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1. Introduction

Environmental efficiency is considered as a foundational component of
sustainable development (Matsumoto et al. 2020). Efforts to reduce greenhouse gas
emissions (GHGs) to tackle climate change have put a spotlight on the environmental
efficiency of water utility and sanitation services. They also urge these operations to
transition into low-carbon operations. A substantial energy input is used in providing
drinking water and sanitation services, particularly water supply augmentation,
water and sewage treatment and pumping. In many countries, the traditional
water supplies have been under pressure due to increased drought conditions and
climate variability raising water security concerns. Climate-independent water
supply options such as desalinisation have exacerbated energy use in recent times.

The drinking water and sanitation sector encompasses several Sustainable
Development Goals (SDGs) of the United Nations. SDG #6 aims at achieving clean
water and sanitation throughout the world; SDG #13 aims at implementing climate
action and to reduce global greenhouse gas emissions. The water sector is also pivotal
in ensuring SDG #12, sustainable consumption and production aiming at reducing
the consumption of natural resources and pollution.

Environmental efficiency of drinking water and sanitation water services has
received increased attention throughout the world in recent times (Ananda and
Hampf 2015; Molinos-Senante et al. 2014; Molinos-Senante et al. 2018b; Ananda 2018,
2019; The Water Research Foundation 2019). This is unsurprising given the critical
and multi-faceted roles that the sector plays in achieving sustainable development.
In fact, the water–energy nexus has been a thriving area of publication in recent
times, Pacetti et al. (2015), Chen and Chen (2016), Ackerman and Fisher (2013) and
Head and Cammerman (2010).

The increased policy action to mitigate climate change and greenhouse emissions
in recent times has forced the utilities sector to increase its environmental efficiency.
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The GHG footprint of the water and sanitation sector is not insignificant. Globally,
the water sector’s GHG contribution is equivalent to 20% of the sum of committed
reductions by all countries in the Paris Agreement (Ballard et al. 2018). In 2018, the
electricity, gas, water and sanitation sector recorded 189.8 Mt CO2-e and contributed
35.3% of Australia’s total emissions (Commonwealth of Australia 2020). It should
be noted, however, that the overwhelming majority of emissions in this figure come
from the electricity and gas sector. Most reported water sector GHG emissions
are energy-related, and they exclude emissions from non-energy related sources,
often referred to as ‘fugitive emissions’ such as methane and nitrous oxide from
wastewater treatment.

The drinking water utilities sector plays a critical role in sustaining communities
and supporting economic growth. Figure 1 summarizes the global and local
challenges faced by water utilities. It highlights the transformations that are occurring
at three different levels: at the global level, national level and at the water utility
level. At the global level, commitments made to international climate change
agreements such as the Paris Agreement urge the signatory countries to reduce
greenhouse gas emissions in an effort to limit the global temperature increase.
For example, Australia is committed to reduce its 2000 emission levels by 5% by
2020 and 26% below 2005 levels by 2030 (Australian Government 2020). Several
Australian states have a net zero emissions target by 2050. Moreover, increasing
urbanization and population growth have put upward pressures on greenhouse
gas emissions. At sectoral levels, various industries have come up with national
plans to address greenhouse gas emissions and mitigate adverse climate change
impacts. For example, the water industry peak body in Australia has developed
a cost-effective and risk-based tool to assess carbon abatement for water utilities
(Water Services Association of Australia 2012).

The majority of the sector’s energy needs are met by fossil fuel electricity
(Ananda 2018). The increased reliance on climate-independent water supply sources
such as desalinization and recycled water has exacerbated the fossil fuel energy
use and greenhouse gas emissions. The use of desalination water has increased
significantly following the Millennium drought in Australia. Significant capital
investment has been made on constructing desalination plants and enhancing water
recycling capacity across the country in order to address water security concerns.
All these new climate-independent capital assets are energy-intensive. Transforming
the energy mix to renewables through innovative technologies and building resilience
of water utilities to face adverse impacts of climate change while delivering ‘value for
money’ for customers are the core challenges faced by water utilities. Transformation
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of the energy mix to renewable sources will enable to establish a sector low-carbon
and sanitation services. This transformation should be aided by appropriate
measurement frameworks to benchmark environmental efficiency.
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Figure 1. Framework used to respond to global and local challenges.

