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Preface

The author has been teaching three graduate courses, “Ferroelectric Devices”
(Materials science and engineering-oriented), “Micromechatronics” (Electrical and
mechanical engineering-oriented), and “Application of Finite Element Method”
(Design engineering with computer simulation) regularly over 46 years.

As ferroelectric device development is really an interdisciplinary area between
physics, electrical, and mechanical engineering, my courses are open to any
department students without setting particular “prerequisite courses” in the
curriculum. However, in order to teach the course materials smoothly, I set
a “Prerequisite Knowledge Check”, which examines the students’ basic physics
knowledge (high school and freshmen-level), covering physics, electrical, and
mechanical engineering. Refer to “Prerequisite Knowledge Check” on page xiv after
List of Contents. This quiz (exactly the same over 30 years) is conducted on the
first class-day, is evaluated, and the teaching level is changed every year. The figure
below plotted the average score (among 10 in total) change with year on Prerequisite
Knowledge Check for the “Micromechatronics” course. In the 1990s and early 2000s,
the average score was constantly 70–80%. However, in the middle of the 2000s, the
average score decreased year-by-year, and most recently, it is around only 30–40%;
there was significant reduction of basic engineering knowledge during 2005–2015.
Note that since the National Ranking of the Penn State University has not been
dropped significantly in these 10 years, this may not be related to the student-quality
degradation of the Penn State University. Rather, the author believes the basic
knowledge degradation in the graduate students seems to be a general tendency
due to the generation difference in the educational principle. The author points out
that the “turning point” of the average score in the middle of 2000s coincides with
the “Google Search Engine” starting time.
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In the Pre-“Google” age, we analyzed and calculated the physical model by
ourselves, and checked the correctness from the published papers (if any) in the
library. After finishing the experiment and summarizing our results, we used to
approach the published papers in order to find whether our result is reasonable,
or is explainable by some theories. On the contrary, the “Google” generation
takes a rather different approach. When the author indicates the need to research
something new, many of my current Ph. D. graduate students take the following
research steps: (1) searching the recent research papers on the indicated topics on
“Google”, (2) summarizing the results, picking up the unstudied parts by believing
the published results are correct, (3) setting the research plan for himself/herself.
Recently, even the reader’s professor (“Google generation”) may order you to
“search the recent published papers on the indicated topics” as your first job task.
Actually, the author’s generation is disappointed with the current students’ lack
of skills or capabilities on various fundamental mathematical skills, such as linear
differential equations, linear algebra (tensor/matrix), or even unit exchange of
simple calculations between [cgs], [MKS], and [inch-pound] units. As there are
many pieces of computer software available on these analyses and calculations, the
students are reluctant to remember the basic knowledge and mathematical skills.

When the author started to write research papers on the “piezoelectric actuators”
in the early 1980s, most of my papers cited the previous studies from my own
publications, because I was one of the pioneers in this area, leading to less references
to be cited, and my distrustful eyes on the other researchers’ data and analyses.
Thus, I usually received strong criticisms from the reviewers on this self-citation
issue. On the contrary, many of the present publications include plenty of reference
studies from the “Google” search engine (“more than a half of the citations should
be from the other research groups” seems to be a sort of the journal “acceptance”
criterion), and the author’s argument seems to be based on the belief on the previous
studies, seeking for “undone” research topics without repeating the same topic from
a different angle to find different results. The “Google” generation seems to be
intoxicated by big research data, including lots of “misleading” research content.

I have authored “Ferroelectric Devices 2nd Edition (2010)”, “Micromechatronics
2nd Edition (2019)”, “FEM and Micromechatronics with ATILA Software (2008)”, all
published by CRC Press, being used for my regular three teaching courses under the
same course titles. However, in the last 10 years, due to the lack of “Prerequisite
Knowledge”, the students cannot digest the above textbooks completely. My
purpose of authoring this textbook, “Applied Mathematics in Ferroelectricity and
Piezoelectricity”, is to provide the reader a solid mathematical background for
studying ferroelectricity and piezoelectricity, in order to stop the above “Google
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Syndrome” (i.e., just relying on the internet information), and to cultivate the
reader’s mathematical skills. This book is a sort of “open access supplemental” book
to be used in parallel to the above textbooks, or to strengthen your analytical and
theoretical skills in the field of ferroelectricity and piezoelectricity.

Let me introduce the contents. Chapter 1 introduces the “Background”,
including an “overview of ferroelectrics” for the reader, who is not familiar with
ferroelectricity and piezoelectricity. The advanced reader can skip this fundamental
explanation. Based on the Taylor expansion approach, Chapter 2, “Linear Coupling
in Ferroelectrics”, introduces piezothermal and electrothermal couplings, in addition
to the piezoelectric coupling effect in detail. Most of the physical parameters
in piezoelectrics, such as elastic constant and permittivity, are dependent on
the constraint conditions (stress and electric constraint). Chapter 3, “Tensor/
Matrix Description in Piezoelectricity”, describes how to generate a physical
parameter tensor/matrix in a certain crystal symmetry using transformation matrix,
an advanced technique in linear algebraic equations. Chapter 4, “Nonlinear
Phenomenology”, demonstrates Landau and Devonshire phase transition theories
based on the higher-order Taylor expansion series, detailing the electromechanical
coupling terms. The phenomenology of antiferroelectrics and of solid solution
among ferro- and antiferroelectrics are also introduced, including how to integrate
the sublattice coupling terms. “Time-dependent phenomenology” is discussed in
Chapters 5, “Relaxation Phenomena”, where the recovery speed to the equilibrium
status is the focus. Dielectric relaxation models are also learned. Chapter 6 covers
“Losses in Piezoelectrics”, where we introduce a “complex number” for handling
“viscous damping”, in addition to “solid” and “Coulomb (friction) damping”. “Bode
plot” (gain, phase) is introduced from the engineering viewpoint. “Intensive and
extensive loss” difference is also the key in understanding the piezoelectricity.
Chapter 7, “AC Drive on Piezoelectrics”, is one of this book’s highlights, in which
we discuss both electrical and mechanical drive methods on piezoelectric resonance
and antiresonance modes, using the Fourier transform method. Various vibration
modes are introduced, including k31, k33, disk, and bimorph design specimens. The
vibration mode difference between the resonance (zero impedance), antiresonance
(zero admittance), and the intermediate mode (under matched impedance) is also
described. To the contrary, “Pulse Drive on Piezoelectrics” in Chapter 8 describes
the Laplace transform method, which exhibits interesting triangular displacement
vibrations. The difference of the vibration analysis is pointed out among a
continuum piezoelectric specimen and a discrete mass-spring model (i.e., equivalent
circuit). Based on the discussion in Chapter 7, “Equivalent Circuit” is introduced
in Chapter 9. The piezoelectric performance can be simulated by using simple LCR
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circuit. Chapter 10, “Impedance Matching”, discusses both electrical and mechanical
impedance matching in order to enhance the efficiency in the system. Chapter
11, “Lattice Vibration”, discusses linear “harmonic” lattice vibration in terms of
linear differential equations in periodic phenomena. Specific heat can be derived
from the harmonic model. Nonlinear atomic spring and anharmonic phonon are
slightly introduced in the latter part, since ferroelectricity occurrence originates from
the phonon–phonon interaction. Extending the phonon discussion, Chapter 12,
“Heat Conduction”, describes another category of linear differential equation, that
is, the “diffusion equation”. Secondary electrothermal coupling factor is introduced
on this non-equilibrium phenomenon. Thermal analysis on DC- and AC-driven
piezoelectric transducers is also detailed. Chapter 13 is devoted to “Electro-optic
Effect”, where the derivation processes of necessary complicated physical formulae
are explained. This chapter provides the basic knowledge in understanding the
optical beam control. Finally, Chapter 14, “Nonlinear Oscillatory System”, considers
the mechanism of piezoelectric inertial motors based on friction (i.e., stick–slick
action) and chaotic oscillation under nonlinear recovery force. Though there are
multiple computer software just for receiving the solutions, the author’s intention is
to provide the manual calculation methods for deep understanding. Additionally,
further discussions on the lattice vibration under “anharmonic” potential, which
leads to thermal expansion, electrostriction, and phonon transfer/heat conductivity,
are made to supplement the contents in Chapters 11 and 12.

This textbook was written for undergraduates, graduate students, university
researchers, and industry engineers studying or working in the fields of
“ferroelectricity and piezoelectricity”. Since this textbook is designed for
self-learning by the reader by himself/herself, professors in other areas, such
as piezo-MEMS or energy harvesting, who may not have strong physical and
mathematical backgrounds in ferroelectrics and piezoelectrics, are also very
welcome to learn the mathematical skills introduced in this book. Self-learning is
possible, aided by the availability of:

• Chapter Essentials;
• Check Points [Quick Answer in this book Appendix];
• Example Problems [“Solution” provided successively];
• Chapter Problems [“Hint” available successively].

The author strongly desires that the reader will be released from the “Google”
syndrome, and be a “Post-Google” generation, with your strong research philosophy
based on the mathematical/physical fundament concepts. Since this is the first
edition, critical review and content/typo corrections on this book are highly

xx



appreciated. Send the information to Kenji Uchino at The Pennsylvania State
University, University Park, PA 16802-4800. E-mail: KenjiUchino@psu.edu.

I am indebted to the continuous research fund from the US Office of Naval
Research Code 332 during 1991–2021 without intermission through the grants
N00014-91-J-4145, 92-J-1510, 96-1-1173, 99-1-0754, 08-1-0912, 12-1-1044, 17-1-2088,
and 20-1-2309. Finally, I would like to show appreciation for my former colleagues,
Post Docs, Ph. D., and MS students over these last 46 years; in particular, my
greatest appreciation goes to my wife, Michiko, who constantly encourages me in
my activities.

 

 

             

              

              

             

               

                

             

            

              

            

               

                

              

                

      

   

         

      

      

                 

            

                 

               

   

                  

          

                

                    

         

 

Kenji Uchino, MS, MBA, Ph. D. 

March 2021 at State College, PA 

 

 

 

 (Photo taken 12/17/2020) 

xxi





Acknowledgements

The author is indebted to the continuous research fund from the US Office of
Naval Research, Code 332, without interuption from 1991 to 2021, via the grants
N00014-91-J-4145, 92-J-1510, 96-1-1173, 99-1-0754, 08-1-0912, 12-1-1044, 17-1-2088,
and 20-1-2309. I would also like to show appreciation for my former colleagues,
including post doctorates, and Ph.D. and MS students over these last 46 years.
Finally, I would particularly like to thank my wife, Michiko, who constantly
encourages me in my activities.

xxiii





Prerequisite Knowledge Check

Studying “ferroelectricity and piezoelectricity” assumes certain basic
knowledge. Answer the following questions by yourself prior to referring to
the answers on the next page.

Q1 Provide definitions for the elastic stiffness, c, and elastic compliance, s, using stress
(X)—strain (x) equations.

Q2 Sketch a shear stress (X4) by arrows and the corresponding shear strain
(x4)/deformation on the square material depicted below.

3

2

Q3 Describe an equation for the velocity of sound, v, in a material with mass density,
ρ, and elastic compliance, s.

Q4 Given a rod of length, L, made of a material through which sound travels
with a velocity, v, describe an equation for the fundamental extensional resonance
frequency, fR.

Q5 When two solid materials are brought into contact and moved along the contact
plane, friction force is introduced. How do you describe the friction force F in
terms of the force N normal to the contact plane and the friction constant µ?

Q6 Provide the capacitance, C, of a capacitor with area, A, and electrode gap, t,
filled with a material of relative permittivity, εr.

Q7 Describe an equation for the resonance frequency of the circuit pictured below:
C L

Q8 Given a power supply with an internal impedance, Z0, what is the optimum
circuit impedance, Z1, required for maximum power transfer?

Q9 Calculate the polarization P of a material with dipole density N (m−3) of the unit
cell dipole moment q·u (C·m). Provide a correct unit for P.

Q10 Provide the polarization, P, induced in a piezoelectric with a piezoelectric strain
coefficient, d, when it is subjected to an external stress, X.
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Answers: [70% or better score is expected.]

Q1 X = cx, x = sX
[Note: c stands for “stiffness” and s stands for “compliance”.]

Q2 x4 = 2x23 = 2φ
[Note: A pair of anti-parallel forces creates X23 or X32. Radian measure is
generally preferred for the angle φ unit or strain. This shear stress is not directly
equivalent to the diagonal extensional stress.]

φ

φ

Q3 v = 1√
ρs

Q4 f = v/2L
Q5 F = µ·N
Q6 C = ε0εr (A/t)
Q7 f = 1/2π

√
LC

Q8 Z1 = Z0 or Z1 = Z0*
[Note: The current and voltage associated with Z1 are V/(Z0 + Z1) and [Z1/(Z0

+ Z1)]V, respectively, the product of which yields the power. The maximum
power transfer occurs when Z0/

√
Z1 =

√
Z1 when impedance is resistive. When

the impedance is complex, Z1 = Z0*].
Q9 P = Nqu [C/m2]

[Note: The unit of the polarization is given by C/m2, equivalent to the charge
density on the surface.]

Q10 P = dX
[Note: This is called the direct piezoelectric effect.]
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1. Background

1.1. Background of This Book

This textbook, Applied Mathematics in Ferroelectricity and Piezoelectricity, was au-
thored to provide the reader solid mathematical background for studying “ferroelec-
tricity and piezoelectricity”, as an open access supplement to my three course books:
Ferroelectric Devices 2nd Edition (2010), Micromechatronics 2nd Edition (2019), and FEM
and Micromechatronics with ATILA Software (2008), all published by CRC Press.

“Physics” prefers “simplicity”; converting a complicated phenomenon expressed
by a function f (x, y, · · · ) into a Taylor expansion form f ≈ f (0, 0, · · ·) + a1x + b1y +
· · ·+ a2x2 + b2y2 + c2xy + · · · (nonlinear handling), or a 1D to 3D analytical exten-
sion with linear algebraic equations (tensor/matrix), is a typical model simplification.
FEM (finite element method) computer software is popularly utilized to solve prac-
tical piezoelectric vibrations, but without simply adopting computer simulation,
analytical formulae for a simplified model sometimes provide us with a much easier
intuitive idea. Having a solid problem-solving mathematical skill renders the devel-
opment of new devices significantly easier from the author’s experience. The author
attempted to cover most of the necessary “applied mathematics” for learning the
areas of ferroelectricity and piezoelectricity much more deeply.

1.2. Overview of Ferroelectrics

We start with a brief overview of ferroelectrics for the reader who is not very
familiar with ferroelectricity and piezoelectricity. You can refresh your current
fundamental knowledge through this section.

Applications of “ferroelectrics” can be found in various devices such as high-
permittivity dielectric capacitors, ferroelectric memories, pyroelectric sensors, piezo-
electric devices, electro-optic devices, and PTCR (positive temperature coefficient of
resistivity) components. However, historically, with the existence of competitive ma-
terials, ferroelectric devices often failed to be commercialized. In photo-sensors, for
example, semiconductive materials are superior to ferroelectrics in terms of response
speed and sensitivity. Magnetic devices and flash memories are much more popular
in the memory field, and liquid crystals (LCD) and light-emitting diodes (LED) are
typically used for optical displays. The commercialization failure was related to a
lack of systematic and comprehensive accumulation of knowledge on ferroelectricity,
though we can recognize recent success in specific areas such as pyroelectric cameras
and ferroelectric memories.

This section covers the theoretical background of ferroelectric devices, before
focusing on practical materials and typical applications, including (1) crystal struc-
tures and ferroelectricity, (2) the origin of spontaneous polarization, (3) the origin
of field-induced strain, (4) piezoelectric constitutive equations, (5) ferroelectric ma-
terials, and (6) applications of ferroelectrics. This section is based on my textbook,
Ferroelectric Devices 2nd Edition [1].
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1.2.1. Smart Materials

Ferroelectrics belong to “smart materials”. What is the definition of the “smart-
ness” of a material? Various effects relating the input (electric field, magnetic field,
stress, heat, and light) to the output (charge/current, magnetization, strain, tempera-
ture, and light) are summarized in Table 1.1. The input, voltage or stress, generates a
current or strain output (“electrical conductor” and “elastic” materials, which are
sometimes called “trivial” materials), relating to well-known phenomena such as
Ohm’s and Hooke’s laws. On the other hand, “pyroelectric” and “piezoelectric” ma-
terials, which generate an electric field with the input of heat and stress (unexpected
phenomena!), respectively, are called “smart” materials. These off-diagonal cou-
plings have corresponding converse effects, namely, “electrocaloric” and “converse
piezoelectric” effects, and both “sensing” and “actuating” functions can be realized
in the same materials. Because ferroelectric materials exhibit most of these effects
(with the exception of the magnetic phenomena), ferroelectrics are said to be very
“smart” materials.

Table 1.1. Various effects in materials.

Input —> Material Device —> Output 

Input Output
Change Magnetization Strain Temperature Light 
Current 

Electric y Electric– Converse piezo-
effect 

Electric Electro-optic 
magnetic Field Conductivity caloric effect effect effect 

Magnetic Magnetic– Magnetic Permeability Magnetostriction Magneto-
Field electric effect caloric effect optic effect 

Piezoelectric Piezomagnetic 
effect 

Stress Elastic constant Mechano-
thermal effect 

Photoelastic 
effect effect 

Pyroelectric Pyromagnetic 
effect 

Thermal Thermal Heat Specific heat 
effect expansion radiation 

Photovoltaic Photomagnetic 
effect 

Photothermal 
effect 

Refractive Light Photostriction 
effect index 

Diagonal Coupling 
Sensor 

Actuator 

Source: Table by author, adapted from [1].

1.2.2. Crystal Structure and Ferroelectricity

So-called “dielectric” materials are electrically resistive, the constituent atoms
of which are considered to be ionized to a certain degree and are either positively
or negatively charged. In such ionic (or covalent in polymers) crystals, when an
electric field is applied, cations are attracted to the cathode direction and anions to
the anode due to electrostatic interaction. The electron clouds also deform, causing
“electric dipoles”. This phenomenon is known as “electric polarization” of the di-
electric, and the polarization is expressed quantitatively as the sum of the electric
dipoles per unit volume [C/m2]. Figure 1.1 schematically shows the origin of elec-
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tric polarization. There are three primary contributions: “electronic”, “ionic”, and
“dipole reorientation-related”. The degree to which each mechanism contributes
to the overall polarization of the material depends on the frequency of the applied
field. “Electronic polarization” can follow alternating fields with frequencies up
to THz–PHz (1012–1015 cycles/second, higher than “visible light waves”), while
“ionic polarization” responds up to GHz–THz (109–1012 cycles/second, microwave
region). Thus, you should understand that the famous relation between the relative
permittivity ε and refractive index n, i.e.,

ε = n2, (1.1)

is only valid when the applied electric field has a frequency on the order of THz
or higher. On the contrary, “permanent dipole reorientation” can follow only up
to MHz–GHz (106–109 cycles/second). Water is boiled by a 100 MHz microwave
oven. This is why ferroelectric materials with permanent dipoles cannot be used
as microwave dielectric materials; their permittivity, which is typically high at low
frequencies (kHz), decreases drastically with an increasing applied electric field
frequency. The frequency dependence of the total polarizability (or permittivity) is
depicted in Figure 1.2.
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E = 0

Electronic
Polarization

Ionic
Polarization

Dipole
Reorientation

E

Figure 1.1. Microscopic origins of electric polarization. Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 2. Reproduced by permission of
Taylor & Francis Group.
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Figure 1.2. Frequency dependence of polarizability (or permittivity). Source: [1]
©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 3. Reproduced by
permission of Taylor & Francis Group.

In comparison with air-filled capacitors, Figure 1.3 shows the charge storage
mechanism in a dielectric capacitor, where there is a greater charge due to the
dielectric polarization P. The physical quantity corresponding to the stored electric
charge per unit area is called the “electric displacement” D and is related to the
electric field E as follows:

D = ε0E + P = εε0E. (1.2)
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Figure 1.3. Charge accumulation in a dielectric capacitor. Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 3. Reproduced by permission of
Taylor & Francis Group.
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Here, ε0 is the vacuum permittivity (=8.854 × 10−12 F/m) and ε is the “rela-
tive permittivity” of the material (also simply called the permittivity or “dielectric
constant”, functioning as a tensor property) (discussed in Chapter 3).

Depending on the crystal structure, the centers of the positive and negative
charges may not coincide, even without the application of an external electric field.
We say such crystals possess a “spontaneous polarization” (or “pyroelectric”). When
the spontaneous polarization of a dielectric can be reversed under an electric field, it
is called a “ferroelectric”.

Not every dielectric is a ferroelectric. Crystals can be classified into 32 “point
groups” according to their crystallographic symmetry, and these point groups can
be classified into two groups initially: one with a center of symmetry, and another
without, as summarized in Table 1.2. There are 21-point groups which do not possess
a center of symmetry. In crystals belonging to 20 of these point groups (the sole
exception being point group (432)), positive and negative charges are generated
on the crystal surfaces when appropriate stresses are applied. These materials are
known as “piezoelectrics” (discussed in Chapter 2).

Table 1.2. Crystallographic classification according to crystal centrosymmetry
and polarity.

Polarity Symmetry 
Crystal System 

Cubic Hexagonal Tetragonal Rhombohedral Orthorhombic Monoclinic Triclinic 

Nonpolar 

Centro 

(22) 

(11) m3m 6/mmm 6/m 4/mmm 4/m 3m 3 mmm 2/m 1 

Polar (Pyroelectric) (10) 
Noncentro (21) 

432 
23 622 6m2 

 6
422 
42m 

4 32 222 
43m  

6mm 6 4mm 4 3m 3 mm2 2m 1 

Note: In the orange fields are piezoelectrics. Source: Table by author, adapted from [1].

“Pyroelectricity” is the phenomenon whereby, as the temperature of the crystal
is changed, electric charges corresponding to the change in the spontaneous polar-
ization with temperature appear on the surface of the crystal. Among pyroelectric
crystals, if the spontaneous polarization can be reversed by an external electric field
(not exceeding the breakdown limit of the crystal), they are called “ferroelectrics”.
Thus, there is some experimental ambiguity in this definition: in establishing “fer-
roelectricity”, it is necessary to apply an electric field to a pyroelectric material and
experimentally ascertain the polarization reversal.

1.2.3. Origin of Spontaneous Polarization

We consider a mechanism for why the polarization is generated spontaneously
with a decreasing temperature from a high temperature-stable, nonpolar, symmet-
ric crystal structure: that is, the spontaneous shifting of cations and anions. For
simplicity, let us assume that dipole moments result from the displacement of one
type of ion, A (electric charge q), relative to the crystal lattice. Consider the case in
which the polarization is caused by all the A ions being displaced equally in a lattice.
This type of ionic displacement can be expected through lattice vibrations at a finite
temperature. Figure 1.4 depicts some of the possible “eigen lattice vibrations” in a
perovskite-like crystal. The center solid black circles may correspond to B ions of
ABO3. Figure 1.4a shows an initial cubic (symmetrical) structure, Figure 1.4b shows
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a symmetrically elongated structure (i.e., no polarization is generated), Figure 1.4c
shows coherently shifted center cations (i.e., rightward polarization), and Figure 1.4d
exhibits a zig-zag (antipolarized) shift of the center cations (i.e., no net polariza-
tion). If one particular lattice vibration lowers the crystal energy, the ions will shift
and stabilize the crystal structure so as to minimize the energy. Starting with the
original cubic structure (a), if (b) is stabilized, only oxygen octahedra are distorted
without generating dipole moments (“acoustic mode”). On the other hand, when
(c) or (d) is stabilized, dipole moments are generated (“optical mode”). Since the
light wave preferably interacts with these dipole vibrations, these vibration modes
are called “optical modes”. The final stabilized states (c) and (d) correspond to
“polar/ferroelectric” and “antipolar/antiferroelectric” states, respectively. If these
particular modes become stabilized, with a decreasing temperature, the vibration
mode frequency decreases (i.e., “soft phonon mode”), and, finally, at a certain phase
transition temperature, this frequency approaches zero. Refer to Section 11.2 for a
detailed discussion.

(a)

z

(b) (c) (d)

Figure 1.4. Some eigen lattice vibration modes in a perovskite: (a) initial cubic;
(b) elongated structure with no polarization; (c) polar structure; (d) antipolar
structure. Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p.
4. Reproduced by permission of Taylor & Francis Group.

Further, what type of energy motivates the dipole generation in a crystal? It fol-
lows that, at any individual A ion site, there exists a local field from the surrounding
polarization P, even if there is no external field. The concept of the “local field” is
illustrated schematically in Figure 1.5. It can be found that

Eloc = E0 + ∑i[3(pi·ri)ri − ri
2pi]/4πε0ri

5 = (γ/3ε0)P. (1.3)
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Figure 1.5. Concept of the local field. Eloc is given by Eloc= E0 +
∑i
[
3(pi·ri)ri − r2

i pi
]
/4πε0ri

5. Source: Figure by author.

Example Problem 1.1 provides the derivation process of the above formula. This
local field is the driving force for the ion shift. Here, γ is called the “Lorentz factor”.
For an isotropic cubic system, it is known that γ = 1, but in some crystals, γ = 10
(significantly large) [2]. Section 11.3.3 describes the γ derivation process. ε0 is the
vacuum permittivity and is equal to 8.854× 10−12 F/m. Though the electric field from
the dipole moment diminishes rather quickly with an increasing distance r (∝ 1/r3),
since there are so many dipoles in a condensed material as the Avogadro number
is 6.022 × 1023 mol−1, the local field Eloc is much larger than the externally applied
field E0, particularly in anisotropic crystal structures. If the “ionic polarizability” of
ion A is α, then the dipole moment of the unit cell of this crystal is

µ = (αγ/3ε0)P. (1.4)

The energy of this dipole moment (“dipole–dipole coupling”) is given by

wdip = −µEloc = −(αγ2/9ε0
2)P2. (1.5)

We can understand that the mechanism seems to be a type of “positive feedback”;
that is, once a small fluctuation in P occurs in a crystal, which enhances the local field
Eloc by a factor of γ, the dipole–dipole coupling energy wdip decreases by a factor of γ
squared. In other words, the polarized state becomes stabilized with an increase in P.
Defining N to be the number of atoms per unit volume, the dipole–dipole coupling
energy per unit volume is expressed as

Wdip = Nwdip = −(Nαγ2/9ε0
2)P2. (1.6)

On the other hand, when the A ions are displaced from their nonpolar equilib-
rium positions, the elastic energy also increases, which stops the cation–anion ionic
separation. If the displacement is u, and the force constants are k and k′, then the
increase in the elastic energy per unit volume can be expressed as

Welas = N[(k/2)u2 + (k′/4)u4]. (1.7)
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Here, k′ (>0) is the higher-order force constant. It should be noted that in pyro-
electrics (i.e., polar status), k′ plays an important role in determining the magnitude
of the dipole moment. Rewriting Equation (1.7) with

P = Nqu, (1.8)

where q is the electric charge, and combining it with Equation (1.6), the total energy
can be expressed as follows:

Wtot = Wdip + Welas = [(k/2Nq2) − (Nαγ2/9ε0
2)]P2 + [k′/4N3q4]P4. (1.9)

See Figure 1.6. We can understand that if the coefficient of the harmonic term
(k/2Nq2) of the elastic energy is equal to or greater than the coefficient of the dipole–
dipole coupling (Nαγ2/9ε0

2), then P = 0; the A ions are stable and remain at the
nonpolar equilibrium positions. However, if [(k/2Nq2) − (Nαγ2/9ε0

2)] < 0, a more
stable state can be found with a shift from the equilibrium position (by solving
∂Wtot

∂P = 0):

PS
2 = [(2Nαγ2/9ε0

2) − (k/Nq2)]/[k′/N3q4]. (1.10)

Dipole Interaction
Wdip = −(Nαγ2/9ε0

2)P2

Wdip Welas

P

P

Wtotal

P

Nonlinear Elastic Energy
Welas = (k/2Nq2)P2 + (k'/4N3q4)P4

Total Energy
Wtot = Wdip + Welas

Figure 1.6. Energy explanation of the origin of spontaneous polarization. Source:
Figure by author, adapted from [1].

Spontaneous polarization can occur more easily in the perovskite-type crys-
tal structure (e.g., barium titanate) due to the higher value of the Lorentz factor γ
(=10) [3] than found for other crystal structures, because the dipole–dipole coupling
energy is 100 times higher than that of normal dielectrics (refer to Section 11.3.3). It is
noteworthy that the polarizability is changed with the temperature (i.e., α increases
with a decrease in the temperature in oxide perovskites), which leads to a phase
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transition. With an increase in the ionic polarizability α with a decreasing tempera-
ture, even if [(k/2Nq2) − (Nαγ2/9ε0

2)] > 0 (paraelectric!) at a high temperature, this
value may become negative, leading to a ferroelectric phase transition at a certain
temperature. Considering a first approximation, namely, a linear relation between α
and the temperature, we can derive the well-known Curie–Weiss law:

[(k/2Nq2) − (Nαγ2/9ε0
2)] = (T − T0)/ε0C. (1.11)

Phenomenological approaches with the theories of Landau and Devonshire are
introduced in Chapter 4.

The temperature dependence of the total energy Wtot curve is shown in 3D
(temperature axis) in Figure 1.7. One potential minimum at a high temperature will
split into two minimum branches at a low-temperature phase. This “Y”-shaped
phase splitting is called “bifurcation”. The critical point corresponds to the Curie
temperature TC (in this second-order transition case, also TC = T0). Because the
total energy Wtot curve is symmetric with respect to the polarization P when the
external field E = 0 (see Figure 1.7, bottom), the probability of the state +PS or −PS
should be equal. Thus, with a decreasing temperature, passing through TC, +PS
domains and −PS domains may arise locally in a specimen with an equal volumetric
ratio, leading to multidomain states. The total polarization should be zero because
of the compensation between the +PS and −PS domains. This state is called the
“depolarized/depoled” state. Refer to Section 14.2 to learn the domain structures.

Temperature

F

F

F

P

+E −E

F F

P P P

F

P

P

Curie Temperature TC

Electric field

Figure 1.7. Temperature and electric field dependence of the Landau free energy
curve. Source: Figure by author.

In order to generate ferroelectricity and piezoelectricity, we need the “poling”
process; that is, by applying a reasonably large external electric field, the polarization
direction is aligned in one direction (+PS or−PS). The electric field dependence of the
energy curve is shown in the inserted figure of Figure 1.7. Under the external electric
field, the energy curve becomes asymmetric, which promotes polarization switching
to one direction. When we apply +E, we expect the +PS polarized structure, which
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is called the “poling” process. Though we cannot expect a perfectly polarized state
thermodynamically, a large portion of the ferroelectric specimen will be polarized.

Example Problem 1.1

The electric potential arising from a point charge q at a distance r from the charge
is given by V = 1

4πε0

q
r , and the electric field is obtained as E = −grad(V) = 1

4πε0

q
r3 r,

where r stands for the position vector along the radius direction. Now, calculate the
electric field distribution surrounding a dipole (=q·u), that is, charges +q and −q are
situated at a short distance u, as illustrated in Figure 1.8.

z

r1
r 

−q

+q

u 0

P

θ r2

Figure 1.8. Electric potential calculation surrounding a dipole. Source: Figure
by author.

Hint

The distance of +q to point P, r1, and the distance of −q to point P, r2, are
expressed as

r1 =
√

r2 + u2

4 − ru·cosθ, r2 =
√

r2 + u2

4 + ru·cosθ.

Solution

The electric potential at point P in Figure 1.8 is expressed by superposing the
potential from +q and −q as

V =
1

4πε0

q
r1
− 1

4πε0

q
r2

=
q

4πε0


 1√

r2 + u2

4 − ru·cosθ
− 1√

r2 + u2

4 + ru·cosθ


. (P1.1.1)

Since we are interested in the case in which r >> u, we can rewrite Equation
(P1.1.1) in the approximate form

V = q·u·cosθ/4πε0r2 = p·cosθ/4πε0r2 = p·r/4πε0r3. (P1.1.2)
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The quantity p here is the dipole moment (product of the charge q and small distance
u) with the vector direction from −q to +q. Then, the electric field is obtained as
E = −grad(V), and knowing the gradient operator in the spherical coordinate is

grad(V) = r̂
∂V
∂r

+ θ̂
1
r

∂V
∂θ

+ ϕ̂
1

r·sinθ

∂V
∂ϕ

, (P1.1.3)

where r̂, θ̂, ϕ̂ are unit vectors along the r, θ, and ϕ directions, we obtain the following:

E = −grad(V) = r̂
(

2p cosθ
4πε0r3

)
+ θ̂1

r

(
p sinθ

4πε0r2

)

= 1
4πε0r3

[
r̂(2p·cosθ) + θ̂(p·sinθ)

]

=
[
3(p·r)r− r2p

]
/4πε0r5.

(P1.1.4)

Above is the derivation process of Equation (1.3). The electric potential and field
contour are illustrated in Figure 1.5, which looks like a “dumbbell” shape.

Example Problem 1.2

Perovskite-type barium titanate, BaTiO3, exhibits a tetragonal symmetry at room
temperature, and the ion shift is illustrated in Figure 1.9. The lattice constants are c =
4.036 (Å) and a = 3.992 (Å). Calculate the magnitude of the spontaneous polarization
for barium titanate.

Ti4+

Ti4+

O2−
Ba2+

Ba2+

O2− 0.12 Å

0.061 Å

0.036 Å

c

a

Figure 1.9. Ionic shifts in BaTiO3 at room temperature. Source: Source: [1] ©Uchino,
K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 7. Reproduced by permission of
Taylor & Francis Group.

Hint

First calculate the dipole moment µ by the product of the ionic charge and the
ionic displacement, and then the polarization P = Nµ (N: number of dipole moments
included in a unit volume). After calculating the dipole moment sum in a unit cell,
divide it by the unit volume.
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Solution

The dipole moment is defined as the product of the magnitude of the ion charge
and its displacement. The total dipole moment in a unit cell is calculated by summing
the contributions of all the Ba2+-, Ti4+-, and O2−-related dipoles. Each corner Ba ion
contributes 1/8, each O face ion contributes 1/2, and the center Ti contributes 1. Note
that four O2− ions of the oxygen octahedron do not shift (this position is taken as the
origin), leading to zero contribution to the dipole moment.

P = 8[2e/8][0.061 × 10−10 (m)] + [4e][0.12 × 10−10 (m)]
+ 2[−2e/2][−0.036 × 10−10 (m)]

= e[0.674 × 10−10 (m)] = 1.08 × 10−29 (C·m),
(P1.2.1)

where e is the fundamental charge: 1.602 × 10−19 (C).
Next, the unit cell volume is given by

v = a2c = (3.992)2(4.036) × 10−30 (m3) = 64.3 × 10−30 (m3). (P1.2.2)

The spontaneous polarization represents the number of (spontaneous) electric dipoles
p per unit volume:

PS = P/v = 1.08 × 10−29 (C·m)/64.3 × 10−30 (m3) = 0.17 (C/m2). (P1.2.3)

This theoretical value of PS is in reasonable agreement with the experimental value
of 0.25 (C/m2).

1.2.4. Origin of Field-Induced Strain

Solid materials, especially inorganic materials, are elastically stiff but still expand
or contract depending on the change in the input parameters. The linear “strain”
(defined as the “displacement” ∆L/ initial length L) caused by a temperature change
or stress is known as thermal expansion or elastic deformation, respectively. In
insulating materials, the application of an electric field can also cause deformation.
This is called “electric field-induced strain”. We consider the microscopic origin in
this section. The “piezoelectric constant” d and “electrostrictive coefficient” Q, M,
are derived phenomenologically in Chapter 4, and the microscopic strain formula
derivation is described in Section 14.3.3.

The word “electrostriction” is occasionally used, in a sense, to describe electric
field-induced strain and, hence, frequently also implies the “converse piezoelectric
effect”. However, precisely speaking, the converse piezoelectric effect is defined as a
“primary” electromechanical coupling effect, that is, the strain is directly proportional
to the electric field, while electrostriction is a “secondary” coupling in which the strain
is proportional to the square of the electric field. Thus, they should be distinguished
theoretically. In practice, because the piezoelectricity of a ferroelectric which has
a centrosymmetric prototype phase at high temperature is considered to originate
from the “electrostrictive interaction”, these two effects are occasionally observed as
a combination (e.g., a high electric field induces a ferroelectric from a paraelectric
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phase). The above phenomena hold strictly under the assumptions that the object
material is a mono-domain single crystal, and that its state does not change under
the application of an electric field. In a practical piezoelectric ceramic, additional
strains accompanied by the reorientation of ferroelectric domains are also important.

The origin of electric field-induced strain is explained in [4]. For simplicity, we
consider an ionic crystal such as NaCl. Figure 1.10a,b show a 1D rigid-ion spring
model of the crystal lattice. The springs equivalently represent the cohesive force re-
sulting from the electrostatic Coulomb energy and the quantum mechanical repulsive
energy (detailed discussion in Section 14.3.2). Figure 1.10b shows the centrosymmet-
ric case, whereas Figure 1.10a shows the more general non-centrosymmetric case.
The springs joining the ions are all the same in Figure 1.10b, whereas in Figure 1.10a,
the springs joining the ions are different for the longer and shorter ionic distances;
in other words, hard and soft springs are arranged alternately. When we consider
the state of the crystal lattice in Figure 1.10a under an applied electric field, the
cations are drawn in the direction of the electric field and the anions in the opposite
direction, leading to a relative change in the inter-ionic distance. Note that the forces
on the hard and soft springs should be equal. Depending on the direction of the
electric field, the soft spring expands (or contracts) more than the contraction (or
expansion) of the hard spring, the subtraction of which causes a strain x (a unit cell
length change) in proportion to the electric field E. This is the “converse piezoelectric
effect”. When expressed as

x = dE, (1.12)

the proportionality constant d is called the “piezoelectric constant”.
On the other hand, in Figure 1.10b, the amounts of extension and contraction

of the spring are usually the same, and the distance between the two cations (lattice
parameter) remains the same; hence, there is no strain if the springs are ideally
harmonic. However, more precisely, ions are not connected by such ideal springs
called “harmonic springs”, in which force (F) = spring constant (k)× displacement (∆)
holds. In most crystal lattice cases, the springs possess “anharmonicity” expressed by
F = k1∆ − k2∆2; that is, they are somewhat easy to extend but hard to contract (a more
precise model is discussed in Section 14.3.3). Such an intrinsic directional difference
in the displacement causes a change in the lattice parameter, producing a strain
which is independent of the direction of the applied electric field (+E or −E) and,
hence, is an even function of the electric field. Regardless of the electric field direction,
extension always occurs in the unit cell size. This is called the “electrostrictive effect”
and can be expressed as

x = ME2, (1.13)

where M is called the “electrostrictive constant”.
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Figure 1.10. Microscopic explanation of piezoelectric strain (a) and electrostriction
(b). Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 8.
Reproduced by permission of Taylor & Francis Group.

Note that the 1D asymmetric crystal pictured in Figure 1.10a also possesses a
spontaneous bias of the electrical charge, or a spontaneous dipole moment. The total
dipole moment per unit volume is called the “spontaneous polarization”. When a
large reverse bias electric field is applied to a crystal that has a positively aligned
spontaneous polarization, another polarization status is formed which is another
stable crystal state in which the relative positions of the ions are reversed. In terms
of an untwinned single crystal, this is equivalent to rotating the crystal 180◦ about an
axis perpendicular to its polar axis. This is also understood from the potential double
minima in Figure 1.7. This transition, referred to as “polarization reversal”, also
causes a remarkable change in strain. This particular class of substances is referred to
as “ferroelectrics”, as mentioned in Section 1.2.2. Generally, what is actually observed
to be a field-induced strain is a complicated combination of the three basic effects
just described above.

A schematic of the polarization reorientation process or poling process in a poly-
crystalline specimen is visualized in Figure 1.11. First, the polycrystal is composed of
many small single crystals (each is called a “grain”) with random crystal orientations.
Thus, complete alignment of the polarization is impossible. Further, due to this
crystallographic misorientation, some residual stress exists in the specimen, which
promotes a multidomain status even under a high electric field. We start from the
initially negatively poled status “1”. You can notice some domains in each grain.
With an increasing electric field up to the “coercive” field EC “2” (where the free
energy at −PS reaches zero), the largest number of domains appears, and the total
polarization becomes almost zero. When we further increase the field to “3”, the
domain rapidly disappears to become close to the mono-domain state in each grain.
The slope of the strain vs. electric field around “3” corresponds to the piezoelectric
constant. Now, if we decrease the field down to the coercive field “4”, we may start to
observe some domain generation in the grains; then, finally at the zero field “5”, we
observe similar domains in each grain to those in state “1”, though the polarization
directions are opposite to those of state “1”.
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Figure 1.12 shows typical strain curves for piezoelectric lead zirconate titanate
(PZT)-based and electrostrictive lead magnesium niobate (PMN)-based ceramics [5].
The almost linear strain curve for PZT becomes distorted and shows large hystere-
sis with an increasing applied electric field level, which is due to the polarization
reorientation. On the other hand, PMN does not exhibit hysteresis under the electric
field cycle because no domain exists. However, the strain curve deviates from the
quadratic relation (E2), showing a saturation tendency at a high electric field level.

