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1. Introduction

The synchronised power system is one of the top human engineering
achievements of the twentieth century (Almassalkhi and Hiskens 2015). Throughout
the early part of the twentieth century, the number of electrified cities increased,
leading to a connected system identified as the synchronised power grid
(Hughes 1993). Since then, the power system has evolved, presenting new hurdles
for system operators, both at transmission (TSO) and distribution (DNO) level.
Environmental impact, increased penetration of renewable energies, the continued
growth in demand, and the uncertainty of fuel reserves are just a tiny part of a
set of new challenges that the power systems research community is addressing
(Nolan and O’Malley 2015). Grid reinforcement can be part of the solution to
these challenges; however, it is costly and does not always improve the system’s
robustness. Recent blackouts in Germany, Texas and Italy caused by a domino
effect of small evaluation mistakes are the empirical evidence of a more significant
research problem (Boemer et al. 2011; Gimon and Fellow 2021). Assessing these
issues requires complex modelling and extensive computational capabilities and can
lead to counterintuitive results.

In 2012, researchers at the Max Planck Institute for Dynamics and Self
Organisation in Göttingen, discovered that the power grid is affected by Braess’
paradox. This phenomenon was discovered by the German mathematician
Dietrich Braess in 1968 while undertaking studies on road network models
(Pas and Principio 1997). The definition of the paradox as stated in Braess (1968,
p. 1) is as follows:

“For each point of a road network, let there be given the number of cars
starting from it and the destination of the cars. Under these conditions,
one wishes to estimate the distribution of traffic flow. Whether one street
is preferable to another depends not only on the quality of the road but
also on the density of the flow. If every driver takes the path that looks
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most favourable to him, the resultant running times need not be minimal.
Furthermore, it is indicated by an example that an extension of the road
network may cause a redistribution of the traffic that results in longer
individual running times.”

The same principle applies to the power grid, where adding one or more
links to the power grid could degrade the overall efficiency of the system
(Witthaut and Timme 2012). The increasing energy demand, environmental concerns
and the installation of interconnected Renewable Energy Systems (RES) add
to the underlying complexity of the problem. RESs are associated with low
carbon emissions; however, for the general public, the threats caused by their
intermittent nature are underrated and not well understood (Vargas et al. 2015).
Despite these technical challenges, post-Kyoto regulations endorsed by the
European Union have established the target of full decarbonisation by 2050
(International Energy Agency 2016).

Historically, system operators owned most of the system, and they planned
the generation mix a day-ahead while tuning the daily electricity production
to compensate for unplanned generator outages or unexpected load oscillations.
High penetration of renewable energy increases the complexity of this process to
an unexplored level (Bozalakov et al. 2014). Furthermore, the increasing electricity
consumption caused by a larger adoption of low-carbon technologies in end-use
sectors represents another influencing factor on the demand side of the network. The
increasing percentage of electric vehicles and heat pumps can strain the network
capacity and ultimately lead to blackouts (Veldman et al. 2011).

Extending the control to the demand-side of the system can become part of the
solution (Cecati et al. 2011; Fuller et al. 2011; McKenna and Keane 2016; Nolan and
O’Malley 2015; Torriti et al. 2010). The adaptability of demand is not new to the
dynamics of the power grid infrastructure. These measures have been promoted in
various countries across the world to clip winter or summer peaks and defer grid
reinforcement (Paterakis et al. 2017).

Following these measures, power grids have gradually adapted to the increased
demand and are adopting a higher percentage of new renewable energy generators
such as photovoltaics and wind turbines. System operators did not embrace the
penetration of RES until it started to affect the supply/demand balance of the whole
system, altering the system frequency beyond safety thresholds (Ulbig et al. 2014). At
that point, system operators had to take into account not only the unscheduled
load demand but also the variability of power generation caused by weather
conditions (Bozalakov et al. 2014). These open challenges cannot be addressed
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within the boundaries of the existing power system (Farhangi 2010). The integration
of information technology, communications, and circuit infrastructure could lead to
disruptive technological innovations for the integration of higher penetration of RES,
increasing assets efficiency and reducing overall carbon emissions (Yan et al. 2013).

In this chapter, relevant research on the topic of the built environment, Demand
Response (DR) and optimisation algorithms for DR are critically reviewed, and the
key results and advancements in the area are contextualised. Section 2 assesses the
impact of buildings on the energy system while Section 3 introduces the concept of
demand-side management and DR, assessing the advantages and disadvantages
of automatic versus manual DR. Section 4 assesses how an energy management
systems (EMS) can be used to implement demand response strategies. Section 4.1
examines the idea of home area network (HAN) or local area network (LAN)
and how technological innovation. is changing the interaction between users and
buildings. This part discusses the effect of technological advancements in developing
interconnected appliances and communication protocols. It also focuses on the
definition and characterisation of EMS in a smart-grid scenario. This section discloses
several research gaps on the communication infrastructure between buildings and
the power grid. In this part, an extensive analysis of optimisation algorithms
for DR is presented. Section 5 analyses how advanced controllers can foster the
transition to a lower-carbon economy, reducing the energy costs and facilitating
the integration of renewable in the system. In Section 6, an overall contribution of
buildings towards the full decarbonisation is analysed. The chapter concludes with
Section 7 by identifying a path towards the decarbonisation of our society through
advanced energy management systems.

2. Buildings as a Fundamental Asset for the Decarbonisation

Generally, the building stock can be divided into residential and commercial
buildings. Census data or building surveys can be used to collect relevant information
to characterise the building stock at the country level (Mata et al. 2014). In recent
years, building energy certificates and other geographical information systems have
enriched existing databases and increased data accuracy (Võsa et al. 2021). Moreover,
some European and national projects have compiled available information for a
country or group of countries or new methodologies to certify energy rating for
buildings such as Active Building Research Programme (2013); ePANACEA (2020);
Episcope EU (2013); U-CERT (2019).

The built environment accounts at least for 40% of the total electricity
consumption (Pérez-Lombard et al. 2008). Seasonal peaks are caused by increased
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lighting, cooling or heating demands, and such profiles are also peaking
wholesale electricity prices and reduced reliability due to tight generation reserve
margins. Higher penetration of electric vehicles and heat pumps have caused
an increased demand which is being modulated by RES and the smart grid rollout
(Arteconi et al. 2013; Smith 2010). In these transitional circumstances, where the
global target of 2050 is looming closer, the motivations of massively employing
demand response programs using buildings have never been so compelling.