To formulate effective economic policies that align with sustainability, research
that measures the relationship between emissions and economic growth is vital
(Oh 2010b). Micro-level studies are needed to understand the links between the
energy footprint and its economic and environmental performance. Some of the
pertinent research questions include how to internalize undesirable outputs of
production, what are the drivers of energy efficiency, how operational processes
influence the energy footprint and thereby the economic performance, and what
regulatory changes are required to promote sustainable development?

Utility regulation has traditionally been dominated by a neo-classical economic
paradigm that seeks to control the natural monopoly power of utilities such as water,
electricity and telecommunications. Often, conventional regulation is based on partial
indicators or statistical benchmarking. However, the focus has been on desirable
outputs and more recently quality aspects of outputs. In Europe, recently, there
have been efforts to improve the knowledge base in urban water management from
a resource efficiency perspective (European Environmental Agency 2014). Several
recent studies focused on energy productivity and emissions (Ball et al. 2015; Hampf
2014; Dubrocard and Prombo 2012; Zhang et al. 2011; Choi et al. 2015). As regulated
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authorities, water utilities must select climate change responses that are cost-effective
and environmentally efficient. By including bad outputs such as GHG emissions
in the productivity analysis, policy makers could send a signal to water utilities to
achieve emission reductions through energy efficiency, demand management, waste
heat capture, energy capture and switching to renewables and other alternative
energy sources (Water Services Association of Australia 2012). Such assessments
will invariably facilitate the sector to transition into an environmentally efficient,
low-carbon sector.

Although a large body of literature exists regarding the conventional
productivity assessment in the drinking water and sanitation sector (Lannier and
Porcher 2014; Molinos-Senante et al. 2018a; Molinos-Senante et al. 2017; Ananda 2013;
Cunningham 2013; Sala-Garrido et al. 2019), studies that integrate environmentally
undesirable outputs into productivity assessments are relatively scarce (Ananda
and Hampf 2015; Molinos-Senante et al. 2014). It is noteworthy that efforts
have been made in this regard in developing countries as well. For example,
Kamarudin and Ismail (2016) incorporated non-revenue water as a bad output
into the water utility performance in Malaysia. Kumar (2010) emphasized that the
performance benchmarking of Indian water utilities must take into account service
delivery aspects and non-revenue water. We extend the above strand of research
by developing an environmentally sensitive productivity approach to benchmark
water utilities. Our approach can accommodate multiple undesirable outputs of
production. This study extends the work of Ananda and Hampf (2015) by applying
environmentally adjusted productivity modelling framework to the Australian
drinking water and sanitation services sector from 2013/14 to 2018/19. The specific
objectives of this research are:

• To account for greenhouse emissions and real water losses in drinking water
and sanitation services;

• To compute an environmentally sensitive productivity growth index;
• To analyze the drivers of productivity trends in the drinking water and

sewage sector.

The remainder of this chapter is organized as follows. The next section outlines
some theoretical underpinnings of the measurement of efficiency and productivity
whilst accounting for undesirable outputs such as greenhouse emissions. It also
discusses the data and the model specification used for the analysis. Section 3
discusses the main findings of the empirical analysis and the final section concludes
the chapter.
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2. Methods

Benchmarking productivity has been widely used in economic regulation
of utility industries. A wide variety of water utility benchmarking approaches
have been used in the literature, ranging from partial indicators of productivity
to sophisticated statistical modeling approaches (Berg and Marques 2011; Torres
and Paul 2006; Romano and Guerrini 2011; Cunningham 2013). They include
total factor productivity, stochastic frontier analysis and data envelopment analysis
(DEA). These methods are often used for quantitative assessments of the economic
performance of industries, firms or countries. The nonparametric approach of DEA
has several advantages over parametric methods, including the fact that it does not
require a priori assumptions over the functional relationship that underpins the
production process. This advantage comes at the cost of statistical noise that may be
introduced into the analysis (Kneip et al. 2008; Simar and Wilson 2000).

