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Abstract: We propose an improved visual odometry approach that is adapted to 
low computational resources systems in an underwater environment. The aim is 
to guide underwater photogrammetry surveys in real time. The visual odometry 
relies on stereo image stream that is captured by an embedded system. An 
improved pose estimation procedure underlying fast stereo matching approach is 
followed by a semi-global bundle adjustment. Computed trajectory is maintained 
stochastically and a divergence measure is used for more realistic optimization 
zone selection. In particular, we propose a new approach to find an 
approximation of the uncertainty for each estimated relative pose based on 
machine learning manifesting on simulated data. This allows the user to find 
potential overlaps in the estimated trajectory for better drifts handling and loop 
closure. The evaluation of the proposed method demonstrates the gain in terms of 
computation time w.r.t. other approaches. The built system opens promising 
areas for further development and integration of embedded vision techniques. 
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1. Introduction 

Mobile systems nowadays undergo a growing need for self-localization to 
accurately determine its absolute/relative position over time. Despite the existence 
of very efficient technologies that can be used on-ground (indoor/outdoor) and in-
air, such as Global Positioning System (GPS), optical, radio beacons, etc. However, 
in the underwater context most of these signals are jammed so that the 
corresponding techniques cannot be used. On the other side, solutions based on 
active acoustics, such as imaging sonars and Doppler Velocity Logs (DVL) devices 
remain expensive and require high technical skills for their deployment and 
operation. Moreover, their size specifications prevent their integration within small 
mobile systems or even being hand held. The research for an alternative is 
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ongoing, notably, the recent advances in embedded systems outcome relatively 
small, powerful, and cheap devices. This opens interesting perspectives to adapt a 
light visual odometry approach that provides relative path in real-time, this 
describes our main research direction. The developed solution is integrated within 
underwater archaeological site survey where it plays an important role to facilitate 
image acquisition. An example of targeted sites is shown in Figure 1. 

In underwater survey tasks, mobile underwater vehicles (or divers) navigate 
over the target site to capture images. The obtained images are treated in a later 
phase to obtain various information and to also form a realistic three-dimensional 
(3D) model using photogrammetry techniques Drap (2012). In such a situation, the 
main problem is to totally cover the underwater site before ending the mission. 
Otherwise, we may obtain incomplete 3D models and the mission cost will raise 
significantly as further exploitation is needed. However, the absence of an overall 
view of the site especially under bad lighting conditions makes the scanning 
operation blind. In practice, this yields to over-scanning the site, which is a waste 
of time and cost. Moreover, the quality of the taken images may go below an 
acceptable limit. This mainly happens in terms of lightness and sharpness, which is 
often hard to quantify visually on the fly. In this work, we propose solutions for 
the aforementioned problems. Most importantly, we propose to guide the survey 
based on a visual odometry approach that runs on a distributed embedded system 
in real-time. The output ego-motion helps to guide the site scanning task by 
showing approximate scanned areas. Moreover, an overall subjective lightness and 
sharpness indicators are computed for each image to help the operator to control 
the image quality. Overall, we provide a complete hardware and software solution 
for the problem. 

  
(a) Overall orthophoto (b) Close-up view 

Figure 1. Example of a three-dimensional (3D) model of an underwater site; a 
Phoenician shipwreck located near Malta. 

In common approaches of visual odometry, a significant part of the overall 
processing time is spent on feature points detection, description, and matching. In 
the tested baseline algorithm, the aforementioned operations represent ~65% of 
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processing time in case of local/relative bundle adjustment (BA) approach, which 
occupies in return the majority of the time left. In our proposed method, we rely on 
low level Harris based detection and template matching procedure, which 
significantly speeds up the feature matching speed. Further, whereas in traditional 
stereo matching the search for correspondence is done along the epipolar line 
within certain fixed range, in our method we proceed first by computing a priori 
rough depth belief based on image lightness and following the law of light 
divergence over distance. This is only valid for a configuration where the light 
source is fixed to the system, which is the case here. Hence, our first contribution is 
that we benefit from the rough depth estimation to limit points correspondence 
search zone to reduce processing time. 

