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Green-Bio-Economy and
Bio-Nanotechnology for a More
Sustainable Environment

Pierfrancesco Morganti, Hong-Duo Chen and Yuan-Hong Li

Abstract: There is growing recognition that the transition to a green bioeconomy
can generate more sustainable growth. This is the reason why the EOCD and EU
economic platform until 2030 is based on the use of natural raw materials obtained
from plant biomass and fishery waste, in substitution to fossil-derived ones. From
this new economic vision, fundamentally focused on innovative agriculture and
bionanotechnological systems, great potential for delivering economic growth
with environmental protection and social inclusion is expected. Thus the green
bioeconomy will have a positive impact on our quality of life, maintaining in
equilibrium the planet’s ecosystem and biodiversity. Since the realization of a global
sustainability depends on renewable sources of materials and energy, bio-based
polymers and products to replace petroleum-based ones must become a mainstay
of our society. The use of chitin nanofibrils (obtained from crustacean waste) to
produce goods and innovative nanocomposites is a step in this direction, as reported
in this chapter.

1. Introduction

The bio-economy, synonym for a green economy or ecological economics [1–3],
can be described as an interdisciplinary field of academic research that, strictly
connected with the bio-nanotechnologies, is based on building blocks of materials,
chemicals, and energy derived from renewable industrial byproducts such as plant
biomass and fishery waste [4,5].

This new branch of economy, based on the use of natural bio-energy instead
of fossil fuels and focused on socioeconomic, agricultural, and technical systems,
will represent a fundamental platform of the 2030-EU and OECD economy [6,7].
This new economic vision will meet the requirements for industrial sustainability
and environmentally friendly social and economic impacts. At the same time, it
is essential not only to increase human well-being and decrease environmental
pollution and climate change, but also to stop the depletion of natural resources [1–7].
To this purpose, both biotechnologies and nanotechnologies will be indispensable to
stimulate the increase of a sustainable economy, fundamental for developing jobs and
the industrial production of tools and energy at low cost. This will make it possible
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to maintain the actual standard of living, ameliorating its quality and considering
human health and wellness as the real goal for an advanced economy and a safe
industrial development [6–8].

From this knowledge-based bio-economy (KBBE) potential benefits are expected,
such as a reduction of greenhouse gas emissions, a decrease in dependence on fossil
“resources, wiser management of natural resources, and improved food security” [6–9].

2. Maintaining Biodiversity through an Ecosystem in Equilibrium

For all these reasons, a must of our future society should be the amelioration of
the Earth’s habitat, developing a sustainable economy based on the use of materials
and processes of biological origin [10].

This new way to produce goods and services has to be based on the same
methodologies adopted from nature, such as the use of enzymatic reactions instead
of the classical chemical reactions. Thus the bio-economy, driving the growth of smart
agriculture and forestry sustainability by innovative processes of bio-engineered
technologies, must produce enzymes, amino acids, and active ingredients for
pharmaceutical, food, and cosmetic products, as well as make biopolymers and
bio-fibers from renewable industrial resources and biofuel produced by bio-refineries,
necessary for transporting raw materials and goods [4,10].

It is interesting to underline that, in this different economic vision, the use of
industrial byproducts derived from plant biomass and fishery waste (Figure 1) [11,12]
should be considered an alternative way to produce goods without impoverishing
the earth of its natural resources, which is indispensable to maintain the ecosystem’
equilibrium and species biodiversity [13].
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Thus, the green bio-economy could solve the majority of the aspects required
for industrial sustainability, which, by respecting the biodiversity of our planet, will
safeguard the health of humans, animals, and plants together (Figure 2).
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3. The Bio-Economy and Industrial Sustainable Development

The green bio-economy is considered a way to ensure all the social, economic,
and environmental prerequisites to meet a sustainable development. However,
it is also increasingly recognized as a greater economic opportunity for removing
barriers and enabling poor and disadvantaged groups to participate in, contribute
to, and benefit from the transition [14]. To obtain these results it will be necessary to
develop a new economy by meeting different economic, social, environmental, and
political parameters.