DEA specifications take the form of a multi-factor productivity model that
compares inputs and outputs of a production process. By using linear programming
techniques, the approach constructs a non-parametric efficiency frontier comprising
best-performing firms or benchmark firms. An individual firm’s performance can be
measured by comparing it to the efficiency frontier constructed.

Traditional measures of productivity growth such as Malmquist, Törnquist
and Fischer indices focus only on the production of desirable outputs and do not
consider undesirable outputs such as GHGs. The Malmquist index is based on ratios
of distance functions and can be decomposed into efficiency change and technical
change components. However, the production of desirable outputs, in this case
drinking water and sanitation services, invariably involves environmental pollution,
greenhouse gas emissions and water losses, which can be collectively termed
undesirable outputs. Chung et al. (1997) highlighted that ignoring undesirable
outputs of production from productivity measurement will lead to biased results
undermining sustainability. In particular, the consideration of pollution externalities
is important in benchmarking and regulatory decision making.

Chung et al. (1997) developed the Malmquist–Luenberger (ML) index that
extends the conventional Malmquist productivity analysis to include undesirable
outputs to produce a more meaningful measure of industrial performance (Shen
et al. 2019). Based on the work by Pastor and Lovell (2005), Oh (2010a) developed
the Global Malmquist–Luenberger (GML) index approach which circumvented the
infeasibility problem of ML linear programming specifications. This study uses
the GML index to estimate an environmentally adjusted productivity index. The
global ML index can be decomposed into efficiency change and technical change.
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The global ML index extends the analysis by measuring the shift in the frontiers
between two periods (the technical change component) by comparing their relative
position to the global frontier. This global frontier is the closure of the technology
constructed by the total sample of all entities and their input–output combinations
for all periods. This study applies the GML index using an input-oriented DEA.
Appendix A provides the technical details of DEA, the global ML productivity index
and its decompositions.

Data and Model Specification

Our data focus on a sample of integrated water and sanitation utilities in
Australia. A dataset was collated for the period 2013–14 to 2018–19 from the
National Performance Report 2018–19 (Bureau of Meteorology 2020). The dataset
covered a total of 84 water utilities. It should be noted that utilities serving less
than 10,000 customers are not part of the national reporting framework. We only
selected the integrated water and sewerage utilities.1 Utilities providing bulk water,2

drinking water only and sewerage only were removed (9 utilities) from the original
dataset. Fifteen utilities were removed from the sample due to missing data. The
final sample comprised of 360 observations of 60 water and sanitation utilities over
a 6-year period (2014–2019). The sample utilities come from all states of Australia
except Tasmania. The sample water utilities included in the study provided both
drinking water and sewerage services to a population of 21.5 million (approximately
86% of the total population) in 2018/19.

The model specification is a crucial step in production frontier studies. Therefore,
our choice of input and output variables is driven by the literature and the empirical
context. Many past studies on productivity performance have used operations
and maintenance expenditure and capital expenditure as inputs for water sector
productivity assessments and some studies have used the length of the water delivery
network when reliable capital costs are not available (Worthington and Higgs 2014;
Saal et al. 2007; Saal and Reid 2004; Ananda 2013). Accordingly, this study uses
the operating cost (adjusted for inflation) and the length of water mains delivery
network as a proxy for the capital stock as inputs in the DEA model formulation.

1 The terms ‘water utilities’ and ‘water and sanitation utilities’ are used interchangeably in this chapter.
Most Australian water utilities provide an integrated service of potable for water drinking and
sanitation purposes and collect wastewater from premises.

2 Bulk water utilities are the wholesale water sellers that supply raw water to retail water utilities, and
they do not directly deal with water and sanitation customers.

