




(Hurmekoski et al. 2018). CH-Bioforce, a Finnish start-up company, has
developed a method of biomass fractionation, which can be used to extract
effectively biomass components (Bioforce 2020).

In addition to the aforementioned products, other concepts are being actively
developed, such as advanced materials (porous cellulosic materials, coatings, films,
foams), fertilizers and earthwork materials (Fabbri et al. 2018). Novel products bring
additional flexibility to the mills, however, the production of new commodities may
be significantly constrained by the availability of by-product flows within the mills
(Hurmekoski et al. 2018).

The forest industry has significant potential to participate in the substitution of
fossil-based materials in various sectors, and thus it plays a major role in creating
and developing bioeconomy. The products of the Finnish forest industry already
provide substantial climate benefits, but it is expected that the benefits will expand
even more in the future (Finnish Forest Industries 2020a).

5. Conclusions

Climate change increases the significance of forest energy. The circular economy
goals outlined globally, and within the EU, include improvements in material and
energy efficiency, a realization of industrial symbiosis potential and a significant
increase in the use of residues and wastes as valuable raw materials. Combining
different technologies and using the potential of wood resources to the highest extent
can boost energy and economic efficiency by providing fuel flexibility along with a
wide range of products generated with a reduced carbon footprint.

Sustainability and life cycle thinking play a major role in the development
of a circular economy in the forest sector in Finland. Finnish forest industry
companies are constantly improving their energy efficiency and decreasing their
dependency on fossil sources. The structural changes affecting the forest industry
sector bring simultaneously new opportunities through novel outputs. The use of
the best available techniques, tighter emissions regulations and emission-related
costs are enabling a more effective transition of the forest industry towards
effective biorefineries. Modern Finnish pulp and paper mills and sawmills operate
with an integrated approach by utilizing the process residuals for producing
renewable heat, power, and bioproducts. Among the most promising wood-derived
products are biofuels, textile fibres, biocomposites, fertilizers, various cellulose- and
lignin-derivatives. Carbon capture technologies have a remarkable potential within
the PPI. While producing a significant amount of bioenergy, pulp and paper mills
integrated with CO2 capture technologies can become major sources of negative
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CO2 emissions. At the same time, as long as the political environment for bioenergy
carbon capture is uncertain, the future potential is extremely challenging to evaluate.

The climate benefit from forest industry products in Finland has been estimated
to be currently 16.6 MtCO2, and it is expected to increase in the future. Many of the
new bioproducts are in an early stage of development and thus further studies are
needed to bring them to the markets. Replacement of fossil fuels used and efficiency
improvement in the Finnish pulp and paper mills can lead to roughly 2.5 MtCO2

emission reduction, which corresponds to approximately 5% of the domestic CO2

emissions. An increase in demand for biomass sources might be the major challenge
in the replacement of fossil fuels. While the role of forests as a carbon sink was out of
the scope of this study, it is worth noting that the improved forest management can
substantially enhance carbon removal from the atmosphere. As the aforementioned
examples show, the possibilities of the forest industry to contribute to the mitigation
of environmental changes evaluated on the Finnish example are certainly impressive.
However, further studies are needed to enhance understanding of climate benefits
of different solutions and to release the potential of the forest sector by overcoming
technical, economic and political barriers.
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Public Transit Challenges in Sparsely
Populated Countries: Case Study of the
United States

Warren S. Vaz

1. Introduction

Transportation has long been recognized both as a critical pillar of developed
societies and a major contributor to pollution. Transportation is critical for access to
food and other resources, employment, communication, and, thus, providing access
to transportation is key to eliminating discrimination and socioeconomic barriers
that limit several marginalized populations (Dostál and Adamec 2011). According to
a 2020 report by the U.S. Environmental Protection Agency, transportation globally
accounts for about 28% of CO2 emissions (US EPA 2020). Thus, transportation today
provides salient benefits to society, but also exacts a cost in terms of health and impact
on the environment. With the global population continuing to grow and several
large countries like Brazil, China, India, Indonesia, and most of Africa continuing to
develop, the demand for transportation is only projected to increase.