As illustrated in Figure 1, the European Union has a large and old building
stock that requires retrofitting and upgrading. Despite a significant variation in
the EU members’ built environment, full decarbonisation would not be possible
without a massive retrofitting plan across the EU. Furthermore, within the EU, there
is a large variance in the energy consumption required to heat or cool the buildings.
Figure 2 illustrates how more than half of the European countries have an average
consumption per square meter above the average and far from NZEB or passive
building standards.
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Figure 1. Building older than 15 years old of retrofit potential for Europe. Source:
Graphic by author, adapted from Pallonetto et al. (2022).
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Figure 2. Average building consumption for square meter across Europe. Source:
Graphic by author, data from Eurostat (2020).

Among low carbon technologies worth mentioning for the built environment,
there is the heat pump. Heat pumps can reduce the energy consumption of the
building and can be installed and used in tandem with renewable energy sources
such as photovoltaic systems. Heat pumps deployment can also support the evolution
of the power system and contribute to the high penetration of renewable sources
through end-users participation in demand-response markets. Such a combination
makes heat pumps more attractive. Such an advanced technology can meet the
heat demand of the building while reducing carbon emissions by a factor of three
(Boemer et al. 2011; Eriksen et al. 2005; Paterakis et al. 2017). From the power system
perspective, innovations such as building home automation, smart grid rollout, diffusion
of intelligent appliances and EMS integration are necessary prerequisites to boost
the efficiency of the power system while increasing the RES penetration to meet the
emissions target (European Commission 2010). These features will enable electricity
end-users to modulate their electricity consumption by dynamically responding to
fluctuations in the power generation caused by RES (Mohsenian-Rad et al. 2010b;
Pedersen et al. 2017). End-users can manually or automatically alter their consumption
patterns via home automation or EMS controllers in a smart built environment. Grid
reliability and evolution in the regulations to enable DR in the electricity market are
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the primary reasons for the intense interest to develop intelligent EMS that can reduce
energy costs and dynamically adapt to grid constraints (Conka et al. 2014; Pereira and
da Silva 2017).

3. Demand-Side Measures towards the Full Decarbonisation of Our Society

DR is one of the Demand Side Measures (DSM) measures promoted as
a mechanism to increase the percentage of renewable energies in the system (Albadi
and El-Saadany 2008). It is defined as “changes in electricity use by demand-side
resources from their normal consumption patterns in response to changes in the
price of electricity or to incentive payments designed to induce lower electricity use
at times of high wholesale market prices or when system reliability is jeopardised”
(Gils 2014, p. 1).

This measure is being implemented worldwide by various TSOs through
the remuneration of DR aggregators in the electricity market. In some cases, the
aggregators were the TSOs or a related entity. Aggregators can control the energy
demand of residential and commercial buildings, representing 40% of the total
primary energy consumption.

The widespread adoption of DR programs leads to a paradigm shift in how TSOs
manage the grid. Such changes require a bi-directional communication link between
buildings and operators occurring with the smart grid rollout (Silva et al. 2012).

3.1. DR Objective and Programs

A DR signal by an aggregator or TSO, triggers the intentional reshape of
the electricity demand profile. The variation can be measured as the level of
instantaneous demand or total electricity consumption deferred. DR assets can
dynamically change the electricity demand curve, providing peak shaving, frequency
control, load shifting and forcing measures (Nolan and O’Malley 2015).

DR programs can be classified by financial schemes. DR aggregators can
remunerate DR events to end-users with Incentive Based Programs (IBP) or Price
Based Programs (PBP) (Aghamohamadi et al. 2018; Albadi and El-Saadany 2008).
The difference between PBP and IBP is that in the latter one, end users get a financial
benefit or a price reduction due to their affiliation to the scheme.

Among IBP programs, there are market-centred schemes. Market-centred DR
is for medium size users or demand response aggregators. The schemer requires
market access and equipment to connect to the TSOs communication infrastructure.
In these cases, the financial benefit for the user is correlated with the flexibility
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provided. As described in Qdr (2006), the Market-centred DR programs include the
following categories:

1. Emergency DR. These incentives are proportional to load reduction during
emergency reserve shortfalls events. When utilised, a demand reduction signal
is sent to all large users enrolled.

2. Capacity Market Program. This program is for users who can precisely estimate
a determined load reduction when system contingencies happen. The users
involved have a day-ahead notice, and if they do not answer, they are penalised.
The payment is based on the declared peak load reduction achievable by
the asset.

3. Ancillary Service Program. Operating reserve is bid in terms of curtailment
capacity. If the bid is accepted after the measure is implemented, customers are
paid the spot market price.

4. Demand Bidding (also called Buyback). In this program, consumers bid the
load reduction in the wholesale market, where a bid is accepted if it is less than
the market price.

In the PBP, the electricity price is directly correlated with the market price
(Albadi and El-Saadany 2008). The objective of these schemes is to flatten the
electricity profile to lower peak demand. Typical PBPs may encompass some or
all of the following features:

1. Time of Use Tariffs (TOU) tariffs where there are two or more time blocks such
as night, peak and off-peak electricity prices.

2. Critical Peak Price (CPP) is often utilised during high contingencies or higher
electricity usage for a few days or hours or months.

3. Extreme Day Price (EDP) is a specific subset of the CPP program. In this case,
the electricity tariff increases during a specific time of the day. During the
rest of the day, a flat tariff is used. In this case, the DR event is set for one or
more days.

4. Real Time Price (RTP), where the electricity tariff is synchronised to the market
time resolution, which typically changes every hour.

3.1.1. Lessons Learnt from DR Pilot Programs

The development and testing of demand response programs have shown
benefits and challenges yet to be addressed. China started piloting DR programs
in 1990, but energy shortages during 2003–2008 reinforced the implementation of
DR pilot projects. Since then, the established DR programs were based on TOU
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rates, Curtailable/Interruptible loads, the use of off-peak storage devices such as
heat storage boilers and ice-storage air conditioners. These programs highlighted
challenges related to human behaviour, absence of competitive electricity markets,
customers unawareness of prices and absence of recovery mechanism for users
and utility investments (Tahir et al. 2020). It should be noted that shifting from
manual load-shifting in response to network stress at predictable times of day to
dynamic programs price- or quantity-based requires additional Information and
Communication Technology (ICT) support. The uncertainties associated with human
behaviour are the main challenges in the implementation of these programs. The
RealValue project included a test bed of more than 800 households across three
different EU nations (Darby et al. 2018). Customers who were used to paying for
a service from the power system became prosumers through distributed generation,
storage and demand response. As a consequence, the connections across the
resources dynamically managed by users and the established actors such as utilities
required innovative ideas and additional user and ICT support to provide a fraction
of potential theoretical flexibility estimated (Darby 2020).