1. E = 0

5. E = 0

2. E = EC

4. E = EC

3. E = Emax
Field E

Strain X

1

2

34

5

E

Figure 1.11. Domain structure change with the external electric field in polycrys-
talline ferroelectrics. Source: Figure by author.

Electric field (kV/cm)

−10−15   −10 −5

1

0.5

0.75

1
×10−3

4
×10−3

St
ra
in

 Δ
L/
L

St
ra
in

 Δ
L/
L

10 1015 15

(a) (b)

0.25

3

2

0 5 −5     0         5 

Electric field (kV/cm)

−15 

Figure 1.12. Typical strain curves for piezoelectric lead zirconate titanate (PZT)-
based (a) and electrostrictive lead magnesium niobate (PMN)-based ceramics (b).
Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 9. Repro-
duced by permission of Taylor & Francis Group.

The converse piezoelectric effect is described above. Then, what about the
“direct piezoelectric effect”? This is the phenomenon whereby a charge (i.e., polariza-
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tion [C/m2]) is generated under the application of an external stress (N/m2). The
piezoelectric equation can be described using the same piezoelectric coefficient d in
Equation (1.12) for the converse effect:

P = dX. (1.14)

1.2.5. Piezoelectric Constitutive Equations

When an electric field is applied on a piezoelectric material, displacement (∆L)
or strain (∆L/L) arises, as described in Section 1.2.4. When the applied electric
field and the generated stress are not large, as the first-order approximation, the
stress X and the dielectric displacement D can be represented by the following linear
equations (derivation process is detailed in Chapter 2):

{
xi = sE

ijXj + dmiEm

Dm = dmiXi + ε0εX
mkEk

(i, j = 1, 2, · · · , 6; m, k = 1, 2, 3). (1.15a,b)

The above equations are referred to as “piezoelectric constitutive equations”. For
the reader’s sake, the number of independent parameters for the lowest-symmetry
trigonal crystal is 21 for sij

E, 18 for dmi, and 6 for εmk
X. The number of independent

parameters decreases with increasing crystallographic symmetry, as explained in
Chapter 3. Concerning polycrystalline ceramics such as PZTs, the poled axis is
usually denoted as the z-axis, and the ceramic is isotropic with respect to this z-axis
(Curie group C∞v (∞m)). The number of non-zero matrix elements in this case is 10
(s11

E, s12
E, s13

E, s33
E, and s44

E; d31, d33, and d15; ε11
X and ε33

X).
The input electric energy is transduced to the output mechanical energy, or

vice versa, in a piezoelectric. We introduce the concept of the “electromechanical
coupling factor” k, which corresponds to the rate of electromechanical transduction.
The internal energy U of a piezoelectric is given by the summation of the mechanical
energy UM (=

∫
xdX) and the electrical energy UE (=

∫
DdE) in general. Then, U is

calculated as follows, where the linear relations Equation (1.15a,b) are applicable:

U = UM + UE

=
[
(1/2)∑i,j sij

EXjXi + (1/2)∑m,i dmiEmXi

]

+
[
(1/2)∑m,i dmiXiEm + (1/2) ∑k,m εmk

XEkEm
]

= UMM + 2UME + UEE
= (1/2)∑i,j sij

EXjXi + 2(1/2)∑m,i dmiEmXi + (1/2)∑k,m εmk
XEkEm.

(1.16)

The s and ε terms represent purely mechanical and electrical energies (UMM and
UEE), respectively, and the d term denotes the energy transduced from electrical
to mechanical energy, or vice versa, through the piezoelectric effect (UME). The
electromechanical coupling factor k is defined by

k = UME/
√

UMM·UEE. (1.17)

Note that this definition is equivalent to the definition provided as follows:

k2 = UME/UE = (Stored mechanical energy/Input electrical energy) (1.18a)
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or

k2 = UME/UM = (Stored electrical energy/Input mechanical energy). (1.18b)

Let us obtain the coupling factor k in terms of physical properties (d, s, and
ε). When electric energy is supplied to a piezoelectric sample and some part is
transduced into mechanical energy, the square of the “electromechanical coupling
factor” k2 is defined by

k2 = (Stored mechanical energy)/(Input electrical energy)
= (1/2)(x2/s)/(1/2)(ε0εE2) = (1/2)((dE)2/s)/(1/2)(ε0εE2) [from x = dE]

= d2/sε0ε.
(1.19)

The k is expressed in the form of d/
√

sε0ε in general, which varies with the driv-
ing mode (even in the same ceramic sample), with either a positive or negative value.
The |k31/k33| ratio around 0.47 originates from the |d31/d33| ratio around 0.4 (i.e.,
Poisson’s ratio). The k value is primarily governed by the contributing piezoelectric d
constant for that vibration mode. Note also that “k2” has an actual physical meaning
for representing the energy transduction ratio (no particular meaning in k itself).

When the field is alternating, mechanical vibration is generated in a piezoelectric
device, and if the driving frequency is adjusted to the mechanical resonance frequency
of the piezoelectric device, a large resonating strain is excited. This phenomenon
can be understood as a strain amplification due to input energy accumulation with
time (amplification in terms of time), which is called “piezoelectric resonance”. The
amplification factor is proportional to the mechanical quality factor QM (inversely
proportional to the elastic loss). Piezoelectric resonance is very useful for realiz-
ing medical and underwater ultrasonic transducers, piezo-transformers, actuators,
energy trap devices, etc. (detailed discussion in Chapter 7).

1.2.6. Electro-Optic Effect

Electro-optic devices have been widely commercialized as displays since the
1980s, initially exemplified by LCDs (i.e., liquid crystal displays); recently, they
have been refocused for optical communication applications. Light is an alternating
electromagnetic wave with electric and magnetic field vibration directions that are
almost perpendicular to one another, where the electric field induces an electric
polarization in a dielectric crystal, and the light itself is influenced by the crystal.
Because the oscillating frequency of the light is so high (PHz = 1015 Hz) that only
the “electronic polarization” can follow the electric field change (see Figure 1.2), the
permittivity of an optically transparent crystal (even in a ferroelectric crystal) is small,
not exceeding 10. The reader is reminded of the famous relation between the relative
permittivity εr at this high frequency and the refractive index n:

εr = n2[assuming magnetic permeability µr = 1]. (1.20)

When an external electric field (much lower than PHz) is applied to the crystal,
ion displacement is induced, deforming the shape of the electron cloud, and, conse-
quently, the “refractive index” n is changed. The refractive index is directly related
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to the electron density in a material. This phenomenon is called the “electro-optic
effect” [1]. Generally, the refractive index is treated as a symmetrical second-rank
tensor quantity and is represented geometrically by the “optical indicatrix”, which is
described by

x2

n1
2 +

y2

n22 +
z2

n32 = 1, (1.21)

where n1, n2, and n3 are the principal refractive indices. Refer to Chapter 13 for the
details. With the application of an electric field, the change in the inverse permittivity
κ is given by a Taylor/Maclaurin expansion expression in terms of E:

κ(E)− κ(0) = rE + RE2 + · · · . (1.22)

Using κ = 1/ε = 1/n2, we obtain

1/nij
2(E) − 1/nij

2(0) = ΣrijkEk + ΣRijklEkEl. (1.23)

Here, n(E) and n(0) (=n0) are the refractive indices at the E and the zero field. The
coefficient rijk is called the “primary electro-optic coefficient” (“Pockels effect”),
and Rijkl is the secondary coefficient (“Kerr effect”). Remember that the Maclaurin
expansion is not based on nij, but on 1/nij

2.
Considering the paraelectric phase of a perovskite crystal (m3m) as an example,

the Kerr coefficients are represented in the following matrix:



R11 R12 R12 0 0 0
R12 R11 R12 0 0 0
R12 R12 R11 0 0 0
0 0 0 R44 0 0
0 0 0 0 R44 0
0 0 0 0 0 R44




,

meaning that the refractive indicatrix under an electric field applied along the z
direction is expressed as

x2 + y2

n02
[
1−

(
n0

2

2

)
R12Ez

2
]2 +

z2

n02
[
1−

(
n0

2

2

)
R11Ez

2
]2 = 1. (1.24)

Let us consider the refractive index change under an external electric field in-
tuitively with a visual figure (Figure 1.13a). A cubic perovskite crystal is elongated
along the z-axis and contracted along both perpendicular x- and y-axes when an elec-
tric field Ez is applied, via the “electrostrictive effect”. Consequently, the material’s
axial density or compactness will be decreased along the z-axis and densified along
the x- and y-axes, leading to a decrease in the refractive index nz and an increase in
the indices nx and ny, as shown in Figure 1.13b. That is, the initial sphere becomes
a doughnut shape. Note that the refractive index is proportional to the electron
density or ion compactness along the polarized light electric field direction, which
is perpendicular to the light propagation direction. Taking into account the above
description, R11 and R12 in Equation (1.24) are positive and negative, respectively,
directly correlated with the electrostrictive coefficients M11 and M12.
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Figure 1.13. (a) Perovskite unit cell change with electric field. (b) Corresponding
refractive indicatrix change of a cubic crystal with electric field (Kerr effect). The
original sphere becomes a doughnut shape. Source: Figure by author, adapted
from [1].

When light is transmitted along the y direction, the “phase retardation” Γy
between the “ordinary” (polarized along the x orientation) and “extraordinary”
waves (polarized along the electric field z orientation) can be expressed as

Γy = (2π/λ)(n0
3/2)(R11 − R12)L(Vz/d)2, (1.25)

where d and L are the electrode gap and “optical path length”, respectively. By placing
the crystal between a pair of crossed polarizers arranged at +45◦ and −45◦ angles
with respect to the z-axis, as in Figure 1.14, the output light intensity is modulated as
a function of the applied voltage according to

I = I0sin2(Γy/2) = (1/2)I0(1 − cosΓy). (1.26)

The detailed derivation is described in Chapter 13.

Unpolarized Light

45º

−45º

+

Polarizer

Electrooptic Crystal−

ne

n 0 d

L

Polarizer

Figure 1.14. Optical phase retardation through an electro-optic crystal. Notice the
crossed polarizer configuration. Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd
ed. CRC Press, 2010; p. 13. Reproduced by permission of Taylor & Francis Group.
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The variation in the light intensity with the applied voltage is shown in Fig-
ure 1.15. The sinusoidal intensity modulation period (second and third peaks) shrinks
with the voltage because the retardation Γy is proportional to the “square” of the
applied voltage. This is the principle behind the operation of a “light shutter/valve”,
and the voltage required for the first intensity maximum (i.e., Γy = π) is an important
characteristic called the “half-wave voltage”, given by

Vz = d[λ/n0
3(R11 − R12)L]1/2. (1.27)
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0

0 Vz, λ/2 Applied Voltage

Figure 1.15. Light intensity change of a Kerr effect electro-optic shutter with the
applied voltage. Source: Figure by author, adapted from [1].

Example Problem 1.3

PLZT 10/65/35, with a cubic symmetry, shows electro-optic coefficients R11 =
0.83 × 10−16 [m2/V2] and R12 = −0.27 × 10−16 [m2/V2], and n0 = 2.49. Calculate
the “half-wave electric field” for a sample with L = 1 mm, when λ = 633 nm light is
transmitted perpendicularly to the electric field, as in Figure 1.14.

Hint

The half-wave voltage is calculated from

Γy = (π/λ)n0
3E3

2(R11 − R12)L = π, (P1.3.1)

where Γy is the phase retardation (see Equation (1.25)). Note also R = (R11 − R12) =
1.1 × 10−16 [m2/V2].

Solution

E3 = [λ/n3
0(R11−R12)L]1/2 = (633× 10−9/2.493 × 1.1× 10−16 × 1× 10−3)1/2

= 6.1× 105[V/m].
(P1.3.2)
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How much does the refractive index change in practice? From the formula

n0

[
1−

(
n0

2

2

)
R11Ez

2
]
,

(
n0

2

2

)
R11Ez

2 =
(

2.492

2

)
× 0.83× 10−16 ×

(
6.1× 105)2 ≈ 1× 10−4.

The refractive index n changes by only 0.01%, even under the half-wave voltage ap-
plied.

1.2.7. Ferroelectric Materials

Quartz (SiO2) and zinc oxide (ZnO) are popular piezoelectric, but non-ferroelectric
(nonpolar), materials. The “direct” piezoelectric effect was first discovered in quartz
by Piere and Jacques Curie in 1880. Immediately after in 1881, the “converse piezo-
electric effect” was discovered by Gabriel Lippmann. The application of piezoelec-
tricity was motivated by the famous Titanic shipwreck and other shipwrecks from
World War I in the undersea transducer and sonar area. Paul Langevin developed
the so-called Langenvin-type transducer, which was originally composed of nat-
ural tiny quartz single crystals sandwiched by two metal blocks, in order to tune
the transducer resonance frequency around 26 kHz, which was a desired range for
underwater applications to detect German U-boats.

On the other hand, ferroelectricity was first discovered in Rochelle salt
(NaKC4H4O6·4H2O) in 1921. Though this material has been studied from an aca-
demic viewpoint, it has not been widely utilized in practice because it is water soluble
(i.e., non-durable in seawater) and its Curie temperature is just above room tempera-
ture. KH2PO4 (KDP) was the second discovery in 1935, which is also water soluble,
and its Curie temperature is −150 ◦C. We needed to wait until World War II for the
third and most famous ceramic ferroelectric, i.e., barium titanate (BaTiO3), which was
actually first commercialized as a transducer material. In order to develop compact
capacitors for portable “radar” systems to be used in the battlefields, TiO2-based
conventional “condenser materials” were widely researched by doping various ions
such as CaO, SrO, BaO, MgO, and Fe2O3. Four groups in the US, Russia, Germany,
and Japan discovered BaTiO3 around almost the same time in World War II [6]. The
discovery of isomorphous PZT (lead zirconate titanate) after WWII established the
present wide and steady piezoelectric device market, which has been operating for
more than 60 years.

Barium Titanate (BT)

The basic properties of ferroelectrics are reviewed, using barium titanate as an
example. BaTiO3 has a perovskite crystal structure, as shown in Figure 1.16. Refer
to Figure 1.9 in Example Problem 1.2 for the accurate ionic displacements. The
paraelectric phase (nonpolar phase) at high temperature possesses no spontaneous
polarization with a cubic symmetry of Oh—m3m. Below the transition temperature
TC, called the “Curie temperature” (about 130 ◦C), spontaneous polarization arises,
with a slightly elongated crystal structure, that is, tetragonal C4v—4mm. The temper-
ature dependence of the spontaneous polarization PS, spontaneous strain xS, and
permittivity (dielectric constant) ε is illustrated in Figure 1.17 for a “first-order phase
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transition” ferroelectric such as BT. PS decreases with an increasing temperature
and vanishes suddenly at the Curie temperature, while ε tends to diverge near TC.
Additionally, the reciprocal (relative) permittivity 1/ε is known to be linear with
respect to the temperature over a wide range in the paraelectric phase (so-called
Curie–Weiss law),

ε = C/(T − T0), (1.28)

where C is the “Curie–Weiss constant”, and T0 is the “Curie–Weiss temperature”,
which is slightly lower than the exact transition temperature TC. It is also known
that the spontaneous polarization PS and the spontaneous strain xS follow the elec-
trostrictive coupling relationship

xS = QPS
2, (1.29)

and xS decreases almost linearly with an increasing temperature. In the case of
BaTiO3 (BT), it exhibits the piezoelectric effect in the ferroelectric phase, while in
the paraelectric phase, it is non-piezoelectric and exhibits only the electrostrictive
effect (i.e., x = ME2). The general descriptions above are almost consistent with the
phenomenological approach for the “second-order” phase transition, except for jump
or discontinuous phenomena at the Curie temperature TC, in the first-order phase
transition. Refer to Chapter 4.

The temperature dependence of the ferroelectric properties described above
suggests materials’ development strategies: capacitor materials are designed to
have a Curie temperature around room temperature (RT) because of the maximum
permittivity; memory materials should possess a TC that is around 100 ◦C higher
than RT for obtaining a reasonably large PS; the TC for pyro-sensors is just above
RT because of the large

∣∣∣ ∂PS
∂T

∣∣∣; piezoelectric transducer materials’ TC is set typically
much higher than RT, and higher than 200 ◦C, in order to stabilize the PS, even under
a high-voltage drive with excessive heat generation; the TC for electro-optic (Kerr
effect) and electrostrictive devices is slightly lower than RT to use their paraelectric
state. In other words, we design practical materials with their Curie points suitable
for each application.

Tc 

: Curie temperature

Ti4+

Ba2+

O2−

T > TC T < TC

Figure 1.16. Crystal structures of BaTiO3: higher (left) and lower (right) than
TC. Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 17.
Reproduced by permission of Taylor & Francis Group.
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Figure 1.17. Temperature dependence of the spontaneous polarization, strain, and
permittivity in a ferroelectric. Source: Figure by author, adapted from [1].

The situation of BT is very complicated in practice. With a decreasing tempera-
ture, BT undergoes three successive phase transitions from the cubic to the tetragonal
phase at 130 ◦C, then from the tetragonal to the orthorhombic phase around 0 ◦C,
and, finally, from the orthorhombic to the rhombohedral phase at−90 ◦C. Figure 1.18
shows the temperature dependence of the permittivity along the c- and a-axes of the
tetragonal phase, according to these successive phase transitions. The polarization
direction change is also inserted in the crystal structures of the cubic, tetragonal,
orthorhombic, and rhombohedral phases [1].
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Figure 1.18. Various phase transitions in barium titanate (BT). Source: [1] ©Uchino,
K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 19. Reproduced by permission
of Taylor & Francis Group.
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Example Problem 1.4

Barium titanate at room temperature (tetragonal 4mm symmetry) has a crys-
tallographic anisotropy in the dielectric constant, as shown in Figure 1.18. The
permittivity along the spontaneous polarization direction ε3 is much smaller than
that perpendicular to the spontaneous polarization direction ε1. Let us consider the
electric poling of a uniformly oriented polycrystalline sample. Describe the change
in the permittivity before and after poling.

Solution

Before poling, the polarization direction in micro-crystals (i.e., grains) is ran-
domly oriented. Thus, the dielectric constant should have an average value between
εa and εc, that is, εave =

(
1
3

)
(εc + 2εa). Since electric poling orients the polarization

mostly along the z-axis (or c-axis), the permittivity approaches εc, leading to a de-
crease in the permittivity after poling. By measuring the permittivity decrease as a
function of the poling field, we can find the saturation tendency, meaning that we can
evaluate the minimum required electric field for the poling process. Statistical theory
(Uchida–Ikeda model) [7] suggests that the saturated PS value in a polycrystalline
specimen should be 83% of that of the single crystal.

Lead Zirconate Titanate (PZT)

Lead zirconate titanate (Pb(Zr,Ti)O3, PZT) solid solution systems were discov-
ered in 1954 by Japanese researchers Shirane, Sawaguchi, and Takagi [8]. The phase
diagram of the PZT system is shown in Figure 1.19, where the “morphotropic phase
boundary” (MPB) between the tetragonal and rhombohedral phases exists around
the 52 PZ–48 PT composition. The significant piezoelectric properties of the MPB
composition were discovered by Jaffe [9] of the Clevite Corporation, and Clevite
obtained the most important PZT patent for transducer applications. Because of this
strong basic patent, Japanese piezo-ceramic companies were actually encouraged
to develop ternary systems to overcome the performance of the binary system and,
more importantly, to escape from Clevite’s patent: that is, PZT + a complex perovskite
such as Pb(Mg1/3Nb2/3)O3 (Matsushita Panasonic), Pb(Ni1/3Nb2/3)O3 (NEC), and
Pb(Zn1/3Nb2/3)O3 (Toshiba), which is the basic composition at present. Figure 1.20
plots the dependence of several piezoelectric d constants on the composition near
the MPB in the PZT system. Note that the maximum piezoelectric performance is
obtained around the MPB composition in the pure PZT system.
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Figure 1.19. Phase diagram of lead zirconate titanate (PZT). Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 169. Reproduced by permission of
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Figure 1.20. Dependence of several d constants on the composition near the mor-
photropic phase boundary in the PZT system. Source: [1] ©Uchino, K. Ferroelectric
Devices, 2nd ed. CRC Press, 2010; p. 169. Reproduced by permission of Taylor &
Francis Group.

Relaxor Ferroelectrics

Relaxor ferroelectrics, many of which are composed of a “complex perovskite”
structure, can be prepared in either polycrystalline or single-crystal forms. Different
from the previously mentioned normal ferroelectrics such as BT and PZT, the relaxor
types are characterized by (1) a broad phase transition from the paraelectric to the
ferroelectric state, (2) a significant frequency dependency of the dielectric constant
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(i.e., “dielectric relaxation”), and (3) a weak remanent polarization under E = 0.
Relaxor ferroelectrics have complex “disordered perovskite” structures.

A binary system of relaxor-type Pb(Mg1/3Nb2/3)O3–PbTiO3 (or PMN-PT) ex-
hibits enormous electrostriction under an external electric field with almost zero
hysteresis, which is highly suitable for positioner applications. This relaxor ferroelec-
tric also exhibits an induced piezoelectric effect under a DC bias electric field. That
is, the electromechanical coupling factor kt varies with the external bias field. As
the DC bias field increases, the coupling increases and saturates. Since this behavior
is reproducible, these materials can be applied as ultrasonic transducers which are
tunable by the bias field [10].

Relaxor ferroelectrics with the morphotropic phase boundary (MPB) compo-
sition can be synthesized in single-crystal form rather easily. The author’s group
discovered superior electromechanical coupling in these crystals by manipulating
the crystal orientation in the late 1970s, which enhanced the performance for ul-
trasonic transducers and electromechanical actuators. Pb(Zn1/3Nb2/3)O3 (PZN)-
and Pb(Mg1/3Nb2/3)O3 (PMN)-based binary systems with PbTiO3 (PZN-PT and
PMN-PT) were demonstrated to have extremely large electromechanical coupling
factors [11,12]. Large coupling coefficients and large piezoelectric constants have
been found for crystals with the MPB composition. PZN-8%PT single crystals with a
rhombohedral symmetry were found to possess a high k33 value of 0.94 for the (001)
crystal cuts (57◦ cant from the spontaneous polarization direction); this is very high
compared to the k33 of conventional PZT ceramics of around 0.70~0.80.

PVDF

Thanks to Kawai’s efforts, polyvinylidene difluoride (PVDF or PVF2) was dis-
covered in 1969 [13]. Though the piezoelectric d constant (actuator figure of merit) is
not as high as that of piezo-ceramics, a high piezoelectric g constant (sensor figure of
merit) due to a low permittivity is attractive from the sensor application viewpoint.

PVDF is a polymer with monomers of CH2CF2, where H and F are aligned in
the opposite positions around the carbon chain, as shown in Figure 1.21. Because H
and F have positive and negative ionization tendencies, the monomer itself possesses
a dipole moment (upward dipole moment in the figure). Crystallization from the
melt forms the nonpolar α-phase, which can be converted into the polar β-phase
by a uniaxial or biaxial drawing operation; the resulting dipoles are then reoriented
through electric poling.
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Figure 1.21. Molecular structure of polyvinylidene diflouride (PVDF). Source: [1]
©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 19. Reproduced by
permission of Taylor & Francis Group.

Large sheets can be manufactured and thermally formed by a hot roller into
complex shapes. Piezoelectric polymers have the following characteristics: (a) small
piezoelectric d constants (for actuators), but large g constants (for sensors), (b) light
weight and soft elasticity, leading to good “acoustic impedance matching” with
water and the human body, (c) a low mechanical quality factor Qm, allowing for
a broad resonance bandwidth. On the other hand, for actuator applications, the
PVDF polymer degrades the performance significantly under a large cyclical (AC)
electric field because of heat generation via a large viscous damping or elastic loss
factor. Even self-melting is observed in the worst scenario such as when it is operated
at its resonance frequency. Slow operation for actuators and energy harvesting is
definitely required.

Pb-Free Piezo-Ceramics

In 2006, the European community implemented the RoHS Directive (Restrictions
of the Use of Certain Hazardous Substances), which explicitly limits the usage of
lead (Pb) in electronic equipment. Basically, we may need to regulate the usage of
lead zirconate titanate (PZT), the most famous current piezoelectric ceramic, in the
future. The Japanese and European communities may experience governmental
regulation on the usage of PZT in the next 10 years. Pb (lead)-free piezo-ceramics
started to be developed after 1999. Pb-free materials include (1) (K,Na)(Ta,Nb)O3-
based, (2) (Bi,Na)TiO3, and (3) BaTiO3 materials, which were studied extensively in
the 1960s–1970s; this reminds us that “history will repeat itself” (i.e., “Piezoelectric
Renaissance”) after one generation (~30 years).

1.2.8. Applications of Ferroelectrics

Ferroelectric materials, especially polycrystalline ceramics, are very promising
for a variety of applications such as “high-permittivity capacitors”, “ferroelectric
memories”, “pyroelectric sensors”, “piezoelectric and electrostrictive transducers”,
“electro-optic devices”, and “PTC thermistors”. Refer to [1] for a detailed discussion.
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Capacitor dielectrics utilize the peak dielectric constant around the transition
(Curie) temperature, meaning that TC should be adjusted around room temperature,
while for memory applications, the material must be ferroelectric at room tempera-
ture (refer to Figure 1.17). Since a large temperature derivative of the spontaneous
polarization is required for pyroelectric sensors, the TC is set to be just above room
temperature. The converse pyroelectric effect is called the “electrocaloric effect” (the
electric field generates the temperature decrease), which is becoming a new refrigera-
tion technique in this energy saving age. Piezoelectric materials are used for both
sensors and actuators, where the TC should be significantly above room temperature.
Pressure and acceleration sensors are now commercially available in addition to
conventional piezo-vibrators. Precision positioners and pulse drive linear motors
have already been installed in precision lathe machines, semiconductor manufac-
turing apparatuses, and office equipment. Exciting developments can be found in
ultrasonic motors, aiming at being “electromagnetic and sound noise free”, and very
compact motor applications. Recently, in parallel to the new energy source programs,
piezoelectric energy harvesting systems have become popular. Waste mechanical
energy such as machine noise vibration, wind, and human walking vibration can be
converted into electrical energy for direct use in signal transmission or for charging
up batteries for portable electronics. Its target is set on the elimination of batteries
from portable electronic equipment that are hazardous to the world. Electro-optic
materials have widely been commercialized in displays (such as liquid crystal dis-
plays) and will become key components in optical communication systems in the
near future. Optical beam scanners, light valves, and switches are urgent necessities.
For thermistor applications, semiconductive ferroelectric ceramics with a positive
temperature coefficient of resistivity (PTCR) based on a junction effect have also been
developed from barium titanate-based materials.

From the actual worldwide revenue viewpoint of ferroelectric and piezoelec-
tric devices, “capacitors” share more than 50%, followed by “piezoelectric devices”
with ~30%, and then “PTCR thermistors” with ~15%. Because “piezoelectricity”
has a rather unique performance without finding strong competitors (electromag-
netic counterpart motors/transformers are inferior in terms of efficiency in compact
component domains smaller than 30 W), piezoelectric applications are currently ex-
panding significantly. Though the electro-optic and pyroelectric/electrocaloric effects
seem to be very intriguing personally, their revenue contributions are very small
from the industrial viewpoints at present. Three examples commercialized recently
with a high revenue amount (i.e., million-selling devices) are introduced below.

Piezoelectric Multilayer Actuators for Automobiles

Diesel engines are a better choice than regular gasoline cars from the energy
conservation and global warming viewpoint. When we consider the total energy
required for gasoline production, both “well-to-tank” and “tank-to-wheel” should be
taken into account. The energy efficiency, measured by the energy required to realize
the unit drive distance for a vehicle (MJ/km), is of course better for high-octane
gasoline than diesel oil. However, since gasoline requires a huge amount of electrical
energy for its purification, gasoline is inferior to diesel fuel from the total energy
consumption viewpoint [14]. However, because conventional diesel engines generate
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toxic exhaust gases such as SOx and NOx due to insufficent burning of the fuel, new
diesel injection valves have been required to solve this problem. Siemens, Bosch, and
Toyota developed multi-injection-type diesel engines with piezoelectric multilayered
actuators. Figure 1.22 shows such a common rail-type diesel injection valve with an
ML piezo-actuator which produces high-pressure fuel and quick injection control.
Owning to the large force and quick response of the PZT ML actuator, a very fine mist
of diesel fuel can be injected in order to be burned effectively. ML piezo-actuators
should possess the highest reliability at an elevated temperature (150 ◦C) for a
long lifetime period (10 years) [15]. Piezoelectric actuators are namely the key to
increasing burning efficiency and minimizing toxic exhaust gases. The success of
this project seems to be attributed to the author’s “pulse drive technique” for ML
actuators without generating troublesome vibration ringing after the quick actuation,
which will be discussed in Chapter 8. The current research target of this project
includes Cu internal electrode usage for replacing the Ag-Pd electrode to reduce the
manufacturing cost of piezo-MLs.

Piezoelectric Actuator
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Figure 1.22. (a) Common rail-type diesel injection valve with a piezoelectric multi-
layer actuator (courtesy of Denso Corporation). (b) Diesel injection timing chart.
Source: [16] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; pp. 460–461.
Reproduced by permission of Taylor & Francis Group.

Ultrasonic Motors (USMs) for Camera Modules

Surface wave-type traveling wave ultrasonic motors were firstly installed in
Canon EOS zoom/focus mechanisms in the 1990s. The necessity of camera modules
for mobile phones in the early 2000s accelerated the development of micro motors at
an inexpensive cost. The so-called “metal tube type” consisting of a hollow metal
cylinder and two PZT rectangular plates was developed by Penn State University
in the late 1990s (see Figure 1.23a). When one of the PZT plates, Plate X, is driven
(single-phase drive), a bending resonant vibration is excited basically along the x’-axis.
However, because of an asymmetrical mass (Plate Y), another hybridized bending
mode is excited with some phase lag along the y’-axis, leading to an elliptical locus
on this metal tube end in a clockwise direction, similar to a “hula-hoop” motion. The
rotor of this motor is a cylindrical tube with a pair of stainless ferrules pressing down
with a spring. The metal cylinder motor, 2.4 mm in diameter and 12 mm in length,
was driven at 62.1 kHz in both rotation directions. A no-load speed of 1800 rpm and
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a maximum output torque of 1.8 mN·m were obtained for bi-directional rotation
under an applied rms voltage of 80 V. The rather high maximum efficiency of about
28% for this small motor is a noteworthy feature [17,18]. Various modifications were
made for the stator, including a type with four PZT plates, arranged symmetrically
and driven by two-phase (sine and cosine) voltages (Chapter 7 handles the AC drive
technique for piezoelectrics).
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Metal 
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Figure 1.23. (a) A “metal tube” motor structure using a metal tube and two rectan-
gular PZT plates. (b) Camera automatic zoom/focus mechanism with two metal
tube USMs. (c) Photo of the camera module installed in a Samsung flip-type cellular
phone in 2003. Source: [16] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019;
pp. 472–473. Reproduced by permission of Taylor & Francis Group.

Samsung Electromechanics, Korea, in collaboration with the author’s group,
developed a zoom and focus mechanism with two micro rotary motors in 2003. Two
micro metal tube motors with a 2.4 mm diameter and 14 mm length were installed
to control zooming and focusing lenses independently in conjunction with screw
mechanisms, as illustrated in Figure 1.23b [19]. A screw is rotated through a pulley,
which is then transferred to the lens up–down motion. The square chip (3 × 3
mm2) on the camera module in Figure 1.23c is a high-frequency drive voltage supply.
Newscale Technologies (Victor, NY) integrated a screw in the metal tube motor and
commercialized “squiggle motors” worldwide for camera module applications, in
partnership with ALPS, Tamron, and TDK-EPC [20]. Samsung Electromechanics is
now utilizing much smaller micro-ML chip linear USMs for the Galaxy smartphone
series’ camera modules due to the thinner design necessity [21].

In parallel to the USM usage, Konica-Minolta, Japan, developed a smooth
impact drive mechanism (SIDM) using a multilayer (ML) piezo-element [22]. The
idea comes from the “stick and slick” condition of the ring object attached on a drive
rod. By applying a sawtooth-shaped voltage to a multilayer actuator, alternating slow
expansion and quick shrinkage are excited on the drive friction rod. A ring slider
placed on the drive rod will “stick” on the rod due to friction during a slow expansion
period, while it will “slick” during a quick shrinkage period, meaning that the slider
moves from one end of the rod to the other. Example Problem 14.1 demonstrates how
to simulate the slider motion via the “stick and slick” condition. The lens is attached
to this slider. When the voltage saw shape is reversed, an opposite motion can be
obtained. Piezo Tech, Korea, developed a similar SIDM motor, but using a bimorph,
instead of an ML actuator, that suppressed the manufacturing cost significantly. For
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TULAs (tiny ultrasonic linear actuators) [23], though a flexural bimorph is used, the
driving frequency is much higher than 40 kHz (ultrasonic range) due to their small
size (inertial motor principle is described in Chapter 14).

Piezoelectric Energy Harvesting Systems

One of the recent research interests is “piezoelectric energy harvesting”. Cyclic
electric energy generated in a piezoelectric component by environmental noise vi-
bration can be accumulated into a rechargeable battery. Originally, in the 1980s, we
consumed the converted electrical energy via Joule heat in order to rapidly damp the
noise vibration [24]. After transitioning into the 1990s, we started to accumulate this
energy in a rechargeable battery [25–27]. Because the generating power is limited
up to the 100 W level, the development target is not to compete with MW~GW
electric power projects with other renewable windmill/watermill or solar cell tech-
nologies, but to eliminate small single-use batteries that are hazardous to the world.
There are three major phases/steps associated with piezoelectric energy harvest-
ing: (i) mechanical–mechanical energy transfer, including “mechanical impedance
matching” and the mechanical stability of piezoelectric transducers under large
stresses (refer to Chapter 10), (ii) mechanical–electrical energy transduction, relating
to the electromechanical coupling factor in composite transducer structures, and
(iii) electrical–electrical energy transfer, including “electrical impedance matching”
(refer to Chapter 10). A suitable DC–DC converter is required to accumulate the
electrical energy from a high-impedance piezo-device into a rechargeable battery
(low impedance) [28] (Chapters 7 and 8 discuss both pulse and AC mechanical drive
techniques for receiving the maxium electric energy).

Our application target of the “cymbal” was set to hybridize vehicles with both
an engine and an electromagnetic motor, in collaboration with Toyota Central Re-
search Labs, reducing the engine vibration and harvested electrical energy (~1 W)
in car batteries to increase the mileage. A cymbal with a 29 mm diameter and 1~2
mm thickness (0.3 mm-thick stainless steel endcaps), to be inserted below a 7 kg
engine weight (70 N bias force), was shaken under an electromagnetic shaker (in an
experiment) at 100 Hz, which generated 80 mW of electric power [25,26]. By parallely
connecting nine cymbals embedded in rubber engine damping sheets, we succeeded
in obtaining a total electric power level close to 1 W for a rechargeable battery.

Another development target of piezo-energy harvesting can be found in the
small energy harvesting (mW) area for signal transfer applications, where the effi-
ciency is not a primary objective because the use period is limited. These applications
usually handle an impulse/snap action load to generate instantaneous electrical en-
ergy for transmitting signals for a short period (100 ms–10 s), without accumulating
the electricity in a rechargeable battery. NEC-Tokin developed an LED traffic light
array system driven by a piezoelectric windmill, which is operated by wind effec-
tively generated by passing automobiles. Successful million-selling products in the
commercial market belong mostly to this category at present, including the “Light-
ning Switch” [28] and the 25 mm caliber “programmable air-burst munition” [29].
The former, by PulseSwitch Systems, VA, is a remote switch for room lights, using a
unimorph piezoelectric component (Figure 1.24a). In addition to living convenience,
the Lightning Switch can reduce housing construction costs drastically, due to a
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significant reduction in the copper electric wire length and the labor of aligning it in
the ceiling. On the contrary, the 25 mm caliber “programmable air-burst munition
(PABM)” [29] is based on electricity generation with a multilayer piezo-actuator
under shot impact to maneuver the bullet via an operational amplifier, developed
by Micromechatronics Inc., PA, and ATK Integrated Weapon Systems, AZ, during
the revenge war against Afghanistan (2003). The current bullet seems to be a micro
missile with a programmable function (microcomputer for pin-point tageting). A
piezo-energy harvesting device was installed because the original button battery
(for operating microchips for 2–3 s to maneuver the bullet) decayed after only two
months under the high-temperature atomosphere of the Afghanistan battlefield.

Piezoelectric 
Thunder Element

Mounted in Transmitter
Lightning Transmitter

(a)

Piezo ML

(b)

Figure 1.24. (a) Lightning Switch with a piezoelectric Thunder actuator (courtesy
of Face Electronics). (b) Programmable air-burst munition (PABM, 25 mm caliber)
developed by Micromechatonics. Source: Figure by author.

Though relatively large investments and research efforts are being devoted
to MEMS/NEMS and “nano-harvesting” devices, a positive comment cannot be
provided at the moment, except for the sensor applications [30]. Even for medi-
cal applications, the obtained/reported energy level of nW~µW from one MEMS
component (this level practically refers to “sensors”, not “energy harvestors”, in
engineering) is a useless level, which originates from the inevitable small volume
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of the used piezoelectric material (i.e., thin films). A minimum of 0.1 mm3 PZT is
required for generating a couple of megawatts (minimum level to be called “energy
harvesting”), because the current high-power PZT ceramics can handle a maximum
of 30 W/cm3. In practice, at minimum, a 30 µm-thick PZT film is required for main-
taining a small area less than 3× 3 mm2. A total of 90% of the current research papers
do not satisfy this minimum requirement. Another solution is to invent a genius idea
of how to combine thousands of these nano-devices in parallel and synchronously in
phase. “Nano- or microgrid” research aimed at reaching a minimum 1 mW level by
connecting thousands of nano-harvesting devices is highly encouraged, rather than
merely the MEMS fabrication process from an academic viewpoint. Refer to [31].

Chapter Essentials

1. Ferroelectric and piezoelectric category:
Dielectrics > Piezoelectrics > Pyroelectrics > Ferroelectrics

2. Ferroelectric materials are very promising for a variety of applications:

• High-permittivity capacitors (high permittivity around TC);
• Ferroelectric memories (large spontaneous polarization);
• Pyroelectric sensors, electrocaloric refrigeration (large temperature depen-

dence of PS);
• Piezoelectric/electrostrictive transducers, piezoelectric energy harvesting

(electromechanical k);
• Electro-optic devices (refractive index control);
• PTC thermistors (semiconductor junction effect).

3. Origin of spontaneous polarization: balancing the following two types of en-
ergy:

• Dipole coupling with the local field−driving force of ionic displacement;
• Elastic anharmonic term−impeding ionic displacement.

4. Field-induced strains:

• Piezoelectric strain −x = dE in an asymmetric crystal.

4 Difference in the harmonic term of the two equivalent springs.

• Strain associated with polarization reorientations.
• Electrostriction −x = ME2 in a symmetric crystal.

4 Anharmonicity of the equivalent springs (slightly compliant for
extension).

5. Electro-optic effect: Refractive index change with an external electric field. The
secondary Kerr effect is frequently used. Devices making use of this effect
require a pair of crossed polarizers arranged at a ±45◦ angle with respect to the
electric field direction. Half-wave voltage: minimum voltage required for an
electro-optic crystal to exhibit the first maximum light intensity.

6. Recent “million-selling” piezoelectric products:

• Piezoelectric multilayer actuators for diesel injection valve control;
• Ultrasonic motors (USMs and inertial type) for smartphone camera mod-

ules;
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• Piezoelectric energy harvesting devices for “programmable air-burst mu-
nition”

Check Point

1. There are three microscopic origins of polarization: electronic polarization, ionic
polarization, and ( ). Fill in the blank.

2. The local field is the driving force for spontaneous polarization. What is the
positive feedback amplification factor “γ” called, which enhances the applied
electric field E?

3. (T/F) Taking into account a famous relation between the relative permittivity ε

and the refractive index n: ε = n2, we can obtain n = 4 for a crystal with ε = 16
(at 1 kHz). Is this argument true or false?

4. Randomly oriented light passes through a polarizer. When we neglect the light
absorption by the polarizer, what percentage of the light intensity can we obtain
after the polarizer in comparison with the input intensity?

