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Cellulose and Lignin: The Abundant
Renewable Polymers from Plant Biomass

Pietro Palmisano and Maria Chiara Piglione

Abstract: The conversion of several biomasses into renewable chemicals and fuels
has received great attention in the last decade as a sort of parallel route to the
classical petrochemical way of reaching an eco-friendlier and more sustainable
economy. Many researchers have further focused their studies towards waste
products coming from the agriculture and/or forest industry, and found out the
different techniques used for the separation of the main constituents of a classical
biomass—cellulose, hemicellulose and lignin—as well as their characterization
techniques and analytical studies in order to better identify their physical and
chemical characteristics for identifying the best way to transform them into valuable
products. An overview of the most important developed processes has been
widely coupled with a detailed list of the chemicals and fuels that a potential
biorefinery could provide, simply by processing feedstocks that a few years ago
were considered just waste.

1. Introduction

Some of the main problems of today’s world are climate change due to
greenhouse gas emissions (GHG), resource constraints—particularly for fossil
fuels—and population fast growth, which causes an increased energy, water and food
demand. For these reasons, interest has been focused on studying new technologies
and finding sustainable alternatives to the fossil feedstock dependence, developing
the biorefinery concept. The idea is very similar to a petroleum refinery, in which
petroleum is the starting source for the production of multiple fuels and a wide
range of products. In the same way, a biorefinery is a chemical plant fed by biomass
and/or renewable feedstocks as inputs, converting them to fuels (e.g., biodiesel and
bioethanol), energy and a wide range of chemicals or different kind of materials that
can have a multiple range of application fields (e.g., monoethylene glycol, n-butanol,
xylenes, polyurethane, polyols).

One of the main strengths of a biorefinery is the number of different products
and intermediates generated from the whole process that allow the maximization of
the value of the biomass itself. Furthermore, big efforts are aimed at the energetic
self-sustainability of the biorefinery in order to make their development and
diffusion convenient.
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It has also been widely demonstrated in the past 30 years of experimental
studies that many fossil-derived industrial products could be partially or totally
replaced using biomass sources as bio-based final products [1]. In the last decade,
many scientific studies have been focused on the conversion of biomasses towards
the main block molecules of the chemical and polymer industry, trying to better
define the most promising and economically feasible route to get methanol, ethylene,
propylene, butadiene, benzene, toluene and xylene from several kinds of biomasses
instead of the complementary fossil-derived molecules.

Biorefineries can be fed with different feedstocks, such as perennial grasses,
starch crops (wheat, maize, etc.), sugar crops (beet, cane, etc.), lignocellulosic crops as
well as oil crops, aquatic biomass and organic residues (industrial, commercial and
post-consumer wastes). First-generation biofuels achieved after transformation of
food crops, in what we can define as I generation biomass plant, can generate several
issues, such as negative energy balance coupled with a negative greenhouse gas
emission, and most likely a vigorous increase in food prices. For this reason, the main
focus of this section is on II generation lignocellulosic biorefineries, whose industry
to date is still under development. Of primary importance in the development
of these new technologies is assuring that new bio-based products have lower
environmental impacts than their petrochemical equivalent. Another important
aspect is the economical one, as in many cases bio-based chemicals and biofuels
have higher production costs than their petrochemical equivalents, only partially
justifiable with the complexity of their structure and with the heterogeneity and
complexity of the starting feedstock (biomass).

If we focus on the historic standpoint, the transformation of the constituent
part of woody biomasses is something well known and not new. For instance,
cellulose can be used as precursor for textile fibers, paper, and film with different
properties deriving from the industrial process. The impact of cellulose crosses
different industrial applications as well as domestic life and civil construction [2].
Besides cellulose, lignin has been extensively studied in recent years. Its abundancy
is directly connected with the pulp and paper industry (the order of magnitude
is roughly millions of tons per year worldwide), where the residual part of the
wood is not useful as cellulose fraction (i.e., black liquor coming from the Kraft
processes or lignosulfonates coming from the sulfite processes, both of which are
the platform for the production of pulp and paper) and it is actually employed as
sacrificial fuel or binding agent for concrete. The increasing interest of academia
in lignin is ascribable to its aromatic nature; that makes it a possible source of
value-added aromatic chemicals, an aspect that will be described more thoroughly in
the coming paragraphs.

