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1. Introduction

During the last 12 years, halide perovskites (HaP) have emerged as the
fastest-emerging third-generation solar cell material, competing well with silicon
and other thin-film technologies. The power conversion efficiency (PCE) of these
easy-to-process and low-cost solar cells has risen from 3.58% to 25.6% from
2009 to 2021 (Zheng and Pullerits 2019; Jeong et al. 2021), already exceeding
that of commercially available thin-film photovoltaics (PV) and rivaling that of
the best single-junction silicon solar cells. Moreover, HaP have a wide range
of applications including solar cells, water splitting and carbon dioxide (CO2)
reduction, light-emitting diodes, photodiodes in photodetectors, gas sensing, lasers
and solar batteries. However, instability, toxicity of lead and solvents, poor
laboratory-to-laboratory reproducibility, and scalability remain bottlenecks blocking
the commercialization of this technology. Among all these difficulties, instability and
short lifespan are the major impediments to the commercialization of HaP solar cells.
It is crucial to understand the causes of instabilities and develop strategies that will
stabilize this low-cost technology and facilitate its transfer to the market.

The production of solar hydrogen by water splitting through the PEC process
was initially demonstrated by Fujishima and Honda in 1972 (Fujishima and Honda
1972). Fujishima and Honda used titanium dioxide (TiO2) as a semiconductor
photoanode and achieved a low quantum efficiency of 0.1%. A contributing factor
to the low quantum efficiency was the inability of TiO2 to absorb photons in the
visible spectrum due to its large bandgap of 3.0 eV. The use of nitrides, chalcogenides,
metal sulfides, and metal oxides as photoelectrodes for PEC water splitting has been
explored for decades (Wang et al. 2017; Tee et al. 2017). Despite several decades spent
in search of suitable materials, no single semiconducting material has been found to
fulfill all the required performance benchmarks for efficiency, durability, and cost
(Shen et al. 2014). Metal oxides are among the most promising candidates for use
as photoanodes in PEC devices for hydrogen production. Their low cost, ease of
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preparation, lattice manipulation flexibility, and stability in the PEC environment
make them attractive (Eftekhari et al. 2017).

Popular metal oxide photoelectrodes for water splitting are TiO2 (Eidsvåg et al.
2021), α-Fe2O3 (Kyesmen et al. 2021), bismuth vanadate (BiVO4), and tungsten
trioxide (WO3) (Kafizas et al. 2017). Among these, α-Fe2O3 is a promising material
for use as a photoelectrode in PEC water splitting due to its low bandgap, availability,
low cost, non-toxicity, and stability in aqueous environments. It can absorb light in
the visible region due to its bandgap of ~2.0 eV and promises a maximum theoretical
photocurrent and solar-to-hydrogen (STH) efficiency of ~14 mA/cm2 and ~17%,
respectively (Dias et al. 2014; Murphy et al. 2006). In addition, α-Fe2O3 is the most
common crystal structure of the oxides of iron, and it is easy to process (Yilmaz
and Unal 2016). However, the efficiency of α-Fe2O3 is yet to attain the theoretically
predicted value due to its poor conductivity, high electron–hole recombination,
inefficient charge separation (Lee et al. 2014; Xi and Lange 2018), high overpotential,
and low absorption coefficient, requiring films with a thickness of over 400 nm for
sufficient photon utilization (Sivula et al. 2011). Numerous approaches have been
employed in dealing with the challenges associated with the use of α-Fe2O3 for PEC
water splitting. These strategies include nanostructuring (Ito et al. 2017), doping
(Feng et al. 2020), formation of heterostructures (Natarajan et al. 2017), the use of
co-catalysts (Eftekhari et al. 2017), plasmonic enhancement effects (Archana et al.
2015), and the use of light-harvesting bio-molecules (Ihssen et al. 2014).

In this chapter, we present the challenges of using HaP and α-Fe2O3 for the
direct conversion of solar energy into electricity and hydrogen fuels, respectively,
with a special focus on the up-to-date strategies that have been engaged towards
overcoming them. The instability of perovskite solar cells is influenced by the
Goldschmidt tolerance, chemical composition, and defects in halide perovskites.
The use of additives to achieve large grain sizes with few grain boundaries and
to passivate the surface and boundaries of HaP is effective in improving the
stability of HaP solar cells. In addition, protecting back-metal contacts from
reacting with the halide perovskites, passivation of 2D perovskites to form 2D/3D
mixed-dimensional perovskites, encapsulation of the devices/modules, and use
of MA-free perovskites as strategies for the long-term stability and lifetime of
perovskite solar cells are presented. For α-Fe2O3 films, the simultaneous engagement
of strategies such as nanostructuring, doping, formation of heterostructures, use
of co-catalysts, and plasmonic enhancement effects has shown great promise in
enhancing their photocatalytic hydrogen production. The concurrent use of multiple
strategies for the enhancement of the solar-to-hydrogen conversion (STH) efficiency
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of α-Fe2O3-based photoanodes is mostly implemented through the systematic use
of interface engineering. More research is still needed to realize the anticipated
commercialization of solar hydrogen production and photovoltaic technologies using
α-Fe2O3 and halide perovskites, respectively.

2. Developments Towards Sustainability of Perovskite Solar Cells

2.1. Stability of Perovskite Solar Cells

Perovskite solar cells/panels in operation must withstand eternal environmental
conditions including heat, moisture, oxygen, hail and external stresses such as
heat/cold cycles, light/dark cycles. Stability can be regarded as the ability to
maintain constant performance while operating under these conditions.

2.1.1. Goldschmidt’s Tolerance Factor and Intrinsic Structural Stability of 3D HaP

Three-dimensional (3D) HaP solar cells are highly efficient but very unstable.
In the AMX3 form for 3D halide perovskites, A stands for a monovalent cation
such as cesium (Cs+), methylammonium (CH3NH3

+, MA), and formamidinium
(H2NCHNH2

+, FA), M represents a divalent cation such as lead (Pb2+) and tin (Sn2+),
and X is a halide anion such as bromide (Br¯), iodide (I¯), and chloride (Cl¯). Some
3D HaP have mixtures of the different A-cations, M-cations, and/or X-anions. The
cubic perovskite crystal structure has an M-cation in the 6-fold coordination position,
enclosed by a corner-linked octahedron of X-anions, called the MX6 octahedral
framework, and A-cations in the 12-fold coordination positions, as shown in Figure 1a.
The size of the A-cation is larger than that of the M-cation, large enough to fit into the
12-fold coordinated voids of the MX6 octahedral inorganic framework, to maintain
the cubic symmetry, as shown in Figure 1b. HaP can reversibly transition between
cubic, tetragonal, and orthorhombic crystal structures at different temperatures
(Thomson 2018).

