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Abstract: The stem cells discipline represents one of the most dynamic areas
in biology and biomedicine. The vast majority of research on stem cells is
being conducted in vertebrate models. Currently, over 98% of all cell lines
are of mammalian origin, which represent only 0.4% of the extant identified
metazoan evolution. In particular, aquatic invertebrates as a whole show the
largest biodiversity and the widest phylogenetic radiation on Earth but have not yet
significantly contributed to cell lines. Yet, with over 500 publications since the 1960s,
the current lack of cell lines does not result from a lack of attempts at cultivating these
cells but rather from fragmented research efforts in highly taxonomically diverse
model species, a paucity in reports of negative results and persistent knowledge
gaps in their in vitro metabolic requirements. To promote the establishment of
aquatic invertebrate cell lines, there is thus a need for comprehensive knowledge
mapping across taxa to identify adequate, possibly cell type-specific, protocols.
Here, we review strategies for preparing an optimal inoculum, for optimizing
culture conditions and for cell lineage authentication to monitor the quality of cell
cultures. Finally, we conclude with our view on promising research perspectives
towards establishing aquatic invertebrate cell lines.

1. Introduction

Currently, the origins of in vitro cell lines are highly biased towards humans.
Around 75% of the total number of established cell lines are from Hominidae origin
(96,862/128,799) and over 97% are of mammalian origin (126,033/128,799) (Bairoch
2018) (Figure 1). However, mammals represent only 0.4% (1.3% when excluding the
Insecta taxon) of the extant identified metazoan evolution (Zhang 2013; Wilson and
Reeder 2011; Chapman 2009) (Figure 1). In addition to the scientific interest relative
to their sheer diversity, non-mammalian cells have multiple potential applications,
including as a source for bio-active molecules or as assays for eco-toxicological
tests (e.g., Ribeiro et al. 2018; Rosner et al. 2021). Yet, with over 500 publications
on aquatic invertebrate cell culture alone (Figure 1), the current limited number of
invertebrate cell lines does not result from a lack of attempts at cultivating these cells
but most likely from inappropriate techniques to cultivate these cells (reviewed in



Rinkevich 2005; Yoshino et al. 2013; Cai and Zhang 2014). As exemplified in insects, a
breakthrough in culturing conditions (Grace 1962) initiated the emergence of a huge
variety of cell lines (Bairoch 2018) (895 cell lines from 104 genera in around 50 years).
There is thus a need for a sustained research effort in non-insect invertebrate cell
culture to identify adequate culturing conditions and promote the establishment of
cell lines. In particular, aquatic invertebrates as a whole show the largest biodiversity
and the widest phylogenetic radiation on Earth but have currently contributed to
only six cell lines (Figure 1).
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Figure 1. Comparison of the diversity between metazoan taxa. Depicted is the
phylogenetic relation between metazoan taxa and their characteristics with respect
to evolutionary radiation, regenerative capacity, lifespan and in vitro cell culture
(see Appendix A Table A1 for exact values). Dashed lines represent branchings for
which speciation timings have not yet been determined. Colored taxa highlight
those whose publication timelines are detailed in Figure 2. Regeneration capacity of
the taxa is depicted as follows: + tissue regeneration, ++ appendage regeneration,
+++ whole-body regeneration, ++++ from cell aggregates. Longevity is given
in years from the maximum reported characteristic of the taxon in the AnAge
database (Magalhaes et al. 2007). Phylogenetic tree based on Halanych (2004),
species numbers on Zhang (2013), regeneration potential on Bely and Nyberg (2010),
publications on manually curated online searches (Appendix B Table A2) and cell
line numbers on Bairoch (2018). Source: Graphic by authors.
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Figure 2. Five decades of research on isolation and primary culture of cells from
aquatic invertebrates. The figure shows the number of publications for the phyla
cnidaria (66 in total), ctenophora (1 in total), and tunicata (44 in total). Publications
are grouped by classes of the species used for cell isolation, color-coded as indicated.
Publications were manually curated from online searches, and detailed references
are available in the Appendix B Table A2. Source: Graphic by authors.

Cell lines have been established through two main strategies (Cai and Zhang
2014; Rinkevich 2011): either by the isolation of proliferating and self-renewing cells,
typically from an embryonic (Hansen 1979) or cancerous origin (Scherer 1953), or by
immortalizing proliferating cells, typically through mutagenesis (Earle et al. 1943) or
transfection (Russell et al. 1977). Both strategies thus require, at least transiently, a
proliferating primary cell culture. The long-term culture (up to 22 months) of cells
from various aquatic invertebrate phyla has been achieved by using a variety of
culturing environments (Rinkevich and Rabinowitz 1993; Daugavet and Blinova 2015;
Chen and Wang 1999; Kingsley et al. 1987). However, most of these in vitro primary
cultures show an apparently ubiquitous cellular quiescence within three days that
leads to an absence of proliferation within 1-4 weeks of primary culture (Rinkevich
2011; Cai and Zhang 2014). Yet, transient proliferation events, limited to a subset
of acclimated cells, are persistently recorded across most marine invertebrate taxa
~2—4 weeks after the establishment of primary cultures at high seeding density from
larval or regenerating adult tissue. For instance, DNA synthesis and mitosis have
been observed both in primary cultures of explanted ectodermal tissue monolayers of



regenerating Nematostella vectensis (Rabinowitz et al. 2016), as well as in dissociated
cell culture from regenerating tentacles of Anemonia viridis (Ventura et al. 2018),
and dividing cells have been reported in primary culture of regenerating tissues of
Apostichopus japonicus (Odintsova et al. 2005). The only established mollusc cell line,
Bge, was initiated from the long-term culture of embryonic tissue of the freshwater
snail Biomphalaria glabrata (Hansen 1979). Taken together, these results suggest that
a key to setting efficient primary cultures are to use tissue with high proliferation
capacity, potentially due to the presence of stem-like cells. Conveniently, aquatic
invertebrates display a variety of asexual reproduction, aging and regeneration
phenomena (Figure 1) that indicate high cellular plasticity, cellular proliferation and
a likely involvement of stem-like cells (Bely and Nyberg 2010; Slack 2017; Bodnar
2009; Tomczyk et al. 2015; Rinkevich et al. 2022). However, established guidelines
for the isolation and identification of stem-like cells are currently only available for
very few species (Hayashi et al. 2006; Sun et al. 2007; Hemmrich et al. 2012; Kassmer
et al. 2020). The recent improvements in next-generation sequencing techniques, and
in single cell transcriptomics in particular, are enabling researchers to characterize
stem-like cells in an increasing number of taxa (Hayashi et al. 2010; Siebert et al. 2019;
Rinkevich et al. 2022), a first important step for their isolation and in vitro culture.

There is an ample body of work that provides numerous quantitative assessments
of culturing conditions (e.g., Toullec 1999; Khalesi 2008; Dessai 2012; Maselli et al.
2018), without highlighting one ideal consensus. Given that aquatic invertebrates are
phylogenetically very distant, the development of a ubiquitous culturing environment
appears rather unlikely. Nevertheless, each phylum could benefit from the advances
in primary cell culture made in other phyla. However, a significant fraction of
the relevant research data remains unpublished in conventional peer-reviewed
journals, being only accessible as chapters in master’s or doctoral dissertations,
conference proceedings and specialized books. Consequently, in the last five decades,
the publication of research efforts has been uneven across phyla, and temporally
fragmented, as illustrated for the cnidaria and tunicata phyla (Figure 2).

Here, we review three major drawbacks and limitations of this field of
research and their most promising work-around (Rinkevich 2005; Cai and Zhang
2014; Rinkevich 2011; Yoshino et al. 2013): (1) seeding the cell culture with a
population enriched in proliferating and potentially stem-like cells; (2) devising
marine invertebrate specific in vitro culturing environment, including management of
oxidative stress and cell adhesion requirements; (3) preventing culture contamination
with other cell types and microbes. This review is intended to be accessible both to
the non-experts and newcomers to the field of primary cell culture, while providing
an updated and curated list of references on the primary cell culture of aquatic
invertebrates compiled for the experienced reader.