Table 1 summarises and compares the experience of different demand response
trials deployed worldwide and highlights different types of barriers, benefits and
technology enablers (Lu et al. 2020). The table shows how critical is the use
and identification of shiftable/curtailable loads coupled with storage to enable
the deployment of DR programs. Switching to automated direct load control is
complex and requires a reliable and trustworthy IT infrastructure and data exchange
mechanisms. Additional, similar works highlight the importance of user acceptance
and how occupants behaviour is the primary barrier to the success of these programs
(Anaya and Pollitt 2021).
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Table 1. Demand response measures and limitations Legend: X Support it,
(X) Partially supported.
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Fixed load capping X X X Low Volume Static Low None Low
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Source: Table by author, data from Lu et al. (2020).

3.1.2. Summary of DR Benefits

Figure 3 shows the correlation between stakeholders and DR schemes. The
benefit for end-users is typically a reduction in the electricity bill or financial
remuneration. On the other side, operators such as TSOs can increase the efficiency
of the market, reducing the volatility and the use of peak generators (Albadi and
El-Saadany 2008). Moreover, from a broad market perspective, DR programs can
reduce the electricity price increasing the capacity of the system (Aghamohamadi
et al. 2018; Braithwait and Eakin 2002). Such benefits also defer grid reinforcement,
reducing the running costs and improving the market efficiency (Paterakis et al. 2017;
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Qdr 2006). The overall reliability of the grid increases thanks to the use of DR schemes
because the dynamic demand curtailment reduces the outage and transmission strains
risks. Furthermore, reducing the contribution of peak generators and reducing the
curtailment operation caused by a surplus of RES generation (EDP Consortium 2016;
Hamidi et al. 2009) reduces the carbon emission of the system.

Benefits of Demand Response Programs
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Figure 3. Overview of demand response schemes for different stakeholders and
from the market perspective. Source: Graphic by author, data from Qdr (2006).

3.1.3. DR Operational Challenges

DR programs can also be classified by the level of automation. Manual DR
measures rely on human actions to reduce or increase loads or alter the demand
profile. For semi-automated DR measures, the user controls a digital system to trigger
a demand response action. When using automated DR strategies, an external signal
operates a programmed method and consequently does no human intervention is
required. However, in this case, users must always be able to override the system
(Piette et al. 2006; Rothleder and Loutan 2017).

Within the many challenges to DR schemes, a key factor is the availability of
reliable resources. In some cases the system cannot respond to the DR signal; therefore
capturing the available flexibility and capacity of the resources using flexibility metrics
and metering equipment is a fundamental requirement to implement such programs.
Additionally, the stochastic consumer behaviour could reduce the benefit of DR
schemes if not considered. The high variability of the DR resources could be smoothed
by aggregation. In fact, in Nolan and O’Malley (2015), when stochastic behaviour is
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accounted for, the aggregation of few thousand households represents a stable DR
asset. Hence, the domestic sector electricity demand has the potential to provide
services such as spinning reserves, frequency controls and Short Term Operating
Reserve (STOR). In the building sector, STOR can be exploited using automation or
increasing the energy awareness of the occupants.

4. The Role of Advanced Energy Management Systems

The smart grid is the next generation of the power system that enables a
two-way communication channel from the end-user to the TSO, with the objective
of monitoring and controlling end-user electricity demand in a power system with
high RES penetration (Farhangi 2010).

The employment of smart grid technologies will support European countries
to reach their CO2 emissions reduction target and renewable generation increase
(European Union 2017). In particular, the EU climate-neutral goal by 2050 is
ambitious; increase penetration of RES to meet annual maximum generation. To
reach the target, RES generators with their variable and uncertain electricity supply
have been connected to the grid, thus increasing the operational challenges for system
operators. The increasing wind and solar penetration impose significant technical
difficulties such as large frequency variations, which require strict voltage control.
These requirements have led to the utilisation of the smart grid for automatic DR
projects in commercial, industrial and residential buildings (O’Sullivan et al. 2014).

Automatic DR control of heating, cooling and light systems requires the presence
of one or more interconnected sensors and one or more corresponding controller
devices. The sensors are usually connected to the cloud with a HAN or LAN. A
DR controller device, called EMS, can read the sensor data and reshape the energy
demand of the building according to a price or an interrupt signal from a TSO. Some
of the systems are defined as intelligent. In this context, an intelligent appliance,
algorithm or control indicates a system that uses various artificial intelligence
computing approaches like neural networks, Bayesian network or optimisation
techniques (Antsaklis and Passino 1993).

4.1. HAN/LAN, Definition and Developments

A HAN is a dedicated data network infrastructure within buildings built for
data transfer and device communication. In the late 1990s, HANs became the emerging
gateway to connect devices to the Internet. The availability of Internet access in buildings
has boosted the diffusion of HAN systems since the early 2000s (Clements et al. 2011).
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The de facto standard for the first period of HAN development was the Ethernet and
802.11 Wi-Fi standard (Huq and Islam 2010).

In the coming decades, the rate of diffusion of HANs across buildings is set to
increase exponentially. In fact, the total number of connected devices is expected to
reach 50 billion by 2030 (Ahmed et al. 2016). A good percentage of such devices will
exchange sensor data in real-time and require low bandwidth, meaning that there
is less stress on the overall network infrastructure. The phenomenon of connecting
any device to the Internet is covered by the all-encompassing phrase the IoT (Ahmed
et al. 2016; Atzori et al. 2010).

The use IoT devices connected to the HAN to perform actions that could
reduce carbon emissions or peak power consumption has different requirements
than the standard use of HAN (Darby 2006). In fact, only a small percentage of HAN
connected devices can be classified as smart-grid enabled.

A smart-grid enabled device provides a two-way communication system to utility
companies and could be remotely controlled to increase the overall efficiency of the
power grid (Balakrishnan 2012; Bazydło and Wermiński 2018). It is necessary with
these devices to have a stable link and low bandwidth allocation (Gungor et al. 2011).
The devices affected by these changes include thermostats, HVAC systems, major
appliances, home automation systems, EMS, lighting, gas meters, water meters, and
electricity meters.

