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1. Introduction

The cultivation and harvesting of sugar beets (roots and leaves) is one of the
most labour and energy consuming work processes in the agricultural industry.

The most important task in sugar beet farming is to improve the quality of sugar
beet root crop harvesting and reduce energy costs for harvesting. This primarily
concerns reductions in losses and damage of root crops, as well as a reduction in
their contamination; in this case, the loss of fertile soil will be excluded, which will
be removed from the fields together with the contaminated root crops. These issues
present a multifaceted scientific and technical problem, which must be solved by
searching for new working elements of sugar beet harvesting machines. Despite
the modern level of construction of beet harvesters and their working bodies that
has been achieved, there is a need to find further ways to improve them. Further
research should deal with the improvement of general constructional schemes of
new beet harvesters, with thorough theoretical justification of their constructions
and technological parameters. The newly developed theories of functioning of
improved constructions of sugar beet harvesters and their working bodies require
thorough experimental verification. This will give grounds to use the obtained
theoretical dependences for the final goal—analysis and generalisation of their
rational parameters.

Theoretical research must play a fundamental role in the mechanical and
technological substantiation of the root lifting process. It must be used as the basis
for developing rational kinematic and dynamic operation conditions in order to
achieve the required quality of the performed work process as well as streamlined
energy consumption.

At the modern stage of the development of agricultural mechanisms, the methods
of mathematical model generation based on the use of the theoretical and analytical
mechanics and the application of up-to-date mathematical tools and computer
technology have to be employed in the analysis and synthesis of the parameters of
implements and agricultural machines overall.

Thus, the modern methods of theoretical research into the implements of sugar
beet harvesters have to be based, first, on the state-of-the-art perception of the
principles of the processes that take place when the roots are lifted from the soil
and, second, on the possibility of describing these processes more comprehensively
and systematically with the use of modern mechanical and mathematical methods.
Undoubtedly, such a description only has to be provided for the principal and essential
moments of the mentioned processes, while the insignificant and incidental factors
must be completely neglected. Further, on the basis of the analytically determined
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rational parameters of the lifting implements of sugar beet harvesters, which are
subsequently experimentally validated and refined, highly reliable prototypes must
be designed, which then have to be widely used by the agricultural engineering
plants and companies.

Therefore, this treatise presents the fundamentals of a new theory of the lifting
tools of sugar beet harvesters—in particular, vibrational lifters based on the modern
methods of mechanics and mathematics.

It has been a long time since the first attempts were made (in the 1970s) to
analytically describe the oscillating processes that take place during the vibrational
lifting of sugar beet roots from the soil. The theory of the vibrational lifting of root
crops has, overall, not been developed to a sufficient extent; the mathematical model
specifically used for the process of root extraction from the soil by the vibrational
lifter has not been devised. Until recently, it had been assumed that the experimental
methods of determining the amplitude and frequency of oscillation of the vibrational
faces—which could only have relatively limited values, subject to the reliability of
the vibrational actuator—completely ensured the optimality of this whole process.
However, at the present time, under the conditions of significant improvements in
the reliability of designs and changes in the kinematic parameters of harvesting (for
example, the increase in the travel speed to levels of up to 2.5 m·s−1), the obtained
values of the parameters of vibrational lifters can by no means be considered optimal.
Therefore, a goal has been set to develop, first of all, a new theory of vibrational
root lifting based on the generation of mathematical models, which would describe
the interaction between the digging shares on the one hand and the root’s body
and the soil on the other hand. At the same time, the theory has to provide the
mathematical descriptions of all stages of said interaction, starting from the stage
of the lifter approaching the root body fixed in the soil (as in elastic medium),
proceeding to the interaction of the root body with only one digging share of the
lifter (asymmetric gripping of the root), followed by the interaction with both the
share surfaces (symmetric gripping), and finally the eventual translation of the root
along the lifting tool’s throat towards the level of the soil surface. Additionally, as
a matter of principle, the theory needs to consider different (possible) directions of
the oscillating motions of the digging shares of the vibrational attachment—i.e., the
longitudinal and transverse ones.
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2. Lifting Implements of Sugar Beet
Harvesters

2.1. Analysis of Existing Theoretical Studies on Sugar Beet Root Lifting Process and Lifting
Implements of Sugar Beet Harvesters

Fundamental research into the work processes of agricultural machines has been
carried out in the studies by P.M. Vasilenko [1–6], L.V. Pogorely [7,31,41,188,234–240],
E.S. Bosoy [8], V.A. Khvostov [11,12], P.M. Zayika [27,28], V.M. Bulgakov [54–108], V.P.
Goryachkin [125,161], G.D. Petrov [232,233] and others [16,18,20,29,43,46,48–53,110–
114,120–126,160,164–166,169–172,179–185,187,189–197,242–261,265–270,281–286].

The general theoretical basis of the investigation, development and engineering
of implements for sugar beet root harvesting machinery and the methods of
substantiation of the design and process schematic models of beet harvesters
as well as major agricultural practice are presented in scientific papers by
Yu.B. Avanesov [1,47], P.M. Vasilenko [5,6], V. Brei [6,7,186], L.V. Pogorely [6,
7,31,41,235,237,239], N.V. Tatyanko [7,31,186], B.M. Gevko [9,10,19,115–117], S.V.
Siny [10], V.A. Khvostov [12,163], V.M. Bulgakov [15,59,61,106,108,241,271–280],
N.M. Zuyev [37,119,167,168], Ya.I. Kozibroda [61,177,178], A.P. Gurchenko [106,162],
A.A. Vasilenko [109], V.S. Glukhovsky [118,119], S. Pascuzzi [127–159], Yu.I.
Kovtun [173–186], A.G. Tsimbal [186], F. Santoro [198–231], M.L. Pogorely [240],
and N.M. Khelemendik [262–264].

The theoretical studies on the operation of a majority of agricultural machines are
concerned with the investigation of their motion or the motion of their implements.
The most thorough studies with regard to the problem of developing mathematical
analytical models of the motion of agricultural machines and mechanisms have been
written by P.M. Vasilenko [1–6]. The results of these studies have to be used in the
research into the motion of roots under the action of the work faces of sugar beet
harvesters’ lifting implements.

The fundamental paper under the editorship of academician L.V. Pogorely [7]
represents the results of diverse studies on the issues of beet harvesting mechanisation.
The paper presents the analysis and the principles of substantiation of parameters of
beet harvester implements such as topping tools, root top cleaners, lifting implements,
and transferring and loading conveyors, which can be applied in the investigation of
the work processes of new root harvesters and the development of their implements.

Lifting tools are among the primary implements of beet harvesters since they
almost entirely determine the level of quality of the whole process of root gathering,
effectively generate the tractive power of the harvesting units, and generally consume
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a large overwhelming majority of the energy in the work process, which have a
substantial effect on all their performance indicators.

In the initial period of the development of beet root harvesting machinery, the
lifting tools of beet harvesters were just basic passive means that solely facilitated the
disruption of bonds between the roots and the soil during their translational motion in
the soil at a certain depth. However, in the course of time, they transformed into rather
complex pieces of hardware equipped with rotation or oscillation drives and auxiliary
equipment, which facilitated achieving the best operating conditions. Despite the
great number of various designs, all digging implements of beet harvesting machines
perform, in essence, the same operations, the total combination of which is what
ensures the accomplishment of the work process of lifting roots from the soil. The
operations combined in one integrated process include: translational motion in the
soil at a certain depth along the row of roots, breaking up the bonds between the
roots and the soil (by cutting out the whole soil layer on both sides of the root body
or crushing it as a consequence of compression and following dislodgement) and
applying extracting vertical forces to the roots (while holding and dragging or even
not holding the very bodies of the roots), which cause their eventual translation
upwards to the soil surface level. To achieve such a number of operations, different
solutions are available. This can be achieved with the use of a simple passive share
lifter design, but rather complex arrangements exist as well—for example, the rotary
prong lifter, in which a special drive is used to create the counter-rotational motion of
two digging cones set at an angle to each other and travelling at a certain depth in
the soil, while a power-actuated root pick-up attachment installed above the cones
also travels partially in the soil.

Meanwhile, the large diversity of the design solutions for the lifting implements
stems not only from the intensive search for the ways to ensure the fulfilment of
the above-said requirements to ensure performance quality, but also from the great
variation in the environment and climate conditions in which they have to operate,
the varied size and mass parameters of the roots, their statistical layout in the soil
(irregular distribution of the depths and positions along the row), etc. The lifting
implement adjustments (presetting some average values of the parameters) are
performed mostly with regard to setting up the mean depth of sitting in the soil and
the velocity of translation.

Since the design of a lifting tool that could adapt to the digging out of each
individual root would admittedly be prohibitively sophisticated and ineffective,
urgent need arises to optimise the design and kinematic parameters of the simpler
designs of digging tools, which could provide a sufficiently high level of their
performance quality within a wider range of variation of random parameters. The
development of such adaptable digging tools is too complicated a problem, as
minimising the damage inflicted on the roots and their loss in the field on the one

4



hand and minimising the energy consumption and securing high productivity rates
on the other hand are two incompatible targets—for example, increasing the depth
of travel of the lifting parts in the soil in order to avoid breaking off the beet root tails
during their lifting from stiff soil will inevitably result in a considerable increase in
tractive resistance.

Despite the wide variety of beet harvester lifting implement designs, they can
be classified in accordance with the preceding block diagram (Figure 2.1).

A great assortment of designs have also given rise to a considerable number of
theoretical and experimental studies of the implements as well as dedicated tests,
which has made it possible to determine a large majority of the required parameters.
The obtained parameter values have been used in the designs of the root harvesters
produced by the machine engineering industry in many countries.

Attempts to generate a unified general theory of lifting roots from the soil can be
found in [7], which should be regarded as not quite successful since the generation of
the simple differential equation of the motion of the root body (its centre of mass)
in the vertical and longitudinal plane, in general, by no means represents the real
process of breaking up the bonds of the soil around the root or applying the vertically
vectored extraction forces or the specific motions (velocities and accelerations) of the
root body inside the implement. The authors further elaborate on the probabilistic
representation of the vertical and horizontal components of the forces that extract
the beet root from the soil, which also, in practice, does not reveal the mechanical
and technological essence of the root lifting process. As a consequence, the principal
theoretical propositions stated in said study are rather difficult to utilise, as the
analytical expressions obtained in the study do not contain any specific design and
kinematic parameters of the digging tool and the extraction process (for example, the
velocity of translation of the share lifter, which defines the horizontal component of
the extraction force). At the same time, such an approach also precludes carrying
out numerical experiments with the use of the PC, which would enable determining
the optimum (rational) parameters. Thus, the large majority of the sugar beet
harvester lifting tools’ design parameters presented in said study have actually been
determined solely on the basis of the data from the authors’ long-term tests and
experimental studies.
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Figure 2.1. Classification of digging tools of sugar beet harvesters. Source:
Prof. Volodymir Bulgakov, 2011.
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As the digging tools for beet roots, including the vibrating type, must move in
the soil, destroy it and create conditions for lifting up the bodies of roots, they must
have working planes inclined at an angle to each other. In this case, these planes will
work as triangular wedges—i.e., working bodies of tillage machines. In this case,
there is every reason to use the main provisions of the theory of movement in the soil
of a trihedral wedge when creating the theory of vibration digging of sugar beet roots
out of the soil. Therefore, based on this theory the theories of digging working tools,
of the usual ploughshare type, for sugar beet root crops were created [8], allowing,
for the most part, the real process of the digging shares moving in the soil to be
described, as these theories describe the interaction between the soil and the lifter’s
two coupled trihedral wedges with sufficient accuracy, which impart the respective
extraction forces on the root body. Nevertheless, this approach again does not focus
on the particular process of the root body extraction from the soil, since the authors
from the beginning make the assumptions that the complete extraction of the root
from the soil takes place without any direct contact between the root body and the
share surfaces, but solely acts via the deformed soil layers. However, this scenario is
applicable only in the case of the sugar beet harvester’s digging tools operating being
under very favourable conditions: the soil must be soft and loose, with an average
moisture content (which implies the absence of strong bonds between the roots and
the soil), foreign bodies are to be absent, all roots must be of average size and shape
and positioned symmetrically with respect to the centreline of the share digging
tool, etc. Meanwhile, under the real harvesting conditions, the root lifting process
most frequently involves direct contact between the root body and the digging tool’s
surface, and the gripping of the root by the implement is most frequently asymmetric;
moreover, at a rather high velocity of the lifter’s translation, the shares of the digging
tool actually hit the body of the root fixed in the soil. This study also does not provide
any analytical mathematical model specifically for sugar beet root extraction from
the soil.

A significant part of [9] discusses the issues of root harvesters’ wheel lifter
implements. In this study, and in [10], the main conditions of operation of wheel-type
digging implements, their interaction with the soil, etc., are examined in detail. The
bulk of theoretical research into the wheel lifter issues in the mentioned studies
comes down to the search for the analytical expressions of the wheels’ kinematic
and design-and-power parameters—in particular to find the linear velocity of any
point of the wheel and the normal component of the force of the soil’s pressure on the
wheel, which are subsequently used (in terms of the projections on the coordinate
axes) for determining the power-and-force parameters of operation of the wheel
lifter implements. Later in these studies, the geometrical parameters of the wheel
lifters (angles of tilt, attack and flare of the wheels as well as the sifting holes in
the wheels’ surfaces) are optimised with the use of the multicriterion nonlinear
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programming problem. Unfortunately, the root itself as a subject matter of the
mechanical and mathematical models is not discussed here and the study does not
offer any mathematical model specifically for the root extraction from the soil by the
wheel lifter.

Fundamental research into the root lifting implements is presented in the
studies [11] and [12]. These consider, in detail, the processes of lifting roots from the
soil by share and wheel lifters on the basis of finding the principal conditions and
forces that arise during them. The fullest detailing is provided in said study for the
process of the root extraction from the soil by wheel lifter implements. This includes
drawing the schematic model of the force interaction between the root body and one
of the lifting wheels. For this purpose, on the inner surface of one of the wheels a
surface element dS was selected, which is the source of the following forces imparted
on the root body: dN—force of normal pressure, dT—elementary friction force and
Pb—lateral force. At the next stage, when all the forces were projected on the X axis
that passes through the lifter’s line of symmetry, and on which the root is situated,
the PC shear force that acts along the line of translation of the wheel lifter produces
the root body deflection and the PB extraction force allow for the eventual extraction
of the root body from the soil. Under the assumption of leaving intact (not chipping
off) the root body, the respective analytical constraint (the resultant shear force must
be equal to zero), which defines the extraction of the root from the soil and is written
in terms of the design and kinematic parameters of the wheel lifter, is generated.

Thereby, the described treatise also contains a special case of the theory of the
root extraction from the soil by a wheel lifter in the case of symmetrical positioning,
which is examined with sufficiently detailed specification and description of all
the forces that can arise in such a case. The differential equations of motion of the
root body during digging out by a wheel lifter are not generated in the study and
the motion of the root under the action of the above-mentioned system of forces
specifically during its extraction is not considered.

Attempts to analytically describe the conditions and specifically the process of
extraction of roots from the soil are represented in [13]. However, the authors only
take as a basis the geometry analysis and the methods of geometric design of the
new working faces for the digging tools of root harvesters. Again, the mathematical
model of the sugar beet root extraction from the soil is not provided in the study,
while the analysis of the forces that arise during the interaction between various
types of digging tools (with shares, wheels, prongs) and the root body contains the
functional relations that were obtained earlier by other authors and published in the
papers [7,11], etc. The above-said information leads to the conclusion that without
focusing on the main subject of research, i.e., the sugar beet root, and without a
thorough examination of its interaction with specific digging surfaces and a detailed
investigation of the root body motion at every stage of its extraction from the soil,
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in general the geometric designing of digging tools for root harvesters will be of
little effect. Unfortunately, it appears impossible to use the results obtained by such
geometric designing for finding the optimum process and design parameters of the
process of extracting roots from the soil.

The work of [14] can be noted as one of the first solid analytical studies on the
process of vibrational digging of sugar beet roots. It offers an analysis of up-to-date
engineering solutions of vibrational digging tools and experimental investigations of
the first vibrational lifters, as well as the equation of oscillating motions of digging
shares. The study does not take into consideration the sugar beet root in the soil as
an elastic oscillating system.

2.2. Physical–Mechanical Properties of Sugar Beet

The operation of beet harvesters can be efficient only in case their implements are
designed and adjusted for harvesting with due consideration of the main mass and
dimension specifications and physical–mechanical properties of the sugar beet roots.
Despite the differences between the existing cultivars of sugar beet, the variation
of the natural and operational conditions of cultivation and the stochastic nature
of the parameters at the time of gathering, it is possible to determine the main
physical–mechanical properties of the roots. In Figure 2.2—Dimension specifications
of sugar beet root, the principal dimension specifications of the sugar beet root as well
as the parameters of its position in the soil relative to the soil surface are shown [7].

As can be seen in Figure 2.2., it has a conical shape and the main part of it sits
in the soil. The upper part of the root is called the “top” and is normally situated
above the soil surface level (sometimes it can have a position below the soil surface
level—by up to 30 mm).

The bulk of the sugar content (over 90%) is localised in the body of the root. The
distribution of the root’s mass between its parts and the sugar content in the parts of
a sugar beet root are shown in Table 2.1 [15].

The total length (height) of the root can reach 1 m, but in harvesting its tail
usually breaks off (at the diameter of 8–10 mm) and remains in the soil; therefore, in
practice, the root’s length is defined by the parameter lk. The leaves that shoot from
the root’s top, the number of which can be from 10 to 30, make up a bunch, which
generally also has (provisionally) the shape of a cone. Sometimes, by the time of
harvesting several leaves, situated for the most part outside the main leaves cone,
fall over or completely dry out and also fall over onto the surface of the soil.
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Figure 2.2. Dimension specifications of sugar beet root. Source: Prof. Volodymir
Bulgakov, 2011.
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Table 2.1. Shares of different parts of sugar beet root in mass and sugar content.

Name of Root’s Part Mass Share (%) Net Sugar Content (%) 

Top 
Crown 5–7 –

Dormant eye zone 6–18 9.7

Body 76–88 90.3

Tail 1 –

Source: Prof. Volodymir Bulgakov, 2011.

Table 2.2. Dimension and mass specifications of sugar beets.

Description Unit Value

Length of root, lk mm 230–280

Diameter of root, dk mm 67–122

Mass of root, Qk kg 0.3–1.6

Angle of taper of root, γk deg 9–19

Height of top of root, hg mm 10.4–32.4

Height above soil surface level, hk mm 18.4–42.4

Coordinate of centre of mass, C, cp mm 90–100

Lengths of leaf stalks, lg mm 300–400

Diameter of leaf bunch, dg mm 50–60

Mass of leaves, Qg kg 0.12–0.80

Thickness of crown, Δk mm 13.2–16.2

Thickness of dormant eye section, Δsv. mm 8.0–21.4

Mass of crown, qkor kg 0.055–0.096

Mass of dormant eye section, qcg kg 0.062–0.123

Table 2.2 contains the average dimension and mass specifications of the roots and
leaves of sugar beets [7] in accordance with the results of computational observations,
special measurements as well as on the basis of the processed long-term statistical data.
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The principal strength features of the root and leaves of a sugar beet are the
bonding force between the root and the soil, the specific gravity of the roots and
the leaves and the bending failure stress of the root. The main physical–mechanical
properties of the root and leaves of a sugar beet are shown in Table 2.3 [16].

Table 2.3. Physical–mechanical properties of sugar beet.

Description Unit Value

Specific gravity of root kg·m−3 550–650

Specific gravity of leaves kg·m−3 140–160

Bending failure stress of root:
static load MPa 1.80
dynamic load 1.15

Elastic modulus of root MPa 18.40

Force of root extraction from soil N 50–770

Force of separation of leaves from root top N 50–650

Coefficient of friction of root on steel:
static 0.50–0.70
dynamic 0.45–0.70

Specific cutting resistance of root kN·m−1 3–6

Specific cutting resistance of leaves kN·m−1 1–4

Angle of repose:
in quiescence deg 35–40
in motion 25–30

Specific resistance factor of leaves N·mm−1 2.26–2.65

Specific resistance factor of root N·mm−1 2.10–3.50

Work of lifting root by horizontal force J 17.80–25.30

Work of extracting dug root from soil J 15.20

Tearing resistance of leaf stalks:
outer MPa 0.94
inner 1.21

Work of failure of bonds between leaf stalks
and root top in the case of tangential
application of force

J 33.90

Force of root’s resistance to action of force of:
angular displacement (up to 10◦) N 185–432
extraction 227–522

The most important specification of sugar beets is their positioning in the sugar
beet plantation at the moment of harvesting. It is common knowledge that these
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features depend first of all on the sugar beet cultivar, the technology of its mechanised
cultivation, environment and climate conditions and some other random factors. For
example, it is assumed on average that the optimum population of sugar beet plants
in the sugar beet plantation is 80,000–150,000 pcs·ha−1.

The second important feature of a sugar beet is the shape of the root body, which
is defined by the density of the soil around the beet root. For example, in the case
of the mechanised cultivation of sugar beets, if the soil density is within the range
of 1.20–1.30 g·cm−3 (as a result of the ploughing, sowing, care for the seedlings and
inter-row tillage), the roots acquire the most productive conical shape (the same as
that shown in Figure 2.2).

In the case of an excessive density of the soil (1.32–1.70 g·cm−3), the roots have
shortened circumferences and barrel-like shapes and their tops project excessively
above the soil surface level. When the soil density is below the normal range , and
lower), the sugar beet roots can have undeveloped, arbitrary shapes. The variation
of the soil density against the depth of sitting of the conical sugar beet root is shown
in Figure 2.3 [16]. As can be seen, at the depth of travel in the soil of a majority
of digging tools (0.06–0.1 m), the density of soil around the root almost reaches its
maximum values.

Figure 2.3. Variation of density of soil around the root against the depth. Source:
Prof. Volodymir Bulgakov, 2011.

13



The third key feature of sugar beet root positioning in the beet field is the
distance between two proximate roots in the planted row. Taking into account the
fact that this parameter is completely random, it is assumed that the spacing between
the centres of sugar beet roots in the row within the range of 0.16–0.23 m ensures
the optimum yield. Under such a condition, one running metre of the planted sugar
beets has to contain 4–6 pcs of roots. This kind of distribution of beet roots in the
row is the factor that defines some other features of the beet roots as the object of
harvesting: the positions of root tops relative to the soil surface level (heights of
the tops), sizes and shapes of the tops, degree of development of the leaves, overall
dimensions of the roots, etc.

The offset of sugar beet roots from the provisional centreline of the planted row
to one or the other side that does not have a substantial impact on the quality of
harvesting is within 0.02–0.04 m. The increase in said parameter to a level of 0.05 m
and higher results in the sharp rise of the root losses.

Thus, taking into account the above-mentioned physical–mechanical properties
of sugar beet roots and the soil around the roots, the following general conditions
and basic assumptions can be laid down for the analytical treatment of the work
process of the root extraction from the soil.

For the analytical investigation of the process of extracting a root from the soil,
the following fundamental provisions, which are quite widely applied in the scientific
literature, but undoubtedly need clarification and updating, are assumed.

First, it is believed that the root body can be approximated by a geometrical body
with the shape of a regular cone, the apex of which points downwards. Irrespective
of the fact that the uppermost part of the root (its top) can be situated either above
the soil surface level or strictly at this level, or even below the soil surface level, the
depth of sitting of the root in the soil is determined by the distance from the cone
apex to the soil surface level. The height of the root is designated as hk, the cone apex
angle—2γk, the root radius, i.e., the cone base radius—rk. The total vertical resistance
reaction of the soil acting on the root is conventionally applied to the apex of the
cone, vectored vertically downwards and designated as Rz.

The root is an elastic solid specified by the Young modulus E (N·m−2), specific
gravity ρ (kg·m−3) and mass m (kg).

The soil surrounding the root is also an elastic medium specified by its elastic
stiffness C (N·m−3), bulk specific gravity γob. (N·m−3), specific resistance in loose
condition kud. (Pa), etc.

2.3. Share Lifters

Share lifter implements comprise two symmetrically positioned shares (wedges),
which are set at certain angles to each other and to the line of travel so that their front
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ends are drawn apart from each other and their rear parts are drawn near to each
other, thus arranging the narrowing lifting throat of the tool (Figure 2.4) [12].

Figure 2.4. Schematic model of share lifter.

In the following pages, the existing analytical studies on this type of digging
tool are discussed. First, consideration is given to the research into the geometrical
parameters of share lifters. For this purpose, the trihedral wedges, which have
been studied in sufficient detail in the science of tillage, are employed and the basic
geometrical relations provided in [11] are used. The vertices of the angles between
the edges of the inner faces of the wedges, which form the digging throat of the share
lifter, are designated as A, B, C and A1, B1, C1, respectively. The working face of the
trihedral wedge is referenced to the three-dimensional coordinate system Oxyz in
such a way that axis Ox coincides with the line of translational motion of the wedges,
axis Oy is oriented from the right to the left and axis Oz is oriented vertically upwards
and passes through point B. Lines AB, BC and AC, which result from the intersection
of the working plane of one of the wedges (ABC) with the coordinate planes xOz,
yOz, xOy, respectively, form the respective angles α, β and γ. Evidently, the same
angles are formed in the case of wedge A1B1C1.

If both the wedges are intersected by the horizontal plane xOy, the angle 2γ
is formed, which is the angle of attack of the share lifter; the intersection with the
transverse and vertical plane yOz gives the angle of flare 2β; the intersection with
the vertical and longitudinal plane xOz produces the angle of cutting α. Overall,
the values of these angles define the quality of performance of the work process of
lifting sugar beet roots from the soil. The dihedral angle between planes ABC and
A1B1C1 − ε is the angle of maximum opening of the inner surface of the lifter, while i
is the angular displacement of the share lifter’s maximum opening plane from the
vertical line.

15



In the schematic model shown in Figure 2.4, there are respective correlations
between the mentioned angles, which are as follows [12]:

tanβ = tan ε2 · cosi,
tanγ = tan ε2 · sini,

tanα = tani =
tanγ
tanβ .

(2.1)

It has been found in the numerous experimental studies that the optimum values
of these angles are [17]: β = 50− 55◦, γ = 14− 15◦ and α = 10− 15◦.

Further, it is necessary to examine the work process of digging sugar beet roots
with the use of a share lifter in detail. When moving along the row of sugar beet roots,
the wedges first break down the soil layers, initially at a certain distance from the root
sitting in the soil, using their separated front parts. Next, the digging channel reaches
the root and partially pushes it forward. After this, the root, together with the soil
surrounding it, moves inside the lifter’s narrow throat formed by the rear inner faces
of the wedges and moves through it. As the wedges are set at certain angles, the initial
and following interactions between the soil layer together with the beet root and the
wedges’ working faces during the latter’s translational motion proceed in such a way
that the layer is compressed on the sides and strained and then, during the further
movement of the beet root between the necking working faces, the corresponding
forces are generated for its extraction from the soil. However, the forces that directly
extract the sugar beet root from the soil will be generated in the share lifter only
subject to the unconditional presence of the backup forces exerted by the soil and
vectored opposite to the translation of the digging tool. Otherwise, the share lifter
will just push the root forward. These backup forces are the factor promoting the
secure advancement of the beet root inside the digging tool along the wedges’ faces
through the narrow throat with the subsequent corresponding secure movement
upwards. It should be noted that the presence of sufficient backup forces exerted by
the soil and the pressure on the upper part of the root applied by the translationally
moving digging tool cause a certain bending of the root body in the direction of the
lifter’s progression. This bending must not result in the chipping-off of the tail part
of the root. Within the limits of the elastic properties of the sugar beet root body,
its certain forward motion, even in some bent conditions, under the action of the
pressure applied by the share lifter will not cause the chipping-off of the root body,
as in a very short period of time its bonds with the soil will be completely disrupted.
Overall, the above-described position of the share lifter working faces during their
translational motion in the soil will certainly promote the upward migration of the
parts of the soil and solid bodies (that is, root bodies) that have entered the lifter’s
throat (since the motion trajectories within the throat, except its central part, are
directed upwards). The generation of sufficient backup forces by the soil depends
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on the physical–mechanical properties of the same soil that surrounds the sugar
beet root. It is quite obvious that in the case of high moisture content in the soil,
the provision of such forces is impossible in general. At the same time, if the soil is
stiff and the moisture content in it is low, the operation of share lifter implements
also becomes impossible due to the accumulation of firm soil formations in its throat
and the high probability of chipping-off the tail parts of the roots due to the high
magnitude of the bonding forces between the roots and the soil throughout the whole
depth at which they sit in the soil.

Based on the above, the physical model of digging a sugar beet root out of
the soil by a share lifter is as follows. The gradual advancement of the forepart of
the wedges causes the cutting off of a block of soil (of conical shape) on both sides
of the root body. The further translation of the lifter produces the compression of
the upper soil layer on both sides of it and its following displacement inside the
working channel. The presence of the sufficient backup force exerted by the intact soil
ahead of the lifter ensures, for a while, the vertical position of the root and even its
slight bending forward, until the bonds between the root and the soil are completely
disrupted and the root becomes fully contained inside the working channel of the
lifter (at the beginning of its throat). Next, contact takes place and the root body
slides along the surfaces of both wedges, resulting from the continuing action of the
backup forces exerted by the parts of the soil inside the working channel of the lifter
and leading to the complete extraction from the soil to its surface.

The described sequence of events in the process of digging the root from the soil
is facilitated by the action of two coupled trihedral wedges travelling in the soil at a
certain depth. Hence, the process of interaction between the working faces of the
share lifter and the soil can be identified with the operation of the dihedral wedge,
which has extensive coverage in the studies on tilling machinery. With the angle of
cutting α, the soil grains move on the right lines that are parallel to the right lines AB
and A1B1. If the coefficient of friction of the soil on the working face of a dihedral
wedge is equal to f , then, in the case of the share lifter, its reduced value appears as
follows [11]:

f ′ =
f

sin
(
ε
2

) . (2.2)

The rear part of the share lifter contains the clearance CC1, the magnitude
of which has to be set taking into account the minimum diameters of sugar beet
roots (especially of their tail parts, which have to pass the clearance without being
damaged); hence, to be within the range of 30~40 mm. The length of the lifter’s
working channel must not be less than l where:

l ≥ CC1cotγ (2.3)
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The distance between the tips of the shares AA1 must be as short as possible
as this determines the width of the soil layer that is dug under and, hence, in effect
determines the amount of soil conveyed into the root harvester together with the beet
roots. However, the same distance also has an effect on the likelihood of damaging
roots in the case of deviation of their positions from the row centreline; therefore, its
unreasonable reduction will make the steering of the root harvester along the rows of
beets more difficult.

The design distance between the tips of the shares must comply with the
following formula:

AA1 = dk + 2Δo + 2m (2.4)

where dk—maximum diameter of the sugar beet root; Δo—allowed offset of the root
from the row centreline (assumed to be equal to up to 60 mm); m—probable deviation
of the lifter from the row centreline due to the steering inaccuracies.

The maximum opening of the shares, i.e., the distance AA1, must be within the
range of 180~220 mm.

The pattern of the soil deformation during the operation of share lifters depends
on various factors, such as, for example, the angle of cutting α, properties of the soil,
etc. It is quite obvious that with the increase in said angle the deformation of the soil
increases as well. However, the increase in the angle α also leads to the growth of the
horizontal dislocation of parts of the soil, which can result in the beet roots breaking
during their extraction. For this reason, the limiting value of the angle of cutting is to
be determined with the use of the following formula [18]:

α
1
2

atan
f

sin
(
ε
2

)
max.

(2.5)

When the angle of cutting α exceeds the above-said value, the vertical
displacement of parts of the soil grows smaller, but the horizontal displacement
sharply rises, which causes the loss of and damage to beet roots during harvesting.

The depth of travel of share lifters in the soil must stay within the range of
110–120 mm [12]. Thus, the analytical studies that have been carried out up to date
on the topic of share-type digging tools do not contain the mathematical model of
the specific interaction between the digging shares and the root body. The overall
process of the root body extraction from the soil (interaction with the root fixed in the
soil, analysis of the forces in this interaction, motion of the root within the lifter’s
throat) has not been given analytical consideration.

2.4. Wheel Lifters

Wheel lifters are more complex and metal-intensive implements in comparison
with share lifters. Nevertheless, they perform the work process of lifting beet roots
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from the soil more efficiently, deform the soil layer more intensively and, at the same
time, lift 2–3 times less soil together with the roots.

Wheel lifters also represent, in effect, the same two coupled wedges, the working
faces of which rotate about the wheels’ centres, and which are set at respective angles
to each other and to the line of travel.

Wheel lifters fall into the groups of passive types (the rotation of the wheels
is due solely to the interaction with the soil and grip on it during the translational
motion) and active designs (i.e., those with the forced rotation of one or both of the
wheels). In the first case, the wheels’ rotation rate is determined by the translational
velocity of the root harvester, in the second case the rate of rotation can be preset.
Design-wise, the wheels in the lifters can be flat or spherical. They comprise the rim,
the spokes and the hub. The outer surface of the rim can be smooth (in the case of
driven wheels) or equipped with lugs (grousers), which are necessary in the case of
passive wheels. The depth of travel of wheel lifters in the soil is 80–100 mm.

The work process of digging beet roots with the use of wheel lifters flows is
as follows: after undercutting the soil layer together with the beet root, the wheels
break the layer and clamp the root in the necking throat. Further, the pressing on
the soil layer results in its broken part pouring through the windows between the
spokes, while the root is extracted from the soil by the rotating wheels together with
a small amount of soil, goes up and is thereafter thrown by the beater over onto the
cleaning unit.

Since wheel lifters also represent coupled trihedral wedges (Figure 2.5), the
same angles are taken into consideration as in the case of share lifters: α—angle of
cutting; 2γ—angle of attack; 2β—angle of flare [17].

Figure 2.5. Schematic model of wheel lifter.

19



In the schematic model, the three-dimensional Cartesian coordinate system
Oxyz is shown, in which the origin of coordinates O is the point in the middle of the
shortest distance between the wheels. Hence, various points of the wheels move in
the space (due to the rotational motion of the wheels and the translational motion of
the implement) along the trajectories defined by the following parameters [17]:

x = r
cosγ (ωt− λsinωt),

y = ρ[1− cos(ωt− i)]sin ε2 ,
z = rcosβ(1− λcosωt),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.6)

where r—radius of the wheel’s moving centroid; λ =
ρ
r ; ρ—distance from the

arbitrary point of the wheel to its centre.
There are many factors that have an effect on the quality of the work process

of the sugar beet root lifting from the soil with the use of wheel lifter implements.
They include, first of all, the lifter’s design parameters. Wheel lifters are employed
in multiple-row root harvesters, which imposes certain limitations on their design
dimensions. For example, the diameter of the wheels shall be within the range
of 700–750 mm. When this value decreases, the completeness of the beet root
lifting from the soil decreases and the engineering solutions for the wheel rotation
drive become more complicated. Greater diameters of the wheels complicate the
structural configuration of the root harvester lifting implements and increases their
steel intensity.

The same constraints are also applied to the setting angles of the wheels, as
the allowed values for the angle between two wheels are limited by the width of
the spacing between the rows of planted sugar beet roots. Hence, the angle ε of the
maximum opening of the wheels must comply with the following condition:

sin
ε
2

=
Cmax −Cmin

2D
(2.7)

where Cmax.—distance between the wheel edges in the area of maximum opening
(mm); Cmin.—minimum distance between the wheels (mm).

In its turn, the maximum wheel opening distance Cmax must not exceed the
following value:

Cmax ≤ S− 2Δb− Δs (2.8)

where S—width of inter-row spacing (mm); Δb—thickness of wheel rim (mm);
Δs—distance between the wheels of adjacent lifters (mm).
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Based on the above-said information, the values of Cmax can be substituted into
(2.8), and the following formula is obtained:

sin
ε
2
≤ S− 2Δb− Δs−Cmin.

2D
(2.9)

If the values of the design parameters of the wheel lifter are assumed to be
within the following range: S = 450 mm; Δb = 5 mm; Δs = 15 mm; D = 750 mm,
then the value sin ε2 ≤ 0.243 is obtained, which corresponds to an angle of ε ≤ 28◦.

The correlation between the angles 2γ and 2β at a constant value of angle ε is
defined by angle i, which shows the displacement of the maximum opening plane
from the vertical line—that is, the greater the angle i is, the greater the angle 2γ is
and the better the conditions for steering the root harvester along the planted rows of
sugar beets are. Nevertheless, increasing the angle i (or, what is the same, the angle
of cutting α) to a level of above 45 ∼ 50◦ impairs the transportation of parts of soil
along the inner surfaces of the wheels, which also increases the loss and damage of
beet roots.

In multiple-row root harvesters, at an inter-row spacing width of 45 cm, an angle
of i = 50◦ is assumed in order to increase the working width of the wheel lifters. At
angles of i = 50◦ and ε = 28◦, with the use of Formula (2.1), angles of 2β = 18◦
and 2γ = 22◦ are obtained.

It has been established in numerous studies that the optimum values of the
above-mentioned angles of wheel lifters, which ensure the high quality of performing
the work process of digging roots from the soil and the minimum power consumption,
are as follows: 2β = 25 ∼ 30◦, 2γ = 20 ∼ 25◦ and α = 40 ∼ 45◦.

In the case of the single-row configuration, it is acceptable to increase the value
of the angle i to i = 45◦. Then, the sufficient working width of the wheels is achieved
by raising the diameters of the wheels D to 800 mm and the angle ε to 38◦.

Since one of the wheels can be actuated by a drive, the kinematic behaviour
factor (i.e., the ratio between the wheel’s circumferential velocity and its translational
velocity) is λ = 2.0 ∼ 2.5.

The wheels of such digging implements can be flat or spherical. Moreover, the
appearance of the wheel is defined by the radius of the wheel sphere Rc, which, in
turn, depends on the specific features in the performance of the work process.

The geometric elements of the wheel can be examined by giving consideration
to its section by the plane drawn through its axis of rotation (Figure 2.6). For the
normal operation of the wheel, it is necessary to ensure that the rear angle of cutting
of the wheel γ has a positive value, which will prevent any interaction between the
back part of the blade and the furrow wall. This condition is fulfilled when:

γ ≥ ϑ+ Δ (2.10)
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where ϑ = asin D
2Rc

—semisector angle (deg); Rc—radius of the wheel sphere;
Δ—angle of taper of the wheel’s blade (deg).

Figure 2.6. Geometric elements of wheel in its section by plane drawn through its
axis of rotation.

The magnitude of the sum angle ϑ+ Δ does not remain constant in different
sections of the wheel but becomes smaller as the section moves away from the wheel’s
centre. In view of this fact, it is necessary to find the relation between the minimum
permissible sphere radius and the wheel’s parameters. First, the value of said sum
angle ϑ+ Δ will be found for the section of the wheel by the horizontal plane that
is situated at a distance of h from the furrow bottom. For this section, the relation
between all the above-mentioned angles, γ,ϑ and Δ, is as follows:

ϑ+ Δ ≤ atan
tanγ√
2a− a2

(2.11)

where a = 2h
Dcosβ ; β—angle of setting of the wheel, h—depth of the wheel’s travel in

the soil.
After analysing (2.11), it becomes evident that the greater the angle γ of wheel

setting in the horizontal plane is and the lower the ratio between the depth of the
wheel’s travel in the soil h and its diameter D is, the greater the maximum wheel
sector apex angle 2ϑ is.

For the wheel lifters on root harvesters, angle γmust not exceed 11 ∼ 13◦, while
coefficient a has to stay within the range of 0.2~0.3. Hence, by substituting said values
of the angles into (2.11) the relationϑ+Δ ≤ 17 . . . 20◦ is obtained. When this condition
is not met, the self-extraction of the wheels occurs during their advancement in stiff
soil. In order to prevent this from happening, it becomes necessary to additionally
load the wheels with a vertical force, sometimes of rather great magnitude.
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The quality of performance of wheel lifters also depends on the shape of the
blades. Thus, when the blades are smooth, the beet roots are extracted from the soil
most fully and without damage. Smooth blades act on the beet roots via the soil layer
and displace them without damaging them, especially those ones that are situated
outside the bounds of the row. Moreover, smooth blades are desirable in the sense
that the wheel lifters are not clogged with plant residues, even when working on
rather weedy areas of the field.

The next step is to investigate the force interaction between the wheel lifter on
the one hand and the soil and the beet root on the other hand. For this purpose,
the schematic model of the forces acting on the soil and the beet root during the
movement of the wheel lifter is to be drawn up (Figure 2.7).

In the schematic model, two lifting wheels travelling in the soil at a depth of h
are shown. The midpoint of the rear part of the lifter (the narrowest place between the
wheels) is taken as point O—the origin of the three-dimensional Cartesian coordinate
system Oxyz, axis Ox of which coincides with the lifter’s line of travel; axis Oz is a
vertical line.

Figure 2.7. Force interaction between wheel lifter and soil and beet root.

On the inner surface of one of the wheels, a surface element dS (shaded), which
rotates together with the wheel and has its own instantaneous centre of rotation
Ω, is selected. For the specified instant of time, the position of the surface element
dS on the wheel is determined by the angular displacement ξ about the axis of the
wheel itself. The position of the instantaneous centre of rotation Ω on the wheel is
determined by the distance z—i.e., its distance from the edge of the wheel’s blade
and the angular displacement ξ1 (i.e., the angular displacement about the axis of the
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wheel itself). h1 denotes the distance of the wheel’s part submerged in the soil. This
distance is equal to:

h1 =
h

cosβ
(2.12)

Further, the beet root that sits in the soil between the lifter’s wheels is introduced
in the schematic model. In the case under consideration, the vertical axis of symmetry
of the root intersects axis Ox. When the sugar beet root is extracted from the soil,
it will be under the action of several forces. These forces can be divided into three
types. They are:

(1) Horizontal forces Pσ acting in the plane that is perpendicular to the lifter’s line
of travel;

(2) Force of extraction of the root from the soil PB applied vertically upwards;

(3) Shear force PC applied along the lifter’s line of travel.

The forces of the first two types (Pσ, PB) perform the useful work of breaking
up the soil and extracting the beet roots. The force of the last type (PC) is one of
the causes of major damage to the roots—it contributes to the chipping-off of their
tail parts.

The next step is to examine the forces imparted on the root by the lifter’s wheel
during the latter’s motion relative to the soil. Within the above-mentioned surface
element dS, the elementary forces of pressure at a right angle dN and the elementary
forces of friction dT come into action. Moreover, the elementary forces of pressure at
a right angle dN are perpendicular to the plane of the wheel itself and vectored the
same way as the lifter’s motion (which will be true as long as the condition 2γ > 0
is met), while the elementary forces of friction dT acting within the plane of the
wheel itself can be vectored two ways: either the same way as the lifter’s motion
(applicable in the case of passive lifters, which behave the same as share lifters, or in
the case of part of the wheel being submerged in the soil, which is situated above the
instantaneous centre of rotation) or opposite to the lifter’s motion vector (i.e., the
elementary forces of friction of all the wheel’s surface elements situated below the
instantaneous centre of rotation Ω will be vectored that way).

Further, in order to find the shear force PC acting on the root, the elementary
forces of pressure at right angle dN and the elementary forces of friction dT will be
projected on axis X. It is assumed that the minimum rate of damage to beet roots is
achieved when: ∑

dS

dNX +
∑
dS

dTX = 0 (2.13)

where dNX—projection of the elementary forces of pressure at right angle on axis X;
dTX—projection of the elementary forces of friction on axis X.
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This assumption can also be set down in the following form:

tanγ
f =

2(1−b)2
(
sinξ1− sin3ξ1

3

)
+(2b−b2)sinξ1−(a−b)2ln

[
tan
(
π
4 +

ξ1
2

)]
−2I

cosβ
(

4
3 a
√

2a−a2+ a3

4
√

2a−a2

) (2.14)

where I = (1− b)
∫ π
ξ1

cos2ξ
√
(1− b)2cos2ξ+ 2b− b2 dξ; b = z

R ;

ξ1 = arctan

√
R2−(R−h1)

2

h1−z ; f —coefficient of friction.
In order for Expression (2.14) to become appropriate for practical use, it is

necessary to solve it for the coefficient b, taking into account the kinematic behaviour
factor λ, which in the case under consideration is equal to:

λ =
1

1− b
=

Vo

VMcosγ
(2.15)

where Vo—circumferential velocity of the wheels; VM—translational velocity of the
wheel lifter.

The solution of the Equation (2.15) is presented in the form of a nomogram
(Figure 2.8).

Figure 2.8. Nomogram for determination circular speed of digging disks.
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To use the nomogram, it is necessary at an angle of 2β = 25◦ to choose
h = 150 mm and D = 710 mm; on the other hand, at an angle of 2γ = 24◦ and
f = 0.85, the kinematic drive index λwill be 1.48. However, using Expression (2.15)
we finally find that λ = Vo

VM
= 1.45.

Profound theoretical research has been undertaken in [19]. The main theoretical
results obtained in the study are: analysis of the interaction between the wheel
implement and the soil; finding out the distribution of contact stresses over the
surfaces of the wheels; establishing the effects that various factors have on the energy
consumption during digging; determining the rational design and process parameters
of the wheels and the optimum dimensions of their soil separating surfaces.

The interaction between the soil and the lifter’s wheel is investigated in the
study. As a result, the resultant of the normal components of the forces applied
by parts of the soil over the whole surface of contact S has been determined. Its
magnitude can be found from the following expression:

N =
�
S

PxyznxyzdS (2.16)

where S—area of contact, Pxyz—normal force of pressure, nxyz—normal line to the
spherical surface of the wheel at the point with the coordinates x, y, z.

Additionally, the coordinates and velocities of any point of the wheel during its
movement in the soil have been determined.

The pattern of distribution of contact stresses during the operation of wheel
lifters has been determined by way of selecting the appropriate deformation model,
verifying it for adequacy in comparison with the experimental data and the following
estimation of the overall stress and strain state and the distribution of contact stresses.
The process of a wheel lifter deforming the soil has been investigated thoroughly,
and the differential equations have been obtained for the elongation, expansion and
angular displacements of an elementary volume of soil by solving which the laws of
the soil deformation by the wheel lifter have been deduced. Moreover, the differential
equation that allows the determination of the motion trajectory of an arbitrary point
of the soil in the process of the wheel lifter cutting out a soil layer has been generated.
Thus, the developed deformation model allows the deformation components at any
point of the compression zone to be determined and establishes the relation with the
stresses that are part of the equation of equilibrium for an elementary volume of soil
of variable thickness, which is compressed between the wheels in the case of Hooke’s
elastic rheological model. When the roots are dug out with the use of passive lifters,
the soil in front of the wheels is compacted and the von Mises model, in which a
relation exists between the stresses and the rates of deformation, is more appropriate
for the space between the wheels.
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It has been established that the pattern of distribution of contact stresses on
the wheels depends primarily on the type of lifter (active or passive), the physical
condition of the soil and, less significantly, on the variation of the positions of the
wheels (within their operating range).

It has also been proved theoretically that the rotational torque of the drive of
the active wheel substantially depends on the physical–mechanical properties of the
soil, the distribution of contact stresses and the redistribution of friction forces on the
surfaces of the wheels.

It has been proved analytically that the difference between the translational
velocity of the machine and the linear velocity of the wheel’s rim is the principal
factor that defines the redistribution of the energy consumption for the actuation of
the implements and the tractive power of the beet harvester.

Thus, it becomes evident from the analysis of the theoretical studies on the
wheel lifter implements that sound mathematical models describing the motion of
roots inside the lifting implements have not been developed in this area of research
as well.

2.5. Vibrational Digging Tools

The vibrational digging of sugar beet roots has gained wide use in many
beet-growing countries. It has a number of advantages in comparison to other
methods of digging. In particular, the soil accumulates to a lower extent in the lifter’s
working channel and the process of shaking off the soil stuck on the surface of the
root is improved significantly.

It should be noted that the research into the process of vibrational digging of
roots has, for the most part, been of experimental nature. Only in three studies [6,7,20]
has separate theoretical research into the process of vibrational digging of roots with
the oscillations generated in the transversely horizontal plane been carried out.

As suggested in [7], when the root is shaken by a horizontal force applied to
the root’s upper part or alternating-sign impacts, its bonds with the soil are actively
broken. As alternating-sign impulse loads are applied time and again, the root starts
moving vertically upwards, which contributes to the process of its extraction from
the soil. Different roots require different numbers of periodic loads to be applied for
the complete disintegration of the bonds with the soil.

If the root is made to oscillate in the transversely horizontal plane (Figure 2.9) by
law of τ = τ0cosωt, the root, according to [7], will be extracted from the soil under
the following condition:

lcω2
kτ0 > g

(
1 +

Rc

Q

)
(2.17)
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where lc—coordinate of the root’s centre of gravity; ωk—frequency of the root’s
oscillations; τ0—angular displacement of the root from the vertical axis; Rc—force of
the root’s bond with the soil; Q—weight of the root; g—acceleration of gravity.

The condition of not damaging the root during its oscillatory motion appears
as follows:∣∣∣∣∣∣∣ lczs

⎡⎢⎢⎢⎢⎣(Cklc −Q)sinτ0 −
Ixω2

kτ0

lc

⎤⎥⎥⎥⎥⎦cosτ0 +
Qlcω2

kτ0

g
− (Cklc −Q)sinτ0

∣∣∣∣∣∣∣ < [N]dop, (2.18)

where Ck—stiffness of the root at the point of fixation; zs—coordinate of perturbing
force application point; Ix—moment of inertia of the root about the horizontal axis that
passes through the point of fixation; [N]dop—bending load, which causes breaking of
the root body.

Figure 2.9. Schematic model of forces acting on root during its vibrational lifting.

As indicated in [7], the analysis of the process of the root extraction under the
action of a horizontal perturbing force has shown that, in order to allow an efficient
extraction process, it is necessary to make each root oscillate at its specific values
of frequency and amplitude, which is impossible in practice, since the parameters
of roots are random quantities. Therefore, the fulfilment of the conditions (1.17)
and (1.18) have to be considered in the probabilistic sense and, for the purpose of
describing the situations with the most probable outcome of extracting the root
without damaging it, it is reasonable to generate the oscillations within a certain
spectrum of frequencies and amplitudes. However, it follows from (2.17) and (2.18)
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that the most efficient course of the process of the root extraction from the soil can be
achieved by making the roots oscillate at an increasing amplitude and the constant
frequency that is specific for the selected mode of operation. In order to avoid
substantial damage to the sugar beet roots during their extraction, the amplitude of
oscillations must not exceed 0.25–0.35 rad, with a frequency of –20 Hz. Based on the
investigation of the process of the root moving under the action of the horizontally
applied alternating-sign force S(t), the following expressions are suggested in [7] for
the computation of the forces acting on the root (Figure 2.9):

Rz =
Qlcτ2

g
+ S(t)sinτ−Qcosτ (2.19)

Ry = S(t)cosτ− (Cklc −Q)sinτ− Qlcτ́
g

(2.20)

where Rz, Ry—vertical and horizontal components, respectively, acting on the root at
the point of fixation; Q—weight of the root; τ—trajectory of the root’s motion under
the action of force S(t); lc—coordinate of the root’s centre of gravity.

In [7], the maximum probability of extracting the roots combined with the limited
probability of damaging them is recommended as the criterion of optimisation of the
lifter’s parameters—i.e.,

maxP{Pz ≥ Rz + Q}, P
(
Py >

[
Ry
])
≤ ξ, (2.21)

where ξ—permissible value of the probability of damaging the roots; Pz —force of
the root extraction from the soil; Py—horizontal (lateral) force;

[
Ry
]
—minimum force

that can cause damage to the root. The probabilities (2.21) are calculated on the PC
by a statistical test.

In [7], the schematic model of the vibrational digging tool that performs angular
oscillations in the horizontal plane transversely to the line of the lifter’s translational
motion is offered (Figure 2.10).

The principle of its operation is as follows: when the wheel (5) rotates, the shaft
(4) periodically turns through angles of ±θ. The horizontal plates that form the
working channel of the lifter and are connected with the shaft by the vertical bars (2)
also periodically turn about point O through the same angle ±θ. For the purpose
of reducing the tractive resistance and facilitating the extraction of roots from the
soil with a minimum amount of soil, the axis of the oscillating shaft (3) is situated on
the centreline of the front ends of the fork, obliquely or perpendicularly to its plane.
In consequence of such a situation of the working channel, as the shaft periodically
turns, the points of the front part of the lifter perform lengthwise oscillations, while
the points of the rear part perform crosswise oscillations.
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It ought to be noted that, in the process of extracting the root from the soil by a
usual share lifter, an important role is played by the backup forces exerted by soil,
under the action of which the soil layer is compressed in the tapering channel of
the lifter and during the lifter’s translational motion with the further breaking of
the soil layer the vertical extraction forces needed for lifting the root are generated.
Hence, the presence of the backup forces exerted by soil is a necessary condition for
the operation of a conventional share lifter.

When the roots are lifted with the use of a vibrational digging tool, the soil
in the area of the lifter’s working channel becomes loose to a significant extent
due to the oscillatory motion of the lifter’s shares. In view of this, in the case of a
vibrational lifter the above-mentioned forces of backing up the root do not play such
an important part as in the case of a share lifter, as the necessary soil compression
strain in the lifter’s working channel does not arise during the lifter’s translational
motion and its contact with the root. As indicated in [7], the presence of soil in the
vibrational lifter’s working channel is not the principal condition of generating the
force of the root extraction from the soil. Said circumstance embodies the essential
difference between vibrational lifters and other types of digging tools as regards the
performance of the work process of root digging. In this case, the required vertical
forces of the root extraction are generated by the vertical motions of the lifter’s shares
that are three-dimensionally inclined at respective angles, which facilitates capturing
of the roots by the necking channel and entraining them in the joint upward motion.
The working faces of the shares of the vibrational lifter, which feature, as mentioned
earlier, respective three-dimensional inclinations and form the throat of the lifter, also
impart vertical extraction forces on the roots. It is also noted in [7] that, while the
root in the channel of a usual wheel or share lifter in the presence of backup forces
exerted by the soil bends rather appreciably along the line of travel, in the channel of
a vibrational lifting tool the centreline of the root during its extraction from the soil
for the most part retains the initial position that is almost vertical and perpendicular
to the row centreline or deflects from said position through small angles (which
depends mostly on the stiffness of the soil around the root).

This operation feature of the vibrational lifting tool establishes a situation where
the root chipping-off rate is considerably reduced as a result of the slight inclination
of the root’s centreline along the lifter’s line of translation. In the case of vibrational
digging, the roots are also actively freed from the stuck soil in the process of intensive
breaking of the soil in the front part and then during the gripping and forced vertical
displacement of the roots due to the strong acceleration imparted on them.

Thus, the extraction of the root from the soil in the case of vibrational digging
takes place under the action of the perturbing force supplied by the drive mechanism
by means of direct grasping of the root by the shares of the vibrational lifting tool
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and its further advancement across the shares’ inner faces that have respective
three-dimensional inclinations and form the throat of the lifter.

Figure 2.10. Schematic model of vibrational digging tool, which induces oscillations
of root in transversely horizontal plane.

The first fundamental analytical treatment of the transverse oscillations of the
body of a root fixed in the soil was undertaken and published in [6]. In this study,
the sugar beet root is modelled as a cone-shaped body, one point at the bottom of
which is fixed and which has elastic properties. That said, the transverse oscillations
of the root are described with the use of a fourth-order partial differential equation.
The solution of said equation makes it possible to determine the natural frequencies
of the free transverse oscillations of the root body. Specifically, the process of sugar
beet extraction from the soil is then studied with the use of additionally generated
kinetostatic equations, which allow the conditions of the complete extraction of the
root from the soil to be found.

In [20], which, in effect, is an extension of [6], the Hamilton–Ostrogradsky
functional, which describes the root’s free transverse oscillations when it is fixed
in the soil at its bottom end and applies perturbing forces to it in the transversely
horizontal plane along the line that is perpendicular to the line of the lifter’s
translational motion, is set up. Using the Ritz method and based on the conditions
of time invariance of the mentioned functional, the Ritz equation of frequencies is
generated to find the first, second and third natural frequencies of the free transverse
oscillations of the root body.

The above-mentioned fundamental analytical treatment [7] presents the
fundamental provisions and assumptions with regard to the vibrational digging
of roots introduced in the earlier papers of the same authors [6,20]. However, no
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mathematical model of the vibrational lifting of sugar beet root from the soil can be
found in this study.

It ought to be remarked that, despite the mentioned fundamental analytical
treatments of the process of vibrational lifting of sugar beet roots (by applying
perturbing forces to them in the transversely horizontal plane), the accomplishment
of full-scale engineering projects, the industrial production of several pilot units and
the performance of elaborate experimental studies and official tests, such vibrational
digging tools have not gained any ground. It is assumed (and it has been fully proved
during the thorough tests under different conditions) that one of the main reasons for
this is the failure to ensure a sufficiently high rate of travel of the vibrational lifters in
such a design (and, accordingly, the sufficiently high rate of work subject to retaining
the required harvesting quality indicators), which results from the fact that applying
the perturbing forces to the beet roots in the plane that is perpendicular to the line of
the lifter’s translational motion leads to the constant plugging of its working channel
with root bodies and soil, chipping-off of the roots’ tail parts and deterioration of the
implement’s performance up to its complete breakdown. The power consumption
rate of this process was also too high.

As has been established, said negative phenomenon can be completely avoided
by switching the line of action of the perturbing forces from the transversely horizontal
plane and the alignment perpendicular to the line of the lifter’s translational motion
into the vertical and longitudinal plane. Implementation of this change brought
about good performance in the harvesting of sugar beet roots. Virtually all world
leading manufacturers of beet harvesting machines started producing vibrational
lifting tools, which operated based on the principle of imparting perturbing forces on
the roots.

Nevertheless, for a long time there were no further profound analytical studies on
the oscillation of the root body fixed in the soil and the process of its vibrational lifting
with the use of perturbing forces in the longitudinal and vertical plane. Apparently,
it was assumed that the investigations carried out in the fundamental papers [6,7,20]
fully described the oscillation process under consideration. All further research into
the process of vibrational root digging was predominantly experimental. Meanwhile,
the change in the line of action of the perturbing forces entails not only alterations in
the design implementation of the vibrational lifting tools, but essential adjustments
in the theory itself as well, especially in its end results.

In its crucial new form, the theory of vibrational root lifting in the case of
applying the perturbing forces to the roots specifically in the vertical and longitudinal
plane has been published in the studies [21–23]. A case of transverse free and forced
oscillations of the root body, in which the line of action of the perturbing forces
coincides with the line of translational motion of the vibrational lifting tool, has been
considered in the papers [24,25]. Said case is of considerable interest both from the
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theoretical and practical points of views. For example, with this line of action of the
perturbing forces the bonds between the root and the soil are broken more effectively
(the so-called loosening effect occurs) and at the later stages, when the root body is
finally lifted from the soil, it is not under the action of stretching forces. In this case,
the accumulation of roots and soil in the vibrational lifter’s working channel will not
take place. Moreover, the design of the vibrational lifting tool that operates on the
described principle will consume less energy and metal, etc.

It is also worth noting that in the case of the vibrational digging of sugar beet
roots at the up-to-date velocities of translational motion of digging tools, it is quite
probable that a phenomenon takes place where the digging shares hit the root body
in the process of the vibrational lifting tool running in on the root. This issue has
not been given analytical consideration. Accordingly, an urgent need has arisen
to develop a theory of impact interaction between the vibrational lifting tool and
the root body, with the purpose of substantiating the rational design parameters of
the digging tool and the kinematic modes of performance of the work process of
vibrational lifting of sugar beet roots under the condition of their not chipping-off
at impact.

