same time it enhances the Hubble tension. This
problem, in turn, may be solved by a heating of the active neutrinos, which in a minimal
way can be provided by the decays of heavy sterile neutrinos that compose dark matter.

Table 1. Dependence of estimates of the cosmological parameters on the effective number of neutrino
species Neff and the present-day neutrino temperature T0

CνB. The second column contains estimates
obtained for the standard ΛCDM model in the Planck Collaboration analyses [14]. The third column
contains estimates obtained for the ΛCDM model with three active and one light sterile neutrino
mixing. The last column contains estimates obtained for the case of the ΛCDM model with only
three active neutrinos with non-standard temperature. The parameters are evaluated for a light
sterile neutrino with mass mν = 2.7 eV. The estimates of Ωi are given in percentages (as 100%×Ωi)
and H0 is given in units km s−1 Mpc−1. The values of ΩCDM and ΩΛ are defined as follows:
Ωm = ΩCDM + Ωb + Ων, ΩΛ = 1−Ωm.

Parameter Planck 2018 T0
CνB = 1.94 K T0

CνB = 2.07 K
Neff = 4 Neff = 3.9

ΩCDM 26.45 ± 0.50 32.36 ± 0.57 24.92 ± 0.49
Ωb 4.93 ± 0.09 5.88 ± 0.11 4.33 ± 0.08
Ων 0.14 7.58 0.15
Ωm 31.53 ± 0.73 45.8 ± 1.1 29.41 ± 0.87
ΩΛ 68.47 ± 0.73 54.2 ± 1.1 70.58 ± 0.87
H0 67.36 ± 0.54 1 62.20 ± 0.53 72.81 ± 0.62

1 The “Late” H0 measurement (independent of the ΛCDM model) carried out by SH0ES collaboration gives
H0 = 73.04± 1.04 km s−1 Mpc−1 [21]. A significant discrepancy between “late” and CMB measurments of H0 is
referred to as H0-tension.

7. The Influence of Neutrinos on Subsequent Stages of the Evolution of the Universe

The influence of neutrinos in the late stages of the evolution of the universe is to
participate in the formation of the large-scale structure of the universe and is determined
by which class of dark matter the neutrino belongs to. Active neutrinos with masses in
the range 0.06 eV . ∑ mν . 0.12 eV remain relativistic at the matter-dominated stage
even after the primordial recombination (see Figure 8). Moreover, the light neutrino
component (for instance, for the normal neutrino mass hierarchy m1 < m2 � m3, when
m1 < m2 � 0.06 eV) remains relativistic up to the present day. Such neutrinos are a
component of “hot” dark matter and their effect is the damping of structure formation
on small scales. Heavy sterile neutrinos with masses of the order of keV or more can
compose warm and cold dark matter. These cases of light active neutrinos and heavy sterile
neutrinos, in terms of their influence on the formation of the large-scale structure of the
universe, have been analyzed in detail many times and can be considered as the standard
cases (see e.g., [44] and references therein). At first view, the case of a light sterile neutrino
(mνs∼1–3 eV) could be referred to the first case of active neutrinos from the point of view
of the formation of the large-scale structure, but the reconciliation of the existence of such a
neutrino with the CMB anisotropy leads to a significant redistribution of the values of the
key cosmological parameters (see Section 6), which in turn should be taken into account
when modeling the large-scale structure of the universe.
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8. Conclusions

Neutrino astronomy has opened up new opportunities for us to study the universe
in the diversity of its manifestations. Cosmological relic neutrinos, born in the very first
moments of the Big Bang, participate in all stages of the evolution of the universe, making
a significant contribution to the dynamics of its expansion, in contrast to photons, whose
energy density dominates only in the early stages, or from dark matter and dark energy,
whose contribution becomes significant only in later epochs.

The possible existence of a light sterile neutrino (mνs∼1–3 eV) is in poor agreement
with the predictions of the Standard Cosmological Model. It contradicts the predictions
of both the Primordial Nucleosynthesis and the CMB anisotropy data. However, these
contradictions can be removed by an extension of the Standard Cosmological Model,
for example, by introducing a non-zero lepton asymmetry of the universe ξν∼10−2 or
additional relativistic degrees of freedom. Additionally, the CMB anisotropy data can be
reconciled with the possible existence of a light sterile neutrino by changing the values of
the key cosmological parameters. We show that it leads to a significant redistribution of the
constituent components of matter Ωi = ρi/ρc (within 10%). This fact must be taken into
account in the later stages of the evolution of the universe, namely when modelling the
formation of the large-scale structure of the universe.

The spectrum of the antineutrinos of Primordial Nucleosynthesis contains additional
information about the course of non-equilibrium processes in the early universe, in the
first minutes and hours after the Big Bang. Additionally, its detection would allow us to
test the baryonic asymmetry of the universe on the largest scales, since the existence of
antimatter-dominated regions would lead to the generation of relic neutrinos from the
decays of antineutrons and antitritium.

If in the future it will be possible to detect cosmological neutrinos, due to their very
high penetrating power, we will directly obtain information about the first seconds, minutes
and hours of the evolution of the universe after the Big Bang.
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Notes
1 The H0-tension is the most statistically significant deviation in modern cosmology (∼5σ CL), which is the discrepancy between

the estimates of the Hubble parameter obtained on cosmological data [14] and “late” model-independent measurements of H0 in
the local universe [21]. A detailed discussion of possible solutions can be found in the review [22].

2 In reality, cosmological neutrinos are a mixture of neutrinos and antineutrinos, however, in the scientific literature, where this
does not lead to confusion, neutrinos and antineutrinos are commonly referenced as neutrinos.

3 The title is taken from [29].
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Abstract: A critical discussion on the H0 Hubble constant tension is presented by considering both
early and late-type observations. From recent precise measurements, discrepancies emerge when
comparing results for some cosmological quantities obtained at different redshifts. We highlight the
most relevant measurements of H0 and propose potential ideas to solve its tension. These solutions
concern the exploration of new physics beyond the ΛCDM model or the evaluation of H0 by other
methods. In particular, we focus on the role of the look-back time.

Keywords: observational cosmology; Hubble tension; look-back time

1. Introduction

The Λ Cold Dark Matter (ΛCDM) model is considered the cosmological standard,
capable of describing the observed Universe by fixing only six free parameters [1]. These
are the dark matter density, the baryon density, the observed angular size of the sound
horizon at recombination, the scalar spectral index, the curvature fluctuation amplitude,
and the reionization optical depth.

Applying general assumptions on these parameters, it is possible to derive the other
cosmological quantities, including the Hubble constant H0 and the other cosmographic
parameters [2]. The result is a self-consistent picture of our Universe in good agreement
with observations.

This relatively simple model is able to describe a large part of the history of the
Universe with good precision, from the end of the so-called inflationary era [3,4] to the
current epoch. According to the ΛCDM, our Universe is composed by three major con-
stituents: a cosmological constant Λ, associated with the so-called dark energy, accounting
for approximately 68% of the total density, a cold (non-relativistic) dark matter component,
which should account for 27% of the cosmic pie [1,5–17], and lastly, the remaining 5%,
composed by baryonic matter, stars, galaxies, and all the luminous structures. The accu-
racy of this model is remarkable when compared with cosmological observations, such as
the accelerated expansion of the Universe [7] deduced from the observed light curves of
Supernovae Type Ia (SNe Ia). Cosmic acceleration can be addressed by the presence of a
cosmological constant or, in general, by some unknown form of dark energy, acting as a
negative pressure in the cosmological equations.

On the other hand, dark matter was initially introduced to account for the virial
theorem applied to clusters of galaxies [18]. Subsequent observations revealed that it is
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also a fundamental component needed to explain the rotation curves of galaxies, which,
otherwise, would not be well fitted by Newtonian dynamics [19,20] if only galactic baryonic
components are taken into account.

Despite its overwhelming successes, the ΛCDM model presents some critical issues
that captured the attention of scientific community. The most relevant challenges are the na-
ture of dark energy and dark matter, as well as the ongoing tension of the Hubble constant
derived by different measurements at different scales. After decades of precise measure-
ments and tests [17,21–23], no direct or indirect evidence of exotic particles constituting
cosmic dark fluids has been found. Consequently, according to the ΛCDM model, we have
no final answer, at the fundamental level, on the constituents of the observed Universe for
approximately 95%.

A further issue is related to the H0 tension, that is the discrepancy between the late-
type measurements of H0 [24], usually linked to the cosmological ladder [25,26] , and the
early-type ones, associated with measurements of the Cosmic Microwave Background
Radiation (CMBR). The most recent results from two prominent collaborations, SH0ES and
Planck, report values of H0 as 73.04± 1.04 km/(s Mpc) at a 68% confidence level (CL) for
the former [24] and 67.4± 0.5 km/(s Mpc) at 68% CL for the latter [1]. As it stands, there is
a 5σ tension between these two measurements [24], which, in principle, should provide
the same result. Furthermore, this tension extends beyond these two collaborations and
involves several late and early-type observations [25].

To address these issues, different approaches have been considered like extensions of
General Relativity (GR), on which the ΛCDM model is based. For instance, a particular
extension, known as f (R) gravity [27–32]), has been considered in cosmological applica-
tions [33–37] to address different issues related to the ΛCDM model, like the late-time dark
energy [14,27], and the early inflationary behavior [4]. The philosophy of these approaches
is that, instead of searching for new exotic ingredients, the gravitational sector should be
improved according to the scales. In this perspective, the H0 tension could also be fixed
improving geometry [29,38–40].

Other alternatives imply Extended Theories of Electromagnetism or the improvement
of the Standard Model of Particles [41–43]. Furthermore, the H0 tension could be also related
to some fundamental quantum concepts, like the Compton Length and the Heisenberg
Uncertainty Principle, applied to the cosmological setting [44,45].

Finally, under the standard of “new physics” a large amount of investigations have
been pursued both in early and late Universe [46–74].

A recent research line explores the possibility of a “variable H0 constant”, i.e., the idea
that the measured value of the Hubble constant might depend on the redshift (i.e., the
scale) at which it is measured [75–89]. In this context, the H0 constant can be evaluated by
the look-back time [90]. The approach consists in determining H0 at any redshift z starting
from the look-back time of the related sources.

In this paper, a critical discussion on H0 tension will be presented. The outline is the
following. Section 2 provides a brief summary of the ΛCDM model. Section 3 is devoted to
the most prominent measurements related to H0. In Section 4, we discuss the look-back time
approach to the H0 tension starting from the results in [90]. Section 5, a redshift-dependent
H0 is considered. We explore, in particular, its consequences on cosmological distances.
In Section 6, we discuss the results and draw conclusions.

2. A Summary of the ΛCDM Model

The ΛCDM model is a straightforward byproduct of GR. Assuming the Cosmological
Principle, the Universe is homogeneous and isotropic beyond a certain scale, which is,
more or less, over ∼120 Mpc. This assumption is supported by several observations
considering large sets of data [25,91–93]. The Cosmological Principle is implemented by
the Friedman-Lemaître-Robertson-Walker (FLRW) metric [94]:

ds2 = c2dt2 − a2(t)
[

dr2

1− kr2 + r2Ω2
]

, (1)
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where Ω represents the angular component of the metric, a(t) is the scale factor, and k is
the spatial curvature constant. It can be equal to −1, 0, 1 depending on the curvature of the
cosmological spatial submanifold. According to Equation (1), the Einstein field equations
can be recast as: (

ȧ
a

)2

+
kc2

a2 =
8πGρ

3
+

Λc2

3
, (2)

ä
a
= −4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
, (3)

which are the Friedman equations leading the cosmological expansion [95]. These equations
are complemented by the continuity equation and the equation of state defined as:

ρ̇ + 3
ȧ
a

(
ρ +

p
c2

)
= 0 (4)

p = wρc2. (5)

Here, G is the gravitational constant, p is the pressure, ρ the density, w is the cosmological
equation of state parameter, equal to −1 for the ΛCDM model, and Λ is the cosmological
constant. These are the equations on which dynamics of ΛCDM model is based. The scale
factor can be written as a function of the redshift as follows [2]:

a(t) =
a0

(1 + z)
, (6)

where a0 = 1 is the scale factor normalized at our epoch. This allows us to write the
cosmological distances as a function of the redshift [96]. It is possible to rewrite Equation (2)
in terms of the cosmological densities as follows [97]

H2(z)
H2

0
= Ωr(1 + z)4 + ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ, (7)

where H(z) = ȧ/a is the Hubble Parameter, H0 is the Hubble Constant, i.e., the Hubble
parameter derived for z = 0, thus for the Universe at our epoch, ΩR is the radiation energy
density parameter, ΩM is the matter density parameter, where both dark and luminous
matter are taken into account, Ωk is the “density” associated to the curvature, being equal
to zero for a flat Universe, and ΩΛ is the density associated with the cosmological constant.
All these quantities, apart from H(z), are derived at present epoch. From this equation, we
can define

E(z) =
H(z)
H0

=
√

Ωr(1 + z)4 + ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ. (8)

This equation allows us to express cosmological distances as a function of E(z). It is worth
noticing that E(z) depends only on the redshift and the densities of the today Universe,
while it does not depend directly on H0. The luminosity distance dL(z), derived from the
intrinsic luminosity and the photon flux received by a given cosmological source, is:

dL(z) = (1 + z)dM(z) , (9)

where dM(z) is the transverse comoving distance. It is

dM(z) =
c

H0

∫ z

0

dz′

E(z′)
, (10)

for a flat Universe with ΩK = 0.
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For an open Universe with ΩK > 0, it is

dM(z) =
c

H0
√

ΩK
sinh

(
H0
√

ΩK
c

∫ z

0

dz′

E(z′)

)
. (11)

For a closed Universe with ΩK < 0, it is

dM(z) =
c

H0
√
|ΩK|

sin
(

H0
√
|ΩK|

c

∫ z

0

dz′

E(z′)

)
. (12)

The luminosity distance is essential in observational cosmology because it can be associated
with the “standard candles”. These are astrophysical objects whose intrinsic luminosity
can be derived from some intrinsic physical mechanism. Such a mechanism is generally
correlated with quantities that are independent of the source distance, and so can be used
to measure dL(z) intrinsically. Standard candles are a key component of the cosmic distance
ladder and play a crucial role in determining H0.

Another important tool for the estimation of cosmic distance ladder is the angular
diameter distance, defined as

dA(z) =
dM(z)
(1 + z)

. (13)

It is important because it is linked to the “standard rulers” (i.e., astrophysical objects
whose geometrical features can be deduced from their intrinsic physics). We will describe
a particular probe employing this definition. Finally, another very important distance
definition is linked to the look-back time, which is the time the photon takes to reach us
from a certain redshift. It is defined as:

Tlt(z) =
1

H0

∫ z

0

dz′

(1 + z′)E(z′)
. (14)

It is strictly connected to the light-travel distance, i.e., the path traveled by the photon to
reach us from an astrophysical source in the expanding Universe. It is

dlt(z) = cTlt(z). (15)

The last two equations are the starting point for the analysis presented in [90], and the
novel discussions presented in this work. We have to note here that, in all the cosmological
distance definitions, H0 plays the role of a normalization constant, as it is not directly
involved in the integral functions, which, in turn, depend only on the different cosmological
components and the redshift.

3. The H0 Measurements and the Tension

Over the past decades, several methods and astrophysical sources have been em-
ployed to measure H0 with high precision allowing us to obtain, remarkably, very small
uncertainties on the measurements [17,25]. This new era of precision cosmology is also
the main reason for the H0 tension, which is at the center of attention of the scientific
community. As previously mentioned, we observe a significant 5σ tension between the
latest SH0ES and Planck collaborations’ results [1,24], but, as we will see, these deriva-
tions are actually representative of two entire sets of measurements: the former of the
early-type and model-dependent observations, while the latter of the direct late-type and
model-independent ones.

3.1. Late and Early-Type Measurements

Regarding the late-type measurements, many observations, including those by the
SH0ES collaboration, are based on the cosmic distance ladder method. In this approach,
each step builds upon the previous one through calibration methods, especially in redshift
regions where multiple probes are available. This method enables us to reach relatively
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deep redshift ranges while preserving the precision provided by low-redshift probes,
renowned for their accuracy.

The cosmic distance ladder consists of three primary steps [24,98]. The first involves
precise geometric distance measurements, allowing us to directly calculate the distances
of nearby objects. This step is reliable because depends on a straightforward geometrical
method and does not require extensive knowledge of the astrophysical probe used for
distance measurement. There are three possible anchors for this first rung: Milky Way
Cepheid parallaxes, detached-eclipsing binary measurements in the Large Magellanic
Cloud [99], and the water-maser host NGC 4258 [100,101]. These three anchors provide
approximately 1%, 1.2%, and 1.5% precision in the calibration of H0, respectively. In recent
years, a strong improvement in the Cepheid parallax measurements has been provided by
the European Space Agency (ESA) Gaia mission [102–105]. Gaia, designed for astrometry,
photometry, and spectroscopy, has created the most accurate 3D map of the Milky Way.
The latest release, covering the first 34 months of observations, has provided the largest
dataset of Cepheids ever (around 3000 Milky Way Cepheids) allowing us to measure the
parallaxes and consequently the distances of Cepheids with unprecedented accuracy [106].

The second step involves primary distance indicators, often Classical Cepheids, which
exhibit an intrinsic relationship between their luminosities and periods, the so-called Period-
luminosity relation (PL) [107–109]. Although this step is valuable, it may be influenced by
potential systematic effects such as the metallicity dependence of the coefficients of the PL
relation, which need to be addressed [110–113].

The third step includes probes like SNe Ia, which use primary distance indicators as
anchors in regions where both are detected. SNe Ia, with their higher luminosities, can
explore relatively high-redshift regions.

Let us discuss in more detail how the SNe Ia are employed as standard candles,
given that they are one of the most important components of the cosmological ladder
approach [114]. The most updated SNe Ia dataset is the Pantheon+ sample [115], which
was used for the latest H0 measurements [24,116] and serves as a natural successor to the
earlier Pantheon set. [117]. The Pantheon+ sample is composed of 1701 lightcurves taken
from 1550 different SNe Ia, covering a redshift range from z = 0.01 up to z = 2.26.

In general, the physics behind these astrophysical objects is well-understood. SNe
Ia are the byproduct of the explosions of white dwarfs in binary systems exceeding the
Chandrasekhar limit due to mass transfer from their companion star. Since this limit is a
fundamental constraint for the stability of all white dwarfs, all SNe Ia light curves share
similar features. Specifically, the prevailing model, consistent with the majority of SNe Ia
observations, is the single-degenerate Chandrasekhar mass explosion [118]. In this model,
the white dwarf accretes mass from its less evolved companion star, typically a red giant,
which has a significantly lower density, especially in its outer regions. SNe Ia light curves
are well-fitted by the deflagration model shown in [119]. They are primarily powered by
the β-decay of the radioactive isotope 56Ni produced during the explosion [120].

Observationally, this model predicts that SNe Ia light curves typically exhibit an
absolute magnitude around M ' −19 [121]. However, both super-luminous [122] and sub-
luminous [123] SNe Ia have been observed, suggesting the involvement of more complex
mechanisms, such as the delayed detonation scenario for super-luminous SNe Ia [124].
Even so, a phenomenological relation has been observed between the peak magnitude of the
light curve and the luminosity decline rate in each SN Ia [125], which makes them a proper
standardizable candle. Their use as a cosmological probe is based on the following equation

µth,SNeIa = m−M = 5 log(dL) + 25, (16)

where m is the apparent magnitude of the astrophysical object, M is its absolute magnitude,
and the luminosity distance is expressed in Mpc. This quantity is confronted with the
detected distance modulus µobs of the SNe Ia, from which a best-fit of the desired cosmolog-
ical parameter (as well as of the absolute magnitude M) can be performed by employing
the following χ-squared function
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χ2
SNeIa = (µth − µobs)

T × C−1
SNeIa × (µth − µobs) , (17)

where C−1
SNeIa is the inverse of the covariance matrix [81].

It is worth noticing that the absolute magnitude of SNe Ia is treated as a general
parameter. This introduces a degeneracy with H0, which can be resolved either by fixing M
to a certain value or through calibration processes involving primary distance indicators
like Classical Cepheids in the cosmological ladder approach [115].

Furthermore, alternative probes can be employed in the cosmological ladder ap-
proach. For instance, the tip of the red giant branch (TRGB) [126], in place of the Classical
Cepheids [127], or type II SNe [128], the Tully-Fisher relation for galaxies [129], and surface
brightness fluctuations [130], as substitutes for SNe Ia in the corresponding cosmolog-
ical step. The surface brightness fluctuations have also been used as primary distance
indicators [131]).

Regarding the results obtained from these methods, a general consensus has emerged
around the values derived by the SH0ES collaboration. Indeed, their data have been
reanalyzed using different statistical methods, without a significant modification of the
final results [25,132–137]. Some investigations have also included Cepheids from out-
side our Galaxy, to address potential biases in measurements linked to specific Cepheid
populations [101].

An alternative calibration of the SNe Ia, using the TRGB methodology, has produced
results that differ from those provided by the SH0ES Collaboration. For example, studies
by [127,138,139] derived a value of H0 = 69.6± 1.9 km/(s Mpc) at a 68% confidence level,
which falls between the values from SH0ES and Planck collaborations. However, there are
other studies involving the use of TRGB as calibrators for SNe Ia whose results are consistent
with the other late-type observations [140–144]. This has led to ongoing discussions about
TRGB-based observations [131,145], particularly regarding methodologies to account for
potential systematic effects [138,141] and a possible empirical relation between different
TRGB observations, similar to what has been derived for Classical Cepheids [145].

As mentioned earlier, the cosmological ladder can be used by considering also other
probes, such as the surface brightness fluctuations of galaxies, as alternatives to the SNe Ia,
or as an intermediate step between Cepheids and SNe Ia [146]. The results remain consistent
with the other late-type measurements, even if there are higher errors in the determinations
of H0 from these sources [130,147]. A similar approach can also be employed for SNe type
II [128,148], and the Tully-Fisher relation for galaxies [129,149,150], obtaining results which
remain consistent with the SH0ES collaboration.

While the cosmological ladder is an intuitive method for determining H0 indepen-
dently from the cosmological model, it requires very precise knowledge of the astrophysical
processes associated with each used probe, especially in the first steps of the ladder. This is
because any potential unaccounted-for systematic effect in the first rung could propagate to
subsequent ones, as they are calibrated on the preceding. Therefore, using alternating astro-
physical objects for the same step becomes a crucial test, as the cross-test between different
collaborations using the same probes, to identify and remove possible systematic issues.

The cosmological ladder framework is not the only possible methodology for esti-
mating H0 at late times. An example is the strong lensing time delay estimates, which are
independent of cosmological models but do require assumptions about foreground and
lens mass distributions [25]. Even with this independent alternative method, the results
remain consistent with the other late-type approaches [151–154]. It is interesting to mention
that, in [154], a decreasing trend in the measure of H0 with the redshift has been noted,
in agreement with the previously mentioned “variable H0 constant” [75,81,90,155], which
will be the focus of the following analysis.

As we can see, for the late-type measurements, different probes and different methods
provide results that are generally in agreement (apart from some exceptions). We may
conclude that the tension is very unlikely to be due to systematic or statistical problems in
the data themselves, but rather due to a more intrinsic, physical issue. Indeed, different
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averages of the late Universe estimates of H0 are in a 4.5–6.3σ tension with values provided
by the Planck Collaboration [25,156,157].

Let us now discuss measurements of H0 based on assumptions and observations
related to the early physics of the Universe. In addition to the latest values derived
by the Planck Collaboration [1], there are other independent measurements, involving
CMBR, all of which consistently yield lower values for H0 if compared to late-type observa-
tions [158–160].

Early-time phenomenology can be traced even at low redshift values, with notable
examples derived through various probes including the Baryon Acoustic Oscillations
(BAO) [161–165], Big Bang Nucleosynthesis measurements of the primordial
deuterium [166], and weak lensing measurements [16]. These probes yield H0 estimates con-
sistent with those of Planck Collaboration [165], and different data reanalyses support these
results [73,74,167–173]. However, it is essential remembering that early-type measurements
are model-dependent, and work within the ΛCDM scenario and the Standard Model.
Without these assumptions, constraints on H0 and other cosmological parameters are re-
markably loosened [25,174]. Additionally, these measurements provide estimates for all
the six free parameters underlying the ΛCDM model, which, in turn, are used to derive all
the other cosmological parameters from the observation of the CMBR peaks.

Let us go into more detail about the BAO. They are also utilized independently for
cosmological computations [165] because they consider another kind of cosmological
distance, the angular-diameter one. BAO are widely used in literature to complement
various analyses with other probes, see Refs. [42,175], and in standalone cosmological
computations [165].

BAO are density fluctuations of the visible baryonic matter, caused by acoustic density
waves in the early primordial plasma. As such, they are relics of phenomena occurred in
early times and observed at lower redshift values such as in cluster formations and galaxy
distributions. These phenomena are closely related to the acoustic peaks measured from
the CMBR [161] which result from cosmological perturbations generating sound waves in
the relativistic plasma of the early Universe [176].

In the past decade, BAO-related measurements have significantly improved in preci-
sion [165], which has proven to be mandatory for modern cosmological applications. This
is because the acoustic features in matter correlations are relatively weak and occur at large
scales [161,177].

Furthermore, these acoustic peaks are associated with different behavior of ordinary
and dark matter when they are solicited by perturbations. Ordinary matter expands as
a spherical wave, while dark matter remains in place [178]. After this event, both dark
matter and baryon perturbation start the formation of large-scale structures. Given that,
the central perturbation in the dark matter dominates over the baryonic shell, the acoustic
feature is manifested as a single spike in the correlation function at approximately 150 Mpc
between pairs of galaxies. This scale is typically close to the sound horizon [179].

It is important to note that, given their nature, behind each BAO-related measurement,
there are tens of thousands of observations regarding large structures such as galaxies
or clusters of galaxies. The largest spectroscopic survey to date is the Baryon Oscillation
Spectroscopic Survey (BOSS [180]), one of the main objectives of the Sloan Digital Sky
Survey (SDSS)-III Collaboration [181]. Indeed, this collaboration conducted spectroscopy
on over 1.5 million galaxies, generating valuable BAO-related data points. This dataset was
later complemented by the extended Baryon Oscillation Spectroscopic Survey (eBOSS [182]),
which was the cosmological survey within the SDSS-IV [183].

As previously stated, BAO may be used as cosmological probes starting from the
angular-diameter distance. However, unlike SNe Ia, BAO-related measurements can vary in
their definitions. For instance, in the set composed of 16 BAO employed in [42,43,175], com-
piled from [162–165,184], some of the data offer information about the following quantity

dV(z) =
[

dM
2(z)

cz
H(z)

] 1
3

, (18)
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where dM is the transverse comoving distance defined in Equations (10)–(12) and H(z)
is defined in Equation (7). Also, other cosmological quantities inferred by BAO are the
following parameter

A(z) =
100dV(z)

√
ΩMh2

cz
, (19)

where h = H0/(100 km s−1 Mpc−1); the so-called Hubble distance

dH(z) =
c

H(z)
, (20)

and the comoving distance itself. It is important to emphasize that all these definitions are
interconnected, but they are not identical. This is a relevant point when constructing the
covariance matrix using these heterogeneous measurements.

Additionally, it is worth noting that the majority of the BAO measurements have been
rescaled by a factor denoted as rd, that is the distance between the end of inflation and the
decoupling of baryons from photons after the recombination epoch. The value of this factor
is approximately 150 Mpc and it is defined as [165].

rd =
∫ ∞

zd

cs(z)
H(z)

dz, (21)

where cs(z) is the sound speed, while zd is the redshift of the drag epoch, which in turn
corresponds to the time when baryons decouple from the photons. This decoupling
typically occurs at a redshift of z ≈ 1020, a value influenced by the physics of the early
Universe. This quantity can be approximated using a formula involving cosmological
parameters [185], that is

rd =
55.154 · e[−72.3(Ωνh2+0.0006)2]

(ΩMh2)0.25351(Ωbh2)0.12807 Mpc, (22)

where Ωb is the baryonic density and Ων is the neutrino density. It is important to notice
that, although they are observed in lower redshift regions, their link to early-Universe
physics implies that the cosmological computations derived from them are consistent with
the Planck Collaboration results, including those related to H0 [165].

3.2. Overcoming the Tension

The H0 tension is one of the most compelling problems of modern cosmology, and,
as such, both observational and theoretical approaches have been explored by the scientific
community to address it. From the former point of view, a new independent window has
opened by the observations of gravitational waves [186]. Indeed, these detections have
already been used as ’standard sirens’, to derive new estimates for H0 [187–190].

At present, the precision of these measurements does not allow us to understand if
they reduce the tension or if they are more in agreement with either the early or late-type
measurements. However, given that we are still in the early stages of the gravitational
waves era, a considerable improvement is expected from future observations, especially
from the next generations of gravitational wave detectors. This holds great potential as a
completely independent, non-electromagnetic method for measuring H0, providing a new
window to solve the tension issue.

Other important measurable quantities for the cosmological studies are the look-back
time and the related age of the Universe, which have been used to infer H0 observationally,
as it is the case of the ages of the observed astrophysical objects [155,191–195].

Furthermore, interesting observations of high redshift galaxies have been performed
by the James Webb Space Telescope. The observed galaxies appear to have unexpectedly
high stellar masses which may be in conflict with the age of the Universe as inferred by
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Planck [196]. It remains unclear whether this potential discrepancy may be attributed to
galaxy evolution models or if it has a cosmological origin.

Another possible independent method to infer H0 is based on the H(z) function and
its evolution with the redshift, allowing us to extrapolate H0 by requiring z = 0. This
would be a completely model-independent procedure being able to derive this value,
independently from other methodologies. A possible approach for this analysis is based
on the so-called cosmic chronometers [26,197], i.e., the age evolution of galaxies, as well
as on techniques like Gaussian Process regression [198,199], or cosmography via different
polynomials [14,36,200]. These approaches have provided estimates of H0 ranging from
values consistent with Planck collaboration to values consistent with late-type estimates [25].
It is important to note that an extrapolation of H0 at z = 0 from the H(z) function could be
in contrast with assuming a variable H0. We will discuss this point in the next section.

From an observational standpoint, another potential approach to address the H0 ten-
sion involves the extension of cosmological ladder to higher redshift, in view to bridge
the gap between early and late-type measurements. For this aim, one needs to observe
astrophysical objects at high z acting as standard candles. An example is represented
by the Gamma-Ray Bursts (GRBs), for which different correlations between their intrin-
sic physical parameters can be observed [201–205], allowing us to use them as distance
indicators [71,72,175,206–211].

Other promising high-redshift indicators are Quasars [212]. For these objects, empirical
correlations among physical parameters have been found, so, as in the case of GRBs, they
could constitute a formidable and populated set of objects to test the Universe at high
redshift [213–218].

From a more theoretical point of view, the idea that new physics could be behind the
tension is fascinating the scientific community, especially if one considers that this is not
the only issue that the ΛCDM model, and more in general GR itself, presents [17,29]. Other
notable examples are the nature of dark energy and dark matter that seems to escape any
probe at fundamental level. A popular approach to address these issues is to consider
extensions of ΛCDM model and GR. As previously mentioned, f (R) gravity [29] and other
modified theories [17,39] have been applied for various cosmological and astrophysical
tests [17,39,82,84,85,219,220].

These modifications include the possibility of treating the dark energy component
as a variable fluid rather than a cosmological constant [221,222]. This constant can be
represented by a scalar field φ rolling slowly down a flat component of a potential V(φ)
and giving rise to the models known as quintessence [223]. In this sense, the Chevallier-
Polanski-Linder (CPL) parameterization for the dark energy component [224,225] is one of
the most widely studied modifications to the standard scenario.

Other possible approaches include models where interactions between dark energy
and dark matter are taken into account [226,227]. The main issue of this framework is the
degeneracy existing between different models, which try to address the same problems
in completely different ways, thus not allowing us to achieve a natural and definitive
extension of the ΛCDM model and GR [228–230].

New physics may also be linked to modifications of the underlying phenomenology
at both the early and late stages of the Universe [25,88]. Examples for early epochs include:

1. Early Dark Energy, which behaves as a cosmological constant for z ≤ 3000, and then
decades as fast as the radiation density (or even faster) at late times [50,52,231] via
a slow-roll phase transition. While promising, this approach presents problems
from both observational and theoretical perspectives [232]. Therefore, a modification
has been proposed, called New Early Dark Energy, where instead of a slow phase
transition, we have an almost instantaneous one [233]. This idea is similar to the
aforementioned quintessence for late times.

2. Extra relativistic degrees of freedom at the recombination, parameterized by the
number of neutrino species, Ne f f . According to our current understanding, for active
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massless neutrino families Ne f f ∼ 3.044 [234]. This number affects the inferred value
of H0. Various models regarding further dark radiation have been proposed [235–238].

3. Modifying the recombination history, by shifting the sound horizon for BAO at re-
combination. This can be achieved by either varying the early-time expansion history
or by modifying the redshift of recombination. Various methods have been proposed
to accomplish this, including exotic scenarios in the early Universe [239–241].

The proposed new physics at late times modifies our interpretation of dark energy in
various ways. Apart from what we have mentioned before, we recall the following:

1. Considering a cosmological bulk viscous fluid, characterized by a peculiar form of
its pressure term, which is made up of two parts, where the first one is the usual
component linked to the density via an equation of state, while the second is linked to
the viscosity [242–245].

2. A chameleon field for dark energy, whose mass varies in accordance with the mat-
ter density of the considered environment, and whose variability would imply a
measurement on H0 dependent on the particular region in which has been per-
formed [246–250].

3. Diffusion models, implying an interaction between dark energy and dark matter via
a non-conserved energy tensor Tµν [251–253], which seems to reduce the H0 tension
with different types of matter fields [254].

4. General dynamical behavior for dark energy, following a philosophy similar to the
CPL parameterization. In this sense, one could define emergent dark energy, which
has had no effects in the early stages of the Universe, as it completely emerges at late
times [255–257].

5. A Running Vacuum model, linked to possibly Quantum Field Theory or String Theory,
could be used to explain theoretically a possible phenomenological dependence of
cosmological and gravitational constants with the cosmic time [258,259]. This kind of
model can actually encompass different assumptions regarding the behavior of dark
energy. It has also been successfully tested [260,261].

6. The presence of local inhomogeneities that could affect the late-time measurements
of H0, which may be either due to possible observational issues like incomplete sky
sampling, astrophysical problems like incorrect modelling of the local structures, or a
more fundamental nature, like the departure of the FLRW assumption at very small
scales [262–266].

Alternatives to extensions of GR have also been sought. These alternatives include
considerations for potential extensions of the Maxwellian Electromagnetism [267] in a
cosmological setting, introducing a second, optical component to the measured redshift of
astrophysical sources in cosmological models without dark energy [41–43].

In order to represent a valid alternative to the ΛCDM model, evidence of this kind
of effect has to be found. A possible approach is to investigate the upper limits on the
photon mass [268–271], especially considering that some extensions propose massive
photons [272,273].

Another investigated possibility is dealing with the H0 tension as an evidence of a
more fundamental limit on observations, linked to Quantum Mechanical concepts like the
Compton Length and the Heisenberg Uncertainty Principle [44,45]. This approach seeks for
addressing the tension without attributing it to unlikely experimental errors or unknown
novel physics.

The previously mentioned alternatives offer promising solutions for addressing the
H0 tension and providing a satisfactory explanation for its existence. The main issue is to
determine if one of these alternatives truly resolves the tension or if the solution lies within
a completely different framework. To accomplish this issue, one not only needs to provide
definitive evidence of peculiar effects beyond the ΛCDM model, but also to build up an
appropriate extension of the standard framework containing not only novel ideas to solve
the H0 and other tensions but also retaining the outstanding success achieved by GR and
ΛCDM model when they are compared with observations.
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As said, a novel approach considers the possibility of an evolution of H0 constant with
redshift as a way to address the tension [75–88]. In this sense, the evolution of H0 and
the corresponding tension are considered as a sort of “diagnostics” of a symptom of the
breaking-down of the ΛCDM model (or even of the FLRW metric, because it would suggest,
according to this interpretation, that the parameterization H(z) = H0E(z) is not working),
marking the points in which observations are not consistent with the model [75–80].

In this context, a dependence of H0 on the redshift has been observed in real SNe
Ia data and interpreted through the f (R) gravity formalism [81–85,88]. More specifically,
in [81], a functional form

Hz
0 = H0/(1 + z)α, (23)

has been assumed and fitted with the Pantheon set of SNe Ia [117]. Results show that α is
not consistent with 0 within 1σ, hinting at a smooth, slow, but continuous, decrease in H0
value with the redshift. A variable H0 could be due to a possible break-down, at some scale,
of the Cosmological Principle on which the ΛCDM model is based (for general reviews,
see [25,229,274], for discussions on diagnostics, see [77,155,264,275]).

It is worth emphasizing that H0 measurements discussed in this section represent
only a part of those obtained in recent years. For a more comprehensive overview, refer to
Figure 1 taken from [25].

Figure 1. A summary of H0 measurements performed both at early and late times. Credits to [25].
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4. The H0 Tension and the Look-Back Time
4.1. The T(z) Parameterization

Let us now delve into the approach proposed in [90], where H0 is derived from
the look-back time defined in Equation (14). We will further discuss and improve this
parameterization. Let us start from showing that, operatively, we can take into account a
Taylor expansion of the scale factor as follows

a(t) = a0 +
d(a(t0)

dt
[T(z)− T0] + . . . = a0 + H0[T(z)− T0] + . . . . (24)

We can assume that a0 = 1 and approximate H0 = 1/T0, where T0 is the age of the Universe
today. This approximation is at 5% if compared with the Planck data. It is easy to obtain
the integral

H(∞)
0 =

1
T0

∫ ∞

0

dz′

(1 + z′)E(z′)
. (25)

This approximation is mandatory in view to justify our approach. Clearly, considering only
the first-order term, we recover the parameterization

T(z) =
T0

(1 + z)
= a(t)T0 , (26)

that allows us to label the universe age at various redshifts T(z) starting from T0. The defi-
nition of look-back time can be recast as:

H0 =
1

Tlt(z)

∫ z

0

dz′

(1 + z′)E(z′)
. (27)

According to this equation, we can infer H0 from Tlt(z) at any z. This result is consistent
with the age of the Universe, by considering the general definition

Tlt(z) = T0 − T(z) , (28)

where T0 and T(z) are the Universe age, today and at a given redshift, respectively. Consid-
ering Equation (26), we can derive

H(z)
0 =

(1 + z)
T0z

∫ z

0

dz′

(1 + z′)E(z′)
. (29)

Equation (26) can be confronted with other parameterizations. The idea is linking different
ages of the Universe with today’s epoch, avoiding the integral time evolution, depending
on E(z), as in Equation (29). In other words, one can adopt a point-by-point labeling
process. The most natural label that we may use is the scaling factor itself a(t), which
expresses how the size of the Universe changes with its expansion. In this perspective, T(z)
is a projection of T0 at a given redshift. This is the main reason why we have operatively
computed this labeling from Equation (24).

As noted in [90], for z → +∞, it is lim
z→+∞

z + 1
z

= 1, and thus it is easy to recover

Equation (25) from our approach, which can also be interpreted as the definition of Universe
age, denoted as T0. This means that the parameterization is in agreement with the age
definition at high values of z. Additionally, in Ref. [90], it is demonstrated that this
parameterization is remarkably consistent with different H0 measurements, ranging from
late and early epochs, where different probes are taken into account. More specifically, we
report here results obtained by the Planck collaboration for the following quantities [1]:

T0 = 13.797 Gyr, Ωr = 9.252× 10−5, ΩM = 0.3153, ΩΛ = 0.6847. (30)

which have been compared with the following H0 observations at 68% CL:
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• H0 = 73.04± 1.04 km/(s Mpc) from the SH0ES collaboration, inferred by the cosmic
distance ladder method considering Classical Cepheids + SNe Ia up to z = 0.15 [24];

• H0 = 67.4± 0.5 km/(s Mpc) from the Planck collaboration, obtained by the CMBR
observations at z ∼ 1100 [1];

• H0 = 69.9± 1.9 km/(s Mpc), obtained by using the TRGB as an anchor for SNe Ia
instead of the Classical Cepheids, at z = 0.08 [127];

• H0 = 75.8± 5.0 km/(s Mpc), derived from SNe Type II as the last step of the cosmo-
logical ladder, at z = 0.45 [128];

• H0 = 73.3± 4.0 km/(s Mpc), derived from the Mira Variables employed as anchors of
SNe Ia, at z ∼ 0.15 [276];

• H0 = 76.0± 2.6 km/(s Mpc), derived from the Tully-Fisher relation for spiral galaxies,
at z = 0.5 [129];

• H0 = 73.3± 2.5 km/(s Mpc), derived from the surface brightness fluctuations for the
galaxies, at z = 0.33 [130];

• H0 = 69.5± 3.3 km/(s Mpc), inferred from the Large Scale Structure teq standard ruler,
and thus confronted to our computations at the redshift of equivalence
zeq ∼ 3300 [277];

• H0 = 72.0± 1.9 km/(s Mpc), inferred from the masers + SNe Ia and compared at
z ∼ 0.15 [100];

• H0 = 73.3± 1.8 km/(s Mpc), derived from gravitational lensed quasars, confronted at
z = 0.745 [153];

• H0 = 67.9± 1.5 km/(s Mpc), which is a measurement provided by the CMBR indepen-
dently from the Planck collaboration, and as such corresponding at the reionization
epoch z ∼ 1100 [159];

• H0 = 69.6± 2.1 km/(s Mpc), linked to the 21 cm absorption line and corresponding at
the beginning of the so-called Cosmic Dawn, i.e., when the first stars formed (z ∼ 17.2),
in combination with CMBR data and considering a Chaplygin gas model for the dark
sector [278];

• H0 = 73.4± 8.8 km/(s Mpc), deduced by gravitational waves, at z = 0.438 [189].

We remind that the corresponding redshift for each measurement has been determined
by considering either the upper limit of the redshift range of the sample used to infer H0 or
the redshift associated with the specific physical process.

Results reported in [90] are displayed in left panel of Figure 2. They will be used as
reference for our tests. Here, we consider also the effects of 5% approximation in assuming
H0 = 1/T0. Essentially, error bands at 5% can be taken into account. Results are shown
in the right panel of Figure 2, where we see that the model is still consistent with the
H0 measurements. We have also performed a polynomial fit of the H0 measurements,
independent of the cosmological model. It is worth noticing that it is consistent with late
and early measurements, while it results shifted with respect to the peak. This feature has
to be expected due to the lack of direct H0 in the intermediate redshift range.

It is important to discuss the value of T0 used in the analysis. This quantity is linked
to H0. More specifically, an anti-correlation exists between T0 and H0 has been reported in
Ref. [279]. An independent way to test H0 is to compare measurements with estimate ages
of old objects such as stars and globular clusters.

In this sense, different measurements are consistent with T0 derived from early-type
observations [191,280–283]. This suggests that the H0 value, inferred from late-type ob-
servations, would imply a Universe that is too young according to these measurements.
Therefore, novel physics might be required to reconcile H0 with the late-type derivations.

This is the first reason why we started from the values provided by the Planck Collab-
oration. The second one is that both T0 and H0, according to Planck, are derived quantities
which have been computed by the six aforementioned free parameters. Therefore, even if
T0 and H0 are linked, we do not incur in a circularity problem [1].
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Figure 2. (Left panel) The values of H0 derived from Equation (29) are plotted against the redshift
and confronted with observational data [90]. For each measurement, the redshift value has been
selected either at the upper limit of the redshift range of the sample or at the redshift corresponding
to the specific physical phenomenon considered for the estimation (cosmic dawn, recombination,
equivalence epoch, and so on). (Right panel) the same plots, but considering a 5% uncertainty on our
model linked to the relation between T0 and H0, and also a polynomial fit on the H0 measurements.
The x-axis is reported in a logarithmic scale. We recall that the measurements have been taken
from [1,24,100,127–130,153,159,189,276–278]

Considering Equation (24), it is easy to see that the first order expansion works at low
redshifts but it should decrease in efficiency at higher values of z. Notably, from Equation (25),
we recover T0 at higher redshifts. Furthermore, we may note that the evolution of a(t),
depending on the given cosmological eras dominated by different densities, is quite similar
to a linear behavior, as shown in Figure 3. Here, we compare the evolution of a(t), obtained
by a 9th- degree polynomial fit, with a straight line. We may note that the two curves are
remarkably similar for a large range of T(z) values and easily converge to the above limit
of Hz

0 at high redshifts.
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Figure 3. Evolution of the scale factor a(t) with time. The blue curve represents the best fit using a
9th-degree polynomial to reproduce its numerical evolution as precisely as possible, while the orange
curve is the fit with a straight line.
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To further validate our claims, we can try different parameterizations, which may
be derived from different assumptions on the dominating cosmological densities in the
function E(z). This means that we do not consider our labeling, but specific approximations
of the cosmological models. By taking into account the definition on T(z) in Equation (14),
via the time-evolution integral, one can derive

T(z) =
1

H0

∫ ∞

z

dz′

(1 + z′)E(z′)
. (31)

In general, this integral has to be solved numerically, but it is possible to find simple analyt-
ical formulas linking it to T0 for specific approximations of E(z). Let us start from a matter-
dominated Universe. In this case, it is E(z) =

√
ΩM(1 + z)3, from which T(z) becomes

T(z) =
1

H0

∫ ∞

z

dz′

(1 + z′)5/2 . (32)

It can be solved analytically and one finds that the following parameterization is exactly
valid [284]:

T(z) =
T0

(1 + z)3/2 . (33)

If we introduce this new parameterization into our equations and compare the derived
H(z)

0 with the actual measurements, we obtain results shown in the left panel of Figure 4.
It is worth noticing that this approach does not perform well in this case, as it produces a
theoretical curve for H0 that yields unreasonable results for low values of z, and it is not
consistent with the late-type measurements, even for redshift regions where the Universe
may be considered matter-dominated.
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Figure 4. (Left panel) the value of H0 derived considering T(z) = T0
(1+z)3/2 as a function of the redshift,

confronted with observational data. (Right Panel) the same comparison, but with a parameterization
consistent with the Universe dominated by matter and dark energy. The x-axis is in logarithmic scale.
We recall that the measurements have been taken from [1,24,100,127–130,153,159,189,276–278]

If we, instead, consider a flat Universe with only dark energy and matter components
(that is what we observe for the vast majority of the Universe lifetime, neglecting the radia-
tion contribution), it is E(z) =

√
ΩM(1 + z)3 + ΩΛ. We find, starting from the equations

derived in [285] for this particular case, that T(z) can be expressed as

T(z) =
2

3H0

(
1 +

ΩM
ΩΛ

)1/2

sinh−1
[(

ΩΛ

ΩM

)1/2

(1 + z)−3/2
]

. (34)
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From this equation, T0 can be easily recovered in the limit z→ 0. In other words, the relation
between T(z) and T0 is as follows:

T(z) =
sinh−1

[(
ΩΛ
ΩM

)1/2

(1 + z)−3/2
]

sinh−1
[(

ΩΛ
ΩM

)1/2] T0. (35)

By introducing the last equation in our approach, we obtain the results shown in the right
panel of Figure 4. We observe that the derived estimate for Hz

0 is independent of the redshift
and aligns with the measurements provided by the Planck collaboration. However, it is
not consistent with measurements of H0 obtained at lower redshifts. It is worth noticing
that this estimate depends on the ratio ΩΛ/ΩM, which, in our case, is fixed to the values
provided by Planck, but can be modified for other inferred values of these quantities.

As additional case, we have considered a radiation-dominated Universe, where
E(z) =

√
Ωr(1 + z)4 and

T(z) =
T0

(1 + z)2 . (36)

Furthermore, without any assumption, we can directly use the integral definitions of T(z)
and T0. The plots of these two cases are shown in Figure 5.
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Figure 5. (Left panel) The value of H0 derived from T(z) = T0
(1+z)2 , plotted against the redshift and

compared with observational data. (Right panel) The same comparison, but taking into account the
integral definitions of T0 and T(z). The x-axis is in logarithmic scale. We recall that the measurements
have been taken from [1,24,100,127–130,153,159,189,276–278]

The result obtained for the radiation-dominated Universe is reported in the left panel.
Notably, we observe unreasonable values for H0 even with respect to the matter-dominated
case. On the right panel, we show the result obtained adopting the general integral for T(z),
that is Equation (31). Here, we obtain a constant value for H0 around 67.4 km/(s Mpc),
independent of the redshift. This is because, by adopting the integral, we fall into a
circularity problem which gives the H0 provided by the Planck Collaboration at all redshifts.
This result is also remarkably consistent with the one obtained by Equation (35) for the
Universe dominated by dark energy and matter.

Interestingly, we emphasize that the parameterization presented in Equation (26) is
the only one consistent with both early and late-type measurements. In this framework,
it can be exactly derived from an empty Universe with E(z) =

√
Ωk(1 + z)2. However,

it is essential to note that such a Universe is in severe disagreement with cosmological
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observations [1]. This discrepancy highlights the conceptual difference between our labeling
approach and the derivation of T(z) through the integral in Equation (31).

In summary, the parameterization shown in Equation (26) has been chosen as a labeling
process connecting the age of the Universe at various epochs through a point-by-point
approach. Mathematically, it can be derived from a reliable approximation of the scale
factor as a function of time, working also for high-redshift. Among the different tests, it
stands out as the only parameterization that aligns with the H0 observations at both early
and late epochs. It is worth stressing that, apart our labelling T(z), the other tests have
been performed considering other parameterizations. This does not exclude the possibility
of choosing other relations between T(z) and T0 which involve more complex functions as
T(z) = T0/(1 + P(z)) where P(z) can be some function of the redshift (e.g., a polynomial)
as considered in cosmography [2]. From this more general approach, one could obtain
realistic models capable of matching better the cosmic history.

4.2. A Variable H0 from Late-Type Estimates

The look-back time parameterization of H0 can be compared with late-type measure-
ments for the cosmological parameters ΩM and ΩΛ. For this comparison, we will use
results obtained by the cosmological ladder approach involving the SNe Ia of the Pan-
theon+ set [115,116]. In particular, we consider two different sets of results regarding ΩM
and ΩΛ. In both cases, we use the value for T0 provided by the Planck results, since an
estimate for this quantity cannot be derived directly from the cosmological computations
reported in Ref. [116]. For the first set, we start from the values obtained in [116] for a flat
ΛCDM model where they imposed ΩM + ΩΛ = 1. They found

ΩM = 0.334± 0.018, ΩΛ = 0.666± 0.018. (37)

Considering the best-fit values of these quantities in our model, and comparing the results
with the aforementioned H0 measurements, we find the results displayed in the left panel
of Figure 6. We note how, in general, the curve obtained by our model is consistent with
the majority of the H0 measurements. However, we notice an interesting tension with the
measurement provided by the Planck collaboration, which is, instead, remarkably matched
by the curve displayed in Figure 2.
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Figure 6. (Left panel) the value of H0 derived from our methodology considering T(z) = T0
(1+z)

plotted against the redshift and compared with observational data, starting from the Pantheon+ results
for a flat ΛCDM model. (Right panel) the same comparison, but relaxing the flatness assumption.
The x-axis is in logarithmic scale. We recall that the measurements have been taken from [1,24,100,127–
130,153,159,189,276–278].
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Indeed, we note how, at high redshift, the value for H0 provided by this model de-
creases to 66.34 km/(s Mpc), which is more than 2σ in tension with the Planck measurement.
An interesting observation is that this value is smaller than the measured one, contrary to
what would be expected, given that late-type measurements usually translate with higher
estimates for H0.

From this, we may conclude that the different values provided for ΩM and ΩΛ from
early and late-type measurements have a significant impact on the comparison of our
model with measurements.

This conclusion is further supported by the second case we have considered, in which
we have taken into account the results for ΩM and ΩΛ obtained in [116] relaxing the flatness
assumption for the ΛCDM, for which

ΩM = 0.306± 0.057, ΩΛ = 0.625± 0.084, (38)

while for the value of Ωr, we rely on the value provided by Planck. Using our model for
these starting values, we derive the right panel of Figure 6. We observe a shift towards
higher values of H0 with respect to the results obtained in the left panel of the same
figure and note that the curve is inconsistent with many observations, particularly those
concerning the late Universe. In this comparison, it is important to point out the large
uncertainties on ΩM and ΩΛ values, which could play a significant role.

5. A Variable H0 in ΛCDM Model

Let us discuss now the implications of our approach in the context of ΛCDM model.
As previously mentioned, a variable H0 can be interpreted as a possible hint for the
breakdown of FLRW metric and the ΛCDM model [75,155]. Such a variation can be
explained in the context of ETGs [29,81]. However, our analysis reveals that a variable
H0 can be entirely derived within the framework of ΛCDM model, starting from some
fundamental concepts and from the parameterization in Equation (26), without making
any a priori assumption on the evolution of H0. This finding does not contradict the role of
H0 in the Friedman equations because the variation of this constant is strictly connected to
the redshift at which it has been measured.

A robust confirmation of such a hypothesis would be attainable by conducting inde-
pendent measurements within the intermediate redshift range, where we observe the peak
in our H0 estimate as shown in Figure 2.

Notably, the Pantheon and Pantheon+ SNe Ia datasets [115,117], spanning up to
z = 2.26, encompass a broad redshift range, albeit with a majority of SNe Ia situated in the
low-redshift region. H0 estimates already exist in this range, (e.g., [175,209,214]) but depend
on calibration processes involving probes at lower redshifts. Consequently, promising new
insights are anticipated from forthcoming investigations utilizing novel probes, such as
quasars, gravitational wave standard sirens, galaxy clusters, Lyman-α lines, or GRBs (as
reported in [186,210,211,215,286,287]).

In this context, the Euclid Mission [288,289] could play a pivotal role. While its
main focus is investigating the nature of dark energy via a wide set of observations of
galaxy clusters and weak lensing phenomena [290] by also testing possible modifications
of GR [291,292], it also holds the potential to provide precise estimates of cosmological
parameters like H0 within the intermediate redshift range. Additionally, given the wide
survey expected by Euclid, even though not primarily centered on transient phenomena
such as SNe Ia, is likely to contribute significantly also to these types of observations [293].

