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Abstract: Oxylipins, oxygenated fatty acid derivatives, are well-established stress
mediators acting in auto- and paracrine manner. Eicosanoids, the most studied
branch of oxylipins, are produced from twenty carbon polyunsaturated fatty acids
(PUFAs). In vertebrates, they are synthesized mainly by lipoxygenase (LOX),
cyclooxygenase (COX) and cytochrome P450-type monooxygenases. In corals,
besides COX and LOX enzymes, the oxidation of arachidonic acid (AA) is catalyzed
by natural fusion proteins, comprised of a LOX domain and a catalase related
peroxidase domain, allene oxide synthase (AOS) or hydroperoxide lyase (HPL).
Although oxylipins are well studied in vertebrate stem cells, their role in stem cells
originating from marine invertebrates remains unexplored. Here, we present an
overview of major oxylipin pathways in vertebrates and marine invertebrates, and
discuss their potential role in invertebrate stem cells.

1. Introduction

There is a growing interest in invertebrate stem cells (SCs) due to their high
toti- and pluripotency which makes them suitable model systems to investigate
fundamental biological processes, such as cell fate, senescence, regeneration
and cell reprogramming (Ballarin et al. 2018). Due to the simplicity of marine
invertebrates, it is easier to track the expression of genes, test different compounds
on differentiation/regeneration and discover underlying mechanisms of SCs
(Manni et al. 2019). For instance, colonial ascidians are ideal organisms for the
study of tissue regeneration and development because of their diverse reproductive
strategies, relatively short lifespan, simple morphological and genomic organization,
and easy experimental use. In addition, the high diversity of invertebrates creates
an opportunity to use them as a source of novel natural products, including bioactive
lipid mediators, which can be used to treat cancer, infections, autoimmune and
inflammatory-related diseases, and can potentially be implemented in regenerative
medicine (Palanisamy et al. 2017).

A group of bioactive oxylipins derived from arachidonic acid (AA), eicosanoids,
are identified as important auto- and paracrine mediators of tissue repair and
regeneration that act by regulating the stem cell biochemistry in vertebrates. Only
a limited number of oxylipin studies have been conducted on invertebrates used
for SC research (Kassmer et al. 2020). Screening and targeting of oxylipins from
invertebrates would provide novel insights into the molecular mechanisms necessary
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for either stemness or differentiation of SCs in marine invertebrates. For instance,
profiling of oxylipins and tracking their secretion to surrounding tissues would reveal
spatio-temporal distribution of oxylipins and their regulatory role in self-renewal
and/or differentiation of SCs. This knowledge can be beneficial in the future studies
of SCs across different species.

This review summarizes the status of oxylipin studies in invertebrate SC model
systems and focuses on corals as the most studied model of oxylipin biosynthesis in
invertebrates.

2. Oxylipin Pathways in Animals

Eicosanoids are the main group of oxylipins in animals synthesized from
AA (C20: 4ω6) and other C20 polyunsaturated fatty acids (PUFAs) by fatty
acid dioxygenases, e.g., lipoxygenase (LOX) and cyclooxygenase (COX), or
monooxygenases, such as cytochrome P450 epoxygenases, respectively (Figure 1)
(Brash 1999; Rouzer and Marnett 2003; Nelson et al. 2013).

In mammals, eicosanoids and other bioactive lipids are highly potent short-lived
molecules that initiate signaling cascades and gene expression by binding to their
corresponding receptors or being ligands for transcription factors. Activation of gene
expression regulates cellular events, including cell proliferation and differentiation,
and different physiological and pathological processes, e.g., inflammatory-related
diseases and cancer. In addition to AA, other PUFAs, such as eicosapentaenoic acid
(EPA, C20: 5ω3) and docosahexaenoic acid (DHA, C22: 6ω3), are the precursors for
important bioactive lipids, e.g., resolvins and protectins (Serhan et al. 2002, 2008),
which mediate the resolution of inflammation in animals.