50



The operating cost of Australian water utilities include water resource access charges,
purchase and transfer of raw water, salaries, wages and overheads of staff, and
materials, chemicals and energy costs. The length of water mains included the
network length that covers the transfer, distribution and reticulation mains.

The most widely used output measures of the water industry include the
volume of drinking water supplied,3 the volume of sewage collected and the number
of connected properties (Ananda and Pawsey 2019; Saal et al. 2007). We chose
the core outputs of the volume of drinking water delivered and the volume of
sewage collected as good outputs and net greenhouse gas emissions and real water
losses as bad outputs. The net greenhouse gas emissions variable measures the
environmental footprint water and sanitation services and other activities. There is a
tradeoff between emissions footprint and certain activities such as increased sewage
treatment, which entails water quality benefits at the expense of increased emissions.
The variable measures the direct (Scope 1) and indirect (Scope 2) emissions in tons
of carbon dioxide equivalent. The values are adjusted for any carbon sequestration
activities carried out by the water utility using the National Greenhouse Accounts
(NGA) conversion factors. In addition to greenhouse gas emissions, we included real
water losses as an undesirable output. Real water losses in the potable distribution
system are due to leakage and overflows from mains, service reservoirs and service
connections prior to customer meters (National Water Commission 2014).

Drinking water and sanitation providers have limited influence on the
amounts of outputs produced because the government regulation mandates them
to deliver potable water and sanitation services to the assigned population within a
geographical area. Hence, we assume that a typical water utility minimizes inputs
to a given set of good outputs and bad outputs. Accordingly, we specified the DEA
linear programming model as an input minimization model.

3. Results

3.1. Descriptive Statistics and Emission Trends

Descriptive statistics of the input and output variables included in the analysis
are presented in Table 1. Variables have been converted to per property values, which
partially account for the sample heterogeneity in water and sanitation utilities.

3 The term ‘drinking water’ is used for brevity but it also includes water uses for sanitation.

51



The scatterplot matrices of input and output variables are shown in Figure 2.
Pearson correlation coefficients are shown above the diagonal. Figure 2 indicates
that there are no strong correlations among the frontier variables. There was a weak
positive correlation between real water losses and the average residential water
delivered. The same was true for greenhouse gas emissions and average residential
water delivered.

Table 1. Descriptive statistics of variables.

Variable Mean S.D. Max. Min.

Bad Outputs

Greenhouse emissions (tons/1000 properties) 396.1 205.1 1220.0 25.6

Real water losses (L/connection/day) 2.9 1.9 17.8 0.0

Good Outputs

Residential water delivered (ML/property) 204.4 78.6 518.5 77.2

Wastewater collected (ML/property) 220.9 64.4 480.3 68.9

Inputs

Length of water mains (km) 2798.6 4949.7 27,463.0 234.0

Combined operational cost ($/property) 979.5 292.3 3840.0 474.3

The temporal trends of the greenhouse gas emissions modelling are shown in
Figure 3. Figure 3 shows that greenhouse emissions in the water sector vary with the
utility size category. The National Performance Framework classifies water utilities
into four categories based on the number of customers: Major = >100,000 customers
(13 utilities); Large = 50,000–100,000 customers (10 utilities); Medium = 20,000–50,000
customers (17 utilities); and Small = 10,000–20,000 customers (20 utilities). The Major
utility category recorded the lowest level of emissions per 1000 properties while the
Medium utilities recorded the highest emissions levels. A range of factors affects
GHGs of water utilities including the level of raw water treatment needed, the level
of water demand, the degree to which the water utility relies on desalination and
water recycling, the topography of the region, and the extent of the water pumping
and wastewater network. Smaller utilities have higher energy use and emissions
as they are typically located in regional and rural areas where water pumping
must be carried out over large distances and the population is sparsely distributed.
The GHG emissions of Major and Large utility categories have declined over recent
times. The median GHG emissions have increased for all utility categories except
the Medium category in 2018/19. One contributory factor could be the policies to
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reduce emissions culminating to the implementation of carbon tax in 2012. Although
the carbon tax legislation in Australia was subsequently repealed in 2014, the GHG
emissions of the water utilities appear to decline.