Let us discuss now the implications of a variable H0 on the cosmological observations.
To achieve this, we have investigated, as an example, how luminosity and light-travel
distances behave with the Hz

0 function in Equation (27), and compared these distances
with the results obtained by assuming the fixed values measured by the SH0ES and Planck
collaborations. We selected the first distance because it is arguably the most relevant for
cosmological measurements, and the second due to its connection with the look-back
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time. It is worth noticing that similar considerations apply to other cosmological distances.
The results are presented in Figure 7.
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Figure 7. (Left panel) a comparison between the light-travel distance computed using the Hz
0 function

(Equation (27)), with the distances derived by using the fixed values for H0 provided by the SH0ES
and Planck collaborations. (Right panel) the same comparison as in the left panel, but considering
the luminosity distance. The x-axis is in logarithmic scale for both panels. Note that there are different
scales on the x-axis in the two plots.

Both panels in this figure demonstrate how our approach naturally connects the
two distances derived from fixed values of H0 without significantly changing the overall
behavior in the investigated redshift range. The effect is particularly evident in the left
panel, where the light-travel distance is represented. We see how the distance computed
by our approach is similar to the one derived from the SH0ES observations, converging
towards the Planck results at higher redshifts. This can be attributed to the role of H0, which
is a normalization constant, not linked to any astrophysical source. In conclusion, while a
variable H0 does impact the definitions of cosmological distances, it neither substantially
changes the conclusions drawn from our method, especially at lower redshifts, nor it
changes the value of the distances so that it could be in contrast with observations.

6. Discussion and Conclusions

In this work, we provided, without claiming for completeness, a summary of H0
measurements in both early and late-type frameworks, highlighting the existence of a
tension independent of the particular probe or methodology used. This independence
emphasizes the decreasing probability that the tension stems from potential instrument-
related biases or unaddressed systematic effects.

We explored how this tension has been tackled in the context of new physics, be-
yond the ΛCDM model. Various approaches have been proposed, yielding promising
results. However, the main problem is the substantial degeneracy among the different pro-
posed frameworks, which does not allow us, up to now, to define a unique and definitive
extension of the ΛCDM model. From this point of view, it is crucial to understand that,
whichever the extended framework may be, it has to be able to reproduce the ΛCDM results
where the concordance among the vast majority of measurements is evident. This check is
essential in view to recover self-consistent models in agreement with cosmic history.

A recent approach has brought significant attention to the possibility of a “running
H0” [75], both in the observations context and in the interpretation of a quantity that is
traditionally regarded as “constant”.

In this framework, we reported the analysis performed in [90], which defines the
Hubble constant via the look-back time. It is possible to provide a general formula consistent
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with the measurements of this quantity both at early and late epochs just considering the
related look-back time measurement of H0 at any epoch. Here, we delve further into
this direction starting from Equation (26) and discussing the consequences on the various
cosmological distances.

Specifically, we highlight that the formula T(z) = T0/(1 + z) arises naturally through
a point-by-point labeling of the age of the Universe at different redshifts, without the need
to account for the cosmological evolution already incorporated into the function E(z).

To validate our assumption, we show how it can be mathematically derived from a
reliable approximation of the scale factor a(t), and how other parameterizations, which can
be derived from specific assumptions on the densities at various epochs, do not effectively
fit observational measurements of H0.

We have also considered different values of ΩM and ΩΛ, taken by late-type results
from the SH0ES + Pantheon + sets, finding significant effects in our comparisons, par-
ticularly regarding the value for H0 provided by the Planck collaboration, which is not
recovered in these cases. This observation is interesting because it allows us to conclude
that the different measurements of ΩM and ΩΛ, for late and early epochs, introduce a
notable tension.

In particular, we derived the light-travel and luminosity distances as functions of our
variable H0 and compared the results with those obtained using the fixed values provided
by early and late-time measurements. We found that, by our new definition, it is possible
to obtain distances able to link the SH0ES and Planck distances, without significantly
modifying their overall behavior. In our opinion, this is an important check because the
absence of unreasonable results, starting from different distance definitions, confirms the
reliability of the approach.

An issue that may arise pertains to the measurements of the aforementioned H(z)
function and the extrapolation to the H0 value. In fact, one should be able to discern
between variations related to the functional form of H(z) and the variable nature of H0 at
different redshifts.

An important point that must be emphasized is that our results have been achieved
entirely within the framework of the ΛCDM scenario, without requiring modifications or
extensions. Theoretically, a variable H0 can be interpreted as a breakdown of the FLRW
metric. In our case, H0 is an integration constant related to the size of the Universe at a
given redshift. In other words, the value of H0 could depend on the redshift at which it is
measured, thus not undermining its role in the cosmological equations but removing the
tension issue. It is worth noticing how a better fit with respect to the measurements can be
obtained by starting from the early estimate of densities rather than the late ones. However,
this does not exclude the necessity of extending GR and ΛCDM model, given other issues
like the nature of dark energy and dark matter, and the lack of a self-consistent Quantum
Gravity theory [29].

Observationally, H0 tension is not the only tension in cosmology [25]. For example,
there is the so-called S8 = σ8

√
ΩM/0.3 tension, where S8 is a parameter indicating the

strength with which matter is clustered in the Universe. On this parameter, a discrepancy
at 2− 3σ level [25] exists between the measurements inferred by the Planck data and low-
redshift probes, such as the weak gravitational lens and clusters of galaxies [294,295]. It is
essential to investigate whether similar considerations to those discussed above can also
apply to S8 or if it represents an independent signal of deviations from the cosmological
Standard Model.

Furthermore, other measurements challenge the ΛCDM model, like some evidence
of a possible non-zero curvature of the Universe [296], as well as anomalies in CMB
observations, i.e., apparent correlations between the Solar System plane and certain aspects
of CMB. This evidence seems to provide a preferred reference position which should not be
possible if the Cosmological Principle is always valid [297–299].

In conclusion, our analysis suggests that new physics, in the form of extensions or
modifications to ΛCDM model, may not be necessary to address the specific issue of H0
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tension, but it does not exclude its necessity for other fundamental issues. In a forthcoming
study, we will discuss the other tensions under the standard of look-back time approach.
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Abstract: This review considers the theoretical approaches to the understanding of dark energy,
which comprises approximately 68% of the energy of our Universe and explains the acceleration
in its expansion. Following a discussion of the main approach based on Einstein’s equations with
the cosmological term, the explanations of dark energy using the concept of some kind of scalar
field are elucidated. These include the concept of a quintessence and modifications of the general
theory of relativity by means of the scalar–tensor gravity exploiting the chameleon, symmetron
and environment-dependent dilaton fields and corresponding particles. After mentioning several
laboratory experiments allowing us to constrain the hypothetical scalar fields modeling the dark
energy, special attention is devoted to the possibility of constraining the parameters of chameleon,
symmetron and environment-dependent dilaton fields from measuring the Casimir force. It is
concluded that the parameters of each of these fields can be significantly strengthened in near future
by using the next-generation setups in preparation suitable for measuring the Casimir force at
larger separations.

Keywords: dark energy; cosmological constant; chameleon; symmetron; environment-dependent
dilaton; Casimir force

1. Introduction

The concept of expanding Universe, which goes back to the Friedmann solutions
of Einstein’s equations published in 1922 [1] and 1924 [2], assumes that its expansion
should decelerate with time due to the gravitational attraction of both visible and dark
matter. It was a big surprise when, analyzing the redshift data of supernovae in binary
systems, the two research teams independently found in 1998 that the Universe expansion
is accelerating (see the pioneer Refs. [3,4] and reviews [5,6]).

If one wishes to explain the acceleration of the Universe expansion in the framework
of the general theory of relativity, it is necessary to admit that there is an additional form of
invisible matter with a positive energy density ε > 0, as it holds for both the usual and dark
matter, but with a negative pressure, P < 0. Such a matter is characterized by the equation
of state

P = −wε, (1)

where an acceleration in the expansion holds for w > 1/3. This kind of invisible matter
violating the strong energy condition was called dark energy.

The advent of dark energy would not be so unusual if it constituted a small fraction
of the total energy of the Universe. It turned out, however, that if one would like to
preserve the standard cosmological scenario based on the general theory of relativity,
the observational data demand that the dark energy constitutes about 68% of the Universe’s
energy [5,6]. When it is considered that the dark matter contributes approximately 27% of
the Universe’s energy, only 5% remains for the visible, baryonic, matter.
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There are many theoretical approaches to the understanding of the nature of dark
energy. These approaches can be grouped into four main divisions. The first of them
describes dark energy by means of the cosmological constant Λ introduced into equations
of the general theory of relativity by Einstein [7] for other purposes.

The second group of approaches to the description of dark energy considers it as
some kind of classical time-varying scalar field called a quintessence. The cosmological
applications of similar fields were considered in Refs. [8,9], whereas the term quintessence
was introduced in Ref. [10].

The third group of approaches allows any change in the action and equations of the
general theory of relativity by combining the metrical tensor with the classical scalar field
within the formalism of scalar–tensor gravity in order to make the concept of dark energy
unnecessary [11]. The chameleon field, symmetron field and the environment-dependent
dilaton field were used in the literature for this purpose. Some of these approaches dispense
with the need for either dark energy or dark matter (see, e.g., Ref. [12]). The modifications
of the gravitational theory are also allowed in the unified models of dark matter and dark
energy introducing the so-called dark fluid [13].

Note that the main ideas of the above three groups of approaches can be considered as
based on the concepts of classical physics, although quantum physics was used in their
further developments. As to the approaches of the fourth group aiming to understand
the nature of dark energy, they consider it as composed of some hypothetical elementary
particles with unusual physical properties that give rise to the negative pressure. The most
popular particles of such kind are the chameleons, which possess a variable mass depending
on the density of matter in the environment [14,15]. Another candidate for a dark energy
particle is the symmetron whose interaction constant with the usual matter depends on
the environmental density [16–18]. There are also other hypothetical particle candidates
for the role of constituents of dark energy, e.g., the environment-dependent dilaton [19].
The classical fields with the variable masses and interaction constants were introduced in
the third group of approaches mentioned above, whereas the unusual particles, such as
chameleons, symmetrons, etc., are the result of their quantization.

In this review, we compare the approaches from the above four groups by the level
of their credibility and discuss the main particle candidates for the role of dark energy
constituents. Next, we pass to the constraints on the parameters of chameleon, symmetron
and environment-dependent dilaton fields following from different laboratory experiments.
The main attention is paid to the constraints that can be obtained from measuring the
Casimir force arising between the closely spaced macroscopic bodies due to the zero-point
and thermal fluctuations of the electromagnetic field.

There are also many alternative attempts to solve the dark energy issue, which are
listed below for completeness. Thus, one can mention suggestions to consider modified
gravity theories that introduce additional degrees of freedom in the gravitational and/or
matter action [20,21]. It was also suggested to phenomenologically modify the Friedmann
equation by additional terms that depend on the matter density in a nonlinear way [22–24].
Another option considered in the literature is to alter the mass–energy evolution equation
with bulk viscosity terms [25–27].

Alternatively, some authors believe that dark energy may be only an apparent effect.
They hypothesize that the supernovae data may be biased if the observer is located in a
local underdense region (see, e.g., Ref. [28]) or suppose that the supernovae sources tend to
be associated with overdensities (see, e.g., Ref. [29]). Finally, many papers focus on the role
of matter inhomogeneities and anisotropies that may affect the cosmic expansion due to
backreaction or statistical sampling effects (see, e.g., Refs. [30–34]).

The review is organized as follows. In Section 2, the theoretical approaches to un-
derstanding of the physical nature of dark energy based on classical physics are briefly
considered and compared. Section 3 is devoted to a discussion of different particle candi-
dates for the role of constituents of dark energy. The already obtained laboratory constraints
on the parameters of chameleon, symmetron and environment-dependent dilaton fields,
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as well as the prospective constraints obtainable from force measurements, including the
Casimir force, are presented in Section 4. Section 5 contains the discussion and in Section 6
the reader will find our conclusions.

Below the relativistic units are used with c = h̄ = 1, where c is the speed of light and h̄
is the reduced Planck constant.

2. Approaches to Theoretical Description of Dark Energy Based on Classical Physics

As discussed in Section 1, there are three groups of such kind approaches to under-
standing of what the dark energy is and none of them is either excluded or finally confirmed.

We begin with probably the most common approach describing the accelerations in the
Universe expansion on the basis of classical Einstein equations with the cosmological term

Rik −
1
2

Rgik −Λgik = 8πGTik, (2)

where Rik is the Ricci tensor, R is the scalar curvature of space-time, Λ is the cosmological
constant, gik is the metrical tensor, G is the gravitational constant and Tik is the stress–energy
tensor of both visible and dark matter.

Equation (2) provides a very plausible explanation for the dark energy because in the
homogenous isotropic 3-space of expanding Universe the metrical tensor is diagonal. Thus,
raising the index k in Equation (2) and rearranging the cosmological term to the right-hand
side of this equation, one obtains

R k
i −

1
2

Rδ k
i = 8πG

(
T k

i +
Λ

8πG
δ k

i

)
, (3)

where δ k
i is the Kronecker symbol. From this equation it is seen that the effective stress–

energy tensor caused by the cosmological constant is

T(Λ)i
k =

Λ
8πG

δ k
i . (4)

Taking into account that in the homogeneous isotropic space for the stress–energy
tensor of any kind of matter it holds [35]

T 0
0 = ε, T 1

1 = T 2
2 = T 3

3 = −P, (5)

where ε is the energy density and P is the pressure, one obtains from Equation (4) the
energy density, pressure and equation of state of the dark energy resulting from the
cosmological constant

εΛ =
Λ

8πG
, PΛ = − Λ

8πG
, PΛ = −εΛ. (6)

Thus, in this case, Equation (1) is satisfied with w = wΛ = 1 in violation of the second
inequality of the strong energy condition

ε + P > 0, ε + 3P > 0 (7)

valid for the usual and dark matter.
In spite of the fact that Equation (2) belongs to classical physics, it has long been

understood [36] that the leading divergent term in the vacuum expectation values of the
stress–energy tensor of quantized fields has the same geometric form as the cosmologi-
cal term

〈0|Tik|0〉 = I∞gik, (8)
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where I∞ is an infinitely large constant. This is valid in both the Minkowski space–time
and in the curved background of expanding Universe [37,38] as can be seen, for instance,
by the method of dimensional regularization [39].

From Equations (5) and (8), it follows that

〈0|T 0
0 |0〉 = εvac = I∞,

〈0|T 1
1 |0〉 = 〈0|T 2

2 |0〉 = 〈0|T 3
3 |0〉 = −Pvac = I∞, (9)

i.e., the equation of state of the quantum vacuum

Pvac = −εvac (10)

is the same as due to the cosmological constant in Equation (6).
Thus, the vacuum stress–energy tensor of quantized fields could offer a plausible

explanation for a generation of the cosmological constant. However, the great difficulty,
called the vacuum catastrophe [40], arises from the infinitely large values of I∞, εvac and Pvac.
Even if one makes a cutoff in the expression for I∞ at the Planck momentum, the obtained
energy density is of the order

εvac ∼ 10111 J/m3. (11)

At the same time, the observed acceleration in the Universe expansion demands the value
of the cosmological constant in Equation (2)

Λ ≈ 10−52 m−2. (12)

This results in the corresponding value of the vacuum energy density

εΛ =
Λ

8πG
∼ 10−9 J/m3, (13)

which is different by the factor of 10120 from the estimation of εvac in Equation (11) obtained
from quantum field theory [6,41]. In Ref. [39], it was suggested to consider the value of Λ
from Equation (12) as a renormalized value of the cosmological constant as opposed to the
enormously large bare value

Λvac = 8πGεvac ∼ 1068 m−2. (14)

Some grounds for such an approach are given by the quantum field theory in curved
space-time [37,38], but the rigorous justification could be reached only in the framework of
quantum theory of gravitation which is not yet available.

In spite of this problem, the cosmological constant, whose value is determined experi-
mentally like the values of all other fundamental constants, provides a pretty convincing
explanation for the acceleration in the Universe expansion. In fact, Equation (2) including
the cosmological term can be considered as entirely classical with no connection with
the problem of quantum vacuum. As a result, the cosmological constant is commonly
considered as one of the main elements of the standard cosmological model Lambda-CDM
along with the cold dark matter formed by the nonrelativistic particles (axions, weakly
interacting massive particles) and the usual barionic matter.

The second group of approaches to an explanation of the acceleration in the Uni-
verse expansion considers dark energy as a time-varying classical scalar field Φ called
quintessence [8–10]. Unlike the dark energy described by the cosmological constant, where
the quantity w in Equation (1) is constant, w = 1, for the quintessence w depends on the
form of the field potential V(Φ) and may vary with time.

There are many models of the quintessence dark energy proposed in the literature
(see, for instance, Refs. [42–49] and review [50]) using different forms of the potential
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V(Φ) [10,43,44,50–56]. Typically the sum of the actions of the general theory of relativity
and the quintessence field is chosen in the form

S =
∫

d4x
√
−g
[

1
16πG

R− 1
2

gik ∂Φ
∂xi

∂Φ
∂xk −V(Φ)

]
, (15)

where g is the determinant of the metrical tensor and the interaction with the usual baryonic
matter ψ is lacking. Because of this, the total action is the sum of S and the action of the
baryonic matter Sm[ψ].

In the space-time of expanding Universe the quantity w takes the form [50]

w ≡ wΦ =
2V(Φ)−

(
∂Φ
∂t

)2

2V(Φ) +
(

∂Φ
∂t

)2 . (16)

It was shown that with the exponential potential [42,43,50]

V(Φ) = Vq(Φ) = V0e−λ
√

8πGΦ, (17)

where λ = const, the equation of state of the quintessence dark energy approaches to
Equation (1) with w = wq = 1− λ2/3. As a result, the quintessence approach to the dark
energy becomes capable to make approximately the same theoretical predictions for the ac-
celerated expansion of the Universe as the standard model using the cosmological constant.

Note also that in some models of a quintessence the quantity w defined in Equation (1)
satisfies the inequality w > 1. This means that the kinetic energy of a quintessence field is
negative leading to a catastrophic acceleration of the Universe expansion without bounds.
As a result, the distances between individual particles, even inside an atom, go to infinity.
In the literature, this is called the Big Rip caused by the phantom energy [57]. There are
also models of kinetic quintessence with a nonstandard form of negative kinetic energy
but 0 < w < 1 [58]. The fact is worth mentioning that the concept of a quintessence field is
used for a solution of the so-called coincidence problem, i.e., why the energy densities of
dark matter and dark energy are of the same order of magnitude in the present epoch of
cosmic history [44] (see also Refs. [36,41]).

The third group of theoretical approaches essentially based on the classical physics
admits modifications of the general theory of relativity in such a way that an introduction of
the dark energy could be obviated. The most well-known modification of the general theory
of relativity is the scalar–tensor theory, which assumes that the gravitational interaction is
determined by the combined action of the metrical tensor and the scalar field Φ (see the
pioneering paper [59], reviews [60,61] and the monograph [62]).

The typical action of the scalar–tensor theory is the sum of the action defined in
Equation (15) and the action of usual matter, Sm, which is, however, coupled with the field
Φ in this case

Sint = Sint[A2(Φ)gik, ψ], (18)

where A(Φ) is some function describing the coupling to matter. Thus, in the Brans–Dicke
theory [59]

A(Φ) = ABD(Φ) = e−
√

πG
C Φ, (19)

where C = const.
Due to Equation (18) the effective potential depends on the usual matter. For example,

for the dust-like matter with an energy density T 0
0 = ε and P = 0, one has [11]

Veff(Φ) = V(Φ) + ε, �Φ =
∂Veff(Φ)

∂Φ
. (20)

253



Universe 2024, 10, 119

Both the potential V(Φ) and the function A(Φ) take different forms in various models
proposed in the literature [20]. Thus, the chameleon field with a choice [14,15,63]

V(Φ) = Vch(Φ) =
M4+n

Φn , A(Φ) = Ach(Φ) ≈ 1 + C
√

8πGΦ,

Veff(Φ) = Veff, ch(Φ) = Vch(Φ) + C
√

8πGεΦ, (21)

where M is a parameter with the dimension of mass, n is an integer number, C is a constant
of the order of unity, is used in the models of dark energy. The effective mass of chameleon
field is larger in the regions of larger density, m2

Φ ∼ ε(n+2)/(n+1).
Another choice used in the models of dark energy is the symmetron field for which [17,18]

V(Φ) = Vs(Φ) = −m2

2
Φ2 +

λ

4
Φ4, A(Φ) = As(Φ) ≈ 1 +

Φ2

2M2 ,

Veff(Φ) = Veff, s(Φ) = Vs(Φ) + εA(Φ), (22)

where λ is the dimensionless constant of self-interaction and m is one more parameter with
the dimension of mass. The coupling strength of the symmetron field to the usual matter is
of the order of Φ/M. It is perceptible in the regions of low density ε/M2 � m2 and goes to
zero in the regions of sufficiently high density ε/M2 > m2 [64].

Another class of modifications of the general theory of relativity replaces the standard
action of this theory linear in R with a nonlinear one [62,65]

S =
1

16πG

∫
d4x
√
−g f (R) +

∫
d4x
√
−gLM, (23)

where LM is the Lagrangian density of the usual matter, f (R) can be presented as a
series expansion

f (R) = . . . +
β−2

R2 +
β−1

R
+ f (0) + R + β2R2 + . . . , (24)

and f (0) = 2Λ is expressed via the cosmological constant.
As shown in Ref. [65], the function of the form f ∼ 1/Rn with n > 0 in Equation (23)

can explain the observed acceleration in the Universe expansion. It was shown, however,
that the theories described by the action (23) are in fact the versions of the scalar–tensor
theories of gravity considered above [66,67]. Thus, the dynamically equivalent action to
(23) written in terms of an additional scalar field χ is

S =
1

16πG

∫
d4x
√
−g
[

f (χ) + f ′(χ)(R− χ)
]
+
∫

d4x
√
−gLM. (25)

Really, the variation of this action with respect to χ results in the equation of motion

f ′′(χ)(R− χ) = 0, (26)

where f ′(χ) = ∂ f (χ)/∂χ. This means that χ = R if f ′′(χ) 6= 0 and Equation (25) reduces
to Equation (23).

Next, by introducing one more scalar field Φ = f ′(χ), one can transform the action (23)
to the action of a Brans–Dicke theory with the potential [67]

V(Φ) = χ(Φ)Φ− f (χ(Φ)). (27)

This means that any constraints obtained for a chameleon or symmetron fields from
measuring the Casimir force (see Section 4) can be reformulated as the corresponding
constraints on the function f ′(R) known as the scalaron field or, alternatively, as the
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cosmological scalar field in theories of modified f (R) gravity. The latter, however, is
outside the scope of this review.

A comprehensive review of these and many others theories of modified gravity and
their applications to cosmology is given in Ref. [20].

As is seen from the above, both the second and third groups of approaches to the
theoretical description of an acceleration in the Universe expansion are heavily based on
the consideration of some hypothetical scalar field whose form of potential, the function
describing an interaction with matter and some parameters are not fixed uniquely. In this
sense, the first approach exploiting the cosmological term in Einstein’s equations seems
preferable because it operates with only one parameter, the cosmological constant, which
can be considered as a fundamental constant like the electric charge, speed of light, Planck
constant etc. In the next section we discuss what could be added to this situation by the
quantum theory, which brings an interpretation of the classical scalar fields used in the
models considered above in terms of particles.

3. Particle Candidates for the Role of Constituents of Dark Energy

As discussed in previous section, the classical chameleon and symmetron fields were
introduced in the context of modified gravity. This makes their immediate quantization
problematic because the consistent quantum theory related to the standard part of gravita-
tion described by the metrical tensor is not yet available. For this reason, the action of the
form of Equation (15) or the sum of Equations (15) and (18) cannot be directly presented in
the operator form.

It is possible, however, to consider the action of a scalar field Φ and its interaction with
the matter fields separately of the gravitational action containing the scalar curvature. In so
doing, the metrical tensor in the action (18), describing an interaction of the matter fields
with Φ, is understood as the usual function in the spirit of quantum field theory in curved
space-time [37,38].

Using this approach, the chameleon field can be quantized and the resulting particles
are called the chameleons. Then it is possible to consider the interaction of chameleons with
the curved gravitational background and with the elementary particles of the Standard
Model. Thus, the quantum corrections to the chameleon potential were investigated in
Ref. [68]. The effect of production of chameleons from vacuum in the early Universe
was considered in the linear approximation in Ref. [69] by the method of Bogoliubov
transformations. It was shown that in the radiation dominated Universe this effect makes a
strong impact on the Universe evolution.

In addition to interaction with the baryon particles, chameleons can be coupled to
photons via the additional term of the form ΦFikFik, where Fik is the tensor of the electro-
magnetic field. This term is in fact the linear approximation to the exact interaction which
contains the chameleon field in the exponent [70]

Sint, ch = −1
4

∫
d4x e

Φ
M FikFik, (28)

where M is a fictitious mass controlling the coupling strength of chameleons to photons.
Due to the interaction (28), chameleons can be turned to photons and vice versa in an
external magnetic field.

Similar situation also holds as to the quantization of the symmetron field. If one
considers its action separately from the action of gravitation, the symmetron field can be
quantized with the metrical tensor gik being a classical function. The resulting quanta are
called symmetrons. As discussed in Section 2, the coupling of symmetron field to the usual
baryonic matter vanishes if the local energy density is large enough and is restored in the
regions with sufficiently low energy density.

On the classical level, the symmetron field does not interact with the electromagnetic
field. However, in the framework of quantum field theory, it was shown that quantum
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corrections generate the interaction Lagrangian density between symmetrons and photons
of the form [64,71]

Ls =
Φ2

M2 A−4
s gikglnFil Fkn, (29)

where M is some new energy scale and As = As(Φ) is defined in Equation (22). This is the
so-called axion-like coupling.

One more particle with unusual physical properties, which can be considered as
a hypothetical constituent of dark energy, is the environment-dependent dilaton. The
dilaton scalar field and its associated particles arise in many theoretical approaches be-
yond the Standard Model, e.g., in the extra-dimensional theories with a varied volume
of compactified space, in the scalar–tensor theories of gravity, in string theory etc. (see,
e.g., Refs. [62,72–74]).

Below we consider the model of an environment-dependent dilaton field which is
formulated in the context of scalar–tensor gravity. In fact this field combines the properties
of the quintessence, chameleon and symmetron fields. Thus, similar to the chameleon and
symmetron fields, it is described by the sum of actions defined in Equations (15) and (18).
The function A describing the coupling of an environment-dependent dilaton to matter is
of the same form as was discussed for symmetrons in Equation (22) [75,76]

Ad(Φ) = 1 +
A0

2M2 (Φ−Φ0)
2, (30)

where Φ0 is the current value of the dilaton field and A0 is a constant.
As to the dilaton potential, it takes the exponential form [75,76] like for the quintessence

field [see Equation (17)]
Vd(Φ) = V0e−λ

√
8πGΦ, (31)

as opposed to the power-type potentials (21) and (22) for the chameleon and symmetron
fields, respectively.

In the regions of space with sufficiently high density of matter, it holds Φ ≈ Φ0 and
the coupling of the dilaton field to matter becomes negligibly small, although in the regions
with low density the coupling of the dilaton field to matter is of the order of gravitational
strength. In this regard the environment-dependent dilaton behaves in the same way as the
symmetron. Similar to chameleons, however, the effective mass of a dilaton increases with
increasing density of the environment.

The quantization of the environment-dependent dilaton field can be performed under
the same conditions as discussed above for the chameleon and symmetron fields. In
addition to coupling with baryons, the dilaton particles can be coupled to photons. This
coupling has the form of Equation (28), the same as for chameleons [77].

4. Constraints on the Particle Constituents of Dark Energy from Force Measurements

The hypothetical scalar fields (the chameleon, symmetron and environment-dependent
dilaton) discussed in Sections 2 and 3 interact with the usual matter and can be constrained
in the laboratory experiments in a number of ways. Thus, it was shown [78] that individual
atoms inserted into large high-vacuum chamber do not screen the chameleon field and the
force acting on them from this field can be measured by means of atom interferometry.

One more method for searching chameleon particles uses their interaction with the
electromagnetic field. For observation of oscillations between the chameleon and photon
states, the vacuum chamber was used where the magnetic field of 5 T was initiated [70].
As a result, in the plane (effective chameleon mass)× (coupling to photon parameter),
rather large region was excluded.

Strong limits on the parameters of chameleons were placed also by means of the
gravity resonance spectroscopy used to measure the quantum states of ultracold neutrons
confined near a mirror [79]. These limits are by the five orders of magnitude stronger than
the previously known ones obtained from spectroscopic measurements [80].
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The same methods can be used for searching and constraining the symmetrons and
environment-dependent dilatons. For instance, in Refs. [81,82] it was shown that the
parameters of symmetrons can be constrained by means of atom interferometry. As one
more example, the possibility to constrain dilatons by measuring the dilaton–photon
conversion in strong magnetic field was considered in Ref. [83] (see also the review [84]
where several other possibilities are considered).

Constraints on the chameleon, symmetron and dilaton fields and respective particles
can be obtained not only from the laboratory experiments mentioned above but from
astrophysics and cosmology as well. One can mention constraints found from galaxy
clusters’ thermodynamic profiles, gravitational lensing and caustic techniques [85–88].
Specifically, the amplitude of the chameleon field and its coupling strength to matter were
constrained by combining the gas and lensing measurements of the cluster [85]. The upper
limits on the strength of chameleon force were placed by comparing X-ray and weak
lensing profiles of the galaxy clusters [86]. It should be noted, however, that the constraints
found from astrophysics and cosmology do not admit an immediate comparison with the
laboratory constraints because the former unavoidably depend on some indefinite factors,
whereas the latter are obtained in the fully controlled environments.

Below we concentrate our attention on constraining the parameters of chameleons,
symmetrons and environment-dependent dilatons, which can be obtained from force mea-
surements at short separations below a few micrometers. The point is that at such small
distances between the material bodies the dominant force is not the gravitational one,
but the Casimir force caused by the zero-point and thermal fluctuations of the electro-
magnetic field [89]. Precision measurements of the Casimir force have long been used for
constraining the Yukawa-type corrections to Newton’s law of gravitation and the inter-
action constant and mass of axions as the possible constituents of dark matter (see, e.g.,
Refs. [90–93] and reviews [94–96]).

The standard approach to obtaining constraints on some hypothetical force Fhyp from
measuring the Casimir force is the following. According to the experimental data obtained
over some separation interval, the theoretical expression for the Casimir force is confirmed
within the total error ∆F, which includes the random and systematic experimental errors as
well as possible theoretical uncertainties. The hypothetical force, e.g., from the Yukawa-type
interaction or due to the axion exchange, is calculated in the experimental configuration as
a function of separation and the parameters of this interaction. Since the hypothetical force
was not observed, its magnitude is restricted by the inequality

|Fhyp(a)| < ∆F(a), (32)

where a is the value of separation. Then, by analyzing this inequality at different sepa-
rations within the measurement interval, the strongest constraints on the parameters of
hypothetical force are obtained [90–93,95].

This methodology can also be applied to the possible constituents of dark energy, such
as chameleons, symmetrons and environment-dependent dilatons. The obtained results
are considered in the following subsections.

4.1. Constraints on Chameleons from Measuring the Casimir Force

The possibility to constrain the chameleon parameters from measuring the Casimir
force was proposed in Refs. [97,98] and further elaborated in Ref. [99]. Thus, in Ref. [99] the
hypothetical force due to the presence of chameleons was calculated in the configurations
of two parallel plates and a sphere above a plate. The latter configuration was used in all
precise experiments on measuring the Casimir force [89].
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As was noted in Section 2, different forms of the potential V(Φ) in Equation (15) have
been proposed in the literature. The results of Ref. [99] are obtained with the most widely
used potential of the form of Equation (21) and with the exponential potential

Vch(Φ) = Λ̃4
0 e

Λ̃n
Φn . (33)

The first term in the power expansion of Equation (33) corresponds to the vacuum
energy density required for explanation of the accelerated expansion of the Universe and
the second with Λ̃ = Λ̃0 = M results in the potential (21).

Taking into account that the mass of the chameleon field strongly depends on the
density of the environment, the macroscopic bodies are characterazed by the so-called thin
shells regarding this field [14,15]. Let the body have the density ρb and outside the body
the density of matter is ρm. Then, deep inside the body,

Φ ≈ Φb ≡ Φmin(ρb), (34)

where the effective potential Veff(Φ) reaches its minimum value at Φmin. As to the region
outside the body, there it holds

Φ ≈ Φm ≡ Φmin(ρm). (35)

According to Ref. [99], for the thin-shelled bodies almost all of the change from Φm to
Φb happens in the thin shell near a surface of the body. It turned out that the hypothetical
force due to the presence of chameleon field between the thin-shelled bodies is much weaker
than for sufficiently thin bodies where the thin shell near the surface is not formed [97–99].

According to the analysis performed in Ref. [99], the test bodies used in measurements
of the Casimir force (see Refs. [89,100] for a review) have the thin shells for the most realistic
models of the chameleon field used in the literature. It was noted also [99] that if the thin
shells in the test bodies are absent, all the constraints on Yukawa interaction obtained from
measuring the Casimir force remain valid for the chameleon theories.

In Ref. [99], the chameleon force was calculated between two parallel plates and
between a sphere and a plate with account of the effect of thin shells for the potentials
of the form (21) and (33). As a result, rather wide regions were excluded in the plane
(chameleon-to-matter coupling)× (energy scale of chameleon potential) using the data of
the most precise measurements of the Casimir force. For strengthening of the obtained
constraints, it was suggested to perform measurements of the thermal Casimir force at
larger separations and to use larger test bodies in order to avoid the effect of thin shells
which decreases the magnitude of the chameleon force.

4.2. Constraints on a Symmetron Field from Measuring the Casimir Force

As discussed in Section 3, the coupling of the symmetron field to the barionic matter
increases in the regions of low density and goes to zero with increasing density of matter.
This field and the corresponding particles are described by the sum of actions (15) and (18),
where the potential and the function A(Φ) describing the coupling to matter are given by
Equation (22).

Constraints on the symmetron field following from measurements of the Casimir force
can be obtained using the same methodology as described above in the case of a chameleon
field. One should calculate the additional force caused by the symmetron field in the
configuration of two plates or a sphere above a plate used in the Casimir experiments. If the
theoretical expression for the Casimir force is confirmed by the measurement data in the
limits of some error, then the magnitude of any additional force is restricted by this error.

In Ref. [101], the exact analytical solutions for the profiles of a symmetron field were
found in the space near an infinite mirror occupying a semispace and between two such
mirrors separated by a gap. The first of these solutions was applied for calculation of an
additional frequency shift in the experiment measuring the reflection of ultracold neutrons
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by a neutron mirror in the gravitational field of the Earth [102,103]. The second analytical
solution concerning the case of two mirrors can be applied for calculation of the additional
force induced by the symmetron field in the proposed CANNEX experiment on measuring
the Casimir force between two parallel plates at separations up to 10 µm and more [104–106].
The principal scheme of the setup of this experiment, which is also discussed in Section 4.3,
is shown in Figure 1 [104].

In the configuration of two parallel plates (like shown in Figure 1) and a sphere above
a plate (up to now, the latter was used in the most precise measurements of the Casimir
interaction) the additional force due to a symmetron field was calculated in Ref. [107]. For a
sphere-plate geometry, these calculations were performed under the conditions mR� 1,
mR∼1 and mR� 1, where m is the symmetron mass in the vacuum and R is the sphere
radius, with account of the screening effects.

Figure 1. Schematic of the setup of CANNEX experiment for measuring the Casimir force between
two parallel plates at large separations. The pressure between the fixed lower plate and the movable
upper sensor plate separated by a distance a is measured by monitoring the extension ∆a using the
optical interferometer. The material structure of both the lower and upper plates is shown not to
scale at the left of the figure.

In the case of two parallel plates of area S, it was found that at sufficiently small
separations a between them satisfying the condition am < π the additional symmetron
force per plate area, i.e., the additional pressure, is given by [107]

Ps =
Fs

S
= −m4

4λ
. (36)

At larger separations, the symmetron pressure goes to zero exponentially fast. These
results are obtained for sufficiently dense plates with ε� m2M2, where M is the mass scale
entering the effective potential in Equation (22). This condition allows us to put Φ ≈ 0
inside the plates.

When considering the sphere–plate configuration, it was also assumed that these
bodies are sufficiently dense. Under this condition, for the spheres of large radii, R� m−1,
the following approximate expressions for the additional symmetron force were
obtained [107]
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Fs = −
m4

4λ
πR2, a <

π

m
− R,

Fs = −
m4

4λ
π
(π

m
− a
) (

2R + a− π

m

)
,

π

m
− R < a <

π

m
,

Fs = 0, a >
π

m
, (37)

where a is the closest sphere–plate separation.
The approximate analytic calculation of Fs is also possible for the spheres of small

radii R� m−1 above a plate. The result is [107]

Fs = −
4πm3R√

2λ
tanh

m(a + R)√
2

sech2 m(a + R)√
2

. (38)

As is seen from Equation (38), in the limiting case a → 0, i.e., when the sphere
approaches the plate, the magnitude of the symmetron force decreases to

|Fs| =
2π

λ
m2(mR)2, (39)

where mR� 1 in this case.
In the region of intermediate values of the sphere radius mR∼1, the additional force

due to the symmetron field was computed numerically [107].
For obtaining constraints on the parameters of a symmetron field, it was suggested [107]

to use a setup similar to that of Ref. [108]. In the proposed setup, a sphere of R = 150 µm
radius is spaced at a distance a = 15 µm from a rotating disk covered with rectangular
trenches of 50 µm depth in high vacuum. As a result, the distance between the sphere
bottom and the disk surface varies between amin = 15 µm and amax = 65 µm. Taking
into account that all the known forces at these separations are much smaller than the
experimental error ∆F = 0.2 fN, the constraints on the symmetron force can be obtained
from the inequality [107]

Fs(amin)− Fs(amax) = ±∆F, (40)

using the expressions for F presented above. The expected constraints which can be
obtained in this way are discussed in Ref. [107].

4.3. Constraints on the Environment-Dependent Dilaton from Measuring the Casimir Force

The parameters of the environment-dependent dilaton can be constrained from the
same experiments as the parameters of chameleon and symmetron. Thus, in Refs. [19,109]
the dilaton parameters were constrained using the experimental data of Ref. [79] on mea-
suring the quantum states of ultracold neutrons near a mirror. As discussed in Section 3,
these data have already been used for constraining the parameters of a chameleon model.

In Ref. [19] it was also suggested to constrain the parameters of an environment-
dependent dilaton from the CANNEX experiment (see Figure 1) on measuring the Casimir
force between two parallel plates at large separations [104–106]. For this purpose, using
the potential (31) and the coupling function (30), the exact solutions for a dilaton field were
obtained in the configurations with one and two mirrors.

The additional dilaton pressure arising between two parallel plates with an effective
area of 1 cm2 was computed in Ref. [109] in application to the CANNEX experiment. In this
experiment, it was assumed that the separation distance between the plates can be varied
from 1.5 to 15 µm. It was also suggested to vary the pressure around the plates by admitting
Xe gas into the vacuum chamber. This option allows us to make the differential force
measurements, which present many advantages in the case of an environment-dependent
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force. As a result, the dilaton field between the plates and the corresponding additional
pressure have been computed numerically under the condition

4πGA0Φ2 � 1. (41)

This condition ensures that one can omit the coupling to matter of higher orders which is
neglected in Equation (30).

Taking into account the planned sensitivity of the CANNEX experiment to force
measurements equal to 0.1 nN/m2, the prospective constraints on the dilaton parameters λ
and A0 were obtained in Ref. [109] from an assumption that no extra forces in addition to
the Casimir one were registered.

5. Discussion

In the foregoing, we have considered different models of dark energy, which makes up
to approximately 68% of the total energy of the Universe. These models differ significantly
in their physical meaning and theoretical background. In some sense, the model of dark
energy using Einstein’s equations with the cosmological term provides the most economic
description of the dark energy which does not require any changes in the mathematical for-
malism of fundamental physical theories and introduction of additional physical substances
with unusual properties. It follows that this model can be considered as preferable.

All the other types of models considered above, using the concepts of the quintessence,
modified gravity and hypothetical particles with unusual physical properties, in any event
are based on an introduction of some additional scalar field with one or other type of the
interaction potential and the function describing its interaction with the baryonic matter.
There are many models specifying these functions in the one way or another, and in each
case much work should be done to reconcile the model properties with all the available
data from different experiments and astrophysical observations.

It should be emphasized that the chameleon, symmetron and environment-dependent
dilaton fields and corresponding particles are radically different from the particles and
fields used in the Standard Model of elementary particle physics. The particles and fields
introduced for the understanding of dark energy are not similar to those introduced,
for instance, in different approaches to the theoretical description of dark matter. In fact,
the hypothetical particle constituents of dark matter, such as axions or weakly interacting
massive particles, can be understood as some extensions of the Standard Model. Axions,
for instance, were introduced [110,111] for a resolution of the problem of strong CP violation
in quantum chromodynamics with no relation to the concept of dark matter.

It might be well to point out that in the framework of quantum theory the explanation
of dark energy in terms of the cosmological constant is burdened by the problem called
the vacuum catastrophe (see Section 2) and the alternative explanations using a variety of
scalar fields imply a departure from the well approved general theory of relativity in favor
of the scalar–tensor theory. Because of this, one may expect that the final resolution of the
problem of dark energy will be found only in the context of quantum theory of gravitation.
Meantime any experimental constraints on the proposed models of dark energy are of
much importance by guiding the most prospective ways for further progress in cosmology.

6. Conclusions

To conclude, none of the model approaches to understanding of the dark energy
discussed above can be considered as fully satisfactory. This increases the role of experiment,
which may not only confirm the theoretical predictions, but to place so strong constraints
on the parameters of some model that it will become completely unusable. In this regard,
the laboratory experiments are the most promising because all their parameters are under
the strict control which is often not the case for astrophysical observations.

In the above, we mentioned several laboratory experiments aimed to constrain the
parameters of chameleon, symmetron and environment-dependent dilaton fields, such
as using the atom interferometry, the interaction of the hypothetical scalar fields with
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the electromagnetic field and scattering of ultracold neutrons (see Section 4). The main
attention, however, was devoted to the possibility of constraining the parameters of these
scalar fields from precise measurements of the Casimir force.

As is shown in the literature reviewed in Section 4, the parameters of chameleon, sym-
metron and environment-dependent dilaton fields can be constrained from the experiments
on measuring the Casimir force. The prospective constraints, which can be obtained in this
way, are quite competitive, as compared to the other laboratory experiments. For obtaining
these constraints, it will be necessary, however, to create the next generation of setups which
will allow measuring the Casimir interaction at large separations up to 10 micrometers and
even more.

This work is currently in progress. Its successful completion will allow us to not
only place new more strong constraints on the models of dark energy, but also solve the
remaining problems of the Casimir physics.
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Abstract: The existence of even the simplest magnetized wormholes may lead to observable con-
sequences. In the case where both the wormhole and the magnetic field around its mouths are
static and spherically symmetric, and gas in the region near the wormhole falls radially into it, the
former’s spectrum contains bright cyclotron or synchrotron lines due to the interaction of charged
plasma particles with the magnetic field. At the same time, due to spherical symmetry, the radiation
is non-polarized. The emission of this just-described exotic type (non-thermal, but non-polarized)
may be a wormhole signature. Also, in this scenario, the formation of an accretion disk is still quite
possible at some distance from the wormhole, but a monopole magnetic field could complicate this
process and lead to the emergence of asymmetrical and one-sided relativistic jets.

Keywords: wormholes; accretion; magnetic field

1. Introduction
1.1. Wormholes

According to the “boring physics conjecture” [1], we live inR4 or, at best, inR×S3. On
the other hand, Kardashev et al. [2] proposed the hypothesis that some galactic nuclei are,
in fact, wormhole mouths (see also Bambi [3], Li and Bambi [4], Zhou et al. [5]). Evidently,
the time is not ripe to discuss the topology of the Universe purely theoretically.

The study of wormholes is of serious interest since their properties and the very
possibility of their existence can have a strong impact on our ideas about the cosmology of
the Universe.

Wormholes (also known as “Einstein-Rosen bridges”) were first proposed by Einstein
and Rosen [6] within the framework of general relativity. The Einstein–Rosen bridge
solution describes an empty, spherically symmetric wormhole geometry that connects two
asymptotically flat regions of spacetime. These hypothetical objects are essentially shortcuts
through spacetime, connecting distant regions of the Universe or even different universes.
This idea has generated great interest among scientists, inspiring many fascinating theories
and proposals.

The solutions to the equations of general relativity allow for the existence of traversable
and non-traversable (those that collapse too soon to be traversed) wormholes depending
on the energy-matter content of spacetime. It should be noted that the theory of traversable
wormholes, which could theoretically allow for fast interstellar travel, has a lot of constraints
and challenges, including the requirement for negative energy density “exotic” matter
that should stabilize the wormhole throat in order to prevent its collapse. Non-traversable
wormholes also have important implications for theoretical physics and cosmology, al-
lowing us to test the limits of general relativity and study the nature of spacetime under
extreme conditions.

One of the serious problems in the study of wormholes is the preservation of causality.
Traversable wormholes could allow time travel, which could lead to apparent paradoxes [7].
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One such paradox is the classic “grandfather paradox”. Imagine a scenario where a man,
equipped with the ability to travel through time, makes a fateful decision to eliminate his
own grandfather during infancy. With resolve, he journeys into the past, sneaks up on
the helpless infant, and takes a shot. What unfolds next? The situation seems to spiral
into a paradox. On one hand, the baby is indeed killed. Yet, on the other hand, the act
cannot come to pass, for if the grandfather perishes, the father of the time-traveler—and
consequently the time-traveler himself—would never come into existence, leaving no one to
carry out the fatal deed. Theoretical approaches have been proposed that allow spacetime
to avoid paradoxes [8]. “The Chronology Protection Conjecture”, proposed by Stephen
Hawking [9], suggests that in order to preserve causality, the laws of physics prevent the
formation of closed time-like curves. The stability and consistency of wormholes within
the framework of general relativity continue to be actively studied.

There are many authors who have tried to determine the unique observational features
of wormholes [3–5,10–19], in particular, the features that distinguish wormholes from black
holes. However, almost all of them have concluded that these features, even when they
exist, are indeed difficult (and in some cases, simply impossible) to observe with modern
astronomical equipment. In our work, we try to use objects and physical mechanisms that
are well known in astrophysics, allowing us to obtain strong observational manifestations.

1.2. Accretion

Accretion is a very important phenomenon, occurring in various astrophysical objects
such as normal stars and compact relativistic objects (including active galactic nuclei). The
understanding of accretion processes is important for explaining the observed properties
of these objects, such as their luminosity, spectral characteristics, and dynamics. In many
astrophysical scenarios, magnetic fields play a significant role in shaping the flows of
accreting matter. The interaction between magnetic fields and accreting matter adds
additional complexity to the accretion process, leading to various phenomena such as the
formation of magnetized accretion disks [20] and collimated jets [21,22] and the emergence
of magnetic turbulence.

It is generally accepted that active galactic nuclei (AGNs) and quasars (QSOs) often
possess a magnetized accretion disk [23,24]. There are many models of accretion disk
structures. The most commonly used and well-known model is the standard Shakura–
Sunyaev model [25]. In this model, the disk is held vertically by thermal pressure and
turbulent viscosity is used to explain the transfer of angular momentum required by the
accretion flow. Shakura–Sunyaev’s model is simple and convenient, but it has a number of
problems. For example, this model does not predict X-ray emission in AGN spectra, and
recent observations have shown that the size of the accretion disk is several times larger
than that predicted by the Shakura–Sunyaev model (see, for example, Fausnaugh et al. [26]).

In addition, there are other models. We will list just a few of them. For example, Balbus
and Hawley [27] showed that accretion disks have a robust mechanism for generating magne-
tohydrodynamic (MHD) turbulence due to magnetorotational instability. Miller and Stone [28]
studied disks with initial Gaussian density profiles supported by thermal pressure. In the
case of an initial axial magnetic field, Miller and Stone [28] observed that the saturated
magnetic pressure dominates thermal pressure not only in the corona but also everywhere
in the disk. Previously, Eardley and Lightman [29] and Field and Rogers [30] considered
analytic models of thin accretion disks with angular momentum transfer due to magnetic
stresses. Both these works included magnetic loops with sizes of the order of the disk thick-
ness. Shalybkov and Rüdiger [31], Campbell [32], and Ogilvie and Livio [33] studied models
of magnetized accretion disks with an externally imposed large-scale vertical magnetic field
and anomalous magnetic field diffusion due to enhanced turbulent diffusion. In general, it can
be said that studying accretion processes in the presence of magnetic fields is very important
for advancing our understanding of astrophysical phenomena.
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1.3. Magnetic Fields

Magnetic fields in the Universe are generated by various processes, such as dynamo ac-
tion in stellar interiors, the amplification of primordial magnetic fields in the early Universe,
and the compression and stretching of magnetic fields in accretion disks. Magnetic fields
are typically classified based on their origin, strength, and topology. There are, for example,
dipole, quadrupole, and toroidal fields. Monopole magnetic fields, which have isolated
magnetic poles, are a hypothetical possibility that could have important consequences
for astrophysics and fundamental physics if detected. The importance of the monopole
field is that it directly connects the properties of experimentally observable fields with the
topology of spacetime.

1.4. Wormholes with Monopole Magnetic Fields

Due to their unique properties, wormholes provide an interesting opportunity to use
them as an object that can theoretically generate a monopole magnetic field. And, there are
many works linking wormholes with a monopole field [34–42].

In the pioneering work of Misner and Wheeler [34], the concept of traversable worm-
holes was introduced, and it was also pointed out that they might have magnetic and scalar
fields (“charge without charge”). After that, Bronnikov [35] and Ellis [36] considered a
specific solution of Einstein’s equation where wormholes are supported by electromagnetic
and scalar fields.

Agnese and Camera [37] demonstrated that a Kaluza–Klein theory in five dimensions,
derived through a conformal gauge approach called the “total space”, can depict spacetimes
that accommodate both magnetic monopoles and wormhole structures. This means that
within this theoretical framework, it is possible to describe regions of space where magnetic
charges exist alongside passages connecting different points in spacetime.

Prat-Camps et al. [38] used an interesting approach. While the idea of creating a
wormhole in a laboratory may seem daunting, they used an unusual theoretical approach
to construct a wormhole for electromagnetic waves using metamaterials. This would
enable the transmission of electromagnetic waves through an invisible tunnel between
two points in space. The researchers successfully built and demonstrated a magnetostatic
wormhole. By utilizing magnetic metamaterials and metasurfaces, their wormhole was
capable of transferring magnetic fields from one spatial point to another without detec-
tion. Experimental results illustrated that the magnetic field generated at one end of the
wormhole appeared at the other end as an isolated monopole magnetic field. This cre-
ated the illusion of a magnetic field traversing through a tunnel outside of conventional
three-dimensional space.

Romero and Bellini [39] applied the Weitzeböck-Induced Matter Theory (WIMT) to
two specific metrics: the Gullstränd–Painlevé and Reissner–Nordström metrics. This
method is a recent development that expands upon the Induced Matter Theory by utilizing
Weitzeböck’s geometry on a curved 5D manifold. The key insight exploited here is that
the Riemann–Weitzenbök curvature tensor is consistently null. Through this approach, the
study revealed the existence of currents, the interpretation of which suggests the potential
presence of stable gravito-magnetic monopoles.

Romero and Bellini [40] utilized the Weitzenböck-Induced Matter Theory to analyze
Schwarzschild wormholes within an extended 5D manifold, which included non-vacuum
conditions. They investigated various ways of describing the wormholes, known as folia-
tions, and examined the geodesic equations governing the motion of observers situated
within a traversable wormhole. Additionally, the study explored how these observers could
detect gravito-magnetic monopoles, which are essentially the gravitational analogs of mag-
netic monopoles, and contrasted them with gravito-electric sources typically observed in
the outer region of Schwarzschild black holes. The researchers also calculated the densities
of these monopoles and discussed their quantization according to the principles outlined by
Dirac. Their analysis revealed a duality within the extended Einstein–Maxwell equations,
linking electric and magnetic charges across spatial regions that are causally disconnected.

268



Universe 2024, 10, 108

Romero and Bellini [41] focused on examining a traversable wormhole generated
through a transformation applied to the 4D Dymnikova metric, which characterizes an-
alytical black holes. The study employed a coordinate transformation method inspired
by the Einstein–Rosen bridge to analyze a particular set of geodesics. These geodesics
involved test particles carrying electric charges, which, due to the transformation, induced
an effective magnetic monopole that could be observed by external observers situated out-
side the wormhole. Given that traditional Riemannian geometry does not account for the
existence of magnetic monopoles, the study introduced torsional geometry as a potential
explanation for the geometric induction of magnetic monopoles. The researchers derived
an equation linking torsion and magnetic fields, along with a mathematical expression
similar to Dirac’s equation that describes magnetic and electric charges. This formulation
suggests that torsion could give rise to a fundamental length scale, enabling the generation
of a magnetic field and introducing a discretization of spacetime.

Cañate [42] described the discovery of magnetically charged ultrastatic and spherically
symmetric spacetime solutions within the framework of both linear and nonlinear electrody-
namics, coupled with Einstein-scalar-Gauss–Bonnet (EsGB-L(F )) gravity. These solutions
are characterized by an electromagnetic Lagrangian density L(F ), which solely depends
on the electromagnetic invariant F = FαβFαβ/4. The paper highlighted a particular class
of these solutions, where the electromagnetic invariant F attains a strict global maximum
value F0 across the entire solution domain, and the Lagrangian density L0 = L(F0) > 0.
It was shown that such solutions can be interpreted as ultrastatic wormhole spacetime
geometries, with the radius of the wormhole throat determined by the scalar charge and
the quantity L0. Examples provided included Maxwell’s theory of electrodynamics (linear
electrodynamics) withLLED = F , which yields the magnetic dual of the purely electric Ellis–
Bronnikov EsGB Maxwell wormhole. Additionally, nonlinear electrodynamics (NLED)
models, such as Born–Infeld LBI = −4β2 + 4β2

√
1 +F/(2β2) and Euler–Heisenberg in

the weak-field limit LEH = LLED + γF 2/2, were discussed. Using these NLED models,
two new magnetically charged ultrastatic traversable wormholes (EsGB Born–Infeld and
EsGB Euler–Heisenberg wormholes) were presented as exact solutions within EsGB-L(F )
gravity. These solutions do not require exotic matter, and it was demonstrated that they
share the characteristic that, in the weak electromagnetic field region, the magnetically
charged Ellis–Bronnikov EsGB Maxwell wormhole is recovered.