From another side, traditional visual odometry methods based on local BA 
suffers from rotation and translation drifts that grows with time Mouragnon et al. 
(2009). In contrary, the solutions based on using features from the entire image set, 
such as global BA Triggs et al. (2000), require more computational resources that 
are very limited in our case. Similarly, the simultaneous localization and mapping 
(SLAM) approaches, Thrun et al. (2005), which are known to perform good loop 
closure, are computationally intensive, especially when complex particle filters are 
used Montemerlo and Thrun (2007), and they can only operate in moderate size 
environments if real-time processing is needed. In our method, we adopt a semi-
global approach Nawaf et al. (2016), which proceed in the same way as local 
method in optimizing a subset of image frames. However, it differs in the way of 
selecting the frames subset, as local methods use Euclidean distance and 
deterministic pose representation to select frames, ours represents the poses in a 
probabilistic manner, and uses a divergence measure to select such sub set. 

The rest of the paper is organized as follows: We survey related works in 
Section 2. In Section 3 we describe the designed hardware platform that we used to 
implement our solution. Our proposed visual odometry method is explained in 
Section 4. The analytical results are verified through simulation experiments 
presented in Section 5. Finally, we present a summary and conclusions. We note 
that parts of this work have been presented in Nawaf et al. (2016) and Nawaf et al. 
(2017). 

2. Related Works 

2.1. Ego-Motion Estimation 

Estimating the ego-motion of a mobile system is an old problem in computer 
vision. Two main categories of methods are developed in parallel, namely; 
simultaneous localization and mapping (SLAM) Davison (2003), and visual 
odometry Nistér et al. (2004). In the following, we highlight the main 
characteristics for both of the approaches.  
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SLAM family of methods uses probabilistic model to handle vehicle pose, 
although this kind of methods is developed to handle motion sensors and map 
landmarks, they work efficiently with visual information solely. In this case, a map 
of the environment is built, and at the same time it is used to deduce the relative 
pose, which is represented using probabilistic models. Several solutions to SLAM 
involve finding an appropriate representation for the observation model and 
motion model, while preserving efficient and consistent computation time. Most 
methods use additive Gaussian noise to handle the uncertainty which imposes 
using extended Kalman Filter (EKF) to solve the SLAM problem Davison (2003). In 
case of using visual features, computation time and used resources grows 
significantly for large environments. A remarkable improvement of SLAM is the 
FastSLAM approach Montemerlo and Thrun (2007), which improves largely the 
scalability, it uses recursive Monte Carlo sampling to directly represent the non-
linear process model, although the state-space dimensions are reduce using Rao-
Blackwellisation approach Blanco et al. (2008), the method remains not scalable to 
long autonomy. In the context of long trajectories, several solutions are proposed 
to handle relative map representations, such as Eade and Drummond (2008), 
Davison et al. (2007), Piniés and Tardós (2007). In particular, by breaking the 
estimation into smaller mapping regions, called sub-maps, then computing 
individual solutions for each sub-map. The issues with this kind of approaches 
arise in sub-mapping creation, overlapping, fusion of sub-maps, and map size 
selection, especially in our context where the S-shape scanning causes very 
frequent sub-maps switches, which is time consuming.  

In all of the reviewed SLAM methods, the measurement noise is modeled by 
diagonal covariance matrix with equal values that are set empirically for the case 
of using pure visual information. This modeling leads to produce spherical 
measurement uncertainty (though estimated pose has an associated full degrees of 
freedom (DOF) uncertainty) in 3D when using only visual features. This does not 
approve with practical cases where uncertainty is not spherical. Although there 
exist several works in literature that studied the uncertainty of 3D reconstructed 
points based on their distance from the camera and the baseline distance between 
frames, such as in Eade and Drummond (2006) and Montiel et al. (2006), the effect 
of the relative motion parameters on the uncertainty of the pose estimation have 
not been taken into account. For a complete review for SLAM methods, we refer 
the reader to Bailey and Durrant-Whyte (2006). 

