
 
 
EDITOR 
Pierfrancesco Morganti 
Dermatology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy;  
China Medical University, Shenyang, China; 
Director of the R&D Nanoscience Centre MAVI, MAVI Sud Srl, Aprilia (Lt), Italy. 

 
 
Editorial Office 
MDPI 
St. Alban-Anlage 66 
4052 Basel, Switzerland 
 
 
 
 
For citation purposes, cite each article independently as indicated below: 
 
LastName, A.A.; LastName, B.B.; LastName, C.C. Chapter Title. In Bionanotechnology to Save the 
Environment. Plant and Fishery’s Biomass as Alternative to Petrol; Pierfrancesco Morganti, Ed.; MDPI: 
Basel, Switzerland, 2018; Page Range. 
 
 
 
 
ISBN 978-3-03842-692-9 (Hbk) 
ISBN 978-3-03842-693-6 (PDF)    

doi:10.3390/books978-3-03842-693-6 
 
 
Cover image courtesy of Pierfrancesco Morganti. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2019 by the authors. Chapters in this volume are Open Access and distributed under the Creative 
Commons Attribution (CC BY 4.0) license, which allows users to download, copy and build upon 
published articles, as long as the author and publisher are properly credited, which ensures 
maximum dissemination and a wider impact of our publications. 
The book taken as a whole is © 2019 MDPI under the terms and conditions of the Creative 
Commons license CC BY-NC-ND. 



Chitin Nanofibrils, a Natural Polymer from
Fishery Waste: Nanoparticle and
Nanocomposite Characteristics

Pierfrancesco Morganti, Gianluca Morganti and Maria Luisa Nunziata

Abstract: Chitin nanofibrils (CNs), obtained by a patented industrial process,
is a pure linear alpha-crystal polysaccharide of acetyl-D-glucosamine and
D-glucosamine with a mean dimension of 5 × 7 × 240 nm. By the process
a colloidal aqueous suspension, containing ~300 billion of positively charged
pure nanofibrils, is obtained. For their physicochemical character CNs form
easily block copolymeric nanoparticles (NPs) with macromolecules or natural
polymers, negatively charged. These NPs, capable to entrap active ingredients,
can be embedded into micro/nano cosmetic pharmaceutical emulsions or into
nanocomposite fibers to make non-woven tissues. NPs not only have the capacity
to increase the effectiveness of ingredients protect them from environmental
aggressions, but also to release them in different skin/mucous layers at different
times, depending on the formulation methodology used. Effectiveness and safeness
of chitin nanoparticles are reported and discussed in this chapter.

1. Introduction

Chitin nanofibrils (CNs) [1,2], are pure crystalline structures obtained by an
industrial patented process free of any waste material [3]. They are made of linear
alpha polysaccharides of N-acetyl-D-glucosamine and D-Glucosamine with a mean
dimension of 5 × 7 × 240 nanometers (nm) and the same backbone of hyaluronic
acid (Figure 1) [4,5].

  

Sustainability 2017, 9, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/sustainability 

Chapter 

Chitin Nanofibrils, a Natural Polymer from Fishery 
Waste: Nanoparticle and Nanocomposite 
Characteristics 

Abstract: Chitin Nanofibrils (CNs), obtained by a patented industrial process, is a pure linear 
alpha-crystal polysaccharide of acetyl-D-glucosamine and D-glucosamine with a mean dimension 
of 5 × 7 × 240 nm. By the process a colloidal aqueous suspension, containing ~300 billion of 
positively charged pure nanofibrils, is obtained. For their physicochemical character CNs form 
easily block copolymeric nanoparticles (NP) with macromolecules or natural polymers, negatively 
charged. These NP, capable to entrap active ingredients, can be embedded into micro/nano 
cosmetic and pharmaceutical emulsions or into nanocomposite fibers to make non-woven tissues. 
NP not only have the capacity to increase the effectiveness of ingredients and protect them from 
environmental aggressions, but also to release them in different skin/mucous layers at different 
times, depending on the formulation and methodology used. The effectiveness and safeness of the 
chitin nanoparticles are reported and discussed in this chapter. 