Given the huge scope of this review (>360,000 species, >60 years of research,
>510 publications), we set out to illustrate previous work on aquatic invertebrate
cell culture with three summarizing tables (Tables 1-3), filled with a selection of
representative publications in each taxon and focusing on stem cell cultures whenever
these have been described. This review is, by nature, not exhaustive and omits, by
necessity, many publications, which thus limits generalizations. We conclude this
review by providing perspectives on how to solve this limitation, mainly through
dramatically extending the present effort in the data mining and metacoding of
published work to build an exhaustive knowledge database on aquatic invertebrate
cell culture. We also highlight abiotic factors that should be further investigated.
We hope that the provided perspectives will help researchers to develop robust and
reproducible approaches for culturing dividing aquatic invertebrate cells, a first step
towards the possible establishment of cell lines.
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2. Isolating Stem-like Cell Types Suitable for In Vitro Culture

Inoculum type is highly diverse, depending on targeted aquatic invertebrate
taxon, tissue and life cycle stage. At the same time, selecting the proper inoculum for
a given in vitro culture is certainly the most important decision towards establishing
a suitable cell culture.

2.1. Selecting Suitable Sources of Cells

Based on the number of publications on primary cultures and the number
of reported cell lines across aquatic invertebrate taxa (Figure 1), most research
has focused on cell culture establishment from mollusks (mostly bivalves, and
comparatively fewer gastropods and cephalopods), followed by porifera (mostly
demosponges), cnidaria (historically hydrozoans and currently anthozoans, Figure 2),
crustacea (pennaeid shrimps, crabs and crayfish), echinoderms and tunicates.
Episodic attempts have also been made for one or two species representatives of
ctenophores (Mnemiopsis), annelids (Lumbricidae; Nereidae), nematodes (Caenorhabditis),
chelicerates (Limulus) and cephalochordates (Amphioxus). These differences in
research efforts illustrate differences in the attractivity of specific taxa for cell culture,
which stem from three complementary considerations, detailed below, that every
researcher has to take into account when selecting the origin of the cells to be cultured
in vitro.

The first pertinent consideration is whether to work on tissue isolated from
established experimental models maintained in controlled aquarium or laboratory
facilities. These animals, in contrast to wild animal sampling, provide both
access to early life stages, as well as increased reproducibility for cell culturing
experiments. Their use also meets the biodiversity protection regulations and
traceability requirements of the Nagoya protocol. More and more clonal lineages of
genotyped animals are becoming available across taxa, and establishing cell cultures
from this traceable material is an additional source of reproducibility that reduces
complexity and facilitates comparisons between intervention protocols. Ultimately,
these biological models will help the optimization of the culturing conditions, for
guidelines specific to a few model species. In this context, two attractive taxa for
fundamental research are cnidaria (e.g., Hydra vulgaris, Hydractinia echinata, Exaiptasia
pallida) and platyhelminthes (e.g., Schmidtea mediterranea) with well-established
strains of animals. Mollusks or crustaceans of commercial importance, and with
a complete life cycle obtained in captivity and traceable across generations, also
represent important taxa to develop stem cell cultures.

A second important consideration when selecting a model species for cell
culturing experiments is the wealth of genomic, transcriptomic and metabolomic
information available for that species. In addition to allowing the identification of
cell-type-specific markers, post-genomic information gained on metabolic pathways
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and cellular adhesion systems can be used to formulate working hypotheses on
taxon-specific in vitro cellular requirements of media components and substrates.
Similarly, knowledge acquired on in vivo tissue homeostasis, dynamics of cell
proliferation, and somatic stem cell niches (Martinez et al. 2022) could help in
selecting a seed tissue of high proliferative potential. In this respect, the continuous
decrease in sequencing costs, as well as in other omics techniques, is allowing more
and more research groups working with marine aquatic invertebrates to characterize
their favorite species, suggesting that omics information will fast become available
for almost all taxa.

The third point to consider is the desired approach for obtaining immortalized
cells. Similar to mammalian cell culture, potential sources for immortalized cell lines
are artificially reprogrammed cells and spontaneously tumor-like tissue. However,
immortalization methodologies are currently limited in aquatic invertebrate cells
by low yields and poor stability, as observed in sponges (Pomponi et al. 2013;
Revilla-I-Domingo et al. 2018), bivalve mollusks (Hetrick et al. 1981; Boulo et al.
1996), and crustaceans (Claydon and Owens 2008; Xu et al. 2018). As suggested
by Odintsova et al. 2011, natural tumor-like tissue, characterized by increased
(hyperplasia) or altered (neoplasia) cell proliferation patterns, is thus a promising
inoculum to initiate primary cultures. However, tumor-like lesions in wild or captive
aquatic invertebrate taxa have low registered frequencies (Peters 2006; Tascedda and
Ottaviani 2014), and there has been repeated unexpected failures at maintaining the
hyperproliferation of successfully isolated cancerous cells in vitro. For instance, in
transmissible soft-shell clam (Mya arenaria) leukemia, cancerous hemocytes rapidly
undergo in vitro apoptosis, triggered by the release of mortalin-based cytoplasmic
sequestration of p53 (Walker et al. 2006). Other attempts at primary culture initiation
from artificially induced tumors of carcinogen-exposed bivalves (Crassostrea virginica)
also failed to maintain persistent in vitro cell division (Hetrick et al. 1981).

Consequently, the use of stem-like cells for seeding in vitro cultures appears
key to setting dividing primary cultures. Marine invertebrates display a wide
variety of intriguing cellular phenomenon, such as asexual reproduction, striking
regenerative capacity, reduced aging and dormant stages, which upon arousal restore
fully functional individuals (Figure 1). These mechanisms indicate high cellular
plasticity, proliferation and a likely involvement of stem-like cells. Although the
potency of these cells remains largely uncharacterized in most species, and the
orthology between these stem-like cells remains to be assessed (Rinkevich et al. 2022),
they represent a promising source of proliferating and self-renewable cell types.
However, the identification, isolation and characterization of aquatic invertebrate
stem cells remains a major, typically species-specific, technical challenge. With few
species having established protocols for the isolation of identified stem-like cells
(Hayashi et al. 2006; Sun et al. 2007; Hemmrich et al. 2012; Kassmer et al. 2020;
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Reyes-Bermudez et al. 2021), their generalization and transfer by taking advantage
of the vast diversity of specific approaches explored in other taxa (Table 1) appear
particularly promising.

2.2. Selecting a Suitable Type of Inoculum

Aquatic invertebrates have indirect development cycles, with widespread
asexual propagation strategies, including colonial budding and the generation
of dormant stages, as well as high regenerative abilities, including whole-body
regeneration. These developmental properties are suggestive of the presence of
proliferative cells, including potential stem-like cells, which are of particular interest
to establish proliferating cell cultures. Hence, they provide the following range of
theoretically ideal inoculum material: embryonic/larval tissue, regenerating tissue,
asexually propagating tissue and dormant stages.

Dissociated tissue from whole embryo/larva consistently yields primary cell
cultures dividing over 2-3 weeks, allowing a few rounds of successive subcultures.
For example, when applied to cnidarian models, whole dissociated Acropora planula
larvae yielded subsets of dividing coral cells that could undergo several successive
subcultures (see Reyes-Bermudez and Miller (2009) for A. millepora, and Kawamura
et al. (2021) for A. tenuis).