ghg

arw

aww

mains

opex

rloss

0.00 0.06 —0.230.29

0.33 0.10

0.10 —0.10 —0.03

—0.03 0.13

—0.25

0.05 0.02

0

0
10

0
50

0

0 400 1000 100 0 15000300 500

25
00

30
0

5
15

1005 10 300 2000

0
10

0
0

15
00

0
60

0
30

0
12

00
50

0

500

0.05

Figure 2. Scatterplot matrix of input and output variables. Key: ghg = Greenhouse
gas emissions; rloss = Real water losses; arw = Average residential water supplied;
aww = Average wastewater collected; mains = The length of water mains; opex =
operational expenditure.
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Figure 3. Boxplot of GHG emission trends by utility size category.

3.2. Productivity Trends without Undesirable Outputs

This section discusses the productivity trends. Table 2 presents the results of the
conventional productivity analysis using the global Malmquist productivity index,
which disregards the undesirable outputs (greenhouse gas emissions and water
losses) in the estimation. Productivity change values greater (less) than one indicate
an increase (decrease) in the productivity. Similarly, the values greater (less) than one
in efficiency change (EC) and technical change (TC) indicate progress (regress) with
regard to the components.

Table 2 summarises the mean cumulative productivity growth results.
It indicates that conventional productivity of the water sector ranged from 3.4%
(2018/19) to 7.7% (2016/17) during the study period. The productivity growth
peaked during 2014/15 and 2016/17. A productivity growth of over 7% was recorded
for both abovementioned periods. On average, the productivity has increased
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approximately by 5% per annum over the study period. However, since 2016/17, the
productivity growth has somewhat declined.

Table 2. The conventional productivity, efficiency change and technical change
from 2014/15 to 2018/19.

Year PC 1 EC 2 TC 3

2014/15 1.0741 1.0965 0.9797

2015/16 1.0394 1.0584 0.9828

2016/17 1.0772 1.0856 0.9930

2017/18 1.0478 1.0639 0.9859

2018/19 1.0340 1.0667 0.9703

1 Productivity Change; 2 Efficiency Change; 3 Technical Change.

3.3. Productivity Trends with Undesirable Outputs

Table 3 and Figure 4 present the average environmentally adjusted cumulative
productivity results using the global Malmquist–Luenberger productivity index.
This productivity index accounted for greenhouse gas emissions and real water losses
that occur in the production process. The environmentally adjusted productivity
growth has occurred throughout the study period, but it is on a declining trajectory.
The productivity growth ranged from 2% (2018/19) to 4.4% (2014/15) during the
study period. Overall, the productivity has improved by 3% per annum on average.
Over 4% productivity growth was recorded during 2014/15 and 2015/16. As shown
in Figure 4, the efficiency change and productivity change growth followed a
similar trajectory and efficiency change was largely responsible for the improved
productivity outcome during the study period.

Figure 5 compares the conventional productivity growth as measured in the
global Malmquist index and the environmentally adjusted productivity growth
as measured in the global Malmquist–Luenberger index. In all time periods
analyzed, except 2015/16, the conventional productivity growth outstripped the
environmentally adjusted productivity growth during the study period.
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Table 3. The environmentally adjusted productivity, efficiency change and technical
change from 2014/15 to 2018/19.

Year PC 1 EC 2 TC 3

2014/15 1.0436 1.0387 1.0091

2015/16 1.0429 1.0732 0.9803

2016/17 1.0333 1.0536 0.9880

2017/18 1.0245 1.0296 1.0000

2018/19 1.0204 1.0393 0.9859

1 Productivity Change; 2 Efficiency Change; 3 Technical Change.
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3.4. Efficiency Change Trends

It would be useful to understand the underlying drivers of this productivity
result. This can be explored by examining the decomposition of the productivity
change index: the efficiency change and technical change. As can be seen from
column 3 of Table 2, the traditional productivity improvement can be attributed to
the efficiency change. The largest efficiency change growth (7%) occurred in 2015/16.
The growth in efficiency change outstripped the technical regress facilitating an
overall productivity growth.