In recent years, the increased installation of local renewable energy systems
such as PV and solar panels has raised additional challenges for the HAN research
community (Liserre et al. 2010). Controlling in real time a RES at the building level
with smart-grid enabled devices increases the complexity of the problem.

Additionally, inhibitors to the adoption of HAN as part of the smart-grid
infrastructure are categorised in Eustis et al. (2007):

• Energy pricing that provides financial benefits to control energy use more
efficiently and enable consumers to reduce their costs.

• Open, flexible, secure and efficient communication protocol established and
accessible.

• Compliance of the services with consumer choice and privacy; wherein the
consumer, ultimately, is the decision-maker.

Despite a general awareness that an interconnected system can enable utilities
to more effectively balance energy demands and integrate with renewable energies
systems, the above challenges raise additional questions about the architecture of
HAN, different communication protocols (Huq and Islam 2010) and the strategy and
algorithms that can be implemented by an EMS connected to HANs.
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4.2. The Architecture of HAN in a Smart Grid Scenario

As previously noted, there is a trade-off between keeping the HAN architecture
simple and efficient versus safeguarding the privacy and security of the users. In
a smart grid scenario, it is essential to guarantee the safety of the network against
cyberattacks that could compromise the entire power grid.

The interconnection between the various devices and the HAN should consider
the bandwidth allocation and the potential vulnerabilities that each device could
expose. As illustrated in Figure 4, installing a Home Energy Gateway or EMS that
can separate the smart-grid-enabled devices from other devices could increase the
security of the system. This architecture design utilises a connected gateway as a
demilitarised zone, enhancing the security of the data transfer and controls. The
presence of an EMS or smart gateway is also mentioned in Clements et al. (2011),
where they draw a clear distinction between the two different layouts.

Energy Management
System

HAN/LAN

Power Line Energy Consumption/Production

Pulse Sigbal
TCP/IP datagrams
MOD Bus
ZigBee

Allocate energy to appliances/HCAV systems
Switch On/Off 
Increase Temp of Hot Water
Thermal mass exploitation

API Interface

Weather forecast

El
ec

tr
ic

it
y 

Pr
ic

e/
Si

gn
al

Cloud

Data
Repository

BUS

Figure 4. Overview of connected devices and local renewable energies systems to a
HAN infrastructure via a home energy gateway devices. Source: Adapted from
Pallonetto et al. (2021).
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The layout in Figure 5 assumes the presence of a dedicated network with the
TSO connected to the appliances. In this example, the home gateway is a proprietary
stand-alone device. This layout keeps the data transmission physically separated
through a virtual private network. The main advantage of this configuration is
the increased data security and reliability. The dedicated network can also provide
a minimum band allocation to ensure a sufficient data throughput. The main
disadvantage of this layout is the high infrastructural cost. Hybrid designs require
less network infrastructure because the appliances are connected to the utility using a
shared network such as the Internet. In this scenario, the band allocation may represent
a challenge, and several security risks have been identified (Huq and Islam 2010).

Utility
NetworkInternet

Utility or DR 
aggregatpr

Internet
gateway

Utility
gateway

Control System

Water heater Appliances HCAV EV

Settings customer’s 
preferences

Third party Consumer Utility

Figure 5. Overview of HAN infrastructure on a dedicated network. Source: Graphic
by author, data from Pedreiras et al. (2002).

In contrast, in rural areas which lack sufficient network infrastructure, the
layout in Figure 6 represents the only viable solution for data exchange between the
HAN and TSO. Different communication protocols can also affect the layout of the
interconnection between appliances and EMS or between the EMS and TSO. The
following section examines the required band allocation, common communication
protocols and their characteristics.
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Utility
NetworkInternet

Utility or DR 
aggregatpr

LAN / HAN Gateway

Premises edge

Internet
gateway

Utility
gateway

Control System
Water heater Appliances HCAV EV

Settings customer’s 
preferences

Third party Consumer Utility

Figure 6. Overview of HAN infrastructure on a shared network. Source: Graphic
by author, data from Pedreiras et al. (2002).

4.3. Communication Protocols for HAN

Communication protocols are used for data transmission between sensors and
the HAN. During the last decade, various attempts at protocol standardisation have
been made, each with limited success (Eustis et al. 2007). Different protocols can be
categorised into three broad categories: new wires, no new wires and wireless, as
illustrated in Table 2.
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Table 2. Overview of different commercial communication protocols and evaluation
of their suitability for smart grid applications.

Technology Category Frequency Data Rate Range Power Consumption Application

Bluetooth wireless 2.4 GHz 25 MB/s 10 m Low Smart health devices, close range
communication

DASH7 wireless 433 MHz
up to 200

KB/s
1000 m wireless Low Smart cities, smart buildings, smart

transport, smart health

ZigBee wireless 2.4 GHz, 0.915 GHz,
868 MHz

250 KB/s up to 100 m wireless Low Smart homes, smart health

WiFi wireless 2.4 GHz or 5 GHz 6.75 Gb/s up to 1 km wireless Medium Smart homes, smart health, smart
buildings

3G wireless 0.85 GHz 24.8 Mb/s 1–8 km High Smart cities, smart transport, smart
industries, smart grid

4G wireless up to 2.5 GHz 800 Mb/s 1–10 km High Smart homes, smart industry, smart
grid

Ethernet wired up to 100 GHz 100 Gb/s up to 500 m Medium Smart homes, smart industry, smart
grid

Power-line no new wires up to 250 MHz 1.3 Gb/s 300 m Low
Smart homes, broadband, smart

grid

Source: Adapted from Ahmed et al. (2016).

In the new wires category, the de facto standard is ethernet (Pedreiras et al. 2002).
The ethernet protocol is widely established and reliable. This protocol allows for
greater integration with modern security mechanisms and procedures. The data
transfer performance, from 10 Mb/s to more than 100 Gb/s, is sufficient for the
throughput required. The main disadvantage of this technology is that the cable
cannot be shared among different devices, so it requires a star design with one link
for each device. Consequently, it is not extensively used in residential but mostly in
commercial buildings (Ahmed et al. 2016).