To this purpose, the following will be necessary to realize: (a) an economic
growth capable to support the efficient use of resources with low carbon emissions,
and favoring the adoption of green and high-tech nano-biotechnologies with the
use of raw materials, obtained from byproducts and poor countries; (b) a social
development that can improve health and well-being, especially among the poor,
thus promoting social equity; (c) an environmental sustainability based on the
increase of productivity and efficiency of the natural resources used, with a
simultaneous reduction of pollution obtained by the right investments necessary
to sustain ecosystem health, and resilience in management of environmental risks;
(d) a governance that can empower citizens through access to information, justice,
and participation in decision-making, particularly among marginalized groups,
contemporary improving transparency and accountability in the public and private
sectors, including a better regulation of the market [1].

According to EU, OECD, and USA reports [6,7,15], it seems that the economic,
environmental, and social benefits ,obtained from the use of nanotechnologies
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(Figure 3), could represent the optimum route towards sustainable development at
a regional, national, and international level.

Shifting to the European view, the bio-economy is defined as “the production
of renewable biological resources and the conversion of these resources and
waste into value-added products, such as food, feed, bio-based products and
bio energy” [9,16,17]. Environmental assets such as fertile soil, clean water, and
biodiversity help drive economic growth, contributing to public health and providing
safety nets for the poor [18]. Thus, investing in improved natural resources through
proper environmental management in rural and urban areas, such as sustainable
forestry and fisheries, can not only reduce carbon emissions but generate also high
social rates of return.
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However the success of using nano-biotechnologies and byproducts as principal
raw materials to make goods and produce clean energy is subject to institutional
capacity within implementing agencies and technological organizations from the
municipal level up, to meet the requirements with minimal costs. The process of
transforming a fossil-based economy into a novel green economy takes time and
requires continuous government intervention. The necessary technologies require a
strong emphasis to realize a sustainable growth, together with up-front investments
in research, development, and innovation.

Thus, the EU has emphasized the research projects by the Seventh Program
Framework and are going in this direction with the Horizon 2020 program also [18,19].
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To this purpose, our group has realized three interesting projects: Bio-Mimetic
(www.biomimetic.eu), coordinated by P&G UK, n-Chitopack (www.n-Chitopack.eu),
and Chitofarma (www.chitopharmam.it), both coordinated by MAVI Sud, Italy.
By these projects innovative cosmetic products, biodegradable food packaging, and
advanced medications have been developed, using chitin nanofibrils and other
natural polymers, obtained from fishery waste and plant biomass, respectively, by the
use of green industrial processes with low consumption of energy and water [20–22].

In this way new green technologies and new safe products have been developed,
with added value for consumers in the fundamental fields of cosmetic, food, wellness,
and biomedicine. The food industry is, in fact, one of the largest sectors of the
European economy, with a yearly turnover of €800 billion and roughly 4 million
employees; the EU cosmetics industry had a turnover of €69 billion in 2012,
representing one-third of the global cosmetic market, with direct and indirect
employment in EU of 1.7 million people and more than 4000 industry companies,
while the global sheet face mask market is expected to reach US$336 million
by 2024 (source:Trasparency Market Research) with a year growth of 8.7% from 2016
to 2024 [23].For all these reasons, it is expected that food ,tissue masks and advanced
medications with an expected grow of 11%–12% during the forecast period 2014–2019
will play a more prominent role in the future through an increase in innovative diet
supplements, therapeutics, and diagnostics.

Nutrition and biomedicine are, in fact, two economic pillars of progress and the
key to health prevention, which requires both high-tech technologies and innovative
products. Moreover, technological development is hampered by the aging population
of the industrialized countries and the necessity of maintaining a high standard
of health care, reinforced by the limited availability of raw materials and energy
resources, accompanied by global warming also. Thus, the growing demand for
a sustainable supply of food, raw materials, and fuel as the major driving force
behind the KBBE will probably be based on a combination between plant breeding
and industrial nano-biotechnology [7–9,24].

4. The Bioeconomy and R&D Worldwide

The bio-economy, as a key component of the green growth, has a current
market in the EU of over 2 trillion euros and provides 22 billion jobs across diverse
sectors, representing around 9% of the total labor force of different sectors, including
agriculture, forestry, food, chemicals, and bio-energy [7,16,17]. Thus, Europe is the
global leader and pioneer in bioscience and related technologies [9,24–26], with
many investments dedicated to R&D in nano-biotechnologies, considered the most
critical component for the industrial innovation. However, since 2006, the world’s
four largest spenders on R&D were the United States with US$343 billion, the EU
with US$231 billion, China with US$136 billion, and Japan with US$130 billion,
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respectively, while in terms of percentage of GDP, the order was China, Japan, USA,
and EU, with approximate percentages of 4.3, 3.2, 2.6, and 1.8, respectively [27].