The complexity of eicosanoid pathways is necessary to modulate cellular
processes in a cell type and a metabolic state manner. On the other hand, the high
variability of eicosanoids and sophisticated regulatory networks makes eicosanoid
research challenging.
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Figure 1. Biosynthetic routes of eicosanoids in animals. Arachidonic acid
(AA) is released from cellular membranes by phospholipases in response to
a variety of stimuli and converted to eicosanoids by cyclooxygenase (COX),
lipoxygenase (LOX) and cytochrome P450 (CYP450) monooxygenase pathways.
The COX pathway gives rise to prostaglandins (PGs), the LOX pathway produces
hydroxy-eicosatetraenoic acids (HETEs), lipoxins (LXs) and leukotrienes (LTs),
and CYP450 synthesizes epoxy-eicosatetraenoic acids (EETs). CysLT—cysteinyl
leukotrienes; EET—epoxy-eicosatetraenoic acid; HETE—hydroxy-eicosatetraenoic
acid; HHT—hydroxy-heptadecatrienoic acid; LT—leukotriene; LX—lipoxin;
PG—prostaglandin; TX—thromboxane. Source: Graphic by authors.
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2.1. Lipoxygenase

LOXs (E.C. 1.13.11.-) are non-heme iron containing dioxygenases that catalyze
the regio- and stereo-specific peroxidation of PUFAs containing at least one
cis,cis-1,4-pentadiene system to form biologically active mediators (Brash 1999).
LOXs are classified in terms of their positional specificity. Animal LOXs are
arachidonate 5-, 8-, 11-, 12- and 15-LOXs that catalyze the conversion of AA into
corresponding 5-, 8-, 11-, 12- and 15-hydroperoxy-eicosatetraenoic acids (HpETEs)
(Brash 1999). Depending on the species and cell type-specific expression of
enzymes, the content and distribution of eicosanoids vary. Thus far, the LOX with
11R-specificity has been identified only in marine invertebrates, such as hydra (Di
Marzo et al. 1993), sea urchins (Hawkins and Brash 1987) and corals (Di Marzo
et al. 1996; Varvas et al. 1999; Mortimer et al. 2006). In terrestrial organisms, the
prevalent stereo-configuration of LOX products is S, while R stereospecificity is more
pronounced in marine invertebrates.

HpETEs or their reduced derivatives, hydroxy-eicosatetraenoic acids (HETEs),
are potent pro- or anti-tumorigenic agents and mediate cell migration due to their
chemotactic properties and also. For example, 5- and 12-HETEs synthesized by 5-
and 12-LOX, and 13-hydroxy-octadecadienoic acid formed by 15-LOX, respectively,
are involved in the proliferation and inhibition of apoptosis, angiogenesis, cancer
invasion and metastasis, while 15- and 8-HETE formed by 15-LOX-2 and 8-LOX
are involved in the differentiation, growth arrest and induction of apoptosis
(Pidgeon et al. 2007; Moreno 2009). In addition, lipid mediators generated in 5-LOX
pathway mediate atherosclerosis and allergic inflammation (Haeggström 2018). Most
importantly, HpETEs are precursors of many downstream biosynthetic routes, such
as the leukotriene and lipoxin pathways (Figure 1), which are involved in the
initiation and resolution of inflammation, respectively (Funk 2001; Serhan et al. 2002;
Haeggström and Funk 2011).

2.2. Cyclooxygenase

Cyclooxygenases (COXs), also known as prostaglandin endoperoxide synthases
(E.C. 1.14.99.1), are another oxygenation route converting AA to prostaglandins
(PGs). All vertebrates have two COX isozymes, a constitutively expressed COX-1
and an inducible COX-2 (Funk 2001). Both COXs catalyze the formation of PGG2 via
cyclooxygenase activity and its reduction to PGH2 via peroxidase activity (Rouzer
and Marnett 2003; Schneider et al. 2007). The main differences between COX-1 and
COX-2 are their genetic regulation and function (Rouzer and Marnett 2005; Blobaum
and Marnett 2007). The formation of PGH2 by COXs is a rate-limiting step in its
downstream conversion to prostaglandin E2 (PGE2), PGF2α, and PGD2, as well as
the conversion to prostacyclin (PGI2) and thromboxane A2 (TXA2) by corresponding
isomerases or synthases (Figure 1) (Rouzer and Marnett 2009). Prostanoids are
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involved in inflammatory processes, wound healing, tissue regeneration and
cardiovascular processes. Therefore, the inhibition of COX results in reduced
inflammation, pain and fever (Flower 2006). Non-steroidal anti-inflammatory drugs
(NSAIDs) have anti-inflammatory and pro-resolving effects through the inhibition
of COX-2 (Vane and Botting 1998). In conferring their biological function, e.g.,
evoking an inflammatory response after injury, PGs have opposite effects. For
example, depending on the timing and course of inflammation, they can either
induce vasoconstriction (PGF2α, TXA2, TXB2) or vasodilation (PGE1, PGE2, PGI2),
inhibition of platelet aggregation (PGD2, TXA1, PGE1, PGI2) (Murakami 2011;
Ricciotti and FitzGerald 2011) or aggregation of platelets (PGE2) (Howie et al. 1973;
Kobzar et al. 1997). Elevated levels of PGE2 sensitize spinal neurons, which
results in an increased sense of pain (Grace et al. 2014), causing fever via the
hypothalamus-mediated manner (Coceani and Akarsu 1998), and are involved in the
complex process of labor (Kelly et al. 2009).