2.6. Agrotechnical Requirements for Harvesting of Sugar Beet Roots

With any combination of the techniques and technologies of harvesting sugar
beets, the harvesters under operation must provide high quality gathering of the
roots in compliance with the agrotechnical requirements. The characteristic values of
that quality are specified by DSTU 2258-93 (GOST 7496-93) “Sugar beet harvesting
machinery. General specifications”, as well as the ISO guidelines. In particular, in
the mentioned regulatory document and other technical guidelines, the following
requirements are indicated.

The operating rate of travel of sugar beet combines must be at least 6.0 km·h−1

and the transport rate must be about 20 km·h−1. The performance rate per hour of
productive time should be at least 0.54 ha hectares for two-row combines, at least 0.81
ha for three-row ones and at least 1.62 ha for six-row harvesters. The work process
performance reliability factor must be at least 0.98; the shift time utilisation factor
must be at least 0.75.

The sugar beet combines must ensure collection of 98.5% of the roots (i.e., the
losses cannot exceed 1.5%). In the pile of gathered roots, the extraneous material
contents cannot exceed 8.0%, including plant residues at a rate of no more than
0.20%. The damaged roots may not amount to more than 10%, including the heavily
damaged ones at a rate of no more than 5%.

The specific fuel consumption rate must be limited in the case of two-row
machines by 24.0 kg·ha−1 and in the cases of three- and six-row ones by 30.0 kg·ha−1.
The mean time between failures is at least 50 h of productive time; the availability
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factor in the productive time is at least 0.95. The specific total labour intensity of
the emergency maintenance in operation may not exceed 0.08 man-hour·hour−1.
The mean shift running time for maintenance should be limited by 0.40 h and the
specific total labour intensity of the running maintenance should be limited by 0.09
man-hour·hour−1. The specific structural mass for the performance of a process
operation must be no more than 4400 kg·m−1 in the case of two-row combines, no
more than 5100 kg·m−1 for three-row ones and no more than 6500 kg·m−1 for six-row
machines. The specific material intensity may not exceed 9700 kg·ha−1·h−1 in the case
of two-row harvesters, 11,000 kg·ha−1·h−1 for three-row ones and 14,400 kg·ha−1·h−1

for six-row ones. The labour input for changing from the transport position into
the operating one and vice versa should not be more than 0.10 man-hours. The
required road clearance is at least 300 mm. The sugar beet harvesters must comply
with the requirements of DSTU 2189-93: “Mounted and towed agricultural machines.
General safety requirements”. A combine harvester should be operated by one tractor
operator, whose labour input should be no more than 2.44 man-hours·ha−1 in the
case of two-row combines, no more than 1.64 for three-row ones and no more than
0.82 man-hours·ha−1 for six-row ones. The annual utilisation rate is at least 160 h.
The operating life of a combine harvester is equal to eight years.

2.7. Conclusions

In summary, the following conclusions can be drawn on the basis of the analytical
review of the main studies concerned with the theoretical research into the process of
lifting roots from the soil:

1. The existing studies of the process of vibrational lifting of sugar beet roots from
the soil are predominantly of experimental nature, which does not allow for a
comprehensive and thorough investigation of said work process.

a. It is necessary to undertake fundamental theoretical research into the
process of vibrational root lifting based on the application of up-to-date
mechanical and theoretical methods of analysis, which would enable
a more consistent and comprehensive investigation and analysis of
said process.

2. The comprehensive and multivariate analysis of the vibrational root lifting
process will provide the basis for finding the rational design parameters and
kinematic modes of performance of vibrational digging tools, which will allow
reducing of the root loss and damage rates and lower the energy consumption.

3. Hence, a need arises to individually generate the respective mathematical
models of lifting roots from the soil with the use of the vibrational lifting tool
for all stages of extraction: from the initial gripping of the root by the digging
shares to the final lifting from the soil. In this process, it is necessary to first set
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up the schematic models of the force interaction between the root body and the
digging faces of the implement. Further, the differential equations of motion
of the root body have to be generated with the use of the general principles of
the dynamics. It is imperative to include in the equations the condition of not
damaging the root body.

4. On the basis of solving the obtained systems of differential equations of motion
of the root body, the rational kinematic and design parameters of vibrational
lifting tools have to be determined.

5. The results of the theoretical research are to be used for the development
of new designs of vibrational lifting tools for root harvesters as well as
the specific recommendations on their efficient use in accordance with the
environment-and-climate and working conditions.
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3. Theory of Share-Type Lifting Tool

3.1. Analysis of Force Interaction between Share Lifter and Soil around Root

The principal correlations between the geometrical parameters of share-type
lifting tools are presented in Section 2.

The next step is to explore the force interaction between the share lifter and the
soil with the use of the main provisions of [8]. For this purpose, the schematic model
of forces is set up with an element of soil layer KL containing in its centre the root
approximated by a conically shaped solid (Figure 3.1). Under the action of the soil
backup forces represented by a uniformly distributed load with an intensity of q, the
soil layer element KL is contained in the share lifter’s working channel between its
working faces and is continuously compressed during the translational motion of the
lifter. The soil backup force applied directly to the root is designated as Q. A state
of stress sets in in the soil layer KL as a result of the action of the normal forces N
and forces of friction F at points K and L of its contacts with the working faces of the
wedges. As a consequence of this, the part of the root contained within the layer KL
(the lower part of the root continues to be constrained in the unstrained layer of the
soil) falls under the action of force Q, resulting from the soil backup forces q. From
the opposite side, this part of the root is under the direct action of forces P

′
xi, P

′
yi, P

′
zi,

(i = 1, 2) applied by the wedges’ working faces, on which the corresponding forces
Pxi, Pyi, Pzi, (i = 1, 2) arise.

Each of the above-mentioned forces applied by the shares’ working faces is
shown in Figure 3.1 with a respective index. Thus, the forces applied by the working
face A1B1C1 to the soil layer are denoted by index 1—Px1, Py1, Pz1—while the forces

applied by this face to the root itself—P
′
x1, P

′
y1, P

′
z1. The forces acting on the soil layer

from the working face A2B2C2 are labelled with index 2—Px2, Py2, Pz2; the forces

applied by this face to the root itself and, respectivelyP
′
x2, P

′
y2, P

′
z2. The effect the

mentioned forces have on the root is defined by their generation on the wedges’
working faces and the mode of their transfer in the strained layer of the soil. The force
of the bonds between the root and the soil is designated as R, and it acts conventionally
along the centreline of the root itself and is, in the general case, vectored vertically
down, but when specifically considering the process of extraction of the root from
the soil, it can be decomposed along the respective coordinate axes (in Figure 3.1, it is
represented by the projections Rx and Rz).

The above-mentioned forces have to be determined. In the general case, as
is shown in Figure 3.2, (1, 2, 3), forces Pxi, Pyi, Pzi (i = 1, 2) in vector notation are
as follows:
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For plane A1B1C1:

Px1 = Nx1 + Fx1, Py1 = Ny1 + Fy1, Pz1 = Nz1 + Fz1. (3.1)

Similarly, for plane A2B2C2:

Px2 = Nx2 + Fx2, Py2 = Ny2 + Fy2, Pz2 = Nz2 + Fz2. (3.2)

where Nxi, Nyi, Nzi, (i = 1, 2)—normal forces of reaction of the wedges’ working
faces projected on the respective coordinate axes; Fxi, Fyi, Fzi, (i = 1, 2)—forces of
friction of the soil layer on the wedges’ working faces, also projected on the respective
coordinate axes.

The first step is to analyse the action of each of the forces entered into (3.1)
and (3.2) and constituting the forces imparted directly on the root. To begin with,
the vertical forces P

′
z1 and P

′
z2 generated by the share faces try to dislodge the root

(especially that part of it, which is fixed in the soil) out of the soil; the horizontal
transverse forces P

′
y1 and P

′
y2 also promote squeezing of the root as a tapered body

out of the soil. The horizontal forces P
′
x1 and P

′
x2 (in Figure 3.1 they are denoted as

the total force P
′
x1,2), which act in the direction of the share lifter’s motion, also try,

together with force Q, to force the root out of the soil, while the direction, in which
force Q acts, is opposite to that of the lifter’s motion. However, depending on the
properties of the soil and some other factors, the backup force Q can be insignificant,
and subsequently P′x1,2 > Q, and the root will move forward under the action of the
horizontal force RΓ = P′x1,2 −Q, possibly resulting in the break-off of the root in the
area of its fixation in the unstrained soil layer. Therefore, a high quality of operation
of a share lifter is secured in case the lifter generates significant amounts of forces Pzi
and Pyi and, vice versa, insignificant amounts of force Pxi.

The magnitudes and lines of action of forces Ni and Fi, which define forces
Pxi, Pyi, Pzi, (i = 1, 2), depend on many factors: the properties and condition of the soil,
the magnitudes of the bonding forces between the root and the soil R, the geometrical
parameters of the lifter’s wedges and the angles of their setting with respect to the
line of travel, the velocity of translation, etc.
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Figure 3.1. Interaction between the share lifting tool and the soil.

Further, consideration should be given to the effect that the angles α, β and γ
have on the magnitudes of forces Pxi, Pyi, Pzi (i = 1, 2), which produce the pressure of
the working face of the wedge on the soil layer and the root. This can be examined by
taking one of the faces of the share lifter as an example, assuming that the second face
is in a similar situation. As can be seen in Figure 3.2 (1), the point of contact L is under
the action of the normal reaction N2, which can be represented by its projections on
the respective coordinate axes—Nx2, Ny2, Nz2. After the mentioned projections of the
normal reaction are found, it becomes possible to also find the force of friction F2,
which in its turn can also be represented by its projections on the same coordinate
axes—Fx2, Fy2, Fz2 (Figure 3.2 (2)).
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Figure 3.2. Diagram of forces acting on one of the wedges of share lifter: 1—normal
component of N2 and its projections on the coordinate axes; 2—force of friction F2

and its projections on the coordinate axes; 3—total forces imparted by the wedge
face: Px2, Py2, Pz2.

3.2. Determination of Projections of Normal Reactions of Shares on Cartesian Coordinate
Axes

It is necessary to find the magnitudes of forces Nxi, Nyi, Nzi vectored along
the respective coordinate axes and depending on the direction of vector of force
Ni (i = 1, 2) itself. In this process, the analytical expressions will be set up
simultaneously for both the shares of the lifter. For face A1B1C1, they are as follows:

Nx1 = N1 cos ˆ(
x, N1

)
,

Ny1 = N1 cos ˆ(
y, N1

)
,

Nz1 = N1 cos ˆ(
z, N1

)
.

(3.3)

Respectively, for face A2B2C2:

Nx2 = N2 cos ˆ(
x, N2

)
,

Ny2 = N2 cos ˆ(
y, N2

)
,

Nz2 = N2 cos ˆ(
z, N2

)
,

(3.4)

where cos ˆ(
x, Ni

)
, cos ˆ(

y, Ni
)
, cos ˆ(

z, Ni
)
—direction cosines of the Ni (i = 1, 2)

force vector.
Further, the relation between the mentioned direction cosines and the angles

α, β and γ that define the design parameters of the share lifter is to be determined.
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For this purpose, the intervals on the coordinate axes cut off by the working faces
of the wedges will be denoted by ai, bi and ci, (i = 1, 2)—i.e., in the case of face
A1B1C1 they will be intervals a1, b1, c1, in the case of faces A2B2C2 − a2, b2, c2. Then,
the coordinates of the three vertices of each wedge face (A1B1C1 and A2B2C2) in the
assumed coordinate system Oxyz are, respectively, equal to:

xA1 = a1; yA1 = −A1A2
2 ; zA1 = 0;

xB1 = 0; yB1 = −A1A2
2 ; zB1 = c1;

xC1 = 0; yC1 = −
[(A1A2

2

)
− b1

]
; zC1 = 0;

xA2 = a2; yA2 = A1A2
2 ; zA2 = 0;

xB2 = 0; yB2 = A1A2
2 ; zB2 = c2;

xC2 = 0; yC2 =
(A1A2

2

)
− b2; zC2 = 0.

(3.5)

Employing the analytical geometry principles [26] and based on (3.5),
the equations of faces A1B1C1 and A2B2C2 can be set up in terms of the
following determinants:

A1B1C1 :

∣∣∣∣∣∣∣∣∣
xA1 − a1yA1 +

A1A2
2 zA1

−a1b1

−a1c1

∣∣∣∣∣∣∣∣∣ = 0;

A2B2C2 :

∣∣∣∣∣∣∣∣∣
xA2 − a2 − yA2 − A1A2

2 zA2

−a2 − b2

−a2c2

∣∣∣∣∣∣∣∣∣ = 0.

(3.6)

It can be concluded from Figure 3.1 that the magnitudes of the respective
intervals ai, bi, ci, (i = 1, 2) on the respective coordinate axes are equal to:

a1 =
b1

tanγ
; a2 =

−b2

tanγ
; c1 =

b1

tanβ
; c2 =

−b2

tanβ
; b1 = b2 =

(A1A2 −C1C2)

2
. (3.7)

Expanding the obtained determinants (2.6), the following equations of the faces
of the share lifter’s wedges are:

A1B1C1 : (xA1 − a1)[b1c1 − 0 · 0] +
(
yA1 +

A1A2
2

)
[0 · (−a1) − (−a1) · c1]

+zA1[(−a1) · 0− b1(−a1)] = 0,
A2B2C2 : (xA2 − a2)[(−b2) · c2 − 0 · 0]
+
(
−yA2 − A1A2

2

)
[0 · (−a2) − (−a2) · c2]

+zA2[(−a2) · 0− (−b2)(−a2)] = 0.

(3.8)
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After substituting (3.7) into (3.8) and performing the appropriate transformations,
the equations of the working faces of the share lifter are obtained. They appear
as follows:

A1B1C1 : xA1tanγ+ yA1 + zA1tanβ+
C1C2

2
= 0, (3.9)

A2B2C2 : xA2tanγ− yA2 + zA2tanβ− C1C2

2
= 0. (3.10)

It is known that the direction cosines for the vectors that are normal to the faces
represented by (3.9) and (3.10) have the following values:

cos
(
x, Ni

)
=

tanγ√
tan2γ+1+tan2β

,

cos
(
y, Ni

)
= 1√

tan2γ+1+tan2β
,

cos
(
z, Ni

)
=

tanβ√
tan2γ+1+tan2β

.

(3.11)

Then, by substituting (3.11) into (3.3) and (3.4), the following values for the
projections of the normal components of forces Ni (i = 1, 2) generated by the wedge
faces on the respective coordinate axes are obtained.

For face A1B1C1:
Nx1 =

N1tanγ√
tan2γ+1+tan2β

;

Ny1 = N1√
tan2γ+1+tan2β

;

Nz1 =
N1tanβ√

tan2γ+1+tan2β
;

(3.12)

For face A2B2C2:
Nx2 =

N2tanγ√
tan2γ+1+tan2β

;

Ny2 = −N2√
tan2γ+1+tan2β

;

Nz2 =
N2tanβ√

tan2γ+1+tan2β

(3.13)

Since the values for the projections of the normal components of the forces
generated by the working faces of the wedges have been found, it becomes possible
to also determine some other forces imparted by them to the soil layer and directly to
the root.

3.3. Analysis of Force Interaction with Working Faces of Shares during Approach of Lifting
Tool to Root and Its Direct Contact with Root

Further, detailed analysis is to be made on the principal factors and forces arising
in the process of operation of the share lifter have effect on the formation of the normal
reactions N1 and N2 of the working faces of wedges A1B1C1 and A2B2C2, respectively,
as well as the forces of friction F1 and F2 between the soil layer containing the root
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and the faces of the mentioned wedges. In other words, it is necessary to establish
the physical substance of the mentioned forces.

Firstly, the working faces of the wedges are under the action of the force of
gravity G of the soil layer KL with the root in it. It is assumed that the force of gravity
of the soil layer with the root is distributed equally between wedges A1B1C1 and
A2B2C2 of the lifter—i.e., G1 = G2 = 1

2 G. Forces G1 and G2 generate the static parts
of the normal reactions of the working faces of wedges A1B1C1 and A2B2C2. These
parts of the reactions are denoted as NG1 and NG2, respectively. In addition to this, as
a result of the motion of the soil layer on the mentioned surfaces, said weight forces
give rise to the parts of the forces of friction FG1 and FG2.

Secondly, the working faces of wedges A1B1C1 and A2B2C2 are under the action
of the forces of dynamic pressure of the incoming soil I1 and I2, respectively [27,28].
The action of said forces can be regarded as the continuous process of parts of the
soil striking the faces of wedges A1B1C1 and A2B2C2. As a result of the continuous
inflow of the soil mass on the faces of the wedges, an impact impulse is generated,
which is equal to:

I1dt = I2dt =
(
Va −Vo

)
dm (3.14)

where Va—absolute velocity of the soil particles with masses of dm; Vo—initial
velocity of the soil particles prior to their collision with the wedge.

Since the initial velocity Vo = 0, the following is derived from (3.14):

I1 = I2 =
dm
dt

Va (3.15)

The mass of the soil that falls on the wedges in a unit of time can be determined
as follows:

dm
dt

= ab
γob.

g
V (3.16)

where a and b are, respectively, the width and the thickness of the soil layer that is
undercut by each wedge separately; γob.—bulk specific gravity of the soil; g—free
fall acceleration; V—velocity of translation of the lifter.

Hence, by substituting (3.16) into (3.15), the following is obtained:

I1 = I2 = ab
γob.

g
VVa (3.17)

The forces of dynamic pressure act along the vector Va of the absolute velocity
of motion of the soil layer.

In order to find the trajectory and velocity of the motion of the layer on the wedge,
an assumption is introduced that the length of the layer during its undercutting and
its motion on the wedge do not change; therefore, the velocity Vr of the soil layer’s

43



relative motion on the face of the wedge is equal to the velocity V of its translational
motion—i.e., the velocity of translational motion of the lifter itself. When the layer
moves in the area of the lifter’s working channel, it is assumed that the trajectory
of the motion on wedge A1B1C1 of the point of the layer that was situated at point
O1 prior to the undercutting is represented by the right line A1O′1. The absolute
trajectory is represented by the right line O1O′1. At the same time, O′1M1 = O1M1

and ∠O′1A1M1 = ∠O1A1M1 = γ (Figure 3.1).
Similarly, when the soil layer moves on face A2B2C2, O′2M2 = O2M2 and

∠O′2A2M2 = ∠O2A2M2 = γ. In this case, the relative and absolute trajectories
of motion of the point of the soil layer are represented by the right lines A2O′2 and
O2O′2 respectively.

According to the above, the trajectories of relative motion of any of the points
of the soil layer that are in contact with the faces of wedges A1B1C1 and A2B2C2 are
represented by right lines parallel to the right lines A1O′1 and A2O′2 respectively, their
trajectories of absolute motion are represented by right lines parallel to O1O′1 and
O2O′2 respectively.

Hence, the forces of friction F1 and F2 of the soil layer on the faces of wedges
A1B1C1 and A2B2C2 are vectored parallel to lines A1O′1 and A2O′2 respectively, in the
direction opposite to the relative motion of the soil layer on the wedges. The same
can be said about the motion of the root and the direction of the forces of friction
during the direct contact between the root and the working faces of the wedges, as
the motion trajectory is defined by the geometric parameters of the lifter’s wedges.

Forces I1 and I2 of the dynamic pressure of the incoming soil give rise to the
dynamic parts of the normal reactions on wedges NI1 and NI2.

The normal components of the reactions of the working faces of the wedges
that result from the action of the force of gravity G of the soil layer with the root are
equal to:

NG1 = NG2 =
G

2(cosδ− f sinδ · sinγ)
(3.18)

where δ—dihedral angle (∠B1M1O1) between the lower face A1O1C1 and the working
face A1B1C1 of the wedge; f —coefficient of sliding friction of the soil on the working
faces of the wedges.

In the case of direct contact between the root and the working faces of the
wedges, f1—coefficient of sliding friction of the root on the faces of the wedges.

The part of the friction forces that arises during the movement of the soil layer
with the root under the action of the weight forces G is equal to:

FG1 = FG2 =
G f

2(cosδ− f sinδ · sinγ)
(3.19)
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Since the absolute velocity Va of the motion of the layer with the root is related
to the translational velocity V of the lifter’s motion under the following formula:

Va = 2Vsin
δ
2
· sinγ (3.20)

and in accordance with (3.17), the following values of the incoming soil dynamic
pressure forces are obtained:

I1 = I2 =
2abγob.

g
V2sin

δ
2
· sinγ (3.21)

The normal components of the dynamic reactions of the wedge working faces
A1B1C1 and A2B2C2 that arise under the action of forces I1 and I2 are equal to:

NI1 = NI2 = I1
cos δ2

cosδ− f sin·γsinδ , or, taking into account (3.21):

NI1 = NI2 =
abγob.

g
V2 sinδ · sinγ

(cosδ− f sinγ · sinδ)
(3.22)

The components of the forces of friction of the soil on the wedge faces A1B1C1

and A2B2C2 arising under the effect of the incoming soil dynamic pressure forces, are
as follows:

FI1 = FI2 = f
abγob.

g
V2sinδsinγ

(cosδ− f sinγsinδ)
(3.23)

The necessary condition for the operation of share lifters is the presence of the
soil backup force Q, which is vectored horizontally (along axis Ox) and opposite to
the direction of the lifter’s motion. The maximum magnitude of this backup force is
equal to:

Qgr.max. (3.24)

where σgr.—permissible soil compression stress; the multiplication factor 2 indicates
that force Q is generated simultaneously on both wedges.

However, as the root together with the soil layer advances along the lifter’s
working channel, which gradually narrows, the backup force Q becomes considerably
reduced as a result of the disintegration of the soil, and in the rear part of the tapering
channel its action on the root becomes too small. In this case, it is necessary
to determine the backup force Q using the following approximate expression:
Q = 2abkud. (where kud.—coefficient of specific resistance of loosened soil).

The resistance force R, i.e., the force of bonding between the root and the soil, is
assumed to be vectored opposite to the direction of action of the force extracting the
root from the soil.
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As noted above, the resistance force R can be decomposed into the force of
resistance to the vertical displacement of the root Rz and the force of resistance to the
horizontal displacement of the root Rx. Moreover, the bending strains of the roots
during their extraction from the soil are generated by the action of force Rx during
the horizontal displacement of the roots in the lifter’s channel. The bending strains
cause damage to the root first of all in these cases when the bonding force between
the root and the soil is rather strong. Generally, this happens in the rear part of the
lifter’s working channel during direct contact between the root and the working
faces of the shares. Therefore, it is necessary to separately examine the interaction
between the root and the wedge faces in the narrowed channel of the lifter and set
up differential equations of motion of the root during its immediate extraction from
the soil. In this case, the forces of interaction between the root and the working faces
of the wedges are similar to those between the soil layer and the working faces of
the wedges; therefore, these forces are assumed to be equal and, finally, the process
of root extraction from the soil is assumed to be performed under the action of the
forces shown in Figure 2.3.

3.4. Differential Equation of Motion of Root during Its Immediate Extraction from Soil by
Share Lifter

The next step is to set up the differential equation of the motion of the root. In
the vector notation, it appears as follows:

ma = NG1 + NG2 + NI1 + NI2 + Q + Rx + Rz + F1 + F2 + Gk (3.25)

where m—mass of the root; a—acceleration of the root during its extraction from the
soil; Rx, Rz—horizontal and vertical components, respectively, of the resistance force
R exerted by the bonds between the root and the soil; F1, F2—total forces of friction
that arise during the motion of the root on the working faces of the wedges A1B1C1

and A2B2C2, respectively; Gk—weight of the root.
It is evident that:

F1 = f1(NG1 + NI1), F2 = f1(NG2 + NI2), (3.26)

where f1—coefficient of the friction of the side surface of the root on the wedge faces.
The differential Equation (3.25) has to be set down in the Cartesian coordinate

system Oxyz. It ought to be noted that the projections of the normal reactions of the
wedge working faces A1B1C1 and A2B2C2 on axis Oy have equal magnitudes and
opposite directions. Hence, the extraction of the root from the soil, in effect, takes
place in plane xOz and consequently the differential equation of the motion of the
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root (3.25) in the vector notation is reduced to the system of two differential equations
of the following form:

mx́ = NG1x + NG2x + NI1x + NI2x −Q−Rx + F1x + F2x,
mź = NG1z + NG2z + NI1z + NI2z −Rz − F1z − F2z −Gk.

}
(3.27)

It is necessary to determine the projections of the forces included in the system
of differential equations under consideration. In accordance with (3.12) and (3.13),
the projections of the normal reactions of the wedge faces A1B1C1 and A2B2C2 on
the x and z axes can be found. These are equal to NG1x = NG2x =

NG1tanγ√
tan2γ+1+tan2β

,

respectively, or, taking into account (3.18):

NG1x = NG2x =
Gtanγ

2(cosδ− f sinδ · sinγ)
√

tan2γ+ 1 + tan2β
(3.28)

and NG1z = NG2z =
NG1tanβ√

tan2γ+1+tan2β
, or taking into account (3.18):

NG1z = NG2z =
Gtanβ

2(cosδ− f sinδ · sinγ)
√

tan2γ+ 1 + tan2β
(3.29)

Similarly, the following is found from (3.12), (3.13) and (3.22):

NI1x = NI2x =
abγob.

g
V2 × sinδ · sinγ · tanγ

(cosδ− f sinδ · sinγ)
√

tan2γ+ 1 + tan2β
, (3.30)

NI1z = NI2z =
abγob.

g
V2 × sinδ · sinγ · tanβ

(cosδ− f sinδ · sinγ)
√

tan2γ+ 1 + tan2β
. (3.31)

As the forces of friction are vectored oppositely to the directions of the relative
motion of the soil layer and the root on the wedge faces A1B1C1 and A2B2C2 (parallel
to the right lines A1O′1 and A2O′2), their projections on the coordinate axes Ox, Oy, Oz
are equal to:

F1x = F1
(
cos2 γ+ sin2 γ cos δ

)
,

F1y = −F1 cosγ sinγ(1− cos δ),
F1z = −F1 sinγ sin δ,

F2x = F2
(
cos2 γ+ sin2 γ cos δ

)
,

F2y = F2 cosγ sinγ(1− cos δ),
F2z = −F2 sinγ sin δ.

(3.32)
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In (3.31) and (3.32) symbols are defined as follows:

N1 = NG1 + NI1 N2 = NG2 + NI2

F1 = FG1 + FI1 F2 = FG2 + FI2

N1x = NG1x + NI1x N2x = NG2x + NI2x

F1x = FG1x + FI1x F2x = FG2x + FI2x

N1z = NG1z + NI1z N2z = NG2z + NI2z

F1z = FG1z + FI1z F2z = FG2z + FI2z.

Thus, after substituting all the obtained values, the system of Equation (3.27), a
differential equation, assumes the following appearance:

mx́ = N1x + N2x −Rx + F1x + F2x −Q,
mź = N1z + N2z −Rz − F1z − F2z −Gk.

}
(3.33)

Obviously, the process of the root extraction from the soil becomes possible
under the following condition:

N1z + N2z − F1z − F2z −Gk > Rz (3.34)

and, taking into account (3.29), (3.31) and (3.26), the following is obtained:

tanβ√
tan2γ+1+tan2β

[
G

cosδ− f sinδ·sinγ +
2abγob.V2sinδ·sinγ
g(cosδ− f sinδ·sinγ)

]
− −G f1sinδ·sinγ

cosδ− f sinδ·sinγ − 2abγob.V2sin2δ·sin2γ· f1
g(cosδ− f sinδ·sinγ) −Gk

> Rz.

(3.35)

When the condition of (3.35) is met, the extraction of the root from the soil takes
place. The left-hand member of (3.35) represents the root extraction force acting along
axis Oz subject to direct contact between the root and the shares.

After integrating the system of differential Equation (3.33) twice, the values of
the projections of the velocity on axes Ox and Oz and the displacement of the root
along the mentioned axes as functions of time t are obtained.

The first integrals appear as follows:

x́ = 1
m (N1x + N2x −Rx + F1x + F2x −Q)t + C1,

ź = 1
m (N1z + N2z −Rz − F1z − F2z −Gk)t + L1,

(3.36)

the second integrals are equal to:

x = 1
m (N1x + N2x −Rx + F1x + F2x −Q) t2

2 + C1t + C2,
z = 1

m (N1z + N2z −Rz − F1z − F2z −Gk)
t2

2 + L1t + L2,
(3.37)

48



where C1, C2, L1, L2—arbitrary constants.
In order to find the arbitrary constants, it is necessary to set the initial and

boundary conditions:

at to = 0 : x = xo, z = −h, x́ = 0, ź = 0,
at t = t1 : x = x1, z = 0, x́1 = V1,

where to—starting moment of the root extraction; t1—final moment of the root
extraction process; xo—distance from the root’s vertical centreline to the origin of
coordinates at the moment of time to; x1—distance from the root’s vertical centreline
to the origin of coordinates at the final moment of extraction t1; h—depth of the root’s
location in the soil; V1—velocity of the root at the final moment of extraction.

Considering the initial conditions, the following values of the arbitrary
constants are:

C1 = 0, L1 = 0, C2 = xo, L2 = −h. (3.38)

After substituting (3.38) into (3.36) and into (3.37), the following is obtained:

x́ =
1
m
(N1x + N2x −Rx + F1x + F2x −Q)t, (3.39)

ź =
1
m
(N1z + N2z −Rz − F1z − F2z −Gk)t, (3.40)

x =
1
m
(N1x + N2x −Rx + F1x + F2x −Q)

t2

2
+ xo, (3.41)

z =
1
m
(N1z + N2z −Rz − F1z − F2z −Gk)

t2

2
− h. (3.42)

Then, the earlier obtained values of Forces (3.28)–(3.32) are substituted into
(3.39)–(3.42). After performing the necessary transformations, the result is:

x́ = 1
m

{
tanγ√

tan2γ+1+tan2β
×
[

G
cosδ− f sinδ·sinγ +

2abγob.V2sinδ·sinγ
g(cosδ− f sinδ·sinγ)

]
+

G f1(cos2γ+sin2γ·cosδ)
cosδ− f sinδ·sinγ +

2 f1abγob.V2sinδ·sinγ(cos2γ+sin2γ·cosδ)
g(cosδ− f sinδ·sinγ) − 2abkud. −Rx

}
t,

(3.43)

ź = 1
m

{
tanβ√

tan2γ+1+tan2β
×
[

G
cosδ− f sinδ·sinγ +

2abγob.V2sinδ·sinγ
g(cosδ− f sinδ·sinγ)

]
− G f1sinδ·sinγ

cosδ− f sinδ·sinγ− 2 f1abγob.V2sin2δ·sin2γ
g(cosδ− f sinδ·sinγ) −Gk −Rz

}
t,

(3.44)

x = 1
m

{
tanγ√

tan2γ+1+tan2β
×
[

G
cosδ− f sinδ·sinγ +

2abγob.V2sinδ·sinγ
g(cosδ− f sinδ·sinγ)

]
+

G f1(cos2γ+sin2γ·cosδ)
cosδ− f sinδ·sinγ +

2 f1abγob.V2sinδ·sinγ(cos2γ+sin2γ·cosδ)
g(cosδ− f sinδ·sinγ) − 2abkud. −Rx

}
t2

2 + xo,
(3.45)
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z = 1
m

{
tanβ√

tan2γ+1+tan2β
×
[

G
cosδ− f sinδ·sinγ +

2abγob.V2sinδ·sinγ
g(cosδ− f sinδ·sinγ)

]
− G f1sinδ·sinγ

cosδ− f sinδ·sinγ
2 f1abγob.V2sin2δ·sin2γ

g(cosδ− f sinδ·sinγ) −Gk −Rz

}
t2

2 − h.
(3.46)

(3.42) enables the time t1 of the root extraction from the soil to be found. It will be
equal to:

t1 =

√
2mh

N1z + N2z − F1z − F2z −Rz −Gk
(3.47)

After this, the earlier obtained values of forces that are part of (3.47) are
substituted into it. Proceeding with a number of transformations, the following value
of the time t1 is obtained:

t1 =

√
2mgh(cosδ− f sinδ·sinγ)

√
tan2γ+1+tan2β

(2abγob.V2sinδ·sinγ)(tanβ−sinγ·sinδ· f1 )
×
√

1√
tan2γ+1+tan2β−(Rz+Gk)q(cosδ− f sinδ·sinγ)

×
√

1√
tan2γ+1+tan2β

(3.48)

As t1 is the time spent for the root extraction from the soil by the share lifter,
(3.48) can be used the determine the productivity of a root lifting unit.

In the situation where Condition (3.35) is not met, i.e., when the inequality of
the opposite sense is true, the root remains bonded with the soil and its motion along
axis Oz does not take place. Nevertheless, under the action of the forces entered in
the first equation of system (2.33), the force is

Px = N1x + N2x + F1x + F2x −Q (3.49)

which overcomes the resistance force Rx bonding the root with the soil, and the
bending of the root as a cantilever beam is observed, as the upper part of the root
deflects along the line of action of the force Px by some critical amount, after which
the breaking of the root can take place.

Although, there is some permissible force [Px], which does not cause damage
(breaking) to the root. Then, instead of force Px in (3.49), its permissible value [Px]

can be substituted:
[Px] = N1x + N2x + F1x + F2x −Q (3.50)

or, taking into account the already obtained values of the forces in the right-hand
member of this expression, the following is obtained:

[Px] = NG1x + NG2x + NI1x + NI2x + FG1x + FG2x + FI1x + FI2x −Q (3.51)
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Hence, considering the symmetric positions of the wedges, the result is:

[Px] = 2NG1x + 2NI1x + 2FG1x + 2FI1x −Q (3.52)

(3.52) can be rewritten as follows:

2NI1x + 2FI1x = [Px] − 2NG1x − 2FG1x −Q (3.53)

Then, the values of the forces in (3.53) are substituted into it.
We will then have:

2abγob.
g · V2sinδ·sinγ·tanγ

(cosδ− f sinδ·sinγ)
√

tan2γ+1+tan2β

+ 2 f1
abγob.V2sinδ·sinγ(cos2γ+sin2γ·cosδ)

g(cosδ− f sinδ·sinγ)

= [Px] − Gtanγ

(cosδ− f sinδ·sinγ)
√

tan2γ+1+tan2β

− f1G(cos2γ+sin2γ·cosδ)
(cosδ− f sinδ·sinγ) + 2abkud.

(3.54)

From (3.54), the velocity V of the share lifter’s translational motion, which does
not result in damaging (breaking) the roots, can be found. It is equal to:

V =

√
g([Px]+2abkud)(cosδ− f sinδ·sinγ)

√
tan2γ+1+tan2β−gGtanγ− f1 gG(cos2γ+sin2γ·cosδ)

√
tan2γ+1+tan2β

2abγob.sinδ·sinγ[tanγ+ f1(cos2γ+sin2γ·cosδ) ·
√

tan2γ+1+tan2β
] (3.55)

Thus, the kinematic parameters of the root extraction from the soil by the share
lifter expressed in terms of its geometric parameters and taking into account the
quality requirements of the performance of the work process under consideration
have finally been found.

In order to enable the practical use of (3.55), it is necessary to establish the
relation between the dihedral angle δ and the angles β and γ, which, in effect, define
the angular parameters of the wedges, since the third angle α can be determined on
the basis of the angles β and γ. It is evident from Figure 3.1 that:

tanα =
c1

a1
(3.56)

hence, taking into account (3.7), the result is:

tanα =
tanγ
tanβ

(3.57)
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Accordingly, the angle δ can be found with the use of the angles β and γ. The
following relations can be derived from Figure 3.3:

tanδ =
O1B1

O1M1
(3.58)

and
O1M1 = O1A1sinγ (3.59)

Considering the fact that O1B1 = c1 and O1A1 = a1, it follows that:

tanδ =
c1

a1sinγ
(3.60)

By substituting (3.7) into (3.60), the following is obtained:

tanδ =
1

cosγ · tanβ
(3.61)

or:

tanδ =
cosβ

sinβ · cosγ
(3.62)

and from this the final value of the angle δ is arrived at:

δ = arctan
cosβ

sinβ · cosγ
(3.63)

Thus, adjusting the geometric parameters of the share lifter wedges, specifically
the angles β and γ, on the basis of the analytical relationships arrived at in the
previous considerations, it is possible to find the required kinematic parameters of the
share-type lifting tool under the condition of not damaging the roots. For example,
using (3.55), it is possible to find the relation between the permissible velocity of the
lifter’s translational motion V and its varying angles β and γ with all its other set
design parameters entered in (3.55) staying invariable.

With the use of the PC programme developed for this purpose, the calculation
of the permissible velocity of the share lifter’s motion V under the condition of not
damaging the sugar beet roots, for various values of the angle γ and several fixed
values of the angle β, has been carried out. The initial data for the calculation are
shown in Table 3.1.

Table 3.1. Parameters of share-type lifting tool for calculation.

Parameter a [Px] γob. f f 1 g

Value 0.12 g 200 N 11,000 N·m−3 0.60 0.50 9.81 m·s−2
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At the same time, some of the design parameters of the share lifter and the work
process it performs depend on each other under the following relations:

Width of the strained soil layer:

b = atanβ = 0.12tanβ, (3.64)

Weight of the soil layer:

G = γob.a2(2atanβ+ 0.05)
tanβ
sinγ

(3.65)

On the basis of the results of the numerical calculations, graphs have been
plotted that show the variation of the share lifter’s translational motion velocity V in
relation to the varying values of the angle γ (Figure 3.4).

As may be inferred from the shown graphs, the relations between the
above-mentioned parameters follow patterns that are close to linear. At the same
time, when the share lifter’s angle of attack γ is increased, the value of its translational
motion velocity V, which ensures the extraction of roots from the soil without
damaging them, decreases. As regards the effect that the share lifter’s angle of flare
β has on its translational motion velocity V, it is evident from the graphs that the
use of greater values of the angle also allows for higher levels of the translational
motion velocity. Considering the fact that the statistical value of the angle of taper γk
of sugar beet roots is equal to 20 ∼ 28◦ the use of an angle of flare β of the share lifter
close to 30o will also allow for a higher level of the translational motion velocity.

 

Figure 3.3. Force interaction between root and share lifter’s wedges.
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Figure 3.4. Relation between permissible velocity V of share lifter’s translational
motion and angle γ for: β1 = 15◦, β2 = 20◦, β3 = 30◦.

Thus, the results obtained by the calculations stipulate that values of γ = 13 ∼
16◦, β = 20 ∼ 30◦ are to be considered the most rational values of the angles γ and
β, which facilitate high velocities V of the share lifter’s translational motion in the
process of sugar beet root extraction from the soil without damaging the roots.

Thereby, the results of the PC-assisted numerical calculations with the use of the
obtained analytical relationships prove the accuracy of the latter and provide ground
for their practical use in the design and analysis of new, further developed lifting
tools for beet harvesters.

3.5. Conclusions

1. The principal scientific result obtained in the second section is the development
of the mathematical model of interaction between the working faces of wedges
of the share-type lifting tool on the one hand and the soil around the root and
directly the root itself on the other hand.

2. The system of differential equations of the motion of the root during its extraction
from the soil by a standard share lifter has been set up. Its solution has allowed
the establishment of the law of motion of the root on the working faces of the
lifting shares up until its complete extraction as well the time spent for the
extraction of the root from the soil to be determined.

3. The criterion of safety against the break-off of the tail parts of the roots during
their digging by a standard share lifter has been established in terms of the
permissible breaking side force. This criterion stipulates the permissible
translational motion velocity of the lifter, which ensures keeping the roots
free of break-off damage.
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4. The relationship between the permissible translational motion velocity of the
lifter that ensures extraction of the roots without their break-off damage and
the angular parameters of the lifting tool has been determined. The calculations
have revealed that the most rational values of the angles γ and β, which ensure
the high velocity of the share lifter’s translational motion and extraction of the
sugar beet roots from the soil without their break-off, have to be assumed at
rates of γ = 13–16◦, β = 20–30◦.
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4. Theory of Oscillations of Root as
Elastic Solid Fixed in Soil

4.1. Theory of Longitudinal Oscillations of Root as Elastic Solid Fixed in Soil

4.1.1. Main Methodological Principles

The theory of vibrational digging of sugar beet roots was established and
published in the fundamental paper [6], in which the root was modelled as a
solid with elastic properties and represented by a variable cross-section bar with
one end fixed. In said paper, the analysed transverse oscillations of the root were
described with the use of a fourth-order partial differential equation. After solving the
mentioned equation, the results were used for determining the fundamental modes
of the root’s free oscillations. At the same time, the additionally set up equations of
kinetostatics were used for finding the conditions of its extraction from the soil under
the action of the perturbing force applied to it in the transverse horizontal plane.

The case where oscillatory motions of the vibration digging-up tool are applied
to the beet root in the longitudinal vertical area will now be analytically analysed.
It will be assumed that the root that is located in the soil is a complex solid elastic
system with an infinite number of degrees of freedom, also modelled as the rod with
a variable cross-section with the attached low end.

In order to fully define the deformations induced in such systems during
oscillations, it is necessary to determine the displacements of all points of the
system—i.e., it is necessary to find an infinite number of values (coordinates)
defining these displacements at any instant of time. While the theoretical basis
for a majority of the studies on the oscillations of holonomic systems with a finite
number of degrees of freedom is provided by Lagrange equations of the second
kind in generalised coordinates, the research into the oscillations of holonomic
systems with an infinite number of degrees of freedom requires applying the
Ostrogradsky–Hamilton principle of stationary action [20].

If the following two positions of a moving mechanical system are analysed:
position (A) at the instant of time t1 and position (B) at the instant of time t2(t2 > t1),
then the actual displacement of the system in the time t2 − t1 is determined by the
following equations:

qk = qk(t) . . . (k = 1, 2, . . . , n) (4.1)

where qk—generalised coordinate of the system.
(4.1) represents the solution of the system of Euler–Lagrange differential

equations, which will be given consideration later.
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Together with the actual displacement of the system from position (A) to position
(B), conceptional displacements from position (A) to position (B) in the same time
t2 − t1, which are infinitely close to said actual one will be analysed for the comparison
with it. These displacements are determined by the following altered equations:

qk(t) = qk(t) + δqk(t), (k = 1, 2, . . . , n) (4.2)

where δqk—isochronal variations of the coordinates q1, q2, . . . , qn, i.e., the infinitely
small quantities, by which the coordinates qk in the actual displacement differ from
the coordinates qk in the displacements used for comparison at the same instant of
time t.

The displacements qk(t) are known as by-pass displacements. Since all the
displacements, both the actual and conceptional ones, begin at position (A) and
end simultaneously at position (B), it is obvious that at the mentioned positions the
following is true:

δqk(t1) = δqk(t2) = 0 (4.3)

Further, the following functional has to be investigated on the resulting set of
displacements allowed by the restraints:

S =

∫ t2

t1

Ldt (4.4)

where L = T −Π—Lagrange function; T—kinetic energy of the system expressed
in terms of the generalised coordinates; Π—potential energy of the system also
expressed in terms of the generalised coordinates.

(4.4) is known as the “Ostrogradsky–Hamilton action”. Subsequently, the
Ostrogradsky–Hamilton principle of stationary action for a conservative system lies
in the following: the action of (4.4) during the actual displacement has a stationary
value as compared to its value during the by-pass displacements, which move the
system from the set initial position to the same final position in the same time period
t2 − t1.

The necessary condition of the stationary state of (4.4) is its first variation turning
into zero—i.e.,

δS = 0 (4.5)

In order to apply the Ostrogradsky–Hamilton principle in a theory of oscillations,
(4.5) is fulfilled for the actual displacement. The Euler–Lagrange differential equations
mentioned earlier are the necessary and sufficient conditions for the fulfilment of (4.5)
and, consequently, for the stationary state of (4.4) during the actual displacement of
the system.
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If the integration function L of (4.4) depends only on first-order derivatives, the
Euler–Lagrange equations are usual Lagrange equations of the second kind—i.e.,

d
dt

(
∂L
∂q́k

)
− ∂L
∂qk

= 0, (k = 1, 2, . . . , n) (4.6)

In case the integration function L depends not only on first-order derivatives
but also on the second-order and higher derivatives, the necessary extremum
conditions for such functionals are represented by fourth-order and higher partial
differential equations.

In the theory of longitudinal, torsional and transverse oscillations of straight rods,
the Hamilton–Ostrogradsky functionals are applied, which in the most generalised
form look as follows:

S =

∫ t2

t1

∫ l

0
L
(
t, x, y,

∂y
∂t

,
∂y
∂x

,
∂2y
∂t2 ,

∂2y
∂t∂x

,
∂2y
∂x2

)
dxdt (4.7)

Then, equations equal to the equation of Euler–Lagrange equations for (4.7) will
look as follows:

∂L
∂y
− ∂
∂t

(
∂L
∂p

)
− ∂
∂x

(
∂L
∂q

)
+
∂2

∂t2

(
∂L
∂r

)
+
∂2

∂t∂x

(
∂L
∂s

)
+
∂2

∂x2

(
∂L
∂u

)
= 0 (4.8)

where:

p =
∂y
∂t

, q =
∂y
∂x

, r =
∂2y
∂t2 , s =

∂2y
∂t∂x

, u =
∂2y
∂x2 (4.9)

4.1.2. Differential Equation of Longitudinal Oscillations of Root Body

It is assumed that the root that is located in the soil to be the rod with
variable cross-section along its length with one end attached (Figure 4.1). The
Hamilton–Ostrogradsky principle will now be applied for research of longitudinal
oscillations of the root that occur under the action of the vertical disturbing force that
changes according to the harmonic law of the following type:

Qzb. = Hsinωt (4.10)

where H is the amplitude of forced oscillations;ω is the frequency of forced oscillations.
As we can see from the scheme in Figure 4.1, the root having a cone-like body

(the top angle of which equals 2γ and the top part of which is located above the level
of the surface of the soil) is modelled as the rod with variable cross-section with the
attached low end (point O). In the centre of gravity, designated as point C, force G
is applied—the weight force of the root. h is its total length. Through the axis of
symmetry of the root the vertical axis x is drawn, the beginning of which matches
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point O. Connection of the root with the soil is determined by the general reaction of
the soil Rx, which is located along axis x.

The disturbing force Qzb. stated above is simultaneously applied to the root
from two digging-up plough shares from its two sides, and this is why it is presented
in the scheme by two components: Qzb.1 and Qzb.2. The given forces are applied
on distance x1 from the origin of coordinates (point O) and they are the source of
oscillations of the root in longitudinal vertical area that destroy connection of the
root with the soil and form conditions for digging up of the latter from the soil. The
Hamilton–Ostrogradsky functional S for the analysed vibrational process will created
in the following. For this purpose, the necessary symbols will be applied:

 
Figure 4.1. Scheme of the forces having an action on the root at the time of gripping
by the vibration digging tool.

F(x) is the area of cross-section of the root at a point located at the distance x
from the low end m2; E is the Young’s modulus for material of the root N·m−2; y(x, t)
is the longitudinal dislocation of a cross-section of the root at the time point t, m;
Q(x, t) is the intensity of longitudinal external load directed along the axis of the root
N·m−1; μ(x) is the mass per length of the root kg·m−1.

Then, kinetic energy of the oscillatory motion of the root will be:

T =
1
2

∫ hk

o
μ(x)

(
∂y
∂t

)2
dx (4.11)
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Potential energy of the elastic deformation is designated as follows:

Π1 =
1
2

∫ hk

o
EF(x)

(
∂y
∂x

)2
dx (4.12)

Potential stretching energy of the longitudinal load Q(x, t) will look as follows:

Π2 =
1
2

∫ hk

o
Q(x, t)ydx (4.13)

Then, the Lagrange function L will be made.
Since:

L = T −Π1 + Π2 (4.14)

then, considering (4.11), (4.12) and (4.13) into consideration, we obtain:

L =
1
2

∫ hk

o

⎡⎢⎢⎢⎢⎣μ(x)(∂y
∂t

)2
− EF(x)

(
∂y
∂x

)2
+ Q(x, t)y

⎤⎥⎥⎥⎥⎦dx (4.15)

By inserting (4.15) into (4.4), we will have:

S =
1
2

∫ t2

t1

∫ hk

o

⎡⎢⎢⎢⎢⎣μ(x)(∂y
∂t

)2
− EF(x)

(
∂y
∂x

)2
+ Q(x, t)y

⎤⎥⎥⎥⎥⎦dxdt (4.16)

It is necessary to determine the necessary extremum conditions for (4.16) in
accordance with (4.8) and (4.9). For this purpose, the required partial derivatives
contained in (4.8) are determined as follows:

∂L
∂y = Q(x, t); ∂∂t

(
∂L
∂p

)
= ∂
∂t

⎛⎜⎜⎜⎜⎜⎝ ∂L∂( ∂y
∂t

)
⎞⎟⎟⎟⎟⎟⎠ = ∂

∂t

(
1
2μ(x) · 2∂y

∂t

)
= μ(x) ∂

2 y
∂t2 ;

∂
∂x

(
∂L
∂q

)
= ∂
∂x

⎛⎜⎜⎜⎜⎜⎝ ∂L∂( ∂y
∂x

)
⎞⎟⎟⎟⎟⎟⎠ = ∂

∂x

(
−1
2 EF(x) · 2∂y

∂x

)
= −∂

∂x

[
EF(x) ∂y

∂x

]
;

∂2

∂t2

(
∂L
∂r

)
= ∂2

∂t2

⎛⎜⎜⎜⎜⎜⎝ ∂L

∂
(
∂2 y
∂t2

)
⎞⎟⎟⎟⎟⎟⎠ = 0;

∂2

∂t∂x

(
∂L
∂S

)
= ∂2

∂t∂x

⎛⎜⎜⎜⎜⎜⎝ ∂L

∂
(
∂2 y
∂t∂x

)
⎞⎟⎟⎟⎟⎟⎠ = 0;

∂2

∂x2

(
∂L
∂u

)
= ∂2

∂x2

⎛⎜⎜⎜⎜⎜⎝ ∂L

∂
(
∂2 y
∂x2

)
⎞⎟⎟⎟⎟⎟⎠ = 0.

(4.17)
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By substituting the found values of the partial derivatives into (4.8), the following
is obtained:

Q(x, t) − μ(x)∂
2y
∂t2 +

∂
∂x

[
E · F(x)∂y

∂x

]
= 0 (4.18)

or

μ(x)
∂2y
∂t2 −

∂
∂x

[
EF(x)

∂y
∂x

]
= Q(x, t) (4.19)

(4.19) is the equation of the longitudinal oscillations of the root under the action
of the external longitudinal load Q(x, t). Further, expressions of all values that are
included in (4.8) will be found. Since the root has the shape of a cone, we find that its
area of cross-section F(x) at the point that is located at an arbitrary distance x from
point O will be:

F(x) = πx2tan2γk (4.20)

It is obvious that the mass per length of the root can be determined using the
following expression obtained using (4.18) too:

μ(x) = ρF(x)= ρπx2tan2γk (4.21)

where ρ is the density of the root in kg·m−3.
Since the value Q(x, t) in (4.17), represents the intensity of the distributed load

measured in N·m−1, the perturbing force in the right-hand member of (4.19) in each
specific case must be measured as the intensity of load. It is possible to determine
the intensity of a concentrated load with the use of the first-order impulse function
σ1(x) (m−1) [20] (Dirac delta function) and to thereby include concentrated forces
and moments of force in the contents of the load distributed over the length.

According to [20], σ1(x) is a function that is equal to zero at all values of x except
x = 0, where it goes to infinity and is, at the same time equal to

∫ x
0 σ1(x)dx = σo(x),

where σo(x)—a unit function defined as follows: σo(x) =

{
0 at x < 0,
1 at x ≥ 0.

If Qzb.(t) is the concentrated disturbing force applied to point x1 and measured
in Newtons, then the function

Qzb.(x, t) = Qzb.(t)σ1(x− x1) (4.22)

has dimensions in N·m−1 and expresses intensity of the concentrated load in point x1.
The function σ1(x− x1) equals zero for all values of x, except for x = x1, where

it is transformed into infinity.
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Let the disturbing force acting according to (4.10), be applied to the root at
distance x1 from the starting point (point O in Figure 4.1). Then, according to (4.22)
we can write

Qzb.(x, t) = Hsinωt · σ1(x− x1) (4.23)

Since the root is connected with the soil, which is an elastic environment,
application of the disturbing force of (4.12) to the root leads to emergence of the force
of resistance of the soil to movement of the root due to its oscillations. This force
also has affects the process of own oscillations of the root in the soil, especially at
the beginning of the oscillations process, until connections of the root with the soil
are destroyed.

It is obvious that the force of resistance of the soil (for the entire body of the root)
is the distributed load along the area of contact of the root with the soil, which is why
we must determine its intensity as the force of resistance of the soil to movement of a
length unit of the root.

Let c be the coefficient of the elastic deformation of the soil applied to the area of
the contact measured in N·m−2. It will now be assumed that the soil surrounding the
root, under the action of the disturbing force H·sinωt, performs forced oscillations
according to the same harmonic law with the amplitude that is determined by elastic
properties of the soil. Then, the intensity P(x, t) in N·m−1 of resistance of the soil to
movement of the root in point x will be:

P(x, t) = 2πcxtanγk · y(x, t) (4.24)

This allows to obtain the following relation for the longitudinal external load
which, transformed using (4.23) and (4.24) becomes:

Q(x, t) = Qzb.(x, t) − P(x, t) = Hsinωt · σ1(x− x1) − 2πcxtanγk · y(x, t), (4.24’)

The total force of the bonding between the root and the soil Rx under the action
of the perturbing force Qzb.(t) is equal to (prior and after integration):

Rx =

∫ h1

0
2πcxtanγk · dx ⇒ Rx = cπh2

1tanγk. (4.25)

where h1—depth of the root’s location (fixation) in the soil (m).
Then, considering (4.20), (4.21), (4.23) and (4.24), we obtain:

ρπx2tan2γk
∂2y
∂t2 −

∂
∂x

[
Eπx2tan2γk

∂y
∂x

]
= Hsinωtσ1(x− x1) − 2πcxtanγk · y(x, t)

(4.26)
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After transforming (4.26), i.e., differentiating the expression in square brackets
with respect to x, the following equation of the oscillatory process is finally obtained:

ρπx2tan2γk
∂2 y
∂t2 − Eπx2tan2γk

∂2 y
∂x2 − 2Eπxtan2γk

∂y
∂x

= Hsinωtσ1(x− x1) − 2πcxtanγk · y(x, t).
(4.27)

Thus, the differential equation of the longitudinal oscillations of the root under
the action of the perturbing force that varies following a harmonic law has been
obtained. Since (4.27) is a linear partial differential equation with variable coefficients,
it can be solved, the same as other equations of similar types, with the use of
some special methods of the calculus of variations based on the application of the
Ostrogradsky–Hamilton principle. They include the direct methods of the calculus
of variations, the application of which is effective in the approximate analysis of the
natural frequencies and mode shapes of the oscillations of a variable cross-section
bar with the nonuniform distribution of stiffness and mass along the bar’s centreline.

The root can be conventionally considered as a body that belongs to the
mentioned type of bars. In the computing practices, the most extensively
applied direct methods of the calculus of variations are the Ritz, Rayleigh and
Galerkin methods.

4.1.3. Finding Mode Shapes and Natural Frequencies of Longitudinal Oscillations of
Root Body

The Ritz method will be applied for finding the mode shapes and natural
frequencies of the longitudinal oscillations of the root body [20].

Given (4.20), (4.21), (4.23) and (4.24), the Hamilton–Ostrogradsky function (4.8)
will look as follows:

S = 1
2

∫ t2

t1

∫ hk
0

{
ρπx2tan2γk

(
∂y
∂t

) 2
− Eπx2tan2γk

(
∂y
∂x

)2
+Hsinωtσ1(x− x1)y(x, t) −−2πcxtanγk y2(x, t)

}
dxdt.

(4.28)

In order to find natural forms and frequencies of longitudinal oscillations of the
root in the soil, the Ritz method can be applied [29]. According to the given method,
we will need to find harmonic longitudinal oscillations of the root as follows:

y(x, t) = φ(x)sin(pt + α) (4.29)

where φ(x) is the natural form of primary oscillations—i.e., the function
that determines continuous population of amplitude longitudinal deviations of
cross-section of the root from their equilibrium positions, m and p is the natural
frequency of primary oscillations, s−1.
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Since natural forms and natural frequencies are related to free oscillations of the
system, in (4.28) we must highlight the part that specifically describes free oscillations
of the system. Obviously, the function will look as follows:

S1 = 1
2

∫ t2

t1

∫ hk
o

[
ρπx2tan2γk

(
∂y
∂t

)2
− Eπx2tan2γk

(
∂y
∂x

)2
− 2πcxtanγky2(x, t)

]
dxdt (4.30)

Inserting (4.29) into (4.30) so values of the partial derivatives from (4.29) are:

∂y
∂t = ϕ(x)pcos(pt + α)
∂y
∂x = ϕ′(x)sin(pt + α)

(4.31)

Inserting (4.29) and (4.31) into (4.30), we will obtain:

S1 = 1
2

∫ t2

t1

∫ hk
0

{
ρπx2tan2γk ·ϕ2(x)p2cos2(pt + α)

− Eπx2tan2γk · [ϕ′(x)]2sin2(pt + α)
− 2πcxtanγkϕ

2(x)sin2(pt + α)
}
dxdt.

(4.32)

The aim of the Ritz method is reduction in the variational problem and the
problem of searching for extremum of function of any independent variables. Such
a reduction is performed by means of selecting a special class of the functions that
depend on a finite number of initially indefinite parameters α1,α2, . . . ,αn from all
possible admissible functions, on which the value of the functional is analysed. The
substitution of such functions into the expression of the functional changes the latter
into a function of the mentioned parameters, the extremum of which can be found
with the use of known elementary methods.

According to the Ritz method, the value of (4.32) is analysed on population of
linear combinations of functions—i.e., expressions that look as follows:

ϕ(x) =
n∑

i = 1

αiψi(x) (4.33)

where αi represents the parameters, variations of which enable us to obtain the
required class of allowed functions; ψi(x) represents the basic functions that are
specifically chosen and are known functions that correspond to geometrical boundary
conditions of the problem.

On the class of (4.33), we have:

S2(ψ) = S2(α1,α2, . . . ,αn) (4.34)
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The first variation of (4.32) is determined by the following expression:

δS2(ψ) =
n∑

i = 1

∂S2

∂αi
δαi (4.35)

Proceeding from the necessary condition for the existence of an extremum of
the functional—that is, δS2(ψ) = 0—the following system of n equations with n
unknown quantities αi is obtained:

∂S2

∂αi
= 0, (i = 1, 2, . . . , n) (4.36)

By solving the system of Equation (4.36) and substituting the found quantities
α1,α2, . . . ,αn into (4.33), the formula for the fundamental modes of oscillations as a
linear combination of the basic functions is obtained.

Inserting (4.33) into (4.32) produces:

S2 = π
2p

∫ hk
0

⎧⎪⎪⎨⎪⎪⎩ρπx2tan2γk

[
n∑

i = 1
αiψi(x)

]2
p2

−Eπx2tan2γk

[(
n∑

i = 1
αiψi(x)

)′]2
−2πcxtanγk

[
n∑

i = 1
αiψi(x)

]2
r

⎫⎪⎪⎬⎪⎪⎭dx.