Both conventional and environmentally adjusted efficiency change indices
recorded growth during the study period. In fact, the productivity outcomes were
largely, if not entirely, driven by the growth in the efficiency change. The conventional
average annual growth of efficiency change ranged from 5.8% to 9.6% (Table 2). The
environmentally adjusted efficiency change growth ranged from 3% to 7.3% over
the study period. These results suggest that the average water utility experienced
a ‘catching up’ effect moving closer to the contemporaneous technology frontier
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over the study period. In terms of environmentally adjusted index, water utilities
recorded the highest catching up performance during the 2015–2017 period.

3.5. Technical Change Trends

Column 4 of Table 2 suggests that the technical regress occurred across all
time periods except 2014/15 and 2017/18 under the conventional index framework.
Approximately 2% annual average technical regression occurred during the study
period. This indicates that the contemporaneous frontier has shifted inwardly.
Interestingly, environmentally adjusted index framework yielded a slightly better
technical change result with 0.91% technical progress in 2014/15 and neutral technical
change (0%) in 2017/18 while showing technical regression the rest of the time
(Table 3). The growth in efficiency change has clearly outstripped the growth in
technical change. The growth trend of productivity change has followed a similar
trajectory to that of efficiency change.

An increase in efficiency change coincides with the initial phase of the regulatory
cycle (2014–2018) but this analysis cannot reason this as causation because many
confounding factors are at play here. The technical regress during 2014/15 to 2017/18
means that water utilities did not adopt innovative technologies to minimize costs
during this period. One plausible reason for this technical regression is that an
increased technical regulation requirement preventing a best practice firm from using
more inputs to produce a given set of outputs. These regulatory requirements include
increased standards of security of water supply and environmental compliance
requirements (Cunningham 2013). A ‘knock-on’ effect due to significant capital
investments made in the aftermath of the Millennium drought in Australia to ensure
water security may have also contributed to the technical regress. Such a level
of capital investments cannot be sustained for a long time, but it appears that
the sector’s innovation efforts need lifting. It is also hard to pinpoint a single
reason for the fluctuation of environmentally adjusted technical change without
more in-depth research.

3.6. Productivity Trends by State and Utility Size Category

Variation in productivity and its decompositions were analyzed next. Utilities
were classified into four size categories (see Section Data and Model Specification)
and the trends were examined by state. Australia has eight states and territories
and our dataset contained water utilities located in all states except Tasmania. Water
and sanitation utilities in New South Wales were divided into two sub-categories,
distinguishing between the metropolitan (NSW-m) and country or regional (NSW-c)
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water utilities. Figure 6 shows the environmentally adjusted productivity trends by
state and utility category. It indicates that the productivity trends among states and
utility categories are not homogenous. For example, Victorian Small water utilities
recorded the largest environmentally sensitive productivity improvement over the
study period while the productivity performance of NSW-country water utilities
deteriorated somewhat.
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The environmentally adjusted productivity trends in Australian Capital
Territory (ACT), New South Wales metropolitan (NSW-m) and Northern Territory
(NT) have been stagnant since 2016. The Victorian water utilities recorded the
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greatest variation in environmentally sensitive productivity results while NSW-m
recorded the least variation in productivity over the study period. Water utilities
in Queensland (QLD), South Australia (SA) and Western Australia (WA) showed a
decline in environmentally sensitive productivity over the study period. In terms of
utility size category analysis, Figure 6 shows that the performance of Major utilities
in Queensland has deteriorated markedly since 2017/18.