5. (T/F) The definition of the Pockels electro-optic coefficient r1jk is given by an
expansion expression: 1/nij(E) − 1/nij(0) = ΣrijkEk. True or false?

6. (T/F) The Curie temperature of a ferroelectric capacitor material should be
around room temperature. True or false?

7. (T/F) The Curie temperature of a piezoelectric transducer material should be
100 ◦C lower than room temperature. True or false?

8. (T/F) The Curie temperature of a pyroelectric sensor material should be 200 ◦C
higher than room temperature. True or false?

9. Provide the name of a representative polymer piezoelectric.
10. Provide the full expression of “PZT”.

Chapter Problems

1.1 Ferroelectricity disappears in general with a decreasing particle size. In order
to explain this phenomenon, we consider the energy fluctuation for a nano-size
ferroelectric particle as follows: Consider a 1D finite chain of two types of
ions, +q and −q, arranged alternately with a distance of a (see Figure 1.25a).
A nano-size crystal grows gradually, starting from a single positive ion, then
adding a pair of negative or positive ions, thus maintaining a crystal size of 2na
(n = 1, 2, 3, . . . ). With an increasing crystal size, the crystal Coulomb energy will
be changed as follows:
U1 = (2/4πε0ε) [−(q2/a)]
U2 = (2/4πε0ε) [−(q2/a) + (q2/2a)]
U3 = (2/4πε0ε) [−(q2/a) + (q2/2a) − (q2/3a)]
· · · · · · · · · · · ·

(a) For the infinite (large) crystal, calculate the “Madelung constant” when the
saturated energy is expressed by

U = (−M/4πε0ε)(q2/a). (CP1.1.1)

(b) With an increasing crystal size layer by layer, how many layers are required to
stabilize the energy fluctuation to less than±10% around the Madelung energy?
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Figure 1.25. One-dimensional linear chain (a), and Madelung energy (b). Source:
Figure by author.

Hint

Use the relation: ln(1 + x) = x− x2

2 + x3

3 − · · · . The value 2ln2 = 1.386 is called
the Madelung constant for a 1D chain.

(a) With an increasing crystal size, the crystal Coulomb energy will be changed as
follows:

Un = −
(

2
4πε0ε

)(
q2

a

)(
1− 1

2
+

1
3
− 1

4
+ · · ·+ 1

n

)
. (CP1.1.2)

Knowing the relation: ln(1 + 1) = 1− 1
2 + 1

3 − 1
4 + · · · = ln(2),

U∞ = −
(

2
4πε0ε

)(
q2

a

)
ln(2). (CP1.1.3)

Since the Madelung constant is defined by

U∞ = −
(

M
4πε0ε

)(
q2

a

)
,M = 2ln(2) = 1.386. (CP1.1.4)

(b) The Coulomb potential change at the center point is shown in Figure 1.25b as
a function of the crystal size n, with a final saturating value of the Madelung
energy. When the energy fluctuation is so large, a small energy imbalance
between the paraelectric and the ferroelectric state may not cause a phase
transition. Suppose that the minimum crystal size (2na) is required to main-
tain the potential energy fluctuation at less than ±10% at the center positive
ion, even when adding or subtracting a pair of ions (i.e., n + 1 or n − 1). If
the basic crystal Coulomb energy is not stabilized to less than this degree of
fluctuation, we cannot expect the ferroelectric phase transition to occur as a
cooperative phenomenon.
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By equating 1/n = 10%, we obtain n = 10. If we use a = 4 Å, 2na = 80 Å =
8 nm. According to the study on amorphous PbTiO3, the soft phonon mode
and the maximum permittivity indicate that the appearance of ferroelectricity
starts to be observed around 100 Å, with an increasing crystalline size during
the annealing process. This crystalline size is in the same range as the above
theoretically estimated crystal size. The reader is requested to extend the
theory to the 2D model (try Example Problem 14.4 for 2D Madelung constant
calculation, which exhibits a much more stable idea than the 1D model).

1.2 Potassium tantalate niobate K(Ta0.65Nb0.35)O3 is cubic at room temperature.
By applying an electric field Ez along a perovskite [100] axis, it exhibits an
induced polarization P3, electrostrictive strains x3 = Q11P3

2 and x1 = Q12P3
2,

and refractive index changes ∆n3 = −(1/2)n0
3g11P3

2 and ∆n1 = −(1/2)n0
3 ×

g12P3
2. Experimental values of these are: Q11 = 0.090 m4C−2, and Q12 = −0.035

m4C−2; g11 = 0.136 m4C−2, and g12 = −0.038 m4C−2. Comparing the absolute
values between Q and g and the ratios Q11/Q12 and g11/g12, discuss similarities
in terms of the crystal lattice compactness along and perpendicular to the
electric field.

1.3 PZT 5H and PZT 8 have the following physical parameters:

Physical Parameters PZT 5H PZT 8

d33 (10−12 m/V) 593 225

εX
33/ε0 3400 1000

sE
33(10−12 m2/N) 20.8 13.5

(a) Calculate the electromechanical coupling factor k33 for both PZT specimens.
(b) Which specimen, PZT5H or PZT8, is a “hard” PZT? Explain the reason for

this judgement.
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2. Linear Coupling in Ferroelectrics—Taylor
Expansion Series

2.1. Thermodynamical Functions

2.1.1. Various Energy Descriptions

A thermodynamic phenomenological theory is discussed basically in the form
of expansion series of the “internal energy” U as a function of the physical properties;
the free energy is composed of “thermal energy” dQ, “mechanical energy” Xdx (stress
X, strain x), and “electrical energy” EdD (dielectric displacement D (almost equal to
polarization P in high-permittivity materials), electric field E) in ferroelectrics. When
a material is ferromagnetic, magnetic energy HdB is integrated. Further, thermal
energy dQ is given by dQ ≤ TdS, where temperature is T and entropy is S. Equality
“=” is true for a reversible process, and “<” is true for an irreversible process. We can
describe U as follows:

dU = dQ + Xdx + EdD ≤ TdS + Xdx + EdD. (2.1)

According to the combination possibilities among (T, S), (X, x), and (E, D), there
are the following eight types of energy:

• Internal energy U = Q + W dU = TdS + Xdx + EdD (2.2)
• Helmholtz free energy A = U – TS dA = −SdT + Xdx + EdD (2.3)
• Enthalpy H = U − Xx – ED dH = TdS− xdX− DdE (2.4)
• Elastic enthalpy H1= U – Xx dH1 = TdS− xdX + EdD (2.5)
• Electric enthalpy H2= U – ED dH2 = TdS + Xdx− DdE (2.6)
• Gibbs free energy G = U − TS − Xx – ED dG = −SdT − xdX− DdE (2.7)
• Elastic Gibbs energy G1= U − TS – Xx dG1 = −SdT − xdX + EdD (2.8)
• Electric Gibbs energy G2= U − TS – ED dG2 = −SdT + Xdx− DdE (2.9)

According to the IUPAC (International Union of Pure and Applied Chemistry),
an “extensive” parameter depends on the volume of the material (e.g., the length,
charge, or entropy S is halved by cutting the material in half), while an “intensive”
parameter is the ratio of two extensive parameters and, therefore, is independent
of the volume of the material (e.g., the force, voltage, or temperature T does not
change by cutting the material in half) [1]. Consequently, stress (X), the electric field
(E), and temperature (T) are intensive parameters, which are externally controllable,
while strain (x), electric displacement (D) (almost the same as polarization (P) in this
textbook), and entropy (S) are extensive parameters, which are internally determined
in a material. Internal energy U (per unit volume, [J/m3]) is described in terms of
“extensive” physical parameters (S, x, D). Since the phase transition and experiments
are normally conducted under external parameter changes by keeping some constant
such as T = constant (isothermal), X = 0 (stress free), or E = 0 (short circuit), the
Gibbs free energy described in terms of “intensive” physical parameters (T, X, E) is
the most popularly utilized type to analyze experimental data. On the other hand,
the elastic Gibbs energy G1 is most convenient for discussing the ferroelectric phase
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transition due to two merits: (1) by describing higher-order Taylor expansion terms
of the “order parameter” D (or P), we can derive the spontaneous polarization; (2)
external X can be controlled explicitly, and E is easily related to ( ∂G1

∂P )T,X . We discuss
Devonshire theory in Chapter 4.

2.1.2. Maxwell Relations

We can obtain some of the “Maxwell relationship” examples from Equations
(2.2)–(2.9) as follows, taking the second partial derivative:

(
∂D
∂X

)
T,E

= (
∂

∂X
(−∂G

∂E
)

T,X
)

T,E
= (

∂

∂E
(− ∂G

∂X
)

x,T
)

T,D
= (

∂x
∂E

)
T,X

, (2.10a)

(
∂X
∂D

)
T,x

= (
∂

∂D
(

∂A
∂x

)
X,D

)
T,x

= (
∂

∂x
(

∂A
∂D

)
x,T

)
T,D

= (
∂E
∂x

)
T,D

, (2.10b)

(
∂S
∂E

)
T,X

= (
∂

∂E
(−∂G

∂T
)

X,E
)

T,X
= (

∂

∂T
(−∂G

∂E
)

X,T
)

T,X
= (

∂D
∂T

)
X,E

. (2.10c)

Equations (2.10a) and (2.10b) are for the piezoelectric d coefficients, discussed in Sec-
tion 2.2.1, while Equation (2.10c) is used in the “pyroelectric coefficient” p derivation
in Section 2.4.1.

Figure 2.1 shows a convenient memorization method for obtaining the Maxwell
relations. The arrow from “S” to “T” stands for the following: “T” is obtained from
the partial derivative of H1 (D-constant) or H2 (E-constant) in terms of “S”, or “S” is
obtained from the partial derivative of G1 (D-constant) or G2 (E-constant) in terms of
“T” with a negative sign (arrow direction is opposite!). The other arrow from “E” to
“−D” has similar meanings. Thus, we can obtain the following relations, leading to
the right-hand side Maxwell relations:

T = ( ∂H1
∂S )D; E = ( ∂H1

∂D )S
→ ( ∂T

∂D )S = ( ∂E
∂S )D

T = ( ∂H2
∂S )E; −D = ( ∂H2

∂E )S
→ ( ∂T

∂E )S = −( ∂D
∂S )E

−S = ( ∂G2
∂T )E; −D = ( ∂G2

∂E )T
→ ( ∂S

∂E )T = ( ∂D
∂T )E

−S = ( ∂G1
∂T )D; E = ( ∂G1

∂D )T
→ ( ∂S

∂D )T = −( ∂E
∂T )D

S

E

−D

T

G1H2

H1

G2

Figure 2.1. Maxwell relation derivation chart. Source: Figure by author.
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2.1.3. Linear Energy Handling

We consider a practical formula of the Gibbs free energy G(T, X, E) for the case of
a small value change in temperature θ = T − TR (room temperature), external X, and
E (1D case). If the change in parameters is small, we may adopt the three-parameter
Taylor expansion approximation up to the second derivatives in order to discuss just
the linear relationships, based on the description by Mitsui et al. [2]:

G(T, X, E) = G0 +
(

∂G
∂T

)
θ +

(
∂G
∂X

)
X +

(
∂G
∂E

)
E + 1

2

(
∂2G
∂T2

)
θ2 + 1

2

(
∂2G
∂X2

)
X2

+ 1
2

(
∂2G
∂E2

)
E2 +

(
∂2G

∂T∂X

)
θX +

(
∂2G

∂T∂E

)
θE +

(
∂2G

∂X∂E

)
XE.

(2.11)

Taking into account dG = –SdT–xdX − DdE, we first obtain the relations(
∂G
∂T

)
θ,X,E=0

= −S0,
(

∂G
∂X

)
θ,X,E=0

= −x0, and
(

∂G
∂E

)
θ,X,E=0

= −D0. Since S0 is

the entropy density at θ, X, E = 0, we take this as the “origin” value and set it as
S0 = 0. The values x0 and D0 (≈ P0) are considered to be spontaneous strain and
spontaneous polarization in the ferroelectric phase of this material (refer to Chapter
4), and we set them as new “origins” in the discussion merely in the ferroelectric
phase. Now, Equation (2.11) can be transformed as follows:

S = −
(

∂G
∂T

)
= −

(
∂2G
∂T2

)
θ −

(
∂2G

∂T∂X

)
X−

(
∂2G

∂T∂E

)
E, (2.12a)

x = −
(

∂G
∂X

)
= −

(
∂2G

∂T∂X

)
θ −

(
∂2G
∂X2

)
X−

(
∂2G

∂X∂E

)
E, (2.12b)

D = −
(

∂G
∂E

)
= −

(
∂2G

∂T∂E

)
θ −

(
∂2G

∂X∂E

)
X−

(
∂2G
∂E2

)
E. (2.12c)

Based on the above linear relationships, we derive several types of “constitutive
equations” in the following sections.

2.2. Isothermal Process—Piezoelectric Coupling

2.2.1. Thermodynamical Meaning of Piezoelectric Constant

When the temperature is constant (i.e., “isothermal”), θ = 0 in Equations
(1.12b) and (1.12c), we can obtain the “intensive” parameter-based piezoelectric
constitutive equations

x = sEX + dE, (2.13a)

D = dX + ε0εXE, (2.13b)

where the following denotations are used: sE is the elastic compliance under a
constant E, and ε0εX is the dielectric permittivity under a stress-free condition:





sE = −
(

∂2G
∂X2

)

ε0εX = −
(

∂2G
∂E2

)

d = −
(

∂2G
∂X∂E

) . (2.14)
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The Maxwell relation, Equation (2.10a), ( ∂D
∂X )T,E = ( ∂x

∂E )T,X, verifies that the
piezoelectric coefficients d in Equations (2.13a) and (2.13b) are thermodynamically
the same.

When we start from the Helmholtz free energy A (dA = −SdT + Xdx + EdD),
by taking a similar Taylor expansion approach, we obtain another set of piezoelectric
constitutive equations in terms of “extensive” parameters, x and D:

X = cD x − hD, (2.15a)

E = −hx + κ0κxD, (2.15b)

where cD is the elastic stiffness under a constant D, and κ0κx is the inverse permittivity
(κ0 = 1/ε0) under a strain-free condition, and these coefficients are expressed by





cD =
(

∂2 A
∂x2

)

κ0κx =
(

∂2 A
∂D2

)

h = −
(

∂2 A
∂x∂D

) . (2.16)

The Maxwell relation ( ∂X
∂D )T,x = ( ∂E

∂x )T,D in Equation (2.10b) verifies that the
inverse piezoelectric coefficients h in Equations (2.15a) and (2.15b) are thermodynam-
ically the same.

2.2.2. Electromechanical Coupling Factor

The term “electromechanical coupling factor” k is defined as the square value k2

of the ratio of the converted energy over the input energy: when electric to mechani-
cal,

k2 = (Stored mechanical energy/Input electrical energy), (2.17a)

or when mechanical to electric,

k2 = (Stored electrical energy/Input mechanical energy). (2.17b)

Let us derive Equation (2.17a) first practically, where an external electric field
E3 is applied to a piezoelectric material in a pseudo-static process. See Figure 2.2a,
where we apply an electric field on the top and bottom electrodes under a stress-free
condition (X = 0) [3]. The input electric energy must be equal to (1/2)·ε0ε3

XE3
2 from

Equation (2.11) (under X = 0), and the output strain generated by E3 should be d33E3
from Equation (2.13a). Since the converted/stored mechanical energy is obtained as
(1/2·s33

E)·x3
2, we obtain

k33
2= [(1/2)(d33E3)2/s33

E]/[(1/2)·ε0ε3
XE3

2] = d33
2/ε0ε3

X·s33
E. (2.18a)
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P3 P3

d33 d33

E3 X33

(a) (b)

Figure 2.2. Calculation models of the electromechanical coupling factor k for (a)
an electric input under a stress-free condition, and (b) a stress input under a short-
circuit condition. Source: Figure by author, adapted from [4].

Let us now consider Equation (2.17b), where an external stress X3 is applied
to a piezoelectric material in a pseudo-static process. Refer to Figure 2.2b. Under
a short-circuit condition (E3 = 0), the input mechanical energy must be equal to
(1/2) s33

EX3
2 from Equation (2.11), and the electric displacement D3 (or polarization

P3) generated by X3 should be equal to d33X3 from Equation (2.13b). This D3 can
be obtained by integrating the short-circuit current in terms of time through the
electric lead. Since the converted/stored electric energy is obtained as (1/2 ε0ε3

X)
D3

2, we obtain

k33
2= [(1/2ε0ε3

X)(d33X3)2]/[(1/2)·s3
EX3

2] = d33
2/ε0ε3

X·s33
E. (2.18b)

It is essential to understand that the electromechanical coupling factor k (or k2,
which has a physical meaning of the energy transduction/conversion rate) can be
exactly the same for both converse (2.18a) and direct (2.18b) piezoelectric effects. The
conditions under constant X (stress free) or a constant E (short circuit) are considered
to be non-constrained.

2.2.3. Constraint Physical Parameters—Permittivity and Elastic Compliance

It is important to consider the conditions under which a material will be operated
when characterizing the dielectric constant and elastic compliance of that material [3].
When a constant electric field is applied to a piezoelectric sample, as illustrated in
Figure 2.3, top, the total input electric energy (left) should be equal to a combination
of the energies associated with two distinct mechanical conditions that may be
applied to the material: (1) stored electric energy under the “mechanically clamped
state”, where a constant strain (zero strain) is maintained and the specimen cannot
deform, and (2) converted mechanical energy under the “mechanically free state”,
in which the material is not constrained and is free to deform. This situation can be
expressed by(

1
2

)
εXε0E2

0 =
(

1
2

)
εxε0E2

0 +
(

1
2sE

)
x2 =

(
1
2

)
εxε0E2

0 +
(

1
2sE

)
(dE0)

2,
such that

εXε0 = εxε0 +

(
d2

sE

)
or εx = εX

(
1− k2

)
[k2 =

d2

εXε0 sE ]. (2.19a)
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When a constant stress is applied to the piezoelectric, as illustrated in Figure 2.3,
bottom, the total input mechanical energy will be a combination of the energies
associated with two distinct electrical conditions that may be applied to the material:
(1) stored mechanical energy under the “open-circuit state”, where a constant electric
displacement is maintained, and (2) converted electric energy (i.e., “depolarization
field”) under the “short-circuit condition”, in which the material is subject to a
constant electric field. This can be expressed as
(

1
2

)
sEX2

0 =

(
1
2

)
sDX2

0 +

(
1
2

)
εXε0E2 =

(
1
2

)
sDX2

0 +

(
1
2

)
εXε0 (d/ε0ε3

X)
2

X2
0 ,

which leads to

sE = sD +

(
d2

εXε0

)
or sD = sE(1− k2)[k2 =

d2

εXε0 sE ]. (2.19b)

In principle, if we measure the permittivity in a piezoelectric specimen under
stress-free and completely clamped conditions, we can obtain εX and εx, respectively.
However, in practice, εx cannot be measured because of the experimental difficulty
of maintaining the ideal strain-free (clamped) condition for a long period. Similarly,
if we measure the strain in a piezoelectric specimen as a function of the applied stress
pseudo-statically, under short-circuit and open-circuit conditions, we can obtain sE

and sD, respectively. However, in practice, sD cannot be measured because of the
induced bound charge (or polarization) “screening” by the migrating charge in the
electrode, specimen, or surrounding atmosphere within a couple of minutes. Thus,
the clamped permittivity εx or open-circuit D-constant sD can only be measured
with high-frequency dynamical methods, such as an impedance analyzer around the
resonance/antiresonance frequencies. Constraint parameters are discussed again in
Chapter 9.

In conclusion, we obtain the following equations:

εx/εX = (1− k2), (2.20a)

sD/sE = (1− k2), (2.20b)

where

k2 =
d2

sEεXε0
. (2.21a)

We can also write equations of a similar form for the corresponding reciprocal
quantities:

κX/κx = (1− k2), (2.22a)

cE/cD = (1− k2), (2.22b)

where, in this context,

k2 =
h2

cD(κ0 κx)
. (2.21b)
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Figure 2.3. Schematic representation of the response of a piezoelectric material
under (top) constant applied electric field and (bottom) constant applied stress
conditions. Source: [4] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019;
p. 76. Reproduced by permission of Taylor & Francis Group.

This new parameter k in Equation (2.21b) is also the “electromechanical coupling
factor” in the “extensive” parameter description and identical to the k in Equation
(2.21a). Note the k expression derivation from the piezoelectric constitutive equations,
Equations (2.13a), (2.13b), (2.15a), and (2.15b):

k2 =
(Coupling factor)2

(Product of the diagonal parameters) =
d2

sEεXε0
= h2

cD(κ0 κx)
[κ0 = 1/ε0 ].

Example Problem 2.1

(1) Verify the relationship

d2

sEεXε0
=

h2

cD(κ0κx)
. (P2.1.1)

This value is defined as the square of an electromechanical coupling factor
(k2), which should be the same even for different energy description systems (i.e.,
intensive or extensive description).

(2) Derive the following relationships:

εXε0 =
1

(κ0κx)[1 − h2

cD(κ0κx)
]
=

1
(κ0κx)(1 − k2)

, (P2.1.2)
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sE =
1

cD[1− h2

cD(κ0κx)
]
=

1
cD(1− k2)

, (P2.1.3)

d =

h2

cD(κ0κx)

h[1− h2

cD(κ0κx)
]
=

k2

h(1− k2)
. (P2.1.4)

Solution

(1) When Equations (2.13a) and (2.13b) are combined with Equations (2.15a) and
(2.15b), we obtain

X = cD(sEX + dE) + h(dX + ε0εXE), (P2.1.5)

E = −h(sEX + dE) + (κ0κx)(dX + ε0εXE), (P2.1.6)

or upon rearranging,

(1 − cDsE + hd)X + (hε0εX − cDd)E = 0, (P2.1.7)

[hsE − (κ0κx)d] X + [1 − (κ0κx)ε0εX + hd]E = 0. (P2.1.8)

Combining the last two equations yields

(1 − cDsE + hd)[1 − (κ0κx)ε0εX + hd] − (hε0εX − cDd)[hsE − (κ0κx)d] = 0, (P2.1.9)

which, when simplified, produces the desired relationship:

d2

sEεXε0
=

h2

cD(κxκ0)
. (P2.1.10)

(2) From the two constitutive equations

[
x
D

]
=

[
sE d
d ε0εX

][
X
E

]
, and

[
X
E

]
=

[
cD −h
−h κ0κx

][
x
D

]
, (P2.1.11)

we obtain [
x
D

]
=

[
sE d
d ε0εX

][
cD −h
−h κ0κx

][
x
D

]
. (P2.1.12)

Thus, the following equation should be satisfied:

[
sE d
d ε0εX

][
cD −h
−h κ0κx

]
=

[
1 0
0 1

]
. (P2.1.13)

Accordingly, sEcD − dh = 1, −sEh + dκ0κx = 0, dcD − ε0εXh = 0, and −dh + ε0εXκ0κx =
1. Then, we obtain the relationships Equations (P2.1.2)–(P2.1.4), by expressing the
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intensive parameters ε0εX , sE, and d in terms of the extensive parameters κ0κx, cD, h,
and k2.

2.3. Adiabatic Process 1—Piezothermal Effect

2.3.1. Piezothermal Coupling Effect

When we discuss piezoelectric coupling phenomena, we assume the isothermic
condition; that is, the specimen temperature is maintained constant, and even the
energy conversion is conducted between the electrical and mechanical energy. We
next consider the “adiabatic process”; that is, the specimen is isolated from the exter-
nal heat source, and the temperature may be changed during the energy conversion
process by the external input. When the electric field is constant, E = 0 in Equations
(2.12a) and (2.12b), we can obtain the following equations:

S = −
(

∂2G
∂T2

)
θ −

(
∂2G

∂T∂X

)
X, (2.23a)

x = −
(

∂2G
∂T∂X

)
θ −

(
∂2G
∂X2

)
X, (2.23b)

or

S =
Cp

T
θ + αLX, (2.24a)

x = αLθ + sEX, (2.24b)

where the following notations are used: Cp is the “heat capacitance per volume”
under X = 0 and E = 0, and sE is the elastic compliance under a constant E:





Cp = −T
(

∂2G
∂T2

)
X,E

sE = −
(

∂2G
∂X2

)
E,T

αL = −
(

∂2G
∂T∂X

)
E

. (2.25)

Let us discuss here the diagonal expansion coefficient −
(

∂2G
∂T2

)
in terms of the

specific heat capacity. Recall the relation dq = TdS in the “reversible” thermal process,
where dq is the thermal energy flow per unit “volume”, given by the total energy
flow dQ = Vdq (V: volume). The heat capacitance Cp is defined by

Cp =
∂q
∂T

= T(
∂S
∂T

)
X,E

= −T
(

∂2G
∂T2

)

X,E
. (2.26)

Here, we used the relation S = −
(

∂G
∂T

)
X,E

. It is noteworthy that the “specific heat

capacity” cp, more popularly measured experimentally, is defined by the required

47



thermal energy per unit “mass” to increase the unit temperature. Thus, the above Cp
is related to the specific heat capacity with the mass density ρ:

Cp = ρcp (2.27)

The “piezothermal coefficient” αL is usually called the “linear thermal expansion
coefficient”, because −

(
∂2G

∂T∂X

)
E
= ( ∂x

∂T ). The piezothermal coefficient αL originates
from a nonlinear elastic vibration or the anharmonic phonon interaction, which will
be discussed in Chapter 11.

This piezothermal coefficient αL contributes to the converse effect; that is, a
temperature change under stress application. Considering an adiabatic condition,
Equation (2.24a) gives Cp

T θ = −αLX or θ = − αL( Cp
T

)X, which means that a sudden

tensile stress generates a temperature decrease. The reader might have experienced
in their elementary or middle school age the feeling of a “cool” temperature when
they touched a thick rubber band on their lip immediately after expanding it (I liked
this experiment, though I could not understand the principle correctly).

The “piezothermal coupling factor” kPT can be defined from Equations (2.24a)
and (2.24b) by

kPT2
=

(Coupling factor)2

(Product of the diagonal parameters)
=

αL
2

(
Cp
T

)
sE

. (2.28)

2.3.2. Constraint Physical Parameters—Heat Capacitance and Elastic Compliance

We can derive the completely “clamped” (strain x free) heat capacitance and the
“adiabatic” elastic compliance in terms of kPT2 theoretically, as follows, though these
may not be useful physical parameters.

Clamped Specific Heat Capacity

Under a strain-free condition (x = 0), we obtain X = − αL
sE θ from Equation (2.24b).

We experience this effect when a train rail track bends on a hot summer day, which
occasionally causes derailment accidents. Since Equation (2.24a) gives

S =
Cp
T θ + αL

(
− αL

sE θ
)
=

Cp
T (1− kPT2

)θ,
we finally obtain

Cx
p = CX

p (1− kPT2
). (2.29)

The heat capacitance becomes smaller under the mechanical clamping.

Adiabatic Elastic Compliance

Under an adiabatic condition (S = 0), we obtain θ = − T
Cp

αLX from Equation
(2.24a). The reader is reminded of the feeling of a “cool” temperature when you
expanded (tensile stress) a rubber band quickly and touched it on their lip. Since
Equation (2.24b) gives

x = αL

(
− T

Cp
αLX

)
+ sEX = sE

(
1− kPT2

)
X,
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we obtain
sE,S

adia= sE,T
iso

(
1− kPT2)

. (2.30)

2.4. Adiabatic Process 2—Electrothermal Effect

2.4.1. Electrothermal Coupling Effect

When the stress is constant, X = 0 in Equations (2.12a) and (2.12c), we can
obtain the following equations:

S = −
(

∂2G
∂T2

)
θ −

(
∂2G

∂T∂E

)
E, (2.31a)

D = −
(

∂2G
∂T∂E

)
θ −

(
∂2G
∂E2

)
E, (2.31b)

or

S =
CE

p

T
θ − pE, (2.32a)

D = −pθ + ε0εXE, (2.32b)

where the following denotations are used: CE
p is the heat capacitance (per unit

volume) under X = 0 and E = 0, and ε0εX is the permittivity under constant stress X:





CE
p = −T

(
∂2G
∂T2

)
X,E

ε0εX = −
(

∂2G
∂E2

)
T,X

p =
(

∂2G
∂T∂E

)
X

. (2.33)

The primary electrothermal coupling coefficient p is usually called the “pyro-
electric coefficient”, defined by

p =

(
∂2G

∂T∂E

)

X
= −( ∂P

∂T
)

X
, (2.34)

where we intentionally used the relation ( ∂G
∂E )X = D (≈ P), since the permittivity εX

is large in ferroelectrics.
We can denote the primary “electrothermal coupling factor” kET from Equations

(2.32a) and (2.32b) as

kET2
=

(Coupling factor)2

(Product of the diagonal parameters)
=

p2
(

CE
p

T

)
ε0εX

. (2.35)

2.4.2. Constraint Specific Heat Capacity

In Equation (2.33), we introduced the CE
p heat capacitance (per unit volume)

under X = 0 and E = 0; that is, under a short-circuit condition of a ferroelectric
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specimen’s surface electrodes. We may consider a different heat capacitance under
an open-circuit condition (i.e., D = constant or zero).

Taking the first derivative of Equation (2.32a) with respect to T by keeping X =
D = 0,

(
∂S
∂T

)
X,D

=
CE

p

T
(

∂θ

∂T
)

X,D
− p(

∂E
∂T

)
X,D

. (2.36)

From Equation (2.32b) at D = 0, we obtain

E =
p

ε0εX θ, (2.37a)

(
∂E
∂T

)
X,D

=
p

ε0εX . (2.37b)

If we consider that CD
p = T( ∂S

∂T )X,D and ( ∂θ
∂T )X,D = 1, we can obtain

CD
p = CE

p −
Tp2

ε0εX = CE
p [1−

p2
(

CE
p

T

)
ε0εX

] = CE
p (1− kET2

). (2.38)

It is important to note that Equation (2.38) is analogous to Equation (2.20b) to correlate
the D-constant and E-constant parameters in terms of the “coupling factors”, kET2

and k2.

2.4.3. Constraint (Adiabatic) Permittivity

Permittivity has been defined isothermally thus far. However, we may consider
“adiabatic” permittivity theoretically when no heat flow is hypothesized, such as the
case where a ferroelectric specimen is suspended in a vacuum chamber [2].

From Equation (2.32b), isothermal permittivity (θ = 0) is given by

ε0εX,T = (
∂D
∂E

)
X,T

. (2.39)

Under an adiabatic condition, by inserting S = 0 into Equation (2.32a), we obtain

θ =
pT
CE

p
E. (2.40)

Inserting Equation (2.40) into Equation (2.32b),

D = −p
pT
CE

p
E + ε0εX,TE = ε0εX,T

[
1− Tp2

CE
p ε0εX

]
E. (2.41)

Thus, “adiabatic (S = constant) permittivity” is related to “isothermal (T = constant)
permittivity” again by using the primary electrothermal coupling factor kET as

ε0εX,S = ε0εX,T(1− kET2
). (2.42)
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The permittivity is lower under the “adiabatic” condition, in comparison with
that under the isothermal condition.

2.4.4. Electrocaloric Effect

Electrocaloric materials were initially the focus of significant application interest
in the 1940s (during World War II). The US and Japan accelerated the research
for developing air-cooling systems, particularly in submarines, without generating
mechanical noise (such as air compressor-embedded refrigerators). Due to the
confidential military research, not many publications have been disclosed on this
research. The author personally learned this from his former advisor at university in
the 1960s, when the research on this topic was fading out because the electrocaloric
effect was insufficient then for practical applications. However, at the beginning of
the 21st century, we restarted its development in parallel to the enthusiasm on new
compact refrigeration techniques in the “sustainable” society. Our report on the giant
response in Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) bulk single crystals in 2003 [5],
being 0.3 ◦C under an applied 1 kV/mm electric field, ignited the “renaissance of the
electrocaloric effect”. Successive reports on the high response, such as 12 ◦C under
an applied electric field of 48 kV/mm in thin-film (or ribbon) lead zirconate-titanate
(PZT) by Mischenko et al. in 2006 [6] (that is equivalent to 0.25 ◦C under 1 kV/mm, a
lower performance than PZN-PT single crystals), and the demonstration of 12 ◦C
of cooling near room temperature with a ferroelectric polymer by Neese et al. in
2008 [7], also accelerated the research boom in electrocaloric devices.

Equation (2.32a) gives the necessary formula for the electrocaloric effect. Con-
sider an “adiabatic” condition, that is, dQ = TdS = 0, or a constant entropy dS =
0, and Equation (2.40), θ = pT

CE
p

E. Here, CE
p is the heat capacitance per unit volume

(which is related to the “specific heat capacity” per unit mass as cE
p = CE

p /ρ) un-
der E = 0, and p is the pyroelectric coefficient given by p = −( ∂P

∂T )X. A material’s
development strategy should be a higher p and a lower CE

p at room temperature
(i.e., operation temperature of ~300 K). A decreasing temperature requires a large
negative electric field. In order to escape from the electric depoling, we usually
initially increase the electric field gradually (isothermally) and then make it short
circuit suddenly (adiabatically).

2.4.5. Values of “Electrothermal Coupling Factor” kET

Let us obtain a practical number for the “electrothermal coupling factor” kET

(Equation (2.35)) in PZTs at room temperature:

kET2
= p2

(
ρCE

T

)
ε0εX

.

• Pyroelectric coefficient p
Pb(Zr0.52Ti0.48)O3—0.3–0.7× 10−4 [C/m2·K] [8]
PZT-5A—0.3–0.5× 10−4 [C/m2·K] [9]
Pb(Zr0.74Ti0.36)O3—2.7× 10−4 [C/m2·K] [10]

• Specific heat capacity cE
p

PZT-APC841—340 [J/kg·K] [11]

51



PLZT(6/80/20)—[338 J/kg·K] [12]

The specific heat capacity is measured by differential scanning calorimetry
(DSC), where endothermic and exothermic processes are monitored by keeping
the input energy flow constant. Since the measuring time period is around 5–10
minutes, we cannot observe the difference between the short-circuited and open-
circuited ferroelectric specimens, that is, cE and cD. This probably happens because
the pyroelectrically induced charge is almost screened by the migrating free charge
during a rather long measuring time (several minutes).

• Mass density ρ

PZT-APC841—7600 [kg/m3] [11]

• Permittivity εX

PZT-APC841—1375 [13]

Finally, the electrothermal coupling factor is calculated as follows:

kET2
= p2

(
ρcE

T

)
ε0εX

= (0.5× 10−4C/m2K)
2

(
7600 kg/m3 · 340 J/kgK

300 K

)
(8.854× 10−12 F

m )×1375

= 1.11× 10−6,
(2.43a)

kET = 0.105%. (2.43b)

We can conclude that the electrothermal coupling factor kET in PZTs is two
orders of magnitude smaller than the electromechanical coupling factor k of 30–70%.
Though we discussed theoretical differences, the constraint condition difference
between the E- and the D-constant or isothermal and adiabatic conditions does not
provide a measurable difference in experimental values for the specific heat capacity
and permittivity.

Example Problem 2.2

There is a PLZT (6/80/20) ceramic disk 1 cm2 in area and 1 mm in thickness that
is electrically poled along the thickness at room temperature (27 ◦C). For an external
electric field of 1 kV applied to this sample anti-parallel to the polarization, calculate
the temperature fall of the sample, using the following data: p = 76 nC·cm−2K−1,
and Cp = 2.57 J·cm−3K−1. Note that Cp is the heat capacitance, not the specific heat
capacity cp, here.

Solution

The necessary equation is

(dT)S = p·(T/Cp)·(dE)S, (P2.2.1)
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where p = 76 × 10−5 C·m−2K−1, Cp = 2.57 × 106 J·m−3K−1, T = 300 K, and E = −106

V/m. Then,

(dT)S = [76 × 10−5 C·m−2K−1 × 300 K × (−106 V/m)]/
[2.57 × 106 J·m−3K−1] = − 0.089 ◦C.

(P2.2.2)

The negative electric field generates the temperature decrease.
A negative electric field of 1 kV/mm is rather high, close to the coercive field

of PZT ceramics. Thus, if we work on this specimen experimentally, significant
performance decay is anticipated under a cyclical operation, due to the depoling.
In practice, by increasing the field gradually (i.e., isothermally) up to E = 106 V/m,
we suddenly (i.e., adiabatically) reduce the field to E = 0, meaning that we obtain a
similar temperature decrease, without causing the “depoling problem” in the sample
(under the supposition that an almost linear relation is sustained for both + and −
electric fields).

2.5. Definitions of the Electromechanical Coupling Factor

Five different (but equivalent) definitions were introduced for the “electrome-
chanical coupling factor” k, which corresponds to the rate of electromechanical
transduction: the input electric energy to the output mechanical energy, and vice
versa [4]. Notice the difference between the static kv and the dynamic kvn, which are
used for “off-resonance” and “resonance” applications, respectively.

2.5.1. Mason’s Definition

When we apply the electric field on a piezoelectric material or when we apply
the mechanical force on the sample pseudo-statically or off-resonance (ω→0), the
electromechanical coupling factors are defined, respectively, by Mason [14] as follows:

k2 = (Stored mechanical energy/Input electrical energy), (2.44a)

k2 = (Stored electrical energy/Input mechanical energy). (2.44b)

Refer to Section 2.2.2 for the derivation process. Equations (2.18a) and (2.18b)
indicate that both the above Equations (2.44a) and (2.44b) can be calculated exactly
the same as

k2= d2/ε0εX·sE. (2.45)

where d is the piezoelectric constant, ε0εX is the permittivity under constant stress,
and sE is the elastic compliance under a constant electric field condition. Recall
Figure 2.2 for the derivation process.

2.5.2. Definition in Materials

Recall Equation (2.11) under an isothermal condition θ = 0:

G(X, E) = G0 +
1
2

(
∂2G
∂X2

)
X2 +

1
2

(
∂2G
∂E2

)
E2 +

(
∂2G

∂X∂E

)
XE. (2.46)
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Denoting
(

∂2G
∂X2

)
,
(

∂2G
∂E2

)
, and

(
∂2G

∂X∂E

)
as sE, ε0εX, and d, respectively, the internal

energy (per unit volume) U of a piezoelectric is given by the summation of the
mechanical energy UM (=

∫
xdX) and the electrical energy UE (=

∫
DdE), as follows:

U = UM + UE = [(1/2)∑i,j sij
EXjXi + (1/2)∑m,i dmiEmXi]

+[(1/2)∑m,i dmiXiEm + (1/2)+∑k,m ε0εmk
XEkEm] = UEE + 2 UME + UEE

= (1/2)∑i,j sij
EXjXi + 2(1/2)∑m,i dmiEmXi + (1/2)∑k,m ε0εmk

XEkEm.
(2.47)

The above description includes the 3D tensor representation (refer to Chapter 3
for the details). The s and ε terms represent purely mechanical and electrical energies
(UMM and UEE), respectively, and the d term denotes the energy transduced from
the electrical to the mechanical energy or vice versa through the piezoelectric effect
(UME). The electromechanical coupling factor k is defined by

k2 = UME2 /UMMUEE, or k = UME/
√

UMMUEE (2.48)

That is, k is the ratio of UME over the geometrical average of UMM and UEE.
Using the above energy terms (Equation (2.47)) with the sE, ε0εX, and d notations,

k2 =
( 1

2 dEX)
2

( 1
2 sEX2)( 1

2 ε0εXE2)
=

d2

sEεXε0
. (2.49)

2.5.3. Definition in Devices

Though the constitutive equations can be derived from the internal energy
in Equations (2.13a) and (2.13b) in general, since the key equations are limited
depending on the specimen geometry, there are several definitions according to the
mode or specimen geometry in consideration:

[
x
D

]
=

[
sE d
d ε0εX

][
X
E

]
, (2.50)

and the electromechanical coupling factor is defined by

k2 =
(Coupling factor)2

(Product of the diagonal parameters)
=

(d)2

( sEε0εX)
(2.51)

Table 2.1 summarizes the electromechanical coupling kij for typical piezoelectric
resonators with different shapes and sizes.
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Table 2.1. The characteristics of various piezoelectric resonators with different
shapes and sizes.