(4.37)

Since ⎡⎢⎢⎢⎢⎢⎣ n∑
i = 1

αiψi(x)

⎤⎥⎥⎥⎥⎥⎦
2

=
n∑

i,k = 1

ψi(x)ψk(x)αiαk (4.38)

⎡⎢⎢⎢⎢⎢⎣ n∑
i = 1

αiψ
′
i (x)

⎤⎥⎥⎥⎥⎥⎦
2

=
n∑

i,k = 1

ψ′i (x)ψ
′
k(x)αiαk (4.39)

then, considering (4.38) and (4.39), (4.40) will look as follows:

S2 = π
2p

∫ hk
0 −Eπx2tan2γk

n∑
i,k = 1

ψ′i (x)ψ
′
k(x)αiαk − 2πcxtanγk

n∑
i,k = 1

ψi(x)ψk(x)αiαk

]
dx. (4.40)
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The following symbols will now be entered:∫ hk
0 ρπx2tan2γkψi(x)ψk(x)dx = Tik,∫ hk
0 Eπx2tan2γkψ

′
i (x)ψ

′
k(x)dx = Uik,∫ hk

0 2πcxtanγkψi(x)ψk(x)dx = Cik,
(i, k = 1, 2, . . . , n)

(4.41)

By inserting (4.41) into (4.40), we will acquire a functional as a function from the
parameters α1,α2, . . . ,αn:

S2(α1,α2, . . . ,αn) =
π
2p

p2
n∑

i,k = 1

Tikαiαk − π2p

n∑
i,k = 1

Uikαiαk − π2p

n∑
i,k = 1

Cikαiαk (4.42)

The extremum analysis of (4.42) will now performed. For this purpose, we
will differentiate (4.42) with respect to parameters of αi, (i = 1, 2, . . . , n) and equate
the obtained particular derivatives to zero. As a result of this, we will acquire a set
of linear homogeneous equations with respect to the unknowns a1, a2, . . . , an, from
which, in turn, we can find the Ritz frequency equation for longitudinal oscillations
of the root attached in the soil:

∂S2(α1,α2,...,αn)
∂α1

= π
2p p2(2T11α1 + 2T12α2 + . . .+ 2T1nαn)

−−π2p (2U11α1 + 2U12α2 + . . .+ 2U1nαn)

− π2p (2C11α1 + 2C12α2 + . . .+ 2C1nαn);
∂S2(α1,α2,...,αn)

∂α2

= π
2p p2(2T21α1 + 2T22α2 + . . .+ 2T2nαn)

−−π2p (2U21α1 + 2U22α2 + . . .+ 2U2nαn)

− π2p (2C21α1 + 2C22α2 + . . .+ 2C2nαn);
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∂S2(α1,α2,...,αn)

∂αn

= π
2p p2(2Tn1α1 + 2Tn2α2 + . . .+ 2Tnnαn)

−−π2p (2Un1α1 + 2Un2α2 + . . .+ 2Unnαn)

− π2p (2Cn1α1 + 2Cn2α2 + . . .+ 2Cnnαn);

(4.43)
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The obtained partial derivatives (4.43) have been equated to zero and certain
transformations will be carried out. This results in obtaining the following system of
linear homogeneous equations in the unknowns α1,α2, . . . ,αn (as in (4.36)):

(
p2T11 −U11 −C11

)
α1 +

(
p2T12 −U12 −C12

)
α2 + . . .+

(
p2T1n −U1n −C1n

)
αn = 0,(

p2T21 −U21 −C21
)
α1 +

(
p2T22 −U22 −C22

)
α2 + . . .+

(
p2T2n −U2n −C2n

)
αn = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(
p2Tn1 −Un1 −Cn1

)
α1 +

(
p2Tn2 −Un2 −Cn2

)
α2 + . . .+

(
p2Tnn −Unn −Cnn

)
αn = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.44)

According to [30], for the existence of a nonzero solution of a linear homogeneous
system of equations it is necessary (and sufficient) for the determinant of the system
to be equal to zero—i.e.,∣∣∣∣∣∣∣∣∣∣∣

p2T11 −U11 −C11p2T12 −U12 −C12 . . . p2T1n −U1n −C1n
p2T21 −U21 −C21p2T22 −U22 −C22 . . . p2T2n −U2n −C2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
p2Tn1 −Un1 −Cn1p2Tn2 −Un2 −Cn2 . . . p2Tnn −Unn −Cnn

∣∣∣∣∣∣∣∣∣∣∣ = 0 (4.45)

Ritz equation of frequencies (4.45) for the longitudinal oscillations of the root
fixed in the soil. Since (4.45) is an equation of the n-th degree in p2, whose solution
defines the sequence of natural frequencies p2

1 < p2
2 < . . . < p2

n.
It is known that with n > 4 the given equation cannot be solved in radicals,

which is why it is necessary to apply numerical methods using a PC.
However, in reality, as a rule, only the lower frequencies are determined, most

often the first and the second ones, which have the most significant actions on the
technological process that is being analysed.

Therefore, the first and the second frequencies of natural oscillations of the root
will now be determined.

For the purpose of determination of the first and the second frequencies, (4.45)
will look as follows:

p2
1T11 −U11 −C11 = 0 (4.46)

where:
p2

1 =
U11 + C11

T11
(4.47)

Next, the values T11, U11 and C11 in (4.42) are to be calculated. The result of the
calculations is:

T11 =

∫ hk

0
ρπx2tan2γk ·ψ2

1(x)dx (4.48)

U11 =

∫ hk

0
Eπx2tan2γk ·

[
ψ′1(x)

]2
dx (4.49)
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C11 =

∫ hk

0
2πcxtanγk ·ψ2

1(x)dx. (4.50)

For this purpose, it is necessary at this stage to select the basic functions contained
in (4.33).

As is noted in [20], in many cases the mode shapes of oscillations of the
homogeneous bar with a uniform cross-section and the same conditions of fixing as
in the problem under consideration are assumed as the basic functions.

Such basic functions facilitate finding the shapes that meet not only the geometric
boundary conditions required by the Ritz method, but also the dynamic boundary
conditions of the problem.

Therefore, the mode shapes of longitudinal oscillations of a homogeneous bar
with a uniform cross-section fixed at one end will be assumed as the basic functions in
the problem under consideration. According to [20], such shapes appear as follows:

ψi(x) = sin
(2i− 1)πx

2hk
, (i = 1, 2, 3, . . .) (4.51)

Then,

ψ′i (x) =
(2i− 1)π

2hk
cos

(2i− 1)πx
2hk

, (i = 1, 2, 3, . . .) (4.52)

The geometric boundary conditions for a bar with one fixed end appear, according
to [20], as follows:

at x = 0 (at the fixed end) : ψ(0) = 0; (4.53)

at x = hk (at the free end) : ψ′(hk) = 0. (4.54)

The fulfilment of (4.53) and (4.54) has to be checked for (4.51)
and (4.52), respectively: ψi(0) = sin0 = 0, (i = 1, 2, 3, . . .),

ψ′i (hk) =
(2i−1)π

2hk
cos (2i−1)π

2 =
(2i−1)π

2hk
cos
(
πi− π2

)
=

(2i−1)π
2hk

(
cosπicosπ2 + sinπisinπ2

)
=

0, (i = 1, 2, 3, . . .).
Thereby, the requirements of the Ritz method with respect to the basic functions

are satisfied.
Hence, the mode shape of the root’s longitudinal oscillations for any n will

appear, taking into account (4.33), as follows:

φ(x) =
n∑

i = 1

αisin
(2i− 1)πx

2hk
(4.55)
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In particular, to find the first frequency of oscillations (n = 1) the following
shape of longitudinal oscillations of the root is available:

φ(x) = α1ψ1(x) or φ(x) = α1sin
πx
2hk

(4.56)

that is to say

ψ1(x) = sin
πx
2hk

(4.57)

Then,
ψ′1(x) =

π
2hk

cos
πx
2hk

(4.58)

Taking into account (4.48) and (4.57), T11 is computed:

T11 = ρπtan2γk

∫ hk

0
x2sin2 πx

2hk
dx (4.59)

The integration of (4.59) is carried out with the use of the method of integrating
by parts.

After applying said method twice, the following is obtained:

∫ hk

0
x2sin2 πx

2hk
dx =

(
π2 + 6

)
6π2 h3

k (4.60)

Taking into account (4.60), (4.59) assumes the following form:

T11 = ρπtan2γk

(
π2 + 6

)
6π2 h3

k (4.61)

Further, U11 is to be computed. For this purpose, (4.58) is substituted into (4.49),
which results in:

U11 =
Eπ3tan2γk

4h2
k

∫ hk
0 x2

(
1− sin2 πx

2hk

)
dx, or

U11 = Eπtan2γk
π2

4h2
k

∫ hk
0 x2cos2 πx

2hk
dx.

(4.62)

(4.62) is transformed as follows:

U11 =
Eπ3tan2γk

4h2
k

∫ hk

0
x2dx− Eπ3tan2γk

4h2
k

∫ hk

0
x2sin2 πx

2hk
dx (4.63)
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(4.60) is substituted into (4.63); then, after a number of transformations, the
following is obtained:

U11 = Eπtan2γk

(
π2 − 6

)
24

hk (4.64)

Taking into account (4.50) and (4.57), C11 is computed:

C11 = 2cπtanγk

∫ hk

0
xsin2 πx

2hk
dx (4.65)

Using the method of integrating by parts, the following is arrived at:

C11 =
ch2

ktanγk

2π

(
π2 + 4

)
(4.66)

From (4.45), taking into account (4.62), (4.64) and (4.66), after the necessary
transformations, the square of the first frequency is found:

p2
1 =

0.505Etanγk + 2.207chk

0.842ρh2
ktanγk

(4.67)

from which the final expression defining the first frequency of the root’s principal
oscillations is obtained:

p1 =

√
0.505Etanγk + 2.207chk

0.917hk
√
ρtanγk

(4.68)

In order to calculate the first frequency of oscillation p1 according to (4.68), the
necessary values of the quantities contained in it have to be specified. According to [7],
the following is applicable for sugar beet roots: hk = 250 mm, γk = 14◦, E = 18.4 ·
106 N·m−2, ρ = 750 kg·m−3. According to [6], the soil’s elastic deformation coefficient
c is assumed as c = 2 · 105 N·m−3.

After substituting the above-listed values into (4.69), the value of the first
frequency is obtained: p1 = 496.4 s−1, or p1 = 79 Hz.

The obtained calculated value of the first frequency is in high agreement with
the experimental data presented in [7,31], where p1 = 75 . . . 120 Hz.

The first frequency of the free oscillations of the root body of such a value
provides a rather active input in the process of breaking the bonds between the root
and the soil and facilitates the extraction of the root from the soil.

In order to determine the second frequency, (4.45) is used in the following form:∣∣∣∣∣∣ p2T11 −U11 −C11p2T12 −U12 −C12

p2T21 −U21 −C21p2T22 −U22 −C22

∣∣∣∣∣∣ = 0 (4.69)
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After expanding (4.67), the following second-degree equation in the unknown
p2 is arrived at: (

T11T22 − T2
12

)
p4

+(−T11U22 − T11C22 −U11T22 −C11T22 + 2T12U12 + 2T12C12)p2

+U11U22 + U11C22 + C11U22 + C11C22 −U2
12 − 2U12C12 −C2

12 = 0.
(4.70)

The multipliers in (4.70) (second-degree) have to be found: T11 is determined
according to Expression (4.61), U11—according to (4.64), C11—according to (4.66).

It can be concluded from (4.41) that:

T12 = ρπtan2γk

∫ hk

0
x2ψ1(x)ψ2(x)dx (4.71)

Since ψ1(x) is determined from (4.57) and

ψ2(x) = sin
3πx
2hk

(4.72)

by inserting (4.57) and (4.72) into (4.71), we will have:

T12 = ρπtan2γk

∫ hk

0
x2sin

πx
2hk

sin
3πx
2hk

dx (4.73)

The quantity U12 can be found. In accordance with (4.41), the following is
obtained:

U12 = Eπtan2γk

∫ hk

0
x2ψ′1(x)ψ

′
2(x)dx (4.74)

where
ψ′1(x) =

π
2hk

cos
πx
2hk

, ψ′2(x) =
3π
2hk

cos
3πx
2hk

(4.75)

Respectively, we will have:

U12 = Eπtan2γk
3π2

4h2
k

∫ hk

0
x2cos

πx
2hk

cos
3πx
2hk

dx (4.76)

Further, T22 is to be computed. According to (4.41) we will have:

T22 = ρπtan2γk
∫ hk

0 x2ψ2
2(x)dx

ψ2(x) f rom (4.72)
==========⇒

T22 = ρπtan2γk
∫ hk

0 x2sin2 3πx
2hk

dx

(4.77)
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Further, U22 is to be computed. According to (4.41) we will have:

U22 = Eπtan2γk

∫ hk

0
x2
[
ψ′2(x)

]2
dx

(4.75)
===⇒ Eπtan2γk

9π2

4h2
k

∫ hk

0
x2cos2 3πx

2hk
dx (4.78)

Taking into account (4.41):

C12 = 2cπtanγk

∫ hk

0
xsin
πx
2hk

sin
3πx
2hk

dx (4.79)

C22 = 2cπtanγk

∫ hk

0
xsin2 3πx

2hk
dx (4.80)

Thus, the analytic expressions for determining all the quantities included in
the multiplying factors of p4, p2 and the free term of (4.68) (second-degree) have
been obtained.

Using (4.61), (4.64), (4.70), (4.73), and (4.76)–(4.70) in the Mathcad environment,
the values of the first and second frequencies of the free oscillations of the root body
as a function of the value of the soil’s elastic deformation coefficient c are computed.
In accordance with [6], c = 1·105 ∼ 20·105 N·m−3 is assumed. The results of the
calculations are shown in Table 4.1.

Table 4.1. Values of first and second natural frequencies of longitudinal oscillations
of root body.

Elastic
Deformation
Coefficient of

Soil, c (N·m−3)

First Circular
Frequency of

Oscillation, p1

(s−1)

First
Frequency of
Oscillation p1

(Hz)

Second
Circular

Frequency of
Oscillation p2

(s−1)

Second
Frequency of
Oscillation p2

(Hz)

0 480.173 76.422 3318 528.076
2 × 105 491.861 78.282 3321 528.554
4 × 105 503.276 80.099 3323 528.872
6 × 105 514.436 81.875 3326 529.346
8 × 105 525.356 83.613 3329 529.827

10 × 105 536.053 85.315 3331 530.145
12 × 105 546.538 86.984 3334 530.623
14 × 105 556.825 88.621 3337 531.100
16 × 105 566.923 90.229 3339 531.418
18 × 105 576.842 91.807 3342 531.896
20 × 105 586.592 93.359 3344 531.214
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On the basis of the obtained computation results, the graphs of the first and
second frequencies as functions of the soil’s elastic deformation coefficient c have
been plotted (Figures 4.2 and 4.3).

Figure 4.2. Relation between first natural frequency of longitudinal oscillations of
root body and soil’s elastic deformation coefficient c.

Figure 4.3. Relation between second natural frequency of longitudinal oscillations
of root body and soil’s elastic deformation coefficient c.

As can be seen in the presented graph (Figure 3.2), when the value of the soil’s
elastic deformation coefficient c changes within the range of c = 0 2 · 106 N·m−3,
the value of the first circular frequency monotonically increases within the range of
p1 = 480 ∼ 587 s−1 and frequency changes within the range of 76.4–93.4 Hz.
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It can be seen in the graph in Figure 3.3 that the second frequency of the free
oscillations changes insignificantly, as the soil’s elastic deformation coefficient c
changes within the range of c = 0.2·106 N·m−3: the circular frequency varies,
accordingly, within p2 = 3318 ∼ 3344 s−1 and the Hertz frequency varies within
528 ∼ 532 Hz.

The above-described method of computation of the first and second frequencies
of the free oscillations of the root body fixed in the soil allows the values of the
mentioned frequencies to be obtained within quite a wide spectrum of the parameters
of the sugar beet root.

Moreover, on the basis of solving the Ritz equation of frequency (4.45) in the
MathCad environment, it is possible to obtain the value of any frequency of the free
longitudinal oscillations of the root as an elastic solid in an elastic medium.

4.1.4. Forced Longitudinal Oscillations of Root Body

Next, the analysis of the forced oscillations of the root will be discussed. The
exclusively forced oscillations will happen according to the following law:

y(x, t) = φ(x)sinωt (4.81)

where φ(x) is the form of the forced oscillations.
In order to determine the form of the forced oscillations of the root, (4.81) will

be entered into (4.28) in advance to calculate needful derivates:

∂y
∂t

= ωφ(x)cosωt (4.82)

∂y
∂x

= φ′(x)sinωt (4.83)

(4.82) and (4.83) will now be inserted into (4.28), and we will obtain:

S3 = 1
2

∫ t2

t1

∫ hk
0

{
ρπx2tan2γk ·ω2ϕ2(x) cos2ωt− Eπx2tan2γk[ϕ

′(x)]2sin2ωt

+Hσ1(x− x1)ϕ(x)sin2ωt−−2πcxtgγk ·ϕ2(x)sin2ωt
}
dxdt.

(4.84)

By integrating (4.84) over t within the limits of one period T = 2π
ω , we will obtain:

S4 = π
2ω

∫ hk
0

{
ρπx2tan2γk ·ϕ2(x)ω2

−Eπx2 tan2 γk[ϕ
′(x)]2 + Hσ1(x− x1)ϕ(x)

−2πxc tanγk·ϕ2(x) }dx.

(4.85)
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According to the Ritz method, analysis of the value of (4.85) will be performed
with respect to population of linear combinations of the following type:

φ(x) = αψ(x) (4.86)

where α is the parameter, variations of which let us obtain the class of the allowed
functions; ψ(x) is the basis function.

(4.86) will now be inserted into (4.85), and we will obtain:

S4 = π
2ω

∫ hk
0

{
ρπx2tan2γk · α2ψ2(x)ω2

−Eπx2 tan2 γk · α2[ψ′(x)]2 + Hσ1(x− x1)αψ(x)
−2πxc tanγk·α2ψ2(x)

}
dx.

(4.87)

The following symbols will now be inserted:∫ hk

0
ρπx2tan2γk ·ψ2(x)dx = T (4.88)

∫ hk

0
Eπx2tan2γk[ψ

′(x)]2dx = U (4.89)

∫ hk

0
2πcxtanγk ·ψ2(x)dx = M (4.90)

∫ hk

0
Hσ1(x− x1)ψ(x)dx = L (4.91)

(4.86)–(4.89) will now be inserted into (4.85), and we will have:

S4(α) =
π

2ω

(
ω2Tα2 − (U + M)α2 + Lα

)
(4.92)

So, in the population of functions (4.87), (4.88) is transformed into the function
of the independent variable α—(4.92).

The first variation of (4.92) will be equal to:

δS4(α) =
∂S4

∂α
δα (4.93)

The necessary condition of the stationary (4.92) (i.e., existence of the extremum)
is that its first variation equals zero (4.93):

∂S4

∂α
δα = 0 (4.94)
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from which we receive the following equation:

∂S4

∂α
= 0 (4.95)

Differentiating (4.92) over αwill give

∂S4

∂α
=
π

2ω

(
2ω2Tα− 2(U + M)α+ L

)
(4.96)

Taking (4.95) into consideration, the following equation is obtained:

2ω2Tα− 2(U + M)α+ L = 0 (4.97)

from which we find the required value of the parameter α. This will be:

α =
L

2(U + M−ω2T)
. (4.98)

The form of the forced longitudinal oscillations of the rod with the constant
cross-section with one end firmly attached, emerging under the action of the
longitudinal harmonic force of frequency ω, applied at the point x = x1 will
now be assumed as the basis function ψ(t).

According to [20], the form of the forced oscillations of the given rod looks
as follows:

ψ(x) = D1sinax with x ≤ x1 (4.99)

ψ(x) = D2cosa(hk − x) with x > x1, (4.100)

where:

D1 =
−1
aEF

cosa(hk − x1)

cosahk
(4.101)

D2 =
−1
aEF

sinax1

cosahk
(4.102)

a = ω

√
μ

EF
(4.103)

μ is the mass per length of the rod; F is the area of the longitudinal section of the
rod; E is the Young’s module for material of the rod; h is the length of the rod; ω is
the frequency of the forced oscillations of the rod.

Further, it is necessary to check the fulfilment of the boundary conditions
for the basic functions (4.99) and (4.100). These are different for the fixed end
of the bar (x = 0 ⇒ ψ(0) = D1 · sin0 = 0) and for the free end of the bar
(x = hk ⇒ ψ′(hk) = 0).
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The derivative of (4.100) is to be computed. It is equal to:

ψ′(x) = D2asina(hk − x) (4.104)

Therefore, ψ′(hk) = D2asina(hk − hk) = D2asin0 = 0.
Hence, the boundary conditions for the basic functions (4.99) and (4.100)

are fulfilled; therefore, the assumed basic functions meet the requirements of the
Ritz method.

Further, the values of the quantities T, U, M and L that enter into Expression
(4.96) are to be computed.

In accordance with (4.99) and (4.100), the following can be written down:

T = ρπtan2γk

⎡⎢⎢⎢⎢⎣∫ x1

0
x2D2

1sin2axdx +
∫ hk

x1

x2D2
2cos2a(hk − x)dx

⎤⎥⎥⎥⎥⎦ (4.105)

By integrating the parts twice, the following values are obtained for the integrals
contained in (4.105):∫ x1

0
x2sin2axdx =

x3
1

6
− x2

1sin2ax1

4a
− x1cos2ax1

4a2 +
sin2ax1

8a3 (4.106)

∫ hk
x1

x2cos2a(hk − x)dx =
h3

k
6 −

x3
1

6 + 1
4a x2

1sin(2ahk − 2ax1) +
1

4a2 hk

− 1
4a2 x1cos(2ahk − 2ax1) − 1

8a3 sin(2ahk − 2ax1).
(4.107)

After substituting (4.106) and (4.107) into (4.105) and carrying out a number of
algebraic transformations, it is found that:

T = ρπtan2γk

{
D2

1

(
x3

1
6 −

x2
1sin2ax1

4a − x1cos2ax1
4a2 + sin2ax1

8a3

)
+D2

2
x1cos(2ahk−2ax1)

4a2 − sin(2ahk−2ax1)

8a3

]}
.

(4.108)

In order to determine the quantity U, the derivative of (4.99) is computed. This
is as follows:

ψ′(x) = D1acosax (4.109)

By substituting (4.104) and (4.109) into (4.89), the following is arrived at:

U = Eπtan2γk

⎡⎢⎢⎢⎢⎣∫ x1

0
D2

1a2x2cos2axdx +
∫ hk

x1

D2
2a2x2sin2a(hk − x)dx

⎤⎥⎥⎥⎥⎦ (4.110)

(4.108) can be rearranged as follows:

U = Eπtan2γk (4.111)
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or

U = Eπtan2γk − D2
2a2

∫ hk

x1

x2cos2a(hk − x)dx

⎤⎥⎥⎥⎥⎦. (4.112)

Further, (4.106) and (4.107) are substituted into (4.112). After a number of
transformations, the final result is:

U = Eπtan2γk

[
D2

1a2x3
1

6 +
D2

2a2(h3
k−x3

1)
6 + D2

1

(
x2

1 sin 2ax1
4 + x1 cos 2ax1

4 − sin 2ax1
8a

)
−D2

2

(
x2

1a sin(2ahk−2ax1)

4 +
hk
4 − x1 cos(2ahk−2ax1)

4 − sin(2ahk−2ax1)
8a

)]
.

(4.113)

In order to determine the quantity M, the values of the basic functions (4.99) and
(4.100) are substituted into (4.90):

M = 2πcD2
1tanγk

∫ x1

0
xsin2axdx + 2πcD2

2tanγk

∫ hk

x1

xcos2a(hk − x)dx (4.114)

Using the method of integration by parts, the following is found:

M = 2πcD2
1tanγk

(
x2

1
4 − x1sin2ax1

4a + 1−cos2ax1
8a2

)
+2πcD2

2tanγk

[
1−cos2a(hk−x1)

8a2 − (hk−x1)
2

4 +
hk(hk−x1)

2 +
x1sin2a(hk−x1)

4a

]
.

(4.115)

In order to determine the quantity L, the values of the basic functions (4.99) and
(4.100) are substituted into (4.91) and the following is obtained:

L =

∫ x1

0
Hσ1(x− x1)D1sinaxdx +

∫ hk

x1

Hσ1(x− x1)D2cosa(hk − x)dx. (4.116)

The integrals in (4.116) have to be computed.
Since (4.116) for determining the coefficient L contains the impulse function

σ1(x− x1), which does not belong to classical functions, it is to be noted that the
computation of integrals containing such a function has to be carried out with the
use of the method of integrating generalised functions.
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The computation starts with finding the following integral and considering the
definition and properties of the function σ1(x− x1)

HD1
∫ x1

o σ1(x− x1)sinaxdx
= HD1 lim

∫ x1−ε
o σ1(x− x1)sinaxdx

+HD1 lim
∫ x1+ε

x1−ε σ1(x− x1)sinaxdx

= 0 + HD1sinax1 lim
∫ x1+ε

x1−ε σ1(x− x1)dx.

When lim
∫ x1+ε

x1−ε σ1(x− x1)dx = 1 =⇒
HD1

∫ x1
o σ1(x− x1)sinaxdx = HD1sinax

(4.117)

Then, we can write:

HD2
∫ hk

x1
σ1(x− x1)cosa(hk − x)dx = HD2

∫ hk
x1
σ1(x− x1)cosa(hk − x)dx

= HD2 lim
∫ hk

x1+ε
σ1(x− x1)cosa(hk − x)dx = 0 =⇒

HD2
∫ hk

x1
σ1(x− x1)cosa(hk − x)dx = 0.

(4.118)

After substituting the values of (4.117) and (4.118) into (4.116), the value of L is
found. This is equal to:

L = HD1sinax1 (4.119)

By substituting (4.108), (4.113), (4.115) and (4.119) into (4.98), the necessary value
of parameter α that allows for the stationary value of (4.85) is obtained.

Taking into consideration (4.86), (4.99) and (4.100), we can obtain the expression
for the form of the forced oscillations of the root attached in the soil. They look as
follows:

φ(x) = α ·D1sinax, with x ≤ x1,
φ(x) = α ·D2cosa(hk − x), with x > x1

(4.120)

where α is determined according to (4.98).
Having inserted (4.120) into (4.81), we can obtain the final law of the forced

oscillations of the root attached in the soil. If we take into consideration the action of
the disturbing force Hsinωt, the given law will be as follows:

y(x, t) = D1αsinaxsinωt, with x ≤ x1

y(x, t) = D2αcosa(hk − x)sinωt, with x > x1
(4.121)

For performing the numerical calculations of the forced oscillations of a root
fixed in the soil, it is necessary to determine a number of the parameters present in
(4.120) and (4.121). For example, the parameters D1, D2 and a are determined with
the use of (4.101), (4.102) and (4.103), respectively.
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As the above-mentioned expressions contain the earlier defined quantities E, F,
μ and hk, which are parameters of the uniform cross-section bar, the shapes of forced
oscillations, which have been assumed as the basic functions, and said quantities
have to be found. It is assumed that the mass of the bar with a uniform cross-section
is equal to the mass of the root, which implies that the bar and the root have the same
inertia properties.

It is also assumed that the specific gravity of the bar’s material is equal to the
root’s density ρ. Hence, the bar and the root must have the same volume. One more
assumption is that the bar and the root are of equal length hk, which is essential in
the case of longitudinal oscillations.

Hence, the root’s volume is equal to:

Vk =
1
3
πr2

khk (4.122)

where rk—radius of the root (m) (that is, the radius of the cone base, as the root is in
effect considered to be a cone-shaped solid).

The volume of the bar (cylinder of revolution) is equal to:

Vcm. = πr2
cm.hk (4.123)

where rCT.—radius of the bar (m).
Equating (4.122) and (4.123), i.e., Vk = Vcm., is also possible to obtain the bar’s

radius rCT. =
rk√

3
.

Hence, the bar’s cross-section area F is equal to:

F =
1
3
πr2

k (4.124)

while the bar’s linear density μ is equal to:

μ = ρF =
1
3
ρπr2

k (4.125)

It is also assumed that the materials of the bar and the root have the same Young
modulus, which is equal to E.

The results of the theoretical investigation of the forced oscillations of a root fixed
in the soil can be used for setting up the algorithm of computation of said oscillations.

1. The parameters needed for computation have to be set.
The length (height) of the root hk, its angle of taper γk, the Young modulus E for

the root body, the specific gravity ρ of the root, force POΠ. of resistance to the vertical
extraction of a not undercut root from the soil are assumed, in accordance with [7],
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to be equal to: hk = 250 · 10−3 m; γk = 14◦; E = 18.4·106 N·m−2; ρ = 750 kg·m−3;
POΠ. = 439 ∼ 481 N.

The other parameters that govern the process of vibrational digging of roots can
be obtained with the use of the standard methods of computation as for root’s radius
rk = hktanγk = 250tan14◦ = 250 · 0.2493 = 62 mm. The amplitude H of the
perturbing force is to be selected subject to the following condition: H > POΠ.. Hence,
taking into account the value of the resistance force POΠ., H = 500 N is assumed.

The frequency ω of the perturbing force is assumed, in accordance with [6],
equal to ω = 125.6 s−1.

2. The parameter a is computed with the use of Expression (4.103), or, after a
number of its transformations, the expression of the following form:

a = ω

√
ρ

E
(4.126)

The parameters D1 and D2 are computed with the use of Expressions (4.101)
and (4.102), respectively, or, after a number of their transformations, the expressions
of the following forms:

D1 =
−3

aEπr2
k

cosa(hk − x1)

cosahk
(4.127)

and
D2 =

−3
aEπr2

k

sinax1

cosahk
(4.128)

(the latter two expressions are obtained from (4.101) and (4.102) by substituting the
values found in (4.124) into them).

4. After this, parameter α is computed with the use of (4.98).
5. The expression for the shapes of the forced oscillations is generated in

accordance with (4.120):

ϕ(x) = αD1sinax, at x ≤ x1

ϕ(x) = αD2cosa(hk − x), at x > x1
(4.129)

6. In accordance with (4.81), the law of the root’s forced oscillations is established:

y(x, t) = ϕ(x) sinωt (4.130)

where φ(x) is determined in accordance with (4.129).
7. Further, the maximum value of the amplitude of the forced oscillations

is found:
max(D1α, D2α) (4.131)
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8. It is necessary to carry out the comparative assessment of the obtained
maximum value of the amplitude of the forced oscillations against the amplitude
that is permissible with regard to the breaking of the root:

max(D1α, D2α) ≤ [φ] (4.132)

where [φ]—amplitude that is permissible for the root with regard to its tensile fracture
(m).

9. In case the inequality of opposite sense is true, it is necessary to reduce the
amplitude of the perturbing force and repeat the computation.

In what follows, an example of the PC-assisted computation of the amplitude of
the longitudinal oscillations of the root body fixed in the soil is presented.

The calculation is performed using the Mathcad program in order to determine
the relations between the amplitude of the forced longitudinal oscillations of the
body of the root attached in the soil from the coefficient c of the elastic deformation
of the soil surrounding the root, and the distance of the cross-section of the root
from the conditional point of its attachment for the frequency of the disturbing force
v = 10 Hz and v = 20 Hz.

On the basis of the calculations, we obtained the following graphs (Figures 4.4
and 4.5).

As it is seen from the graphs stated above, in the case of an increase in the
coefficient c of the elastic deformation of the surrounding soil, the amplitude of the
forced oscillations of the root is reduced, and in the case of an increase in the distance
x of the cross-section of the root from the point of conditional attachment with x ≤ x1

it is increased, and with x ≥ x1 it almost does not change.
Figure 4.5 shows the given relation for a number of specific cross-sections of the

root, in particular: for x = 0.07 m; 0.1 m; 0.12 m; 0.15 m (point of gripping).
On the given graph we can quite clearly see the tendency of increase in the

amplitude of the forced longitudinal oscillations in the case of an increase in the
distance of the cross-section from the conditional point of attachment and the tendency
of its reduction due to increase in the coefficient c of the elastic deformation of the
surrounding soil.

For example, with x = 0.07 m and change in the coefficient c within the limits
c = 0–20·105 N·m−3, the amplitude is changed within the limits of 0.7–0.47 mm; with
x = 0.1 m—within the limits of 0.67-0.99 mm; with x = 0.12 m—within the limits of
0.81–1.19 mm; with x = 0.15 m (point of gripping)—within the limits of 1.01–1.49 mm.

However, as the graph in Figure 4.6 shows, for cross-section of the root above
the point of gripping (x ≥ 0.15 m) the amplitude of forced oscillations of the body of
the root with increasing distance of the cross-section from the conditional point of
attachment almost does not change and remains the same as in the case of x = 0.15 m.
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However, the tendency of decrease in the amplitude from increase in the coefficient c
is the same as for the sections below the point of gripping (x ≤ 0.15).

  

(a) (b) 

Figure 4.4. Relation between the amplitude of the forced longitudinal
oscillations of the root as an elastic body attached in the soil and
the coefficient c of the elastic deformation of the surrounding soil, and
between the distance x of the cross-section of the root and the conditional
point of attachment: (a) x ≤ x1; (b) x ≥ x1, (x1—point of gripping,
ν = 20 Hz).
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Figure 4.5. Relation between the amplitude of the forced longitudinal oscillations of
the root as an elastic body and the distance x of the cross-section of the conditional
point of attachment x ≤ x1, ν = 20 Hz.

 

Figure 4.6. Relation between the amplitude of the forced longitudinal oscillations of
the root as an elastic body and the distance x of the cross-section from the conditional
point of attachment (x ≥ x1), v = 20 Hz.

In the case of the frequency of the disturbing force ν = 10 Hz, values of the
amplitude are slightly lower. For example, with x = 0.07 m the value of the amplitude
remains within the limits of 0.45–0.66 mm; with x = 0.1—within the limits of 0.65–0.94
mm; with x = 0.12 m—within the limits of 1.13–0.78 mm; with x = 0.15 m (point of
gripping)—within the limits of 0.97–1.41 mm.
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Additionally, we have obtained the estimated relation between the amplitude of
the forced longitudinal oscillations of the body of the root and the amplitude of the
disturbing force for the frequency of the disturbing force v = 20 Hz (Figures 4.7
and 4.8).

Figure 4.7. Relation between the amplitude of the forced longitudinal oscillations of
the body of the root and the amplitude of the disturbing force (x ≤ x1, ν = 20 Hz).

Figure 4.8. Relation between the amplitude of the forced longitudinal oscillations of
the body of the root and the amplitude of the disturbing force (x ≥ x1, ν = 20 Hz).

As it is seen from the presented graphs, an increase in the amplitude of the
disturbing force leads to increase in the amplitude of longitudinal forced oscillations
of the body of the root according to the linear law.
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It should also be noted that below the point of gripping (x ≤ 0.15 m), with an
increase in the distance of the cross-section of the root from the conditional point of
attachment O, the amplitude also increases (Figure 4.7). For example, with x = 0.07 m
the amplitude remains within the limits of 0.13~0.8 mm; with x = 0.1 m—within
the limits of 0.19~1.14 mm; with x = 1.12 m—within the limits of 0.23~1.36 mm;
with x = 0.15 m (point of gripping)—within the limits of 0.28~1.7 mm. However,
above the point of gripping (x ≥ 0.15 m), in the case of an increase in distance of the
cross-section from the conditional point of attachment O, the amplitude almost does
not change, as is shown on the graph in Figure 4.8.

In the case of the frequency of the disturbing force v = 10 Hz, the obtained
values of amplitudes were a little bit lower; however, for v = 10 Hz they were
the same. For example, with x = 0.07 m the amplitude remains within the limits of
0.12~0.76 mm; with x = 0.1 m—within the limits of 0.18~1.08 mm; with x = 0.12 m
—within the limits of 0.21~1.3 mm; with x = 0.15 m (point of gripping)—within the
limits of 0.27~1.62 mm.

Respectively, the obtained values of the frequencies of natural longitudinal
oscillations and amplitudes of the forced longitudinal oscillations of the body of the
root foster the process of intense knocking of the soil that adhered to the roots, and in
the case of such amplitudes, tearing of the bodies of the roots is unlikely.

4.2. Theory of Transverse Oscillations of Root as Elastic Solid Fixed in Soil

4.2.1. Free Transverse Oscillations of Root as Elastic Solid Fixed in Soil

At the initial stage of the development of vibrational digging tools for beet
harvesters, the forces were imparted on the root in the transverse horizontal plane, at
a right angle to the line of translational motion of the lifter.

Nevertheless, despite the quite thorough analytical investigations of the process
of vibrational digging of sugar beet roots by applying to them perturbing forces in
the transverse horizontal plane as well as the full-scale engineering projects along
this line of development, the industrial production of several pilot units and the
performance of elaborate experimental studies and official tests, such vibrational
digging tools have not gained ground.

The main reason for this was the conclusion that such vibrational lifting tools
are unable to deliver a sufficiently high rate of travel (and, accordingly, a sufficiently
high labour efficiency) subject to retaining the required harvesting quality indicators,
which resulted from the fact that applying the perturbing forces to the beet roots
in the plane that was perpendicular to the line of the lifter’s translational motion
would lead to the constant plugging of its working channel with root bodies and soil,
break-off of the roots’ tail parts and the complete loss of the self-cleaning ability. The
power consumption rate of this process was also too high.
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As was later established in experiments, the negative phenomenon could be
completely avoided by switching the line of action of the perturbing forces from
the transverse horizontal plane and the alignment perpendicular to the line of the
lifter’s translational motion into the longitudinal vertical plane. This changeover
brought about a very good performance in the harvesting of sugar beet roots at high
rates of travel. Virtually all universally known manufacturers of beet harvesting
machinery launched the production of beet harvesters with vibrational lifting tools,
which operated based on the principle of imparting perturbing forces to the roots in
the longitudinal vertical plane.

In what follows, the case of transverse free and forced oscillations of the root
body, where the directions of the perturbing forces and the translational motion of
the vibrational lifting tool coincide, is analysed. Said case has not been investigated
and is of considerable interest, both from the theoretic and practical points of view,
as the alteration of the line of action of the perturbing force gives rise to substantial
changes in the course of the process of vibrational lifting of roots. For example,
with the mentioned line of action of the perturbing force the bonds between the
root and the soil are broken more effectively (what is known as the loosening effect
takes place); furthermore, the build-up of roots and soil in the working channel
of the vibrational lifter is significantly reduced. In addition to this, the design of
the vibrational lifter that operates on the described principle is less energy- and
metal-intensive, etc. However, it will be proved theoretically that even with said line
of action of the perturbing force certain deficiencies are observed, contrary to the
longitudinal oscillations.

In the development of the theory of the transverse oscillations of the root body,
assumptions similar to those stated in [20] are made. For example, in the first instance,
it is assumed that the centreline of the root in the unstrained state is strictly rectilinear
and coincides with the line of the centroids of the root’s cross-sections; at the same
time, the deflection of individual points on the root’s centreline is vectored at a right
angle to its rectilinear unstrained line. Further, it is assumed that the deflections
of points on the root’s centreline during transverse oscillations are contained in the
same plane and are small deflections in the sense that the associated restoring forces
remain within the range of proportionality.

First of all, it is necessary to set up the equivalent schematic model with a root
that has its bottom point fixed (Figure 4.9).
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Figure 4.9. Equivalent schematic model of transverse oscillations of root body at
the moment when vibrational digging tool grips it.

The root is a cone-shaped solid (its apex angle is equal to 2γk, the upper part of it
is positioned above the level of the soil surface) modelled as a variable cross-section
bar with its lower end fixed (point O). At the same time, the cone is assumed to be
cut off at point O. The force of the root’s weight G is applied at the centre of mass
designated as point C. The total length of the root is hk. The vertical coordinate
axis Oz, the origin of which coincides with the conventional point of fixation O, is
drawn through the root’s symmetry axis. The bonding between the root and the
soil is defined by the soil’s total reaction R. The above-mentioned perturbing force
is applied to the root simultaneously from the two digging shares on its two sides;
therefore, in the schematic model it is represented by the two components Qzb.1 and
Qzb.2. Said forces are applied at a distance of z1 from the origin of coordinates (point
O) and they give rise to the root’s transverse oscillations, which break the bonds
between the root and the soil and create the conditions for its extraction from the soil.

In the development of the theory of the transverse oscillations of the body of a
root fixed in the soil, the Ostrogradsky–Hamilton variation principle will be applied.
In this context, it is assumed that the transverse oscillations of the root are generated
by the action of a horizontal perturbing force, which varies according to the harmonic
law of the following form:

Qzb. = Hsinωt (4.133)

where H—amplitude of the perturbing force (m); ω—frequency of the perturbing
force (s−1).
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Further, it is necessary to set up the Ostrogradsky–Hamilton function that
describes the transverse oscillations of the root.

Under the above-listed assumptions, the deflections of the points on the root’s
centreline during transverse oscillations are uniquely defined by the following
function of two variables:

y = y(z, t) (4.134)

where z—distance from the point on axis Oz, through which the root’s cross-section
passes, to the conventional point of the root fixation in the soil O (m); t—current time
(s).

The following designations are necessary for further considerations:

μ(z)—linear density (mass of a length unit) of the root (kg·m−1);
E1—Young modulus of the material of the root (N·m−2);
J(z)—moment of inertia of a cross-section of the root about the neutral axis of the
cross-section, which is at right angle to the oscillation plane (m4);
Q(z, t)—intensity of the transverse external load vectored at a right angle to the axis
of the root (axis Oz) along axis Ox (N·m−1).

According to [20], the Ostrogradsky–Hamilton functional for a variable
cross-section bar performing transverse oscillations under the action of an external
transverse load is as follows:

S =
1
2

∫ t2

t1

∫ hk

0

⎡⎢⎢⎢⎢⎢⎣μ(z)(∂y
∂t

)2
− E1 J(z)

(
∂2y
∂z2

)2
+ Q(z, t)y

⎤⎥⎥⎥⎥⎥⎦dzdt (4.135)

Taking into account the fact that the root is modelled by a conically shaped
solid, the quantities that enter into (4.135) will be expressed in terms of the main
parameters of the conic surface.

Obviously, the linear density of the root can be determined with the use of the
following expression:

μ(z) = ρπz2tan2γk (4.136)

where ρ—specific gravity of the root’s material (kg·m−3).
The moment of inertia J(z) is determined as follows:

J(z) =
πz4tan4γk

4
(4.137)

Since the quantity Q(z, t) contained in (4.137) is an intensity of distributed load
measured in N·m, the perturbing force Qzb. that is a concentrated load measured
in newtons (N) also has to have the unit of measurement N·m. For this purpose,
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the impulse function of the first-order σ1(z) [20], determined as shown below,
is introduced:

σ1(z) =

{ ∞ atz = 0,
0 atz � 0,

z∫
0

σ1(z)dz = σo(z)

where σo(z)—unit function: σo(z) =

{
0 atz < 0,
1 atz ≥ 0.

Thus, while Qzb.(t) is a concentrated perturbing force applied at point z1 and
measured in newtons, the function:

Qzb.(z, t) = Qzb.(t)σ1(z− z1) (4.138)

has the unit of measurement N·m and expresses the intensity of concentrated load at
point z1. The function σ1(z− z1) is equal to zero for all values of z except z = z1,
where it goes to infinity.

Hence, taking into consideration (4.133), the following can be written down:

Qzb.(z, t) = Hsinωtσ1(z− z1) (4.139)

As the root at the beginning of the oscillatory process is strongly bonded to
the soil, which is an elastic medium, the force of the soil’s resistance to the root’s
transverse oscillations arises, when the perturbing force (4.133) acts on the root. It is
obvious that the soil’s resistance force (for the whole root body) is a load distributed
over the area of contact between the root and the soil. Moreover, it is an external
force with respect to the root body and it acts as a perturbing force applied by the
soil to the root.

Further, the designation c will denote the coefficient of the soil’s elastic
deformation (ratio between the first Winckler coefficient and the area of contact)
(N/m3). It is assumed that during transverse oscillations the root rests on the soil with
half of its side surface throughout the whole depth of the root in the unbroken soil.
The soil that contacts with that half of the side surface generates a distributed load
vectored opposite to the perturbing force. Thus, during the transverse oscillations of
the root and the digging tool itself, a distributed load arises on one side of the root
after the other. Said load is applied to the root by the soil and is vectored opposite to
the perturbing force.
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Hence, considering the aforesaid information, it is possible to state that to a
certain approximation the intensity of the distributed load of the soil’s resistance
P(z, t) is equal to:

P(z, t) = πcztanγk · y(z, t) (4.140)

Since the perturbing forces applied by the vibrational digging tool and the
resisting soil are vectored oppositely to each other, the resulting perturbing force
acting on the root is equal to:

Q(z, t) = Qzb.(z, t) − P(z, t),

or, taking into account (4.139) and (4.140), the following expression is obtained:

Q(z, t) = Hsinωtσ1(z− z1) −πcztanγk · y(z, t) (4.141)

Hence, taking into account (4.136), (4.137) and (4.141), (4.135) will be as follows:

S = 1
2

∫ t2

t1

∫ hk
o

{
ρπz2tan2γk

(
∂y
∂t

) 2
− E1

πz4tan4γk
4

(
∂2 y
∂z2

)2
+

Hsinωtσ1(z− z1)y(z, t) −πcztanγky2(z, t)
}
dzdt.

(4.142)

It is necessary to first analyse the free transverse oscillations of the root fixed in
the soil as an elastic solid in an elastic medium.

For this purpose, it is necessary to separate, in (4.142), the part that represents
the free oscillations of the system.

Apparently, this functional has the following appearance:

S1 = 1
2

∫ t2

t1

∫ hk
o

[
ρπz2tan2γk

(
∂y
∂t

)2 −E1πz4tan4γk
4

(
∂2 y
∂z2

)2
−πcztanγk · y2(z, t)

]
dzdt (4.143)

The basis for finding the mode shapes and natural frequencies of the free
oscillations of the root in the soil is provided by the general principle of the linear
theory of oscillations—i.e., the principle of superposition of small oscillations.
Following the mentioned principle, the harmonic transverse oscillations of the
following form have to be found:

y(z, t) = φ(z)sin(pt + α) (4.144)

where φ(z)—fundamental mode of oscillations—i.e., the function that defines the
continuous set of transverse amplitude (peak) deflections of the root’s centreline from
its equilibrium position (m); p —natural frequency of the transverse oscillations (s−1).
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Further, having initially computed all necessary derivatives of (4.144), (4.144) is
substituted into (4.143):

∂y
∂t

= ϕ(z)pcos(pt + α),
∂2y
∂z2 = ϕ′′ (z)sin(pt + α). (4.145)

By substituting (4.144) and (4.145) into (4.143), the following is obtained:

S1 = 1
2

∫ t2

t1

∫ hk
o

{
ρπz2tan2γk ·ϕ2 (z)p2cos2(pt + α) − E1πz4tan4γk

4

[ϕ′′ (z)]2sin2(pt + α) −πcztanγk ·ϕ2(z)sin2(pt + α)
}
dzdt.

(4.146)

After integrating (4.146) with respect to t over one period T = 2π
p , the result is:

S1 = π
2p

∫ hk
o

{
ρπz2tan2γk ·ϕ2(z)p2 − E1πz4tan4γk

4 [ϕ′′ (z)]2 −πcztanγk ·ϕ2(z)
}
dz (4.147)

For finding the modes and frequencies of the free transverse oscillations of the
root in the soil, the Ritz method can be applied.

Following the Ritz method, the values of (4.147) are analysed over the set of the
linear combinations of functions of the following form:

φ(z) =
n∑

i = 1

αiψi(z) (4.148)

where αi—parameters, the variation of which allows the obtention of the required
class of admissible functions; ψi(z)—basic functions, which are the specially selected
and known functions that meet the geometric conditions of the problem.

Hence, by substituting (4.148) into (4.147), the following is arrived at:

S1 = π
2p

∫ hk
o

{
ρπz2tan2γk

[∑n
i = 1 αiψi(z)

] 2
p2 − E1πz4tan4γk

4[∑n
i = 1 αiψ

′′
i (z)

]2 −πcztanγk
[∑n

i = 1 αiψi(z)
]2}

dz.
(4.149)

Since ⎡⎢⎢⎢⎢⎢⎣ n∑
i = 1

αiψi(z)

⎤⎥⎥⎥⎥⎥⎦
2

=
n∑

i,k = 1

ψi(z)ψk(z)αiαk, (4.150)

⎡⎢⎢⎢⎢⎢⎣ n∑
i = 1

αiψ
′′
i (z)

⎤⎥⎥⎥⎥⎥⎦
2

=
n∑

i,k = 1

ψ′′i (z)ψ
′′
k (z)αiαk, (4.151)
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(4.150) and (4.151) are substituted into (4.149) and the following expression of
the functional represented by a quadratic form is obtained:

S1 = π
2p

∫ hk
0

[
ρπz2tan2γk · p2 ∑n

i,k = 1 ψi(z)ψk(z)αiαk − E1πz4tan4γk
4 ×∑n

i,k = 1 ψ
′′
i (z)ψ

′′
k (z)αiαk −πcztanγk

∑n
i,k = 1 ψi(z)ψk(z)αiαk

]
dz.

(4.152)

Further, the following designations are introduced:∫ hk
o ρπz2tan2γk ·ψi(z)ψk(z)dz = Tik,

∫ hk
o

E1πz4tan4γk
4 ψ′′i (z)ψ

′′
k (z)dz

= Uik,
∫ hk

o πcztanγk ·ψi(z)ψk(z)dz = Cik, (i, k = 1, 2, . . . , n).
(4.153)

By substituting (4.153) into (4.152), the functional represented by a function of
the parameters α1,α2, . . . ,αn is obtained:

S1(α1,α2, . . . ,αn) = π
2p p2 ∑n

i,k = 1 Tikαiαk − π2p
∑n

i,k = 1 Uikαiαk − π2p
∑n

i,k = 1 Cikαiαk (4.154)

It is necessary to determine the set of the parameters α1,α2, . . . ,αn, at which
Functional (4.154) assumes a stationary value. For this purpose, (4.154) has to be
differentiated with respect to the parameters αi(i = 1, 2, . . . , n) and the obtained
partial derivatives have to be equal to zero.

This will result in obtaining the following system of linear homogeneous
equations in the unknown quantities α1,α2, . . . ,αn:

(
p2T11 −U11 −C11

)
α1 +

(
p2T12 −U12 −C12

)
α2 + . . .+

(
p2T1n −U1n −C1n

)
αn = 0,(

p2T21 −U21 −C21
)
α1 +

(
p2T22 −U22 −C22

)
α2 + . . .+

(
p2T2n −U2n −C2n

)
αn = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(
p2Tn1 −Un1 −Cn1

)
α1 +

(
p2Tn2 −Un2 −Cn2

)
α2 + . . .+

(
p2Tnn −Unn −Cnn

)
αn = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.155)

where the coefficients Uik, TikCik(i, k = 1, 2, . . . , n) are determined in accordance with
(4.153).

In order for a nonzero solution of a system of linear homogeneous equations to
exist, it is necessary for the determinant of the system to be equal to zero—i.e.,∣∣∣∣∣∣∣∣∣∣∣

p2T11 −U11 −C11p2T12 −U12 −C12 . . . p2T1n −U1n −C1n
p2T21 −U21 −C21p2T22 −U22 −C22 . . . p2T2n −U2n −C2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
p2Tn1 −Un1 −Cn1p2Tn2 −Un2 −Cn2 . . . p2Tnn −Unn −Cnn

∣∣∣∣∣∣∣∣∣∣∣ = 0 (4.156)

(4.156), in which the coefficients Uik, TikCik(i, k = 1, 2, . . . , n) are determined
in accordance with (4.153), is the Ritz equation of frequencies for the transverse
oscillations of the root fixed in the soil. Since (4.153) is an equation of the n-th degree
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in p2, its solution specifies a sequence of natural frequencies: p2
1 < p2

2 < . . . < p2
n,

where p1, p2, . . . , pn—first, second, . . . n-th natural frequency, respectively.
In practice, only the lowest frequencies, which have the most substantial effect on

the work process under consideration, are generally determined. Therefore, the first
two frequencies of the free transverse oscillations of the root body will be analysed.

For this purpose, it is necessary to select the basic functions contained in (4.148).
As has been pointed out in [20], in many cases the required results are obtained

by taking the mode shapes of transverse oscillations of a homogeneous bar with a
uniform stiffness of E1 J under the same fixation conditions as in the problem under
consideration as the basic functions. Such basic functions make it possible to find the
shapes that not only meet the geometric conditions as required by the Ritz method,
but the dynamic boundary conditions of the problem as well.

Therefore, the mode shapes of transverse oscillations of a homogeneous bar
with uniform stiffness of E1 J and linear density μ are taken as the basic functions.

In accordance with [20], such shapes appear as follows:

ψi(z) =

[
U(kiz) − S(kihk)

T(kihk)
V(kiz)

]
(4.157)

where U(z), S(z), T(z), V(z)—Krylov functions, while:

U(z) = 1
2 (chkz− coskz), S(z) = 1

2 (chkz + coskz), T(z)
= 1

2 (shkz + sinkz), V(z) = 1
2 (shkz− sinkz),

(4.158)

kihk—roots of the following equation:

chkhkcoskhk + 1 = 0First two roots [20] = k1hk = 1875; k2hk = 4694 (4.159)

It ought to be noted that the basic functions selected in this way meet the
geometric and dynamic boundary conditions of the problem:

y(0) = y′(0) = 0, y′′ (hk) = y′′′ (hk) = 0. (4.160)

Further, by substituting (4.157) into (4.153), the following is obtained:

Tik = ρπtan2γk
∫ hk

0

[
U(kiz) − S(kihk)

T(kihk)
V(kiz)

][
U(kkz) − S(kkhk)

T(kkhk)
V(kkz)

]
z2dz

i, k = 1, 2, . . . , n
(4.161)

Uik =
πE1tan4γk

4

∫ hk
0 k2

i k2
k

[
S(kiz) − S(kihk)

T(kihk)
T(kiz)

][
S(kkz) − S(kkhk)

T(kkhk)
T(kkz)

]
z4dz

i, k = 1, 2, . . . , n
(4.162)
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Cik = cπtanγk

∫ hk

0

[
U(kiz) − S(kihk)

T(kihk)
V(kiz)

][
U(kkz) − S(kkhk)

T(kkhk)
V(kkz)

]
zdz (4.163)

As can be concluded from (4.161), (4.162) and (4.163),
Tik = Tki, Uik = Uki, Cik = Cki.

Hence, for determining the first two frequencies it is necessary to compute
the values of the coefficients T11, T12, T22. , U11, U12, U22, C11, C12, C22 in accordance
with (4.161)–(4.163), where the Krylov functions S(kihk), T(kihk) are to be computed
at the above-stated values of kihk,. Obviously, the computation of the coefficients
Tik, Uik, Cik has to be carried out with the use of a PC. The obtained values of the
coefficients Tik, Uik, Cik are substituted into the Ritz equation of frequencies (4.156)
at n = 2 (determinant of second order), which is used for determining the natural
frequencies p1, p2 of the transverse oscillations of the root.

On the basis of the developed theory, the algorithm of computation of the natural
frequencies of the transverse oscillations of the root as an elastic solid fixed in the soil
can be developed.

1. The data needed for the calculation are set in accordance with [7]: length
of the root hk = 0.25 m; elastic modulus of the root body E1 = 18.4 · 106 N·m−2;
specific gravity of the root’s material ρ = 750 kg·m−3; angle of taper of the root
γk = 14◦; parameters for the calculation of frequencies (for the first two frequencies:
k1 = 7.50 m−1, k2 = 18.78 m−1, [20]).

2. The Krylov functions U(z), S(z), T(z), V(z) are set in accordance with (4.158).
3. The coefficients Tik, Uik, Cik are calculated in accordance with (4.161), (4.162),

(4.163), respectively; i, k = 1, 2, . . . , n, Tik = Tki, Uik = Uki, Cik = Cki. (For the first
two frequencies: i, k = 1, 2.)

4. The Ritz equation of frequencies is generated in accordance with (4.156). (For
the first two frequencies, it is a determinant of second order, n = 2).

5. The Ritz equation of frequencies is solved in the MathCad environment.
Implementing the described algorithm for the above-stated data, the values of the
first and second frequencies of the natural transverse oscillations of the root body
fixed in the soil are computed as a function of the soil’s elastic deformation coefficient
c. The following range is assumed: c = 0 20 · 105 N·m−3.

The results of the calculations are presented in Table 4.2.
On the basis of the obtained computation results, the graphs of the first and

second frequencies as functions of the soil’s elastic deformation coefficient c have
been plotted (Figures 4.10 and 4.11).

As can be seen in the presented graph (Figure 4.10), when the value of the
soil’s elastic deformation coefficient c changes within the range of c = 0 ∼ 2 · 106

N·m−3, the value of the first circular frequency monotonically increases within the
range of p1 = 35.6 ∼ 226.5 s−1, or 5.7–36.0 Hz. Hence, the first frequency of the
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free transverse oscillations of the root body increases significantly together with the
increase in the coefficient of elastic deformation of the soil c.

Table 4.2. Values of first and second natural frequencies of transverse oscillations
of root body.

Elastic
Deformation
Coefficient of

Soil, c (N·m−3)

First Circular
Frequency of
Oscillation,

p1 (s−1)

First
Frequency of
Oscillation p1

(Hz)

Second
Circular

Frequency of
Oscillation p2

(s−1)

Second
Frequency of
Oscillation

p2 (Hz)

0 35.644 5.673 1744 277.566
2 × 105 79.217 12.608 1746 277.885
4 × 105 106.205 16.903 1748 278.203
6 × 105 127.605 20.309 1750 278.521
8 × 105 145.897 23.22 1752 278.839

10 × 105 162.136 25.805 1754 279.158
12 × 105 176.889 28.153 1756 279.476
14 × 105 190.501 30.319 1758 279.794
16 × 105 203.202 32.341 1760 280.113
18 × 105 215.152 34.243 1762 280.431
20 × 105 226.472 36.044 1764 280.749

Figure 4.10. Relation between first natural frequency of transverse oscillations of
root body and soil’s elastic deformation coefficient c.
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Figure 4.11. Relation between second natural frequency of transverse oscillations
of root body and soil’s elastic deformation coefficient c.

It can be seen in the graph (Figure 4.11) that the second frequency of the free
transverse oscillations changes insignificantly, when the soil’s elastic deformation
coefficient c changes within the range of c = 0 ∼ 2 · 106 N·m−3: respectively, the
circular frequency varies within p2 = 1744 ∼ 1764 s−1, or 277.6–280.7 Hz.

The obtained calculated value of the first frequency is in agreement with the
experimental data presented in [20]. Such a frequency allows for the intensive
breaking of the bonds between the root and the soil and the active shaking off of the
soil from the surface of the root.

The method that has been worked out facilitates finding any frequencies of the
free transverse oscillations of the root as an elastic solid in an elastic medium.

4.2.2. Forced Transverse Oscillations of the Root as Elastic Solid Fixed in Soil

The next step is to investigate the forced transverse oscillations of the root body
fixed in the soil. Since the perturbing force acts on the root at a frequency of ω, the
purely forced oscillations take place under the following law [20]:

y(z, t) = ϕ(z)sinωt (4.164)

where φ(z)—shape of the forced oscillations.
The necessary partial derivatives of (4.164) are computed as follows:

∂y
∂t

= ωφ(z)cosωt,
∂2y
∂z2 = φ′′ (z)sinωt. (4.165)
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By substituting (4.164) and (4.165) into (4.142), the following is obtained:

S = 1
2

∫ t2

t1

∫ hk
o

{
ρπz2tan2γk ·ω2ϕ2(z)cos2ωt − E1πz4tan4γk

4

[ϕ′′ (z)]2sin2ωt + Hσ1(z− z1)ϕ(z)sin2ωt−πcztanγk ·ϕ2(z)sin2ωt
}
dzdt.