Keywords: chitin nanofibrils; chitoligosaccharides; chitosan; nanoparticles; nanocomposites; 
natural fibers; electrospinning; casting technology; advanced medications; nutricosmetics;  
food packaging 

 

1. Introduction 

Chitin Nanofibrils (CN) [1,2], obtained as pure crystalline structures by an industrial patented 
process without producing any waste material [3], are pure, linear alpha crystal polysaccharides of 
N-acetyl-D-glucosamine and D-Glucosamine with a mean dimension of 5 × 7 × 240 nanometers 
(nm) and the same backbone of hyaluronic acid (Figure 1) [4,5]. 

By this patented process a colloidal aqueous suspension of CNs are obtained, containing about 
300 billion pure nanofibrils per milliliter, as shown elsewhere [4,5]. A nanometer (Figure 2), with a 
range equivalent to the billionth of a meter (80,000 times thinner than a human hair), covers sizes 
smaller than the wavelength range of visible light but bigger than several atoms (Figure 3) [6,7].  

 
Figure 1. Chitin and hyaluronic acid have the same backbone (courtesy of MAVI SUD, Italy). Figure 1. Chitin and hyaluronic acid have the same backbone (courtesy of

MAVI SUD, Italy).
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By this patented process a colloidal aqueous suspension of CNs are
obtained, containing about 300 billion pure nanofibrils per milliliter, as shown
elsewhere (Figure 2) [4,5]. A nanometer, with a range equivalent to the billionth
of a meter (80,000 times thinner than a human hair), covers sizes smaller than the
wavelength range of visible light but bigger than several atoms (Figure 3) [6,7].Sustainability 2017, 9, x FOR PEER REVIEW  2 of 17 

 
Figure 2. Chitin Nanofibrils at SEM. 

These electropositive nanocrystals with interesting physicochemical characteristics and 
properties (Figure 4) easily form block copolymeric micro/nanoparticles with electronegative 
compounds, and give more mechanical resistance to natural or man-made polymers, rendering 
their activity more effective [8–13].  

The higher acetylation degree of chitin can, in fact, contribute to the formation of hydrogen 
bonds, stabilizing the crystalline structure [8], giving not only a greater resistance to the composite 
fiber made, for example, with PLA or chitosan [9], but also showing antibacterial activity and lower 
toxicity [10]. On the one hand, nanocrystals could institute a bridge between single molecules and 
bulk systems, modifying and changing the polymer characteristics [11]. On the other hand, the 
nanometer range and high-surface-area-to volume ratio of CNs allow them to interact closely with 
microbial membranes, they display most significant antibacterial and antifungal effects different 
from those of the bulk counterparts [11,12]. Moreover, these nanocrystals, covered by positive 
charges on their surface and capable to entrap active ingredients, have the ability to disturb the 
tight lamellar layers of the Stratum Corneum (SC), enabling better diffusion of the ingredients 
through the skin layers [13]. 

On the contrary, when the nanoparticles are negatively charged, the active ingredients remain 
at the level of the outermost skin. Thus, it is possible to modify the activity and effectiveness of the 
CN block-copolymeric nanoparticles not only by selecting the active ingredients, but also by 
modulating the electrical charges covering their surface. However, these fibrillar bio-nanoparticles 
are characterized by remarkable properties such as outstanding stiffness and strength, 
thermostability, barrier properties, degradability, and sustainability, with a global availability from 
renewable resources and food waste [5,12,13]. 

Thus, CN find many applications in foods, advanced medications, cosmetics, smart textiles, 
waste water treatments, and other biotechnological products [14–16] (Figure 5).  

For this purpose it is interesting to underline that the significant amount of underutilized 
waste resulting from the industrial processing of seafood and plant biomass has become a problem 
both for the environment and human health.  
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According to the Food Agricultural Organization (FAO) Yearbook, in fact, the annual total 
production of crustaceans and fisheries, has reached 148.5 million tons in 2010, 45%, producing 
~50–70% waste [17]. On the other hand, 140 billion tons of plant biomass are generated every year 
from agriculture according to the United Nations Environment Program (UNEP) [18]. Therefore 

Figure 3. The nanometer dimension [7].