From another side, visual odometry methods uses structure from motion 
methodology to estimate the relative motion Nistér et al. (2004). Based on multiple 
view geometry fundamentals, Hartley and Zisserman (2004), approximate relative 
pose can be estimated, this is followed by a BA procedure to minimize re-
projection errors, which yields in improving the estimated structure. Fast and 
efficient BA approaches are proposed simultaneously to handle larger number of 
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images Lourakis and Argyros (2009). However, in case of long time navigation, the 
number of images increases dramatically and prevents applying global BA if real 
time performance is needed. Hence, several local BA approaches have been 
proposed to handle this problem. In local BA, a sliding window copes with motion 
and select a fixed number of frames to be considered for BA Mouragnon et al. 
(2009). This approach does not suit S-Type motion since the last n frames to the 
current frame are not necessarily the closest. Another local approach is the relative 
BA proposed in Sibley et al. (2009). Here, the map is represented as Riemannian 
manifold based graph with edges representing the potential connections between 
frames. The method selects the part of the graph where the BA will be applied by 
forming two regions, an active region that contains the frames with an average re-
projection error changes by more than a threshold, and a static region that contains 
the frames that have common measurements with frames in active region. When 
performing BA, the static region frames are fixed, whereas active region frames are 
optimized. The main problem with this method is that distances between frames 
are metric, whereas the uncertainty is not considered when computing inter-
frames distances. 

Recently, a novel relative BA method is proposed by Nawaf et al. (2016). 
Particularly, an approximation of the uncertainty for each estimated relative pose 
is estimated using a machine learning approach manifesting on simulated data. 
Neighboring observations that are used for the semi-global optimization are 
established based on a probabilistic distance in the estimated trajectory map. This 
helps to find the frames with potential overlaps with the current frame, while 
being robust to estimation drifts. We found this method most adapted to our 
context. 

2.2. Feature Points Matching 

Common ego-motion estimation methods rely on feature points that are 
matching between several poses Nistér et al. (2004). The choice of the used 
approach for matching feature points depends on the context. For instance, 
features matching between freely taken images (six degrees of freedom), must be 
invariant to scale and rotation changes. Scale invariant feature descriptors (SIFT) 
Lowe (2004) and the Speeded Up Robust Features (SURF) Bay et al. (2006) are well 
used in this context Nawaf and Tremeau (2014). In this case, the search for a point's 
correspondence is done w.r.t. all of the points in the destination image. 

In certain situations, some constraints can be imposed to facilitate the 
matching procedure. In particular, limiting the correspondence search zone. For 
instance, in case of pure forward motion, the focus of expansion (FOE), being a 
single point in the image, the search for the correspondence for a given point is 
limited to the epipolar line Yamaguchi et al. (2013). Similarly, in case of sparse 
stereo matching, the correspondence point lies on the same horizontal line in the 
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case of rectified stereo or on the epipolar line otherwise. This speeds up the 
matching procedure first by having less comparisons to perform, and second low-
level features can be used Geiger et al. (2011). According to our knowledge there is 
no method that proposes an adaptive search range following a rough depth 
estimation from lightness in underwater imaging. 

3. Hardware Platform 

As mentioned earlier, we use an embedded system platform for our 
implementation. Being increasingly available and cheap, we choose the popular 
Raspberry Pi © (RPi) 1 as the main processing unit of our platform. This allows to 
run smoothly most of image processing and computer vision techniques. A 
description of the built system is shown in Figure 2, which is composed of two 
RPi's computers, where each is connected to one camera module to form a stereo 
pair. The cameras are synchronized using a hardware trigger. Both computers are 
connected to one more powerful computer that can be either within the same 
enclosure or on-board in our case. Using this configuration, the embedded 
computers are responsible for image acquisition. The captured stereo images are 
first partially treated on the fly to provide image quality information, as will be 
details in Section 4.1. Images are then transferred to the main computer, which 
handles the ego-motion computation that the system undergoes. For visualization 
purposes, we use two monitors that are connected to the embedded computers to 
show live navigation and image quality information (See Figure 2). 

  
Figure 2. The hardware platform used for image acquisition and real-time 
navigation; it is composed mainly of (1) stereo camera pair, (2) Raspberry Pi © 
computers, and (3) monitors. 

  

1  A credit-card size ARM architecture based computer with 1.2 GHz 64-bit quad-core CPU and 1GB 
of memory, running Rasbian ©, a Linux based operating system. 
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4. Visual Odometry 

Starting by computing and displaying image quality measures, the images are 
transferred over the network to a third computer as shown in Figure 2. This 
computer is responsible for hosting the visual odometry process, which will be 
explained in this section. We start first by introducing the used feature matching 
approach, and then we present the ego-motion estimation, finally, we explain the 
semi-global BA approach. 