(4.166)

After integrating (4.166) with respect to z over one period T = 2π
ω , the result is:

S = π
2ω

∫ hk
o

{
ρπz2tan2γk ·ϕ2(z)ω2 − E1πz4tan4γk

4

[ϕ′′ (z)]2 + Hσ1(z− z1)ϕ(z) −πcztanγk ·ϕ2(z)
}
dz.

(4.167)

In accordance with the Ritz method, the values of (4.166) are analysed over the
set of linear combinations of the following form:

φ(z) = αψ(z) (4.168)

where α—parameter to be found, the variation of which allows the obtention of the
class of admissible functions; ψ(z)—basic function.

(4.168) will be inserted into (4.167) and we will obtain:

S = π
2ω

∫ hk
o

{
ρπz2tan2γk · α2ψ2(z)ω2

−E1πz4tan4γk
4 α2[ψ′′ (z)]2 + Hσ1(z− z1)αψ(z) −πcztanγk · α2ψ2(z)

}
dz.

(4.169)

The following symbols will now be entered:∫ hk

0
ρπz2tan2γk ·ψ2(z)dz = M (4.170)

∫ hk

0

E1πz4tan4γk

4
[ψ′′ (z)]2dz = N (4.171)

∫ hk

0
πcztanγkψ

2(z)dz = R (4.172)

∫ hk

o
Hσ1(z− z1)ψ(z)dz = L (4.173)

(4.170)–(4.173) will now be inserted into (4.169), and we will have:

S =
π

2ω

(
ω2Mα2 − (N + R)α2 + Lα

)
(4.174)

Hence, over the set of functions (4.168), (4.169) becomes a function of the
independent variable α.
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The necessary condition of existence of an extremum of (4.174) is its first-order
derivative with respect to α being equal to zero.

Differentiating (4.174) with respect to α and equating the obtained derivative to
zero, the following equation is arrived at:

2ω2Mα− 2(N + R)α+ L = 0 (4.175)

from which parameter α can be determined; the result is:

α =
L

2(N + R−ω2M)
(4.176)

Further, the shape of the forced transverse oscillations of a homogeneous bar
with a uniform stiffness of E1 J and one end rigidly fixed that are generated by the
action of a transverse harmonic unit force at a frequency of ω, with said force being
applied at the point z = z1, is taken as the basic function ψ(z). In accordance
with [20], said shape appears as follows:

ψ(z) = CU(kz) + DV(kz), 0 ≤ z < z1 (4.177)

ψ(z) = CU(kz) + DV(kz) +
1

k3E1J
V[k(z− z1)], z1 ≤ z ≤ hk, (4.178)

where U(kz), V(kz)—Krylov functions; k =
4
√
μω2

E1 J ; μ—linear density of the bar;
C, D—arbitrary constants determined on the basis of the boundary conditions (4.160).

It ought to be noted that the values of the function ψ(z) at the point
z = z1 computed with the use of (4.177) and (4.178) are identical and equal
to: ψ(z1) = CU(kz1) + DV(kz1).

As the following boundary conditions are observed at the free end of the bar
z = hk: y′′ (hk) = 0, y′′′ (hk) = 0, the second and third derivatives of (4.178) with
respect to z can be obtained as follows:

ψ′′ (z) = Ck2S(kz) + Dk2T(kz) + 1
k3E1 J k2T[k(z− z1)], z1 ≤ z ≤ hk,

ψ′′′ (z) = Ck3V(kz) + Dk3S(kz) + 1
k3E1 J k3S[k(z− z1)], z1 ≤ z ≤ hk.

(4.178’)

Taking into account the boundary conditions at the free end of the bar (z = hk),
the following system of equations with respect to the unknownsψ(z), C, D is arrived at:

−ψ(z) + CU(kz) + DV(kz) =

⎧⎪⎪⎨⎪⎪⎩ 0, 0 ≤ z ≤ z1,
− 1

k3E1 J V[k(z− z1)], z1 ≤ z ≤ hk,

CS(khk) + DT(khk) = −1
k3E1 J T[k(hk − z1)],

CV(khk) + DS(khk) = −1
k3E1 J S[k(hk − z1)].

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.179)
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The determinant of the system appears as follows:

Δ =

∣∣∣∣∣∣∣∣∣
−1U(kz)V(kz)
0S(khk)T(khk)

0V(khk)S(khk)

∣∣∣∣∣∣∣∣∣. (4.179’)

Expanding said determinant along the first column, the following is obtained:

Δ = T(khk)V(khk) − S2(khk) =
−1
2
(1 + chkhkcoskhk) (4.180)

From (4.179), ψ(z) can be found:

ψ(z) = −1
Δk3E1 J

∣∣∣∣∣∣∣∣∣
0U(kz)V(kz)

T[k(hk − z1)]S(khk)T(khk)

S[k(hk − z1)]V(khk)S(khk)

∣∣∣∣∣∣∣∣∣, 0 ≤ z ≤ z1,

ψ(z) = −1
Δk3E1 J

∣∣∣∣∣∣∣∣∣
V[k(z− z1)]U(kz)V(kz)

T[k(hk − z1)]S(khk)T(khk)

S[k(hk − z1)]V(khk)S(khk)

∣∣∣∣∣∣∣∣∣, z1 ≤ z ≤ hk.

(4.181)

Opening the determinant found above, we obtain:

ψ(z) =
U(kz)

Δk3E1 J
{
T[k(hk − z1)]S(khk) − T(khk)S[k(hk − z1)]

}
− V(kz)

Δk3E1 J
{
T[k(hk − z1)]V(khk) − S[k(hk − z1)]S(khk)

}
, 0 ≤ z ≤ z1,

(4.181’)

ψ(z) = −V[k(z−z1)]

Δk3E1 J

{
S2(khk) − T(khk)V(khk)

}
+

U(kz)
Δk3E1 J

{
T[k(hk − z1)]S(khk) − T(khk)S[k(hk − z1)]

}
− V(kz)

Δk3E1 J
{
T[k(hk − z1)]V(khk) − S[k(hk − z1)]S(khk)

}
, z1 ≤ z ≤ hk

(4.182)

The following symbols will now be entered:

T[k(hk − z1)]S(khk) − T(khk)S[k(hk − z1)]

Δk3E1 J
= B (4.183)

T[k(hk − z1)]V(khk) − S[k(hk − z1)]S(khk)

Δk3E1 J
= G (4.184)

S2(khk) − T(khk)V(khk)

Δk3E1 J
= K (4.185)

(4.183), (4.184), and (4.185) will now be inserted into (4.181) and (4.182), and we
will have:

ψ(z) = BU(kz) −GV(kz), 0 ≤ z ≤ z1 (4.186)
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ψ(z) = −KV[k(z− z1)] + BU(kz) −GV(kz), z1 ≤ z ≤ hk (4.187)

Further, the coefficients M, N, R, L that enter into (4.174) are determined.
By substituting (4.186) and (4.187) into (4.170), the value of the coefficient M can

be found:

M = ρπ tan2 γK

Z1∫
0

[
BU(kz) −GV(kz)2

]
z2dz

+ρπ tan2 γK

hk∫
Z1

{−KV[k(z− z1)] + BU(kz) −GV(kz)
}2z2dz.

(4.188)

In order to determine the coefficient N, the second derivatives of (4.186) and
(4.187) have to be found.

ψ′′ (z) = Bk2S(kz) −Gk2T(kz), 0 ≤ z ≤ z1 (4.189)

ψ′′ (z) = −Kk2T[k(z− z1)] + Bk2S(kz) −Gk2T(kz), z1 < z ≤ hk (4.190)

By substituting (4.189) and (4.190) into (4.171), the value of the coefficient N
is found:

N =
E1π tan4 γK

4

Z1∫
0

k4[BS(kz) −GT(kz)]2z4dz

+
E1π tan4 γK

4

hk∫
Z1

k4{−KT[k(z− z1)] + BS(kz) −GT(kz)
}2z4dz.

(4.191)

By substituting (4.186) and (4.187) into (4.172), the value of the coefficient R
is obtained:

R = cπ tanγK

Z1∫
0

[
BU(kz) −GV(kz)2

]
zdz

+cπ tanγK

hk∫
Z1

{−KV[k(z− z1)] + BU(kz) −GV(kz)
}2zdz.

(4.192)

The value of the coefficient L will be obtained by substituting (4.184) and (4.185)
into (4.173):

L =
Z1∫
0

Hσ1(z− z1)[BU(kz) −GV(kz)]dz

+
hk∫

Z1

Hσ1(z− z1)
{−KV[k(z− z1)] + BU(kz) −GV(kz)

}
dz.

(4.193)
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The computation of the coefficients M, N and R can be performed with the use
of a PC or by direct integration with the Krylov functions, or, after the conversion
into elementary functions, with the use of (4.158).

Since (4.193) for finding the coefficient L contains the impulse function σ1(z− z1),
which does not belong to classical functions, the integrals contained in said expression
and containing the impulse function will be computed analytically.

First, the following integral is analysed:
∫ z1

0 Hσ1(z− z1)[BU(kz) −GV(kz)]dz.
Considering the definition and properties of the function σ1(z− z1), the following

can be written:

∫ z1

0
Hσ1(z− z1)[BU(kz) −GV(kz)]dz

= lim
ε→ 0
ε > 0

∫ z1−ε

0
Hσ1(z− z1)[BU(kz) −GV(kz)]dz

+ lim
ε→ 0
ε > 0

∫ z1+ε

z1−ε
Hσ1(z− z1)[BU(kz) −GV(kz)]dz (4.194)

= 0 + H[BU(kz1) −GV(kz1)] lim
ε→ 0
ε > 0

∫ z1+ε

z1−ε
σ1(z− z1)dz.

lim
ε→ 0
ε > 0

∫ z1+ε

z1−ε
σ1(z− z1)dz = 1

∫ z1

0
Hσ1(z− z1)[BU(kz) −GV(kz)]dz = H[BU(kz1) −GV(kz1)]

It ought to be noted that over the intervals, the functionψ(z) has different analytic
expressions ((4.186) and (4.187), respectively); nevertheless, in the case of ε→ 0 the
limits of said expressions are identical and equal to ψ(z1) = BU(kz1) −GV(kz1)

so, when the limit in (4.194) is integrated, any of the mentioned expressions can be
selected for the function ψ(z)—for example, (4.186)

Further, the next integral of (4.193) is computed:∫ hk

z1

Hσ1(z− z1)
{−KV[k(z− z1)] + BU(kz) −GV(kz)

}
dz
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lim
ε→ 0
ε > 0

∫ hk

z1+ε
Hσ1(z− z1)

{−KV[k(z− z1)] + BU(kz) −GV(kz)
}
dz = 0, (4.195)

since the following is true over the interval σ1(z− z1) = 0.
By substituting the values of (4.193) and (4.195) into (4.193), the following is

obtained:
L = H[BU(kz1) −GV(kz1)] (4.196)

By substituting (4.188), (4.191), (4.192) and (4.196) into (4.176), the necessary
value of the parameter α, at which (4.167) has a stationary value, is found. Hence,
taking into account (4.168), (4.186) and (4.187), the expressions for the shape of the
forced transverse oscillations of a root body fixed in the soil are obtained.

Said expressions appear as follows:

φ(z) = α[BU(kz) −GV(kz)], 0 ≤ z ≤ z1,
φ(z) = α

{−KV[k(z− z1)] + BU(kz) −GV(kz)
}
, z1 ≤ z ≤ hk

(4.197)

where α is determined in accordance with (4.174).
By substituting (4.197) into (4.164), the law of the forced transverse oscillations

of a root body fixed in the soil is finally arrived at:

φ(z) = α[BU(kz) −GV(kz)]sinωt, 0 ≤ z ≤ z1,
φ(z) = α

{−KV[k(z− z1)] + BU(kz) −GV(kz)
}
sinωt, z1 ≤ z ≤ hk

(4.198)

Further, some of the quantities contained in the expressions obtained above
need to be determined and will be given detailed consideration.

Since the shapes of the forced transverse oscillations of the bar with a uniform
stiffness of E1 J have been taken as the basic functions, it is necessary to determine the
mentioned quantity. Apparently, the cylinder-shaped bar is an example of the bar
with a uniform stiffness in the case of E1 = const. Therefore, it is assumed that the
mentioned bar has a shape of the cylinder of revolution, which has an axial moment
of inertia of cross-section equal to:

J =
πr4

cm.

4
(4.199)

where rcm.—radius of the bar (m).
It is also assumed that the mass of the bar is equal to that of the root. Additionally,

assuming that the specific gravity of the bar’s material is equal to the density of
the root ρ, the bar and the root with the same mass must have the same volume.
Another assumption is that the bar and the root have the same length equal to hk.
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Since the root can be represented by a right circular cone and the bar—by a cylinder
of revolution—the following relation between their volumes can be observed:

1
3
πr2

khk = πr2
cm.hk, (4.200)

where rk—radius of the root (of the cone base) (m).
It can be found from the latter relation that: rcm. =

rk√
3

.

Then, given the (4.199), the following is obtained: J =
πr4

k
36 .

Further, it is assumed that the Young modulus of the bar’s material is the same
as the Young modulus of the root and is equal to E.

Hence, the stiffness of the bar is equal to:

E1 J =
πr4

kE

36
(4.201)

or, given the rk = hktanγk, we will finally have:

E1 J =
πh4

ktan4γkE

36
(4.202)

The linear density μ of the bar is determined as follows. By reason of the
assumption that the masses of the bar and the root are equal, the mass m of the bar is
found: m = 1

3πr2
khkρ; in this case, μ = m

hk
= 1

3πr2
kρ, or μ = 1

3πh2
ktan2γk · ρ.

After it becomes possible to determine the quantity k, which is equal to:

k =
4

√
μω2

E1 J
(4.203)

Based on the results of the above-stated theoretical investigation of the forced
transverse oscillations of the root body, an algorithm of PC-assisted computation of
said oscillations can be generated.

The algorithm comprises the following stages:
Reference data required for the computation—specifically, the length of root hk,

its angle of taper γk, Young modulus E1, specific gravity ρ, amplitude of perturbing
force H, frequency of perturbing force ω, soil’s elastic deformation coefficient c, and
coordinate of point of gripping z1—are set.

Quantity E1 J is computed in accordance with (4.202).
Quantity k is computed in accordance with (4.203).
Determinant Δ is found to be in accordance with (4.180).
Coefficients B, G, K are computed in accordance with (4.183), (4.184), and

(4.185), respectively.
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Coefficients M, N, R, L are determined in accordance with Expressions (4.188),
(4.191), (4.192), and (4.197), respectively.

Parameter α is computed in accordance with (4.176).
Shape (amplitude) of forced transverse oscillations is in accordance with (4.197)

for a number of root body cross-sections (for a number of values of z).
An example of the PC-assisted computation of the amplitude of forced transverse

oscillations of a root body fixed in the soil as a function of the surrounding soil’s
elastic deformation coefficient c and the distance of the root’s cross-section from the
conventional point of fixation is presented below.

The assumed reference data have been the same as in the computation of free
transverse oscillations of a root body fixed in the soil.

The computation has been carried out in the Mathcad environment on the basis
of the algorithm developed above. As a result, the following graphs have been
obtained (Figure 4.12).

  

(a) (b) 

Figure 4.12. Relation between amplitude of forced transverse oscillations of
root body and elastic deformation coefficient of soil c and distance from root’s
cross-section to conventional point of fixation z: (a) z = 0 ∼ 0.15 m; (b) z = 0.15 ∼
0.25 m; (amplitude of perturbing force N = 500 N, frequency of perturbing force
ν = 20 Hz).

As is seen from the presented graphs (Figure 4.12), the amplitude of the forced
transverse oscillation of the root body sharply rises at c = 5.5·105~6.0·105 N·m−3.
These are the values of the soil’s elastic deformation coefficient c, at which the
first frequency of the root’s free oscillations is in the neighbourhood of p1 = 20 Hz
(Figure 4.10).
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Hence, the resonance is observed within the mentioned range of values of the
soil’s elastic deformation coefficient c and at the frequency of forced oscillations
ν = 20 Hz; therefore, the amplitude in this case can reach values in excess of 0.3 m.
This, certainly, will result in the breaking of the root; moreover, as is seen from the
graphs (Figure 4.12), within the resonance state limits the amplitude sharply rises as
the cross-section is removed farther from the conventional point of fixation, especially
in the case of the cross-sections located below the point of gripping (Figure 4.12a). At
all other values of the soil’s elastic deformation coefficient c, the amplitude depends
little on the distance from root’s cross-section to the conventional point of the root’s
fixation in the soil.

In Figure 4.13, the graphs depicting the relations between the amplitude of
forced transverse oscillations of the root body and the soil’s elastic deformation
coefficient c at various frequencies of the perturbing force ν are shown.

As is seen from the presented graphs, when the frequency of the perturbing
force rises, the resonance range shifts to the right:

at ν = 10 Hz, resonance is observed at c = 1.5·105–1.7·105 N·m−3;
at ν = 15 Hz, resonance is observed at c = 3.0·105–3.5·105 N·m−3;
at ν = 20 Hz, resonance is observed at c = 5.5·105–6.0·105 N·m−3.

According to the obtained results, the amplitude of forced oscillations of the
root body exceeds 20 mm at the following values of the soil’s elastic deformation
coefficient c:

at ν = 10 Hz—c = 0–4.5·105 N·m−3;
at ν = 15 Hz—c = 0.5·105–6.0·105 N·m−3;
at ν = 20 Hz—c = 3.0·105–8.5·105 N·m−3.

Thus, in the instances when the perturbing force acts at right angle to the
root’s centreline, the breaking of the root can take place at certain frequencies of the
perturbing force and value of elastic deformation coefficient of the soil c, which is
different in the case of the vertical perturbing force, under the action of which the root
can be stretched by no more than 1.7 mm (Figures 4.4–4.8). The natural frequencies
of longitudinal oscillations of a root body fall within the range of 76.4–93.4 Hz, while
the frequency of the perturbing force does not exceed 20 Hz; hence, the resonance is
impossible. The final conclusion is that the designs of vibrational digging tools have
to allow the generation of a vertical perturbing force and not a horizontal one.
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Figure 4.13. Cont.
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(c) 

Figure 4.13. Relation between amplitude of forced transverse oscillations of root
body and elastic deformation coefficient of soil c and perturbing force frequency ν
for root’s cross-section at point of gripping (z = z1 = 0.15 m): (a) ν = 10 Hz; (b)
ν = 15 Hz; (c) ν = 20 Hz (perturbing force amplitude N = 500 N).

4.3. Conclusions

1. The presented theory has been developed with regard to longitudinal oscillations
of the root of sugar beet as a body attached in the soil as an elastic body in an
elastic environment that emerges under the action of the vertical disturbing
force that changes according to the harmonic law. The Hamilton–Ostrogradsky
variational principle of stationary action is used for longitudinal oscillations
of the root taking into account the physical and mechanical properties of the
root of sugar beet as an elastic body and the surrounding soil. Using the Ritz
direct variational method, the Ritz frequencies equation has been obtained,
from which different frequencies of free longitudinal oscillations of the root as
an elastic body are determined. This, for example, allowed the obtention of the
analytical expression for calculation of the first natural frequency depending
on the physical and mechanical properties of the root and elasticity of the soil
surrounding it, which plays the main role in destruction of the tights of the root
with the soil. According to the calculations performed, when the coefficient c
of the elastic deformation of the soil is changed, the first frequency of natural
oscillations of the body of the root monotonously increases within the limits of
76.4–93.4 Hz, which sufficiently and precisely corresponds to the experimental
data in [7,31]. At the same time, the second frequency is changed within the
limits of 528–532 Hz—i.e., it has little dependency on the coefficient c of the
elastic deformation of the soil.
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2. The Hamilton–Ostrogradsky functional for forced longitudinal oscillations of
the root as an elastic body was constructed, on the basis of which the theory
of forced oscillations of the beet root in the soil was created. The results of
theoretical research of the forced oscillations of beet root attached in the soil
were the basis for finding the algorithm for calculation on a PC of the specified
oscillations—in particular, finding the law of the forced longitudinal oscillations
and amplitude under the condition of prevention of damage (tearing) of the
beet root depending on the coefficient c of the elastic deformation of the soil
and the amplitude of the disturbing force.

It was analytically established that the amplitude of the forced oscillations of
the body of the root decreases in the case of an increase in the coefficient c of elastic
deformation of the soil and increases in the case of an increase in distance of the
cross-section of the beet root from the conditional point of its attachment in the soil.
For example, with x = 0.07 m and the change in the coefficient c within the limits of
c = 0–20 105 N·m−3, the amplitude is measured within the limits of 0.47–0.7 mm; with
x = 0.1 m—within the limits of 0.67–0.99 mm; with x = 0.12 m—within the limits of
0.81–1.19 mm; with x = 0.15 m (point of gripping)—within the limits of 1.01–1.49 mm.

However, for the cross-sections of the root above the point of gripping
(x ≥ 0.15 m), the amplitude of the forced oscillations of the body of the root almost
does not change in the case of an increase in the distance of the cross-section from the
conditional point of attachment and remains the same as in the case of x = 0.15 m.
However, the tendency for the amplitude to decrease from an increase in the coefficient
c is the same as for sections below the point of gripping (x ≤ 0.15 m).

The paper also presents the calculations performed for the amplitude of forced
longitudinal oscillations in the case of change in the amplitude of the disturbing force
within the limits of 100–600 N. As the calculations demonstrated, the increase in
the amplitude of the disturbing force leads to an increase in the longitudinal forced
oscillations of the body of the beet root according to the linear law and an increase in
the distance of the area of cross-section of the root from the conditional point of its
attachment in the soil also leads to increase in the amplitude.

For example, with x = 0.07 m, the amplitude remains within the limits of
0.13–0.8 mm, with x = 0.1 m—within the limits of 0.19–1.14 mm, with x = 0.12 m—
within the limits of 0.23–1.36 mm, with x = 0.15 m (point of gripping)—within the
limits of 0.28–1.7 mm. However, above the point of gripping in the case of an increase
in the distance of the cross-section from the conditional point of attachment, the
amplitude almost does not change.

3. The theory of free transverse oscillations of the root in the soil as an elastic
solid in an elastic medium has been developed. On the basis of the
Ostrogradsky–Hamilton variation principle of stationary action and with the use
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of the Ritz method, the Ritz equation of frequencies for free transverse oscillations
has been generated. By solving said equation, the first two frequencies of free
transverse oscillations of the root body, which play a leading part in the
destruction of the bonds between the root and the soil, have been determined.

A relation has been established between the first and second frequencies of the
free transverse oscillations of the root body on the one hand and the coefficient of
elastic deformation of the soil c on the other hand. For example, when the coefficient
c varies within the range of 0–2·106 N·m−3, the first frequency varies within the range
of 5.7–36 Hz and the second one varies within the range of 277.6–280.7 Hz—i.e., the
first frequency depends on the coefficient c to a great extent, and its influence on the
second frequency is insignificant.

4. On the basis of the above-mentioned principle, the theory of the forced transverse
oscillations of the root body generated by the action of a horizontal perturbing
force that varies following a harmonic law and is vectored along the line
of the lifter’s translational motion has been worked out. The algorithm of
computation of transverse oscillations has been devised—in particular, for
finding the amplitude of transverse oscillations under the condition of not
breaking the root in relation to the soil’s elastic deformation coefficient c and
the amplitude of the perturbing force.

It has been proved that at certain values of the soil’s elastic deformation coefficient
c, resonance takes place, and the amplitude of transverse oscillations can reach values
in excess of 0.3 m.

Thus, in the instances when the perturbing force is at a right angle to the
root’s centreline, the breaking of the root can take place at certain frequencies of the
perturbing force and value of elastic deformation coefficient of the soil c, which is
different in the case of the vertical perturbing force, under the action of which the
root can be stretched not more than 1.7 mm. The natural frequencies of longitudinal
oscillations of a root body fall within the range of 76.4–93.4 Hz, while the frequency
of the perturbing force does not exceed 20 Hz; hence, the resonance is impossible.

The final conclusion is that the designs of vibrational digging tools have to aim
at the generation of a vertical perturbing force and not a horizontal one.
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5. Theory of Extraction of Root from
Soil during Vibrational Lifting

5.1. Differential Equations of Oscillations of Root in Soil Based on Kinematic

The theory of the free and forced longitudinal and transverse oscillations of a
root body fixed in the soil generated by the action of a vibrational digging tool on
the root, presented in the previous sections, facilitates the analysis of the effect that
the mentioned oscillations have on the process of disrupting the bonds between the
root and the soil, as well as the evaluation of the kinematic parameters of vibrational
lifting subject to not damaging the roots. Nevertheless, said study is not sufficient for
the complete analysis of the extraction of roots from the soil. It is also necessary to
give separate consideration to the dynamic system “root—digging tool” in order to
analyse the process of oscillations in the soil and extraction of the root from it as a
rigid body, which takes place under the effect of the vibration of the digging tool in
the longitudinal and vertical planes and the tool’s translational motion.

As can be concluded from the above, the analysis of the process of the root
extraction from the soil with the use of a vibrational digging tool requires considering
the direct contact between the root and the working faces of the shares during its
gripping by the tool. Said contact can occur directly between the lifter’s working
faces and the root body, or such a contact can take place through a sufficiently thin
layer of soil. In order to analyse the mentioned process in detail, it is necessary to
distinguish three modes of the root extraction from the soil—i.e., the three essential
stages of the interaction between the root and the working faces of the vibrational
digging tool. This need results from the fact that at each stage of its extraction the root
performs various kinds of mechanical motions in consequence of the breaking of the
bonds between the root and the soil; therefore, the differential equations representing
said motions also differ from each other.

Further, the possible modes of the interaction between the vibrational digging
tool and the root are described. The first stage is as follows. The vibrational digging
tool performs the gripping of the root; however, the root is still strongly bonded with
the soil. In this case, the root starts performing oscillatory motions in the soil as a
rigid body in an elastic medium, as at this stage the soil surrounding the root can be
considered as an elastic medium.

In the second stage, the bonds between the root and the soil in the area of the
motion of the vibrational digging tool’s working faces are almost broken and the soil
surrounding the root in its upper part (at the running depth of the lifter in the soil) is
already sufficiently loosened; nevertheless, the process of direct extraction has not

113



yet started. At this stage of extraction, the root performs motion in the soil as a rigid
body with one point fixed or as a rigid body rotating about a fixed axis. It ought
to be noted that during the root extraction, the soil surrounding the root maintains
resistance over its whole conical surface (the root firmly embeds in the soil in the
process of its growth). As a consequence, when the working faces of the vibrating
digging tool that moves at a certain depth in the soil break the upper layer of the
soil and disrupt the bonds, the lower part of the root still resides in the unstrained
compact layer of the soil and it can be assumed that in this part there is a point on
the root’s symmetry axis, which can be considered as the point of fixation of the root
in the soil. The motion of the root at the second stage can be described with the use
of kinematic and dynamic Euler equations as the motion of a symmetrical rigid body
with one point fixed or a rigid body rotating about a fixed axis (in the longitudinal
and vertical plane).

In the third stage, the bonds between the root and the soil are completely broken
(in its upper and lower parts) and the process of directly extracting the root from the
soil begins. At this stage, the root’s motion can be seen as the motion of a free rigid
body under the action of a certain system of forces. Such a motion can be described
with the use of the differential equations of the motion of the root’s centre of mass
and the differential equations of the rotation of the root as a rigid body about its
centre of mass.

In what follows, the first stage of the root extraction from the soil is analysed
in detail. Since it is possible that some roots are offset from the centreline of the
row, the cases where the root is in direct contact with only one of the wedges of
the vibrating digging tool are not to be ruled out. In such cases, the root performs
three-dimensional oscillations about the conventional point of fixation in the soil
as a solid body in an elastic medium. The root is gripped by the vibrating digging
tool asymmetrically.

Further, we have to show, in the equivalent schematic model, the adopted
coordinate systems. First, we relate to the vibrating digging tool the orthogonal
Cartesian coordinate system O1x1y1z1 with the centre O1 in the middle of its necked-in
passage. In this system, axis O1x1 is in line with the direction of the tool’s translational
motion, axis O1z1 points vertically up, and axis O1y1 points to the right (Figure 5.1).
The vibrating digging tool’s oscillatory movements in the longitudinal vertical plane
should be examined in reference to the coordinate system O1x1y1z1.
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y y

Figure 5.1. Equivalent schematic model of the force interaction between the
vibrating digging tool and the beet root during the latter’s gyration about the
conventional point of fixation in the ground.

We also introduce the moving coordinate system Oxyz rigidly connected with
the beet root and having an origin at point O, which is the point of fixation of the
beet root in the ground, its axis Oz being aligned with the root’s symmetry axis
and pointing upwards, axes Ox and Oy placed in the plane that is perpendicular to
axis Oz.

Additionally, to characterise the gyration of the root about the fixation point O it
is necessary to introduce one more orthogonal Cartesian coordinate system O2x2y2z2,
which is shown in Figure 5.1.

Since the vibrating digging tool at the moment it contacts the beet root advances
linearly along axis O1x1 (O1x2), the root deflects from its vertical position (effectively
from axis Oz2) through angle ψ unidirectionally with the motion of the tool. In the
most general case, the initial contact between the beet root and the tool is asymmetric,
meaning that one of the digging shares moves into direct contact with the root body,

115



while the other one makes contact through a certain thickness of the broken soil. This
results in the beet root’s deflection from its vertical position transversely through
angleθ following the deformation of soil (of the aforementioned thickness). Moreover,
the difference in the torques produced by the direct contact of the root with one of
the shares and its contact with the other share through the thickness of soil can result
in the rotation of the root through angle ϕ about axis Oz. Overall, summing up the
above-mentioned physical conditions, we have good reason to believe that the beet
root in its interaction with the vibrating digging tool, during its lifting, immediately
simultaneously performs the rotation about a line OH (nodal line) through the angle
θ, the rotation about axis Oz2 through the angle ψ and the rotation about axis Oz
through the angle ϕ. Hence, the introduced angular displacements in the space of
the root during its lifting from the ground are Euler angles, with the angle θ being a
nutation angle, the angle ψ a precession angle, the angle ϕ an intrinsic rotation angle.

We also have to take into account that, since the root body has a conical shape,
the direct contact between the digging shares and the root body is lost in the case of
the vibrating digging tool going down. As a result, the perturbing force stops acting
on the beet root, and therefore the root, due to the elasticity of the soil surrounding it,
and the root body’s own elastic properties tend to return to the vertical equilibrium
position. With the following upward motion, the digging shares resume their contact
with the root body, take hold of the root, and impart the perturbing force on it and
the mentioned process of root rotations recurs.

Thus, the beet root performs oscillations about the line of nodes OH about axis
Oz2 and about axis Oz. Actually, the root’s oscillations at the first stage of its lifting
from the ground comprise the longitudinal linear oscillations of the point of the root’s
fixation in the ground O and the angular oscillations of the root relative to point O,
characterised by the variation of the Euler angles θ, ψ and ϕ.

The equivalent schematic model of the interaction between the root and the
working faces of the vibrating digging tool at the first stage of extraction has to
be set up. For this purpose, the vibrating digging tool is represented as the two
wedges A1B1C1 and A2B2C2, each of them having three-dimensional inclination at
angles of α, β, γ and both of them positioned with respect to each other in such
a way that the working channel necking rearwards is created (Figure 5.1). The
mentioned wedges perform oscillatory motions in the longitudinal and vertical plane
(the mechanism that drives the oscillatory motion of the shares is not shown); the
line of the translational motion of the vibrating digging tool is shown by an arrow.
The projections of points B1 and B2 on axis O1y1 are designated as points D1 and
D2, respectively.

It is assumed that the faces of wedges A1B1C1 and A2B2C2 interact at the
corresponding points with the root that is approximated as a cone-shaped body; that
said, in the general case the gripping of the root by the tool can be asymmetrical.
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This asymmetry results from the fact that the root’s symmetry axis (axis Oz) can be
somewhat offset from the row centreline. It is assumed that before the direct contact
between the root and the tool starts, axis Oz is parallel to axis O1z1.

We have assumed that the beet root is in direct contact with only one of the
work faces of the vibrating digging tool—specifically, A1B1C1 at point K1—while
face A2B2C2 acts on the root body surface via soil of a certain thickness and this
contact can occur at point K2 (Figure 5.1). Certainly, the contact between the vibrating
digging tool and the root body at point K2 is made throughout an area surrounding
point K2, but in our further considerations we are going to assume that point K2 is
the point of application of the forces imparted on the beet root.

Additionally, the asymmetry of the contact with the beet root is also due to the
fact that its symmetry axis (axis Oz) can be offset relative to the centreline of the
sowing rows (due to the requirements of the agricultural sowing and plant handling
technologies). We assume that prior to the commencement of the direct contact
between the beet root and the digging tool, axis Oz is parallel to axis O1z1.

Additionally, we have to designate some representative points in the equivalent
schematic model. Thus, the right lines drawn via points B1 and B2, perpendicular
to the wedge sides A1C1 and A2C2, respectively, generate at their intersections with
said wedge sides the respective points M1 and M2. Hence, δ is the dihedral angle
(∠B1M1D1) between the first wedge’s lower base A1D1C1 and the work face A1B1C1

and also the dihedral angle (∠B2M2D2) between the second wedge’s lower base
A2D2C2 and the work face wedge A2D2C2. Angle 2γk is the apical angle of the cone
used as a model of the beet root. The meaning of other dimensions can be understood
from the equivalent schematic model (Figure 5.1).

Now, let us consider the forces originating from the interaction between the
vibrating digging tool and the beet root.

Since the digging tool, as has been stated, is a vibrational tool, it imparts the
vertical perturbing force Qzb., which varies under the following harmonic law:

Qzb. = Hsinωt (5.1)

where H—amplitude of the perturbing force; ω—frequency of the perturbing force.
This force plays the primary role in the process of soil breaking in the zone

of the digging tool’s work passage and the direct lifting of the beet root out of the
ground. The perturbing force Qzb. is applied to the beet root or the soil surrounding
it on two sides; therefore, it is represented in the equivalent schematic model by two
components Qzb.1 and Qzb.2, which apparently have the following values:

Qzb.1 = Qzb.2 = 0.5Nsinωt (5.2)
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Further considerations require careful analysis of the relation between the
oscillations of the vibrating digging tool and the concurrent action of the perturbing
force Qzb. on the root. It is sufficient to carry out the analysis for only one oscillation
period, from ωt = 0 to ωt = 2π. In all other oscillation periods, the process is repeated.
As mentioned above, the perturbing force Qzb. acts on the beet root only when the
digging shares of the tool move up from their lowermost position to their uppermost
position, making contact with the conical root body. Further, the assumption is that
on the interval [0,π], the digging tool moves upwards from its lowest position −a to
its highest position a, where a is the amplitude of oscillations of the tool, and on the
interval [π, 2π] the digging tool moves downwards from position a to position −a.
Hence, the oscillations of the tool have to take place in accordance with the following
harmonic law:

zK = −acosωt (5.3)

where zK—displacement of the tool from the horizontal axis, about which the
oscillations take place (m); ω—frequency of oscillations of the tool (s−1).

For this reason, during the movement of the digging shares of the tool up on the
interval [0, π], the perturbing force Qzb. acts on the beet root following the sinusoidal
law (5.1). In this process, on the interval

[
0, π2

]
it increases from the zero value

Qzb. = 0 at point ωt = 0 to the maximum value Qzb. = H at point ωt = π
2 .

On the interval
[
π
2 ,π

]
it decreases from its maximum value Qzb. = H to the

minimum one Qzb. = 0. On the interval [π, 2π], the digging shares of the tool move
down, and therefore the perturbing force Qzb. does not act on the root on this leg. On
the interval [2π, 4π], everything recurs. Thus, in general, on the intervals [2kπ, (2k
+ 1)π], k = 0, 1, 2, . . . , the perturbing force Qzb. acts on the beet root following the
sinusoidal law (5.1), and on the intervals [(2k − 1)π, 2kπ], k = 0, 1, 2, . . . , it has no
effect on the beet root, since it is equal to zero.

As the cutting edges, A1C1 and A2C2 of the digging shares are located below the
contact points K1 and K2, the soil in the area of the contact between the beet root and
the vibrating digging tool is already sufficiently broken, but the soil breaking occurs
primarily in the front part of the tool’s passage, while the direct contact between
the beet root and the tool occurs in the middle and rear parts of the work passage.
Therefore, in the case of asymmetric contact with the beet root at point K1, the root
is under the direct effect of the perturbing force Qzb1, while at the contact point K2

the perturbing force Qzb.2 acts only on the thickness of broken soil, which makes
us assume that this latter force is virtually not imparted directly on the root body.
Hence, at the first contact between the root body and the vibrating digging tool, the
effect of perturbing force Qzb.2 on the beet root can be ignored and it can be assumed
that the root is under the effect of only the perturbing force Qzb.1 acting from the side
of face A1B1C1—i.e., only one digging share.
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Certainly, due to the necking shape of the working channel and the lifter’s
translational motion, at the second or third stages of the gripping of the root by the
tool, the direct contact between the root and the tool will occur on both the shares;
in extreme cases, this will happen through a thin layer of soil. It can be assumed
that through a thin layer of soil the perturbing force is transferred in full and the
(probable) difference can be observed only in the forces of friction arising on the
working faces of the shares as a consequence of the different coefficients of friction.

In addition, it should be pointed out that an interesting aspect of the asymmetric
contact with the beet root is that it makes the rotation of the root about its axis
possible, promoting the intensive breaking of the bonds between the root and the
soil (phenomenon of the root’s spinning in the ground during it being dug out).
Therefore, in the case of asymmetric contact between the beet root and the vibrating
digging tool, we are going to only use the force action of work face A1B1C1 of one
digging share in the differential equations for the root’s motion. For this purpose, we
decomposed force Qzb.1 into two components: N1, normal to face A1B1C1, and T1,
tangential to the same face, as shown in the equivalent schematic model in Figure 5.1.
This force is equal to:

Qzb.1 = N1 + T1 (5.4)

Apparently, the T1 force vector is parallel to the right line B1M1.
As the vibrating digging tool advances linearly along axis O1x1 relative to the

beet root fixed in the ground, driving force P1 acts along the course of the translational
movement (along axis O1x1) and also acts on the root along that axis at the moment
when contact is made between the beet root and digging tool. Now, let us also
decompose force P1 into two components: L1, normal to wedge face A1B1C1 and S1,
tangential to the same face—i.e.,

P1 = L1 + S1 (5.5)

Thus, at the contact point K1 the beet root is under the effect of the force applied
by wedge A1B1C1, which is equal to:

NK1 = N1 + L1 (5.6)

and points along the normal to the surface of wedge A1B1C1.
Apparently, the magnitude of this force is:

NK1 = N1 + L1 (5.7)

Additionally, at the contact point K1, the force of friction FK1 is applied, which
counteracts the slipping of the beet root on the work face of the wedge A1B1C1 during
its contact with the vibrating digging tool. The vector of this force is in opposition
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to the vector of the relative velocity of the wedge’s slipping on the surface of the
beet root. The root weight force Gk is applied vertically at the centre of mass (point
C) of the beet root. Additionally, during the contact between the beet root and the
vibrating digging tool, when the latter’s shares move upwards, the root is under the
effect of the soil’s elastic deformation force acting along axis Oz, designated as Rz in
the equivalent schematic model (Figure 5.1).

Further, it is necessary to determine the values of the above-mentioned forces
acting on the root during its contact with the vibrating digging tool. The tangential
component T1 of the perturbing force Qzb.1 and the tangential component S1 of the
driving force P1 do not act directly on the beet root—they only cause the breaking of
the soil around the beet root, and therefore they are not included in the differential
equations of the movement of the root as a solid body. Using the schematic model
in Figure 5.1, the following expressions that define the normal N1 and tangential T1

components of the perturbing force Qzb.1 are obtained:

N1 = Qzb.1cosδ, (5.8)

T1 = Qzb.1sinδ. (5.9)

With the use of the same schematic model, the following expressions for finding
the normal L1 and tangential S1 components of the driving force P1 are obtained:

L1 = P1sinγ, (5.10)

S1 = P1cosγ. (5.11)

The magnitude of force NK1 , taking into account (5.7), (5.8) and (5.10), is equal
to:

NK1 = Qzb.1cosδ+ P1sinγ (5.12)

or, taking into account (5.2), the following is arrived at:

NK1 = 0.5Hcosδ · sinωt + P1sinγ (5.13)

Subsequently, the value of the force of friction FK1 is equal to:

FK1 = f NK1 = f (Qzb.1cosδ+ P1sinγ) (5.14)

or, taking into account (5.2), the following is arrived at:

FK1 = 0.5 f Hcosδ · sinωt + f P1sinγ (5.15)
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It is obvious that during the direct contact between wedge A1B1C1 and the
surface of the root, the vector of the force of friction FK1 will always lie in the wedge’s
plane A1B1C1. Since at the start of the gripping the root is still strongly bonded with
the soil, it is possible that the root slips on the face of the wedge in the direction
that is opposite to the line of action of force T1 (parallel to the line B1M1) and in the
direction that is opposite to the line of action of force S1.

The mentioned slips can occur under the action of forces Qzb.1 and P1, respectively.
Therefore, the vector of the relative velocity of the wedge slipping on the surface
of the root can be resolved into the components in the above-mentioned directions.
Hence, the force of friction FK1 can also be decomposed into the two components F1

and E1 in the directions of the vectors T1 and S1, respectively—that is:

FK1 = F1 + E1 (5.16)

The magnitudes of components F1 and E1 have to be determined. On
account of the above considerations, it is possible to conclude that on the intervals
[2kπ, (2k + 1)π], k = 0, 1, 2, . . .—in particular, on the interval [0,π], the magnitude of
the force of friction FK1 is determined in accordance with (5.15); moreover, on the
interval

[
0, π2

]
, it increases from the minimum value:

F1sinγK1min (5.17)

to the maximum value:
F

1
2

cosδ1sinγK1max (5.18)

while on the interval
[
π
2 ,π

]
, it decreases from FK1max to FK1min. That said, the direction

of the vector on the interval
[
0, π2

]
also changes. Vector FK1min has the same direction

as the friction force vector for a traditional lifter (in the absence of a perturbing
force)—i.e., parallel to the right line A1O′1, while ∠O′1A1M1 = γ (Figure 3.3). Vector
FK1max deflects from vector FK1min through a certain angle of αK1max.

Thus, on the interval
[
0, π2

]
, vector FK1 strokes from vector FK1min to vector FK1max,

on the interval
[
π
2 ,π

]
—from vector FK1max to vector FK1min. Thereby, the angle of

deflection αk1 of vector FK1 from vector FK1min on the interval [0,π] varies under the
following law:

αK1 = αK1maxsinωt (5.19)

Apparently, the value αK1max depends first of all on the ratio H
P1

and the greater
said ratio is, the greater the value is. Hence, on the interval [0,π], the magnitude
of the friction force vector FK1 varies in accordance with (5.15); its direction is in
accordance with (5.19).
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Thus, on the interval [0,π], the following values of components F1 and E1 are
arrived at:

F1 = FK1 sin
(
αK1 − γ

)
(5.20)

E1 = FK1 cos
(
αK1 − γ

)
(5.21)

or, taking into account (5.15) and (5.19), the following is arrived at:

F1 = (0.5 f Hcosδ · sinωt + f P1sinγ)sin
(
αsinωK1max

)
(5.22)

E1 = (0.5 f Hcosδ·sinωt + f P1sinγ)cos
(
αk1maxsinωt− γ

)
(5.23)

(5.22) and (5.23) are applicable on any of the intervals
[2kπ, (2k + 1)π], k = 0, 1, 2, . . .

It is obvious that on the intervals [(2k− 1)π, 2kπ], k = 1, 2, . . ., the force of
friction FK1 is equal to:

FK1 = F1sinγK1min (5.24)

Hence, on the mentioned intervals, the following is true:

F1 = Fsinγ1sinγsinγ1sin2γK1min (5.25)

E1 = Fcosγ1sinγcosγ
1
2 1

sin2K1min (5.26)

Further, the forces that arise as a consequence of the deformation of the soil as
an elastic medium during the motion of the root in it have to be computed. When
the root rotates about its centreline (axis Oz) through the angle of ϕ, a distributed
load appears on the surface of contact between the root and the soil in the area of
the latter’s unbroken layer or, to be more accurate, a couple of distributed loads, as
the intensity vectors of said load are directed tangentially to the root’s surface and
distributed over the circumference in the planes of the root’s cross-sections. The
action of the couple is specified by its moment about the Oz axis vectored along the
Oz axis.

Said moment can be calculated as follows.
It is assumed that c1—coefficient of elastic deformation of the soil, which shows

by how much the force on the surface of contact increases when the surface of contact
is displaced over a unit of contact area (N·m−2).

Consider an element of surface dF of the contact between the root and the soil in
its unbroken area located at a distance of z from the point of fixation O, 0 ≤ z ≤ h1,
where h1—depth of the root’s position in the unbroken area of the soil. The radius of
the root’s cross-section situated at said distance of z from point O is equal to ztanγk,
where 2γk—angle of apex of the cone (the root is modelled as a cone-shaped solid).
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Further, it is assumed that dα—angle at the centre intercepted by the element of
surface dF in the plane of the cross-section under consideration.

Apparently, the height of the element of surface is equal to dz
cosγk

.
Subsequently, the area of the element of surface dF is equal to:

dS = ztanγkdα
dz

cosγk
(5.27)

As the element of surface dF rotates through an angle of ϕ, the soil surrounding
the root is subjected to a shear strain of dSφ, which is equal to: dSϕ = dS

2πϕ, or,
considering (5.27), the following is arrived at:

dSϕ =
zsinγkdαdz
2πcos2γk

ϕ. (5.28)

where the angle ϕ is measured in radians.
Hence, the elementary elastic force exerted by the soil, when the element of

surface dF rotates through an angle of ϕ, is equal to:

dFnp. =
c1zsinγkdαdz

2πcos2γk
ϕ (5.29)

The elementary moment of said elementary force about axis Oz is equal to:

dMnp.ϕ =
−c1zsinγkdαdz

2πcos2γk
ϕztanγk (5.30)

The moment of the elastic soil deformation force due to the angular displacement
of the beet root through the angle ϕ is equal to:

MΠp.ϕ = −
∫ h1

0

∫ 2π

0

c1z2dzϕsin2γkdα
2πcos3γk

(5.31)

where c1—elastic stiffness of the soil that determines the increase in the force acting
on the contact surface in the case of displacement of the contact surface for a contact
area unit (N·m−2).

By integrating (5.31), the following is obtained:

MΠp.ϕ =
−c1h3

1ϕsin2γk

3cos3γk
(5.32)

Further, the values of the elastic forces exerted by the soil, when the root fixed
in the soil rotates about the Oz2 axis through an angle of ψQnp.ψ, and about the nodal
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line OH through an angle of θQnp.θ have to be computed. Obviously, the mentioned
forces are also loads distributed over the surface of contact between the root and the
unbroken layer of soil. It is assumed that, during the rotation of the root through
angles of ψ and θ, deformation is observed in that part of the soil, which is in contact
with half of the side surface of the cone (i.e., part of the root that sits in the unbroken
layer of soil). The designation c will further denote the coefficient of the soil’s elastic
deformation (ratio between the first Winckler coefficient and the area of contact)
(N·m−3).

Subsequently, the moment of force Qnp.ψ about axis Oz2 is equal to:

Mψ
(
Qnp.ψ

)
= −

∫ h1

0

∫ π

0

csinγk ·ψdαz3dzθ · cos(γk +ψ)

cos3γk
(5.71)

By integrating (5.71), the following is obtained:

Mψ
(
Qnp.ψ

)
=
−cπh4

1sinγk ·ψθ · cos(γk +ψ)

4cos3γk
(5.72)

Mψ
(
Gk
)
= 0 (5.73)

as the force vector Gk is parallel to axis Oz2.

Mψ
(
Rz
)
= 0 (5.74)

as the force vector Rz intersects axis Oz2.
Thus, taking into account the obtained expressions of the moments (5.60), (5.61),

(5.62), (5.64) or (5.65), (5.69) and (5.72) and (5.74), the magnitude of the resultant
moment of all external forces about axis Oz2 that causes the root’s rotation about axis
Oz2 through an angle of ψ is found:

Me
ψ = P1(htanγk − hθ) + f

(
H
2 cosδ · sinωt + P1sinγ

)
cos
(
αsinωK1max()

)
×(htanγk − hθ)− cπh4

1sinγk·ψθcos(γk−θ)
4cos3γk

− cπh4
1sinγk·ψθcos(γk+ψ)

4cos3γk
,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, · · · ,

(5.75)

or
Me
ψ = P1(htanγk − hθ) + 0.5 f P1sin2γ(htanγk − hθ)

− cπh4
1sinγk·θψcos(γk−θ)

4cos3γk
− cπh4

1sinγk·ψθ·cos(γk+ψ)

4cos3γk
,

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, · · ·
(5.76)

Further, it is necessary to find the moments of all external forces that cause the
root’s rotation about the nodal line OH. As plane zOz2 is at right angle to the nodal

124



line OH, in order to find the moments of all forces about axis OH it is necessary to
project each of the forces on plane zOz2. With this aim in mind, it ought to be noted
that plane zOz2 is angularly displaced about axis Oz2 with respect to plane y2Oz2

through an angle of ψ, as the angle between the axes that uniquely set the positions
of these planes, i.e., between axes Ox2 and OH, is equal to ψ. Hence, the following
values of the mentioned moments are obtained:

Mθ
(
Qzb.1

)
= −Qzb.1h · tanγk (5.77)

since the vector of force Qzb.1 is parallel to plane zOz2.

Mθ
(
P1
)
= P1sinψ · h (5.78)

since the vector of force P1 deflects from the perpendicular to plane zOz2 (nodal line
OH) through an angle of ψ.

Mθ
(
E1
)
= E1sinψ · h (5.79)

or, taking into account (5.23) or (5.26), (5.79) finally obtains the following appearance:

Mθ
(
E1
)
= f

(
H
2 cosδ · sinωt + P1sinγ

)
cos
(
αsinωK1max()sinψ

)
ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, · · · ,

(5.80)

or
Mθ

(
E1
)
=

1
2

f P1sin2γ · sinψ · h,ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, · · · (5.81)

Mθ
(
F1
)
= 0 (5.82)

since the vector of force F1 intersects axis OH at point O.

Mθ
(
Qnp.ψ

)
= 0 (5.83)

since the vector of force Qnp.ψ, which is the resultant force of the distributed load,
intersects axis OH.

The moment created by the distributed load, which is represented by the
resultant force Qnp.θ, can be determined as follows.

It is obvious that said moment for an elementary force dQnp.θ about the nodal
line OH is equal to:

Mθ
(
dQnp.θ

)
= −dQnp.θcosψ · z (5.84)
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or, taking into account (5.37), the result is:

Mθ
(
dQnp.θ

)
=
−csinγkθdαz3dzcosψ

cos3γk
(5.85)

Subsequently, the moment of force Qnp.θ about the nodal line OH is equal to:

Mθ
(
Qnp.θ

)
= −

∫ h1

0

∫ π

0

csinγkθdαz3dzcosψ
cos3γk

(5.86)

After the integration of (5.86), the following is arrived at:

Mθ
(
Qnp.θ

)
=
−cπh4

1sinγkθcosψ

4cos3γk
. (5.87)

Mθ
(
Gk
)
= Gk

2
3

hkθ (5.88)

Mθ
(
Rz
)
= 0 (5.89)

as the vector of force Rz intersects axis OH.
Thus, taking into account (5.77), (5.78), (5.80) or (5.81), (5.87), (5.88) and (5.89) of

the moments, the magnitude of the resultant moment of all external forces about axis
OH is found:

Me
θ

= −Qzb.1htanγk + P1sinψ · h + f
(

H
2 cosδ · sinωt + P1sinγ

)
×

cos
(
αsinωK1max()sinψ 2

3 kk
cπh4

1sinγk·θ·cosψ
4cos3γk

)
ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, · · · ,

(5.90)

As the rotations of the root through angles of φ,ψ and θ are caused by the action
of the moments Me

φ
, Me

ψ and Me
θ

, respectively, and these rotations constitute the
complete motion of the root as a rigid body, then, evidently, the resultant moment
M

e
O of all external forces about point O, which is the very cause of the root’s motion

about point O, is equal to the vector sum of the moments Me
φ

, Me
ψ and Me

θ
—i.e., it

can be decomposed on axes Oz, Oz2 and OH—that is:

M
e
O = Me

ϕk + Me
ψk2 + Me

θi
′

(5.91)

where k, k2, i
′
—unit vectors of axes Oz, Oz2 and OH, respectively.

In order to determine the resultant moments of all external forces about axes Ox,
Oy and Oz, it is necessary to project (5.91) on axes Ox, Oy and Oz, respectively. For

this purpose, the table of direction cosines of the unit vectors k2, i′ in the system of
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moving axes Oxyz, which is presented in [32] to generate kinematic Euler equations,
has to be used. After substituting angle θwith −θ in the table, the following relations
are obtained:

x y z

k2 − sinθ · sinϕ − sinθ · cosϕ cosθ

i
′

cosφ − sinφ 0

k 0 0 1

After projecting (5.91) on axis Ox, the result is:

Me
x = −Me

ψsinθ · sinϕ+ Me
θcosϕ (5.92)

By substituting the obtained values of moments (5.75) or (5.76) and (5.90) or
(5.91) into (5.92), the following is obtained:

Me
x =

[
−P1(h · tanγk − hθ) − f

(
H
2 cosδ · sinωt + P1sinγ

)
cos
(
αK1maxsinωt − γ

)
×(h · tanγk − hθ) +

cπh4
1sinγk·θψ

4cos3γk
(cos(γk − θ) + cos(γk +ψ))

]
sinθ · sinϕ

+
[
−Qzb.1h · tanγk + P1sinψ · h + f

(
H
2 cosδ · sinωt + P1sinγ

)
×cos

(
αsinωK1max()sinψ 2

3 kk
cπh4

1sinγk·θcosψ
4cos3γk

)
||cosϕ

]
ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, · · · ,

(5.93)
or:

Me
x =

[
−P1(h · tanγk − hθ) − 1

2 f P1sinγ(h · tanγk − hθ)

+
sπh4

1sinγk·θψ
4cos3γk

(cos(γk − θ) + cos(γk +ψ))
]
sinθ · sinϕ

+
[
P1sinψ · h + 1

2 f P1sin2γ · sinψ · h− 2
3 Gkhkθ

−sπh4
1sinγk·θ·cosψ
4cos3γk

]
cosϕ,

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, · · ·

(5.94)
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The projection of (5.91) on axis Oy provides the following result:

Me
y = −Me

ψsinθ · cosϕ−Me
θsinϕ (5.95)

After the substitution of (5.75) or (5.76) and (5.90) or (5.91) into (5.95), the
following is obtained:

Me
y =

[
−P1(htanγk − hθ) − f

(
H
2 cosδ · sinωt + P1sinγ

)
cos
(
αK1maxsinωt− γ

)
×(htanγk − hθ) +

sπh4
1sinγk·θψ
4cos3γk

(
cos(γk − θ) + cos(γk +ψ)

)]
× sinθcosϕ

−
[
−Qzb.1h · tanγk + P1sinψh + f

(
H
2 cosδ · sinωt + P1sinγ

)
×cos

(
αsinωK1max()sinψ 2

3 kk
cπh4

1sinγk·θcosψ
4cos3γk

)∣∣∣∣∣ ∣∣∣∣∣sinϕ
]

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, · · · ,

(5.96)

or:
Me

y =
[
−P1(htanγk − hθ) − 1

2 f P1sin2γ(htanγk − hθ)

+
cπh4

1sinγkθψ

4cos3γk
(cos(γk − θ) + cos(γk +ψ))

]
sinθ · cosϕ−

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, · · ·
(5.97)

The projection of (5.91) on axis Oz results in the following:

Me
z = Me

ϕ + Me
ψcosθ (5.98)

By substituting the values of the moments (5.58) or (5.59), (5.75) or (5.76) into
(5.98), the following is obtained:

Me
z =

[
P1cosθ · htanγk + f

(
H
2 cosδ · sinωt + P1sinγ

)
cos
(
αK1maxsinωt− γ

)
× cosθ · htanγk − c1h3

1ϕsin2γk

3cos3γk

]
+ [P1(htanγk − hθ) + f

(
H
2 cosδ · sinωt + P1sinγ)

cos
(
αsinωK1max()r(htanγk − hθ)

cπh4
1·sinγk·θψ
4cos3γk

)
× (cos(γk − θ) + cos(γk +ψ))

]
cosθ,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, · · · ,

(5.99)

or:

Me
z =

[
P1cosθ · h · tanγk +

1
2 f P1sin2γ · cosθ · h · tanγk − c1h3

1·ϕ·sin2γk

3cos3γk

]
ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, · · ·

(5.100)

Thereby, the resultant moments Me
x, Me

y and Me
z, which are terms of the system

of equations (5.54), have been determined.
Further, it is necessary to determine the axial moments of inertia Ix, Iy and

Iz, which are also terms of the mentioned system of equations. It is assumed that
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the root’s mass is mk and its height is hk. Subsequently, the radius of the root as a
cone-shaped solid is equal to:

rk = hk · tanγk (5.101)

Further, the system of coordinates Cxcyczc with its origin at the centre of mass of
the root (point C) is defined, where axis Cxc is parallel to axis Ox, axis Cyc is parallel
to axis Oy and axis Czc lies in axis Oz. Subsequently, in accordance with [32]:

IzC =
3

10
mkr2

k (5.102)

IxC = IyC =
3

20
mk

(1
4

h2
k + r2

k

)
(5.103)

Additionally, it is obvious that:

Iz = IzC =
3

10
mkr2

k (5.104)

The following is obtained by the Huygens–Steiner theorem:

Ix = IxC + mk

(2
3

hk

)2
(5.105)

or:
Ix =

(347
720

+
3

20
tan2γk

)
mk · h2

k (5.106)

Since IyC = IxC , the following is finally arrived at:

Iy = Ix =
(347

720
+

3
20

tan2γk

)
mk · h2

k (5.107)

Thus, the root’s moments of inertia about axes Ox, Oy and Oz have been
determined. Thereafter, by substituting (5.93) or (5.94), (5.96) or (5.97), (5.99) or
(5.100), (5.104), (5.107) into the system of Equations (5.45) and taking into account
(5.2) and (5.47), after some transformations, the system of differential equations that
describe the root’s motion in the case of asymmetric gripping by the vibrating digging
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tool at the first stage of extraction is obtained. This system of equations appears
as follows:(

0.48 + 0.15 tan2 yk
)
mkh2

k
dωx
dt +

(
0.15 tan2 γk + 0.52

)
mkh2

kωyωz

= [−P1(h tanγk − hθ)
− f (0.5H cos δ· sinωt + P1 sinγ) cos

(
αK1max sinωt− γ

)
(h tanγk − hθ)

+
cπh4

1 sinγk·θψ(cos(γk−θ)−cos(γk+ψ))

4 cos3 γk
] sinθ· sinϕ

+[−0.5Hh tanγk· sinωt + hP1 sinψ
+ f (0.5H cos δ· sinωt + P1 sinγ)cos

(
αK1max sinωt− γ

)
sinψ·h + 2

3 Gk

·hk·θ− cπh4
1· sinγk·θ· cosψ

4 cos3 γk
] cosϕ,(

0.48 + 0.15 tan2 yk
)
mkh2

k
dωy
dt +

(
0.48− 0.15 tan2 γk

)
mkh2

kωzωx

= [−P1(h tanγk − hθ)
− f (0.5H cos δ· sinωt + P1 sinγ)cos

(
αK1max sinωt− γ

)
(h tanγk − hθ)

+
cπh4

1 sinγk·θψ(cos(γk−θ)−cos(γk+ψ))

4 cos3 γk
] sinθ· cosϕ

−[−0.5Hh tanγk· sinωt + hP1 sinψ
+ f (0.5H cos δ· sinωt + P1 sinγ)cos

(
αK1max sinωt− γ

)
sinψ·h + 2

3 Gk

·hk·θ− cπh4
1· sinγk·θ· cosψ

4 cos3 γk
] sinϕ,

0.3mkh2
k tan2 γk

dωz
dt

= hP1 cosθ· tanγk + f (0.5H cos δ· sinωt + P1 sinγ)

· cos
(
αK1max· sinωt− γ

)
cosθ· tanγkh− c1h3

1·ϕ· sin2 γk

3 cos3 γk

+[P1(h tanγk − hθ)
+ f (0.5H cos δ· sinωt + P1 sinγ)cos

(
αK1max sinωt− γ

)
(h tanγk − hθ)

+
cπh4

1·θ·ψ· sinγk(cos(γk−θ)−cos(γk+ψ))

4 cos3 γk
] cosθ,

ω1 = − .
ψ sinθ· sinϕ− .