Dissociated somatic adult tissue sampled from regenerating tissue has also
been observed to yield dividing cell cultures that could be subcultured for several
weeks. Among other examples, cultures based on regenerating tentacle tips of the sea
anemone Anemonia viridis (Barnay-Verdier et al. 2013) could be subcultured for 2—4
weeks, and primary cultures from regenerating intestinal tissue of the holothurian
Apostichopus japonicus displayed limited but active in vitro proliferation at ~2 weeks
after evisceration (Odintsova et al. 2005).

The dissociation of asexually growing tissue similarly gave rise to cell cultures
with observable proliferative activity for a few weeks. For instance, using fast-growing
branch tip fragments of the Acropora millepora coral (Reyes-Bermudez et al. 2021),
cells could be subcultured for 2—4 weeks, and delayed senescence was reported in
primary cultures from extracted buds of tunicates (Rabinowitz and Rinkevich 2004).

As implied in the “live slow, grow old” adage, cold adapted hibernating
freshwater sponge species from lake Baikal yielded primary cell reaggregate (termed
primmorph) cultures with record (max 8 months) longevity (Chernogor et al.
2011). Sponge gemmules also represent dormant hibernation/aestivation stages
rich in multipotent stem cells (Simpson 1984) that, upon hatching, regenerate a
functional adult. Activated gemmules could thus constitute a promising inoculum
for primary cultures. Similarly, in the colonial tunicate Botrylloides leachii, arousal
from a cold-induced dormancy (Burighel et al. 1976) leads to the restoration of
multiple adults by proliferating piwi*/pl10+ cells, two markers suggestive of stem-like
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properties (Hyams et al. 2017). In both cases, investigating the mechanisms regulating
arousal from dormancy may yield cues to stimulate the tissues established in vitro to
switch from quiescence to active cell cycling.

In conclusion, despite their initial abundance in cells with proliferative
stemness-like properties, the shared in vitro fate of all four above-cited inoculum
categories is terminal cell cycle arrest and the gradual accumulation of senescent,
necrotic cells in primary culture and subsequent subcultures.

2.3. Selecting Suitable Cell Isolation Techniques

Inoculum type is highly diverse, depending on targeted aquatic invertebrate
taxon, tissue and life cycle stage. Although no cell culture has yet been observed to
sustain its proliferative activity for long, short-term functional primary cultures are
routinely established from terminally differentiated cell types of aquatic invertebrates.
Differentiated cells being arrested in Gy can survive in vitro for a limited time
with intact function, and hence are best used within hours to ~3 days of isolation.
Nevertheless, comparing their tissue-isolation protocols offers opportunities to survey
tissue sampling and dissociation methods (Table 1), as well as the cellular interactions
and defense mechanisms that may support their in vitro viability, even for short
periods of time. Emblematic examples of short-term invertebrate primary culture
from quiescent cells include neuron-like cells and circulating hemocytes.

Giant neuronal cells from gastropod mollusks, such as the sensory and motor
neurons from the sea hare Aplysia californica, are used to study growth cone motility
and synapse plasticity (Kaczmarek et al. 1979; Lee et al. 2008; Zhao et al. 2009; Ren
et al. 2019; Suter 2011). Cultured neurons from the pond snail Lymnea stagnalis are
also routinely used for studies on synapse formation, neuronal aging and memory
(Magoski et al. 1994; Prinz and Fromherz 2000; Walcourt and Winlow 2019). The
in vitro establishment of nerve cells from jellyfish bell tissue (Przysiezniak and Spencer
1989; Schmid 1992) or from the solitary tunicate Ciona intestinalis (Zanetti et al. 2007)
have also been reported. These neuronal cell types are usually micro-dissected from
their ganglion, enzyme digested with protease, immobilized on positively charged
polylysine-coated coverslips and then used for short-term electrophysiology assays,
providing non-conventional in vitro models in neuroscience.

Circulating cells sampled from internal fluids, are another major category of
cultured aquatic invertebrate cells. When seeded at high density (>10° cells/mL),
cultured adherent hemocytes can form partly complete confluent monolayers, with
clusters forming in suspension above the monolayer that may then be detached and
transferred to new culture dishes. Such cultures have been routinely established
since the late 1960s from a wide range of species, including mollusks, crustaceans,
tunicates and echinoderms, typically for in vitro cell/microbe interactions and
immunopathology assays. Such cultures display short-term conserved functionality,
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as shown by phagocytosis or immunomodulatory assays. Proliferation may be
induced by stimulation with bacterial antigens, as shown for the bivalve Mytilus
galloprovincialis (Cao et al. 2003), the tunicate Styela (Raftos and Cooper 1991) and
the earthworm Lombricus (Bilej et al. 1994). These differentiated cell types are drawn
directly from internal cavities, lacunae and sinuses using a syringe. To counter
their spontaneous self-aggregation (clotting) behavior, hemocytes are collected in
syringes half-filled with species-specific anti-clotting saline solution, such as artificial
seawater without calcium or magnesium, artificial seawater with a calcium chelator,
or Na-citrate based “Alsever” saline solutions. Indeed, hemocytes secrete their own
set of taxon-specific lectins (e.g., Matsumoto et al. 2001) and extracellular-matrix
components (ECM) (e.g., a fibronectin-like ECM in bivalve hemocytes (Dyachuk
et al. 2015)) that support rapid adherence, within hours of sampling, to glass or
poly-lysine-coated coverslips.

Aside from the two isolation techniques described above, the quantitative
evaluation of various approaches for cell extraction in different species suggests
that, for the rapid obtention of single-dissociated cells from soft tissues for RNAseq
cell phenotyping, and thus to obtain cells as close as possible to their wild-type
state, mechanical isolation is the most efficient method (Khalesi 2008; Dessai 2012;
Daugavet and Blinova 2015; Maselli et al. 2018). For example, cnidarian larval
tissue or demosponge and calcisponge adult tissue fragments are dissociated within
minutes via shearing in calcium-free seawater and passage through a 40-70 um
nylon mesh. However, species with tough cuticles (e.g., Lombricidae), important
extracellular matrices (e.g., Styelidae) or abundant surface mucus (e.g., Dugesiidae)
necessitate treatments with specific enzymes to liberate the cells. For instance, in
the stony coral Pocillopora damicornis, chemical treatment with a divalent cation
chelator followed by a mix of glycosidases and collagenase was reported to help
dissolve the mucus and improve the yield of released cells (Downs et al. 2010).
Proteolytic treatments (trypsine, dispase and other protease mixes) are routinely
used to dissociate cells from solid tissues dissected from mollusks and crustaceans.
Interestingly, protease treatment may induce cellular reprogramming, as shown by
the collagenase-induced transdifferentiation of in vitro explanted striated muscle of
jellyfish (Alder and Schmid 1987; Schmid and Alder 1984; Schmid and Reber-Miiller
1995).

2.4. Selecting Suitable Cell-Type Enrichment Strategies

Cells of interest are typically mixed with other cell types after the dissociation
of the inoculum. The enrichment of specific cell types, typically proliferative
or multipotent ones, relies on the prior development of taxon-specific and
custom-designed cell separation methods. For instance, in Stylophora pistillata,
stem cells were not identified in the cell atlas established from both larval and adult

32



tissues, following either enzymatic or mechanical dissociation methods (Levy et al.
2021), which severely limits the development of stem cell-enriched primary cultures.