It is interesting to underline the changing of the top 10 spender countries
in terms of percentage of GDP, in 2011 respect 2006 were: Israel 4.3%, South
Korea, 4.03%, Finland 3.78%, Japan 3.39%, Sweden 3.37%, Denmark 3.09%,
Taiwan 3.02%, Germany 2.88%, USA 2.77%, and Austria 2.75%, with an average
spent of US$104,000 per employee on R&D. However, in 2017 the top 10 innovative
economies has been: Switzerland that continues to occupy the first position for
the 7th consecutive year, followed from Sweden, Netherlands, USA, UK, Denmark,
Singapore, Finland, Germany and Ireland [27]. In the top 25 some economies–such
as the Netherlands, Denmark, Germany, Japan, France, Israel and China-move, up
with the middle-income countries growing more distant to them. The exception is
still China that became the 22th most innovative economy in the world.

To this purpose funding mechanisms have been boosted in the EU by the
Horizon 2020 program, which has defined the framework for research and innovation
for 2014–2020, continuing the Past Seventh Framework Program for Research and
Technological Development (FP7) [18,19].

In these programs the chief purpose of funding has been to increase and
innovate the fields of Food, Agriculture, Fisheries, and Biotechnology as part of
the Bio-economy (FABS) [18,19,24–28].

5. Technological Bio-Revolution and the Bio-Economy

According to the OECD [6,28] the bio-economy, considered a new branch of the
economy based on innovative technologies (biotechnology and nanotechnology),
could substantially contribute to actual economic processes. The bio-economy, in
fact, involves three fundamental pillars of biotechnology: (a) a deep knowledge
of the biological systems or living organisms necessary to manufacture products
or develop processes that benefit humans, such as molecules, enzymes, chemicals,
and bio-materials.

As a result, for example, (a) the use of living cells from yeasts, molds, bacteria,
plants, and enzymes to synthesize products would require less energy and create
less waste; (b) the use of renewable biomasses and efficient industrial bioprocesses
with more sustainable technologies for safeguarding humans and the environment;
in this case, the main goal of the so-called bio-refinery has to be the organization of
sustainable processing of biomass into a spectrum of marketable products, such as
food, feed, and chemicals, producing both high-value, low-volume and low-value
high-volume products, minimizing and recycling waste streams also [17,29,30]; (c) the
integration of the new biotechnological knowledge with all the classic industrial
sectors to obtain a real bio-revolution [31,32].
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Thus the bio-economy, if designed and implemented intelligently, will have
a positive impact on our quality of life, if we maximize the utilization of the animal
and plant biomass, simultaneously meeting key sustainable goals and minimizing
cumulative pollutants to maintain in equilibrium the Earth’s ecosystem [33,34].
It is, in fact, important to remember that pollutants affect both human and climate
health, so that the World Health Organization states that 2.4 million people die each
year from causes directly attributable to air pollution, with 1.5 million of deaths
attributable to indoor air pollution.

In fact, air and water pollution released from industrial, agricultural, and
household waste have contaminated the environment to such an extent that, to
save our planet, a rescue plan is urgently required. It seems, therefore, fundamental
to recognize the economic value of natural capital and ecosystem services, treating
them as goods and services to be valued in monetary terms. As a consequence,
the bio-economy has to be considered a promising way to reconcile financial and
ecological value, estimating how to maintain a stable environment and respect
biodiversity before assessing the cost in dollar terms [33,35].

This is the reason why the bio-based economy was outlined, by the EU’s
public-oriented definition, as a “production paradigm that, relied on biological
processes and with natural ecosystems, uses natural inputs, expends minimum
amounts of energy and does not produce waste”. So “all materials discarded by one
process, will be input for another process to be reused in the ecosystem” [9,36].

By the same approach, the European Association for Bio-industries (EuroPaBio),
considering industrial nano-biotechnology a key component of the bio-economy,
underlines that “the application of biotechnology for sustainable production of
chemicals, materials and fuels from biomass, creates an opportunity to reduce
significantly our dependence on coal, oil and gas” [9,37].