For both cellulose and lignin, the interest is now focused on new value-added
applications that can be combined to form the concept of a II generation platform,
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in which the valorization of each constituent of the biomass is a condition sine
qua non for achieving the self-sustainability of the entire process in terms of
revenues (enlarging the range of potential products) and exploiting all the streams
and sub-streams generable from the starting woody material trying to make a
rather complex technical concept economically sustainable. A possible scheme for a
lignocellulosic feedstock biorefinery is shown in Figure 1, in which a thermo-chemical
platform is coupled with a biotechnological one. This general scheme highlights
the possibility of obtaining fuels, chemicals, and building molecules for the
polymer industry, as well as enough energy to achieve energetic self-sustainability.
Products can be generated via thermo-chemical conversion or bioprocessing. In both
cases, the structure of the natural monomers that constitutes the starting biomass are
largely preserved instead of being transformed to obtain the final products.

The aim of this section is to highlight opportunities coming from the use of
lignocellulosic feedstocks in order to obtain a number of value-added products
through a number of different conversion processes.
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Figure 1. Concept block flow diagram for II generation biorefinery.

2. Lignocellulosic Feedstocks

Lignocellulosic biomass refers to inedible plant material with a complex
polymeric generated by photosynthesis, whose main properties are structural
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strength in combination with flexibility. Lignocellulosic feedstocks are in fact complex
natural biopolymers built up by three main constituents—cellulose, hemicellulose
and lignin—whose structures and compositions are affected by many factors such as
plant species, cultivation regions and subsequently growth conditions [3]. A general
composition of lignocellulosic feedstocks is shown in Figure 2.
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Cellulose and hemicellulose are carbohydrate polymers, while lignin is a
phenolic polymer. Besides these three main constituents, lignocellulosic feedstocks
also contain water and minor amounts of extractives and inorganic compounds
(ashes). A general overview of lignocellulosic feedstock composition has been
collected by Lee DK et al. Table 1 is taken from his monograph [4]. Nevertheless, it is
important to remember that the growth in different environments has a significant
effect on feedstock composition.

Table 1. Composition of residual lignocellulosic feedstock [4].

Cellulose % of d.m. Hemicellulose % of d.m. Lignin % of d.m Other % of d.m.

Corn Stover 38 26 19 17
Soybean 33 14 - 53

Wheat Straw 38 29 15 18
Rye Straw 31 25 - 44

Switchgrass 37 29 19 15
Miscanthus 43 24 19 14

Forage Sorghum 34 17 16 33
Sweet Sorghum 23 14 11 52

Bagasse 40 30 20 10
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2.1. Cellulose and Hemicellulose

Cellulose is a long-chain linear polymer that contains predominantly crystalline
arrangements with smaller amorphous regions. The cellulose polymers are arranged
in micro fibrils that are organized in fibrils; these are combined into cellulose
fibers which are responsible for the fibrous nature of lignocellulosic biomass cell
walls. Hemicelluloses are shorter, or branched amorphous polymers, of five- or
six-carbon sugars. Together with lignin, hemicellulose forms the matrix in which
the cellulose fibrils are embedded. The hemicellulose acts as a connector between
cellulose and lignin [5]. Its basic building block is cellubiose, obtained from the
linking of two moleclules of β-D-glucose. Cellulose, shown in Figure 3, presents many
polar -OH groups that form hydrogen bonds with adjacent chains and create hard,
stable crystalline regions and microfibrils giving strength to the whole biomass
structure. The length of the chains can vary greatly, going from a few hundred to
over ten thousand sugar units, depending on the type of biomass.
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Figure 3. Molecular structure of cellulose.

Referring to Figure 4, it shows that cellulose is arranged into walls that constitute
the plant cell.