In the wireless category, there are different protocols such as Bluetooth,
ZigBee, Wifi and DASH7. A shared feature between the ZigBee, DASH7 and
Bluetooth protocols are low energy consumption. However, Bluetooth has a lower
communication range compared to ZigBee and DASH7 (Hayajneh et al. 2014). This
limited range makes it suitable for smart health devices connected with phones
or accessories paired to a central device. Although the hardware complexity of
Bluetooth is lower than ZigBee or DASH7, it is not reliable for smart buildings or
mobile devices that require longer ranges. Comparing DASH7 and ZigBee, the main
differential is the trade-off between range and data rate transmission. ZigBee has a
higher data transmission rate while it has a lower distance range.

In the no new wire category, one of the most common protocols is the
powerline. Powerline protocols allow for communication via electricity sockets
(Pavlidou et al. 2003). The disadvantages of this protocol are the limited distance
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range and the interference in the power supply, which can lead to fluctuations in the
quality of the communication.

4.4. Overview of EMS Features and Objectives

During the last few years, the research and development on EMS have
increased (Beaudin and Zareipour 2015). An EMS can be defined as a group of
technologies used to manage the energy profile of a building, reducing the overall
energy expenditure. Among these technologies, it is possible to include sensors,
smart thermostats, electronic displays and smartphone apps that increase energy
consumption awareness and offer remote or automatic control.

As suggested by Aman et al. (2013), an EMS should exhibit the following
characteristics:

1. Monitor the energy consumption. The system provides energy consumption
information at various time resolutions.

2. Disaggregation of the energy consumption. End-users can benefit from
information about the real-time impact of appliances over a period of time.

3. Data availability and accessibility. The system makes the information available
to the end-user via an interface. The interface is deployed as a physical device
or through a web or mobile portal.

4. Appliances control. The EMS should provide programmable, remote and
automatic control of devices

5. Data Integration. Integration of different types of information such as indoor
temperature, humidity, acoustics, and light; and consumer historical data.

6. Ensuring cyber-security and data privacy. The system must restrict
unauthorised access to third parties.

7. Intelligent controls and insights of data analytics. A requirement is to
trigger smart actions that optimise energy consumption, maintaining
consumer comfort.

As Paradiso et al. (2011) highlighted, EMS should perform intelligent actions
that balance energy consumption and comfort. Specific algorithm techniques such as
machine learning, data analysis or predictive control can be used. From the power
system perspective, an EMS must be used more extensively for DR or to draw up
a house profile o target energy improvement measures.

In Table 3, several studies have been examined based on some of features
suggested by Aman et al. (2013) and Paradiso et al. (2011). All the EMSs have energy
monitoring capabilities, and five have data disaggregation capabilities. The feature
absent in the studies was the possibility to control load using intelligent algorithms.
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In general, consumers are not aware of how an electrical system inside the building
works, and, due to a low electricity price, they are not motivated to use their time to
make energy-related decisions (Bartram et al. 2010). Therefore, to reach the objective
of the EMS, the algorithm must perform intelligent actions to balance consumer
comfort and energy consumption. Moreover, in a DR scenario, a smart EMS can
adjust the power consumption to reduce the cost by exploiting the price signals, such
as RTP, CPP or TOU. The action reduces the responsibility of the consumer to control
and manipulate all their appliances all the time, while also providing flexibility to
the power system for the integration of RES. The load controllability and the use of
intelligent algorithms represent a research gap in the current literature that should
be addressed.

Table 3. Features and characteristics of EMS technologies.

Evaluation
Criteria

Metering and
Analytics

Dis-Aggregation Availability Interoperability Scalability Actuators Cybersecurity Smart Controls
and Intelligence

Totu (Totu et al.
2013)

Yes No Not discussed
Yes for large scale

infrastructures
Yes Yes No Yes advanced

algorithms

PERSON (Yang
and Li 2010)

Yes (API) Yes

Decentralised at
user premise; no
web or mobile

interface

Not discussed

High scalability
Low cost and low

power
consumption

Manual remote
control of the
switches and

dimmers in the
home.

No
Context-aware

intelligent
algorithm

Bess
(Mahfuz-Ur-Rahman

et al. 2021)

Yes No Not available Yes Not available Yes No Yes, smart AI
control

WattDepot
(Brewer and

Johnson 2010)

Yes No Web based
interface

No
Open source;

freely available
not scalable as it is

No Limited No

Viridiskope (Kim
et al. 2009)

Yes (discontinued) Yes Not discussed No API present

Requires indirect
sensors; no inline

installation
requires

No No No

Mobile feedback
(Weiss et al. 2009)

Yes Yes
Interactive; readily
available feedback

on smartphone
Not discussed

Low scalability
because of the

mobile app

No No No

DEHEMS (Liu
et al. 2013)

Yes Yes
Web based UI,

real-time display
unit

No API but
possibility to have
integrated sensors,
electric supply, gas

supply line

Medium, it
requires third
party sensors

No No No

EnergyWiz
(Petkov and Foth

2011)

Yes No Mobile phone app

Integrated
historical usage

and user info from
peers

Requires mobile
app installation

No No No

Nobel
(Karnouskos 2011)

Yes Yes Mobile phone app No

Low, requires
mobile app

installation and
sensor integration

not present

No No

Yes, smart
algorithm but

requires human
interaction

Simapi (Pallonetto
et al. 2021)

Yes No Web and mobile
app

API
Yes, high
scalability

Yes No Yes

Alis (Rodgers and
Bartram 2010)

Yes No Web, smart phone
app, touch panel

Integrated API,
based on

community usage

No, requires
extensive

installation; less
affordable

Yes (limited) No No

Source: Adapted from Aman et al. (2013).
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4.5. EMS in Smart and Active Buildings

As illustrated in Figure 7, one of the key features of the smart grid is to enhance
the communication capabilities between building systems and the power grid. Such
communication includes a network infrastructure inside buildings that could monitor
and control the electric systems connected to the HAN.