Factor

(a) k31

d31

√s
11

Eε
0
ε

33
X

d
33

√  s
33

Eε
0
ε

33
X

 

√  1 − σ

√ 

√ 

k 31

k
33

k 31

2

ε0εx

c33
D

d15

s 55
Eε 0ε 11

X

3
4

3
1

3

Fundamental Mode

Planar/Radial Mode

Thickness Mode

Shear Mode

3

3

3
1

X 1 ≠ 0, X 2 = X 3 = 0 

x1  ≠ 0, x2  ≠ 0, x3  ≠ 
 
0

X1 = X2 ≠ 0, X3 = 0
x1 = x2 ≠ 0, x3 ≠ 0

X1 = X2 ≠ 0, X3 ≠ 0
x1 = x2 = 0, x3 ≠ 0

X1 = X2 = X3 = 0, X4 ≠ 0 
x1 = x2 =  x3 = 0, x5 ≠ 0

d31 Type Bimorph 
Bending

k33

kp

kt

k24= k15

keff

(b)

(c)

(d)

(e)

(f)

Boundary 
Conditions Resonator Shape Definition

X1 = X2 = 0, X3 ≠ 0
x1 = x2 ≠ 0, x3 ≠ 0

33

√

Source: Table by author.

Simple Piezo-Plate Configuration

When the vibration mode can be expressed directly by the same constitutive
piezoelectric equations, the electromechanical coupling factor k of the resonator is
equal to the material’s electromechanical coupling factor, which are represented
merely by the material’s constants such as the piezoelectric constant, dielectric
permittivity, and elastic compliance (and Poisson’s ratio).

Examples can be found:

• k31 mode—
[

x1
D3

]
=

[
s11

E d31
d31 ε0ε33

X

][
X1
E3

]
provides k31 = d31√

s11
Eε0ε33

X
;

• k33 mode—
[

x3
D3

]
=

[
s33

E d33
d33 ε0ε33

X

][
X3
E3

]
provides k33 = d33√

s33
Eε0ε33

X
;

• kp mode—
[

x1 + x2
D3

]
=

[
2(s11

E+s12
E) 2d31

2d31 ε0ε33
X

][
Xp
E3

]

provides kp = k31
√

2/(1− σ).

Because the piezoelectric Poisson ratio |d31/d33| ≈ 1/3 in PZTs, supposing the
difference in elastic compliances s11

E and s33
E is just around 10%, the reader can

easily understand that k33 >> k31 by a factor of three. You can conclude similarly that
kp > k31 by a factor of

√
3 (σ ≈ 1/3).
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Example Problem 2.3

Piezoelectric, dielectric, and elastic properties of representative PZTs: soft PZT-
5H, semi-hard PZT-4, and hard PZT-8, are summarized in Table 2.2. Using these data,
answer the following questions, and learn the interrelations between these parame-
ters.

(a) From the values of the piezoelectric d constant and permittivity ε, calculate
the piezoelectric g constants, and compare these calculations with the values
already provided in Table 2.2. Recall that g is a figure of merit for the “sen-
sor” application.

(b) From the values of the piezoelectric d constant, permittivity ε, and elastic
compliance sE, calculate the electromechanical coupling factors k, and compare
these calculations with the values in Table 2.2.

(c) Calculate the elastic Poisson ratio, |s13
E/s33

E|, and piezoelectric Poisson ratio,
|d31/d33|, for the above three PZTs, then compare the similarity. The elastic
Poisson ratio, |s13

E/s33
E|, is essential to calculate the disk vibration (i.e., kp)

(refer to Chapter 7).
(d) We apply 100 W of electric energy on a k33-type PZT-4 rod. How much of that

electric energy will be converted to mechanical energy stored in the PZT rod?
Among that stored mechanical energy, how much, at most, can we spend on
the outside work, taking into account the mechanical impedance matching?

Solution

(a) The example calculation for PZT-4 is performed with a k33-type rod:
g33= d33/ε0ε33

E = 285 × 10−12/8.854 × 10−12 × 1300 = 24.8 × 10−3 [Vm/N]
Calculate this similarly for g31 and g15, and for other PZTs.

(b) The example calculation for PZT-4 is performed with a k33-type rod:
k33 = d33/

√
s33Eε0ε33X =

854× 10−12/
√

15.2× 10−12 × 8.854× 10−12 × 1300 = 0.68
Calculate this similarly for k31 and k15, and for other PZTs.

(c) PZT-5H: |s13
E/s33

E| = 7.2 × 10−12/20.8 × 10−12 = 0.35
|d31/d33| = 274 × 10−12/593 × 10−12 = 0.46
PZT-4: |s13

E/s33
E| = 5.3 × 10−12/15.2 × 10−12 = 0.35

|d31/d33| = 122 × 10−12/285 × 10−12 = 0.42
PZT-8: |s13

E/s33
E| = 4.8 × 10−12/13.5 × 10−12 = 0.36

|d31/d33| = 97 × 10−12/225 × 10−12 = 0.43
Both Poisson ratios are close in number, but |d31/d33| seems to be a little larger
than |s13

E/s33
E|.

(d) Mechanically converted and stored energy = 100 W × k33
2 = 49 W. Among

the stored mechanical energy, 1/3–1/4 is usually spent. The maximum output
mechanical energy is 1/2 of the stored energy = 25 W, when we choose the
external electrical load by exactly matching the internal impedance (=1/ωC).
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Table 2.2. Piezoelectric, dielectric, and elastic properties of typical PZTs.

 

57 

Density ρ (103 kg/m3)  7.5  7.5  7.6 
Curie Temperature 𝑇஼ 

(°C) 
193  325  300 

Source: Table by author, adapted from various company catalogues. 
 

 

 

Physical Parameter 
Soft 

PZT−5H 

Semi‐Hard 

PZT−4 

Hard 

PZT−8 

EM Coupling Factor 
kp  0.65  0.58  0.51 
k31  0.39  0.33  0.30 
k33  0.75  0.70  0.64 
k15  0.68  0.71  0.55 

Piezoelectric Coefficient 
d31 (10−12 m/V)  −274  −122  −97 

d33  593  285  225 
d15  741  495  330 

g31 (10−3 Vm/N)  −9.1  −10.6  −11.0 
g33  19.7  24.9  25.4 
g15  26.8  38.0  28.9 

Permittivity 
ε33X/ε0  3400  1300  1000 
ε11X/ε0  3130  1475  1290 

Dielectric Loss (tanδ) (%)  2.00  0.40  0.40 
Elastic Compliance 

s11E (10−12 m2/N)  16.4  12.2  11.5 
s12E  −4.7  −4.1  −3.7 
s13E  −7.2  −5.3  −4.8 
s33E  20.8  15.2  13.5 
s44E  43.5  38.5  32.3 

Mechanical QM  65  500  1000 
Density ρ (103 kg/m3)  7.5  7.5  7.6 

Curie Temperature 𝑇஼ (°C)  193  325  300 

 

 

Complicated Piezo Component Configuration 

When the structure of a vibrator is complicated, the electromechanical coupling 
factor k of the vibrator is dependent on the specimen geometry/size, in addition to 
the material’s constants such as  the piezoelectric constant, dielectric permittivity, 
and elastic compliance (and Poisson’s ratio). An example can be found in bimorph 
structures, where k is dependent on the elastic shim material (metal) and thickness. 
Only  for  a  pure  piezo‐plate  bimorph  without  a  shim  is  the  electromechanical 

Source: Table by author, adapted from various company catalogues.

Complicated Piezo Component Configuration

When the structure of a vibrator is complicated, the electromechanical coupling
factor k of the vibrator is dependent on the specimen geometry/size, in addition
to the material’s constants such as the piezoelectric constant, dielectric permittivity,
and elastic compliance (and Poisson’s ratio). An example can be found in bimorph
structures, where k is dependent on the elastic shim material (metal) and thickness.
Only for a pure piezo-plate bimorph without a shim is the electromechanical coupling
factor irrelevant to the specimen size; that is, ke f f =

√
3/4·k31 for k31-type bimorphs.

Note that the bending or flexural mode exhibits a smaller electromechanical coupling
factor in comparison with that of the base k31 plate.

2.5.4. Constraint Condition Method

From the relations between the E-constant, E-constant elastic compliances, sE,
sD, stiffness cE, cD, stress-free and strain-free permittivity ε0εX, ε0εx, and inverse
permittivity κ0κX , κ0κx (refer to Equations (2.20a,b)–(2.22a,b)):

1− k2 =
sD

sE =
cE

cD =
εx

εX =
κX

κx . (2.52)
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2.5.5. Dynamic Definition

Though the details are discussed in Chapter 9, the k31-type piezoelectric plate
geometry and its four-terminal equivalent circuit are shown in Figure 2.4. In the
four-terminal equivalent circuit, the electric terminal parameters, voltage V and
current I, and the mechanical terminal parameters, force F and vibration velocity

.
u,

at the plate end are related to each other as follows:
[

F
I

]
=

[
Z1 −A
A Y1

][ .
u
V

]
. (2.53)

The dynamic electromechanical coupling factor kv
2 is defined by “(complex

power in the mechanical branch)/(complex power in the electrical branch)” under
a short-circuit condition of the mechanical terminal, or “(complex power in the
electrical branch)/(complex power in the mechanical branch)” under a short-circuit
condition of the electrical terminal, which leads to

k2
v =

∣∣∣∣∣∣
( A2

Z1Y1
)

1 + ( A2

Z1Y1
)

∣∣∣∣∣∣
. (2.54)

Since Z1 = jZ0 tan(ωL
2v ), Y1 = jωCd, A = 2d31w

sE
11

, and Z0 = wbρv = wb
vsE

11
in the k31

mode, k2
v is ω dependent. By taking ω → 0, k2

v → k2
31 =

d2
31

sEε0εX . This dynamic k
definition is particularly useful when considering/calculating a complex structured
piezo-transducer, which is detailed in Chapters 7 and 9.

w

b Ps
L

V
I

F

−I

(a)

I

1 :  A

V

Im
Im = Au

u

Yd

Z1

F  ’
F’ 

F
 = AV

(b)

Figure 2.4. (a) k31-type piezoelectric plate geometry; (b) four-terminal equivalent
circuit for k31 piezo-plate. Source: Figure by author.
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Chapter Essentials

1. Useful free energy expressions:
• Internal energy U = Q + W dU = TdS + XdxEd
• Helmholtz free energy A = U − TS dA = −SdT + Xdx + EdD

For isothermal analysis of the material’s properties.
• Enthalpy H = U − Xx − ED dH= TdS− xdX− DdE

For adiabatic analysis under externally controllable parameters.
• Gibbs free energy G = U − TS − Xx − ED dG = −SdT − xdX− DdE

For isothermal analysis under externally controllable parameters.
• Elastic Gibbs energy G1= U − TS − Xx dG1 = −SdT − xdX + EdD

For isothermal analysis of polarization under a stress-free condition.
2. Isothermal Process—Piezoelectric Coupling{

x = sEX + dE
D = dX + ε0εXE

k2 =
d2

εXε0 sE

sE: elastic compliance under constant E; ε0εX: dielectric permittivity under
stress free; d: piezoelectric constant

3. Adiabatic Process I—Piezothermal Coupling



S =
Cp

T
θ + αLX

x = αLθ + sEX
kPT2

=
αL

2
(

Cp

T

)
sE

Cp : heat capacitance per volume under X = 0 and E = 0; sE: elastic compliance
under constant E; αL: linear thermal expansion coefficient

4. Adiabatic Process II—Electrothermal Coupling{
S =

CE
p

T θ − pE
D = −pθ + ε0εXE

kET2
=

p2

(CE
p

T

)
ε0εX

CE
p : heat capacitance (per unit volume) under X = 0 and E = 0; ε0εX : permittivity

under constant stress X; p: pyroelectric coefficient
5. Heat capacitance (per unit volume) CE

p [J/Km−3]; specific heat capacity (per
unit mass) cE

p [J/kg·K]
CE

p = ρcE
p .

6. Typical electrothermal coupling factor in PZTs: kET2
= 1× 10−6 (much smaller

than k2).
7. Five definitions of the electromechanical coupling factor:

(a) Mason’s definition:

k2 = (Stored mechanical energy/Input electrical energy)=
(d)2

( sEε0εX)
or

k2 = (Stored electrical energy/Input mechanical energy)=
(d)2

( sEε0εX)
.

(b) Material definition (under a static condition):
U = UMM + 2UME + UEE
= (1/2)∑

i,j
sij

EXjXi + 2(1/2) ∑
m,i

dmiEmXi
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+ (1/2) ∑
k,m

ε0εmk
XEkEmk2 = UME

2/UMMUEE =
(d)2

( sEε0εX)
.

(c) Device definition (under a static condition):
When the primary constitutive equations are defined in a certain piezo
component as[

x
D

]
=

[
sE d
d ε0εX

][
X
E

]
,

k2 =
(Coupling factor)2

(Product of the diagonal parameters)
=

(d)2

( sEε0εX)
.

(d) Constraint condition method:
Between the E-constant, E-constant elastic compliances, sE, sD, stiffness
cE, cD, stress-free and strain-free permittivity κ0κX, κ0κx, and inverse
permittivity κ0κX , κ0κx:

1− k2 =
sD

sE =
cE

cD =
εx

εX =
κX

κx ; k2 =
(d)2

( sEε0εX)
=

h2

cD(κ0κx)
.

(e) Dynamic definition: four-terminal equivalent circuit (Figure 2.4b):
Voltage V and current I, and mechanical terminal parameters force F and
vibration velocity

.
u:[

F
I

]
=

[
Z1 −A
A Y1

][ .
u
V

]
,

k2
v =

∣∣∣∣∣∣∣∣

(
A2

Z1Y1
)

1 + (
A2

Z1Y1
)

∣∣∣∣∣∣∣∣
.

kv = k for ω → 0 ;
kv,n = Pnkv

2: k for n-th resonance mode.

Check Point

1. (T/F) When we discuss the material’s performance change with the external
electric field E and stress X under an isothermal condition, the Gibbs free energy
dG = −SdT − xdX− DdE is most convenient. True or false?

2. (T/F) The Maxwell relation ( ∂D
∂X )T,E = ( ∂x

∂E )T,X indicates that the piezoelectric
constant d for the direct piezoelectric effect and converse piezoelectric effect
should be exactly the same. True or false?

3. From the following piezoelectric constitutive equations, derive the electrome-
chanical coupling factor k:[

X
E

]
=

[
cD −h
−h κ0κx

][
x
D

]
.

4. (T/F) The elastic compliance of a piezoelectric material under a short-circuit
condition (sE) is smaller than that under an open-circuit condition (sD). True
or false?

5. Provide the relationship between the permittivity of a piezoelectric material
under a completely clamped condition (εx) and that under a mechanically free
condition (εX).
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6. (T/F) The piezothermal effect indicates that the sudden tensile stress on a solid
material usually exhibits a temperature decrease in this material. True or false?

7. What do you usually call the converse effect of the piezothermal effect men-
tioned above?

8. What do you usually call the converse electrocaloric effect?
9. (T/F) In a pyroelectric material, the spontaneous polarization increases with an

increasing temperature. True or false?
10. Which is larger when |d33| > |d31|, |k33| or |k31|?

Chapter Problems

2.1 We consider a more general effect in a ferroelectric without keeping any external
parameters (temperature, stress, electric field) constant. Let us start from

S =
Cp

T
θ +αLX− pE, (CP2.1.1)

x = αLθ + sEX + dE, (CP2.1.2)

D = −pθ + dX + ε0εXE. (CP2.1.3)

In comparison with the normal piezoelectric effect (constitutive equations),
what modification is required?

Hint

When we consider a sudden external electric field E application, in addition
to the normal piezoelectric effect, the electrothermal effect is superposed; that
is, temperature modulation should be taken into account. On the contrary,
when we consider a sudden stress X application, in addition to the normal
piezoelectric effect, the piezothermal effect is superposed; that is, temperature
modulation should be taken into account. Suppose that the “quick external
parameter (E or X) application” is considered to be “adiabatic”, dS = 0. From
Equation (CP2.1.1),

S =
Cp

T
θ +αLX− pE = 0.

Thus,

θ = −(αLX− pE)/(
Cp

T
). (CP2.1.4)

Equations (CP2.1.2) and (CP2.1.3) can be transformed as follows:

x = −αL(αLX− pE)/(
Cp

T
) + sEX + dE,

D = p(αLX− pE)/(
Cp

T
) + dX + ε0εXE.

By introducing the piezothermal and electrothermal coupling coefficients as fol-
lows:
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kPT2
=

αL
2

(Cp

T
)
sE

,

kET2
=

p2

(CE
p

T
)
ε0εX

,

the above piezoelectric constitutive equations are re-transformed as follows:

x = sE(1− kPT2
)X + (d + αL p/(

Cp

T
))E, (CP2.1.5)

D = (d + αL p/(
Cp

T
))X + ε0εX(1− kET2

)E. (CP2.1.6)

We can understand that, in addition to the pure piezothermal effect on sE and
the electrothermal effect on ε0εX , the piezoelectric coefficient is also modified. If
we define a new electromechanical coupling factor as

k2 =
(Coupling factor)2

(Product of the diagonal parameters)

=
(d + αL p/(

Cp

T
))

2

(sE(1− kPT2
)ε0εX(1− kET2

)
,

(CP2.1.7)

the formula indicates an enhancement of the electromechanical coupling factor
under an “adiabatic” condition. It is important to note the piezoelectric constant
modulation:

(d + αL p/(
Cp

T
)) = d[1 + αL p/d(

Cp

T
)] = d(1 +

kPTkET

k
). (CP2.1.8)

The coupling coefficient d modification is a coupled description of three coupling
factors, namely, the piezothermal kPT , electrothermal kET , and electromechanical
k coupling factors. Because kPT and kET << k in PZTs, a measurable difference
may not be anticipated in practice.
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3. Tensor/Matrix Description in
Piezoelectricity—Linear Algebraic Equations

3.1. Tensor Representation

3.1.1. Fundamentals in Tensor

A physical property is a relationship between an input physical parameter and
the corresponding output physical parameter. A physical parameter can be a “scalar”,
“vector”, or “tensor”. Some “intensive” and corresponding “extensive” parameters
are summarized below:

Thermal Electric Mechanical

Scalar
intensive Temperature T Voltage V

extensive Entropy S Charge Q Mass M

Vector
intensive −grad(T) Electric field Ei Force Fi

extensive Heat flux qi
Electric
displacement Di

Current
density Ji

Displacement Li

Tensor
intensive Stress Xij

extensive Strain xij

Remember that the IUPAC defines “extensive” and “intensive” parameters
according to the dependency on the material’s volume, as introduced in Chapter
2. Examples of linear physical properties include the following: First, the relation
between a scalar (zeroth-rank tensor) and a scalar (zeroth-rank tensor) is given by a
scalar constant, exemplified by the electric capacitance C for the charge Q and voltage
V relation Q = CV, or by the specific heat capacity cp for a temperature change θ
and the thermal energy per mass Q: Q = cpθ (Do not confuse the same notation
Q). Second, the relation between a vector (first-rank tensor) and a vector (first-rank
tensor) is given by a second-rank (i.e., 1 + 1) tensor, exemplified by the permittivity
tensor for electric displacement Dj and the Ei relation




D1

D2

D3


 =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







E1

E2

E3


.

Third, the relation between a second-rank tensor and a vector (first-rank tensor)
is given by a third-rank (i.e., 2 + 1) tensor, exemplified by the piezoelectric constant
tensor dijk for stress Xjk and the electric displacement Di (or polarization Pi) relation
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


D1

D2

D3


 =







d111 d112 d113

d121 d122 d123

d131 d132 d113


,




d211 d212 d213

d221 d222 d223

d231 d232 d213


,




d311 d312 d313

d321 d322 d323

d331 d332 d313










X11 X12 X13

X21 X22 X23

X31 X32 X33




Note that [(first layer matrix), (second layer matrix), (third layer matrix)] is used,
because we cannot describe the 3D (3 × 3 × 3) tensor expression in a 2D paper.

In general, an input physical parameter X is correlated with an output parameter
Y with a proportional parameter A in a linear relation approximation:

Y = AX. (3.1)

If X and Y are p-rank and q-rank tensors, A is supposed to be expressed by using a (p
+ q)-rank tensor:

Yij...q = ∑
lm...p

Aij...qlm...pXlm...p. (3.2)

A p-rank tensor Xlm. . .p is represented based on an (x, y, z) coordinate system.

3.1.2. Transformation Matrix

When a tensor described in an original (x, y, z) coordinate system is expressed by
using a different (x′, y′, z′) coordinate system, a new tensor X′ can be represented as:

X’ij. . .p = ∑lm. . .pailajm. . .apqXlm. . .q, (3.3)

where aij is called the “transformation matrix”. The transformation matrix is a
“unitary matrix” without an imaginary part, satisfying the following relation (inverse
matrix ≡ transposed matrix):




a11 a12 a13

a21 a22 a23

a31 a32 a33




−1

=




a11 a21 a31

a12 a22 a32

a13 a23 a33


. (3.4)

Try to familiarize yourself with the transformation matrix through Example
Problem 3.1.

Example Problem 3.1

Provide the physical meaning of the following “transformation matrices”:

(a)




−1 0 0

0 −1 0

0 0− 1


; (b)




−1 0 0

0 1 0

0 0 1


; (c)




−1 0 0

0 −1 0

0 0 1


; (d)




0 1 0

−1 0 0

0 0 1



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Solution

(a) When we start from the transformation matrix definition,



x′

y′

z′


 =




−1 0 0

0 −1 0

0 0 −1







x

y

z


. (P3.1.1)

The above transformation can generate the point (x, y, z) movement of x →
−x, y → −y, z → −z, which is illustrated in Figure 3.1a. This corresponds to the
centro-symmetrical transformation with respect to the origin (0,0,0).

(b)




−1 0 0

0 1 0

0 0 1


 generates the point movement x→ −x, y→ y, z→ z, which is

illustrated in Figure 3.1b. This corresponds to a mirror (y-z plane) -symmetrical
transformation.

(c)




−1 0 0

0 −1 0

0 0 1


 generates the point movement x→−x, y→−y, z→ z, which

is illustrated in Figure 3.1c. This corresponds to an axis (z-axis)-symmetrical
transformation by 180◦, or 2-fold symmetry.

(d)




0 1 0

−1 0 0

0 0 1


 realizes the point movement x → y, y → −x, z → z, which is

illustrated in Figure 3.1d. This corresponds to an axis (z-axis)-symmetrical
transformation by 90◦ or 4-fold symmetry.

z

z z

−90º

z
y

y y

y

x

x x

x

(a)

(c) (d)

(b)

(y    −x    z)

(−x    y    z)

(x y z) (x y z)

(x y z)
(x y z)

(−x    −y     z)

(−x    −y    −z)

Figure 3.1. Cont.
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z

z z

−90º

z
y

y y

y

x

x x

x

(a)

(c) (d)

(b)

(y    −x    z)

(−x    y    z)

(x y z) (x y z)

(x y z)
(x y z)

(−x    −y     z)

(−x    −y    −z)

Figure 3.1. Rotation matrix examples: (a) center symmetry, (b) mirror symmetry,
(c) 2-fold symmetry, and (d) 4-fold symmetry. Source: Figure by author.

The “rotation matrix” is one of the most important and useful transformation
matrices, which the reader needs to use all the time. The axial rotation for a rotation
angle θ about a principal z-axis is expressed by




cos θ sinθ 0

− sin θ cos θ 0

0 0 1


. (3.5)

3.1.3. Crystal Symmetry

The symmetry of crystals is determined by three elements: centrosymmetry,
mirror symmetry and axisymmetry. In centrosymmetry, there exists a point around
which all faces or edges are translated to parallel pairs on opposite sides of the
crystal. The plane of symmetry (“mirror plane”) is a plane by which the crystal may
be divided into two halves which are mirror images of each other. Axisymmetry
possesses a line around which a crystal may be rotated 360◦/n until it assumes a
congruent position; n may equal 2, 3, 4, or 6. These correspond, respectively to
2-fold, 3-fold, 4-fold, and 6-fold axes. Based on these elements, all crystals can be
classified into 32 “point groups” (that is, crystallographic symmetry), and these
point groups can be divided into two classes, one with a center of symmetry and
the other without, as indicated already in Table 1.2 in Chapter 1. There are 21 point
groups which do not have a center of symmetry, among which 20 groups (point
group (432) being the sole exception) exhibit positive and negative charges generated
on the crystal surfaces when appropriate stresses are applied. These materials are
known as “piezoelectrics”. On the contrary, “pyroelectricity” is the phenomenon
whereby, due to the temperature dependence of the spontaneous polarization, as the
temperature of the crystal is changed, electric charges corresponding to the change
in the spontaneous polarization appear on the surface of the crystal.

Let us consider three example symmetries, 4, 4mm and 32 for further clarification
of these symbols. Figure 3.2 shows the symbolic expression of crystal symmetry: 4,
4mm, 32. The crystal symmetry 4 possesses a 4-fold symmetry, which means that
a 90◦ rotation around the axis (usually defined as the z-axis) does not change any
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part of the physical performance. The rotation matrix for this crystal is




0 −1 0

1 0 0

0 0 1




around the z-axis. The crystal symmetry 4mm, which is exemplified by tetragonal
BaTiO3, possesses two mirror symmetry, as well as a 4-fold symmetry, which means
that a 90◦ rotation around the z-axis, and/or a mirror transformation with respect
to the y-z and x-z planes, should not change any physical properties. The transfor-

mation matrices for this crystal are rotation




0 −1 0

1 0 0

0 0 1


 around the z-axis, and

mirrors




−1 0 0

0 1 0

0 0 1


 and




1 0 0

0 −1 0

0 0 1


. The crystal symmetry 32, exemplified by

alpha quartz, possesses a 3-fold symmetry around the z-axis and a 2-fold symmetry
around the x-axis, which means that a 120◦ rotation around the z-axis and a 180◦

rotation around the x-axis should not change any part of the physical performance.

The rotation matrices for this crystal are




−1/2
√

3/2 0

−
√

3/2 −1/2 0

0 0 1


 around the z-axis,

and




1 0 0

0 −1 0

0 0 −1


 around the x-axis. Both are obtained from a general formula




cos θ sinθ 0

− sin θ cos θ 0

0 0 − 1


.

Crystal 
Symmetry 4 4mm 32

Symbolic
Expression

Figure 3.2. Symbolic expression of crystal symmetry: 4, 4mm, 32. Source: Figure
by author.

3.2. Tensor Component Reduction with Crystal Symmetry

3.2.1. Dielectric Permittivity

We consider the tensor component reduction scheme in this section. We first
take the simplest tensor (i.e., matrix) for the dielectric permittivity, which is defined

68



so as to correlate an applied electric field E (vector) with and the induced dielectric
displacement D (or polarization P, vector) as follows:

D = ε0εE. (3.6)

Since both the electric field and the dielectric displacement are first-rank tensor (that
is, vector) quantities, the permittivity should have a second-rank tensor representa-
tion (that is, with two suffixes); this is described as




D1

D2

D3


 = ε0




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







E1

E2

E3


, (3.7a)

or
Di = ∑

j
ε0εijEj. (3.7b)

A physical property measured along two different directions must be equal if
these two directions are crystallographically equivalent. This consideration some-
times reduces the number of independent tensor components representing the
above property.

If the dielectric displacement D in an (x, y, z) coordinate system is described in
an (x′, y′, z′) system as D′, D and D′ are related using a unitary transformation matrix
as follows: 



D1
′

D2
′

D3
′


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







D1

D2

D3


. (3.8)

The electric field is transformed in the same way:




E1
′

E2
′

E3
′


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







E1

E2

E3


, (3.9a)

or
Ei
′ = ∑j aijEj. (3.9b)

Then, we can calculate the corresponding ε’ tensor defined by




D1
′

D2
′

D3
′


 = ε0ε′




E1
′

E2
′

E3
′


. (3.10)
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Inserting Equations (3.8) and (3.9a) into Equation (3.10),




a11 a12 a13

a21 a22 a23

a31 a32 a33







D1

D2

D3


 = ε0ε′




a11 a12 a13

a21 a22 a23

a31 a32 a33







E1

E2

E3


,

then


D1

D2

D3


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33




−1

ε0ε′




a11 a12 a13

a21 a22 a23

a31 a32 a33







E1

E2

E3


.

From the definition in Equation (3.7a),




ε11
′ ε12

′ ε13
′

ε21
′ ε22

′ ε23
′

ε31
′ ε32

′ ε33
′




=




a11 a12 a13

a21 a22 a23

a31 a32 a33







ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







a11 a12 a13

a21 a22 a23

a31 a32 a33




−1

=




a11 a12 a13

a21 a22 a23

a31 a32 a33







ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







a11 a21 a31

a12 a22 a32

a13 a23 a33


,

(3.11)

where we used




a11 a12 a13

a21 a22 a23

a31 a32 a33




−1

≡




a11 a12 a13

a21 a22 a23

a31 a32 a33




t

(unitary matrix!). We

can now understand that the transformation of the second-rank tensor can be calcu-
lated by

εij
′ = ∑

k,l
aikajlεkl . (3.12)

Two-Fold Axisymmetry

When the crystal has a 2-fold axis along the z-axis, the dielectric permittivity
should have the same tensor form in terms of this transformation, that is, the rotation
matrix of Equation (3.5) for θ = 180◦:



−1 0 0

0 −1 0

0 0 1


.
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From the condition in Equation (3.11):




ε11
′ ε12

′ ε13
′

ε21
′ ε22

′ ε23
′

ε31
′ ε32

′ ε33
′


=




−1 0 0

0 −1 0

0 0 1







ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







−1 0 0

0 −1 0

0 0 1


 =




ε11 ε12 − ε13

ε21 ε22 − ε23

−ε31 −ε32 ε33


.

(3.13)

Because this crystal has a 2-fold symmetry, ε′ ≡ ε or




ε11
′ ε12

′ ε13
′

ε21
′ ε22

′ ε23
′

ε31
′ ε32

′ ε33
′


 =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


 must be held for this 180◦ rotation transformation. Thus, the

following equivalency should be derived:




ε11 ε12 − ε13

ε21 ε22 − ε23

−ε31 −ε32 ε33


 =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


. (3.14)

Using the logic that x = −x→ x = 0, we can obtain

ε31 = ε13 = ε32 = ε23 = 0

ε11, ε22, ε33 6= 0,

ε12 = ε21

The permittivity tensor form with four independent components is expressed by




ε11 ε12 0

ε12 ε22 0

0 0 ε33


.

It is very important to note that most physical constants have a “symmetric tensor”
form. The proof involves thermodynamical considerations. Refer to [1].

Four-Fold Axisymmetry

When the crystal has a 4-fold axis along the z-axis, the dielectric permittivity
should have the same tensor form in terms of this transformation, that is, the rotation
matrix of Equation (3.5) for θ = 90◦:
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


0 1 0

−1 0 0

0 0 1


.

From the condition in Equation (3.11):




ε11
′ ε12

′ ε13
′

ε21
′ ε22

′ ε23
′

ε31
′ ε32

′ ε33
′



=




0 1 0

−1 0 0

0 0 1







ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







0 1 0

−1 0 0

0 0 1




−1

=




ε22 −ε21 ε23

−ε12 ε11 − ε13

ε32 −ε31 ε33




.

(3.15)

Because this crystal has a 4-fold symmetry, ε′ ≡ ε or




ε11
′ ε12

′ ε13
′

ε21
′ ε22

′ ε23
′

ε31
′ ε32

′ ε33
′


 =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


 must be held for this 90◦ rotation transformation. Thus, the

following equivalency should be derived:




ε22 −ε21 ε23

−ε12 ε11 − ε13

ε32 −ε31 ε33


 =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


. (3.16)

Using the logic that x = −x→ x = 0, we can obtain

ε12 = ε21 = ε32 = ε23 = ε13 = ε31 = 0,

ε11 = ε22, ε33 6= 0.

We again used the “symmetric property” of the permittivity tensor for this
derivation. The permittivity tensor form with only two independent components is
expressed by




ε11 0 0

0 ε11 0

0 0 ε33


.
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Example Problem 3.2

Tensile stress X and compressive stress −X (with the same magnitude) are
applied simultaneously along the (1 0 1) and (1 0 1) axes, respectively, to a cube
specimen shown in Figure 3.3. When we take the prime coordinates (1′ and 3′), the
stress tensor can be represented as




X 0 0

0 0 0

0 0 − X


. (P3.2.1)

Using the transformation matrix A (i.e., θ = −45◦ rotation along the 2’-axis in

Figure 3.3)




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


, calculate A·X·A−1, and verify that the above

stress is equivalent to a pure shear stress in the original (non-prime) coordinates.

3

3’ 1’

X

−X

1
2, 2’

Figure 3.3. Application of a pair of stresses, X and−X, to a cube of material. Source:
Figure by author.

Solution

Using θ = −45◦, we can obtain the transformed stress representation:

A·X·A−1 =




1/
√

2 0 − 1/
√

2

0 1 0

1/
√

2 0 1/
√

2







X 0 0

0 0 0

0 0 − X







1/
√

2 0 1/
√

2

0 1 0

−1/
√

2 0 1/
√

2




=




0 0 X

0 0 0

X 0 0




.

(P3.2.2)

Note that the off-diagonal components X13 and X31 have the same magnitude X as
the original tensile and compressive stresses, which represent a pure “shear stress” in
the non-prime coordinate. A shear stress is equivalent to a combination of extension
and contraction stresses. Though an extensional stress applied along a diagonal

73



direction 1′ exhibits an apparently similar diagonal distortion of the crystal without
contraction along the 3′ direction, a smaller contraction occurs only from the Poisson
ratio of the extension. This is not exactly equivalent to the pure shear deformation,
with a volume expansion.

Example Problem 3.3

Force is a vector, while stress (composed of a pair of forces) is a tensor. Suppose
that a shear stress X13 is applied to a square crystal and the crystal is deformed by 1◦

angle as illustrated in Figure 3.4. Calculate the induced strain x5 (=2x31).

Solution

Since x5 = 2x31 = 2tan, ϕ = 2ϕ = 1◦ and 1◦ = π/180 radian, x5 = 0.017. Typical
strain in a piezoelectric ceramic is around 0.1% or 0.001, leading to the shear angle 0.1◦.
Thus, 1◦ is unrealistic in practice. Prior to reaching this deformation, crack/collapse
will occur. Note that shear deformation is not accompanied by a volume change
(the shadowed area is the same as that of the original square), different from the
longitudinal deformation. Refer to Example Problem 3.2.

1°

1
F

F

3

Figure 3.4. Shear stress and strain configuration. Source: Figure by author.

3.2.2. Piezoelectric Constant

Piezoelectric coefficients, providing there is a relation of the induced strain x
(second-rank tensor) with the applied field E (vector), are represented by a third-rank
tensor (i.e., 1 + 2 = 3):

x = dE, (3.17a)

or providing there is a relation of the induced polarization P with the applied stress
X, as

P = dX, (3.17b)

or as
xjk = ∑

i
dijkEi, (3.18a)

Pi = ∑
j,k

dijkXjk. (3.18b)
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Note that the first suffix “i” in dijk corresponds to the electric component, while
the second and third, “j,k”, correspond to the stress and strain, which are “commu-
tative” or “symmetric”. The d tensor is composed of three layers of symmetrical
matrices (“j,k” are commutative):

First layer (i = 1)




d111 d112 d113

d121 d122 d123

d131 d132 d133


,

Second layer (i = 2)




d211 d212 d213

d221 d222 d223

d231 d232 d233


,

Third layer (i = 3)




d311 d312 d313

d321 d322 d323

d331 d332 d333


.

(3.19)

Recall again that if two physical parameters are represented using tensors of the
p-rank and q-rank, the property quantity which combines the two parameters in a
linear relation is represented by a tensor of the (p + q)-rank.

For a third-rank tensor such as the piezoelectric tensor, a transformation due to
a change in coordinate system is represented by

dijk
′ = ∑l,m,n ailajmakndlmn. (3.20)

Note that, though we can use a simple matrix product formula for the axis
transformation of the vector and second-rank tensor, it is difficult to describe the
transformation of the third- or higher-order tensors.

Four-Fold Axisymmetry

When the crystal has a 4-fold axis along the z-axis, the transformation matrix is
given (Equation (3.5) for θ = 90◦) by




0 1 0

−1 0 0

0 0 1


.

Taking into account the tensor symmetry in terms of the second and third
suffixes such that d123 = d132 and d213 = d231 (each matrix of the i-th layer of the
d tensor is symmetrical), we have “18 independent dijk’s” (i.e., each layer has 6
independent components). Notice initially that a12 = 1, a21 = −1, and a33 = 1, which
means that the second suffix is automatically determined (2, 1 or 3) when the first
suffix is given (1, 2, or 3) in the practical calculation.
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• d111
′ = ∑l,m,n a1l a1ma1ndlmn = a12a12a12d222 = (+1)(+1)(+1)d222 = d222 (3.21)

Since d111
′ ≡ d111, we obtain d111 = d222.

• d122
′ = ∑l,m,n a1l a2ma2ndlmn = a12a21a21d211 = (+1)(−1)(−1)d211 = d211 (3.22)

Since d122
′ ≡ d122, we obtain d122 = d211.

• d133
′ = a12a33a33d233 = (+1)(+1)(+1)d233 = d233 (3.23)

Since d133
′ ≡ d133, we obtain d133 = d233.

• d123
′ = a12a21a33d213 = (+1)(−1)(+1)d213 = −d213 (3.24)

Since d123
′ ≡ d123, we obtain d123 = −d213 = d132 = −d231.

• d131
′ = a12a33a12d232 = (+1)(+1)(+1)d232 = d232 (3.25)

Since d131
′ ≡ d131, we obtain d131 = d232 = d113 = d223.

• d112
′ = a12a12a21d221 = (+1)(+1)(−1)d221 = −d221 (3.26)

Since d112
′ ≡ d112, we obtain d112 = −d221 = d121 = −d212.

• d211
′ = a21a12a12d122 = (−1)(+1)(+1)d122 = −d122 (3.27)

Since d211
′ ≡ d211, we obtain d211 = −d122.

• d222
′ = a21a21a21d111 = (−1)(−1)(−1)d111 = −d111 (3.28)

Since d222
′ ≡ d222, we obtain d222 = −d111.

• d233
′ = a21a33a33d133 = (−1)(+1)(+1)d133 = −d133 (3.29)

Since d233
′ ≡ d233, we obtain d233 = −d133.

• d223
′ = a21a21a33d113 = (−1)(−1)(+1)d113 = d113 (3.30)

Since d223
′ ≡ d223, we obtain d223 = d113.

• d231
′ = a21a33a12d132 = (−1)(+1)(+1)d132 = −d132 (3.31)

Since d231
′ ≡ d231, we obtain d231 = −d132.

• d212
′ = a21a12a21d121 = (−1)(+1)(−1)d121 = d121 (3.32)

Since d212
′ ≡ d212, we obtain d212 = d121.

• d311
′ = a33a12a12d322 = (+1)(+1)(+1)d322 = d322 (3.33)

Since d311
′ ≡ d311, we obtain d311 = d322.

• d322
′ = a33a21a21d311 = (+1)(−1)(−1)d311 = d311 (3.34)

Since d322
′ ≡ d322, we obtain d322 = d311.

• d333
′ = a33a33a33d333 = (+1)(+1)(+1)d333 = d333 (3.35)

Since d333
′ ≡ d333, we obtain the trivial d333 = d333.

• d323
′ = a33a21a33d313 = (+1)(−1)(+1)d313 = −d313 (3.36)

Since d323
′ ≡ d323, we obtain d323 = −d313.

• d331
′ = a33a33a12d332 = (+1)(+1)(+1)d332 = d332 (3.37)

Since d331
′ ≡ d331, we obtain d331 = d332.

• d312
′ = a33a12a21d321 = (+1)(+1)(−1)d321 = −d321 (3.38)

Since d312
′ ≡ d312, we obtain d312 = −d321.

From the above 18 total equations, we will obtain the necessary relations:

• From Equations (P2.1.2) and (P2.1.7), we obtain d122 = d211 = −d122 = 0.
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• From Equations (P2.1.1) and (P2.1.8), we obtain d111 = d222 = −d111 = 0.
• From Equations (P2.1.6) and (P2.1.12), we obtain d112 = −d221 = d121 = −d212 =

d212 = 0.
• From Equations (P2.1.3) and (P2.1.9), we obtain d133 = d233 = −d133 = 0.
• From Equations (P2.1.16) and (P2.1.17), we obtain d323 = −d313 = −d331 = d331 =

d332 = 0.
• From Equation (P2.1.18), we obtain d312 = d321 = −d321 = 0.
• From Equation (P2.1.4), we obtain d123 = −d213 = d132 = −d231.

Considering the tensor symmetry with m and n such that d123 = d132 and d213 =
d231 (each matrix of the i-th layer of the d tensor is symmetrical), we can obtain:

d111 = d222 = d112 = d121 = d211 = d221 = d212 = d122 = d331 = d313 = d133 = d332
= d323 = d233 = d312 = d321 = 0,
d333 6= 0,
d311 = d322,
d113 = d131 = d223 = d232,
d123 = d132 = −d213 = −d231.

Then, we obtain the d tensor with four independent components (d333, d311, d123,
d131) as follows:

First layer (i = 1)




0 0 d131

0 0 d123

d131 d123 0


,

Second layer (i = 2)




0 0 − d123

0 0 d131

−d123 d131 0


,

Third layer (i = 3)




d311 0 0

0 d311 0

0 0 d333


.