3. Coral Eicosanoids

Corals are invertebrate animals (Kingdom Animalia; phylum Cnidaria;
class Anthozoa) (Hyman 1940) that are divided into two major subclasses:
reef-building Hexacorallia and soft corals Octocorallia (Zhang 2011), both comprised
of azooxanthellate or zooxanthellate, the latter living in symbiosis with unicellular
algae, Symbiodinium sp. species.

Coral oxylipin research started with the detection of large quantities of PGs and
PG-esters (2–3% of dry weight) in the soft coral Plexaura homomalla (Weinheimer and
Spraggins 1969). Thereafter, a plethora of eicosanoids have been discovered, which
vary depending on the species and location (Corey et al. 1973, 1987, 1988; Varvas et al.
1993, 1999; Brash et al. 1987). In soft corals, AA is an abundant fatty acid (10–25%),
being the primary precursor of eicosanoids (Imbs et al. 2006; Imbs and Yakovleva 2011).
To a lesser degree (3–10%), AA also contributes to the fatty acid content of stony corals
(Latyshev et al. 1991; Dunn et al. 2012; Figueiredo et al. 2012; Funk 2001). Released
AA is metabolized by COX (Varvas et al. 1994; Koljak et al. 2001; Valmsen et al. 2001)
or LOX (Mortimer et al. 2006; Brash et al. 1996) into PGs or H(p)ETEs, respectively
(Figure 2). In addition to 11R-LOX (Eek et al. 2012; Mortimer et al. 2006; Järving
et al. 2012), corals contain catalase-related allene oxide synthase-8R-lipoxygenase
(AOS-LOX) and hydroperoxide lyase-8R-lipoxygenase (HPL-LOX) fusion protein
pathways (Koljak et al. 1997).
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Figure 2. The eicosanoid pathways identified in soft corals (Varvas et al. 1993,
1999). AOS, allene oxide synthase; H(p)ETE—hydro(pero)xyeiocosatetraenoic acid;
HPL—hydroperoxide lyase; PG—prostaglandin. C. imbricata—Capnella imbricata;
C. viridis—Clavularia viridis; G. fruticosa—Gersemia fruticosa; P. homomalla—Plexaura
homomalla. Source: Graphic by authors.

In principle, the coral AOS-LOX and HPL-LOX pathways are similar to the plant
LOX pathways, except the fact that separately expressed and structurally distinct
plant LOX, P450-type AOS and HPL metabolize only C18 PUFAs, e.g., linoleic acid
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(Wasternack 2007). Initially, the cyclopentenone synthesized by coral AOS was thought
to be the precursor of coral PGs, but the cloning and characterization of functional
coral COXs indicated the existence of parallel oxygenation routes (Koljak et al. 2001;
Valmsen et al. 2001). Even though P. homomalla contains a considerable amount of PGs,
incubations with the tissue homogenate and exogenous AA do not produce PGs (Corey
et al. 1973, 1988). In contrast, homogenates of G. fruticosa give rise to optically active PGs
in vitro (Varvas et al. 1993, 1999). In addition, the soft coral Clavularia viridis converts
AA to different cyclopentenone-type compounds, such as clavulones (preclavulone
A) (Corey et al. 1987), bromovulones and iodovulones (Figure 2) (Honda et al. 1987;
Watanabe et al. 2001). Although AOS-LOXs are not involved in the biosynthesis of coral
PGs, they still might contribute to the production of clavulone-like derivatives. For
today, the AOS-LOX pathway is identified in soft corals P. homomalla, G. fruticosa, and C.
imbricata, while 11R-LOX is expressed only in G. fruticosa. In addition, no COX activity
and PGs have been detected from C. imbricata. Although the sequence data implies the
presence of AOS-LOX in soft and stony corals (Lõhelaid and Samel 2018), the fusion
protein with the lyase activity is identified only in C. imbricata. Altogether, this data is
indicative of species-specific eicosanoid biosynthesis.