The ideal cubic symmetry of the 3D HaP structure is normally distorted in
practice. Possible distortions include M-cation displacement from its central position
and tilting of the MX6 octahedron, depending on the sizes of the A-cation and
M-cation. The degree of distortion is determined by Goldschmidt’s tolerance factor
(t), given by Equation (1),

t =
√

2 (RA + RX)

2 (RM + RX)
(1)

where RA is the ionic radius of the A-cation, RM is the ionic radius of the M-cation,
and RX is the ionic radius of the X-anion. It can also predict whether a combination of

135



anions and cations will form a stable HaP structure. For the ideal cubic symmetry, the
ionic size requirement for stability is quite stringent, and the A-cation and M-cation
adjust their equilibrium bond distances to the X-anions, without distortion of the
unit cell, such that t = 1. The tolerance factor ranges from 0.8 to 1.0 for practical
HaP because the cubic symmetry is distorted slightly to accommodate a wide range
of cations and anions. For instance, the MX6 octahedron may distort by tilting to
reduce the coordination number from 12, so that a smaller sized A-cation can be
accommodated, thereby decreasing t.

A M X

(a) (b)

Figure 1. Cubic crystal structure (a) and A-Cation in 12-fold coordinated voids of
the MX6 octahedral inorganic framework (b) of HaP with general formula AMX3.
Source: Liu et al. (2015b).

2.1.2. Environmental/External Factors Responsible for the Degradation of HaP
Solar Cells

Heat, light, moisture, oxygen and electrical bias, are among the environmental
factors responsible for degradation of HaP. The action of light and heat on
methylammonium lead tri-iodide may cause the evaporation of volatile components
such as ammonia (NH3) and iodine gas (I2) (Juarez-Perez et al. 2018). As a result, the
halide perovskite is irreversibly degraded/decomposed. Light soaking of HaP can
cause negative effects such as ion migration (Zhao et al. 2017), halide segregation
(Hoke et al. 2015), and photodecomposition (Kim et al. 2018).
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2.1.3. Impact of Defects on the Stability of Perovskite Materials

The presence of defects in HaP reduces the charge carrier lifetime and impacts
stability. Defects can be located at the interface between the active layers or in the bulk
of the halide perovskites. These defects can be point (zero dimensional), line (one
dimensional), surface (two dimensional), and volume (three dimensional) defects.
Point defects in the widely studied MAPbI3 include native defects such as positive
iodine vacancies (IV

+), negative iodine vacancies (IV
−), neutral iodine vacancies (IV),

negative lead vacancies (PbV
−2), positive lead interstitials (Pbi

2+), iodide interstitials
(Ii), positive methylammonium interstitials (MAi

+), negative methylammonium
vacancy (MAV

−), and impurities such as Au interstitials (Yang et al. 2016; Sherkar
et al. 2017; Motti et al. 2019). Yang and co-workers (Yang et al. 2016) showed that
the bulk IV

+ have low formation energies, low diffusion barriers, and fast hopping
rates, making them primarily responsible for ionic conductivity in MAPbI3. They
also showed that the diffusion barrier and formation energy of gold (Au) interstitial
impurities in MAPbI3 are low, leading to possible diffusion of Au into MAPbI3

devices with biased Au/MAPbI3 interfaces. Meanwhile, defects such as PbV
−2,

Pbi
2+, and MAV

+ have very high activation energies, implying that their formation
may require very high temperatures or strong irradiation conditions to form, thus
not likely participating in the defects (Motti et al. 2019). Cation substitutions such
as MAPb and PbMA and substitution anti-sites including MAI, PbI, IMA, and IPb are
also present in MAPbI3 (Jin et al. 2020; Yang et al. 2017b). The nature of Schottky
defects and Frenkel-type defects has also been studied in HaPs. Dewinggih and
co-workers (Dewinggih et al. 2017) showed that iodine vacancy/interstitial (IV

+/IV
−)

Frenkel pair trapping centers are abundant in MAPbI3 and are annihilated under
illumination conditions which increases photoluminescence quantum efficiency. Kim
and co-workers (Kim et al. 2014) showed that the formation energies of Schottky
defects (neutral vacancy pairs) such as PbI2 and MAI in MAPbI3 are relatively low.
Fortunately, these defects are not trap states that can reduce the carrier lifetime. A
Schottky couple in HaP has very low formation energies and originates from halide
vacancy coupling with the metal vacancies (Motti et al. 2019).

Planar defects include grain boundaries (GBs), surfaces or perovskite/transport
layer interfaces, stacking faults, and twin boundaries. GBs are interfaces between
two grains in polycrystalline materials, as shown in Figure 2a. It has been shown
that degradation in HaP starts at the surface and grain boundaries (Shao et al.
2016). This is because GBs are sources of high defect densities, trap accumulation
sites, infiltration sites for water vapor, and fast pathways for ion migration due
to reduced steric hindrance (Shao et al. 2016). Grain boundaries absorb moisture
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and oxygen from the environment and cause HaP degradation (Wu et al. 2021).
The transformation of the perovskite phase to a non-perovskite phase is initiated
at boundaries which are active sites accumulating chemical species (Yun et al.
2018). GBs serve as trapping centers for charge carriers, leading to non-radiative
recombination that reduces the carrier lifetime, and also causing hysteresis in
the current–voltage characteristic (Uratani and Yamashita 2017). DeQuilettes and
co-workers (DeQuilettes et al. 2015) measured the photoluminescence intensities
and carrier lifetimes from different grains and grain boundaries of the same MAPbI3

thin film. They concluded that grain boundaries are dimmers and show the
fastest non-radiative recombination. The surfaces of HaP are also defective, as
shown in Figure 2b. They contain a large number of charged defects (Zhang et al.
2019b) including iodine vacancies (Wu et al. 2020), X-terminating surfaces with
nonstoichiometric compositions (Qiu et al. 2020), and improper bonding: (110)-X2

halide surfaces with a large number of broken bonds (Jain et al. 2019; Kong et al. 2016),
and Pb dangling bonds (Kong et al. 2016). SRH recombination at interfaces with the
transport layers is the dominant loss mechanism in perovskite solar cells (Sherkar
et al. 2017). With regard to stacking faults, they occur in crystals characterized by
a periodic sequence of atomic planes due to an interruption in the typical regular
arrangement. Song and co-workers (Song et al. 2015) showed that MAPbI3 phases
with I/Pb ratios ranging from 3.2 to 3.5 form stacked perovskite sheets with a large
amount of stacking faults, whereas thin films with I/Pb ratios ranging from 2.9
to 3.1 form the conventional 3D perovskite with few stacking faults (alpha phase).
First principle studies of the electronic properties of {111} twin boundaries in mixed
HaP containing FA, Cs, Br, and I revealed that twin boundaries in these perovskites
are nucleation sites for I-rich and Cs-rich formation, which are hole traps and can
cause electron–hole recombination, leading to a loss in Voc (Mckenna 2018). Direct
imaging using TEM has revealed twin boundaries in a MAPbI3 thin film range
from 100 to 300 nm wide with twin boundaries parallel to {112}t (Rothmann et al.
2017). By varying the anti-solvent during deposition, Tan and co-workers (Tan
et al. 2020) were able to change the defect density of the (111) twin boundary for
Cs0.05FA0.81MA0.14PbI2.55Br0.45 mixed perovskite to establish the relationship with
PCE. It has been shown that recombination centers limiting charge carrier lifetimes
in HaP are preferentially located close to the surface rather than in the bulk of the
crystal (Stewart et al. 2016).
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Surface with dangling
bonds

Grain boundary

Dangling bond

(a) (b)

Figure 2. Schematic diagram showing grain boundaries (a) and surface defects
(dangling bonds) (b) in HaP. Source: Graphic by authors.