1.5. Polarization

Let us talk in more detail about the mechanisms for generating polarized radiation.
Polarization, being sensitive to the anisotropy of the matter distribution, plays a crucial
role in the study of optically unresolved central regions of AGNs, such as the accretion
disk. An accretion disk is a typical example of a radiating region with a non-spherically
symmetric electron density distribution. As a result of scattering by plasma electrons, the
disk radiation becomes polarized. Polarimetric observations indicate that AGNs and QSOs
have polarized emissions across a variety of wavelength ranges, from ultraviolet to radio
waves, in continuous-wave and linear emissions [43–48]. These works discuss that the
observed polarization has different mechanisms of origin: light scattering in accretion disks,
which occurs on both free and bound electrons, and cyclotron and synchrotron radiation of
charged particles. These mechanisms can work within different structures, such as plane
and warped accretion disks, as well as toroidal clumpy rings surrounding the accretion
disks and jets. Often, different models are proposed to explain the same source. There
are many works devoted to the study of various aspects of the structure and radiation of
AGNs and quasars. Of particular interest is the mechanism of the generation of relativistic
jets. According to modern concepts, a large-scale magnetic field plays a key role in the
launch of relativistic jets [21,22,49], and its toroidal component effectively collimates the
jets [50,51]. The magnetic field manifests itself in linearly polarized synchrotron radiation
and the Faraday rotation effect. In BL Lac objects (BL Lacs), the electric vector position
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angle often coincides with the local direction of the jet [52–54], while quasars exhibit a
distribution without a preferred direction [53].

1.6. Our Specific Approach

Previously, we considered the possible accretion of matter into a wormhole [55,56].
Specifically, we studied the case where accretion into a traversable wormhole occurs from
both sides, each of which is located at the center of the active galactic nucleus. As a result,
high-energy accretion flows collide inside the wormhole, which can lead to plasma heating
to extremely high temperatures of up to 1014 K. Plasma with such parameters would exhibit
a very specific spectrum, distinct from that of ordinary active galactic nuclei.

Now, we consider accretion in the presence of a magnetic field, assuming that the
wormhole has a monopole magnetic field, which greatly distinguishes it from the much
better-studied Kerr black hole.

In this paper, we argue that the existence of even the simplest magnetized wormholes
may lead to observable consequences not yet discussed (to the best of our knowledge) in
the literature. Indeed, consider the case where both the wormhole and the magnetic field
around its mouth are static and spherically symmetric. Suppose that gas in the region near
the wormhole falls radially into it Then, the former’s spectrum contains bright cyclotron
(or, in relativistic cases, synchrotron) lines due to the interaction of the charged plasma
particles with the magnetic field. At the same time, due to spherical symmetry, the radiation
is non-polarized. This is a rather unusual combination since in known astrophysical objects,
cyclotron and synchrotron radiation is caused, as a rule, by a dipole-like magnetic field,
which is not spherically symmetric. In addition, synchrotron radiation can be generated,
for example, by relativistic jets, the geometry of which also leads to strong polarization.

Thus, we can speculate that the emission of the just-described exotic type (cyclotron
or synchrotron, but non-polarized) may be a wormhole signature.

To convey the essence of this phenomenon we also show the possible trajectories of a
charged particle near a wormhole using numerical simulations, under certain simplifying
assumptions.

Very little is known about wormholes, including their birth and evolution. We try to
compensate for this by applying the most general arguments to the simplest astrophysical
monopole (the meaning of the word “simplest” is assumed to be intuitively clear). In
particular, they must be static and spherically symmetric.

Although theoretically, the monopole object can be, for example, a magnetically
charged Reissner–Nordström black hole with its horizons, singularities, and an infinite set
of asymptotically flat ends, it is by no means simple. So, we do not consider such a case.

2. Our Model and Some Calculations
2.1. Toy Model and Basic Equations

The simplest compact radially magnetized object can be a wormhole based on the
Reissner–Nordström spacetime (actually, as long as the magnetic field outside the object is
a monopole, the structure of the former is irrelevant).

Pick three positive parameters: Q; m, where m > Q; and r0, where the former two
describe the magnetic charge and “mass” of the wormhole, respectively, and r0 obeys the
inequality

r0 > rHorizon, rHorizon ≡ m +
√

m2 −Q2

and characterizes “the size” of the wormhole. The auxiliary “half-wormhole”, W1, is defined as

W1 : ds2 = −ν(r)dt2 + ν(r)−1dr2 + r2(dθ2 + cos2 θ dφ), (1)

where
r > r0, t ∈ R, ν ≡ 1− 2m

r + Q2

r2 . (2)
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W1 is almost the sought-after spacetime: it is static, spherically symmetric, and when
endowed with the radial magnetic field

B =
(

Q/r2
)

er̂ (3)

solves the Maxwell–Einstein equations. The only “drawback” of W1 is that it has a single
asymptotically flat end, so W1 is an extendable—where one of its extensions is denoted as
U1—funnel rather than a wormhole. To eliminate this drawback, we define the wormhole,
W, as a pair of equal funnels, U1 and U2, with their stems identified (the existence of a
suitable isometry relating regions U1 and U2 is a non-trivial condition), as illustrated in
Figure 1 in the work by Morris et al. [57].

2.2. Interaction of Accreting Matter with a Monopole Magnetic Field

A detailed description of the behavior of a plasma flow in the presence of a monopole
magnetic field is an extremely difficult task and is beyond the scope of the current rather
phenomenological study. And although in this work, we primarily consider spherical
accretion, one can reasonably assume that a monopole field would impede the movement
of plasma along Keplerian orbits near the wormhole and, in particular, complicate the
formation of an accretion disk. However, the formation of an accretion disk is still quite
possible at some distance from the wormhole, where the low magnetic field and low
temperature (and, therefore, low degree of ionization) of the accreting matter would not
allow the monopole field to strongly influence the matter. It should be noted that accretion
disks near wormholes without their own magnetic fields have already been considered in
the literature [11,56,58].

We can also purely phenomenologically study the formation of relativistic jets by the
accretion disk at a wormhole with a monopole magnetic field. Since the disk wind would be
suppressed by a monopole field, the formation of a jet is possible, most likely only through
the Blandford–Znajek mechanism [21], in which the surrounding interstellar matter (not
from the disk) is collimated due to the interaction of the disk’s poloidal magnetic field with
the rotating black hole (in our case, the wormhole). Thus, if the wormhole rotates, jets can,
in principle, form. Moreover, if the monopole field of a wormhole is much stronger than the
dipole field of the accretion disk, the cyclotron radiation from them would be significantly
stronger and at other frequencies compared to the black hole case. It is also possible that
the jets themselves would be more powerful/faster, but this is not certain. If the strength
of the wormhole’s monopole field is comparable to the disk’s dipole field, as a result of
the superposition of fields at one of the poles of the dipole field, there would be a sharp
decrease in the field’s strength. As a result, firstly, the cyclotron radiation from this side
of the jet would be significantly weaker, and, secondly, the jet itself may be less powerful,
less collimated, or even not formed at all (but this, again, is not certain; the mechanism of
jet formation is quite complex and is still not fully understood). It should be noted that
asymmetrical and one-sided jets have actually been observed near some active galactic
nuclei [59–61], and this fact is rather difficult to explain using classical theories, whereas
our wormhole model offers a simple explanation.

2.3. Numerical Simulation

Let us consider a simpler problem, namely the movement of one charged particle
near a gravitating object with a monopole magnetic field in the simplified fictional space
R3 (which is the Newtonian approximation of our metric W), where we use the Newton
gravity approximation (here, the “mass” and the charge of the wormhole are described by
the parameters m and Q, and it is a point-like object at the origin). In this case, the trajectory
of the particle moving far enough from a gravitating object (so that relativistic effects can be
neglected as a first approximation) can be obtained relatively easily (in our model, we use
non-relativistic Maxwell equations). Let us consider, for example, a proton near a point-like
object with the mass of the Sun M�. In order to define the magnetic field strength, we set
the value of the field B10 at a radius of R = 10 km. For simplicity, we neglect the loss of
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proton energy due to cyclotron radiation since the trajectory is built on a time interval of
only 0.01 s.

We have numerically calculated the proton trajectories for various values of parameters
such as the magnetic field strength B10, starting position Rst, and velocity Vst of a proton
using a rather simple method. The force acting on the proton consists of the Lorentz force
and the gravitational force ~F = ~FL + ~Fg = qp/c[~V × ~B] − GM�mp~r/r3, where qp is the
proton charge, c is the speed of light, ~V is the proton speed, G is the gravitational constant,
mp is the proton mass,~r is the radius vector, ~B = µ~r/r3 is the magnetic monopole field
strength, and µ is the magnetic permeability, which, in our case, is µ = B10R2.

In this calculation, for convenience, we measure the distance in centimeters, the
mass in grams, and the time in 10−8 s. First, we set the starting position x0, y0, z0 and
starting velocity ẋ0, ẏ0, ẏ0 in the Cartesian coordinate system. Then, at each iteration, the
acceleration of the proton due to the Lorentz force and the Newtonian force of attraction
are calculated as follows:

r = (x2 + y2 + z2)1/2,

ẍ = ((yż− ẏz)(108B10)− xGM�)/r3,

ÿ = ((zẋ− żx)(108B10)− yGM�)/r3,

z̈ = ((xẏ− ẋy)(108B10)− zGM�)/r3.

(4)

After that, the change in speed due to acceleration and the change in coordinates due
to speed are calculated as follows:

ẋ → ẋ + ẍdt,

ẏ→ ẏ + ÿdt,

ż→ ż + z̈dt,

x → x + ẋdt,

y→ y + ẏdt,

z→ z + żdt,

(5)

where in this case, the optimal value of time step dt turned out to be 0.001 in our units.
Thus, 109 iterations were performed for the proton flight time of 0.01 s. If the proton

flew closer to the central object than 10 km, we considered that it would inevitably fall
on the object and the calculation would be stopped. To avoid the accumulation of errors,
we ensured that the total (kinetic plus potential) energy of the proton divided by the
proton mass, Ep/mp = (ẋ2 + ẏ2 + ż2)/2.0− GM�/

√
(x2 + y2 + z2), did not change by

more than 0.001.
Figure 1 shows some of these trajectories. We can see that even a relatively weak

(Bg ∼ 1G) monopole magnetic field prevents, as we conjectured earlier, the emergence
of classical Keplerian orbits around the object. Instead, the proton begins to form spiral
trajectories around radial magnetic field lines. The form of this spiral and the direction of
the proton movement strongly depend on the parameters. In particular, at ∼67,000 km/s,
the proton’s trajectory becomes closed (see the bottom picture in Figure 1). This is a kind of
“first escape velocity” for this particular situation. However, it should be noted that if we
take into account the loss of energy due to cyclotron radiation, such circular orbits would
not be able to exist for long and would turn into spiral ones. Accordingly, at speeds lower
than ∼67,000 km/s, the proton moves toward the central object, and at speeds greater
than ∼67,000 km/s, it moves away from the central object. As the magnetic field strength
increases, the radius of the helix quickly decreases, essentially leading to the almost radial
motion of the proton.
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Figure 1. Trajectories (black line) of a proton near a point-like gravitating object (black sphere) in
the fictional space with the mass of the Sun and a monopole magnetic field for different starting
parameter values. B10 is the magnetic field strength at R = 10 km, and Rst and Vst are the starting
position and speed of a particle in km and km/s, respectively.
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3. Conclusions

The study of accretion into wormholes in the presence of a monopole magnetic field
could have important consequences for fundamental physics and cosmology. Observations
of accretion flow near wormholes could provide insights into the nature of dark matter,
the origin of high-energy cosmic rays, and the nature and properties of compact objects in
active galactic nuclei. Also, the study of wormholes and magnetic fields offers a unique
opportunity to test the limits of general relativity and explore exotic spacetime geometries
beyond the predictions of classical physics, offering a way to explore the interaction between
gravity, magnetism, and spacetime geometry. Theoretical models, numerical simulations,
and astronomical observations of hypothetical accreting wormholes can provide valuable
information about the physical parameters, dynamics, and observable signatures of these
interesting astrophysical objects.

In the current paper, we have shown that a wormhole with a monopole magnetic field can
generate non-polarized cyclotron radiation, which is unusual for known astrophysical objects.

Possible candidates for such objects include both supermassive relativistic objects in
the centers of galaxies and primordial wormholes of medium and small “mass” formed in
the early Universe. In particular, the latter may appear as star-like objects with an unusual
non-polarized non-thermal spectrum consisting of cyclotron or synchrotron emissions.

Calculations based on a toy model suggest that even a relatively weak (∼1 G) monopole
magnetic field prevents the emergence of classical Keplerian orbits around the object, which
justifies our conjecture about the mainly radial character of accretion at a fairly close dis-
tance from the wormhole. However, the formation of an accretion disk is still quite possible
at some distance from the wormhole.

Also, if we consider the case of the accretion disk, a monopole magnetic field could
complicate its formation near the wormhole and lead to the emergence of asymmetrical
and one-sided relativistic jets.

Future space missions and ground-based facilities will play important roles in advanc-
ing our understanding of magnetized accretion into relativistic objects and addressing open
questions in modern astrophysics. Space observatories, such as the James Webb Space Tele-
scope, the Nancy Grace Roman Space Telescope, and the European Space Agency’s Athena
mission, will significantly improve sensitivity and wavelength coverage for studying
magnetized accretion flows. Ground-based facilities such as the Atacama Large Millime-
ter/Submillimeter Array, the Square Kilometer Array, and the upcoming Giant Magellan
Telescope and Extremely Large Telescope will allow astrophysicists to probe magnetized
accretion with high angular resolution and sensitivity.

Author Contributions: Conceptualization, M.P. and S.K.; methodology, M.P. and S.K.; validation,
M.P. and S.K.; formal analysis, M.P., S.K., S.B. and T.N.; investigation, S.B. and T.N.; resources,
S.B. and T.N.; data curation, S.B. and T.N.; writing–original draft preparation, M.P., S.K. and S.B.;
writing–review and editing, M.P. and S.K.; visualization, M.P.; supervision, M.P. and S.K.; project
administration, M.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the state order of the Central Astronomical Observatory at
Pulkovo as part of the planned research topic for “MAGION”—Physics and Evolution of Stars and
Active Galactic Nuclei.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Visser, M. Lorentzian Wormholes. From Einstein to Hawking; American Institute of Physics: Woodbury, NY, USA, 1995.
2. Kardashev, N.S.; Novikov, I.D.; Shatskiy, A.A. Astrophysics of Wormholes. Int. J. Mod. Phys. D 2007, 16, 909–926. [CrossRef]
3. Bambi, C. Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for

mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 2013, 87, 107501. [CrossRef]
4. Li, Z.; Bambi, C. Distinguishing black holes and wormholes with orbiting hot spots. Phys. Rev. D 2014, 90, 024071. [CrossRef]

274



Universe 2024, 10, 108

5. Zhou, M.; Cardenas-Avendano, A.; Bambi, C.; Kleihaus, B.; Kunz, J. Search for astrophysical rotating Ellis wormholes with x-ray
reflection spectroscopy. Phys. Rev. D 2016, 94, 024036. [CrossRef]

6. Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [CrossRef]
7. Einstein, A. Albert Einstein: Philosopher-Scientist; Cambridge University Press: Cambridge, UK, 1949.
8. Krasnikov, S. Time travel paradox. Phys. Rev. D 2002, 65, 064013. [CrossRef]
9. Hawking, S.W. Chronology protection conjecture. Phys. Rev. D 1992, 46, 603–611. [CrossRef] [PubMed]
10. Harko, T.; Kovács, Z.; Lobo, F.S.N. Electromagnetic signatures of thin accretion disks in wormhole geometries. Phys. Rev. D 2008,

78, 084005. [CrossRef]
11. Harko, T.; Kovács, Z.; Lobo, F.S.N. Thin accretion disks in stationary axisymmetric wormhole spacetimes. Phys. Rev. D 2009,

79, 064001. [CrossRef]
12. Tsukamoto, N.; Harada, T.; Yajima, K. Can we distinguish between black holes and wormholes by their Einstein-ring systems?

Phys. Rev. D 2012, 86, 104062. [CrossRef]
13. Yoo, C.M.; Harada, T.; Tsukamoto, N. Wave effect in gravitational lensing by the Ellis wormhole. Phys. Rev. D 2013, 87, 084045.

[CrossRef]
14. Bambi, C. Broad Kα iron line from accretion disks around traversable wormholes. Phys. Rev. D 2013, 87, 084039. [CrossRef]
15. Dokuchaev, V.I.; Eroshenko, Y.N. Nonorientable wormholes as portals to the mirror world. Phys. Rev. D 2014, 90, 024056.

[CrossRef]
16. Dai, D.C.; Stojkovic, D. Observing a wormhole. Phys. Rev. D 2019, 100, 083513. [CrossRef]
17. Paul, S.; Shaikh, R.; Banerjee, P.; Sarkar, T. Observational signatures of wormholes with thin accretion disks. J. Cosmol. Astropart.

Phys. 2020, 2020, 055. [CrossRef]
18. Tripathi, A.; Zhou, B.; Abdikamalov, A.B.; Ayzenberg, D.; Bambi, C. Search for traversable wormholes in active galactic nuclei

using X-ray data. Phys. Rev. D 2020, 101, 064030. [CrossRef]
19. Bambi, C.; Stojkovic, D. Astrophysical Wormholes. Universe 2021, 7, 136. [CrossRef]
20. Bardeen, J.M.; Wagoner, R.V. Relativistic Disks. I. Uniform Rotation. Astrophys. J. 1971, 167, 359. [CrossRef]
21. Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977,

179, 433–456. [CrossRef]
22. Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron.

Soc. 1982, 199, 883–903. [CrossRef]
23. Blaes, O.M. Course 3: Physics Fundamentals of Luminous Accretion Disks around Black Holes. In Accretion Discs, Jets and High

Energy Phenomena in Astrophysics; Beskin, V., Henri, G., Pelletier, G., Dalibard, J., Eds.; Springer: Berlin/Heidelberg, Germany,
2004; Volume 78, pp. 137–185.

24. Moran, J.M. The Black-Hole Accretion Disk in NGC 4258: One of Nature’s Most Beautiful Dynamical Systems. In Proceedings of
the Frontiers of Astrophysics: A Celebration of NRAO’s 50th Anniversary, Charlottesville, VA, USA, 18–21 June 2007; Bridle,
A.H., Condon, J.J., Hunt, G.C., Eds.; Astronomical Society of the Pacific Conference Series; Volume 395, p. 87.

25. Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355.
26. Fausnaugh, M.M.; Denney, K.D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K.V.; De Rosa, G.; Goad, M.R.;

Horne, K.; et al. Space Telescope and Optical Reverberation Mapping Project. III. Optical Continuum Emission and Broadband
Time Delays in NGC 5548. Astrophys. J. 2016, 821, 56. [CrossRef]

27. Balbus, S.A.; Hawley, J.F. Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 1998, 70, 1–53.
[CrossRef]

28. Miller, K.A.; Stone, J.M. The Formation and Structure of a Strongly Magnetized Corona above a Weakly Magnetized Accretion
Disk. Astrophys. J. 2000, 534, 398–419. [CrossRef]

29. Eardley, D.M.; Lightman, A.P. Magnetic viscosity in relativistic accretion disks. Astrophys. J. 1975, 200, 187–203. [CrossRef]
30. Field, G.B.; Rogers, R.D. Radiation from Magnetized Accretion Disks in Active Galactic Nuclei. Astrophys. J. 1993, 403, 94.

[CrossRef]
31. Shalybkov, D.; Rüdiger, G. Magnetic field dragging and the vertical structure of thin accretion discs. Mon. Not. R. Astron. Soc.

2000, 315, 762–766. [CrossRef]
32. Campbell, C.G. An accretion disc model with a magnetic wind and turbulent viscosity. Mon. Not. R. Astron. Soc. 2000,

317, 501–527. [CrossRef]
33. Ogilvie, G.I.; Livio, M. Launching of Jets and the Vertical Structure of Accretion Disks. Astrophys. J. 2001, 553, 158–173. [CrossRef]
34. Misner, C.W.; Wheeler, J.A. Classical physics as geometry. Ann. Phys. 1957, 2, 525–603. [CrossRef]
35. Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Pol. B 1973, 4, 251–266.
36. Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [CrossRef]
37. Agnese, A.G.; Camera, M.L. Kaluza-Klein Magnetic Monopoles and Wormholes. Mod. Phys. Lett. A 1996, 11, 181–185. [CrossRef]
38. Prat-Camps, J.; Navau, C.; Sanchez, A. A Magnetic Wormhole. Sci. Rep. 2015, 5, 12488. [CrossRef]
39. Romero, J.M.; Bellini, M. WIMT in Gullstränd-Painlevé and Reissner-Nordström metrics: Induced stable gravito-magnetic

monopoles. Eur. Phys. J. C 2015, 75, 201. [CrossRef]
40. Romero, J.M.; Bellini, M. Gravito-magnetic monopoles in traversable wormholes from WIMT. Phys. Dark Universe 2017, 15, 47–52.

[CrossRef]

275



Universe 2024, 10, 108

41. Romero, J.M.; Bellini, M. Traversable wormhole magnetic monopoles from Dymnikova metric. Eur. Phys. J. Plus 2019, 134, 579.
[CrossRef]

42. Cañate, P. Simple method to generate magnetically charged ultrastatic traversable wormholes without exotic matter in Einstein-
scalar-Gauss-Bonnet gravity. Phys. Rev. D 2023, 108, 104048. [CrossRef]

43. Martin, P.G.; Thompson, I.B.; Maza, J.; Angel, J.R.P. The polarization of Seyfert galaxies. Astrophys. J. 1983, 266, 470–478.
[CrossRef]

44. Impey, C.D.; Malkan, M.A.; Webb, W.; Petry, C.E. Ultraviolet Spectropolarimetry of High-Redshift Quasars with the Hubble
Space Telescope. Astrophys. J. 1995, 440, 80. [CrossRef]

45. Wilkes, B.J.; Schmidt, G.D.; Smith, P.S.; Mathur, S.; McLeod, K.K. Optical Detection of the Hidden Nuclear Engine in NGC 4258.
Astrophys. J. 1995, 455, L13. [CrossRef]

46. Barth, A.J.; Tran, H.D.; Brotherton, M.S.; Filippenko, A.V.; Ho, L.C.; van Breugel, W.; Antonucci, R.; Goodrich, R.W. Polarized
Narrow-Line Emission from the Nucleus of NGC 4258. Astron. J. 1999, 118, 1609–1617. [CrossRef]

47. Smith, J.E.; Young, S.; Robinson, A.; Corbett, E.A.; Giannuzzo, M.E.; Axon, D.J.; Hough, J.H. A spectropolarimetric atlas of Seyfert
1 galaxies. Mon. Not. R. Astron. Soc. 2002, 335, 773–798. [CrossRef]

48. Modjaz, M.; Moran, J.M.; Kondratko, P.T.; Greenhill, L.J. Probing the Magnetic Field at Subparsec Radii in the Accretion Disk of
NGC 4258. Astrophys. J. 2005, 626, 104–119. [CrossRef]

49. Lovelace, R.V.E.; Wang, J.C.L.; Sulkanen, M.E. Self-collimated Electromagnetic Jets from Magnetized Accretion Disks. Astrophys.
J. 1987, 315, 504. [CrossRef]

50. Benford, G. Current-carrying beams in astrophysics: Models for double radio sources and jets. Mon. Not. R. Astron. Soc. 1978,
183, 29–48. [CrossRef]

51. Chan, K.L.; Henriksen, R.N. On the supersonic dynamics of magnetized jets of thermal gas in radio galaxies. Astrophys. J. 1980,
241, 534–551. [CrossRef]

52. Gabuzda, D.C.; Pushkarev, A.B.; Cawthorne, T.V. Analysis of λ=6cm VLBI polarization observations of a complete sample of
northern BL Lacertae objects. Mon. Not. R. Astron. Soc. 2000, 319, 1109–1124. [CrossRef]

53. Lister, M.L.; Homan, D.C. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. I. First-Epoch 15 GHz
Linear Polarization Images. Astron. J. 2005, 130, 1389–1417. [CrossRef]

54. O’Sullivan, S.P.; Gabuzda, D.C. Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets.
Mon. Not. R. Astron. Soc. 2009, 400, 26–42. [CrossRef]

55. Piotrovich, M.Y.; Krasnikov, S.V.; Buliga, S.D.; Natsvlishvili, T.M. Search for wormhole candidates in active galactic nuclei:
radiation from colliding accreting flows. Mon. Not. R. Astron. Soc. 2020, 498, 3684–3686. [CrossRef]

56. Piotrovich, M.; Krasnikov, S.; Buliga, S.; Natsvlishvili, T. Possible Wormhole Candidates in Active Galactic Nuclei. Universe 2020,
6, 120. [CrossRef]

57. Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 1988,
61, 1446–1449. [CrossRef] [PubMed]

58. Lobo, F.S.N. Wormholes, Warp Drives and Energy Conditions; Fundamental Theories of Physics; Springer: Cham, Switzerland, 2017;
Volume 189. [CrossRef]

59. Bridle, A.H.; Perley, R.A. Extragalactic Radio Jets. Annu. Rev. Astron. Astrophys. 1984, 22, 319–358. [CrossRef]
60. Parma, P.; Fanti, C.; Fanti, R.; Morganti, R.; de Ruiter, H.R. VLA observations of low-luminosity radio galaxies. VI. Discussion of

radio jets. Astron. Astrophys. 1987, 181, 244–264.
61. Cawthorne, T.V. Interpretation of parsec scale jets. In Beams and Jets in Astrophysics; Cambridge University Press: Cambridge, UK,

1991; Volume 19, p. 187.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

276



Citation: Mostepanenko, V.M.

Prediction of the Expansion of the

Universe Made by Alexander

Friedmann and the Effect of Particle

Creation in Cosmology. Universe 2024,

10, 84. https://doi.org/10.3390/

universe10020084

Academic Editor: Panayiotis

Stavrinos

Received: 22 January 2024

Revised: 5 February 2024

Accepted: 7 February 2024

Published: 9 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Review

Prediction of the Expansion of the Universe Made by Alexander
Friedmann and the Effect of Particle Creation in Cosmology
Vladimir M. Mostepanenko 1,2,3

1 Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences,
Saint Petersburg 196140, Russia; vmostepa@gmail.com

2 Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia
3 Kazan Federal University, Kazan 420008, Russia

Abstract: This review devoted to the centenary of Alexander Friedmann’s prediction of the Universe
expansion presents the results obtained by him in 1922 and 1924 and an overview of their further
developments. Special attention is paid to the role of mathematics, which enabled Friedmann to
perform a radical departure from the conventional practice of considering our universe as a static
system. The effect of particle creation in the expanding universe is discussed concurrently with the
earlier investigated phenomenon of pair creation from a vacuum by an external electric field. The
numbers of scalar and spinor particles created at different stages of the Universe’s evolution are
presented, and the possible role of the effect of the creation of particles in the formation of relativistic
plasma and cold dark matter after the inflationary period is noted. It is stressed that by introducing
the concept of the expanding universe, Friedmann made a contribution towards the understanding
of the world around us that is compatible with those made by Ptolemy, Copernicus, and Newton in
previous epochs.

Keywords: expanding universe; Friedmann cosmology; inflation; particle creation from vacuum

1. Introduction

A hundred years ago, young mathematician Alexander Friedmann made an unex-
pected prediction that our universe expands with time. This prediction was in complete
contradiction with all the previous scientific concepts of the Universe developed over the
past millennia. One could mention the Ptolemy system, which was geocentric, and the
Copernicus, Kepler, and Galilei system, which was heliocentric. Based on the laws of
mechanics and gravitation discovered by him, Newton supposed [1] that our universe
has an infinitely large volume, contains infinitely many stars and exists in time forever.
As a theologian, Newton believed that the Universe was created by God. This means that
not only all material bodies but also space and time are created in one creation act. The
question of whether the existence of the Universe in time is finite or infinite must be solved
by physics. All the mentioned pictures of the world are static in the sense that they do
not change with time. And even Albert Einstein, after the creation of his general theory of
relativity [2], especially modified its equations by introducing the cosmological constant in
order to obtain the static model of the Universe [3] in agreement with the concepts of all
previous epochs.

Like Einstein, Friedmann described the Universe as a whole on a basis of the general
theory of relativity. In doing so, however, he restricted himself to the minimum number
of additional assumptions. Specifically, following Newton and Einstein, he assumed that
the 3-space of the Universe is homogeneous and isotropic, i.e., there are no preferential
points and preferential directions. Otherwise, Friedmann acted as a mathematician by
solving equations of the fundamental general theory of relativity and looking for the
results obtained with no prejudice caused by some physical considerations like the desired
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static character of any model of the Universe. This method of attack helped him to make
an outstanding prediction that our universe expands with time, which was very soon
confirmed by astronomical observations and became the cornerstone of modern cosmology.

In this brief review, we discuss the scientific results of Alexander Friedmann contained
in his famous papers [4,5] by placing more emphasis on the outstanding role of mathematics
in their obtainment. According to Friedmann’s prediction, our universe started its evolution
from a point (the so-called cosmological singularity), where it was characterized by the
infinitely large values of the scalar curvature and energy density. A universe with a
3-space of negative or zero curvature, expands infinitely long, whereas a universe with a
3-space of positive curvature expands to some maximum size and then contracts down to a
singular state.

Next, the outstanding phenomenon described by a unification of the general theory of
relativity and quantum field theory is considered. This is the effect of particle–antiparticle
pair creation from a vacuum, which occurs due to the Universe’s expansion, as was un-
derstood for the first time by Erwin Scrödinger [6]. The effect of particle creation makes
it possible to trace a mathematical analogy between the well-understood case of a non-
stationary electric field and the expanding space–time of the Friedmann Universe. Main
approaches to the definition of the concept of particles in the Friedmann cosmological
models and the calculation results for a creation rate are presented. The role of the effect
of particle creation at different stages of the Universe’s evolution, including the epoch of
inflation, is discussed.

This review is organized as follows. In Section 2, the Friedmann prediction of the
Universe’s expansion is considered with an emphasis on several facts from his biography
and mathematical educational background. Section 3 is devoted to the effect of particle–
antiparticle pair creation in the nonstationary electric field. Section 4 contains the primary
information relative to the effect of particle creation in the Friedmann Universe. The crucial
role of the effect of particle creation in the transition period between the inflationary and
the radiation-dominated stages of the Universe’s evolution is elucidated in Section 5. A dis-
cussion of the fundamental importance of Friedmann’s prediction for modern cosmology
is presented in Section 6, and we will finish with the conclusions in Section 7.

The system of units is one in which c = h̄ = 1 is used, where c is the speed of light
and h̄ is the reduced Planck constant.

2. Role of Mathematics in Friedmann’s Prediction of the Universe’s Expansion

It was difficult to imagine that Alexander Friedmann, who was born on 6 June 1888
to an artistic family (his father was a ballet artist and composer and his mother was
a pianist [7,8]) would become the outstanding mathematician and physicist who would
radically change our picture of the world. However, his exceptional abilities in mathematics
became apparent very early. In 1905, while still a schoolboy, Alexander Friedmann, together
with his schoolmate Yakov Tamarkin, obtained new interesting results in the field of
Bernoulli numbers. In the next year, it was David Hilbert who recommended their paper
for publication in the prestigious mathematical journal Mathematische Annalen [9].

After his graduation from high school, Friedmann became a student of the Department
of Mathematics at Saint Petersburg University, where he gained in-depth knowledge in
different areas of mathematics and physics. His successes were always evaluated as
“excellent”. Because of this, after his graduation from the university in 1910, Friedmann
remained at the same department in preparation for the position of Professor, under the
supervision of the famous mathematician and academician Vladimir Steklov. During the
next few years, he published many papers containing the solutions of several complicated
problems of mathematical physics. Starting from 1913, Friedmann took an interest in the
mathematical problems of dynamical meteorology, aerodynamics, and hydrodynamics, in
which he obtained a lot of fundamental results which are well known to all experts in these
fields and maintain their importance to the present day.
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In 1920, Friedmann had close contacts with several professors of Petrograd (as St. Pe-
tersburg was called at that time) University who had just begun delivering lectures in
the recently developed quantum physics and general theory of relativity. He took a great
interest in the latter and embarked upon giving lectures on tensor calculus at the university
as an introduction to the general theory of relativity. Friedmann was inspired by the idea
that the Universe around us takes the form of Riemannian space–time, in which all bodies
move freely along geodesic lines. This idea was radically different from Newton’s concept
of the gravitational force which acts between all material bodies through an empty space.

In 1922, Friedmann applied the formalism of the general theory of relativity to the
theoretical description of the Universe as a whole. As mentioned in Section 1, he restricted
himself to the minimum physical assumptions by presuming that the 3-space of the Uni-
verse is homogeneous and isotropic. In this regard, Friedmann followed Einstein [3] and
de Sitter [10].

Mathematically, the requirement of the homogeneity and isotropy of the 3-space is
expressed in the following distance (interval) ds between two infinitesimally close space–
time points xi = (t, χ, θ, ϕ) and xi + dxi = (t + dt, χ + dχ, θ + dθ, ϕ + dϕ):

ds2 = gikdxidxk ≡ dt2 − a2(t)
[
dχ2 + f 2(χ)(dθ2 + sin2 θdϕ2)

]
, (1)

where t is the time variable, and the spatial coordinates χ, θ, and ϕ are connected with the
standard Cartesian coordinates (x1, x2, x3) by the relations

x1 = a(t) f (χ) sin θ cos ϕ, x2 = a(t) f (χ) sin θ sin ϕ, x3 = a(t) f (χ) cos θ. (2)

The quantity a(t) in Equation (1) has the dimension of length. It represents the radius
of the curvature of space. As to the function f (χ), it is defined as

f (χ) =





sin χ, κ = 1,
sinh χ, κ = −1,
χ, κ = 0,

(3)

where κ is the sign of the curvature of the 3-space (κ = 0 corresponds to the flat 3-space).
Depending on the value of f (χ) in Equation (3), the interval (1) relates to the closed space
of the finite volume V = 2π2a3(t) and positive curvature, to the open space of an infinite
volume and negative curvature, or to the quasi-Euclidean space of an infinite volume and
zero curvature.

Working as a mathematician, Friedmann solved the following Einstein equations:

Rik −
1
2

gikR−Λgik = 8πGTik. (4)

where Rik is the Ricci tensor describing the curvature of space–time, R = gikRik is the scalar
curvature, Λ is the cosmological constant, G is the gravitational constant, Tik is the stress–
energy tensor of matter in the Universe, and gik is the metrical tensor, the components of
which for i, k = 0, 1, 2, 3 are defined in Equation (1) for the case of a homogeneous and
isotropic space. In this space, the stress–energy tensor is diagonal, and its components are
the energy density, T 0

0 = ε, and pressure, T 1
1 = T 2

2 = T 3
3 = −P, of matter. It is important to

note that Rik and R can be calculated for any given gik. Note that the stress–energy tensor
is also often called the energy–momentum tensor.

Substituting the metrical tensor gik defined in Equation (1) in Equation (4), one obtains
two Friedmann equations for the unknown scale factor a(t) and the energy density ε:

d2a
dt2 = −4πG

3
a(ε + 3P) +

1
3

aΛ,
(

da
dt

)2
=

8πG
3

a2ε− κ +
1
3

a2Λ. (5)
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One should remember that the pressure P is connected with the energy density by the
equation of state.

Note that, initially, Einstein introduced his Equation (4) with Λ = 0 [2]. The cosmolog-
ical term Λgik was introduced by him later [3], specifically for obtaining the static model of
the Universe.

Friedmann considered dust-like matter with the equation of state P = 0 (in our
system of units, ε = ρ, where ρ is the density of matter). The closed universe (κ = 1) was
considered by Friedmann in Ref. [4], published in 1922, and the open universe (κ = −1)—in
Ref. [5], published in 1924.

For instance, if κ = 1 and Λ = 0, Equation (5) for dust-like matter is simplified to

d2a
dt2 = −4πG

3
aρ,

(
da
dt

)2
=

8πG
3

a2ρ− 1. (6)

It is easy to check by the direct substitution that the solution of this system of equations
can be represented in the following parametric form:

a = ã0(1− cos η), t = ã0(η − sin η),

ρ =
3

4πG
1
ã2

0

1
(1− cos η)3 , 0 6 η 6 2π, (7)

where ã0 is the constant expressed via the total mass of matter in the closed universe M as
ã0 = 2GM/(3π).

If one considers t, η � 1, Equation (7) reduces to

a(t) ≈
(

9ã0

2

)1/3
t2/3, ρ(t) ≈ 1

6πGt2 , (8)

i.e., according to Friedmann, the evolution of the Universe starts from a point-like state
a(0) = 0, where the density of matter ρ = ∞.

The Universe expands with time until the maximum size amax = 2ã0 is reached at
η = π, t = πã0 and then contracts to a point a(2πã0) = 0. For κ = −1 or 0, the expansion
of the Universe also starts from a point (called the cosmological singularity), where the
density of matter is infinitely large, but in this case the expansion goes on infinitely. Similar
results were later obtained for the radiation-dominated Universe, where matter has the
equation of state P = ε/3 (see Ref. [11] for details). This equation of state describes the hot
Universe at the early stages of its evolution.

Thus, if Λ = 0, all the solutions of Equation (5) are nonstationary and describe the
expanding (or contracting in the case κ = 1) Universe. According to Friedmann, the static
cosmological solution of Einstein equations is possible only for the closed universe (κ = 1)
with the cosmological constant Λ 6= 0 satisfying the following conditions:

Λ = 4πG(ε + 3P), 4πGa2(ε + P) = 1. (9)

Under these conditions, Equation (5) reduces to

d2a
dt2 =

da
dt

= 0, (10)

which means that a = const. This is the static model of the Universe obtained by Einstein [3].
Friedmann did not discuss whether the Einstein model is stable relative to some disturbance
which occurs at a definite time. This problem was investigated later after an experimental
confirmation of the Universe’s expansion (see Ref. [12] for a summary of the obtained
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results). A more detailed consideration of the cosmological models with nonzero Λ can be
found in Ref. [13].

We only mention the famous solution of Equation (5) obtained by de Sitter [10] for the
empty universe with ε = P = 0 but with a nonzero cosmological constant Λ. In this case,
Equation (5) takes the following form:

d2a
dt2 =

1
3

aΛ,
(

da
dt

)2
= −κ +

1
3

a2Λ. (11)

In the most simple, quasi-Euclidean case (κ = 0), the de Sitter solution of Equation (11) is

a(t) = ã0 exp

(√
Λ
3

t

)
. (12)

The closed (κ = 1) and open (κ = −1) de Sitter solutions of Equation (11) are,
respectively,

a(t) =

√
3
Λ

cosh

(√
Λ
3

t

)
, a(t) =

√
3
Λ

sinh

(√
Λ
3

t

)
. (13)

The scale factors in Equations (12) and (13) are the exponentially increasing with time
functions which leave the scalar curvature constant, R = −4Λ. The de Sitter solution
found important applications in the theoretical description of the very early stages of the
Universe’s evolution near the cosmological singularity (see Section 5).

Although Friedmann’s papers [4,5] were published in the leading journal of that
time, his remarkable results did not gain widespread recognition for a long period of time.
Just after the publication of Friedmann’s paper [4], Albert Einstein claimed [14] that the
solutions found by Friedmann did not satisfy Equation (4) of the general theory of relativity.
It was, however, Einstein who made a mistake in his note [14]. After receiving a letter
explaining this from Friedmann, Einstein was obliged to recognize this fact in another
published note [15].

From the experimental viewpoint, the expansion of the Universe predicted by Fried-
mann should manifest itself as the moving of all remote galaxies away from the Earth. This
would lead to the redshift of the light emitted by them in accordance to the Doppler law.
In fact, the redshift of the light from the Andromeda Nebula was registered by Slipher [16]
as early as in 1913, i.e., before the Friedmann prediction.

In a systematic way, the experimental law connecting the redshift in the spectra of
observable galaxies with the expansion of the Universe was found by Georges Lemaître
in 1927 [17] and Edwin Hubble in 1929 [18] after they identified nebulas with remote
galaxies [19]. Lemaître’s paper contains a rederivation of the main properties of the
expanding universe from Einstein’s equations with no citation of the papers [4,5] by
Friedmann, who passed away untimely of typhus on 16 September 1925 at the age of 37.
Hubble’s paper [18] does not cite Alexander Friedmann’s papers either. Later on, the
properties of homogeneous isotropic metrics were studied by H.P. Robertson [20] and A.G.
Walker [21], whose papers also do not cite the Friedmann results.

In the meantime, after the elaboration of the theory of a hot universe by George
Gamov [22], the prediction of the relic radiation [23] and its discovery by Arno Penzias
and Robert Wilson [24], it became evident that the Friedmann solution describing the
expanding Universe formed the foundation of modern cosmology and radically changed
our picture of the world. Starting from the 1960s, Friedmann’s name as a pioneer of
the theory of the Universe’s expansion became more and more popular. Friedmann’s
background as a mathematician played a crucial role in his discovery, which was based
on Einstein’s equations of the general theory of relativity alone with no unnecessary
assumptions caused by either tradition or physical intuition. This is one more example of
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what was characterized by E.P. Wigner as “The unreasonable effectiveness of mathematics
in the natural sciences” [25].

Though being a mathematician, Friedmann considered his prediction of the Universe’s
expansion very seriously and expected that it would receive experimental confirmation.
In his book “The World as Space and Time”, written for the general reader and published in
1923 [26], Alexander Friedmann not only explained the main concepts of Einstein’s general
theory of relativity, but also discussed his own model of the expanding Universe, which
starts its evolution from a point. The front cover of this book is presented in Figure 1.
According to Friedmann’s estimation contained in Ref. [26], the interval between the
Universe’s creation and the present day is of about tens of billions of years. This estimation
is in qualitative agreement with modern measurements, which result in 13.7 billion years
for the Universe’s age. Thus, Friedmann predicted the most dramatic phenomenon of
nature, which completely changed our picture of the world.

Figure 1. The front cover of the book [26]. Translation: Modern culture. A. Friedmann. The World as
Space and Time. Academia, Petersburg, 1923.

3. Quantum Creation of Particle–Antiparticle Pairs in a Nonstationary Electric Field

As was mentioned in Section 1, the Universe’s expansion results in the effect of particle
creation from the vacuum state of quantized fields. This is the quantum effect, which is
described by the quantum field theory in curved space–time. It is most important at the
very early stages of the Universe’s evolution near the cosmological singularity, where the
Universe should be considered as a quantum object.

The quantum field theory and the general theory of relativity are very dissimilar
theories. The former deals with the quantum fields defined on a flat Minkowski space–
time, whereas the latter treats the gravitational field as a classical curved space–time.
The quantum theory of gravitation is not yet available in spite of numerous attempts to
develop it undertaken by many authors during half a century. It is possible, however,
to consider the quantized matter fields defined not on a Minkowski background, but on a
curved space–time of the expanding Universe. This theory has been well elaborated on
since the beginning of the 1980s (see, for instance, the monographs [27–31]).

Some basic concepts of quantum field theory in curved space–time, including the
concept of a particle, are, however, much more complicated and, unlike the standard quan-
tum field theory, are not defined uniquely. Because of this, before considering the effect
of particle creation in the Friedmann Universe, we discuss in this section the creation of
particle–antiparticle pairs from a vacuum by the nonstationary space homogeneous electric
field. Quantum electrodynamics allows us to describe this phenomenon in a rather trans-
parent way [32–35]. At the same time, although, conceptually, the nonstationary electric
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field and the expanding space–time of the Universe are quite different, mathematically, the
description of the effect of particle creation in both cases turns out to be very similar. Thus,
the formalism briefly presented in this section will provide rather useful guidance in the
next section.

The spatially homogeneous nonstationary electric field directed along the z = x3 axis
can be described by the following vector potential:

Ak(x) =
(

0, 0, 0, A3(t)
)

, (14)

which leads to the following field strength:

E(t) =
(

0, 0,−dA3(t)
dt

)
= (0, 0, Ez(t)), (15)

It is assumed that the field is switched off at t→ ±∞, i.e.,

lim
t→±∞

A3(t) = A3
± = const, lim

t→±∞
Ez(t) = 0. (16)

Let us consider first the complex scalar field of mass m interacting with the electric
field (15). A complete orthonormal set of solutions to the Klein–Fock–Gordon equation is
as follows: [(

∂

∂xk + ieAk

)(
∂

∂xk
+ ieAk

)
+ m2

]
ϕ(x) = 0 (17)

In the case of a vector potential, (14) takes the following form:

ϕ±p(x) =
1

(2π)3/2
√

2ω−(p)
eipxg(±)(p, t), (18)

where p = (p1, p2, p3) is the momentum, the functions g(±) obey the following equation:

d2g(±)(p, t)
dt2 + ω2(p, t)g(±)(p, t) = 0, ω2(p, t) = m2 + p2

⊥ + (p3 − eA2(t))
2 (19)

and the following notations are used:

p2
⊥ = p2

1 + p2
2, ω−(p) = lim

t→−∞
ω(p, t). (20)

Equation (19) is the equation of oscillator with a variable frequency [34,35]. The positive-
and negative-frequency solutions of this equation are defined by the following asymptotic
behavior:

lim
t→−∞

g(±)(p, t) = e±iω−(p) t. (21)

An operator of the complex scalar field is

ϕ(x) =
∫

d3 p
[

ϕ
(−)
p (x)a(−)p + ϕ

(+)
−p(x)a(+)

p
]
, (22)

where a(−)p is the annihilation operator for particles and a(+)
p is the creation operator for

antiparticles defined at t→ −∞ when the scalar field is free. The vacuum state at t→ −∞
is defined as

a(−)p |0in〉 =
∗
a (−)

p |0in〉 = 0, (23)

where
∗
a (−)

p is the annihilation operator for antiparticles (the creation operator for particles

is notated as
∗
a (+)

p ).
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The Hamiltonian of the complex scalar field is defined by [36]

H(0)(t) =
∫

d3xT00(x) =
∫

d3x
[

2∂0 ϕ∗(x)∂0 ϕ(x)

−
(

∂

∂xk − ieAk

)
ϕ∗(x)

(
∂

∂xk
+ ieAk

)
ϕ(x) + m2 ϕ∗(x)ϕ(x)

]
. (24)

Substituting Equation (22) in Equation (24) and performing the integration with respect
to x and to one of the momenta using (18), one obtains

H(0)(t) =
∫

d3 pω(p, t)
[

E(p, t)
(∗

a (+)
p a(−)p +

∗
a (−)
−pa(+)

−p
)

+ F(p, t)
∗
a (+)

p a(+)
−p + F∗(p, t)

∗
a (−)
−pa(−)p

]
, (25)

where

E(p, t) =
1

2ω−(p)ω(p, t)



∣∣∣∣∣
dg(+)(p, t)

dt

∣∣∣∣∣

2

+ ω2(p, t)
∣∣∣g(+)(p, t)

∣∣∣
2

,

F(p, t) =
1

2ω−(p)ω(p, t)



(

dg(+)(p, t)
dt

)2

+ ω2(p, t)g(+)2
(p, t)


, (26)

E2(p, t)− |F(p, t)|2 = 1.

Using Equation (21), Equation (27) leads to

lim
t→−∞

E(p, t) = 1, lim
t→−∞

F(p, t) = 0. (27)

As a result, at t→ −∞ the Hamiltonian (24) takes the following diagonal form:

lim
t→−∞

H(0)(t) =
∫

d3 pω−(p)
(∗

a (+)
p a(−)p +

∗
a (−)
−pa(+)

−p
)

, (28)

as it should be for the Hamiltonian of free fields.
At any t, in the presence of a nonstationary electric field, the Hamiltonian (25) can be

diagonalized by means of the canonical Bogoliubov transformations, which preserve the
commutation relations for the creation–annihilation operators:

a(−)p = α∗p(t)b
(−)
p (t)− βp(t)b

(+)
−p(t),

∗
a (−)

p = α∗−p(t)
∗
b
(−)
p (t)− β−p(t)

∗
b
(+)
−p(t), (29)

where
|αp(t)|2 − |βp(t)|2 = 1. (30)

Note that an addition of the creation operators to the annihilation ones in Equation (29)
due to the action of a nonstationary external field is equivalent to the fact that the negative-
frequency solution of the wave equation defined at t→ −∞ becomes the linear combination
of the negative- and positive-frequency solutions defined at a later time t.

If the coefficients αp(t) and βp(t) are given by

βp(t)
αp(t)

=
E(p, t)− 1

F∗(p, t)
, |βp(t)|2 =

1
2
[E(p, t)− 1], (31)
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the Hamiltonian (25) takes a diagonal form at any t [34]:

H(0)(t) =
∫

d3 pω(p, t)
[∗

b
(+)
p (t)b(−)p (t)+

∗
b
(−)
−p(t)b

(+)
−p(t)

]
. (32)

In doing so, the operators
∗
b
(+)
p (t) and b(−)p (t) can be considered the creation and

annihilation operators of quasiparticles defined at the moment t. The quasiparticle vacuum
is defined by

b(−)p (t)|0t〉 =
∗
b
(−)
p (t)|0t〉 = 0. (33)

It is easily seen that

lim
t→−∞

βp(t) = 0, lim
t→−∞

αp(t) = 1, (34)

so that the creation and annihilation operators of quasiparticles at t→ −∞ coincide with

the creation and annihilation operators a(±)p ,
∗
a (±)

p and the quasiparticle vacuum |0−∞〉=|0in〉
defined in Equation (23).

Now, one can find the number of scalar quasiparticles with the momentum p and
antiparticles with the momentum −p created from the vacuum state |0in〉:

N(0)
p (t) = 〈0in|

∗
b
(+)
p (t)b(−)p (t)|0in〉 = 〈0in|b(+)

−p(t)
∗
b
(−)
−p(t)|0in〉 = |βp(t)|2δ3(p = 0). (35)

These quasiparticle pairs were created by the electric field during the time interval
from −∞ to t in the space of an infinitely large volume V. Taking into account that

δ3(p = 0) =
1

(2π)3

∫
d3x =

V
(2π)3 , (36)

for the total number of scalar quasiparticle pairs with any momentum created in the unit
space volume, one obtains

n(0)(t) =
1
V

∫
d3 pN(0)

p (t) =
1

(2π)3

∫
d3 p|βp(t)|2. (37)

In the asymptotic limit t → ∞, the electric field is switched off and in this "out"

region the quasiparticles described by the operators b(±)p (∞),
∗
b
(±)
p (∞) become the real free

particles. Thus, the total number of real boson pairs created by the electric field during the
time of its existence is

n(0) = lim
t→∞

n(0)(t) =
1

(2π)3

∫
d3 p[ lim

t→∞
|βp(t)|2]. (38)

Similar results have been obtained for the fields and particles with nonzero spin.
By omitting the technical details, here, we present only several facts concerning the case
of spinor particles. Thus, after the separation of variables in the Dirac equation writ-
ten for the spinor field interacting with the space homogeneous nonstationary electric
field (14) and (15), it reduces to the oscillator equation with the following complex fre-
quency [34,35]:

d2 f (±)(p, t)
dt2 +

[
ω2(p, t) + ie

dA3(t)
dt

]
f (±)(p, t) = 0, (39)
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where ω2(p, t) is presented in Equation (19) and the positive- and negative-frequency
solutions are defined by the following asymptotic behaviors:

lim
t→−∞

f (±)(p, t) =
1√

4ω−(p)[ω−(p) + p3 − eA3
−]

e±iω−(p)t. (40)

The Hamiltonian of the spinor field interacting with the electric field (14) is given by

H(1/2)(t) = ∑
r=1,2

∫
d3 pω(p, t)

[
E(p, t)

(∗
a (+)

pr a(−)pr −
∗
a (−)
−pra(+)

−pr

)

+ F(p, t)
∗
a (+)

pr a(+)
−pr + F∗(p, t)

∗
a (−)
−pra(−)pr

]
, (41)

where the index r = 1, 2 corresponds to two possible spin projections on the axis x3 and the
coefficients E and F are defined as

E(p, t) =
4(m2 + p2

⊥)
ω(p, t)

Im

[
f (+)∗(p, t)

d f (+)(p, t)
dt

]
− p3 − eA3

ω(p, t)
,

E2(p, t) + |F(p, t)|2 = 1. (42)

Similar to the case of a scalar field, the Hamiltonian (41) becomes diagonal in the
asymptotic limit t→ −∞:

H(1/2)(t) = ∑
r=1,2

∫
d3 pω−(p)

[∗
a (+)

pr a(−)pr −
∗
a (−)
−pra(+)

−pr

]
. (43)

At any t, the Hamiltonian (41) can be diagonalized by the canonical Bogoliubov trans-
formation, preserving the anticommutation relations between the creation and annihilation
operators of spinor particles:

a(−)pr = α∗p(t)b
(−)
pr (t)− βp(t)b

(+)
−pr(t),

∗
a (−)

pr = α∗−p(t)
∗
b
(−)
pr (t)− β−p(t)

∗
b
(+)
−pr(t), (44)

where
|αp(t)|2 + |βp(t)|2 = 1. (45)

If the coefficients of the Bogoliubov transformation (44) are equal to

βp(t)
αp(t)

=
1− E(p, t)

F∗(p, t)
, |βp(t)|2 =

1
2
[1− E(p, t)], (46)

the Hamiltonian (41) takes the diagonal form at any t in terms of the creation and annihila-
tion operators of quasiparticles [34]:

H(1/2)(t) = ∑
r=1,2

∫
d3 pω(p, t)

[∗
b
(+)
pr (t)b(−)pr (t)−

∗
b
(−)
−pr(t)b

(+)
−pr(t)

]
. (47)

Similar to Equation (33), the vacuum state of the quasiparticles is defined as

b(−)pr (t)|0t〉 =
∗
b
(−)
pr (t)|0t〉 = 0. (48)

The number of spinor quasiparticles with momentum p and spin projection r (and
respective antiquasiparticles) created from the ground state |0in〉 during the time interval
from −∞ to t is given by

N(1/2)
pr (t) = 〈0in|

∗
b
(+)
pr (t)b(−)pr (t)|0in〉 = 〈0in|b(+)

−pr(t)
∗
b
(−)
−pr(t)|0in〉 = |βp(t)|2δ3(p = 0). (49)
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This number does not depend on the spin state r.
The total number of fermion quasiparticle pairs created in the unit space volume

during the time interval from −∞ to t is obtained from Equation (49) with the help of
Equation (36):

n(1/2)(t) =
1
V ∑

r=1, 2

∫
d3 pN(1/2)

pr (t) =
2

(2π)3

∫
d3 p|βp(t)|2. (50)

Thus, the total number of real fermion pairs created in the unit volume by the electric
field is

n(1/2) =
2

(2π)3

∫
d3 p[ lim

t→∞
|βp(t)|2]. (51)

The most simple exactly solvable example allowing an exact calculation of the numbers
of created pairs (38) and (51) is the electric field of the following form [32,34]:

A3 = −E0

k0
tanh(k0t), Ez(t) =

E0

cosh2(k0t)
. (52)

This field is switched off in the asymptotic regimes t→ ±∞ (see Figure 2).