The hemicelluloses in deciduous woods (hardwoods) and agricultural
herbaceous products such as wheat straw, cornstover and switch grass predominantly
consist of D-xylose units (xylans), whereas coniferous (softwood) hemicellulose is
mainly made up of D-mannose (mannans), L-arabinose (arabinans) and D-galactose
(galactans) [5]. Xylans are the main hemicelluloses in hardwood and they also
predominate in annual plants and cereals, making up to 30 per cent of the cell
wall material. Hardwood xylan (O-acetyl-4 methyl-glucuronoxylan) is substituted
at irregular intervals with 4-O-methyl-α-D-glucuronic acid groups joined to xylose
by α-1,2-glycosidic linkages. On average, every tenth xylose unit has a uronic acid
group attached at C2 or C3 of xylopyranose [6]. Using hydrolysis, both cellulose and
hemicellulose can be disrupted in C5 and C6 sugars. Hydrolysis can be done more
readily on hemicellulose than on cellulose, due to its branched, amorphous nature.
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2.2. Lignin

Being one of the most abundant natural polymers, together with cellulose
and hemicellulose, lignin forms part of the secondary cell walls of plants
and helps maintain the integrity of the cellulose/hemicellulose/pectin matrix.
The most complete structural model of lignin was proposed by Adler in 1977
(Figure 5) [7]. The variable molecular mass of this biopolymer is a consequence
of the random cross-linked polymerization of phenolic monomeric units, originating
from radical-coupling reactions between phenolic radicals [8,9]. It is generally
accepted that there are three basic phenol derivatives, the so-called monolignols
that make up almost all types of lignin found in nature—p-coumaryl alcohol
(H-phenolic group)—coniferyl alcohol (G for guayacylic phenolic group), and sinapyl
alcohol (S for syringilic phenolic group)] [10]. The scientific literature has defined
lignin as a phenolic-propanoid polymer providing structural support for the plant,
giving strength, rigidity and resistance to environmental stresses [11]. Of course,
as well as cellulose and hemicellulose, the lignin content in biomass varies
depending on biomass typology (softwood vs. hardwood vs. herbaceous plants),
harvesting time and zone, biomass treatment.
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If the lignin can retain a generic propanoic polymer, it becomes crucial to
identify its monomer distribution and concentration relating them to the three basic
precursors mentioned above and shown in Figure 6 [9].
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The chemistry of lignin is complex compared to other biopolymers such as
proteins or carbohydrates, which are linear chains or, at the most, branched polymers.
Lignin contains a range of chemical functional groups, which is partly the result
of the extraction method. The main groups in unmodified lignins are hydroxyl
(aromatic and aliphatic), methoxyl, carbonyl, and carboxyl [9]. Lignin is composed
of a three-dimensional network, lacking the regular and ordered repeating units
of other biopolymers such as cellulose. The majority (approximately two thirds) of
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chemical bonds in the native lignin polymeric network are of the C-O-C ether linkage
type between the phenylpropane units, predominantly β-O-4, while about one
third consists of C-C bonds between these units. Furthermore, lignin also includes
branched and cross-linked structures. Typical bonds and their recurrence in different
types of lignin are shown in Table 2 [11].

Table 2. [Typical bonds and their recurrence in different types of lignin each 100
bonds] [11].

Name Bond Type Softwood (%) Hardwood (%)

β-O-4 Etheric 40–50 50–60
β-5 Etheric 10–12 3

4-O-5 Etheric 3 3
5-5 carbon to carbon 13 3
β-β carbon to carbon 3 3

3. II Generation Biomass Conversion

3.1. Pretreatment Methods

Until recently, the last pilot and demo-scale plant developments have defined
pretreatment as the most important step for the conversion of II generation biomass
towards chemicals and fuels. The goal of this step is the separation of the cellulose
from the other natural polymers as well as the cellulose accessibility to the subsequent
process steps such as the enzymatic hydrolysis or any thermic or catalytic chemical
transformation. A strong separation from the lignin is needed. At the same time,
it is important to allow valorization of the production of a lignin by-product
with high purity. For both streams, the purer they are, the better can be retained.
From this standpoint, it should also be considered that pretreatment should be tuned
compatibility with feedstocks, enzymes and organisms that will be injected later on be
in the bioprocessing and/or the needings for thermo/catalytic/chemical operations.
Another important aspect that needs to be taken in account is the pretreatment
cost, which also includes the costs related to the handling of feedstock and of solid
and liquid streams generated, handling of waste and the potential production of
co-products. The basic aim of this step of the procedure involves firstly the cleavage
of hydrogen typically present in the crystalline cellulose as well as disrupting
hemicellulose and secondly lignin matrix disrupting a remarkable increment of
porosity as well as surface area of cellulose in order to make the enzymatic/chemical
attack more effective [11,12]. The literature presents four pretreatment approaches to
reach the goal: physical, physico-chemical, chemical and biological [13].
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3.2. Physical Biomass Pretreatment

Physical pretreatment consists of mechanical processing for size reduction and
specific surface increase. Examples of physical pretreatments are grinding, milling,
microwaving and extrusion. Typically, these methods are expensive for their energy
requirement [13].