2.1.4. The Reaction of HaP with Metal Back-Electrodes

Another primary source of instability is caused by the reaction of HaP with
widely used metal electrodes when in direct or indirect contact. Gold (Au), silver
(Ag), and copper (Cu) are widely preferred as back-electrodes in perovskite solar
cells due to their high conductivity. Indirect contact occurs when the metal diffuses
through the hole and electron transport layers into the active layer of the device and
reacts with the perovskite to form insulating metal halide species or defect states
in the bulk or at the surface (Domanski et al. 2016), reducing the thermal stability
of the device (Boyd et al. 2018; Domanski et al. 2016). Halide can also diffuse out
of the active layer and make contact with the electrodes. For instance, corrosion
of a silver (Ag) electrode due to the reaction with diffused hydrogen iodide (HI),
produced during the decomposition of a MAPbI3 absorber of an encapsulated solar
cell, has been shown to speed up the degradation of MAPbI3 (Han et al. 2015). Wang
and co-workers (Wang et al. 2018) showed that MAPbI3 reacted rapidly with Ag
electrodes, and the reaction was driven by diffused iodide (I−) ions which caused
corrosion of the electrode. Gold electrodes corrode rapidly due to the aggressive
chemical interaction between gold and highly reactive iodine-containing by-products
formed in the course of perovskite decomposition under illumination with intense
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UV radiation (Shlenskaya et al. 2018). In addition, metal electrodes can diffuse into
the HaP active layer through the hole transport layer or electron transport layer,
leading to degradation of the perovskite (Ming et al. 2018; Zhao et al. 2016b). In
CH3NH3PbI3 devices with Al electrodes and the presence of moisture, Al rapidly
reduces Pb2+ to Pb0 and converts CH3NH3PbI3 to (CH3NH3)4PbI6·2H2O and then
to CH3NH3I (Zhao et al. 2016b).

Electrodes are deposited directly on perovskite in hole conduction layer-free
solar cells (Asad et al. 2019). The perovskites are deposited directly on metal
electrodes in cells without charge transport layers (Lin et al. 2017). Metal electrodes
also make direct contact with HaP in Schottky diodes, resistive switching devices,
and photodetectors. The electrodes of Schottky diodes, resistive switching devices,
and photodetectors also directly contact HaP (Li et al. 2019; Kang et al. 2019). Halide
perovskite becomes unstable when in direct contact with metal electrodes. We
have shown that methylammonium lead tri-bromide (MAPbBr3) perovskite grains
delaminate rapidly on Al-coated substrates as opposed to Au, Ag, Au-Zn, and Sn
substrates (Fru et al. 2021). The direct contact of Ag with perovskites also speeds
up their degradation, leading to a loss in organic cations (Svanström et al. 2020).
These results are important in the selection of electrodes for stable charge transport
layer-free solar cells.

2.2. HaP Panel/Module Lifetime

A sustainable transfer of the perovskite solar cell technology from the laboratory
to market requires the module/panel lifetime to be greater than 20 years. A widely
used definition of module lifetime, known as the T80 lifetime, is the time taken for
its efficiency to decrease by 20% of the initial value (He et al. 2020). The failure of
a module in photovoltaic technology is determined using the T80 lifetime. The T80

lifetime is calculated using Equation (2),

T80 =
20%

Degradrate
(2)

The median degradation rate (Degradrate) of commercially available solar
modules ranges from 0.36%/year for monocrystalline silicon to 0.96%/year for
copper indium gallium selenide (CIGS), providing T80 lifetimes of over 55.6 and 20.8
years, respectively. These degradation rates were determined from a field test with
solar modules operating under normal working conditions. However, the average
degradation rate of perovskite solar modules is 66%/year, corresponding to an
average lifetime of 0.30 years (3.6 months). These results indicate that perovskite solar
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modules are very unstable under real operating conditions, and intensive research
is needed to commercialize the technology. The lifetime of a solar panel/module is
highly correlated with the stability of the constituent solar cells.

2.3. Improving the Stability of Perovskite Solar Cells/Panels

Various strategies have been employed to improve the stability of perovskite
solar cells. These techniques can be grouped into stable materials synthesis, additives
and passivation, alternative robust functional layers, encapsulation, and engineering
of 2D and 2D/3D mixed-dimensional perovskites.

2.3.1. Towards Compositional Stability 3D Halide Perovskite Materials

Degradation due to light and heat is mitigated by improvement in the HaP
material and interfaces of the solar cell. Careful selection of the organic cation in HaP
is necessary to prevent irreversible degradation (decomposition) under the action
of heat and light (Juarez-Perez et al. 2018). This decomposition is mainly due to
the release of volatile components in MA-containing perovskites. Thus, it has been
shown that going MA free will produce inherently stable perovskites (Turren-Cruz
et al. 2018). An alternative organic cation for 3D HaP is formamidinum (FA). The
high enthalpy and activation energy needed for its decomposition make FA more
resistant to thermal decomposition and produce more thermally stable perovskites
than MA (Juarez-Perez et al. 2019). However, FA-based perovskites lack phase
stability under humidity and thermal stress (Chen et al. 2021). Much effort is being
directed towards the stabilization of the black phase of FA-based perovskites through
additives, doping, alloying, interfacial engineering, etc. (Chen et al. 2021). The use
of a low-vapor pressure inorganic cation such as cesium (Cs) as a substitute for
high-vapor pressure MA leads to a more stable completely inorganic HaP. By mixing
the A-site cations, composition stability can also be achieved.