Home Area Network

Energy Gateway

Utilities

Distributed 
Energy 
Resources

Metering

Aggregators

Generation

Renewables and Storage

Power 
Generation, 
Transmission, 
Monitoring
and Control

System control for 
monitoring and 
control

Monitoring and 
control systems
• MPC8XXX
• QorlQ

Aggregator or Data 
Concentrator

Sends collected data (or 
commands) between 
the utility and the NAN 
or HAN

Data concentrator
• MPC8308
• l.MX28
• P102x

Neighbour 
Area Network

Wired/wireless 
connection from 
meter to utility 
either directly 
or via data 
aggregator

NAN :
• G3 OFDM PLC on 
metering comms
• MC12311
• Metering 
Comms SoC
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Hardware that 
measure and 
controls flow of 
energy to/from 
building

Low end meter :
• 8-bit MCU
• 9S08LL/LH/AC

• Smart Single- 
and Three- phase 
Meters 32-bit MCU
• MK30
• MCF51EM256

Home area 
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Wireless/wired for 
load control and 
dynamic response 
by utilities Load 
control : meter 
communicate with 
appliances water 
heater, pool pumps, 
electric hybrids 
vehicles

Demand Response : 
send price/volume 
signals to users for 
load shifting and 
smart consumption
Energy Gateway/
Manager : inteface 
with smart objects 
in home to monito 
control energy

Grid Power 
Protection
Relay/Switch 
Control and 
Monitoring

Grid power supervision, 
control and network 
protection system 
solutions, protection 
system solutions, 
protective relays and 
controls switches for 
the power grid

Power protection
• MSC9130
Relay/Switch control
• 8-bit MCU
• 32-bit Coldfire
• 32-bit Kinetis

Distribution

Solar Panels Wind Batteries

Co-generatorThermal storage

EV  chargers Generators

Fuel cellsHydro electric

Figure 7. Example of a HAN/LAN and EMS communication in a smart grid context.
Source: Adapted from Balakrishnan (2012).

Alam et al. (2012) define a smart dwelling as the end node of the smart grid that
provides services in ambient intelligence, remote home control or home automation.
Furthermore, each dwelling or node of the smart grid has the possibility to broadcast
information about its electricity consumption profile and status. In a smart house,
the EMS adapts the house energy consumption to the overall grid requirements
without affecting the comfort of the occupants. However, to provide flexibility to
the grid and reduce carbon emissions, buildings require communication capabilities
(smart buildings) and advanced energy features. Therefore, in the last few years,
researchers have pushed for a standardisation effort to formally define and categorise
buildings with the capability of being integrated into the power system as active
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buildings. An active building is a building that can generate, store and modulate
energy to adapt to their own demand or to the needs of the local grid (Fosas et al.
2021). The massive deployment of EMS in active and smart buildings could boost
the decarbonisation both at the end-user and system level.

5. Control Algorithms for Implementing Demand Response in EMS

An EMS is defined as a system that can access information on energy
consumption and generation at the building level and can implement DR measures
to control heating and cooling systems, appliances or other devices connected
to optimise the power usage and respond to grid signals. As illustrated in
Pallonetto et al. (2020), the EMS in a DR scheme aims to different objectives:

• Reducing the overall energy consumption by increasing awareness providing
data analytics and decomposition of energy use. Additionally, the EMS can
control systems and appliances i.e., operating an HP at maximum COP, or
optimising the inverter efficiency in a PV system with an MPPT algorithm.

• Shifting energy demand. Reducing peak consumption by exploiting TES or
electric storage is a common DR measure. A signal can also trigger the measure
and so that the control can shift the load to off-peak hours.

• Forcing loads. Forcing the use of high-load systems can be facilitated by storage
and can be triggered by a DR signal during high penetration of RES in the
system or locally generated electricity/energy.

The consumption reduction method is implementable in many different ways,
whereas, the implementations for shifting and forcing is challenging. The main issue
is the lack of standard flexibility metrics and the slow adoption of domotics systems.
Additionally, time-dependent electricity tariffs provided by utilities or the market
are not necessarily aligned to end-user demand profiles, hence storage is required to
implement DR measures (Gottwalt et al. 2017).

Encoding a smart algorithm in the EMS can potentially minimise the overall
energy consumption and cost while ensuring the expected service level and
thermal comfort.

Optimisation Problems and Solution Methods

The use of control algorithms for building management systems is a recurrent
theme in the literature. (Gatsis and Giannakis 2011b; Mariano-Hernández et al. 2021;
McKenna and Keane 2016; Yoon et al. 2014). The control algorithms are characterised
by a specific objective function and a set of constraints. In a DR program, the objective
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function aims to cost or energy minimisation or welfare maximisation. Welfare is defined
as the utility profit minus the generation cost and system losses (Dong et al. 2012).

As described in Pallonetto et al. (2020), Table 4 summarised an extensive
literature on DR optimisation algorithms. Optimisation methods are reported on
the columns while rows indicate the objective functions. The control algorithms
assessed in this table have been tested to enable buildings to participate in DR
programs. Nevertheless, other perspectives for intelligent EMS can include the
market, the distribution grid and the buildings. Thus, 4 of the 38 papers assessed (3L,
7U, 20W, 36B) embed multiple optimisation strategies, such as mixed linear integer,
continuous integer and quadratic programming, to reduce power flow overloads
caused by variable renewable energy generation or load variations. In 7U and 36B,
the EMS use electric storage to provide flexibility to the power system. The paper
20W illustrates a distributed algorithm with a minimal communication overhead.
The system force loading in proportion to high uncertainty loads or generation
such as renewable. The paper 3L include specialised constraints for balancing the
distribution network. These two papers, despite the different approaches, top-down
and bottom-up, respectively, aim to maximise the welfare in a smart grid system.
One of the limitations of the control systems analysed is that none of these papers
provides a comparable optimal solution.

Table 4. Optimisation problems and solution methods in for DR in the literature
(see Table 5 for legend).
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Min. Cost
23U
38U

1U 22B 24B 36U 13Y
21D
28E
35U

14U
13B

14U 15F
31T
32T
33T

28A

Min. Consumption 29Q 7U 22T
9B

8B 19U
23U

26U 16B 11U 26U 34T 23U

Max. Welfare 25B 3L 2U
18U

10M 8E
8O

24O
6U

Min. Cost and
Min. Consumption

30T 27B 39U 4U
17B

5U

Max. Welfare
Min. Consumption

20W
12A
37U

Source: Reused from Pallonetto et al. (2020).
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Table 5. Legend for Table 4.