These electropositive nanocrystals with interesting physicochemical characteristics
and properties (Figure 4) easily form block copolymeric micro/nanoparticles with
electronegative compounds, and give more mechanical strenght to natural or man-made
polymers, rendering their activity more effective [8–13].
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The higher acetylation degree of chitin can, in fact, contribute to the formation
of hydrogen bonds, stabilizing the crystalline structure [8], giving not only a greater
resistance to the composite fiber made, for example, with PLA or chitosan [9],
but also showing antibacterial activity and lower toxicity [10]. On the one hand,
nanocrystals could institute a bridge between single molecules and bulk systems,
modifying and changing the polymer characteristics [11]. On the other hand,
the nanometer range and high-surface-area-to volume ratio of CNs allow them to
interact closely with microbial membranes; they display most significant antibacterial
and antifungal effects different from those of the bulk counterparts [11,12].
Moreover, these nanocrystals, covered by positive charges on their surface and
capable to entrap active ingredients, have the ability to disturb the tight lamellar
layers of the Stratum Corneum (SC), enabling better diffusion of the ingredients
through the skin layers [13].

On the contrary, when the nanoparticles are negatively charged, the active
ingredients remain at the level of the outermost skin. So, it is possible to modify
the activity and effectiveness of the CN block-copolymeric nanoparticles not only
by selecting the active ingredients, but also by modulating the electrical charges
covering their surface. However, these fibrillar bio-nanoparticles are characterized
by remarkable properties such as outstanding stiffness and strength, thermostability,
barrier properties, degradability, and sustainability, with a global availability from
renewable resources and food waste [5,12,13].

Thus, CNs find many applications in foods, advanced medications, cosmetics,
smart textiles, waste water treatments, and other biotechnological products [14–16]
(Figure 5).

For this purpose it is interesting to underline that the significant amount of
underutilized waste resulting from the industrial processing of seafood and plant
biomass became a problem both for the environment and human health.
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According to the Food Agricultural Organization (FAO) Yearbook, in fact,
the annual total production of crustacean and fishery’s, has reached 148.5 million
tons in 2010, 45%, producing ~50–70% waste [17]. On the other hand, 140 billion tons
of plant biomass are generated every year from agriculture according to the United
Nations Environment Program (UNEP) [18]. Therefore fisheries and plant biomass,
widely available and renewable materials still largely underutilized byproducts
represent an important source of raw material at a low cost (virtually free).

Aside from being carbon-neutral biomass used for energy and innovative
goods it could reduce greenhouse gas (GHG) emissions and dependency on fossil
fuels, closing the carbon cycle loop and contributing to climate change mitigation.
Thus, the main industrial objectives are to select raw materials (possibly obtained
from wastes and byproducts), identifying and assessing environmentally sound
technologies to convert chitinous and lignocellulosic biomass into energy and
innovative goods.

The use of chitin nanofibrils to produce nanoparticles and nanocomposites is
the object of the following section.

2. Chitin, Chitosan and Chitoolisaccharides

While chitosan is the low acetyl substituted form of chitin, composed mainly of
Beta (1–4)-2-deoxy-2-amino-D-glucopyranose residues [19], chitoolisaccharides are
the smallest chitosan oligomers, characterized by different molecular weights with
unusual biological activities [20] (Figure 6).
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These natural polymers, which elicitate defence responses in mammals and plant tissues, 
because of their mucoadhesive property, low toxicity and antifungal/antibacterial activity, have 
found a variety of applications in different fields such as the biomedical, pharmaceutical, food and 
environmental industries [21], as previously reported. Moreover, the presence of amino groups 
makes chitin and its derivatives easier to modify by chemical reactions than cellulose [22]. In 
addition, CN, for its crystalline structure, nanosize dimension and natural origin, has been shown 
to be not only an interesting active carrier for innovative pharmaceutical and cosmetic products, but 
also a good candidate for reinforcing polymer nanocomposite fibers for advanced medications and 
food packaging films [23,24].  