Sorting methods for enriching inoculum suspensions in proliferative or
multipotent cell types are thus required. Initial methods were based on differential
sedimentation on density gradients, including sucrose, Percoll, or mixtures of
Ficoll and polyethylene glycol. To further discriminate between morphologically
similar cell types, and thus target specific cell types, Fluorescence Activated Cell
Sorting (FACS) methods have recently been developed and have become highly
prominent. For instance, FACS has been used to separate vital-stained coral cells
(Rosental et al. 2017), and to isolate cell-type subpopulations for their single-cell
gene expression characterization in hydrozoan (Siebert et al. 2019), as well as in
anthozoan species (Levy et al. 2021; Sebé-Pedrds et al. 2018). In these diblastic
animals, which lack a circulatory system, FACS is necessary to enrich dissociated
tissue suspensions in hexacorallian putative immune cells, the amoebocytes recovered
from the inter-epithelial mesogleal layer typical of cnidarian, for short-term functional
phagocytosis characterization (Snyder et al. 2021). In triploblastic animals, FACS
has also been refined to sort tunicate cell subpopulations to study the hematopoietic
system (Rosental et al. 2018). Echinoderm coelomocyte subpopulations have
been further separated by FACS into distinct cell types, such as the red pigment
autofluorescent spherulocytes (Hira et al. 2020).

Consequently, there is a need for stem cell markers suitable for non-invasive
stemness tracing in live cells to enable their enrichment. One promising perspective
comes from the few aquatic invertebrate experimental models that can be genetically
manipulated for which transgenic reporters of stemness properties can be engineered
(e.g., in Hydra (Juliano et al. 2014)). Another direction of interest is the usage
of fluorescent markers conjugated with antibodies specifically labeling stem cells.
However, the identification of such markers remains extremely rare for aquatic
invertebrates, with the recent notable exception of the colonial tunicate Botrylloides
diegensis for which integrin-alpha-6 was shown to specifically label pluripotent cells
(Kassmer et al. 2020). Whether this specific marker can be used in other species of
aquatic invertebrates to label stem cells will be important to assess.

2.5. Selecting Cleansing Techniques to Minimize Contamination

There is a wide consensus across the scientific community that the highest
obstacle to continuous marine/freshwater invertebrate cell culture propagation is
overgrowth by aquatic microbial contaminants (Rinkevich 2005). This problem is
critical in marine invertebrate primary cell cultures for two main reasons. First,
it is because the tissues sampled to initiate the primary cultures come typically
from areas directly or semi-directly exposed to environmental microbes, such
as the thin epithelial structures at the interface with water (e.g., in porifera and
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cnidaria), tissues irrigated by a semi-open circulatory system (e.g., in mollusks,
echinoderms and tunicates) or digestive and other internal tissues hosting their
own microbiota (e.g., gills and hepatopancreas of mollusks). Second, commercial
antibiotics/antimycotics/antiparasitic drugs have been designed against microbes
isolated from terrestrial animals and mostly from humans and are thus largely
ineffective against the mostly underexplored diversity of environmental aquatic
microbes. To control the contamination of cell cultures by these aquatic microbes,
three main strategies can be attempted.

First, microbial load can be reduced before cell isolation. The inoculum can be
sampled from starved animals depurated in oxygenated sterile-filtered seawater to
limit environmental microbial contaminants (e.g., for abalone mantle cell culture
(Suja et al. 2014)). Microdissecting internal tissues that naturally protect from
seawater by epithelial envelopes (e.g., molluscan heart tissue), and thus from
aquatic microbes, would also reduce the initial microbial load of the inoculum.
Collecting cells that possess natural antiseptic defenses, such as innate immune
hemocytes (e.g., from mollusks, crustaceans, tunicates or echinoderms), would also
have a positive impact on reducing the contamination of the culture. Alternative
strategies include using short-term ubiquitous surface sterilization methods on the
surface-exposed tissue, such as dipping for up to 1 hour in 10-70% ethanol (e.g.,
for molluscan abalone mantle, see Suja et al. (2014), and for oyster tissue, see
Stephens and Hetrick (1979)) or a few seconds in KmnOy (e.g., in sea anemone tissue
(Doumenc personal communication)) and treating the dissected tissue for up to days
in sterile-filtered seawater enriched with a mixture of concentrated large-spectra
commercial antibiotics/antimycotics/antiprotist compounds (e.g., molluscan mantle,
gill or hepatopancreas tissue).

Second, if specific invertebrate cell types need to be recovered from contaminated
primary cultures, the cell-type enrichment strategies established for preparing a
suitable inoculum (see Section 2.4) could be reused. For instance, this approach
successfully retrieved accessory nidamental gland cells pelleted from native bacteria
through a 2% sucrose layer (Figure 3). In addition, the selective rinsing of adherent
invertebrate cell types could help to remove cellular debris, toxins and suspended
microbes.
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Figure 3. Primary co-culture of squid gland cells with native bacteria. (A) Accessory
nidamental gland tissue (white arrows) from Sepiola rondeletti is enzymatically
dissociated by trypsine (0.2% 30 min at 25 °C). (B) Gland cells are enriched via
centrifugation through a sucrose cushion (2% in seawater), and their seeding
density is controlled by Malassez hemocytometer numeration. (C) Glandular cell
types visualized via Fluorescence In Situ Hybridization (EUK, universal eukaryote
probe, fluorescein, green) are covered with surface-associated symbiotic bacteria
(EUB, universal bacterial probe, Cy3, red). (D) Four-week-old primary culture
(without antibiotics) showing high bacterial density around the cultured glandular
cell types, (E) which can be re-enriched via sucrose cushion centrifugation. (F)
Gland cell viability (mitochondrial enzyme activity assessed by MTT reduction
assay, DO 580/630) is higher in the absence than in the presence of antibiotics (AB)
and increases in primary co-culture with native bacteria, along with cell density,
indicating the beneficial effect of native bacteria on the survival of cell cultures.
Times are given as days post-inoculation (dpi). Source: Graphic by authors.

Third, contamination can be controlled during the primary culture itself.
The main strategy for this step to reduce the unwanted mixotrophic growth of
contaminants is to use a nutrient-poor basal medium formula, hence limiting the
provision of carbon and nitrogen sources that typically exceeds the in vitro energy
requirements of the target cells. The culture medium can also be supplemented with
antibiotics/antimycotics/antiprotist drugs and changed frequently until the culture
appears clean. Proliferating cultures should be closely monitored, and the primary
cell cultures containing visible ciliates, bacteria, or clusters of cells with characteristic
chytrid-like rhizoid morphology should be discarded.

However, these methods may rescue a subset of the targeted cell-type populations
from contaminant overgrowth but carry a high cost in terms of time-consumption
and cell yield reduction, for overall limited efficiency.
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3. Defining Optimal Culture Conditions

While obtaining a high-quality inoculum is essential for establishing healthy
cell cultures, the culturing conditions used are equally crucial. Indeed, even highly
proliferative tissue will undergo terminal cell cycle arrest, typically within weeks
after inoculation. Moreover, a breakthrough in the culturing conditions used for the
Bge cell line was at the origin of a large expansion in cell lines.

3.1. Selecting Suitable Culture Media Composition

Media formulation should strive to provide adequate levels of carbon and
nitrogen sources to meet the nutritional needs of each isolated aquatic invertebrate
cell-type population. However, the metabolism of stem cells and their nutrient
requirements are poorly documented across aquatic invertebrate taxa. Consequently,
a large variety of culture media have been tested for their in vitro culture (Table 2).
Based on the hypothesis of the conservation of major metabolic pathways across
animal phyla, a widespread approach is to use commercial basal formulas originally
designed for vertebrate cells, typically MEM, DMEM or Leibovitz L-15, supplemented
with salts to adjust to the targeted osmolarity of the specimen’s original environment
and generally diluted to 10-50% (Maramorosch and Mitsuhashi 1997; Mothersill
et al. 2000). An even simpler option is to provide a minimal medium composed of
seawater with pyruvate as a carbon source, and glutamic acid as a nitrogen source.
This approach has been used with sponge primmorph spontaneously aggregated
from dissociated cells. These media have, however, persistently failed to sustain the
in vitro division of cells of aquatic invertebrates. Another much more complex option
is to entirely custom design the media’s formula based on an extensive biochemical
characterization of internal tissue or fluid composition from the targeted animal
species (e.g., molluscan hemolymph). However, these taxon-specific media have not
yet demonstrated sufficient benefits to justify their development cost.