2.3.2. Additives and Passivation

Figure 3a,b show the schematic diagrams of defective and passivated surfaces.
Most attempts to mitigate these surface defects involve using different additives
that will either improve the film morphology by increasing the grain size to
reduce the number of grain boundaries or cause surface passivation (Zhang et al.
2016a). Passivation can be conducted by using various additives including small
molecules (Xu et al. 2016), polymers (Dunn et al. 2017), ligands (Zhang et al. 2019a),
perovskite quantum dots (Zheng et al. 2019), and 2D perovskites (Rahmany and
Etgar 2021). The effect of grain boundaries on the lifetime of charge carriers has
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been reduced by passivation of the perovskite surface with Lewis acid additives
such as 1,2-ethanedithiol (Stewart et al. 2016) and Lewis base additives (Noel et al.
2014). These studies suggested that the Lewis bases donate electrons to surface
traps, thus preventing them from capturing charge carriers, while the Lewis acids
donate protons, as shown in Figure 3b. Surface treatment by post-deposition
of a variety of Lewis bases (electron-donating molecules) and surface ligands
passivates surface defects, thereby reducing non-radiative recombination. The
presence of excess PbI2 between grain boundaries also has a passivation effect
(Chen et al. 2014). The addition of an optimum amount of potassium iodide (KI)
in triple-cation (Cs0.06FA0.79MA0.15)Pb(I0.85Br0.15)3 perovskite reduces non-radiative
losses and photoinduced halide ion migration by passivation of the perovskite
film and interfaces (Abdi-jalebi et al. 2018). This is achieved by the excess iodide
from KI compensating for any halide vacancies (trap states). At the same time,
potassium ion selectively depletes bromide from the crystal, thereby reducing
trap states that result from bromide-rich perovskites. The formation of benign
(potassium-rich, halide-sequestering species) from excess halides at the grain
boundaries and interfaces immobilizes halide ion migration. The addition of a strong
electron acceptor of 2,3,5,6-tetrafluoro7,7,8,8-tetracyanoquinodimethane (F4TCNQ)
into the perovskite functional layer fills grain boundaries, thus reducing metallic lead
defects and iodide vacancies significantly (Liu et al. 2018). Excess MAI intrinsically
passivates the surface of MAPbI3 films, leading to a reduced surface recombination
velocity and an improved total carrier lifetime (Yang et al. 2017a). Additives such
as sulfonated carbon nanotubes (Zhang et al. 2016a), Lewis bases such as urea and
thurea (Hsieh et al. 2018), and Lewis acid−base adducts (for example, the PbI2

adduct with the O-donor DMSO is excellent for improving grain size in MAPbI3

and PbI2 adducts, while the S-donor thiourea is excellent for FAPbI3) (Lee et al.
2015) mitigate defects by producing larger grains with fewer grain boundaries. The
addition of sulfonated carbon nanotubes also passivates perovskite by filling grain
boundaries (Zhang et al. 2016a). Other Lewis bases such as thiophene and pyridine
passivate the perovskite surface by donating an electron to under-coordinated Pb
atoms present in the crystal (Noel et al. 2014). Fullerenes (PCBM) deposited on
the top of the perovskite have a passivation effect which reduces photocurrent
hysteresis and the trap density (Shao et al. 2014). Fang and co-workers (Fang et al.
2020) showed that the 4-fluorophenylmethylammonium-trifluoroacetate additive
passivates both uncoordinated lead and halide ions in the mixed-cation mixed HaP
FA0.33Cs0.67Pb(I0.7Br0.3)3. This is possible because the trifluoroacetate anion binds
with the lead cation, and the 4-fluorophenylmethylammonium cations bind with the
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halide ion. This dual passivation suppressed hysteresis, halide segregation, and ion
migration, leading to an improvement in the operational lifetime of light-emitting
diodes from 1.0 to 14.0 h. Qiao and co-workers (Qiao et al. 2019) showed that alkali
metals mitigate Ii defects in two ways: by increasing their formation energy, thus
reducing their concentration, and binding strongly to them, thereby eliminating
mid-gap states that act as traps for electrons and holes, thus increasing the carrier
density and extending the carrier lifetimes significantly.

− −+ +− −− −
+ − + +

Passivated surface

Passivation
(lewis acid)

Passivation
(lewis base)

Dangling bond

Detective Surface with dangling bonds

(a) (b)

Figure 3. The schematic diagrams of defective (a) and passivated (b) surfaces.
Source: Graphic by authors.

2.3.3. Encapsulation

Encapsulation is an important method to solve instability problems, prevent
the leakage of toxic and water-soluble lead compounds to the environment, and
help the perovskite solar module to pass the hail impact test (He et al. 2020).
In addition, it prevents contact with ambient air, prevents leakage of volatile
components, and reduces moisture and heat degradation. Table 1 describes various
techniques and materials for encapsulating HaP solar cells. High-performance
encapsulation materials should be easy to process and chemically inert and have

143



a low oxygen transmission rate, low water vapor transmission rate, high dielectric
constant, resistance to UV and thermal oxidation, high adhesion to perovskite
solar modules, similar coefficients of thermal expansion to perovskite solar cell
materials, and high mechanical impact strength (Griffini and Turri 2016; Aranda
et al. 2021). The techniques used for perovskite solar cells include rigid glass–glass
encapsulation, ultra-thin flexible glass sheet encapsulation, polymeric laminates,
thin-film barrier-coated webs, and thin-film encapsulation (TFE).

Table 1. Summary of encapsulation methods and materials.

Encapsulation Method Description Materials

Glass–glass encapsulation
(rigid, widely used,

straightforward, very
effective, very affordable,

incompatible with
flexible devices)

The device is sandwiched
between two rigid glass sheets

using thermo-curable adhesives
or UV-curable sealants. Edges

are sealed with sealants to
prevent ingress of oxygen

and moisture.

Examples of thermo-curable
adhesives include ethylene-vinyl
acetate (EVA) (Bush et al. 2017),
surlyn ionomer (Cheacharoen

et al. 2018), and polyisobutylene
(PIB) (Shi et al. 2017). UV-curable

adhesives include epoxy resin
(Mansour Rezaei Fumani et al.
2020; Ierides et al. 2021). Edge

sealants include butyl rubber and
PIB (Vidal et al. 2021).

Ultra-thin flexible glass
sheet encapsulation (most
recent, flexible, high cost,

effects on performance and
long-term stability,

needs investigation)

Flexible device sandwiched
between ultra-thin flexible

glass sheets.

Hermetic glass frit (Fantanas et al.
2018; Emami et al. 2020).

Polymeric laminates and
thin-film barrier-coated

webs (used for both flexible
and rigid solar cells)

Can be used as substrates in
flexible solar cells and as an

encapsulating agent on various
types of substrates.

Poly(methylmethacrylate)
(PMMA), polyethylene

terephthalate (PET),
polydimethylsiloxane (PDMS),

polyethylenenaphthalate (PEN).

Thin-film encapsulation
(TFE) (emerging and
promising, expensive,

challenging)

Direct deposition of a single
ultra thin-film flexible protective

layer on the device using
vacuum deposition methods

including physical vapor
deposition, chemical vapor

deposition, plasma-enhanced
chemical vapor deposition, and

atomic layer deposition.

Metal oxides including Al2O3,
SiOx, TiO2, and Zn2SnO4

(Aranda et al. 2021). Multilayer
stacked organic/organic layers

called dyads (Lee et al. 2018) and
ultra-thin plasma polymeric films

(Idígoras et al. 2018).