(3.39)

4mm Symmetry

Barium titanate introduced in Chapter 1 has a crystal symmetry of point group
4mm at room temperature, which means that the crystal has additional mirror sym-
metry normal to the x-z plane and the y-z plane, in addition to the 4-fold axisymmetry
around the z-axis. The additional mirror transformation matrix should be




−1 0 0

0 1 0

0 0 1


 and




1 0 0

0 −1 0

0 0 1


.

We now consider the four previous independent components (d333, d311, d123,
d131) for the transformation matrix; a11 = −1, a22 = 1, a33 = 1.
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• d333
′ = a33a33a33d333 = (+1)(+1)(+1)d333 (3.40)

Since d333
′ ≡ d333, we obtain the trivial d333 = d333.

• d311
′ = a33a11a11d311 = (+1)(−1)(−1)d311 (3.41)

Since d311
′ ≡ d311, we obtain the trivial d311 = d311.

• d113
′ = a11a11a33d113 = (−1)(−1)(+1)d113 = d113 (3.42)

Since d113
′ ≡ d113, we obtain the trivial d113 = d113.

• d123
′ = a11a22a33d123 = (−1)(+1)(+1)d123 = −d123 (3.43)

Since d123
′ ≡ d123, we obtain d123 = −d123 = 0.

In conclusion, the mirror symmetry further eliminates
d123 = d132 = −d213 = −d231 = 0.

3.2.3. Reduction in the Tensor (Matrix Notation)

A third-rank tensor has 33 = 27 independent components in general. Since
dijk is symmetrical in j and k (which correspond to stress and strain), some of the
coefficients can be the same, leaving 18 independent dijk coefficients; this facilitates
the use of the matrix notation.

Thus far, all the equations have been developed in the full tensor notation.
However, when describing the tensor and/or calculating actual properties, it is
advantageous to reduce the number of suffixes as much as possible. This is done by
defining new symbols, for instance, d21 = d211 and d14 = 2d123: the second and third
suffixes (stress/strain) in the full tensor notation are replaced by a single suffix, from
1 to 6, in the matrix notation, as follows:

Tensor Notation 11 22 33 23, 32 31, 13 12, 21

Matrix Notation 1 2 3 4 5 6

Note that only when the shear stress and strain (4, 5, 6) are included, the
multiplication factor “1/2” is required in these new matrix array; Equation (3.19) is
rewritten as:

First layer (i = 1)




d11

(
1
2

)
d16

(
1
2

)
d15(

1
2

)
d16 d12

(
1
2

)
d14(

1
2

)
d15

(
1
2

)
d14 d13


,

Second layer (i = 2)




d21

(
1
2

)
d26

(
1
2

)
d25(

1
2

)
d26 d22

(
1
2

)
d24(

1
2

)
d25

(
1
2

)
d24 d23


,

Third layer (i = 3)




d31

(
1
2

)
d36

(
1
2

)
d35(

1
2

)
d36 d32

(
1
2

)
d34(

1
2

)
d35

(
1
2

)
d34 d33


.

(3.44)
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The last two suffixes in the tensor notation correspond to those of the strain
components; therefore, for consistency, we make the following change in the notation
for the strain components:




x11 x12 x31

x12 x22 x23

x31 x23 x33


 =




x1

(
1
2

)
x6

(
1
2

)
x5(

1
2

)
x6 x2

(
1
2

)
x4(

1
2

)
x5

(
1
2

)
x4 x3


. (3.45)

The (1/2)s in Equations (3.44) and (3.45) originate from the shear strain defi-
nition, x6 = x12 + x21, etc. (i.e., strain is an extensive parameter). Then, we have

xj = ∑
i

dijEi (i = 1, 2, 3; j = 1, 2, . . . , 6), (3.46a)

or 


x1

x2

x3

x4

x5

x6




=




d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36







E1

E2

E3


. (3.46b)

Concerning the stress components, the (1/2)s are unnecessary because the stress
is an intensive parameter.




X11 X12 X31

X12 X22 X23

X31 X23 X33


 =




X1 X6 X5

X6 X2 X4

X5 X4 X3


. (3.47)

The matrix notation has the advantage of compactness over the tensor notation,
and it makes it easy to display the coefficients on a plane diagram (the 3D dijk expres-
sion can be described by a 2D matrix expression). However, it must be remembered
that in spite of their form, the dij’s do not transform like the components of a normal
second-rank tensor. Piezoelectric matrices for the point groups 4 and 4mm are written
(from Equation (3.39)) as




0 0 0

0 0 0

d31 d31 d33

d14 d15 0

d15 −d14 0

0 0 0


,




0 0 0

0 0 0

d31 d31 d33

0 d15 0

d15 0 0

0 0 0


. (3.48)
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Example Problem 3.4

The room temperature form of α-quartz belongs to class 32. Taking into account
the crystal symmetry (refer to Figure 3.5), verify that the piezoelectric matrix (dij) is
given by only two independent components, d11 and d14:




d11 −d11 0 d14 0 0

0 0 0 0 −d14 −2d11

0 0 0 0 0 0


. (P3.4.1)

Notice that the piezoelectric tensor must be invariant for a 120◦ rotation around
the 3-axis and for a 180◦ rotation around the 1-axis. The transformation matrices are
respectively,




−1/2
√

3/2 0

−
√

3/2 −1/2 0

0 0 1


 and




1 0 0

0 −1 0

0 0 −1


.

Crystal 
Symmetry 4 4mm 32

Symbolic
Expression

Figure 3.5. 32 symmetry. Source: Figure by author.

Solution

We start from the 2-fold symmetry analysis first, because the rotation matrix has
a simple structure with only 3 components, 1 for each row and column, to eliminate
as many components as possible from the initial 18 components (each layer matrix of
the dijk tensor is symmetrical). The transformation change in the coordinate system
can be expressed as

d′ijk = ∑
lmn

ailajmakndlmn. (P3.4.2)

In the 180◦ rotation matrix around the x-axis, all the elements equal zero except
for a11 = 1, a22 = −1, and a33 = −1, which means in the original equation, d′ijk 6= 0
only when i = l, j = m, and k = n. Thus, we can simplify the equation into:

d′ijk = ∑
ijk

aiiajjakkdijk. (P3.4.3)

Since each layer matrix (i = 1, 2, 3) is symmetric, there are 6 components in each
layer, with 18 components in the whole tensor, thet are independent, which means
d′112 = d′121, d′113 = d′131, d′123 = d′132, d′212 = d′221, d′213 = d′231, d′223 = d′232, d′312 = d′321,
d′313 = d′331, and d′323 = d′332. Then, we can use this equation to find all the elements
in the new matrix:
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• For the first layer,

d′111 = (1)(1)(1)d111 = d111

d′112 = a11a11a22d112

d′112 = (1)(1)(−1)d112 = −d112

d′113 = a11a11a33d113

d′113 = (1)(1)(−1)d113 = −d113

d′122 = a11a22a22d122

d′122 = (1)(−1)(−1)d122 = d122

d′123 = a11a22a33d123

d′123 = (1)(−1)(−1)d123 = d123

d′133 = a11a33a33d133

d′133 = (1)(−1)(−1)d133 = d133

we obtain:



d′111 = d111 d′112 = −d112 d′113 = −d113

d′121 = −d112 d′122 = d122 d′123 = d123

d′131 = −d113 d′132 = d123 d′133 = d133


→




d111 0 0

0 d122 d123

0 d132 d133


. (P3.4.4)

• For the second layer,

d′211 = (−1)(1)(1)d211 = −d211

d′212 = a22a11a22d212

d′212 = (−1)(1)(−1)d212 = d212

d′213 = a22a11a33d213

d′213 = (−1)(1)(−1)d213 = d213

d′222 = a22a22a22d222

d′222 = (−1)(−1)(−1)d222 = −d222

d′223 = a22a22a33d223

d′223 = (−1)(−1)(−1)d223 = −d223

d′233 = a22a33a33d233

d′233 = (−1)(−1)(−1)d233 = −d233

we obtain



d′211 = −d211 d′212 = d212 d′213 = d213

d′221 = d212 d′222 = −d222 d′223 = −d223

d′231 = d213 d′232 = −d223 d′233 = −d233


→




0 d212 d213

d221 0 0

d231 0 0


. (P3.4.5)

• For the third layer,

d′311 = (−1)(1)(1)d311 = −d311

d′312 = a33a11a22d312
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d′312 = (−1)(1)(−1)d312 = d312

d′313 = a33a11a33d313

d′313 = (−1)(1)(−1)d313 = d313

d′322 = a33a22a22d322

d′322 = (−1)(−1)(−1)d322 = −d322

d′323 = a33a22a33d323

d′323 = (−1)(−1)(−1)d323 = −d323

d′233 = a22a33a33d233

d′333 = (−1)(−1)(−1)d333 = −d333

we obtain



d′311 = −d311 d′312 = d312 d′313 = d313

d′321 = d312 d′322 = −d322 d′323 = −d323

d′331 = d313 d′332 = −d323 d′333 = −d333


→




0 d312 d313

d321 0 0

d331 0 0


. (P3.4.6)

In conclusion, knowing the tensor symmetry such as d123 = d132 and d312 = d321,
the 2-fold symmetry reduces the independent components down to eight.

We will now work on the 3-fold symmetry. For a 120◦ rotation along the z-axis,
we have the following rotation matrix:




−1/2
√

3/2 0

−
√

3/2 −1/2 0

0 0 1


.

Therefore, a11 = −1/2, a12 = −
√

3/2, a21 =
√

3/2, a22 = −1/2, and a33 = 1.
Note that from the previous solution, we obtained d112 = d113 = d121 = d131 =
d211 = d222 = d232 = d223 = d233 = d311 = d322 = d332 = d323 = d333 = 0, d′111 =
d111, d′122 = d122, d′133 = d133, d′123 = d123, d′212 = d212, d′213 = d213, d′312 = d312,
d′313 = d313. We will calculate the eight non-zero components, d′111, d′122, d′133, d′123,
d′212, d′213, d′312, and d′313, below.

• d′111

d′111 = ∑
lmn

a1l a1ma1ndlmn = ∑
mn

a11a1ma1nd1mn + ∑
mn

a12a1ma1nd2mn

= a11a11a11d111 + a11a12a12d122 + a11a13a13d133

+2a11a12a13d123+2a12a11a12d212 + 2a12a11a13d213,

d′111 =
(
− 1

2

)(√
3

2

)(√
3

2

)
d122 +

(
− 1

2

)(
− 1

2

)(
− 1

2

)
d111 + 2

(√
3

2

)(√
3

2

)(
− 1

2

)
d21,

d′111 =
(
− 3

8
)
d122 +

(
− 1

8

)
d111 +

(
− 3

4
)
d212 ≡ d111.

(P3.4.7)
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• d′122

d′122 = ∑
lmn

a1la2ma2ndlmn = ∑
mn

a11a2ma2nd1mn + ∑
mn

a12a2ma2nd2mn

= a11a21a21d111 + a11a22a22d122 + a11a23a23d133 + 2a11a22a23d123+

2a12a21a22d212+2a12a21a23d213,

d′122 =
(
− 1

2

)(
−
√

3
2

)(
−
√

3
2

)
d111 +

(
− 1

2

)(
− 1

2

)(
− 1

2

)
d122+

2
(
−
√

3
2

)(√
3

2

)(
− 1

2

)
d212,

d′122 =
(
− 3

8
)
d111 +

(
− 1

8

)
d122 +

( 3
4
)
d212 ≡ d122.

(P3.4.8)

• d′133

d′133 = ∑
lmn

a1la3ma3ndlmn = ∑
mn

a11a3ma3nd1mn + ∑
mn

a12a3ma3nd2mn

= a11a31a31d111 + a11a32a32d122 + a11a33a33d133 + 2a11a32a33d123+

2a12a31a32d212+2a12a31a33d213,

d′133 =
(
− 1

2

)
(1)(1)d133 =

(
− 1

2

)
d133 ≡ d133.

(P3.4.9)

• d′123

d′123 = ∑
lmn

a1la2ma3ndlmn = ∑
mn

a11a2ma3nd1mn + ∑
mn

a12a2ma3nd2mn

= a11a21a31d111 + a11a22a32d122 + a11a23a33d133 + a11a22a33d123+

a11a23a32d132 + a12a21a32d212 + a12a22a31d221 + a12a21a33d213+

a12a23a31d231,

d′123 =
(
− 1

2

)(
− 1

2

)
(1)d123 +

(
−
√

3
2

)(√
3

2

)
(1)d213,

d′123 = 1
4 d123 +

(
− 3

4
)
d213 ≡ d123.

(P3.4.10)
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• d′212

d′212 = ∑
lmn

a2la1ma2ndlmn = ∑
mn

a21a1ma2nd1mn + ∑
mn

a22a1ma2nd2mn

= a21a11a21d111 + a21a12a22d122 + a21a13a23d133 + a21a12a23d123

+a22a11a22d212 + a22a12a21d221 + a22a11a23d213 + a22a13a21d231,

d′212 =
(
−
√

3
2

)(
−
√

3
2

)(
− 1

2

)
d111 +

(
−
√

3
2

)(√
3

2

)(
− 1

2

)
d122+

(
− 1

2

)(
− 1

2

)(
− 1

2

)
d212 +

(
−
√

3
2

)(√
3

2

)(
− 1

2

)
d212,

d′212 =
(
− 3

8
)
d111 +

( 3
8
)
d122 +

(
1
4

)
d212 ≡ d212.

(P3.4.11)

• d′213

d′213 = ∑
lmn

a2la1ma3ndlmn = ∑
mn

a21a1ma3nd1mn + ∑
mn

a22a1ma3nd2mn

= a21a11a31d111 + a21a12a32d122 + a21a13a33d133 + a21a12a33d123

+a21a13a32d132 + a22a11a32d212 + a22a12a31d221 + a22a11a33d213

+a22a13a31d231,

d′213 =
(
−
√

3
2

)(√
3

2

)
(1)d123 +

(
− 1

2

)(
− 1

2

)
(1)d213,

d′213 = − 3
4 d123 +

1
4 d213 ≡ d213.

(P3.4.12)

• d′312

d′312 = ∑
lmn

a3l a1ma2ndlmn = ∑
mn

a33a1ma2nd2mn

= a33a11a22d312 + a33a12a21d321 + a33a11a23d313 + a33a13a21d331,

d′312 = (1)
(
− 1

2

)(
− 1

2

)
d312 + (1)

(
−
√

3
2

)(√
3

2

)
d321 = 1

4 d312 − 3
4 d321 ≡ d312.

(P3.4.13)

• d′313

d′313 = ∑
lmn

a3la1ma3ndlmn = ∑
mn

a33a1ma3nd2mn

= a33a11a32d312 + a33a12a31d321 + a33a11a33d313 + a33a13a31d331,

d′313 = (1)
(
− 1

2

)
(1)d313 = − 1

2 d313 ≡ d313.

(P3.4.14)
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We can summarize the eight obtained equations, Equations (P3.4.7)–(P3.4.14),
as follows:





3d111 + d122 + 2d212 = 0

d111 + 3d122 − 2d212 = 0

d133 = 0

d123 + d231 = 0

d111 − d122 + 2d212 = 0

d123 + d231 = 0

d312 = 0

d331 = 0

→





d111 = −d122

d212 = −d111

d231 = −d123

d133 = d312 = d331 = 0

. (P3.4.15)

Using the matrix notation, d111 = d11, d122 = d12 = −d11, d123 =
(

1
2

)
d14 =

−d231 = −
(

1
2

)
d25, and d212 =

(
1
2

)
d26 = −d111, we finally obtain the matrix form

as follows:



d11 −d11 0 d14 0 0

0 0 0 0 −d14 −2d11

0 0 0 0 0 0




. (P3.4.16)

Note that α-quartz has only two independent tensor/matrix components, d11
and d14.

3.3. Tensor Description of Constitutive Equations

Two piezoelectric constitutive equations are shown below:

x = sEX + dE, (3.49a)

D = dX + ε0εXE. (3.49b)

By using the vector and tensor (reduced matrix) notation, we can obtain
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


x1

x2

x3

x4

x5

x6




=




sE
11 sE

12 sE
13 sE

14 sE
15 sE

16

sE
21 sE

22 sE
23 sE

24 sE
25 sE

26

sE
31 sE

32 sE
33 sE

34 sE
35 sE

36

sE
41 sE

42 sE
43 sE

44 sE
45 sE

46

sE
51 sE

52 sE
53 sE

54 sE
55 sE

56

sE
61 sE

62 sE
63 sE

64 sE
65 sE

66







X1

X2

X3

X4

X5

X6




+




d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36







E1

E2

E3




(3.50a)




D1

D2

D3


 =




d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36







X1

X2

X3

X4

X5

X6




+ε0




εX
11 εX

12 εX
13

εX
21 εX

22 εX
23

εX
31 εX

32 εX
33







E1

E2

E3




(3.50b)

Remember that the elastic and permittivity tensors are symmetric, but the
piezoelectric matrix is not symmetric, because “i” and “j” correspond to the electric
field and strain, respectively, and not commutative. We can also describe these matrix
expressions as 




xi = sE
ijXj + dmiEm

Dm = dmiXi + ε0εX
mkEk

, (3.51a)

(i, j = 1, 2, · · · , 6; m, k = 1, 2, 3). (3.51b)

Note also that for dmi, i = 4, 5, 6 (i.e., shear mode), dmi = 2dmpq (pq should be 23,
31, 12).

Example Problem 3.5

Measured piezoelectric constant dij values for right-handed quartz (crystal
symmetry 32) are given by
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


−2.3 2.3 0

0 0 0

0 0 0

−0.67 0 0

0 0.67 4.6

0 0 0


 × 10−12 [C/N].

(a) For the case where a compressive stress of 1 kg·f/cm2 is applied along the
1-axis of a quartz crystal, find the polarization generated (kg·f = kilogram
force = 9.8 N).

(b) For the case where an electric field of 100 V/cm is applied along the 1-axis, find
the strains generated.

Solution

(a) Considering the “compressive stress” has a negative sign, the polarization can
be expressed as




P1

P2

P3




=




−2.3 2.3 0 −0.67 0 0

0 0 0 0 0.67 4.6

0 0 0 0 0 0



× 10−12[C/N]




−98,000

0

0

0

0

0




[
N/m2

]
, (P3.5.1)




P1

P2

P3




=




2.3

0

0



× 10−7

[
C/m2

]
. (P3.5.2)

(b) The strain can be calculated as:




x1

x2

x3

x4

x5

x6




=




−2.3 0 0

2.3 0 0

0 0 0

−0.67 0 0

0 0.67 0

0 4.6 0




× 10−12[C/N]×




1

0

0


× 104 [V/m], (P3.5.3)




x1

x2

x3

x4

x5

x6




=




−2.3

2.3

0

−0.67

0

0




× 10−8. (P3.5.4)
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Example Problem 3.6

Barium titanate shows a tetragonal crystal symmetry (point group 4mm) at room
temperature. Therefore, its piezoelectric constant matrix is given by (Equation (3.48)):




0 0 0

0 0 0

d31 d31 d31

0 d15 0

d15 0 0

0 0 0




(a) Calculate the induced strain under an electric field applied along the crystal
c-axis (E3).

(b) Calculate the induced strain under an electric field applied along the crystal
a-axis (E1).

Solution




x1

x2

x3

x4

x5

x6




=




0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0







E1

E2

E3


 (P3.6.1)

can be transformed into

x1 = x2 = d31E3, x3 = d33E3,

x4 = d15E2, x5 = d15E1, x6 = 0.
(P3.6.2)

(a) When E3 is applied, elongation in the c direction (x3 = d33E3, d33 > 0) and
contraction in the a and b directions (x1 = x2 = d31E3, d31 < 0) are induced. The
ratio |d31/d33| corresponds to “Poisson’s ratio” σ.

(b) When E1 is applied, shear strain x5 (=2x31) = d15E1 is induced. Figure 3.6a
illustrates a case of d15 > 0 and x5 > 0. The deformation can be intuitively
understood by the polarization cant under the electric field.
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(a) (b)

E

E

3
2
1

Polarization

Figure 3.6. (a) Piezoelectric shear strain in the point group tetragonal 4mm, and
(b) [111] axis electrostrictive strain in the point group cubic m3m. Source: Figure
by author.

3.4. Matrix Notation of Electrostrictive Coefficients

In the solid state theoretical treatment of the phenomenon of piezoelectricity
(primary) or electrostriction (secondary electromechanical coupling), the strain xkl is
expressed in terms of the electric field Ei or electric polarization Pi as follows (refer
to the previous Section 1.2.4):

xkl = ∑
i

diklEi + ∑
i,j

MijklEiEj = ∑
i

giklPi + ∑
i,j

QijklPiPj. (3.52)

Here, dikl and gikl are called the “piezoelectric coefficients”, and Mijkl and Qijkl
are the “electrostrictive coefficients”. Since the E and x are first-rank and second-rank
tensors, respectively, d should be a third-rank tensor. However, EiEj and PiPj are
not tensors, precisely speaking, but we treat a combination of (E1

2, E2
2, E3

2, E2E3,
E3E1, E1E2) as if these are equivalent to a second-rank tensor. Note that these six
components are not independent at all. This is a smart way to convert the non-linear
behavior (electrostriction) to a linear algebra problem.

Using a similar reduction in the notation for the electrostrictive coefficients Mijkl,
we obtain the following equation corresponding to Equation (3.52):




x1

x2

x3

x4

x5

x6




=




d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36







E1

E2

E3



+




M11 M21 M31 M41 M51 M61

M12 M22 M32 M42 M52 M62

M13 M23 M33 M43 M53 M63

M14 M24 M34 M44 M54 M64

M15 M25 M35 M45 M55 M65

M16 M26 M36 M46 M56 M66







E1
2

E2
2

E3
2

E2E3

E3E1

E1E2




. (3.53)

Tables 3.1 and 3.2 summarize the matrix notations of d and M for all crystallo-
graphic point groups [1].
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Table 3.1. Piezoelectric coefficient matrix. *

d
mn

 = d
ijk

 (n = 1, 2, 3)

d
mn

 = 2d
ijk

 (n = 4, 5, 6)

i — electric field / polarization 

jk — strain / stress* {
Symbol meanings

Zero component

Non-zero component

Equal components

Equal with opposite signs 

−2 times of the         connected point

Triclinic
Point group 1

Point group 2
Monoclinic

Orthorhombic

Tetragonal

Point group 2

Point group m

Point group 222

Point group 4

Point group mm2

Point group 4

Point group m

2 || x 
2

(Standard) 
orientation

2 || x
3

m      x
2

(Standard) 
orientation

m      x
3

(18)

(8) (8)

(10)

(3)

(4)

(5)

(4)

(10)

I Centro symmetric point group

Point group  1,   2/m,   mmm,   4/m,   4/mmm,   m3,   m3m,   3,   3m,   6/m,   6/mmm.  All components are zero. 

II Non-centro symmetric point group
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Table 3.1. Cont.

Point group 422

Point group 432

Point group 3 m

Point group 622

Point group 6 m2

Point group 3

Point group 6

All components are zero

Point group 42m

Cubic

Rhombohedral

Hexagonal

Point group 4  mm

Point group 43 m, 23

Point group 3 m

Point group 6

Point group 6 m2

Point group 32

Point group 6 mm

(1)

(0)

(4)

(1)

(1)

(6)

(4)

(2)

(3)

(1)

(4)

(2)

(1)

(2)

(3)

2 || x
1

m      x
2

m      x 
2

m      x
1

(Standard)
orientation

m      x
1

(Standard)
orientation

Source: [3] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 50. Reproduced by permission of
Taylor & Francis Group.
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Table 3.2. Electrostrictive coefficient matrix. *

Qmn = 2Qijkl (m or n = 4, 5, 6)

Qmn = 4Qijkl 

ij — strain

kl  — electric field
*{

Symbol meanings

Zero component

Non-zero component

Equal components

Equal with opposite signs 

2 times of the         connected component

         connected component−2 times of the 

(Q
11

 — Q
12

)

Trigonal
Point group 1, T

Trigonal
Point group 222, mm2, mmm

Monoclinic
Point group 2, m, 2/m

2 fold axis || x
2

Standard 
orientation

2 fold axis || x
3

(36)

(12)

(20)(20)

Qmn = Qijkl (m, n = 1, 2, 3)

(m, n = 4, 5, 6)

92



Table 3.2. Cont.

Point group 4, 4, 4/m

Point group 3, 3

Point group 6, 6, 6/m

Point group 23, m3

Teragonal

Rhombohedral

Hexagonal

Cubic

Isotropic

Point group 4mm, 42m, 422, 4/mmm

Point group 6m2, 6mm, 622, 6/mmm

Point group 43m, 432, m3m

(10)

(12)

(8)

(4)

(7)

(8)

(6)

(3)

(2)

Point group 3m, 32, 3m

Source: [3] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 52. Reproduced by permission of

Taylor & Francis Group.
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Example Problem 3.7

Lead magnesium niobate (Pb(Mg1/3Nb2/3)O3) exhibits a cubic crystal symmetry
(point group m3m) at room temperature and thus, does not show piezoelectricity.
However, large electrostriction is induced under an applied electric field. The relation
between the strain and the electric field is given by:




x1

x2

x3

x4

x5

x6




=




M11 M12 M12

M12 M11 M12

M12 M12 M11

0 0 0

0 0 0

0 0 0

0 0 0)

0 0 0

0 0 0

M44 0 0

0 M44 0

0 0 M44







E1
2

E2
2

E3
2

E2E3

E3E1

E1E2




, (P3.7.1)

in a matrix representation (refer to Table 3.2, m3m symmetry). Calculate the induced
strain under an electric field applied along the [111] direction (based on a cubic
perovskite coordinate).

Solution

The electric field along the [111] direction, E[111], is represented as (E[111]/
√

3,
E[111]/

√
3, E[111]/

√
3). Substituting E1 = E2 = E3 = E[111]/

√
3 into Equation (P3.7.1),

we obtain

x1 = x2 = x3 = (M11 + 2M12) E[111]
2/3 (=x11 = x22 = x33), (P3.7.2)

x4 = x5 = x6 = M44 E[111]
2/3 (=2x23 = 2x31 = 2x12). (P3.7.3)

Extensional and shear strains occur in all perovskite primary axes. The distortion
is illustrated in Figure 3.6b. The strain x induced along an arbitrary direction is
given by

x = ∑
i,j

xijlilj, (P3.7.4)

where li is a direction cosine with respect to the i-axis. Therefore, the strain induced
along the [111] direction, x[111]//, is given by

x[111]// = ∑i,j xij

(
1/
√

3
)(

1/
√

3
)

= [x1 + x2 + x3 + 2(x4/2 + x5/2 + x6/2)]/3

= (M11 + 2M12 + M44)E[111]
2/3.

(P3.7.5)
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On the other hand, the strain induced perpendicular to the [111] direction,
x[111]⊥, is calculated in a similar fashion as

x[111]⊥ = (M11 + 2M12 −M44/2)E[111]
2/3. (P3.7.6)

Figure 3.6b shows the distortion schematically. It is noteworthy that the volu-
metric strain (∆V/V) is given by

x[111]// + 2x[111]⊥ = (M11 + 2M12)E[111]
2. (P3.7.7)

Note that this volumetric strain is the same for (∆V/V) under an electric field E1:

x1 + 2x2 = (M11 + 2 M12)E1
2, (P3.7.8)

leading to the following conclusion: volume expansion (∆V/V) is the same regardless
of the applied field direction.

3.5. Alternative Elastic Property Representation

3.5.1. Elastic Compliance and Stiffness

The elastic compliance and stiffness tensors/reduced matrices can be described
in general as




x1

x2

x3

x4

x5

x6




=




s11 s12 s13 s14 s15 s16

s21 s22 s23 s24 s25 s26

s31 s32 s33 s34 s35 s36

s41 s42 s43 s44 s45 s46

s51 s52 s53 s54 s55 s56

s61 s62 s63 s64 s65 s66







X1

X2

X3

X4

X5

X6




, (3.54)




X1

X2

X3

X4

X5

X6




=




c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66







x1

x2

x3

x4

x5

x6




. (3.55)
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The compliance and stiffness are mutually related as inverse matrices:




c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66




=




s11 s12 s13 s14 s15 s16

s21 s22 s23 s24 s25 s26

s31 s32 s33 s34 s35 s36

s41 s42 s43 s44 s45 s46

s51 s52 s53 s54 s55 s56

s61 s62 s63 s64 s65 s66




−1

. (3.56)

Compared with the “electrostrictive coefficient matrix”, which is not symmetric,
the “elastic constant matrix” is symmetric. Thus, there are 21 independent compo-
nents in the lowest symmetry crystals among 36 components.

A poled piezoelectric ceramic has a crystallographic (∞mm) symmetry (anisotropic)
with the elastic constant matrix (five independent components, s11, s33, s12, s13, s44)




s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 2
(
s11 − s12

)




. (3.57)

However, merely from the mathematical/analytical simplicity viewpoint, a
treatment with “piezoelectrically anisotropic”, but “elastically isotropic”, assumption
is often utilized in piezoelectric transducers. In an isotropic crystal, the elastic
compliance matrix is simplified as follows, with only two independent components,
s11 and s12:




s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 2
(
s11 − s12

)
0 0

0 0 0 0 2
(
s11 − s12

)
0

0 0 0 0 0 2
(
s11 − s12

)




. (3.58)

The reason why the shear component s66 is given by 2(s11 − s12) can be intu-
itively explained as follows (refer to Example Problem 3.2): the shear stresses X12,
X21 are equivalent to X11

′ (tensile), −X22
′ (compressive) in a 45◦ rotated coordinate
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system. If the material is isotropic, since the 45◦ rotation will not change the elastic
compliance, the strain x6 should be the same for both stress conditions. We obtain

x6 = x12 + x21 = s1212(X12 + X21) = s66X6 = x′11 + x′22 = (s1111X′11 − s1122X′22)+

(s1111X′22 − s1122X′11) = 2(s11 − s12)X′11.

Since X6 = X11’ (magnitude of the shear and longitudinal stresses should be equal
for this 45◦ rotation), we can conclude that s66 = 2(s11 − s12).

On the other hand, the elastic stiffness matrix (c11 and c12) is expressed as




c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 1
2
(
c11 − c12

)
0 0

0 0 0 0 1
2
(
c11 − c12

)
0

0 0 0 0 0 1
2
(
c11 − c12

)




. (3.59)

From the condition
(
sij
)
·
(
cij
)
= (I) (unity matrix), we obtain the following two

equations:
{

s11c11 + 2s12c12 = 1

s12c11 + s11c12 + s12c12 = 0
.

Accordingly, the relations between
(
sij
)

and
(
cij
)

are





c11 = (s11+s12)
(s11−s12)(s11+2s12)

c12 = − s12
(s11−s12)(s11+2s12)

1
2 (c11 − c12) =

1
2(s11−s12)





s11 = (c11+c12)
(c11−c12)(c11+2c12)

s12 = − c12
(c11−c12)(c11+2c12)

2(s11 − s12) =
1

1
2 (c11−c12)

. (3.60)

3.5.2. Young’s Modulus and Poisson’s Ratio

“Young’s modulus” (or the Young modulus) E is a mechanical property which
measures the stiffness of a solid material. It is defined by the relationship between
stress X and strain x in a material in the linear elasticity regime of a uniaxial defor-
mation:

X = E·x. (3.61)

The reader is more familiar with the Young modulus in mechanical engineer-
ing from their high school age, rather than elastic compliance in the physics field.
Because Young’s modulus is defined by the free condition (no clamping) along the
transversal direction, we had better consider that an inverse E corresponds to the
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elastic compliance (because it is a stress-free, rather than strain-free, condition) in
practice. Taking into account the transversal shrinkage via Poisson’s ratio

σ = −s12/s11, (3.62)

the elastic compliance matrix is represented by two parameters, E and σ, in an
isotropic material as

(
sij
)
=

1
E




1 −σ −σ 0 0 0

−σ 1 −σ 0 0 0

−σ −σ 1 0 0 0

0 0 0 2(1 + σ) 0 0

0 0 0 0 2(1 + σ) 0

0 0 0 0 0 2(1 + σ)




. (3.63)

On the contrary, the elastic stiffness matrix is slightly more complicated than
the above, which can be derived from the relation

(
sij
)
·
(
cij
)
= (I) (unity matrix):

(
cij
)
=




c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44




, (3.64a)

where the matrix components are represented by Poisson’s ratio with Young’s
moduli as 




c11 = 1−σ
(1+σ)(1−2σ)

E

c12 = σ
(1+σ)(1−2σ)

E

c44 = 1
2(1+σ)

E

. (3.64b)

For the reader’s reference, the following equations provide another important
idea on cij and sij: 




c11 = 1−σ
(1+σ)(1−2σ)

1
s11

c12 = σ2

(1+σ)(1−2σ)
1

s12

. (3.65)

When we adopt σ = 1/4− 1/3 (typical values for PZT’s), 1−σ
(1+σ)(1−2σ)

= 1.2− 1.5

and σ2

(1+σ)(1−2σ)
= 0.1− 0.25. c11 is slightly larger than the inverse of s11, while c12

may be neglected depending on Poisson’s ratio σ.
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3.5.3. Lamé Parameters

Another alternative representation often used is “Lamé parameters” (after
Gabriel Lamé, a French mathematician) in an isotropic elastic material, which is
analogous to the elastic stiffness from the viewpoint of the mechanical clamping
(strain-free) condition [2]. The “first and second Lamé parameters”, λ and µ, are
defined by both shear parameters as

λ = c12, and µ = c66 =
1
2
(c11 − c12). (3.66)

Though the physical meaning of µ is clear as the “shear modulus”, λ = c12 may
not have a clear image. The elastic stiffness matrix is represented using the first and
second Lamé parameters as follows in an isotropic symmetry:

(
cij
)
=




(λ + 2µ) λ λ 0 0 0

λ (λ + 2µ) λ 0 0 0

λ λ (λ + 2µ) 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




. (3.67)

The diagonal c11 can be obtained from Equation (3.66) as

c11 = λ + 2µ (3.68)

The transformation relations between (E, σ) and (λ, µ) are summarized as:




E = 1
s11

= (c11+c12)
(c11−c12)(c11+2c12)

= λ+µ
µ(λ+4µ)

σ = − s12
s11

= c12
c11+c12

= λ
2(λ+µ)

. (3.69)

Lamé parameters are preferably used in sound propagation in a material. Taking
the material’s mass density ρ, the sound velocity for the longitudinal and transverse
waves is given by c2

l = (λ + 2µ)/ρ and c2
t = µ/ρ.

3.6. The Magnitude Ellipsoid

We derived the permittivity tensor form for a crystal with a 4-fold symme-
try with only two independent components in Subsection Four-Fold Axisymmetry
(page 71): 



D1

D2

D3


 = ε0




ε11 0 0

0 ε11 0

0 0 ε33







E1

E2

E3


. (3.70)

We know the principal permittivity along x-, y-, or z-axis from this representation.
However, how can we obtain the permittivity along an arbitrary direction? The
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solution can be found by the elliptical surface, whose equation, when referring to the
principal axes of [εij], is

x2

εx2 +
y2

εy2 +
z2

εz2 = ε0
2. (3.71)

This is called the “magnitude ellipsoid”, whose semi-axes are εx, εy, and εz, as
illustrated in Figure 3.7.

The verification of this ellipsoid solution is conducted as follows. Let E =(
Ex, Ey, Ez

)
, and since a constant (unit) electric field is applied on this crystal in

an arbitrary direction, Ex
2 + Ey

2 + Ez
2 = 1. From the relation D = (Dx, Dy, Dz) =

(ε0ε11Ex, ε0ε11Ey, ε0ε33Ez), we obtain

Dx
2

ε02εx2 +
Dy

2

ε02εy2 +
Dz

2

ε02εz2 = 1. (3.72)

Hence, the extremity of the vector D lies on the ellipsoid of Equation (3.71) (see
the details in Chapter 13).

In 4-fold tetragonal symmetry (4, 4, 4/m, 422, 4mm, 42m, 4/mmm), εx = εy,
hence the permittivity ellipsoid is donut-shape (when εx > εz). On the contrary, in
orthogonal symmetry (222, mm2, and mmm), all principal εx, εy, and εz are different.
Thus, the three ellipsoid axes are all different.

z
εz

εy
εx

y

x

Figure 3.7. Permittivity ellipsoid for a crystal with a tetragonal 4-fold symmetry.
Source: Figure by author.

Chapter Essentials

1. When we correlate one input physical parameter X with an output parameter
Y, we introduce a proportional parameter A in a linear relation approximation:

Y = AX.

When X is a p-rank tensor, and Y is a q-rank tensor, A is supposed to be expressed
by using a (p + q)-rank tensor:

Yij. . .q = ∑lm. . .pAij. . .qlm. . .p Xlm. . .p.

2. Transformation matrix: unitary
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


a11 a12 a13

a21 a22 a23

a31 a32 a33




−1

=




a11 a12 a13

a21 a22 a23

a31 a32 a33




t

,

centro-symmetry




−1 0 0

0 −1 0

0 0 −1


; mirror symmetry




−1 0 0

0 1 0

0 0 1


; rotation

matrix




cos θ sinθ 0

− sin θ cos θ 0

0 0 1


.

3. The shear stresses X12, X21 are equivalent to X11’ (tensile), −X22’ (compressive)
in a 45◦ rotated coordinate system.

4. Reduction in the Tensor (Matrix Notation):

Tensor Notation 11 22 33 23, 32 31, 13 12, 21

Matrix Notation 1 2 3 4 5 6

Stress/strain, stress/strain reduced notation:



X11 X12 X31

X12 X22 X23

X31 X23 X33


 =




X1 X6 X5

X6 X2 X4

X5 X4 X3


,




x11 x12 x31

x12 x22 x23

x31 x23 x33


 =




x1

(
1
2

)
x6

(
1
2

)
x5(

1
2

)
x6 x2

(
1
2

)
x4(

1
2

)
x5

(
1
2

)
x4 x3




(X1, X2, X3, X4, X5, X6), and (x1, x2, x3, x4, x5, x6).

5. Tensor Description of Piezoelectric Constitutive Equations (4mm Symmetry
Case)




x1

x2

x3

x4

x5

x6




=




s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s66







X1

X2

X3

X4

X5

X6




+




0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0







E1

E2

E3


,
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


D1

D2

D3




=




0 0 0

0 0 0

d31 d31 d33

0 d15 0

d15 0 0

0 0 0







X1

X2

X3

X4

X5

X6




+ ε0




ε11 0 0

0 ε11 0

0 0 ε33







E1

E2

E3




.

6. Permittivity Ellipsoid:

x2

εx2 +
y2

εy2 +
z2

εz2 = ε0
2.

7. Alternative Elastic Property Representation in Isotropic Materials

• Young’s modulus and Poisson’s ratio

(
sij
)
=

1
E




1 −σ −σ 0 0 0

−σ 1 −σ 0 0 0

−σ −σ 1 0 0 0

0 0 0 2(1 + σ) 0 0

0 0 0 0 2(1 + σ) 0

0 0 0 0 0 2(1 + σ)




(
E =

1
s11

, σ = −s12/s11

)

• Lamé Parameters

(
cij
)
=




(λ + 2µ) λ λ 0 0 0

λ (λ + 2µ) λ 0 0 0

λ λ (λ + 2µ) 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




[λ = c12, µ = c66 =
1
2
(c11 − c12)]

Check Point

1. (T/F) The following two force configurations are equivalent mathematically
(Figure 3.8). True or false?
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Figure 3.8. Shear stress (left) and uniaxial stress (right). Source: Figure by author.

2. The permittivity εij tensor is a second-rank tensor. How many independent
components are there in general (in the lowest symmetry)?

3. The piezoelectric dijk tensor is a third-rank tensor. How many independent
components are there in general (in the lowest symmetry)?

4. The elastic compliance sijkl tensor is a fourth-rank tensor. How many indepen-
dent components are there in general (in the lowest symmetry)?

5. Provide two independent permittivity tensor components for a 4mm crystal
symmetry using a tensor notation εij.

6. Provide three independent piezoelectric tensor components for a 4mm crystal
symmetry using a reduced notation dij.

7. Provide two independent elastic compliance tensor components for an isotropic
crystal symmetry using a reduced notation sij.

8. In an isotropic crystal symmetry, provide the Young modulus E and Poisson
ratio in terms of the elastic compliance reduced notation sij.

9. In an isotropic crystal symmetry, provide the first and second Lamé parameters
in terms of the elastic stiffness reduced notation cij.

10. (T/F) The rotation matrix (θ) around the x-axis is given by




cos θ sinθ 0

− sin θ cos θ 0

0 0 1


.