A more integrated and personalized approach is to adapt the media formulations
to meet the needs of the targeted invertebrate cell subpopulations. To check nutrient
consumption in vitro, individual uptake experiments of targeted organic carbon
(glucose, lipids, etc.) or nitrogen (amino-acid) substrates (see Apte et al. (1996)
for amino-acid transport into sea anemone cells, and Heude-Berthelin et al. (2003)
for glucose uptake and glycogen metabolism in oyster cells) may now be updated
to metabolomics-based global approaches. Indeed, the search for changes in the
metabolite profiles of media sampled at various timepoints in cultured mammalian
CHO-CKI cell lines has helped identify factors that sustain growth and affect in vitro
behavior (Mohmad-Saberi et al. 2013). A recent breakthrough was reached using
this approach to develop an amino-acid-enriched sponge cell culture medium that
sustains cell division in primary cultures (Conkling et al. 2019). The team used
a genetic algorithm to identify suitable amino acid components to supplement a
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commercial basal formula (M199) for improving the in vitro metabolic activity of
Dysidea avara sponge cells (Munroe et al. 2019).

A striking feature of successful insect culture media that support proliferating
primary cultures and cell lines is the addition of lipid-rich supplements, with a
trophic role and potential protection against oxidative stress. Lipid addition has
been shown to transiently increase metabolic activity (mitochondrial MTT reduction)
in cultured oyster heart cells (Domart-Coulon et al. 1994). The lipid-rich “Grace”
commercial formula was shown in cnidarian primary cultures to increase octocoral
cell numbers (Khalesi 2008), and is used to obtain a subset of dividing cells and a
few rounds of subcultures from cultured sea anemone tentacle (Barnay-Verdier et al.
2013). However, a more global picture of the impact of lipids on culture media for
aquatic invertebrate cells is currently lacking.

Medium renewal strategy should be aimed at striking a balance between a
conditioned medium supply of undefined trophic factors and cytokines and the
removal of senescent cells, debris and toxins from the aging primary cultures.
Manipulating inoculum cell densities is an efficient way to facilitate confluence
and thus maintain cell-to-cell contacts necessary for the secretion of cytokines that,
although currently undefined, are certainly necessary for sustaining cell survival.
Old-time tissue explantation methods that rely on the slow outward migration
of mixed cell types from a dissected tissue fragment adherent to a culture dish
yield the successive outgrowth of distinct morphotypes characterized at minima
by their in vitro shape and behavior. These cells can broadly be classified by the
following three categories: fibroblast-like, epithelial-like and amoeboid-like cell
types (Vago 2012), and can be selected for their ability to survive in vitro on residual
native extra-cellular-matrix components. Insect cell lines have emerged from such
long-term maintained explant cultures of lepidopteran imaginal discs (Echalier 1997).
More recently, the explantation of ectodermal monolayers of regenerating starlet sea
anemone yielded mitotically active, mixed cell types, primary cultures (Rabinowitz
et al. 2016).

In addition, culture medium can be complemented with a number of factors to
promote cell proliferation: C-type lectins have been shown to have cytostatic effects
on the hemocytes of the tunicate Polyandrocarpa misakiensis (Matsumoto et al. 2001);
lectins from another tunicate, Didemnum ternatanum, promote the adhesion of a range
of marine invertebrate cells (Odintsova et al. 1999); insulin and insulin growth factor,
as well as other vertebrate growth factors, were shown to have a positive impact
on the transient proliferation of molluscan bivalve cells (Domart-Coulon et al. 1994;
Giard et al. 1998); and retinoic acid-related molecules are known to be involved in
the dedifferentiation process of multipotent cells as reported for tunicate hemocyte
cultures (Polyandrocarpa misakiensis) (Kawamura and Fujiwara 1995).
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3.2. The Oxidative Stress Problem

Very few and exclusively freshwater taxa among the large diversity of aquatic
invertebrates have given rise to cell lines, including the snail Biomphalaria (Gastropoda).
Salinity is thus a major difference between the primary culture systems that have
given rise to cell lines and the unsuccessful attempts based on aquatic invertebrate
species. One possible cause for this difference is that higher salinity correlates
with lower dissolved oxygen. Consequently, dissolved oxygen levels in the cell
cultures might be an important yet overlooked physico-chemical parameter of culture
conditions. To date, primary cultures of aquatic invertebrate cells are indeed mostly
conducted under standard atmospheric conditions (i.e., ~20% O,), with the cells
covered by a thin layer of culture medium where dissolved oxygen is equilibrated by
diffusion with the surrounding air. Except for a few cases of full-strength Modified
Eagle Medium (or derivatives, osmotically adjusted by salt addition), which requires
a bicarbonate/5% CO, buffer system, the gaseous atmosphere of most cell cultures
is thus composed of air (Table 2). The widely used, amino-acid rich, Leibovitz
L-15-based media do not require a 5% CO, atmosphere. Seawater/freshwater diluted
commercial or custom-made media rely on the addition of Hepes (~20 mM) for pH
buffering at 7.4-7.6, depending on species (Tris-HCl is used for sponge cells grown
at pH ~8.0). Hence, under typical laboratory conditions (air and 15-25 °C), in vitro
aquatic invertebrate cells are exposed to ~20% O, which is largely more than in
their natural aquatic environment, and could likely expose them to in vitro oxidative
stress.

To circumvent this potential problem, the first step will be to monitor invertebrate
intracellular oxidative stress, for instance, via a fluorescent general oxidative stress
indicator, such as CM-H,;DCFDA, which has been used on the spheroid tissue of
Fungia coral exposed to short-term acute thermal stress (Gardner et al. 2017). Upon the
confirmation of oxidative stress, the second step could be medium supplementation
with exogenous antioxidants (for example, ascorbic acid (Helman et al. 2008), catalase
enzyme (Domart-Coulon et al. 1994)) or native pigments with high antioxidant
properties (e.g., sea urchin spinochrome (Ageenko et al. 2014) and shrimp astaxanthin
(Lee etal. 2021)). Both approaches have reproducibly led to the increased maintenance
of the primary cell cultures. An alternative when establishing cultures of tissues
containing photosynthetic endosymbionts (e.g., Cyanobacteria-containing sponges,
and Symbiodiniaceae-containing sea anemones, corals and octocorals) is to maintain
the cultures in the dark to inhibit the photosynthetic processes that generate oxygen
and thus increase oxidative stress (Table 2).
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3.3. Understanding Adhesion and Cell-to-Cell Contact Requirements of Aquatic Invertebrate
Stem Cells

To optimize the proliferation of culture cells, transferring genomic knowledge
obtained in each aquatic invertebrate taxon on cell-to-cell and cell-to-ECM adhesion
systems will be particularly useful for selecting suitable ECM-coatings of culture
dishes.

Shifting from classical 2D monolayer culture to 3D “spheroid” culture systems
offers opportunities to facilitate the maintenance of cell-to-cell interactions and of
native secretions within the cell cluster. Cells from the earliest branching aquatic
metazoans, such as poriferans and cnidarians, display spontaneous aggregation
properties after tissue dissociation into single cells, sometimes leading to whole-body
regeneration (see Simpson (1984) for sponge, Gierer et al. (1972) for hydra and Vizel
et al. (2011) for coral). This re-aggregation property is being harnessed for spheroid
formation (coral “tissue balls”, sponge primmorphs) and their establishment for
primary culture (Figure 4A—C). Hemocytes drawn from mollusks, crustaceans,
tunicates or echinoderms also self-aggregate into clusters, through sequential
migrations of adherent cells on the culture substrate followed by the putative
secretion of self-recognition lectins (Figure 4D-F). A recent breakthrough using
3D cultures of sponge cells in ultra-low-gel agarose hydrogel microdroplets has
been reported to support cell-ECM interactions and to facilitate the survival of
differentiated Geodia neptuni demosponge cells (Urban-Gedamke et al. 2021).