−E0/k0

0

E0/k0

A3

t 0

E0

Ez

t

(b)
(a)

Figure 2. (a) The component of the vector potential and (b) the strength of the space homogeneous
nonstationary electric field (52), which is switched off in the asymptotic regimes t→ ±∞, are shown
as the functions of time.

In the limiting case k0 → 0, Equation (52) describes the space homogeneous constant
electric field. Thus, Equations (38) and (51) allow for the rederivation of the famous
Schwinger results for the pair creation from vacuum by a strong constant field derived by
him [37,38] using another formalism.

For the inflationary cosmology (see Section 5, the effect of the exponential growth of
the number of scalar particles created with some values of momentum by the periodic in
time external field is of much importance. This effect was independently discovered in
Ref. [39] for the sinusoidally depending on time A3 and in Ref. [40] for the electric field of
arbitrary form with a period T:

A3(t + T) = A3(t) (53)

during the interval [0, nT]. Outside this interval, the electric field was assumed to be equal
to zero, so that A3− = A3+ = const.
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It was shown that the number of pairs of scalar particles created by the periodic field
with some momenta p belonging to the instability zones of the oscillator equation during
the time nT is the exponentially increasing function of the number of field periods n [40]:

n(0)
p = |βp(nT)|2 =

sinh2[nD(p)]
sinh2 D(p)

1
4ω2

+(p)

[
ω2
+(p)g1(p, T) +

dg2(p, t)
dt

∣∣∣∣
t=T

]2

. (54)

Here, g1(p, t) and g2(p, t) are the solutions of the oscillator Equation (19) satisfying the
following initial conditions:





g1(p, 0) = 0,
g1(p, t)

dt

∣∣∣
t=0

= 1,





g2(p, 0) = 1,
g2(p, t)

dt

∣∣∣
t=0

= 0,
(55)

and coshD(p) = g2(p, T), ω+(p) = ω−(p).
From Equation (54), it can be seen that the number of created pairs n(0)

p increases with
the number of field periods n as exp[2nD(p)].

The effect of particle creation from a vacuum by an electric field is not observed yet be-
cause it becomes sizable for the fields of the order of m2/e, which are too large (∼ 1016 V/cm
for electrons). With the discovery of graphene, in which the fermion quasiparticles are
massless or very light, the possibility of observing the creation of these quasiparticles in
much weaker fields was proposed [41–46]. This is some kind of a condensed matter analogy
to Schwinger’s particle creation from a vacuum in quantum electrodynamics.

The above brief discussion allows one to conclude that in quantum field theory and,
specifically, in quantum electrodynamics, a description of the effect of particle creation
from a vacuum by an external field is based on the S-matrix picture. The concept of real
particles is defined in the "in" and "out" regions where the external electric field is switched
off. It is common knowledge that in the absence of external fields the theory is invariant
relative to the transformations from the Poincaré group, the Casimir operators of which
classify particles by the values of their mass and spin [36]. Thus, in curved space–time,
which does not become flat in the asymptotic regions, one could expect difficulties with
the definition of the concept of particles. In the next section, it is shown that in the case of
the expanding Universe, these difficulties can be solved in close analogy to the concept of
quasiparticles in the presence of a nonstationary electric field.

4. The Effect of Particle Creation in the Friedmann Universe

As discussed in Section 2, the Friedmann models of the Universe are described by the
interval (19). By solving the Einstein equations (4) for the metrical tensor gik defined in
Equation (1), one obtains the scale factors of the closed, open, and quasi-Euclidean models.
The matter fields (scalar and spinor, for instance) should be considered in the background
of curved space–time defined in Equation (1).

The general covariant generalization of the Klein–Fock–Gordon equation (17) with the
electric field Ak = 0 is given by

(
∇k∇k + ξR + m2

)
ϕ(x) = 0, (56)

where ∇k is the covariant derivative and ξ is the so-called coupling coefficient. The most
simple case ξ = 0 is referred to as the minimal coupling. In the case ξ = 1/6, considered in
Refs. [47,48], Equation (56) becomes invariant under the conformal transformations when
m = 0. This is called the conformal coupling.

As was first noticed by Schrödinger [6], the positive-frequency solution of Equation (56)
with ξ = 0 in the space–time with metric (1) defined at some moment t0 becomes the linear
combination of the negative- and positive-frequency solutions of the same equation defined
at a later moment t. Schrödinger interpreted this fact as a creation of matter merely by the
expansion of the Universe.
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In more detail, the theory of particle creation in the expanding Universe was consid-
ered by Parker [49,50] (see also the review in [51]). This consideration was restricted to the
quasi-Euclidean model with a flat 3-space (κ = 0). The space–time of this model, as well
as of the other Friedmann models, is not asymptotically flat. Therefore, as discussed in
the end of Section 3, the standard concept of particles used in quantum field theory is
not applicable.

To solve this problem, Parker elaborated the concept of the so-called adiabatic particles.
For this purpose, the solution of Equation (56) was searched in the form of WKB-like
approximation including some unknown function, which was next determined from the
demand that the number of created particles and of its derivatives of several first orders
would take the minimum values. The creation rate of scalar particles defined in this
way in the present epoch of the Universe’s evolution was calculated and found to be
negligibly small. A similar approach was applied to the effect of creation of spinor particles
in the expanding Universe with κ = 0 [52]. A simple model was proposed where the
scalar particles described by the field equation with minimal coupling are created near the
cosmological singularity with a black-body spectrum [53].

The separation of variables in Equation (56) for the quasi-Euclidean, closed and open
models of the Universe [κ = 0, ±1 in Equations (1) and (3)] was made in the form

ϕJ(x) =
1

a(η)
gλ(η)ΦJ(x), (57)

where the dimensionless time variable η is connected with the proper synchronous time
t by dt = a(η)dη, λ is the dimensionless momentum quantum number connected with
the magnitude of the physical momentum by p = λ/a(η), J = (λ, l, m) is the collective
index, and the explicit expressions for the functions ϕJ in terms of the associated Legen-
dre polynomials and spherical harmonics Ylm in spaces with κ = 0, ±1 were found in
Refs. [54–56].

The substitution of Equation (57) into Equations (1) and (17) results in the following
equation for the functions gλ:

d2gλ(η)

dη2 +
[
ω2

λ(η)− q(η)
]

gλ(η) = 0, (58)

where

ω2
λ(η) = λ2 + m2a2(η), q(η) = 6

(
1
6
− ξ

)[
1

a(η)
d2a(η)

dη2 + κ

]
. (59)

For κ = 0, −1 the dimensionless momentum λ varies from 0 to ∞, and for κ = 1, it holds
λ = 1, 2, 3, . . . .

It is seen that Equation (58) describes the oscillator with a variable frequency like
it was for a scalar field interacting with the nonstationary electric field [compare with
Equation (19)]. In this case, the role of the electric field is played by the time-dependent
scale factor of the Universe. Equation (58) takes the most simple form for the scalar field
with conformal coupling (ξ = 1/6), which is physically the most natural generalization
of the Klein–Fock–Gordon equation in curved space–time [47,48]. The point is that the
massless particles are not characterized by the parameter with a dimension of length and,
thus, the corresponding field equation must be invariant with respect to the conformal
transformations. Because of this, we consider Equations (56) and (58) with ξ = 1/6. As a
result, the function gλ satisfies the following equation:

d2gλ(η)

dη2 + ω2
λ(η)gλ(η) = 0, (60)

where
ω2

λ(η) = λ2 + m2a2(η). (61)
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An important difference in the scale factor of the expanding Universe a(η) from the
vector potential of an external field A3(t) is that a(η) does not become constant at any η,
which means that the space–time of the Universe does not become static. In this situation,
the corpuscular interpretation of the field can be performed at some moment η0 by imposing
the initial conditions on the solutions of Equation (60):

gλ(η0) =
1√

ωλ(η0)
,

dgλ(η)

dη

∣∣∣∣
η=η0

= iωλ(η0)gλ(η0) (62)

and defining the positive- and negative-frequency solutions of Equation (56) as

ϕ
(+)
J (x) =

1√
2 a(η)

gλ(η)Φ∗J (x),

ϕ
(−)
J (x) =

1√
2 a(η)

g∗λ(η)ΦJ(x). (63)

Similar to the case of the nonstationary electric field, the functions ϕ
(±)
J lose the

meaning of the negative- and positive-frequency solutions at a later moment η > η0.
The field operator of the complex scalar field is defined similarly to Equation (22):

ϕ(x) =
∫

dµ(J)
[

ϕ
(−)
J (x)a(−)J + ϕ

(+)
J (x)a(+)

J

]
, (64)

where the measure on the set of quantum numbers is different for different values of κ:

∫
dµ(J) =





∞∫
0

dλ
∞
∑

l=0

l
∑

m=−l
, κ = −1, 0,

∞
∑

λ=1

λ−1
∑

l=0

l
∑

m=−l
, κ = 1.

(65)

Then, the vacuum state at the moment η0 is defined as

a(−)J |0η0〉 =
∗
a (−)

J |0η0〉 = 0. (66)

From the above, it becomes clear that it is not possible to introduce the universal
concept of particles in the expanding space–time of the Friedmann Universe. It is possible,
however, to define the quasiparticles depending on time like it was done in Section 3 for
the case of a nonstationary electric field using the method of the diagonalization of the
Hamiltonian of a quantized field. Such an approach was suggested in Refs. [57,58] as an
alternative to the adiabatic particles introduced in Refs. [49–51].

It is important, however, that the stress–energy tensor and respective Hamiltonian
of the quantized scalar field satisfying Equation (56) with ξ = 1/6 should be obtained by
the variation in the action not with respect to the field ϕ, but with respect to the metrical
tensor gik. This is the so-called metrical stress–energy tensor [59]. As a result, the metrical
Hamiltonian of the scalar field in the space–time of the expanding Universe takes the
following form:

H(0)(η) = a2(η)
∫

d3x f 2(χ) sin θTmetr
00 (x)

= a2(η)
∫

d3x f 2(χ) sin θ

[
2

∂ϕ∗(x)
∂η

∂ϕ(x)
∂η

− a2(η)gik ∂ϕ∗(x)
∂xi

∂ϕ(x)
∂xk (67)

+a2(η)

(
m2 +

1
6

R
)

ϕ∗(x)ϕ(x)− 1
3

(
R00 +∇0∇0 − a2(η)∇k∇k

)
ϕ∗(x)ϕ(x)

]
.
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After a substitution of Equation (64) in Equation (67), using the properties of func-
tions (62), one obtains [60,61]

H(0)(η) =
∫

dµ(J)ωλ(η)
[

EJ(η)
(∗

a (+)
J a(−)J +

∗
a (−)

J̄ a(+)
J̄

)

+FJ(η)
∗
a (+)

J a(+)
J̄ + F∗J (η)

∗
a (−)

J̄ a(−)J

]
, (68)

where J̄ = (λ, l,−m) and the coefficients EJ and FJ are expressed via the solutions of
Equation (60) as

EJ(η) =
1

2ωλ(η)

(∣∣∣∣
dgλ(η)

dη

∣∣∣∣
2

+ ω2
λ(η)|gλ(η)|2

)
,

FJ(η) =
(−1)m

2ωλ(η)

[(
dgλ(η)

dη

)2

+ ω2
λ(η)g2

λ(η)

]
, (69)

E2
J (η)− |FJ(η)|2 = 1.

From Equation (70), it is seen that EJ(η) in fact depends on λ and does not depend
on l and m, whereas FJ(η) depends also on m. The quantity EJ(η) represents the adiabatic
invariant of the oscillator (60) and (61). From Equation (62), it follows that

EJ(η0) = 1, FJ(η0) = 0, (70)

i.e., the Hamiltonian (68) takes the diagonal form at the initial moment η0:

H(0)(η0) =
∫

dµ(J)ωλ(η0)
(∗

a (+)
J a(−)J +

∗
a (−)

J̄ a(+)
J̄

)
(71)

in perfect analogy to Equation (28) obtained for the case of an electric field.
Similar to the case of a nonstationary electric field, at any moment, the Hamiltonian (68)

can be diagonalized by the canonical Bogoliubov transformations:

a(−)J = α∗J (η)b
(−)
J (η)− (−1)mβ J(η)b

(+)
J̄ (η),

∗
a (−)

J = α∗J (η)
∗
b
(−)
J (η)− (−1)mβ J(η)

∗
b
(+)
J̄ (η), (72)

|αJ(η)|2 − |β J(η)|2 = 1.

For this purpose, the coefficients αJ and β J should be chosen as

β J(η)

αJ(η)
= (−1)m EJ(η)− 1

F∗J (η)
, |β J(η)|2 =

1
2
[EJ(η)− 1]. (73)

Substituting Equation (73) with the coefficients (73) in Equation (68), one finds that the
Hamiltonian of the scalar in the Friedmann Universe takes the following diagonal form:

H(0)(η) =
∫

dµ(J)ωλ(η)

(∗
b
(+)
J b(−)J +

∗
b
(−)
J b(+)

J

)
(74)

at any moment η.
The annihilation operators for quasiparticles and antiquasiparticles give the possibility

to define the time-dependent vacuum state by the following equation:

b(−)J (η)|0η〉 =
∗
b
(−)
J (η)|0η〉 = 0, (75)
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which is similar to Equation (33) in the case of a nonstationary electric field. It is evident that

b(±)J (η0) = a(±)J ,
∗
b
(±)
J (η0) =

∗
a (±)

J . (76)

Next, one can define the number of quasiparticle pairs created from the vacuum state
|0η0〉 during the time interval from η0 to η in the unit space volume:

n(0)(η) =
1

2π2a3(η)

∫
dµ(λ)〈0η0 |

∗
b
(+)
J (η)b(−)J (η)|0η0〉

=
1

2π2a3(η)

∫
dµ(λ)〈0η0 |b

(+)
J̄ (η)

∗
b
(−)
J̄ (η)|0η0〉 (77)

=
1

2π2a3(η)

∫
dµ(λ)|β J(η)|2,

where

∫
dµ(λ) =





∞∫
0

λ2dλ, κ = −1, 0,

∞
∑

λ=1
λ2, κ = 1.

(78)

For the calculation of the number of created scalar particles, it is reasonable to put
η0 = 0 and impose on the scale factor a(η) the requirement of smoothness at the initial
moment η0 = 0. This requirement does not contradict to the fact that at the point η = 0,
there was the cosmological singularity where the invariants of the curvature tensor become
infinitely large.

The typical scale factors used in the Friedmann cosmological models have the form
a(t) = a0tq; see, for instance, Equation (8), where q = 2/3 for dust-like matter ε = ρ, P = 0.
In the vicinity of the cosmological singularity, matter is in the radiation-dominated state
(P = ε/3). In this case, q = 1/2.

The calculations show that in the epoch t� m−1 the number of quasiparticle pairs (78)
created in the unit volume does not depend on the value of q [60,62]:

n(0)(t) =
m3

24π2 . (79)

An independence of the result (79) on time means that the decrease in the quasi-
particle density due to the Universe’s expansion is compensated for by the creation of
new quasiparticles.

In the epoch t� m−1, for the radiation-dominated equation of state (q = 1/2), one
obtains [62]

n(0)(t) = 5.3× 10−4m3(mt)−3/2. (80)

It was shown [62] that, for t� m−1, the similar result

n(0)(t) ∼ m3(mt)−3q (81)

holds for any q satisfying the inequalities 0 < q < 2/3.
The corresponding results have been obtained also for the energy density of created

pairs (see Refs. [60,62] and the review [61]).
The creation of spinor particles in the space–time of the expanding Universe can be

considered in perfect analogy with the scalar case, although the mathematical formalism
becomes more involved. Thus, the general covariant generalization of the Dirac equation
takes the form (

iγk(x)
−→∇ k −m

)
ψ(x) = 0, (82)
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where
−→∇ k is the covariant derivative of a bispinor ψ in the Riemannian space–time and

γk(x) is the 4-vector relative to the general coordinate transformations, which is expressed
via the standard Dirac γ-matrices and the tetrad h k

(a) as

γk(x) = h k
(a)γ

a. (83)

An important characteristic feature of Equation (82) is that in the limiting case m→ 0,
it becomes invariant under the conformal transformations with no additional modifications.

The separation of the variables in Equation (82) for the space–time (1) was performed
in Refs. [55,63]. This results in the oscillator equation for the time-dependent functions fλ±:

d2 fλ±(η)
dη2 +

[
ω2

λ(η)± im
da(η)

dη

]
fλ±(η) = 0, (84)

where ωλ is defined in Equation (61). It is seen that although, physically, the space–
time of the expanding Universe has little in common with the nonstationary electric field
considered in Section 3, mathematically, Equation (84) is similar to Equation (39). In doing
so, the mass of a spinor field in Equation (84) plays the same role as the electric charge in
Equation (39), whereas the scale factor of the Universe a is akin to the vector potential A3.

The positive- and negative-frequency solutions of Equation (84) at the moment η0 are
defined by the following initial conditions [61]:

f (+)
λ± (η0) = ±

[
ωλ(η0)∓ma(η0)

ωλ(η0)

]1/2

, f (−)λ± (η0) =

[
ωλ(η0)±ma(η0)

ωλ(η0)

]1/2

. (85)

It holds also that

d f (+)
λ± (η)

dη

∣∣∣∣∣∣
η=η0

= iωλ(η0) f (+)
λ± (η0),

d f (−)λ± (η)

dη

∣∣∣∣∣∣
η=η0

= −iωλ(η0) f (−)λ± (η0). (86)

Now, the operator of the spinor field can be written in the form

ψ(x) =
∫

dµ(J)
[
ψ
(−)
J (x)a(−)J + ψ

(+)
J (x)a(+)

J

]
, (87)

where the collective index J includes four quantum numbers J = (λ, j, l, M). In the case
κ = 0, −1 it holds that 0 ≤ λ < ∞, j = 1/2, 3/2, . . . , for κ = 1 one has λ = 3/2, 5/2, . . . ,
j = 1/2, 3/2, . . . , λ− 1, and in both cases, l = j± 1/2, −j 6 M 6 j.

The vacuum state at the moment η0 is defned by Equation (66). Substituting Equation (87)
in the Hamiltonian of the spinor field

H(1/2)(η) =
i
2

a3(η)
∫

d3x f 2(χ) sinθ ψ+(x)
↔
∂ ηψ(x), (88)

one obtains it in the same form as in Equation (24), but with the coefficients EJ and FJ
expressed via the solutions of Equation (84):

EJ(η) =
1

ωλ(η)

[
ma(η)

(
1− | f (+)

λ+ |2
)
− λRe

(
f (−)λ− f (+)

λ−
)]

,

FJ(η) =
1

ωλ(η)

[
ma(η) f (+)

λ+ f (+)
λ− −

λ

2

(
f (+)
λ+

2
− f (+)

λ−
2
)]

, (89)

E2
J (η) + |FJ(η)|2 = 1.
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These coefficients satisfy the initial conditions (70). As a consequence, at the moment
η0, the Hamiltonian H(1/2)(η0) takes the diagonal form. At any moment, the Hamiltonian
of the spinor field can be diagonalized by the Bogoliubov transformations:

a(−)J = α∗J (η)b
(−)
J (η)− β J(η)b

(+)
J̄ (η),

∗
a (−)

J = α∗J (η)
∗
b
(−)
J (η) + β J(η)

∗
b
(+)
J̄ (η), (90)

|αJ(η)|2 + |β J(η)|2 = 1.

which preserve the anticommutation relations for the creation and annihilation operators.
The Hamiltonian H(1/2)(η) takes the diagonal form (74) at any moment η if the

Bogoliubov coefficients are defined as

β J(η)

αJ(η)
=

1− EJ(η)

F∗J (η)
, |β J(η)|2 =

1
2
[1− EJ(η)]. (91)

The number of spinor quasiparticle pairs created in the unit space volume is given
by [63]

n(1/2)(η) =
1

π2a3(η)

∫
dµ(λ)〈0η0 |

∗
b
(+)
J (η)b(−)J (η)|0η0〉

=
1

π2a3(η)

∫
dµ(λ)〈0η0 |b

(+)
J̄ (η)

∗
b
(−)
J̄ (η)|0η0〉 (92)

=
1

π2a3(η)

∫
dµ(λ)|β J(η)|2,

where J = (λ, j, j± 1/2, M), J̄ = (λ, j, j∓ 1/2,−M) and

∫
dµ(λ) =





∞∫
0

dλ
(

λ2 − κ
4

)
, κ = −1, 0,

∞
∑

λ=3/2

(
λ2 − 1

4

)
, κ = 1.

(93)

It is notable that that the geometric nature of the spinor field reveals itself by the
presence of κ in the measure of integration (93).

By using Equations (90), (91), and (93), one can calculate the number of spinor quasi-
particles created at different epochs of the Universe’s evolution for the scale factors of
power type a(t) = a0tq. Thus, for t� m−1, in the case κ = 0, it holds [64] that

n(1/2)(t) =
q2

3q− 1
m2

t
. (94)

From the comparison of Equations (79) and (94), it is seen that n(1/2)/n(0) ∼ (mt)−1 � 1.
The additional terms which appear for κ = ±1 are much smaller than (94).

For the epoch t� m−1, the density of the created spinor quasiparticles is expressed
as [61]

n(1/2)(t) = K(q)m3(mt)−3q +
3q2m

256πt2 , (95)

where for the radiation-dominated matter (q = 1/2), the coefficient is equal to
K(1/2) = 3.9× 10−3.

As is seen from the above, in the nonstationary curved space–time, the concept of
particle loses its unique meaning. The effect of particle creation takes place with any
concept of a particle but, for instance, the number of created adiabatic particles may
differ from the number of quasiparticles defined by the method of the diagonalization
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of the Hamiltonian by means of the Bogoliubov transformations. The covariant quantity
describing the quantum effects in the nonstationary space–time of cosmological models
is the renormalized vacuum expectation value of the stress–energy tensor of quantized
fields. This quantity includes the contributions of both the particle creation and vacuum
polarization (see the monographs [27–31] for the obtained results).

5. The Role of Particle Creation in the Transition from Inflationary to
Radiation-Dominated Epochs and Further Developments

As discussed in Sections 2 and 4, at the radiation-dominated stage of its evolution the
Friedmann Universe is described by the power-type scale factor a(t) = a0t1/2. This result
is obtained by solving the classical Einstein equations, and it does not take into account
the quantum effects. However, the extension of the radiation-dominated scale factor down
to the Planck time tPl = G1/2 = 5.39× 10−44 s creates serious problems. One of them is
the following. Calculations show that, at the Planck time, the size of the Universe was
a(tPl) ∼ 10−3 cm, i.e., it was by almost 30 orders of magnitude larger than the Planck
length lpl = 1.62× 10−33 cm traveled by light during tPl .

From this it follows that if the radiation scale factor were valid down to t0 = 0,
at t = tPl the Universe would comprise of about 1089 causally disconnected domains. No
evidence, however, was found regarding differences in the temperature of relic radiation
received from different directions in the sky. Thus, the initial expansion of the Universe
happened much faster than it is predicted by the power-type law. This inconsistency was
called the horizon problem.

As noted in the end of Section 4, the covariant description of the vacuum quantum ef-
fects in curved space–time is provided by the renormalized vacuum expectation value of the
stress–energy tensor of quantized matter fields. In Refs. [65,66] published in the beginning
of 1980, this quantity was considered a single source of curved space–time of the Universe.
For this purpose, the self-consistent Einstein equations with no cosmological term,

Rik −
1
2

Rgik = 8πG〈0|Tik|0〉ren (96)

have been solved and the de Sitter solutions were obtained. For instance, for a stress–
energy tensor of massless scalar field in the closed Friedmann model, the solution of
Equation (96) is

a(t) =

√
G

360π
cosh

(
t

√
360π

G

)
, (97)

i.e., for t > tPl , the Universe’s expansion goes on exponentially fast. The comparison
of Equation (97) with Equation (13) shows that the vacuum stress–energy tensor of the
quantized scalar field plays the same role as the cosmological term in Einstein’s equations (4)
with Tik = 0. In Ref. [66], it was shown that under the impact of the creation of scalarons
and their subsequent decay into standard particles the exponentially fast de Sitter expansion
of the Universe passes into the power-type expansion of the radiation-dominated stage of
its evolution.

In 1981, another approach to the understanding of the exponentially fast expansion
of the Universe near the cosmological singularity was suggested, which was called infla-
tion [67]. This approach introduces the minimally coupled classical scalar field φ = φ(t)
called the inflaton field with the following Lagrangian:

L(φ) =
1
2

[(
dφ

dt

)2
−m2φ2

]
. (98)

The corresponding Klein–Fock–Gordon equation in the space–time with metric (1) is

d2φ

dt2 +
3
a

da
dt

dφ

dt
+ m2φ = 0. (99)
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In the simplest case of the quasi-Euclidean model (κ = 0), the second equality in
Equation (5) with Λ = 0 is

1
a2

(
da
dt

)2
=

8πG
3

ε, (100)

where the space–time is determined by the energy density of the inflaton field:

ε =
1
2

[(
dφ

dt

)2
+ m2φ2

]
. (101)

According to Ref. [68], at the inflationary stage, the second term on the left-hand side
of Equation (99) is much larger than the first one and the term m2φ2 in Equation (101) is
much larger than (dφ/dt)2. As a result, the scale factor a(t) found from Equations (100)
and (101) takes the following quasi exponential form:

a(t) = ã0 exp

(
2m

√
πG
3

φt

)
. (102)

In subsequent years, many papers were published devoted to different versions of the
inflationary cosmology (see, e.g., Refs. [69–72] and the monographs [73,74]).

The model of inflation has inspired a renewed interest in the effect of particle creation
in the nonstationary external fields and in the space–time of the expanding Universe.
The point is that at the end of the inflationary stage of the Universe’s evolution, the energy
density becomes very low and the inflaton field oscillates near the minimum of its potential
[in Equation (98), the simplest potential V = m2φ2/2 is chosen]. The standard elementary
particles were created during this period, which was called the process of reheating after
inflation [73,75].

The theory of the process of reheating is based on the effect of the exponential growth
of the number of particle–antiparticle pairs created from vacuum by the time-periodic field
with some momenta belonging to the instability zones of the Klein–Fock–Gordon equation
(see Section 3). In this case, the role of a periodic electric field is played by the oscillating
inflaton field [76,77]. The theory of reheating after inflation has been elaborated on by
many authors (see, e.g., Refs. [78–87]). The main features of this theory are summarized in
Ref. [68].

Over the last 25 years, the effect of particle creation in the expanding Universe contin-
ued to attract the considerable attention of experts in quantum field theory and cosmology.
Here, we mention only several papers devoted to this subject. Thus, in Ref. [88], the effect
of the creation of light particles called moduli during and after inflation was investigated
not only numerically but also analytically. It was shown that the dominant contribution
to the particle creation is given by the long-wavelength fluctuations of light scalar fields
generated during inflation.

In Ref. [89], the complex WKB approximation technique was used to study the thermal
particle creation in both the black holes and in the space–time of the expanding Universe.
According to the results obtained, the temperature of the particle spectrum is determined
by the slope of the scale factor of the cosmological model.

The effect of particle creation in the anisotropic expanding Universe (see the pioneer
Ref. [90]) was further considered in Ref. [91] using the formalism of squeezed vacuum
states for a minimally coupled scalar field. The semiclassical Einstein equations of the form
of Equation (96), but in the anisotropic case, were discussed. Note that Ref. [90] presented
the powerful regularization method for the vacuum stress–energy tensor and derived the
dynamical equations for the nonstationary Bogoliubov coefficients, which were actively
used in both anisotropic and isotropic spaces.

In Ref. [92], the above Equations (81) and (95) were used to describe the creation
of superheavy scalar and spinor particles, the decay of which could explain the baryon
number of the Universe and the nature of cold dark matter. Note that previously the
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creation of superheavy particles as the constituents of dark matter in various models of
inflation was analyzed in Ref. [93]. It was hypothesized that the decay products of the
superheavy constituents of cold dark matter are observed as the cosmic rays of ultra-high
energy [92].

The method of the diagonalization of the Hamiltonian of a quantized massless scalar
field with minimal coupling was used in Ref. [94] to calculate the particle creation rate in
the expanding Universe of the quasi-Euclidean type. It was assumed that the background
matter is described by the equation of state of a perfect fluid, which may violate the
strong energy condition ε + P > 0, ε + 3P > 0. According to the results obtained, the
particle creation rate decreases with time if the strong energy condition is satisfied and
increases otherwise.

The creation of dark matter particles, which interact only gravitationally, in the expand-
ing Universe of the quasi-Euclidean type was investigated in Ref. [95]. In the suggested
model, the real scalar field with an arbitrary coupling ξ, the quanta of which can be consid-
ered the candidates for dark matter particles, enters into the Lagrangian density along with
the inflaton field, but does not interact with it. By calculating the particle creation rate from
the adiabatic vacuum [28] during the transition period from inflation to reheating, it was
shown that heavy scalar particles of this kind can be effectively produced if their mass is of
the order of or less than the mass of an inflaton field.

The method of Hamiltonian diagonalization discussed in Sections 3 and 4 was also
applied in Ref. [96] to describe the creation of superheavy particles conformally coupled to
gravity in the model of quintessential inflation [97]. It was argued [96] that the subsequent
decay of these particles leads to the formation of relativistic plasma and eventually results
in the universally accepted picture of the hot universe.

Similar to the creation of particles in a nonstationary electric field, which has a con-
densed matter analogy with quasiparticles in graphene, there are the condensed matter
analogies to the particle creation in cosmology. Recently, it was found [98] that the expand-
ing Universe resembles the ultracold quantum fluid of light, where a spatial coordinate
plays the role of time. According to the authors, they observed the acoustic peaks in the
power spectrum, which is in quantitative agreement with theoretical predictions. The ob-
served spectrum was compared with that of the cosmic microwave background power
spectrum. Another possibility for the simulation of the process of particle creation in
the expanding Universe in the laboratory by means of ultra-cold atoms in Raman optical
lattices was considered in Ref. [99].

Some more recent publications devoted to the effect of particle creation in the expand-
ing Universe are reflected on in the review [100].

6. Discussion

Herein, we have considered the prediction of the Universe’s expansion made by
Alexander Friedmann a century ago that holds the greatest importance and interest today.
Particular attention has been given to the way in which this discovery was made. According
to the adduced arguments, it is not an accident that such a breakthrough result was obtained
by a mathematician. Several outstanding physicists, including the great Einstein, worked on
the same subject, but they were tied by some additional considerations of a methodological
character implying the static character of our Universe.

Quite to the contrary, Friedmann restricted himself only to the necessary minimum
assumptions, such as the homogeneity and isotropy of space, and searched for the formal
mathematical consequences following from the fundamental Einstein equations with no
prejudice. In doing so, Friedmann discovered that typical cosmological solutions of Einstein
equations describe the expanding Universe. This example shows that the mathematical
formalisms of fundamental physical theories, such as the general theory of relativity, may,
in some sense, be more clever than their creators and again raises the question raised by
Wigner about the unreasonable effectiveness of mathematics in natural sciences [25].
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The importance of Friedmann’s prediction of the Universe’s expansion is difficult to
overestimate. After a comprehensive experimental confirmation, the concept of the expand-
ing Universe laid the groundwork for the modern picture of the world. As substantiated in
Ref. [101], this fact gives grounds to include the name of Friedmann along with the names
of Ptolemy, Copernicus, and Newton, who created the scientific pictures of the Universe
accepted in previous epochs.

The expansion of the Universe leads to many outstanding consequences and one of
them, foreshadowed by Erwin Schrödinger, is the creation of particle–antiparticle pairs from
the vacuum of quantized fields. According to a comparison performed in Sections 3 and 4,
the effect of the creation of particles in the expanding Universe is mathematically analogous
to that in the nonstationary electric field in spite of quite different physical situations in
both cases.

The main results obtained in the literature on the creation of particles in the expanding
Universe by the method of Hamiltonian diagonalization and other methods show that
this effect played an important role at the very early stages of its evolution and, especially,
during the transition period between the inflationary and radiation-dominated epochs.
According to the results obtained, the effect of pair creation could also contribute to the
formation of dark matter.

7. Conclusions

To conclude, in this brief review, devoted to the one hundredth anniversary of Alexan-
der Friedmann’s prediction of the Universe’s expansion, we have considered several facts of
his biography which were helpful for making this outstanding discovery. The results pub-
lished by Friedmann in 1922 [4] and 1924 [5] were presented above with emphasis on the
role of mathematics in their obtainment. Some historical facts, including the dispute with
Albert Einstein, and further developments of the Friedmann cosmology, are elucidated.

The Universe’s expansion leads to the quantum creation from a vacuum of particle–
antiparticle pairs. This effect was discussed above in close connection with a more familiar
effect of pair creation by the nonstationary electric field. The comparison studies of these
two effects by the method of Hamiltonian diagonalization was performed and both the
similarities and distinctions between them were analyzed. Several results for the numbers of
scalar and spinor pairs created at different stages of the Universe’s evolution are presented.
Special attention was paid to the inflationary stage of the Universe’s evolution and to the
transition period to the epoch of the radiation-dominated Universe, where the effect of
particle creation was of primary importance for the formation of relativistic plasma and
cold dark matter.

By and large, the prediction of the Universe’s expansion made by Alexander Fried-
mann laid the foundation for the development of modern cosmology during the last century
and offered possibilities for the description of vacuum quantum effects in a nonstationary
space–time by the formalism of quantum field theory in the presence of external fields.
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Abstract: The action of an ideal fluid in Euler variables with a variable number of particles is used for
the phenomenological description of the processes of particle creation in strong external fields. It has
been demonstrated that the conformal invariance of the creation law imposes quite strict restrictions
on the possible types of sources. It is shown that combinations with the particle number density in
the creation law can be interpreted as dark matter within the framework of this model.

Keywords: conformal invariance; perfect fluid; dark matter; cosmology

1. Introduction

Conformal invariance is a good candidate for the role of a fundamental symmetry,
which, along with other symmetries, increases the likelihood of the Universe emerging from
“nothing” [1]. Similar ideas are supported by many researchers such as Roger Penrose [2]
and Gerard ’t Hooft [3].

The conformally invariant gravitational Lagrangian contains terms that are quadratic
in curvature. The results found by several independent research groups [4–9] show that
such terms are linked to the conformal anomaly responsible for the particle creation.
The conformal anomaly can be included in the action integral, where it consists of two
parts: local and nonlocal. The local part is included in the gravitational Lagrangian as a set
of counterterms and in the one-loop approximation is equal to the sum of the quadratic
terms in the Riemann curvature tensor and its convolutions.

The study of particle production processes in the presence of strong external fields plays an
important role both in cosmology and in black hole physics. It is especially difficult to calculate
the back reaction for these problems, because it is necessary to take into account not only the
influence on the metric from already produced particles, but also from vacuum polarization.

The exact solution of the quantum problem requires boundary conditions, and the
latter can be imposed only after solving field equations with the energy–momentum tensor
obtained by appropriate averaging from the quantum problem. In order to avoid these
obstacles, we consider a phenomenological description of particle creation processes. It
is a quantum process, but classical description is possible when the external fields are
strong enough and the separation between just-created particles becomes of the order of
their Compton length, and we can safely approximate them with some condensed matter.
For example, F. Hoyle [10] used a classical creation field in order to introduce the idea of
the continuous creation of matter. The thermodynamic approach to particle production at
the expense of a gravitational field has been studied in [11]. Recently, J. Farnes [12] applied
Hoyle’s creation tensor and the concept of negative mass to propose a single negative-mass
fluid explanation of dark matter and dark energy.

In the phenomenological approach to particle creation, the nonlocal processes become,
formally, the local ones. The same concerns also the trace anomalies, and, for example, in the
article [13], it is shown that the non-local terms in the effective action become insignificant
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under certain conditions. In this case, the use of anomaly-induced effective action can be
considered as an example of a phenomenological description of particle production.

To describe the processes of particle creation in the presence of strong external fields,
we use the action for an ideal fluid in Euler variables [14], in which the particle conservation
law is replaced by the creation law [15]. This method makes it possible to study the
process of particle creation phenomenologically at the classical level but while also taking
into account the back reaction. In addition, it will be shown further that the use of the
conformally invariant action of gravity in combination with the considered action of
matter leads to a case in which we are actually dealing with a kind of Sakharov’s induced
gravity [16].

When applying the model in consideration of cosmology, it can be assumed that it is
most relevant for those phases of the evolution of the Universe when there was a rapid
birth of particles. Take, for example, immediately after the supposed birth of the Universe,
“nothing” [1], or at the end of inflation during the reheating [17]. Moreover, if the Universe
was born anisotropic [18], then, as shown in the articles [21? ? ], it was the birth of particles
that led to its isotropization.

It is easy to verify that the law of particle creation is itself conformally invariant. If we
assume that the source of particle creation is an external scalar field, then we obtain fairly
strict restrictions on the possible types of sources. Specifically, they include conformally
invariant combinations of geometric quantities, scalar fields, and particle number density.
It turns out that it is the combinations with the particle number density that contribute to
the hydrodynamic part of the energy-momentum tensor and act like dust and radiation. It
is important to note that the above types of sources are not real matter but rather an echo of
the quantum process of particle creation. In this regard, their interpretation as dark matter
becomes possible.

2. Local Conformal Transformation

This paper considers Riemannian geometry, which is completely determined by
specifying the metric gµν. The affine connection Γλ

µν(x) is specified using Christoffel
symbols:

Γσ
µν = Γσ

νµ, gµν;σ = 0, Γσ
µν =

1
2

gσλ
(

gµλ,ν + gνλ,µ − gµν,λ
)
, (1)

It defines the parallel transport of vectors and tensors and their covariant derivatives

lµ
;λ = lµ

,λ + Γµ
λν lν, (2)

where “comma” denotes a partial derivative while “semicolon” denotes covariant derivative.
The Riemann tensor Rµ

νλσ is defined as follows:

Rµ
νλσ =

∂Γµ
νσ

∂xλ
− ∂Γµ

νλ

∂xσ
+ Γµ

κλΓκ
νσ − Γµ

κσΓκ
νλ, (3)

Ricci tensor Rµν is its convolution:

Rµν = Rλ
µλν. (4)

The curvature scalar is R = gµνRµν.
Next let us consider a local conformal transformation; by definition we have:

ds2 = Ω2(x)dŝ2 = Ω2(x)ĝµνdxµdxν, (5)

where Ω(x) is the conformal factor, and “hats” denotes the conformally transformed quantities.
It is worth noting that a local conformal transformation is fundamentally different from a

coordinate change. Different coordinates correspond to different observers, but the geometry of
space-time itself remains unchanged, in contrast to a local conformal transformation, which
does not change the coordinates, but changes the geometry.
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The metric and its determinant are transformed, evidently, in the following way:

gµν = Ω2 ĝµν, gµν =
1

Ω2 ĝ µν,
√
−g = Ω4

√
−ĝ. (6)

An important geometric quantity that will be used below is the Weyl tensor Cµνλσ,
which is the traceless part of the Riemann tensor,

Cµνλσ = Rµνλσ−
1
2

Rµλ gνσ +
1
2

Rµσ gνλ−
1
2

Rνσ gµλ +
1
2

Rνλ gµσ +
1
6

R
(

gµλ gνσ − gµσ gλν

)
.

In the context of this work, its most important property is conformal invariance:

Cµ
νλσ = Ĉµ

νλσ. (7)

3. Phenomenological Description of Particle Creation

There are two types of dynamical variables in classical hydrodynamics: Lagrangian
and Eulerian. The first ones are tied to the motion of individual particles, so the world line
of each particle is subject to variation when applying the principle of least action. These
coordinates are not suitable for describing the processes of creation or annihilation, and
therefore, the Euler formalism is preferred, when dynamical variables are fields describing
the average characteristics of the medium. This formalism was developed by J. R. Ray [14],
who showed that the motion equation for an ideal fluid derived from this action coincides
with the Euler equation. The advantage of this approach is that the continuity equation
is explicitly incorporated into the action through the corresponding connection with the
Lagrange multiplier.

Let us consider the action of an ideal fluid in Euler variables [14],

Sm = −
∫

ε(X, n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x +

∫
λ1(nuµ);µ

√
−g d4x +

+
∫

λ2X,µuµ
√
−g d4x. (8)

The dynamical variables are the particle number density n(x), the four-velocity uµ(x),
and the auxiliary dynamical variable X(x) introduced in order to avoid the identically zero
vorticity of particle flow. From the constraint with the Lagrangian multiplier λ2, it follows
that X(x) is constant along the trajectories, and therefore, the choice of this function defines
the labeling of the trajectories.

The energy density ε provides us with the equation of state p = p(ε), where

p = n
∂ε

∂n
− ε, (9)

is the hydrodynamic pressure.
The corresponding constraints are obtained by varying the matter action with respect to the

Lagrangian multipliers λ0, λ1, and λ2, the four velocity normalization uµuµ = 1, the particle
number conservation (nuµ);µ = 0 and the enumeration of trajectories X,µuµ = 0, respectively.

The energy momentum tensor is:

Tµν = (ε + p)uµuν − pgµν. (10)

As demonstrated in the article by [15], the process of particle creation can be described
phenomenologically if the corresponding constraint in the action of an ideal fluid is modified:

(nuµ);µ = Φ(inv), (11)

where function Φ depends on the invariants of the fields responsible for the creation process.
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It is easy to show that the left-hand side of the creation law becomes conformally
invariant when multiplied by the root of the modulus of the determinant of the metric:

n =
n̂

Ω3 , uµ =
ûµ

Ω
,
√
−g = Ω4√−ĝ, (12)

hence

(nuµ);µ =
1√−g

(nuµ
√
−g),µ =

1√−g

(
n̂

Ω3
ûµ

Ω
Ω4√−ĝ

)

,µ
=

=
1√−g

(n̂ûµ
√
−ĝ),µ, (13)

Then, it follows that, in turn, the quantity Φ
√−g is also conformally invariant.

In the absence of classical external fields, the birth of particles is due to the vacuum
polarization caused by gravity, so Φ is a function of geometric invariants. In Riemannian
geometry in the four-dimensional case, the square of the Weyl tensor C2 = Cµνλσ Cµνλσ is the
only possible choice if we restrict ourselves to invariants which are at most quadratic in the
curvature tensor. The same result was obtained in [22] for particle creation by the vacuum
fluctuations of the massless scalar field on the background of the homogeneous and slightly
anisotropic cosmological spacetime. For our model, it is universal for any Riemannian geometry,
irrespective of the form of the gravitational Lagrangian, and the back reaction is also taken
into account. In this regard, it can be assumed that the creation law describes the relationship
between the vacuum average values of the corresponding quantities.

If we consider a case in which some external scalar field ϕ is involved in the creation
process, then additional possible contributions to the source function Φ appear:

ϕ�ϕ− 1
6

ϕ2 R + Λ ϕ4, (14)

It is easy to see that it is invariant under a conformal transformation when the scalar field
changes as

ϕ =
ϕ̂

Ω
, (15)

where � denotes Laplace-–Beltrami operator.
The particles in question are on shell quanta of the scalar field, so they can also produce

“new” particles. The rate of particle creation in this case should depend on the density of
the number of “old” particles, i.e., it is some function of n. Due to conformal invariance,
the most natural choice is ϕ n, and n

4
3 . It is easy to verify that, when multiplied by

√−g,
they form conformal invariants. Theoretically, it is possible to use other degrees of ϕ and
n, but this leads to the appearance of particles with the properties of exotic or phantom
matter, so we will limit ourselves to the options presented above. Thus, our creation law
takes the following form:

Φ = α C2 + β

(
ϕ�ϕ− 1

6
ϕ2 R + Λ ϕ4

)
+ γ1 ϕ n + γ2 n

4
3 . (16)

4. Induced Gravity

Let us consider the action of an ideal fluid modified in the manner indicated earlier:

Sm = −
∫

ε(X, ϕ, n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x +

+
∫

λ1
(
(nuµ);µ −Φ

)√
−g d4x +

∫
λ2X,µuµ

√
−g d4x, (17)

note that ε = ε(X, ϕ, n).
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Let us consider a situation in which the action of gravity is conformally invariant.
This case is to a certain extent equivalent to induced gravity, in which there is nothing
except the action of matter, since the Lagrangian multiplier λ1 is defined up to a constant;
therefore, even in the absence of a separate Lagrangian for gravity, we can distinguish
terms proportional to C2 and ϕ2R. For the first time, such models, in which there is no
separate action for gravity, were studied by A.D. Sakharov [16]. He suggested that the
gravitational field is not fundamental, but is the result of the averaged influence of the
vacuum fluctuations of all other quantum fields; these ideas formed the basis of the theory
of induced gravity. Thus, we assume:

Sm = Stot. (18)

Evidently,
δStot

δΩ
=

δSm

δΩ
= 0, (19)

in the solutions. The only part of the action of matter that is not conformally invariant from
the very beginning or does not vanish due to constraints is

∫
ε(X, ϕ, n)

√
−g d4x. (20)

Since n = n̂
Ω3 , ϕ = ϕ̂

Ω ,
√−g = Ω4

√
−ĝ, one gets:

ϕ
∂ε

∂ϕ
+ 3n

∂ε

∂n
= 4 ε, (21)

with the solution:

ε = F
(

n
ϕ3

)
ϕ4, (22)

where F is an arbitrary function of one variable.
There are two important examples. For dust, that is, for p = 0, it follows from this

equation that ε = µ0 n ϕ, where µ0 is a constant. For radiation, ε = 3p, therefore, two
options are possible: either ϕ = 0, or ∂ε

∂ϕ = 0. That is, the energy density does not depend

on the scalar field: ε = ν0 n
4
3 . Note the resemblance with two "hydrodynamical" terms in

the creation law.

5. Equations of Motion and Constraints

Let us derive the (modified) hydrodynamical equations of motion and constraints for
the action in question:

Sm = −
∫

ε(X, ϕ, n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x +

∫
λ2X,µuµ

√
−g d4x+

+
∫

λ1

(
(nuµ);µ − γ1 ϕ n− γ2 n

4
3 − α C2 − β

(
ϕ�ϕ− 1

6
ϕ2 R + Λ ϕ4

))√
−g d4x.

Dynamical variables are n, uµ, ϕ, and X:

δϕ : β

(
λ1�ϕ +�(λ1 ϕ) + 4λ1 Λϕ3 − 1

3
λ1 ϕ R

)
+ γ1 n = − ∂ε

∂ϕ
, (23)

δn : − ∂ε

∂n
− λ1,σ uσ − λ1γ1 ϕ− 4

3
λ1γ2 n

1
3 = 0, (24)

δuµ : λ2 X,µ + 2λ0 uµ − λ1,µ n = 0, (25)
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δX : − ∂ε

∂X
− (λ2 uσ);σ = 0. (26)

The corresponding constraints are:

δλ0 : uσ uσ − 1 = 0, (27)

δλ1 : (nuσ);σ = Φ, (28)

δλ2 : X,σ uσ = 0. (29)

From Equation (25) multiplied by uµ and constraints we get:

2λ0 = −n
∂ε

∂n
− λ1γ1 ϕ n− 4

3
λ1γ2 n

4
3 . (30)

Let us calculate the hydrodynamical part of the energy–momentum tensor, that is, the
energy–momentum tensor of the perfect fluid plus contribution from the γ1 and γ2 terms.
From the general definition:

Sm = −1
2

∫
Tµν δgµν

√
−g d4x, (31)

Taking into account Equation (30), we get:

Tµν
hydro = ε gµν − 2λ0 uµ uν + gµν

(
n λ1,σ uσ + λ1γ1 ϕ n + λ1γ2 n

4
3

)
=

=

(
ε + p + λ1γ1 ϕ n +

4
3

λ1γ2 n
4
3

)
uµ uν − gµν

(
p +

1
3

λ1γ2 n
4
3

)
. (32)

The remaining parts of the energy–momentum tensor are:

Tµν[ϕ] = λ1βΛ ϕ4 gµν − β ∂σ(λ1 ϕ)∂σ ϕ gµν + β ∂µ(λ1 ϕ)∂ν ϕ+

+ β ∂ν(λ1 ϕ)∂µ ϕ +
β

3

{
λ1 ϕ2 Gµν −OµOν

(
λ1 ϕ2

)
+ gµν�

(
λ1 ϕ2

)}
,

Tµν[C2] = −8α

(
Oσ Oη +

1
2

Rση

)
(λ1 Cµσνη), (33)

where Gµν is the Einstein tensor. Since we are dealing with induced gravity, then:

Tµν = Tµν
hydro + Tµν[ϕ] + Tµν[C2] = 0. (34)

It should be clarified that the trace of the energy–momentum tensor T is equal to zero,
even for a non-zero gravitational part of the action, if it is conformally invariant. Let us
show that the condition T = 0 reduces to Equation (21) obtained above:

T = ε− 3p + 4β λ1 Λ ϕ4 − β

3
λ1 ϕ2 R + β ϕ�(λ1 ϕ) + β λ1 ϕ�ϕ + λ1 γ1 ϕn =

= ε− 3p− ϕ
∂ε

∂ϕ
= 4ε− 3n

∂ε

∂n
− ϕ

∂ε

∂ϕ
, (35)

where in the second equality, the equation of motion obtained by variation in ϕ was used.
The terms from the creation law which contain the particle number density lead to the

appearance of corresponding contributions to the hydrodynamic part of the energy–momentum
tensor: the term with γ1 is dust-like and the term with γ2 is radiation-like. They are not real
because the particle number density n refers to real created particles whose equation of state
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can be arbitrary (anything). We can say that they are echoes of the process of creation itself.
Thus, the most appropriate name for them is “gravitating mirages”.

Finding a general solution to the equations of motion is quite a difficult task, so we
will limit ourselves to considering two special cases: ϕ = 0 and λ1 = const.

In the first case, Equation (21) implies that our perfect fluid is radiation, then, according
to (23), either n or γ1 is zero. If γ1 = 0, then it follows from (24) and (32) that:

λ1,σ uσ = −4
3

n
1
3 (ν0 + λ1 γ2), (36)

Tµν
hydro =

1
3

n
4
3 (ν0 + λ1 γ2) (4 uµuν − gµν). (37)

Using the gauge n = n0 = const and the comoving coordinate system, where uσ = δσ
0 ,

we can find λ1 considering that it depends only on the proper time t:

λ1(t) = −
ν0

γ2
+

(
λ1(0) +

ν0

γ2

)
exp
{
−4

3
γ2 n

1
3
0 t
}

. (38)

Note that λ1 tends to a constant − ν0
γ2

, while t→ ∞ if γ2 > 0.
In the second case from Equation (24), we get:

∂ε

∂n
= −λ1

(
γ1 ϕ + γ2 n

1
3

)
, (39)

the solution is:
ε = −λ1

(
γ1 nϕ + γ2 n

4
3

)
+ f (ϕ). (40)

Function f (ϕ), then, can be found from the relation (22):

f (ϕ) = Cϕ4, (41)

where C is an arbitrary constant. The hydrodynamical part of the energy–momentum
tensor is: Tµν

hydro = C ϕ4 gµν. This means that in this case, the term f (ϕ) in ε is equivalent to
the shift of the constant Λ. The equation of motion for ϕ reduces to the following:

2λ1β

(
�ϕ− 1

6
R ϕ + 2Λ ϕ3

)
+ 4Cϕ3 = 0. (42)

The conformal invariance of the equations of motion and the creation law makes it
possible to simplify the problem by fixing the gauge. In the gauge ϕ = ϕ0 = const from the
Equation (42) we get:

R =
12ϕ2

0
βλ1

(C + λ1 βΛ) = const, (43)

therefore the space-time in question is equivalent to the geometry with constant scalar
curvature up to a conformal factor.

6. Cosmology

Let us consider cosmological solutions by which we understand the homogeneous
and isotropic space-times described by the Robertson–Walker metric:

ds2 = dt2 − a2(t)dl2, (44)

dl2 = γijdxidxj =
dr2

1− kr2 + r2(dθ2 + sin2 θdϕ2), (k = 0,±1),
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with the scale factor a(t). Due to the high level of the symmetry, we assume that all dynamic
variables except the metric depend only on t and uµ = δ

µ
0 , so the constraint for the λ0 is

automatically satisfied.
For this geometry, Cµ

νλσ = 0; therefore, Tµν[C2] = 0. Since T1
1 = T2

2 = T3
3 , we can only

use T00 and T. From the constraint for λ2, we get:

Ẋ = 0 ⇒ X = const, (45)

The dot denotes the derivative with respect to t .
The equations of motion for the metric (44) and the action of matter in question are:

T00 = ε + β λ1

{
Λ ϕ4 + ϕ̇2 + ϕ2 ȧ2 + k

a2 + 2ϕϕ̇
ȧ
a

}
+ β λ̇1 ϕ

(
ϕ̇ + ϕ

ȧ
a

)
+

+ λ1

(
γ1 ϕ n + γ2 n

4
3

)
= 0, (46)

ϕλ̈1 + λ̇1

(
3ϕ

ȧ
a
+ 2ϕ̇

)
+ λ1

(
2ϕ̈ + 6

ȧ
a

ϕ̇ + 4Λ ϕ3 − 1
3

ϕ R
)
+ λ1

γ1

β
n = − 1

β

∂ε

∂ϕ
, (47)

Φ = β ϕ

(
1
a3

d
dt

(
a3 ϕ̇

)
− 1

6
ϕ R + Λ ϕ3

)
+ γ1 ϕn + γ2 n

4
3 =

1
a3

d
dt

(
a3 n

)
, (48)

∂ε

∂n
+ λ̇1 + λ1 γ1 ϕ +

4
3

λ1 γ2 n
1
3 = 0, (49)

T = ε− 3p− ϕ
∂ε

∂ϕ
= 0, (50)

where R = −6 aä+ȧ2+k
a2 is a scalar curvature.