Position Reference Reference Algorithm

1 Behrangrad et al. (2010) A Interior point method

2 Cao et al. (2012) B Commercial software

3 Cecati et al. (2011) C Multiple-looping algorithm

4 Chang et al. (2012) D Evolutionary algorithm

5 Chen et al. (2011) E Greedy search algorithm

6 Chen et al. (2012) F Lyapunov optimisation technique

7 Choi et al. (2011) G Relaxed convex programming

8 Cui et al. (2012) H Simulated annealing

9 Zhang et al. (2011) I Lagrange–Newton method

10 Doostizadeh and Ghasemi (2012) L Sequential Quadratic Programming

11 Ferreira et al. (2012) M Benders decomposition

12 Gatsis and Giannakis (2011a) N Q-Learning algorithm

13 Gatsis and Giannakis (2011b) O Filling method

14 Gudi et al. (2012) P Co-Evolutionary PSO algorithm

15 Guo et al. (2012) Q Branch and bound method

16 Jiang and Fei (2011) R Parallel distribution computation

17 Hedegaard et al. (2017) S Signaled particle swarm optimisation

18 Alibabaei et al. (2016) T MPC (Model Predictive Control)

19 Joe-Wong et al. (2012) U Author’s software

20 Kallitsis et al. (2012) V Distributed subgradient algorithm

21 Logenthiran et al. (2012) W Iterative decentralised algorithm

22 Mohsenian-Rad et al. (2010a) Y Lagrangian dual algorithm

23 Molderink et al. (2009)

24 Soares et al. (2011)

25 Sortomme and El-Sharkawi (2012)

26 Totu et al. (2013)

27 Wang et al. (2012)

28 Xiao et al. (2010)
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Table 5. Cont.

Position Reference Reference Algorithm

29 Zhu et al. (2012)

30 Yoon et al. (2014)

31 Ma et al. (2011)

32 Cole et al. (2014)

33 Bianchini et al. (2016)

34 Kircher and Zhang (2015)

35 Schibuola et al. (2015)

36 Knudsen and Petersen (2016)

37 Park et al. (2017)

38 Alimohammadisagvand et al. (2016)

39 Pallonetto et al. (2019)

Furthermore, the analysis elicits a trade-off between optimisation at a single
building and power grid level. It is a requirement for a smart grid DR algorithm
to ensure the optimisation of the resources at an isolated building level while
contributing to the power grid stability and reduction of the environmental impact
via two-way communication to aggregators or TSOs.

This double aim can be reached if the optimisation algorithm objective function
minimises both cost and consumption. As also demonstrated (Cole et al. 2014;
Hedegaard et al. 2017) (32T, 17T), in the case of merely cost minimisation, the energy
consumption and associated emissions can increase.

As illustrated in Figure 9, the majority of the optimisation algorithms which
were analysed have a single objective function that minimises costs. Nevertheless,
various studies used a double objective function (4U, 5U, 27B, 30T). In this category,
different techniques were utilised such as heuristics, analytical solutions and game
theory. Only the heuristic controller (30T) was able to reduce the consumption by
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9.2% and the costs by 14.4%, using a threshold limit to operate the controllable loads
under RTP prices.
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Number of research papers
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Min. Cost

Min. Consumption

Max. Welfare and Min. Consumption
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Figure 8. Classification of the most common algorithm objective functions in the
literature. Source: Graphic by author, data from Pallonetto et al. (2020).

Two works (4U, 5U) used a cluster of residential buildings (10 and 60,
respectively) to assess the results of the algorithm. When tested on the test load
profiles, 5U showed a demand reduction of 13.5% and cost savings of 3.6%, while
4U used a randomly generated problem, and the approach cannot be compared with
equivalent works. The remaining two works (27B, 30T) utilised a model of a single
building to assess the benefits of the double objective function algorithm. Wang et al.
(2012) (27B) reached an overall cost savings of 9% and a load reduction of 6%.

Although these results were significant, the MPC approach outperformed
the others. Among the literature examined which aimed to minimise the cost of
the energy expenditure, the MPC systems (17T, 18T, 31T, 32T, 33T, 38U) reached
savings up to 28%. Above all, the papers analysed used a white box model such as
EnergyPlus. The literature includes both residential (17T, 18T, 31T, 32T, 38U) and
commercial buildings (33T). The predictive models used for the forecast were linear
models (38U), autoregressive statistical models (31T, 33T), reduced-order model (32T)
or grey-box model (17T) while other used machine learning algorithms (39U). It
should be also noted that none of the MPC systems used a white box as a predictive
model but as a testbed.
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In Knudsen and Petersen (2016) (38U), the authors developed an MPC with
two objective functions (emissions and electricity price). The MPC was a state-space
model which is similar to a reduced-order model (Dehkordi and Candanedo 2016).
Such an EMS reduced the carbon footprint by 5 to 10 per cent.

Moreover, as illustrated in Figure 10, of all the works analysed, the majority
of them was tested on a single residential building. However, none of the papers
mentioned any calibration of the building model despite, as illustrated in Figure 8,
the majority of the works used a BES model for testing.
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Number of papers
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Figure 9. Classification of testing methodology in the literature. Source: Graphic
by author, data from Pallonetto et al. (2020).
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Figure 10. Software platform utilised for control algorithm. Source: Graphic by
author, data from Pallonetto et al. (2020).
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Figure 11 shows that the RTP price was used in the majority of the assessments.
The RTP price is proportional to the market price but requires a fully automated EMS
and could incur in low acceptance among end-users. Moreover, using RTP price, the
assessment of control algorithms is more complex from considering the electricity
profile perspective.
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Number of research papers
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Figure 11. Most common electricity price schemes for algorithm testing. Source:
Graphic by author, data from Pallonetto et al. (2020).

6. A Path towards the Full Decarbonisation

In the past decade, the distinction between energy efficiency measures and
DR has become less stratified (Goldman et al. 2010). High penetration of variable
RES generation and storage has widened the use of DR beyond peak hours to be
applicable throughout the day (Calvillo et al. 2017; Jiang and Low 2011). From an
end-user perspective, energy efficiency measures have been enhanced by controlling
technologies in buildings (EDP Consortium 2016) that allow the exploitation of
thermal storage and local renewable energy system as dynamic controllable load.

The effectiveness of full decarbonisation of our building stock using advanced
energy management systems is dependable on energy efficiency regulations and
policies that generally target the national building stock from an isolated (or single)
building point of view. The building retrofit measures are designed to reduce energy
consumption by deploying energy-efficient and low-carbon building technologies as
illustrated by the IEA (2013) roadmap towards 2050. These methodologies do not take
into account that the building, as a responsive leaf element of a smart grid system,
could dynamically provide flexibility, both at distribution and transmission level,
exploiting thermal and electric storage as well as deferrable loads within end-user
thermal comfort constraints. Therefore, there is a need to deploy a more holistic
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approach to designing energy efficiency regulations that recognise the building as
a dynamic energy asset. The implications of evaluating deferrable loads, storage
and end-user comfort and constraints, can provide a comprehensive assessment of
the impact of these new technologies and the influence of human behaviour on the
energy profiles of residential buildings.