Specifically in the case of composites and films, the use of biopolymers has emerged as an 
interesting alternative to fossil fuel-based products. With the impending fossil fuel crisis, the search 
for and development of alternative chemical/material substitutes is pivotal to reducing human 
dependence on fossil resources. The various advantages of natural fibers over man-made glass and 
carbon fibers include their low cost, low density, comparable specific tensile properties, reduced 
energy consumption, lower health risk, renewability, recyclability, and biodegradability, all 
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These natural polymers, which elicitate defence responses in mammals
and plant tissues, because of their mucoadhesive property, low toxicity and
antifungal/antibacterial activity, have found a variety of applications in different
fields such as the biomedical, pharmaceutical, food and environmental industrial [21],
as previously reported. Moreover, the presence of amino groups makes chitin and its
derivatives easier to modify by chemical reactions than cellulose [22]. In addition,
CN, for its crystalline structure, nanosize dimension and natural origin, has been
shown to be not only an interesting active carrier for innovative pharmaceutical and
cosmetic products, but also a good candidate for reinforcing polymer nanocomposite
fibers to be used for advanced medications and food packaging films [23,24].

Specifically in the case of composites and films, the use of biopolymers
has emerged as an interesting alternative to fossil fuel-based products. With the
impending fossil fuel crisis, the search for and development of alternative
chemical/material substitutes is pivotal to reduce human dependence on fossil
resources. The various advantages of natural fibers over man-made glass and
caron fibers include their low cost, low density, comparable specific tensile
properties, reduced energy consumption, lower health risk, renewability, recyclability,
and biodegradability, all necessary to safeguard both the environment and human
health [25]. Moreover, owing to the increase in the concept of ecological safety and
utilization of renewable materials towards a greener society, the application of natural
fibers in industry as bio-filler/reinforcement materials in composite has considerably
increased in recent years [26]. These composites are, in fact, eco-friendly to a greater
degree and offer a lower density, better matrix–fiber compatibility, and recyclability
compared to conventional ones [27,28].

For all these reasons, CN has shown interesting properties for both its
crystallinity and nanodimension. In any case, chitin nanofibrils and chitosan
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possess interesting characteristics qualifying their use in wound healing for their
capacity to (a) attract and activate macrophages and neutrophils initiating the healing
process; (b) promote granulation and re-epithelialization of the tissue; (c) limit scar
formation and retraction; (d) show analgesic and haemostatic activity; (e) activate
the immunocompetent cells function; and (f) stimulate the cellular activities by the
release of monomers and oligomers of glucosamine and N-acetyl glucosamine, used
as building blocks in the synthesis of the natural Extra Cellular Matrix (ECM) [29–34].
Moreover, they show interesting skin protective activity and antimicrobial/antifungal
effectiveness [10,15].

In addition, CN and chitosan, as polymers characterized by their good
adsorption and attraction ability towards transition metal ions and electronegative
polymers, easily form stable chelate compounds and block co-polymeric
nanoparticles, respectively (Figure 7). This complex-forming ability, useful to
clean air and water or produce specialized pharmaceutical and cosmetic carriers,
mostly depends on polymer parameters such as de-acetylation degree, polymer
chain length and crystallinity [35,36], as well as on its own absorptive properties and
physical form of the adsorbent selected, connected also with its composition, pH,
and ionic strength.
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3. CN Nanoparticles and Nanocomposites

On the one hand nanoparticles, obtained combining the electropositive CN
with the electronegative hyaluronic acid [36], have been used recently to design
cosmetic products characterized, for example, by their antiaging effectiveness on
skin folds has been shown (Figure 8) [37], anti-acne activity treatment with an evident
decrease of lesion counts (Figure 9) [38] and melanin synthesis inhibition verified
on melanocytes cultures (Figure 10) [39], or for their elastic activity on damaged
hair exposed to UV (Figure 11) [40] and wound healing activity (Figure 12) [32].
On the other hand, they are also considered as high-potential filler material for
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the improvement of the mechanical and physical properties of the nanocomposite
polymer matrix (Figure 13) [41,42].Sustainability 2017, 9, x FOR PEER REVIEW  6 of 17 
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Figure 10. % Melanin synthesis inhibition on melanocyte cultures treated by
CN–HA entrapping active ingredients vs. control and vehicle [39] (courtesy of
Morganti et al.).
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4. Nanoparticles and Regenerative Medicine

4.1. Nanoparticles

Nanoparticles are used in nanomedicine as diagnostic imaging agents and
therapeutic delivery vehicles to treat different disorders such as cancer, infection
diseases, neurological modifications, etc. [42–49].