To meet this growth in the most sustainable way possible, the answer must be
clean transportation. The poster child is the electric vehicle (EV) powered by clean
energy (e.g., solar, wind). An alternative is the hydrogen fuel cell vehicle powered by
green hydrogen, which is hydrogen generated by electrolysis using clean electricity.
These technologies also tend to be more efficient, from an energy standpoint, than
conventional vehicles. For example, consider the 2020 versions of the Tesla Model
3 and the Toyota Camry, two passenger sedans of comparable size (~1550 kg). The
fuel efficiency of the electric Tesla is about 5.7 km/kWh. For the Toyota, it is about
1.3 km/kWh, when the energy content of gasoline is factored in. Another way to
consider efficiency is considering the efficiency of moving cargo or people. For
example, the same Toyota can transport at most five passengers, but typically closer
to 1–2. Thus, its efficiency would be about 0.4–0.8 kWh/km/passenger. For a
typical mass transit bus that can transport 40 passengers, this efficiency is about
0.13 kWh/km/passenger, assuming the bus is full. Thus, the conclusion here is that
mass transit is a critical piece in the transition towards a clean and sustainable future.
Ideally, this mass transit would be fueled by clean energy sources, but even using
conventional sources would result in a reduction in emissions (Yuan et al. 2019).
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The focus in this chapter is on passengers, but a similar argument can be posited
for goods or cargo. This chapter focuses on public transit challenges in sparsely
populated countries. The case study of the United States is used to demonstrate how
and why the historical factors that shape a country’s policies are critical to planning
any future improvements. Accordingly, some suggestions for the future of public
transit policy are presented, together with a selection of recent projects and upcoming
projects taking shape.

2. Sparsely Populated Countries

While mass transit may be an effective way to handle the increasing need
for transportation in the most efficient manner, this would require a significant
investment in infrastructure. Individual vehicles only require a road network. Transit
buses also require bus stops, depots, drivers, transit schedules, coordinators, etc., not
to mention the huge initial cost of the actual buses. Rail is more efficient, but even
more capital intensive. Governments or private industry are willing to invest in these
projects if there is an economic case. Additionally, this typically is a function of the
population: the larger the target market, the larger the expected revenue. However, if
the population density is too low, then there are additional challenges. Short, efficient
trips become impossible and an expansive infrastructure leads to a prohibitive
upfront investment. Compounding these factors are areas that house historically
poor populations. While these populations have the greatest dependency on cheap
transportation and would benefit the most, such areas are the least likely to see
significant public investment as they are typically underrepresented in government
and policymaking. On the other end of the spectrum are affluent areas. There is a
strong correlation between vehicle ownership and per capita gross domestic product
(GDP) (IRF 2013). Similarly, one would expect a strong correlation between per capita
emissions and per capita GDP. However, other factors might be worth considering.

Figure 1 shows five indicators for 28 countries, which account for about
two-thirds of the total global population as well as about two-thirds of the total
global GDP (PPP or purchasing power parity). For each of these, the per capita
emissions are plotted in relation to the population, population density (per square
kilometer), GDP (PPP), GDP per capita, and percentage of urbanization. A trendline
for the plot is also shown. Indeed, it can be concluded, based on the R2-values
obtained, that the GDP per capita has the strongest correlation to emissions. The
next most important factor is urbanization, or the fraction of the population that
lives in cities compared to rural areas. Another interesting trend is in the population
density plot. It can be observed that countries with very low population densities
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tend to produce far more emissions than those with high population densities. Taken
together, the data point to the conclusion that the biggest polluters are countries
with a high per capita GDP and urbanization, but low population density. Such
countries also have high levels of vehicle ownership. All these factors contribute
to high emissions per capita. In addition, it is argued here that such countries face
significant challenges to adopting or expanding mass transit. To demonstrate this,
the case of North America is examined, particularly focusing on the United States.
The countries are highly developed and very rich in natural resources. They have
a lot in common, including being sparsely populated and relatively isolated, both
internally and externally.
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(WDI 2021; Ritchie 2019; IMF 2020; UN 2019).
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North America has three countries: Canada, Mexico, and the United States.
These countries have a similar history and share many common characteristics. All
three are relatively young, ranging from 1776 (United States) to 1867 (Canada). These
countries were inhabited by various Native American civilizations, then settled by
Europeans, who also brought several enslaved peoples to the continent. By the
middle of the 19th century, slavery had been abolished in all three countries and each
one experienced waves of immigration from various parts of the globe continuing to
this day. This has only added to, and in many ways catalyzed, the natural population
and industrial growth that is virtually unprecedented in history.