Source: Table by authors.
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2.3.4. 2D and 2D/3D Mixed-Dimensional Perovskites

Two-dimensional HaP have layered structures that are similar to the
Ruddlesden–Popper (RP) phases (Ruddlesden and Popper 1958), consisting of a
nanoplatelet (nanosheet) perovskite that is separated by large spacer cations. The
RP phase has the general formula An-1L2MnX3n+1. In this form, A is a small-size
monovalent cation (Cs+, MA+), L corresponds to a large-size aromatic or aliphatic
alkylammonium spacer cation including phenyl-ethyl ammonium (PEA+) and
butylammonium (BA+), M is a transition metal cation (such as Pb2+ and Sn2+),
X stands for a halide anion (such as I¯, Br¯, and Cl¯), and the integer n represents
the number of metal halide octahedral [MX6]4− layers between the two L-cations,
determined by careful control of the stoichiometry (Shi et al. 2018). Two-dimensional
perovskites have strong quantum confinement effects and large bandgaps (Zhang
et al. 2020). In solar cells, 2D perovskites have been applied as primary light
harvesters (Cao et al. 2015), capping layers (Chen et al. 2018), passivation layers
(Jiang et al. 2019), and 2D/3D interfacial layers (Niu et al. 2019). Two-dimensional
HaP solar cells are more stable than their 3D counterparts but less efficient. Moreover,
their hydrophobicity and moisture resistance improve device stability under high
humidity (Zheng et al. 2018).

Two-dimensional/three-dimensional mixed-dimensional perovskite solar cells
combine the stability of 2D perovskites with the excellent light-harvesting properties
of 3D perovskites to produce stable and efficient devices. When grown on 3D
perovskites to form a 2D/3D mixed-dimensional perovskite, grain boundaries and
surface charged defects are passivated to enhance stability (Wu et al. 2021). In
2017, Grancini et al. (2017) obtained a stable 10 cm × 10 cm perovskite solar cell
that maintained its 11.6% PCE for more than 10,000 h under controlled standard
conditions using a fully printable industrial process. Remarkable stability was
achieved through 2D/3D interface engineering in which the 2D layer prevented
moisture ingress.

2.3.5. Use of Stable Metal Electrodes and Very Thin Interlayers

As explained above, diffusion of the widely used Au, Al, Ag, and Cu electrodes
into the HaP active layer is one of the leading causes of instability. Very thin barrier
layers including chromium (Domanski et al. 2016), chromium oxide-chromium
(Cr2O3/Cr) (Kaltenbrunner et al. 2015), MoOx (Sanehira et al. 2016), bismuth (Bi) (Wu
et al. 2019), and amine-mediated titanium suboxide (AM-TiOx) (Back et al. 2016) have
been employed between the perovskite and hole transport layers to protect metal top
contacts from reaction with the halide perovskites. Domanski et al. (2016) showed
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that, at 70 ◦C, gold (Au) diffused through the HTL into the HaP layer. However,
the diffusion was prevented by depositing a layer of chromium (Cr) between the
HTL and the Au electrode. The Cr layer alleviated the severe degradation of the
device performance at elevated temperatures. In comparison to Au and Ag, Cu
electrodes do not diffuse into the perovskite active layer and produce more stable
perovskite solar cells (Zhao et al. 2016a). Zhao et al. demonstrated that high-PCE
Cu electrode-based solar cells with efficiency above 20% retain 98% of the initial
PCE after 816 h of storage in an ambient environment without encapsulation (Zhao
et al. 2016a). Cu and Ag do not form deep-level trap states in MAPbI3-based solar
cells (Ming et al. 2018). Additionally, the conventional noble metal electrodes are
not sustainable because of the cost, scarcity, and complexity of metal ore extraction.
To overcome these problems, carbon electrodes are gaining increased attention due
to their low cost, excellent stability, and compatibility with up-scaling techniques.
However, ultra-thin buffer layers of materials such as Cr are required between the
electrode and the charge transport layers to ensure good electrical contact (Babu et al.
2020).

3. Solar Hydrogen Production

PEC water splitting, a technology for solar hydrogen production, is an attractive
approach for numerous reasons. First, photocatalytic hydrogen production offers an
attractive route for solar energy storage. This is because hydrogen energy storage
has been considered as the most suitable means for storing excess off-peak power
where long-term storage is a priority (Benato and Stoppato 2018). In addition,
hydrogen can be easily transported via land, air, or sea, making it possible to transport
solar energy (converted to hydrogen) from one geographical location to another.
Additionally, hydrogen fuel already has a vast and established economy with
numerous applications in homes and industries. Hydrogen can be converted directly
into electricity for domestic consumption, use for the powering of automobiles, and
as fuel in the aviation industry (Glanz 2010). The numerous applications of hydrogen
make its production from solar energy more attractive considering the global need
for clean energy production for a sustainable future.

The device used for harvesting solar energy for photocatalytic hydrogen
production is often known as a PEC cell (Figure 4). The basic operation of a PEC
device has been reported by many authors (Glanz 2010; Ihssen et al. 2014). Here,
a summary of the operation of a PEC cell is explained using a device consisting of
a photoanode and a metallic counter electrode immersed in an acidic electrolyte.
Equation (3) presents an illustration of the basic operation of a PEC device for water
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splitting. First, the photoanode will absorb photons when irradiated with incident
photon energy hν and become ionized, resulting in the generation of electron–hole
pairs. If recombination does not occur, the hole (h+) becomes separated from the
electron (e−), moves to the surface of the photoanode, and oxidizes water to produce
oxygen gas and H+ ions, as shown in Equation (1). The H+ ions produced at the
surface of the photoanode are transported to the cathode. Simultaneously, the
electrons produced in the photoanode are driven to the cathode through the external
circuit where they interact with the H+ ions to produce H2 gas, as shown in Equation
(4). The chemical reaction for the decomposition of water into O2 and H2 via PEC
water splitting is summarized in Equation (5). Examples of materials that could
be used as a photoanode in PEC devices include n-type semiconductors such TiO2,
BiVO4, and α-Fe2O3.

e−

e−e−

e− Back contact

hv

H2

H2O

O2

Photoanode Pt counter 
electrode

H+

H+

e−

h+

Electrolyte

Bias

2hv + H2O O2 + H2
1
2

Figure 4. Schematic illustration of the basic operation of a PEC device. Source:
Graphic by authors.