The primary amine groups of Chitin Nanofibril (CN) [50], assessing the
special properties to this crystalline compound as material of choice for developing
micro/nanoparticles, make it very useful, especially in biomedical applications [51].
The CN nanoparticles, in fact, have the ability to control the release of active
ingredients, avoiding the use of hazardous organic solvents, since they are produced
by the gelation method in aqueous solution by the use of electronegative, natural
polymers (Figure 14) [36].
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As an electropositive polymer, CN, when in contact with electronegative
compounds, easily forms block copolymeric nanoparticles, also having the ability to
entrap different active ingredients during the gelation process (Figure 15).Sustainability 2017, 9, x FOR PEER REVIEW  9 of 17 
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Both CN and CN-derived nanoparticles are biocompatible with living tissues,
breaking down to harmless amino sugars by the activity of the chitotriosidase
(families of chitinases), secreted by humans [52]. This specific enzyme degrades chitin
and chitosan primarily by the endo-processive mechanism, showing an absolute
preference for acetylated sites compared with deacetylated ones. Thus CN is more
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easily degraded than chitosan because of its higher content of acetylated glucosamine,
probably acting as a template for both the regular synthesis of hyaluronan and
glucosaminoglicans, inducing the normal and regular dispositions of the fibers into
the ECM (Figure 16). The facility to modulate the collagen synthesis could explain
why its use may reduce the risk of hypertrophic formation of scars and keloids, also
slowing down the adhesion of intra-peritoneal and intestinal structures [29,30,53,54].
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Thus, when used as carrier, this natural polymer could modulate the penetration
through the skin layers of the entrapped/encapsulated active ingredients and the
healing process by its own metabolized components (e.g. glucosamine and acetyl
glucosamine) [29,30].

During the wound healing process, in fact, glucosamine and N-acetyl
glucosamine groups should serve as a reinforcement substratum of the epidermis
for keratinocyte activity at level of the wounded tissue. At dermis level, fibroblasts
can be activated to produce the right quality and quantity of fine collagen fibers,
necessary in the early period of the tissue rebuilding. Thus, CN could constitute a
micro-environmental stimulus for the cell that, by influencing its correct trophism,
could ameliorate and modulate the skin granulation process, enhancing the activity
of defensines. Moreover, they modulate the activity of both metalloproteinases and
angiogenesis favouring the regular deposition of the collagen fibers necessary to
repair the dermo–epidermal lesions [55,56].

4.2. Regenerative Medicine

The aim of regenerative medicine is to repair and replace damaged tissues or
organs by mean of natural regeneration processes. In fact, million people worldwide
had an increase in life expectancy, while millions of patients are suffering from the
skin and cartilage defects caused by trauma, injury and age-related degeneration.
For example, the main cause of hospital admission and death in Brazil is injuries
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caused by accidents. In 2004 alone, the National Health Care System has spent
US$585 million on orthotics and prosthetics [57,58].

According to The WHO Report on Disability [47], there are more than
1 billion people with disability worldwide (i.e., about 15% of the global population)
who would benefit from prosthetics and orthotics services. The presence of
disability is rising because of the aging population and the global increase in
chronic diseases. Thus, 30 million people in Africa, Asia and South America
require 180,000 rehabilitation professionals and devices whose cost is unsustainable
for poor people. However, the mass production of these devices can lower their
cost, using universal and innovative ingredients that are administered widely.
Therefore, it becomes imperative to develop biomaterials, such as CN, with the
main purpose of regenerating tissues and organs, possibly at low cost and without
side effects.