The system of equations under consideration is degenerate, since the equation of
motion on ϕ multiplied by ϕ̇ + ϕ ȧ

a is obtained by differentiation with respect to t equation
for T00 and using the rest. Thus, one of the equations can be eliminated, except for the case
when ϕ̇ + ϕ ȧ

a = 0. An additional relation connecting the original equations is associated
with the conservation of the energy–momentum tensor in quadratic gravity and, as a
consequence, its special case—conformal gravity.

Let us consider the special case β = 0, in which the external scalar field is not dynamic,
that is, the action does not contain derivatives ϕ. Moreover, from the equations, it follows
that λ1 = const, ε = −λ1

(
γ1 ϕ n + γ2 , n

4
3

)
, and the functions a(t) and ϕ(t) are arbitrary.

It should be noted that from the birth law in this case it follows that at n = 0, ṅ is also equal
to zero; that is, in order for the birth of particles from the vacuum to begin, there must be
a contribution from the term at β or geometry for which C2 6= 0.

As stated above, the conformal invariance of the action and, as a consequence,
the equations of motion allow one to arbitrarily choose the gauge.

Let us suppose that we found somehow the specific solution for the set of dynamical
variables {â, n̂, ϕ̂}. Then, the general solution is {a, n, ϕ}, where a = â Ω, n̂ = n Ω3,
ϕ̂ = ϕ Ω with arbitrary smooth function Ω(t). One can use such a freedom to choose the
most appropriate gauge.

The free choice of gauge forces us to think about which of them is physical, that is,
which is most consistent with the accumulated observational data. In the fourth section,
we considered Equation (21), which follows from the conformal invariance of the action of
gravity, for two special cases—dust and radiation. For dust, we found that the effective
mass of particles, a factor of n, depends on the external scalar field, and in the general case
is not constant. In this regard, we can assume that the gauge ϕ = const is physical.
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Below we will write the set of equations for two different gauges: ϕ = ϕ0 = const and
â = 1. The latter does not mean at all that the “real” Universe is static. It is chosen because
in such a case the set of equations looks simplest. However, in our opinion, the gauge
ϕ = ϕ0 may be considered physical since the mass of the dust particles become constant.

Transition from the “comfortable” gauge â = 1 to the physical gauge ϕ = ϕ0 can be
easily achieved in the following way. Since a ϕ = â ϕ̂, we have a ϕ = ϕ̂(η) and a(η)2dη2 =
dt2, where η is the conformal time, and t is the cosmological time.

Let us consider the gauge ϕ = ϕ0:

0 = T00 = ε + β λ1

{
Λ ϕ4

0 + ϕ2
0

ȧ2 + k
a2

}
+ β λ̇1 ϕ2

0
ȧ
a
+ λ1

(
γ1 ϕ0 n + γ2 n

4
3

)
, (51)

ϕ0λ̈1 + 3λ̇1 ϕ0
ȧ
a
+ λ1

(
4Λ ϕ3

0 −
1
3

ϕ0 R
)
+ λ1

γ1

β
n = − 1

β

∂ε

∂ϕ
, (52)

β ϕ0

(
−1

6
ϕ0 R + Λ ϕ3

0

)
+ γ1 ϕ0n + γ2 n

4
3 =

1
a3

d
dt

(
a3 n

)
, (53)

∂ε

∂n
+ λ̇1 + λ1 γ1 ϕ0 +

4
3

λ1 γ2 n
1
3 = 0, (54)

4ε− 3n
∂ε

∂n
− ϕ0

∂ε

∂ϕ
= 0. (55)

For k = 0, there is a particular solution with n = n0 = const:

ȧ
a
=

3n0

βϕ2
0
− γ1 ϕ0 −

4
3

γ2 n
1
3
0 , (56)

β ϕ2
0


Λ ϕ2

0 + 2

(
3n0

βϕ2
0
− γ1 ϕ0 −

4
3

γ2 n
1
3
0

)2

+ γ1 ϕ0 n0 + γ2 n

4
3
0 =

= 3n0

(
3n0

βϕ2
0
− γ1 ϕ0 −

4
3

γ2 n
1
3
0

)
, (57)

ε(n0, ϕ0) = βϕ2
0

(
3n0

βϕ2
0
− γ1 ϕ0 −

4
3

γ2 n
1
3
0

)
∂ε

∂n
(n0, ϕ0). (58)

Here we can draw an analogy with the solution with k = 0 obtained in the work of [23].
Transition to conformal time:

dη2 =
dt2

a(t)2 , ds2 = a2(η)

{
dη2 − dr2

1− kr2 − r2dΩ2
}

, (59)

This allows us to choose a gauge a(η) = 1 in which η = t. The equations of motion for this
gauge are as follows:

Tηη = β
(

ϕ λ̇1 ϕ̇ + λ1 ϕ̇2 + λ1 ϕ2
(

k + Λϕ2
))

+ ε + λ1

(
γ1 ϕ n + γ2 n

4
3

)
= 0, (60)

1
β

∂ε

∂ϕ
+ 2λ1 ϕ̈ + 2λ̇1 ϕ̇ + ϕλ̈1 + λ1 ϕ

(
2k + 4Λϕ2

)
+

γ1

β
λ1 n = 0, (61)

∂ε

∂n
+ λ̇1 + λ1 γ1 ϕ +

4
3

λ1 γ2 n
1
3 = 0, (62)
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ṅ = β
(

ϕ ϕ̈ + k ϕ2 + Λ ϕ4
)
+ γ1 ϕ n + γ2 n

4
3 , (63)

4ε− 3n
∂ε

∂n
− ϕ

∂ε

∂ϕ
= 0. (64)

Let us consider the special case λ1 = const:

ε = −λ1

(
Φ− β ϕ ϕ̈ + β ϕ̇2

)
, (65)

∂ε

∂n
= −λ1

∂Φ1

∂n
, (66)

ṅ = Φ, (67)

4ε− 3n
∂ε

∂n
− ϕ

∂ε

∂ϕ
= 0. (68)

Only four equations are used here because, as noted earlier, not all of the original
equations are independent. From the condition T = 0 in this case it follows:

ε = −λ1

(
γ1 ϕ n + γ2 n

4
3

)
+ Cϕ4, (69)

where C is some constant. Wherein field ϕ satisfies the equation:

ϕ̇2 = −k ϕ2 −
(

C
βλ1

+ Λ
)

ϕ4. (70)

For k = 0:
ϕ =

σ√
−
(

C
βλ1

+ Λ
)

1
η + C0

, (71)

where σ = ±1 is a sign of ϕ̇; for k = ±1 we have, respectively:

σ arctg




1√
−
(

C
βλ1

+ Λ
)

ϕ2 − 1


 = η + C0, k = 1, (72)

σ arcth




1√
−
(

C
βλ1

+ Λ
)

ϕ2 + 1


 = η + C0, k = −1, (73)

where C0 is a constant depending on the initial conditions.
The scale factor a(η) changes as follows under the conformal transformation a = Ω â;

therefore, when going to the gauge â = 1, a = Ω. If initially ϕ = ϕ0 = const, then
ϕ̂ = ϕ0 Ω = ϕ0 a; that is, the scalar field calculated in the gauge â = 1, proportional to
the scale factor in the gauge ϕ = ϕ0 = const. In particular, the result obtained above for
λ1 = const is consistent with that calculated earlier, since, when moving to the gauge
ϕ = ϕ0 = const, the scalar curvature remains constant:

R = −6
a′′ + a k

a3 = 12
(

Λ +
C

βλ1

)
ϕ2

0, (74)
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where the prime denotes the derivative with respect to η and a(η) = 1
ϕ0

ϕ̂(η) with function
ϕ̂(η) defined by the Equations (71), (72) or (73) depending on k.

Let us consider the transition to the variable t from η for the case k = 0:

a =
1
ϕ0

σ√
−
(

C
βλ1

+ Λ
)

1
η + C0

∝ exp

{
σ ϕ0

√
−
(

C
βλ1

+ Λ
)

t

}
, (75)

where we have chosen the minus sign in the relation: dt = −a(η)dη. Thus, if σϕ0 > 0, we
obtain exponential growth for the scale factor a(t). Moreover, from Equation (70), it follows
that the same is true for k = ±1 when ϕ̂→ ∞, which is equivalent to t→ ∞. This is due
to the fact that with λ1 = const in the gauge ϕ = ϕ0 for the homogeneous and isotropic
space-time with the metric (44), our model actually reduces to general relativity with the
cosmological constant.

7. Discussion

The conformal invariance of the term in the action of matter, from which the particle
creation law is obtained, leads to restrictions on the invariants of external fields responsible
for the creation processes on which the function Φ depends. In the absence of classical
external fields, when the only source of particle creation is gravity, the square of the Weyl
tensor is the most basic option. Due to this fact, conformal invariance of the gravity action
leads to a case in which the total action is equivalent to the matter action up to redefining
Lagrange multiplier λ1.

When an external scalar field is introduced into the creation law, the following
combination is chosen: ϕ�ϕ − 1

6 ϕ2 R + Λ ϕ4, since it yields a nontrivial equation of
motion and is conformally invariant when multiplied by

√
|g|.

In addition to the above, contributions to the creation law proportional to the particle
number density are also possible. In cosmology, the γ1 term can be interpreted as a dark
matter. It is not real matter, but the “memory” of the process of the particle production.
The conditions for its existence are n 6= 0 (> 0). Thus, the real particles should already be
produced. The dark matter will exist even after the particle creation stops. The γ2 term
becomes the hot universe, even without real photons and real temperature. Both of them
are just images, but they are gravitating.

This interpretation is possible due to the fact that, in the hydrodynamic part of the
energy–momentum tensor, the terms with γ1 and γ2 are not associated with any matter,
but indicate the influence on gravity of the particle creation process itself, which can be
used to explain the “missing” mass in the Universe. Moreover, their contribution is in many
ways similar to the contribution from dust and radiation, which unites our model with the
one presented in the article [12], where the matter creation also makes a contribution to the
energy–momentum tensor similar to an ideal fluid.

As mentioned in the introduction, the phenomenological description of particle
creation in cosmology is best suited to the early Universe. However, the solution obtained
in our model for λ1 = const (75) shows that it is also applicable for the present phase of the
evolution of the Universe.

In the absence of a scalar field, the matter under consideration within this model,
when the action of gravity is conformally invariant, can only be radiation. For cosmological
solutions, by which we mean homogeneous and isotropic geometry, without a scalar field
the creation of particles cannot begin from the vacuum. On the other hand, if n 6= 0 or
ϕ 6= 0, then, unlike the models discussed in the articles [21? ? ], particle production is
possible even in homogeneous and isotropic geometry, where the square of the Weyl tensor
is zero.

From the conformal invariance of the gravity action for the model with an external
scalar field it follows that, for dust, the energy density is proportional to the scalar field,
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while for radiation, it does not depend on the scalar field. Therefore, the gauge ϕ = const
seems to be the most consistent with the observational data.
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Abstract: The suppression of relic gravitational waves due to their conversion into electromagnetic
radiation in a cosmological magnetic field is studied. The coupled system of equations describing
gravitational and electromagnetic wave propagation in an arbitrary curved space-time and in external
magnetic field is derived. The subsequent elimination of photons from the beam due to their
interaction with the primary plasma is taken into account. The resulting system of equations is
solved numerically in the Friedman–LeMaitre–Robertson–Walker metric for the upper limit of the
intergalactic magnetic field strength of 1 nGs. We conclude that the gravitational wave conversion
into photons in the intergalactic magnetic field cannot significantly change the amplitude of the relic
gravitational wave and their frequency spectrum.

Keywords: gravitational waves; cosmological magnetic field; expanding universe; Heisenberg–Euler
action; gravitational wave conversion; curved space-time; Friedman–LeMaitre–Robertson–Walker
space-time

1. Introduction

The transformation between gravitons and photons in an external magnetic field
was considered in a multitude of papers starting from 1961 [1–8]. The problem acquired
particular importance in connection with the possible transformation of relic gravitational
waves (GW) produced at the inflationary stage [9–12] into electromagnetic waves (EMW) in
primordial magnetic fields. However, in all previous works see, e.g., [8,13] the calculations
have always been conducted in Minkowski space-time, though the curvature effects in the
very early universe could be quite essential.

In the present work, we go beyond the flat space-time restriction and consider gravi-
ton and photon propagation in an arbitrary curved background. The propagation of
gravitational waves in curved space-time was almost always considered in the Friedman–
LeMaitre–Robertson–Walker metric (FLRW), see, e.g., textbooks [14,15], except for some
Bianchi type metrics and our recent paper [16], where an arbitrary background metric was
allowed. Here, we derive the propagation equations for the coupled system of photons
and gravitons in an arbitrary background. Next, we will turn to the Friedman–LeMaitre–
Robertson–Walker (FLRW) space-time, which is a good approximation of the real universe.
However, deviations from FLRW could be essential and lead to interesting observable
effects.

For over a century, the Friedman equations have served as a basement for the conven-
tional cosmological model. They well describe the early universe, that is homogeneous
and isotropic to a very good approximation. They are operative also in the contemporary
universe on very large scales. Friedman cosmology allows for description of cosmological
dark matter and what is more surprising dark energy, though the physical nature of the
latter is not yet established.

Universe 2024, 10, 7. https://doi.org/10.3390/universe10010007 https://www.mdpi.com/journal/universe314
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The propagation of gravitational waves in curved space-time was almost always
considered in FLRW metric, except for some Bianchi type metrics and our recent paper [16],
where an arbitrary background metric was allowed.

Here, we derive the coupled equations of motion for metric perturbations and elec-
tromagnetic waves over an arbitrary cosmological background in the external cosmic
magnetic field. The metric perturbations and EMW are treated in the first order of the
perturbation theory.

We introduce the full electromagnetic field Āµ as the sum of an external classical
component of the electromagnetic field Aµ and a small quantum fluctuation fµ, which is
considered as a perturbation,

Āµ = Aµ + fµ. (1)

The stress tensors of Āµ, Aµ and fµ are then introduced accordingly:

F̄µ,ν = ∂µ Āν − ∂µ Āν (2)

Fµν = ∂µ Aν − ∂ν Aµ, (3)

fµν = ∂µ fν − ∂ν fµ. (4)

The full metric tensor ḡµν is expanded around the metric tensor of the background
space-time gµν as

ḡµν = gµν + hµν,

ḡµν = gµν − hµν

with hµν being a small perturbation of the metric.
The properties of the metric tensor gµν are specified by: the orthogonality condition

gµνgµλ = δλ
µ , where δλ

µ is the Kronecker delta-symbol; rising and lowering of the indices of
the tensors hµν and fµν by the background metric tensor gµν. Note that the indices of the
full and classical stress tensors of the electromagnetic fields are raised and lowered with
the full metric tensor ḡµν.

The corrections to the metric determinant ḡ can be found from the first-order expansion
of an arbitrary non-degenerate matrixM:

det[M+ δM] = det[M]
(

1 + Tr[M−1δM]
)

. (5)

So we obtain:

det[ḡµν] = det[gµνhµν] = det[gµν]
(
1 + gµνhµν

)
. (6)

It is assumed usually that tensor perturbations are traceless:

h ≡ gµνhµν = 0. (7)

However, we see in what follows that the corrections to the Maxwell energy–momentum
tensor are not traceless, see, e.g., Equations (69)–(115) and a nonzero trace of the gravita-
tional field source leads to the nonzero h, so det[ḡµν] = det[gµν](1 + h).

The initially derived equations are supposed to be valid in an arbitrary space-time
metric, but ultimately we assume that the background metric has the 3D-flat FLRW form:

ds2 = dt2 − a2(t) ∑
j=1,2,3

dx2
j (8)

where a(t) is the cosmological scale factor. The Hubble parameter is expressed through it
in the usual way as H = ȧ/a. The curved metric reduces to the flat one when a→ 1.

The paper is organized as follows. We start in Section 2 with a brief reminder of the
equation for metric perturbations over arbitrary space-time. In Section 3, we recall the
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expansion of metric perturbations in terms of helicity eigenstates. After that, in Section 4 we
show that the scalar and tensor modes can mix in the general case of inhomogeneous space.
Further, in Section 5 we consider propagation of metric perturbation over FLRW space-time
in an external magnetic field. In Section 6, the propagation of electromagnetic waves in
a magnetic field is considered. In both sections, we start from the classical Maxwell and
Hilbert–Einstein actions ignoring for a while the Heisenberg–Euler (HE) [17] corrections,
the quantum trace anomaly and matter effects. They are taken into account step-by-step in
the subsequent subsections. On the way, we discuss the definition of physical magnetic
fields through the electromagnetic field tensor Fµν in cosmological background (Section 5.3)
and the impact of the HE-corrections to the electromagnetic wave propagation expressed
through the physical magnetic field B (Section 6.2). In Section 7, we analyze the full set,
of differential equations (SDE) for (g− γ)-coupled system, choose a reference frame, and
simplify the system for the choice made. Next, in Section 8, we divide the task into two
cases: k||B and k⊥B, and find out that the conversion effect is present only for the second
case. In the last Section 9, we divide SDE into two independent subsystems and solve the
first of them numerically. Lastly, we conclude the paper by summarizing the obtained
results and formulating the prospects for future research.

2. Metric Perturbations in General Case

In [16], we obtained Equation (23) for the propagation of metric perturbations in
arbitrary space-time. Let us write it for two lower indices:

D2hµν − 2hαβRαµνβ −
(

hαµRα
ν + hανRα

µ

)
+ hµνR− gµν

(
hαβRαβ +

1
2

D2h
)

= −2(8πG)T(1)
µν , (9)

where G is the gravitational constant, D2 = DαDα and Dα is the covariant derivative,
Rαµνβ, Rµν, R are the Riemann tensor, Ricci tensor and scalar curvature, respectively.

The equation contains additional terms that disappear in the special cases of Minkowski
and FLRW spaces. These extra terms could have significant effects on the GW and EMW
propagation over background metric that differs from the FLRW one.

Let us note the agreement between Equations (9) and (2.33) from the work [18],
published after our work [16]. The apparent difference with our result disappears in the
Lorentz calibration

Dµhµ
ν =

1
2

∂νh. (10)

In this article, the authors obtained the same equation using a double variation of the
action, while we obtained it by expanding the Einstein equation to first order in perturbation.

3. Helicity Decomposition and Choice of Gauge

Now it is worth recalling the formalism of the expansion of the perturbation hµν in
terms of helicity states [19–23]. The generally accepted approach is that (along with the
vectors Ci, Gi and the traceless tensor Dij) four scalars A, B, E, F are introduced, through
which the components of the metric perturbation are expressed:

h00 = −E, (11)

h0i = a
(

∂F
∂xi + Gi

)
, (12)

hij = a2
(

Aδij +
∂2B

∂xi∂xj +
∂Ci

∂xj +
∂Cj

∂xi + Dij

)
. (13)

One can impose gauge conditions such that two scalars turn to zero. The so called
synchronous gauge corresponds to the choice E = 0 and F = 0. Under this gauge there
still remains some more freedom, that may allow to simplify algebra in a specific problem.
The second well-known type of gauge is the Newtonian gauge, where B = 0, F = 0,
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E ≡ 2Φ, and A ≡ −2Ψ. The choice of this gauge better fits our task, so for the scalar sector
we will use the Newtonian gauge.

In addition to the gauge in the scalar sector, the Lorentz gauge (10) is usually imposed
on the entire tensor perturbation of metric. This calibration naturally arises in the case when
the so-called harmonic Fock coordinates are used. It allows to obtain a simpler expression
for the Ricci tensor and, as a consequence, to simplify the equation for the propagation of
metric perturbations. Formerly in our paper [16], we have only used the Lorentz gauge.

4. Mixing of Metric Perturbation Modes

Note that from the expression for the trace of the Equation (9) it turns out that in the
general case, for an arbitrary form of the Ricci tensor, there appears a mixing of scalar
and tensor modes of metric perturbations. In general case it is impossible to separate
the equations for these two sectors. Indeed, taking trace of Equation (9), we obtain the
following expression

∂2h + 4hαβRαβ − hR = 16πGTα(1)
α , (14)

where ∂2 = ∂µ∂µ, and from which it is clearly seen that the second term in the left hand
side includes both terms from the scalar and the tensor sectors.

In addition, it is important to pay attention to the trace from the source on the right-
hand side of the equation. As will be shown below for the problem of graviton conversion
into photons in an external magnetic field, the trace from the correction to the EMT contains
a convolution of the background electromagnetic tensor and the tensor perturbation to
the metric, hµν, which also leads to mixing between scalar and tensor modes. This result
is evident, because the expansion of metric perturbations in polarizations is valid for a
problem with axial symmetry: in this problem there is only one specific direction—the
direction of the wave vector k of the metric perturbation. If space is for some reason
unisotropic (as, for example, in the case of an external magnetic field or in the presence of
an anisotropic stress tensor), this symmetry disappears.

5. Metric Perturbations in Magnetic Field
5.1. Equation in the FLRW Metric

Recall that in the FLRW metric

R00 = −3
ä
a

, (15)

Rij = −gij

(
ä
a
+ 2H2

)
. (16)

R = −6
(

ä
a
+ H2

)
. (17)

We write the trace of the GW tensor in the following form:

h = gµνhµν = h00 −
hxx + hyy + hzz

a2 ≡ h00 + hi
i, (18)

where the notation hi
i = −

(
hxx + hyy + hzz

)
/a2 was introduced:

Let us write down the system of Equation (9) for the case of the FLRW metric. To do
this, we will use the expressions (15)–(18). We get

D2hµν − 2hαβRαµνβ − gµν

[
1
2

∂2h− 3
ä
a

h00 −
(

ä
a
+ 2H2

)
hi

i

]
− 6H2h00δ0µδ0ν

−2
(

2ä
a
+ H2

)
hµν

[
1− δ

µ
0 δν

0

]
= −16πGT(1)

µν , (19)

where the Latin indices are the spatial ones (vary from one to three).
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For a medium where the perturbation propagates, we will consider a model of an
ideal fluid. The total energy–momentum tensor in this case is determined through the full
metric as follows

Tmedium
µν = −pgµν + (p + $)uµuν, (20)

where $ is the energy density, p is the pressure, uµ is the four-speed. Then the right side of
Equation (19) can be rewritten as

−16πGT(1)
µν = −16πG

(
Tmedium(1)

µν + TEM(1)
µν

)
= 16πGphµν − 16πGTEM(1)

µν , (21)

where the first term in the last equality is obtained by expanding Equation (20) to the
first order in perturbation at uj = 0 (index j varies from one to three) and the second
term is responsible for the perturbation of the EMT due to the presence of an external
magnetic field.

The factor before the last term on the left side of the Equation (19) is exactly

−2
(

2
ä
a
+ H2

)
= 16πGp. (22)

Thus, Equation (19) can be simplified:

D2hµν − 2hαβRαµνβ − gµν

[
1
2

∂2h− 3
ä
a

h00 −
(

ä
a
+ 2H2

)
hi

i

]
− 6H2h00δ0µδ0ν

= −16πGTEM(1)
µν , (23)

Now, for brevity, we omit the expressions for the components of the Riemann tensor
and the Christoffel symbols in the covariant derivative and write the final equations for 00,
0j, and ij components separately:

[
∂2

t + 3H∂t −
∆
a2 + 3

(
ä
a
− 4H2

)]
h00 −

1
2

∂2h +

(
4H2 − ä

a

)
hi

i = −16πGTEM(1)
00 ,

2H
[

∂jh00 +
∂xhxj + ∂yhyj + ∂zhzj

a2

]
= −16πGTEM(1)

0j ,
[

∂2
t + 3H∂t −

∆
a2

]
hi

j + δi
j

[
−∂2h

2
+

(
ä
a
+ 2H2

)
h00 +

ä
a

hl
l

]
= −16πGTi EM(1)

j , (24)

where notation (18) is used, and the last equation is written in terms of mixed components,
since then it looks more consistent with the equation for the 00 component.

5.2. Corrections to the Energy–Momentum Tensor (EMT)

Corrections to the EMT are due to the presence of an external electromagnetic field.
We will find them in accordance with the definition of EMT of matter:

Tµν =
2√
−g

δAmttr

δgµν

. (25)

There are two contributions to the EMT perturbation: from the Maxwell action and
from the Heisenberg–Euler action.

The gravity of the background magnetic field is negligible compared to the background
of matter and we ignore its contribution to the EMT corrections.

5.2.1. Corrections to EMT Emerging from the Maxwell Action

The Maxwell action is written as follows:

AMax = −1
4

∫
d4x
√
−ḡ
(

F̄2 + Āµ J̄µ
)

, (26)
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where F̄2 = F̄µν F̄µν = ḡµα ḡνβ F̄µν F̄αβ. Hence the energy-momentum tensor is

T̄(Max)
µν =

1
4

ḡµν F̄2 − F̄µα F̄νβ ḡαβ. (27)

or for the mixed components:

T̄µ(Max)
ν =

1
4

δ
µ
ν F̄2 − F̄µ

. α F̄. α
ν . (28)

Clearly this tensor is conserved and its trace is zero:

ḡµνT̄(Max)
µν ≡ δ

µ
ν T̄ν(Max)

µ = 0. (29)

The vanishing of the EMT trace in Maxwell electrodynamics is a consequence of the
conformal invariance of the Maxwell action (26). This is not so for higher order quantum
corrections (trace anomaly), see Section 6.3.

The trace of the zero-order term with mixed components:

Tµ(Max 0)
ν =

1
4

δ
µ
ν F2 − Fµ

. αF. α
ν (30)

is also zero. Note that moving indices up or down in this equation is done by the back-
ground metric, e.g., Fµ

. αF. α
ν = gµσgαλFσαFνλ and F2 = FαβFσλ gασgβλ.

The zero-order term is presumably small in comparison with the total cosmological
energy–momentum tensor and can be neglected in what follows.

For the first order term with mixed components we obtain:

Tµ(Max 1)
ν =

1
2

δ
µ
ν [(F f )− (FFh)] + hµσFσαF. α

ν + hαλFµ
. αFνλ − f µ

. αF. α
ν − Fµ

. α f . α
ν , (31)

where (F f ) = Fαβ f αβ and (FFh) = FαβF. β
σ hασ. Evidently Tµ(Max 1)

µ = 0, as is expected.

5.2.2. Heisenberg–Euler (HE) Lagrangian

The second origin of EMT corrections is Heisenberg–Euler effective Lagrangian [17].
It describes quartic self-interaction of electromagnetic field and is induced by the loop of
virtual electrons with four external electromagnetic legs. In the weak field limit, and low
energies, much smaller than the electron mass, me, the corresponding action has the form:

A(0)
HE =

∫
d4x
√
−g C0

[
(FµνFµν)2 +

7
4
(F̃µνFµν)

2
]

. (32)

Here
C0 = α2/(90m4

e ) (33)

and α = 1/137 is the fine structure constant. At high temperatures C, α, and me change
with T. At this stage, we omit the bar over Fµν to simplify notations. The dual Maxwell ten-
sor is defined as

F̃αβ =

√−g
2

εαβµνFµν, F̃αβ =
1

2
√−g

εαβµνFµν, (34)

because the tensor quantity is
√−g εαβµν but not just εαβµν, see e.g., chapter 83 from

textbook [24].
In what follows, we apply this action to photon propagation in an external magnetic

field B and the weak field limit means B� m2
e .

We need to generalize the Heisenberg–Euler action (32) to high energies/temperatures
and curved FLRW space-time. To do so, let us start from the canonical action of photons
and electrons written in terms of the conformal metric:

ds2 = g(c)µν dxµdxν =a2(τ)
(

dτ2 − dr2
)
≡ a2(τ)ηµνdxµdxν, (35)
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where ηµν = diag[1,−1,−1,−1] is the Minkowski metric tensor, and a(τ) is the scale factor
as a function of conformal time τ(t) =

∫
dt/a(t).

The action of photons and electrons written in terms of the inverse metric to g(c)µν , given
by Equation (35), takes the form:

Aeγ =
∫

d4x a4

[
− gµα

c gνβ
c

4
FαβFµν + ψ̄

(
igµν

c Γµ∇ν −mψ

)
ψ + egµν

c Aµψ̄Γνψ

]
, (36)

where Γµ is a generalization of the Dirac γ matrices for curved space-time. For FLRW metric
they have the form Γµ = aγµ, where γµ are the usual Dirac matrices which anticommute as
[γµ, γν] = ηµν, [Γµ, Γν] = gµν; ∇µ is the covariant derivative for spin-(1/2) field. For the
FLRW metric, it has the form ∇µ = ∂µ + (3/2)∂µ(ln a).

Introducing conformally transformed spinor χ = ψ/a3/2, we arrive to the action:

Aeγ =
∫

d4x
[
−ηµαηνβ

4
FαβFµν + χ̄

(
iγµ∂ν − amψ

)
χ + aeηµν Aµχ̄γµχ

]
. (37)

This is essentially the same action as it is in flat space-time with rescaled mass and
charge: m→ am and e→ ae, so formally C0 ∼ e4/m4 does not change, but since we plan to
go to very high temperatures, even above the electroweak phase transition, where all bare
masses of charged particles vanish, we have to substitute the high temperature value of
the mass, to sum over all charged particles, and to take the high temperature value of the
electromagnetic coupling α. So

C(T) = ∑
j

α2(T)q4
j

90mj(T)4 , (38)

where qj is the charge of the contributing to the loop particles in the electron charge units,
e.g., for down or up quarks q = −1/3 or 2/3.

The integrand in the expression for the action AHE is a scalar with respect to the
general coordinate transformation, so we can use for it the same expression as (32) in
arbitrary metric.

In the early universe, the Heisenberg–Euler action at high temperatures keeps the
same form as (32) with substitution of C(T) instead of C0:

AHE =
∫

d4x
√
−ḡ C(T)

[
(F̄2)2 +

7
4
( ˜̄FF̄)2

]
, (39)

where F2 = FµνFµν, F̃F = F̃µνFµν, and we have returned bar over Fµν and to the metric
determinant in accordance with expansion (5).

The HE action given by Equation (39) leads to the following contribution to the
energy-momentum tensor:

THE
µν = C(T)

{
−gµν

[
(FαβFαβ)2 − 7

4
(F̃αβFαβ)

2
]
+ 8(FαβFαβ)FµλF. λ

ν

}
. (40)

Here, the over-bars are eliminated to simplify notation but we keep in mind that this
expression will be used with the non-expanded complete quantities, see Equation (5).

An explanatory comment may be in order here, namely, the second term containing
the dual Maxwell tensor, F̃µν, depends upon metric only through the factor (

√−g)−2, so
with the account of the integration measure the action depends on metric as (

√−g)−1

instead on (
√−g). Hence, this gives the contribution to Tµν from (F̃F)2 proportional to

(+gµν) instead of the usual one proportional to (−gµν).
One can see that the trace of tensor (40) is non-vanishing:

Tµ HE
µ = C(T)

[
4(FαβFαβ)2 + 7(F̃αβFαβ)

2
]
6= 0. (41)
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It is instructive to check conservation of the energy–momentum tensor (40), though it
surely must be true, since it was obtained by the variation of a scalar function over metric.
Still, at least the verification of the conservation would indicate that the calculations are
correct. Let us note that the conservation condition should be fulfilled only if C = const.
Evidently, the energy–momentum tensor (40) is non-conserved for a non-constant C(T)
because the dependence on temperature appears due to interaction and an exchange of
energy with external system.

It would be more convenient to express the square of the dual electromagnetic tensor
through F. It enters the action in the form, see Equation (34):

(
F̃F
)2

= F̃µνFµν F̃αβFαβ =
1
4

εµνλσεαβτχFλσFµνFτχFαβ. (42)

Expressing the product of epsilons through the Kronecker symbols and properly
contracting the indices we obtain:

(
F̃F
)2

= 2F4 + 4FαβFναFµνFµβ, (43)

where F4 ≡ (FµνFµν)2. We can verify result (43) expressing the Maxwell tensor through
electromagnetic fields B and E coming to the well-known relation (F̃F)2 = [−4 (E · B)]2.

The first part of the action (39), proportional to F4, leads to the following contribution
to the energy–momentum tensor

T(1)
µν = C

(
−F4gµν + 8F2FµαF. α

ν

)
. (44)

The same contribution, up to a numerical factor, comes from the first term in Equation (43),
So to find the total EMT we need to find the variation of the second term of Equation (43).
Eventually, the remaining part of the energy–momentum tensor is

T(2)
µν =

7C
4

[(
16F2FµαF. α

ν − 2F4gµν

)
+
(

32F. λ
µ FλαFαβFνβ − 4FαβFλαFσλFσβ gµν

)]
. (45)

Bringing together Equations (44) and (45) and raising one index we obtain for the total
energy–momentum tensor, originating from the Heisenberg–Euler action, the following expression:

Tµ
ν = −δ

µ
ν C
[

9
2

F4 + 7FαβFλαFσλFσβ

]
+ 36CF2FµαFνα + 56CFµλFλαFαβFνβ. (46)

Now, let us check the conservation of the obtained energy–momentum tensor (46) in
the case of constant C(T). We consider T(1)

µν and T(2)
µν separately.

T(1)µ
ν;µ = −4CF2FαβFαβ;ν + 8CF2FµαFνα;µ + 8C(F2Fµα);µFνα, (47)

where semicolons mean covariant derivatives in the background metric. The last term in this
equation is zero according to the equation of motion corresponding to the Lagrangian L = F4.

The first two ones can be rewritten using the relation

Fαβ;σ + Fβσ;α + Fσα;β = 0. (48)

Renaming some dummy indices we come to

T(1)µ
ν;µ = 4CF2(Fαµ;ν + 2Fνα;µ)Fµα = 4CF2(Fνα;µ − Fµν;α)Fµα = 0. (49)

Here, we proved EMT conservation law for those parts of the action which contain F4.
It must be analogous for the EMT part originated from FαβFναFµνFµβ (see Equation (43)).

4[−FαβFλαFσλFσβ δ
µ
ν + 8FµλFλαFαβFνβ];µ

= 4[−4FαβFλαFµλFµβ;ν + 8Fµλ(FλαFαβFνβ);µ], (50)
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where we used the Maxwell equation Fµν
;µ = 0. Considering the part inside square brackets

and taking into account the equation of motion Fµλ(FαβFλα);µ = 0, that follows from the
part of the action:

Apart
HE = 7C

∫
d4x

√
−g FαβFναFµνFµβ, (51)

(see Equations (39) and (43)), we arrive to

[−4FαβFλαFµλFµβ;ν + 8Fµλ(FλαFαβFνβ);µ] = 4FµλFαβFλα(−Fµβ;ν + 2Fνβ;µ)

= 4FµλFαβFλα(−Fµβ;ν − Fβµ;ν − Fµν;β + Fνβ;µ) (52)

= 4FµλFαβFλα(−Fµν;β + Fνβ;µ) = 0.

For the transition to the third term of these equalities, we used Equation (48).
The conclusion for this section is that EMT originated from the Heisenberg–Euler

action with C = const is conserved

T(HE)µ
ν;µ = 0. (53)

It is noteworthy that EMT (46) is not traceless. Indeed, it is equal to

Tµ
µ = C

(
18 F4 + 28 FµλFλαFαβFµβ

)
. (54)

5.2.3. Corrections to EMT Emerging from the HE Action

Now making the usual perturbation expansion (5), we find the following first-order
correction to the energy–momentum tensor:

THE 1
µν = C(T)

{
−hµν

[
(FαβFαβ)2 − 7

4
(F̃αβFαβ)

2
]

−gµν

[
4F2Fαβ f αβ − 4F2FαβFλσgαλhβσ − 7

2
(F̃F)F̃αβ fαβ

]
(55)

+8F2(Fµλ f . λ
ν + fµλF. λ

ν ) + 16FµλF. λ
ν Fαβ fαβ

−8hλσFµλFνσF2 − 16FµλF. λ
ν Fσ

. βFσγhβγ
}

.

This expression can be simplified, because in the absence of a background electric field
F̃F = 0 and we get:

THE 1
µν = C(T)

[
−hµν(F2)2 − 4F2gµν(F f − FFh) + 8F2( fνλF. λ

µ + fµλF. λ
ν )

+16FµλF. λ
ν (F f )−8hλσFµλFνσF2 − 16FµλF. λ

ν (FF)h
]
. (56)

The trace of this expression is nonvanishing:

Tα HE 1
α = C(T)

[
16F2(F f )− 8F2(hFF)− F4h

]
(57)

It is usually demanded in FLRW space-time that the source term T(1)µ
ν for gravitational

wave Equation (24) must be traceless. To this end, one may separate the traceless part out
of Equation (56) subtracting gµνTα HE 1

α /4 out of it. However, this prescription would break
the conservation of the source and, as is shown in Section 6 of paper [16], it would lead to a
violation of the transversality conditions Dµψ

µ
ν = 0. Indeed, in [16] we used the condition

DµTµ
ν = 0 to prove a compatibility of the Einstein equations in the first perturbation order

with gauge fixing conditions (89).
Note that the energy–momentum tensor (40) is non-conserved for a non-constant

C(T) because the dependence on the temperature appears due to interaction with external
system. Thus, EMT is not formally conserved.
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5.2.4. Summary

As a conclusion of this subsection, we write the result for the correction to the EMT
from the Maxwell action and from the Heisenberg–Euler action, respectively:

TMaxwell(1)
µν =

1
2

gµν[F f − FFh] + hµσFσαFνα + hασFµαFνσ − fµαF. α
ν − Fµα f . α

ν , (58)

THE (1)
µν = C(T)

[
−hµν(F2)2 − 4F2gµν(F f − FFh) + 8F2( fνλF. λ

µ + fµλF. λ
ν )
]

+ C(T)
[
16FµλF. λ

ν (F f )− 8hλσFµλFνσF2 − 16FµλF. λ
ν (FFh)

]
. (59)

where F f = Fαβ fαβ, FFh = hα
σFαβFσβ.

5.3. Maxwell Tensor and Cosmic Magnetic and Electric Fields

Equations (58) and (59) appear quite complicated. Further, we simplify these equations
and express them in terms of physical magnetic fields. To understand the physical meaning
of the different components of Fµν, Fµν, or Fν

µ , let us start from the geodesic equation for a
charged particle in external electric and magnetic field (see, e.g., book [24]. Equation (90.7)):

m
Duα

ds
= eFα

. βuβ, (60)

where uα = dxα/ds is the particle four-velocity. From this equation, it is clear that physical
electric field is the Maxwell tensor with mixed components, Ej = Fj

0, and physical magnetic
field is expressed through the Maxwell tensor Fi

j as:

B1 = F2
. 3, B2 = −F1

. 3, B3 = F1
. 2, (61)

or in compact form Bi = εijl F
j
. mδml .

The first pair of Maxwell equation has the same form as in flat space-time:

∂λFµν + ∂νFλµ + ∂µFνλ = 0. (62)

If the background electric field is absent, i.e., Ftj = 0, then

∂tFij = 0. (63)

Hence Fij remains constant in the process of cosmological expansion and correspondingly
physical magnetic field behaves as:

F. j
i = gjkFik = −Fjk/a2. (64)

In other words, physical magnetic field drops as 1/a2, the well known result.
If an electric field is absent and the only external magnetic field is non-zero, then the

dual Maxwell tensor (34) has only space-time components. The quantity Dtj = F̃tj/
√−g =

(1/2)εtjlmFlm is expressed through magnetic field as

Dtj = −Djt = Bj/a4. (65)

In flat space-time, varying the magnetic field induces an electric field according to

∇× E = −∂tB. (66)

In curved space-time, the analogue of this equation is Equation (62) with λ = t
or Equation (63), so if the original electric field was absent, it would not be induced by a
time-varying magnetic field, in the case that the time variation is created by the cosmological
expansion (64).

In terms of physical magnetic field B the product FµνFµν with indices lifted by the
background metric gµν is

FµνFµν = F2 = 2B2 ∼ 1/a4. (67)
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5.4. Scalar and Tensor Mode Mixing in External Magnetic Field

Using Equations (15)–(18), we rewrite Equation (14) for the case of the FLRW metric as:

∂2h− 12
ä
a

h00 − 4
(

ä
a
+ 2H2

)
hi

i + 6
(

ä
a
+ H2

)
h = 16πGTα(1)

α . (68)

The EMT perturbation originating from the Maxwell action is traceless, while that
from the Heisenberg–Euler action has a non-zero trace. Indeed,

Tα HE 1
α = C(T)

[
−hF4 + 16F2(F f )− 8F2(FFh)

]
. (69)

Now, one could naively divide the source into a traceless part and a non-zero trace
part (simply subtract the trace multiplied by the background metric). To this end, let us
look at Equation (68) and explicitly substitute Tα EM(1)

α into the right-hand side. We get

∂2h− 12
ä
a

h00 − 4
(

ä
a
+ 2H2

)
hi

i + 6
(

ä
a
+ H2

)
h (70)

= 16πGCF2
[
−hF2 + 16(F f )− 8(FαβFασhβ

σ)
]
.

We see that the equation contains both scalar and tensor parts. Thus, it is impossible
to write a separate equation for each mode. To make this even more obvious, let us fix
the coordinates so that the magnetic field is directed along the x-axis. The following
components of the electromagnetic field tensor will then be non-zero:

Fy
. z = −Fz

. y = Bx. (71)

Fyz = −Fzy = −Bx

a2 . (72)

Fyz = −Fzy = −Bxa2. (73)

The trace from the correction to the EMT can then be rewritten taking into account the
following relations:

F2 = 2B2, (74)

F f = F. β
α f α

. β = F. z
y f y

. z + F. y
z f z

. y = B
(

f y
. z − f z

. y

)
= 2B f y

. z, (75)

FFh = hα
σFβαFβσ = B2

(
hy

y + hz
z

)
, (76)

and in Equation (70) we have

∂2h− 12
ä
a

h00 − 4
(

ä
a
+ 2H2

)
hi

i + 6
(

ä
a
+ H2

)
h

= 32πGCB3
[
−hB + 16 f y

. z − 4B
(

hy
y + hz

z

)]
. (77)

The diagonal components can be written as the sum of scalar and tensor quantities of
the helicity expansion

hy
y = −2Ψδ

y
y + Dy

y , (78)

hz
z = −2Ψδz

z + Dz
z , (79)

and, substituting the helicity expansion into the complete equation, we obtain the final
equation, which shows the mixing of scalars Φ, Ψ and tensor Dij:

(
∂2 + 64πGCB4

)
(Φ + 3Ψ) + 6(Ψ−Φ)

(
ä
a
− H2

)

= 32πGCB3
[
16 f y

. z − 4B
(

4Ψ + Dy
y + Dz

z

)]
, (80)
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where h = 2Φ + 6Ψ.
In addition, we note that there may also be implicit mixing through the term with f y

. z
in the above equation, since the equation for the electromagnetic wave contains various
convolutions of tensors with tensor hµν ( see below, Equation (148)).

As was noted in Section 4, the result is quite evident, since the external magnetic
field gives, in addition to the GW propagation vector, another preferred direction in space.
This leads to the loss of axial symmetry and to mixing of the scalar and tensor modes of
metric perturbations.

6. Electromagnetic Wave Propagation in External Magnetic Field

In this section, we will derive the equation for the propagation of electromagnetic
waves in curved space-time and in the presence of an external magnetic field, thereby
completing the derivation of the system of differential equations (SoDE) for the metric-EMF
perturbation system. We will briefly call this system g− γ, by g we mean a graviton with
any possible polarization:0, 1, 2.

6.1. Equation of Motion from the Maxwell Action

Variation in the Maxwell action from Equation (26) over δAν leads to the equation of
motion D̄µ F̄µν = J̄ν, where D̄µ is the covariant derivative in the full metric ḡµν. Due to
antisymmetry of F̄µν this equation is reduced to:

D̄µ F̄µν =
1√−ḡ

∂µ

(
F̄µν
√
−ḡ
)
= J̄ν (81)

Below we assume that neither electric charge density nor electric current are present,
i.e., J̄ν = 0.

Substituting expansions (5), (4), and (6) into Equation (81) we obtain

1√−ḡ
∂α

(√
−ḡF̄αβ

)
=

1√−ḡ
∂α

(√
−ḡ ḡαα′ ḡββ′ F̄α′β′

)
=

1√−ḡ
∂α

[√
−ḡ
(

gαα′ − hαα′
) (

gββ′ − hββ′
)(

Fα′β′ + fα′β′
)]

= 0. (82)

The external electric field is supposed to be zero and only background magnetic field
is present, so Ftβ = 0. Thus, the zero-order term, which is the equation of motion for the
background magnetic field, has the form;

∂µFµν = ∂µ

(
gµαgνβFαβ

)
= 0. (83)

This is the analogue of the equation div B = 0 in flat space-time.
In FLRW metric the metric determinant is expanded as:

√
−ḡ =

√
−g(1 + h/2) = a3(1 + h/2). (84)

and so Equation (82) takes the form:

∂µ

[
(gµα − hµα)

(
gνβ − hνβ

)(
Fαβ + fαβ

)]
+ Fµν∂µh/2 + 3Hgνβ ftβ = 0, (85)

where we took into account that gtα = δtα and Ftβ = 0. We also assume that ft = f t = 0
and impose the transversality condition on the propagating photon modes:

Dµ f µ =
1√−g

∂µ

(√
−g f µ

)
= ∂t f t + 3H f t − ∂j f j = 0, (86)

which for f t = 0 leads to ∂j f j = 0.
Thus, the first-order expansion of Equation (85) has the form:

∂µ f µν + 3H f tν − ∂µ

(
hµ

α Fαν + hν
αFµα

)
+ Fµν∂µh/2 + Qν = 0. (87)
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where we introduced a new quantity Qν to describe contributions from different additional
terms such as Heisenberg–Euler corrections, matter effects, etc., to be considered below.

To derive the first-order equation for f j, we multiply Equation (87) by gνj = −a2δνj
(Latin indices are always supposed to be the space ones, e.g., j = 1, 2, 3) and recall that
Ftµ = 0 and ft = 0. So, we finally obtain:

∂2
t f j −

∆ f j

a2 + H∂t f j − gνj∂µ

(
hµαgνβFαβ + gµαhνβFαβ

)
+ Fµ

. j∂µh/2 + Qj = 0, (88)

where Qj = gνjQν = −a2δνjQν and ∆ is the flat space Laplacian.
To proceed further, we have to fix certain gauge conditions on metric perturbations

hµν. We will follow our paper [16], where it is shown that the following conditions can be
imposed in arbitrary background metric:

Dµψ
µ
ν ≡ Dµ

(
hµ

ν − hδ
µ
ν /2

)
= 0, htµ = 0. (89)

Since in FLRW metric the only non-zero components of the Christoffel symbols are:

Γj
ti = Hδ

j
i , Γt

ij = Ha2δij (90)

the covariant derivative of hi
j is reduced to the ordinary derivative and

Dµhµ
ν = ∂µhµ

ν − Γλ
µνhµ

λ + Γµ
µλhλ

ν = ∂µhµ
ν . (91)

So using Equations (83) and (89), and the absence of an external electric field, Ftj = 0,
we obtain:

∂2
t f j −

∆ f j

a2 + H∂t f j − hm
i ∂mFi

.j − Fm
.i ∂mhi

j + Qj ≡M[ f j] + Qj = 0. (92)

The terms proportional to ∂mh cancel out because Fi
.j∂mhm

i = Fi
.j∂ih/2.

Here, we have introduced the new notation:

Mj[ f ] = ∂2
t f j −

∆ f j

a2 + H∂t f j − hm
i ∂mFi

.j − Fm
.i ∂mhi

j (93)

to be used in what follows.

6.2. Equation of Motion from the Heisenberg–Euler Action

The variation of AHE (39) over δAν results in the following contribution to the electro-
magnetic field equation:

D̄µ F̄µ
.j +Q̄(HE)

j = 0, (94)

where the first term originated from the variation of the Maxwell action (see previous
subsection), while the second is the contribution fromAHE (39) and has the following form

Q̄(HE)
j = −gνjDµ

[
C(T)

(
8F̄µν F̄2 + 14 ˜̄Fµν( ˜̄Fαβ F̄αβ)

)]

= − gνj√−ḡ
∂µ

[
C(T)

√
−ḡ
(

8F̄µν F̄2 + 14 ˜̄Fµν(FF̃)
)]

. (95)

where F2 = FµνFµν and (FF̃) = F̃µνFµν.
We have shown in Section 5.3 that the free external magnetic field is not constant, but

rises backward in time with the decreasing scale factor as 1/a2.
Let us return to Equation (95) and make perturbative expansion according to Equation (5).

We start from consideration of the first term in square brackets, which with account of the zeroth-
and first-order terms takes the form

gνj
δAHE1

δĀν
= gνj

(−1)√
−g(1 + h)

∂µ

{
8
√
−g(1 + h)C

[
F2Fµν + F2 f µν + 2Fµν( f F)

326



Universe 2024, 10, 7

−2Fµν(FFh)− F2
(

hµ
α Fαν + hν

αFµα
)]}

, (96)

where f F = fµνFµν, (FFh) = hα
σFαβFβσ, and indices are shifted up or down with the

background metric.
The zero-order term in this equation somewhat changes the equation of motion of the

background magnetic field in FLRW metric leading to:

∂jFjν − 16C∂j

(
B2Fjν

)
= 0, (97)

which is not of much importance for the evolution of Bj. The terms proportional to the time
derivatives of

√−g, C, and F2 do not appear if Ftµ = 0 and ht
α = 0.

The first-order part of expression (96) is equal to:

QHE1
j = − 16gνjC∂µ

[
B2 f µν + Fµν( f F) + Fµν(FFh)− B2

(
hµ

α Fαν + hν
αFµα

)]

− 16CgνjFµνB2∂µh/2− 16B2(Ċ + 3HC
)

f t
.j. (98)

The term proportional to B2C in this expression, has the form:

−16CB2gνj

(
∂µ f µν + 3H f tν − hµ

α ∂µFαν − Fµα∂µhν
α

)
≡ −16CB2Mj[ f ], (99)

whereMj[ f ] is defined in the Equations (92) and (93). The factor in the brackets in the
left-hand side of the above equation coincides with the left-hand side of Equation (92),
except for the last term Qj, so it can be absorbed into Equation (92) changing the overall
coefficient from 1 to (1− 16CB2).

In addition to the terms proportional to B2, the first two terms in Equation (98) give the
following contribution of the first part of the HE action to the photon propagation equation:

−16Cgνj

[
f µν∂µB2+Fµν∂µ( f F)

]
= −16C

[
f µ
.j ∂µB2 + Fµ

.j ∂µ(F f )
]
. (100)

So all the terms in Equation (98), except for those absorbed into Equation (92) and
containing hµν, turn into:

QHE11
j = −16B2Ċ ftj − 16C

[
f µ
.j ∂µB2 + Fµ

.j ∂µ(F f )
]
. (101)

The contribution of the terms containing hµν in Equation (98) can be written as

QHEh
j = −16C

[
Fµ

.j ∂µ(FFh)− (hµαFαj + hαjFµα)∂µB2
]
. (102)

Finally, for the total QHE1
j we obtain

QHE1
j = −16CB2Mj[ f ] + QHE11

j + QHEh
j

= −16C
[

B2
(
Mj[ f ] +

Ċ
C

ftj

)
+
(

f µ
.j − hµαFαj − hjαFµα

)
∂µB2

]

− 16CFµ
.j ∂µ( f F + FFh), (103)

whereMj[ f ] is defined in Equation (93).
It is convenient to introduce auxiliary vector field through the equation

Fij = −εijkHk (104)

Physical magnetic field is related toH as Bk = −Hk/a2 = −Hka2 (because Bk ∼ Fi
.j ∼

gil Fl j ∼ δil Fl j/a2).
To decipher the last term in Equation (103) we use the identity:

εdbcεl jm = δl
dδ

j
bδm

c + δm
d δl

bδ
j
c + δ

j
dδm

b δl
c − δ

j
dδl

bδm
c − δm

d δ
j
bδl

c − δl
dδm

b δ
j
c. (105)
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and Equation (104). So FFh and Fµ
.j ∂µ( f F) turn into

FFh = FαβFβσhα
σ = −B2hi

i + hijBiBj, (106)

Fµ
.j ∂µ( f F) = Fm

.j ∂m( f F) = 2gnjBk∂m

(
f mnBk + f kmBn + f nkBm

)

= 2Bk∂m

(
f m
. j Bk + f kmBj + f . k

j Bm

)
, (107)

where summation over repeated indices is performed.
The variation of the second term in the HE action, Equation (95), is equal to:

δAHE2

δĀν
=

(−14)√−ḡ
∂µ

[√
−ḡ C(T) ˜̄Fµν( ˜̄Fαβ F̄αβ)

]
. (108)

In the case that the background electric field is absent and only magnetic field is
non-zero, the right-hand side of the equation above vanishes in the zeroth-perturbation
order because Fαβ is non-zero only for space–space components, while F̃αβ is non-zero for
space-time components. Hence F̃αβFαβ = 0.

Accordingly, expression (108) multiplied by gjν can be expanded as

QHE2
j = −28

[
(Ċ + HC)δt

µ + C∂µ

]
F̃µ

.j ( f F̃), (109)

where
F̃µ

.j ( f F̃) = gνj F̃µν( f F̃) =
1
4

gνjε
µναβFαβ εσλ$γFσλ f $γ. (110)

So using Equation (104) and contracting

εjklεmkl = 2δ
j
m (111)

we obtain from Equation (109):

QHE2
j = −56C

[(
Ċ
C
− 3H

)
BjBk∂t fk + BjBk∂2

t fk

]
, (112)

where the summation over the repeated space indices is made with Kronecker delta and
considers that Bj ∼ 1/a2.

So using Equations (92), (93), (103) and (109) we obtain:

∂2
t f j −

∆ f j

a2 + H∂t f j − hm
i ∂mFi

.j − Fm
.i ∂mhi

j + QHE1
j + QHE2

j ≡

Mj[ f ] + QHE1
j + QHE2

j = 0 (113)

and come to the almost final equation for photons
(

1− 16CB2
)
Mj[ f ]− 16B2Ċ ftj − 16C

(
f µ
.j − hµαFαj − hjαFµα

)
∂µB2

−16CFµ
.j ∂µ( f F + FFh)− 28

[
(Ċ + HC)δt

µ + C∂µ

]
F̃µ

.j ( f F̃) = 0. (114)

We highlight thatMj[ f ] is defined in Equation (93).