4.1. Image Quality Estimation 

Real-time image quality estimation provides two benefits, first, it can alert the 
visual odometry process of having bad image quality, two reactions can be taken 
in this case, either pausing the process until taken image quality is recovered, or 
predicting position estimation based on previous poses and speed. We go for the 
first case while leaving the second for further development in future. Second, 
image quality indicators provide direct information to the operator to avoid going 
too fast in case of blur, or changing the distance to the captured scene when going 
under or over-exposed. 

The first indicator is the image sharpness, we rely on image gradient measure 
that detects high frequencies that are often associated with sharp images, hence, 
we use a Sobel kernel based filtering, which computes the gradient with smoothing 
effect. This removes the effect of dust that is commonly present in underwater 
imaging. We consider the sharpness measure to be the mean value of the 
computed gradient magnitude image. The threshold can be easily learned from 
images by fixing a minimum number of matched feature points that are needed to 
correctly estimate the ego-motion. Similarly, an image lightness indicator is 
estimate as the average of  channel in CIE-LAB color space. 

4.2. Sparse Stereo Matching 

Matching feature points between stereo images is essential to estimate the 
ego-motion. As the two cameras alignment is not perfect, we start by calibrating 
the camera pair. Hence, for a given point on the right image, we can compute the 
epipolar line containing the corresponding point in the left image. However, based 
on the known fixed geometry, the corresponding point position is constrained by a 
positive disparity. Moreover, given that at deep water, the only light source is the 
one used in our system, the furthest distance that feature points that can be 
detected is limited, see Figure 3 for illustration.  

This means that there is a minimum disparity value that is greater than zero. 
Furthermore, when going too close to the scene, parts of the image will become 
overexposed, similar to the previous case, this imposes a limited maximum 
disparity. Figure 4 illustrates the aforementioned constraints by dividing the 



 

264

epipolar line into four zones, in which only one is an acceptable disparity range. 
This range can be straightforward identified by learning from a set of captured 
images (oriented at 30 degrees for better coverage).  

 
Figure 3. An example of underwater image showing minimum disparity (red 
dots, ~140 pixels) and maximum disparity (blue dot, ~430 pixels). 

 

Figure 4. Illustration of stereo matching search ranges. (1) Impossible (2) 
Impossible in deep underwater imaging due to light's fading at far distances (3) 
Possible disparity (4) The point is very close so it becomes overexposed and 
undetectable. 

In our approach, we propose to constraint the so-called acceptable disparity 
range further, which corresponds to the third range in Figure 4. Given the used 
lighting system, we can assume a light diffuse reflection model where the light 
reflects equally in all directions. Based on inverse-square law that relates light 
intensity over distance, image pixels’ intensities are roughly proportional to their 
squared disparities. Based on such an assumption, we could use pixels’ intensity to 
constraint the disparity and hence limiting the range of searching for a 
correspondence. To do so, we are based on a dataset of stereo images. For each 
pair, we perform feature points matches. Each point match ( , ) and ( , ),  
being the coordinate in the horizontal axis, we compute the squared disparity  =  (  ) . Next, we associate each  to the mean lightness value of a 
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window centered at the given point computed from  channel in CIE-LAB color 
space.  

We assign a large window size ( 12) to compensate for using Harris operator 
that promotes local minimum intensity pixels as salient feature points. The 
computed ( , , )  pair shows the linear relationship between the squared 
disparity and the average lightness. A subset of such pairs is plotted in Figure 5. 

 
Figure 5. A subset of matched points squared disparity plotted against average 
pixel lightness. 

In addition to finding the linear relationship between both variables, it is also 
necessary to capture the covariance that represents how rough is our 
approximation. More specifically, given the diagram shown in Figure 6, we  
aim at defining a tolerance  that is associated to each disparity as a function of 
lightness . In our method, we rely on the Principal Component Analysis (PCA) 
technique to obtain this information. In details, for a given lightness  , we first 
compute the corresponding squared disparity  using a linear regression 
approach as follows: =  (1) 

= ( , )( )  (2) 

=  (3) 

where D and L are the disparity and lightness training set, d and l are their 
respective means. 
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Second, let  =  ( , , , ) be the computed eigenvector that correspondences to 

the smallest eigenvalue  . Based on the illustration shown in Figure 6, the 

tolerance  associated to  can be written as: 

=   ,, + 1  (4) 

By considering a normal error distribution of the estimated rough depth, and 
based on the fact that  is equal to one variance of , we define the effective 
disparity range as: ±  (5) 

where  represents the number of standard deviations. It is trivial that  is a trade-
off between computation time and the probability of having points 
correspondences within the chosen tolerance range. We set = 2, which means 
that there is 95% probability to cover the data. 