Similarly, improving the in vitro microenvironment of isolated stem cells could
potentially sustain their proliferation. Adapting the cellular microenvironment to
mimic stem cell niches of a target organism should be pursued in each model taxon,
as such information becomes available. In addition, primary cultures that gave
rise to cell lines (e.g., insect imaginal disc cells) can provide mechanistic insights
into the cellular microenvironment needed to maintain stem cell self-renewal. As
shown in mammalian systems, multidirectional signaling by co-culturing stromal
“feeder” cells with the target cells (e.g., neurons from the gastropod Aplysia californica
(Montgomery et al. 2002); stem-like cells on a monolayer of confluent cephalopod
hemocytes (Figure 4E)) might help to generate a microenvironment suitable for
stem cell maintenance, proliferation and differentiation, typically by providing cell
adhesion molecules, growth factors, hormones and other secreted proteins (see Girard
et al. (2021) for hematopoietic stem cell niche, and Ootani et al. (2009) for intestinal
stem cell niche). Furthermore, supplementing the culture media with specific growth
factors (e.g., Wnt fusion proteins for ISC (Ootani et al. 2009)) can lead to the expansion
of stem cells with sustained proliferation and multilineage differentiation. As in vivo
information on the regulation of aquatic invertebrate stemness becomes available,
transferring such information will be particularly important to design optimized cell
culture media.
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Figure 4. Aggregate vs. dissociated primary tissue and cell culture, on plastic
dish-culture substrates. The figure shows micrographs of individual cells
or multicellular aggregates at the indicated days post-inoculation (dpi). (A)

Scleractinian coral cell types and their Symbiodiniaceae endosymbionts (within coral
gastrodermal host cell, or free-living in the culture medium). (B) Suspended
coral multicellular aggregates spontaneously formed in explant culture of
colonies of Pocillopora damicornis. (C) Spontaneous dissociation into multilayered,
mixed-cell-type culture, containing translucent coral cells and brown-pigmented
microalgal symbionts (Symbiodiniaceae). (D) Cephalopod hemocytes from Nautilus
pompilius aggregate in cell culture when seeded at high seeding density (>10°
cells/mL, 2 dpi). (E) Confluent primary culture 8 dpi, showing networks of adherent
hemocytes and proliferating cell clusters (300-500 um in diameter), which can
be detached and transferred (passaged) to new culture dishes. (F) Subcultured
hemocytes (14 days post transfer from cells detached from clusters in 8 days
post-inoculation-primary culture) remain quiescent and do not grow to confluence.
Source: Graphic by authors.

To further mimic the in vivo microenvironment of the isolated cells, and their
interactions with their environment in particular, new “physiomimetic” approaches
should be developed using, for instance, versatile hydrogels to concentrate cells in
a 3D microenvironment (see Otero et al. (2021) for a review on such experimental
approaches for vertebrate cell systems). The ongoing development of commercial
hydrogels (synthetic or derived from jellyfish, i.e., “Jellagel”) provides new 3D
substrates to test on aquatic invertebrate cells. To determine whether these cells
behave in vitro similarly to in vivo, live-cell or live-tissue observations based on the
micropropagation of tissue in microfluidic devices should be further established
(Januszyk et al. 2015).
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4. Controlling the Purity and Quality of Cultured Cells

Upon isolation from their initial tissue microenvironment for establishment in
culture dishes, aquatic invertebrate cells change morphology and are notoriously
difficult to identify by their in vitro shape and behavior (Rinkevich 2011; 2005;
Cai and Zhang 2014). Moreover, cultured cells are morphologically highly plastic,
changing shape, granularity and sometimes pigmentation with culture age and
substratum composition (i.e., with or without surface coating with positive charges
or ECM compounds). For cell lineage authentication, checking phenotype and
genetic identity is imperative, not only upon culture initiation but also throughout
the primary culture and derived subcultures, at least at the time of use for functional
assays and before/after cryopreservation.

4.1. Proliferation

The monitoring of in vitro cell proliferation is traditionally based on monitoring
cell densities (via subsampling a fraction of the culture followed by cell numeration
on Malassez- or Neubauer-type hemocytometers, or time-lapse image analysis of
microscopy fields of view) and attentive changes in the total protein content or
DNA content extracted from cell pellets or monolayers. These methods overestimate
live cell densities as they integrate dying cells to the viable cells. Another widely
used method relies on the miniaturized high-throughput colorimetric quantification
of mitochondrial oxidative phosphorylation (MTT or XTT reduction assays) by
the cultured cells. First adapted for screening medium nutritional factors and
physico-chemical parameters for molluscan cells (bivalve oyster Crassostrea gigas
(Domart-Coulon et al. 1994)), it has also been adapted to sponge cell mitochondrial
activity evaluation in primary culture (Zhang et al. 2004) and to the monitoring of
coral larval cell density in primary cultures (Kawamura et al. 2021). However, this
type of MTT test detects not only oxidative phosphorylations of the animal cells but
also that of bacterial associates in primary culture (e.g., of cephalopod holobiont)
tissue (Pichon et al. 2007). The fluorescence monitoring of cellular esterase activity
is also a common method to quantify viable cells in cultures. However, their use
for aquatic invertebrate taxa can be limited by the widespread co-occurrence of
autofluorescent cell types with fluorescence spectra overlapping those of the enzyme
substrates.

By quantifying the proportions of cells in each phase of the cell cycle, flow
cytometry allows us to check the proliferative status of the collected tissue sample
before culture establishment, and to monitor cell cycling in the derived primary
cultures and potential sub-cultures. Applied, for example, in the early 2010s to
primary cell cultures from five demosponge species, this flow-cytometry-based
approach revealed rapid changes in the cell cycle distribution of a mixed-cell-type
suspension over time in primary culture (over a short-term 2-10-day timescale)
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(Schippers et al. 2011). The rapid accumulation of cells with low DNA content
together with a drop in the proportion of quiescent (G1/Gyp) and cycling cells (S &
G2/M) could be visualized, supported by the parallel detection of activated (caspase3)
apoptosis pathways. This evidence supported the hypothesis of the rapid senescence
of cultured sponge cells, with the accumulation of cellular debris (demonstrated
by widely scattered cell size distribution), despite stable or slowly declining cell
counts, by only minus ~20% over the 10-day culture period. This observation calls
to cautious interpretations of stable or slightly growing cell densities, counted from
image analyses of microscopic fields or enumerated on Malassez-type slides, as
round empty cell bodies cannot be unambiguously discriminated from living cells
based on morphology only, even when using vital stains assays (e.g., neutral red or
trypan-blue). Another point of caution when using this approach is the ploidy of the
studied samples, and in particular, the presence of mixoploid cell populations that
could bias their cell-cycle profile (Ermakov et al. 2012).

4.2. Phenotyping

Autofluorescent markers (e.g., Green Fluorescent Protein-rich intracellular
granules of cnidarian cells,) or chromophore/pigments of specific cell types (e.g.,
red “echinochrome” pigments of echinoderm coelomocytes) can be used to sort cell
types among a mixed cell suspension. However, care should be taken to minimize
irradiance energy during fluorescence microscopy examination as it may damage
the living cells by DNA photodamage or lipid peroxidation, and thus limit their
subsequent in vitro survival. Enzyme activity assays (e.g., phenoloxidase of mollusk
and crustacean immune cells), biochemical phenotyping and phagocytosis assays
have also been used to characterize the in vitro functionality of hemocytes from
molluscan hemolymph, tunicate hemolymph and echinoderm coelomic fluid.