The current literature on coral eicosanoids contains data on the identification of
naturally occurring compounds (Corey et al. 1973, 1985; Varvas et al. 1993, 1994), the
elucidation of metabolic pathways involved in their biosynthesis (Brash et al. 1987;
Corey et al. 1987; Koljak et al. 1997, 2001; Varvas et al. 1999), and the effects of lipid
extracts or isolated compounds on other systems (Hashimoto et al. 2003). For today,
only the role of PGs in the defense of the coral P. homomalla against predators has been
proposed (Pawlik et al. 1987; Gerhart 1991; O’Neal and Pawlik 2002; Whalen et al. 2010).
In regard to the LOX activity in other marine invertebrates, it was demonstrated that
8R-HETE induces the maturation of starfish oocytes (Meijer et al. 1986) and 11R-HpETE
is involved in the regeneration and bud formation of Hydra vulgaris (Di Marzo et al.
1993). In spite of the wide occurrence of different oxylipins (hydroxy fatty acids, PGs
and their derivatives, etc.) in invertebrates (Rowley et al. 2005; Brash et al. 1987), their
exact functions in those organisms remain unclear.

Coral Fusion Proteins in the Arachidonic Acid Pathway

In the arachidonate metabolism of corals, fusion proteins comprised of
N-terminal catalase-like allene oxide synthase (AOS) or hydroperoxide lyase (HPL)
and C-terminal 8R-LOX domains catalyze the conversion of AA via 8R-HpETE to
allene oxide (Koljak et al. 1997; Lõhelaid et al. 2008, 2014a) or short-chain aldehydes
(Teder et al. 2015), respectively (Figure 2). The 3D structure of the AOS-LOX fusion
protein (Gilbert et al. 2008), as well as separately expressed AOS and LOX domains
(Oldham et al. 2005a, 2005b; Neau et al. 2009), have been determined. Even though
the structure of HPL-LOX has not been resolved, the differences in the substrate
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specificity and catalytic properties between HPL and AOS (Teder et al. 2017, 2019)
indicate distinct regulation and roles of corresponding fusion proteins in vivo.

Several transcriptomic studies of stony corals have reported the increased
expression of the AOS-LOX gene in response to white band disease (Libro et al. 2013),
elevated UV radiation (Aranda et al. 2011) and temperature (Polato et al. 2013).
However, transcriptomes lack information about expressed proteins and their activity.
A targeted study with the soft coral C. imbricata demonstrated the elevated levels
of AOS-LOX metabolites and increased gene expression in response to wounding
(Lõhelaid et al. 2014a) and temperature (Lõhelaid et al. 2014b). In parallel, the levels
of HPL-LOX mRNA and metabolites remained stable or even decreased. To date,
involvement of the AOS-LOX pathway in the stress response of corals is evident,
however, the biological importance of HPL-LOX remains elusive. Short-chain aldehydes
also known as “green leaf volatiles” play an essential part in the communication and
stress signaling of plants. In addition, aldehydes have antibacterial and antifungal
properties due to their molecular attributes. Therefore, HPL-LOX-derived aldehydes
may serve a housekeeping role, including defense against biotic stressors.

4. Eicosanoids in Stem Cells

SCs are undifferentiated progenitor cells with the ability to differentiate
into specialized cell types and regenerate. Eicosanoids are best known for their
inflammatory and immune-modulating properties, however, their ability to affect
the cell fate has increased their importance in SC biology. Eicosanoids act in an auto-
and paracrine manner to promote proliferation, migration, and differentiation of SCs
which contribute to the tissue repair, regeneration and other cellular processes. For
example, eicosanoids mediate the differentiation of SCs at each step of wound healing
(Berry et al. 2017). Due to the diversity of bioactive lipids and other regulators, the
role of eicosanoids in determining the fate of SCs is not very well understood.

The roles of PUFAs and eicosanoids have been studied in mammalian mesenchymal
stem cells (MSCs) (Jang et al. 2012; Yun et al. 2009b, 2011; Ern et al. 2019; Kim et al.
2009b; Rinkevich et al. 2009), hematopoietic stem cells (HSCs) (Hoggatt and Pelus 2010),
embryonic stem cells (ESCs) (Liou et al. 2007; Yanes et al. 2010; Yun et al. 2009b; Rajasingh
and Bright 2006; Kim et al. 2009a), neural stem cells (NSCs) (Katura et al. 2010; Wada
et al. 2006; Wiszniewska et al. 2011; Katakura et al. 2009, 2013; Beltz et al. 2007; He
et al. 2009; Sakayori et al. 2011; Kawakita et al. 2006; Jung et al. 2006; Goncalves et al.
2010; Sasaki et al. 2003), endothelial progenitor stem cells (EPC) (Kawabe et al. 2010;
Herrler et al. 2009) and others (Table 1). For instance, MSCs constitutively express COX,
PGE2 synthase (PGES) (Jang et al. 2012; Kleiveland et al. 2008), 5-LOX, and 12-LOX
(Fang et al. 2015), giving rise to PGs, LTs and LXs, respectively. In addition, MSCs
express different PG receptors, EP1-EP3, FP, and IP (Rinkevich et al. 2009). MSCs
and eicosanoids are studied due to their involvement in immune-modulating and
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inflammatory-related processes (Bernardo and Fibbe 2013). In addition to MSCs, human
periodontal ligament stem cells (hPDLSCs) produce PGE2, PGD2 and PGF2α as well
as specialized pro-resolving mediators (SPMs), e.g., different resolvins, protectin D1,
maresins, and LXB4 (Berry et al. 2017).