 

Figure 6. Illustration of disparity tolerance  given a lightness value . 

4.3. Initial Ego-Motion Estimation 

Given left and right frames at time  (we call them previous frames), our 
visual odometry pipeline consists of four stages (an illustration is shown in  
Figure 7): 

Feature points matching for every new stereo pair + 1. As described in  
Subsection 4.2. 
3D reconstruction of the matched feature points using triangulation as 
described in Hartley and Zisserman (2004). Two displaced point clouds are 
obtained at this step. 
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Relative motion computation using adaptation between the point clouds for 
the frames at  and + 1. Semi-Global BA procedure Nawaf et al. (2016) is 
applied to minimize re-projection errors; to be explained in the following 
subsections. 

 

Figure 7. Image quadruplet, current (left and right) and previous (left and right) 
frames are used to compute two 3D point clouds. The transformation between the 
two points clouds is equal to the relative motion between the two camera 
positions. 

In details, let ( , , , ) denote the previous left, previous right, current left 
and current right frames, respectively. For each new captured image pair, we 
compute a 3D point cloud using triangulation, as described in Hartley and 
Zisserman (2004) for the matched feature points that are obtained using the 
method proposed in the previous subsection. 

The rigid transformation [ | ] that is required for expressing the frames at 
time + 1  in the reference frame at time  is the rigid transformation that is 
required to move the 3D point cloud at time  to the one obtained at time + 1. 
Hence, the problem of calculating the orientation of the cameras at time + 1 in 
relation to time  leads back to the calculation of the transformation used to move 
from one point cloud to the other. This is possible under our configuration, with 
small rotation. We note here that there is no scale problem between both point 
clouds, which is specific to stereo systems. We consider here the left previous to 
left current frames   positions to represent the system relative motion, and 
their relative transformation denoted [ | ]. 
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Below, we present the method to compute the transformation for passing 
from the point cloud calculated at time + 1, denoted , to the one calculated at 
time , denoted . So, we have two sets of  homologous points  =   and  =   where 1   . We have: =   +             (6) 

The best transformation the minimizes the error , the sum of the squares of 
the residuals: = +  (7) 

To solve this problem, we use the singular value decomposition (SVD) of the 
covariance matrix : = ( )( ) (8) 

where  and  are the centers of mass of the 3D points sets  and , respectively. 
Given the SVD of  as: [ , , ] = ( ), the final transformation is computed as: =  (9) = +  (10) 

Once the image pair + 1 is expressed in the reference system of the image 
pair , the 3D points can be recalculated using the four observations that we have 
for each point. A set of verifications are then performed to minimize the pairing 
errors (verification of the epipolar line, the consistency of the y-parallax, and  
re-projection residues). Once validated, the approximated camera position at  
time + 1 are used as input values for the BA, as described earlier. 

4.4. Uncertainty in Visual Odometery 

Like any visual odometry estimation, the estimated trajectory using the 
method mentioned in the previous section is exposed to a computational error, 
which translates to some uncertainty that grows in time. A global BA may handle 
this error accumulation, however it is time consuming. From another side, a local 
BA is a trade-off for precision and computational time. The selection of  closest 
frames is done using standard Euclidean distance. Loop closure may occur when 
overlapping with already visited areas, which in turn enhances the precision. This 
approach remains valid as soon as the uncertainty is equal in all directions. 
However, as uncertainty varies across dimensions, the selection of the closest 
frames based on Euclidean distance is not suitable. In the following, we are going 
to prove that it is the case in any visual odometry method. Also, we will provide a 
more formal definition of the uncertainty.  
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Most visual odometry and 3D reconstruction methods rely on matched 
feature points to estimate relative motion between two frames. The error of 
matched features is resulting from several accumulated errors. These errors are 
due, non-exclusively, to the following reasons; the discretization of 3D points 
projection to image pixels, image distortion, the camera internal noise, salient 
points detection, and matching. By performing image un-distortion, and 
constraining the points that are matching with the fundamental matrix, the 
aforementioned errors are considered to follow a Gaussian distribution, so as their 
accumulation. This is actually implicitly considered in most computer vision 
fundamentals. Based on this assumption, we can prove that the error distribution 
of the estimated relative pose is unequal among dimensions. Indeed, it can be 
fitted to a multivariate Gaussian whose covariance matrix has non-equal Eigen 
values as we will see later. Formally, given a pair of matched points between two 
frames   . Based on our assumption, each matched point can be represented 
by a multivariate Gaussian distribution: ( , ) ( , ) (11) 