True or false?

11. Choose the correct answer. The transformation matrix




−1 0 0

0 1 0

0 0 1


 means:

(a) centro symmetry with respect to the origin (0,0,0); (b) 180◦ rotation with
respect to the x-axis; (c) mirror symmetry with respect to the y-z plane; (d) none
of the above.

Chapter Problems

3.1 Derive the relations between the compliances and the stiffnesses for a cubic
m3m symmetry.

Hint

The solution should be:
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



c11 = (s11+s12)
(s11−s12)(s11+2s12)

c12 = − s12
(s11−s12)(s11+2s12)

c44 = 1
s44

.

3.2 Knowing the permittivity tensor/matrix of a tetragonal (4-fold) symmetry:



ε11 0 0

0 ε11 0

0 0 ε33


,

calculate the permittivity of a crystal slab with the normal direction θ from the
z-axis.

Hint

The permittivity ellipsoid for a tetragonal crystal is given by

x2

ε11
2 +

y2

ε11
2 +

z2

ε33
2 = ε0

2.

Since the direction θ condition is given by

z2 = (x2 + y2 + z2) cos2 θ, (x2 + y2) = (x2 + y2 + z2) sin2 θ,

(x2 + y2 + z2)
(

sin2 θ
ε11

2 + cos2 θ
ε33

2

)
= ε0

2,

εe f f
2 = 1/

(
sin2 θ
ε11

2 + cos2 θ
ε33

2

)
.

3.3 Prove that the volume change of a cubic crystal under uniaxial tension X is
independent of the direction of the tension and is given by (s11 + 2s12)X.
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4. Nonlinear Phenomenology—Taylor
Expansion II

4.1. Fundamentals in Phenomenology

4.1.1. Introduction to Nonlinear Phenomenology

A thermodynamic phenomenological theory is discussed based on the free
energy expressed in the form of an expansion series in terms of the intensive and
extensive physical properties: one with electric field E (intensive) and polarization P
(extensive), one with temperature T (intensive) and entropy S (extensive), one with
stress X (intensive) and strain x (extensive), and, if applicable, one with magnetic
field H (intensive) and magnetization M (extensive). In our ferroelectric discussion,
the last parameters will be neglected.

In Chapter 2, we considered a practical formula of the Gibbs free energy G(T,
X, E) for the case of a small change in temperature θ = T − TR (room temperature),
external X, and E (1D case). If the change in parameters is small, we may adopt the
three-parameter Taylor expansion approximation up to second derivatives in order
to discuss just the linear relationships:

G(T, X, E) = G0 +
(

∂G
∂T

)
θ +

(
∂G
∂X

)
X +

(
∂G
∂E

)
E + 1

2

(
∂2G
∂T2

)
θ2 + 1

2

(
∂2G
∂X2

)
X2

+ 1
2

(
∂2G
∂E2

)
E2 +

(
∂2G

∂T∂X

)
θX +

(
∂2G

∂T∂E

)
θE +

(
∂2G

∂X∂E

)
XE.

(4.1)

Taking into account dG = −SdT − xdX − DdE, we first obtain the relations,(
∂G
∂T

)
θ,X,E=0

= −S0,
(

∂G
∂X

)
θ,X,E=0

= −x0 and
(

∂G
∂E

)
θ,X,E=0

= −D0. Take these

constants as the new “origins”, and set them to “zero”. Then, Equation (4.1) can be
transformed as:

S = −
(

∂G
∂T

)
= −

(
∂2G
∂T2

)
θ −

(
∂2G

∂T∂X

)
X−

(
∂2G

∂T∂E

)
E, (4.2a)

x = −
(

∂G
∂X

)
= −

(
∂2G

∂T∂X

)
θ −

(
∂2G
∂X2

)
X−

(
∂2G

∂X∂E

)
E, (4.2b)

D = −
(

∂G
∂E

)
= −

(
∂2G

∂T∂E

)
θ −

(
∂2G

∂X∂E

)
X−

(
∂2G
∂E2

)
E. (4.2c)

Based on the above linear relationships, we derived several types of “constitutive
linear equations”.

However, as the reader is familiar with so-called “hysteresis” in the polarization–
electric-field and strain–electric-field relations, one of the characteristics in ferro-
electrics is the nonlinear performances. For this purpose, we will take higher-order
Taylor expansion terms in this chapter. Small hysteresis observed in small parame-
ter modulation of the electric field or stress can be treated as the phase delay (e.g.,
viscoelastic damping) in the linear relationship in Equation (4.2) primarily by inte-
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grating complex parameters into the physical coefficients. This situation is discussed
in Chapter 6 Loss in Piezoelectrics.

Let us start the fundamentals of Taylor expansion terms by taking Helmholtz
free energy, A = U − TS or dA = −SdT + Xdx + EdD in derivative expression, which
is useful for discussing the internal energy of material under an isothermal condition.
Taylor expansion approximation up to higher-order terms is described as follows:

A(T, x, P) = G0 +
(

∂A
∂T

)
θ +

(
∂A
∂x

)
x +

(
∂A
∂P

)
P + 1

2

(
∂2 A
∂T2

)
θ2

+ 1
2

(
∂2 A
∂x2

)
x2 + 1

2

(
∂2 A
∂P2

)
P2 +

(
∂2 A
∂T∂x

)
θx +

(
∂2 A

∂T∂P

)
θP +

(
∂2 A
∂x∂P

)
xP

+ 1
3!

(
∂3 A
∂T3

)
θ3 + 1

3!

(
∂3 A
∂x3

)
x3 + 1

3!

(
∂3 A
∂P3

)
P3 + 1

2

(
∂3 A

∂T2∂x

)
θ2x + 1

2

(
∂3 A

∂T∂x2

)
θx2

+ 1
2

(
∂3 A

∂T2∂P

)
θ2P + 1

2

(
∂3 A

∂T∂P2

)
θP2 + 1

2

(
∂3 A

∂x2∂P

)
x2P + 1

2

(
∂3 A

∂x∂P2

)
xP2 + · · ·

(4.2)

As you have learned, temperature is a scalar quantity (0th-rank tensor), polar-
ization is a vector (1st-rank tensor), and strain is a tensor (2nd-rank tensor), and their
product should have characteristics of a (p + q)-rank tensor. For example, when
we take the transformation matrix on PiPjPk (equivalent to P3 in 1D expression),
we need to take the treatment similar to the 3rd-rank tensor, and the Taylor expan-
sion coefficient

(
∂3 A

∂Pi∂Pj∂Pk

)
should be represented by three suffices as αijk, which

are handled as the 3rd-rank tensor. When we discuss the crystal symmetry, the
description of αijk on a new coordinate is expressed by the transformation matrix
(aij) as α′ijk = ∑

lmn
ailajmaknαlmn. As another example, when we take xiPjPk (i = 1,

2, · · · , 6) or xlmPjPk (l,m = 1, 2, 3), the Taylor expansion coefficient
(

∂3 A
∂xi∂Pj∂Pk

)
(or

(
∂3 A

∂xlm∂Pj∂Pk

)
) should be represented by four suffices as αlmjk, which are handled

as the 4th-rank tensor. When we discuss the crystal symmetry, the description of
αlmjk on a new coordinate system is expressed by the transformation matrix (aij)
as α′lmjk = ∑

opqr
aloampajqakrαopqr. In this sense, we categorize the higher-rank tensor

terms under an isothermal condition (θ = 0) as:

• PiPjPk (3); xiPjPk (4); xixjPk (5); xixjxk (6)
• PiPjPkPl (4); xiPjPkPl (5); xixjPkPl (6); xixjxkPl (7); xixjxkxl (8)
• PiPjPkPl Pm (5); xiPjPkPl Pm (6); xixjPkPl Pm (7); · · ·
• PiPjPkPl PmPn (6); xiPjPkPl PmPn (7); xixjPkPl PmPn (8); · · ·

4.1.2. Elimination Theorem of Taylor Expansion Terms

Theorem 1. When the crystal possesses a “centrosymmetry”, the odd power of the expansion
tensor coefficient αij···l becomes “zero”.

This theorem can be verified as follows: note the transformation matrix for cen-

trosymmetry



−1 0 0
0 −1 0
0 0 −1


. As α′ij···l = ∑

lm···p
ailajm · · · alpαlm···p, and (ij · · · l) ≡
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(lm · · · p), the multiplication of ailajm · · · alp = −1 for the odd number of ail’s. From
αlm···p = −αlm···p, we can conclude that αlm···p = 0. Another explanation is that
the centrosymmetry transformation changes the polarization P polarity, that is,
PiPjPk → −PiPjPk . In order to keep the Helmholtz energy constant, we should elim-
inate the odd power of the polarization terms. Needless to say, the odd power of the
strain terms remains, because xi itself is the even-rank tensor.

4.1.3. Polarization Expansion Series

Let us start from the simplest model with only polarization as an “order parame-
ter” in order to discuss the para- to ferroelectric phase transition. The order parameter
is created and determined by the cooperation of microscopic quantities and yet gov-
erns the behavior of the whole system. Using the Taylor expansion series of the free
energy in terms of the polarization P (a simple 1D model is initially adopted):

F(P) = F(0) + a1P + a2P2 + a3P3 + a4P4 + a5P5 + a6P6 + . . . (4.3)

Theorem 2. When we discuss the phase transition, we assume that energy description is
common through the paraelectric and ferroelectric phases and that the reduction of the Taylor
expansion terms follows the highest symmetry paraelectric phase. When the paraelectric phase
is “centrosymmetric”, the odd power of the expansion tensor coefficient αij···l becomes “zero”.

We assume that the free energy of the crystal should not change with polariza-
tion reversal (P→−P), because the charge or permittivity in the capacitance should
not be changed according to the capacitor orientation/upside down. This is the key
in practical electronic equipment. From the condition F(P) = F(−P), the expansion
series should not contain the odd power of terms of P, only even powers of P:

F(P) = a2P2 + a4P4 + a6P6 + . . . (4.4)

4.1.4. Temperature Expansion Series

Next, we take into account the expansion series in terms of P and temperature θ
(θ = T − T0):

F(P,θ) = a2P2 + a4P4 + a6P6 + . . . + b1θ + b2θ2 + . . . + c1θP2 + . . .

From S =− ( ∂F
∂T ) =− b1, we set b1 = 0, because a constant entropy is meaningless. The

term b2θ2 is a higher-order term of temperature to be neglected. Thus, we adopt only
c1θP2. Note that a possible term θP is omitted from the reason F(P) = F(−P) again
(as long as the higher temperature phase possesses centrosymmetry, such as a cubic
perovskite). It is important to understand that the product θP2 of the two parameters
(P2 and θ) explain the “coupling effect”; that is, T change causes P change to keep
the same free energy (this effect is called the “pyroelectric” effect), or E application
causes T change (this is called the “electrocaloric” effect). For simplicity’s sake, we
introduce a new notation α by combining a2P2 and c1θP2:

(1/2)αP2 = a2P2 + c1TP2 = (1/2)( T−T0
ε0C )P2.
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The α is the only parameter with a temperature dependence. We also introduce the
following notations:

(1/4)βP4, (1/6)γP6.

4.1.5. Stress Expansion Series

Now, we construct the elastic Gibbs free energy form by adding the stress
expansion series:

G1(P, T, X) = (1/2)α(T)P2 + (1/4)βP4 + (1/6)γP6 + . . . + d1X + d2X2 + . . . + e1P2X + . . .

[α(T) = (T − T0)/ε0C].

From x =−( ∂F
∂X ) =−d1, and given that the constant strain is meaningless, we set d1 = 0

(strain origin). P2X is the fundamental electromechanical coupling (i.e., “electrostric-
tive coupling”), which explains the polarization generation under stress, or strain
generation under an electric field. This argument is also valid when spontaneous
polarization exists in the ferroelectric phase, in addition to the case that induced
polarization exists in the paraelectric phase. Needless to say, it is not valid in quartz,
which does not have the centrosymmetric paraelectric phase in the high temperature
range (quartz is not even a ferroelectric). Quartz includes the PX coupling term
in its discussion (i.e., the odd power of P can exist). Introducing new notations
d2 = −(1/2)s (elastic compliance) and e1 = −Q (electrostrictive coefficient), we finally
obtain popular “elastic Gibbs energy” G1:

G1(P, X, T) = (1/2)α(T)P2 + (1/4)βP4 + (1/6)γP6 − (1/2)sX2 − QP2X

[α(T) = (T − T0)/ε0C].
(4.5)

4.2. Landau Theory of the Phase Transition

We assume that the Landau free energy F in 1D is represented in terms of
polarization P (excluding stress terms initially) as:

F(P, T) = (1/2)αP2 + (1/4)βP4 + (1/6)γP6 [α(T) = (T − T0)/ε0C]. (4.6)

The coefficients α, β, γ depend, in general, on the temperature; however, as discussed
in the previous section, only α is assumed to be temperature dependent (linearly)
in the following calculation. The phenomenological formulation should be applied
for the whole temperature range over which the material is in the paraelectric and
ferroelectric states (this is the fundamental assumption).

As the spontaneous polarization should be zero in the paraelectric state, the free
energy should be zero in the paraelectric phase at any temperatures above its Curie
temperature (or the phase transition temperature). To stabilize the ferroelectric state,
the free energy for a certain polarization P should be lower than “zero”. Otherwise,
the paraelectric state should be realized without making the phase transition. Thus,
at least, the coefficient α of the P2 term must be negative for the polarized state to
be stable, while in the paraelectric state, it must be positive, passing through zero at
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some temperature T0 (“Curie–Weiss temperature”). In order to satisfy this argument,
we introduce a linear relation in terms of temperature:

α = (T − T0)/ε0C, (4.7)

where C is taken as a positive constant called the “Curie–Weiss constant” and T0 is
equal to or lower than the actual transition temperature TC (“Curie temperature”).
The temperature dependence of α is related on a microscopic level to the temperature
dependence of the ionic polarizability coupled with thermal expansion and other
effects of anharmonic lattice interactions. Refer to the discussion in Chapter 11 later.

The equilibrium polarization in an electric field E should satisfy the condition:

(∂F/∂P) = E = αP + βP3 + γP5. (4.8)

With no electric field applied, Equation (4.8) provides two cases:

P(α + βP2 + γP4) = 0. (4.9)

(i) P = 0→ This trivial solution corresponds to a paraelectric state.
(ii) α + βP2 + γP4 = 0→ This finite polarization solution corresponds to a ferroelec-

tric state.

4.2.1. Second-Order Phase Transition (In the Case of β > 0)

When β is positive, γ is often neglected because nothing special is added by this
term. There are not many material examples which show this “second-order” transi-
tion; however, triglycine sulphate (TGS) is an example of a ferroelectric exhibiting the
second-order phase transition. We will discuss this in detail because this description
provides intuitive ideas on the phase transition owing to its mathematical simplicity.

The second-order transition is based on the Landau expression:

F(P, T) = (1/2)αP2 + (1/4)βP4 [α(T) = (T − T0)/ε0C]. (4.10)

Electric field is obtained by the first derivative of F in terms of P:

(∂F/∂P) = E = αP + βP3. (4.11)

Taking another derivative of E with respect to P, inverse permittivity is obtained:

1
ε0ε

=
1(
∂P
∂E

) =

(
∂E
∂P

)
= α + 3βP2. (4.12)

Now, under zero applied field conditions, let us obtain the spontaneous polar-
ization from Equation (4.11)

αPS + βPS
3 = 0 [α = (T − T0)/ε0C], (4.13)
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so that the following two states are possible:
{

PS = 0
PS

2 = − α
β = T0−T

βε0C
. (4.14)

Landau Free Energy Change with Temperature

Figure 4.1 plots the Landau free energy F(P, T) = (1/2)αP2 + (1/4)βP4 as a
function of polarization P by changing the temperature T. Projected curves on the
F vs. polarization P domain are shown in Figure 4.1a. When T � T0, since the
(1/2)αP2 positive term dominates over the (1/4)βP4 term, the free energy curve is
almost “convex” parabolic with single minimum at P = 0 (i.e., paraelectric phase).
As the inverse permittivity is obtained from the second derivative of F (i.e.,

(
∂2F
∂P2

)
)

and the curvature of F is given by ( ∂2F
∂P2 )/

[
1 +

(
∂F
∂P

)2
]3/2

, we can conclude that the

inverse permittivity is visibly obtained from the “energy curvature” around the
energy minimum point (that is,

(
∂F
∂P

)
= 0 point). With a decrease in temperature

T, the parabolic curvature (inverse permittivity) decreases continuously, leading to
the Curie–Weiss law. With a decrease in the temperature close to T0 (T ≈ T0), the
(1/2)αP2 positive term almost diminishes and the (1/4)βP4 term exhibits a very flat
potential minimum range, that is, the curvature becomes zero, or permittivity reaches
infinite. With a decrease in temperature T below T0, the situation is rather different:
since the (1/2)αP2 term is now negative, the free energy curve becomes “concave”
around P = 0, and the positive (1/4)βP4 term competes and makes the curve “convex”
in the large P range. Thus, the free energy curve should show double minima at
PS = ±

√
− α

β in the ferroelectric phase. The minimum energy at these points is

F(P, T) = (1/2)αP2 + (1/4)βP4 = −
(

1
4

)
α2

β
= − (T0 − T)2

4βε02C2 , (4.15)

which indicates that the energy F is equal to “zero” (the F value in the paraelectric
phase) at T = T0 (phase transition temperature), and becomes lower in T < T0 than
that in the paraelectric phase. This is the reason why the phase transition from
paraelectric to ferroelectric phase occurs.

Landau free energy change associated with the second-order phase transitions
is shown in an extended form in terms of temperature in Figure 4.1b. The reader
can notice the energy minimum point tracing line, which splits into two lines from a
single line, resembling a Y-shape fork, at the phase transition temperature TC = T0,
which is called “bifurcation”. Mathematically, a bifurcation occurs when a small
smooth change made to the parameter value (“bifurcation parameter”, in this case
“α”) of a system causes a sudden topological change in its behavioral contour. The
occurrence of the double minima generates P–E hysteresis, as discussed in Subsection
Ferroelectric Phase (page 111).

The “order” of a phase transition was defined by Ehrenfest [1], who suggested
that the “n-th” order transition exhibits “continuity” of the (n – 1)-th derivative
of the Gibbs free energy G and “discontinuity” of the n-th derivative of G at the
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phase transition temperature. That is to say, the “first-order phase transition” will
show the discontinuity of the first derivative of G (i.e., entropy), ∂G

∂T = −S, while
the second-order transition will show the discontinuity of the second derivative G
(i.e., specific heat capacity), cE

p = −T
(

∂2G
∂T2

)
X,E

. We may translate this specific heat

capacity into P (or D) constant specific heat capacity,

cD
p = −T

(
∂2G1

∂T2

)

X,D
, (4.16)

which is equivalent to Equation (4.15) without including the elastic energy term.
From Equation (4.15), we can derive

• F(P, T) = − ( T0−T)2

4βε0
2C2 → 0 with T → T0 : F(PS) ≤ F(0) = 0, continuous to the

paraelectric phase.
• ∂F(P,T)

∂T = (T0−T)
2βε0

2C2 ∝ −S→ 0 with T → T0 , continuous to the paraelectric phase.

• ∂2F(P,T)
∂T2 = − 1

2βε0
2C2 ∝ −cD

p , discontinuous to the paraelectric phase (zero).

The above analysis can explain why the handling of Equation (4.15) is for the
second-order transition.

Free Energy

Polarization P

T > TC

T = TC

T < TC

F

F

F

P

Curie Temperature TC
Temperature

P

P

(a) (b)

Figure 4.1. Landau free energy change associated with the second-order phase
transitions: (a) projected curves on F-P domain and (b) extended description with
temperature axis. Source: Figure by author.

Paraelectric Phase

For T > T0, the trivial solution PS = 0 is obtained, because PS
2 = (T0 − T)/βε0C

becomes negative (unrealistic in physics). Thus, from Equation (4.10), the reader can
understand that the Landau free energy is zero in the whole range of the paraelectric
phase. By putting PS = 0 in Equation (4.12), the permittivity in this temperature range
(i.e., paraelectric phase) is expressed by

1
ε0ε

= α = (T − T0)/ε0C, or ε =
C

(T − T0)
. (4.17)
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This permittivity relation in the paraelectric phase is popularly called the “Curie–
Weiss law”, where C is the “Curie–Weiss constant”, and T0 is the “Curie–Weiss
temperature”.

Ferroelectric Phase

For T < T0, the solution

PS
2 = − α

β
= (T0 − T)/βε0C

[
or PS = ±

√
(T0 − T)/(β ε0 C)

]
. (4.18)

provides the spontaneous polarization, which exhibits the minimum of the Landau
free energy (Equation (4.15)):

F(P, T) = (1/2)αP2 + (1/4)βP4 =
(

1
2

)
α
(
− α

β

)
+
(

1
4

)
β
(
− α

β

)2
= − ( 1

4 )α2

β

= −(1/4)(T − T0)
2/ε0

2C
2
β.

The above energy is lower than “zero” in the paraelectric phase, which explains
the phase transition from the paraelectric to ferroelectric phase.

The relative permittivity ε in the ferroelectric phase is calculated as:

1/ε0ε = 1/(∂P/∂E) = (α + 3βP2) = [α + 3β(−α/β)] = −2α,

1
ε0ε = −2α = 2(T0 − T)/ε0C, or ε = C/2

(T0−T) .
(4.19)

Figure 4.2 shows the variations of PS and with temperature in the second-
order phase transition. The spontaneous polarization PS decreases with increasing
temperature continuously (square root function) and becomes 0 at T = T0. It is
notable that the permittivity becomes infinite (i.e., inverse permittivity = 0) at the
transition temperature (TC = T0) and that the slope of the inverse permittivity in the
ferroelectric phase is twice that in the paraelectric phase.
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Inverse permittivity 
1/ε

Figure 4.2. Spontaneous polarization and permittivity change associated with the
second-order phase transitions in a ferroelectric. Source: Figure by author.
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Let us now consider the polarization vs. electric field hysteresis curve at a
temperature T. We start from the potential minima obtained from (∂F/∂P) = E = αP +
βP3. By putting

y1 = αP + βP3 and (4.20a)

y2 = E, (4.20b)

a visual geometrical solution technique can be used, as illustrated in Figure 4.3a; that
is, the intersects of these two curves (y1 = y2) provide the solution points: only one
intersect exists for T > TC, while for T < TC, there are three intersects. Under E = 0 at
T < TC, we obtain PS = ±

√
− α

β , which correspond to the spontaneous polarization.

T > TC

T < TC

y1 = α P + β  P 3

y2 =  E
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Figure 4.3. (a) Polarization vs. electric field hysteresis curve, obtained from a
graphic technique. (b) Hamiltonian F(P, E) under the external electric field E.
Source: Figure by author.

Varying the electric field E up and down, we can understand that the shadowed
area in Figure 4.3a shows the polarization vs. electric field hysteresis loop, when we
assume the macroscopic all-polarization one-time reversal. The macroscopic coercive
field is obtained from the maximum/minimum point of the y1 curve:

∂y1

∂P
= 0 → α + 3βP2 = 0 → P =

√
−α/3β. (4.21)

Since the coercive field is obtained from the y1 max point,

y1 = αP + βP3 =
√
−α/3β [α + β(−α/3β)] =

√
−4α3/27β. (4.22)

The shadowed area in Figure 4.3a shows the polarization vs. electric field hysteresis
loop, where arrows show the loop tracing way. The above coercive field is under the
assumption that the macroscopic whole polarization reverses at one-time, which is
10 times higher than the experimentally obtained coercive field (1 kV/mm), where,
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by segmenting the domain into multidomain states, the required electric field is
significantly reduced for the domain reversal in practice.

Figure 4.3b shows an alternative explanation for the domain reversal. Knowing
the relation Equation (4.11)

(∂F/∂P) = E = αP + βP3,

we introduce the Gibbs free energy by integrating the potential energy −E·P under
the external electric field E into Landau free energy:

G =
1
2

αP2 +
1
4

βP4 − E·P. (4.23)

This Hamiltonian expression gives the negative slope line potential on the
original Landau free energy curve under a positive electric field application, as
illustrated in Figure 4.3b E = +E0, which clearly indicates that the positive electric
field decreases the Hamiltonian energy of the positive spontaneous polarization state.
This is numerically obtained from the minimum energy point:

∂G
∂P

= αP + βP3 − E = 0. (4.24)

Since there are three roots a, b, and c (a < b < c) for Equation (4.24), we put

P3 + (α/β)P− E/β = (P− a)(P− b)(P− c) = 0. (4.25)

Accordingly, we obtain the following three equations:




a + b + c = 0

ab + bc + ca = (α/β)

abc = E/β

. (4.26)

By solving the above, we obtain a = −
√
− α

β + ∆1(E
1
3 ), b = 0 + ∆2(E

1
3 ), and c =

+
√
− α

β + ∆3(E
1
3 ). When P = c, we obtain the minimum energy. Note that with an

increase in the electric field E, the polarization P (energy minimum point) is gradually
increased. From the initial spontaneous polarization state at P = a, we will consider
the coercive electric field EC to change the spontaneous polarization state to P = c.
This can be obtained when the energy curve at P = a becomes “flat”, that is, the
minimum condition is resolved, and the P = c point becomes a unique minimum
energy state in the model. Figure 4.3b E = 2E0 is rather close to this condition. The

energy curve flatness is equivalent to “zero” curvature

[(
∂2F
∂P2

)
/
[

1 +
(

∂F
∂P

)2
]3/2

]

mathematically:
∂2G
∂P2 = α + 3βP2 = 0. (4.27)

From the above, P = −
√
−α/3β , leading to EC = αP + βP3 =

√
−4α3/27β . This

result is exactly the same as Equation (4.22).
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4.2.2. First-Order Phase Transition (In the Case of β < 0)

We now consider the case of β < 0 in Equation (4.6)

F(P, T) = (1/2)αP2 + (1/4)βP4 + (1/6)γP6 [α(T) = (T − T0)/ε0C].

In this case, γ should be taken as positive in order to keep the polarization P in a finite
region around P = 0. As discussed later, this transition becomes “first order”, because
the first derivative of free energy,

(
∂F
∂P

)
, already exhibits discontinuity from the

paraelectric to ferroelectric phase transition point (TC). The equilibrium polarization
in an electric field E should satisfy the condition Equation (4.8):

(∂F/∂P) = E = αP + βP3 + γP5.

With no electric field applied, Equation (4.8) provides the spontaneous polarization
Equation (4.9):

P(α + βP2 + γP4) = 0. (4.28)

We discuss two cases:

(i) P = 0→ This trivial solution corresponds to a paraelectric state.
(ii) α + βP2 + γP4 = 0→ This solution corresponds to a ferroelectric state.

The second case gives

PS2 =

[
−β +

√
β2 − 4γα

]
/2γ] =

[
−β +

√
β2 − 4γ(T − T0)/ε0C

]
/2γ]. (4.29)

Example Problem 4.1

Is PS
2 = [−β −

√
β2 − 4γα]/2γ not another root for solving Equation (4.28)?

Solution

Since low temperature range (T − T0) < 0 and γ > 0,
√

β2 − 4γ(T − T0)/ε0C >√
β2 = −β (or |β|; note that β < 0). Thus, [−β −

√
β2 − 4γ(T − T0)/ε0C

]
/2γ < 0,

which is contradictory with PS
2 because the physical parameter PS should be a real

value. The spontaneous polarization should be positive or negative, but still a real
number, never an imaginary number.

Landau Free Energy Curves and Critical Temperatures

Let us calculate the free energy curves for various temperatures:

F(P, T) = (1/2)αP2 + (1/4)βP4 + (1/6)γP6 [α(T) = (T − T0)/ε0C]. (4.30)

As shown in Figure 4.4a, there are three critical temperatures, T1, TC, and T0, in
the first-order transition, in comparison with one unique temperature, TC = T0, in
the second-order transition. As derived in Equation (4.9), there are three potential
minima in general in Equation (4.30), −Ps, 0, and +Ps. T1 is the temperature where
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the side minimum starts (though this minima energy is much higher than the energy
at P = 0). TC is the temperature where the side minimum minima energy becomes the
same as the energy at P = 0 (paraelectric). We believe this is the phase transition condi-
tion, though some temperature hysteresis is observed between the rising and falling
temperature process in practice. The lowest temperature T0 is the point where the
center (P = 0) minimum (convex) disappears or switches to the maximum (concave).

The following equation should be maintained for the energy minimum points:

(∂F/∂P) = E = αP + βP3 + γP5 = 0. (4.31)

• T1 Calculation

The T1 can be calculated from the condition of “point of inflection” prior to
making the minimum; that is, the second derivative of F(P, T) is equal to 0:

(
∂2F
∂P2

)
= α + 3βP2 + 5γP4 = 0. (4.32)

Note that this inflection point should correspond to the hypothetical inverse per-
mittivity 1

ε0ε = 0 point, as discussed later in Subsection Permittivity (page 118).
Combining the above equation and

α + βP2 + γP4 = 0, (4.33)

from Equation (4.31), we obtain P2 = −2α/β. Then, from α+ β(−2α/β)2 +γ(−2α/β)4

= 0, we obtain
α = β2/4γ, or T1= T0 + β2ε0C/4γ. (4.34)

Note that the relation Equation (4.34) which can also be obtained from the condition
of the inside term of the root √ in the spontaneous polarization solution PS

2 =[
−β +

√
β2 − 4γα

]
/2γ] should be ≥0.

• TC Calculation

The transition temperature TC is obtained from the condition that the Landau
free energy of the paraelectric and ferroelectric phases are equal, i.e., F = 0:

(1/2)αPS
2 + (1/4)βPS

4 + (1/6)γPS
6 = 0, (4.35a)

which is valid only at T = TC; the potential minima are obtained from

(∂F/∂P) = E = αP + βP3 + γP5 = 0. (4.36a)

This equation is valid for any temperature below and above the Curie temperature.
Knowing PS 6= 0, Equations (4.35) and (4.36) are reduced to

α + (1/2)βP2 + (1/3)γP4 = 0, (4.35b)

α + βP2 + γP4 = 0. (4.36b)
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Note again that Equation (4.36b) is valid for all temperatures below TC, but Equation
(4.35b) is only valid at T = TC. Eliminating the P4 terms from these two equations
[3 × (4.35b)–(4.36b)],

[(3/2) − 1]βP2 + [3 − 1]α = 0→ P2 = −4α/β. (4.37)

We then obtain the following equation from Equation (4.36b):

α + β(−4α/β) + γ(−4α/β)2 = 0 → −3α + γ× 16α2/β2 = 0 → α =
3
16

β2

γ
.

Taking into account our special case (valid only at T = Tc), α = (T − T0)/ε0C =
(TC − T0)/ε0C, the Curie temperature TC is calculated as

TC = T0 + (3/16)
(

β2ε0C/γ
)

. (4.38)
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Figure 4.4. (a) Free energy as a function polarization P at various temperatures.
(b) Spontaneous polarization and permittivity/inverse permittivity change associ-
ated with the first-order phase transitions in a ferroelectric. Source: [2] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 46. Reproduced by permission of
Taylor & Francis Group.

Spontaneous Polarization

We discuss the spontaneous polarization and permittivity change associated
with the first-order phase transitions in comparison with the second-order transition.
The spontaneous polarization decreases in proportion to

√
T0 − T down to zero

with an increase in temperature in the second-order transition, while in the first-
order transition, as illustrated in Figure 4.4b, the lean parabolic-like (resembling
to parabolic) curve is cut abruptly at the transition temperature T = Tc. From the
spontaneous polarization expression in the first-order phase transition:

PS =

√[
−β +

√
β2 − 4γα

]
/2γ]. (4.39)
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By putting α = 3
16

β2

γ at T = Tc into Equation (4.39), we obtain the minimum realizable
spontaneous polarization as

PS =

√√√√[−β +

√
β2 − 4γ(

3
16

β2

γ
)/2γ] =

√
−3

4
β

γ
. (4.40)

The Landau free energy minima start at T = T1, and in the temperature range
Tc < T < T1, these minima are sustained, though these polarizations are not exper-
imentally observed because the energy at P = 0 is lower, making the paraelectric
phase more stable. It is also interesting that PS minima start at T = T1, where the

condition β2 − 4γα = 0 is sustained, leaving PS =
√
(− β

2γ ) as the minimum value.
Note that the PS = 0 state should not be realized in the ferroelectric phase in this
first-order transition model.

Let us confirm the “order” of a phase transition: that is to say, will the above
“first-order phase transition” treatment show the discontinuity of the first derivative
of G (i.e., entropy), “ ∂G

∂T = −S”? We can derive:

• F(P, T) = (1/2)αPS
2 + (1/4)βPS

4 + (1/6)γPS
6 → 0 with T → TC : F(PS) =

F(0) = 0, continuous at T = TC to the paraelectric phase.
• ∂F(P,T)

∂T = 1
2ε0C PS

2 + (αPS + βPS
3 + γPS

5) ∂PS
∂T ∝ −S→ (− β

4γε0C ) with T → T0 ,

because of the jump PS =
√
(− β

2γ ) and
(

αPS + βPS
3 + γPS

5
)
= 0, discontinu-

ous to the paraelectric phase.

The above analysis can explain why the handling of Equation (4.30) is for the
first-order transition.

Permittivity

The permittivity is obtained as

1
ε0ε

=
1(
∂P
∂E

) =

(
∂E
∂P

)
= α + 3βP2 + 5γP4. (4.41)

In the paraelectric phase (PS = 0)

1
ε0ε

= α = (T − T0)/ε0C, or ε =
C

(T − T0)
. (4.42)

This permittivity relation in the paraelectric phase is popularly called the “Curie–
Weiss law”, where C is the “Curie–Weiss constant” and T0 is the “Curie–Weiss
temperature”. Different from the second-order transition, T will not reach T0 but
is stopped at TC with decreasing temperature. Thus, there exists the minimum of

1
ε0ε = TC−T0

ε0C = 3
16

β2

γ , or the maximum of ε0ε = 16γ
3β2 .

On the contrary, in the ferroelectric phase with

PS
2 =

[
−β +

√
β2 − 4γα

]
/2γ] or α + βP2 + γP4 = 0. (4.43)
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Using Equation (4.43), we can transform Equation (4.41) into

1
ε0ε

= α + 3βP2 + 5
(
−α− βP2

)
= −4α− 2βP2. (4.44)

In order to calculate the 1
ε0ε slope in the ferroelectric phase, we analyze the

approximate formula around the phase transition temperature Tc (i.e., T0 < T < TC).
Note here that (T C − T) is a small value, but (T 0 − T) is not small, because of TC =
T0 + (3/16)(β2ε0C/γ) (temperature difference is 30–40 ◦C). We transform α as

α =
T − T0

ε0C
=

3β2

16γ
− TC − T

ε0C
, (4.45)

to proceed with the small value approximation ((TC − T) � 1). Taking Equation
(4.43) into Equation (4.44),

1
ε0ε

= −4α− 2βPS
2 = −4

(
3β2

16γ
− TC − T

ε0C

)
+

β2

γ
−

β

√
β2 − 4γ

(
3β2

16γ −
TC−T

ε0C

)

γ
.

Considering (TC − T) << 1, β < 0, i.e.,
√

β2 = −β, and the approximation
√

1 + x =
1 + x

2 (if x << 1):

1
ε0ε = −4

(
3β2

16γ −
TC−T

ε0C

)
+ β2

γ −
β

√
β2
(

1− 4γ

β2

(
3β2
16γ−

TC−T
ε0C

))

γ

= −4
(

3β2

16γ −
TC−T

ε0C

)
+ β2

γ −
β

√
β2
(

1− 3
4+

4γ(TC−T)
β2ε0C

)

γ

= −4
(

3β2

16γ −
TC−T

ε0C

)
+ β2

γ + β2

2γ

√
1 + 16γ(TC−T)

β2ε0C

= − 3β2

4γ + 4(TC−T)
ε0C + β2

γ + β2

2γ

(
1 + 16γ(TC−T)

2β2ε0C

)

= β2

4γ + β2

2γ + 4(TC−T)
ε0C + 4(TC−T)

ε0C .

Finally, we obtain

1
ε0ε

=
3β2

4γ
+

8(TC − T)
ε0C

. (4.46)

Note first that the slope of the inverse permittivity vs. temperature in the
ferroelectric phase is eight-times larger than that in the paraelectric phase (normal

Curie–Weiss law with 1/C slope). The minimum inverse permittivity 1
ε0ε = 3β2

4γ or

the maximum permittivity ε0ε = 4γ
3β2 (one-quarter of the paraelectric peak value)

are obtained at T= TC. The extrapolated inverse permittivity line intersect for the
paraelectric phase is, of course, T= T0, while that for the ferroelectric phase is
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T= T2= T0 +
9ε0C
32γ , which is very close to T1= T0 +

ε0C
4γ (with difference of only ε0C

32γ ).
This deviation may originate from the linear approximation used in the derivation
process above, as discussed in Subsection Landau Free Energy Curves and Critical
Temperatures.

In summary, in the “first-order phase transition”, the Curie temperature TC is
slightly higher than the Curie–Weiss temperature T0, and that a discrete jump of
PS appears at TC. Additionally, the permittivity exhibits a finite maximum at TC
(Figure 4.4b). Barium titanate is an example of a ferroelectric that undergoes a first-
order phase transition. Figure 4.4b also shows the variation in ε with temperature.
The slope of the inverse permittivity 1/ε in the ferroelectric phase is eight times that
in the paraelectric phase. The extrapolated temperature of the inverse permittivity in
the paraelectric phase provides the normal Curie–Weiss temperature T0, while the
extrapolated temperature of the inverse permittivity in the ferroelectric phase gives
the temperature T2 (theoretically T1), as discussed above.

The free energy curves are plotted for the second- and first-order phase transi-
tions at various temperatures in Figures 4.1a and 4.4a, respectively. In the case of
β > 0, the phase transition is not associated with a latent heat but with a jump in
the specific heat; this is called a second-order transition. On the other hand, in the
case of β < 0, the transition exhibits a latent heat (i.e., entropy S discontinuity), and
is called a first-order transition, where the permittivity shows a maximum and a
discontinuity of the spontaneous polarization appears at TC. When T > T1, there is
only one free energy minimum; when TC < T < T1, there are three potential minima.
P = 0 is the lowest energy solution for TC < T < T1, while P = ±PS exhibits the lowest
potential for T0 < T < TC; when T < T0, there are double minima of the free energy
(with the disappearance of the center minimum), which correspond to very stable
spontaneous polarizations. Due to the potential gap between three potential minima,
we observe significant temperature hysteresis of the phase transition between the
cycles of rising and falling temperature.

−E Hysteresis

Similar to Subsection Paraelectric Phase (page 111), we introduce electric Gibbs
energy by adding −EP to the Landau free energy, and we simulate the polarization
P–electric field E hysteresis:

G2 =
1
2

αP2 +
1
4

βP4 +
1
6

γP6 − EP. (4.47)

Figure 4.5 illustrates the polarization vs. electric field hysteresis curve in the
“first-order” phase transition. Refer to the hysteresis curve of Figure 4.3a in the
second-order transition. A significant difference in the P−E hysteresis in the first-
order transition can be found in a “double hysteresis” in the temperature range
TC < T < T1, which cannot be observed in the second-order transition. The system
with multiple potential minima in the Gibbs energy (Figure 4.4a) can exhibit discon-
tinuous polarization induction (i.e., electric-field-induced ferroelectric phase) under
a high electric field. As shown in Figure 4.5, the P−E double hysteresis is observed
in a narrow temperature range.

120



Electric Field

T < T0

T = TC

TC < T < T1

T0 < T < TC

Po
la

riz
at

io
n

T1 < T

Figure 4.5. Polarization vs. electric field hysteresis curve in the first-order phase
transition. Source: Figure by author.

4.3. Devonshire Theory of the Phase Transition

In a ferroelectric whose prototype phase (high-temperature paraelectric phase)
is centrosymmetric and non-piezoelectric, the piezoelectric coupling term PX is
omitted and only the electrostrictive coupling term P2X is introduced. The theories
for electrostriction in ferroelectrics were formulated in the 1950s by Devonshire [3]
and Kay [4]. Let us assume that the elastic Gibbs energy (1D model) should be
expanded in a one-dimensional form:

G1(P, X, T) =
(

1
2

)
αP2 +

(
1
4

)
βP4 +

(
1
6

)
γP6 −

(
1
2

)
sX2 −QP2X

[α = (T − T0)/ε0C],
(4.48)

where P, X, and T are the polarization, stress, and temperature, respectively, and s
and Q are the elastic compliance and electrostrictive coefficient, respectively. This
leads to the following three equations: Equations (4.49), (4.50), and (4.51):

E = (
∂G1

∂P
) = αP + βP3 + γP5 − 2QPX, (4.49)

x = −(∂G1

∂X
) = sX + QP2, (4.50)

1
ε0ε

=
1(
∂P
∂E

) =

(
∂E
∂P

)
= α + 3βP2 + 5γP4 − 2QX. (4.51)

4.3.1. Case I: X = 0

When the external stress X is zero, the following equations are derived:

E = αP + βP3 + γP5, (4.52)

121



x = QP2, (4.53)

1
ε0ε

= α + 3βP2 + 5γP4. (4.54)

Except for Equation (4.53), the analysis is exactly the same as that in the previous
section. When the external electric field is equal to zero (E = 0), two different states
are derived:

• P = 0
• P2 = (−β +

√
β2 − 4αγ)/2γ.