3.3. Physico-Chemical Biomass Pretreatment

Physico-chemical pretreatments include steam explosion, catalyzed (SO2 or
CO2) steam explosion, ammonia fiber explosion (AFEX), liquid hot water and
microwave-chemical pretreatment [14,15]. The steam explosion biomass is treated
with high-pressure saturated steam and then the pressure is suddenly reduced,
which makes the materials undergo an explosive decompression [16]. This kind
of explosion allows efficient cellulose separation from the woody matrix as
well as making for a good characteristic for the subsequent cellulose hydrolysis,
degradation of hemicellulose, an impact modification of native lignin structure.
In this last aspect steam explosions usually affect the molecular weight of lignin
towards its decrement as well as a reduction of its etheric bonds (C-O-C) despite
an increment of biphenilic (C-C types) ones. It requires low capital investment,
it has been proven on different feedstocks and it also has a low environmental
impact [17]. Ammonia fiber explosion is very similar to steam explosion, but in
this case lignocellulosic biomass is exposed to liquid ammonia instead of steam.
The AFEX process demonstrates attractive economics compared to several leading
pretreatment technologies [18] and the ammonia used during the process can be
recovered and reused.

In the case of liquid hot water pretreatment (LHW), biomass undergoes
high-temperature cooking in pressurized water [19]. LHW helps enhance cellulose
digestibility, sugar extraction, and pentose recovery, and the product contains little
or no inhibitor of sugar fermentation [20]. Moreover, this kind of pretreatment does
not require biomass size reduction, as particles are broken apart during pretreatment
itself. Finally, microwave/chemical pretreatment is very effective as it accelerates
reactions during the pretreatment process [16,21].

3.4. Chemical Biomass Pretreatment

Today, these types of pretreatments are mainly employed in the pulp and paper
industry where the cellulose delignification is a must in order to achieve high quality
in terms of pulp pureness (lignin here retains a sort of undesired product or a real
poison) and so a high quality of final products (paper). It is important to note that
the chemical wood/biomass pretreatment must provide a cellulose having high
crystalline degree and molecular weight, and biodegradability of the product.
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Among the commercial routes actually used, the Acidic pretreatment foresees the
use of concentrated and diluted acids (typically dilute sulfuric acid, H2SO4 and Na2S)
with a good hemicellulose removal. Alkaline pretreatment is more focused on lignin
separation. The chemicals needed are basically potassium, calcium, and ammonium
hydroxide. In any case, a good quality of cellulose is generally achieved. Depending on
the starting material origin, type (softwood vs. hardwood) and aging, the tuning of
each process parameter (pressure, temperature, residence time, and above all chemical
choice and their weight ratio with respect to the biomass) must be defined preliminarily
in order to get high cellulose/hemicellulose/lignin separation.

Generally alkaline pretreatment is performed at lower temperature/pressure
(almost in environmental conditions) and for a longer residence time than the acid
one. In both cases the de-structured biomass needs a washing step where lignin and
all the inhibitors for the subsequent hydrolysis must be removed.

Ionic liquids (green solvents) have recently been used for dissolution of several
woody biomasses. These pretreatments seem more sustainable in term of energy
requirement, less impacting from an environmental standpoint, simple enough in
terms of equipment and operating conditions [22], but more study must to be done
in order to use them for commercial applications [23].

3.5. Chemical Biomass Pretreatment

Biological pretreatment uses wood-degrading microorganisms to modify the
chemical composition and/or structure of the lignocellulosic biomass in order to
facilitate enzyme digestion. This kind of pretreatment has multiple limitations
but also many advantages, including no chemical requirement, low energy
input, mild environmental conditions, and environmentally friendly working
parameters [24,25].