Table 1. Bioactions of eicosanoids in stem cells.

Fatty Acid or Eicosanoid Stem Cell Type Effects References

Linoleic acid Embryonic stem cells Enhanced proliferation (Kim et al. 2009a)

Arachidonic acid Neuronal stem cells Enhanced proliferation

(Vaca et al. 2008;
He et al. 2009;

Sakayori et al. 2011;
Kawakita et al. 2006;
Sakamoto et al. 2007)

Eicosapentaenoic acid Neuronal stem cells Improved differentiation (Katakura et al. 2009)

Docosahexaenoic acid Neuronal stem cells
Improved differentiation, (Beltz et al. 2007;

increased Katakura et al. 2009, 2013;
proliferation Kan et al. 2007)

Prostaglandin E1, E2 Hematopoietic stem cells Inhibited proliferation
(Gidali and Feher 1977;

Kurland et al. 1978;
Motomura and Dexter 1980)

Embryonic stem cells
Enhanced proliferation, (Yun et al. 2009b;

inhibited Liou et al. 2007;
apoptosis Hou et al. 2013)

Human umbilical cord blood-derived Enhanced proliferation (Yun et al. 2011;
mesenchymal stem cells Jang et al. 2012)

Neuronal stem cells Enhanced proliferation
(Jung et al. 2006;

Goncalves et al. 2010;
Sasaki et al. 2003)

Bone marrow-derived cells Improved endothelial differentiation (Zhu et al. 2011)

Tendon stem cells Improved osteogenic differentiation (Liu et al. 2013)

∆12,14-prostaglandin J2 Embryonic stem cells Inhibited proliferation (Rajasingh and Bright 2006)

15d-prostaglandin J2 Neuronal stem cells Regulation of proliferation (Katura et al. 2010)

Leukotriene B4 Neuronal stem cells Regulation of proliferation, (Wada et al. 2006;
promoted differentiation to neurons Wiszniewska et al. 2011)

Hematopoietic stem cells Enhanced proliferation, inhibited apoptosis (Chung et al. 2005)

Leukotriene D4 Embryonic stem cells Enhanced proliferation (Kim et al. 2010)

Lipoxin A4 Neuronal stem cells Inhibited proliferation (Wada et al. 2006)

Human periodontal Enhanced proliferation, (Berry et al. 2017)ligament stem cells migration and wound healing

Human dental apical papilla

Immunomodulation, proliferation,

(Gaudin et al. 2018)wound healing.
Attenuated chemokine and

growth factor secretion

Bone marrow-derived Resolution of inflammation and injury, (Fang et al. 2015;
mesenchymal stem cells bacterial clearance, increased SC growth. Tsoyi et al. 2016)

Lipoxin B4
Bone marrow-derived Radioprotection (Walden 1988)mesenchymal stem cells

Neuroprotectin D1 Embryonic stem cells Improved neuronal and cardiac differentiation (Yanes et al. 2010)

Thromboxane A2
Adipose tissue-derived Enhanced proliferation, promote (Yun et al. 2009a;
mesenchymal stem cells differentiation to smooth-muscle-like cells Kim et al. 2009b)

Table adapted from (Kang et al. 2014) and modified accordingly.

The role of eicosanoids has been extensively studied in tissue repair and
generation. Overall, LTs and PGD2 have a negative regulatory effect on tissue
repair, while other lipid mediators, such as other PGs and LXs, promote healing
(Esser-von Bieren 2019). It should be noted that the same type of lipid mediators may
be differently regulated during proliferation, differentiation and migration of SCs
(Rinkevich et al. 2009).
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Modulation of eicosanoid pathways has an impact on the fate of SCs. For
instance, the inhibition of COX and LOX pathways manifests in the pluripotency
of ESC (Yanes et al. 2010). In contrast, supplementation of fatty acids and their
derivatives promote proliferation and differentiation of mouse ESC (Yanes et al. 2010;
Kim et al. 2009a). It is also known that SPMs lose their therapeutic effect when 5-LOX,
12-LOX and 15-LOX activities are attenuated (Romano et al. 2019).