θ cosϕ,
ω2 = − .

ψ sinθ· cosϕ− .
θ sinϕ,

ω3 = − .
ψ cosθ− .

ϕ,
ωt ∈ [2kπ, (2k + 1)π] k = 0, 1, 2, . . . . . .

(5.108)
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or (
0.48 + 0.15 tan2 γk

)
mkh2

k
dωx
dt +

(
0.15 tan2 γk + 0.52

)
mk · h2

k ·ωy ·ωz

=
[
−P1(h tanγk − h · θ) − 1

2 f P1 sin 2γ (h · tanγk − h · θ)
+

cπh4
1 sinγk·θ·ψ
4 cos3 γk

(cos(γk − θ) + cos(γk +ψ))
]

sinθ · sinϕ

+
[
hP1 sinψ+ 1

2 f hP1 sin 2γ · sinψ+ 2
3 Gkhkθ− cπh4

1 sinγk·θ· cosψ
4 cos3 γk

]
cosϕ,(

0.48 + 0.15 tan2 γk
)
mkh2

k
dωy
dt +

(
0.48− 0.15 tan2 γk

)
mkh2

kωzωx

= [−P1(h tanγk − hθ) − 0.5 f P1 sin 2γ (h tanγk − h · θ)
+

cπh4
1 sinγk·θ·ψ
4 cos3 γk

(cos(γk − θ) + cos(γk +ψ))
]

sinθ · cosϕ

−
[
hP1 sinψ+ 0.5 f hP1 sin 2γ · sinψ+ 2

3 Gkhkθ− cπh4
1 sinγk·θ·cosψ

4 cos3 γk

]
sinϕ,

0.3mkh2
k tan2 γk

dωz
dt = hP1 cosθ · tanγk + 0.5 f hP1 sin 2γ · cosθ · tanγk

− c1h3
1ϕ·sin2 γk

3 cos3 γk
+ [P1(h tanγk − hθ) + 0.5 f P1 sin 2γ (h tanγk − hθ)

− cπh4
1θ·sinγk·ψ

4 cos3 γk
(cos(γk − θ) + cos(γk +ψ))

]
cosθ,

ωx = − .
ψ sinθ · sinϕ− .

θ cosϕ,
ωy = − .

ψ sinθ · cosϕ+
.
θ sinϕ,

ωz =
.
ψ cosθ+

.
ϕ,

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.109)

It is obvious that the above systems of differential equations must meet the
following initial conditions: at t = 0:

ϕ(0) = 0,ψ(0) = 0,θ(0) = 0, ϕ́(0) = 0, ψ́(0) = 0, θ́(0) = 0. (5.110)

Since (5.108) contains the moments of the restoring forces (the soil’s resistance
forces), the system describes the three-dimensional process of the root’s oscillations
in the soil as an elastic medium. The integration of systems of differential equations
such as (5.108) or (5.109) poses considerable mathematical difficulties. Obtaining an
analytical solution is impossible. This system of equations can be solved only with
the use of numerical techniques with the assistance of modern PCs.

If (5.109) is considered by itself, it describes the motion of the root in case
the digging tool grips it asymmetrically in the absence of the action of perturbing
forces—i.e., when Qzb. = 0.

Thus, by applying the original kinematic and dynamic Euler equations, the
system of differential equations of the root’s oscillations during its vibrational digging
for the case when the root interacts with one wedge of the vibrating digging tool at
one of its points has been set up. In the next part of the study, the case when the root
interacts with both wedges of the vibrating digging tool is investigated.
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5.2. Differential Equations of a Root’s Angular Oscillations in Soil During Symmetric
Gripping by a Vibrating Digging Tool

As was noted above, the gripping of the root by the vibrating digging tool on
only one side lasts for a short while. As a result of the lifter’s translational motion
and the necking of the working channel, at the next stage the digging tool proceeds
to gripping the root on both sides. At the same time, if the root has no offset from the
row’s centreline (i.e., it is situated strictly on the centreline of the row) and is on the
axis of symmetry of the vibrating digging tool, the root will be gripped on both sides
from the beginning (known as symmetric gripping).

This is the kind of gripping of the root by the digging shares that enables the
process of complete extraction of the root from the soil. Therefore, the following
investigation deals with the process of the root extraction in the case of symmetric
gripping by the tool at the first stage of extraction (when the root is still fast bonded
with the soil).

It is necessary to set up the equivalent schematic model of the interaction
between the root and the working faces of the vibrating digging tool in the case of
symmetric gripping (Figure 5.2).

Distinct from asymmetric gripping, in the case of symmetric gripping the
interaction forces appear on the working faces of both shares, as is shown in
Figure 5.2. At the points of contact K1 and K2 between the root and the respective
wedge faces A1B1C1 and A2B2C2, the root is under the action of the perturbing forces
Qzb.1 and Qzb.2, respectively.

We resolved these perturbing forces into the normal components N1 and N2 and
tangential components T1 and T2, as shown in Figure 5.2. The compositions of the
forces will be as follows:

Qzb.1 = N1 + T1 (5.111)

Qzb.2 = N2 + T2 (5.112)

Apparently, the lines of the force vectors T1 and T2 will be parallel to the right
lines B1M1 and B2M2, respectively.

As the vibrational lifting tool advances linearly along axis O1x1 with respect to
the beet root fixed in the soil, at the moment when the tool grips the root, there are
also moving forces P1 and P2 acting along axis O1x1. We resolved the moving forces
P1 and P2 into the normal components L1 and L2 and tangential components S1 and
S2 with reference to planes A1B1C1 and A2B2C2, respectively—i.e.,

P1 = L1 + S1 (5.113)

P2 = L2 + S2 (5.114)
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The force vectors S1 and S2 act along the vector lines of speed of the shares relative
to the root surface during the translational motion of the vibrational lifting tool.

Figure 5.2. Force interaction between root and wedges of vibrating digging tool in
the case of symmetric gripping of root.

Thus, the lifting wedges A1B1C1 and A2B2C2 exert the following forces on the
sugar beet root at the contact points K1 and K2:

NK1 = N1 + L1, (5.115)

NK2 = N2 + L2, (5.116)

which act along the normal to planes A1B1C1 and A2B2C2, respectively.
Obviously, the magnitudes of these forces are as follows:

NK1 = N1 + L1 (5.117)
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NK2 = N2 + L2 (5.118)

In addition to this, at the contact points K1 and K2 the friction forces FK1 and
FK2, respectively, are applied, which counteract the slipping of the beet root body on
the working surfaces of wedges A1B1C1 and A2B2C2 when the lifting tool grips the
root. The vectors of these forces have opposite directions that those of the vectors of
the relative speed of the beet root slipping on the surfaces of said wedges.

At the root’s centre of gravity (point C), the root weight force Gk is applied. The
forces of resistance exerted by the loosened soil during the beet root’s movement in
the working passage of the vibrational lifting tool along axis O1z1 are designated as
Rz1.

In contrast to asymmetric gripping, symmetric gripping does not cause the root
to rotate about its centreline Oz (φ = 0) or to rotate about axis Oz2 (ψ = 0). The
only rotation of the root that takes place is its rotation about axis Oy2 through an
angle of θ along the line of translational motion of the vibrational lifter (i.e., along
axis Ox2).

At the same time, it ought to be noted that the rotation of a solid about one of
the axes is not always a special case of a solid’s motion around a fixed point. This
becomes evident from the analysis of the kinematic Euler equations. For example,
it is impossible to derive the kinematic relations for the rotation of the solid about
axis Oy2 from these equations, which is what occurs in the case under consideration.
Therefore, this case has to be investigated separately as the rotation of a solid about a
fixed axis.

Moreover, in the case of symmetric gripping the point of fixation in the soil, O
oscillates in the longitudinal and vertical plane.

Thereby, in this case the soil’s elastic forces Qnp.ϕ and Qnp.ψ are absent. The only

restoring force that acts during the oscillations of the root about point O is force Qnp.θ,
and during the oscillations of the point of fixation O—forces Ŕz1 and Ŕx1.

Now, we are going to find the magnitudes of the forces shown in Figure 5.2. The
tangential components T́1 and T́2 of the perturbing forces Qzb.1, and Qzb.2, respectively,
and the tangential components Ś1 and Ś2 of the moving forces Ṕ1 and Ṕ1, respectively,
do not have any direct effect on the beet root—they only produce loosening of the
soil around the root.

It should be noted, taking into account the symmetry of the beet root gripping by
the vibrational lifting tool, that the same forces generated on the two share working
surfaces during their interaction with the beet root will have equal magnitudes and
symmetrical lines of action with respect to the symmetry plane x1O1z1 (Figure 4.2).
Accordingly, from the schematic model of forces we derive the formulae for finding
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the normal components Ń1 and Ń2 and the tangential components T́1 and T́2 of the
perturbing forces Qzb.1, and Qzb.2. They have the following values:

N1 = N2 = Qzb.1 (5.119)

T1 = T2 = Qzb.1sinδ (5.120)

From the same schematic force model the formulae for finding the normal
components Ĺ1 and Ĺ1 and tangential components Ś1 and Ś2 of the moving forces Ṕ1

and Ṕ2, respectively, can be derived:

L1 = L2 = P1sinγ (5.121)

S1 = S2 = P1cosγ (5.122)

The magnitudes of forces ŃK1 and ŃK2 are as follows, taking into account (5.117),
(5.119) and (5.121):

NK1 = NK2 = Qzb.1cosδ+ P1sinγ (5.123)

or, considering (5.2), we come to the following:

NK1 = NK2 = 0.5Hcosδsinωt + P1sinγ (5.124)

Hence, the magnitudes of the friction forces F́K1 and F́K2 are:

FK1 = FK2 = f NK1 = f (Qzb.1cosδ+ P1sinγ) (5.125)

or, considering (5.2), we come to:

FK1 = FK2 = 0.5 f Hcosδsinωt + f P1sinγ (5.126)

where f —coefficient of friction.
Apparently, during the immediate contact between wedges A1B1C1 and A2B2C2

and the beet root surface, the friction force vectors F́K1 and F́K2 always lie in wedge
planes A1B1C1 and A2B2C2, respectively. In addition to this, due to the soil resistance
forces, the slipping of the beet root on the surfaces of the wedges along the lines
of action of forces T́1, T́2 (parallel to the lines B1M1 and B2M2) and in the direction
opposite to forces Ś1 and Ś2 is possible.

The above-mentioned slipping can result from the action of forces Qzb.1, Qzb.2
and Ṕ1, Ṕ2, respectively. Therefore, the vector of the relative speed of the beet root
slipping on the surfaces of the wedges can be resolved into components in the
above-said directions. Thus, the friction force F́K1 can also be resolved into two
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components: F́1—in the direction opposite to the vector T́1, and É1—in the direction
of the vector Ś1—i.e.,

F́K1 = F́1 + É1 (5.127)

Similarly, the friction force F́K2 can be resolved into two components as well:
F́2—in the direction opposite to the vector T́2, and É2—in the direction of the vector
Ś2—i.e.,

F́K2 = F́2 + É2 (5.128)

Obviously, F1 = F2, E1 = E2.
Now, let us find the magnitudes of the components of forces F́1 and É1, and

consequently F́2 and É2. Based on the above considerations, a deduction can be made
that in the intervals [2kπ, (2k + 1)π], k = 0, 1, 2, . . . , particularly in the interval [0, π],
the magnitude of the friction force F́K1 (F́K2) shall be determined in accordance with
(5.18); moreover, in the interval [0, π/2]

[
0, π2

]
, it rises from its minimum value:

F́K1min = F́K2min = f P1sinγ (5.129)

to the maximum value:

F́K1max = F́K2max =
1
2

f Hcosδ+ f P1sinγ (5.130)

While in the interval [π/2, π].
[
π
2 ,π

]
it decreases from F́K1max (F́K2max) to F́K1max

(F́K2max). Besides that, the direction of the friction force vector in the interval
[
0, π2

]
.

also changes. The vector F́K1min (F́K2min) has the same direction as the friction force
vector of a usual share lifter (in the absence of any perturbing force), i.e., parallel
to the right lines A1O1’ (A2O2’), while ∠O1’A1M1 = ∠O2’A2M2 = γ (Section 2). The
vector F́K1max (F́K2max) deflects from the vector F́K1min (F́K2min) through a certain angle
αK1max (αK2max), while αK1max = αK2max

Therefore, in the interval
[
0, π2

]
the force vector F́K1 (F́K2) changes from the vector

F́K1min (F́K2min) to the vector F́K1max (F́K2max), and in the interval
[
π
2 ,π

]
—from the

vector F́K1max (F́K2max) to the vector F́K1min (F́K2min). Hence, the angle αK1 (αK2) of
the deflection of the vector F́K1 (F́K2) from the vector F́K1min (F́K2min) changes in the
interval [0, π] under the following law:

αK2 = αK1 = αK1maxsinωt (5.131)

Apparently, the value αK1max (αK2max) depends first of all on the ratio
H
P1

(
H
P2

)
H
P1

(
H
P2

)
and the greater the ratio is, the greater the value grows. Therefore,

in the interval [0, π] the magnitude of the friction force vector F́K1 (F́K2) changes
according to (5.126), while its direction—according to (5.131).
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Therefore, in the interval [0, π] we have the following values of the component
forces F́1 (F́2) and É1 (É2):

F1 = F2 = FK1sin(αK1 − γ) (5.132)

E1 = E2 = FK1cos(αK1 − γ) (5.133)

then, taking into account (5.126) and (5.131), we obtain:

F1 = F2 =
(1

2
f Hcosδ·sinωt + f P1sinγ

)
sin(αK1maxsinωt− γ) (5.134)

E1 = E2 =
(1

2
f Hcosδ·sinωt + f P1sinγ

)
cos(αK1maxsinωt− γ) (5.135)

(5.134) and (5.135) are effective in any of the intervals [2kπ, (2k + 1)π], k = 0, 1, 2,
. . .

Obviously, within the intervals [(2k + 1)π, 2kπ], k = 0, 1, 2, . . . , the friction forces
F́K1 (F́K2) are as follows:

FK1 = FK2 = FK1min = f P1sinγ (5.136)

Hence, the following is observed in the denoted intervals:

F1 = F2 = FK1minsinγ = f P1sinγ·sinγ = f P1sin2γ (5.137)

E1 = E2 = FK1mincosγ = f P1sinγ·cosγ =
1
2

f P1sin2γ (5.138)

The soil’s elastic force Qnp.θ is determined in accordance with (5.39).

The bonding force Rz1 between the root and the soil is also determined with
(5.44).

Further, the differential equation of the root’s rotational motion about axis Oy1

has to be set up. In accordance with [32], the required equation appears as follows:

Iy2
d2θ

dt2 = Me
y2

(5.139)

where θ—angular displacement of the root about axis Oy2; Iy2—moment of inertia of
the root about axisOy2; Me

y2
—moment of force about axis Oy2 (sum of the moments

of all external forces acting on the root about axis Oy2).
The moments of all external forces about axis Oy2 are determined in accordance

with the schematic model of forces shown in Figure 5.2. These moments are equal to:

My2

(
Qzb.1

)
= My2

(
Qzb.2

)
= −Qzb.1hθ (5.140)
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since the vectors of forces Qzb.1 and Qzb.2 are parallel to plane x2Oz2.

My2

(
P1
)
= My2

(
P2
)
= P1 cosθh (5.141)

since the vectors of forces P1 and P2 are parallel to plane x2Oz2.

My2

(
F1
)
= My2

(
F2
)
= 0 (5.142)

since the vectors of forces F1 and F2 intersect axis Oy2.

My2

(
E1
)
= My2

(
E2
)
= E1 cosγ·h cosθ (5.143)

Taking into account (5.135), the following is obtained:

My2

(
E1
)
= My2

(
E2
)

= (0.5 f H cos δ· sinωt + f P1 sinγ)
· cos(αK1max sinωt− γ) cosγ·h cosθ,
ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . . .

(5.144)

or, taking into account (5.138), the result is:

My2

(
E1
)
= My2

(
E2
)
= 0.5 f P1 sin 2γ· cosγ·h cosθ,

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . .
(5.145)

My2

(
Gk
)
=

2
3

Gkhkθ (5.146)

My2

(
Rz1

)
= 0 (5.147)

since the vector of force Rz1 intersects axis Oy2.

My2

(
Qnp.θ

)
= −2

3
Qnp.θh1 cos(γk + θ) (5.148)

or, taking into account (5.39), the following is arrived at:

My2

(
Qnp.θ

)
= −2cπh4

1θ sinγk· cos(γk + θ)

9 cos3 γk
(5.149)
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Hence, taking into account (5.140), (5.141), (5.144) or (5.145), (5.146), (5.147) and
(5.149) of the moments, the magnitude of the rotary momentMe

y2
of all external forces

about axis Oy2 is obtained as follows:

Me
y2

= −2Qzb.1hθ+ 2P1 cosθh + ( f H cos δ· sinωt + 2 f P1 sinγ)

· cos
(
αK1,max sinωt− γ

)
cosγ· cosθ+ 2

3 Gkhkθ− 2cπh4
1θ sinγk· cos(γk+θ)

9 cos3 γk

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . . .

(5.150)

or
Mγ2 = −2P1 cosθh + f P1 sin 2γ· cosγ·h cosθ+ 2

3 Gkhkθ

− 2cπh4
1θ sinγk· cos(γk+θ)

9 cos3 γk

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . .

(5.151)

The moment of the root’s inertia Iy2 about axis Oy2 is determined with (5.107).
By substituting (5.2), (5.107) and (5.150) or (5.151) into the differential Equation

(5.139) and carrying out certain transformations, the differential equation of the root’s
rotational motion about axis Oy2 is obtained, which appears as follows:(

0.48 + 0.15 tan2 yk
)
mkh2

k
d2θ
dt2

= −Hhθ sinωt + 2P1 cosθh
+( f H cos δ· sinωt + 2 f P1 sinγ) cos

(
αK1max sinωt− γ

)
· cosγ·h cosθ

+ 2
3 Gkhkθ

2cπh4
1 sinγk· cos(γk−θ)

9 cos3 γk

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .

(5.152)

or (
0.48 + 0.15 tan2 yk

)
mkh2

k
d2θ
dt2

= 2P1 cosθh + f P1 sin 2γ

+ cosγ·h cosθ+ 2
3 Gkhkθ

2cπh4
1 sinγk· cos(γk−θ)

9 cos3 γk

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . .

(5.153)

The initial conditions for the above differential equation can be written as follows:

at t = 0 : θ = 0,
.
θ = 0. (5.154)

By virtue of the fact that the (5.152) and (5.153) contain the moment of restoring
force, specificallyMy2

(
Qnp.θ

)
, they describe the oscillations of the root about axis Oy2

in plane x2 Oz2.
The obtained differential equation can only be solved with the use of numerical

methods and the PC.
Thus, the differential equations describing the angular oscillations of the root

about its fixation point that arise under the action of the vertical perturbing force
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imparted on the root by the vibrating digging tool and the tractive force generated
by the translational motion of the lifter have been set up.

5.3. Analysis of Translational Oscillations of Root Together with Its Point of Fixation in the
Longitudinal and Vertical Plane

Further, it is necessary to analyse the oscillations of the root in the soil together
with its point of fixation O in the longitudinal and vertical plane at the first stage
of extraction. As noted above, the oscillations under consideration are translational
motions; therefore, it is sufficient to analyse the oscillations of a single point of the
root—for example, its point of fixation. As the root still remains strongly bonded with
the soil, it will oscillate together with the surrounding soil, which remains unbroken
in the layer below the cutting edges of the shares. The mass of said soil can be
designated as mgr.; then, its weight Ggr. is equal to Ggr. = mgr.g, where g—acceleration
of gravity. As the analysed process is considered for the case of the symmetric
gripping of the root by the tool, the schematic model of the forces of interaction
between the root and the tool shown in Figure 5.3 will be used for setting up the
differential equation that describes the mentioned oscillatory process.

Figure 5.3. Force interaction between root and shares of vibrating digging tool
during its translational oscillations together with its conventional point of fixation
in soil.
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The required differential equation in the vector notation appears as follows:

(
mk + mgr.

)
a = N1 + N2 + L1 + L2 + F1 + F2 + E1 + E2 + Gk + Ggr. + Rz1 + Rx1 , (5.155)

where a—acceleration of the root (i.e., of point O).
In order to analyse the oscillatory process under consideration in detail, (5.155)

can be written in its projections on the axes of the Cartesian coordinate system
O1x1y1z1. It ought to be noted that in view of the fact that the projections of the
normal reactions Ni, Li (i = 1, 2) of the working faces A1B1C1 and A2B2C2 on axis O1y
have equal magnitudes and opposite senses, the analysed oscillatory process takes
place in effect in plane x1O1z1 (in the case of symmetric gripping); hence, (5.155) is
reduced to the following system of two equations:

(
mk + mgr.

) ..
x1 = N1x1 + L1x1 + N2x1 + L2x1 − F1x1 + E1x1 − F2x1 + E2x1 −Rx1 ,(

mk + mgr.
)..
z1 = N1z1 + L1z1 + N2z1 + L2z1 + F1z1 + E1z1 + E2z1 + E2z1 −Gk −Ggr. −Rx1

⎫⎪⎪⎬⎪⎪⎭ (5.156)

Let us determine the values of the force projections on axes Ox1 and Oz1 used in
the (5.156). As was shown in Section 3, the projections of the normal components Ń1

and Ń2 on axis O1x1, are as follows:

N1x1 = N2x1 =
N1 tanγ√

tan2 γ+ 1 + tan2 β
, (5.157)

or, taking into account (5.119), we obtain:

N1x1 = N2x1 =
Qzb1 cos δ· tanγ√
tan2 γ+ 1 + tan2 β

. (5.158)

The projections of the normal components L1 and L2 on axis O1x1 have the
following values:

L1x1 = L2x1 =
L1 tanγ√

tan2 γ+ 1 + tan2 β
. (5.159)

or, taking into account (5.121), we obtain:

L1x1 = L2x1 =
P1 sinγ· tanγ√

tan2 γ+ 1 + tan2 β
. (5.160)
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For the projections of the friction force components F1 and F2, the following
expressions are obtained:

F1x1 = F2x1 = F1 cos δ· sinγ, (5.161)

or, taking into account (5.134), we have:

F1x1 = F2x1 = (0.5 f H cos δ· sinωt + f P1 sinγ) sin
(
αk1max sinωt− γ

)
cos δ· sinγ,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .
(5.162)

Taking into consideration (5.137), we come to:

F1x1 = F2x1 = f P1 sin3 γ· cos δ ,ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . (5.163)

The projections of the friction force components E1 andE2 on axis O1x1 will be
as follows:

E1x1 = E2x1 = E1 cosγ, (5.164)

or, taking into account (5.135), the following expression can be obtained:

E1x1 = E2x1 = (0.5 f H cos δ· sinωt + f P1 sinγ) cos
(
αk1max sinωt− γ

)
cosγ,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .
(5.165)

Taking into account (5.138), we obtain:

E1x1 = E2x1 = 0.5 f P1 sin 2γ· cosγ, ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . (5.166)

Force Rx1 is projected on axis Ox1 at full size. It is determined according to the
following expression:

Rx1 =
cπh2

1 sinγk

2 cos2 γk
x1. (5.167)

(5.167) is obtained in the similar way as (5.44).
As was shown in Section 3, the projections of the normal components N1 and Ń

on axis O1z1 are as follows:

N1z1 = N2z1 =
N1 tan β√

tan2 γ+ 1 + tan2 β
, (5.168)

or, taking into account (5.119), we come to:

N1z1 = N2z1 =
Qzb1 cos δ· tan β√
tan2 γ+ 1 + tan2 β

(5.169)
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The projections of the normal components L1 and L2 on axis O1z1 will be equal
to:

L1z1 = L2z1 =
L1 tan β√

tan2 γ+ 1 + tan2 β
(5.170)

or, taking into account (5.121), we have:

L1z1 = L2z1 =
P1 sinγ· tan β√

tan2 γ+ 1 + tan2 β
(5.171)

The projections of the friction force components F1 and F2 on axis O1z1 will be
equal to:

F1z1 = F2z1 = F1 sin δ, (5.172)

or, taking into account (5.134), we have:

F1z1 = F2z1 = (0.5 f H cos δ· sinωt + f P1 sinγ) sin
(
αk1max sinωt− γ

)
sin δ,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .
(5.173)

Taking into consideration (5.137), we obtain:

F1z1 = F2z1 = f P1 sin2 γ sin δ, ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . (5.174)

The projections of the friction force components E1 and E2 on axis O1z1 are equal
to zero in any interval—i.e., E1z1 = E2z1 = 0.

Force Rz1 is projected on axis O1z1 at full size. It is determined according
to Expression (4.44) and is the principal restoring force in the oscillatory process
under consideration.

By substituting (5.158), (5.160), (5.162) or (5.163), (5.165) or (5.166), (5.167),
(5.169), (5.171), (5.173) or (5.174), (5.44) into (5.156), we obtain the following system
of differential equations:

(
mk + mgr.

) ..
x1 =

2Qzb1· cos δ· tanγ√
tan2γ+1+tan2β

+
2P1· sinγ· tanγ√
tan2γ+1+tan2β

−( f H cos δ· sinωt + 2P1· sinγ)· sin
(
αk1max sinωt− γ

)
· cos δ· sinγ

+( f H cos δ· sinωt + 2P1· sinγ)· cos
(
αk1max sinωt− γ

)
cosγ− cπh2

1 sinγk

2 cos2 γk
x1,(

mk + mgr.
)..
z1 =

2Qzb1· cos δ· tan β√
tan2γ+1+tan2β

+
2P1· sinγ· tan β√
tan2γ+1+tan2β

+

( f H cos δ· sinωt + 2P1· sinγ)· sin
(
αk1max sinωt− γ

)
· sin δ−Gk −Ggr. − c1πh1 sinγkz1

cos2 γk

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.175)
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or:

(
mk + mgr.

) ..
x1 =

2P1· sinγ· tanγ√
tan2γ+1+tan2β

− 2 f P1 sin3 γ· cos δ+ 2 f P1 sin 2γ· cosγ− cπh2
1 sinγk

2 cos2 γk
x1,(

mk + mgr.
)..
z1 =

2P1· sinγ· tan β√
tan2γ+1+tan2β

+ 2 f P1 sin2 γ· sin δ−Gk −Ggr. − c1πh1 sinγkz1
cos2 γk

,

ωt ∈ [ (2k− 1)π, 2kπ], k = 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (5.176)

In view of the fact that on the interval ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . forces
Qzb.1 andQzb.2 do not act on the root (the tool moves downwards), they in (5.176).

Thus, the obtained systems of differential equations describe the process of
the root extraction from the soil at its first stage in two cases: when the tool moves
upwards symmetrically and directly gripping the root (5.176) and when the tool
moves downwards and the root is not under the action of the perturbing force (4.177).

It is obvious that (4.177) describes the process of the root extraction from the soil
by a standard share lifter as a result of the translational motion of the lifter under the
action of the driving forces P1 and P2 during the direct contact between the root and
the working faces of the shares.

As the system of differential Equation (5.175) is nonlinear, it can only be solved
with the use of approximate numerical techniques and the assistance of the PC under
preset initial conditions.

The initial conditions for (5.175) and (5.176) are written as follows at t = 0:

.
x1 = 0,

.
z1 = 0,x1 = 0, z1 = 0, (5.177)

However, if certain assumptions are made, (5.175) can be reduced to a system
of linear differential equations, which will considerably simplify the solving of the
system of differential equations under consideration.

At a first approximation, it is assumed that, within a short time interval, the
vectors of forces of friction FK1 and FK2 retain the same directions, i.e., the angle
between the vectors FK1min and FK1 , is constant and equal to

αK1max
2 ; similarly, the

angle between vectors FK2min and FK2 is constant and equal to
αK2max

2 at the same time,
αK1max

2 =
αK2max

2 .
By substituting (5.2) into (5.175), we obtain the following system of

differential equations:

(
mk + mgr.

) ..
x1 +

cπh2
1 sinγk

2 cos2 γk
x1=

⎡⎢⎢⎢⎢⎢⎢⎣
cos δ· tanγ√

tan2γ+1+tan2β
− f cos2 δ· sinγ· sin

(αk1max
2 − γ

)
+ f cos δ· cosγ·

cos
(αk1max

2 − γ
)

⎤⎥⎥⎥⎥⎥⎥⎦·H sinωt

+
2P1· sinγ· tan β√
tan2γ+1+tan2β

− 2 f P1 cos δ sin
(αk1max

2 − γ
)

sin2 γ+ 2 f P1 cos
(αk1max

2 − γ
)

sin 2γ,(
mk + mgr.

)..
z1 +

c1πh1 sinγk
cos2 γk

z1 =

[
cos δ· tan β√

tan2γ+1+tan2β
+

f
2 sin 2δ· sin

(αk1max
2 − γ

)]
·H sinωt

+
2P1· sinγ· tan β√
tan2γ+1+tan2β

+ 2 f P1 sinγ sin δ sin
(αk1max

2 − γ
)
−
(
mk + mgr.

)
g,

ωt ∈ [ 2kπ, (2k + 1)π], k = 0, 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.178)
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or:

(
mk + mgr.

) ..
x1 +

cπh2
1 sinγk

2 cos2 γk
x1 =

2P1· sinγ· tan β√
tan2γ+1+tan2β

− 2 f P sin3 γ·cos δ+ 2 f P1 sin 2γ· cosγ,(
mk + mgr.

)..
z1 +

c1πh1 sinγk
cos2 γk

z1 =
2P1· sinγ· tan β√
tan2γ+1+tan2β

+ 2 f P sin2 γ· sin δ−
(
mk + mgr.

)
g,

ωt ∈ [ (2k− 1)π, 2kπ], k = 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (5.179)

(5.178) and (5.179) are systems of second-order linear differential equations
with constant coefficients with right-hand sides. (5.178) describes the free and
forced oscillations of the root (its point of fixation O) along axes O1x1 and O1z1

together with the soil surrounding the root at the first stage of extraction; (5.179)
describes the displacement of the root along axes O1x1 and O1z1 in the absence of
the perturbing force—i.e., when the tool moves downwards. Thereby, the systems
of nonlinear differential equations (5.175) and (5.176), which can be solved only
approximately with the use of numerical techniques, have been changed to systems of
linear differential equations (5.178) and (5.179), which are approximate equations, but
nonetheless can be solved by quadrature. Hence, the analytic relations that describe
the root’s oscillatory process at the first stage of extraction have been obtained.

In order to simplify the notation of (5.178) and (5.179), the following designations
are introduced:

cπh2
1 sinγk

2 cos2 γk
(
mk + mgr.

) = k2
1, (5.180)

[
cos δ· tanγ√

tan2 γ+1+tan2 β
− 2 f cos2 δ+ sinγ· sin

(αk1max
2 − γ

)
+ f cos δ· cosγ· cos

(αk1max
2 − γ

)]
· 1
(mk+mgr.)

= A1,

(5.181)

[
2 sinγ· tanγ√

tan2 γ+1+tan2 β
− 2 f cos δv sin

(αk1max
2 − γ

)
sin2 γ+ f cos

(αk1max
2 − γ

)
sin 2γ

]
· 1
(mk+mgr.)

= B1,

(5.182)

c1πh1 sinγk

cos2 γk
(
mk + mgr.

) = k2
2, (5.183)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ cos δ· tan β√
tan2 γ+ 1 + tan2 β

+
f
2

sin 2δ· sin
(αk1max

2
− γ

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1(
mk + mgr.

) = A2, (5.184)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 2 sinγ· tan β√
tan2 γ+ 1 + tan2 β

+ 2 f sinγ· sin δ· sin
(αk1max

2
− γ

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1(
mk + mgr.

) = B2, (5.185)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 2 sinγ· tanγ√
tan2 γ+ 1 + tan2 β

− 2 f sin3 γ· cos δ· sin 2γ· cosγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1(
mk + mgr.

) = B′1, (5.186)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 2 sinγ· tan β√
tan2 γ+ 1 + tan2 β

− 2 f sin2 γ· sin δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 1(
mk + mgr.

) = B′2 (5.187)

After substituting (5.180)–(5.187) into the systems of equations, said systems of
equations will be as follows:

..
x1 + k2

1x1 = A1H sinωt + B1P1,
..
z1 + k2

2z1 = A2H sinωt + B2P1 − g,

}
ωt ∈ [ 2kπ, (2k + 1)π], k = 0, 1, 2, . . . .

(5.188)

or: ..
x1 + k2

1x1 = B′1P1,
..
z1 + k2

2z1 = B′2P1 − g,

}
ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . .

(5.189)

The first step is to integrate the (5.188). The first and second differential equations
in (4.189) have the following characteristic equations, respectively:

r2 + k2
1 = 0, (5.190)

r2 + k2
2 = 0. (5.191)

Since the roots of these equations are purely imaginary and are equal, respectively,
to ±k1i and ±k2i where i—imaginary unit, the general solutions of the homogeneous
differential equations appear as follows:

x1oH. = C1 cos k1t + C2 sin k1t, (5.192)

z1oH. = C3 cos k2t + C4 sin k2t, (5.193)

where C1, C2, C3, C4—arbitrary constants determined in accordance with the initial
conditions. As ω is not a root of the characteristic Equation (5.190) and (5.191), the
partial solutions of (5.188) are sought in the following form:

x1part. = L1 sinωt + M1 cosωt + Q1, (5.194)

z1part. = L2 sinωt + M2 cosωt + Q2, (5.195)

where L1, M1, Q1, L2, M2, Q2—unknown coefficients, which are, in this case, the
constant quantities that can be determined with the use of the method of indefinite
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coefficients. After the implementation of said method, the following values of the
required coefficients are obtained:

L1 =
A1H

k2
1 −ω2

, M1 = 0, Q1 =
B1P1

k2
1

, (5.196)

L2 =
A2H

k2
2 −ω2

, M2 = 0, Q2 =
B2P1 − g

k2
2

. (5.197)

Having substituted (5.196) and (5.197) into (5.194) and (5.195), respectively, the
following result is obtained:

x1part. =
A1H

k2
1 −ω2

sinωt +
B1P1

k2
1

, (5.198)

z1part. =
A2H

k2
2 −ω2

sinωt +
B2P1 − g

k2
2

(5.199)

The general solutions of the first and second differential equations in (5.188)
taking into account (5.192), (5.193), (5.198) and (5.199), are equal to, respectively:

x1 = C1 cos k1 + C2 cos k1t + A1H
k2

1−ω2 sinωt + B1P1
k2

1

z1 = C3 cos k2t + C4 sin k2t + A2H
k2

2−ω2 sinωt + B2P1−g
k2

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.200)

The arbitrary constants C1, C2, C3 and C4 can be determined on the basis of the
initial conditions (5.177). For this purpose, each expression in (5.200) is differentiated:

.
x1 = −C1k1 sin k1t + C2k1 cos k1t + A1Hω

k2
1−ω2 cosωt,

.
z1 = −C3k2 sin k2t + C4k2 cos k2t + A2Hω

k2
2−ω2 cosωt.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.201)

By substituting the initial conditions (5.177) into (5.200) and (5.201), the following
two systems of linear equations are obtained:

0 = C1 +
B1P1

k2
1

0 = C2k1 +
A1Hω
k2

1−ω2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.202)

0 = C3 +
B2P1−g

k2
2

,

0 = C4k2 +
A2Hω
k2

2−ω2 .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.203)
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By solving the systems of (5.202) and (5.203), the following values of the arbitrary
constants are obtained:

C1 = −B1P1
k2

1
, C2 = − A1Hω

k1(k2
1−ω2)

,

C3 = −B2P1−g
k2

2
, C4 = − A2Hω

k2(k2
2−ω2)

.
(5.204)

By substituting the values of the arbitrary constants (5.204) into (5.200), the law
of the translational oscillatory motion of the root (point of fixation O) along axes O1x1

and O1z1, respectively, is obtained:

x1 = −B1P1
k2

1
cos k1t− A1Hω

k1(k2
1−ω2)

sin k1t + A1H
k2

1−ω2 sinωt + B1P1
k2

1
,

z1 = −B2P1−g
k2

2
cos k2t− A2Hω

k2(k2
2−ω2)

sin k2t + A2Hω
k2

2−ω2 sinωt + B2P1−g
k2

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
[ωt ∈ 2kπ, (2k + 1)π], k = 0, 1, 2, . . . .

(5.205)

The first two terms in the right side of each of the equations in (5.205) describe
the free oscillations of the root (its point of fixation O) in the soil along axes O1x1

and O1z1, where the first of said terms corresponds to the free oscillations that
the root performs in the absence of the perturbing force, and the second one also
corresponds to the free oscillations, but with an amplitude depending on the present
perturbing force. The latter are known as free accompanying oscillations [20]. The
third terms in the right-hand sides of the equations in (5.205) correspond to purely
forced oscillations of the root. The frequency of the free and free accompanying
oscillations of the root (point of fixation O) in the soil along axis O1x1 is equal to k1

and determined from (5.180):

k1 =
h1

cosγk

√
cπ sinγk

2
(
mk + mgr.

) . (5.206)

The frequency of said oscillations along axis Oz1 is equal to k2 and determined
from (5.183):

k2 =
1

cosγk

√
c1πh1 sinγk

mk + mgr.
. (5.207)

As can be concluded from (5.205), the amplitudes of the free and free
accompanying oscillations along axes O1x1 and O1z1 are equal to, respectively:

B1P1

k2
1

,
A1Hω

k1
(
k2

1 −ω2
) B2P1 − g

k2
2

,
A2Hω

k2
(
k2

2 −ω2
) . (5.208)
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The frequency of the forced oscillations is equal to the frequency of the perturbing
force, i.e., to ω. The amplitudes of the forced oscillations of the root along axes O1x1

and O1z1 are, as can be concluded from (5.205), equal to, respectively:

A1H
k2

1 −ω2
,

A2Hω
k2

2 −ω2
. (5.209)

By substituting the values of the arbitrary constants (5.204) into the system of
Equation (5.201), the law of variation of the velocity of the root’s oscillatory motion
as a function of time t along axes O1x1 and O1z1, respectively, is obtained:

.
x1 = B1P1

k1
sin k1t− A1Hω

k2
1−ω2 cos k1t + A1Hω

k2
1−ω2 cosωt

.
z1 =

B2P1−g
k2

sin k2t− A2Hω
k2

2−ω2 cos k2t + A2Hω
k2

2−ω2 cosωt,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
[ωt ∈ 2kπ, (2k + 1)π], k = 0, 1, 2, . . . .

(5.210)

Further, the system of differential Equations (5.189) is subjected to integration.
Since the characteristic equations of (4.190) are the same as in the case of (5.188),
the general solutions of the homogeneous equations of the differential equations
under consideration appear the same as (5.192) and (5.193). Taking into consideration
the terms in the right-hand sides of the differential equations in (5.189), the partial
solutions of said equations are:

x1part. = Q1, (5.211)

z1part. = Q2, (5.212)

where Q1, Q2—indefinite constants. After applying the method of indefinite
coefficients, the following values of the constants Q1, Q2 are obtained:

Q1 =
B′1P1

k2
1

(5.213)

Q2 =
B′2P1 − g

k2
2

(5.214)

Having substituted (5.213) and (5.214) into (5.211) and (5.212), the following
result is obtained:

x1part. =
B′1P1

k2
1

, (5.215)

z1part. =
B′2P1 − g

k2
2

. (5.216)
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Thereby, the general solutions of the first and second differential equations in
(5.189) are equal to, respectively:

x1 = C1 cos k2t + C2 sin k1t +
B′1P1

k2
1

,

z1 = C3 cos k2t + C4 sin k2t
B′2P1−g

k2
2

.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.217)

The arbitrary constants C1, C2, C3, C4 can be determined from the initial
conditions (5.177). For this purpose, each of the expressions in (5.217) is subjected to
differentiation: .

x1 = −C1k1 sin k1t + C2k1 cos k1t,
.
z1 = −C3k2 sin k2t + C4k2 cos k2t.

}
(5.218)

By substituting the initial conditions (5.177) into (5.217) and (5.218), the following
two systems of linear equations are obtained:

0 = C1 +
B′1P1

k2
1

0 = C2k1,

⎫⎪⎪⎬⎪⎪⎭ (5.219)

0 = C3 +
B′2P1−g

k2
2

0 = C4k2,

⎫⎪⎪⎬⎪⎪⎭ (5.220)

Solving (5.219) and (5.220), the following is arrived at:

C1 = −B′1P1

k2
1

, C2 = 0 C3 = −B′2P1 − g

k2
2

, C4 = 0 (5.221)

By substituting the values of the arbitrary constants (5.221) into (5.217), the law
of the root’s oscillatory motion in the soil along axes O1x1 and O1z1, respectively, on
the intervals [(2k− 1)π, 2kπ], k = 1, 2, . . . n is obtained:

x1 = −B′1P1

k2
1

cos k1t +
B′1P1

k2
1

,

z1 = − B′2P1−g
k2

2
cos k2t +

B′2P1−g
k2

2
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.222)

The first terms in (5.222) describe the free oscillations performed by the root
along axes O1x1 and O1z1 in the absence of the perturbing force. The frequencies
of the root’s free oscillations in the soil along axes O1x1 and O1z1 are determined
in accordance with (5.206) and (5.207), respectively. The amplitudes of the root’s
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free oscillations in the soil on the intervals [(2k− 1)π, 2kπ], k = 1, 2, . . . n (in the
absence of the perturbing force) along axes O1x1 and O1z1 are equal to, respectively:

B′1P1

k2
1

,
B′2P1 − g

k2
2

(5.223)

By substituting the values of the arbitrary constants (5.221) into (5.218), the law
of variation of the velocity of the root’s oscillatory motion in the soil as a function of
time t along axes O1x1 and O1z1, respectively, is obtained:

.
x1 =

B′1P1
k1

sin k1t
.
z1 =

B′2P1−g
k2

sin k2t

⎫⎪⎪⎪⎬⎪⎪⎪⎭ωt ∈ [ (2k− 1)π, 2kπ], k = 1, 2, . . . . (5.224)

Thus, the translational oscillations of the root (meaning its fixation point O) in
the soil in the longitudinal and vertical plane at the first stage of extraction have
been analysed.

Using the results of the developed theory of the oscillatory process performed
by the root as a rigid body fixed in the soil, the algorithm of computation of the
kinematic parameters of said process can be set up as follows.

1. The initial data required for the computation are set.
2. The quantities A1, B1, A2, B2, B′1, B′2 are computed in accordance with (5.181),

(5.182), (5.184), (5.185), (5.186), and (5.187), respectively.
3. Frequencies k1 and k2 of the free and free accompanying oscillations are

computed in accordance with Expressions (5.206) and (5.207), respectively.
4. The amplitudes of the free and free accompanying oscillations are computed in

accordance with (5.208).
5. The amplitudes of the forced oscillations of the root are computed in accordance

with (5.209).
6. The law of the root’s oscillatory motion is established in accordance with (5.205).
7. The graphs for various values of the kinematic parameters of the oscillatory

process and the condition of the soil, in which the root is fixed, are plotted.

The values of the initial data required for the computation are selected in
accordance with [7,31].

Mass of the root is mk = 0.9 kg; mass of the soil surrounding the root is mg

mgr. = 0.4 kg; length of the root is hk = 0.25 m; angles of the trihedral wedges of the
vibrational lifting tool are γ = 14◦, β = 52◦; coefficient of friction of steel on the surface
of the root is f = 0.45; amplitude of the perturbing force is H = 500 N; magnitude of
the lateral moving force is P1 = 400 N; maximum angle of deflection of the friction
force vector from the vector of the minimum value of this force is αk1max = 30◦; elastic

151



deformation coefficients of the soil are c1 = 2·105 N·m−2, c = 3·105 N·m−3; frequency
of oscillation of the lifting shares is ν = 10 Hz; angle of taper of the root is γk = 15◦;
dihedral angle δ between the working face of the share and the bottom side of the
trihedral wedge is determined in accordance with Expression (3.63).

The computation is carried out in the MathCAD environment.
The relation between the frequencies and amplitudes of the oscillations of the

root in the soil as a rigid body in an elastic medium on the one hand and the varying
elastic deformation coefficient of the soil on the other hand is a research topic of
considerable interest.

According to [20], the soil’s elastic deformation coefficient c can vary within the
range of 0.2·105–30·105 N·m−3.

The figures below (Figures 5.4 and 5.5) show the graphs of relation between
the angular frequencies and Hertz frequencies of the free and free accompanying
oscillations of the root as a rigid body fixed in the soil on the one hand and the soil’s
elastic deformation coefficients c1 and c on the other hand, plotted with the use of
the above-stated algorithm and initial data for computation. The frequencies of the
free and free accompanying oscillations significantly rise with the increase in the
soil’s elastic deformation coefficients. Moreover, when the coefficient c varies within
the range of 0.3·105–30·105 N·m−3, the frequency of the free and free accompanying
oscillations varies within the range of 2.1–20.9 Hz on axis Ox1; when the coefficient
c1 varies within the range of 0.2·105–20·105 N·m−2, said frequency varies within the
range of 6.6–66.8 Hz on axis Oz1.

Figure 5.4. Graphs of relation between angular frequencies k1 and frequencies k11 of
free and free accompanying oscillations along axis Ox1 and soil’s elastic deformation
coefficient c (H = 500 N; P1 = 400 N; ν = 10 Hz).
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Figure 5.5. Graphs of relation between angular frequencies k2 and frequencies k22 of
free and free accompanying oscillations along axis Oz1 and soil’s elastic deformation
coefficient c1 (H = 500 N; P1 = 400 N; ν = 10 Hz).

As can be concluded from Expressions (5.208) and (5.209), the values of the
frequencies in their turn have an effect on the values of the amplitudes of the free,
free accompanying and forced oscillations of the root as a rigid body fixed in the soil.

This is evident from the graphs below that show the final result of the analysis
of the relation between the above-mentioned amplitudes and the elastic deformation
coefficients of the soil.

At greater values of the soil’s elastic deformation coefficients, the amplitude of
the free and free accompanying oscillations of the root as a rigid body fixed in the soil
asymptotically approaches zero. For example, when the soil’s elastic deformation
coefficient approaches a value of 20·105 N·m−3, the amplitudes are equal to:

Free oscillations: along axis Ox1—5.3 mm; along axis Oz1—0.6 mm;
Free accompanying oscillations: along axis Ox1—6 mm; along axis Oz1—0.3 mm.
However, in the most frequently used soils the amplitude of the free oscillations

of the root as a rigid body in the elastic soil (Figures 5.6 and 5.7) is equal to:

along axis Ox1: at c = 2·105 N·m−3—89 mm;

at c = 3·105 N·m−3—49 mm;
at c = 4·105 N·m−3—33 mm;

along axis Oz1: at c = 2·105 N·m−3 − 5.8 mm;

at c = 3·105 N·m−3—4.0 mm;
at c = 4·105 N·m−3—3.0 mm.

The amplitude of the free accompanying oscillations is equal to:

along axis Ox1: at c = 2·105 N·m−3—67 mm;
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at c = 3·105 N·m−3—55 mm;
at c = 4·105 N·m−3—52 mm;

along axis Oz1: at c = 2·105 N·m−3—16 mm;

at c = 3·105 N·m−3—7 mm;
at c = 4·105 N·m−3—4.2 mm.

The amplitude of the forced oscillations (Figure 5.8) is equal to:

along axis Ox1: at c = 2·105 N·m−3—145 mm;

at c = 3·105 N·m−3—86 mm;
at c = 4·105 N·m−3—61 mm;

along axis Oz1: at c = 2·105 N·m−3—16 mm;

at c = 3·105 N·m−3—10 mm;
at c = 4·105 N·m−3—7.3 mm

Figure 5.6. Graphs of relation between amplitudes of free Ax1 and free accompanying
oscillations Bx1 along axis Ox1 and soil’s elastic deformation coefficient c (H = 500
N; P1 = 400 N; v = 10 Hz).

154



 
Figure 5.7. Graphs of relation between amplitudes of free Az1 and free accompanying
oscillations Bz1 along axis Oz1 and soil’s elastic deformation coefficient c ((H = 500
N; P1 = 400 N; v = 10 Hz).

As is seen in the graphs in Figure 5.8, at sufficiently high values of the soil’s
elastic deformation coefficients, the amplitude of the forced oscillations of the root as
a rigid body fixed in the soil also asymptotically approaches zero. For example, at
c = 20·105 N·m−3 the amplitude of the forced oscillations along axis Ox1 is equal to 13
mm; at c1 = 20·105 N·m−3 and along axis Oz1 it is equal to 1.4 mm.

As can be seen from the graphs in Figures 5.6–5.8, at some values of the soil’s
elastic deformation coefficients, abrupt changes of the amplitudes are observed
due to the frequencies of free and free accompanying oscillations drawing near the
frequencies of forced oscillations.

The graphic representations of the law of the translational oscillations of the
root as a rigid body fixed in the soil obtained with the use of the analytic relations
(5.205) for several values of the soil’s elastic deformation coefficients c1 and c and the
frequencies of oscillations of the digging tool are shown below (Figures 5.9–5.11).

As can be seen in the presented graphs (Figures 5.9–5.11), the root’s centre of
mass in 0.025 s performs a translation along axis Ox1 for a distance of 50 mm at a
perturbing force frequency of ν = 10, 15 and 20 Hz and along axis Oz1 at a perturbing
force frequency of ν = 10 Hz—for a distance of 33 mm (c1 = 2·105 N·m−2), for a
distance of 21 mm (c1 = 3·105 N·m−2) or for a distance of 13 mm (c1 = 4·105 N·m−2);
at ν = 15 Hz—for a distance of 35 mm (c1 = 2·105 N/m2), for a distance of 25 mm
(c1 = 3·105 N·m−2) or for a distance of 15 mm (c1 = 4·105 N·m−2); at ν = 20 Hz—for a
distance of 40 mm (c1 = 2·105 N·m−2), for a distance of 30 mm (c1 = 3·105 N·m−2) or
for a distance of 20 mm (c1 = 4·105 N·m−2).

As is noted in [31], in order to destruct the bonds between the large size roots and
the soil partially, it is necessary to lift them by up to 6–8 mm, in the case of small size
roots—up to 4 mm, while the complete breaking of the bonds needs a displacement
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of 12–25 mm. Hence, the obtained values of the amplitudes of oscillations at the
above-stated initial data fully allow, as can be seen from the graphs (Figures 5.9–5.11),
the disruption of all bonds between the roots and the soil and establish the conditions
for their direct lifting.

The next phase of investigation is the analysis of the root’s motion in the soil
during direct lifting, where the bonds with the soil are destroyed to such an extent
that the motion of the root up along the lifter’s working channel begins.

 

(a) 

 

(b) 

Figure 5.8. Graph of relation between amplitude of forced oscillations Dxz1 along
axis Ox1 and soil’s elastic deformation coefficient c (a) and graph of relation between
amplitude of forced oscillations Dz1 along axis Oz1 and soil’s elastic deformation
coefficient c1 (b) (H = 500 N; P1 = 400 N; v = 10 Hz).
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(a) 

(b) 

Figure 5.9. Graphs of functions (law of oscillatory process) x1(t) (a) and z1(t) (b)
that describe oscillations of root as rigid body fixed in soil at respective values of
soil’s elastic deformation coefficients c1 and c (H = 500 N; P1 = 400 N; ν = 10 Hz).
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( ) 

(b) 

Figure 5.10. Graphs of functions (law of oscillatory process) x1(t) (a) and z1(t) (b)
that describe oscillations of root as rigid body fixed in soil at respective values of
soil’s elastic deformation coefficients c1 and c (H = 500 N; P1 = 400 N; ν = 15 Hz).

158



(a) 

(b) 

Figure 5.11. Graphs of functions (law of oscillatory process) x1(t) (a) andz1(t) (b)
that describe oscillations of root as rigid body fixed in soil at respective values
of soil’s elastic deformation coefficients c1 and c (H = 500 N; P1 = 400 N;
v = 20 Hz).

5.4. Direct Lifting of Root from Soil during Vibrational Digging

As a consequence of the above oscillatory processes, where the root oscillates in
the soil as in an elastic medium, the bonds between the root and the soil are actively
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broken and, therefore, forces Qnp.θ, Rx, Rz (Figure 4.3), which act as restoring forces,
start sharply diminishing; consequently, the oscillatory processes change into the
processes of continuous translation of the root along axes O1x1 and O1z1 as well as
continuous turn of the root about its centre of mass (point C) through a certain angle
of θwithout the root returning to the previous position.

Thus, the stage of direct lifting of the root from the soil starts. The transient
process from the root’s oscillatory motion to its continuous translation in the soil can
be described in detail as follows. Under the action of the vertical perturbing force
Qzb., the root performs translational oscillations together with the soil surrounding it
in accordance with Equations (5.205) and (5.222); at the same time, the closer the soil
is to the root, the more the soil’s oscillations are synchronised with the oscillations
of the root. Additionally, vice versa, the farther the soil is from the root, the less its
oscillations copy the oscillations of the root, due to the elastoplastic properties of
the soil. Ultimately, there is a distance from the root where no oscillation happens
at all, but the boundary of the area of soil that oscillates together with the root is
rather indistinct. Smooth transition from the area of soil that oscillates to the area that
does not oscillate is observed; therefore, the discontinuity of the soil at the boundary
between said areas is unlikely.

The more probable place for the discontinuity of the soil is in close proximity to
the root’s surface or on the very surface of it. That explains why significantly less
caked soil is left on the roots during vibrational lifting as compared to the traditional
share lifting.

As mentioned above, the extraction is possible only when the root is gripped
by the digging tool symmetrically; therefore, simultaneously with the translational
oscillations of the root in accordance with Equations (5.205) and (5.222), the oscillation
of the root about axis Oy2 (Figure 5.3) through a certain angle of θ takes place in
accordance with Equations (5.152) and (5.153).

At the first stage of extraction, especially during the first oscillations, the restoring
force Qnp.θ and consequently its moment about axis Oy2 are at their maximum.
Therefore, the angle of deflection θ is rather insignificant and the complete or partial
restoration of the root’s vertical position is possible in view of the translational motion
of the lifter. Nevertheless, owing to the action of the translational oscillations of the
root together with the soil surrounding it, the compactness of said soil decreases
and, accordingly, force Qnp.θ also becomes smaller. Thus, with each oscillation of
the root its angle of deflection θ increases, while the restoration of the previous
position declines. The root rocks about axis Oy2 with the gradual increase in angle
θ—i.e., the tilt of the root forward along the lifter’s line of travel. This results in
the breaking of the bonds between the root and the soil along axis O1x1, starting
from the upper part of the conical surface of the root sitting in unbroken soil and
gradually drawing near the point of fixation O. Hence, it can be concluded from the
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above-stated information that the disruption of the bonds between the root and the
soil takes place simultaneously in two directions—along axes O1x1 and O1z1. At
the same time, the bonding forces between the root and the soil Rz, Rx and the soil’s
elastic forces Qnp.θ gradually decrease to the minimum value, where the oscillatory
processes change into the processes of continuous translation of the root upward
along axis O1z1 and forward along axis O1x1 and continuous turn of the root about
its centre of mass (point C) through an angle of θ up to the complete extraction of
the root from the soil. As regards forces Rx, Rz and Qnp.θ, they just change into the
resistance forces exerted by the broken soil when the root moves in the working
channel of the lifter. It can be assumed that they depend on the velocity of the root’s
motion in the broken soil or are, with small inaccuracy, just constant quantities.

The displacement of the root during its direct lifting from the soil has to be
analysed with respect to the fixed system of coordinates O1x1y1z1. Additionally, it
is necessary to set up the moving system of coordinates Cxc yczc rigidly bound to the
root, its origin being situated at the root’s centre of mass (point C), axis Czc being
directed along the axis of symmetry of the root, and axes Cxc and Cyc lying in the
plane that is at right angle to axis Czc (Figure 5.12).

First, it is necessary to set up the differential equations of the motion of the root’s
centre of mass (point C)—i.e., the translational motion of the root along axes O1x1

and O1z1.
Obviously, the schematic model of the forces that act on the root during its

motion along the working channel of the lifter in the process of its direct lifting from
the soil to some extent differs from the schematic model of forces shown in Figure 4.3.
In particular, the couple of the forces of resistance of the broken soil that affects the
turning of the root about its centre of mass (point C) is applied here instead of force
Qnp.θ.

For a first approximation, it is assumed that the moment of said couple is
constant and equal to M. Similarly, the forces of resistance to the translational motion
of the root in the broken soil along axes O1x1 and O1y1, i.e., forces Rx1 and Rz1 ,
respectively, are also assumed to be constant.

Moreover, in view of the fact that the root moves upwards, the directions of the
friction force vectors FK1 and FK2 partially change; therefore, the components F1, F2,
E1 and E2 of said forces of friction will be determined by the expressions that are to
some extent different from (5.134) and (5.135), respectively—that is:

F1 = F2 = (0.5 f H cos δ· sinωt + f P1 sinγ) sin
(
γ+ αK1max sinωt

)
, (5.225)

E1 = E2 = (0.5 f H cos δ· sinωt + f P1 sinγ) cos
(
γ+ αK1max sinωt

)
. (5.226)
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In this case, the vectors F1 and F2 are opposite to the vectors T1 and T2, which
is contrary to the schematic model of forces shown in Figure 5.3, where their
senses coincide.

 

Figure 5.12. Force interaction between root and wedges of vibrating digging tool
during its direct extraction from soil.

The described schematic model of forces is shown in Figure 5.12. Moreover, at
this stage of extraction the mass of the soil stuck to the root is quite small and can
be ignored.
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Taking into account the above-stated information, the differential equation of
the motion of the root’s centre of mass during its direct lifting from the soil in the
vector notation appears as follows:

mka = N1 + N2 + L1 + L2 + F1 + F2 + E1 + E2 + Gk + Rz1 + Rx1 , (5.227)

where a—acceleration of the root’s centre of mass.
Since the process of extraction occurs, as stated above, at the time when the

root is gripped by the digging tool symmetrically, the motion of the root along the
working channel of the lifter effectively takes place in the longitudinal and vertical
plane (plane x1O1z1); hence, (5.227) can be resolved into the system of two equations
in the projections on axes O1x1 and O1z1 in the following form:

mk
..
x1 = N1x1 + N2x1 + L1x1 + L2x1 + F1x1 + F2x1 + E1x1 + E2x1 −Rx1 ,

mk
..
z1 = N1z1 + N2z1 + L1z1 + L2z1 − F1z1 − F2z1 −Gk −Rz1 .