4. Cellulose and Hemicellulose Conversion to Sugars

Cellulose and hemicellulose obtained from biomass pretreatment is
then hydrolyzed to soluble fermentable sugars using enzyme systems
(mainly cellulases and hemicellulases). Several process configurations can be
applied: separate hydrolysis and fermentation (SHF), simultaneous saccharification
and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF)
and consolidated biomass processing (CBP) [16].

SHF is composed by two steps conducted at different conditions to each
other and does not need any washing of pretreated biomass or nutrient
supplementation [26]. The first one foresees a biomass hydrolysis to sugars via
enzyme injection, followed by a second step where the sugars are fermented to
ethanol with the help of various yeasts [27].
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During SSF, pretreated biomass hydrolysation to sugars and sugar fermentation
to ethanol take place in the same vessel. The difficulty with this solution is the
optimizing of all the various conditions governing the two different processes
(pH, temperature, substrate concentration, etc.) [28]. On the other hand, its strength
is in the removal of end-product inhibition, which causes enhanced hydrolysis rate.
The cellulose conversion can be favored only with a washing step where the inhibitor
has to be taken out [29].

SSCF is mainly used for xylose-rich lignocellulosic materials and is carried out
by genetically engineered microbes.

CBP is characterized by the occurring of the three main bio-transformations
involved in lignocellulosic bioprospecting in a single process: production of enzymes,
hydrolysis and fermentation. In the first step, cellulase and hemicellulases enzyme
production is achieved; simultaneously it is possible to get sugars such as pentose
and hexose (from hemicellulose and cellulose) as well as their fermentation. This kind
of method allows avoiding the costs associated with cellulose production, but the
“engineering” of a culture with many microbial tasks.

5. Lignin Separation Technologies

As already widely discussed in this section, there are distinct lignin separation
processes [30] already implemented on the commercial scale for several purposes.
Most of them are directly connected to the pulp and paper industry where the
lignin is considered a by-product, and in the best case a co-product. Moreover,
due to the different properties (molecular weight, dryness, particle size distribution,
surface area, presence of sulfonic groups) intensely dependent on the separation
processes of origin, we can have different kinds of products and just not a simple
lignin with native characteristics. Despite this dilemma, nowadays in the pulp and
paper industry 98% of the material coming out from the delignification processes
is still burnt in the same factories to generate energy and steam for the energetic
sustainability of the entire process. Lignosulfonates are the only products related
to the pulp and paper industry that have a market, but they represent no more
than 2% of the total amount of lignin product available (in terms of mass, no more
than 1 Mton/y). The reduced availability of lignosulfonates on the market is mainly
due to the fact that Kraft process has gradually replaced sulfite process in the
last 50 years. Today, the amount of lignin extracted and separated from black liquor
in the Kraft process is one order of magnitude less than that of lignosulfonates, but a
strong effort has been made by some pulp and paper companies in order to obtain
high-value products, lowly affected from impurities and sulfur traces [31].
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5.1. Kraft Lignin

The Kraft process consists of a chemical pretreatment of wood in a range of
155–175 ◦C, using a solution of Na2S/NaOH that allows the delignification of the raw
material after several hours of decanting time. The solid (cellulose) stream is then
separated from the fluid (black liquor) fraction. If isolation of Kraft lignin is desired,
the black liquor is precipitated by neutralization with at very low pH by adding some
acidic agent. In order to get the solid powder of lignin, a drying process needs to be
implemented at a large scale [32]. Kraft lignin could be considered a hydrophobic
material, with a molecular mass around 1000 Da, affected from an abundance of
biphenilic bonds (C-C’) among propylphenols monomers [33] as reported in Figure 7.
This separation process makes lignin water-insoluble, and/or soluble in basic phase.
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5.2. Lignosulfonates

This kind of lignin is generally extracted from liquid residues at the end of the
sulfite-pulping process. The raw material generally used for this technology consists
of softwoods, and the lignin extraction procedure foresees the use of sulfurous
acid (sulfites or bisulfites) followed by the addition of magnesium, ammonium or
sodium salts [34] for neutralization and precipitation. The chemical structure of this
product presents hydrophobic and hydrophilic properties. In this kind of extraction,
the less aggressive and severe conditions ensure a product with a higher molecular
weight than Kraft lignin, and a quite important presence of etheric groups among
the propylphenolic aromatic monomers. Comparing this polymer matrix with the
native lignin, the presence of the sulfonic group attached to the lignin monomers
creates a new and completely different physical and chemical behavior with respect
to the original one (see Figure 8).
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5.3. Organosolv Lignins