Paraelectric Phase

The paraelectric phase is analyzed under the condition:

PS = 0 or P = ε0εE (under small E modulation).

Equations (4.53) and (4.54) provide:

Permittivity: ε = C/(T − T0) (normal Curie-Weiss law). (4.55)

Electrostriction : x = Qε2
0ε2E2. (4.56)

The “electrostrictive coefficient M” introduced in Equation (1.13) in Section 1.2.4 is
related to this electrostrictive Q coefficient through

M = Qε2
0ε2E2. (4.57)

Ferroelectric Phase

Ferroelectric phase possesses:

PS
2 =

(
−β +

√
β2 − 4αγ

)
/2γ or P = PS + ε0εE (under small E modulation).

Equations (4.52) and (4.53) provide:

x = Q(PS + ε0εE)2 = QPS
2 + 2ε0εQPSE + Qε2

0ε2E2. (4.58)

1
ε0ε

= α + 3βP2 + 5γP4 = −4α− 2βPS
2. (4.59)

The total strain in Equation (4.58) is composed of three terms: the spontaneous
strain xS, the piezoelectric strain (proportional to E), and electrostriction (proportional
to E2; thus, we can define

Spontaneous strain: xS = QPS
2, (4.60)

Piezoelectric constant: d = 2ε0εQPS, (4.61)

Electrostrictive strain:Qε2
0ε2E2. (4.62)
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When the electric field E applied is much smaller than PS/ε0ε (typically, 0.3
(C/m2)/2000 ε0 ∼20 (kV/mm)), the third term in Equation (4.62) is neglected in
comparison with the piezostriction dE. We understand from Equation (4.58) that
“piezoelectricity” in a crystal with a centrosymmetric paraelectric phase is equivalent
to the “electrostrictive phenomenon biased by the spontaneous polarization”. Since
the temperature dependence of spontaneous polarization and permittivity are already
shown in Figure 4.4b, the temperature dependences of the mechanically related
parameters, spontaneous strain, and the piezoelectric constant in the first-order
phase transition are plotted in Figure 4.6b.
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Figure 4.6. Temperature dependences of the spontaneous strain and the piezo-
electric constant in the second- (a) and first-order phase transition (b). Source: [2]
©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 48. Reproduced by
permission of Taylor & Francis Group.

Example Problem 4.2

In the case of a second-order phase transition, the elastic Gibbs energy is ex-
panded in a 1D form as follows:

G1(P, X, T) = (1/2)αP2 + (1/4)βP4 − (1/2)sX2 − QP2X, (P4.2.1)

where only the coefficient α is dependent on temperature, α = (T − T0)/ε0C, and
β > 0. From this, obtain the temperature dependence of the dielectric constant,
spontaneous polarization, spontaneous strain, and piezoelectric constant.

Solution

E = (∂G1/∂P) = αP + βP3 − 2QPX, (P4.2.2)

x = −(∂G1/∂X) = sX + QP2. (P4.2.3)
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When an external stress is zero, we can deduce the three characteristic equations:

E = αP + βP3, (P4.2.4)

x = QP2, (P4.2.5)

1/ε0ε = (∂E/∂P) = α + 3βP2. (P4.2.6)

By initially setting E = 0, we obtain the following two stable states: PS
2 = 0 and −α/β

(i) Paraelectric phase (T > T0): PS = 0

1/ε0ε = α, then ε = C/(T − T0) (Curie-Weiss law). (P4.2.7)

(ii) Ferroelectric phase (T < T0):

PS = ±
√
(T0 − T)/ε0Cβ (P4.2.8)

1/ε0ε = α + 3βP2 = −2α, then ε = C/2(T0 − T), (P4.2.9)

xS = QPS
2 = Q(T0 − T)/ε0Cβ. (P4.2.10)

From Equations (P4.2.8) and (P4.2.9), the piezoelectric constant is obtained as

d = 2ε0εQPS = Q
√

ε0C/β(T0 − T)−1/2. (P4.2.11)

The temperature dependence of the spontaneous strain xS and the piezoelectric
constant d in this second-order phase transition are plotted in Figure 4.6a. Refer to
Figure 4.6b in the first-order transition.

4.3.2. Case II: X 6= 0

Here, we discuss the simplest case of hydrostatic pressure p in a 1D model.
When a hydrostatic pressure p (usually by changing the sign, we define X1 = X2 =
X3 = −p) is applied, we obtain the following equations from Equations (4.49)–(4.51):

E = αP + βP3 + γP5 + 2QPp, (4.63)

x = −
(

∂G1

∂X

)
= −sp + QP2, (4.64)

1
ε0ε

= α + 3βP2 + 5γP4 + 2Qp. (4.65)

Curie Temperature Shift

Equation (4.64) indicates the volumetric shrinkage under hydrostatic pressure
p, which seems to be trivial. To the contrary, Equation (4.63) is very intriguing;
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(α + 2Qp)P + βP3 + γP5 = 0 when the external electric field E = 0, which indicates
that the Curie temperature decreases under hydrostatic pressure p, in the following:

(α + 2Qp) = [T − (T0 − 2Qε0Cp)]/ε0C. (4.66)

It is out of the scope of this book to go into, but the property issues of a few materials
are described here for the reader’s knowledge. We know an “empirical rule” on the
hydrostatic pressure effect on ferroelectric perovskite materials, that is, a 50 ◦C Curie
temperature decrease with 1 GPa hydrostric pressure application. This “50 ◦C/1 GPa
rate” of the phase transition decrease can be derived as follows.

The author’s group investigated electrostrictive coefficient Q and Curie–Weiss
constant C on various perovskite-type oxides, the results of which are summarized
in Table 4.1 [5,6]. It is important to note that the magnitude of the electrostrictive
coefficient Qh does not depend on whether the polar state is ferroelectric, antifer-
roelectric, or paraelectric, but strongly depends on the crystal structure, such as
whether the two kinds of B and B’ ions are randomly distributed or ordered like
B-B’-B-B’ (1:1 order) in the oxygen octahedra. The electrostrictive coefficient Q in-
creases with the increasing degree of cation ordering and follows the sequence (1)
disordered, (2) partially ordered, (3) simple, and (4) ordered-type perovskites. For the
polar materials, their Curie–Weiss constants C are also listed in Table 4.1, showing
a completely opposite trend to the Qh values. Consequently, we found that the
invariant for the complex perovskite-type oxide is the product of the electrostrictive
coefficient and the Curie–Weiss constant:

QhC = 3.1(±0.4)× 103
[
m4C−2K

]
. (4.67)

This “QhC constant rule” can be understood intuitively if we accept the as-
sumption that the material whose dielectric constant changes easily with pressure
also exhibits a large change in the dielectric constant with the temperature, i.e., the
proportionality between the following two equations (discussed in Subsection Direct
Piezoelectric Effect): 




Qh =
[

∂(1/ε)
∂p

]
/2ε0

1/C =
[

∂(1/ε)
∂T

] . (4.68)

If we take QhC = 3.1× 103
[
m4C−2K

]
, and under p = 1[GPa], we calculate

2Qhε0Cp = 2× 3.1× 103
[
m4C−2K

]
× 8.854× 10−12

[
Fm−1

]
× 1× 109 [Pa] = 55 [K]. (4.69)

This explains a well-known “empirical rule” on the hydrostatic pressure effect on
ferroelectric perovskite materials: that is, a 50 ◦C Curie temperature decrease with
1-GPa hydrostatic pressure application.
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Table 4.1. Electrostrictive coefficient Qh and Curie–Weiss constant C for various
perovskite oxide crystals.

Polarity Ordering Material
Qh

[×10−2

m4C−2]

C
[×105

K]

QhC
[×103

m4C−2K]
References

Fe
rr

oe
le

ct
ri

c

Order

Pb(Mg1/3Nb2/3)O3 0.60 4.7 2.8 [7,8]

Pb(Zn1/3Nb2/3)O3 0.66 4.7 3.1 [9]
[10]

Partial
Order Pb(Sc1/2Ta1/2)O3 0.83 3.5 2.9 [11]

Simple

BaTiO3 2.0 1.5 3.0 [12]
[13]

PbTiO3 2.2 1.7 3.7 [14,15]

SrTiO3 4.7 0.77 3.6 [16,17]

KTaO3 5.2 0.5 2.6 [18]
[19]

A
nt

if
er

ro
el

ec
tr

ic

Partial
Order Pb(Fe2/3U1/3)O3 − 2.3 − [20]

Simple PbZrO3 2.0 1.6 3.2 [6,21]

Order
Pb(Co1/2W1/2)O3 − 1.2 − [22]

Pb(Mg1/2W1/2)O3 6.2 0.42 2.6 [6]
[8]

N
on

-
Po

la
r Disorder (K3/4Bi1/4)(Zn1/6Nb5/6)O3 0.55–1.15 − − [23]

Simple BaZrO3 2.3 − − [23]

Source: Table by author, based on data from [5,6].

Direct Piezoelectric Effect

A piezoelectric is occasionally used as a stress sensor, which is originated from
Equation (4.63) in ferroelectric phase, αPS + βPS

3 + γPS
5 + 2QPS p = E. Under the

external electric field zero condition, the hydrostatic pressure will shift the phase
transition temperature in the form of (T0 − 2Qε0Cp). Thus, a PS decrease is expected
under hydrostatic pressure. In a linear approximation, using

(
αPS + βPS

3 + γPS
5
)
≈ 0,

we can expect the “depolarization electric field” in the open-circuit crystal:

2QPS p = −E → ∆P = ε0εE = −2ε0εQPS p. (4.70)

The reader can now understand that the polarization change ∆P is generated
in proportion to the pressure, and may also recall the relation of the piezoelectric
constant d and electrostrictive coefficient Q as

d = 2ε0εQPS. (4.71)

Note here that above d and Q are dh = d33 + 2d31 and Qh = Q11 + 2Q12 under
hydrostatic pressure. The piezoelectric stress sensor is to measure the charge or
voltage generated on the crystal under the stress.

126



Permittivity Change with Pressure

Equation (4.65) indicates that the inverse permittivity changes linearly with
hydrostatic pressure p:

1/ε0ε = α + 3βPS
2 + 5γPS

4 + 2Qp (Ferroelectric state), (4.72a)

α + 2Qp = (T − T0 + 2Qε0Cp)/(ε0C) (Paraelectric state). (4.72b)

Therefore, the pressure dependence of the Curie–Weiss temperature T0 or the transi-
tion temperature TC is derived as follows:

(∂T0/∂p) = (∂TC/∂p) = −2Qε0C. (4.73)

As already introduced, the ferroelectric Curie temperature is decreased with increas-
ing hydrostatic pressure (when Qh > 0).

Though we can measure the permittivity change with stress in the ferroelectric
phase, since the piezoelectric effect can generate the charge or voltage (via a direct
piezoelectric effect), we usually apply this effect to develop stress sensors. Let
us consider here the converse effect of “electrostriction”, that is, the paraelectric
material’s response to an external stress, which is also applicable to sensors. Since
an electrostrictive material does not have a spontaneous polarization, it does not
generate any charge under stress, but does exhibit a change in permittivity (see
Equation (4.72b)):

∆(1/ε0ε) = 2QX. (4.74)

This is the “converse electrostrictive effect”. A bimorph structure which can
subtract the static capacitances of two dielectric ceramic plates can provide superior
stress sensitivity and temperature stability [24]. The capacitance changes of the top
and bottom plates in the bimorph have opposite signs for uniaxial stress (bending
stress) and the same sign for temperature change. The response speed is limited by
the capacitance measuring frequency to about 1 kHz. Unlike piezoelectric sensors,
electrostrictive sensors are effective in the low frequency range (less than 1 kHz),
especially pseudo-DC. On the contrary, the stress sensor made from a piezoelectric
is suitable for higher frequency, above 10 Hz up to 10 kHz (i.e., the mechanical
resonance frequency), because the piezo-generated charge leaks under very low
frequency (e.g., less than 1 Hz) and loses accuracy.

Example Problem 4.3

Barium titanate has d33 = 320 × 10−12 C/N, εc (=ε) = 800 and Q33 = 0.11 m4C−2

at room temperature. From this, estimate the spontaneous polarization PS.

Solution

Let us use the relationship:

d33 = 2ε0ε3Q33PS. (P4.3.1)
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PS can be obtained as

PS = d33/2ε0ε3Q33

= 320 × 10−12 [C/N]/{2 × 8.854 × 10−12 [F/m] × 800 × 0.11 [m4C−2]} = 0.21 [C/m2].
(P4.3.2)

4.3.3. Temperature Dependence of Electrostriction

We treat the “electrostrictive coefficient” Q as a temperature-independent con-
stant in the Devonshire theory. How is the actual situation experimentally? Several
expressions for the electrostrictive coefficient Q have been given so far, from the data
obtained by independent experimental methods such as:

(1) electric-field-induced strain in the paraelectric phase;
(2) spontaneous polarization and spontaneous strain (X-ray diffraction) in the

ferroelectric phase;
(3) d constants from the field-induced strain in the ferroelectric phase or from

piezoelectric resonance;
(4) pressure dependence of permittivity in the paraelectric phase.

Nearly equal values of Q can be obtained by the above methods. Figure 4.7
shows the temperature dependence of the electrostrictive coefficients Q33 and Q31
observed for a complex perovskite Pb(Mg1/3Nb2/3)O3 single-crystal specimen whose
Curie temperature is near 0 ◦C [25]. It is seen that there is no significant anomaly
in the electrostrictive coefficient Q through the temperature range in which the
paraelectric to ferroelectric phase transition occurs and piezoelectricity appears. Q is
verified to be almost temperature-independent.
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Figure 4.7. Temperature dependence of the electrostrictive constants Q33 and Q31

measured in a single crystal Pb(Mg1/3Nb2/3)O3. Source: [2] ©Uchino, K. Ferroelec-
tric Devices, 2nd ed. CRC Press, 2010; p. 51. Reproduced by permission of Taylor &
Francis Group.
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4.4. Phenomenological Approach in Solid Solutions

One of the strategies for designing ferroelectric materials is to select a material
with a suitable Curie temperature. As described in Chapter 1, for capacitor dielectrics,
the peak dielectric constant around the transition (Curie) temperature is utilized,
while for memory applications, the material must be ferroelectric at room tempera-
ture. A large temperature dependence of the spontaneous polarization below TC is
sought for pyroelectric sensors. On the other hand, piezoelectric materials are used as
sensors and actuators, where the TC should be much higher than room temperature.
Electro-optic materials, which are key components in displays and optical commu-
nication systems, mostly use the Kerr effect, which requires a TC lower than room
temperature. Barium-titanate-based semiconductive ferroelectric ceramics are used
for “thermistor” application by setting their TC around the temperature at which a
positive temperature coefficient (PTC) is desired. In this section, we consider how
we can manipulate the Curie temperature by using the solid solution methodology.

Let us consider an example for piezoelectric application. In general, Pb(Zr,Ti)O3
(PZT), PbTiO3 (PT), (Pb,La)(Zr,Ti)O3 (PLZT), and PZT-based ternary ceramics are
utilized for piezoelectric applications. Their piezoelectric coefficients are summarized
in the international data book:

K. H. Hellwege et al.: Landolt-Börnstein, Group III, Vol.11, Springer-Verlag,
N.Y. (1979).

Figure 4.8 shows the composition dependence of the permittivity and the elec-
tromechanical coupling factor kp for the PZT system [26].
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Figure 4.8. Composition dependence of the permittivity and the electromechan-
ical coupling factor kp in the PZT system. Source: [2] ©Uchino, K. Ferroelectric
Devices, 2nd ed. CRC Press, 2010; p. 76. Reproduced by permission of Taylor &
Francis Group.
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If we do not have this sort of comprehensive experimental data, how can we
estimate the values for the solid solutions between PbTiO3 and PbZrO3? In gen-
eral, physical properties of a solid solution between A and B, (1 − x)A − xB, can
be estimated by a “phenomenological theory” [27,28]. Expanding the theories in
Section 4.3, we assumed a linear combination of the elastic Gibbs energy of each
component in terms of the molar fraction of two end-members. As described in
the following Equation (4.75), the solid solution provides reasonable first-order
estimates of the Curie temperature, spontaneous polarization and strain, permit-
tivity, piezoelectric constant, and electromechanical coupling. Abe et al. reported
a good example of theoretical fitting to experimental results for the solid solution
(1 − x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 [28], where the following linear summation of
each energy term of both end-members, A and B, in terms of the molar ratio (1 − x):x
is adopted:

G1(P, X, T) = (1/2)[(1 − x)αA + xαB]P2 + (1/4)[(1 − x)βA + xβB]P4

+ (1/6)[(1 − x)γA + xγB]P6 − (1/2)[(1 − x)sA + xsB]X2 − [(1 − x)QA + xQB]P2X

(αA = (T − T0,A)/CA, αB = (T − T0,B)/CB).

(4.75)

This simplest assumption, that is, linear change of each parameter, α, β, γ, s,
and Q, reduces the calculation process significantly, though this is not a precise
energy combination procedure. By expanding Equation (4.75) into the 3D expression
with P1, P2, P3, X11, X33, X44, etc. for realizing cubic, tetragonal, and rhombohedral
symmetry phases, the elastic Gibbs energy is calculated for a certain composition x
and temperature T. Then, the lower energy phase is taken as a stable phase at that
particular point (x, T). Figures 4.9–4.12 show these fittings calculated on the basis
of the end-member data listed in Table 4.2. The transition temperature from the
tetragonal to cubic phase (Curie temperature) changes linearly with the composition
x, as the reader can imagine, while the transition temperature from the rhombohedral
to tetragonal phase is calculated by comparing the G1 for both phases. We should
point out some discrepancies in (1) the concave curvature of the MPB (“morphotropic
phase boundary”) with composition and (2) the maximum dielectric constant peak
shape in the intermediate composition, which are different from the expectation
deduced from the simplest linear summation of expansion coefficients.
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Table 4.2. Coefficients for Pb(Zn1/3Nb2/3)O3 (PZN) and PbTiO3 (PT) used in
calculating the transition temperature and lattice parameters in (1 − x)PZN-xPT.

Constants PZN PT

T0 (◦C) 130 478.8

C (105 ◦C) 4.7 1.5

ξ11 (107 m5C−2F−1) −13.7 −29.0

ξ12 (108 m5C−2F−1) −1.0 15.0

ζ111 (108 m9C−4F−1) 10.3 15.6

ζ112 (108 m9C−4F−1) 6.8 12.2

Q11 (10−2 m4C−2) 2.4 8.9

Q12 (10−2 m4C−2) −0.86 −2.6

Q44 (10−2 m4C−2) 1.6 6.75

ac (Å) 4.058 3.957

Source: Table by author, based on data from [2].
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Figure 4.9. Phase diagram for (1 − x)Pb(Zn1/3Nb2/3)O3−xPbTiO3; (a) calculated
and (b) experimental. Source: [2] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC
Press, 2010; p. 77. Reproduced by permission of Taylor & Francis Group.
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mental. Source: Source: [2] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press,
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4.5. Phenomenology of Antiferroelectricity

4.5.1. Antiferroelectrics

The previous sections dealt with the case in which the directions of the sponta-
neous dipoles are parallel to each other in a crystal (“polar crystal”). In this section,
we handle anti-parallel orientation, which lowers the “dipole–dipole interaction
energy” (“antipolar” or “antiferroelectric” crystals). Figure 4.13 displays the orien-
tation of the spontaneous electric dipoles in an antipolar state in comparison with
a nonpolar and a polar state. In an antipolar crystal, where the free energy of an
antipolar state does not differ appreciably from that of a polar state, the application
of an external electric field or mechanical stress may cause a transition of the dipole
orientation to a parallel state. Such crystals are called “antiferroelectrics”.

stripe type checker board typestripe type checker board typestripe type checker board type

(a) (b) (c)

Figure 4.13. Schematic arrangement of the spontaneous dipoles in nonpolar (a),
polar (b), and antipolar (c) materials. Source: Figure by author.
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Figure 4.14 illustrates the relationship between E (applied electric field) and P
(induced polarization) in paraelectric, ferroelectric, and antiferroelectric phases. In
a paraelectric phase, the P–E relation is almost linear; in a ferroelectric phase, there
appears to be a hysteresis caused by the transition of the spontaneous polarization
between the positive and negative directions (see Figure 4.5); in an antiferroelectric
phase, in a low electric field, the induced polarization is proportional to E (due to
zero net spontaneous polarization), and when E exceeds a certain value Ecrit, the
crystal becomes ferroelectric (i.e., electric-field-induced phase transition), and the
polarization shows hysteresis with respect to E. After removal of the electric field,
the crystal returns to its antipolar state; hence, no spontaneous polarization can be
observed as a whole. This is called a “double hysteresis curve”.

We previously introduced the double-hysteresis in the first-order phase transi-
tion in Figure 4.5, where the paraelectric (zero spontaneous dipole) to ferroelectric
phase transition is associated. Though the hysteresis curve is apparently similar, the
double-hysteresis in this antiferroelectric is associated with the antipolar spontaneous
dipole moment reoriented or realigned under a high electric field.
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Figure 4.14. Polarization vs. electric field hysteresis curves in paraelectric (a),
ferroelectric (b), and antiferroelectric (c) materials. Source: Figure by author.

4.5.2. Phenomenology of Antiferroelectrics

Here, we discuss the introduction of electrostrictive coupling to the Kittel’s free
energy expression for antiferroelectrics [29]. Though Suzuki and Okada discussed the
antiferroelectric phenomenology, it was not sufficient because they did not include
the sublattice coupling [30]. The simplest model for antiferroelectrics is the “one-
dimensional two-sublattice model”. It treats the coordinates as 1D, and a superlattice
(twice the unit lattice) is formed from two neighboring sublattices, each having a
sublattice polarization Pa and Pb. In comparison with the previous “intra-coupling”
(or self-coupling) of single polarization P, the sublattice coupling handles the next-
nearest-neighbor “inter-coupling”. The state Pa = Pb represents the ferroelectric
phase, while Pa = −Pb, the antiferroelectric phase. For the electrostrictive effect, if we
ignore the coupling between the two sublattices, the strains from the two sublattices
are QPa

2 and QPb
2, respectively (assuming equal electrostrictive constants Q for both

sublattices), leading to the total strain of the crystal, represented by

x = Q(Pa
2 + Pb

2)/2. (4.76)

134



Uchino also modeled the sublattice coupling for the electrostrictive effect, since
antiferroelectricity originates from the coupling between the sublattices [6]. The
coupling term for the electrostriction Ω is introduced in the following form:

G1 = (1/4)α(Pa
2 + Pb

2) + (1/8)β(Pa
4 + Pb

4) + (1/12)γ(Pa
6 + Pb

6)

+(1/2)ηPaPb − (1/2)χTp2 + (1/2)Qh(Pa
2 + Pb

2 + 2ΩPaPb)p,
(4.77)

in which the hydrostatic pressure p is employed in this simple 1D model, χT is the
isothermal compressibility, and Qh (=Q11 + 2Q12) and Qh·Ω are the intra- and inter-
coupling electrostrictive constants. Introducing the transformations PF = (Pa + Pb)/2
and PA = (Pa − Pb)/2 leads to the following expression:

G1 = (1/2)α(PF
2 + PA

2) + (1/4)β(PF
4 + PA

4 + 6 PF
2PA

2)

+(1/6)γ(PF
6 + PA

6 + 15PF
4PA

2 + 15PF
2PA

4) + (1/2)η(PF
2 − PA

2)

−(1/2)χTp2 + Qh[PF
2 + PA

2 + Ω(PF
2 − PA

2)]p.

(4.78)

The dielectric and elastic relationships for the intensive parameters are as follows:

∂G1/∂PF = E = PF[α + η + 2Qh(1 + Ω)p + βPF
2 + 3βPA

2

+ γPF
4 + 10γPF

2PA
2 + 5γPA

4],
(4.79)

∂G1/∂PA = 0 = PA[α − η + 2Qh(1 − Ω)p + βPA
2 + 3βPF

2 + γPA
4 + 10γPF

2PA
2 + 5γPF

4], (4.80)

∂G1/∂p = ∆V/V = −χTp + Qh(1 + Ω)PF
2 + Qh(1 − Ω)PA

2. (4.81)

Hence, the induced volume change in the paraelectric phase can be related to
the induced “ferroelectric” polarization by the following formula:

(∆V/V)ind = Qh(1 + Ω)PF,ind
2. (4.82)

On the contrary, below the phase transition temperature, which, for antiferro-
electrics, is usually called the “Neel temperature”, the spontaneous volume strain
and the spontaneous antiferroelectric polarization are related as

(∆V/V)S = Qh(1 − Ω)PA,S
2. (4.83)

Even if the perovskite crystal shows Qh > 0, in general, the spontaneous volume
strain can be positive or negative, depending on the value of Ω (Ω < 1 or Ω > 1), that
is, if the inter-sublattice coupling is stronger than the intra-sublattice coupling (i.e.,
Ω > 1), a volume contraction is observed at the Neel point. This is quite different from
ferroelectrics such as BaTiO3 and PbTiO3, which always show a volume expansion at
the Curie temperature. Figure 4.15 schematically illustrates the spontaneous strains
in 1D form in a crystal for Ω > 1 (stronger inter-coupling). When Pa and Pb are
in the parallel configuration (ferroelectric phase), the Ω-term acts to increase the
spontaneous strain xS, in comparison with Q(Pa

2 + Pb
2)/2; when they are in the

anti-parallel configuration (antiferroelctric phase), the Ω-term acts to decrease the
spontaneous strain, in comparison with Q(Pa

2 + Pb
2)/2.
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(a) Ferroelectric Arrangement
x = Q (1 + Ω)( Pa + Pb)

2/4

(b) Antiferroelectric Arrangement
x = Q (1 − Ω)(Pa − Pb)

2/4

x = QPa
2 x = QPb

2

Figure 4.15. Intuitive explanation of the sublattice coupling with respect to elec-
trostriction (for Ω > 0). Source: Figure by author.

4.5.3. Electric Field-Induced Phase Transition: AFE−FE

Suggested from Equations (4.79) and (4.80), we can expect that the ferroelectric
state (PF) becomes more stable than the antiferroelectric state (PA) under an electric
field, because of the potential energy −PFE formula added onto the elastic Gibbs
energy. Accordingly, we can induce the phase transition from antiferroelectric (AFE)
to ferroelectric (FE) phase by increasing the applied electric field E, and the double-
hysteresis in the P−E relation as shown in Figure 4.14. The isotropic volumetric
change associated with the field-induced transition from the antiferro- to ferroelectric
phase is estimated by the subtraction between Equations (4.82) and (4.83):

(∆V/V) = Qh(1 + Ω)PF,S
2 − Qh(1 − Ω)PA,S

2 = 2QhΩPF,S
2. (4.84)

Here, we assume that the magnitudes of Pa and Pb do not change drastically through
the phase transition; that is, PF,S ≈ PA,S.

Temperature Dependence of the Phase Transition

The phenomenological model in Section 4.5.2 effectively explains the experimen-
tal results for the PbZrO3-based antiferroelectric perovskite crystal and other ceram-
ics [6]. Introduced here are the results on the antiferroelectric ceramic Pb0.99Nb0.02
[(Zr0.6Sn0.4)1-yTiy]0.98O3 [31,32]. Figure 4.16a shows the relation between the electric
field and polarization in the AFE ceramic y = 0.06 (i.e., Pb0.99Nb0.02[(Zr0.6Sn0.4)0.94-
Ti0.06]0.98O3). The typical double and ferroelectric hysteresis loops are observed at
room temperature and −76 ◦C, respectively, while a transitive shape with humps
is observed at intermediate temperatures. The transitive process can be observed
more clearly in the strain curve. Figure 4.16b shows the transversely induced strains.
The forced transition from AFE to FE at room temperature is characterized by a huge
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discontinuous extension strain. On the other hand, a typical ferroelectric butterfly-
type hysteresis is observed at −76 ◦C, corresponding to polarization reversal. It is
important to note that the strain discontinuities associated with the phase transition
have the same positive expansion in both longitudinal and transverse directions with
respect to the electric field (i.e., the apparent Poisson’s ratio is negative), while the
piezostriction is negative and positive in the transverse (d31) and longitudinal (d33)
directions, respectively, which will be further discussed in Section 4.5.4.

A sort of “shape memory effect” is observed on this loop at −4 ◦C. That is,
when a large electric field is applied to an annealed AFE specimen, a massive strain
∆L/L of about 7 × 10−4 is produced and maintained metastably, even after the field
is removed. After applying a small reverse field or thermal annealing, the original
AFE shape is observed. In comparison with conventional “shape memory metal”,
the shape change is controlled by the electric field rather than the external stress
or temperature.
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Figure 4.16. Polarization (a) and transverse elastic strain (b) induced by electric
field for several temperatures in PNZST (y = 0.06). Source: Figure by author,
adapted from [33].

Temperature Dependence of the Phase Transition

The reverse critical field related to the FE–AFE transition is plotted with solid
lines in the phase diagram for the sample with y = 0.06 in Figure 4.17a, in which the
temperature-field points are based on the measurements in permittivity, polarization
and strain [32]. In the temperature range from −30 ◦C to 10 ◦C, a hump-type
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hysteresis in the field vs. polarization curve and an inverse hysteresis in the field-
induced strain are observed: this has often previously been misinterpreted as another
AFE phase, different from the phase above 10 ◦C. The annealed state below −30 ◦C
down to −200 ◦C is AFE. However, once the FE state is induced, the AFE phase is
never observed during a cycle of the rising and falling electric field. The critical field
line for the FE-to-AFE transition (the solid line) in the temperature range −30 ◦C to
10 ◦C intersects the coercive field line for the + FE to − FE reversal (the dashed line)
below −30 ◦C. Figure 4.17b visualizes a 3D phase diagram for understanding the
bifurcation and the AFE–FE transformation hysteresis.
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Figure 4.17. (a) Phase diagram with hysteresis on the temperature vs. bias electric
field plane for the Pb0.99Nb0.02[(Zr0.6Sn0.4)0.94Ti0.06]0.98O3 ceramic. (b) A schematic
3D view for understanding the bifurcation and the AFE–FE transformation hystere-
sis. Source: Figure by author, based on data from [32].
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Composition Dependence of the Induced Strain

The strain curves induced transversely by the external field at room temperature
for samples of several different compositions are shown in Figure 4.18 [32]. The
molar fraction of Ti, y, is increased from 0.06 (Figure 4.18a) to 0.065 (Figure 4.18c).
The initial state was obtained by annealing at 150 ◦C, which is above the Curie (or
Neel) temperature for all the samples. A typical double hysteresis curve (Type I)
is observed in the sample containing y = 0.06 (Figure 4.18a). Large jumps in the
strain are observed at the forced phase transitions from the AFE to the FE phase
(∆L/L = 8 × 10−4). In comparison, the strain change with electric field in either the
AFE or FE state is rather small: this suggests a possible application for the material
as a “digital displacement transducer”, having OFF/ON displacement states. The
difference in the strain between that occurring in the initial state and that appearing
in a cyclic process at E = 0 kV/cm is also noteworthy, which is explained by the
“antiferroelectric domain reorientation” via the field-induced phase transition from
AFE to FE [31].

In the sample with y = 0.063, a Ti concentration slightly higher than that just
described, the field-induced FE phase will not return to the AFE state, even after
decreasing the field to zero (Type II, Figure 4.18b): this is called “memorizing” the
FE strain state. In order to obtain the initial AFE state, a small reverse bias field is
required. On the contrary, Figure 4.18c shows the strain curve for the sample with
y = 0.065, which exhibits irreversible characteristics during an electric field cycle
(Type III). The initial antiferroelectric strain state can only be recovered by thermal
annealing up to 50 ◦C.

These strain curve data can construct a phase diagram of the system Pb0.99Nb0.02
[(Zr0.6Sn0.4)1-yTiy]0.98O3 at room temperature with respect to the composition y and
the applied electric field E (Figure 4.19). If the Ti concentration of the horizontal
axis is redefined in terms of temperature and evaluated in the opposite direction,
this phase diagram is topologically the same as the phase diagram of Figure 4.17
(if the horizontal axis is reversed). The key feature of this phase diagram is the
existence of the three phases, namely the AFE, the positively poled FE (+FE), and
the negatively poled FE (−FE) phases, the boundaries of which are characterized by
the two transition lines corresponding to rising and falling electric fields; hysteresis
originated from “bifurcation”, similar to Figure 4.17b.

The composition regions I and IV exhibit the typical double hysteresis and
ferroelectric “butterfly domain reversal”, respectively. The shape memory effect is
observed in regions II and III. It is important to consider the magnitude of the electric
field associated with the +FE→ AFE transition (notice the direction of the arrow).
Let us consider the transition process under an inverse bias field after the +FE is
induced by the positive electric field. If the magnitude of the field for the +FE→ AFE
transition is smaller than the coercive field for +FE→ −FE (region II, 0.0625 < y <
0.065), the AFE phase appears once under a small inverse field, then the −FE phase
is induced at the AFE → −FE transition field. In this case, the shape memory is
reversible to the initial state only with the application of a reverse electric field (Type
II); this is very useful! On the other hand, if the +FE→−FE coercive field is smaller
than the +FE→ AFE field (region III, 0.0625 < y < 0.085), the domain reversal to −FE
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appears without passing through the AFE phase. The initial state can be obtained by
thermally annealing up to 50–70 ◦C (Type III).
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Figure 4.18. Electric-field-induced strain in Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3

antiferroelectric ceramics. Source: Figure by author, adapted from [33].
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4.5.4. 3D Antiferroelectric Phenomenology

We expand the phenomenology to a three-dimensional formulation [34]. Con-
sidering the simplest case of a tetragonal spontaneous distortion of the primitive
perovskite cell, let us start by reducing the 3D polarization (P1 P2 P3) to a simple form
(0 0 P3). The elastic Gibbs free energy is represented by using two-sublattice polariza-
tion Pa and Pb, ad stress X under a cubical supposition that s33

E = s11
E, s31

E = s12
E,

etc., for simplicity:

G1 = 1
4 α(Pa3

2 + Pb3
2) + 1/8β(Pa3

4 + Pb3
4) + 1/12γ(Pa3

6 + Pb3
6) + 1

2 ηPa3Pb3

− 1
2 s33

E(X1
2 + X2

2 + X3
2) − s31

E(X1X2 + X2X3 + X3X1) − 1
2 s44

E(X4
2 + X5

2 + X6
2)

− 1
2 Q33(Pa3

2 + Pb3
2)X3 − 1

2 Q31(Pa3
2 + Pb3

2)(X1 + X2) − q33Pa3Pb3X3 − q31Pa3Pb3(X1 + X2).

(4.85)

Here, Q33 and Q31 denote the conventional longitudinal and transversal electrostric-
tive coefficients (intra-sublattice coupling), and q33 and q31 are the corresponding
inter-sublattice coupling parameters (the ratio q/Q was denoted as Ω in the previous
section). Introducing the transformations

PF3 = (Pa3 + Pb3)/2, PA3 = (Pa3 − Pb3)/2, (4.86)

leads to four types of stable states under zero applied electric field: nonpolar
(PF3 = PA3 = 0), polar (PF3 6= 0, PA3 = 0), antipolar (PF3 = 0, PA3 6= 0), and semipo-
lar (PF3 6= 0, PA3 6= 0) states. The spontaneous polarization and strains derived
from the free energy function are summarized as follows for the ferroelectric and
antiferroelectric states:

• Ferroelectric:

PA3 = 0

PF3
2 = [−β + {1/4β2 − 4γ(T − TC(X))/ε0C}1/2]/2γ,

(4.87)

TC(X) = TC + 2ε0C{(Q33 + q33)X3 + (Q31 + q31)(X1 + X2)}, (4.88)

x3 = s33
EX3 + s31

E(X1 + X2) + (Q33 + q33)PF3, (4.89)

x1 = s33
EX1 + s31

E(X2 + X3) + (Q31 + q31)PF3
2, (4.90)

(∆V/V) = (s33
E + 2s31

E)(X1 + X2 + X3) + (Q33 + 2Q31 + q33 + 2q31)PF3
2. (4.91)

• Antiferroelectric:

PF3 = 0

PA3
2 = [−β + {1/4β2 − 4γ(T − TN(X))/ε0C}1/2]/2γ,

(4.92)

TN(X) = TN + 2ε0C{(Q33 − q33)X3 + (Q31 − q31)(X1 + X2)}, (4.93)

x3 = s33
EX3 + s31

E(X1 + X2) + (Q33 − q33)PA3
2, (4.94)
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x1 = s33
EX1 + s31

E(X2 + X3) + (Q31 − q31)PA3
2, (4.95)

(∆V/V) = (s33
E + 2s31

E)(X1 + X2 + X3) + (Q33 + 2Q31 − q33 − 2q31)PA3
2. (4.96)

Here, TC and TN are the Curie and Neel temperatures, respectively, and C is the
Curie–Weiss constant. Note again that we presume the cubical symmetry physical
parameter components.

Estimation of q33 and q31

The values of q33 and q31 can be obtained from the strain changes associated with
the electric-field-induced and thermally induced phase transitions. The spontaneous
strains generated at the phase transition from paraelectric to antiferroelectric are
described as

x3 = (Q33 − q33)PA3
2, (4.97)

x1 = (Q31 − q31)PA3
2. (4.98)

On the contrary, the strain changes associated with the field-induced transition
from antiferroelectric to ferroelectric are given by

∆x3 = (Q33 + q33)PF3
2 − (Q33 − q33)PA3

2 = 2q33PF3
2, (4.99)

∆x1 = (Q31 + q31)PF3
2 − (Q31 − q31)PA3

2 = 2q31PF3
2. (4.100)

Here, we have assumed that PF3 ≈ PA3 because only the flipping of polarizations
Pa and Pb would occur at the transition. Let us estimate the q33 and q31 values using ex-
perimental strains and polarization data for Pb0.99Nb0.02[(Zr0.6Sn0.4)0.94Ti0.06]0.98O3.
The field-induced change in lattice parameters is plotted in Figure 4.20a [35]. The
forced transition from the AFE to the FE phase gives rise to the simultaneous increase
in a and c in the perovskite unit cell, thereby keeping the tetragonality, c/a, nearly
constant. Since the angle γ makes only a negligible contribution to the volume
change, the strain change at the phase transition is nearly isotropic with a magnitude
of ∆L/L = 8.5 × 10−4. It is noteworthy that this ∆L/L is the same observed in Fig-
ure 4.18a macroscopically. We observe minor changes in the parameters c, c/a, and γ
between AFE–FE on-set and FE–AFE off-set electric fields. The intensity change in
the X-ray reflections with the application of an electric field suggests that the sponta-
neous polarization in the FE state lies in the c-plane, parallel with the perovskite [110]
axis, and that the sublattice polarization configuration in the AFE state is very similar
to that of PbZrO3 [36]. Figure 4.20b illustrates the simplest two-sublattice model.
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Figure 4.20. (a) Variation of lattice parameters with bias electric field at room
temperature (y = 0.06). (b) Two-sublattice model of the polarization configuration
for the AFE and FE states. Source: Figure by author, adapted from [33].

Using the above data and (δTN/δp) of the PbZrO3-based sample [31], we derive:

PF3 = PA3 = 0.4 (C·m−2),

∆x3 = ∆x1 = 8 × 10−4,

Qh = Q33 + 2Q31 = 0.5 × 10−2 (m4·C−2),

qh = q33 + 2q31 = 0.9 × 10−2 (m4·C−2).

We then derive the following parameter values:

Q33 = 1.5 × 10−2 (m4·C−2), Q31 = −0.5 × 10−2 (m4·C−2),

q33 = 0.3 × 10−2 (m4·C−2), q31 = 0.3 × 10−2 (m4·C−2).