In a regeneration strategy, biomaterials have to promote new tissue formation
by providing adequate porosity and an appropriate surface to foster and direct
cellular attachment, migration, proliferation, favouring the desired differentiation of
specific phenotypes throughout scaffolds where new tissue formation is needed [59].
Thus films, fibers and bulk materials, based on the natural polysaccharide
CN, could represent an elective biomaterial combining bioresorption properties,
absence of cytotoxicity and low environmental impact during processing and
use [60,61].

5. Nanocomposites

Nanocomposites, as the most advanced and adaptable engineering material,
are considered to belong to the group called nanomaterials, where a nanoparticle
(nanofiller) is distributed into a matrix [62].

Generally, a nanocomposite is a multiphase dense material in which at least one
of its phases has either one, two or three measurements lower than 100 nm [63].

The perfect combination of the right polymeric matrix and reinforcing natural
fibers produces composites possessing the finest properties of each component.
However, while the term natural fiber-reinforced composite usually refers to natural
fibers in any sort of polymeric matrix (natural or man-made), the nanofillers
(nanoparticles) in a nanocomposite material are the component constituted of
inorganic/inorganic, inorganic/organic or organic/organic sources.

Polymer/inorganic nanoparticles find applications in diverse areas, including
biomedical applications. While on the one hand the polymer component has
structural functions, also tuning the mechanical features and processability of the
final material, on the other hand inorganic components such as TiO2, ZnO, or the
metals Ag, Cu and Bi, can not only reinforce the mechanical and thermal properties,
but can characterize the final product by their anti-inflammatory, antibacterial
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and anti-fungal activities (Figure 17), necessary, for example, to accelerate skin
regeneration by the use of advanced medications, appositely designed (Figure 18).Sustainability 2017, 9, x FOR PEER REVIEW  11 of 17 
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Thus, before starting the electrospinning and/or casting process to make
non-woven tissues, Ag nanoparticles have been bound to CN fiber by our group [16].
This methodology allows the inorganic particle to be either physically trapped within
the matrix or ionically bound to the polymer [64], depending on the productive
process selected. However, both electrospinning and casting are technologies for
fabricating fibers at nanometer dimension, which for their specific high surface areas
and their ability to mimic the native ECM are very useful for developing nanofibrous
cellular scaffolds for human tissue engineering.

All the tissues of human organs, such as bone, cartilage, tendon, ligaments, skin,
nerve, and blood vessels, in fact, are hierarchically organized into fibrous structures
with fiber dimensions down to the nanometer scale [65].

Advanced medications made by the use of electrospinning or casting technology
can provide an environmental or physical cell scaffold, promoting cell growth and
function towards the synthesis of ECM over time. This is the reason why natural,
biodegradable, nanofibrous materials that mimic the ECM nanostructure have been
investigated as ideal components for many human tissues.

Therefore, nanostructured biomaterials such as nanoparticles, nanofibers
and nanocomposites made by the use of CN have gained increasing interest in
regenerative medicine, so that recently they have been investigated for the capacity to
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emulate the nanofibrous features of ECM components and modulate the regeneration
of burned skin in a faster way (Figure 18) [53,66].

Figure 18. Scar-forming and antibacterial activity of chitosan/chitin fibers treated
with Ag+ on burned baby skin treated for six days. Courtesy of M. Palombo et al. [53].

The general idea of nanocomposites is based on the concept of creating a
very large interface between nanosized building blocks and the natural/manmade
polymer matrix [67]. In any case, the performance of natural composites is influenced
by several factors, such as the fiber’s microfibrillar angle and its architectural
structure, the physicochemical properties and composition, as well as the cell
dimensions, and the mechanical properties connected with the interaction between
the fiber and the polymer matrix. For these reasons, in recent years reinforced
composites containing natural fibers have received considerable attention. Thus, their
use increased rapidly because of their high performance in mechanical properties,
significant processing advantages, biodegradability, low cost and low density [68].