Organosolv treatment applied to the raw biomass has been one of the most
studied processes in the field of lignin extraction. Many literature papers have
highlighted the influence of delignification parameters (temperature, pressure,
type of solvent, basically ethanol or acetic acid, solvent concentration in the aqueous
phase, addition of a small amount of acid dose) on the fraction of lignin extracted
in a batch or in a continuous process. In any case, the aim of the process is
solubilizing part of the original lignin. In a subsequent step, lignin separation from
the solution is obtained by acidic precipitation (pH ~2), and then solvent recovery
is achieved by distillation of the solution. Nowadays there are several processes
producing commercial Organosolv Lignin. Most of them are summarized in Table 3,
also specifying the solvent adopted in order to achieve them. Usually working
temperature is between 180 and 200 ◦C, working pressure between 2 and 5 bar
and solvent concentration in water close to 60% w/w. Usually lignin yields are
quite low and the pureness of the obtained product (sulfur, ash and salt free,
abundance of etheric bonds among monomeric units as well as high concentration
of guayacilic, siryngilic and phenolic monomers) is combined with low molecular
weight (around 1000 g/mol) [35].

Table 3. Organosolv Lignin Commercial/Patented Extraction [10].

Lignin Type Solvent

Alcell [36] Ethanol/water
Alcetocell [37] Acetic acid/water
Acetosolv [38] Acetic acid/HCl pulping
ASAM [39] Alkaline sulfite/anthaquinone/methanol
Batelle [40] Phenol/acid/water
Formacell [41] Acetic acid/formic acid/water
Milox [42] Formic acid/hydrogen peroxide
Organocell [43] Methanol pulping/NaOH/anthaquinone pulping
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5.4. Steam Exploded Lignin

If biomasses are treated at high temperature/pressure (i.e., 180–200 ◦C),
followed by a sudden decompression in presence of some chemicals, hydrolysis of
lignin is reached. In these conditions a water-insoluble lignin material with a low
level of residual carbohydrates and extractives is obtained [10]. Depending on the
severity of the explosion and on the acidity level of the hydrolysis, the molecular
weight of the product can be affected.

5.5. II Generation Bioethanol Lignin

In recent years the development of 2nd-generation bioethanol plants has made it
possible to get a new source of lignin as a by-product of the entire process. In this case,
the lignin is a sulfur-free product due to the fact that these processes do not foresee
the use of acid or basic attack to the inlet feedstock (mainly agricultures residues
like wheat or rice straw or energy crops grown in marginal land). Furthermore,
the chemical structure of the obtained lignin is very close to the native one because
in this case smart cooking used for biomass pretreatment is less severe in terms of
temperature and vapor condition than steam explosion.

6. Lignin Derivatives and Their Applications

As shown in a previous paragraph, lignosulfonate is the only lignoderivative with
a wide commercial use due to its capabilities as a binder. Nevertheless, to date, new
routes are becoming interesting in terms of application although they remain limited in
terms of market dimensions. These routes are the ones of eco-friendly renewable
materials [44], moisture-retention agent and dust suppressors, gypsum-board
manufacture, asphalt stabilizers, dyes, and pigment emulsions [45]. In the last 5 years,
many studies and granted projects worldwide [46,47] have been focused on the use
of different lignins (Organosolv, Kraft, steam exploded) as co-polymers, additives for
making new and functionalized composite polymers, formaldehyde resins, polyester
polymers, polyurethane foams, bio-plastics, epoxy resins. The scientific approach to
make feasible the realization of these new products with enhanced mechanical and
thermal properties (with respect to their petrochemical equivalents) consists in the
functionalization of the starting lignins, obtained by chemical modification. This goal
can be achieved by the insertion of a specific group into the polymeric matrix by
alkylation, dealkylation, amination, sulfonation, silylation, acylation, halogenation,
nitration or methylation [48,49].