}
(5.228)

The projections of the forces in (5.228) have to be determined. The projections of
the forces N1, N2, L1, L2 on axes O1x1 and O1z1 are determined in accordance with
(5.158), (5.160) and (5.169), (5.171), respectively.

Taking into account (5.161) and (5.225), the projections of the components F1

and F2 of the forces of friction on axis O1x1 are equal to:

F1x1 = F2x1 = (0.5 f H cos δ· sinωt + f P1 sinγ) sin
(
γ+ αK1max sinωt

)
cos δ· sinγ,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .
(5.229)

Taking into account (5.164) and (5.226), the projections of components E1 and E2

of the forces of friction on axis O1x1 are equal to:

E1x1 = E2x1 = (0.5 f H cos δ· sinωt + f P1 sinγ) cos
(
γ+ αK1max sinωt

)
cosγ,

ωt ∈ [2kπ, (2k + 1)π] k = 0, 1, 2, . . .
(5.230)

The projections of the components F1 and F2 on axis O1z1 are determined in a
similar way.

Taking into account (5.172) and (5.225), the following is obtained:

F1z1 = F2z1 = (0.5 f H cos δ· sinωt + f P1 sinγ) sin
(
γ+ αK1max sinωt

)
sin δ,

ωt ∈ [2kπ, (2k + 1)π] k = 0, 1, 2, . . .
(5.231)

The projections of components E1 and E2 of the forces of friction on axis O1z1

are equal to zero—i.e., E1z1 = E2z1 = 0.
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The projections of the componentsF1, F2, E1, E2 on axes O1x1 and O1z1 on the
intervals [(2k− 1)π, 2kπ] k = 1, 2, . . . are determined in accordance with Expressions
(5.163), (5.166) and (5.174), respectively.

By substituting (5.158), (5.160), (5.229) or (5.163) or (5.166), (5.169), (5.170), or
(5.174) into (5.228), the following systems of differential equations are obtained:

mk
..
x1 =

2Qzb1
cos δ· tanγ√

tan2γ+1+tan2β
+

2 f P1 sinγ· tanγ√
tan2γ+1+tan2β

+ ( f H· cos δ· sinωt + 2 f P1 sinγ)

· sin
(
γ+ αK1max sinωt

)
cos δ· sinγ

+( f HH· cos δ· sinωt + 2 f P1 sinγ)· cos
(
γ+ αK1max sinωt

)
cosγ−Rx1,

mk
..
z1 =

2Qzb1
cos δ· tan β√

tan2γ+1+tan2β
+

2 f P1 sinγ· tan β√
tan2γ+1+tan2β

−( f H· cos δ· sinωt + 2 f P1 sinγ)· sin
(
γ+ αK1max sinωt

)
sin δ−Gk −Rz1 ,

ωt ∈ [2kπ, (2k + 1)π] , k = 0, 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.232)

mk
..
x1 =

2P1 sinγ· tanγ√
tan2γ+1+tan2β

+ 2 f P1 sin3 γv cos δ+ f P1 sin 2γ· cosγ−Rx1

mk
..
z1 =

2P1 sinγ· tan β√
tan2γ+1+tan2β

+ 2 f P1 sin2 γ sin δ−Gk −Rz1 ,

ωt ∈ [(2k− 1)π, 2kπ] , k = 1, 2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (5.233)

In (5.232) and (5.233) the magnitudes of the loosened soil resistance forces
Rx1 and Rz1 acting during the beet root’s movement in the working passage of the
vibrational lifting tool are regarded as constant.

Now, we are going to establish the initial conditions for (5.232) and (5.233) Since
the beet root prior to the start of its direct lifting from the soil performs oscillations
around the equilibrium position, the initial conditions for the coordinates of the root’s
centre of mass (point C) can be at the initial instant of time x1 = x10, z1 = −hk/3
where x10 is the distance from the vertical centreline of the beet root to the origin of
coordinates (point O1)

An error can arise only within the limits of the beet root oscillation amplitude,
which is very insignificant as compared with the length of the lifting tool working
passage and the running depth in soil where the root lifting is carried out. Further,
considering that during each oscillation within the whole period the instants exist,
when the beet root displacement velocity is equal to zero, we take, as the initial time
point, such an instance during the last oscillation followed further by direct beet root
lifting from the soil. Thus, the initial conditions for (5.50) and (5.51) will be as follows:
at t = 0:

.
x1 = 0,

.
z1 = 0, x1 = x10, z1 = −1

3
hk. (5.234)
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After substituting (5.2) into (5.232) and making certain transformations, we
obtain the following system of differential equations:

..
x1 = 1

mk
[

cos δ· tanγ√
tan2γ+1+tan2β

+ f cos2 δ· sin
(
γ+ αK1max sinωt

)
sinγ+ f cos δ cos

(
γ+ αK1max sinωt

)
· cosγ]·H sinωt

+ 2
mk

[
cos δ· tanγβ√

tan2γ+1+tan2β
− f cos2 δ· sin

(
γ+ αK1max sinωt

)
cos δ+ f sinγ· cosγ· cos

(
γ+ αK1max sinωt

) ]
P1 − Rx1

mk
,

..
z1 =

[
cos δ· tan β√

tan2γ+1+tan2β
− f cos δ· sin

(
γ+ αK1max sinωt

)
sin δ

]
·H sinωt

+ 2
mk

[
sinγ· tanγβ√

tan2γ+1+tan2β
− f sinγ· sin

(
γ+ αK1max sinωt

)]
·P1 − Gk

mk
− Rz1

mk

ωt ∈ [2kπ, (2k + 1)π] , k = 0, 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.235)

(5.235) is nonlinear. It can be integrated only with the use of approximate
numerical methods on a PC. First, we are going to make certain assumptions. As a
first approximation, we assume that the friction force vectors FK1 and FK2 maintain
a constant direction—i.e., the angle between vectors FK1min and FK1 is constant and
equal to

αK1max
2 ; similarly, the angle between vectors FK2min and FK2 is also constant

and equal to
αK2max

2 , while
αK2max

2 =
αK1max

2 .
Taking into account these assumptions, (5.235) acquires the following form:

..
x1 = 1

mk

[
cos δ· tanγ√

tan2γ+1+tan2β
− f cos2 δ· sin

(
γ+

αK1max
2

)
sinγ+ f cos δ· cos

(
γ+

αK1max
2

)
cosγ

]
·H sinωt

+ 2
mk

[
sinγ· tanγ√

tan2γ+1+tan2β
+ f sin2 γ· sin

(
γ+

αK1max
2

)
cos δ+ f sinγ· cosγ· cos

(
γ+

αK1max
2

)]
P1 − Rx1

mk
,

..
x1 = 1

mk

[
cos δ· tan β√

tan2γ+1+tan2β
− f cos δ· sin

(
γ+

αK1max
2

)
sin δ

]
·H sinωt

+ 2
mk

[
sinγ· tanγβ√

tan2γ+1+tan2β
− f sinγ· sin

(
γ+ αK1max sinωt

)
· sin δ

]
P1 − Rz1

mk
− g,

ωt ∈ [2kπ, (2k + 1)π] , k = 0, 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.236)

where g—gravitational acceleration.
The system of differential Equation (5.236) is a system of linear second-order

differential equations. It can be solved by using the integration method.
To reduce the expression of (5.236), we introduce the following designations.

1
mk

[
cos δ· tanγ√

tan2 γ+1+tan2 β
+ f cos2 δ· sin

(
γ+

αK1max
2

)
sinγ+ f cos δ· cos

(
γ+

αK1max
2

)
cosγ

]
= ϕ1, (5.237)

2
mk

[
sinγ· tanγ√

tan2 γ+1+tan2 β
+ f sin2 γ· sin

(
γ+

αK1max
2

)
cos δ+ f sinγ· cosγ· cos

(
γ+

αK1max
2

)]
= ψ1, (5.238)

1
mk

[
cos δ· tan β√

tan2 γ+1+tan2 β
− f cos δ· sin

(
γ+

αK1max
2

)
sin δ

]
= ϕ2, (5.239)

2
mk

[
sinγ· tan β√

tan2 γ+1+tan2 β
− f sinγ· sin

(
γ+

αK1max
2

)
sin δ

]
= ψ2. (5.240)
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Taking into consideration (5.237)–(5.250), (5.54) assumes the following form:

..
x1 = ϕ1H sinωt +ψ1P1 − Rx1

mk
,

..
z1 = ϕ2H sinωt +ψ2P1 − Rz1

mk
− g.

⎫⎪⎪⎬⎪⎪⎭. (5.241)

Now, we are going to integrate (5.241). The first integral will be as follows:

.
x1 = −ϕ1H

ω cosωt +ψ1P1t− Rx1
mk

t + ϕ1H
ω + C1,

.
z1 = −ϕ2H

ω cosωt +ψ2P1t− Rz1
mk

t− gt + L1.

⎫⎪⎪⎬⎪⎪⎭ (5.242)

where C1 and L1 are arbitrary constants.
The second integral of (5.242) will be as follows:

x1 = −ϕ1H
ω2 sinωt + ψ1P1t2

2 − Rx1 t2

2mk
+ C1t + C2,

z1 = −ϕ2H
ω2 sinωt + ψ2P1t2

2 − Rz1 t2

2mk
− gt2

2 + L1t + L2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.243)

where C2 and L2 are arbitrary constants.
The arbitrary constants C1, L1, C2 and L2 are determined by the initial conditions

of (4.235). These arbitrary constants are equal to:

C1 =
ϕ1H
ω

, L1 =
ϕ2H
ω

, C2 = x10, L2 = −1
3

hk. (5.244)

By substituting the values of the arbitrary constants C1 and L1 into the system of
differential Equations (5.242), we obtain:

.
x1 = −ϕ1H

ω2 cosωt +ψ1P1t− Rx1 t
mk

+
ϕ1H
ω ,

.
z1 = −ϕ2H

ω2 cosωt +ψ2P1t− Rz1 t
mk
− gt + ϕ2H

ω .

⎫⎪⎪⎬⎪⎪⎭ (5.245)

By substituting the values of the derived arbitrary constants C1, C2, L1 and L2

into (5.243), we obtain:

x1 = −ϕ1H
ω2 sinωt + ψ1P1t2

2 − Rx1 t2

2mk
+
ϕ1Ht
ω + x10,

z1 = −ϕ2H
ω2 sinωt + ψ2P1t2

2 − Rz1 t2

2mk
− gt2

2 +
ϕ2Ht
ω − 1

3 hk.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.246)

(5.245) and (5.246), respectively, characterise the laws of variation of the speed
and displacement of the beet root’s centre of mass in the process of its direct lifting
from the soil. From the second equation of (5.264), the time t1 of the direct beet
root lifting from the soil can be found. For this purpose, we have to substitute the
value z1 = 0 into the left member of said equation and solve the resulting equation
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for t1. Since the equation is transcendental, it is impossible to derive any analytic
expression to find t1. However, it can be solved with the use of a PC applying the
known methods. The computed value of t1 can be subsequently used for determining
the productivity of the sugar beet root harvesting machine equipped with vibrational
lifting tools.

Next, we are going to give consideration to (5.233). To reduce the expression of
this system of equations, we again introduce the following designations:

1
mk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 2 sinγ· tanγ√
tan2 γ+ 1 + tan2 β

+ 2 f sin3 γ· cos δ+ f sin 2γ· cosγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = ψ′1. (5.247)

1
mk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 2 sinγ· tan β√
tan2 γ+ 1 + tan2 β

− 2 f sin2 γ· sin δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = ψ′2. (5.248)

Taking into account (5.247) and (5.248), (5.233) will take the following form:

..
x1 = ψ′1P1 − Rx1

mk
,

..
z1 = ψ′2P1 − Gk

mk
− Rz1

mk
,

⎫⎪⎪⎬⎪⎪⎭ ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . (5.249)

After the first integration of (5.249), we obtain:

.
x1 = ψ′1P1t− Rx1

mk
t + C1,

.
z1 = ψ′2P1t− Gk

mk
t− Rz1

mk
t + L1,

⎫⎪⎪⎬⎪⎪⎭ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . (5.250)

where C1 and L1—are arbitrary constants,
After the second integration of (4.250), we obtain:

x1 = ψ′1P1
t2

2 −
Rx1 t2

2mk
+ C1t + C2,

z1 = ψ′2P1
t2

2 − Gkt2

2mk
− Rz1 t2

2mk
+ L1t + L2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . .

(5.251)

where C2 and L2—are arbitrary constants.
The arbitrary constants C1, L1, C2 and L2 are determined by the initial conditions

of (5.234). These arbitrary constants are equal to:

C1 = 0, L1 = 0, Ñ2 = x10, L2 = −1
3

hk (5.252)
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By substituting the values of the arbitrary constants C1 and L1 into (5.250), we
obtain:

.
x1 = ψ′1P1t− Rx1

mk
t,

.
z1 = ψ′2P1t− Gk

mk
t− Rz1

mk
t,

⎫⎪⎪⎬⎪⎪⎭
ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . .

(5.253)

By substituting the values of the arbitrary constants C1, L1, C2 and L2 into (5.251),
we obtain:

x1 = ψ′1P1
t2

2 −
Rx1 t2

2mk
+ x10,

z1 = ψ′2P1
t2

2 − Gkt2

2mk
− Rz1 t2

2mk
− 1

3 hk,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . .

(5.254)

(5.253) and (5.254), respectively, characterise the laws of variation of the speed
and displacement of the beet root’s centre of mass in the process of its direct lifting
from the soil in the absence of the perturbing force action.

Now, we are going to derive the differential equation of the beet root’s rotation
around its centre of mass (around axis Cy, which passes through the beet root’s centre
of mass (point C) parallel to axis O1y1). According to [32], said equation will have
the following form:

Iγc =
d2θ

dt2 = Me
γc , (5.255)

where θ is the angular displacement of the beet root around axis Cyc; Iyc is the root’s
moment of inertia with reference to axis Cyc; Me

yc is the moment of rotation around
axis Cyc (total moment of all external forces applied to the beet root with reference to
axis Cyc).

Further, let us find the moments of all external forces with reference to axis
Cyc in accordance with the schematic model of forces presented in Figure 5.12. As
the movement of the beet root’s centre of mass is considered with reference to the
coordinate system x1O1y1z1, we will determine the positions of K1 and K2—the points
of contact between the root and the digging shares’ working surfaces A1B1C1 and
A2B2C2 with reference to the same coordinate system. As we can see in the schematic
model in Figure 5.12, the ordinate of the contact points K1 and K2 in the assumed
coordinate system will be equal to zK1 = zK2 = −hk + h where h is the distance
from the conditional fixation point O to the plane that extends through the contact
points and is perpendicular to the beet root symmetry axis.

Since the movement of the vibrational lifting tool shares takes place at a certain
depth, the value of h for the specific beet root can vary only within the share oscillation
amplitude, which is considerably smaller in comparison with the value of h. Therefore,
the value of h for any specific beet root can be regarded constant. The ordinate of the
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beet root’s centre of mass (point C) at a random instant will be zc = z1 where z1 is
determined by the second equation of (5.246).

Thus, the ordinate of points K1 and K2 varies from the ordinate of point C by the
value −hk + h− z1 and, therefore, for example, from the very beginning of the direct
lifting

(
z1 = − hk

3

)
we have −hk + h + hk

3 = h− 2hk
3 .

Then, the moments of all external forces applied to the beet root at a random
instant will be equal to:

Mγc

(
Qzb.1

)
= Mγc

(
Qzb.2

)
= −Qzb1(−hk + h− z1) sinθ, (5.256)

since the force vectors Qp1 and Qp2 are parallel to plane x1O1z1.

Mγc

(
P1
)
= Mγc

(
P2
)
= P1 cosθ(−hk + h− z1), (5.257)

since the force vectors P1 and P2 are parallel to plane x1O1z1

Mγc

(
F1
)
= Mγc

(
F2
)
= F1 cosγk(−hk + h− z1) sinθ. (5.258)

or, taking into account (5.225), we have:

Mγc

(
F1
)
= Mγc

(
F2
)

= (0.5 f H cos δ· sinωt + f P1 sinγ)
· sin(γ+ αK1max sinωt) cosγk(−hk + h− z1) sinθ,
ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .

(5.259)

Then, taking into consideration (5.137), we obtain:

Mγc

(
F1
)
= Mγc

(
F2
)
= f P1 sin2 γ· cosγk(−hk + h− z1) sinθ,

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . .
(5.260)

Mγc

(
E1
)
= Mγc

(
E2
)
= E1 cosγ(−hk + h− z1) cosθ. (5.261)

Considering (5.226), we obtain:

Mγc

(
E1
)
= Mγc

(
E2
)

= (0.5 f H cos δ· sinωt + f P1 sinγ)
· cos(γ+ αK1max sinωt) cosγ(−hk + h− z1) cosθ,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . .

(5.262)
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Additionally, after using (5.138), we will come to:

Mγc

(
E1
)
= Mγc

(
E2
)
= 0.5 f P1 sin 2γ/ cosγ(−hk + h− z1) cosθ,

ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . .
(5.263)

Mγc =
(
Gk
)
= 0, (5.264)

Mγc =
(
Rx1

)
= 0, (5.265)

Mγc =
(
Rz1

)
= 0, (5.266)

since vectors Gk, Rx1 and Rz1 intersect axis Cyc.
Hence, based on (5.256), (5.257), (5.259) or (5.260), (5.262) or (5.263), (5.264),

(5.265), (5.266) and the moment M of the couple of forces of the loosened soil’s
resistance to the rotation of the beet root, we find the value of the rotation moment
Me

yc of all external forces with reference to axis Cyc is as follows:

Me
yc = 2Qzb.1(−hk + h− z1) sinθ+ 2P1 cosθ(−hk + h− z1)

+( f H cos δ· sinωt + 2 f P1 sinγ) sin(γ+ αK1max sinωt)·cosγk(−hk + h− z1) sinθ
+( f H cos δ· sinωt + 2 f P1 sinγ)· cos(γ+ αK1max sinωt) cosγ(−hk + h− z1) cosθ−M,

ωt ∈ [2kπ, (2k + 1)π ], k = 0, 1, 2, . . . .

(5.267)

or, after some transformations:

Me
yc = 2P1(−hk + h− z1) cosθ+ 2 f P1(−hk + h− z1) sin2 γ·

cosγk· sinθ+ f P1(−hk + h− z1) sin 2γ· cosγ· cosθ−M,
ωt ∈ [(2k− 1)π, 2kπ], k = 0, 1, 2, . . . .

(5.268)

The moment of inertia Iyc of the beet root with reference to axis Cyc is determined
with the use of Expression (5.103). By substituting (5.2), (5.103), (5.267) or (5.268) into
(5.255), we obtain the differential equation of the beet root’s rotation around axis Cyc

during its direct lifting from the soil, which has the following form:(
0.038 + 0.15 tan2 γk

)
mkh2

k
d2θ
dt2 = −H(−hk + h− z1) sinθ sinωt

+2P1 cosθ(−hk + h− z1)+( f H cos δ· sinωt + 2 f P1 sinγ)sin(γ+ αK1max sinωt)
·cosγk(−hk + h− z1) sinθ+( f H cos δ· sinωt + 2 f P1 sinγ)
· cos(γ+ αK1max sinωt) cosγ(−hk + h− z1) cosθ−M,

ωt ∈ [2kπ, (2k + 1)π], k = 0, 1, 2, . . . .

(5.269)

or (
0.038 + 0.15 tan2 γk

)
mkh2

k
d2θ
dt2 = 2P1 cosθ(−hk + h− z1)

+2 f P1 sin2 γ· cosγk(−hk + h− z1) sinθ
+2 f P1 sin 2γ cosγ(−hk + h− z1) cosθ−M,
ωt ∈ [(2k− 1)π, 2kπ], k = 1, 2, . . . .

(5.270)

170



The initial conditions for the obtained differential equation are established based
on the same considerations as for (5.234) and they will have the following form:

at t = 0 : θ = 0,
.
θ = 0. (5.271)

(5.269) is nonlinear. It can only be solved with the use of numerical techniques
and a PC. With this approach, the value z1 for each cycle of using the numerical
algorithm has to be obtained from the second equation in (5.246) for the respective
instant tk.

(5.270) is also nonlinear, since it includes the value z1, which is a variable, and
for any instant tk this value z1 has to be obtained from the second equation in (5.254).

Thus, the obtained analytic expressions, essentially, constitute the theory of
direct sugar beet root lifting from the soil with the use of vibrational lifting tools.
The reached analytic expressions make it possible to define the kinematic modes of
vibration-assisted beet root lifting based on the requirement of keeping the roots
intact and the design parameters of the vibrational lifting tool.

Now, let us apply the achieved results of the developed theory and construct
an algorithm for computing the kinematic parameters of the work process under
consideration. Here are its main provisions:

1. First, specify the required initial data for the calculation.
2. Then, find the values ϕ1, ψ1, ϕ2, ψ2 in accordance with (5.237), (5.238), (5.239)

and (5.240), respectively.
3. Next, find the sugar beet root motion law during its direct lifting from the soil,

according to (5.246).
4. Now, move to drawing the diagrams for various values of the initial parameters;

from these diagrams, the time of duration of the direct beet root lifting from the
soil can be found.

5. In order to carry out the numerical calculations, we have to specify the required
parameters. Thus, according to [7,31], the specified parameters have the
following values:

• (Average) mass of a sugar beet root: mk = 0.9 kg;
• (Average) length of a sugar beet root: hk = 0.25 m;
• Angles of the vibrational lifting tool’s trihedral wedges: γ = 14◦, β = 52◦;
• Friction coefficient of steel on the sugar beet root surface: f = 0.45;
• Resistance force exerted by the soil when a sugar beet root moves in it:

Rx = 100 N, Rz = 100 N;
• Amplitude of perturbing force: H = 500 N;
• Transverse moving force: P1 = 400 N;
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• Angle of deflection of the friction force vector from the vector of its minimal
value: αK1max = 30◦;

• Initial position of the sugar beet root’s centre of mass on axis
O1x1:x10 = 0.2 m.

The dihedral angle δ between the wedge’s working surface and the lower base
of the lifting tool can be derived from: δ = arctan cos β

sin δ· cosγ .
Calculations have been carried out for several values of the vibrational lifting

tool oscillation frequency.
Based on the obtained law of motion of the beet root’s centre of mass (5.63) in

the system of coordinates x1O1z1, we draw the graphs x1 = x1(t), z1 = z1(t) in the
MathCAD environment (Figure 5.13) in order to determine the lifting time.

As may be inferred from the graphs, the duration of the beet root lifting from
the soil (z1 = 0) reaches only 0.032 s.

In Figure 5.14, the motion trajectory of the beet root’s centre of mass during the
direct beet root lifting from the soil is shown.

It becomes evident from the presented graph that within the interval of lifting
the beet root from the soil (−0.083 ≤ z1 ≤ 0), its centre of mass moves effectively on a
straight line.

Obviously, this motion trajectory represents the actual trajectory of motion
of the beet root’s centre of mass only as a certain approximation since the soil
resistance forces during the beet root displacement Rx1 and Rz1 are assumed to have
constant magnitudes.

  

(a) (b) 

Figure 5.13. Graphs of the root’s centre of mass displacement along axes
O1x1 (a) and O1z1 (b) as a function of time during the direct beet root
lifting from the soil (H = 500 N; P1 = 400 N; Rx = 100 N; Rz = 100 N;
ν = 10 Hz).
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Figure 5.14. Beet root motion trajectory in the coordinate system x1O1z1 during the
direct lifting of the root from the soil: (H = 500 N, P1 = 400 N, Rx = 100 N, Rz = 100
N, ν = 10 Hz).

Additionally, calculations have been carried out for the displacement of the
beet root’s centre of mass along axis O1z1 until its complete lifting from the soil as a
function of the changing perturbing force amplitude and z1 = z1(H, t) at P1 = const
and z1 = z1(P, t) at P = const have been obtained.

In Figure 5.15, the surface and profile graphs of z1 = z1(H, t) subject to the
perturbing force amplitude variation within a range of H = 100–700 N (for a transverse
moving force value of P1 = 400 N and an oscillation frequency value of ν = 10 Hz)
are presented.

  

(a) (b) 

Figure 5.15. Surface (a) and profile graphs (b) of function z1 = z1(H, t) for the
perturbing force amplitude’s variation within a range of H = 100–700 N (P1 = 400
N, ν = 10 Hz).
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As one may see in the shown graph, when the perturbing force amplitude
changes within a range of 100–700 N, the time of beet root lifting from the soil changes
within an interval of 0.053–0.028 s.

In Figure 5.16, the surface and profile graphs of the function z1 = z1(P1, t), subject
to the transverse moving force variation within a range of P1 = 100–700 N (for a
perturbing force amplitude value of H = 500 N and an oscillation frequency value of
ν = 10 Hz), are presented.

 

(a) (b) 

Figure 5.16. Surface (a) and profile graphs (b) of function z1 = z1(P1, t) for the
transverse moving force variation within a range of P1 = 100–700 N (H = 500 N,
ν = 10 Hz).

As may be inferred from the shown graph, when the transverse moving force
changes within a range of 100–700 N, the time of beet root lifting from the soil changes
within a range of 0.043–0.026 s.

Based on the developed technique, a similar computation can be carried out for
any values of the oscillation frequency of the vibrating digging tool.

5.5. Conclusions

1. A theory of lifting sugar beet roots from the soil with vibrational lifting tools
has been worked out. This includes the analytic description of the work process
at all stages of lifting, starting from the instant when the vibrational lifting tool
grips the root, up to the complete lifting of the root out of soil.

2. On the basis of the kinematic and dynamic Euler equations, the system of
differential equations has been obtained for the three-dimensional oscillations
of the root fixed in the soil as a rigid body in an elastic medium in the most
general case—the case of asymmetric gripping of the root by the digging tool
(gripping of the root by one share).
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3. The mathematical model of oscillations of the root as a rigid body in an elastic
medium during the symmetric gripping of the root by the digging tool (gripping
of the root by both shares simultaneously) has been developed. The system
of differential equations of the root’s translational oscillations together with
the soil surrounding it as well as the differential equation of the root’s angular
oscillations about the conventional point of its fixation in the soil have been
set up. The solving of the obtained system of differential equations allows the
law of the oscillatory process of the root in the soil during vibrational lifting,
as well as the analytic expressions for the computation of the frequencies and
amplitudes of the free and free accompanying oscillations and the amplitudes
of the forced oscillations of the root as a rigid body in the soil, to be found. In
accordance with the calculations, the root’s centre of mass covers a distance
of 50 mm along axis Ox1 in 0.025 s at a perturbing force frequency of ν = 10,
15 and 20 Hz along axis Oz1 at a perturbing force frequency of ν = 10 Hz—a
distance of 33 mm (c1 = 2·105 N·m−2), a distance of 21 mm (c1 = 3·105 N·m−2)
or a distance of 13 mm (c1 = 4·105 N·m−2), at ν = 15 Hz—a distance of 35 mm
(c1 = 2·105 N·m−2), a distance of 25 mm (c1 = 3·105 N·m−2), a distance of 15
mm (c1 = 4·105 N·m−2), at ν = 20 Hz—a distance of 40 mm (c1 = 2·105 N·m−2),
a distance of 30 mm (c1 = 3·105 N·m−2), and a distance of 20 mm (c1 = 4·105
N·m−2). The obtained theoretical values of the amplitudes of oscillations of the
root as a rigid body under the analysed kinematic parameters ensure the full
breaking of the bonds between the root and the soil and establish the conditions
for the direct lifting of the root.

4. The mathematical model of direct lifting of the root from the soil by the vibrating
digging tool has been generated. The system of differential equations of the
root’s plane-parallel motion during its direct lifting from the soil has been
obtained. The solving of the mentioned system of differential equations has
allowed the law of the motion of the root’s centre of mass during its direct lifting
from the soil to be found in the analytical form. The calculations performed
with the use of the PC have allowed the duration of the direct lifting of the
root from the soil to be found and the analysis of the effect that the design
parameters of the digging tool and the kinematic parameters of the performed
work process have on the duration of the lifting of the root from the soil.

Thus, at a perturbing force amplitude of H = 500 N and a transverse moving
force of P1 = 400 N, the soil resistance forces along axis Ox1 and Oz1, Rx = 100, with
a perturbing force frequency of ν = 10 Hz, and time of root lifting from the soil of
0.032 s. When the perturbing force amplitude varies within a range of 100–700 N (at
a transverse moving force of P1 = 400 N and a perturbing force frequency of ν = 10
Hz), the time of beet root lifting from the soil varies within a range of 0.053–0.028 s.
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When the transverse moving force varies within a range of P1 = 100–700 N (at a
perturbing force amplitude of H = 500 N and a perturbing force frequency of 10 Hz),
the time of beet root lifting from the soil varies within a range of 0.043–0.026 s.

The achieved results of the theoretical research provide the possibility to
determine the optimal kinematic modes of operation and vibrational lifting tool
design parameters, proceeding from the requirement of keeping sugar beet roots
intact when harvesting them.
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6. Theory of Impact Interaction between
Vibrational Lifting Tool and Sugar Beet
Root

6.1. Impact Interaction at One Point

In any work process, the required conditions include providing sufficient
productivity, reducing the energy consumption and increasing the quality of
performance of the work process.

As regards beet harvesters, in order to ensure the quality of performance of
their work process, it is necessary, first of all, to prevent damaging roots during their
lifting. Meanwhile, the highest probability of damaging the lifted roots occurs in
the case of impact interaction between the beet harvester digging tool and the root
body fixed in the soil. It is quite obvious that at high velocities of the translational
motion of modern beet harvesters as well as high rates of the oscillatory motion of
vibrational lifting tools, it is possible to expect, especially when operating in dry and
hard soil, the impact interaction between the digging shares and the root body at the
instant when the lifting tool runs into the root.

This highlights the need to theoretically investigate the mentioned impact
interaction and use the results obtained from the investigations the determine the
kinematic and design parameters of the lifting tools that meet the condition of not
damaging the roots in the impact interaction and comparing them with the kinematic
parameters obtained in Section 4.

Since the roots are rather often positioned with an offset with respect to the row
centreline, in many cases the impact interaction between the root and the tool takes
place at one point—i.e., the interaction involves only one of the wedges. This is the
case under consideration in the current subsection.

As the vibrating digging tool approaches the root, the loosened soil between the
shares and the root almost does not accumulate due to the oscillation of the shares;
therefore, the initial contact between the shares and the root’s surface is immediate
or through a rather thin layer of soil. Thereby, when the shares of the digging tool
run into the root, they impact the root, which, as is known, features a significant
impact impulse. As the impact impulse has a certain finite value and is effective
within a very short time interval, the respective impact force is rather great; in fact,
its magnitude significantly exceeds the values of all other forces acting on the root at
the same time. However, since the root is still rigidly fixed in the soil, a danger of it
breaking off or tearing apart arises. It is common practice to assume that the duration
of the impact is equal to zero, which implies the assumption that the velocities of
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the colliding bodies vary instantaneously by a finite value. At the same time, the
positions of the bodies do not change; therefore, the presence of elastic constraints in
the mechanical system has no effect on the progress of the impact process. This is
due to the fact that no deformation arises in the mentioned constraints within the
time of impact—accordingly, the constraints do not generate any reaction forces. If
the mechanical system contains viscous elements, the reactions are generated in them
during the impact; nevertheless, these reaction forces have finite magnitudes (as the
velocities are finite)—hence, their impulses within the time of impact are equal to
zero [33].

Usually, the further motion (after the impact) develops in different ways,
depending on the presence or absence of elastic or viscous constraints. When the
digging tool runs into the root, the soil at the lower part of the root remains unbroken
(the root’s tail part is fixed in this soil layer); therefore, said soil during the impact
acts as an elastic or viscous (depending on the mechanical makeup and moisture
content of the soil) shock absorber. Certainly, the harder and drier the soil is, the
more adequate the above description is for the real impact process.

Further, taking into account the fact that the breaking off or tearing apart of the
root is more probable in the case when the root is fixed in hard and dry soil, it is
necessary to investigate such a case. First of all, the equivalent schematic model of
the impact interaction between the vibrational lifting tool and the root body that
takes place when the tool runs into the root is to be set up. For this purpose, the
vibrating digging tool is represented as the two wedges A1B1C1 and A2B2C2, each of
them having three-dimensional inclinations at angles of α, β, γ and both of them are
positioned with respect to each other in such a way that a working channel necking
rearwards is created (Figure 6.1). The mentioned wedges perform oscillatory motions
in the longitudinal and vertical plane; the line of the translational motion of the
vibrating digging tool is shown by an arrow.

It is assumed that the root approximated by a cone-shaped body only impacts
with the face of wedge A1B1C1 at point K1 (Figure 6.1).

Moreover, the impact contact can take place either in the form of direct contact
or contact via the thin layer of soil between the wedge face and the root.

In order to describe the impact process, it is necessary to set up the system
of coordinates. For this purpose, the vibrational lifting tool is associated with the
orthogonal Cartesian coordinate system Oxyz, where the centre O of which is placed
in the middle of the lifter’s necked passage, axis Ox is in line with the direction of the
lifter’s translational movement, axis Oz pointing vertically up, and axis Oy points to
the lifter’s right side (Figure 6.1).

Further, the forces generated by the interaction between the vibrational lifting
tool and the root have to be presented (Figure 6.1).
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Figure 6.1. Equivalent schematic model of impact interaction at one point between
vibrational lifting tool and root body fixed in soil.

It is assumed that the vibrational lifting tool exerts the vertical perturbing force
Qzb., which varies according to the following harmonic law:

Qzb. = H sinωt (6.1)

where H—amplitude of perturbing force (N); ω—angular frequency of perturbing
force (s−1).

Said perturbing force is applied to the root simultaneously by both the wedges;
therefore, it is represented in the equivalent schematic model by its two components
Qzb.1 and Qzb.2, applied at points K1 and K2, respectively, at a distance of h from the
conditional fixation point O1.
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Therefore, the following relation is observed:

Qzb.1 = Qzb.2 = 0.5H sinωt (6.2)

As the vibrational lifting tool advances linearly along axis Ox, there are also
propulsive forces P1 and P2 acting along axis Ox and applied at points K1 and
K2, respectively.

In addition to this, at the contact point K1, the friction force is applied, which
counteracts the slipping of the root on the working face of wedge A1B1C1. At the root’s
centre of mass (pointC), the root weight force Gk is applied. The forces of bonding
between the root and the soil that act along axes Ox, Oy and Oz are designated as
Rx, Ry and Rz, respectively. Further, during the impact the root is subjected to the
impact impulse Sn1generated by the vibrational lifting tool and applied at point K1.
Said impact impulse is vectored normally to the work face of the share—i.e., plane
A1B1C1.

Moreover, the tangential impact impulse Sτ1 acts on the surface of the wedge.
According to the Routh hypothesis, the relation between the magnitudes of the
tangential and normal impact impulses is similar to Coulomb’s law of friction—that
is [34]:

Sτ ≤ f Sn (6.3)

where f —dynamic coefficient that specifies the properties of the surfaces of the
colliding bodies. In the general case, this coefficient can differ from the coefficient of
friction for the bodies slipping relative to each other in continuous contact.

The sign of inequality represents the case when the tangential impulse is so
small that no slipping takes place between the bodies. Only when the slipping is
present, should the equality sign be applied.

The impulse Sn1 has to be decomposed into component F1 that is at a right
angle to the right line A1C1 and component E1 that is parallel to the right line A1C1

(Figure 6.1). That appears as follows:

Sτ1 = F1 + E1 (6.4)

It is obvious that angle ψ between component E1 and vector Sτ1 in a first
approximation depends on the ratio Vzb.max

Vp
.

Vector Sτ1 in such a representation will allow finding its projections on axes Ox,
Oy and Oz later.

The magnitude of the impact impulse can be different depending on the rate of
the digging tool’s oscillatory motion in the vertical plane at the instant when it runs
into the root. Moreover, in view of the fact that the root has a conical shape when
the vibrational lifting tool moves downwards, the vertical component of the impact
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impulse is virtually absent. In such a case, the impact impulse is created only by the
translational motion of the lifter.

The next step is to analyse in detail the oscillatory motion of the vibrational
lifting tool. It is assumed that the digging tool moves upwards from its lowest
position −a to its highest position a, where a is the amplitude of oscillations of the
tool; then, the digging tool moves downwards from the highest position a to the
lowest position −a. Hence, the oscillations of the tool will take place in accordance
with the following harmonic law:

zk = −a cosωt (6.5)

where zk—displacement of the tool from the horizontal axis, about which the
oscillations take place (m); ω—angular frequency of oscillations of the digging tool
(s−1).

Hence, the digging tool’s oscillatory motion velocity V3δ at any instant of time t
is equal to:

Vzb. = aω sinωt (6.6)

The maximum value of the velocity is equal to:

Vzb.max = aω (6.7)

Therefore, it is necessary to investigate the impact interaction case where the
impact impulse reaches its maximum. Such a case is observed at the moment when
the vibrational lifting tool runs into the root if the tool is moving at that moment
upwards at a velocity of Vzb.max.

In view of the fact that all the forces shown in Figure 6.1 have finite magnitudes,
the impulses of these forces within the time of impact are virtually equal to zero.
Only the impact impulses Sn1 and Sτ1 have nonzero values.

Further, the impulse-momentum theorem for the case of an impact is to be
applied [32]:

m
(
U −V

)
= Sn1 + Sτ1 (6.8)

where V—velocity of the digging tool before the impact; U—velocity of the digging
tool after the impact; m—mass of the reduced digging tool to the point of impact.

At the same time:
V = Vp + Vzb.max (6.9)

where Vp—velocity of the translational motion of the lifter; Vzb.max—maximum
velocity of the oscillatory motion of the digging tool.
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The vector of the lifter’s translational motion velocity Vp is directed along axis
Ox, while the vector of the digging tool’s oscillatory motion velocity Vzb.max—along
axis Oz upwards. Taking into account (6.3), (6.8) acquires the following form:

m
(
U −V

)
= Sn1 + f Sn1 (6.10)

(6.10) has to be written in the form of its projections on the axes of the Cartesian
coordinate system Oxyz.

First, it is necessary to determine the projections of the vectors in Equation (5.10)
on axis Ox.

It is obvious that:
Vx = Vp (6.11)

As the vector Sn1 is directed along the normal line to the wedge surface, in
accordance with (3.12) the following is obtained:

Sn1x =
Sn1 tanγ√

tan2 γ+ 1 + tan2 β
(6.12)

As can be seen from Figure 6.1, the projections of the vectors E1 and F1 on axis
Ox are equal to:

E1x = E1 cosγ = Sτ1 cosψ· cosγ (6.13)

F1x = F1 cos δ· sinγ = Sτ1 sinψ· cos δ· sinγ (6.14)

The projections of the vectors on axis Oy are found in a similar way.
Using (2.12), the following is obtained:

Sn1y =
Sn1√

tan2 γ+ 1 + tan2 β
(6.15)

As is clear from Figure 6.1,

E1y = −E1 sinγ = −Sτ1 cosψ· sinγ (6.16)

F1y = −F1 cos δ· cosγ = −Sτ1 sinψ· cos δ· cosγ (6.17)

It is obvious that:
Vy = 0 (6.18)

Next, the projections of the vectors on axis Oz will be found.
It is obvious that:

Vz = Vzb.max (6.19)
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In accordance with Expression (3.12), the following is arrived at:

Sn1z =
Sn1 tan β√

tan2 γ+ 1 + tan2 β
(6.20)

Moreover,
E1z = 0 (6.21)

F1z = F1 sin δ = Sτ1 sinψ· sin δ (6.22)

Taking into account (6.11)–(6.22), (6.10) is resolved into the following system
of equations:

m
(
Ux −Vp

)
=

Sn1 tanγ√
tan2γ+1+tan2β

+ f Sn1 cosψ· cosγ− f Sn1 sinψ· cos δ· sinγ,

mUy = Sn1√
tan2γ+1+tan2β

− f Sn1 cosψ· sinγ− f Sn1 sinψ· cos δ· cosγ,

m(Uz −Vzb.max) =
Sn1 tan β√

tan2γ+1+tan2β
+ f Sn1 sinψ· sin δ.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(6.23)

Thus, a system of three equations with the four unknown quantities Sn1, Ux, Uy,
Uz has been obtained. The necessary fourth equation can be obtained using Newton’s
hypothesis about the collision of two bodies [32].

The relation between the digging tool velocities prior to and after the impact
can be expressed with the use of the coefficient of restitution ε—that is:

Un = −εVn (6.24)

where Un—projection of the tool velocity after the impact on the normal line to the
wedge surface; Vn—projection of the tool velocity before the impact on the wedge
surface’s normal line.

Considering that U = Ux + Uy + Uz and V = Vp + Vzb.max and taking into
account (3.12), the following is obtained:

Un =
Ux tanγ+ Uy + Uz tan β√

tan2 γ+ 1 + tan2 β
(6.25)

Vn =
Vp tanγ+ Vzb.max tan β√

tan2 γ+ 1 + tan2 β
(6.26)

By substituting (6.25) and (6.26) into (6.24), the needed fourth equation is
obtained:

Ux tanγ+ UyUz tan β = −ε
(
Vp tanγ+ Vzb.max tan β

)
(6.27)
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Thus, the system of four linear equations of the following form is arrived at:

m
(
Ux −Vp

)
=

Sn1 tanγ√
tan2γ+1+tan2β

+ f Sn1 cosψ· cosγ− f Sn1 sinψ· cos δ· sinγ,

mUy = Sn1√
tan2γ+1+tan2β

− f Sn1 cosψ· sinγ− f Sn1 sinψ· cos δ· cosγ,

m(Uz −Vzb.max) =
Sn1 tan β√

tan2γ+1+tan2β
+ f Sn1 sinψ· sin δ,

Ux tanγ+ Uy + Uz tan β = −ε
(
Vp tanγ+ Vzb.max tan β

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.28)

(6.28) can be formulated in the following form, which is more appropriate for
solving with the use of Cramer’s rule:

mUx + 0Uy + 0Uz −
(

tanγ√
tan2γ+1+tan2β

+ f cosψ cosγ− f sinψ cos δ sinγ
)
Sn1 = mVp,

0Ux + mUy + 0Uz −
(

1√
tan2γ+1+tan2β

− f cosψ sinγ− f sinψ cos δ cosγ
)
Sn1 = 0,

0Ux + 0Uy + mUz −
(

tan β√
tan2γ+1+tan2β

+ f sinψ sin δ
)
Sn1 = mVzb.max,

tanγUx + Uy + tan βUz + 0Sn1 = −ε
(
Vp tanγ+ Vzb.max tan β

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.29)

The next step is to write down the principal determinant of (6.29) and find
its value:

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m 0 0 −
(

1√
tan2γ+1+tan2β

+ f cosψ· cosγ− f sinψ· cos δ· sinγ
)

0 m 0 −
(

1√
tan2γ+1+tan2β

− f cosψ· sinγ− f sinψ· cos δ· cosγ
)

0 0 m −
(

tan β√
tan2γ+1+tan2β

+ f sinψ· sin δ
)

tanγ 1 tan β 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= m2

(
tan β√

tan2 γ+1+tan2 β
+ f sinψ· sin δ

)
tan β

+m2
(

1√
tan2 γ+1+tan2 β

+ f cosψ· sinγ− f sinψ· cos δ· cosγ
)

+m2
(

tanγ√
tan2 γ+1+tan2 β

+ f cosψ· cosγ− f sinψ· cos δ· sinγ
)

tanγ.

(6.30)

Further, the determinant for finding the unknown quantity Sn1 is to be written
down and its value is to be found:

ΔSn1 =

∣∣∣∣∣∣∣∣∣∣∣∣
m 0 0 mVΠ

0 m 0 0
0 0 m mVzb.max

tanγ 1 tan β −ε
(
Vp tanγ+ Vzb.max tan β

)
∣∣∣∣∣∣∣∣∣∣∣∣

= −m3(1 + ε)
(
Vp tanγ+ Vzb.max tan β

)
.

(6.31)
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Thereafter, according to Cramer’s rule:

Sn1 =
ΔSn1

Δ
(6.32)

After substituting (6.30) and (6.31) into (6.32) and making some transformations,
the following is obtained:

Sn1

= − m(1+ε)·(Vp tanγ+Vzb.max tan β)·
√

tan2γ+1+tan2β

tan2β+ f sinψ· sin δ· tan β
√

tan2γ+1+tan2β+1−( f cosψ· sinγ+ f sinψ· cos δ· cosγ)
m(1+ε)·(Vp tanγ+Vzb.max tan β)·

√
tan2γ+1+tan2β√

tan2γ+1+tan2β+tan2γ+( f cosψ· cosγ− f sinψ· cos δ· sinγ) tanγ
√

tan2γ+1+tan2β

(6.33)

Thus, the normal component of the impact impulse generated during the
impact interaction between one of the wedges and the root fixed in the soil has been
determined. (6.33) represents the functional relation between the normal component
Sn1 of the impact impulse and the design and kinematic parameters of the vibrational
lifting tool of the beet harvester.

The sign “–” in (6.33) designates the impact impulse Sn1 applied by the root to
the digging tool. The impact impulse applied by the digging tool to the root has a
positive sign and the same magnitude.

If the total impact impulse applied by the digging tool to the root is denoted by
S, it is:

S = Sn1 + Sτ1 (6.34)

then, according to (6.23), its projections on axes Ox, Oy and Oz are, respectively, equal
to:

Sx =
Sn1 tanγ√

tan2 γ+ 1 + tan2 β
+ f Sn1 cosψ· cosγ− f Sn1 sinψ· cos δ· sinγ (6.35)

Sy =
Sn1√

tan2 γ+ 1 + tan2 β
− f Sn1 cosψ· sinγ− f Sn1 sinψ· cos δ· cosγ (6.36)

Sz =
Sn1 tan β√

tan2 γ+ 1 + tan2 β
+ f Sn1 sinψ· sin δ (6.37)

where Sn1 is determined in accordance with (6.33), but with a positive sign.
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Hence, based on (6.35), (6.36), (6.37) and (6.33), it is possible to determine the
total impact impulse applied by the digging tool to the root:

S =
√

S2
x + S2

y + S2
z (6.38)

However, the quantity of greater interest is the magnitude of the impact force,
which is more important than the impact impulse, as a great number of indicators
for the physical and mechanical properties of sugar beets are only related to the
forces applied by the digging tool to the root. Generally, the law of the impact force
variation is unknown, but it is known that said force in a very short time of tud. rises
from zero to a very high level, then again falls to zero. Its maximum magnitude is
about twice as large as its mean value for a time interval of tud. [32].

In view of the fact that Fud.sr = S
tud.

where S is the impact impulse, Fud.sr is the
mean value of the impact force and tud. is the duration of the impact; it follows that

Fud. = 2Fud.sr =
2S
tud.

(6.39)

where Fud.—maximum value of the impact force.
Taking into account (6.35), (6.36), (6.37) and (6.39), it is possible to write down

the formulae for the projections of force Fud. on axes Ox, Oy and Oz, respectively:

Fud.x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 2 tanγ√
tan2 γ+ 1 + tan2 β

+ 2 f cosψ· cosγ− 2 f sinψ· cos δ· sinγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud.
(6.40)

Fud.y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 2√
tan2 γ+ 1 + tan2 β

− 2 f cosψ· sinγ− 2 f sinψ· cos δ· cosγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud.
(6.41)

Fud.z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 2 tan β√
tan2 γ+ 1 + tan2 β

+ 2 f sinψ· sin δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud.
(6.42)

where the quantity Sn1 is determined in accordance with (5.33), taking it with a
positive sign.

The duration of impact tud can be determined only by experiment. According
to [31], tud ≈ 0.6·10−2 s.

The next step is to analyse the conditions that allow damage to the root to be
avoided during its impact interaction with the digging tool.

If the root fixed in the soil is considered as a cantilevered beam, the root under the
action of the moment created by the horizontal impact force Fud.xy = Fud.x + Fud.y is
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subjected to bending deformation. Therefore, if the permissible level of said moment
is exceeded, the root can break. As mentioned earlier, such an event is most probable
in the case of dry and hard soil. The effect is different in the case of humid and soft
soil, where the root will more probably incline through an angle to the horizon under
the action of the horizontal force. If the impact takes place at point K1 situated at a
distance of h from the wedge’s lower edge (from the unbroken soil layer) (Figure 6.1),
the moment of the impact force horizontal component about said point is equal to:

Mo1
(
Fud.xy

)
= Fud.xyh

Fud.xy =
√

F2
ud.x+F2

ud.y⇒ = h
√

F2
ud.x + F2

ud.y (6.43)

where Fud.x and Fud.y are determined with (6.40) and (6.41), the above-mentioned
moment is equal to:

Considering the conditions that allow for the root to not break off under the
action of the moment created by the horizontal force Fud.xy, two cases are theoretically

possible:
[
Mzg

]
< Mop and

[
Mzg

]
> Mop where

[
Mzg

]
is the bending moment

permissible for the root body, which does not cause the root to break off and Mop is
the support moment of the unbroken soil, in which the root is fixed. Due to the fact
that the equilibrium conditions always imply Mop = Mo1

(
Fud.xy

)
where the quantity

Mop has to be understood as the maximum (potential) support moment that can be
provided by the restraint, i.e., the soil, in which the root is fixed, without disrupting
the restraint.

The first case above reported is typical of dry and hard soil, the second one
is typically related to humid and soft soil. In the first case, the root breaking off is
possible under the condition

[
Mzg

]
<Mo1

(
Fud.xy

)
≤Mop, hence, the condition for the

root not breaking off in the first case is, taking into account (6.43):√
F2

ud.x + F2
ud.yh ≤

[
Mzg

]
<Mop (6.45)

In the second case, the root breaking off is unlikely in general; the only possible
effect is the root inclining through an angle.

Obviously, in this case the condition for the root inclining through an angle
without breaking off is, taking into account (6.43):

Mop <
√

F2
ud.x + F2

ud.yh <
[
Mzg

]
(6.46)

The second case the root will neither break off nor incline if the the following
condition (considering (6.43)) is met:√

F2
ud.x + F2

ud.yh ≤Mop <
[
Mzg

]
(6.47)
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On the basis of the condition that allows the root not to break off (6.45) in the
case of impact interaction between the digging tool and the root, the limitation on
the tool’s velocity can be determined.

For this purpose, (6.45) can be expanded, taking into account (6.40) and (6.41),
as follows:√(

2 tanγ√
tan2 γ+1+tan2 β

+ 2 f cosψ· cosγ− 2 f sinψ· cos δ· sinγ
)
+√(

2√
tan2 γ+1+tan2 β

+ 2 f cosψ· sinγ− 2 f sinψ· cos δ· cosγ
)2
·Sn1h

tud
≤
[
Mzg

] (6.48)

The following designations are to be introduced:√(
2 tanγ√

tan2 γ+1+tan2 β
+ 2 f cosψ· cosγ− 2 f sinψ· cos δ· cosγ

)2
+

√(
2√

tan2 γ+1+tan2 β
+ 2 f cosψ· sinγ− 2 f sinψ· cos δ· cosγ

)2
= A

(6.49)

√
tan2γ+1+tan2β

tan2 β+ f sinψ· sin δ· tan β
√

tan2γ+1+tan2β+1−( f cosψ· sinγ+ f sinψ· cos δ· cosγ)√
tan2γ+1+tan2β√

tan2γ+1+tan2β+tan2γ+( f cosψ· cosγ− f sinψ· cos δ· sinγ) tanγ
√

tan2γ+1+tan2β

= B

(6.50)

Taking into account (6.49), (6.48) acquires the following form:

ASn1h
tud.

≤
[
Mzg

]
(6.51)

wherefrom the following is obtained:

Sn1 ≤
[
Mzg

]
tud

Ah
(6.52)

In view of (6.33) and (6.50), (6.52) takes the following form:

Bm(1 + ε)·
(
Vp tanγ+ Vzb.max tan β

)
≤
[
Mzg

]
tud

Ah
(6.53)
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Finally, the following is derived from (6.53):

Vp tanγ+ Vzb.max tan β ≤
[
Mzg

]
tud

ABhm(1 + ε)
(6.54)

Thus, the limitation on the velocity of the lifting tool has been established, taking
into account its design parameters and reduced mass as well as the root’s strength
and coefficient of restitution.

As the velocity of the unit has an effect on its productivity, it is necessary to
investigate the case of the sign of equality in (6.54). If the beet harvester’s translational
motion velocity Vp is preset, it is possible to derive, from (6.54), the magnitude of the
maximum velocity Vzb.max of the oscillatory motion of the vibrational lifting tool:

Vzb.max =
1

tan β

⎛⎜⎜⎜⎜⎜⎜⎝
[
Mzg

]
tud

ABhm(1 + ε)
−Vp tanγ

⎞⎟⎟⎟⎟⎟⎟⎠ (6.55)

On the basis of (6.7), it is possible to determine the required angular frequency
of the digging tool oscillations at the preset amplitude of the oscillations, subject to
the condition of not damaging the root:

ω =
1

a tan β

⎛⎜⎜⎜⎜⎜⎜⎝
[
Mzg

]
tud

ABhm(1 + ε)
−Vp tanγ

⎞⎟⎟⎟⎟⎟⎟⎠ (6.56)

Hence, the hertz frequency of the digging tool oscillations is equal to:

v =
1

2πa tan β

⎛⎜⎜⎜⎜⎜⎜⎝
[
Mzg

]
tud

ABhm(1 + ε)
−Vp tanγ

⎞⎟⎟⎟⎟⎟⎟⎠ (6.57)

Based on the developed theory of the impact interaction between the vibrating
digging tool and the root, it is possible to define, subject to the condition of not breaking
off the root, quite a wide range of acceptable digging tool oscillation frequencies at
different values of the design and kinematic parameters of the vibrational lifting tool.

In order to carry out the calculations, it is necessary to specify the values of some
of the parameters present in (6.57).

In the further considerations, it is assumed that the design parameters of the
trihedral wedges of the lifting tool—in particular, angles γ and β (Figure 5.1) are
preset: γ = 14◦–15◦, β = 50◦–55◦.

The dihedral angle δ between the wedge’s working face and its lower face
(Figure 6.1) is determined with the use of (3.63).

189



The dynamic coefficient of friction of steel on the surface of the root is assumed
to be equal to f = 0.45 [7]. To a certain approximation, it is assumed that angle
ψ = 45◦.

The distance between the impact contact point K1 and the lower edge of the
wedge (i.e., the boundary of the unbroken soil layer) is h = 0.05 m.

The coefficient of restitution for the impact is assumed to be ε = 0.72.
The permissible bending moment

[
Mzg

]
can be determined on the basis of the

following considerations.
If z—depth at which digging tool runs in the soil, it is obvious that the root will

most probably break off at that depth, as at the depths greater than z the root sits in
unbroken soil, while at the depths less than z the root cross-section area is greater
(since the root has a conical shape).

Considering that the diameter dk of the root cross-section at a depth of z is
dk = Dk − 2z· tanγk where Dk is the root diameter (m) and γk is the taper angle of
the root (◦).

Subsequently, starting from the theory of strength of materials
[
Mzg

]
= [σ]d.

πd3
k

32
where [σ]d.—modulus of rupture of the root under dynamic load (Pa). Taking into
account the previous formula, the following is arrived at:

[
Mzg

]
= [σ]d

π(Dk − 2z tanγk)
3

32
(6.58)

According to [7], Dk = 67–122 mm, γk = 9◦–18◦, [σ]d. = 1.15·106Pa.
For the calculations, it is assumed that Dk = 100 mm, γk = 15◦.
One of the design parameters that is important in determining the impact

interaction is the mass of the reduced digging tool to the point of impact. An
indicative set of values for the reduced mass is obtained with (6.57) for the preset
ranges of the digging tool oscillation amplitudes and frequencies as well as the
translational motion velocities that are to be used in the experimental investigations.
The mentioned parameter variation ranges are as follows:

- digging tool oscillation amplitude a = 8~24 mm;
- digging tool oscillation frequency v = 7.5~20.3 Hz;
- lifter translation velocity Vp = 1.4~2.2 m·s−1.

The following expression for calculating the reduced mass can be derived from
(6.57):

m =

[
Mzg

]
tud

ABh(1 + ε)
(
2vπa tan β+ Vp tanγ

) (6.59)
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The calculations will be carried out for various values of the digging tool running
depth—in particular, for z = 0.08; 0.10; −0.14 m and at three values of the amplitude:
a = 0.008, 0.016 and 0.024 m.

The value of the reduced mass is obtained in the form of a function of the digging
tool oscillation frequency v and the lifter translation velocity Vp—i.e., m = m(v, Vp).

The values of the reduced mass calculated in the described manner allow for
the root not to be broken off in the case of impact interaction at specific values of the
digging tool running depth, oscillation amplitude and frequency as well as specific
values of the lifter translation velocity.

The calculation process results in obtaining, apart from the tables of reduced
mass values, the graphs of the function m = m(v, Vp) for various value sets of the
digging tool running depth and oscillation frequency and the respective contour
diagrams. Since the operational running depth of the lifting tool does not, in the
majority of cases, exceed 0.10 m [31], the case of calculation for a depth of z = 0.10
m and an amplitude of a = 0.016 m will be presented as an example. For this
case, the graph of the function m = m(v, Vp) and the respective contour diagram
are presented in Figure 6.2. The frequencies in the presented case vary within the
range of v = 7.5~20.3 Hz and the lifter translation velocities—within the range of
Vp =1.4~2.2 m·s−1.

 

(a) (b) 

Figure 6.2. Surface (a) and contour diagrams (b) of values for digging tool mass
reduced to point of impact m = (v, Vp) (kg) (digging tool running depth z = 0.10
m; oscillation amplitude a = 0.016 m).

The trend of decreasing reduced mass is observed in the case of an increase in
the digging tool oscillation amplitude. For example, at z = 0.10 m and an amplitude
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of a = 0.008 m, the reduced mass varies within the range of m = 1.07~2.38 kg, but at
z = 0.10 m and an amplitude of a = 0.024 m—within the range of m = 0.45~1.11 kg.

The reduced mass of the digging tool also decreases with the increase in its
running depth. For example, at an amplitude of a = 0.016 m and a running depth of
z = 0.10 m, the reduced mass varies within the range of 0.63~1.51 kg, but at the same
amplitude and a running depth of z = 0.12 m—within the range of 0.29~0.69 kg.

The obtained diagram clearly displays the trend of the reduced digging tool
mass decreasing with the increase in the tool oscillation frequency and the lifter
translation velocity.

The results of the calculation of the reduced mass values for the frequency
varying within the range of v= 7.5~20.3 Hz and the lifter translation velocity varying
within the range of Vp = 1.4~2.2 m·s−1 are presented in Table 6.1.

Table 6.1. Ranges of variation of reduced mass against variation of tool oscillation
frequency and lifter translation velocity.

Digging Tool Running
Depth z (m)

Reduced Mass Value, m (kg)

a = 0.008 m a = 0.016 m a = 0.024 m

0.08 4.45~2.00 2.82~1.18 2.07~0.83

0.10 2.38~1.17 1.51~0.63 1.11~0.45

0.12 1.08~0.49 0.69~0.29 0.50~0.20

It has been established in the field experiments that the critical impact impulse
energy that causes the root tail part (a diameter of 30~40 mm) to break off is equal to
2.5~3.0 J [31]. This corresponds to a digging tool running depth of 0.10~0.12 m.

In a first approximation, the impact impulse energy is equal to the kinetic energy
of the digging tool prior to the impact. Based on this, the reduced mass that enables
breaking off the root can be assumed to be m = 2T

V2
p

where m is the reduced mass of

digging tool (kg); T is the kinetic energy of the digging tool prior to the impact (J)and
Vp is the lifter translation velocity (m·s−1).