Immunophenotyping requires the prior development and validation of
polyclonal or monoclonal antibodies against epitopes of cell-type-specific proteins
or membrane preparations. Although labor-intensive and time consuming, this
strategy provides the advantage of the unambiguous localization of immuno-positive
phenotypes in initial tissue and in primary tissue or mixed cell culture. For instance,
low abundant small round coral skeletogenic (calicoblast) cell types were labeled with
a polyclonal antibody raised against the biomineral organic matrix (Puverel et al. 2005)
and antibodies were raised against the Botrylloides piwi sequence to label a specific
population of hemocytes (Rinkevich et al. 2010). This antibody-based approach has
been successfully used to trace self-sorting processes during cell-to-cell aggregation
from mixed-cell-type dissociated tissue suspensions (Schmid et al. 1999) and for cell
fusion experiments (Pomponi et al. 2013). This has an interesting yet still overlooked
potential for cell-type enrichment via the antibody panning of immuno-positive cell
types (Auzoux-Bordenave and Domart-Coulon 2010).
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Novel phenotyping methods have recently been developed from cutting-edge
single-cell RNA sequencing methods, which are applied to cultured cells. However,
these techniques currently have the three following drawbacks: (1) the prior definition
of cell-type-specific markers is needed, through the data-mining of single-cell RN Aseq
libraries obtained from dissociated tissue suspensions, which is still available for
a limited number of species of established model organisms (e.g., for the starlet
sea anemone (Sebé-Pedros et al. 2018), for planarians (Hayashi et al. 2010) or for
the scleractinian coral (Levy et al. 2021)); (2) molecular markers should be specific
to metabolic pathways restricted to the targeted invertebrate taxon and exclude
pathways that are also active in potential contaminating protists/microeucaryotes; (3)
assessing the polyclonality (mixture of cell types) versus clonality (single cell line) of
the culture requires the quantification of the percentage of reads obtained for each
claimed phenotypic marker, relative to the total number of reads.

4.3. Genotyping

Despite the proper isolation and cleansing of cells, cultures can easily be
overgrown by undesired cells. An undetermined fraction of these aquatic microbes
survives the tissue aseptization treatments prior to dissociation or explantation and
co-occurs along with metazoan cells in the mixed-cell-type suspensions obtained
from soft tissue dissociation or hemolymph syringe-drawings. This large diversity of
aquatic microbes is hard to monitor as it requires taxa-specific specialist microbiology
knowledge and molecular tools for accurate identification. It is especially difficult
to recognize their morphological traits in a mixed-cell-type primary culture that
combines the morphological and behavioral plasticities of both the microbe and
microbial life stage, and the targeted invertebrate cell types.

To address this problem, genetic markers specific to a species (e.g., Axinella
corrugata demosponge, (Lopez et al. 2002)) or to a genus (e.g., Acropora scleractinian
coral (Shinzato et al. 2014)) have been developed and validated for identifying cells
from the targeted taxon in the initial tissue and over time in primary cultures and
subcultures. Marker development is based on molecular genetics methods, such as
DNA fingerprinting, amplified fragment length polymorphism (AFLP), single-locus
DNA sequence analyses and microsatellites markers designed by next-generation
sequencing population genetics methods.

As microbes tend to proliferate more actively than the cells of primary interest
of the in vitro culture, it is crucial to check the potential microbial nature of long-term
cultured candidate aquatic invertebrate stem cells.

4.4. Microbial Contaminants Authentication

Detecting genetic markers specific to the invertebrate taxa of interest does not
exclude the potential co-occurrence of microbial contaminants. In fact, because
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molecular detections are highly sensitive, the detected invertebrate cells could even
represent a very small fraction of the cell culture. Thus, it is highly recommended to
also systematically use molecular probes for microbial taxa to detect potential culture
contaminants (Table 3).

Culture contamination is a major obstacle to the development of aquatic
invertebrate in vitro models. Indeed, it is widely acknowledged that microbes
persistently take over the cultured aquatic invertebrate cell types (Rinkevich 2005),
putatively as a result of antagonistic interactions (predation and competition for
nutrients) or metabolic plasticity and better adaptation to the in vitro growth
conditions. Culture media are commercially designed for vertebrates (e.g., DMEM,
Leibovitz L-15) or insects (e.g., Grace Insect Medium) and partly diluted in seawater
(or freshwater) or formula custom-prepared to mimic the microenvironment of the
sampled tissue, and they are nutrient-rich. Although they may not adequately
meet the largely unknown growth requirements of the cultured invertebrate cell
types, they provide abundant organic carbon and nitrogen sources that facilitate
the overgrowth of opportunistic resident microbial associates. Indeed, epibiotic
or endobiotic microbiota (especially unicellular microeukaryotes that are hard to
discriminate from animal cells) have repeatedly been shown to take advantage of the
medium-derived nutritional resources to fuel their fast heterotrophic growth; see,
for example, the consumption of mono and disaccharides, glycerol, glutamate and
glycine by the opportunistic unicellular Alveolate Chromera velia (Foster et al. 2014).
Predatory opisthokonts, ubiquitous in aquatic environments, have a highly plastic
morphology, with in vitro growth alternating between a unicellular ‘spindle-shape’
stage and aggregative or clonal (partly fused) multicellular stages, and they are
known to feed on metazoan tissue or derived cells (Tikhonenkov et al. 2020a).

Such eukaryotic microbes, collectively defined as protists, may feed on cellular
debris from senescent or dead host/aquatic invertebrate cells, taking over the initial
host cell population in long-term primary cultures or their successive subcultures.

5. Perspectives

While marine invertebrates as a whole show the largest biodiversity and the
widest phylogenetic radiation on Earth, they have contributed very little to the
in vitro cell lines discipline. The culture of marine invertebrate stem cells and/or their
progenitors could thus create new perspectives for fundamental research as well as
for biomedical applications. To reach this objective, we thus recommend two main
actions.

First, a systematic map of knowledge, built in the form of a database of
publications with metacoded information on taxon population, intervention strategies
(e.g., cell isolation methods, culture media and physico-chemical conditions) and
outcomes (e.g., cell viability, proliferation and differentiation) would be an important
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tool for increasing the visibility of protocols and know-how in the fragmented scientific
community. Furthermore, it would help to incorporate typically unpublished
results, including negative results, a scientific status that is rarely highlighted in
the refereed literature (Grasela et al. 2012). Such database would help to build
a comprehensive knowledge map to identify optimized culturing conditions for
each aquatic invertebrate taxon and cell type, adapted to the expected timescale
of utilization. The multiple usage of primary cell and tissue cultures from aquatic
invertebrates ranges from short-term use (within hours to <7 days for physiology
and cytotoxicity testing) to the long-term (bi-weekly to monthly) selection of
subpopulations of dividing cells for serial sub-culturing attempts. Each type of
inoculum implies distinct culture media and condition strategies to balance cellular
yield, functional stability and proliferation potential. The curated list of 511 relevant
publications compiled in Appendix B Table A2 provides a start to this database,
allowing us to assess by taxon the extent of research efforts to initiate or develop cell
cultures. It should be maintained and completed by the scientific community, for
more exhaustive listing and optimized visibility.

Second, best practices would be to develop and adopt robust cell-type
authentication protocols applicable to insect or vertebrate cell lines and primary
cultures (Lynn 2001; Dominici et al. 2006), and to systematically deposit live or
cryopreserved vouchers of “cell lines” in cell repositories. This could lead to the
identification of more general stem cell markers for aquatic invertebrates, which
would be crucial for obtaining a robust inoculum for in vitro cell cultures. Most
recurrent past claims of successfully established aquatic invertebrate cell lines have
turned out in fine to be cultures overgrown by microeukaryote contaminants, with
examples in each taxon (porifera, colonial cnidarians, crustaceans and others).