4. Discussion and Conclusions

Undesirable and environmentally harmful outputs of production are often
ignored by the traditional measures of productivity. It is worthwhile to note the
discrepancy in the conventional productivity results and environmentally adjusted
productivity results. Particularly, the conventional productivity analysis yielded a
higher productivity growth compared to the environmentally adjusted productivity
index. This result is consistent with the findings of similar studies (Oh 2010a; Ananda
and Hampf 2015). The main implication of this result is that using conventional
productivity frameworks will over-estimate the real productivity growth in the sector.
The discrepancy in productivity results from the two approaches is not insignificant.

The overestimation of productivity is problematic for the sector for several
reasons. First, the current productivity assessment totally ignores bad outputs such
as GHG emissions, which contribute to climate change. In other words, water utilities
with high emissions and causing environmental damage could be incorrectly deemed
as ‘best performers’ or industry benchmarks. Second, from a policy evaluation
perspective, the performance of water utilities that heavily rely on energy-intensive
water supplies may differ from utilities that rely on environmentally friendly and less
energy-intensive raw water sources. For example, water abstracted from a protected
catchment or closed storage catchment is usually higher quality than water from
open storage catchment and requires less treatment and therefore fewer emissions.
Third, water utilities that have a lower environmental footprint may be penalized in
traditional productivity evaluations. Fourth, by not accounting for real water losses
and emissions therein, water utilities may appear ‘productive’ from an economic
point of view at the cost of environment, which is detrimental to achieving SDG
#12—sustainable production aiming at reducing pollution.

Within the framework of the global Malmquist–Luenberger DEA, this chapter
presented an approach to measure dynamic changes in environmentally adjusted
productivity of drinking water and sanitation services in Australia. The results
indicated that in the sample period evaluated, the water and sanitation sector had an
annual average growth rate of 3%. This productivity growth came from the growth
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in efficiency change. The analysis also revealed a declining ‘green’ (environmentally
adjusted) productivity growth trajectory. Several factors such as increasing energy
costs in recent times may have contributed to this decline in productivity. Steps must
be taken to explore reasons for this trend and to minimize greenhouse gas emissions
and real water losses using least cost strategies.

One limitation of the present study is that it assumed that the institutional
environments in which the water utilities operate are homogenous. Additionally, the
influence of extreme values on the production frontier is ignored. Future research
should focus on addressing these two limitations. Particularly, accounting for
group heterogeneities manifested by the geographical distribution of water utilities
and varied jurisdictional policy frameworks are important in developing robust
productivity assessments for sustainable development. Another improvement to the
present study is to compute bias-corrected productivity estimates using bootstrap
methods proposed by Simar and Wilson (1998). Uncorrected efficiency estimates
tend to be slightly upwardly biased, although the overall distribution of estimates
remains the same.

The approach presented in this chapter integrated the ideals of sustainability
into the drinking water and sanitation services delivery by including greenhouse
gas emissions and real water losses. Being a crucial sector, which deals with several
SDG arenas, it is important to develop and test assessment frameworks that foster
SDG targets. Without robust sustainability measurement frameworks, it is difficult
not only to track the sectoral progress but also to transform water production
and sanitation service delivery systems into more sustainable ones. Embedding
innovative assessment frameworks such as the one presented in this chapter with
regulatory frameworks will expedite the transition to low carbon drinking water and
sanitation provision while advancing the SDGs.
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Appendix A

With input-oriented DEA, the linear programming model is configured in a
manner that maximizes the technical efficiency of the i-th decision-making unit
(DMU), in order to achieve a given output level. Following the notation of Coelli
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et al. (1998), this can be solved as an input minimization problem using the following
LP programme.

minθ,λθ,

s.t.

−yi+Yλ ≥ 0,

θxi − Xλ ≥ 0,

λ ≥ 0,

(A1)

where yi is an M × 1 vector of outputs produced by the i-th DMU, xi a K × 1 vector
of inputs used by the i-th DMU, Y is the M × N matrix of outputs of N DMUs in
the sample, X is the K × N matrix of inputs of the N DMUs, λ is an N × 1 vector of
weights and θ is a scalar measure of technical efficiency which takes a value between
0 and 1 inclusive.