6.1. Resins

As an alternative to the commercial phenol-formaldehyde resins,
lignin-formaldehyde resins seem to be promising materials if used as adhesives
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for plywood, chipboard, fiberboard, rubber products, and refractory and friction
materials. The synthesis of this new type of resin occurs in acidic or basic media [50].
In order to get this new kind of resin, Organosolv or hydrolyzed lignin has been
retained as the most performing replacements for phenols coming from fossil
sources [51]. The economic and technical evaluation of this new product as adhesive
is considered positive for its application and commercialization [52].

Referring to epoxy-resins, a previous modification of the lignin is required
before its introduction in the polymer structure as cross-linking agent instead of the
bisphenol-A [53]. Generally, the modification foresees a phenolation of the lignin
matrix in order to get diphenolic moieties that perform as well as the bisphenols
during the epoxidation of the resin precursors [54]. In this type of application, the best
performing feedstocks have been identified in lignosulfonates and Organosolv lignin.

6.2. Polyurethane

Due to the large use of this material in the construction and building industry,
the substitution of these fossil-derivatives with green sources has been widely
investigated. In this case, the Organosolv lignin has been demonstrated as the best
substitute of the aromatic isociantes (in particular the methyl diphenil isocianate,
MDI) for reacting with polyols (PEG or PPG). The products achieved could be
considered good in terms of physical properties (both sheets and foams) [55].
Economic evaluations are undergoing in order to ascertain a comparison cost
production with the fossil derivatives.

6.3. Polyolefin Polymers

The high resistance to biodegradability of polypropylene (PP) and polyethylene
(PE) has led to new research towards a blend of both these polyolefin polymers with
natural polymer lignin. However, the optimization of good products, especially
referring to the HDPE and PP, in terms of mechanical properties, seems to be still far
off [56].

6.4. Bio-Plastics from Lignin

Remarkable results have been achieved for the production of an alternative
thermoplastic material in which sulfur-free lignins can be mixed with natural fiber
or additives in order to obtain a plastic granulated called ARBOFORM [57] that can
be melted and molded as a petrochemical thermoplastic material that can replace the
plastic used in household industries.

6.5. Carbon Fibres

The relatively low cost of some lignin sources has oriented many researchers in
considering these materials as precursors for preparing carbon fibers by carbonization
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of dry-spun fibers. A basic aqueous solution needs to be prepared and added during
the plasticized treatment with polyvinyl alcohol or glycerol. Due to the high-purity
lignin required for melt-spinning (sulfur, sugar and ash free), this application seems
to be quite far from an immediate realization [58].

7. Lignin Depolymerization Technologies

In competition with the direct application of lignins in the products/materials
listed and described before, there is the transformation of lignin to several families
of remarkable chemicals, mainly aromatics, which might substitute products
coming from standard petrochemistry. Conversion technologies are based on
the depolymerization concept that transforms the starting matrix structure to
monomers or dimers having a good relevance in terms of chemical product demand:
phenols, cresols, benzene, toluene and xylenes as well as quinones or polyols.
From this perspective pyrolysis of lignin can be seen as the oldest and most widely
studied depolymerization/cracking technique since the 60s for transforming wood
or lignocellulosic feedstocks to chemicals and fuels [59]. Independently from reactor
choice (fluidized bed, ablative cone, Auger) [60] the main product achieved by
thermocracking (usually 500 ◦C in inert atmosphere) is an oil with a large amount
of substituted phenols (monomeric, dimeric and trimeric), with a huge water,
oxygen and acid content, unstable along the time that requires an immediate upgrade
process in order to get monomeric phenols/cresols or aromatics like benzene toluene
and xylenes. Besides oil, pyrolysis also foresees an important production of char
(yields can oscillate between 20 and 40% w/w of the starting materials) and gases.
Both these products need to be burnt in order to make energetically self-sustainable
the entire operation. If the thermocracking occurs in an oxidative atmosphere, the oil
is richer in vanillin and eugenol than phenols and methoxyphenols (guaiacols and
syringols). Both these products have a good way out market as flavorings for the
food and cosmetic industries and some application in the pharmaceutical industries.
If the oxidative atmosphere is brought to a higher concentration respect to the inert
carrier (especially if the fluidized bed configuration is used as reactoristic choice) the
distribution of products loses the aromaticity to facilitate the formation of quinones or
quinines (C6-cyclic dione structure). In both cases, the inert or oxidative atmosphere
represents a limitation for making continuous and scalable processes. The huge
amount of TAR formation during the condensation of the vapors coming out from the
cracker reactor seems to be detrimental for the large scale development [61]. Due to
this limit, in recent years, the catalytic cracking of lignin in a reducing atmosphere
(presence of hydrogen) has been more and more studied, in order to avoid the
formation of undesired products (char and tar), maximize the useful oil fractions,
minimize its acidic content (in order to get it stable), and maximize its concentration
in monomeric phenols [62,63]. If we refer to the char by-product, in the last three
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years many studies have been made for a possible upgrade of the char towards useful
compounds like active carbon or as a simple soil amendment compound. From this
perspective the valorization of the char could make the pyrolysis more attractive for
its further development in bigger scale. Alternative depolymerization routes are also
represented by microbial conversions for producing vanillic, ferulic and coumaric
acids, the enzymatic oxidation for the production of pigments [64,65].