At the photoanode : 2h+ + H2O → 1
2

O2 + 2H+ (3)

At the counter electrode: 2H+ + 2e− → H2 (4)
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Summary : hν + H2O → 1
2

O2 + H2 (5)

3.1. Hematite as Photocatalyst

Hardee and Bard were the first to use a hematite photoelectrode for water
photolysis in 1976 (Cattarin and Decker 2009). The stability of hematite in an aqueous
environment and its ability to absorb photons in the visible region are the major
properties that have continued to attract increased research into its application in PEC
water splitting. An increasing amount of research is still being channeled towards
overcoming the major challenges inhibiting the use of hematite as a photoanode in
solar hydrogen production. The main challenges are outlined in Section 1, which
include its poor conductivity, high electron–hole recombination, and inefficient
charge separation, among others. The strategies which have been developed over
the years towards overcoming the problems that have been limiting the application
of hematite-based photoanodes in solar hydrogen production are discussed in the
following section.

3.2. Strategies for Enhancing the PEC Properties of α-Fe2O3 Films

3.2.1. Nanostructuring

Nanostructuring is the fabrication of materials consisting of structural features
in the nanometer scale (Singh and Terasaki 2008). Nanostructured materials provide
flexible space for ease of fabrication, enhanced mechanical stability, confinement
effects, and a large surface area, making them suitable for photocatalytic applications
(Rani et al. 2018). The nanostructuring approach has long been employed in the
fabrication of α-Fe2O3 thin films to mitigate their poor charge transport property
without compromising their photon absorption for PEC applications. α-Fe2O3 has a
low absorption coefficient and, as a result, requires films of 400–500 nm thickness
for complete light absorption. Because of the short hole diffusion length of 2–4 nm
(Ahn et al. 2014), photogenerated charge carriers in bulk α-Fe2O3 films will likely
recombine before reaching the surface of the films to perform water oxidation, which
will result in a low photocurrent in the PEC device. Since thinner α-Fe2O3 films
are not able to absorb sufficient photons for a significant photocatalytic activity,
nanostructuring has been employed to help solve this paradox. Nanostructured
α-Fe2O3 films that can absorb sufficient photons can also offer a large interfacial
area for interaction with the electrolyte, making them suitable for promoting charge
carrier transport during photocatalytic reactions (Tamirat et al. 2016; Annamalai et al.
2016).
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The nanostructuring approach has been widely utilized in preparing α-Fe2O3

films of different morphologies and has been shown to help promote charge
separation on the film’s surfaces where water oxidation/reduction reactions occur
during photocatalysis (Annamalai et al. 2016). Nanostructured α-Fe2O3 films
with morphologies such as nanoparticles (Souza et al. 2009), nanorods (Ito et al.
2017), nanoflowers (Tsege et al. 2016), nanocones (Li et al. 2014), nanosheets
(Peerakiatkhajohn et al. 2016), nanotubes (Kim et al. 2016a), and nanowires (Xie
et al. 2018; Grigorescu et al. 2012) have been prepared for PEC water splitting,
yielding an improved photocurrent density compared to the bulk films (Chou
et al. 2013). Figure 5 presents a schematic illustration for some of the different
morphologies of hematite films for PEC water splitting. One of the major limitations
of nanostructuring is its inability to influence the intrinsic properties of hematite
such as its low electrical conductivity of 10−14 Ω−1 cm−1 (Tamirat et al. 2016) and
charge carrier lifetime of 3–10 ps (Grave et al. 2018).
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Figure 5. Schematic illustration of different morphologies of hematite films for PEC
water splitting. Source: Graphic by authors.
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3.2.2. Doping

The introduction of impurities into a semiconductor, termed doping
(Grundmann 2010), can positively alter its intrinsic properties for PEC applications.
Doping of semiconductor materials can help to narrow their optical bandgap
and influence electrical properties, such as an increase in the charge carrier’s
concentration and mobility, thereby improving PEC performance (Yang et al. 2019).
For α-Fe2O3, elemental doping involves replacing the lattice iron with foreign atoms,
in order to influence its intrinsic properties for improved photocatalytic capability.
The intrinsic properties of α-Fe2O3 which negatively affects its efficacy in PEC devices
such as its low electrical conductivity of 10−14 Ω−1 cm−1, charge carrier concentration
on the order of 1018 cm3, electron mobility of 10−2 cm2 V−1 s−1, hole mobility of
0.0001 cm2 V−1 s−1, and charge carrier lifetime of 3–10 ps have been improved
through doping (Tamirat et al. 2016; Grave et al. 2018). Doping can significantly
cause an increase in the charge carrier concentration in hematite films which directly
improves their conductivity. Both experimental evidence (Gurudayal et al. 2014;
Mao et al. 2011) and theoretical calculations (Zhang et al. 2016b) have confirmed
the enhancement of the charge carrier concentration through doping. In addition,
enhancement of the photocatalytic capabilities of hematite through doping has also
been associated with the passivation of surface states and grain boundaries, shifting
of band edge positions, and the distortion of its crystal structure which facilitates
charge carrier hopping and transport (Grave et al. 2018).

The PEC performance of α-Fe2O3 films has been improved through doping with
n-type dopants such as Ti (Feng et al. 2020; Peng et al. 2021), Pt (Mao et al. 2011),
and Sn (Li et al. 2017), p-type dopants such as Mn2+ (Gurudayal et al. 2014), Cu2+

(Tsege et al. 2016), and Ag+ (Shen et al. 2014) [4], and non-metals such as Si (Dias et al.
2014), S (Bemana and Rashid-Nadimi 2017), and P (Zhang et al. 2015). Feng et al.
(2020) achieved an over 2-fold increment in the photocurrent density at 1.23 V vs.
RHE and a negative onset potential shift of over 200 mV for α-Fe2O3 photoanodes
through Ti doping. They attributed the improved PEC water splitting to an increase
in the charge carrier density and enhanced charge separation. Elsewhere, a 3-fold
increase in the photocurrent density was achieved for α-Fe2O3 nanorods through
p-type doping with Mn, and the onset potential shifted by 30 mV to a more negative
value. The boost in PEC water splitting was also associated with the increased charge
carrier density as well as the reduced electron–hole recombination rate in Mn-doped
α-Fe2O3 photoanodes (Gurudayal et al. 2014). In another study, a photocurrent
density of 1.42 mA/cm2 at 1.23 V vs. RHE was achieved for S-doped α-Fe2O3

nanorods, representing a 4-fold increase compared to the undoped films. The authors
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attributed the superior PEC activity to the improved charge carrier mobility of the
S-doped α-Fe2O3 films (Zhang et al. 2017).

3.2.3. Heterojunction Formation

The heterojunction architecture involves the coupling of two semiconducting
materials to improve PEC water splitting efficiency. Depending on the semiconductor
materials used to form the heterostructure (n-type or p-type), n–n, p–p, or p–n
junction structures could be formed. Heterojunction formation confers three major
contributions: enhanced visible light absorption, improved charge separation, and
increased lifetime of charge carriers (Tamirat et al. 2016). Heterojunction structures
allow for the incorporation of materials of different bandgaps, broadening the photon
absorption spectrum of the heterostructure for better photocatalysis (Mayer et al.
2012; Sharma et al. 2015; Kyesmen et al. 2021). Additionally, the formation of a
heterojunction results in the development of an internal electric field at the space
charge region between the heterostructures which helps in facilitating charge carrier
transport. This will culminate in improving charge separation and increasing the
carrier lifetime, leading to reduced electron–hole recombination and enhanced PEC
efficiency during water splitting (Bai et al. 2018; Selim et al. 2019).