6.3. Conformal Anomaly Effect

Quantum corrections to the energy–momentum tensor of electromagnetic field T(em)
µν

in curved space-time background lead to the the well-known conformal anomaly, for a
review see ref. [25], resulting in the nonzero trace of the electromagnetic energy–momentum
tensor:

Tµ(anom)
µ =

αβ

8π
G(a)

µν Gµν(a) (115)
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where Gµν is the gauge field stress tensor, α is the fine structure constant and β is the first
coefficient of the beta-function expansion for the gauge group of rank N:

β =
11
3

N − 2
3

NF, (116)

with NF being the number of the fermion species.
There are additional contributions into the trace proportional to the products of the

Riemann, Ricci tensors, and curvature scalar which are generally nonlocal [26,27]. We will
not consider them in this work.

The trace anomaly allows for photon production by the conformally flat gravitational
field [28,29] in contrast to the Parker theorem [30].

The Fourier transform of the amplitude of the photon propagation in the gravitational
field has pole at q2 = 0, where q is the four-momentum transfer to gravitational field.
According to the result of paper [28] the anomalous part of the energy-momentum tensor
has the form:

T(anom)
µν ∼ qµqν − gµνq2

q2 FαβFαβ. (117)

It is evidently conserved and has non-zero trace.
As is shown in Ref. [28], conformal anomaly (115) leads to an additional contribution

to Equation (88) or, which is essentially the same, to Equation (92).

αβ
(

∂µFµ
.ν ln a− HFt

.ν

)
. (118)

The first term here is the usual charge renormalization and the second one is the
anomaly giving rise to photon production in conformally flat metric. This metric allows for
the transformation to the conformal time leading to the Minkowski metric proportional
to the common scale factor. The canonical Maxwell equation, without the anomalous
term, transforms in this metic into the free Maxwell equation in flat space-time, while the
additional anomalous term does not allow this.

6.4. Plasma Interaction Effects

Photons propagating in the primeval plasma interact with plasma particles and as
a result acquire an effective mass, the so-called plasma frequency, Ωpl , so the relation
between photon frequency, ω, and momentum, k, changes as ω2 − k2 = Ω2

pl . Waves with
ω < Ωpl do not propagate in plasma.

In the canonic theory, the effective action describing the plasma frequency term is
usually written as

Apl =
1
2

∫
d4x
√
−g Ω2

pl gµν f µ f ν. (119)

This term is proportional to the square of the small amplitude f µ of the electromagnetic
wave and seemingly should be neglected in our first order approximation. However, this is
not so because to obtain the first-order equation one has to take the action in the second
order in small quantities. The first-order terms are absent in the action since f µ satisfies the
equation of motion that are realised at the extreme value of action for which δA/δ f µ = 0.

The corresponding energy–momentum tensor is

Tµν ∼ f 2 (120)

is quadratic in f and can be disregarded in our approximation. It is similar to a scalar
field with small amplitude φ that has energy density proportional to m2

φφ2, so its energy–
momentum tensor is quadratically small but non-zero mass, mφ is essential for propagation
of φ waves.

All electrically charged particles contribute to plasma frequency. If the particle mass is
larger than the temperature of the relativistic cosmological plasma, m > T, the contribution
to plasma frequency from such nonrelativistic charged particles is
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Ωnr
pl =

e2n
m

, (121)

where n is the number density of particles with charge e, e2 = 4πα. Note that the number
density in this case is exponentially suppressed, n ∼ exp(−m/T) [31].

On the other hand, relativistic particles, with m < T, contribute as:

Ωrel
pl =

2T2

9 ∑
j

e2
j , (122)

where the summation is done over all relativistic charged particles with charges ej. The elec-
tric charge, e, depends on temperature due to radiative corrections [32].

Plasma frequency is determined by the photon Green’s function in the limit of vanish-
ing photon momentum. More rigorous treatment of the problem of the photon propagation
in plasma demands determination of the proper Green’s function. Simple derivation of
these expression including the Green’s function can be found in ref. [33]. However, in this
paper we will use simplified approximation describing the plasma effects by the plasma
frequency only.

We need also take into account the loss of coherence of the photons produced by
gravitons. We describe this phenomenon introducing a damping term into the equation of
motion for photons in the form Γ ḟ j, where we approximate Γ as

Γ = vs.σn, (123)

where n = 0.1g∗T3 is the density of charged particles in plasma, g∗ = 10− 100 is the
number of charged particle species, v ∼ 1 is the relative velocity of “our” photon and the
scatterer in plasma, and σ = α2/T2 is the scattering cross-section.

Thus, the final equation for photons propagating in an arbitrary curved space-time
background and external magnetic field in cosmic plasma accounting for photon collisions
with plasma particles has the form:

(
1− 16CB2

)[
∂2

t f j −
∆ f j

a2 +
∂j∂k fk

a2 + H∂t f j − gνj

(
hµα∂µFν

.α + Fµ
.α∂µhνα

)]

−16B2Ċ ftj − 16C
[(

f µ
.j − hµαFαj − hjαFµα

)
∂µB2 + Fµ

.j ∂µ( f F− FFh)
]

(124)

−28
[
(Ċ + HC)δt

µ + C∂µ

]
F̃µ

.j ( f F̃) + αβ

[
ln a
(

∂2
t f j −

∆ f j

a2

)
− H∂t f j

]

+Ω2
pl f j + Γ ḟ j = 0.

It is assumed that ft = 0 and we used Equations (103), (109), (114), (118), (122) and (123).

7. Defining g and γ System of Differential Equations (SoDE)

In total, we have ten equations for the components of tensor hµν and three equations
for the components of vector f j. In fact, only six equations for gravitational waves are
linearly independent.

In the case considered here, we assume that the vector modes do not arise. The first
vector Gi in Equations (11)–(13) vanishes due to the gauge condition h0i = 0. The second
vector Ci is not zero because the corrections to EoM contain spacial derivative of electro-
magnetic potential ∂µ fν. However, the vector modes decay as a−2 and thus they do not play
an essential role in cosmology. It worth adding that an account of one more polarisation
state would lead to a considerable complication of the system of equations. So, in this work
we confine ourselves only to scalar and tensor modes.

Finally, let us mention that the solution for tensor hi
j does not contain pure tensor

mode, but a mixture of tensor and scalar modes. Nevertheless, the solution represents them
qualitatively correctly, including the behaviour of the tensor mode that we are interested in.

330



Universe 2024, 10, 7

Assuming an absence of vector mode, we obtain two components less in the EoM.
More specifically, we have two scalars, Φ and Ψ (note that in the deal fluid model, i.e.,
without taking into account dissipation, Φ = Ψ) and two polarisations of the tensor wave,
that in total gives four independent equations for metric perturbations.

In the subsequent Sections 7.1 and 7.2, the SoDE is simplified for the specific choice of
the reference frame, where an external magnetic field is directed along the x-axis. Next, one
of two independent subsystems is solved numerically in Section 8.

7.1. Simplification of SoDE for Metric Perturbations

To derive the system of equations for the metric perturbations, that is solved below, it
remains to simplify the right-hand side of Equation (24). Let us rewrite Equations (58)–(59)
for an external magnetic field that is directed along the x-axis. For individual expressions,
we get:

F2 = 2B2, (125)

F f = Fα
. β f . β

α = F. z
y f y

. z + F. y
z f z

. y = B
(

f y
. z − f z

. y

)
= 2B f y

. z, (126)

FFh = hα
σFαβFσβ = B2

(
hy

y + hz
z

)
, (127)

( f µαFνα + Fµα fνα) =
(

f µ
. αF. α

ν + Fµ
. α f . α

ν

)
= B

(
f µ
. zδνy − f µ

. yδνz

)
+ B

(
f . z
ν δµy − f . y

ν δµz
)

, (128)

FµαFνα = 2B2(δµzδνz + δµyδνy
)
, (129)

hµσF. α
σ Fνα = B2

(
hµ

y δνy + hµ
z δνz

)
, (130)

hαλFµ
. αFνλ = B2

[
−hy

z
(
δµzδνy + δµyδνz

)
+ hy

yδµzδνz + hz
zδµyδνy

]
, (131)

(
f αβFλαFσλFσβ − hα

ξ FξβFλαFσλFσβ

)
= 2B3 f z

. y + B4
(

hz
z + hy

y

)
. (132)

In this section and in subsequent ones, for the sake of brevity, we will omit the
signature EM in the correction to the EMT.

Using Equations (58) and (59) and Equations (126)–(137) we obtain the EMT compo-
nents for 00 (remember that F0α = 0, Fy

. z 6= 0):

T(1)
00 = TMax(1)

00 + THE(1)
00 =

1
2
(F f − FFh)− C

[
F4h00 + 4F2(F f − FFh)

]

=
1
2

(
1− 16CB2

)[
2B f y

. z − B2
(

hy
y + hz

z

)]
− 4CB4h00. (133)

Similarly, we derive the expression for the component 0j:

T(1)
0j =

(
1− 8CF2

)
f0αFα

. j =
(

1− 16CB2
)

B
[

f0yδjz − f0zδjy
]
. (134)

The expression for the ij components is more cumbersome:

Ti(Max1)
j =

1
2

δi
j[F f − FFh] + hi

σFσαFjα + hσ
λFiλFjσ +

(
Fi

. λ f λ
. j + f i

. λFλ
. j

)
, (135)

Ti(HE1)
j = −hi

j4CB4 − 8CB2δi
j(F f − FFh)− 16B2C

(
Fi

. λ f λ
. j + f i

. λFλ
. j

)

+16CFiλFjλ(F f − FFh)− 16B2Chσ
λFiλFjσ (136)

Let us regroup the terms

Ti(1)
j =

[
1
2

(
1− 16CB2

)
δi

j + 16CFiλFjλ

]
(F f − FFh)

+
(

1− 16CB2
)[

Fi
. λ f λ

. j + f i
. λFλ

. j + hσ
λFiλFjσ

]

−4CB4hi
j + hi

σFσαFjα =
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=

[
1
2

(
1− 16CB2

)
δi

j + 16CB2
(

δiyδjy + δizδjz

)][
2B f y

. z − B2
(

hy
y + hz

z

)]

+
(

1− 16CB2
)

B
[

f z
. jδ

iy − f y
. jδ

iz − f i
. zδjy + f i

. yδjz

]

+
(

1− 16CB2
)

B2
[
−hy

z

(
δizδjy + δiyδjz

)
+ hy

yδizδjz + hz
zδiyδjy

]

−4CB4hi
j + B2

(
hi

yδjy + hi
zδjz

)
. (137)

It will now be useful to write down the spatial components separately. After reducing
similar terms, we get

Tx(1)
x =

1− 16CB2

2

[
2B f y

. z − B2
(

hy
y + hz

z

)]
− 4CB4hx

x, (138)

Tx(1)
y = −B

(
1− 16CB2

)
f x
. z + B2

(
1− 4CB2

)
hx

y , (139)

Tx(1)
z = B

(
1− 16CB2

)
f x
. y + B2

(
1− 4CB2

)
hx

z , (140)

Ty(1)
y = B

(
−1 + 48CB2

)
f y
. z + B2 hy

y + hz
z

2
− 12CB4

(
hy

y + 2hz
z

)
, (141)

Ty(1)
z = 12CB4hy

z , (142)

Tz(1)
z = B

(
−1 + 48CB2

)
f y
. z + B2 hy

y + hz
z

2
− 12CB4

(
2hy

y + hz
z

)
. (143)

System of Equation (24) is now rewritten as Equations (133), (134), (138)–(143).

7.2. Simplification of SoDE for Electromagnetic Waves

Let us simplify the system of equations for an electromagnetic wave for the case
when the external magnetic field is directed along the x-axis. For spatial components,
Equation (124) was derived in general form. We assume that C(T) = const, so the time
derivative is Ċ = 0. Also, to begin with, let us omit the last three terms in the left-side of
the equation, that considers the interaction of photons with plasma. Now, let us write the
convolutions with the background tensor of the electromagnetic field in terms of field B:

−gνj

(
hµα∂µFν

.α + Fµ
.α∂µhνα

)
= gνj

[
h0yδνz − h0zδνy

]
Ḃ + gνjB

[
∂zhνy − ∂yhνz]

=
[

h0
yδjz − h0

zδjy

]
Ḃ + B

[
∂zhy

j − ∂yhz
j

]
, (144)

(
f µ
.j − hµαFαj − hjαFµα

)
∂µB2 =

(
f t
.j − h0

yδjzB + h0
zδjyB

)
2BḂ, (145)

Fµ
.j ∂µ( f F− FFh) = B2[δjz∂y − δjy∂z

][
2 f y

. z − B
(

hy
y + hz

z

)]
, (146)

[
(Ċ + HC)δt

µ + C∂µ

]
F̃µ

.j ( f F̃) = C∂m F̃m
. j( f F̃) = 0. (147)

The last equality follows from the fact that the only non-zero component of the
dual electromagnetic tensor in cases where the magnetic field is directed along the x-axis
is F̃0x = −aB/2 6= 0.

So, let us write the resulting Equation (we omit the terms from the interaction with
the plasma):

(
1− 16CB2

)[
∂2

t f j −
∆ f j

a2 +
∂j∂k fk

a2 + H∂t f j +
[

h0
yδjz − h0

zδjy

]
Ḃ + B

[
∂zhy

j − ∂yhz
j

]]

−16C
[(

f t
.j − h0

yδjzB + h0
zδjyB

)
2BḂ (148)

+B2
[
δjz∂y − δjy∂z

][
2 f y

. z − B
(

hy
y + hz

z

)]]
= 0.

By analogy with the equations for gravitational waves, we write for x, y, and z
components, respectively:
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(
1− 16CB2

)[
∂2

t fx −
∆ fx

a2 +
∂x∂k fk

a2 + H∂t fx + B
[
∂zhy

x − ∂yhz
x

]]

−32CBḂ f t
. x = 0, (149)

(
1− 16CB2

)[
∂2

t fy −
∆ fy

a2 +
∂y∂k fk

a2 + H∂t fy − h0
z Ḃ + B

[
∂zhy

y − ∂yhz
y

]]

−16C
[(

f t
.y + h0

z B
)

2BḂ− B2∂z

[
2 f y

. z − B
(

hy
y + hz

z

)]]
= 0, (150)

(
1− 16CB2

)[
∂2

t fz −
∆ fz

a2 +
∂z∂k fk

a2 + H∂t fz + h0
y Ḃ + B

[
∂zhy

z − ∂yhz
z

]]

−16C
[(

f t
.z − h0

yB
)

2BḂ + B2∂y

[
2 f y

. z − B
(

hy
y + hz

z

)]]
= 0. (151)

Similar ones can be given, taking into account that B ∼ 1/a2 (meaning Ḃ = −2HB)
and that ft = 0. For x components we get:

(
1− 16CB2

)[
f̈x −

∆ fx

a2 +
∂x∂k fk

a2 + H ḟx + B
[
∂zhy

x − ∂yhz
x

]]
+ 64CB2H ḟx = 0, (152)

or
(

1− 16CB2
)[

f̈x −
∆ fx

a2 +
∂x∂k fk

a2 + B
[
∂zhy

x − ∂yhz
x

]]
+
(

1 + 48CB2
)

H ḟx = 0. (153)

For y component:
(

1− 16CB2
)[

f̈y −
∆ fy

a2 +
∂y∂k fk

a2 + H ḟy + 2HBh0
z + B

[
∂zhy

y − ∂yhz
y

]]

+16CB2
[
4H
(

ḟy + h0
z B
)
+ ∂z

[
2 f y

. z − B
(

hy
y + hz

z

)]]
= 0, (154)

or
(

1− 16CB2
)[

f̈y −
∆ fy

a2 +
∂y∂k fk

a2

]
+
(

1 + 48CB2
)

H ḟy − 32CB2 ∂z fyz

a2

−B
(

1− 16CB2
)

∂yhz
y − 16CB3∂zhz

z + B
(

1− 32CB2
)

∂zhy
y = 0. (155)

For z component:
(

1− 16CB2
)[

f̈z −
∆ fz

a2 +
∂z∂k fk

a2 + H ḟz − 2HBh0
y + B

[
∂zhy

z − ∂yhz
z

]]

+16CB2
[
4H
(

ḟz − h0
yB
)
− ∂y

[
2 f y

. z − B
(

hy
y + hz

z

)]]
= 0, (156)

or
(

1− 16CB2
)[

f̈z −
∆ fz

a2 +
∂z∂k fk

a2

]
+
(

1 + 48CB2
)

H ḟz + 32CB2 ∂y fyz

a2

+B
(

1− 16CB2
)

∂zhy
z + 16CB3∂yhy

y − B
(

1− 32CB2
)

∂yhz
z = 0. (157)

Next, we would like to show the validity of the requirement ft = 0. In general, due to
the homogeneity of the magnetic field (depending only on time), we arrive at the following
equation for the time component:

(
1− 16CB2

)
∂µ f µ0 = 0. (158)

Now we need to select a calibration. If our problem can be called magnetostatic, in
such cases the Coulomb gauge ∂µ f µ = 0 is usually introduced, where we then get:
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∂µ f µ0 = ∂µ∂µ f0 + ∂0∂µ f µ = ∂µ∂µ f0,

∂µ∂µ f0 = 0 => f0 = const. (159)

From the initial conditions of electrical neutrality, we find that this constant is equal
to zero.

8. Two Examples of Gravitational Wave Directions

For any initial direction of the gravitational (tensor) wave propagation, we can decom-
pose it into a parallel and perpendicular component relative to the external magnetic field.
Note that we consider the case when an initial pure tensor plane wave propagates from
vacuum into a region with a magnetic field (and, in the future, with plasma).

It is shown below that, for k||B the scalar mode of metric perturbations is not excited,
and the electromagnetic wave is not excited as well. For the perpendicular component k⊥B
the situation is different—the scalar mode of metric perturbations and both polarizations
of the electromagnetic wave are excited. Until now, we have not taken into account
dissipation and loss of coherence for photons due to their interaction with plasma. But
even without taking these phenomena into account, it is already possible to detect a change
in the amplitude of the initial tensor GW due to the transition to the scalar mode of metric
disturbances and to an electromagnetic wave. We will consider both of these cases in more
detail in the next two subsections.

8.1. k||B
Let us write down the basic relations that allow us to simplify the system of differential

equations for metric perturbations and for an electromagnetic wave (EMW):

k = (kx, 0, 0), (160)

f µ = (0, 0, f y, f z), (161)

f µ(t, x) ∼ exp (ikxx), (162)

hµν(t, x) ∼ exp (ikxx), (163)

hµ
ν =




0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+


, (164)

hy
y + hz

z = 0. (165)

Taking into account what was written above, we write the system of equations in
terms of h+, h×. From Equations (133), (134), (138)–(143) we obtain

T(1)
00 = 0, (166)

T(1)
0j =

(
1− 16CB2

)
B
[

ḟyδjz − ḟzδjy
]
, (167)

Tx(1)
x = 0, (168)

Tx(1)
y = −B

(
1− 16CB2

)
∂x fz, (169)

Tx(1)
z = B

(
1− 16CB2

)
∂x fy, (170)

Ty(1)
y = 12CB4h+ (171)

Ty(1)
z = 12CB4h×, (172)

Tz(1)
z = −12CB4h+. (173)

From Equations (152), (154) and (156) we obtain, respectively
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(
1− 16CB2

)[
f̈x −

∆ fx

a2 +
∂2

x fx

a2 + H ḟx

]
+ 64CB2H ḟx = 0, (174)

(
1− 16CB2

)[
f̈y −

∆ fy

a2 + H ḟy

]
+ 64CB2H ḟy = 0, (175)

(
1− 16CB2

)[
f̈z −

∆ fz

a2 + H ḟz

]
+ 64CB2H ḟz = 0. (176)

In Equations (174)–(176), there are no terms related to the gravitational wave. There-
fore, if the electromagnetic wave was not initially present, it does not arise for the case
when the wave vector is parallel to the external magnetic field. Hence, we obtain that

T(1)
0j = 0, (177)

Tx(1)
y = 0, (178)

Tx(1)
z = 0. (179)

From the remaining non-zero components of EMT Equations (171)–(173), we see that
the GW configuration is preserved: it remains tensorial and no scalar modes arise.

8.2. k⊥B

Similar to the previous subsection, we write down the main relations that will help to
simplify the system of differential equations for perturbations of metric and for electromag-
netic waves. Let us direct the wave vector along the z-axis (it is always possible to rotate
the coordinate system so that ky = 0).

k = (0, 0, kz), (180)

f µ = (0, f x, f y, 0), (181)

f µ(t, x) ∼ exp (ikzz), (182)

hµν(t, x) ∼ exp (ikzz), (183)

hµ
ν =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


, (184)

hy
y + hz

z = −h+. (185)

Taking into account what was written above, we will write the system of equations in
terms of h+, h×. From Equations (133), (134), (138)–(143) we obtain

T(1)
00 =

1
2

(
1− 16CB2

)[
−2B∂z f y + B2h+

]
, (186)

T(1)
0j =

(
1− 16CB2

)
B ḟyδjz, (187)

Tx(1)
x =

1
2

(
1− 16CB2

)[
−2B∂z f y + B2h+

]
− 4CB4h+, (188)

Tx(1)
y = B

(
1− 16CB2

)
∂z f x + B2

(
1− 4CB2

)
h×, (189)

Tx(1)
z = 0, (190)

Ty(1)
y = B

(
1− 48CB2

)
∂z f y − B2

2
h+ + 12CB4h+ (191)

Ty(1)
z = 0, (192)

Tz(1)
z = B

(
1− 48CB2

)
∂z f y − B2

2
h+ + 24CB4h+. (193)
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From Equations (152), (154) and (156), respectively
(

1− 16CB2
)[

f̈x −
∆ fx

a2 + B∂zh×

]
+
(

1 + 48CB2
)

H ḟx = 0, (194)

(
1− 16CB2

)[
f̈y −

∆ fy

a2 + H ḟy − B∂zh+

]

+16CB2[4H ḟy + ∂z(−2∂z f y + Bh+)
]
= 0, (195)

(
1− 16CB2

)[
f̈z −

∆ fz

a2 + H ḟz

]
+ 64CB2H ḟz = 0. (196)

In Equation (196), there are no terms associated with a gravitational wave. So, as
expected, longitudinal EMW does not arise. From Equations (194) and (195), it follows that
an electromagnetic wave with polarization along the x-axis is generated by the polarization
h× of the GW, and an electromagnetic wave with polarization along the y axis—polarization
h+ of the gravitational wave. Also, from the Equations (186)–(193), we clearly see the
emergence of a scalar mode from the equations for the 00 and zz components of the EMT
(see Equation (24)).

It is important to note that the expressions for EMT in terms of h+, h× are valid only at
the moment of time immediately following the initial moment of GW entry into the region
with a magnetic field. Further, the wave ceases to be purely tensorial, and it is impossible
to assert that hx

x = −hy
y. To find a solution, it is necessary to express all the quantities

precisely in terms of hx
x and hy

y (not in terms of h+) or in terms of expansion in helicity,
introducing Φ and Ψ.

9. System Solution in the Case k⊥B

Let us write out the system of equations completely, taking into account the conclusions
of the previous section that f z, hz

x, hz
y components that are absent at the beginning do

not arise during the conversion of tensor GW into photons and scalar perturbations of
the metric.

Let us draw the reader’s attention to the fact that we write the equations in terms of
the electromagnetic potential with the superscript f µ and the gravitational wave potential
with mixed indices hν

µ. In this case, we use the following expansion in helicity states for
perturbation of the metric

htt = 2Φ(t, r), (197)

hz
z = 2Ψ(t, r), (198)

hx
x = 2Ψ(t, r) + h+(t, r), (199)

hy
y = 2Ψ(t, r)− h+(t, r), (200)

hx
y = h×(t, r). (201)

We also make the Fourier expansion in terms of momentum, and accept the law of the
scale factor variation with time, corresponding to the stage of radiation dominance a(t) ∼ t

1
2 .

To further search for a numerical solution, it would be convenient to introduce dimen-
sionless quantities. To do this, let us change the notation

f x/mpl → f x, (202)

f y/mpl → f y, (203)

and introduce τ0 to make the scale factor dimensionless

a =

√
t

τ0
. (204)

Due to the last change, the tensor hµν also becomes dimensionless.
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Let us assume that at the present-day Universe a0 = 1. This is just a choice of reference
point and this choice does not influence the solution, because the constant factor in front
of the scale factor function has no physical meaning. The condition is convenient in our
problem to recalculate magnetic field strength using the present day magnitude. Using the
scale factor dependence during matter dominance epoch a = (t/τtot)

2/3 we obtain for the
coefficient τ0:

τ0 = τtot

(
τtot

teq

)1/3
≈ 35 τtot, (205)

where τtot = 13.8× 109 years is the age of the Universe, teq = 3.3× 105 years is the moment
when radiation and dust energy densities were equal.

We accept also that the scale factor a varies in the interval 10−9 5 a 5 10−4. The selected
interval lies inside the radiation dominance epoch (from the hadronic to the recombination).

For the magnitude of the magnetic field B0 in the system of equations, we take its value at
the present time. There are bounds obtained from observations: 10−16 5 B0 5 10−9 Gs [34].
Therefore, let us put B0 = 10−9 × 1.95× 10−14 MeV2.

After the Fourier transform over momentum, it will be clear that the system of equa-
tions contains both imaginary and real terms. Therefore, to solve the SDE numerically, it
will be necessary to decompose each of the required quantities into real and imaginary
parts. For example, h+ = Re(h+) + iIm(h+) and so on. For brevity, we write down systems
of equations without dividing into real and imaginary parts. To obtain a more universal
result, it is convenient to write the system in terms of a(t). The first independent system
has the following form:

f x : a2H2 f x′′ + aH2

[
1 + a

H′

H
+ 8

2B2
0C0 − a4

16B2
0C0 − a4

+ aHΓ

]
f x′

+

[
k2

a2 + 2aHH′ − 8H2 4B2
0C0 + a4

16B2
0C0 − a4

+ 2ΓH + ω2
pl

]
f x−αβH2(a f x′ + 2 f x)

+αβ ln a
[

a2H2 f x′′ +
(

k2

a2 + 2aHH′
)

f x +
(

5aH2 + a2HH′
)

f x′
]
= − ikB0

a4mpl
h×, (206)

hy
x : a2H2h′′× +

(
4aH2 + a2HH′

)
h′× +

[
k2

a2 +
16πGB2

0
a4

(
1− 4B2

0C0

a4

)]
h×

= −16πGB0ik
a2

(
1− 16B2

0C0

a4

)
mpl f x,

where the prime denotes the derivative with respect to the scale factor, and we introduced
the attenuation of the electromagnetic wave due to its interaction with the plasma using
the damping factor Γ ∝ α2T(a) and the plasma frequency ω2

pl ∝ αT(a). Let us recall
that T(a) ∝ 1/a.

All solution interval terms with the multiplier αβ ln a can be neglected. Therefore, the
resulting system is

f x : a2H2 f x′′ + aH2

[
1 + a

H′

H
+ 8

2B2
0C0 − a4

16B2
0C0 − a4

+ aHΓ

]
f x′+

+

[
k2

a2 + 2aHH′ − 8H2 4B2
0C0 + a4

16B2
0C0 − a4

+ 2ΓH + ω2
pl

]
f x−αβH2(a f x′ + 2 f x) = − ikB0

a4mpl
h×, (207)

hy
x : a2H2h′′× +

(
4aH2 + a2HH′

)
h′× +

[
k2

a2 +
16πGB2

0
a4

(
1− 4B2

0C0

a4

)]
h×

= −16πGB0ik
a2

(
1− 16B2

0C0

a4

)
mpl f x,
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It can be seen that the initial conditions

h×(0) = h0
×,

f y(0) = 0,

h′×(0) = 0,

f y′(0) = 0 (208)

give nontrivial solution.
Let us stress here that the chosen initial conditions just allow us to formulate a simple

problem to solve and to obtain the effect in order of magnitude, i.e., to obtain a represen-
tative result. That is the first step of the investigation. In future works, we are going to
approach step-by-step more close to the real physics conditions.

It is important to note that there are poles at a4 = 16B2
0C0 in the first equation. Let us

remind the reader that the effective Heisenberg–Euler action Equation (32) is correct un-
der the assumption of a weak external electromagnetic field. In our case, that means
that B0/a2 � m2

e . This restirction is valid in the selected interval of the variation of the
scale factor: a ∈ [10−9, 10−4]. Indeed, for B0 = 1 nGs inside the interval for the scale factor
we obtain

B ∈ [10, 109]Gs = [1.95× 10−13, 1.95× 10−3]MeV2. (209)

All the values are less than the electron mass squared m2
e ≈ 0.25 MeV2. Using the

definition (33), we can rewrite the term proportional to B2
0C0/a4 as:

C0B2
0

a4 =
α2

90 m4
e

B2. (210)

On the other hand, we have shown that B � m2
e in the whole interval of solution

variation. Therefore, after squaring and multiplying by α2/90� 1, the condition remains
the same

α2

90 m4
e

B2 � 1, (211)

and means that the correction to the Maxwell action proportional to α2 is sufficiently
accurate for our consideration.

Another important question to be solved in future work is to what minimum value
of the scale factor should the solution be expanded? The solution to this question should
be sought in the theories of cosmological magnetogenesis, that study the epoch when the
cosmological magnetic field was generated. We should also keep in mind that as the scale
factor approaches the pole, higher order corrections will be excited [17], thereby removing
any potential pole.

The second subsystem, which involves the quantities {Φ, Ψ, f y, h+}, is larger, more
complex and requires solving many sub-problems. For example, the question of whether
scalar metric perturbations propogate is quite nontrivial and requires careful analysis.
In order to steer the article away from becoming excessively cumbersome, in this work we
will concentrate on solving only the subsystem { f x, h×}.

In order to numerically solve the system, we need to divide both parts of the equation
by a2H2 and to introduce two new functions to lower the order of the equation in order to
make it look like: y′ = f (x, y).

Two new functions and a system 4× 4 to be solved:

f x′ = v fx , (212)

h′× = vh× , (213)
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f x : v′fx
= −1

a

[
1 + a

H′

H
+ 8

2B2
0C0 − a4

16B2
0C0 − a4

+ aHΓ

]
v fx+

αβ

a2

(
a f x′ + 2 f x)

− 1
a2H2

[
k2

a2 + 2aHH′ − 8H2 4B2
0C0 + a4

16B2
0C0 − a4

+ 2ΓH + ω2
pl

]
f x − ikB0

a6H2mpl
h× (214)

hy
x : v′h× = −

(
4aH2 + a2HH′

)

a2H2 vh× −
1

a2H2

[
k2

a2 +
16πGB2

0
a4

(
1− 4B2

0C0

a4

)]
h×

− 16πGB0ik
a2

(
1− 16B2

0C0

a4

)
mpl f x

a2H2 ,

We use fifth-order implicit Runge–Kutta method, which is algebraically stable and
allows solving stiff systems of differential equations, for more details see [35].

9.1. Method of Solution Validation

Before solving the system for a non-zero magnetic field strength, we must check
whether the method for the SoDE solving works correctly for the case when it is absent.
Equation of motion for tensor gravitational waves in the approximation kη ∼ 1, where
η(t) =

∫ dt
a(t) is a conformal time, can be solved analitically. The solution has the form

h(η) = hinit
sin (kη + φ0)

kη
, (215)

where hinit is an initial magnitude of tensor perturbation, and φ0 is a constant phase. The last
two parameters are defined from the matching with the constant mode, obtained from the
EoM solution in the approximation kη � 0 (see Section 3.2 in Ref. [15]).

In Figure 1a, the numerical and analytical solutions are presented for the two conformal
time values η1 = 13.2, η2 = 105.6 and corresponding to them frequencies k1 = 0.076,
k2 = 0.0095 Hz satisfying the condition kη ∼ 1.

(a)

Figure 1. Cont.
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(b)

Figure 1. Verification of the numerical solution (blue line) by the analytical solution (red line) for two
frequencies k1 (left) and k2 (right). (a) without phases; (b) with phases.

Here, we see a significant discrepancy, but after the correct phase selections,
φ1

0 = −0.22, φ2
0 = −0.00065, we obtain a coincidence with an accuracy of four orders

of magnitude (Figures 1b and 2). In Figure 2, an absolute difference between the numerical
and the analytical solutions is presented for the two considered cases.

Figure 2. Absolute difference between the numerical solution and the analytical solution for two
frequencies k1 (left) and k2 (right).

Eventually, we can conclude that the method of numerical solution works correctly,
and the results obtained for a non-zero value of magnetic field strength are reliable.

9.2. Numerical Solution Results for the System {h×, fx}
Let us present the numerical solution results for the system of Equation (207) with the

initial conditions according to the Equation (208). The code was written in Python using
the solve-ivp package.

Of particular interest in the long-wave range are the wavelengths that have left their
mark on the CMB. We found a solution for frequencies 10−18–10−16 Hz. We use an implicit
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Runge–Kutta method of order five to solve the SoDE for B0 = 1 nGs and for these frequen-
cies. The scale factor interval is [10−9, 10−4], and it lies within the radiation dominance
(RD) epoch. For comparison, a solution to the system in the absence of a magnetic field
was also found.

The results are as follows: by the end of the RD era, amplitude of GW with the selected
frequencies is suppressed by about 0.01 percent. Thus, we can conclude that the considered
effect of converting GWs into photons in a cosmological magnetic field has an extremely
small effect on the amplitude of long-wavelength relic GWs.

It is instructive to say a few words about the physical reason for the suppression of
the GW amplitude. In the problem we are considering, where the magnetic field is still not
strong enough, the main contribution to the damping comes from the classical Maxwell
action. Neglecting the loop correction in the equation of motion for the metric perturbation

hy
x in Equation (207), we obtain the second term in the brackets

[
k2

a2 +
16πGB2

0
a4

]
h×, which

works similarly to the plasma frequency for photons propagating in the plasma [36].
This term suppresses the low frequency end of the GW spectrum. Indeed, for the quantities
B0 = 1 nGs, a1 = 10−9 we obtain for the boundary value of the momentum less than the
above mentioned analogue of the plasma frequency for GW:

k .
√

16πB0

mpl a
≈
√

16π 10−9 × 1.95× 10−14 MeV2

2.43× 1021 MeV× 10−9 ≈ 5.7× 10−29 eV
6.6× 10−16 eV*s

≈ 10−13 Hz. (216)

10. Discussion

In the presented work, we have derived a coupled system of equations for gravita-
tional and electromagnetic wave propagation in an external magnetic field. Subsequently,
simplification of the differential equation system was performed for the FLRW background
metric and for the case of homogeneous magnetic field directed perpendicularly to the
initial gravitational wave vector. Finally, we have solved the system numerically for
h×—polarization putting B0 = 1 nGs. The resulting estimate of the effect, without taking
into account the inhomogeneity of the magnetic field, is about 0.01% suppression of the
amplitude for a relic GW with a frequency of 10−18 Hz at the recombination.

It is worth noting that the results are obtained under a large list of simplifying as-
sumptions and the research demands a deeper investigation (for example, the assumption
about the magnetic field homogeneity is rather crude). Despite this, the results make
sense and one can conclude that the considered phenomenon of GW conversion into pho-
tons in the intergalactic magnetic field cannot significantly suppress relic gravitational
wave amplitude.

Let us emphasize that this result was not obvious at the beginning of the research.
The smallness of the second-order corrections to the Maxwell action does not yet infer the
smallness of the relic GW suppression effect. It is also necessary to take into account the
interaction of the energy generated by GW photons with the primordial plasma, as well
as the fact that the conversion occurs over a long period of time during the evolution of
the Universe. A crucial point is also the dependence of the cosmological magnetic field
amplitude on the scale factor according to the law B = B0/a2, which in the early stages
of the evolution of the Universe could lead to a rather high magnetic field strength, and
therefore to a noticeable conversion effect.

In future works, we plan to solve the second independent part of the SoDE, paying
special attention to the following question: do the emerged scalar perturbations run? Sub-
sequently, we want to expand the solution interval up to the end of the matter dominance
epoch and to account for the magnetic field inhomogeneity.

It is worth stressing that the stochastic nature of the relic GW direction and the
magnetic field direction should have a large impact on the magnitude of the suppression
effect, and a more accurate analysis of this phenomenon is also very important. We plan to
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perform such an analysis in order to present quantitatively the dependence of the full relic
GW spectrum suppression on the intergalactic magnetic field strength.

Future research is not only of academic interest, but can also be applied to similar
problems of converting gravitational waves into photons near astrophysical sources of
strong magnetic fields. Of course, the background metric must be modified to suit the
specific task conditions, but the inference structure and some of the qualitative findings
discussed in this manuscript will remain valid and useful. In addition, the accuracy of
future measurements of CMB polarization [37] will steadily increase, and may reach values
of the order of the considered effect.
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GW Gravitational Wave
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SoDE System of Differential Equations
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Abstract: In Friedmann–Lobachevsky space-time with a radius of curvature slowly varying over
time, we study numerically the problem of motion of a particle moving in the Cornell potential. The
mass of the particle is taken to be a reduced mass of the charmonium system. In contrast to the
similar problem in flat space, in Lobachevsky space the Cornell potential has a finite depth and, as a
consequence, the number of bound states of the system is finite and motion with a continuum energy
spectrum is also possible. In this paper, we study the bound states as well as the scattering states of
the system.

Keywords: Cornell potential; Lobachevsky space; Friedmann universe; stationary bound states

PACS: 03.65.-w; 03.65.Ge; 02.40.Ky

1. Introduction

The centennial anniversary of the publication of the seminal paper by A.A. Friedmann [1],
followed by related publications [2–4], motivated the present discussion on the role of
geometrical ideas in particle physics and cosmology.

During 1922–1924, A. Friedmann derived his celebrated dynamical equations for the
universe. Many details from Friedmann’s biography can be found in the book [5]. He
started from the General Relativity equations with arbitrary cosmological “constant” and
opened the way to building models of a non-stationary universe. The non-stationary
nature of the universe was brilliantly confirmed in astronomical observations by Hubble.
Following Friedmann, a large number of models of the expanding universe were suggested
(see, e.g., [6–8]).

In the beginning of the quark hypothesis of particle structure, composite models based
on non-relativistic problems for various potentials demonstrated their effectiveness. Within
the framework of that approach, the mass spectra of a number of mesons and hadrons
and some of their static characteristics were successfully described. Examples of the use of
such models are given in reviews [9–11]. In approaches in which particles are considered
as consisting of quarks, a special role belongs to the Cornell potential, which ensures
confinement of quarks (see, for example, [12]). As far as we know, the quantum-mechanical
problem of a particle moving in the Cornell potential in Lobachevsky space has not yet
been discussed in the literature, although coupled systems like the b-meson have been
studied in a number of papers [13,14].

Now, more than 100 years after the creation of General Relativity, we may ask ourselves:
what is its most unexpected and surprising prediction? There is no doubt that the answer
should be the theory of an expanding universe, created by Alexander Friedmann [1–3].

Universe 2024, 10, 76. https://doi.org/10.3390/universe10020076 https://www.mdpi.com/journal/universe344



Universe 2024, 10, 76

This was also a triumph of non-Euclidean geometry, as proposed by J. Bolyai, C. F. Gauss,
N. I. Lobachevsky (BGL), developed by Bernhard Riemann, and extended by Hermann
Minkowski in a space-time manifold.

About 30 years later, George Gamow wrote in his book [15] “The Creation of the
Universe”:

. . . the Russian mathematician A. Friedmann pointed out that the static nature of
Einstein’s universe was the result of an algebraic mistake (essentially a division by
zero) made in the process of its derivation. Friedmann then went on to show that
the correct treatment of Einstein’s basic equations leads to a class of expanding
and contracting universes. . .

In 1965, Erast B. Gliner [16] assumed that the pressure in Einstein–Friedmann equa-
tions for the very early universe is proportional to the energy density with a negative sign.
This unusual relation between pressure and energy density was the first theoretical predic-
tion of dark energy, now confirmed by observations. In subsequent papers [17,18], he found
an exponentially increasing solution of these equations contributing to the development
of cosmology with a rapid expansion phase, followed by a large number of inflationary
cosmological models.

Simultaneously and independently of Gliner, a related activity preceding numerous
papers on inflation took place in Kiev. The common feature in these papers was the
exponential expansion of the universe, now called inflation, provided by negative pressure
in the equation of state p(T).

The relevant derivation is simple. In Fridmann’s homogeneous, isotropic and flat
universe the scale factor ρ obeys the equations

ρ̇− Gρ
√

ε = 0, (1)

ε̇ + 3ρ̇/ρ(ε + p) = 0, (2)

where p is pressure and G =
√

8π/3/Mp. From Equations (1) and (2),

ρ̈ = −G2ρ(ε + 3p)/2 (3)

follows, whence 3p + ε < 0 for inflationary solutions. As energy density is positive, the
above inequality produces inflation only at negative pressure [19].

Historically, this was predicted in [7] from an equation of state of strongly interacting
(nuclear) matter derived [7] in the framework of the S matrix formulation of statistical
mechanics. It is interesting by itself and may have interesting consequences in nuclear and
particle physics. Inflation resulting from this minimum was a bonus [19].

Here, several comments are in order. First, the rate of this kind of inflation is modest
with respect to the popular scenarios. For this reason, it was also called [20,21] “tepid”
compared to the alternative violent expansion. Furthermore, it may have occurred later
with respect to those based on the Standard Theory. One cannot exclude a sequence of
inflations of the early universe. The above “nuclear” one was the latest in time and it may
have washed away the footprints of the earlier ones.

2. Quark–Antiquark Bound States in Lobachevsky Space

Einstein’s famous work [22], in which he introduced the cosmological constant and
obtained the first cosmological solution, was the impetus for further research in the theory
of relativity, quantum mechanics and theory for non-relativistic particles moving in curved
spaces [23–30].

We will consider Friedmann-Lobachevsky space-time based on the assumption that
the curvature radius ρ(t) changes very slowly in time, and is considered as being constant,
in particular, as it is in Einstein’s solution [22]. Taking into account the uncertainty of the
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right side of Equation (3), we accept the assumption for a period of time δt satisfying the
inequality ρ′(t0)δt� ρ(t0) or δt� H−1, where H is Hubble constant [31].

The Schrödinger equation for stationary states in Lobachevsky space with curvature
radius ρ in spherical coordinates,

x0 = ρ cosh β; x1 = ρ sinh β sin θ cos φ;

x2 = ρ sinh β sin θ sin φ; x3 = ρ sinh β cos θ;

0 ≤ β < ∞; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π, (4)

has the form

− }
2m

( 1
ρ2 sinh2 β

∂

∂β

(
sinh2 β

∂

∂β

)
+

1
ρ2 sinh2 β

∆θ,φ

)
ψ + Vψ = Eψ, (5)

where β = r/ρ.
Here, we use the embedding of Lobachevsky space into a four-dimensional pseudo-

Euclidean space, in which the rectangular coordinates xµ, µ = 1, 2, 3, 4 are introduced, and
for points in Lobachevsky space the equality

xµxµ = x2 + x2
4 = x2 − x2

0 = −ρ2, x = (x1, x2, x3), x4 = ix0 (6)

is valid.
In the case of a central symmetric potential V = V(r), Equation (5) can be reduced to

−1
2

d2u
dr2 + Ve f f (r)u = εu, (7)

where the effective potential is

Ve f f (r) = mV(r) +
l(l + 1)

2ρ2 sinh2 (r/ρ)
+

1
2ρ2 , (8)

and ε = mE.
In this case, the wavefunction is written in terms of u(r) and the spherical harmonics as

ψ(r, θ, φ) =
u(r)

sinh (r/ρ)
Ylm(θ, φ). (9)

Here, a rational system of units has been chosen, in which c = } = 1 and all physi-
cal quantities have units of measurement of powers of mass—namely, (GeV)a, wherein
[r] = [ρ] = GeV−1, [m] = GeV, [V(r)] = [E] = GeV, [ε] = [Ve f f ] = GeV2.

Let us consider the motion of a particle whose mass is equal to the reduced mass of
two c quarks (a system of a c quark and its anti-quark is called charmonium)—that is, let
us take m = 0.635GeV. Assume that such a particle moves in a field in which its potential
energy is described by the Cornell potential, the expression for which in Lobachevsky space
has the form

V(r) =
a
ρ

coth
r
ρ
+ bρ tanh

r
ρ

. (10)

Note that the choice of the Cornell potential is generally ambiguous. We proceeded
from the fact that the first term is a fundamental solution of the Laplace–Beltrami equation
in three-dimensional Lobachevsky space, and we sought to preserve the symmetry inherent
in the flat limit of this potential. In Formula (10), the first term corresponds to the Coulomb
attraction and the second to the linearly increasing potential in flat space.

For parameters a and b we take the following values [11]:

a = −0.52; b = 0.18GeV2.
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In Lobachevsky space, the depth of the well of the effective potential is finite and it
depends on the orbital quantum number l and the radius of curvature ρ. As l increases
(keeping ρ constant) the well becomes more and more shallow, and at some high-enough
value of l it disappears: no bound states are possible. On the contrary, as we increase ρ and
keep l unchanged, the well becomes deeper and we can have more bound states. In the
limit when ρ −→ ∞ we are back to the flat space with an infinite number of bound states.
The Cornell potential formula in Lobachevsky space also leads to that of the flat space in
this limit. When ρ is small enough (which corresponds to the high curvature of the space,
as it is supposed to take place in the early universe) the well again disappears and we do
not have bound states. As the curvature radius increases in time (Friedmann’s solution for
the open-universe model) a particle moving in the Cornell potential at first has no bound
states; then, it has a larger and larger finite number of bound states and, as ρ approaches
infinity (flat space), all states become bound.

When r −→ 0 the asymptotic behavior of the solution to Equation (7) is

u ∼ (tanh (r/ρ))l+1. (11)

Indeed, at r −→ 0 centrifugal energy makes the greatest contribution to the equation
and the approximate equation has the form

− d2u
dβ2 +

l(l + 1)
sinh2 (β)

u = 0.

The last equation has the following solution that is regular at zero:

u = (tanh β)l+1
2F1

(
1 +

l
2

,
1
2
+

l
2

,
3
2
+ l, tanh2 β

)
≈ (tanh β)l+1.

We will study Equation (7) using numerical methods: namely, we will find the energies
of bound states. To do so, we apply the shooting method, at each step of which the
differential Equation (7) is numerically solved under initial conditions specified by the
asymptotic expressions

u(r0) = [tanh (r0/ρ)]l+1; u′(r0) =
(l + 1)[tanh (r0/ρ)]l

ρ cosh2 (r0/ρ)
, (12)

where r0 = 0.001GeV−1—variable value close to zero.
Figure 1 shows a plot of the effective interaction potential at ρ = 8GeV−1, l = 1.

Figure 1. Effective potential plot.

347



Universe 2024, 10, 76

It can be seen that in Lobachevsky space the effective interaction potential has the
form of a potential well of finite depth, whereas in flat space for the Cornell potential we
have an infinitely deep potential well. Let us denote

εmax = lim
r→∞

Ve f f (r) = m
( a

ρ
+ bρ

)
+

1
2ρ2 . (13)

While scattering prevails at energies higher than εmax/m, bound states are possible at
lower energies.

Figure 2 shows numerical solutions for bound states and their corresponding energy
levels for ρ = 8GeV−1, l = 1. In this case, there are only four bound states.

Figure 2. Numerical solutions for the bound states and corresponding energy levels.

As the depth of the well increases with increasing ρ and decreases with increasing l,
we can expect that the number of bound states will be greater for the larger values of ρ
and the smaller values of l. Figure 3 shows the results of the numerical calculation of the
number of bound states for different values of ρ and l.

Figure 3. Number of bound states.

Using the numerically calculated values of energy levels at different l, Regge trajec-
tories are constructed at ρ = 10GeV−1 (see Figure 4). Here, we use the same approach
as in [32,33]. It can be seen from the figure that as l increases the number of bound
states decreases.

It should be noted that the above Regge trajectories differ from those resulting from
analyticity and duality [34]. While the above are convex up and infinitely rising, those based
on analyticity, unitarity and duality are concave down, with limited real parts, predicting a
finite number of resonances (see [34]).
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Figure 4. Regge trajectories.

3. Scattering in the Cornell Potential

Now, we consider the case when the particle energy exceeds the value εmax/m (the
case of scattering) and we determine the phase shifts δl(E) for given values of energy E
and orbital quantum number l.

To do this, it is necessary to compare the numerical solution of Equation (7) at the end
of the calculation segment with the solution of the approximate equation for r −→ ∞. The
approximate equation is

d2u
dr2 + 2(ε− εmax)u = 0,

where εmax is given by the Formula (13). In the case of scattering ε > εmax and under initial
conditions (12), it has a solution of the form

u ∼ sin(
√

2(ε− εmax)r).

For the numerical solution of Equation (7), we will choose an interval from
r0 = 0.001GeV−1 to rk, which is several times larger than rc, where rc is the distance from the
origin at which Ve f f (x) ≈ εmax with a given accuracy (we took ∆ = |V − εmax| = 10−6GeV2).
Then, the numerical solution of Equation (7) under the same initial conditions (12) at the
end of the computational segment will have the form

u ∼ sin(
√

2(ε− εmax)r + δl(ε)).

The phase shift can be determined from the numerical solutions as

δl(ε) =
√

2(ε− εmax)(r1max − r2max),

where r1max and r2max are the positions of the maxima in the last period of the first and
second solutions, respectively. The integral partial cross-section is then determined by
the formula

σl =
4π

(2ε)
(2l + 1) sin2(δl(ε)), (14)

Because in the selected units of measurement, k2 = 2ε. Figures 5 and 6 show the
dependence of partial cross-sections on energy at ρ = 10GeV−1 for l = 0 and l = 1.
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Figure 5. Partial cross-section σ0(E).

Figure 6. Partial cross-section σ1(E).

Let us also consider the case of low-energy scattering at l = 0. Let us study the
dependence of the scattering length on the radius of curvature of Lobachevsky space. For
each value of the radius of curvature, we will take an energy only slightly exceeding ε/m
(we took E = ε/m + 0.01GeV), which meets the condition E −→ ε/m. These values are
different for different ρ (the energy that can be considered as “low” depends on the radius
of curvature, i.e., it depends on the shape of the potential). Then, having determined the
cross-section, using Formula (14), we find the scattering length as L =

√
σ0/(4π) and we

study the dependence L(ρ) (see Figure 7).
We see that the length of scattering varies significantly with the varying radius of

curvature. For example, at ρ ≈ 2GeV−1 the low-energy scattering cross-section reaches its
maximum, while at ρ ≈ 3.5GeV−1 it is zero (no scattering).
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Figure 7. Scattering length.

4. Conclusions

This paper shows that the Cornell potential in Lobachevsky space, contrary to the
case of flat space, is a potential well of finite depth. Therefore, for particles moving in
such a potential, both bound states and scattering states are possible. In this case, the
greater the radius of curvature of Lobachevsky space and the smaller the quantum number
of the orbital momentum, the greater the depth of the potential well. For values of the
potential parameters typical of charmonium and an arbitrarily chosen radius of curvature,
numerical solutions corresponding to bound states and their corresponding energy levels
were found. It was shown that the number of bound states of the system increases with
an increasing radius of curvature and decreases with increasing orbital quantum numbers.
For the scattering problem, energy dependences were obtained for the first few partial
cross-sections, as well as the dependence of the scattering length on the radius of curvature
of the space. It is interesting to note that for some values of ρ we had σ0 = 0, which means
that in Lobachevsky space with the particular radius of curvature a particle with zero
angular momentum and with low energy is not scattered.
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1. The Birth of the de Sitter Model

After writing, in December 1915, his equations for the geometry of spacetime, Einstein
turned his attention to cosmology and tried to apply them to the entire Universe, creating an
entirely new science—modern scientific cosmology—whose founding idea is that a global
exact solution of Einstein’s equations corresponds somehow to a model for the Universe.

Einstein’s concern was, at first, epistemological: the metric structure of the Universe
must be entirely determined by the material content—this is more or less the so-called Mach
principle. But general relativity still keep a remnant of absolute space in the boundary
conditions that must be specified at spacelike infinity to determine the spacetime geometry.
To solve this problem, or rather, to dispose of it, Einstein’s “crazy idea” was to let the
Universe be spherical, let it have spherical spatial sections.

A curved sphere should be imagined as a three-dimensional spherical hypersurface
embedded in a Euclidean space of dimension four:

S3 = {x2
1 + x2

2 + x2
3 + x2

4 = r2}. (1)

It obviously has no centre, or rather, it has its centre everywhere1, and any point is equiva-
lent to any other point. It has no boundary either; and therefore: no boundary, no conditions
on boundary.

There was also a second guiding principle in Einstein’s cosmological research: The
Universe had to be static and its geometry should not change as time goes by. In 1917, the
visible Universe still coincided with the Milky Way, the nebulae enigma had not yet been
solved, and the hypothesis of a static Universe was perfectly reasonable. But, his General
Theory of Relativity of 1915 does not allow for spherical static solutions.

Here came idea that would be remembered as his biggest blunder: to add to his equa-
tions a constant term Λ that acts repulsively and counteracts the gravitational attraction.
This was, to quote Einstein,

an extension of the equations which is not justified by our real knowledge of gravita-
tion [. . .] this term is necessary only for the purpose of making possible a quasi-static
distribution of matter as required by the low speed of stars [1].

This commentary indicates that in his 1917 paper, Einstein was already aware of the fact that
his original equations of 1915 implied a dynamical Universe, but that he had set aside this
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possibility. He kept adding Λ and found a perfectly Machian static spherical solution—his
static model of 1917.

Shortly after the publication of Einstein’s paper, de Sitter published a second solution
of the new cosmological equations of 1917: an otherwise empty Universe made only by
the cosmological constant. The astronomer found his model elaborating on the boundary
condition problem. According to him, Einstein’s solution still retained a trace of absolute
space; a four-dimensional (complex) sphere could solve the problem in a more convincingly
covariant way. As for the sphere (1), the de Sitter model can be better visualised as an
embedded surface: it is the four-dimensional one-sheeted hyperboloid embedded in a
five-dimensional Minkowski spacetime M5

dS4 = {x2
0 − x2

1 − x2
2 − x2

3 − x2
4 = −R2}. (2)

Einstein was very unhappy with the new solution, but all his attempts to demonstrate
that de Sitter’s calculations were faulty consistently failed. Einstein finally surrendered:
the de Sitter Universe was indeed a regular solution of his cosmological equations without
matter, but, he said, it was nevertheless without physical interest because it was not globally
static. Einstein was rejecting the possibility of a dynamical Universe, but other scientists
simply did not know: until the early 1930s, the fundamental articles published in 1922 [2]
and 1924 [3] by Friedmann, who made use of the original equations of general relativity to
describe expanding universes, were substantially ignored. Lemaître’s independent work in
1927 [4], based on the cosmological equations of 1917, was ignored too.