4.1. Roles of Eicosanoids in Vertebrate Stem Cell Biology

4.1.1. The LOX Pathway in Stem Cells

The expression of 5-LOX and biosynthesis of LTs are increased in differentiated
ESCs. Inhibition of the 5-LOX pathway results in impaired vasculogenesis by ESCs
(Finkensieper et al. 2010). A downstream lipid mediator of the 5-LO pathway,
LTB4, induces the differentiation and anti-apoptotic effects of CD34+ HSCs and the
inhibition of LTA4H and its receptor, BLT2, resulted in self-renewal of HSCs (Chung
et al. 2005). In addition, 12/15-LOX and its products, 12-HpETE and 15-HpETE, play
important role in skin wound healing (Hong et al. 2014).

4.1.2. The COX Pathway in Stem Cells

The impact of PGs on the proliferation of HSCs was reported back in the 1970s
(Feher and Gidali 1974; Gidali and Feher 1977). It was shown that PGE2 released by
monocytes or macrophages suppresses the proliferation of myeloid SCs in vitro. In
addition, the presence of PGE2 and higher expression of its receptors are linked to
stimulation of angiogenesis and early state of inflammation (Ern et al. 2019). MSCs
secrete different bioactive molecules, including PGE2, that guide the polarization of
pro-inflammatory to anti-inflammatory macrophages, resulting in lowered levels of
inflammation (Prockop 2013). PGE1 promotes the differentiation of HSCs to mature
granulocytes and attenuates the production of macrophages. Similarly to PGE2, PGI2

is necessary to angiogenesis and the inhibition of PGI2 synthase results in impaired
wound healing (He et al. 2008). A short-term stimulation with PGE2 enhances the
proliferation of MSCs, while longer treatments inhibit growth. In contrast, PGD2 has
a growth-inhibitory effect in spite of the duration of the incubation (Ern et al. 2019).
The development of human smooth muscle-like cells from adipose tissue-derived
MSCs is controlled by another prostaglandin, TXA2 (Yun et al. 2009a). Overall,
inhibition of COX pathways by NSAIDS, e.g., aspirin (Liu et al. 2014) and ibuprofen
(Goren et al. 2017), results in lower levels of TXs and PGs which delay the wound
healing and self-renewal.
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4.1.3. Pro-Resolving Mediators in Stem Cells

SPMs are formed in the cross-play between COXs, LOXs and other pathways
or in the presence of drugs. For instance, LXA4 can be formed cooperatively via
5-LOX and 12-/15-LOX pathways (Figure 1). It is evident that different SCs contain the
biosynthetic machinery to produce different SPMs which can be potentially involved in
the immune-modulating and anti-inflammatory properties of SCs (Romano et al. 2019).
For example, MSCs secrete LXA4 which regulates anti-inflammatory and pro-resolving
processes (Rinkevich et al. 2009; Tsoyi et al. 2016). In fact, exogenous or MSC-derived
LXA4 contribute to the recovery from acute lung injury (Fang et al. 2015). Moreover,
LXA4 significantly enhances the wound healing capacity of hPDLSCs (Berry et al. 2017)
and regulates the proliferation and differentiation of NSCs (Wada et al. 2006). Protectin
D1 (also known as neuroprotection D1) promotes cardiac and neuronal differentiation
and is essential in the regeneration of nerve cells (Yanes et al. 2010).

4.2. Model Systems for Marine Invertebrates

There are four main invertebrate adult SC models—the “big four”: Porifera,
Cnidaria, Platyhelminthes (flatworm), and Tunicata (Rinkevich et al. 2021). The PUFAs
and eicosanoid pathways present in Cnidaria were discussed in detail above (see 3.
Coral Eicosanoids). Although more than 250 fatty acids are determined in Porifera,
there are no higher PUFAs, thus no traditional eicosanoids are present (Rod’kina
2005; Monroig et al. 2013) (Figure 3). In comparison, the main substrate PUFAs in
Platyhelminthes (Angerer et al. 2019; Makhutova et al. 2009) and Tunicates are EPA
and DHA, however, only trace amounts of AA are found (Mimura et al. 1986). It
should be noted, that as in Cnidarians, there might be high variance in PUFA content
between different species. In parallel, also the presence of LOXs varies between
invertebrate species. For instance, no LOX sequences have been found in Porifera
(Horn et al. 2015).