Consumer attitude towards nanotechnologies is 64% positive with 71%
willingness to purchase nano-products, according to a research study by the
Nanotechnology Industries Association (NIA) reported by Denis Koltsov in 2011
(Figure 4), so the global manufacturing output of nanotechnologies is estimated to
reach US$30 billion in 2015 (Figure 5) [38].
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including DNA, proteins, lipids, and polysaccharides, are classified as soft nanotechnology [39,40]. 
The physicochemical properties of nano-particles, in fact, can be engineered at the molecular level; 
their shape, size, and charge can be controlled, and the surface density of the eventual targeting 
ligand can be optimized for specific applications [40–43], so that charged particles may create 
electrostatic interactions with charged skin elements in the interstitial matrix, such as positively 
charged collagen or negatively charged glycosaminoglycans [44]. This is the reason why “many 
efforts to reduce material dimensions are motivated by the attractive properties and functions 
unique to their nanometer regime.”  

“At nanoscale, certain properties of matter become scale-dependent, including capillary forces, 
optical effects/color, conductivity, electron affinity,” surface reactivity, and so on [45]. In fact, as 
material size decreases, the surface properties of the atoms increasingly dominate, producing 
significant changes in material reactivity [45,46]. Hence, surface effects are a unique and very 
significant functional nano-property that requires both control and careful characterization for 
exploitation in specific nanotechnologies.  

According to the different and controlled technologies adopted by our research group, it is 
possible to produce block co-polymeric micro/nano-lamellae or nano-particles (NPs) (Figure 6) 
made of chitin nanfibrils (electropositive polymers) and hyaluronan (an electronegative polymer), 
which, by entrapping different active ingredients, may have their surface covered by positive or 
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nano-particles on the order of 100 nm or smaller that, when made of organic polymers,
colloids or molecules, including DNA, proteins, lipids, and polysaccharides, are
classified as soft nanotechnology [39,40]. The physicochemical properties of
nano-particles, in fact, can be engineered at the molecular level; their shape, size, and
charge can be controlled, and the surface density of the eventual targeting ligand can
be optimized for specific applications [40–43], so that charged particles may create
electrostatic interactions with charged skin elements in the interstitial matrix, such as
positively charged collagen or negatively charged glycosaminoglycans [44]. This is
the reason why “many efforts to reduce material dimensions are motivated by the
attractive properties and functions unique to their nanometer regime”.

“At nanoscale, certain properties of matter become scale-dependent, including
capillary forces, optical effects/color, conductivity, electron affinity”, surface
reactivity, and so on [45]. In fact, as material size decreases, the surface properties
of the atoms increasingly dominate, producing significant changes in material
reactivity [45,46]. Hence, surface effects are a unique and very significant functional
nano-property that requires both control and careful characterization for exploitation
in specific nanotechnologies.

According to the different and controlled technologies adopted by our research
group, it is possible to produce block co-polymeric micro/nano-lamellae or
nano-particles (NPs) (Figure 6) made of chitin nanfibrils (electropositive polymers)
and hyaluronan (an electronegative polymer), which, by entrapping different active
ingredients, may have their surface covered by positive or negative charges [29,47–51].
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When the surface is covered with positive charges these NPs show an ability
to disturb lipid lamellae of the stratum corneum, enabling better diffusion of the
entrapped active ingredients through the skin layers; when their surface is covered
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In the first case, by entrapping the positive nano-particles with antioxidant
ingredients it is possible to design formulations with anti-aging activity, while in the
second case the negative nano-particles, entrapped with sunscreen ingredients, have
been shown to be effective for sunscreen emulsions to protect the skin against the
sun [50–52].

In the same way, it was possible to produce interesting composites by the use of
natural fibers for making non-woven tissues made by electrospinning (Figure 8a) or
casting technology (Figure 8b), for cosmetic or medical utilization.
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It is important to remember that a composite may be defined as a physical
mixture of two or more different materials, having properties that are generally
better than those of any one of the materials used.

Different from synthetic fibers, natural ones possess more desirable properties
such as biodegradability, renewability, and a lower price, although they may have
poorer mechanical properties. Composites are made of a strong load-carrying
material (known as the reinforcement filler) embedded in a weaker material (known
as the matrix). Reinforcement provides strength and rigidity, helping to support the
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structural load. The matrix or binder (organic or inorganic) maintains the position
and orientation of the reinforcement. Other advantages of natural fibers lie in their
low density, high toughness, comparable specific strength, reaction in tool wear, ease
of separation, and low energy of fabrication.