The charge transport mechanism and energy band diagram of hematite-based
photoanodes during PEC water splitting can be explained using the p–n
heterojunction structure presented in Figure 6. When a heterojunction is formed
between two semiconductors, a space charge layer is created at the interface between
them. For a p–n heterojunction with a hematite-based photoanode, the valence band
(VB) and conduction band (CB) edges of the p-type semiconductor material both
need to be more negative than those of α-Fe2O3 (Afroz et al. 2018). Additionally,
the electrons from the CB of the p-type semiconductor are transferred to the
CB of α-Fe2O3 and then to the fluorine-doped tin oxide (FTO) substrate, where
they move onto the counter electrode through the back-contact to reduce H+ to
H2. The movement of photogenerated charge carriers across the heterojunction
is facilitated by the electric field formed at the interface between the composite
materials, enhancing the effective charge separation and reducing the recombination
rate of electron–hole pairs (Liu et al. 2015a). For an n–n heterojunction-structured
hematite-based photoanode, a similar operation mechanism and energy band
bending to those of the p–n junction apply. However, the semiconductor material
is required to have more negative CB and VB band positions relative to those
of hematite.
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Figure 6. The charge transport mechanism and energy band diagram of the
hematite-based p–n heterojunction structure during PEC water splitting. Source:
Graphic by authors.

Furthermore, different composite materials have been employed in improving
the PEC water splitting of α-Fe2O3. The formation of the α-Fe2O3/NiO
heterojunction structure has been reported to improve the photocurrent density
of α-Fe2O3 from 0.042 to 0.156 mA/cm2 at 0.4 V vs. AgCl. The improvement was
attributed to the enhanced charge transfer kinetics resulting from the formation of
the α-Fe2O3/NiO heterostructure (Bemana and Rashid-Nadimi 2019). Natarajan
et al. (2017) fabricated α-Fe2O3/CdS heterostructures and achieved a photocurrent
density of 0.6 mA/cm2 at 0.92 V vs. RHE and a 0.4 V negative shift in the
onset potential compared to the value recorded for pristine α-Fe2O3 films. They
attributed the enhancement in PEC water splitting to the improved photon absorption
and facilitated charge transfer kinetics also resulting from the formation of the
heterojunction structure (ibid. 2017). While different materials have been used to
form the heterojunction structure with α-Fe2O3 for PEC applications, the choice
of the composite material is important for achieving a notable improvement in
water splitting efficiency. Materials that can enhance light absorption and promote

152



charge transport can play a significant role in boosting the photocurrent density of
α-Fe2O3-based heterojunction photocatalysts.

3.2.4. The Use of Co-Catalysts

One of the biggest challenges of PEC water splitting using α-Fe2O3 is the
overpotential required to drive the water oxidation reaction due to its high activation
energy barrier. The presence of a co-catalyst on photoanodes can improve PEC water
splitting by facilitating water oxidation reactions and decreasing the overpotential
and activation energy, thus shifting the onset potential to a more negative value
(Tamirat et al. 2016).

Noble metal oxides (Badia-Bou et al. 2013), amorphous phosphates (Eftekharinia
et al. 2017; Kwon et al. 2021), borates (Dang et al. 2017), and oxyhydroxides (Kim
et al. 2016b) have been used as co-catalysts on α-Fe2O3 photoanodes. α-Fe2O3 has
been modified with the iridium oxide (IrO2) co-catalyst and used as a photoanode
in PEC water splitting, yielding a photocurrent density of 200 µA/cm2 at 1.29 V
vs. RHE, while the pristine films required a positive shift of 300 mV to achieve
the same photoresponse. The IrO2 co-catalyst promoted charge separation and
acted as a storage site for photogenerated holes, leading to an improvement in
PEC water splitting achieved for modified α-Fe2O3 films (Badia-Bou et al. 2013).
Additionally, the cobalt-phosphate (Co-Pi) co-catalyst has been used to modify
α-Fe2O3 photoanodes and recorded a photocurrent density of 1.5 mA/cm2 at 1.5
V vs. RHE, plus a negative shift of 185 mV in the onset potential. The improved
performance was also attributed to the catalytic property of Co-Pi which can capture
photogenerated holes, leading to suppressed charge recombination and facilitating
water oxidation (Eftekharinia et al. 2017). Elsewhere, Kim et al. (2016b) used
ultra-thin amorphous FeOOH as a co-catalyst on an α-Fe2O3 photoanode, recording
a 2-fold increase in the photocurrent density, with an onset potential drop of about
120 mV, when applied towards PEC water splitting. The improved PEC behavior was
attributed to the enhanced water oxidation kinetics and passivation of the surface
states of the α-Fe2O3 photoanode due to the modification with the FeOOH co-catalyst
(ibid. 2016b).

3.2.5. Plasmonic Enhancement Effects

Plasmonic metal nanostructures offer a promising route for improving the
solar energy conversion efficiency of semiconductors (Li et al. 2013). Plasmonic
metals can improve the performance of photoelectrodes in PEC water splitting
via three major mechanisms. First, light scattering through localized surface
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plasmonic resonance (LSPR) absorption and re-emission can prolong the mean
photon path in metal/semiconductor composites, resulting in an increased capture
rate of incident photons. Second, hot electrons in the metal nanostructure generated
through the decay of optically excited plasmons are transferred across the Schottky
barrier to the nearby semiconductor, culminating in extra photoactivity. Finally,
when metal/semiconductor composite nanostructures have overlapping LSPRs
and energy band gaps, a large electric field enhancement occurs near the metal
nanostructure’s surface, leading to increased generation of electron–hole pairs in the
nearby semiconductor, a concept known as the plasmonic near-field effect (Fan et al.
2016; Augustynski et al. 2016).

In efforts to improve the photocurrent density of α-Fe2O3 photoanodes during
PEC water splitting, plasmonic metals such as Au (Archana et al. 2015; Shinde
et al. 2017) and Ag (Liu et al. 2015a; Kwon et al. 2016) have been widely employed,
showing great promise. Archana et al. (2015) deposited Au nanoparticles on α-Fe2O3

films and achieved a photocurrent enhancement that was three times higher than
that of the pristine films at 0.6 V vs. Ag/AgCl. The photocurrent enhancement was
attributed to a higher generation of charge carriers due to the plasmonic effects of
Au nanoparticles on the α-Fe2O3 films (ibid. 2015). Additionally, Ag nanoparticles
deposited on hydrothermally grown α-Fe2O3 nanowires produced a photocurrent
density of about 0.18 mA/cm2 at 1.23 vs. RHE when utilized as photoanodes in a
PEC cell, representing a 10-fold enhancement relative to the value obtained for the
pristine α-Fe2O3. The improvement was also associated with the surface plasmonic
effects of Ag nanoparticles on the α-Fe2O3 nanowires (Kwon et al. 2016).