Dugasia tigrina was used as a planarian (Platyhelminthes) model to study
regeneration by DHA and DHA-derived oxylipins from vertebrates (Serhan et al.
2012) (Figure 3). The ability to enhance the tissue regeneration by a lipid mediator,
macrophage mediator in resolving inflammation (MaR1), indicates conserved
regulatory roles and pathways of DHA-derived mediators. Inhibition of 12-LOX
resulted in attenuated regeneration and formation of MaR1, suggesting that the
12-LOX pathway may play important role in D. tigrina (Figure 3). In addition, the
genome of Schistosoma japonicum revealed conserved sequences of LOX, LTA4H and
putative receptors for LTB4, cysteinyl-LTs, PGE2 and PGF2, indicating that these
pathways may play a role in the physiology of planarian (Zhou et al. 2009). However,
Schmidtea mediterranea does not contain any similar sequences to COX or LOX
known in animals based on the PlanMine sequence database (Rozanski et al. 2019)
(personal data).
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Figure 3. The PUFA-dependent oxylipin pathways in vertebrate stem cells and
in model organisms of invertebrates. * Predicted based on the gene sequence;
n.d.—not determined. Source: Graphic by authors.

The PUFA composition of tunicates reveals that the most abundant PUFA
substrates are EPA and DHA (Carballeira et al. 1995; Hou et al. 2021). Even though
coral COX-like sequences exist in tunicates (Järving et al. 2004), it remains unknown
if they encode functional dioxygenases and what is their catalytic specificity. Recently,
it was shown that the germ cell migration and chemotaxis in Botryllus schlosseri is
12S-HETE-dependent (Kassmer et al. 2020). Unfortunately, only 12S-HETE was
in the focus of their study and other HETEs remained untested. Furthermore, a
B. schlosseri LOX sequence was described with a sequence identity of around 50%
positives to human 5-LOX, 12-LOX and 15-LOX (Kassmer et al. 2020). The genome
of closely related Botrylloides diegensis supports the presence of a single LOX gene
in both species (Voskoboynik et al. 2013; Blanchoud et al. 2018). The sequence of
B. schlosseri LOX contains conserved iron-coordinating amino acids and the amino
acid determinant of regiospecificity (either S or R) suggests the presence of LOX
with the S-specificity. However, only the end of the C-terminal domain without
the N-terminal PLAT and part of the catalytic domains was present in the sequence
(personal data). Thus, the presence of catalytically functional LOX in B. schlosseri
needs to be confirmed by future studies.

Although major advances have been made in sequencing invertebrate genomes
and transcriptomes, the prediction of bioactive metabolites only based on sequence
data is not accurate due to highly conserved domains between dioxygenases with
different catalytical specificities and biological roles, such as LOXs (Lõhelaid and
Samel 2018). Additional experiments with dioxygenases need to be performed to
supplement the sequence data. In conclusion, despite the progress in the field,
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very little is known about oxylipin biosynthesis or metabolites in invertebrate
model systems.

Common precursor PUFAs for the oxylipin synthesis in vertebrate and
invertebrate systems demonstrate the evolutionary requirement of lipid mediators
in the physiology of animals (Figure 3). As in vertebrates the effect of different
eicosanoids on the fate of SCs are clearly demonstrated (Table 1), it is likely that these
processes in marine invertebrates are driven by ancestor genes and similar mediators.

4.3. Potential Role of Eicosanoids in the Stem Cells of Marine Invertebrates

In contrast to vertebrates, SCs in marine invertebrates are disseminated
throughout the organism and instead of uni- or oligopotency, they possess pluri- and
totipotent capabilities. Another unique property of invertebrate SCs is their ability to
trans-differentiate from one cell type to other (Rinkevich et al. 2009). It occurs when
a significant amount of SCs is needed, specifically during budding, regeneration and
in response to severe abiotic or biotic stress (Rinkevich et al. 2009).

In all species studied to date, lipid mediators mediate important adaptation
responses to cellular stress. Organisms continuously sense and respond to
environmental conditions to maintain their homeostasis under changing conditions
and survive. Biological stress can be defined as an adverse condition or force which
disturbs the homeostasis and normal functioning of an organism (Jones et al. 2010).
Overall, external stressors may be biotic, such as pathogens, or physical, such as
temperature, salinity, water, nutrient deprivation, chemicals and pollutants, oxidative
stress, mechanical stress and radiation.