= 00  (12) 

The pose estimation procedure relies on the fundamental matrix that satisfies = 0 . Writing = [   1] and = [   1] . The fundamental matrix 
constraint for one matching pair of points can be written as: + + + + + + + + = 0 (13) 

To show the variance of error distribution of estimated pose, without the loss 
of generality, we consider one example of configuration; identity camera intrinsic 
matrix = (1 1 1). Let us now take the case of pure translational motion 
between the two camera frames, =   , and =   = [0 0 0 ], the 
fundamental matrix in this case is given as: 

=  = [ ]  = 0 0 0  (14) 

where [ ] is the skew-symmetric cross-product matrix of , and R is the rotation 
matrix, which is the identity in this case. Hence, equation 14 simplifies to: + + + = 0 (15) 

By using enough matched points (seven points in this case), we can recover 
the translation vector  by solving a linear system. However, the Gaussian noise 
whose covariance matrix is expressed by equation 12 will propagate to the 
variables  and , whereas for  the error distribution is different due to the 
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product of two variables, where each is a Gaussian distribution. So the covariance 
is equal to /2. Moreover, the recovered translation variables are correlated even 
though the observations are un-correlated. This is due to the usage of least square 
approach through SVD Strutz (2010). This leads to have the estimated pose follow 
a Gaussian distribution (proved experimentally in the following) with a full DOF 
covariance matrix (within the positive semi-definite constraint). 

4.5. Pose Uncertainty Modeling 

Pose uncertainty is difficult to estimate straightforward. This is due to the 
complexity of the pose estimation procedure and the number of variables. In 
particular, noise propagation through two consecutive SVDs (used for 
Fundamental matrix computation and Essential matrix decomposition). Instead, 
inspired by the unscented Kalman filter approach as proposed in Wan and Van 
Der Merwe (2000), we proceed similarly by simulating noisy input and trying to 
characterize the output error distribution in this case. This process is illustrated in 
Figure 8. In our work, we propose to learn the error distribution based on finite 
pose samples. This is done using a Neural Network approach which fits well to 
our problem as it produces soft output. 

 

Figure 8. Illustration of error propagation through the pose estimation procedure. 
Estimated pose uncertainty is shown for each of the six degrees of freedom DOF. 
Full covariance matrix can result from diagonal error distribution of matched 
two-dimensional (2D) feature points. 

There are two factors that plays role in the estimated pose uncertainty. First, 
the motion = [  ]  between the two frames expressed by a translation  and a 
rotation , which is explained in the previous section. Second, the 3D location of 
the matched feature points. Although their location is not computed explicitly in 
our method, their distance from the camera affects the computation precision. In 
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particular, the further the points are from the camera, the less precise is the 
estimated pose. This is due to the fact that close points yield larger 2D projection 
disparity which is more accurate to estimate after the discretization. For instance, 
in pure translation motion, if all of the matched points are within the blind zone of 
the vision system (yield zero-pixels disparity after discretization), the estimated 
motion would be equal to zero. In the contrary, it will be more accurate when 
points are closer. Both mentioned factors are correlated to some point. For instance, 
given some points in 3D ( > 7), the estimated pose precision is a function of their 
depth, but also to the baseline distance. Hence, considering one factor is sufficient. 
In our work, we consider the motion as a base to predict the uncertainty. 