3.2.6. The Use of Multiple Approaches

The simultaneous use of multiple approaches to produce a single photoelectrode
is a concept which harnesses the benefits of the different approaches to enhancing
the PEC performance of hematite to produce a synergetic effect. The concurrent
use of different approaches to produce a more efficient photocatalyst has been
exploited by researchers with some significant successes recorded. Table 2 shows
a list of hematite-based photoanodes in which multiple approaches to enhancing
PEC performance were implemented, yielding a synergetic effect and an enhanced
photocatalytic response.
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Table 2. Hematite-based photoanodes in which multiple approaches to enhancing
PEC performance were implemented.

Hematite-Based
Photoelectrode

Strategies
Engaged

Photocurrent
Density

Achieved Under
1 Sun

Photocurrent
Density Increase

Relative to That of
Pristine α-Fe2O3

Reference

Ti-doped
α-Fe2O3

Nanostructuring,
doping

2.1 mA/cm2 at
0.67 V vs.

Ag/AgCl in 1 M
NaOH electrolyte

2.8 times (Lee et al. 2014)

α-Fe2O3/Co-Pi
Nanostructuring,

co-catalyst
loading

1.5 mA/cm2 at
1.5 V vs. RHE 1

M NaOH
electrolyte

1.39 times (Eftekharinia et al.
2017)

α-Fe2O3/Au Nanostrucring,
plasmonic effects

1.0 mA/cm2 at
1.23 VRHE in 1 M
KOH electrolyte

2.86 times (Wang et al. 2015)

α-Fe2O3/NiO Nanostructing,
heterojunction

1.55 mA/cm2 at
1 V vs. RHE in

1M KOH
electrolyte

19.37 times (Rajendran et al.
2015)

α-Fe2O3/
BiVO4/

NiFe-LDH

Nanostructuring,
heterojunction,

co-catalyst

1.7 mA/cm2 at
1.8 V vs. RHE in

1 M NaOH
electrolyte

4.25 times (Bai et al. 2018)

Pt-doped
α-Fe2O3/Co-Pi

Nanostructuring,
doping,

co-catalyst

4.32 mA/cm2 at
1.23 V vs. RHE in

1 M NaOH
electrolyte

3.43 times (Kim et al. 2013)

Ti-doped
α-Fe2O3/Cu2O

Nanostructuring,
doping,

heterojunction

2.60 mA/cm2 at
0.95 V vs. SCE in

1 M NaOH
electrolyte

16.25 times (Sharma et al. 2015)

α-Fe2O3/Au/
Co-Pi

Nanostructuring,
plasmonic effects,

co-catalyst

4.68 mA/cm2 at
1.23 V vs. RHE in

1 M NaOH
electrolyte

3 times (Peerakiatkhajohn
et al. 2016)

α-Fe2O3/
Nb-doped

SnO2/Co-Pi

Nanostructuring,
heterojunction,

doping,
co-catalyst

3.16 mA/cm2 at
1.23 V vs. RHE in

. . . electrolyte
under 1 sun

not given (Yan et al. 2017)

Bai et al. (2018) in their work improved the performance of an α-Fe2O3

photoanode by combining the concepts of nanostructuring, heterojunction formation,
and the use of co-catalysts. In their work, an α-Fe2O3/BiVO4/NiFe-LDH photoanode
was fabricated and applied towards PEC water splitting. A maximum photocurrent
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density of 1.7 mA/cm2 was attained by the photoanode at 1.8 V vs. RHE, representing
1.3 and 4.25 times increases compared to the values obtained for α-Fe2O3/BiVO4

and α-Fe2O3 films at the same potential, respectively (ibid. 2018). Elsewhere, Kim
et al. (2013) prepared doped nanostructured α-Fe2O3 with the Pt dopant followed
by surface modification with a Co-Pi co-catalyst-based photoanode when applied
towards PEC water splitting. The doping of the pristine α-Fe2O3 photoanode with
Pt increased its photocurrent density by 74% to 2.19 mA/cm2 at 1.23 V vs. RHE,
which was further enhanced to 4.32 mA/cm2 at the same potential after loading
with the Co-Pi co-catalyst (ibid. 2013). In a similar approach, Peerakiatkhajohn et al.
(2016) demonstrated the synergetic effect of coating hematite nanosheets with Au
nanoparticles for a plasmonic effect, followed by loading the surface with the Co-Pi
co-catalyst, and achieved a photocurrent of 4.68 mA/cm (at 1.23 V vs. RHE), which
is one of the highest performances reported in the literature for a modified hematite
photoanode (ibid. 2016). The improved performances obtained for hematite-based
photoanodes through the use of multiple approaches were achieved by harnessing
the benefits of the different methods of boosting PEC performance via the systematic
application of interface engineering.

4. Conclusion

In this chapter, promising materials for solar energy harnessing have been
discussed with a special focus on HaP and α-Fe2O3 for direct conversion into
electricity and hydrogen fuels, respectively. Long-term stability is an important
requirement for the sustainable transfer of HaP solar cells from the laboratory to
the market. The instability of perovskite solar cells depends on the Goldschmidt
tolerance, chemical composition, and defects in halide perovskites. Other
components of the solar cell architecture including the back-metal contact and
the charge transport layers greatly contribute to the instability of the device. All
these issues are responsible for the extremely low T80 (less than 2 years) for
perovskite solar cells as opposed to the commercially available solar cells with
T80 lifetimes exceeding 20 years. Protecting metal top contacts from reacting with
halide perovskites, passivation of 2D perovskites to form 2D/3D mixed-dimensional
perovskites, encapsulation of the devices and modules, and focusing on MA-free
perovskites are credible strategies that, if well developed, will enhance the long-term
stability and lifetime of perovskite solar cells. The intrinsic properties of α-Fe2O3

films such as their poor conductivity and short carrier lifetime have continued to limit
their application for solar hydrogen production. Various strategies for improving
the durability of HaP solar cells and the efficiency of α-Fe2O3 films in photocatalytic
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hydrogen production were discussed. The use of additives to achieve large grain
sizes with few grain boundaries and to passivate the surface and boundaries of HaP
is effective in improving the stability of HaP solar cells. Meanwhile, the concurrent
use of multiple approaches such as nanostructuring, doping, the formation of
heterostructures, the use of co-catalysts, and plasmonic enhancement effects has
shown great promise in improving the photocatalytic efficiency of α-Fe2O3-based
films for solar hydrogen production. Further research is still required for the eventual
commercialization of solar hydrogen production and photovoltaic technologies using
α-Fe2O3 and HaP, respectively.
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