Overall, these two actions taken together could help to standardize aquatic
invertebrate cell culture to facilitates comparisons between intervention protocols and
thus help to optimize the standardized protocols. Given that aquatic invertebrates are
phylogenetically very distant, the development of a ubiquitous culturing environment
appears rather unlikely. Nevertheless, each phylum could benefit from the scientific
and technological advances in primary cell culture made in other phyla.

In particular, the assessment of whether the list of three identification criteria,
defined for vertebrate stem cells, are conserved in aquatic invertebrate stem cells,
would be of particular interest. The first criterion is whether the stem cells adhere to
plastic, and more generally if a specific culture method, such as 3D Matrigel, could
lead to decisive improvements (Urban-Gedamke et al. 2021). The second criterion
explores the expression of specific surface markers that would allow the robust
isolation and enrichment of stem cells/progenitors, as has been attempted by using a
single marker in a colonial tunicate (Kassmer et al. 2020). The third criterion aims to
define protocols for assessing stem cells’ potency differentiation potential, typically

45



by using predefined induction cocktails combined with markers for differentiated
cell types, both of which require a precise characterization of gene expression profiles
specific to each cell-type for every species of interest (Sebé-Pedros et al. 2018).

An alternative to identifying suitable stem cells is to immortalize cells of interest
in a reproducible manner. One suggested approach is to manipulate adult stem
cells of aquatic invertebrates similarly to the approach implemented in mammalian
induced pluripotent stem (iPS) cells (Rinkevich 2011). The second route, probably
the most promising and reliable approach, is to control the process of tumorigenesis
in aquatic invertebrates, as already suggested (Odintsova et al. 2011). Research on
this topic is currently very scarce (Gardner 1993; Robert 2010) primarily due to the
facts that tumorigenesis in aquatic invertebrates is not as commonly observed as
in vertebrates (Vogt 2008; Tascedda and Ottaviani 2014), that tumor-like lesions in
aquatic invertebrates possess a low mitotic index (Odintsova et al. 2011) and that
the definitions of tumors and tumor cells in aquatic invertebrates are less familiar
to pathologists (Tascedda and Ottaviani 2014). Yet, the tool of tumorigenesis may
constitute a very important route for future research, and a potential approach is
to use the trait of the vertebrates’ cancer cells (Vincent 2012) as a guiding list for
tumors in aquatic invertebrates. A third concept proposes the use of regeneration
processes as the source of tumor development (Oviedo and Beane 2009), which is
particularly interesting given the broad involvement of aquatic invertebrates” stem
cells in regeneration processes, including whole-body regeneration (Rinkevich et al.
2022). For each one of these three approaches, the development of suitable tools for
the controlled editing of genetic material of cells, typically through viral transfection,
could enable the knockdown of suppressor genes, similar to standard approaches
in mammalian cells (Yang et al. 2007). One such advance is the successful induced
stem cell neoplasia in the marine hydrozoan Hydractinia echinata by the ectopic
expression of a POU domain transcription factor (Millane et al. 2011). However,
even immortalized tumor-like cells will need appropriate culturing conditions to
proliferate properly. Lessons may be drawn from the failure to sustain in vitro the
neoplastic hemocyte proliferation observed in vivo in spontaneously occurring clam
leukemia, with research pointing to a role for the stress protein mortalin in the
induction of apoptosis in cancerous hemocytes (Walker et al. 2013). The RNA-seq
approach may be applied to compare gene expression patterns in cultured cells and
initial tissue, with a focus on essential cell proliferation and cell cycle arrest regulator
genes, in order to develop future strategies for immortalization, as recently explored
for developing shrimp cell lines (Thammasorn et al. 2020).

As a supplementary approach to support the development of cell lines from
aquatic invertebrate stem cells, studies on metabolomes of cultured cells, and
their secretomes in particular, could be considered. Such an approach may
provide important insights into the requirements in media composition that support
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proliferative activities. Ample information has been gained on this issue in
mammalian cell cultures (Cuperlovi¢-Culf et al. 2010; Mohmad-Saberi et al. 2013).
Yet, the study of the secretome of aquatic invertebrates has seldomly been undertaken
(Kocot et al. 2016), but data on the metabolome of whole organisms in the context
of marine natural product discoveries are becoming quite common (Reverter et al.
2020). Furthermore, high-precision tool development specific to seawater are now
available (Sogin et al. 2019).

Finally, future research should also address the still largely overlooked abiotic
factors, such as testing hypoxia and pressure stimuli, on primary cultures.

Regarding hypoxia, parallel research in cultured mammalian cell models
has highlighted the better survival and proliferation of stem cells in low oxygen
environments (Zhu et al. 2005; Hung et al. 2012; Ramirez et al. 2011). A shift from
oxidative phosphorylation to aerobic glycolysis, known as the Warburg effect, has
been documented in the context of proliferating cancer cells: the glucose consumed
in high amounts to fuel the growing biomass of cancer cells is fermented to lactate
rather than oxidized, even when there is sufficient oxygen to convert glucose to
CO,, although the process is less efficient in terms of ATP synthesis (reviewed by
DeBerardinis and Chandel 2020). Hyperactive glycolysis involving lactate supports
the tumor energy metabolism of cancer stem cells in mostly hypoxic environments,
and similar pathways might support the metabolism of aquatic invertebrate stem cells.
A similar Warburg effect has indeed been documented in Crassostrea gigas oyster tissue.
First discovered during the response to viral infection with ostreid herpesvirus-1
(Corporeau et al. 2014), it is thought to be a mechanism to adapt the oyster metabolism
to extreme (salinity and oxygen) changes in the intertidal environment (Corporeau
et al. 2019). In agreement with this finding, preliminary data obtained on oyster
heart primary cell cultures showed transient increased proliferation between 2 and
4 weeks post-inoculation in a 2% O, atmosphere (obtained by incubation in a 95%
N»/5% air incubator), compared with 20% O, atmosphere (air) (Domart-Coulon,
unpublished), when medium was supplemented with growth factors, lipids and
antioxidants (Domart-Coulon et al. 1994).

Regarding pressure, research on the primary cultures of vertebrate (Wharton
Jelly’s) mesenchymal stem cells has shown the combined positive effects of pressure
and hypoxia (Park et al. 2020). In response to pressure stimuli, cell proliferation
was increased, and stemness was maintained. Cellular adhesion and confluency
were higher in 5% O, hypoxia with 2.0 PSI pressure conditions relative to standard
5% CO2-95% air conditions, and hypoxia alone yielded a mild increase in stem cell
adhesion and confluency. Thus, we propose the inclusion of these abiotic parameters
in future invertebrate stem cell culture optimization efforts.
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Appendix A
Table A1. All the detailed values used for building Figure 1.

Taxon Species Regeneration Longevity Publications Cell Lines
Hominidae 7 organ 122 16,851 96,862
Mammalia 5480 organ 211 7238 29,171
Vertebrata 56,508 appendage 392 884 1394

Tunicata 2760 WBR - 44 0
Cephalochordata 33 organ - 3 0
Ambulacraria 7111 WBR 200 42 0
Xenacoelomorpha 401 WBR - 1 0

Insecta 1,015,897 appendage 28 351 895
Ecdysozoa 202,423 appendage 100 110 94
Nemertea 1200 WBR - 0 0

Platyhelminthes 20,000 WBR - 16 1
Mollusca 85,000 appendage 507 121 5
Spiralia 26,099 WBR - 14 0
Cnidaria 9795 aggregates 4265 66 0
Placozoa 1 aggregates - 0 0
Ctenophora 166 WBR - 1 0
Porifera 6000 aggregates 15,000 58 0

Appendix B

Table A2. The full curated list of 511 references, sorted per taxa. (This table
was not included in the print version of this book, to view the table please visit
https://www.mdpi.com/books/pdfview/edition/5071).
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