Formally, given a motion vector =  , ideally, we want to find the 
covariance matrix that expresses the associated error distribution. Being a positive 
semi-definitive (PSD), such ×  covariance matrix has unique ( + )/2 entries, 
where = 6  in our case, this yields 21 DOF, in which six are the variances. 
However, learning this number of parameters freely violates the PSD constraint. 
Whereas finding the nearest PSD in this case distorts largely the diagonal elements 
(being much fewer). At the same time, we found experimentally that the 
covariance between  and  variables is relatively small when compared to such of 
inter  and inter . Thus, we propose to consider two covariance matrices  and 

. So, in total, we have 12 parameters to learn, in which six are the variances.  
For the aim of learning  and , we have created a simulation of the pose 

estimation procedure. For a fixed well distributed 3D points { : = 1. .8}, we 
simulate two cameras with known relative rotation and translation. The points are 
projected according to both cameras to 2D image points, let us say { } and { }. These points are disturbed with random Gaussian noise as given by the 
equations 11 and 12. Next, the 3D relative pose is estimated based on the disturbed 
points. Let =  be the estimated relative motion. Repeating the same 
procedure (with the same motion ) produce a motion cloud around the real one. 
Now, we compute the covariance matrices 2  and  of the resulting motion 
cloud in order to obtain the uncertainty associated to the given motion . Further, 
we repeat this procedure for a wide range of motion values3. Now, having the 
output covariance matrices (two for each motion vector ), we proceed to build a 
system that learns the established correspondences (motion  uncertainty). So, 
that in case of new motion, we will be able to estimate the uncertainty. This soft 
output is offered by Neural Networks by nature, which is the reason that we adopt 

2  We increase the number of simulation runs until the output mean is close enough to the 
input real motion j, in our case we run the simulation 10000 times for each pose. 

3  In the performed simulation, we use the range [0-1] with 0.25 step size for each of the 6 
dimensions, these values are in radians in case of rotation. This raises up to 15625 test 
case. 
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this learning method. In our experiments, we found that a simple Neural with 
single hidden layer Bishop (1995) was sufficient to fit well the data. The input layer 
has six nodes that correspond to motion vector. The output layer has 12 nodes, 
which corresponds to the unique entries in  and , hence, we form our output 
vector as:  = [            ]              (16) 

where .  is the element of row  and column  of the covariance matrix . . 
In the learning phase, we use a gradient-descent based approach Levenberg-

Marquardt backpropagation, which is described in Hagan et al. (1996). Further, by 
using the mean-squared error as a cost function we could achieve around 3% error 
rate. The obtained parameters are rearranged in symmetric matrices. In practice, 
the obtained matrix is not necessarily PSD, although this is rare to happen in the 
case of small variances. We proceed to find the closest PSD as Q , where  is 
the eigenvector matrix of the estimated covariance, and  the diagonal matrix of 
Eigen values in which negative values are set to zero. 

4.6. Semi-Global Bundle Adjustment 

After initiating the visual odometry, the relative pose estimation at each frame 
is maintained within a table that contains all pose related information (18 
parameters per pose, in which six for the position, and 12 for two covariance 
matrices). At any time, it is possible to get the observations in the neighborhood of 
the current pose being estimated in order find potential overlaps to consider while 
performing BA. Since we are dealing with statistical representations of the 
observations, a divergence measure has to be considered. Here, we choose 
Bhattacharyya distance (Modified metric version can also be used Comaniciu et al. 
(2003)) for being reliable and relevant to our problem. In our case, the distance 
between two observations {  , , } and {  , , } is given as:  = 18 + 12 ln   +   (17) 

where  

. = . . , = +2  (18) 

Having selected the set of frames  in the neighborhood of the current pose 
statistically, we perform BA as follows; First, we divide  into two subsets, similar 
to Sibley et al. (2009), the first subset  contains the current and previous frames 
in time, whereas the other sub-set  contains the remaining frames, mostly 
resulting from overlapping with an already scanned area. Second, BA is performed 
on both subsets, however, although  parameters are included in the optimization, 
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they are masked as static so that they are not optimized in contrary to  . This 
strategy is necessary in order to keep past trajectories consistent. 

After determining the error distribution arising with a new pose, it has to be 
compounded with propagated error from the previous pose. Similar to the SLAM 
approach, we propose to use a “Kalman filter” like gain, which allows controllable 
error fusion and propagation. Given an accumulated previous pose estimation 
defined by {  , , } and a current one {  , , }, the updated current pose is 
calculated as: =  (19) = I +  (20) 

= I +  (21) 

5. Evaluation 

The proposed method is desired to represent a trade-off between precision 
and computation time, the maximum precision being the case of global BA, 
whereas the fastest computation time is pure visual odometry. Moreover, a 
performance improvement is expected w.r.t local method due for better selection 
of neighboring observations. Therefore, we analyze the performance of our method 
from two points of view; computation time and precision. 