Naturally, the type of the final natural composite is dependent upon the
variations in the characteristics and amount of their components, such as cellulose,
lignin, pectin, or chitin nano-fibrils, as well as their chemical structures and the
production processes. While natural fibers are an interesting option for wider
application in composite technology, natural ingredients are of increased use in
the cosmetic and food fields [53].

Chitin nano-fibrils (CN), obtained from fishery and crustacean waste, and
ligno-cellulosic polymers from plant biomass provide powerful toolboxes for
innovative nano-biotechnological processes. These natural polymers offer, in fact,
characteristics with interesting properties for various purposes (energy, textiles,
cosmetics, biomedicine, etc.) [54].

In cosmetic dermatology CN, complexed or non-complexed with different
active ingredients, have been embedded into numerous emulsions characterized
by anti-aging (Figure 9) [55], anti-inflammatory (Figure 10) [56,57], anti-acne
(Figure 11) [58], or photo-protective activity (Figure 12) [59].
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Figure 9. Dermatological mean evaluation on sign of photo-aging after
injective treatment with phosphatidylcholine-hyaluronic acid-chitin nano-fibrils
encapsulating active compounds (BPN). Note: all p values are highly significant
in comparison to the baseline (p < 0.005). Abbreviations: BPN block-polymer
nano-particles; RH: Relative Humidity; D: day.
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Moreover, CN have been bound with other natural polymers to produce
non-woven tissues for developing wound dressings by electrospinning (Figure 13),
or to make films for food packaging by the casting technology (Figure 14)
(unpublished data).
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Figure 13. (a) is the wound dressing made by electrospinning. (b) is the same tissue
at SEM.

The most important features of wound dressing are bio-adhesion to the
wounded site and appropriate humidity, which are effective against the so called
burden-microorganisms. Due to the difficulty of obtaining the ideal non-woven
tissue, wound therapy represents a challenging area in drug product development.
In the USA alone, more than 6.5 million patients are affected annually by burns
and wounds, while the costs of treatment are estimated to be US$25 billion per
year [59,60]. Moreover, wound infections are the most serious complications related
to burn injuries and up to 1% of the world population requires medical treatment
each year for burn injuries [60–62].
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For all these reasons, modern wound dressings should preserve a humid
environment, creating a protective barrier against both mechanical stress and
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secondary infections. Therefore, the dressing has to enable absorption of wound
exudate and elimination of pathogen microorganisms, be safe, non-irritant, and
acceptable to the patient with a low cost per unit, which would reduce the need
for dressing changes [63,64]. These are the challenges solved by the Chitofarma
research project.

7. Concluding Remarks

Global sustainability depends on finding renewable sources of materials and
energy, so there is an ever-increasing need to develop bio-based polymers and
products able to replace petroleum-based ones. Research in this field has shown
the strong potential of generating high-performance functionalized polymers and
nano-particles from plant and animal biomass. With the anticipated large-scale
production of lignin, cellulose, and hemicellulosic polysaccharides from plant
biomass as well as of chitin, chitosan, and oligosaccharides from fishery waste,
renewable feedstock for nano-particles, biopolymers, and bio-composites will
be available, having physicochemical properties that match or exceed those of
petroleum-based compounds [65].

Thanks to our growing knowledge, bioinformatics, more secure energy supply,
and the interaction of engineering and life sciences, it will be possible to find new
foodstuffs, innovative cosmetics, and drugs opening avenues for developing novel
crops and plants, as well as new diagnostic and therapeutic options. Thus, improved
management of ecosystem goods and services, carried out by socially sustainable
national and international institutions in both the public and private sectors, will
increase the health and productivity of all the environmental assets, expanding and
securing the green bio-economy and harnessing innovation to ensure well-being for
all (Figure 15).
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In conclusion, the transition from the normal economy to the innovative, green
bio-economy is a real future challenge for politicians and all scientists operating in the
fields of cosmetology and dermatology who wish to promote and support equitable
and pedagogic skills at all levels, respecting different cultural values, supporting
equity between and within countries and between generations, and ensuring the
conservation of natural resources with optimal water and energy use, thus restoring
lost biodiversity, striving for zero emissions and zero waste, and promoting the
quality of life over the long term.
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