On a trip to Pasadena, Einstein learned of Hubble’s latest observations and was
persuaded of the advantages of dynamic models to describe the Universe. In two articles
published shortly afterwards, Einstein asserted that the original reasons for introducing
the cosmological constant no longer existed. Farewell to the cosmological constant.

In 1947, Einstein wrote to Lemaître:

The introduction of such a constant implies a considerable renunciation of the logical
simplicity of the theory. . . Since I introduced this term, I had always a bad conscience . . .
I am unable to believe that such an ugly thing should be realized in nature.

Lemaître’s answer in 1949 sounds like a prophecy.

The history of science provides many instances of discoveries which have been made for
reasons which are no longer considered satisfactory. It may be that the discovery of the
cosmological constant is such a case.

In fact, Einstein himself had been prophetic in 1917 in a letter to de Sitter.

In any case, one thing is clear. The theory of general relativity allows adding the term Λ
in the equations. One day, our real knowledge of the composition of the sky of fixed stars,
the apparent motions of the fixed stars and the position of spectral lines as a function of
distance, will probably be sufficient to decide empirically whether or not Λ is equal to
zero. Conviction is a good motive, but a bad judge.

In 1997, exactly eighty years after its discovery, the cosmological constant was ob-
served [5,6]; or maybe, it was something similar that we now call “dark energy”. These
observations have upturned consolidated and rooted ideas, indicating that the gravitational
effect of the greatest part of the energy of the Universe consists to producing an accelerated
expansion, as in the case of Einstein’s cosmological constant. Nowadays, almost every
physicist believes that the dark component constitutes about seventy percent of the energy
of the Universe and that its proportion, according to the standard cosmological ΛCDM
(cold dark matter) model, is destined to increase. In the end, only the cosmological constant
will remain, and the Universe will become a perfect de Sitter spacetime.

The de Sitter geometry seems therefore to assume the role of the reference geometry
of the Universe. In other words, it is de Sitter’s, and not Minkowski’s, the geometry of
spacetime when the latter is deprived of its content of matter and radiation.

354



Universe 2024, 10, 199

Beyond the acceleration of the Universe at late times, the idea of inflation consists
of a phase of accelerated quasi-exponential expansion, approximately described by de
Sitter’s geometry in the primordial Universe. A theoretical understanding of the structure
of the Universe, which is observable today, is based on quantum field theory on de Sitter
spacetime: quantum fluctuations of the vacuum at the epoch of inflation are thought to
be responsible for the primordial density inhomogeneities that are at the origin of the
structures existing in the Universe today.

Actually, once one admits that a cosmological constant may exist, it might also be
negative, isn’t it? The model of the Universe with a negative cosmological constant and
nothing else is termed anti-de Sitter. It is a curious coincidence that in the very same year,
1997, the negative cosmological constant also took centre stage in theoretical physics [7] with
the formulation of the by-now famous AdS/CFT (Anti-de Sitter/Conformal Field Theory)
correspondence, a conjectured duality between two different physical theories—1997, the
year of the two cosmological constants!

2. Quantum Field Theory: The Spectral Condition

The de Sitter and anti-de Sitter spacetimes thus have great importance in contem-
porary theoretical physics and cosmology, and both dS and AdS quantum field theory
(QFT) also play a major role. The dS and AdS manifolds share the properties of having
constant curvature and being maximally symmetric manifolds. Actually, in the general
d-dimensional case, they are just different real submanifolds of one and the same complex
manifold: the complex d-dimensional sphere

S(c)
d = {z ∈ Cd+1; z2

0 + z2
1 + . . . + z2

d = R2}. (3)

Otherwise, their geometries are radically different from each other. In particular, the (real)
de Sitter manifold has no global timelike Killing vector field, while the (real) anti-de Sitter
manifold is not globally hyperbolic and has closed timelike curves. One can get rid of these
closed curves by moving to the universal covering of the real AdS manifold (even though this
move might be just an illusion), but the universal covering remains not globally hyperbolic.

Global hyperbolicity is a basic property of quantum field theory on curved spacetimes,
as it is usually formulated. Its absence renders AdS QFT a little more demanding from a
technical viewpoint. But, as we will see, this is not a major difficulty since in AdS, there
exists the possibility of identifying a global energy operator. It is precisely the lack of a
global energy operator, which is a consequence of the absence of a global timelike Killing
vector field, which renders dS QFT actually more difficult.

There is, however, a unifying characteristic that makes dS and AdS QFTs similar to
each other and similar also to the standard zero-temperature Minkowski QFT: this is the
analyticity of the correlation functions in suitable domains of the respective complexified
manifolds. This unifying viewpoint is discussed in the following sections.

Here, to prepare the groundwork, we start by recalling that the fundamental theorem
of Stone and Von Neumann, which states the uniqueness of the Hilbert space representation
of the canonical commutation relations (CCRs), fails for infinite quantum systems. The
distinction between observables and states, which is of no consequence for finitely many
degrees of freedom, now becomes crucial, and there exist infinitely many Hilbert space
realisations of the same algebra of the observables. In other words, knowing the Lagrangian
of a quantum field theory is not enough. The Lagrangian just provides the commutation
rules, but there are infinitely many inequivalent solutions of the field equations sharing
the same commutation rules; one needs to specify some extra information to find the
physically relevant ones. Only after this step has been taken can transition amplitudes may
be computed and comparisons with the outcomes of the experiments may be done.
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3. States and Two-Point Functions

This non uniqueness is true already at the level of free fields. What is unique is the com-
mutator: on a globally hyperbolic manifold (M, g), the Klein–Gordon Lagrangian uniquely
selects the (covariant) commutator C(x1, x2), which is an antisymmetric bi-distribution
solving the Klein–Gordon equation in each variable

(�x1 + m2)C(x1, x2) = (�x2 + m2)C(x1, x2) = 0 (4)

with the precise initial condition given by the equal-time canonical commutation relations.
The equal-time CCRs, in turn, imply that C(x1, x2) = 0 for any two events x1, x2 ofM,
which are spacelike-separated with respect to the notion of locality inherent toM.

For free fields, the smeared commutator is a multiple of the identity element of the
field algebra (a c-number). Given two test functions f and g belonging to a suitable test
function space T (M),

[φ( f ), φ(g)] = C( f , g) =
∫

M×M
C(x1, x2) f (x1)g(x2)

√
−g(x1)dx1

√
−g(x2)dx2. (5)

A quantisation is accomplished when the commutation relations (5) are represented by an
operator-valued distribution in a Hilbert spaceH. One should determine a linear map

φ( f ) −→ φ̂( f ) ∈ Op(H) (6)

preserving the algebraic structures and such that

[φ̂( f ), φ̂(g)] = C( f , g) 1. (7)

As we stated, the Stone–Von Neumann theorem fails, and there are uncountably many
solutions to this problem. How can we construct (at least some of) them?

A possible solution is completely encoded in the knowledge of a two-point function,
i.e., a two-point distributionW ∈ T ′(M×M) that solves the Klein–Gordon equation in
each variable (

�x1 + m2
)
W(x1, x2) =

(
�x2 + m2

)
W(x1, x2) = 0 . (8)

Because of Equation (7),W(x1, x2) is also required to be a solution of the functional equation

W(x1, x2)−W(x2, x1) = C(x1, x2) (9)

in the sense of distributions.
Starting fromW(x1, x2), the Hilbert space of the theoryH can be constructed using

standard techniques [8]. The first step consists of giving a norm to the one-particle state
Ψ f corresponding to a given test function f ∈ T (M). The norm is computed using the
two-point function:

||Ψ f ||2 =
∫

M×M
W(x1, x2) f ∗(x1) f (x2)

√
−g(x1)dx1

√
−g(x2)dx2. (10)

The squared norm (10) is positive (as it should be) if W(x1, x2) satisfies the positive-
definiteness condition, which is nothing but the nonnegativity of the right-hand side of
Equation (10). We assume that it does.

The norm (10) actually comes from a pre-Hilbert scalar product whose interpretation
is that of providing the quantum transition amplitudes between two one-particle states:

〈Ψ f , Ψg〉 =
∫

Md

W(x1, x2) f ∗(x1)g(x2)
√
−g(x1)dx1,

√
−g(x2)dx2. (11)
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The one-particle Hilbert spaceH(1) is obtained by quotienting out the subspace of zero-norm
states and by taking the Hilbert completion. The full Hilbert space is the symmetric Fock space

H = Fs(H(1)) = H0 ⊕ [⊕nSym(H1)
⊗n]

(with Sym denoting the symmetrisation operation andH0 = {λ1, λ ∈ C} ). In the final step,
one introduces the field operator φ̂( f ) decomposed into its “creation” and “annihilation” parts

φ̂( f ) = φ̂+( f ) + φ̂−( f ); (12)

the latter are defined by their action on the dense subspaceH(0) of vectors having finitely
many non-vanishing components Ψ = (Ψ0, Ψ1, . . . Ψk, . . . , 0, 0, 0, . . .):

(
φ̂−( f )Ψ

)
n =
√

n + 1
∫
W(x, x′) f (x)Ψn+1(x′, x1, . . . , xn)

√
−g(x)dx

√
−g(x′)dx′, (13)

(
φ̂+( f )Ψ

)
n =

1√
n

n

∑
j=1

f (xj)Ψn−1(x1, . . . , /x j, . . . , xn). (14)

Equation (9) shows that these formulae imply the commutation relations (7) and that

W(x, x′) = 〈Ψ0, φ̂(x)φ̂(x′)Ψ0〉 (15)

where
Ψ0 = (1, 0, 0, . . . , ) (16)

is the cyclic reference state of the representation.
In the end, either in flat or curved spacetime, quantizing a free-field theory amounts

to specifying its two-point function, which carries all the information about the Hilbert
space and the field operators. Furthermore, the knowledge of the two-point function
and the commutator allows us to determine the Green’s functions, modulo the necessary
renormalisations; thus, the two-point function encodes not only the dynamics of the free
field but also the possibility of studying interactions perturbatively.

But, how do we specify a criterion to choose among the infinitely many existing
possibilities? Here comes the spectral condition.

4. Prelude: The Spectral Condition in Minkowski Space

This section contains material that may be found in (good) textbooks. The reason to
recall it here is to better appreciate and understand the role of the spectral condition and
plane waves in the de Sitter and anti-de Sitter contexts.

On page 97 of the classic book by R. Streater and A.S. Wightman, the following basic
assumption about a relativistic quantum field theory is declared:

Axiom 0. Assumptions of Relativistic Quantum Theory.

The states of the theory are described by unit rays in a separable Hilbert space
H. The relativistic transformation law of the states is given by a continuous
unitary representation of the inhomogeneous Lorentz group {a, A} → U(a, A).
Since U(a, 1) is unitary, it can be written as U(a, 1) = exp(iaµPµ) where Pµ is an
unbounded operator interpreted as the energy momentum operator of the theory.
The eigenvalues of Pµ is lie in or on the forward cone (spectral condition). There
is an invariant state Ψ0, U(a, 1)Ψ0 = Ψ0 unique up to a constant phase factor
(uniqueness of the vacuum).

Stated more succinctly:

The joint spectrum of the infinitesimal generators of U(a, 1) lies in the closed
forward cone V+.

This is the spectral condition of standard (zero-temperature) QFT. It is its most important
and characteristic feature. All the other axioms are of a kinematical character2.
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Here, we consider a general d-dimensional Minkowski spacetime Md with metric

ηµν = diag(+,−, . . . ,−) (17)

and one scalar field. The open future cone of the origin (also called the forward cone) is the set

V+ = {x ∈ Md : x · x > 0, x0 > 0}. (18)

Given the n-point vacuum expectation values of the field (in short, the n-point functions):

Wn(x1, . . . xn) = 〈Ψ0, φ̂(x1) . . . φ̂(xn)Ψ0〉, (19)

the spectral condition is immediately translated into a property of the support of their
Fourier transforms W̃n(p1, . . . , pn). The distribution

W̃n(p1, . . . , pn) =
∫

eip1·x1+...+ipn ·xnWn(x1, . . . , xn)dx1 . . . dxn (20)

vanishes unless all momenta are in the energy-momentum spectrum of the states

p1 ∈ V+, p1 + p2 ∈ V+, . . . p1 + p2 + . . . + pn ∈ V+. (21)

By Fourier–Laplace transform, support properties in one space give rise to analyticity
properties in the dual space [8]. A fundamental theorem of this category shows that the
n-point distributions are boundary values of n-point functions holomorphic in tubular
domains of the complex Minkowski spacetime.

Theorem 1 (A.S. Wightman). The distributionWn(x1, . . . xn) is the boundary value of a function
Wn(z1, . . . zn) holomorphic in the tube

Tn = {(z1, . . . zn) : Im (zj+1 − zj) ∈ V+}. (22)

Wightman’s reconstruction theorem [8] finally states the equivalence of the analyticity of
the n-point function in the tubes Tn and the spectral condition: starting from a set of Wightman
functions having such analyticity properties, it is possible to reconstruct the Hilbert space
of the theory, the representation of the inhomogeneous Lorentz group, and the infinitesimal
generators of the translation group and verify that their joint spectrum is contained in the
closed forward cone.

The above analyticity properties and the spectral condition have therefore one and the
very same precise physical meaning: they assert that the states of the theory have positive
energy in every Lorentz frame.

Focusing now on two-point functions, the spectral condition is equivalent to the
following simpler property.

Corollary 1 (Normal analyticity property). W(x1, x2) is the boundary value of a function
W(z1, z2) holomorphic in the tube T12 = T− × T+:

W(x1, x2) = 〈Ψ0, φ̂(x2)φ̂(x1)Ψ0〉 = b.v.
T−3 z1→x1
T+3 z2→x2

W(z1, z2) (23)

where
T± = {(z = x + iy : ±y ∈ V+} (24)

are the past and future tubes.

The tubes T± are invariant under the action of the real inhomogeneous Lorentz group.
Acting with the complex group, one discovers that every Lorentz invariant two-point
function satisfying the spectral condition enjoys a much larger analyticity domain.
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Theorem 2 (Maximal analyticity property). 1. The two-point function W(z1, z2) depends
only on the Lorentz-invariant variable λ = (z1 − z2)

2.
2. W(z1, z2) can be continued to a function W(z1, z2) analytic in the cut domain

∆0 = {(z1, z2); (z1 − z2)
2 6= ρ, ρ ≥ 0} (25)

that contains all pairs of complex events with the exception of all pairs of real events that are
causally connected (the causal cut).

3. W(z1, z2) is invariant in ∆0 under the action of the complex inhomogeneous Lorentz group.
4. The permuted two-point function is the boundary value of W(z1, z2) from the opposite tube

T21 = T+ × T−:

W(x2, x1) = 〈Ψ0, φ̂(x2)φ̂(x1)Ψ0〉 = b.v.
T+3 z1→x1
T−3 z2→x2

W(z1, z2). (26)

5. The cut domain ∆0 contains all pairs of non-coinciding Euclidean points

Ė = {z1, z2 ∈ ∆, Re z0
1 = Re z0

2 = 0, Im zi
1 = Im zi

2 = 0, i = 1, . . . , d− 1, z1 6= z2}. (27)

The Schwinger function S (also called the Euclidean propagator) is the restriction of W(z1, z2)
to the non-coincident Euclidean points Ė . S is analytic in Ė and can be extended as a
distribution to the whole Euclidean space E , including the coinciding points.

Klein–Gordon Fields

Now, let us see how the spectral condition works in practice for Klein–Gordon fields.
The first thing is to identify a suitable basis of solutions of the Klein–Gordon operator. In
flat space, the exponential plane waves are almost always the convenient choice since they
are also characters of the translation group:

ψ
(±)
~p (x) =

1

2
√
(2π)d−1ω

exp(±ipx), p0 = ω =
√
|~p|2 + m2. (28)

The above plane waves extend to functions that are holomorphic in the whole complex
Minkowski spacetime M(c)

d . The important point to be noted is the following.

Remark 1. Positive frequency waves ψ
(−)
~p (z) are exponentially decreasing in the past tube T−;

negative frequency waves ψ
(−)
~p (z) are exponentially decreasing in the future tube T+.

Let us now examine the two-point function. By translation invariance, it may depend
only on the difference variable ξ = x1 − x2. Taking the Fourier transform of the Klein–
Gordon equation with respect to ξ gives

(p2 −m2)W̃m(p) = 0. (29)

The most general Lorentz invariant distributional solution has two disconnected components:

W̃m(p) = aθ(p0)δ(p2 −m2) + bθ(−p0)δ(p2 −m2) (30)

and the spectral condition imposes b = 0. By Fourier anti-transforming, we obtain:

Wm(x1, x2) =
1

2(2π)d−1

∫ e−iω(x0
1−x0

2)+i~p·(~x1−~x2)

√
|~p|2 + m2

d~p =
∫

ψ
(−)
~p (x1)ψ

(+)
~p (x2)d~p. (31)
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Remark 1 invites us to move the first point into the past tube T− and the second point
into the forward tube T+. This move greatly improves the convergence of the integral, as
the function

Wm(z1, z2) =
∫

ψ
(−)
~p (z1)ψ

(+)
~p (z2)d~p, z1 ∈ T−, z2 ∈ T+ (32)

is now an analytic function of (z1, z2) ∈ T−× T+. The two-point distributionW(x1, x2)
is recovered by taking the boundary value. The normalisation ensures that the CCRs hold
with the correct coefficient.

Let us discuss the following elementary massless case in more detail:

W((t− is, 0 . . . , 0), 0) =
∫ e−iω(t−is)kd−3

2(2π)d−1 e−iω(t−is)kd−3 dk dΩd−2 (33)

=
1

(4π)
d−1

2

Γ(d− 2)

Γ
(

d−1
2

) 1
(it + s)d−2 . (34)

By restoring in this expression the Lorentz-invariant variable (z1 − z2)
2, we immediately

obtain the maximally analytic two-point function:

W(z1, z2) =
Γ
(

d−2
2

)

4π
d
2

[−(z1 − z2)
2]−

d−2
2 . (35)

Its boundary values from the relevant tubes give the two-point functionW(x1, x2) and the
permuted two-point functionW(x2, x1). The covariant commutator is their difference (9):

C(x, y) =
Γ
(

d−2
2

)

4π
d
2

(
[−(x− y)2 + iε(x0 − y0)]−

d−2
2 − [−(x− y)2 − iε(x0 − y0)]−

d−2
2

)
. (36)

Using the notations of [9], we obtain

C(x, y) =
1

2πi
1

Γ
(

2− d
2

) ε(x0 − y0)[−(x− y)2]
− d−2

2
− . (37)

where ε(x) = θ(x)− θ(−x). When the spacetime dimension d is even, the distribution
[−(x− y)2]λ− has a simple pole at λ = − d−2

2 with residue

Res
λ=− d−2

2
[−(x− y)2]λ− =

(−1)
d
2−2

Γ
(

d
2 − 2

) δ(
d
2−2)[(x− y)2] (38)

while 1/Γ
(

d
2 − 2

)
has a zero, and we obtain that the support of the commutator is the light

cone (Huygens principle):

C(x, y) =
1

2πi
ε(x0 − y0)δ(

d
2−2)[(x− y)2]. (39)

In particular, for d = 4, we obtain the well-known dominant term of the Pauli–Jordan function.

5. de Sitter

Let us consider now the d-dimensional de Sitter Universe (see Equation (2)):

dSd = {x ∈ Md+1 : x · x = −R2 = −1} . (40)
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The future cone of the origin of the ambient spacetime in one dimension more is given by

V+ = {x ∈ Md+1 : x2 > 0, x0 > 0} (41)

which provides the causal ordering of the de Sitter manifold. An event x2 is in the future of
another event x1 if the vector (x2 − x1) belongs to the closed future cone V+ of the ambient
spacetime. Two events x1, x2 ∈ dSd are spacelike separated if and only if

(x1 − x2)
2 = −2− 2x1 · x2 < 0. (42)

A straightforward adaptation of the spectral condition of Wightman QFT is just not
possible because there exists no global energy operator available in the de Sitter case. This
is a consequence of the absence of a global timelike Killing vector field on the de Sitter
manifold. Timelike Killing vector fields exist only on wedge-like submanifolds bordered
by bifurcate Killing horizons, but there is no Killing vector field that remains timelike on
the whole manifold.

Still, since the complexification of Minkowski space plays such a crucial role in
Minkowski QFT, we may go on and consider the complex de Sitter spacetime, visualised
here as a submanifold of the complex (d + 1)-dimensional Minkowski space:

dS(c)
d = {z ∈ M(c)

d+1 : z · z = −R2 = −1} . (43)

Note that z = x + iy ∈ dS(c)
d if and only if x2 − y2 = −R2 and x · y = 0. On the complex

manifold there acts the complex de Sitter group G(c) acts, which is the complexification of
the restricted Lorentz group of the ambient space G = SO0(1, d).

dS(c)
d contains tuboids T±, which are very similar to the past and future tubes of

Minkowski space. Actually, they can be described in the simplest way precisely as the
intersections of the ambient tubes T± with the complex de Sitter manifold:

T± = dS(c)
d ∩ T± = {x + iy ∈ dS(c)

d : y ∈ ±V+} . (44)

The set of points with purely imaginary zero component z0 = iy0 and purely real spatial com-
ponents zi = xi, i = 1, . . . , d, forms the Euclidean sphere of the complex de Sitter manifold:

Sd = {z = (iy0, x1, . . . , xd) ∈ C1+d : y02
+ x12

+ . . . + xd2
= R2 = 1}. (45)

Now, we come to de Sitter QFT. While it is impossible to formulate a true spectral
condition, we may retain its most characteristic consequence: in the case of two-point
functions, we may assume [10] there holds the following.

Assumption 1 (Normal analyticity property). W(x1, x2) is the boundary value of a function
W(z1, z2) holomorphic in the tube T12 = T− × T+,

W(x1, x2) = 〈Ψ0, φ̂(x2)φ̂(x1)Ψ0〉 = b.v.
T−3 z1→x1
T+3 z2→x2

W(z1, z2) (46)

where T− and T+ are the de Sitter past and future tubes (see Figure 1).

Of course, the physical interpretation of this property cannot be the positivity of
the energy spectrum of the states. It turns out that the correct physical interpretation is
thermodynamical [10–12].

The tubes T± are invariant under the action of the real de Sitter group. By acting with
the complex group, a much larger analyticity domain appears, as before. The following
theorem [10] is mutatis mutandis identical to Theorem 2 [10].
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Theorem 3 (Maximal analyticity property). 1. The two-point function W(z1, z2) depends
only on the Lorentz-invariant variable ζ = z1 · z2.

2. W(z1, z2) can be continued to a function W(z1, z2) analytic in the cut domain

∆ = {(z1, z2); ζ 6= ρ, ρ ≤ −1} (47)

that contains all pairs of complex events minus the causal cut (42).
3. W(z1, z2) is invariant under the action of the complex de Sitter group.
4. The permuted two-point function is the boundary value of W(z1, z2) from the opposite tube

T21 = T+ × T−:

W(x2, x1) = 〈Ψ0, φ̂(x2)φ̂(x1)Ψ0〉 = b.v.
T+3 z1→x1
T−3 z2→x2

W(z1, z2). (48)

5. The cut domain ∆ contains all the non-coinciding Euclidean points

Ė = {z1, z2 ∈ ∆, z1 ∈ Sd, z2 ∈ Sd, z1 6= z2}. (49)

The Schwinger function S is the restriction of W(z1, z2) to the non-coincident Euclidean
points Ė . S is analytic in Ė and can be extended as a distribution to the whole Euclidean space
E , including the coinciding points.

Figure 1. Sections of the forward and the backward tubes in the complex dS manifold. The arrows
are the imaginary parts y of the vectors z = x + iy, represented as attached at the endpoint of their
real parts x, which belong to the hyperboloid whose radius is −R2 + y2. Here is represented the
section at a given fixed positive value of y2. Recall that x · y = 0.

5.1. Klein–Gordon Fields and Plane Waves

Now we want to construct dS Klein–Gordon quantum fields starting from two-point
functions (as in Equation (12)) that are normal analytic in the sense of Assumption 1. Fol-
lowing the paradigm of flat space, we should look for wave solutions of the Klein–Gordon
equation analytic in the past, and respectively, in the future tube, and write a two-point
function similar to Equation (32). When solving the Klein–Gordon equation, the normal
strategy is to separate the variables; however, this would not be a good idea if the normal
analyticity property has to appear manifestly, as in Equation (32).

One possibility comes from the study of geodesics [13]: a de Sitter timelike geodesic
may be parametrised by the choice of two lightlike vectors belonging to the future light
cone C+ of the ambient Minkowski spacetime (see Figure 2), as follows:

xµ(τ) =
R√

2ξ · η (ξ
µe

τ
R − ηµe−

τ
R ). (50)

The two null vectors parametrising the geodesics point towards its asymptotic directions.
In fact, the conformal compactification of the Sitter manifold has a boundary at timelike
infinity, and the light cone of the ambient spacetime is, in a precise sense, equivalent to
it [14].
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Figure 2. Timelike geodesics can be parametrised by the choice of two null vectors in the ambient
space; they have the physical interpretation of asymptotic momentum directions.

A natural basis of the solutions of the de Sitter Klein–Gordon equation

�dSψ(z) + m2ψ(z) = 0 (51)

can thus be parametrised by the choice of a lightlike vector ξ ∈ C+ and a complex number
λ, as follows:

ψλ(z, ξ) = (z · ξ)λ = eλ log(z·ξ). (52)

In this definition, the scalar product is in the sense of the ambient spacetime. The functions (52)
are plane waves, as their phase is constant on the planes z · ξ = const. As required, they are
well defined and analytic in each of the tubes T + and T − [10].

It is useful to introduce a new complex parameter ν with the following definition:

λ = −d− 1
2

+ iν. (53)

The parameters λ and ν are related to the complex mass squared and the complex dimension
as follows:

m2 = −λ(λ + d− 1) =
(d− 1)2

4
+ ν2. (54)

Of course, m2 is real and positive only under the following conditions:

1. ν is real. This corresponds, in a group-theoretical language, to the principal series of
unitary representations of the Lorentz group;

2. ν is purely imaginary and |ν| < d−1
2 . This corresponds to the complementary series of

unitary representations of the Lorentz group.

But, in the de Sitter Universe, there is also room for negative mass squared at certain
discrete values [15,16].

5.2. Construction of the Two-Point Function

We can now mimic Equation (32) and consider the two-point function:
∫

γ
(ξ · z1)

− d−1
2 −iν(ξ · z2)

− d−1
2 +iν dµγ, z1 ∈ T−, z2 ∈ T+ (55)

where

dµγ(ξ) = α(ξ)|γ = (ξ0)−1
d

∑
j=1

(−1)j+1ξ j dξ1 . . . d̂ξ j . . . dξd|γ . (56)
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γ denotes any (d− 1)-dimensional integration cycle in C+. To fix the ideas, we can integrate
over the spherical basis Sd−1 of the cone C+ equipped with its canonical orientation:

γ0 = Sd−1 = C+ ∩ {ξ : ξ0 = 1} = {ξ ∈ C+ : ξ12
+ . . . + ξd2

= 1}. (57)

In this case, α(ξ)|γ coincides with the rotation-invariant measure dµγ0 on Sd−1, normalised
as follows:

ωd =
∫

γ0

dµγ0 =
2π

d
2

Γ
(

d
2

) . (58)

The following is self-evident.

Property 1. The two-point function (55) solves by construction the Klein–Gordon equation by
construction in each variable and is manifestly holomorphic in T− × T+.

Since the integrand is a homogeneous function of ξ of degree (1− d), the integral (55)
is actually the integral of a closed differential form and, as such, does not depend on the
integration cycle. This immediately implies the following property.

Property 2. The two-point function (55) is de Sitter-invariant and depends only on the invariant
ζ = z1 · z2.

To compute it explicitly, we may, therefore, choose the two arbitrary points z1 in T −
and z2 in T + in the way that most pleases us. Interestingly, different choices produce
different integral representations of the same function. A useful choice is

z1 = (−i, 0, . . . , 0, 0), z2(s) = (sinh(is), 0, . . . , 0, cosh(is)), ξ = (1,~n sin θ, cos θ),

so that
ζ = z1 · z2(s) = sin(s), (ζ2 − 1)

1
2 = i cos s. (59)

The condition z2 in T + means 0 < s < π. We obtain [17], Equation (7), p. 156
∫

Sd−1

(ξ · z1)
− d−1

2 −iν(ξ · z2)
− d−1

2 +iν dξ =

= ωd−1

∫ π

0
e−

iπ
2 (− d−1

2 −iν)(i sin s− cos s cos θ)−
d−1

2 +iν sind−2 θdθ

= (2π)
d
2 e−πν(ζ2 − 1)−

d−2
4 P−

d−2
2

− 1
2+iν

(ζ). (60)

Imposing the normalisation of the CCRs gives the plane-wave expansion of the two-point
function, valid for any complex value of ν that is not a pole of Γ

(
d−1

2 + iν
)

Γ
(

d−1
2 − iν

)
.

Main formula: The canonically normalised (so-called Bunch–Davis) Wightman function
of a Klein–Gordon de Sitter scalar field has the following expressions:

Wν(z1, z2) = wν(z1 · z2)

=
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)
eπν

2d+1πd

∫

γ
(ξ · z1)

− d−1
2 −iν(ξ · z2)

− d−1
2 +iν α(ξ) (61)

=
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)

2(2π)d/2 (ζ2 − 1)−
d−2

4 P−
d−2

2
− 1

2+iν
(ζ). (62)
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Equation (61) is only valid in the normal domain of analyticity, with z1 in T − and z2 in T +.
On the other hand, the right-hand side of Equation (62) is maximally analytic, that is, entire
in the cut plane ∆.

The discontinuity of the Wightman function on the cut provides the commutator. The
retarded propagator function is obtained by (carefully) multiplying the commutator with
the relevant step function:

Cν(x1, x2) =Wν(x1, x2)−Wν(x2, x1), (63)

Rν(x1, x2) = iθ(x2, x1)Cν(x1, x2). (64)

To compute the retarded propagator, let us choose x2 in the future cone of the origin:

x0 = (0, 0, . . . , 0, 1) x2(t) = (sinh t, 0, . . . , 0 cosh t), t > 0, ζ = − cosh t.

The retarded discontinuity (x2 > x1) is, therefore,

rν(u) =
i Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)

2(2π)d/2 (u2 − 1)−
d−2

4

(
P−

d−2
2

− 1
2+iν

(ζ − iε)− P−
d−2

2
− 1

2+iν
(ζ + iε)

)

= cosh(πν)
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)

(2π)d/2 (ζ2 − 1)−
d−2

4 P−
d−2

2
− 1

2+iν
(−ζ).

(65)

The Schwinger function is the restriction of the maximally analytic two-point function
to the Euclidean sphere. Given any two points of the Euclidean sphere, their invariant
product may be parametrised as follows: z1 · z2 = − cos(s). The choice of sign is because
at coincident points, z2 = −1. Thus,

Gν(− cos s) =
Γ( d−1

2 + iν)Γ( d−1
2 − iν)

2(2π)d/2 (sin s)−
d−2

2 e
iπ
2 (d−2)P−

d−2
2

− 1
2+iν

(− cos s). (66)

At this point, we are fully equipped to begin studying perturbative quantum field theory
on the de Sitter Universe. Of course, we do not do it here, but we want to discuss one
remarkable success of the above formalism.

5.3. Linearisation and the Källén–Lehmann Representation

In Minkowski space, any scalar two-point function W(z1, z2) satisfying the properties
described in Section 4 admits a Källén–Lehmann representation of the form

W(z1, z2) =
∫ ∞

0
ρ(m2)Wm(z1, z2) dm2 (67)

where Wm(z1, z2) is given in Equation (32) and the weight ρ(m2) is a positive measure of
tempered growth. In particular, given two masses m1 and m2, computing the weight for
the bubble

Wm1(z1, z2)Wm2(z1, z2) =
∫ ∞

(m1+m2)2
ρ(m2 : m1, m2)Wm(z1, z2)dm2 (68)

is an easy exercise of Fourier transformation.
The corresponding de Sitter case is much more difficult. To obtain the Källén–Lehmann

weight of the corresponding integral

Wλ(z1, z2)Wν(z1, z2) =
∫ ∞

−∞
ρ(λ, ν, κ)Wκ(z1, z2)κdκ, (69)
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one should compute the Mehler–Fock transform of Wλ(ζ)Wν(ζ). This amounts to the
following integral:

hd(λ, ν, κ) =
∫ ∞

1
P−

d−2
2

− 1
2+iλ

(u)P−
d−2

2
− 1

2+iν
(u)P−

d−2
2

− 1
2+iκ

(u) (u2 − 1)−
d−2

4 du (70)

and the Källén–Lehmann weight is

ρ(λ, ν, κ) =
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)
Γ
(

d−1
2 + iλ

)
Γ
(

d−1
2 − iλ

)
sinh(πκ) hd(λ, ν, κ)

2(2π)1+ d
2

. (71)

The evaluation of hd(λ, ν, κ) is very far from obvious. In the particular case where the
two masses are equal, hd(λ, λ, κ) may be evaluated by Mellin transform techniques, used
for the first time in the de Sitter context in [18,19]. The same idea of using Mellin techniques
was used a few years later to compute the Källén–Lehmann weight in the case of two equal
masses [20] in AdS QFT3.

The general case of two independent masses cannot be dealt with by Mellin trans-
formation techniques, and something more similar to the Fourier transform of flat space
is needed. It is precisely at this point that the plane-wave representation (61) makes a
substantial difference.

An especially important Fourier-type representation is obtained by evaluating (61) at
the purely imaginary events in the tubes [22]: z = −iy ∈ T − and z = +iy′ ∈ T +. y and y′

can be visualised as points belonging to a Lobachevsky space, modelled as the upper sheet
of a two-sheeted hyperboloid:

Hd = {y ∈M1,d : y2 = y · y = R2, y0 > 0}. (72)

It follows that

wν(−iy, iy′) =
Γ( d−1

2 + iν)Γ( d−1
2 − iν)

2d+1πd

∫

γ
(y · ξ)− d−1

2 +iν(ξ · y′
)− d−1

2 −iνdµγ(ξ)

=
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)

2(2π)
d
2

((
y · y′

)2 − 1
)− d−2

4 P−
d−2

2
− 1

2+iν

(
y · y′

)
. (73)

By choosing, in particular, γ = γ0 and y′ = (1, 0, . . . , 0) so that y · y′ = y0 = u ≥ 1, we then
obtain the following integral representation:

(
u2 − 1

)− d−2
4 P−

d−2
2

− 1
2+iν

(u) =
1

(2π)
d
2

∫

γ0

(y · ξ)− d−1
2 −iνdµγ0 . (74)

This formula is of crucial importance for computing hd(λ, ν, κ): it allows us to rewrite
the one-dimensional integral (70) as the following multiple integrals over the manifold
Hd × Sd−1 × Sd−1 × Sd−1:

hd(λ, ν, κ) =

(2π)−
3d
2

ωd−1

∫

γ0

∫

γ0

∫

γ0

∫

Hd

(y · ξ1)
− d−1

2 −iλ(y · ξ2)
− d−1

2 −iν(y · ξ3)
− d−1

2 −iκdy dµγ0 dµγ0 dµγ0

(75)

where dy is the Lorentz-invariant measure on Hd. The above integral may be computed,
and the final result is [22]
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ρ(λ, ν, κ) =
1

2dπ
d−1

2 κΓ
(

d−1
2

)
∏ε,ε′ ,ε′′=±1 Γ

(
d−1

4 + iελ+iε′ν+iε′′κ
2

)

∏ε=±1 Γ
(

iεκ
2

)
Γ
(

1
2 + iεκ

2

)
Γ
(

d−1
4 + iεκ

2

)
Γ
(

d+1
4 + iεκ

2

) .

(76)

The application of this formula and its AdS twin to loop calculations are discussed in [23,24].

6. Anti-de Sitter

The anti-de Sitter spacetime can also be visualised as a hypersurface embedded in an
ambient flat space, which is Rd+1 with two timelike directions and metric mostly minus,
as follows:

AdSd = {x ∈ Rd+1 : x2 = x · x = R2}, (77)

x · y = x0y0 − x1y1 − . . .− xd−1yd−1 + xdyd. (78)

The AdS manifold has a boundary at spacelike infinity and, therefore, is not globally
hyperbolic. This feature gives AdS QFT a little extra complication with respect to the
standard globally hyperbolic case.

We also have to consider the complexification of the AdS manifold, which is defined
as before by an embedding:

AdS(c)
d = {z = x + iy ∈ Cd+1 : z2 = R2}. (79)

While AdS(c)
d is simply connected, the real manifold AdSd is not and admits a nontrivial

universal covering space ÃdSd. Here, we focus mainly on the uncovered manifold AdSd.
The symmetry group of the anti-de Sitter spacetime is the pseudo-orthogonal group of

the ambient space SO(2, d− 1). This group may also be regarded as the conformal group
of transformations of the boundary, represented as the null cone of the ambient space

Cd = {ξ ∈ Rd+1 : ξ2 = ξ · ξ = 0}. (80)

This simple geometrical fact lies at the basis of the AdS/CFT correspondence. The null
cone of the ambient space also plays the role of giving a causal order to the AdS spacetime,
which is, however, only local due to the existence of closed timelike curves. Two events are
spacelike separated if

(x1 − x2)
2 = 2− 2x1 · x2 < 0. (81)

The covering manifold is globally causal but remains non-globally hyperbolic (see Figures 3 and 4).
It is possible to identify in the complex manifold AdS(c)

d an analogue of the Euclidean

subspace of the complex Minkowski spacetime: it is the real submanifold Hd of AdS(c)
d

defined by

Hd = {z ∈ Cd+1 : z · z = R2, z(y) = (y0, . . . , yd−1, iyd), yµ ∈ R, y0 > 0}. (82)

This is indeed the same Lobachevsky space we met before in (72) at the end of the de
Sitter tubes, but it has, of course, a different interpretation in the AdS context, and, more
importantly, AdS correlation functions have singularities at coincident Euclidean points of
Hd, while dS correlation functions do not.
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Figure 3. The AdS manifold and the null cone of the ambient space, which models its boundary at
spacelike infinity.

Figure 4. The null cone of the ambient space induces a causal order on the AdS manifold, which is
only local.

6.1. The Analytic Structure of Two-Point Functions

The status of AdS QFT is more similar to that of Minkowski space, and it is possible
to formulate a true spectral condition. This question was studied in full generality in [25].
A simplified account can be found in [26]. The point is that the parameter of the group
of rotations in the (0, d)−plane may be interpreted as a global time variable: the AdS
spectral condition is thus formulated by requiring that the corresponding generator M0d be
represented in the Hilbert space of the theory by a self-adjoint operator whose spectrum is
positive. As in flat space, this requirement is equivalent to the precise analyticity properties
of the n-point functions [25].
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In particular, there are two distinguished complex domains of AdS(c)
d , invariant under

real AdS transformations [25,26], defined as follows (see Figure 5)

Z+ = {z = x + iy ∈ AdS(c)
d ; y2 > 0, ε(z) = +1}, (83)

Z− = {z = x + iy ∈ AdS(c)
d ; y2 > 0, ε(z) = −1}, (84)

where
ε(z) = sign(y0xd − x0yd). (85)

The tubes Z+ and Z− have a definite chirality and wrap the real AdS manifold in opposite
directions. The spaces Z+, Z−, and AdSd have the same homotopy type. Their universal
coverings are denoted as Z̃+ and Z̃−.

The AdS spectral condition implies that a general two-point function satisfies the
following property [25].

Normal analyticity property: W(x1, x2) is the boundary value of a function W(z1, z2) holomor-
phic in the domain Z− ×Z+

W(x1, x2) = 〈Ψ0, φ̂(x1)φ̂(x2)Ψ0〉 = b.v.
Z−3 z1→x1
Z+3 z2→x2

W(z1, z2). (86)

Figure 5. Sections of the backward and forward tubes in the complex AdS manifold. The tubes
wrap the real manifold in opposite directions. The arrows are the imaginary parts y of the vectors
z = x + iy parts attached at the end of the real parts x, which varies on the hyperboloid whose radius
is R2 + y2. Here is represented the section at a fixed positive value of y2. Recall that x · y = 0.

AdS invariance and normal analyticity imply the following.

Theorem 4 (Maximal analyticity property). 1. The two-point function W(z1, z2) depends
only on the AdS-invariant variable ζ = z1 · z2.

2. W(z1, z2) can be continued to a function W(z1, z2) analytic in the cut domain

∆1 = {C \ [−1, 1]}. (87)

3. W(z1, z2) is invariant under the action of the complex de Sitter group.
4. The permuted two-point function is the boundary value of W(z1, z2) from the opposite tube

Z21 = Z+ ×Z−.
5. The cut domain ∆1 contains all the non-coinciding Euclidean points

Ė = {z1, z2 ∈ ∆, z1 ∈ Sd, z2 ∈ Hd, z1 6= z2}. (88)

The Schwinger function S is the restriction of W(z1, z2) to the non-coincident Euclidean
points Ė . S is analytic in Ė and can be extended as a distribution to the whole Euclidean space
E , including the coinciding points.
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Regarding the global hyperbolicity issue, the maximal analytic structure completely
determines the two-point functions for Klein–Gordon fields and, consequently, selects the
boundary behaviour of the modes.

6.2. Klein–Gordon Fields and Plane Waves

Klein–Gordon fields display the simplest example of the previous analytic structure.
For a given mass m, the two-point functionW(x1, x2) must satisfy the equation

(�xi + m2)W(x1, x2) = 0, i = 1, 2, (89)

with respect to both variables, where �xi is the Laplace–Beltrami operator relative to the
AdS metric. The two-point functions are labelled by the (complex) dimension d and a
(complex) parameter ν as follows:

Wd
ν (z1, z2) = wd

ν(ζ) =
1

(2π)
d
2
(ζ2 − 1)−

d−2
4 e−iπ d−2

2 Q
d−2

2
− 1

2+ν
(ζ) = (90)

=
Γ
(

d−1
2 + ν

)

2π
d−1

2 (2ζ)
d−1

2 +νΓ(ν + 1)
2F1

(
d− 1

4
+

ν

2
,

d + 1
4

+
ν

2
; ν + 1;

1
ζ2

)
(91)

where the various parameters are related as follows:

m2 = ν2 − (d− 1)2

4
. (92)

There are two possible cases:

1. For ν > 1, the spectrum condition uniquely selects one field theory for each given
value of mass parameter ν;

2. For |ν| < 1, there are two acceptable theories for each given mass.

The difference between the two theories lies in their large distance behaviour. More
precisely, in view of [17], Equation (3.3.1.4), one has

wd
−ν(ζ) = wd

ν(ζ) +
sin πν Γ

(
d−1

2 − ν
)

Γ
(

d−1
2 + ν

)

(2π)
d
2

(ζ2 − 1)−
d−2

4 P−
d−2

2
− 1

2−ν
(ζ). (93)

The last term in this relation is regular on the cut ζ ∈ [−1, 1] and, therefore, does not
contribute to the commutator. By consequence, the two theories represent the same algebra
of local observables at short distances. But since the second term at the right-hand side
grows faster as |ν| increases (see [17], Equation (3.9.2)), the two theories have drastically
different long-range behaviours.

Let us now proceed to the harmonic analysis in plane waves for the AdS correlation
functions. Here, to keep the discussion as simple as possible, we limit ourselves to the
two-dimensional uncovered anti-de Sitter spacetime AdS2 [27]. A full analysis will be
presented elsewhere.

As for the de Sitter case, the wave solutions of the anti-de Sitter Klein–Gordon equation
may also be parameterised by the choice of a null vector ξ ∈ C2 and a complex number λ,
as follows:

ψλ(z, ξ) = (z · ξ)λ = eλ log(z·ξ). (94)

Since we are considering the uncovered manifold, the parameter λ must be an integer:

λ = `. (95)
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Now, we observe that while Equation (50) maintains its validity in the present context,
for real ξ, η belonging to the null cone C2, it describes spacelike geodesics. Timelike
geodesics would correspond to vectors ξ belonging to the complex cone

C(c)
2 = {ξ ∈ C3 : ξ2 = ξ · ξ = 0}. (96)

This suggests that the harmonic analysis of the AdS correlation function should also be
made in terms of waves parametrised by null complex vectors ξ.

The complex cone C(c)
2 admits the partition C(c)

2 = C2 ∪ C2+ ∪ C2−, where

C2+ = {ξ ∈ C(c); ε(ξ) = +}, (97)

C2− = {ξ ∈ C(c); ε(ξ) = −}; (98)

and as before,
ε(z) = sign[(Im ξ0)(Re ξ2)− (Re ξ2)(Im ξ2)]. (99)

The bases for the cones C2+ and C2− are

(γ
(c)
0 )+ = {ξ = ξ(Φ) = (sin Φ, 1, cos Φ); Φ = φ + iη, η > 0}, (100)

(γ
(c)
0 )− = {ξ = ξ(Φ) = (sin Φ, 1, cos Φ); Φ = φ + iη, η < 0}. (101)

Let us now consider the integral
∫

γ(z1)
[z1 · ξ]` [ξ · z2]

−`−1dµγ(c)(ξ), z1 inZ−, z2 inZ+. (102)

For each z1 in Z−, γ(z1) is a relative cycle in H1(C(c)
2 , {ξ; [z · ξ] = 0}) with support

contained in C2− and end points belonging, respectively, to the two linear generatrices of
the cone C(c)

2 defined by [z1 · ξ] = 0. Being the integral of a closed differential form, (102)
does not depend on the choice of γ(z1) inside its homology class.

There is no loss of generality in defining the integration cycle γ(z1) only for points of
the form

z1 = zv = (i sinh v, 0, cosh v), v < 0. (103)

We choose the path

φ→ ξ(φ + iv) = (sin(φ + iv), 1, cos(φ + iv)), −π

2
< φ <

π

2
. (104)

The support of γ(zv) does belong to C2−, and [zv · ξ(φ+ iv)] = cos(φ) vanishes, as required,
at the boundaries of the cycle.

Since z2 ∈ Z+, the factor [ξ · z2]
−`−1 never becomes singular on the integration cycle

γ(zv). This may be seen by explicitly giving coordinates to Z+ [27]. This suffices to show
the AdS invariance of the integral (102), which is, therefore, a function of the invariant
variable ζ = z1 · z2, holomorphic in the cut domain ∆1.

To actually compute (102), we choose the second point at the origin x0 = (0, 0, 1) so
that z1 · z2 = zv · x0 = cosh v. With a few self-explanatory changes of variables, we obtain
[17], Equation (2), p. 155:

∫

γ(zv)
[zv · ξ]` [ξ · x0]

−`−1dµγ(ξ) =

=
∫ π

2

− π
2

cos`φ cos−(`+1)(φ + iv) dφ =
∫ ∞

−∞
(cosh v− it sinh v)−(`+1) dt

(1 + t2)
1
2

= 2
∫ ∞

0
(cosh v + cosh u sinh v)−(`+1)du = 2Ql(cosh v). (105)
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Therefore, we can write the following plane-wave expansion of the two-point function:

W2
l+ 1

2
(z1, z2) =

1
π

∫

γ(zv)
[zv · ξ]` [ξ · x0]

−`−1dµγ(ξ). (106)

7. Conclusions and Outlook

There is a unifying feature that connects Minkowski, de Sitter, and anti-de Sitter quan-
tum field theories: the analyticity properties of the correlation functions of the quantum
fields in the relevant tubular domains of the corresponding complex manifolds [10,12,25]
These analyticity properties are, in the Minkowski and the anti-de Sitter cases, a conse-
quence of the spectral condition, i.e., a consequence of the requirement that the Hamiltonian
operator has a positive spectrum in every Lorentz frame. The reconstruction procedures
actually show that the analyticity properties are equivalent to the spectral condition [8,25].
In the de Sitter case, the analyticity of the correlation functions may be taken as a replace-
ment of the spectral condition since there exists no globally defined conserved energy
operator in the de Sitter geometry. Taking seriously the analyticity properties of correlation
functions seriously has produced valuable nontrivial results, which, at the moment, seem
to be out of reach of other methods, such as the Källén–Lehmann representations of two-
point functions [10,21,22] and the calculation of one- and two-loop Feynman diagrams for
both the de Sitter and anti-de Sitter cases. There are many opportunities opened by this
formalism and lots of things to do. This review is also an invitation to readers interested in
either dS or AdS quantum field theory to join the effort.
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Notes
1 Sphaera infinita cuius centrum est ubique, circumferentia tamen nullibi is the second definition of God that can be read in the Liber

XXIV philosophorum, an anonymous medieval treatise attributed to Hermes Trismegistus. Nicolas de Cues applied this definition
to the Universe: The world machine has, so to speak, its centre everywhere and its circumference nowhere (La Docte Ignorance,
1440). Giordano Bruno later adopted this definition in various works. Einstein’s novelty was that his sphere was not infinite but
rather finite and curved.

2 Apart from the nonlinear (and hard to verify) positivity condition of the correlation functions necessary to reconstruct a
Hilbert space.

3 At the very same time, however, a general Källén-Lehmann formula for AdS fields with two different masses was for the first
time published and available [21]. But many subsequent authors seem to have ignored it.
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Abstract: DeWitt’s suggestion that the wave function of the universe should vanish at the classical Big
Bang singularity is considered here within the framework of one-loop quantum cosmology. For pure
gravity at one loop about a flat four-dimensional background bounded by a 3-sphere, three choices
of boundary conditions are considered: vanishing of the linearized magnetic curvature when only
transverse-traceless gravitational modes are quantized; a one-parameter family of mixed boundary
conditions for gravitational and ghost modes; and diffeomorphism-invariant boundary conditions
for metric perturbations and ghost modes. A positive ζ(0) value in these cases ensures that, when
the three-sphere boundary approaches zero, the resulting one-loop wave function approaches zero.
This property may be interpreted by saying that, in the limit of small three-geometry, the resulting
one-loop wave function describes a singularity-free universe. This property holds for one-loop
functional integrals, which are not necessarily equivalent to solutions of the quantum constraint
equations.

Keywords: quantum cosmology; boundary conditions; strong ellipticity; spectral ζ-function

1. Introduction

After the birth of relativistic cosmology thanks to Friedmann’s work [1], and the
subsequent proof of the singularity theorems of Penrose, Hawking, and Geroch [2–7], it
became well-accepted by the scientific community that classical general relativity leads to
the occurrence of cosmological singularities (a spacetime being singular if it is timelike or
null geodesically incomplete) in a generic way. Since then, several developments occurred,
and in particular, we here mention what follows.

(i) At the classical level, the work of Christodoulou and Klainerman [8] led to the discov-
ery of asymptotically flat spacetimes, which are timelike geodesically complete.

(ii) At the quantum level, DeWitt [9] proposed to look at the behavior of the wave
function of the universe in correspondence with the classical Big Bang singularity.
Such a proposal was assessed in the outstanding work in Ref. [10].

(iii) Over many years, various concepts of singularity have been conceived, as can be seen
in an important review of Kamenshchik [11].

Moreover, in the literature on quantum gravity and quantum cosmology, several
approaches were developed to study the possible quantum origin of spacetime geometry.
One-loop effects in the early universe were investigated in detail, especially with the help
of ζ-function methods. It is the aim of our review to describe them and then discuss their
relevance for the singularity issue in cosmology. The structure of the paper is as follows.

Section 2 presents in detail a ζ(0) calculation when only transverse-traceless pertur-
bations are considered, with boundary conditions requiring the vanishing of linearized
magnetic curvature on the three-sphere boundary. Section 3 discusses a one-parameter fam-
ily of ζ(0) values obtained with mixed boundary conditions for metric perturbations and
ghost fields. Sections 4–7 outline the basic steps of the ζ(0) calculation with diffeomorphism-
invariant boundary conditions. Open problems are discussed in Section 8.

Universe 2023, 9, 187. https://doi.org/10.3390/universe9040187 https://www.mdpi.com/journal/universe374
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2. Linearized Magnetic Curvature Vanishing on S3

We study pure gravity at one loop about flat Euclidean four-space with a three-sphere
boundary of radius a, because when a→ 0, this is the limiting case of a four-sphere geometry
bounded by a three-sphere [12]. The prefactor of the semiclassical wave function is given by
the following (with I2 denoting the part of the action quadratic in metric perturbations)

P(a) =
∫

e−I2[γ] Dγ, (1)

which is a functional integral over all metric perturbations γab that are regular at the origin
τ = 0 and satisfy a given boundary condition at τ = a. Integration is here restricted to the
physical degrees of freedom, which are found by using the Hamiltonian formulation with
the following transverse-traceless choice of gauge condition:

∑
i
(Diγ)ij = 0, ∑

k
γk

k = 0. (2)

These relations pick out the transverse-traceless tensor hyperspherical harmonics
G(n)

ij (φk) multiplied by functions of the radial coordinate τ. Hence, we write

γij = γTT
ij =

∞

∑
n=3

qn(τ)G(n)
ij (φk). (3)

Our work in Ref. [13] studied the Breitenlohner–Freedman–Hawking [14,15] local
boundary conditions for fields of spin 0, 1

2 , 1, 3
2 , 2. For gravity, these imply that the linearized

magnetic curvature should vanish at the boundary. Our detailed analysis in Section 7.3 of
Ref. [13] never appeared in any journals, and hence it is of interest to our review article.

The action that is quadratic in metric perturbations involves a second-order elliptic
operator A with eigenvalues λn, for which one can define a spectral ζ-function

ζA(s) = TrL2 A−s = ∑
n
(λn)

−s. (4)

Eventually, as was shown by Schleich [12], the prefactor of the semiclassical wave
function of Equation (1), with γ having the form (3), can be expressed as

P(a) =
1√

det
(
−∇ f∇ f

4πl2
pµ2

) = D aζ(0), (5)

where −∇ f∇ f is the Laplacian acting on transverse-traceless metric perturbations, and
ζ(0) is the value at s = 0 of the analytic continuation of the spectral ζ-function (4) (for
further details, see now the Appendix A on the one-loop approximation). Thus, within a
functional-integral framework, the wave function of the universe may fulfill the DeWitt
boundary condition if and only if ζ(0) is positive.