The controlled breaking of different linkage types in lignin needs detailed
information on the stability of the bonds under different conditions and knowledge of
the mechanisms of lignin decomposition. The etheric β-O-4 bond that crosslinks more
than 50% of the phenolic monomers can be cleaved between 200 and 400 ◦C. At higher
temperatures secondary reactions could bring radicalic carbons crossing over with
formation of diphenilic C-C bonds much more stable. A very bad consequence might
be the TAR formation as unsuitable effect. For this reason, lignin treatments typically
yield oligomers, rarely a single monomer, so the cleavage can be promoted using a
reducing atmosphere. In all these cases the use of functionalized catalysts that allow
the simultaneous cleavage of etheric and diphenilic bonds, and the hydrogenation
of the radicals generated by the thermal cracking seem to be a keyword in order
to get the goal. In Figure 9 are shown the products that can be obtained with the
various depolymerization techniques, depending from the atmosphere in which they
take place.
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If we refer to the sources of lignin available on the market, lignosulfonates still
represents the most important product with a huge use as plasticizer in the concrete
industries [67,68] as well as many others like emulsifiers but with lower impact in
terms of tons sold to the tons produced [66]. In any case, the high concentration
of sulfur and salts in its structures has strongly limited the valorization of this
ligno-derivatives towards other applications, in particular its depolymerization
towards valuable monomers [66]. Nowadays the development of second generation
bioethanol plants has made possible to foresee in the near future alternative sources
of very pure types of lignin products, sensibly less affected from sulfur or salts,
so easier to transform in high valuable compounds and/or pure chemicals. From this
perspective, the valorization of the lignin residues coupled to the second generation
bioethanol plants makes it possible a new and more versatile scheme of a biorefinery
platform in which the lignin transformation becomes more profitable than its energy
valorization [69]. Many studies made in the past upon different kind of lignins
(differing for the extraction process, because each extraction process can affect
differently lignin native structure, its bond functionalities and its polymerization
grade), have been revalued and deepened in order to better identify new and
alternative routes for the production of emulsifiers [70], chelating agents for heavy
metals removal from industrial effluent [71], active carbons (after activation by
gasification) [72] as well as several depolymerization technologies via many catalytic,
thermic or thermocatalytic cracking processes able to convert this feedstock to high
value products having lower molecular weight [73].

8. Conclusions

The developments and the main results achieved during the scale-up at
commercial scale of second-generation biorefineries is becoming more important
with every year. If everything starts from the three components that constitute
the feedstocks for this kind of concept plant—cellulose (in part and hemicellulose)
and lignin—a plethora of processes have been separately developed for being later
integrated among them in order to:

• Separate the main components
• Depolymerize or use as they are the components that are retained, which are a

huge source of different chemicals, able to be entered in basic chemistry or other
more complex applications

If the cellulose can open a route towards a plethora of chemicals, it is mandatory
to operate in the inlet part of the biorefinery concept a series of operations able
to depolymerize the starting matrix in order to get pure and low molecular
weight sugars that can be then converted towards the desired chemicals, a route
already widely known from the I generation biorefinery concept. If the conversion
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of cellulose and its derivatives can be considered a quite well-known pathway,
lignin and its valorization is still undergoing. However numerous direct applications
seem to be close to their first scale-up from small quantity to almost commercial
amounts, as well as the scale-up of several depolymerization processes from pilot to
semi-commercial scale.
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