5.1. Computation Time 

We tested and compared the computation speed of our method as compared 
to using high level feature descriptors, specifically SIFT and SURF. At the same 
time, we monitor the precision for each test. The evaluation is done using the same 
set of images.  

We run our experiments using the speed optimized BA toolbox as proposed 
in Lourakis and Argyros (2009). In the obtained results, the computation time 
when using the reduced matching search range, as proposed in this work is ~72% 
when compared4 to the method using the whole search range (range 3 in Figure 4). 
Concerning SIFT and SURF, the computation time is 342% and 221%, respectively, 
as compared to the proposed method. The precision of the obtained odometry is 
reasonable which is within the limit of 3% for the average translational error and 0.02 [deg/m] for the average rotational error. 

4  The time evaluation is shown in percentage because the evaluation is carried out on 
three platforms with different computational power, in which one is an embedded unit. 
The minimum computation time being 220 ms. 
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5.2. Simulation Using Orthophoto 

Our work falls within a preliminary preparation for a real mission. All of the 
experiments are tested within a simulated environment which uses images from 
previously reconstructed orthophoto in Drap et al. (2015) which is illustrated in  
Figure 9. The area covered is approximately 60m  with very high resolution ~330 
megapixels. The advantage of using simulated environment is that we can define 
precisely the trajectory, and then, after running the visual odometry method we 
can evaluate the performance and tune different components. Especially, with the 
lack of real sequences provided with odometry ground truth. Hence, we created a 
dataset of images based on simulating stereo camera motion which is shown 
superimposed on the orthophoto in Figure 9. The motion has an S-shape type 
scaled in one direction. The reason is to test the visual odometry method in two 
cases; when there is an overlap with previously scanned area and another case 
when there is not. Our method is more adapted to the first case scenario. 

We evaluate the proposed semi-global BA as compared to three cases, using 
global BA, local BA, and without using BA. As expected, the method that uses 
global BA performs the best in this context. The translation error is 1.2%, while the 
rotation error 0.009 [deg/m]. Followed by our method, with 2.44% of translation 
and 0.011 [deg/m] of rotation errors. This is fairly ahead of the local BA method 
that achieved 3.68%  of translation and 0.012 [deg/m]  of rotation errors. The 
optimization free visual odometry showed the largest divergence with a 
translation error of 6.8% and rotation error of 0.08 [deg/m]. Figures 10 and 11 
show the obtained trajectories for our method and the mentioned methods, 
respectively. 

 
Figure 9. Simulation scenario with modified S-shape scanning profile which 
covers two situations; neighboring observations. Red border divides the map in 
overlapping/non overlapping path. 
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Figure 10. Estimated 3D trajectory using our method compared to ground truth. 

 

Figure 11. Comparison between several cases of visual odometry in terms of 
using BA. Note that the trajectory produced by the method without BA is scaled 
by ~1.8 for visualization purpose. 

6. Conclusions and Perspectives 

In this work, we introduced several improvements to the current traditional 
visual odometry approach in order to serve in the context of underwater surveys. 
The goal is to be adapted to embedded systems that are known for their lower 
resources. The sparse feature points matching guided with a rough depth 



 

276

estimation using lightness information is the main factor beyond most of the gain 
in computation time when compared to sophisticated feature descriptors 
combined with brute-force matching. Also, using stochastic representation and 
selection of frames in the semi-global BA improved the precision as compared to 
local BA methods, while remaining within real-time limits. 

Our future perspectives are mainly centered on reducing the overall system 
size, for instance, replacing the main computer in our architecture with a third 
embedded unit, which in turn does not keep evolving. This also allows to the user 
to reduce the power consumption, which increases the navigation time. On the 
other hand, dealing with visual odometry failure is an important challenge 
specially in the context of underwater imaging, which is mainly due to bad image 
quality. The ideas of failing scenarios discussed in this paper can be extended to 
deal with the problem of interruptions in the obtained trajectory. 
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