Additionally, the assessment of a DR resource must be calculated based on
the quantity of energy that could be altered compared to a baseline use. The
identification of a baseline and the quantification of the flexibility as a deviation from
a baseline consumption are still open challenges in the research community (Jazaeri
et al. 2016; Mathieu et al. 2011; Wijaya et al. 2014). The temporal quantification
of available DR resources is a critical research need to enable DR at a household
level (Gils 2014; Herter et al. 2007; Hurtado et al. 2017; McKenna and Keane
2016). The use of high-resolution simulation models defined as digital twins for
commercial and residential buildings, embedding occupancy, consumer behaviour
profiles and comfort constraints, is a new research frontier that could lead to a better
understanding of the benefit of DR measures and the impact of large scale trials on
the power system.

From an integration perspective, the implementation process of control
algorithms that ensure occupant thermal comfort while increasing the energy
flexibility of the system by providing DR capabilities is a critical research need
for the smart grid rollout (CER 2011; Farhangi 2010; Gottwalt et al. 2017; Nolan and
O’Malley 2015). Although in the research community, the design of new algorithms
for DR optimisation is a subject undergoing intense study, new machine learning
techniques and technology advancements need to be assessed as suitable for the
development of intelligent residential controllers.

The contribution of the built environment is paramount for the full
decarbonisation of our society. Five different perspectives have been the narrative
threads of this chapter:

• Energy perspective: the implications of evaluating retrofit measures,
load shifting, storage and end-user comfort and constraints provided a
comprehensive assessment of the impact of new technologies as well as the
influence of human behaviour on the energy profiles for buildings. The
methodology for an energy perspective assessment was further applied to
the evaluation of control algorithms for estimating the impact of EMS and RES
at a building level upon the energy consumption and profiles.

• End-user perspective: evaluating the research findings for the benefit of
end-users in terms of reduction of energy expenditure, adherence to thermal
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comfort constraints and accessibility to energy data is an essential instrument
for new technology adoption. The end-user perspective also concerns the
transferability of the technology benefit across all the building categories.

• Utility perspective: where the evaluation of the results of the research benefits
the utility in terms of reducing the system contingencies caused by the
penetration of RES via demand-side measures and improving the predictability
of building electricity demand is a fundamental criterion for the deployment
of these new technologies. The utility perspective concerns the reliability,
resilience and stability of the power grid with the objective of improving the
overall efficiency hence leading to a generation cost reduction.

• Integration perspective: where the interaction between buildings, electromobility
and their control system, the end-user, utilities and a bi-directional communication
infrastructure defined within the smart grid needs to be evaluated from the point
of view of the accessibility, interoperability, availability and controllability of
the assets. The integration side of the research also allows the convergence of
objectives for both the utility and the end-user.

• Environmental perspective: through an online data-driven assessment of the
carbon emissions associated with the electricity consumption of the building
at system and building level can increase awareness and drive the change.
The implications of the retrofit measures and the use of control algorithms on
the carbon footprint of the building are of interest to policy-makers and local
government authorities.

7. Conclusions

Besides demand-side management and the installation of advanced energy
management systems, several future lines of intervention are critical towards the
full decarbonisation of the built environment: monitoring equipment, IoT data
collection infrastructures, user engagement, distributed energy generation, storage
and energy efficiency management measures. Data gathering and sensors installation
can provide useful insights into the occupancy profile patterns of the building. They
could also help to locate areas where the temperature constraints need to be precisely
defined because of ongoing activities at low metabolic rates or areas where the
setpoints can be dynamic. Sensor installations and data collection can also support
a more accurate calibration of digital twins and therefore provide insight even on
fine-tuned energy efficiency measures such as detailed multi-zone air ventilation
rate and thermostatic set points. Occupants and buildings users are at the core of
the transition to a low carbon economy. They can be empowered as smart energy
users of the building. A smart energy user should not only consume energy but also
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be a conscious actor in energy savings, building energy policy and even in future
energy measures either as an individual or as part of an energy community. Smart
energy users are well aware of the consequences of their choices and way of life
for energy consumption and the environment. Smart energy users are also actors
in climate policy not only with their individual and collective decisions but also
by creating awareness among fellow users and organising community events and
movements to accelerate the transition to a post-carbon world. To facilitate user
empowerment, the energy manager could support the engagement with screens and
dynamic visualisation of the building energy consumption. Interactive screens with
carbon emissions, zone energy performances, temperature and weather indicators
can also facilitate gamification among users and promote a virtuous cycle where
individuals gain awareness and lead energy efficiency measures. Another line of
action is the installation of renewable energy generators and storage. Different
technologies such as photovoltaic, solar thermal systems, heat pumps or biomass
cogenerator (CHP) can represent viable solutions for further reducing the emissions
of buildings. A biomass cogenerator can provide both electricity and thermal energy,
making buildings a central element of a green circular ecosystem. Additionally, a
CHP can contribute to heating and cooling loads through a trigeneration system.
Other options to consider are power purchase agreements with wind and solar farms
or heat recovery systems from nearby processing plants. Electric and thermal storage
are the main enabler of all these technologies and can support the mass deployment of
advanced DR programs. It should also be noted that the electrification of the mobility
sector will allow a capillary diffusion of EVs. The latest charging technologies
for EV batteries support a bidirectional electricity transfer with the grid (V2G).
Therefore, EVs batteries can also provide distributed electricity storage to further
support the increased penetration of renewable energies in the power system if the
flexibility of these devices can be dynamically controlled and dispatched. Energy
efficiency and management are at the heart of the decarbonisation process. The
current work has highlighted several measures for reducing the energy consumption
of the building and the provision of energy system services. However, the suggested
line of actions can be further developed to depict a comprehensive roadmap for the
full decarbonisation of the built environment. For instance, multi-zone thermostatic
set points or zone air ventilation controllers can contribute to adapting the energy
demand to the current occupancy profile of the building. Areas of the building that
are not used or with a reduced occupancy profile can have a dynamic schedule.
Additionally, a digital twin can be used to further design an innovative insulation
layer with advanced materials such as phase change materials and similar. These
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lines of intervention coupled with advanced energy management systems and
demand-side measures will allow reaching the ambitious emission target for 2050
and beyond reducing the overall impact of climate changes.
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