The initial wound response in animals aims for rapid and efficient isolation of
the wound to minimize both the loss of vital fluids and environmental challenges
(Proksch et al. 2008; Rodriguez et al. 2008; Ariel and Timor 2013; Palmer et al. 2011;
Maffei et al. 2007). In multicellular organisms, regeneration involves the repair of
tissues/organs after injury and homeostatic renewal. The spatio-temporal immune
cell activation is essential in regenerative response and its adequate regulation
defines the regenerative success. The initial step in response to the incision in
marine invertebrates, including corals, aims for rapid and efficient provisional
plugging of the wound, similar to vertebrates (Palmer et al. 2011). On a cellular
level, the wound repair in vertebrates has four phases: (1) hemostasis/coagulation,
(2) inflammation, (3) proliferation and (4) remodeling (Singer and Clark 1999; Schultz
et al. 2011; Maderna and Godson 2009). The same wound repair phases are observed
in Cnidarians (Reitzel et al. 2008; Olano and Bigger 2000; Palmer et al. 2008). Coral
wound response includes the recruitment of granular amoebocytes (Mydlarz et al.
2008; Palmer et al. 2008), which are important in pathogen clearance. Acting
cooperatively, eicosanoids mediate the initial stages of wound response and the
onset and end of the inflammatory phase of wound repair, promoting cell migration
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and modulating the central signal pathways involved in cell cycle control (Moreno
2009). Oxylipins are also involved in coral wound response (Lõhelaid et al. 2014a),
but their effect on marine invertebrate stem cells is not known. Furthermore, innate
immune response and regeneration are inter-connected processes during tissue
repair (Aurora and Olson 2014). As pointed out before, 11R-HETE enhanced the
tentacle regeneration and bud formation of decapitated Hydra vulgaris (Di Marzo
et al. 1993) indicating its direct cellular regulator effect. The distribution of stem cells
and molecular regulation of stemness in Hydra is complex (Hobmayer et al. 2012).
Unfortunately, it is not known which cells are responding to this biomolecule and
what is the underlying molecular mechanism.

In addition, the levels and production of eicosanoids in vertebrates are low
and tightly controlled (Dennis and Norris 2015; Serhan and Chiang 2008), whereas
corals contain an enormous amount of various oxylipins (Weinheimer and Spraggins
1969). Thus, the high production of oxylipins, such as PGE2 in P. homomalla, could
contribute to the differentiation of SCs and also increase the regenerative capacity
of invertebrates.

4.4. Challenges in the Stem Cell Biology of Marine Invertebrates

Currently, we lack basic knowledge about oxylipins and oxylipin-mediated
processes in marine invertebrates and their distribution in different cell populations,
including stem cells. The main practical limitations for efficient studies are the
absence of (1) SC definition in invertebrates, (2) adequate biomarkers to distinct cell
populations, (3) developed protocols for SC isolation, and (4) proper knowledge
of how to culture SCs and create SC lines. In addition, there are well-established
protocols for extraction and analysis of different lipid subclasses (Hou et al. 2021),
however, specific know-how, equipment and a certain amount of SCs for the proper
detection are still required. Apart from the identification and profiling of oxylipins,
it is challenging to determine the role of each of the individual oxylipins on the stem
cells due to the high number of oxylipin derivatives and complexity of intracellular
oxylipin pathways. Nevertheless, constantly improving state-of-the-art technology
and methodology as well as greater networking opportunities contribute to the
advancement of SC research.

5. Conclusions

Oxylipins, including eicosanoids, are short-lived lipid mediators, they act
locally in an auto- and paracrine manner to control proliferation, migration, and
differentiation of vertebrate SCs which contribute to tissue repair, regeneration and
other cellular processes. Based on current knowledge, we propose that oxylipins are
also involved in the renewal, proliferation and differentiation of marine invertebrate
SCs. Still, due to a variety of lipid mediators and other regulators, and lack of
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studies, the role of eicosanoids in determining the fate of marine invertebrate SCs
is far from being clear. For example, it is difficult to translate the function if there
is a high variation in oxylipin content between different species and the regio- and
stereoisomers of lipid mediators might have different or even opposite effects. Studies
on marine invertebrate genomes and transcriptomes are able to give some clues,
but they are insufficient to predict the specificity nor functionality of dioxygenases.
To date, sequence data from different organisms are emerging, however, we lack
systematic studies in different marine invertebrate species. For instance, profiling
of oxylipin pathways and biological actions of PUFAs and oxylipins on model
organisms and their SCs should be performed. Thus, only basic research on
invertebrate SCs is able to define the compounds produced in model systems and
the role of applied eicosanoids.
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