At Vi = 1.4 m·s−1, m = 2.55 kg; at Vp = 2.0 m·s−1, m = 1.25 kg; at Vp = 2.2 m·s−1,
m = 1.03 kg. Hence, the obtained values are close to those presented in Table 6.1
at = 0.10 m.

Moreover, as is pointed out in [31], during the laboratory and field investigations,
the impact impulse loads were created with the use of a pendulum impact machine,
in which the hammer mass was 0.45~1.5 kg and impact velocity—1.0~2.5 m·s−1.
Thus, the mass of the hammer and the velocity of its motion were the same as the
parameters mentioned in this paper.

Hence, the above-mentioned calculations have enabled obtaining quite a wide
range of reduced mass values of the digging tool. Certainly, when developing
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a specific vibrational lifting tool, a specific reduced mass value will be used.
Nevertheless, by using the results of the described calculations, it is always possible to
determine what kinematic parameters of the digging tool motion are stipulated by the
specific reduced mass subject to the condition of not breaking off the roots. Moreover,
if a specific reduced mass value is chosen from the obtained range of reduced
mass values (or close to it), it is possible to calculate the permissible frequency
values for a wider range of amplitudes, digging tool running depths and lifter
translation velocities.

Said computation can be carried out using (6.57).
For example, a reduced mass value of m = 1.5 kg, which is within the range

of reduced mass values m = 1.17~2.38 kg, is selected from Table 6.1 (digging tool
running depth—0.10 m, oscillation amplitude—0.008 m). Using (6.57), the acceptable
frequency of oscillations of the digging tool is calculated as a function of the lifter
translation velocity and the digging tool oscillation amplitude—i.e., v = (Vp, a). In
this case, the lifter translation velocity varies within the range of 1.4~2.2 m·s−1 and
the amplitude—within the range of 0.008–0.024 m. The results are in Table 6.2.

Table 6.2. Acceptable digging tool oscillation frequencies for reduced mass of
m = 1.5 kg.

Digging Tool Running Depth, z (m)
Range of Variation of Digging Tool

Oscillation Frequency, ν (Hz)

0.08 33.08~9.97

0.10 15.17~4.01

0.12 3.89~0.243

As can be seen in Table 6.2, the frequency range v = 0.243–3.89 Hz ensures
the roots are not broken off at a digging tool running depth of 0.12 m and less; the
frequency range v = 4.01~15.17 Hz ensures the roots are not broken off at a digging
tool running depth of 0.10 m and less; the frequency range v = 9.97~33.08 Hz—at a
digging tool running depth of 0.08 m and less. Thereby, theoretically, it is possible to
compute the digging tool oscillation frequency values that meet the condition of not
breaking off the roots for quite a wide range of kinematic parameters of operation of
the vibrational lifting tool.

The graph of the function v = (Vp, a) and the contour diagram for a reduced
digging tool mass of m = 1.5 kg and running depth of z = 0.10 m are presented below
(Figure 6.3).

As can be concluded from the shown diagram, the acceptable frequency depends
on the digging tool oscillation amplitude: as the oscillation amplitude goes up, the
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permitted frequency sharply falls. It also decreases when the lifter translation
velocity rises.

 

(a) (b) 

Figure 6.3. Surface (a) and contour diagrams (b) of values of digging tool oscillation
frequency v = (Vp, a) (Hz) acceptable subject to not breaking off roots during
their impact interaction with digging tool (digging tool running depth z = 0.10 m;
reduced digging tool mass m = 1.5 kg).

In the case of a running depth of z = 0.14 m, a reduced digging tool mass of
m = 1.5 kg is unacceptable, since the permissible frequency values become, according
to the calculations, negative, which makes no sense.

Similar calculations have been carried out for a reduced mass of m = 1 kg with
the same ranges of the translational motion velocity and digging tool oscillation
amplitude. The results of the calculations are shown in Table 6.3.

Table 6.3. Acceptable digging tool oscillation frequencies for reduced mass of
m = 1 kg.

Digging Tool Running Depth, z (m)
Range of Variation of Digging Tool

Oscillation Frequency, ν (Hz)

0.08 52.38~16

0.10 25.52~7

0.12 8.60~1

The acceptable frequency values for a reduced mass of m = 0.8 kg are presented
in Table 6.4.
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Table 6.4. Acceptable digging tool oscillation frequencies for reduced mass of
m = 0.8 kg.

Digging Tool Running Depth, z (m)
Range of Variation of Digging Tool

Oscillation Frequency, ν (Hz)

0.08 66.86~21.23

0.10 33.28~10.04

0.12 12.13~2.99

Additionally, the results of the calculations and the diagrams of acceptable
frequencies for the digging tool with a reduced mass of m = 2.0 kg within the same
ranges of the translational motion velocity and the oscillation amplitude are provided
as an example. In particular, at Z = 0.08 m, the acceptable frequencies are within the
range of ν = 6.76~23.43 Hz, at Z = 0.10 m—within the range of ν = 2.28~10.00 Hz.

It is rather convenient to determine the acceptable frequency value for each pair
of values (Vp, a) with the use of the contour diagram shown in Figure 5.3b. The
denser the coordinate grid is, the more accurately and conveniently the acceptable
frequencies are determined.

As an example, the results of the calculation of the maximum acceptable
oscillation frequency obtained for a reduced digging tool mass of m = 1.5 kg will be
further analysed.

As the calculation results show, at a digging tool running depth of z = 0.08 m
and an oscillation amplitude of a = 0.008 m, a maximum acceptable digging tool
oscillation frequency of v = 30 Hz ensures breaking off of the root tail parts within
the lifter translation velocity range of 1.4~2.2 m·s−1. For the same running depth
and a digging tool oscillation amplitude of a = 0.010 m, a maximum acceptable
oscillation frequency of v = 24 Hz ensures the root tail parts are not broken offwithin
the above-mentioned lifter translation velocity range.

Under the same conditions, for an amplitude of a = 0.012 m, the maximum
acceptable frequency is v = 20 Hz; for an amplitude of a = 0.014 m − 17.1 Hz; for
a = 0.016 m − 15.0 Hz; a = 0.018 m − 13.3 Hz; a = 0.020 m − 12.0 Hz; a = 0.022 m −
10.9 Hz; a = 0.024 m − 10.0 Hz.

The above values of the vibrational tool oscillation frequency are the maximum
acceptable values of the frequency subject to not breaking off the root tail parts
during the impact interaction. Lower oscillation frequency values allow, to a
greater extent, for not breaking off of the root tail parts. Nevertheless, as will be
shown, the frequencies must be limited from below as well—i.e., there are minimum
acceptable frequency values that ensure the guaranteed gripping of each root by the
digging shares.

195



Meanwhile, the calculation has shown that the maximum acceptable frequency
values for a digging tool running depth of z = 0.10 m are significantly lower. For
example, at an oscillation amplitude of a = 0.008 m, a maximum acceptable oscillation
frequency of v = 12 Hz allows the root tail parts to be not broken off within the lifter
translation velocity range of V = 1.4~2.2 m·s−1; at an oscillation amplitude of a = 0.010
m—the maximum acceptable frequency is v = 9.6 Hz; at an amplitude of a = 0.012
m—v = 8 Hz; at an amplitude of a = 0.014 m—v = 6.9 Hz.

In the case of greater values of the amplitude, the acceptable frequency
values become even lower. When the frequency values fall below the minimum
acceptable ones with regard to the guaranteed gripping of each root by the
digging shares, the respective kinematic conditions must be rejected as they are
technologically unacceptable.

For a reduced digging tool mass of m = 1.5 kg and a depth of running in the soil
of 0.12 m, the maximum acceptable frequency values subject to the root tail parts
not breaking off during the impact interaction are below 4 Hz. Hence, under the
condition of the guaranteed gripping of the root by the digging shares, said frequency
values are unacceptable.

It is quite obvious that the maximum acceptable frequency values for a reduced
digging tool mass of m = 1.5 kg will meet the condition of not breaking off the
root tail parts even more in the case of smaller reduced masses of the digging tool.
Indeed, the maximum acceptable frequency values for the respective amplitudes and
digging tool running depths will, in this case, be even higher. This is proved by the
calculations for reduced digging tool masses of m = 0.8 kg and m = 1.0 kg. While
the maximum acceptable frequency values for the digging tool’s running depth of
0.12 m and its reduced mass of 1.5 kg are below 4 Hz, in the case of a reduced mass
of m = 1.0 kg, said values are considerably higher. For example, at an amplitude of
0.008 m and a lifter translation velocity of 1.4~2.2 m·s−1, they stay within the range of
8.6~5.4 Hz at an amplitude of 0.010 m; within the same translational motion velocity
range—within the range of 6.8~4.4 Hz; at an amplitude of 0.012 m—within the range
of 5.7~3.6 Hz.

For a reduced digging tool mass of m = 0.8 kg and a digging tool running depth
of 0.12 m, the respective values of the maximum acceptable frequency are within
the following ranges: at an amplitude of 0.008 m—12.1~9.0 Hz; at an amplitude of
0.010 m—9.7~7.1 Hz; at an amplitude of 0.012 m—8.1~6.0 Hz; at an amplitude of
0.014 m—7.0~5.1 Hz.

Hence, the above acceptable frequency values subject to the condition of the root
tail parts not breaking off during the impact interaction with the digging shares have
to be limited from below, proceeding from the condition of the guaranteed gripping
of each root by the digging shares of the lifter.
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Thus, the developed theory of impact interaction between the digging tool and
the root fixed in the soil as well as the calculation algorithm generated on the basis of
the theory facilitate computing with the use of the personal computer the kinematic
operating conditions for a vibrational lifting tool within a sufficiently wide range
taking into account its design and process parameters and proceeding from the
condition of not breaking off the roots.

The algorithm of computing the acceptable oscillation frequency for a vibrational
lifting tool subject to not damaging the roots during the impact interaction between
them is presented below.

1. The permissible bending moment is found with (6.58).
2. Parameters A and B are found with (6.49) and (6.50), respectively.
3. The tentative set of the reduced mass values as the function m = m(v, Vp)

at different values of oscillation amplitude and digging tool running depth is
computed with (6.59).

4. After selecting a specific value of the reduced mass m from the set of reduced
mass values obtained in Step 3, the acceptable frequency is determined as the
function v = v( Vp, a) in accordance with (6.57) for various values of digging
tool running depth.

Thereby, the theory of the impact interaction between the vibrational lifting tool
and the root fixed in the soil produces rather a wide range of acceptable values for the
digging tool oscillation frequency. However, it is necessary to place the acceptable
values of frequency obtained above the limitations—from above and from below. The
limitation from above is stipulated by the reliability of the digging tool oscillatory
motion drive, as at excessively high frequencies the dynamic loads on the drive
components sharply rise, which considerably reduces the reliability and durability
of the drive. According to the results of experimental studies, the reliability of the
drive sharply falls in the case of the existing drive designs when the digging tool
oscillation frequency exceeds 20 Hz [7]. The limitation of the acceptable frequency
values from below is imposed by the requirement to ensure the gripping of the
root by the digging tool when the root is situated in the lifter’s working channel.
Therefore, it is important to analyse the relation between the number of the possible
ways in which the root is gripped by the vibrational lifting tool over the time when
the root resides in the lifter’s working channel, and the following process parameters:
the lifter’s translational motion velocity, the length of its working channel and the
frequency of oscillations of the working faces of the vibrational lifting tool.

As the extraction of roots during their vibrational lifting is possible only in the
case of direct contact between the digging tool and the roots, an issue of importance
is the length of the rear part of the lifter’s working channel, which starts from the
point of first contact with the root and extends until the end of the working channel
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(i.e., the length over which the contact with the root and its final extraction from the
soil take place). Of course, said length can be different (considering the variation of
the design solutions that take into account the different root sizes, etc.); nevertheless,
it must have an average value l, which can further be assumed as the design value.

The analytical relation between the number of oscillations that the vibrational
lifting tool performs in its interaction with the root during the latter’s stay in the
rear part of the working channel, on the one hand, should be found, as should the
length of the rear part of the working channel, the oscillation frequency and the lifter
translation velocity, on the other hand.

If l—distance from the point of the first contact with the root to the end of the
lifter’s working channel and Vp—lifter translation velocity, the duration of stay of
the root in the above-mentioned part of the working channel is equal to:

tp =
l

Vp
(6.60)

In that time, the digging tool performs the following number of oscillations:

k = v
l

Vp
(6.61)

where v—frequency of oscillations of the vibrational lifting tool (Hz).
Hence, for example, if it is assumed, according to [7], that Vp = 2 m·s−1 m·s−1,

v = 20 Hz, l = 0.1 m (the minimum possible value of the length), the following
number of oscillations of the vibrational lifting tool is k = 20·0.1

2 = 1 oscillation.
Then, knowing the number of oscillations performed by the vibrational lifting

tool, it is necessary to find out how many times the tool grips the root in the time of
the root’s stay in the rear part of the channel at k = 1—i.e., in case the digging tool
performs one full oscillation in said time.

In the situation under consideration, two cases are possible.
The first case: the digging tool meets the root (performs the first direct contact

with the root) at the instant of time when the tool is moving up from its lowest
position to its highest position. In further considerations, the digging tool oscillation
period is denoted by τ. As the perturbing force in this case is vectored upwards, this
first contact between the digging tool and the root will also be the first time when the
digging tool grips the root and the process of breaking the bonds between the root
and the soil begins. The gripping continues until the digging tool reaches its highest
position. In further considerations, this time interval is denoted by t1 = s1τwhere
0 ≤ s1 ≤ 0.5—a number that shows in what fraction of the oscillation period the first
grip of the root by the digging tool takes place.
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For example, if s1 = 0.5 it means that the first grip starts at the lowest position;
therefore, t1 = 0.5τ. However, if s1 = 0, it means that the first contact starts at the
highest position, which implies that t1 = 0. All the other values of s1 that comply
with the above inequation, represent the start of the grip at any instant of time during
the digging tool movement upwards from the lowest position to the highest one.

Having reached its highest position, the digging tool starts moving downwards.
In this case, taking into account the conical shape of the root, the perturbing force
stops acting on the root—this means that the root is not gripped anymore. However,
the loss of contact between the root and the digging tool is rather unlikely in view of
the translational motion of the lifter and the necking of its working channel. If the
perturbing force stops acting on the root, the latter will try and return to the vertical
position in view of the elasticity of the soil and its own elasticity. It is possible that at
this stage the root has a slight tilt forward caused by the lifter’s translational motion.
Such circumstances remain present over the time of t2 = 0.5 τ as the digging tool
moves from its highest position to the lowest one. After that, the digging tool repeats
the upward movement from its lowest position to the highest one.

Thus, over the time of t3 = τ − (t1 + t2), the second grip of the root by the
digging tool takes place, which starts the process of the further disruption of bonds
between the root and the soil right up to the complete extraction. Of course, if the
duration of the root’s stay in the rear part of the working channel (after the first
contact) is not longer than τ, the second grip must end in the guaranteed complete
extraction of the root from the soil; otherwise, the root will remain in the soil (that is,
it will either be cut off by the shares or chock up the lifter’s working channel).

In case the root is weakly fixed in the soil, it is not improbable that the extraction
will take place during the first grip of it by the vibrational lifting tool.

The second case: the digging tool meets the root (performs the first direct contact
with it) at the instant of time when the tool is moving down from its highest position
to the lowest one. This contact will continue over the time of t1 = s1τ, where
0 ≤ s1 ≤ 0.5.

In this period, no perturbing force from the vibrational lifting tool acts on the
root. After reaching the lowest position, the digging tool starts moving in the opposite
direction—i.e., from the lowest position to the highest one. In this period, the first
grip of the root by the digging tool takes place and continues for t2 = 0.5 τ until
the digging tool reaches its highest position. Next, the digging tool starts moving
downwards and over the time of t3 = τ− (t1 + t2), again, no perturbing force acts
on the root—i.e., in this time interval no gripping of the root takes place.

Thus, in the second case, within the time interval of t1 + t2 + t3 = τ, the root
is gripped by the digging tool only once. If in this case the time of the root staying
in the rear part of the working channel (after the first contact) is no longer than τ,
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then said single grip must result in the complete extraction of the root from the soil;
otherwise, the root will remain in the soil.

Of course, one grip can be insufficient for the extraction of the root tightly
bonded with the soil. In this case, obviously, it is necessary to increase considerably
the gripping force, but this can result in the breaking off or tearing apart of the root
body. Nonetheless, it is quite evident that even one grip of the root at a certain
depth that allows it to be forced out of the surrounding and restraining soil and the
following travel of the root in the lifter’s necked working channel on the inclined
faces of the shares are sufficient for the complete extraction of the root.

Thus, at k = 1 in the first case, it is appropriate to analyse two phases of the
extraction process—the first phase and the third one, as during the first grip the
perturbation of the root takes place; then, in the interval between the first and second
grips, the root restores its position under the action of the elastic force of the soil and
the root’s own elasticity. During the second grip, the final extraction of the root from
the soil takes place. In the second case, the extraction must be completed during one
grip—i.e., the third phase of lifting takes place.

At k < 1 (the digging tool cannot complete one full oscillation within the time of
stay of the root in the rear part of the lifter’s working channel), in the first case only
one grip of the root by the digging tool can take place; in the second case—no grip
occurs. Indeed, the root must be lifted in one grip by the digging tool or, in an extreme
case, by the necked working channel of the lifter due to the lifter’s translational
motion (as happens in the usual share lifter). However, the lifting of the root rigidly
fixed in the soil by the necked channel due to the lifter’s translational motion can
result in the sharp tilting of the root along the lifter’s motion and its breaking off.
Moreover, at k < 1, the root rigidly fixed in the soil may still not be lifted even after
one grip by the vibrational lifting tool.

Thereby, the correlation between the digging tool oscillation frequency, the
lifter’s translational motion velocity and the working channel length must allow the
digging tool to perform more than one oscillation over the time of its stay in the rear
part of the working channel—i.e., it is necessary to ensure that k > 1.

If, for example, k = 2 (when the length of the rear part of the lifter’s working
channel l is equal to 0.2 m) and the first case is under consideration (i.e., the first contact
between the digging tool and the root takes place during the upward movement of
the digging tool), then within the first oscillation period, the digging tool performs
two grips of the root; within the second oscillation period—one grip. However, if the
second case is under consideration (i.e., the first contact between the digging tool
and the root takes place during the downward movement of the digging tool), then
within the first and the second oscillation periods the digging tool performs one grip
of the root per period. Hence, at k = 2 either three or, in the worst case, two grips of
the root are guaranteed.
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Thereby, at k = 2 in the first case, three phases of lifting have to be taken into
consideration: the first phase—during the first grip, when the perturbing force acts
on the root firmly bonded with the soil, and in the time interval between the first and
second grips, when the root restores to its initial position; the second phase—during
the second grip, when the perturbing force acts on the root in already loosened
soil, and in the time interval between the second and third grips, when the root
restores to its previous position; the third phase—during the third grip, when the
final extraction of the root from the soil is performed. In the second case, two phases
of lifting have to be analysed: the first and the third. Of course, such division into
phases is rather conventional.

In general, for k = n where n is a natural number, as can be concluded from the
above considerations, the digging tool can complete n + 1 or n grips of the root.

Certainly, the greater k is, the smoother the process and the higher the quality of
root extraction from the soil by the vibrational lifting tool, as with a greater number of
oscillations used for one root, it is possible to apply a smaller perturbing force to lift
the root, which means reducing the probability of breaking the root body. Moreover,
the greater k is, the more oscillations the root performs together with the digging tool
in the first and second phases of extraction, which means better cleaning of the root
from the caked soil.

The growth of the number k can be achieved by either increasing the digging
tool oscillation frequency and the length of its working channel or decreasing the
lifter’s translational motion velocity. In summary, even at k = 1, when the digging
tool performs only two grips of the root in the time of the latter’s stay in the rear
part of the lifter, an oscillatory process takes place in the first phase of lifting (the
first gripping of the root and the return of the root to its initial position in the time
interval between the first and second grips) and the perturbation of the root under
the action of the perturbing force and its return to the initial position under the action
of the restoring forces (the elastic force of the soil and the root’s own elastic force)
occur. Even more so, at k > 1 an oscillatory process takes place that facilitates the
guaranteed extraction of the root from the soil.

Hence, having specified the number k(k ≥ 1) of the digging tool oscillations
performed together with one root during the latter’s stay in the lifter’s working
channel, it is always possible to find the relation between the parameters v, l and Vp

in accordance with (6.61). In particular, for specific values of l and Vp, the following
is found from (6.61):

v =
k Vp

l
(6.62)

In this way, the minimum digging tool oscillation frequency that ensures the
rational conditions of the vibrational lifting of roots is determined. If = 1 (one
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oscillation of the digging tool per root is performed), the following is obtained from
(6.62):

v =
Vp

l
(6.63)

If the digging tool oscillation frequency is below the value found in (6.63), the
proper conditions for the vibrational root lifting are not provided. This means that
some of the roots will not be gripped by the digging tool in the vibrational process
and, therefore, will not be extracted or will be broken in their tail parts. All this
results in the undesirable loss of roots during their lifting.

Thus, the unjustified relation between the parameters k, v, l and Vp is one of
the main causes of the loss of part of the roots during their vibrational lifting by the
existing beet harvesters.

The next step is to plot the graphs (Figure 6.4) of the relation between the
minimum acceptable frequency v and the lifter’s translational motion velocity Vp at
k = 1 and l = 0.10 m, l = 0.15 m and = 0.20 m as stated by (6.63).

Figure 6.4. Graphs of relation between minimum acceptable frequency v of
vibrational lifting tool and lifter’s translational motion velocity Vp at lengths of
l = 0.10 m; 0.15 m; 0.20 m for the rear part of the working channel.

As may be inferred from the obtained graphs (Figure 6.4), the growth of the
lifter’s translational motion velocity entails the increase in the minimum acceptable
frequency of the digging tool oscillations, which guarantees the occurrence of one
grip of the root by the digging tool.
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Thereby, for each set of values of the lifter’s translational motion velocity Vp and
the length l of the rear part of its working channel, a specific minimum frequency
value exists, below which the process of the vibrational lifting of roots is impaired in
the sense that some roots are not lifted by the vibrational lifting tool. As is evident
from the graph, at l = 0.1 m, a frequency of v = 20 Hz ensures the proper performance
of the vibrational root lifting process at all values of the lifter’s translational motion
velocity VΠ below 2.0 m·s−1, while at l = 0.15 m, a frequency of 20 Hz—at all values
below 3.0 m·s−1. Hence, at l = 0.1 m, when it is necessary to facilitate a lifter translation
velocity of Vp = 2.0 m·s−1, all the ranges of the acceptable frequency obtained under
the condition of not damaging the roots during their impact interaction with the
digging tool must be limited from below by a frequency value of ν = 20 Hz.

This implies that in the case of some of the above-mentioned kinematic conditions,
with values below ν = 20 Hz having been obtained for the frequencies acceptable in
the impact interaction, they are automatically out of compliance with the conditions
required for the normal progress of the vibrational root lifting process at a length of
l = 0.1 m for the rear part of the working channel and a lifter translation velocity of
Vp = 2.0 m·s−1.

On the other hand, if the acceptable frequency values obtained under the
condition of not damaging the roots during the impact interaction are above 20 Hz,
their applicability has to be assessed with regard to the reliability and durability of
the drive that actuates the oscillatory motion of the digging tool.

The above theoretical considerations are supported rather accurately by the
experimental studies on the mass of the lost sugar beet roots described in Section 6.
For example, at a lifter translation velocity of Vp = 2.1 m·s−1 and a digging tool
oscillation frequency of ν = 20.3 Hz, the mass of the lost roots amounts to 0.64%, at
a frequency of ν = 15.7 Hz—2.2%, while at a frequency of 8.5 Hz—3.48% (Table 6.1).

Thereby, at a translation velocity of Vp = 2.1 m·s−1, an oscillation frequency of
v = 20.3 Hz allows for the normal conditions of the vibrational root lifting process,
but frequencies of ν = 15.7 Hz and ν = 8.5 Hz are insufficient—i.e., some roots are
not lifted by the digging tool or broken in their tail parts. This is confirmed by the
calculations made with (6.63).

The same patterns are observed at lifter translation velocities of Vp = 1.3; 1.75;
2.55 m·s−1 (Table 6.1).

At a translation velocity of Vp = 1.3 m·s−1 and an oscillation frequency of
ν = 20.3 Hz, the mass of the lost roots amounts to 0.38%; at a frequency of
ν = 15.7 Hz—1.78%; at a frequency of ν = 8.5 Hz—2.74%. Hence, frequencies of
ν = 20.3 Hz and ν = 15.7 Hz allow for normal conditions of the vibrational root
lifting process, but a frequency of ν = 8.5 Hz is insufficient for this.
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At a translation velocity of Vp = 1.75 m·s−1, a depth of running in the soil of
0.06 m and an oscillation frequency of ν = 20.3 Hz, the mass of the lost roots amounts
to 0.42%; at a frequency of ν = 15.7 Hz—1.9%; at a frequency of ν = 8.5 Hz—2.96%.

At a translation velocity of Vp = 2.55 m·s−1, the same lifter running depth and
an oscillation frequency of ν = 20.3 Hz, the mass of the lost roots amounts to 1.14%;
at a frequency of ν = 15.7 Hz—2.44%; at a frequency of—4.3%.

The described pattern rather accurately shows up in the results of the
experimental studies presented in Table 6.4, where the mass of the lost roots (%) is
determined at a digging tool oscillation frequency of ν = 8.5 Hz.

For example, at a digging tool running depth in the soil of 0.06 m, the lost root
mass is equal to (mean value):

at Vp = 1.4 m·s−1 − 1.2%;
at Vp = 1.65 m·s−1 − 4.9%;
at Vp = 2.1 m·s−1 − 6.2%.

At a digging tool running depth in the soil of 0.08 m, the following results have
been obtained:

at Vp = 1.4 m·s−1 − 1.2%;
at Vp = 1.65 m·s−1 − 2.1%;
at Vp = 2.1 m·s−1 − 4.2%.

The losses are caused by the breaking offof root tail parts and the complete leaving
in the soil of part of the roots due to the fact that a digging tool oscillation frequency
of ν = 8.5 Hz does not ensure the gripping of each root by the digging shares.

It is obvious that the root loss rate is higher at a digging tool running depth in
the soil of 0.06 m than in the case of a running depth of 0.08 m, due to the increased
number of the roots not lifted from the soil.

According to [31], in the process of the active improvement of the vibrational
lifting tools mounted on the beet harvesters produced by the leading European
manufacturers, the digging tool oscillation frequencies have risen from 3.3~6.0 Hz
to 10 Hz, but it is not yet possible to achieve oscillation frequencies above 10 Hz in
large-scale production conditions due to the inadequate reliability of the mechanism
that drives the digging tool in its oscillatory motion. Taking into account that
circumstance and based on the above calculations, the following conclusion is arrived
at: in order to provide for the normal conditions of the vibrational root lifting process
at a lifter translation velocity of Vp = 2.0 m·s−1 and a digging tool oscillation
frequency of ν = 10.0 Hz, it is necessary to have such proportions between the
geometric parameters of the digging tool to ensure the length of the end part of the
lifter’s working channel (distance from the point of the first contact between the
digging tool and the root to the end of the working channel) that meets the condition
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l ≥ 0.2 m. Otherwise, at a velocity of Vp = 2.0 m·s−1, the required conditions of
vibrational lifting are not complied with.

The next step is to select from the results obtained by numerical calculations the
acceptable values of the digging tool oscillation frequency, which can be recommended
for use within the translational motion velocity range of 1.3~2.2 m·s−1, taking into
account the limitation imposed on the digging tool oscillation frequency by the
requirement to guarantee the gripping of each root by the digging shares:

- For a reduced digging tool mass of m = 0.8 kg: at a depth of running in the
soil of 0.08 m and an oscillation amplitude of 0.008–0.024 m, the acceptable
oscillation frequency is 21.2 Hz; at a running depth of 0.10 m—10.0 Hz; at a
running depth of 0.12 m—9.0 Hz;

- For a reduced digging tool mass of m = 1.0 kg: at a depth of running in
the soil of 0.08 m and an oscillation amplitude of 0.008–0.024 m, the acceptable
oscillation frequency is 16.4 Hz; at a running depth of 0.10 m and an oscillation
amplitude of 0.008–0.018 m, the acceptable oscillation frequency is 10.0 Hz; at
an amplitude of 0.020–0.024 m—8.3 Hz;

- For a reduced digging tool mass of m = 1.5 kg: at a depth of running in the
soil of 0.08 m and an oscillation amplitude of 0.008–0.024 m, the acceptable
oscillation frequency is 10.0 Hz; at a running depth of 0.10 m and an oscillation
amplitude of 0.008–0.010 m, the acceptable oscillation frequency is 10.0 Hz; at
an amplitude of 0.012 m—8.0 Hz;

- For a reduced digging tool mass of = 2.0 kg: at a depth of running in the soil of
0.08 m and an oscillation amplitude of 0.008–0.016 m, the acceptable oscillation
frequency is 10.0 Hz; at an oscillation amplitude of 0.018–0.020 m—8.1 Hz.

The recommended digging tool oscillation frequencies are summarised in
Table 6.5.

Table 6.5. The recommended digging tool oscillation frequencies, ν (Hz).

Reduced Mass of Digging
Tool, m (kg)

Running Depth of Digging Tool, z (mm)

0.08 0.10 0.12

Oscillation Amplitude (m)

from
0.008

to
0.016

from
0.018

to
0.020

from
0.008

to
0.024

from
0.008

to
0.024

from
0.008

to
0.018

from
0.020

to
0.024

from
0.008

to
0.010

0.012

from
0.008

to
0.024

0.8 – – 21.2 10.0 – – – – 9.0

1.0 – – 16.4 – 10.0 8.3 – – –

1.5 – – 10.0 – – – 10.0 8.0 –

2.0 10.0 8.1 – – – – – – –
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6.2. Impact Interaction at Two Points

In this subsection, the impact interaction between the vibrational lifting tool and
the root at two points, i.e., in the case of both shares simultaneously running into the
root fixed in the soil, is under investigation.

The first step is to set up the equivalent schematic model of said impact interaction
between the vibrational lifting tool and the root body that takes place when the tool
runs into the root (Figure 6.5).

Figure 6.5. Equivalent schematic model of impact interaction at two points between
vibrational lifting tool and root body fixed in soil.

It is assumed that the impact interaction between the root and the faces of
wedges A1B1C1 and A2B2C2 takes place at points K1 and K2, respectively.

Moreover, the impact contact can take place either in the form of a direct contact
or via a thin layer of soil between the wedge faces and the root.

In order to describe the impact process, it is necessary to set up the system of
coordinates as the same as in Section 6.1. The schematic model of forces is similar to
that in the previous subsection and differs only in that the root during the impact
is subjected to the action of two impact impulses, Sn1 and Sn2, generated by the
vibrating digging tool and applied at points K1 and K2, respectively, while Sn1 = Sn2.
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Said impact impulses are vectored normally to the work faces of the shares—i.e., to
planes A1B1C1 and A2B2C2, respectively.

Moreover, on the surfaces of the wedges, the tangential impact impulses Sτ 1

and Sτ 2 act, while Sτ 1 = Sτ 2 (Figure 6.5). The relation between the magnitudes of
the tangential and normal impact impulses is defined in accordance with the Routh
hypothesis, as was stated in Section 6.1.

The impulses Sτ 1 and Sτ 2 have to be decomposed into components F1 and
F2, which are at right angles to the right lines A1C1 and A2C2, respectively, and
components E1 and E2, which are parallel to the right lines A1C1 and A2C2, respectively
(Figure 6.5).

The following is obtained:

Sτ i = Fi + Ei, i = 1, 2. (6.64)

Vectors Sτ1 and Sτ2 in such a representation will later allow finding their
projections on axes Ox and Oy.

The magnitude of the impact impulse can vary depending on the rate of the
digging tool’s oscillatory motion in the vertical plane. Moreover, in view of the fact
that the root has a conical shape, when the vibrational lifting tool moves downwards,
the vertical component of the impact impulse is virtually absent. In such a case, the
impact impulse is created only by the translational motion of the lifter.

It is assumed that the oscillations of the tool are performed in accordance with
the harmonic law (6.5).

Hence, the digging tool’s oscillatory motion velocity Vzb at any instant of time
t is determined according to (6.6), and the maximum value of said velocity is in
accordance with (6.7).

Therefore, similar to the previous subsection, it is necessary to investigate the
impact interaction case, where the impact impulse reaches its maximum. Such a case
is observed at the moment when the vibrational lifting tool runs into the root if the
tool is moving at that moment upwards at a maximum velocity of Vzb.max.

In view of the fact that all the forces shown in Figure 6.5 have finite magnitudes,
the impulses of these forces within the time of impact are equal to zero. Only the
impact impulses Sn1 and Sn2 have nonzero values, while it is obvious that Sn1 = Sn2

(the impact is symmetric).
Further, the impulse-momentum theorem for the case of an impact is to be

applied [32]:
m
(
U −V

)
= Sn1 + Sn2 + f Sτ1 + f Sτ2 (6.65)

where V—velocity of the digging tool before the impact; U—velocity of the digging
tool after the impact; m—reduced mass of the digging tool.
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At the same time:
V = Vp + Vzb.max (6.66)

where Vp—velocity of the translational motion of the lifter; Vzb.max—maximum
velocity of the oscillatory motion of the digging tool.

The vector of the lifter’s translational motion velocity Vp is directed along axis
Ox, while the vector of the digging tool’s oscillatory motion velocity Vzb.max—along
axis Oz upwards. Taking into account (6.3), (6.65) acquires the following form:

m
(
U −V

)
= Sn1 + Sn2 + f Sn1 + f Sn2 (6.67)

(6.67) has to be written in the form of its projections on the axes of the Cartesian
coordinate system Oxyz.

Since the impact is symmetric with respect to plane xOz, (6.67) is resolved into
the system of two equations in the projections on axes Ox and Oz.

It is necessary to determine the required projections of the vectors that are
present in Equation (6.67).

It is obvious that,
Vx = Vp (6.68)

As the vectors Sn1 and Sn2 are directed along the normal lines to the wedge
surfaces, then, in accordance with (3.12), the following is obtained:

Sn1x = Sn2x =
Sn1 tanγ√

tan2 γ+ 1 + tan2 β
(6.69)

As can be seen from Figure 6.5, the projections of the vectors E1, E2 and F1, F2

on axis Ox are equal to:

E1x = E2x = E1 cosγ = Sτ1 cosψ· cosγ (6.70)

F1x = F2x = F1 cos δ· sinγ = Sτ1 sinψ· cos δ· sinγ (6.71)

It is also obvious that,
Vz = Vzb.max (6.72)

In accordance with (3.12), the following is arrived at:

Sn1z = Sn2z =
2Sn1 tan β√

tan2 γ+ 1 + tan2 β
(6.73)

208



Moreover:
E1z = E2z = 0 (6.74)

F1z = F2z = F1 sin δ = Sτ1 sinψ· sin δ (6.75)

Taking into account (6.68)–(6.75), (6.67) is resolved into the following system
of equations:

m
(
Ux −Vp

)
=

2Sn1 tanγ√
tan2 γ+1+tan2 β

+ 2 f Sn1 cosψ· cosγ− 2 f sinψ· cos δ· sinγ,

m(Uz −Vzb.max) =
2Sn1 tan β√

tan2 γ+1+tan2 β
+ 2 f Sn1 sinψ· sin δ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.76)

Thus, a system of two equations with three unknown quantities, Sn1, Ux, Uz,
has been obtained. The necessary third equation can be obtained using Newton’s
hypothesis about the collision of two bodies [32].

The relation between the digging tool velocities prior to and after the impact can
be expressed with the use of the coefficient of restitution ε, in accordance with (6.24).

Since U = Ux + Uz, V = Vp + Vzb.max, and taking into account (3.12), the
following is obtained:

Un =
Ux tanγ+ Uz tan β√

tan2 γ+ 1 + tan2 β
(6.77)

Vn =
Vp tanγ+ Vzb.max tan β√

tan2 γ+ 1 + tan2 β
(6.78)

By substituting (6.77) and (6.78) into (6.24), the third equation is obtained:

Ux tanγ+ Uz tan β = −ε
(
Vp tanγ+ Vzb.max tan β

)
(6.79)

Thus, the system of three linear equations of the following form is arrived at:

m
(
Ux −Vp

)
=

2Sn1 tanγ√
tan2γ+1+tan2β

+ 2 f Sn1 cosψ· cosγ− 2 f sinψ· cos δ· sinγ,

m(Uz −Vzb.max) =
2Sn1 tan β√

tan2γ+1+tan2β
+ 2 f Sn1 sinψ· sin δ,

Ux tanγ+ Uz tan β = −ε
(
Vp tanγ+ Vzb.max tan β

)
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (6.80)

(6.80) can be formulated in the following form, which is more appropriate for
solving with the use of Cramer’s rule:

mUx + 0Uz −
(

2 tanγ√
tan2γ+1+tan2β

+ 2 f cosψ· cosγ− 2 f sinψ· cos δ· sinγ
)
Sn1 = mVp,

0Ux + mUz −
(

2 tan β√
tan2γ+1+tan2β

+ 2 f sinψ· sin δ
)
Sn1 = mVzb.max,

tanγUx + tan βUz = −ε
(
Vp tanγ+ Vzb.max tan β

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.81)
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The next step is to write down the principal determinant of (6.81) and find
its value:

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m 0 −

(
2 tanγ√

tan2γ+1+tan2β
+ 2 f cosψ· cosγ− 2 f sinψ· cos δ· sinγ

)
0 m −

(
2 tan β√

tan2γ+1+tan2β
+ 2 sinψ· sin δ

)
tanγ tan β 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= m

(
2 tan β√

tan2γ+1+tan2β
+ 2 f sinψ· sin δ

)
tan β

+m
(

2 tanγ√
tan2γ+1+tan2β

+ 2 f cosψ· cosγ− 2 f sinψ· cos δ· sinγ
)

tanγ

(6.82)

Further, the determinant for finding the unknown quantity Sn1 is to be written
down and its value is to be found:

ΔSn1 =

∣∣∣∣∣∣∣∣∣
m 0 mVp

0 m mVzb.max

tanγ tan β −ε
(
Vp tanγ+ Vzb.max tan β

)
∣∣∣∣∣∣∣∣∣

= −
[
m2ε

(
Vp tanγ++ Vzb.max tan β

)
+ m2 tan βVzb.max

]
−m2Vp tanγ

(6.83)

Thereafter, according to Cramer’s rule:

Sn1 =
ΔSn1

Δ
(6.84)

After substituting (6.82) and (6.83) into (6.84) and making some transformations,
the following is obtained:

Sn1

= − m(1+ε)(Vp tanγ+Vzb.max· tan β)·
√

tan2 γ+1+tan2 β

2 tan2 β+2 f sinψ· sin δ· tan β
√

tan2 γ+1+tan2 β+2 tan2 γ

m(1+ε)(Vp tanγ+Vzb.max· tan β)·
√

tan2 γ+1+tan2 β

+(2 f cosψ· cosγ−2 f sinψ· cos δ· sinγ) tanγ
√

tan2 γ+1+tan2 β

(6.85)

Thus, the normal component of the impact impulse arising during the impact
interaction between one of the wedges and the root fixed in the soil has been
determined. (6.85) represents the functional relation between the normal component
Sn1 of the impact impulse and the design and kinematic parameters of the vibrational
lifting tool of the beet harvester.

The sign “–” in (6.85) designates the impact impulse Sn1 applied by the root to
the digging tool. The impact impulse applied by the digging tool to the root has a
positive sign and the same magnitude.
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If the total impact impulse applied by the digging tool (from both the wedges)
to the root is denoted by S:

S = Sn1 + Sn2 + Sτ1 + Sτ2, (6.86)

then, according to (6.76), its projections on axes Ox and Oz are equal to, respectively:

Sx =
2Sn1 tanγ√

tan2 γ+ 1 + tan2 β
+ 2 f Sn1 cosψ· cosγ− 2 f Sn1 sinψ· cos δ· sinγ (6.87)

Sz =
2Sn1 tan β√

tan2 γ+ 1 + tan2 β
+ 2 f Sn1 sinψ· sin δ (6.88)

where Sn1 is determined in accordance with (6.85), but with a positive sign.
Hence, based on (6.87), (6.88) and (6.85), it is possible to determine the total

impact impulse applied by the digging tool to the root:

S =

√
S2

x + S2
z (6.89)

It is obvious that vector S lies in plane xOz, the same plane where the projections
Sx and Sz lie.

Taking into account (6.87), (6.88) and (6.39), it is possible to write down the
formulae for the projections of force Fud. on axes Ox and Oz, respectively:

Fud.x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 4 tanγ√
tan2 γ+ 1 + tan2 β

+ 4 f cosψ· cosγ− 4 f sinψ· cos δ· sinγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud.
(6.90)

Fud.z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 4 tan β√
tan2 γ+ 1 + tan2 β

+ 4 f sinψ· sin δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud.
(6.91)

where the quantity Sn1 is determined in accordance with Expression (6.85) and has a
positive sign.

The duration of the impact tud. can be determined only by experiment. According
to [31], tud. ≈ 0.6·10−2 s.

The next step is to analyse the conditions for avoiding damage to the root during
its impact interaction with the digging tool.

If the root fixed in the soil is considered as a cantilevered beam, the root under
the action of the moment created by the impact force Fud.x is subjected to bending
deformation, under the action of the impact force Fud.z—to tensile deformation.
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Therefore, if the permissible levels of said forces are exceeded, the root can break or
be torn apart. As mentioned earlier, such an event is most probable in the case of dry
and hard soil. The effect is different in the case of humid and soft soil, where the root
will more probably incline through an angle to the horizon under the action of the
horizontal force and be pulled out under the action of the vertical force. If the impact
takes place at points K1 and K2 situated at a distance of h from the conventional point
of fixation O1 (Figure 6.5), the moment of the horizontal component of the impact
force about said point is (taking into account (6.90)) equal to:

Mo1(Fud.x) =

(
4 tanγ√

tan2 γ+1+tan2 β
+ 4 f cosψ· cosγ− 4 f sinψ· cos δ· sinγ

)
Sn1h
tud.

(6.92)

Considering the conditions for the root not breaking under the action of
the horizontal force Fud.x, two cases are theoretically possible the first one when[
Mzg

]
< Mop and the second when

[
Mzg

]
> Mop where

[
Mzg

]
is the bending moment

permissible for the root body, which does not cause the root breaking off and Mop is
the support moment of the unbroken soil, in which the root is fixed.

Equilibrium conditions always imply Mon = Mo1
(
Fud.x

)
where Mop has to be

understood as the maximum (potential) support moment that can be provided by
the restraint, i.e., the soil, in which the root is fixed, without disrupting the restraint.

The first case stated above is typical of dry and hard soil; the second one is
typically related to of humid and soft soil.

In the first case, the root breaking off is possible, considering (6.92), under the
following condition:

[
Mzg

]
<

(
4 tanγ√

tan2 γ+1+tan2 β
+ 4 f cosψ· cosγ− 4 f sinψ· cos δ· sinγ

)
Sn1h
tud
≤Mon (6.93)

Hence, the condition for the root not breaking off in the first case, considering
(6.92) is as follows:(

4 tanγ√
tan2 γ+1+tan2 β

+ 4 f cosψ· cosγ− 4 f sinψ· cos δ· sinγ
)

Sn1h
tud
<
[
Mzg

]
<Mop (6.94)

In the second case, the root breaking off is unlikely in general; the only possible
effect is the root inclining through an angle and, in this case, the condition for the
root inclining without breaking off is, considering (6.92):

Mop <

(
4 tanγ√

tan2 γ+1+tan2 β
+ 4 f cosψ· cosγ− 4 f sinψ· cos δ· sinγ

)
Sn1h
tud
<
[
Mzg

]
(6.95)
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Finally, in the second case, the root will neither break off nor incline subject to
the following, considering (6.92), condition:(

4 tanγ√
tan2 γ+1+tan2 β

+ 4 f cosψ· cosγ− 4 f sinψ· cos δ· sinγ
)

Sn1h
tud
≤Mop <

[
Mzg

]
(6.96)

Considering the conditions for the root not being torn apart under the action
of the vertical force Fud.z, again, two cases are theoretically possible: [Fro] < Rz and
[Fro] > Rz where [Fro] is the force permissible for the root body, which does not cause
the root to tear apart and Rz is the vertical force of bonding between the root and the
soil. Here, again, the quantity Rz has to be understood as the maximum (potential)
bonding force that can be provided by the restraint without disrupting the restraint.

The first case is, again, typical of dry and hard soil; the second one is typically
related to humid and soft soil.

In the first case, tearing the root apart is possible, considering (6.91), under the
following condition:

[Fro] <

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 4 tan β√
tan2 γ+ 1 + tan2 β

+ 4 f sinψ· sin δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud
≤ Rz (6.97)

Hence, the condition for not tearing the root apart in the first case is, always
considering (6.91) as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 4 tan β√

tan2 γ+ 1 + tan2 β
+ 4 f sinψ· sin δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud
≤ [Fro] < Rz (6.98)

In the second case, tearing the root apart is unlikely. The only possible event is
pulling the root out of the soil without tearing it apart.

The condition for the root being pulled out of the soil is, taking into account
(6.91), as follows:

Rz <

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 4 tan β√
tan2 γ+ 1 + tan2 β

+ 4 f sinψ· sin δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud
< [Fro] (6.99)
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The root will not be pulled out of the soil in case the following condition is met,
which consider (6.91):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 4 tan β√

tan2 γ+ 1 + tan2 β
+ 4 f sinψ· sin δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Sn1

tud
≤ Rz < [Fro] (6.100)

On the basis of the condition for the root not breaking off (6.94) and the condition
for not tearing the root apart (6.99) in the case of impact interaction between the
digging tool and the root, the limitation on the tool’s velocity can be determined. For
this purpose, the following is obtained from (6.94):

Sn1 ≤ [Mzg]tud
√

tan2 γ+1+tan2 β

h
[
4 tanγ+(4 f cosψ· cosγ−4 f sinψ· cos δ· sinγ)

√
tan2 γ+1+tan2 β

] (6.101)

and the following is derived from (6.98):

Sn1 ≤
[Fro]tud

√
tan2 γ+ 1 + tan2 β

4 tan β+ 4 f sinψ· sin δ
√

tan2 γ+ 1 + tan2 β
(6.102)

In order to provide for the convenience and abbreviation in the further writing
down of expressions, the following designations are introduced:

√
tan2 γ+1+tan2 β

4 tanγ+(4 f cosψ· cosγ−4 f sinψ· cos δ· sinγ)
√

tan2 γ+1+tan2 β
= A (6.103)

√
tan2 γ+1+tan2 β

4 tan β+4 f sinψ· sin δ
√

tan2 γ+1+tan2 β
= B (6.104)

√
tan2 γ+1+tan2 β

2 tan2β+2 f sinψ· sin δ tan β
√

tan2 γ+1+tan2 β+2 tan2 γ+(2 f cosψ cosγ−2 f sinψ cos δ sinγ) tanγ
√

tan2γ+1+tan2β
= C (6.105)

Then, (6.85), (6.101) and (6.102) acquire the following form:

Sn1 = Cm (1 + ε)(Vp tanγ+ Vzb.max tan β) (6.106)

Sn1 ≤
A
[
Mzg

]
tud

h
(6.107)

Sn1 ≤ B[Fro]tud (6.108)

where Expression (6.85) is taken with the positive sign.
Thereby, two expressions have been obtained for the limitation of the value of

the impact impulse Sn1—that is, (6.107) and (6.108). As was noted in Section 6.1, the
root as a cantilevered beam will most probably break off at the boundary between
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the layers of broken and unbroken soil, the latter being the layer where the root’s
tail part is fixed. It was also noted that the tail part breaking off at the cross-section
with a diameter of 30 . . . 40 cm corresponds to a digging tool running depth of 10
. . . 12 cm. It is obvious that breaking off due to bending is more probable at that
cross-section than tearing apart due to stretching (tearing apart due to stretching can
take place in the area below the cross-section, where the cross-section diameter is
significantly smaller). Therefore, it is (6.107) that has to be used as the criterion in
the estimation of the acceptable impact impulse value. This is despite the fact that,
theoretically, the acceptable value of the impact impulse Sn1 has to be determined
using the following criterion:

Sn1 ≤ min

⎧⎪⎪⎨⎪⎪⎩A
[
Mzg

]
tud

h
, B[Fro]tud

⎫⎪⎪⎬⎪⎪⎭ (6.109)

Nevertheless, the above considerations imply that for the specific cross-section

is true that min
{

A[Mzg]tud
h , B[Fro]tud

}
=

A[Mzg]tud
h .

From (6.106), the following is derived:

Vp tanγ+ Vzb.max tan β =
Sn1

Cm (1 + ε)
(6.110)

Finally, taking into account (6.107), the following inequation is arrived at:

Vp tanγ+ Vzb.max tan β ≤
A
[
Mzg

]
tud

Cm (1 + ε)h
(6.111)

Thus, the limitation on the velocity of the lifting tool taking into account its
design parameters and mass as well as the root’s strength and coefficient of restitution
has been established.

As the velocity of the unit has an effect on its productivity, it is necessary
to investigate the case of the sign of equality in (6.111). If the beet harvester’s
translational motion velocity Vp is preset, it is possible to derive from (6.111) the
magnitude of the maximum velocity Vzb.max of the oscillatory motion of the vibrational
lifting tool:

Vzb.max =
1

tan β

⎛⎜⎜⎜⎜⎜⎜⎝ A
[
Mzg

]
tud

Cm (1 + ε)h
−Vp tanγ

⎞⎟⎟⎟⎟⎟⎟⎠ (6.112)

215



Then, with (6.7), it is possible to determine, at the preset amplitude of the
oscillations, the required angular frequency of the digging tool oscillations subject to
the condition of not damaging the root:

ω =
1

a tan β

⎛⎜⎜⎜⎜⎜⎜⎝ A
[
Mzg

]
tud

Cm (1 + ε)h
−Vp tanγ

⎞⎟⎟⎟⎟⎟⎟⎠ (6.113)

The hertz frequency of the digging tool oscillations is equal to:

v =
1

2πa tan β

⎛⎜⎜⎜⎜⎜⎜⎝ A
[
Mzg

]
tud

Cm (1 + ε)h
−Vp tanγ

⎞⎟⎟⎟⎟⎟⎟⎠ (6.114)

Based on the developed theory, the algorithm of calculations for finding the
acceptable vibrational lifting tool oscillation frequency in relation to the lifter’s
translational motion velocity Vp and the digging tool oscillation amplitude at various
depths of running of the digging tool can be developed.

The ranges of variation for the mentioned parameters are selected in the same
way as in Section 6.1. The algorithm is comprised of the steps described below.

1. The permissible bending moment
[
Mzg

]
is found with (6.58).

2. Parameters A and C are found with (6.103) and (6.105), respectively.
3. After selecting a specific value of the reduced mass m from the set of reduced

mass values obtained in Section 6.1, the acceptable frequency is determined as
the function v = v

(
Vp, a

)
in accordance with (6.114).

Based on the developed theory of the impact interaction at two points, the
calculation of the acceptable oscillation frequencies for the digging tool subject to the
condition of not breaking off the root at different values of the design and kinematic
parameters of the vibrational lifting tool has been accomplished for the reduced
mass values presented in Section 6.1. All the design and kinematic parameters of the
digging tool and the physical and mechanical properties of the roots required for the
calculation have been assumed to be the same as in Section 5.1.

The ranges of variation of the acceptable frequencies obtained in the
above-mentioned calculations are presented in Table 6.6.
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Table 6.6. Acceptable digging tool oscillation frequencies for varying oscillation
amplitudes (0.008–0.024 m) and lifter translation velocities (1.4–2.2 m·s−1).

Digging Tool
Running Depth (m)

Range of Variation of Acceptable Digging Tool Oscillation
Frequency (Hz)

m = 0.8 kg m = 1.0 kg m = 1.5 kg

0.08 42.77~13.20 33.11~9.98 13.79~3.54

0.10 20.37~5.73 15.18~4.01 8.28~1.71

0.12 6.25~1.03 3.895–0.25 –

As may be inferred from Table 6.6, the values of the acceptable frequencies in
the case of impact interaction between the digging tool and the root at two points are,
under the same conditions, somewhat lower than in the case of an impact interaction
at one point. Theoretically, it is necessary to select the acceptable frequency values as
the intersection of the sets of acceptable frequency values for the impact interaction
at one point and at two points. However, the probability of an impact simultaneously
at two points is significantly lower than in the case of a one-point impact. Therefore,
in the design of a specific lifting tool, it is sufficient to use the results obtained in
Section 6.1.

The graph and the contour diagram of the function v = v
(
Vp, a

)
for a reduced

digging tool mass of m = 1.0 kg and running depth of z = 0.10 m are presented below
(Figure 6.6).

 

(a) (b) 

Figure 6.6. Surface (a) and contour diagrams (b) of values of digging tool oscillation
frequency v = v

(
Vp, a

)
(Hz) that are acceptable under condition of not damaging

roots in the case of their impact interaction with digging tool at two points.
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As can be concluded from the presented graph, the increase in the translational
motion velocity and the digging tool oscillation amplitude results in the decrease
in the acceptable oscillation frequency value. A decrease in acceptable frequency
is also observed in the case where the depth of the digging tool running in the soil
was increased.

The same as in Section 6.1, the obtained values of acceptable frequencies have to
be limited from above taking into account the reliability of the digging tool oscillatory
motion drive, as well as from below taking into account (6.63) or the graphs of the
relation between the minimum acceptable frequency ν on the one hand and the
lifter’s translational motion velocity and the length of the rear part of the lifter’s
working channel at which the normal conditions for the process of the vibrational
lifting of sugar beet roots are ensured (Figure 6.4) on the other hand.

6.3. Conclusions

1. The principal scientific result produced in Section 6 is the developed theory of
the impact interaction between the vibrational lifting tool and the sugar beet
root fixed in the soil at the time when the digging tool runs into the root.

2. The mathematical model of the impact interaction between the digging tool and
the root at one and two points has been generated. On the basis of the model,
the theoretic conditions of not breaking off the tail parts of the roots during said
interaction have been determined.

3. The algorithm of calculation for finding the acceptable frequency of oscillation
of the vibrational lifting tool under the condition of not breaking off the roots
during the impact interaction has been generated.

4. The ranges have been determined for the acceptable values of the digging tool
mass reduced to the point of impact, the digging tool oscillation frequency and
the lifter’s translational motion velocity under the condition of not breaking off
the roots during the impact, taking into account the design parameters of the
vibrational lifting tool and the physical and mechanical properties of the sugar
beet roots.

5. The theoretical values of the reduced mass have been obtained for the
digging tool oscillation frequency varying within the range of ν = 7.5~20.3 Hz
and the lifter’s translational motion velocity varying within the range of
VΠ = 1.4~2.2 m·s−1 at different values of the depth of running of the digging
tool (0.08~0.14 m) and different values of the digging tool oscillation amplitude
(0.008, 0.016, 0.024 m). The theoretical values of the mass reduced to the point
of impact are as follows:

- For a digging tool running depth of 0.08 m:

• At a digging tool oscillation amplitude of 0.008 m—4.45~2.00 kg;
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• At a digging tool oscillation amplitude of 0.016 m—2.82~1.18 kg;
• At an oscillation amplitude of 0.024 m—2.07~0.83 kg.

- For a digging tool running depth of 0.10 m:

• At an oscillation amplitude of 0.008 m—2.38~1.17 kg;
• At an oscillation amplitude of 0.016 m—1.51~0.63 kg;
• At an oscillation amplitude of 0.024 m—1.11~0.45 kg.

- For a digging tool running depth of 0.12 m:

• At an oscillation amplitude of 0.008 m—2.38~1.17 kg;
• At an oscillation amplitude of 0.016 m—0.69~0.29 kg;
• At an oscillation amplitude of 0.024 m—0.50~0.20 kg.

6. The acceptable frequency of the digging tool oscillations is determined as a
function of the lifter’s translational motion velocity and the tool oscillation
amplitude. In this case, the lifter’s translational motion velocity varies within
the range of 1.4~2.2 m·s−1; the amplitude—within the range of 0.008~0.024 m.
The calculations have been carried out for different values of the reduced mass
(0.8, 1.0, 1.5, 2.0 kg) and different values of the digging tool running depth (0.08,
0.10, 0.12, 0.14 m). The following results have been obtained:

- For a reduced digging tool mass of 0.8 kg:

• At a digging tool running depth of 0.08 m—66.86~21.23 Hz;
• At a digging tool running depth of 0.10 m—33.28~10.04 Hz;
• At a digging tool running depth of 0.12 m—12.13~2.29 Hz.

- For a reduced digging tool mass of 1.0 kg:

• At a running depth of 0.08 m—52.38~16.41 Hz;
• At a running depth of 0.10 m—25.52~7.45 Hz;
• At a running depth of 0.12 m—8.60~1.81 Hz.

- For a reduced digging tool mass of 1.5 kg:

• At a running depth of 0.08 m—33.08~9.97 Hz;
• At a running depth of 0.10 m—15.7~4.01 Hz.

7. As may be inferred from the obtained theoretic results, at a reduced digging
tool mass of m = 1.5 kg, a digging tool running depth of z = 0.08 m and
an oscillation amplitude of a = 0.008 m, a maximum acceptable digging tool
oscillation frequency of υ = 30 Hz ensures the tail parts of the roots within
the range of the lifter’s translational motion velocity of 1.4~2.2 m·s−1 will
not break off. At the same depth of running and a digging tool oscillation
amplitude of a = 0.010 m, a maximum acceptable oscillation frequency of
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υ = 24 Hz ensures the tail parts of the roots within the above-mentioned range
of the lifter’s translational motion velocity will not break off. Under the
same conditions, at an amplitude of a = 0.012 m, the maximum acceptable
frequency is υ = 20 Hz; at an amplitude of a = 0.014 m—17.1 Hz; at a = 0.016 m
—15.0 Hz; a = 0.018 m—13.3 Hz; a = 0.020 m—12.0 Hz; a = 0.022 m—10.9 Hz;
a = 0.024 m—10.0 Hz. The above-listed values of the digging tool oscillation
frequency are the maximum acceptable frequency values subject to the condition
of not breaking off the tail parts of the roots during the impact interaction. Lower
values of the oscillation frequency guarantee, to a greater extent, that the tail
parts of the roots will not break off. However, the frequencies have to be limited
from below as well—that is, there are minimum acceptable frequency values
that ensure the guaranteed gripping of each root by the digging shares. As
has been proved by the calculation, the values of the maximum acceptable
frequency are significantly lower at a digging tool running depth of z = 0.10 m.
For example, at an oscillation amplitude of a = 0.008 m, a maximum acceptable
oscillation frequency of υ = 12 Hz ensures the tail parts of the roots within the
range of the lifter’s translational motion velocity of V = 1.4~2.2 m·s−1 will not
break off; at an oscillation amplitude of a = 0.010 m, the maximum acceptable
frequency is υ = 9.6 Hz, at an amplitude of a = 0.012 m—υ = 8 Hz; at an
amplitude of a = 0.014 m—υ = 6.9 Hz. At higher values of amplitude, the
acceptable frequency values become even lower. If these frequency values fall
below the minimum acceptable level under the condition of the guaranteed
gripping of each root by the digging shares, the respective kinematic conditions
of operation must be rejected as technologically unacceptable. At a reduced
digging tool mass of m = 1.5 kg and a running depth of 0.12 m, the maximum
acceptable frequency values subject to the condition of not breaking off the
tail parts of the roots during the impact interaction are below 4 Hz. Under the
condition of the guaranteed gripping of the root by the digging shares such
frequency values are unacceptable. It is quite obvious that the frequency values
that are maximum acceptable for a reduced digging tool mass of m = 1.5 kg are
even more compliant with the condition of not breaking off the tail parts of the
roots for lower values of the reduced digging tool mass. In effect, the maximum
acceptable frequency values at the respective amplitudes and digging tool
running depths are even higher. This is proved by the results of the calculations
for reduced digging tool masses of m = 0.8 kg and m = 1.0 kg. While at a digging
tool running depth of 0.12 m and a tool reduced mass of 1.5 kg, the maximum
acceptable frequency values are below 4 Hz; in the case of a reduced mass of
m = 1.0 kg, these values are considerably higher. For example, at an amplitude
of 0.008 m and lifter translational motion velocities of 1.4~2.2 m·s−1, they are
within the range of 8.6–5.4 Hz, at an amplitude of 0.010 m and within the same
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range of translational motion velocities—within the range of 6.8~4.4 Hz; at an
amplitude of 0.012 m—within the range of 5.7~3.6 Hz. At a reduced digging tool
mass of m = 0.8 kg and a digging tool running depth of 0.12 m, the respective
values of the maximum acceptable frequency are within the following ranges:

• At an amplitude of 0.008 m—12.1~9.0 Hz;
• At an amplitude of 0.010 m—9.7~7.1 Hz;
• At an amplitude of 0.012 m—8.1~6.0 Hz;
• At an amplitude of 0.014 m—7.0~5.1 Hz.