Natural fibers are, in fact, renewable and cheaper, and pose no health hazards,
providing a solution to environmental pollution by finding new uses for waste
materials. At this purpose CN from crustaceans’ waste, and lignin from plant
biomass, seem to have good potential as byproduct resources for industrial uses,
probably for their capacity to form non-woven tissues or films with an extremely
high surface-to-volume ratio, and tunable porosity underlined for their non-toxic
and skin-friendly character, as reported in other chapters of this book.

As natural compounds, diffuse in nature in great quantity, lignin represents a
structural material for plant cells, and chitin (CN) is a defense and protective material
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for crustaceans. However, to understand the properties of naturally reinforced
composite materials, it is essential to recognize and control in advance the mechanical,
physical and chemical composition/properties of the fibers selected, together
with their naturalness, safeness and effectiveness [69]. Natural polymers such as
oligosaccharides, in fact, are hydrophilic, enzymatically degradable compounds
capable of retaining the stability of incorporated drugs, thereby increasing their
therapeutic effects.

This is why the term bio-nanocomposite has been coined, as well as
naturapolyceutics, born from the union of polymer and pharmaceutics [70].

In any case, bio-nanocomposites are regarded as an emerging group of
nanostructured materials classified as (a) nanocomposite materials developed
from renewable and sustainable nanoparticles like cellulose, chitin and lignin,
(b) petroleum-derived polymers like polypropylene (PP), polyethylene (PE) and
polyethylene oxide (PEO), and nanocomposites derived from bio polymers like
polylactic acid (PLA) and polyhidroxyacids (PHA) or inorganic nanofillers like
carbon nanotubes and nanoclay.

In conclusion, nanoparticles, nanofibers and nanocomposites, made by the
use of CN and other natural polymers or macromolecules, represent new families
of polymeric carriers and matrices able to enhance the mechanical and barrier
properties of emulsions, films, and non-woven tissues, used to produce innovative
cosmetics, food packaging and advanced medications together with many other
composite-based industrial applications (Figure 19).
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Specifically, CN nanoparticles enhance the performance and properties of
emulsions and composites, showing great value for both innovative pharmaceutical
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and cosmetic formulations, and fiber-reinforced composite-based products. This is
the reason why bionanotechnology is estimated to contribute at least US$3 trillion to
the worldwide economy by 2020 [71].

Furthermore, it has been expected that industries based on nanotechnology
might require at least six million workers to sustain them by the end of the decade,
hence contributing to a solution to the international economic crisis. Apart from
the benefits and safety aspects of bionanotechnology-based products such as
nanoparticles and nanocomposites, public opinion and attitudes (Figure 20) towards
this new sector are extremely important for the development of this emerging area
and business extimated to reach US$172 billion by 2025 [72], according to the research
study of Nanotechnology Industries Association (NIA) [73].
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6. Concluding Remarks 

The extraordinary mechanical and biological properties of Chitin Nanofibrils seem to be 
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However, more studies must be undertaken in order to recognize in a deeper way all the 
possibilities these new technologies and chitin nanofibrils have for contributing to effective 
industrial innovations. It is, therefore, fundamental to underline the necessity of using more waste 
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6. Concluding Remarks

The extraordinary mechanical and biological properties of Chitin nanofibrils
seem to be related to their highly layered hierarchical structure, when produced as
pure crystals by the right treatment and purification methods [74]. They are natural
polymers possessing unique properties like biodegradability and chelating activities,
and have been shown to have antibacterial, antifungal, and anti-inflammatory
effectiveness also [75]. However, the relationship between its hierarchical structure
and the biological properties has to be further explored.

In anyway CN is a biomaterial that seems capable of stimulating the growth of
cells in contact with it, interacting with the biological systems.
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Finally, its extraction from waste materials of natural origin, the low cost and
its wide applicability make it suitable to be used in many industries involved in the
production of pharmaceuticals, food, cosmetic products, and packaging materials.

However, more studies must be undertaken in order to recognize in a deeper
way all the possibilities these new technologies and chitin nanofibrils have for
contributing to effective industrial innovations. It is, therefore, fundamental to
underline the necessity of using more waste materials and industrial byproducts
to produce goods that will not impoverish our planet and will help maintain its
biodiversity [76].
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