The linearized magnetic curvature for gravity is defined from the Weyl tensor C and
from the normal n to the boundary according to the rule (with summation over repeated
tensor indices)

Bij ≡
1
2

ε kl
jµ Ckliνnµnν,

and it can only vanish on S3 if [13]

∞

∑
n=3

dqn

dτ
(a)ε kl

j

(
G(n)

il|k − G(n)
ik|l
)
= 0. (6)
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The only condition on the modes that ensures the validity of (6) is

dqn

dτ
(a) = 0, ∀n ≥ 3. (7)

We are now interested in evaluating ζ(0) using (7). Thus, after setting τ = t, we study
the kernel of the heat equation for the operator

Pn ≡ −
(

d2

dt2 −
1
t

d
dt
− (n2 − 1)

t2

)
, ∀n ≥ 3, (8)

which results from studying the Laplacian on transverse-traceless metric perturbations.
On denoting by E > 0 the eigenvalues of Pn, we find that its eigenfunctions regular at the
origin are (up to a multiplicative constant)

un(t) = tJn(
√

Et) = qn(t). (9)

Thus, the boundary condition (7) implies the eigenvalue condition

Jn(
√

Ea) +
√

EaJ̇n(
√

Ea) = 0, ∀n ≥ 3. (10)

This equation is of the general kind studied in Ref. [16]. Setting now a = 1 for
simplicity, we define the function

Fn(z) ≡ Jn(z) + zJ̇n(z), ∀n ≥ 3. (11)

Of course, the consideration of such Fn(z) is suggested by (10). It only has real simple
zeros apart from z = 0 (page 482 of Ref. [17]). The basic idea is now the following [16].
Given the zeta-function at large x

ζ(s, x2) ≡∑
n

(
λn + x2

)−s
, (12)

one has, in four dimensions (see Theorem 2 on page 6 of Ref. [18]),

Γ(3)ζ(3, x2) =
∫ ∞

0
t2e−x2tG(t) dt ∼

∞

∑
n=0

BnΓ
(

1 +
n
2

)
x−n−2, (13)

where we have used the asymptotic expansion of the heat kernel for t→ 0+, i.e.,

G(t) ∼
∞

∑
n=0

Bnt
n
2−2. (14)

Strictly speaking, since we have not proved general results on the existence of the
asymptotic expansion of the heat kernel, our Formula (14) could be initially regarded
as an assumption. However, existence theorems hold for the problems studied in this
paper [19,20].

On the other hand, one also has the identity

Γ(3)ζ(3, x2) = −
∞

∑
p=0

Np

(
− 1

2x
d

dx

)3
log
(
(ix)−pFp(ix)

)
, (15)

where Np is the degeneracy of the problem. Thus the comparison of (13) and (15) can yield
the coefficients Bn and in particular ζ(0) = B4, provided we carefully perform a uniform
Debye expansion of Fp(ix). It should be emphasized that this technique seems to be the
most efficient. In fact, by using this algorithm, Moss [16] was able to compute ζ(0) for a
real scalar field subject to Robin boundary conditions, whereas the technique of Kennedy
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based on charge layers on the plane tangent to S3 failed to provide such a value [21,22].
Indeed, the eigenvalue condition (10) is of the Robin type (just set β = 1 in Equation (22)
of Ref. [16]). Thus, on passing to the variable x → ix and then defining αp ≡

√
p2 + x2,

C ≡ − log(
√

2π), we can write

log
(
(ix)−pFp(ix)

)
∼ C− p log(p + αp) +

1
2

log(αp) + αp +
∞

∑
n=1

n

∑
r=0

anr p2rα−n−2r
p . (16)

The coefficients anr in (16) can be computed by comparison using the formula

∞

∑
n=1

n

∑
r=0

anrt2r =
∞

∑
m=1

am(t), (17)

because the am(t) values are known polynomials in t arising from uniform asymptotic
expansions of Bessel functions and their first derivatives. Thus, setting β = 1 in the
Formulae (29)–(31) of Ref. [16] for the am(t), we find in our case that

a10 =
5
8

, a11 =
7

24
, (18)

a20 = − 3
16

, a21 =
1
8

, a22 = − 7
16

, (19)

a30 =
17

384
, a31 =

389
640

, a32 = −203
128

, a33 =
1463
1152

, (20)

plus infinitely many other coefficients that we do not strictly need here. We can now
insert (16)–(20) into (15), apply three times the differential operator − 1

2x
d

dx , and finally use
the contour formula for positive integer values of k [16]

∞

∑
p=0

p2kα−2k−m
p =

Γ
(

k + 1
2

)
Γ
(

m
2 − 1

2

)

2Γ
(
k + m

2
) x1−m, ∀k = 1, 2, 3, . . . , (21)

and the known properties of the Γ-function [23]. Now, writing the asymptotic expansion of
the right-hand side of (15) in the form

Γ(3)ζ(3, x2) ∼
∞

∑
n=0

bnx−n−2, (22)

the comparison with (15) shows that

ζ(0) = B4 =
b4

2
= ζ I(0) + ζ I I(0), (23)

since it is well-known that the asymptotic expansion, if it exists, is unique. The two
contributions to ζ(0) are obtained from the following formulae:

Γ(3)ζ(3, x2) ∼
[
σ1 + σ2

]
∼

∞

∑
n=0

bnx−n−2, (24)

σ1 ∼ −
∞

∑
p=0

Np

(
− 1

2x
d

dx

)3[
−p log(p + αp) +

1
2

log(αp) + αp

]
, (25)

σ2 ∼ −
∞

∑
p=0

Np

(
− 1

2x
d

dx

)3 ∞

∑
n=1

n

∑
r=0

anr p2rα−n−2r
p . (26)
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Bearing in mind (15) and (16), we write (24)–(26) because we can apply Theorem 3 on
page 7 of Ref. [18], concerning the differentiation of asymptotic expansions.

Thus, ζ I(0) (respectively, ζ I I(0)) is half the coefficient of x−6 in the asymptotic expan-
sion of σ1 (respectively, σ2). We first study the asymptotic expansion of σ2, since it is easier
to perform this calculation. In our problem, the degeneracy Np is [12]

Np = 0 ∀p = 0, 1, 2, Np = 2(p2 − 4) ∀p ≥ 3. (27)

This is why we find

σ2 ∼ −
∞

∑
n=1

n

∑
r=0

anr

(
r +

n
2

)(
r +

n
2
+ 1
)(

r +
n
2
+ 2
)[

(G− H)(r, x, n)
]
, (28)

where, setting A = −8, B = 2 (cf. (27)), we have, using also (21),

G(r, x, n) =
∞

∑
p=0

(A + Bp2)p2rα−n−2r−6
p = O(x−n−6)

+
A
2

Γ
(

r + 1
2

)
Γ
( n

2 + 5
2
)

Γ
(
r + n

2
) x−5−n

(
r + n

2
)(

r + n
2 + 1

)(
r + n

2 + 2
)

+
B
2

Γ
(
r + 3

2
)
Γ
( n

2 + 3
2
)

Γ
(
r + n

2
) x−3−n

(
r + n

2
)(

r + n
2 + 1

)(
r + n

2 + 2
) , (29)

H(r, x, n) =
2

∑
p=0

2(p2 − 4)p2rα−n−2r−6
p = −6x−n−2r−6

(
1 +

1
x2

)− n
2−r−3

− 8δr0x−n−6. (30)

Thus, H(r, x, n) gives rise to terms in (28) that contain x−k with k ≥ 7, and it does not
contribute to ζ I I(0). This is why (28) and (29) lead to

ζ I I(0) =
1
2

[
− A(a10 + a11)− B(a30 + a31 + a32 + a33)

]
. (31)

The insertion of (18), (20) and (27) into (31) finally yields

ζ I I(0) =
11
3
− 121

360
=

1199
360

. (32)

The calculation of (25) is more involved. By performing the three derivatives and
using the identity 1

2x
dαp
dx = 1

2αp
, we find

(
1

2x
d

dx

)3
log
(

1
p + αp

)
= (p + αp)

−3
[
−α−3

p −
9
8

pα−4
p −

3
8

p2α−5
p

]
. (33)

This intermediate step is very important because it proves that by summing over all
integer values of p from 0 to ∞, we obtain a convergent series. However, to be able to
perform the ζ(0) calculation, it is convenient to use the identity

(p + αp)
−3 =

(αp − p)3

x6 . (34)

Upon inserting (34) into (33) and re-expressing p2 as α2
p − x2, we obtain
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(
1

2x
d

dx

)3[
− p log(p + αp)

]
= −px−6 + p2x−6α−1

p +
p2

2
x−4α−3

p +
3
8

p2x−2α−5
p

≡ M(x, αp, p), (35)

which implies

σ1 ∼
[

∞

∑
p=0

Np M(x, αp, p)

]
+ σ′′1 ∼

[
σ′1 + σ′′1

]
, (36)

where

σ′′1 = −
∞

∑
p=0

Np

(
−

α−6
p

2
− 3

8
α−5

p

)

=
∞

∑
p=0

(A + Bp2)

(
α−6

p

2
+

3
8

α−5
p

)

+
2

∑
p=0

(A + Bp2)

(
−

α−6
p

2
− 3

8
α−5

p

)
. (37)

The infinite sum on the right-hand side of (37) contributes to ζ(0) only through the
following part:

∞

∑
p=0

A
2

α−6
p =

A
2

[
x−6

2
+

π

2
3!!
4!!

x−5
]

. (38)

The result (38) is proved by applying the Euler–Maclaurin formula [18] to the calcula-
tion of ∑∞

p=0(p2 + x2)−3, and then using the Formula (3.249.1) on page 294 of Ref. [24]. In
addition, the finite sum on the right-hand side of (37) contributes to ζ(0). In fact, one finds
(we have x → ∞) that

2

∑
p=0

(A + Bp2)

(
−

α−6
p

2
− 3

8
α−5

p

)
= −

(
A
2
+

B
2

)
x−6

[
1− 3

x2 +
6
x4 + ...

]

− A
2

x−6 − 3
8

Ax−5

− 3
8
(A + B)x−5

[
1− 5

2x2 +
35
8x4 + ...

]
, (39)

which implies that the total contribution of σ′′1 to ζ(0) is given by

ζ Ib(0) =
1
2

(
−A− B

2

)
+

A
8

=
7
2
− 1 =

5
2

. (40)

Thus, we have so far

ζ(0) = ζ I(0) + ζ I I(0) = ζ Ia(0) + ζ Ib(0) + ζ I I(0), (41)

where
ζ Ib(0) + ζ I I(0) =

5
2
+

1199
360

. (42)

It now remains to compute ζ Ia(0), i.e., the contribution to ζ(0) due to σ′1 in (36). Indeed,
one has

σ′1 ∼
[

A
∞

∑
p=0

M(x, αp, p) + B
∞

∑
p=0

p2M(x, αp, p)−
2

∑
p=0

(A + Bp2)M(x, αp, p)

]
. (43)

379



Universe 2023, 9, 187

Let us now denote by Σ(a), Σ(b) and Σ(c) the three sums on the right-hand side of (43).
Both Σ(a) and Σ(b) contain divergent parts in view of (35). These fictitious divergences may
be regularized by dividing by α2s

p and then taking the limit as s tends to zero, as shown in
Ref. [16]. It might not appear a priori obvious that this technique leads to unambiguous
results, since the limit s → 0 is a delicate mathematical point. However, a fundamental
consistency check is presented in Section 7.4 of Ref. [13] for all one-loop calculations
involving only physical degrees of freedom of bosonic fields, showing that the method is
correct. In performing the calculation, we must use the contour Formula (21) and also the
following asymptotic expansion [16]:

∞

∑
p=0

pα−1−n
p ∼ x1−n

√
π

∞

∑
r=0

2r

r!
B̃rx−r

Γ
(

r
2 + 1

2

)
Γ
(

n
2 − 1

2 + r
2

)

2Γ
(

1
2 + n

2

) cos
( rπ

2

)
, (44)

where B̃0 = 1, B̃1 = − 1
2 , B̃2 = 1

6 , B̃4 = − 1
30 etc., are Bernoulli numbers. Thus, using the

label R for the regularized quantities, we define

Σ(a)
R ≡ A

[
− x−6

(
lim
s→0

∞

∑
p=0

pα
−1−(2s−1)
p

)
+ x−6

(
lim
s→0

∞

∑
p=0

p2α
−2−(2s−1)
p

)

+
x−4

2

(
lim
s→0

∞

∑
p=0

p2α
−2−(2s+1)
p

)
+

3
8

x−2

(
lim
s→0

∞

∑
p=0

p2α
−2−(2s+3)
p

)]
. (45)

In view of (44), the first limit in (45) gives the following contribution to ζ(0):

δ1 = −A
2

(
− B̃2√

π
Γ
(

3
2

))
=

A
24

= −1
3

, (46)

whereas the other limits in (45) do not contribute to ζ(0) in view of (21), because one only
obtains terms proportional to x−4.

Moreover, bearing in mind the identity

∞

∑
p=0

p3α−2s
p =

∞

∑
p=0

pα
−1−(2s−3)
p − x2

∞

∑
p=0

pα
−1−(2s−1)
p , (47)

we also define

Σ(b)
R ≡ B

[
− x−6

(
lim
s→0

∞

∑
p=0

p3α−2s
p

)
+ x−6

(
lim
s→0

∞

∑
p=0

p4α
−4−(2s−3)
p

)

+
x−4

2

(
lim
s→0

∞

∑
p=0

p4α
−4−(2s−1)
p

)
+

3
8

x−2

(
lim
s→0

∞

∑
p=0

p4α
−4−(2s+1)
p

)]
. (48)

In view of (44) and (47), the first limit in (48) gives the following contribution to ζ(0):

δ2 = −B
2

(
− B̃4

4

)
= − B

240
= − 1

120
. (49)

Note that the second sum in (47) does not contribute to δ2 because its only constant
term contains Γ(s+1)

Γ(s) , which tends to 0 as s→ 0. The other limits in (48) do not contribute

to ζ(0) in view of (21), because they only yield terms proportional to x−2.
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Last, the sum Σ(c) in (43) has the following asymptotic behavior as x → ∞:

Σ(c) ∼
[
(3A + 9B)x−6 +

∞

∑
k=0

(ACk + BDk)x−7−k

]
, (50)

which yields the following contribution to ζ(0):

δ3 =
(3A + 9B)

2
= −3. (51)

To sum up, we find

ζ Ia(0) = δ1 + δ2 + δ3 = −1
3
− 1

120
− 3, (52)

Therefore, the full ζ(0) for physical degrees of freedom is given by (cf. (41) and (42))

ζ(0) = ζ Ia(0) +
5
2
+

1199
360

=
112
45

. (53)

3. First Example of Mixed Boundary Conditions on the Whole Set of Metric
Perturbations and Ghost Modes

The previous example is very instructive, but of course it would be desirable to
compute the effect of boundary conditions on the whole set of metric perturbations and
Feynman–DeWitt–Faddeev–Popov ghost fields [25–27]. For this purpose, the work in
Ref. [28] studied the following one-parameter family of mixed boundary conditions (with
λ being a freely specifiable real parameter):

[
∂hij

∂τ
+

λ

τ
hij
]

∂M
= 0, (54)

[
h0i

]
∂M

= 0, (55)

[
h00

]
∂M

= 0, (56)

[
∂ϕi
∂τ

+
λ

τ
ϕi

]

∂M
= 0, (57)

[
∂ϕ0

∂τ
+

(λ + 1)
τ

ϕ0

]

∂M
= 0. (58)

With our notation, τ lies in the closed interval [0, a]; hij, h0i, h00 are the components of
metric perturbations; and ϕi and ϕ0 are covariant components of the ghost field of quantum
gravity. One therefore deals with transverse-traceless modes, scalar modes, vector modes,
decoupled scalar modes, decoupled vector modes, scalar ghost modes, vector ghost modes,
and decoupled ghost modes.

A one-parameter family of full ζ(0) values is therefore obtained [28]:

ζλ(0) =
89
90

+
λ

3
(λ2 − 9λ− 3). (59)

The λ-dependent part of (59) is always positive, either for all

λ >
9 +
√

93
2

, (60)
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or for all

λ ∈
]

9−
√

93
2

, 0

[
. (61)

Equations (60) and (61) are sufficient conditions for the positivity of the full ζλ(0), and
other suitable values of λ can be computed numerically.

This model is more complete than the one in Section 2, since it deals with all perturba-
tive modes in the one-loop functional integral. However, it still suffers from a non-trivial
drawback: the whole set of boundary conditions (54)–(58) is not completely invariant under
infinitesimal diffeomorphisms on metric perturbations. For this reason, we resort to the
boundary conditions of Section 4.

4. Completely Diff-Invariant Boundary Conditions

The boundary conditions that we study are part of a unified scheme for Maxwell,
Yang–Mills, and Quantized General Relativity at one loop, i.e., [29,30]

[
πA

]
B
= 0, (62)

[
Φ(A)

]
B
= 0, (63)

[ϕ]B = 0. (64)

With our notation, π is a projector acting on the gauge field A, Φ is the gauge-fixing
functional, and ϕ is the full set of ghost fields. Both Equations (62) and (63) are preserved
under infinitesimal gauge transformations provided that the ghost obeys homogeneous
Dirichlet conditions as in (64). For gravity, we choose Φ so as to have an operator P of
Laplace type on metric perturbations in the one-loop Euclidean theory.

5. Eigenvalue Conditions for Scalar Modes

On the Euclidean four-ball, we expand metric perturbations hµν in terms of scalar,
transverse vector, and transverse-traceless tensor harmonics on S3. For the vector, tensor,
and ghost modes, boundary conditions reduce to Dirichlet or Robin. For scalar modes, one
finds eventually the eigenvalues E = x2 from the roots x of [31,32]

J′n(x)± n
x

Jn(x) = 0, (65)

J′n(x) +
(
− x

2
± n

x

)
Jn(x) = 0. (66)

Note that both x and −x solve the same equation.

6. Four Spectral ζ-Functions for Scalar Modes

From Equations (65) and (66), we obtain the following integral representations of the
resulting ζ-functions upon exploiting the Cauchy theorem and rotation of contour:

ζ±A,B(s) ≡
(sin πs)

π

∞

∑
n=3

n−(2s−2)
∫ ∞

0
dz z−2s ∂

∂z
log F±A,B(zn), (67)

where (here β+ ≡ n, β− ≡ n + 2)

F±A (zn) ≡ z−β±
(

znI′n(zn)± nIn(zn)
)

, (68)

F±B (zn) ≡ z−β±
(

znI′n(zn) +
(
(zn)2

2
± n

)
In(zn)

)
, (69)
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with In being the modified Bessel functions of the first kind. Regularity at the origin is
easily proved in the elliptic sectors, corresponding to ζ±A(s) and ζ−B (s).

7. Regularity of ζ+B at s = 0

We now define T ≡ (1 + z2)−1/2 and consider the uniform asymptotic expansion
(away from T = 1)

zβ+ F+
B (zn) ∼ enη(T)

h(n)
√

T
(1− T2)

T

(
1 +

∞

∑
j=1

rj,+(T)
nj

)
, (70)

the functions rj,+ being obtained from the Olver polynomials for the uniform asymptotic

expansion of In and I′n. On splitting
∫ 1

0 dT =
∫ µ

0 dT +
∫ 1

µ dT with small µ, we obtain an
asymptotic expansion of the l.h.s. by writing, in the first interval on the r.h.s.,

log

(
1 +

∞

∑
j=1

rj,+(T)
nj

)
∼

∞

∑
j=1

Rj,+(T)
nj , (71)

and then computing

Cj(τ) ≡
∂Rj,+

∂T
= (1− T)−j−1

4j

∑
a=j−1

K(j)
a Ta. (72)

The integral
∫ 1

µ dT is instead found to yield a vanishing contribution in the µ → 1
limit. Remarkably, by virtue of the spectral identity

g(j) ≡
4j

∑
a=j

Γ(a + 1)
Γ(a− j + 1)

K(j)
a = 0, (73)

which holds ∀j = 1, . . . , ∞, we find

lim
s→0

sζ+B (s) =
1
6

12

∑
a=3

a(a− 1)(a− 2)K(3)
a = 0, (74)

and

ζ+B (0) =
5
4
+

1079
240
− 1

2

12

∑
a=2

ω(a)K(3)
a +

∞

∑
j=1

f (j)g(j) =
296
45

, (75)

where

ω(a) ≡ 1
6

Γ(a + 1)
Γ(a− 2)

[
− log(2)− (6a2 − 9a + 1)

4
Γ(a− 2)
Γ(a + 1)

+ 2ψ(a + 1)− ψ(a− 2)− ψ(4)
]

, (76)

f (j) ≡ (−1)j

j!

[
− 1− 22−j + ζR(j− 2)(1− δj,3) + γδj,3

]
. (77)

The spectral cancellation (73) achieves three goals: (i) vanishing of the log 2 coefficient
in Equation (75); (ii) vanishing of ∑∞

j=1 f (j)g(j) in Equation (75); and (iii) regularity at the
origin of ζ+B .
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To cross-check our analysis, we evaluate rj,+(T)− rj,−(T) and hence obtain Rj,+(T)−
Rj,−(T) for all j. Only j = 3 contributes to ζ±B (0), and we find

ζ+B (0) = ζ−B (0)−
1

24

4

∑
l=1

Γ(l + 1)
Γ(l − 2)

[
ψ(l + 2)− 1

(l + 1)

]
κ
(3)
2l+1

=
206
45

+ 2 =
296
45

, (78)

in agreement with Equation (75), where κ
(3)
2l+1 are the four coefficients on the right-hand

side of
∂

∂T
(R3,+ − R3,−) = (1− T2)−4

(
80T3 − 24T5 + 32T7 − 8T9

)
. (79)

Within this framework, the spectral cancellation reads as

4

∑
l=1

Γ(l + 1)
Γ(l − 2)

κ
(3)
2l+1 = 0, (80)

which is a particular case of

a=amax(j)

∑
a=amin(j)

Γ((a + 1)/2)
Γ((a + 1)/2− j)

κ
(j)
a = 0. (81)

Interestingly, the full ζ(0) value for pure gravity (i.e., including the contribution of
tensor, vector, scalar, and ghost modes) is then found to be positive [31,32]:

ζ(0) =
142
45

, (82)

which suggests in light of (5) a quantum avoidance of the cosmological singularity driven
by full diffeomorphism invariance of the boundary-value problem for one-loop quan-
tum theory.

8. Open Problems

The DeWitt boundary condition lies at the very heart of deep issues in quantum
gravity. As far as we can see, the main open problems are as follows.

(1) Among the three schemes studied in our Sections 2– 7, the latter, i.e., the choice of
completely diff-invariant boundary conditions on all perturbative modes, might seem
the most satisfactory, but unfortunately, the strong ellipticity of the boundary-value
problem is not fulfilled in such a case [30,33–37]. However, our analysis shows that, in
the particular case of flat Euclidean four-space bounded by a three-sphere boundary,
peculiar cancellations occur, and the resulting ζ(0) value can be defined and is positive.
The deeper underlying reason might be that, in order to define a spectral ζ-function,
it is sufficient to find a sector of the complex plane free of eigenvalues of the leading
symbol of the elliptic operator under consideration (we are grateful to Professor
Gerd Grubb for correspondence about this property a long time ago). An alternative
approach might consist in considering non-local boundary conditions in Euclidean
quantum gravity [38–40], or the normalizability criterion for the wave function of the
universe [41].

(2) The outstanding work in Ref. [10] looked for solutions of the quantum constraint
equations in order to check the validity of DeWitt’s proposal. However, although one
can obtain under suitable assumptions a formal proof of the equivalence of canonical
and functional-integral approaches [42], DeWitt himself provided an enlightening
example of a sum over histories that does not solve the Wheeler–DeWitt equation [43].
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This remark might therefore account for the inequivalence between our conclusions
and the results in Ref. [10].

The fascinating question of whether our universe can be non-singular in a semiclassical
theory of quantum gravity [44] is therefore still waiting for a fully satisfactory answer.
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Appendix A. The One-Loop Approximation

We are here interested in the approach to quantum field theory in terms of Feynman
functional integrals. Hence, we study the amplitudes of going from data on a spacelike
surface Σ1 to data on a spacelike surface Σ2. For example, in the case of real scalar fields φ in
a curved background M, the data are the induced three-metric h and a linear combination
of φ and its normal derivative: aφ + b ∂φ

∂n . The latter reduces to homogeneous Dirichlet
conditions if b = 0, and Neumann conditions if a = 0. Otherwise, it is a Robin boundary
condition. The quantum amplitudes are functionals of these boundary data. On making
a Wick rotation and using the background-field method, we may expand both the four-
metric g and the field φ about solutions to the classical field equations as g = g0 + g and
φ = φ0 + φ. However, the more general possibility remains to consider background fields
that are not solutions to any field equations, or which are (approximate) solutions in the
asymptotic regions. The logarithm of the one-loop functional integral Z for a scalar field
(in the main body of our paper, we study pure gravity, but here we focus on scalar fields
for simplicity) has an asymptotic expansion

log(Z) ∼ log
∫

µ[φ]e−I2[φ]/h̄ + O(h̄2), (A1)

where µ is a suitable measure of the space of scalar-field perturbations. The part I2[φ] of the
action that is quadratic in scalar-field perturbations involves a second-order elliptic operator
B. Assuming completeness of the set {ϕn} of eigenfunctions of B, with eigenvalues λn, the
corresponding contribution to one-loop quantum amplitudes involves an infinite product
of Gaussian integrals, i.e.,

∞

∏
n=n0

∫
µ dyn e−

λn
2 y2

n =
1√

det
(

1
2 π−1µ−2B

) . (A2)

In order to make sense of this infinite product of eigenvalues, one can use ζ-function
regularization. This is a rigorous mathematical tool that relies on the spectral theorem,
according to which for any elliptic, self-adjoint, and positive-definite operator B, its complex
powers B−s can be defined. Hence, its spectral ζ-function is defined as in Equation (4), and
the analytic continuation of the ζ-function to the whole complex-s plane takes the form

ζB(s) =
N

∑
k=−n

ak(
s + k

m

) + φN(s), k 6= 0. (A3)

Thus, on using analytic continuations, ζB(0) is actually finite, and its value gives
information about scaling properties of quantum amplitudes. We can now be more precise
and describe in detail some key properties. The relation

detB = e−ζ ′(0) (A4)
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becomes a possible way to define the determinant of the elliptic operator B upon the
analytic continuation of ζB(s). If B is a second-order operator, its eigenvalues λn have
dimension (length)−2. Under conformal rescaling of the metric according to ĝ = k2g, one
has λ̂n = λn/k2, and the new spectral ζ-function is ζ̂(s) = k2sζ(s). This leads to

log detB̂ = log detB− log(k2)ζ(0), (A5)

and hence the partition function scales as

log(Ẑ) = log(Z) +
1
2

log(k2)ζ(0) + log(µ̂/µ)ζ(0). (A6)

The parameter µ is the one occurring in the one-loop semiclassical evaluation of the
functional integral. This formula allows for the more general case when the normalization
parameter µ changes under scale transformations. One can avoid this complication by
assuming that the measure in the functional integral is defined on scalar densities of weight 1

2 .
Equation (A5) can also be used to deduce that the one-loop effective action (for the

scalar field) reads as

Γ(1) =
1
2

log det B̂ = −1
2

ζ ′(0)− 1
2

ζ(0) log(k2). (A7)

Note that the resulting one-loop 〈out | in〉 amplitude is measure-dependent unless
ζ(0) = 0. This is why ζ(0) is frequently called the anomalous scaling factor.
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Abstract: An alternative formulation of the no-boundary initial state of the universe in the Euclidean
quantum theory of gravity is proposed. Unlike the no-boundary Hartle–Hawking wave function,
in which time appears together with macroscopic space–time in the semiclassical approximation, in
the proposed formalism, time is present from the very beginning on an equal footing with spatial
coordinates. The main element of the formalism is the wave functional, which is defined based on the
world histories of the universe. This ensures formal 4D covariance of the theory. The wave functional
is defined independently of the wave function as an eigenvector of the action operator. The shape of
the Origin region, together with the boundary conditions, is determined by the structure of the total
energy of the universe, which includes a 3D-invariant contribution of the expansion energy. The own
mass of the universe arises as a non-zero value of the expansion energy in the Origin.

Keywords: universe; time; own mass; quantum; Euclidean instanton

1. Introduction

The question of the origin of the universe has been and remains central to cosmology.
In this work, we will focus on the idea of the quantum birth of the universe from “nothing”
[1–6]. This theory was most consistently developed within the framework of the Euclidean
quantum theory of gravity (QTG) in the works of Hartle, Hawking, and Hertog [7]. The
main object in this approach is the representation of the no-boundary wave function of the
universe in the form of a functional integral

ψ =
∫

∏ Jdgdϕ exp
(
−1

h̄
ĨGR

)
, (1)

where ĨGR is the action of General Relativity in Euclidean signature; see also [8]. Inte-
gration is carried out over all Euclidean 4D metrics and configurations of matter fields
with given values on a single 3D boundary, and J is the Faddeev–Popov determinant.
However, in practice, when using polar coordinates in the Origin [7], integral Equation (1)
is considered as a representation of the Green’s function for the Wheeler–De Witt (WDW)
equation with two boundary surfaces, one of which is contracted to a point—a pole. In this
case, it is not possible to completely get rid of the boundary conditions for the fundamental
dynamic variables at the pole. In particular, the initial value of the scalar field remains a
free parameter [7]. A more aggravating circumstance is the fact that integral Equation (1)
diverges and the no-boundary wave function can be given meaning only within the frame-
work of the semiclassical approximation. Therefore, in subsequent work [9], the authors
considered it reasonable to state the problem in the semiclassical approximation without
using a functional integral, directly for the WDW equation, or through the holographic
principle [10]. The reason for the divergence of integral Equation (1) is the uncertainty of
the sign of the Hilbert–Einstein action. This problem is closely related to the problem of
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the positivity of the gravitational field energy [11]. The latter was solved thanks to the
proof of the positive energy theorem for the case of asymptotically flat geometry [12,13].
A modification of this theorem for the case of a closed universe is considered in [14]. Here,
there is an irremovable negative contribution to energy, which is entirely related to the
expansion of the universe.

This paper proposes a formalism alternative to the functional integral Equation (1)
on the basis of the invariant wave functional Ψ[g(x, t), ϕ(x, t)], which is defined based on
the space of 4D world histories of the universe. To avoid terminological confusion, we
immediately emphasize that the wave function ψ

(
gik(x), ϕ(x), N, Nk, t

)
is a functional of

the functions gik(x), ϕ(x) on a 3D spatial section at a given time t and a functional of the
given lapse and shift functions N, Nk [15]. To determine the wave functional, the work [16]
formulated the quantum principle of least action, according to which the wave functional
is an eigenvector of the action operator.

In the new formalism, the integration over N, Nk is initially absent. In the covariant
quantum theory, based on the Batalin–Fradkin–Vilkovysky theorem [17,18], the integration
over the lapse function N is equivalent to the integration over proper time (see [19]), so
in the new formalism, time remains a free parameter. This makes it possible to formulate
a boundary value problem for the wave functional in the “subpolar” region (Euclidean
instanton), in which the pole is an internal point, without any additional conditions for the
fundamental dynamic variables in it. To fix time in an instanton, one additional parameter
will be required—the own mass of the universe.

The next section formulates the basic concepts of the canonical formalism and a new
description of the dynamics in the quantum theory of gravity. The second section gives a
representation of the energy of a closed universe using spin variables. In the third section,
the boundary value problem for the Euclidean instanton is considered in the case of a
homogeneous isotropic model of the universe, in which the concept of its own mass arises.
In the fourth section, a new canonical representation of the action of the theory of gravity is
introduced, based on the energy structure of a closed universe, in which the own mass is
realized in the form of a mass spectrum of individual 3D-invariant dynamic modes.

2. Wave Functional in the Quantum Theory of Gravity

Let us start our consideration with the classical action of general relativity

IGR = − 1
16πG

∫ √
−gd4xR + Im[g, ϕ]. (2)

Using 3 + 1 splitting of the metric

ds2 = (Ndt)2 − gik

(
dxi + Nidt

)(
dxk + Nkdt

)
, (3)

let us write it in the canonical form of Arnovitt, Deser, and Misner (ADM) [20]:

IADM =
∫

dt
∫

Σ
d3x
( ·

gikπik − NH−NiHi
)

, (4)

Ni = gik Nk , where

H
(

πik, gik, πϕ, ϕ
)
= − 1√

g

[
Trπ2 − (Trπ)2

]
+
√

gR,+Hm, (5)

Hi
(

πik, gik, πϕ, ϕ
)
= 2πik

|k +Hi
m (6)
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are Hamiltonian and momentum constraints and the canonical momenta conjugated to the
3D metric tensor gik have the form

πik =
√

g(3)
(

gikTrK−Kik
)

, (7)

Kik =
1

2N

(
Ni|k + Nk|i −

∂gik
∂t

)
. (8)

The last terms in Equations (5) and (6) are the energy and momentum density of the matter
fields, respectively.

In order to describe the evolution of the universe in QTG in terms of world histo-
ries, we introduce the state functional Ψ. We define it as the product of wave functions
ψ
(

gik(x), ϕ(x), N, Nk, t
)

on spatial sections Σn for each time tn = εn, ε = T/n. We suppose
that the time dependence of the wave function is determined by the Schrödinger equation

ih̄
∂ψ

∂t
=
∫

Σ
d3x
(

NĤ+ NkĤk
)

ψ. (9)

Consequently, the wave function ψ is also a functional of N, Nk, and the WDW wave
equations

Ĥψ = Ĥiψ = 0 (10)

are not initially postulated in our approach, which means they may not be fulfilled. For the
wave functional Ψ, the normalization condition is assumed to be satisfied:

〈Ψ|Ψ〉 =
∫

∏ JdgdϕΨΨ. (11)

It should be assumed that, being a functional of 4D geometry (including the lapse and shift
functions N, Nk), the wave functional is an invariant of general covariant transformations.
The assumption is based on the fact that the basic equation of motion—the Schrödinger
equation Equation (9)—for the wave function ψ can be equivalently replaced by the corre-
sponding equation for the wave functional Ψ. The latter is a secular equation for the action
operator, which is obtained by directly quantizing the action of ADM Equation (4) [16].
This means that we have the opportunity to calculate, for example, the average values of
expressions containing the first and second derivatives with respect to time, in particular,

〈Ψ|Rµν|Ψ〉, (12)

where Rµν is the 4D Ricci tensor. Based on the above, we should expect that expression
Equation (12) forms a tensor of the second rank with respect to arbitrary transformations of
space–time coordinates, as in the classical theory. This follows from the fact that it is an
eigenvector of the action operator. The action operator contains, in particular, the following
contribution:

∫

Σ
d3x

∫ T

0
Ndt

[
· · ·+ 2π̂ik 1

2N

(
∂gik
∂t
− Ni|k − Nk|i

)
+ . . .

]
, (13)

where π̂ik is the momentum operator, i.e., derivatives with respect to coordinate time and
spatial coordinates (together with the lapse and shift functions N and Nm) “gathered”
into an expression equal to the tensor of the external curvature of the hypersurface Σ,
as was the case in classical general relativity. Since the quantum principle of least action
formulated in previous works is equivalent to the Schrödinger equation, we conclude
that the latter is also fine with respect to covariance. Formally, this means that arbitrary
transformations of time and spatial coordinates, with corresponding transformations of the
lapse and shift functions N and Nm, provide the necessary transformation properties of all
observables. The quantum principle of least action will allow us to determine the structure
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of space–time at the beginning of the universe without a priori conditions in the form of
the WDW equations. Let us also pay attention to another formulation of dynamics in terms
of Heisenberg’s operator formalism [21].

3. The Energy of a Closed Universe

The lapse and shift functions N, Nk in the new formalism remain arbitrary. Their
integration is carried out only under the normalization condition Equation (11). Next,
we will introduce a special spin parametrization of these functions, and at the same time,
the Ashtekar [22] complex representation of canonical variables of the gravitational field
(σ̃k

AB, AKAB, A, B = 0, 1—spin indices). We immediately take into account the so-called
reality condition for the Ashtekar connection, setting

AkAB = ΓkAB(σ) +
i√
2

MkAB, (14)

where ΓkAB(σ) are components of the real spin-connection, and MkAB are the canonical
momenta conjugated to the spin variables σ̃k

AB in the real representation, in which we can
also immediately put

MkAB =
πklσ

l
AB√

g(3)
(15)

(Gaussian constraint PAB of Ashtekar). Let us introduce the 3D Dirac operator on a spatial
section Σ:

Dη ≡ i
√

2
(

nA
A′σ

kA′
B′ OkµB′

nA′
A σkA

B OkλB

)
, (16)

where η is the bispinor Dirac field on the spatial section Σ,

η =

(
λA

µA′

)
, (17)

and nA
A′ is an arbitrary unitary matrix (spin-tensor) in the spin space. The complex covariant

derivative of a spinor field is defined as follows:

OkλA ≡ ∂kλA + AB
kAλB. (18)

Let us introduce anti-involution in the spin space,

λ+
A ≡
√

2nA
A′λ

A′
,
(
λ++

A = −λA
)
. (19)

We assume that σk+
AB = σk

AB. Let us also introduce the Hermitian scalar product in the spin
space:

(η1, η2) ≡
∫

Σ

√
g(3)d3xnAA′

(
λA

1 λ
A′
2 + µA′

1 µA
2

)
. (20)

It is easy to verify that the Dirac operator Equation (16) is Hermitian with respect to
this scalar product. Our constructions are based on the Witten identity, which relates
the difference of two positive definite quadratic forms of the bispinor η with a linear
combination of gravitational constraints in the Ashtekar representation (see [16]),

(η, Wη) ≡ −11
9

(
η,D2η

)
+ (η, (−∆ + T )η)

≡ L
(

C̃, C̃k, P̃AB
)

, (21)
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The coefficients of the linear combination are the lapse and shift functions, as well as the
zero components of the Ashtekar connection of the form [23]:

N =
1
8

nAA′
(

λAλ
A′

+ µA′µA
)

, (22)

Nk = − i
4

σk
AB

(
λAλ+B + µ+AµB

)
, (23)

A0AB = − 1
16
√

2
σm
(A|C|

(
Omλ B)λ

+C +Omµ B)µ
+C
)

. (24)

The second term in Equation (21) has the form

(η, (−∆ + T )η)

=
1
2

∫

Σ

√
g(3)d3xnAA′nMM′nNN′

(
ξAMNξ

A′M′N′

+χAMNχA′M′N′
)
+ (η, T η), (25)

where
χMNA ≡ σmMNOmµA +

2
3

εA(M σ
m N)
P OmµP, (26)

ξMNA ≡ σmMNOmλA +
2
3

εA(M σ
m N)
P OmλµP, (27)

where εAB is a completely antisymmetric unit spin tensor. Spin tensors Equations (26) and
(27) are completely symmetric. The last term on the right side of Equation (25) is a positive
definite form of the energy–momentum tensor of matter fields. Thus, identity Equation (21)
gives a representation of the Hamilton function of the theory of gravity (right-hand side
of Equation (21)) as the difference of two positive definite quadratic forms of the bispinor
η. The fact that we thus obtain the Hamilton function in an arbitrary gauge follows from
counting the number of real constraints of the theory of gravity (seven pieces) and the
number of independent real parameters of the bispinor η (eight pieces). The presence of a
redundant parameter leads to the degeneracy of the quadratic form of the operator

W = −11
9
D2 + (−∆ + T ), (28)

i.e., the existence of a zero eigenvalue for this operator.
In the representation of the Hamilton function of a closed universe Equation (21), sep-

aration of the contributions of energy components with different signs has been achieved.
The quadratic form

(
η,D2η

)
contains the kinetic energy (Trπ)2 (together with the corre-

sponding potential energy), it describes the dynamics of the 3D geometry scale factor
√

g(3).
Therefore, we will call it the energy of space. The quadratic form (η, ∆η) does not contain
(Trπ)2, and describes the dynamics of the “transverse” components of the gravitational
field that describe gravitational waves. We will call this, together with (η, T η), the energy
of matter. The explicit separation of these two components in Equation (21) is a version of
the positive energy (of matter) theorem for the case of a closed universe. The combination
of signs in Equation (21) also determines the signature of the configuration space of the
theory of gravity (superspace).

We can now discuss the issue of regularizing the convergence of the functional inte-
gral representation of the kernel of the evolution operator for the Schrödinger equation
Equation (9). For the functional integral to converge, it is necessary that the total energy of
the universe have a certain sign. This can be achieved by introducing a variable value e
instead of the minus sign in Equation (21), which is equal to +1 at the calculation stage.
In the previously identified wave function, along with the return to real time, the sign of
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e should also be changed. At the same time, a natural gauge condition would be to take
the eigenvector of the 3D Dirac operator as the bispinor η. In this case, one can use the
Heisenberg formalism [21] in the case of a closed universe.

4. Euclidean Beginning of a Homogeneous Isotropic Model of the Universe

The transition to describing the quantum evolution of the universe in terms of world
histories and the wave functional allows us to take a fresh look at the problem of initial
data for this evolution. In the classical theory of gravity, the timelines of the universe
begin at one point, which is the Big Bang singularity. In Euclidean QTG, these lines simply
serve as meridians of the “polar” coordinate system [7]. The pole itself has no features
other than a coordinate singularity. Therefore, in [24], the state of the universe in the
“subpolar” region (with one boundary along the “polar” circle) was proposed to be sought
in a non-singular coordinate system using the generalized canonical De Donder-Weyl
formalism. And although to introduce time, we return to the usual 3 + 1 ADM splitting of
the metric in polar coordinates, at the pole itself, as an equal point, we place not the initial
data for the fundamental dynamic variables (g, ϕ), but their distribution in terms of the
wave functional Ψ[g, ϕ]. In this sense, we refer to the wave functional of the universe as
no-boundary.

Let us consider in more detail the initial stage of evolution of the homogeneous
isotropic Friedmann–Lemaitre universe with the metric

ds2 = N2(t)dt2 − a2(t)dΩ2
3, (29)

where dΩ2
3 is an element of length on a 3D sphere of unit radius, with a real scalar field and

zero cosmological constant. Its dynamics are described by the action (Lorentzian signature)

IFL[a, φ] =
1
2

∫ T

0
dt


− a

γ



·
a

2

N
− N




+2π2a3



·
φ

2

N
−V(φ)N




, (30)

where γ = 2G/3π. The Hamilton function and the corresponding Schrödinger equation
for this model are

hFL = NHFL = N
1
2

[
−
(

γp2
a

a
+ a
)

+

(
p2

φ

2π2a3 + 2π2a3V(φ)

)]
, (31)

ih̄
∂ψ

∂s
= ĤFLψ, s =

∫ t

0
N(t)dt. (32)

We will further restrict ourselves to the semiclassical approximation; therefore, we do not
consider the problem of ordering noncommuting factors in ĤFL here. We also do not
consider the problem of convergence of the Euclidean functional integral, which represents
the kernel of the evolution operator for equation Equation (32). The extremum conditions
for the Euclidean action, which is obtained from Equation (30) after the transition to
imaginary time s = −iτ, have the form

a
··
a +

1
2

(
·
a

2
− 1
)
− 3π2a2γ

( ·
φ

2
+ V

)
= 0 (33)
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is the extremum condition in a and

··
φ + 3

·
a
a
·
φ− 1

2
V′(φ) = 0 (34)

is the extremum condition with respect to φ, where the dot denotes the derivative with
respect to τ, τ ∈ [0, T]. Let us immediately note that the constraint equationHFL = 0 is not
among the extremum conditions, since the lapse function N is not considered as a dynamic
variable, and the integral of it is the proper time s.

Now, let us consider the problem of boundary conditions for differential Equations (33)
and (34). In [7], the Euclidean functional integral of the form Equation (1) is observed in a
compact region of 4D Riemannian space with a single boundary on which the values of
the scale factor a(T) = b and the scalar field φ(T) = χ are given. At the “pole,” “natural”
initial conditions are chosen

a(0) = 0,
·
φ(0) = 0. (35)

However, the composition of the equations–extremum conditions in the work [7] differs
from that of Equations (33) and (34). Since integral Equation (1) contains additional
integration over proper time, the constraint equation also arises under extremum conditions.
And since the constraint is also the first integral of the equations of motion Equations (33)
and (34), one of them, namely equation Equation (34), can be considered redundant. With
this formulation of the boundary value problem, the free parameter turns out to be the value
of the scalar field at the pole φ(0) = φ0. But this contradicts the very idea of constructing a
no-boundary wave function, which assumes the absence of any initial data for fundamental
dynamic variables in the polar region. This does not apply to conditions Equation (35),
which arise precisely as a result of the choice of a polar coordinate system in a homogeneous
isotropic model of the universe.

Let us see how the second of the “natural” conditions, Equation (35), arises if we con-
sider it as the primary representation of the evolution operator in non-singular coordinates
in the subpolar region. Moving along the meridian to the pole (one of the timelines in
polar coordinates), beyond the pole, we will smoothly continue this movement along the
opposite (at an angle 1800) meridian, connecting them into one timeline of a non-singular
coordinate grid. Let us divide this time axis into small sections of length ε and write the
contribution of the scalar field to the functional integral for the evolution operator of the
pole and neighboring points located symmetrically:

∫
. . .dφ0. . . exp

{
−1

h̄
π2
[( a−1

2

)3

×
(
(φ0 − φ−1)

2

ε
+ V

(
φ0 + φ−1

2

)
ε

)

+
( a1

2

)3
(
(φ0 − φ1)

2

ε
+ V

(
φ0 + φ1

2

)
ε

)]}
(36)

To calculate this integral using the steepest descent method, we find the extremum of the
exponent in φ0, which (in the limit ε→ 0) gives: φ0 = φ1. Here, we also take into account
the symmetry of the model under consideration, φ1 = φ−1, a1 = a−1. Thus, the second
condition in Equation (35) arises as a consequence of estimating the integral over φ0 in
the functional integral representation of the propagator. The presence of this integral also
means that the initial condition for the wave function at the pole (at τ = 0) should be taken

ψ0 = Aδ(a). (37)

Thus, natural initial conditions mean that initially, a = 0, and the field φ can take on any
value with equal probability.
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To complete the formulation of the boundary problem, we define the boundary con-
ditions at τ = T. Equations (33) and (34) determine the initial instanton in the Euclidean
region if its right boundary point on the a-axis is a cusp point, i.e.,

·
a(T) = 0. (38)

Thus, the history of the scale factor a(τ) in the instanton is completely determined. For a
given T, the history of the scalar field φ(τ), including its initial φ0 (as well as final φ(T))
value, also becomes completely determined, since the shape of the potential well for the
instanton a(τ) is determined by the function φ(τ). There remains one undefined parameter
T, fixed by us. We can still calculate the first integral of the equations of motion, which in
the general case is constant, but not equal to zero:

HFL(τ) = −M2 6= 0. (39)

As we remember, the constraint equationHFL = 0 serves to precisely determine the time of
movement T in the generally accepted approach. However, here, this constraint equation,
in the presence of a free time parameter, does not follow from anywhere, and we are forced
to accept as an additional possibility the presence of a non-zero own mass of the universe
M2 in Equation (39). The result can be formulated differently: if the own mass of the
universe is given, the shape of the initial instanton in the Euclidean QTG with its own time
is completely determined. The minus sign in Equation (39) follows from the analysis of the
asymptotic behavior of the scale factor at the pole. It is easy to check that

a ∼
(

9
2

)1/3
M2/3τ2/3

+
9

20M2/3

(
2
9

)1/3
τ4/3 + ... (40)

at τ → 0. Thus, the spatial part of the energy of the universe dominates in the beginning,
and this serves as a source of its expansion. The simple asymptotic behavior demonstrated
in Equation (40) and the entire expansion picture will change if we also take into account
the dynamics of anisotropy near the beginning [15]. However, the main term in asymptotics
Equation (40) will be preserved, as well as the meaning of the constant M. The proper mass
remains constant only in a homogeneous isotropic model of the universe. In general, this is
not the case, and the dynamics of one’s own mass can be directly related to the universe’s
own time.

5. Own Mass and Proper Time in an Inhomogeneous Universe

To establish the connection between proper mass and proper time in the general case,
let us consider the new canonical representation of the theory of gravity, which is naturally
induced by the representation of the Hamilton function Equation (21). If we consider the
bispinor η as an independent dynamic variable, then the corresponding Euler–Lagrange
equation has the form:

Wη = 0. (41)

Taking into account that η is initially considered as an arbitrary bi-spinor, we obtain
a representation of the system of gravitational connections in the form of an operator
equation

W = 0. (42)

The operator W is Hermitian on the space of bispinors and its spectrum is real. The operator
itself is equal to zero if and only if all its eigenvalues wn are equal to zero. The eigenval-
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ues, as well as the eigenvectors ηn, are functions of the fundamental canonical variables.
The eigenvalues wn form a closed algebra with respect to Poisson brackets:

{wn, wm} = Cp
nmwp, (43)

in which the structural “constants” Cp
nm are determined by the eigenvectors ηn, i.e., are

also functions of canonical variables. Going forward, we will refer to eigenvalues wn as
dynamic modes. Expanding an arbitrary bispinor η over a complete (orthonormal) set of
eigenfunctions,

η = ∑
n

ζnηn, (44)

we can represent the Hamilton function of gravity theory as a linear combination of a new
set of constraints:

(η, Wη) = ∑
n

Lnwn, Ln = |ζn|2. (45)

Arbitrary Lagrange multipliers Ln under infinitesimal general covariant transformations
generated by wn constraints,

δA = δsm{A, wm}, (46)

where A is an arbitrary function of canonical variables, must be transformed as follows

δLn = δ
·
s

n
− Cn

mpLmδsp (47)

to ensure action invariance. These infinitesimal transformations are generated by infinites-
imal shifts of the proper time parameters sn, and the generators of these shifts are the
eigenvalues wn. To determine the Lagrange multipliers corresponding to finite values
of the proper time parameters, equation Equation (47) can be solved iteratively, and the
solution can be represented as a power series:

Lm = Λm
n (s)

·
s

n
, (48)

Λm
n (s) = δm

n − Cm
npsp

+
1
2!

Cm
rpCr

nqspsq + . . .. (49)

The proper time parameters introduced in this way are integrals of the Lagrange multipliers:

∫ T

0
dtLm(t) =

∫ Sn

0
Λm

n (s, C)dsn. (50)

The values of the canonical variables in the structure functions Cm
np are taken at the same

moment of coordinate time t as the proper time parameters sp. The time evolution of the
eigenvalues wn is determined by the equations

dwn

dt
=

∂wn

∂sp
·
s

p
= {wn, Lmwm}

=
{

wn, Λm
p

} ·
s

p
+ Λm

p Cq
nmwq

·
s

p
, (51)

i.e.,
∂wn

∂sp =
{

wn, Λm
p

}
+ Λm

p Cq
nmwq. (52)

In quantum theory, all these relations should be considered in the form of average values
in the state described by the wave functional Ψ. It follows that if the eigenvalues wn are
zero at the beginning (classical constraints), they always remain so. In this case, we can
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talk about preserving the 4D covariance of the theory. If at first there is a non-zero intrinsic
mass in some dynamic mode,

wn = −m2
n 6= 0, (53)

the distribution of own masses over modes will change over time, and this change itself
can be considered as a measure of proper time.

Thus, the Euclidean instanton in the general case has the following structure in
polar coordinates (radial coordinate—time axis). At the pole (approaching the pole),
the approximation of a homogeneous, isotropic model of the universe with a single dynamic
mode described by the Hamilton functionHFL is valid. This will happen when choosing
polar coordinates in a small neighborhood of any interior point of a smooth manifold.
Accordingly, this dynamic mode can be associated with its own mass M as the only
parameter of the universe model. The Euclidean “evolution” of the instanton along the
radial axes is given by the equation

d
dt

√
g(3) =

{√
g(3), Lmwm

}
. (54)

We actually have an infinite set of equations (one for each point of the spatial section).
The spatial boundary of the Euclidean instanton is determined by the condition that the

derivative of
√

g(3) with respect to time is equal to zero at all spatial points. This provides
a system of equations for determining the complete set of proper time parameters at
the boundary, and the system of equations Equation (52) allows us to find the resulting
distribution of proper mass over modes.

6. Conclusions

The generally accepted formulation of the covariant quantum theory of gravity, based
on the WDW equations, as well as using the formalism of the invariant functional integral,
gives rise to the problem of time (more precisely, its absence). Along with time, the possibil-
ity of introducing any additional quantities, in addition to the set of fundamental dynamic
variables and associated parameters of the original Lagrangian, is excluded. However,
the observed evolution of the universe (or the generally accepted interpretation of obser-
vational data) and the idea of the Big Bang as the beginning of this evolution, one way
or another, require the introduction of time. This can be achieved by identifying the time
parameter with a suitable fundamental dynamic variable [25]. In this case, time acquires
a material character in the literal sense of the word, if one of the fields of matter is taken
as such a variable. In this paper, an alternative option is proposed—the preservation of
the coordinate time parameter of the classical theory of gravity in quantum theory. This is
achieved by transition from the description of the quantum state of the universe from a
3D distribution on a spatial section Σ to a description in terms of the wave functional on
4D world histories. With this modification, the formal covariance of quantum theory is
preserved in the same form as in the classical one, when time and spatial coordinates were
equal. However, this equality is actually violated in the case of a closed universe by the
signature of the configuration space: the negative contribution in it is clearly highlighted
by the 3D-invariant quadratic form of the expansion energy, corresponding to the degrees

of freedom of the scale factor
√

g(3). This energy structure of the universe determines
the shape of the initial Euclidean instanton in the semiclassical approximation. This 3D-
invariant energy structure is also associated with the spectrum of parameters of the proper
time and the canonically conjugate spectrum of parameters of the own mass of the universe.
If the proper mass, the distribution and motion in space can be associated with a selected
reference frame, which is assumed to be equal to zero, there is no physical reason for the
violation of the 4D covariance of the theory. General covariance can be preserved even with
a non-zero own mass if it is a constant of motion. But this is possible when the structure
constants in Equation (43) are equal to zero, i.e., the dynamic modes in the theory of gravity
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are completely independent. This possibility is not excluded, but a detailed analysis of the
new canonical representation of the theory is required.
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