8. The minimum acceptable digging tool oscillation frequencies that provide for
the normal conditions of the vibrational root lifting process, i.e., the conditions
that facilitate the guaranteed gripping of each root by the vibrational lifting tool,
have been determined for the preset velocity of the lifter’s translational motion
and length of the rear part of the working channel. For example, at a length of
l = 0.1 m lifter for the rear part of the working channel, a vibrational lifting tool
oscillation frequency Hz guarantees gripping of each root by the digging tool
at all values of the lifter translation velocity below or equal to 2.0 m·s−1, while
at l = 0.15 m, a frequency of υ = 20 Hz is adequate at all values below or equal
to 3.0 m·s−1 for the lifter translation velocity. At the same time, at l = 0.15 m, a
digging tool oscillation frequency Hz provides for the guaranteed gripping of
each root by the digging tool at all values of the lifter translation velocity below
or equal to 2 m·s−1. At l = 0.2 m, an oscillation frequency of υ = 10 Hz provides
for said conditions at all values of the translation velocity below or equal to
2 m·s−1. If the frequency of oscillations of the digging tool does not allow for the
gripping of each root by the digging shares, the root loss rate sharply rises due
to breaking off of the root tail parts and due to not lifting the roots at all. The
described theoretical results are rather accurately supported by the experimental
studies of the mass of lost sugar beet roots. For example, at a lifter translation
velocity of Vp = 2.1 m·s−1, a depth of running in the soil of 0.06 m and a
digging tool oscillation frequency of υ = 20.3 Hz, the mass of lost roots amounts
to 0.64%; at a frequency of υ = 15.7 Hz—2.2%; at a frequency of 8.5 Hz—3.48%.
At a lifter translation velocity of Vp = 1.3 m·s−1, the losses are significantly
lower. For example, at a frequency of = 20.3 Hz and a depth of running in the
soil of 0.06 m, the mass of lost roots amounts to 0.38%; at an oscillation frequency
of υ = 15.7 Hz—1.78%; at an oscillation frequency of υ = 8.5 Hz—2.74%. Thus,
at a lifter translation velocity of Vp = 1.3 m·s−1, the digging shares capture
more roots than at a velocity of Vp = 2.1 m·s−1. Moreover, the amount of
the captured roots sharply rises when the digging tool oscillation frequency
becomes higher, and, consequently, the lost root mass decreases.
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9. We recommend using the following values of digging tool oscillation frequencies
subject to the condition of not breaking off the tail parts of the roots during the
impact interaction and the condition of the guaranteed gripping of each root by
the digging tool when the translational motion velocity is within the range of
1.3~2.2 m·s−1 depending on digging tool’s mass.

- m = 0.8 kg: at a depth in the soil of 0.08 m and an oscillation amplitude of
0.008–0.024 m, the acceptable oscillation frequency is 21.2 Hz; at a depth of
0.10 m—10.0 Hz; at a depth of 0.12 m—9.0 Hz.

- m = 1.0 kg: at a depth in the soil of 0.08 m and an oscillation amplitude of
0.008–0.024 m, the acceptable oscillation frequency is 16.4 Hz; at a depth
of 0.10 m and an oscillation amplitude of 0.008–0.018 m, the acceptable
oscillation frequency is 10.0 Hz; at an amplitude of 0.020–0.024 m—8.3 Hz.

- m = 1.5 kg: at a depth in the soil of 0.08 m and an oscillation amplitude of
0.008–0.024 m, the acceptable oscillation frequency is 10.0 Hz; at a depth
of 0.10 m and an oscillation amplitude of 0.008–0.010 m, the acceptable
oscillation frequency is 10.0 Hz; at an amplitude of 0.012 m—8.0 Hz.

- m = 2.0 kg: at a depth in the soil of 0.08 m and an oscillation amplitude
of 0.008–0.016 m, the acceptable oscillation frequency is 10.0 Hz; at an
oscillation amplitude of 0.018–0.020 m—8.1 Hz.
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7. Experimental Research

7.1. Programme of Investigations

Following the completion of the analysis of the existing engineering
developments, patent and literature sources, the special features in the operation of
the developed vibrating digging tool, the sugar beet root harvesting work process
and the agronomic requirements for it and in accordance with the set aims and tasks
of research, the programme of experimental investigations is stipulated:

- Investigating the effect that the parameters and operation conditions of the
vibrating digging tool have on the quality indicators of operation in order to
verify the results of the theoretical research;

- Determining the energy and force parameters of the digging tool;
- Testing the root harvester with a vibrational lifting implement in field in order

to verify the compliance of its performance with the agronomic requirements.

The engineering factors that had a substantial effect on the quality of the root
digging included the digging tool oscillation frequency (Hz), the depth of running of
the tool (m) and the velocity of translation of the harvester with vibrational lifting
tools (m·s−1).

The indicators that characterised the quality of work of the digging tool were
the root loss mass rate (%) and the root damage mass rate (%).

The energy and force parameters were determined by measuring the tractive
effort (kN), the power consumed by the drive of the vibrating digging tool (kW) and
the torque generated on the power take-off shaft (N·m) at different travel speeds,
digging tool vibration frequencies and depths of undercutting.

7.2. Technique of Laboratory and Field Experiment Investigations

In order to perform the experimental investigations of the process of the
vibrational lifting of sugar beet roots from the soil, a new design of the vibrating
digging tool was developed with the use of the design and kinematic parameters
obtained in the theoretical investigations. The new design was supposed to ensure
the required quality of the lifting of roots from dry and hard soil. The structural
schematic model of the vibrational lifter is shown in Figure 7.1.

223



 
Figure 7.1. Schematic design and process model of vibrational lifting tool: 1—
digging shares; 2—shanks; 3—share spacing adjustment mechanism; 4—vibration
drive with share oscillation amplitude and frequency adjustment mechanism;
5—guide bars.

The lifter comprised the digging shares (1) mounted at the ends of the shanks
(2), which were linked through the suspension brackets (3) with the drive mechanism
(4) that forced the mentioned shares (1) to oscillate. The mechanism (4) was equipped
with a device that could set (adjust) the frequency and amplitude of the shares’
oscillatory motion over a wide range (frequency was controlled within the range of
8.5 to 20.3 Hz; amplitude—8 to 24 mm).

The bracket (3) for the suspension of the shanks (2) was equipped with an
additional swivel joint, which provided for the free movement of the paired shanks
(2) in the transverse-longitudinal plane within a small range. This facilitated the
self-adjustment of the shares (1) during the vibrational lifter’s translational motion.

In order to carry out the field and laboratory experiment investigations of the
new vibrating digging tool under various parameters and conditions of the lifting
tool’s operation, a four-row trail-behind root harvesting implement (Figure 7.2)
was manufactured.
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(a) (b) 

Figure 7.2. General view of vibrational lifting tool: (a)—3D-model in PC;
(b)—photograph.

The experimental unit (Figure 7.3) comprised the main frame (1) supported by
the axles with the rear wheels (2) and the front wheels (3), with the latter acting as
feeler wheels. The unit was hitched to the tractor via the strain-gauge traction link.
The front part of the frame (1) carried the vibrating digging tools (4) with the beater
(5), the four-blade beater cleaner (6) was installed behind them. The vibrational
lifting unit (4) comprised the crank drive (7) and the digging shares (8) with the
beater shaft (5) positioned above them.

In order to determine the energy and force parameters, a strain-gauge traction
link was attached to the unit, allowing for the simultaneous measurement of the
horizontal and vertical components of the tractive effort applied to the towed
apparatus. Foil strain gauges were installed on the shank (9) to measure the force
of interaction between the share and the soil. All the tools of the experimental
implement were driven by the power take-off shaft of the Class 1.4 tractor. An electric
universal-joint recording dynamometer was installed between the tractor’s power
take-off shaft and the drive shaft of the experimental unit in order to determine the
angular velocity, rotational torque and power transferred to the tools. The general
appearance of the experimental implement is shown in Figure 7.4.

During the operation of the experimental unit, which occurred during the sugar
beet harvesting season of the year 2016 near the village of Yaltushkov, Barsky district,
Vinnytsia region (Ukraine), the digging share (8) was subjected to complex loads
measured by the amount of bending of its shank (9) with the use of the affixed
strain gauges. A track measuring wheel was attached to the frame to measure the
experimental unit travel speed.
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The cleaning and transporting tools of the root harvester were disconnected
from the drive. Behind the vibrational lifting tools, a device was mounted, which
reeled out canvas for collecting the sugar beet roots lifted from the soil in order to
appraise the quality of their extraction in the process of in-field operation. The depth
of running of the lifter in the soil was monitored by a measuring device.

The strain-gauge measurements required for assessing the energy characteristics
of the vibrational lifting tools operating with the parameters under investigation
were registered with the use of a strain-gauge station (mounted in a motorcar), which
travelled during the experiments beside the experimental unit.

 

Figure 7.3. Schematic model of research prototype of root harvester with new
vibrational lifting tools used for carrying out experimental investigations: 1—frame;
2—rear wheel axle; 3—front (feeler) wheel axle; 4—vibrational lifting tools;
5—beater; 6—four-blade beater cleaning machine; 7—crank drive of vibrational
lifting device; 8—digging shares.
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Figure 7.4. Experimental laboratory and field testing unit for investigating
vibrational lifting tools.

During the development of the experimental unit, the principal requirement
was to allow performing the laboratory and field experiment investigations in
accordance with the specified programme and in full, implying that the design
should allow changing the significant factors within sufficiently wide ranges by
means of controlling and monitoring the factors.

Based on the completed analysis of the literary sources and the results of
theoretical investigations, it was assumed that the rate of travel of the experimental
unit would be set within the range of 1.3~2.55 m·s−1, the depth of travel of the digging
shares in the soil would vary within the range of 0.06~0.12 m, and the frequency of
oscillation of the digging tool—8.5~20.3 Hz. In Figure 7.5, the vibrational lifting tools
of the experimental unit are shown.

 

Figure 7.5. Vibrational lifting tools of experimental unit.
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The agronomic indicators of the research plot of the field were determined in
accordance with the conventional method and following the technique developed in
UkrNDIPVT [35–37].

For the purpose of determining the indicators required for the agronomic
appraisal, three accounted field plots with lengths of 20 m and widths of 2.7 m, i.e.,
six rows wide, were marked out lengthwise in the sugar beet plantation.

The rate of the weed infestation of the field plot was determined by using a
rectangular frame measuring 90 × 111 cm (with an area of 1 m2 in two adjacent rows
and repositioning the frame five times along the diagonal of the field plot). The
amount of weed was evaluated within the rectangular frame in total and separately
in the area of one row within a 20 cm wide strip. The results of the counting were
entered into the table of results.

Prior to starting the experimental investigations, the following mechanical and
physical properties of the roots were determined in accordance with the technique of
the research into the quality of operation of beet harvesters:

• Maximum diameter of root;
• Length of root;
• Mass of one root;
• Spacing between roots in row;
• Inter-row spacing;
• Height of root crown above soil surface;
• Offset of roots from conventional row centreline.

The statistical characteristics of the listed values were processed with the use of
the standard formulae of the mathematical statistics:

Arithmetic mean x:

x =

∑
xi

n
(7.1)

where n—number of measurements.
Variance:

s2 =

∑
(xi − x)2

n− 1
(7.2)

Root-mean-square deviation:

s =
√

s2 (7.3)

Coefficient of variation:
v =

s·100
x

(7.4)
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Absolute error of arithmetic mean:

sx =
s√
n

(7.5)

Confidence interval for arithmetic mean at a confidence coefficient of 0.95 and
(n − 1) degrees of freedom:

x = x± t05sx (7.6)

In each accounted field plot, all consecutive inter-row spaces within two
working widths of a 12-row sowing unit were measured with the use of a tape
measure. Measurements were made on the conventional row centrelines with a
cumulative result.

It was decided to implement a multiple-factor experiment in the field testing
of the root harvester. The main points of the multiple-factor experiment planning
technique are provided in [38,39].

As is known, multiple-factor experiments offer many advantages, the most
substantial of which are: a considerable reduction in the required number of
experiments in comparison to the single-factor experiment; the possibility to
generalise the research materials in the form of a mathematical model and conduct a
statistical appraisal of them; the increased amount of information due to obtaining
the data on the effect produced by the interaction between different factors.

On the basis of the theoretical investigations and the earlier testing of the
machine, it has been established that the quality of the root extraction from the soil
depended most of all on the following three factors: the rate of travel of the machine,
the frequency of oscillation of the digging tools, the depth of running of the digging
tools. The listed factors were independent of one another; therefore, it was possible
to change their values independently.

Taking into account the results of the earlier testing of the root harvester and the
theoretical investigations, the levels of variation of the factors were selected in such a
way as to cover the range, within which the research into the machine operation was
appropriate. When doing this, the following factors were taken into account: the
range of the tractor’s speed, within which the machine operation process is possible;
the depth of root sitting in the soil; the amplitude and frequency of oscillation of the
digging tool acceptable from the design point of view.

A comprehensive three-factor experiment to assess the effect that the
above-mentioned factors had on the performance quality indicators was carried out
by means of implementing the respective standard matrix.
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The number of measurements for each experiment was determined in relation
to its degree of variation, subject to the condition of obtaining the result with an error
not exceeding 5% in accordance with the expression:

nx =
(tv)2

k2 (7.7)

where nx—number of measurements necessary to provide for the required accuracy;
t—table value of the Student criterion for the performed investigation; v—coefficient
of variation of the parameter under investigation; k—experimental error (k = 1.0−
5.0%).

After substituting the data into the formula, it was found that the high adequacy
of the obtained results and a nonsignificant error would be achieved in the case of
five-time repetition of the tests.

The effect that the three factors have on the performance quality indicators can be
described, following the results of processing of the data obtained in the experimental
investigations, by regression equations in the form of a quadratic polynomial:

Y = b0 + b1X1 + b11X2
1 + b2X2 + b22X2

2 + b3X3 + b33X2
3 + b12X1X2 + b23X2X3 + b13X1X3, (7.8)

where b0, b1, b2, b3, b11, b22, b33, b12, b23, b13—regression coefficients.
After implementing the experiment planning matrix with the use of the

experimental unit, the problem of finding the coefficients of the variables and
the effects of the interaction between them has to be solved. The problem can be
solved with the use of the “STATISTIKA” software package for the PC by the Institute
for Mechanisation and Electrification of Agriculture (IMESG).

Taking into account the fact that the matrix is orthogonal, the regression
coefficients can also be determined independently of one another with the use
of the following expression:

bi =

∑N
j = 1 xijyi∑N

j = 1 x2
i j

(7.9)

where j—sequential number of the matrix column; xij—elements of the
respective column.

The initial parameter в is determined and the specified levels of the factors are
maintained with some errors. The statistical analysis of the equation at a preset
probability of α = 0.95 reveals whether the factor under consideration has a significant
effect on the process. If the obtained absolute magnitude of coefficients bi is greater
than its error, the factor has an impact on the process. In the case where the factor has
a negligible effect on the process, bi is close to zero—i.e., the change in the process
output y resulting from the change in the level of the respective factor is of the same
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magnitude as the error in determining it. Such a factor can be excluded from the
regression equation.

The statistical analysis of the regression equation, with the aim of determining
the regression coefficients, was carried out in accordance with the technique described
in [40]. The technique includes the following operations: finding the variance about
the mean in the row; finding the mean variance in the repeatability of a single result
throughout the experiment; finding the variance about the mean value of the process
output (optimisation parameter); finding the variances of the regression equation
coefficients; finding the errors and significance of the regression equation coefficients.

The regression equations obtained as a result of the factorial experiment correlate
the levels of the factors with the process output in the area of the response surface
for the response under investigation. At the same time, it is necessary to verify that
the obtained equations describe the root lifting process with a sufficient degree of
confidence. For this purpose, the dispersion is to be determined with the use of the
formula [40]:

S2
ad =

∑N
n = 1(ỹ− y)2

N −N′ (7.10)

where ỹ—theoretical process output (after excluding the not significant regression
coefficients from the equation); y—process output realised in the matrix;
N—N′—number of degrees of freedom, since only N′ coefficients are determined
with the use of the equation.

In this case, the Fisher criterion is determined by the following expression:

FP =
S2

ad

S2
y

(7.11)

where S2
y—variance about the mean process output. The obtained value of the

criterion is compared to the table value FT. The criterion of adequacy of the
regression equation is as follows:

FT > FP (7.12)

In order to use the obtained equations expressed in terms of quadratic
polynomials in the capacity of calculation formulae and for interpreting the
experiment results, they have to be transformed into the form with denominate, i.e.,
decoded, quantities.

In order to carry out the strain-gauge measurements for the appraisal of
vibrational lifting tools in terms of their energy characteristics, the mobile strain-gauge
laboratory ChEK-1 (Figure 7.4) was used. The laboratory was capable of measuring
and registering the force and velocity parameters and outputting immediately, after
the completion of the tests, their mean values in six independent measuring channels.
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Each force parameter measuring a channel was comprised of a strain-gauge
transducer, a DC amplifier and an integrator. The measurement of the mean values of
force parameters was carried out by way of integrating the amplified signals received
from transducers over the duration of the experiment. In each measuring channel,
its strain-gauge transducer was powered by a separate stabilised 12 VDC power
supply source. Additionally, compact make-and-break devices or induction pulse
transducers were provided for use in the velocity parameter transducers.

The strain-gauge system ChEK-1 facilitated measurements over discrete time
intervals with durations of 7.5, 15, 30, 60, 120 and 240 s for the experiments. The
measured values of the force and velocity parameters were output in the digital form.

7.3. Analysis of Results of Experimental Investigations on Effect That Lifter’s Parameters
and Operation Conditions Have on Operation Quality Indicators

The agricultural background of the experimental field plot was estimated as
follows: type of soil—calcic chernozems, soil hardness—3.8~4.0 MPa; moisture
content of soil—6~8% (soil elastic deformation coefficient c = 1.5·106 N·m−3); planting
density of sugar beet roots—150.000 pcs·ha−1 (row spacing: 0.45 m; seeds distance
in a row: 0.15 m); average dimensions of roots: diameter—0.094 m, length—0.24 m,
weight—0.9 kg. These values are fully consistent with the agrotechnical standards of
sugar beet cultivation and harvesting in Ukraine. Seeding of sugar beet (Beta Vulgaris
cultivar) was carried out at the end of April, whereas experimental harvesting
was conducted at the end of September. During the growing season, the weather
conditions matched the average climatic conditions of the central part of Ukraine
(Vinnytsia region): average temperature of 28 ◦C; rainfall not exceeding 320 mm.
In accordance with the adopted programme of investigations, experiments for the
investigation of the effect that the frequency of oscillation of the digging tools (X1),
depth of running of the digging tools (X2) and the implement’s translational motion
velocity (X3) have on the loss and damage of the roots were carried out. In the
experiments, the ranges of variation for the kinematic parameters of the vibrational
lifting tool were set on the basis of the accomplished theoretical investigations. The
results are in Tables 7.1–7.5.
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Table 7.1. Mass loss of sugar beet roots (%).

Velocity of
Translation X3 (m·s−1)

Frequency of Oscillation X1 (Hz)

8.5 15.7 20.3

Depth of Running in Soil X2 (m)

0.06 0.09 0.12 0.06 0.09 0.12 0.06 0.09 0.12

1.3

2.7 2.7 1.9 1.7 0.5 0.4 0.4 0.1 0.2

2.9 2.7 1.8 1.9 0.5 0.5 0.4 0.3 0.4

2.8 2.8 1.9 1.7 0.4 0.5 0.3 0.4 0.4

2.6 2.7 1.8 1.8 0.5 0.3 0.4 0.4 0.3

2.7 2.6 1.8 1.8 0.6 0.4 0.4 0.5 0.4

1.75

2.9 1.8 2.0 1.9 0.4 0.6 0.3 0.4 0.5

2.9 2.0 2.1 2.0 0.5 0.6 0.6 0.4 0.5

3.0 1.9 2.6 1.9 0.5 0.7 0.5 0.5 0.6

3.2 2.0 2.0 1.8 0.4 0.8 0.4 0.3 0.4

2.8 1.9 2.4 1.9 0.5 0.7 0.3 0.4 0.5

(X3) (Y1)

Table 7.2. Mass of damaged sugar beet roots (%) (hardness of soil 4.0 MPa, moisture
content of soil 6.0%).

Velocity of Translation
X3 (m·s−1)

Frequency of Oscillation X1 (Hz)

8.5 15.7 20.3

Depth of Running in Soil X2 (m)

0.06 0.09 0.12 0.06 0.09 0.12 0.06 0.09 0.12

1.3

8.3 8.2 8.7 9.7 8.3 8.5 9.8 8.4 8.2

8.3 8.2 8.4 9.4 8.3 8.2 9.9 8.4 8.0

8.4 8.1 8.7 9.8 8.3 8.5 9.8 8.2 8.2

8.2 8.3 8.6 9.8 8.1 8.4 9.7 8.3 8.4

8.2 8.0 8.7 9.7 8.2 8.5 9.8 8.4 8.1

1.75

8.9 8.2 9.2 9.8 8.3 8.9 9.2 9.0 8.9

9.2 8.1 9.0 9.4 8.4 8.8 9.2 8.9 8.7

8.9 8.2 8.7 9.3 8.3 8.9 9.0 9.2 8.8

8.7 8.3 8.9 9.4 8.3 9.0 9.3 9.1 8.9

8.9 8.0 9.1 9.2 8.2 8.9 9.2 9.0 9.1

(X3) (Y2)
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Table 7.3. Mass of damaged sugar beet roots (%) (hardness of soil 2.0 MPa, moisture
content of soil 18.0%).

Velocity of Translation
X3 (m·s−1)

Frequency of Oscillation X1 (Hz)

8.5 15.7 20.3

Depth of Running in Soil X2 (m)

0.06 0.09 0.12 0.06 0.09 0.12 0.06 0.09 0.12

1.3

4.9 3.3 3.8 4.3 3.8 4.1 4.2 4.0 4.3

4.9 3.1 3.6 4.2 3.8 4.3 4.0 4.6 4.4

4.6 2.9 3.8 4.1 3.6 4.1 4.4 4.1 4.1

4.7 3.0 3.8 4.1 3.7 4.2 4.2 4.0 4.3

4.9 3.2 3.7 4.6 3.8 4.6 4.2 4.2 4.6

1.75

5.1 3.0 4.7 5.1 3.4 4.7 4.6 4.7 4.8

5.0 3.6 4.8 5.3 3.5 4.7 4.5 4.2 5.0

5.0 3.2 4.8 5.1 3.4 4.8 4.7 4.7 4.9

5.1 3.4 4.7 5.2 3.4 4.6 4.7 4.8 5.0

5.1 3.1 4.8 5.2 3.4 4.8 4.6 4.3 5.0

(X3) (Y3)

Table 7.4. Mass loss of sugar beet roots (%) at oscillation frequency of 8.5 Hz
(hardness of soil 3.8 MPa, moisture content of soil 8.0%).

Velocity of Translation X1

(m·s−1)

Depth of Running in Soil X2 (m)

0.06 0.08 0.10 0.12

1.4

3.0 1.0 0.0 0.0

3.0 1.5 0.0 0.5

2.9 1.0 1.0 1.0

3.1 1.2 0.0 0.0

3.0 1.3 1.0 1.0

1.75

5.0 2.0 0.0 0.0

4.9 2.5 1.0 0.0

4.8 2.0 1.0 1.0

4.9 2.0 0.0 0.0

5.0 2.0 1.0 0.5

(X1) (Y4)
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Table 7.5. Mass loss of sugar beet roots (%) at oscillation frequency of 8.5 Hz
(hardness of soil 2.0 MPa, moisture content of soil 20.0%).

Velocity of Translation X1

(m·s−1)

Depth of Running in Soil X2 (m)

0.06 0.08 0.10 0.12

1.4

2.0 2.0 2.0 0.0

2.0 2.5 2.1 1.0

1.8 2.0 2.0 1.0

1.5 2.3 2.3 1.2

2.0 2.0 2.0 1.0

1.65

4.0 3.0 0.0 0.0

3.5 3.0 1.0 0.0

4.2 3.1 1.0 1.5

4.0 3.2 1.5 1.2

4.2 3.0 0.0 1.0

(X1) (Y5)

Based on the results of the accomplished experimental investigations, it has
been established that with the increase in the digging tool oscillation frequency the
root loss rate goes down, but at the same time the root damage rate slightly increases
in the majority of cases.

The regression equation for the relation between the root loss rate (Y1) and the
digging tool oscillation frequency (X1), depth of digging tool running in the soil (X2)
and velocity of translation (X3) appears as follows:

Y1 = 12.751− 0.365X1 − 175.545X2 + 0.004X2
1 + 0.912X1X2

−+ 884.748X2
2 − 5.551X2X3 + 0.216X2

3,
(7.13)

at a squared coefficient of correlation (coefficient of multiple determination) of
R2 = 0.789, a coefficient of multiple correlation of R = 0.888 and a standard error of
Sr = 0.508. For this type of function, the nonsignificant coefficients are the regression
coefficients of the factors X3 and X1X3.

At the computing stage, the application software “STATISTICA 6” was used. In
the environment of the software, based on the obtained model, the response surfaces
for the response of the root loss rate to the digging tool’s oscillation frequency and
depth of running in the soil at the lifter translational motion velocity values of 1.3,
1.75, 2.1, 2.55 m·s−1 were plotted and their two-dimensional sections were obtained
(Figures 7.6–7.13).
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Figure 7.6. Quadratic response surface of root loss rate response to digging tool
oscillation frequency and depth of its running in soil (at lifter translational motion
velocity of 1.75 m·s−1, soil hardness of 4.0 MPa, soil moisture content of 8.0 %,
c = 1.5·106 N·m−3).

Figure 7.7. Two-dimensional sections of quadratic response surface of
root loss rate response to digging tool oscillation frequency and depth of
its running in soil (at lifter translational motion velocity of 1.75 m·s−1,
soil hardness of 4.0 MPa, soil moisture content of 8.0%, c = 1.5·106

N·m−3).
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Figure 7.8. Quadratic response surface of root loss rate response to digging tool
oscillation frequency and depth of its running in soil (at lifter translational motion
velocity of 1.3 m·s−1, soil hardness of 4.0 MPa, soil moisture content of 8.0%,
c = 1.5·106 N·m−3).

Figure 7.9. Two-dimensional sections of quadratic response surface of
root loss rate response to digging tool oscillation frequency and depth
of its running in soil (at lifter translational motion velocity of 1.3 m·s−1,
soil hardness of 4.0 MPa, soil moisture content of 8.0%, c = 1.5·106

N·m−3).
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Figure 7.10. Quadratic response surface of root loss rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 2.1 m·s−1, soil hardness of 4.0 MPa, soil moisture content of 8.0%,
c = 1.5·106 N·m−3).

Figure 7.11. Two-dimensional sections of quadratic response surface of
root loss rate response to digging tool oscillation frequency and depth
of its running in soil (at lifter translational motion velocity of 2.1 m·s−1,
soil hardness of 4.0 MPa, soil moisture content of 8.0%, c = 1.5·106

N·m−3).
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Figure 7.12. Quadratic response surface of root loss rate response to digging tool
oscillation frequency and depth of its running in soil (at lifter translational motion
velocity of 2.55 m·s−1, soil hardness of 4.0 MPa, soil moisture content of 8.0%,
c = 1.5·106 N·m−3).

Figure 7.13. Two-dimensional sections of quadratic response surface of
root loss rate response to digging tool oscillation frequency and depth of
its running in soil (at lifter translational motion velocity of 2.55 m·s−1,
soil hardness of 4.0 MPa, soil moisture content of 8.0%, c = 1.5·106

N·m−3).
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It follows from the presented relations that the loss of roots decreases when the
digging tool oscillation frequency becomes greater, but the increase in the velocity of
translation results in the greater loss of roots.

Moreover, at lifter translational motion velocities of 1.3~2.55 m·s−1, minimum
root loss is observed when the lifter runs in the soil at a depth of 0.09 Tm; at smaller
and greater depths of lifter running, the loss rates increase.

This can be explained by the fact that at lifter running depths of less than 0.09 m,
the loss rate increases on account of the roots not extracted at all, while running
deeper than 0.09 m results in breaking off of the tail parts of the roots. Moreover,
the described trend becomes more pronounced at greater velocities of the lifter’s
translational motion and lower frequencies of the digging tool’s oscillation.

For example, at a lifter translational motion velocity of 1.3 m·s−1, the mass
percentage of the lost roots is within the range of 0.3~2.9%; at a velocity of
1.75 m·s−1—within the range of 0.3~3.0%; at a velocity of 2.1 m·s−1—within the
range of 0.3~3.5%; at a velocity of 2.55 m·s−1—within the range of 0.4~4.5%; moreover,
the lower parts of the ranges correspond to a digging tool oscillation frequency of
20.3 Hz; the upper ones—a frequency of 8.5 Hz.

Hence, a digging tool oscillation frequency of 8.5 Hz is not compliant with
the agronomic requirements with regard to the root losses (rates of up to 1.5% are
acceptable), while the frequencies 15.7 and 20.3 Hz meet them.

The obtained experimental data have once again proved the theoretical
conclusion about the existence of a minimum acceptable frequency of oscillation
subject to the condition that each root must be captured by the digging tool; otherwise,
either nonextraction of the root or the breaking off of its tail part takes place, as is
observed at an oscillation frequency of 8.5 Hz.

It ought to be noted that in the case of lifting the roots by passive share lifters at
a soil moisture content of 14~18%, the tail parts of the roots are broken off at a rate of
30~40% [31].

Further, the regression equation for the relation between the root damage rate
(Y2) and the digging tool oscillation frequency (X1), depth of digging tool running in
the soil (X2), and translational motion velocity (X3) appear as follows:

Y2 = 15.427 + 0.121X1 − 137.179X2 − 2.69X3 − 0.06X1X3 + 754.598X2
2 − 5.691X2X3 + 1.491X2

3 (7.14)

at R2 = 0.822; R = 0.907; Sr = 0.442. For this type of function, the nonsignificant
coefficients are the regression coefficients of the factors X2

1 and X1X2.
On the basis of the obtained model, the response surfaces for the response of the

root damage rate to the digging tool’s oscillation frequency and depth of its running
in the soil at lifter translational motion velocity values of 1.3, 1.75, 2.1, and 2.55 m·s−1

were plotted and their two-dimensional sections were obtained (Figures 7.14–7.21).

240



It follows from the presented relations that there is no constant trend in the
change in the root damage rate when digging tool oscillation frequency varies within
the range of 8.5 to 20.3 Hz; nevertheless, it can be stated that the effect the frequency
change has on the root damage rate is insignificant. The minimum root damage rate
is observed when the digging tool runs in the soil at depths of 0.09~0.10 m. When
the lifter translational motion velocity increases, the rate of root damage increases
as well. For example, at the lifter translational motion velocity of 1.3 m·s−1, the
mass percentage of the damaged roots is within the range of 8.0~9.8%; at a velocity
of 1.75 m·s−1—8.1~ 9.8%; at a velocity of 2.1 m·s−1—8.2~10.3%; at a velocity of
2.55 m·s−1—10.5~12.8%.

Hence, velocities of the lifter’s translational motion within the range of
1.3~2.1 m·s−1 are compliant with the agronomic requirements with regard to the root
damage (rates up to 10% are acceptable), while a velocity of 2.55 m·s−1 does not meet
the requirements (damage rates of up to 13%).

Figure 7.14. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 1.3 m·s−1, soil hardness of 4.0 MPa, moisture content of 8.0%).
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Figure 7.15. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 1.3 m·s−1, soil hardness of 4.0 MPa,
moisture content of 8.0%).

Figure 7.16. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 1.75 m·s−1, soil hardness of 4.0 MPa, moisture content of 8.0%).
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Figure 7.17. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 1.75 m·s−1, soil hardness of 4.0 MPa,
moisture content of 8.0%).

 
Figure 7.18. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 2.1 m·s−1, soil hardness of 4.0 MPa, moisture content of 8.0%).
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Figure 7.19. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 2.1 m·s−1, soil hardness of 4.0 MPa,
moisture content of 8.0%).

Figure 7.20. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 2.55 m·s−1, soil hardness of 4.0 MPa, moisture content of 8.0%).
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Figure 7.21. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 2.55 m·s−1, soil hardness of 4.0 MPa,
moisture content of 8.0%).

The above investigations on the root damage in harvesting were carried out in
the soil with a hardness of 4.0 MPa and moisture content of 8.0%. Similar research
into the rates of root damage was undertaken at a soil hardness of 2.0 MPa and a soil
moisture content of 18.0% (c = 0.14·106 N·m−3), which is rather typical of the sugar
beet harvesting in Polesye (woodlands) and the Forest-Steppe zone (wood and grass
lands) of Ukraine.

The results of said research are described by the following regression equation:

Y3 = 12.2076− 167.138X2 − 1.577X3 − 0.004X2
1 + 1.083X1X2 + 0.04X1X3 + 802.733X2

2 + 0.481X2
3 (7.15)

at R2 = 0.648; R = 0.805; Sr = 0.483. For this type of function, the nonsignificant
coefficients are the regression coefficients of the factors X1 and X1X2.

On the basis of the obtained model, the response surfaces for the response of the
root damage rate to the digging tool oscillation frequency and depth of its running in
the soil at lifter translational motion velocity values of 1.3, 1.75, 2.1, and 2.55 m·s−1

were plotted and their two-dimensional sections were obtained (Figures 7.22–7.29).
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Figure 7.22. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 1.3 m·s−1, soil hardness of 2.0 MPa, moisture content of 18.0%).

Figure 7.23. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 1.3 m·s−1, soil hardness of 2.0 MPa,
moisture content of 18.0%).
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Figure 7.24. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 1.75 m·s−1, soil hardness of 2.0 MPa, moisture content of 18.0%).

Figure 7.25. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 1.75 m·s−1, soil hardness of 2.0 MPa,
moisture content of 18.0%).
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Figure 7.26. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 2.1 m·s−1, soil hardness of 2.0 MPa, moisture content of 18.0%).

Figure 7.27. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 2.1 m·s−1, soil hardness of 2.0 MPa,
moisture content of 18.0%).
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Figure 7.28. Quadratic response surface of root damage rate response to digging
tool oscillation frequency and depth of its running in soil (at lifter translational
motion velocity of 2.55 m·s−1, soil hardness of 2.0 MPa, moisture content of 18.0%).

Figure 7.29. Two-dimensional sections of quadratic response surface of root damage
rate response to digging tool oscillation frequency and depth of its running in
soil (at lifter translational motion velocity of 2.55 m·s−1, soil hardness of 2.0 MPa,
moisture content of 18.0%).

As can be seen in the presented graphs (Figures 7.22–7.29), the mass percentage
of the damaged roots increases within an insignificant range when the digging tool
oscillation frequency and the lifter translational motion velocity go up—i.e., said
parameters have no material effect on the root damage rate; additionally, in most
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instances, the root damage rate reaches its minimum at a digging tool running depth
of 0.09 m.

Thus, the experiments have proved that the range of the digging tool oscillation
frequency of 8.5~20.3 Hz and the range of the lifter translational motion velocity of
1.3~2.55 m·s−1 at a soil hardness of 2.0 MPa and its moisture content of 18.0% meet
the agronomic requirements with regard to the mass percentage of the damaged
roots, as within these ranges said indicator stays within the range of 3.0~6.2%

It also ought to be noted that the mass of the damaged roots substantially
depends on the hardness and moisture content of the soil. For example, at a hardness
of 2 MPa and a moisture content of 18%, it stays within the range of 3.0~6.2%, while
a hardness of 4 MPa and a moisture content of 8% shift it to the range of 8.0~13.0%

According to [41], in the case of lifting roots by passive share lifters, the amount
of severely damaged roots equals 15~22%; contamination of the pile by soil amounts
to 12~16%, while on dry (moisture content of 8~12%) and hard soils—30~40%.

Another important issue that needs investigation is the relation between the root
loss rate and the soil hardness and moisture content in the vibrational lifting. For this
purpose, the root harvester has to be tested at a digging tool oscillation frequency of
8.5 Hz, which is the frequency that causes the highest root loss rates, as shown above.
Such an approach allows assessing the effect of the soil’s hardness and moisture
content on the root loss rate in the case of greater values of the loss rate. Based on
the described set-up, the research has been carried out into the sugar beet root loss
against the digging tool translational motion velocity (X1) and depth of running (X2)
in different operation conditions.

The following regression equation has been obtained for a soil hardness of
3.8 MPa and a soil moisture content of 8.0%:

Y4 = 0.40086 + 9.242X1 − 131.572X2 − 71.088X1X2 + 1015.235X2
2 (7.16)

at R2 = 0.950; R = 0.975; Sr = 0.454.
On the basis of the obtained model, the response surface (Figure 7.30) and its

two-dimensional sections (Figure 7.31) have been generated.
As can be seen from the obtained graphs (Figures 7.30 and 7.31), the increase in

the lifter translational motion velocity is accompanied by the growth of the losses;
the increase in the depth of running in the soil results in their reduction. The reason
for this is that the greater the lifter translational motion velocity is, the fewer the roots
captured by the digging tool (as the translational velocity rises, the 8.5 Hz frequency
progressively allows for less capturing) and the more roots remain or the more are
broken at their tail parts. Obviously, the smaller the depth of the lifter running in the
soil is, the higher the level, where the root tail part is broken off, is and/or the greater
the number of the roots that are not extracted at all is, and, consequently, the higher
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the observed losses are. When the lifter runs at a greater depth, the importance of
the translational motion velocity for the root loss rate decreases, as the tail parts are
broken off at a greater depth; therefore, the loss percentage becomes smaller and
depends to a lesser extent on the lifter translational motion velocity. The losses are
minimal at a depth of running in the soil of 0.11 m.

Figure 7.30. Quadratic response surface of root loss rate response to lifter
translational motion velocity and depth of its running in soil (at digging tool
oscillation frequency of 8.5 Hz, soil hardness of 3.8 MPa, soil moisture content of
8.0%).

Figure 7.31. Two-dimensional sections of quadratic response surface of root loss
rate response to lifter translational motion velocity and depth of its running in
soil (at digging tool oscillation frequency of 8.5 Hz, soil hardness of 3.8 MPa, soil
moisture content of 8.0%).
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For the soil hardness of 2.0 MPa and moisture content of 20.0% the regression
equation appears as follows:

Y5 = −7.75 + 231.582X2 + 3.301X2
1 − 94.891X1X2 − 682.32X2

2 (7.17)

The graphical representation of the root losses against the lifter translational
motion velocity and the depth of its running in the soil under such conditions is
given in Figures 7.32 and 7.33, respectively.

As can be seen in the presented graphs (Figures 7.32 and 7.33), at depths of
the digging tool running in the soil within the range of 0.06~0.09 m, the loss rate
rises together with the increase in the lifter translational motion velocity, while at the
depths of running within the range of 0.10~0.12 m it shows no essential dependence
on the velocity. The reasons for this are the same as in the preceding case. Additionally,
as the depth of running of the digging tool in the soil increases, the losses decrease
and reach their minimum at a depth of the digging tool running in the soil of 0.12 m.

As is evident from the obtained experimental data (Tables 6.4 and 6.5) as well
as the graphs (Figures 7.31–7.33), in the soil (calcic chernozems) with a hardness of
3.8 MPa and a moisture content of 8%, the loss rate is 0.3~6.2%; in the soil (calcic
chernozems) with a hardness of 2.0 MPa and a moisture content of 20%, the root
loss rate is within the range of 0.3~ 5.8%. The experimental test occurred during the
sugar beet harvesting season of the year 2016 near the village of Yaltushkov, Barsky
district, Vinnytsia region (Ukraine).

Hence, in the last case, the variation of the soil conditions within the ranges of
2.0~3.8 MPa for hardness and 8~20% for moisture content has no significant effect on
the root loss rate.

Thus, it has been established in the analysis of the data obtained by the statistical
processing of the results of the research into the loss and damage of sugar beet roots
that for each value of the lifter translational motion velocity the respective values of
the oscillation frequency and the depth of running in the soil of the vibrating digging
tool exist, which ensure the minimum root loss and damage rates. It has also been
established that the extent of root damage depends on the conditions in which the
work process of vibrational digging is performed (the soil hardness and moisture
content). As the hardness of the soil increases and its moisture content declines, the
mass of damaged roots rises.

Additionally, as a result of the completed experimental investigations, it has
been established that the contamination of the roots lifted by vibrating digging tools
of the new design by the soil is under 1%.

Based on the results of the experimental investigations, the root harvester was
tested in the field with the aim of assessing its working capacity and the data needed
for the calculation of its economic efficiency were determined.
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Figure 7.32. Quadratic response surface of root loss rate response to lifter
translational motion velocity and depth of its running in soil (at digging tool
oscillation frequency of 8.5 Hz, soil hardness of 2.0 MPa, soil moisture content of
20.0%).

Figure 7.33. Two-dimensional sections of quadratic response surface of root loss
rate response to lifter translational motion velocity and depth of its running in
soil (at digging tool oscillation frequency of 8.5 Hz, soil hardness of 2.0 MPa, soil
moisture content of 20.0%).

The working capacity of the root harvester with the new vibrating digging tools
mounted on it under the justified rational operation conditions was estimated by its
functioning and the duration of fault elimination breaks; its efficiency was evaluated
by the agronomic indicators of the performed root harvesting. The conditions of
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testing are presented in Table 7.6. Figure 7.34 shows the photograph of the sugar beet
roots extracted by the vibrating digging tools during the experimental investigations.

Table 7.6. Agronomic indicators of experimental field plot.

Indicator Acc. to TOR Acc. to Test Results

Properties of crop:

Offset of roots from theoretical row centreline (%)

0 mm N/A 8.4

±10 mm N/A 12.7

±20 mm N/A 23.1

±30 mm and more N/A 31.5

Position of root crowns with respect to soil surface level (%)

lower than −30 mm N/A 0.0

−20 through −30 mm N/A 0.0

0 through −20 mm N/A 0.5

0 through +20 mm N/A 41.7

above +20 mm through +40 mm N/A 23.9

Planting density (thousand pcs·ha−1) N/A 81.7

Biological yielding capacity of roots (t·ha−1) 70.0 53.6

Biological yielding capacity of leaves (t·ha−1) 20.00 19.2

Condition of tops on roots as regards shaping of leaves (%):

rosette N/A 19.2

semirosette N/A 56.7

cone N/A 24.1

Type of soil and its description with regard to its
mechanical composition N/A calcic chernozems

Relief Up to 7◦ Level

Microrelief N/A Level

Soil moisture content (%):

0–10 cm 20.0:23.0 22.5

10–20 cm N/A 22.1

Soil hardness (MPa):

0–10 cm N/A 1.8

10–20 cm N/A 2.6

Weed infestation:

Weeds with height of up to 100 cm (pcs·m−2)
Not more
than 5.0 4.0

Preceding crop and preceding soil preparation N/A Winter wheat,
inter-row cultivation
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It should be noted that the low yield of leaves reported in the table is due to the
drought conditions in which the growing season of sugar beet took place.

It follows from the results of the completed investigations that it is advisable
to use such designs of the vibrating digging tool that will deliver an oscillation
frequency within the range of 10~18 Hz and a depth of running within the range
of 0.08~0.10 m at a velocity of the lifter’s translational motion within the range of
1.3~2.1 m·s−1. The above-mentioned kinematic parameters of operation ensure the
quality of performance of the work process of the vibrational lifting of sugar beet
roots that meets the current agronomic requirements with regard to the rates of root
loss and root damage.

 

Figure 7.34. Sugar beet roots lifted by vibrating digging tools during experimental
investigations.

The results of the machine testing give evidence of the sufficiently high quality
of performance of the work process of the vibrational lifting of sugar beet roots from
the soil and the conformance of its indicators to the agronomic requirements for said
work process.

7.4. Energy and Force Performance of Root Harvester with Vibrational Lifting Tools

The research into the energy parameters of the root harvester in the field was
carried out by way of registering the readings of the strain-gauge transducers in
different modes of operation of the harvester and at different parameters and in
different modes of operation of the vibrating digging tools.

255



The agronomic indicators of the field plot, where the experimental investigations
for determining the energy parameters were carried out, are presented in Table 7.6.

The graphical relations between the energy and force performance of the
vibrational lifting tool and its translation velocity are presented in Figure 7.35.

Figure 7.35. Energy and force performance of vibrational lifting tool (at
share oscillation frequency of 8.5 Hz and depth of running in soil of
0.09 m).

Based on the completed analysis of the graphical relations, it has been established
that within the range of velocities under investigation (0.6 to 1.4 m·s−1), the tractive
effort (PL) varies within the range of 6.6 to 7.8 kN. Thus, it can be stated that changing
the experimental unit translation velocity results in the increase in the tractive effort
only within a small range.

As is stated in [31], in the case of implementing the vibrational lifting tool,
the tractive resistance is reduced 2.5~3.5 times as compared to the resistance of the
passive disk lifter. Moreover, when the velocity of translational motion increases, the
resistance of the vibrational lifter rises less intensively than in the case of the passive
disk lifter, and even more so in the case of the passive share lifter, which has been
confirmed by the experimental results.

The power take-off shaft torque (Mkr) varies within the range of 50 to 70 N·m.
During the calculation of the traction power (NT) and vibrational lifting tool

drive power (NVVP), the graphical relations were plotted. They indicate that the
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values of NT and NVVP of the vibrational lifting tool vary within the range of 4.0 to
7.0 kW.

Additionally, the graphical relations were separately plotted for the power
required for driving the oscillations of the vibrating digging tool as a function of the
speed and depth of the digging shares running in the soil (Figure 7.36) as well as the
velocity of translation and oscillation frequency of the tool (Figure 7.37).

Figure 7.36. Relations between power needed to drive oscillations and digging
share translation velocity and depth of running in soil (oscillation frequency of
8.5 Hz): 1—0.06 m; 2—0.09 m; 3—0.12 m.
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Figure 7.37. Relations between power needed to drive oscillations and digging
share translation velocity and oscillation frequency (running depth of 0.09 m):
1—8.5 Hz; 2—11.0 Hz; 3—15.0 Hz; 4—20.3 Hz.

As is seen from the graphs, the lowest power consumed for driving the
oscillations of the vibrating digging tools was observed at a frequency of 8.5 Hz and
a depth of running in the soil of 0.06 m.

However, taking into account the fact that the minimum loss and damage of
roots are observed when the lifter runs in the soil at a depth of 0.09 m, it is evident that
the lifter’s depth of running within the range of 0.08~0.10 m and the tool’s oscillation
frequency within the range of 10~18 Hz are more rational operation conditions.

7.5. Conclusions

1. On the basis of the adopted programme and technique, experimental research
into the effect that the main design and process parameters of the vibrational
lifting tool of the root harvester have on the quality performance of the sugar
beet root harvesting work process has been carried out.

2. On the basis of the results of the experimental investigations, it has been
established that the increase in the digging tool oscillation frequency results in the
reduction in the root loss rate, while the higher velocity of translational motion
makes the losses grow. Moreover, within the range of the lifter translational
motion velocity of 1.3~2.55 m·s−1 the minimum loss rate was observed at a lifter
running depth of 0.09 m, and at smaller or greater depths of the lifter translation
the losses increase. It has been determined that at a soil hardness of 4.0 MPa,
a soil moisture content of 8.0%, a depth of running in the soil of 0.09 m and
translational motion velocity values within the range of the of 1.3~2.55 m·s−1,
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a digging tool oscillation frequency of 8.5 Hz does not meet the agronomic
requirements with regard to the root losses (the loss rate reaches 2.7%, while
only values of up to 1.5% are acceptable); frequencies of 15.7 and 20.3 Hz are,
on the contrary, acceptable (the loss rates amount to 0.5 and 0.4%, respectively).

3. It has been proved experimentally that the root damage rate at a soil hardness of
4.0 MPa, a soil moisture content of 8.0% and the digging tool oscillation frequency
variation within the range of 8.5~20.3 Hz varies inconsistently; however, it has
been shown that the frequency variation has little effect on the root damage
rate. The minimum root damage rates are observed at digging tool running
depths within the range of 0.09~0.10 m. When the lifter translational motion
velocity increases, the root damage rate rises as well. For example, at a lifter
translational motion velocity of 1.3 m·s−1, the mass percentage of the damaged
roots amounts to 8.0~9.8%; at a velocity of 1.75 m·s−1—8.1~9.8%; at a velocity
of 2.1 m·s−1—8.2~10.3%; at a velocity of 2.55 m·s−1—10.5~12.8%.

4. Velocities of the lifter’s translational motion within the range of 1.3~2.1 m·s−1

meet the agronomic requirements with regard to the root damage rate (rates
of up to 10% are acceptable), while a velocity of 2.55 m·s−1 is never compliant
with said requirements.

5. It has been established that the mass percentage of the damaged roots essentially
depends on the hardness and moisture content of the soil. For example, at a
hardness of 2 MPa and a moisture content of 18% it varies within the range of
3.0~6.2%, but at a hardness of 4 MPa and a moisture content of 8%—within the
range of 8.0~13.0%.

6. It has been found that changing the velocity of the lifter’s translational motion
causes the tractive effort to rise only within a small range; the power take-off
shaft torque varies within the range of 50 to 70 N·m when the translational
motion velocity is changed within the range of 0.5~1.4 m·s−1. The lowest power
consumption for driving vibrating digging tools (actuating their oscillations)
corresponds to a digging tool oscillation frequency of 8.5 Hz and a depth of
running in the soil of 0.06 m. Nevertheless, in view of the fact that the minimum
root loss and damage rates are observed at a depth of the lifter running in the
soil of 0.09 m, it is reasonable to assume that depths of the lifter running in the
soil within the range of 0.08~0.10 m and digging tool oscillation frequencies
within the range of 10~18 Hz are a more rational choice.

7. The results of the experimental investigations have proved that the theoretically
obtained values of the kinematic parameters for the operation of the vibrational
lifting tool, which allow for the complete extraction of the root from the soil
subject to not breaking off the root’s tail part during the impact interaction, are
fully compliant with the agronomic requirements with regard to the loss and
damage of the roots.
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8. It has been discovered that it is more practical to use designs of the vibrational
lifting tool that will, at a length within the range of 0.15–0.20 m for the rear
section of the working channel, ensure an oscillation frequency within the range
of 10~18 Hz and a running depth within the range of 0.08~0.10 m at a velocity
within the range of 1.3~2.1 m·s−1 with regard to the lifter’s translational motion.
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8. Economic Efficiency and Application
of Results of Scientific Research in
Production

8.1. Calculation of Performance Indices for Evaluation of Economic Efficiency

The comparative appraisal of the economic efficiency of the KKP-3A root
harvester equipped with the vibrational lifting tool developed on the basis of the
results of scientific research has been carried out for the KKP-3 root harvester equipped
with passive concave wheels assumed as the reference model.

The basis for the calculation of the economic efficiency indices is formed,
according to [42], by the direct operating costs: the allocations for the renovation,
major overhaul and running repairs, maintenance, the remuneration of labour, the
cost of petroleum, oil, lubricants as well as the quality and amount of the product
obtained with the use of the compared machines.

In the described case, the comparative appraisal is carried out based specifically
on the quality of the output.

During the calculation of the economic characteristics, the additional economic
benefit obtained by reducing the rates of the loss and severe damage of roots during
their lifting is determined [43]. In this process, the productive capacity, the number of
operating personnel and the fuel intensity of both machines are assumed to be equal.

The initial data for the calculation of the economic efficiency of the KKP-3A root
harvester equipped with the new vibrational lifting tool are presented in Table 8.1.

Table 8.1. Initial data for calculation of economic efficiency of KPP-3A beet harvester.

Index Description Unit
Advanced Model

KKP-3A
Reference Model

KKP-3

Operating capacity per hour
of shift time ha·h−1 0.85 0.85

Annual planned work load h 300 300

Average yield t·ha−1 37.3 37.3

Main quality indices:

loss of roots % 1.4 2.2

severe damage of roots 5.1 6.8
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According to [43], the economic benefit provided by the reduction in the sugar
beet root loss rate can be determined with the use of the following relation:

Ek = W3·Tp·U·a·c, (8.1)

where W3—machine’s output per hour of shift time (ha·h−1); Tp—annual planned
work load of the machine (h); U—average yield of sugar beets (t·ha−1); a—increase in
sugar beet yield due to the reduction in losses by the machine under investigation as
compared to the reference machine; c—purchasing price of sugar beets (USD·t−1).

It is assumed that the average yield of sugar beets is 37.3 t·ha−1 [44], while the
purchasing price of sugar beets is USD 6.85 t−1.

The increase in sugar beet yield due to the reduction in losses amounts to:

a =
2.2− 1.4

100
= 0.008. (8.2)

By substituting the required values of the quantities present in (8.1), the following
economic benefit due to the reduction in the loss of roots is obtained:

Ek = 0.85·300·37.3·0.008·6.85 = 521.23 USD (8.3)

The economic benefit per hectare of the harvested area is equal to:

E′k =
Ek

W3Tp
=

521.23
0.85·300

= 2.04 USDha−1 (8.4)

The additional economic benefit due to the reduction in the damage rate is
determined with the use of the following relation:

Edod = 0.95·10−5(x1 − x2)Qmtkc1 − 10−4(x1 − x2)·[Dr − t(0.0104 + 0.00095x2)]Qmtkc2, (8.5)

where x1 and x2 —number of severely damaged roots output by the reference and
advanced model harvesters, respectively (%); Q—amount of sugar beet roots gathered
per season (t); Dr—initial sugar content in roots (%) (Dr = 17% = 17% [31]); m—part
of the raw stock to be kept in store (m = 0.4); t—average period of storing beet
roots in the sugar mill (days); k—correction factor; (c1—wholesale price of sugar
(USD·t−1) (c1 = 122.8 USD·t−1 [45]); c2—direct costs of the production of 1 t of sugar
(c2 = 41.0 USD·t−1 [45]).

The number of roots gathered per season is determined with the use of
the formula:

Q = UW3Tp = 37.3·0.85·300 = 9512 t (8.6)
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where U—average yield of sugar beets (t·ha−1); W3—machine’s output per hour of
shift time (ha·h−1); Tp—annual planned work load of the machine (h).

The correction factor is defined as the following product of factors:

k = k1k2k3, (8.7)

where k1—sugar beet procurement factor, k1 = 0.9; k2—factor of the sugar beet
losses in the period from the delivery to the mill to the start of processing, k2 = 0.96;
k3—factor of the sugar yield from the raw material, k3 = 0.75.

Hence, k = 0.9·0.96·0.75 = 0.648.
The next step is to determine the additional economic benefit obtained by the

reduction in the damage rate for different times of storing beet roots in the sugar mill:
At t = 60 days:

Edod = 0.95·10−5·(6.8− 5.1)·9512·0.4·60·0.648·122.8− 10−4

·(6.8− 5.1)·[17− 60(0.0104 + 0.00095·5.1)]·9512·0.4·0.648·41.0 = 16.96 USD
(8.8)

Hence, Edod = USD16.96.
The additional economic benefit per hectare of the harvested area E′dod is equal

to:
E′dod =

Edod
W3·Tp

=
16.96

0.85·300
= 0.07 USD·ha−1 (8.9)

Subsequently, the total economic benefit obtained by the reduction in the root
loss and severe damage rates in this case amounts to:

E′ = E′k + E′dod = 2.04 + 0.07 = 2.11 USD·ha−1 (8.10)

The results of the described calculations for different times of storing beet roots
in the sugar mill are presented in Table 8.2.

Table 8.2. Total economic benefit due to reduction in root loss and severe damage rates
(amount of sugar beet roots gathered during season Q = 9512 t).

Time of Storing Roots in
Sugar Mill, t (days)

Additional Economic
Benefit Due to Reduced

Damage Rate, Edod
(USD)

Specific Additional
Economic Benefit Due to
Reduced Damage Rate,

E’
dod (USD·ha−1)

Total Economic Benefit
Due to Reduced Root

Loss and Severe Damage
Rates, E’ (USD·ha−1)

60 16.96 0.07 2.11

90 171.51 0.67 2.70

120 326.06 1.28 3.31

150 480.61 1.88 3.91

180 635.21 2.49 4.52
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As is shown by the obtained calculation results, the economic benefit obtained
by the reduction in the root damage rate increases together with the time of storing
the roots in the sugar mill. This is due to the fact that roots without damage are better
kept in storage and are less susceptible to rotting.

8.2. Application of Scientific Research Results in Production

On the basis of the results obtained in the accomplished scientific studies, the
design and kinematic parameters of vibrational lifting tools have been established—in
particular, the acceptable digging tool oscillation frequencies and amplitudes as well
as lifter translation velocities subject to the condition of not damaging the tail parts
of sugar beet roots that allow the process of lifting roots from the soil by means of
vibrational digging. Additionally, the minimum acceptable values of the vibrational
lifting tool oscillation frequency subject to the condition of the guaranteed gripping
of each root by the digging shares have been established.

Based on the obtained scientific results, a new design of vibrational lifting tools
has been developed. Tools of the new design have been manufactured and installed
in root harvesters of the KKP-3A, MKP-6 types and in a trail-behind four-row root
harvesting implement.

The undertaken scientific studies and engineering developments resulted in the
obtaining of 10 patents for invention in Ukraine.

The theoretically and experimentally established parameters and modes of
operation of lifting tools recommended in accordance with the results of the
accomplished research investigations have been applied in the development of
the new designs of lifting tools for root harvesters at OAO “Boreks” (Borodyanka,
Ukraine) and OAO “Ternopol Combine Harvester Works”. The developed designs of
vibrational lifting tools have been industrially produced and passed the field testing.

8.3. Conclusions

1. An additional economic benefit is achieved by implementing vibrational lifting
tools of the new design in the production process due to the substantial reduction
in the rates of the loss and damage of sugar beet roots during vibrational lifting.

2. The additional economic benefit due to the reduced loss of roots in vibrational
lifting as compared to the operation with the use of wheel lifters amounts to
USD 2.04·ha−1.

3. The additional economic benefit due to the reduced damage of roots depends
on the duration of storage in the sugar mill. If the storage period continues for
60 to 180 days, the benefit varies within the range of USD 0.07–2.49·ha−1.

4. The total economic benefit obtained by the reduction in the root loss and damage
rates varies, depending on the time of storing roots in the sugar mill, within the
range of USD 2.11–4.52·ha−1.
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