Table 1 shows statistics for various economic and transportation categories
for Canada, the United States, and Mexico. There are some commonalities, like
the degree of urbanization. However, Canada and the United States have more in
common with each other than Mexico. Canada and the United States are considerably
wealthier than Mexico. Part of the reason is because both countries are huge: second
and fourth, by area. The United States is also third in the world by population, but its
population density is still about half that of Mexico. Even if only the contiguous 48
states are considered, the population density only changes from 33.6 to 40 per sq. km.
With wealth comes a higher standard of living and energy consumption, resulting
in greater emissions. The United States and Canada emit about four times more
than Mexico. The per capita vehicle ownership is similar. Even though the degree of
urbanization is about the same, a closer look at the distribution is instructive. The
top 100 combined statistical areas (CSA) account for 81% and 66% for Canada and
the United States, respectively, compared to just 45% for Mexico. Summing the total
for all cities above 100,000 residents, they account for 74% and 85%, respectively,
compared to just 48% for Mexico. This leads to the conclusion that populations in
Canada and the United States are much more concentrated than in Mexico. Part of
this can be due to the presence of huge suburbs around a major city.

While Canada and the United States have a lot in common, this chapter will
focus on the United States for several reasons. The United States has almost nine
times the population, over 12 times the GDP, and is seen as a global leader and
influencer in the world and has been that way since World War II. Furthermore, the
United States has a history of invention and innovation in several critical sectors,
including transportation: railways, automobiles, including mass production, road
infrastructure, traffic laws, etc., aircraft, rockets, and more. Countries have looked to
it for benchmarks and manufacturing standards and lessons learned and technologies
discovered have often translated to international markets. Thus, if the United States
were to, for example, stop manufacturing internal combustion vehicles and fully
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switch to electric vehicles, that would put significant pressure on other countries to
follow suit considering how huge a market space is controlled by the United States.
Finally, the United States is also one of the largest consumer markets in the world in
several sectors such as automobiles, electricity, petroleum, etc. Changes here would
have a much greater impact than virtually any other country.

Table 1. Various economic and transportation statistics for North
American countries.

Country Canada United States Mexico

Area (million sq. km) 9.984 9.833 1.973

Population (millions) 38.01 328.24 126.01

Population density (per sq. km) 3.92 33.6 61.0

Population of top 100 CSAs
(fraction of total) 0.81 0.66 0.45

Population of >100K cities
(fraction of total) 0.74 0.85 0.48

GDP (nominal, trillion US
dollars) 1.6 20.807 1.322

GDP (per capita, US dollars) 42,080 63,051 10,405

Emissions (per capita, metric
tons of CO2) 16.3 16.1 3.8

Urbanization (%) 81.6 82.7 80.7

Vehicle ownership (per 1000
people) 685 838 297

Source: Table by author, data from (IMF 2020; UN 2019; Statistics Canada 2016;
US Census Bureau 2019; INEGI 2010; IOMVM 2013).

3. History of the United States: An Overview

The United States declared its independence from colonial rule in 1776. In
its early years, it was not universally recognized as a nation for several years.
Several established nations still viewed it as a potential colonial acquisition. Most
importantly, the entire territory of the first 13 colonies was east of the Appalachian
Mountains, north of Florida—about 11% of its extent today. Gradually, several
territories were acquired, organized, and formalized as states. This included
territories east of the Mississippi, then the entire Mississippi River basic (Louisiana
Purchase), the Oregon Territory, Florida and the Republic of Texas, and Spanish
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