The above formulation is known as the constant returns to scale (CRS) DEA
formulation and it can be modified to allow the Variable Returns to Scale (VRS) DEA
technology by adding a convexity constraint to the original minimization problem,
resulting in the following linear program:

minθ,λθ,

s.t.

−yi+Yλ ≥ 0,

θxi −Xλ ≥ 0,

N1
′
λ = 1,

λ ≥ 0,

(A2)

where N1 is a vector of ones. The VRS formulation of DEA produces ‘pure’ technical
efficiency devoid of scale effects and efficiency scores are either greater than or equal
to those from the CRS problem. A scale efficiency measure for each DMU can be
obtained by conducting both a CRS and a VRS DEA and then decomposing the
DEA scores obtained from the CRS DEA into two components: one due to scale
inefficiency and the other due to ‘pure’ technical inefficiency. The analysis assumed
CRS technology following Färe and Grosskopf (2003). It should be also noted that the
Australian water and sanitation sector is a mature industry and the above assumption
is not unreasonable.
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Calculating the Malmquist Productivity Index

Following the framework set down by Caves et al. (1982), the input-oriented
Malmquist productivity change index is:

Mt+1
i
(
yi,t, xi,t, yi, t+1, xi,t+1

)
=

[
Dt

I
(
yi,t+1, xi,t+1

)
Dt

i
(
yi,t, xi,t

) ×
Dt+1

i
(
yi,t+1, xi,t+1

)
Dt+1

i
(
yi,t, xi,t

) ]1/2

(A3)

where subscript i denotes the DMU (urban water authority in this case), M is the
productivity of the most recent production point (xi,t+1, yi,t+1) (for DMU i, using
period t + 1 technology) relative to the earlier production point (xi,t, yi,t) (for DMU i,
using period t technology), y refers to outputs and x refers to inputs. Input distance
functions are denoted as D. With regard to input-orientation, productivity values
greater (less) than one indicate positive (negative) TFP growth from period t to period
t + 1. In order to delineate the sources of TFP growth, Equation (A3) can be re-written
as follows:

Mt+1
i (yi,t, xi,t, yi,t+1, xi,t+1)

=
Dt+1

i (yi, t+1,xi,t+1)
Dt

i (yi,t ,xi,t)

[
Dt

i (yi,t+1, xi,t+1)
Dt+1

i (yi,t+1, xi,t+1)
× Dt

i (yi,t , xi,t)
Dt+1

i (yi,t ,xi,t)

]1/2

= ECt,t+1
i TCt,t+1

i

(A4)

where M, the Malmquist total factor productivity, is the product of technical efficiency
change (ECt, t+1) and technological change (TCt, t+1). The global ML index can be
decomposed as

GMLt, t+1 =
θt+1 (xt+1, yt+1, ut+1

)
θt (xt, yt, ut)︸ ︷︷ ︸

MLEfft, t+1

·

√
θt (xt, yt, ut)

θG (xt, yt, ut)
·

θG
(
xt+1, yt+1, ut+1

)
θt+1

(
xt+1, yt+1, ut+1

)︸ ︷︷ ︸
GMLTecht, t+1

(A5)

where the superscript “G” denotes the global frontier. Again, the global Malmquist
index can be obtained by removing the constraint on the bad outputs when
calculating the distance functions.

Several scholars have proposed to modify the conventional productivity indices
such as the Malmquist index to account for bad outputs (Yörük and Zaim 2005;
Färe et al. 2012; Oh and Lee 2010; Zhang et al. 2011; Zhou et al. 2010). The seminal
work of Chung et al. (1997) stands out in accommodating undesirable outputs in
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the productivity measurement. They modified the conventional Malmquist index
by Caves et al. (1982) and developed the Malmquist–Luenberger index, which can
explicitly take bad outputs into account. One limitation of the Malmquist–Luenberger
index is the possible infeasible solutions when undesirable outputs are included in
the estimation (Färe et al. 2001).
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