It is noteworthy that q33 and q31 have the same positive sign (accidentally almost
the same value), while Q33 and Q31 have the opposite sign with a “piezoelectric
Poisson’s” ratio of 1/3. Figure 4.21 illustrates the spontaneous strains in a crystal
schematically for Ω > 0 (you may interpret Ω = q33/Q33 in the figure). When Pa and
Pb are in the parallel configuration (ferroelectric phase), the Ω-term acts to increase
the strain xS; when they are in the anti-parallel configuration (antiferroelctric phase),
the Ω-term acts to decrease the strain. The difference from Figure 4.15 (1D model) can
be found in the isotropic volumetric expansion due the positive value of sublattice
electrostrictive coupling coefficient q31.
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(a) Ferroelectric Arrangement
x3 = (Q33 + q33)(Pa + Pb)2/4
x1 = (Q31 + q31)(Pa + Pb)2/4

x3 = Q33Pb2 > 0
x1 = Q31Pa2 < 0

x3 = Q33Pb2 > 0
x1 = Q31Pa2 < 0

(b) Antiferroelectric Arrangement
x3 = (Q33 − q33)(Pa − Pb)2/4
x1 = (Q31 − q31)(Pa − Pb)2/4

Figure 4.21. Spontaneous strain changes associated with sublattice interactions in
the electrostrictive effect. Illustration is drawn in the case of q33 and q31 > 0. Source:
Source: Figure by author, adapted from [34].

Piezoelectric Anisotropy Related to Sublattice Coupling

The PZT system possesses both ferroelectric and antiferroelectric phases de-
pending on the composition. Thus, let us consider the piezoelectric coefficients in
the “ferroelectric state” with the “sublattice polarization” coupling. Under a small
external field E modulation, the polarization is given by

PF3 = PF3,S + ε0ε3E3, (4.101)

where ε3 is the relative permittivity. Using Equations (4.89) and (4.90), longitudinal
and transversal strains are represented as

x3 = (Q33 + q33)PF3,S
2 + 2(Q33 + q33)ε0ε3PF3,SE3 + (Q33 + q33)ε0

2ε3
2E3

2, (4.102)

x1 = (Q31 + q31)PF3,S
2 + 2(Q31 + q31)ε0ε3PF3,SE3 + (Q31 + q31)ε0

2ε3
2E3

2. (4.103)

The first term describes the spontaneous strains, and Figure 4.21 illustrates the
spontaneous strain changes due to the sublattice interactions in the case of q33, q31 > 0.
When the spontaneous polarization PF3,S exists, the third term (pure electrostriction)

144



may be negligibly small in comparison with the second term (piezostriction), and
the piezoelectric d coefficients are denoted as

d33 = 2(Q33 + q33)ε0ε3PF3,S, (4.104)

d31 = 2(Q31 + q31)ε0ε3PF3,S. (4.105)

Different from the normal formula, d3i = 2Q3iε0ε3PF3,S, the above equations include the
sublattice coupling q3i parameters. Using the above physical parameters in Subsection
Estimation of q33 and q31 and ε3 = 600, we can evaluate d33 = 72 × 10−12 m/V and
d31 = −8 × 10−12 m/V.

This estimated value is close to the experimentally obtained d31 = −7 × 10−12 m/V,
as shown in Figure 4.22, though we use a rough isotropic elastic approximation such
as s33

E = s11
E, s31

E = s12
E, etc. The “piezoelectric Poisson’s” ratio d31/d33 is given by

(Q31 + q31)/(Q33 + q33), and it can differ from the usual value Q31/Q33 (≈ −1/3) of
the normal ferroelectrics, owing to the values of q33 and q31. Using the above values
again, we can estimate d31/d33 = −(1/9), that is, huge anisotropy.
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Figure 4.22. Piezoelectric d31 measurement in the induced ferroelectric phase
in Pb0.99Nb0.02[(Zr0.6Sn0.4)0.94Ti0.06]0.98O3. Source: Figure by author, adapted
from [37].

Regarding the anisotropy of the electromechanical coupling factors kt and kp,
which are represented as

kt =
d33√
sE

33εX
33

√
εx

33

cD
33

, (4.106)

kp =
d31√
sE

11εX
33

√
2

1 − σ
. (4.107)
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Then, supposing again that sE
33≈ sE

11,
√

εx
33

cD
33
≈ 0.75, and σ ≈ 1/3, we obtain

kt/kp ≈ 0.5d33/d31. (4.108)

For the antiferroelectric-based piezoelectrics, taking into account the above
discussion d31/d33 = −(1/9), kt/kp will be equal to 4.5, much larger than the normal
PZT value around 2.0.

Table 4.3 lists several anisotropic piezoelectric data for field-biased PNZSTs,
PbZrO3- and PbTiO3-based ceramics [37,38]. The electromechanical coupling factors
kt (thickness mode) and kp (planar mode) range from 0.5 to 0.6 and from 0.05 to 0.15,
respectively, and the anisotropy (kt/kp) reaches more than 4.0. In contrast, the ratio
(kt/kp) for the intermediate composition of the solid solution Pb(Zr,Ti)O3 will not
exceed 2.5, which is also listed in Table 4.3 [37].

Table 4.3. Anisotropic piezoelectric constants in field-biased PNZSTs, PbZrO3- and
PbTiO3-based ceramics.

Composition
Electromechanical Coupling Factor

kt kp kt/kp

Pb0.99Nb0.02[(Zr0.6Sn0.4)0.937Ti0.063]0.98O3
under 22.5 kV/cm 0.456 0.114 4.00

Pb0.99Nb0.02[(Zr0.6Sn0.4)0.936Ti0.064]0.98O3
under 22.5 kV/cm 0.501 0.123 4.15

Pb0.99Nb0.02[(Zr0.6Sn0.4)0.934Ti0.066]0.98O3
under 22.5 kV/cm 0.622 0.137 4.56

Pb0.99Nb0.02[(Zr0.6Sn0.4)0.920Ti0.080]0.98O3
under 22.5 kV/cm 0.575 0.145 4.02

Pb0.99Nb0.02[(Zr0.6Sn0.4)0.910Ti0.090]0.98O3
under 22.5 kV/cm 0.564 0.136 4.15

Pb(Zr0.9Ti0.1)O3 [38] 0.325 0.072 4.52
(Pb0.8Ca0.2)TiO3 [39] 0.530 0.050 10.60
Pb(Zr0.5Ti0.5)O3 [40] 0.752 0.388 1.938

Source: Table by author, based on data from [37].

It is interesting to note that most of the PZT-based compositions exhibiting
“piezoelectric anisotropy” are closely related with “antiferroelectricity” or “sub-
lattice” structure. Some of them based on PbZrO3 are originally antiferroelectric
at a low temperature or even at room temperature, and the ferroelectricity is in-
duced under a high electric field applied (i.e., poling process). Ca-modified PbTiO3
[(Pb0.8Ca0.2)TiO3] ceramics [39] possess huge anisotropy with a crystallographic su-
perlattice structure observed in the annealed state, suggesting an antiferroelectric-like
sublattice structure.

As a final remark, even if the sample is not originally antiferroelectric, the
perovskite-type piezoelectric ceramics with large piezoelectric anisotropy (kt/kp > 3)
may possess rather large “sublattice dipole coupling” as the microscopic origin.
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4.6. Phenomenology of AFE–FE Solid Solution

A phenomenological theory for the solid solutions systems between the ferro-
electric Pb(Fe2/3W1/3)O3 and antiferroelectric Pb(M1/2W1/2)O3 (M = Mn, Co, Ni)
compositions is introduced in this section. These solid solution systems have been
investigated to discover new multifunctional (ferromagnetic–ferroelectric) materi-
als [22]. In this section, only ferroelectric properties are focused. The phase diagram
of experimentally determined Pb(Fe2/3W1/3)O3- Pb(M1/2W1/2)O3 (M = Mn, Co,
Ni) is shown in Figure 4.23a [27]. For mathematical simplicity, we introduce the
second-order phase transition treatment [9].

We take Kittel’s free energy expression in the 1D two-sublattice model for a
ferro- or antiferroelectric crystal, analogous to Equation (4.85) with an −EP potential
energy term to discuss the electric field dependence of properties:

Gi = αi(T)(Pa
2 + Pb

2) + 1/2βi(Pa
4 + Pb

4) + ηiPaPb + ζi (Pa
2 + Pb

2)PaPb − E(Pa + Pb). (4.109)

Here, i = 1 and 2 denote the suffixes for Pb(Fe2/3W1/3)O3 and Pb(M1/2W1/2)O3,
respectively. Pa and Pb are the polarization of the two sublattices, and E is the
externally applied electric field. The terms η and ζ are introduced to account for
an antiferroelectric and a successive ferroelectric phase transition, respectively [27].
The Pa

2Pb
2 and (Pa

6 + Pb
6) terms are omitted for simplicity. α is the only coefficient

assumed to depend on temperature. Since the solid solution crystal (except the end
member Pb(Fe2/3W1/3)O3) has the 2× 2× 2 ordered structure, it is reasonable to
adopt the two-sublattice mode for these systems.

4.6.1. Phenomenological Expression for the Solid Solution

We assume that the Gibbs free energy of the solid solution can be expressed
as follows:

G = (1 − x)G1 + xG2

= [α1 + x(α2 − α1)](Pa
2 + Pb

2) + 1/2[β1 + x(β2 − β1)](Pa
4 + Pb

4)

+ [η1 + x(η2 − η1)]PaPb + [ζ1 + x(ζ2 − ζ1)](Pa
2 + Pb

2)PaPb − E(Pa + Pb),

(4.110)

where x represents the mole faction of Pb(M1/2W1/2)O3. We also assume that the
temperature-dependent coefficient αi is

αi = α0i(T − Ti)[i = 1, 2], (4.111)

where Ti is the Curie–Weiss temperature, not equal to the actual transition temper-
ature of crystal i, as shown later. Introducing new expressions for the coefficients:

α(T,x) = [α01 + x(α02 − α01)](T − T1) + (T1 − T2)α02x = a0(1 + a1x)(T − T1) + a2x,

β(x) = β1 + x(β2 − β1) = β0(x − x0),

η(x) = η1 + x(η2 − η1) = η0(x − x1),

ζ(x) = ζ1 + x(ζ2 − ζ1) = ζ0(x − x2),

(4.112)
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we obtain a simple form of the free energy:

G = α(T,x)(Pa
2 + Pb

2) + 1/2β(x)(Pa
4 + Pb

4) + η(x)PaPb

+ ζ(x)(Pa
2 + Pb

2)PaPb − E(Pa + Pb).
(4.113)

It is essential to the expression that the physical properties of the solid solution are
determined only for the linear combination of the expansion coefficients of the two
end-members. Transformations P = (Pa + Pb)/

√
2, p = (Pa − Pb)/

√
2 lead to the

following expression:

G(T, x, P, p) = (α + η/2)P2 + (α − η/2)p2

+ (β/4 + ζ/2)P4 + (3/2)βP2p2 + (β/4 − ζ/2)p4 − EP.
(4.114)

4.6.2. Stable State under E = 0

The stable state conditions for E = 0 which give the minimum free energy in the
P–p plane are as follows:

(
∂G
∂P

)
= P

[
2α + η + (β + 2ζ)P2 + 3βp2

]
= 0, (4.115)

(
∂G
∂p

)
= p

[
2α− η + (β− 2ζ)P2 + 3βP2

]
= 0, (4.116)

(
∂2G
∂P2

)
= (2α + η) + 3(β + 2ζ)P2 + 3βp2 > 0, (4.117)

(
∂2G
∂p2

)
= (2α− η) + 3(β− 2ζ)p2 + 3βP2 > 0, (4.118)

f =

(
∂2G
∂P2

)(
∂2G
∂p2

)
−
(

∂2G
∂P∂p

)2

=

(
∂2G
∂P2

)(
∂2G
∂p2

)
− (6βPp)2 > 0. (4.119)

Four types of polar state are possible from Equations (4.114)–(4.119):

I Nonpolar (Paraelectric)

PS = 0, pS = 0,

2α + η > 0, 2α − η > 0,

Minimum energy Gn = 0.

(4.120)
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II Polar (Ferroelectric)

PS
2 = −(2α + η)/(β + 2ζ), pS = 0,

2α + η < 0,
(

∂2G
∂p2

)
= (2α− η)− 3β(2α + η)/(β + 2ζ) > 0,

Minimum energy Gp = − 1
4
(2α+η)2

(β+2ζ)
.

(4.121)

III Antipolar (Antiferroelectric)

PS = 0, pS
2 = −(2α− η)/(β− 2ζ),

2α− η < 0,
(

∂2G
∂P2

)
= (2α + η)− 3β(2α− η)/(β− 2ζ) > 0,

Minimum energy Ga = − 1
4
(2α−η)2

(β−2ζ)
.

(4.122)

IV Semipolar (Ferrielectric)

PS
2 = [(β− 2ζ)(2α + η)− 3β(2α− η)]/4

(
2β2 + ζ2)),

pS
2 = [(β + 2ζ)(2α− η)− 3β(2α + η)]/4

(
2β2 + ζ2)),

(β + 2ζ) > 0, (β− 2ζ) > 0, f = −16(2β 2 + ζ2
)

PS
2 pS

2.

(4.123)

Since f < 0 in Equation (4.123), the ferrielectric state is not realized as a stable
state (i.e., metastable as the maximum point in these solid solutions.

4.6.3. Permittivity

Inverse permittivity 1/ε0εn (nonpolar state), 1/ε0εp (polar state), and 1/ε0εa

(antipolar state), defined as
(

∂E
∂P

)
, are calculated from Equation (4.114), and they

prove to be expressed by the similar formula with Equation (4.117), i.e., for nonpolar,
polar, and antipolar phases by

1/ε0εn = (2α + η),

1/ε0εp = −2(2α + η),

1/ε0εa = (2α + η)− 3 β(2α− η)/(β− 2ζ).

(4.124)

4.6.4. Phase Transition Temperature

Since the equations (2α + η) = 0 or (2α− η) = 0 are realized at the paraelectric–
ferroelectric or antiferroelectric transition temperatures, respectively, we can derive
the composition x dependence of the transition temperature:

(a) x < x1: paraelectric − ferroelectric transition

TC = T1 −
[

a2x +

(
1
2

)
η0(x− x1)

]
/a0(1 + a1x), (4.125)
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(b) x > x1: paraelectric − antiferroelectric transition

TN = T1 −
[

a2x−
(

1
2

)
η0(x− x1)

]
/a0(1 + a1x). (4.126)

It is noticeable that the prefixed signs of η(x) are different in Equations (4.125)
and (4.126), and η(x) itself changes sign at x = x1, which leads to a transition
temperature curve anomaly (e.g., sometimes, the transition temperature is a mini-
mum) at x = x1. The relation 0 < x1 (= −η1/(η2 − η1)) < 1 is always realized since
Pb(Fe2/3W1/3)O3 and Pb(M1/2W1/2)O3 are ferro- and antiferroelectric, i.e., η1 < 0
and η2 > 0.

If x > x1, another transition antiferroelectric–ferroelectric phase occurs at a
temperature below TN , owing to the existence of the ζ term. The temperature T0 is
calculated from the condition Ga = Gp (see Equations (4.121) and (4.122)), as

T0 = T1 −
[

a2x +
(κ

2

)
η0(x− x1)

]
/a0(1 + a1x), (4.127)

where

κ =

(
1 +

√
β + 2ζ

β− 2ζ

)
/

(
1−

√
β + 2ζ

β− 2ζ

)
, 0 <

β + 2ζ

β− 2ζ
< 1. (4.128)

4.6.5. Comparison with Experimental Results

From the experimental data obtained from the phase diagrams listed in Table 4.4
and Equations (4.125)–(4.128), we obtain the significant coefficient ratios of the
expansion coefficients of the free energy summarized in Table 4.5. The value of
T1 was assumed to be zero since T1 was common to the three systems and was
found to be nearly equal to zero from the average of the experimental data. The
values of coefficients change systematically with the component M. The parameter η2,
considered to represent the degree of antiferroelectricity, shows an increase similar
to η0/a0 in order of Mn, Co, and Ni.

Figure 4.23b shows the theoretical phase diagrams of the three systems calcu-
lated with the parameters listed in Table 4.5. Reasonable agreement is obtained
between the calculated curves and the experimental ones (Figure 4.23a). Example
calculations made for 0.15Pb(Fe2/3W1/3)O3-0.85Pb(Co1/2W1/2)O3 are shown in Fig-
ure 4.24a−c. The free energies at three possible stable states are plotted as a function
of temperature in Figure 4.24a, where the dashed (antiferroelectric) curve at T = 87 K,
that is, successive phase transitions occur, such as para-(224 K)-antiferroelectric-(87
K)-ferroelectric. Figure 4.24b shows the ferroelectric spontaneous polarization PS,
and antiferroelectric pS. Figure 4.24c shows the permittivity change, which peaks
at both phase transition temperatures. The low-temperature peak is, however, too
sharp and too large compared with the experimental curve shown in [27], probably
due to neglecting the term (Pa

6 + Pb
6).
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Ni): experimental results (thick curved lines), and calculated (fine linear lines) from
the data in Table 4.5. Source: Figure by author, adapted from [27].
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by author, based on data from [27].
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Table 4.4. Experimental data of phase diagrams for the systems Pb(Fe2/3W1/3)O3-
Pb(M1/2W1/2)O3.

M x1 TC (x = 0) TC (x = x1) TN (x = 0) T0 (x = 1)

Mn 0.9–0.95 203 K 298–412 K 429 K (<77 K)

Co 0.65–0.7 203 135 311 100

Ni 0.6–0.7 203 114 291 113

Source: Author’s compilation based on data from [27].

Table 4.5. Theoretical data of phase diagrams used for the systems Pb(Fe2/3W1/3)O3-
Pb(M1/2W1/2)O3.

M x1 T1 a1 a2/a0 η0/a0 κ (x > x1)

Mn 0.95 0 0.06 −452 427 35.0

Co 0.67 0 0.02 −204 606 1.55

Ni 0.64 0 0.01 −179 634 1.01

Source: Author’s compilation based on data from [27].

4.7. Advanced Phenomenology with Higher-Order Expansion

4.7.1. Bias Electric Field and Stress Dependence of Piezoelectric Properties

Taking into account the DC bias external electric field and stress dependence of
the material property, an extended phenomenological formula should be required.
Since most of the material properties show approximate linear changes under external
biases, we can restrict the expansion functions of the material properties to merely
the first order approximation. Therefore, the material properties can be expressed
accordingly:

sij(E, X) = sij
E + s(E)

ijk ·Ek + s(X)
ijk ·Xk, (4.129)

dij(E, X) = dij + d(E)
ijk ·El + d(X)

ijk ·Xl , (4.130)

εi(E, X) = εi
X + ε

(E)
ik ·Ek + ε

(X)
ik ·Xk. (4.131)

It should be noted that s(E)
ijk and s(X)

ijk are fifth rank and sixth rank tensors, respectively.
This section considers the higher-order material properties described in Equa-

tions (4.129)–(4.131), in addition to the primary sij
E, dij, and εi

X , based on the experi-
mental data obtained for a soft PZT (PIC-255, PI Ceramics, Germany) [41]. Table 4.6
lists the DC electric field and compressive stress bias dependence of dielectric per-
mittivity, elastic compliance, and piezoelectric constant. Note that the change in the
parameters is only 2–3% of the original parameter values. We will discuss the higher-
order expansion terms to explain these deviations under the DC bias conditions.

4.7.2. Phenomenological Higher-Order Integration

We adopt the Landau–Devonshire phenomenological theory to examine the
first-order transition in the tetragonal–rhombohedral morphotropic phase boundary
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(MPB) PZT composition behavior and material properties. Due to a lack of single
crystal PZT data, the PZT Landau energy coefficients are mainly measured using
indirect methods [42]. Haun et al. developed a comprehensive thermodynamic
model for the entire solutions of PZT [43]. Though the current thermodynamic
models are in good agreement with various experimental data, these models must be
modified to explain the external bias dependency. Daneshpajooh et al. developed the
phenomenological formula for the effect of nonlinearity observed by the application
of DC stress and an electric field [41].

Table 4.6. Experimental and calculated higher-order thermodynamic terms.

Parameter PIC-255 (Measured) PIC-255 (Fitting)

∂ε33/∂E3
(
10−4 m/V ) −2.02± 0.08 −0.8± 0.6

∂|d31|/∂E3
(
10−17 C·m/N·V ) −3.3± 0.1 −7± 4.2

∂ε33/∂X3
(
10−6 1/Pa ) 3.2± 0.2 2± 1.4

Q333

(
10−11 m6/C2N

)
9± 7.1

Q113

(
10−11 m6/C2N

)
−6± 4.3

s333
(
10−20 1/Pa2) −4± 3.0

(
1/3 s333X3

3
)
/
(
1/2 s33X2

3
)

1.1–2.2%
(
1/2 Q333X2

3 P2
3
)
/
(
Q11P2

3 X3
)

1.9–3.8%
(
1/2 Q113X2

1 P2
3
)
/
(
1/2 sE

11X2
1
)

0.6–1.2%

Source: Table by author, based on data from [41].

Since we mainly focus on ferroelectricity phenomena, the thermodynamic model
is described as a power series of polarization, stress, and electrostrictive coupling
along the crystallographic axes. In order to explain the compliance change under
external biases, higher-order piezoelectric coupling terms and higher-order elastic
expansion terms should be introduced. Since our research focus is on k31 (P1 =
P2 = 0, X3 = X2 = 0) and k33 (P1 = P2 = 0, X1 = X2 = 0) modes for the MPB
composition PZT ceramic, taking into account PZT’s crystallographic symmetry
(∞mm or 6mm symmetry class) and the k31 and k33 mode geometric configurations,
the thermodynamic elastic Gibbs free energy equation is modified with the following
additional terms:

∆G1(P, X) = 1
2 α1P2

3 + 1
4 β11P4

3 + 1
6 γ111P6

3 − P3· 12
(
s11X2

1 + s33X2
3
)
− 1

3 s333X3
3

−Q11X3P2
3 −Q12X1P2

3 − 1
2
(
Q333X2

3 P2
3 + Q113X2

1 P2
3
)

,
(4.132)

where the “shaded” last terms on the first and second equation lines are newly
introduced to the elastic Gibbs free energy description. It should be noted that only
αi = (T − T0)/ε0C is considered to be temperature dependent, which represents
the “Curie–Weiss” law in the paraelectric phase. The parameters T0, sij, sijk, Qij,
and Qijk are the Curie–Weiss temperature, fourth- and sixth-rank elastic compliance
tensor components (reduced notation), and fourth- and sixth-rank electrostrictive
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coefficient tensor components (reduced notation), respectively (i, j, k = 1, 2, · · · , 6).
In materials which experience the first-order transition (β < 0), the elastic Gibbs
function is expanded up to the sixth power of polarization. In the following sections,
we discuss the phenomenology of ferroelectricity under external stress and an electric
field, based on Equation (4.132).

4.7.3. Bias Electric Field and Stress Dependence of Physical Parameters

The external DC electric field and stress can considerably affect the piezoelectric
material properties. The reader is first reminded of the following relations:

Ei = (∂G1/∂Pi), (4.133)

xi = −(∂G1/∂Xi), (4.134)

1/ε0εi =
(

∂2G1/∂Pi
2
)

. (4.135)

From Equation (4.132), we obtain the following equations:

E3(P, X) = α1P3 + β11P3
3 + γ111P5

3 − 2(Q11X3P3 + Q12X1P3)

−
(
Q333X2

3 P3 + Q113X2
1 P3
)

= αe f f P3 + β11P3
3 + γ111P5

3

(applicable for both k31 and k33 modes),

(4.136a)

x1(X, P) = se f f
11 X1 + Q12P2

3 (for k31 mode), (4.137a)

x3(X, P) = se f f
33 X3 + Q11P2

3 (for k33 mode), (4.138a)

where

α
e f f
1 = α1 − 2Q11X3 −

(
Q333X2

3 + Q113X2
1

)
(for both k31 and k33 modes), (4.136b)

se f f
11 = s11 + Q113P2

3 (for k31 mode), (4.137b)

se f f
33 = s33 + s333X3 + Q333P2

3 (for k33 mode). (4.138b)

The stress dependence of compliance is a combination of the primary and sec-
ondary elastic behavior and the higher-order electrostriction of the material. Since the
spontaneous polarization changes under external electric field, the bias electric field
dependence of material compliance is merely due to spontaneous polarization change.
Therefore, the material properties including piezoelectric d constant (dij = ε0εi.gij), g

constant (gij = −
(
∂2G/∂Pi∂Xj )), and inverse permittivity (1/ε0εij = (∂ 2G/∂Pi∂Pj

)
)

can be calculated as follows:

1/ε0ε3(X, E) = α
e f f
1 + 3β11P3

3 + 5γ111P5
3 , (4.139)
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g31 = 2Q12P3 + 2Q113X1P3; d31 = 2ε0ε3(Q12 + Q113X1)P3(k31 mode), (4.140)

g33 = 2Q11P3 + 2Q333X3P3; d33 = 2ε0ε3(Q11 + Q333X3)P3(k33 mode). (4.141)

In order to find the effect of the external electric field and stress effects on the
polarization status inside material at room temperature, Equations (4.132)–(4.138)
should be solved to find the equilibrium ferroelectric states under these biases.
Accordingly, using the calculated spontaneous polarization at equilibrium states,
the DC electric field and compressive stress dependence of material properties are
calculated based on Equations (4.139)–(4.141).

External Electric Field Effect on k31 Mode PZT

The inverse permittivity should change under the presence of an external DC
field. The electric field and dielectric stiffness in the presence of the external field (E0)
can be expressed in the k31 plate (from Equations (4.133)–(4.135)) as

E0 = α1P3 + β11P3
3 + γ111P5

3 , (4.142)

x1 = Q12P2
3 , (4.143)

1/ε0εi = α1 + 3β11P2
3 + 5γ111P4

3 . (4.144)

Under a positive external electric field, the Curie temperature shifts to higher
temperatures while showing a spontaneous polarization discontinuity at the Curie
temperature. In order to calculate the material property behavior including inverse
permittivity (1/ε0εi), piezoelectric coefficients (dij), and elastic compliance (sij), it is
necessary to find the free energy minima. Using numerical methods, the correspond-
ing spontaneous polarization (PS) under an external electric field can be calculated
from Equation (4.142) and elastic Gibbs free energy minima. We conducted the
first-order approximation of spontaneous polarization under an external field for a
PZT 50/50 by referring to the paper by Amin et al. [44]. At room temperature, the
first-order approximation of spontaneous polarization shows less than 0.2% devia-
tion from numerical results. Accordingly, since the effect of the DC electric field on
material properties is inherited by spontaneous polarization change, piezoelectric
and permittivity also show little deviation (less than 1%). According to Equations
(4.133)–(4.138), the inverse permittivity and piezoelectric coefficients under an exter-
nal electric field at room temperature can be formulated as follows. The second-order
material properties used in Equations (4.129)–(4.131) can be deduced as follows:

ε
(E)
33 =

∂ε3(E, X)

∂E3
= −

(γ111

A

)3
√

2(A− β11)

γ111

(
5A− 2β11

(A− β11)
3

)
, (4.145)

d(E)
333 =

∂d33(E, X)

∂E3
= −4Q11γ2

111
3β2

11 − 3β11 A− 8α1γ111

(A2 − β11 A)
3 , (4.146a)

d(E)
313 =

∂d31(E, X)

∂E3
= −4Q12γ2

111
3β2

11 − 3β11 A− 8α1γ111

(A2 − β11 A)
3 , (4.146b)
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s(E)
113 =

∂s11(E, X)

∂E3
=

Q113

A

√
2γ111

A− β11
, (4.147)

where A is defined as
A =

√
β2

11 − 4α1γ111. (4.148)

Based on Equation (4.147), in order to discuss the elastic compliance change un-
der an electric field, the reader can now understand that a higher-order nonlinear
electrostriction effect Q113 should be integrated.

External Stress Effect on the PZT Phenomenological Theory

The thermodynamic theory can also be applied for the explanation of stress
effect on ferroelectric properties. The elastic Gibbs energy expressed in Equation
(4.132) derives the electric field E3 under external stress X3,

E3(P, X) = α1P3 + β11P3
3 + γ111P5

3 − 2Q11P3X3 −Q111P3X2
3

= α′1P3 + β11P3
3 + γ111P5

3 ,
(4.149)

where α′1 = α1 − 2Q11X3 −Q111P3X2
3 .

Similar to Equations (4.145)–(4.147), using the first-order approximation, the
second-order material properties under a constant pre-stress condition at the ferro-
electric phase can be derived as follows:

ε
(X)
33 =

∂ε3(E, X)

∂X3
= − 4Q11γ2

111
A3

(
2A− β11

(A− β11)
2

)
, (4.150)

d(X)
333 =

∂d33(E, X)

∂X3

−2
√

2Q2
11
(
5β2

11 − 5β11 A− 12α1γ111
)

A3γ111

(
A−β11

γ111

)5/2 +
2
√

2Q111
(

β2
11 − β11 A− 2α1γ111

)

Aγ2
111

(
A−β11

γ111

)5/2 , (4.151)

s(X)
333 =

∂s33(E, X)

∂X3
= s333 + 4

Q111 ×Q11

A
, (4.152)

where A =
√

β2
11 − 4α1γ111, as in the previous Subsection External Electric Field Ef-

fect on k31 Mode PZT. The permittivity change under external stress can be explained
by the conventional thermodynamic models due to ready-integrated higher-order
dielectric stiffness parameters. However, based on Equations (4.151) and (4.152), the
piezoelectric constant d and elastic compliance s change under external stress can be
obtained merely by integrating higher-order nonlinear elastic s333 and electrostriction
Q111 coefficients.

Table 4.6 lists the above simulated permittivity, elastic compliance, and piezo-
electric constant change with bias electric field and compressive stress in the measure-
ments. Though the errors for these evaluations are not small, the general tendency
can be explained. Note that the modulation by bias in the primary parameters is
only 2–3% (not very large). Figure 4.25 shows the comparison of phenomenological
model predictions vs. experimental data on εX

33, sE
33, and d33 under DC electric field

bias (Figure 4.25a–c) and under compressive stress bias (Figure 4.25d–f). Though
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the prediction bands are rather wide (due to the error propagation), the estimated
trend lines are in relatively good agreement with the experimental data. The DC bias
dependence of physical parameters will help with constructing the domain dynamic
models, as discussed in Chapter 14.
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Figure 4.25. Comparison of phenomenological model predictions vs. experimental
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33, sE
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stress bias (d–f). Source: Figure by author, adapted from [41].
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Chapter Essentials

1. Elimination Theorem of Taylor Expansion Terms

Theorem 1. When the crystal possesses a “centrosymmetry”, the odd power of the
expansion tensor coefficient αij···l becomes “zero”.

Theorem 2. When we discuss the phase transition, we assume that energy description
is common through the paraelectric and ferroelectric phases and that the reduction in
the Taylor expansion terms follows to the highest symmetry paraelectric phase. When
the paraelectric phase is “centrosymmetric”, the odd power of the expansion tensor
coefficient αij···l becomes “zero”.

2. Landau Phase Transition Theory

Second-Order Phase Transition (in the Case of β > 0) (Figure 4.2 )

F(P, T) = (1/2)αP2 + (1/4)βP4 [α(T) = (T − T0)/ε0C]

(∂F/∂P) = E = αP + βP3

1
ε0ε =

(
∂E
∂P

)
= α + 3βP2

• Paraelectric Phase (T > T0 = TC)

PS = 0
1

ε0ε = α = (T − T0)/ε0C, or ε = C
(T−T0)

• Ferroelectric Phase (T < T0 = TC)

PS
2 = − α

β = (T0 − T)/βε0C, or PS = ±
√
(T0 − T)/(β ε0 C)

1
ε0ε = −2α = 2(T0 − T)/ε0C, or ε = C/2

(T−T0)

Coercive field: EC = αP + βP3 =
√
−4α3/27β

First-Order Phase Transition (in the Case of β < 0) (Figure 4.4b)

F(P, T) = (1/2)αP2 + (1/4)βP4 + (1/6)γP6 [α(T) = (T − T0)/ε0C]

(∂F/∂P) = E = αP + βP3 + γP5 = 0

1
ε0ε =

(
∂E
∂P

)
= α + 3βP2 + 5γP4

• Paraelectric Phase (T > TC)

PS = 0
1

ε0ε = α = (T − T0)/ε0C, or ε = C
(T−T0)

T1= T0 + β2ε0C/4γ

TC = T0 + (3/16)(βε0C/γ)
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• Ferroelectric Phase (T < TC)

PS
2 = [−β +

√
β2 − 4γα

]
/2γ]

1
ε0ε = −4α− 2βP2 ≈ 3β2

4γ + 8(TC−T)
ε0C

3. Devonshire Phase Transition Theory

G1(P, X, T) =
(

1
2

)
αP2 +

(
1
4

)
βP4 +

(
1
6

)
γP6 −

(
1
2

)
sX2 −QP2X

[α = (T − T0)/ε0C ]

E =
(

∂G1
∂P

)
= αP + βP3 + γP5 − 2QPX

x = −
(

∂G1
∂X

)
= sX + QP2

1
ε0ε =

(
∂E
∂P

)
= α + 3βP2 + 5γP4 − 2QX

• Paraelectric Phase (T > TC)

PS = 0 or P = ε0εE (under small E modulation)

Permittivity: ε = C/(T − T0) (normal Curie–Weiss law)

Electrostriction: x = Qε2
0ε2E2

• Ferroelectric Phase (T < TC)

PS
2 = (−β +

√
β2 − 4αγ)/2γ or P = PS + ε0εE (under small E modulation)

x = Q(PS + ε0εE)2 = QPS
2 + 2ε0εQPSE + Qε2

0ε2E2

1
ε0ε = α + 3βP2 + 5γP4 = −4α− 2βPS

2

Spontaneous strain: xS = QPS
2

Piezoelectric constant: d = 2 ε0 ε QPS

Electrostrictive strain: Qε2
0ε2E2 (usually neglected)

4. Phenomenological Approach in Solid Solutions

G1(P, X, T) = (1/2)[(1− x)αA + xαB]P2 + (1/4)[(1− x)βA + xβB]P4

+(1/6)[(1− x)γA + xγB]P6 − (1/2)[(1− x)sA + xsB]X2 − [(1− x)QA + xQB]P2X

(αA = (T − T0,A)/ε0CA, = (T − T0,B)/ε0CB)

5. Phenomenology of Antiferroelectrics

G1 = (1/4)α(Pa
2 + Pb

2) + (1/8)β(Pa
4 + Pb

4) + (1/12)γ(Pa
6 + Pb

6) + (1/2)ηPaPb

− (1/2)χTp2 + (1/2)Qh(Pa
2 + Pb

2 + 2ΩPaPb)p

Introducing the transformations PF = (Pa + Pb)/2 and PA = (Pa − Pb)/2 leads to
the following expression:
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G1= (1/2)α(PF
2 + PA

2) + (1/4)β(PF
4 + PA

4 + 6PF
2PA

2)

+ (1/6)γ(PF
6 + PA

6 + 15PF
4PA

2 + 15PF
2PA

4)

+ (1/2)η(PF
2 − PA

2) − (1/2)χTp2 + Qh[PF
2 + PA

2 + Ω(PF
2 − PA

2)]p.

The piezoelectric d coefficients in a sublattice material are denoted as d33 =
2(Q33 + q33)ε0ε3PF3,S, d31 = 2(Q31 + q31)ε0ε3PF3,S. Thus, when a large piezo-
electric anisotropy (|d33/d31| > 4) is observed, we may anticipate positive
inter-sublattice electrostrictive coupling q31 in the material with a sort of crys-
tallographic superlattice structure.

Check Point

1. Elastic Gibbs energy is given by:

G1 = (1/2)αP2 + (1/4)βP4 + (1/6)γP6 − (1/2)sX2 − QP2X.

Why do we not include the “odd-number” power terms of P? Answer simply.
2. (T/F) The phenomenology suggests that the piezoelectric constant d of a fer-

roelectric material increases with a decrease in temperature below its Curie
temperature. True or false?

3. (T/F) The phenomenology suggests that the Curie temperature of a ferroelectric
material is always lower than (or equal to) the Curie–Weiss temperature. True
or false?

4. How is the piezoelectric coefficient d related with the electrostrictive coefficient
Q, spontaneous polarization PS, and relative permittivity εr in a ferroelectric
phase in the 1D phenomenology? Provide the simplest formula.

5. (T/F) The Landau phenomenology on the second-order phase transition derives
the linear decrease in the spontaneous polarization with a temperature rise
below TC. True or false?

6. (T/F) The Landau phenomenology on the second-order phase transition derives
the linear decrease in the spontaneous strain down to zero with a temperature
rise below TC. True or false?

7. (T/F) The Landau phenomenology on the second-order phase transition derives
the linear decrease in the inverse permittivity down to zero with a temperature
rise below TC (ferroelectric phase). However, the slope is four-times steeper
than the slope of that in the paraelectric phase. True or false?

8. (T/F) The MPB composition of the PZT system exhibits the maximum electrome-
chanical coupling k, piezoelectric coefficient d, and the minimum permittivity ε.
True or false?

9. (T/F) The electrostrictive coefficient M, defined by strain x = ME2 (E: applied
electric field), is rather insensitive to the temperature change, even through the
phase transition temperature TC. True or false?

10. (T/F) The phenomenology of antiferroelectrics with the sublattice coupling
suggests a possibility of large piezoelectric anisotropy in the field-induced
piezoelectric phase, in comparison with a normal ferroelectric material. True
or false?
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Chapter Problems

4.1 Referring to a paper by Amin et al. [44], consider the necessary expansion terms
in 3D Devonshire phenomenological theory.

Hint

Consider which term stabilizes primarily, tetragonal ( P1 = P2 = 0, P3 6= 0),
orthorhombic (P2 = 0, P3 = P1 6= 0) or rhombohedral ( P1 = P2 = P3 6= 0)
symmetry structure?

∆G(P, X) = 1
2
(
α1P2

1 + α2P2
2 + α3P2

3
)
+ 1

4
(

β11P4
1 + β22P4

2 + β33P4
3
)

+ 1
4
(

β12P2
1 P2

2 + β23P2
2 P2

3 + . . .
)
+ 1

6
(
γ111P6

1 + γ222P6
2 + γ333P6

3
)

+ 1
6
(
γ121P2

1 P2
2 P2

2 + γ123P2
1 P2

2 P2
3 + . . .

)
− 1

2
(
s11X2

1 + s22X2
2 + s33X2

3
)

−(s12X1X2 + s13X1X3 + s23X2X3)− . . .−
(
Q11P2

1 X1 + Q22P2
2 X2 + Q33P2

3 X3
)

−(Q 12P2
2 X1 + Q13X1P2

3 + . . .
)
− (Q44X4P2P3 + . . .) + . . .

4.2 Landau free energy for the first-order phase transition is given by

F(P, T) = (1/2)αP2 + (1/4)βP4 + (1/6)γP6 [α(T) = (T − T0)/ε0C].

The temperature dependence of the spontaneous polarization is illustrated in
the Figure 4.4b, the curve shape of which seems to be the lean parabola in the
second-order phase transition shown in the Figure 4.2. If we approximate the
spontaneous polarization in the first-order transition (Figure 4.4b) as the lean
parabola of the second-order transition shifted along the positive temperature
axis, what is the state of the numerical deviation from the real curve on the left?
The temperature slope of the inverse permittivity in the T0 < T < TC range
gives 8 in the first-order transition theoretically. How about the lean-parabola
approximation?

Hint

First− order transition: PS =

√[
−β +

√
β2 − 4γα

]
/2γ], (CP4.2.1)

Second− order transition: PS =
√
−α/β. (CP4.2.2)

At T = Tc, we obtain α = Tc−T0
ε0C = 3

16
β2

γ . The lean-parabola shifted curve is
obtained from Equation (CP4.2.2) by this amount. Taking the Taylor expansion
in terms of (T c − T) (a small value << 1) on this shifted curve and Equation
(CP4.2.2), compare the deviation.

4.3 A significant difference in the P−E hysteresis in the first-order transition can be
found in a “double hysteresis” in the temperature range TC < T < T1, which
cannot be observed in the second-order transition. Gibbs energy by adding
−EP to the Landau free energy is given by
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G = 1
2 αP2 + 1

4 βP4 + 1
6 γP6 − EP.

The system with multiple potential minima in the Gibbs energy (Figure 4.4a)
can exhibit discontinuous polarization induction (i.e., electric-field-induced
ferroelectric phase) under a high electric field. As shown in Figure 4.5, the P−E
double hysteresis is observed in a narrow temperature range. Calculate the
electric field for the double-hysteresis on-set and off-set at a temperature T,
which is in the temperature range TC < T < T1.
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5. Relaxation Phenomena—Time-Dependent
Phenomenology

5.1. Introduction to Relaxation Phenomena

Phenomenology, as so far discussed, is used for an equilibrium status (no time
dependence). However, if the deviation is small due to the equilibrium status, the
material property may return to the stable point (due to the energy minimization
condition). The “relaxation phenomenon” in physics and chemistry is an effect
related to the delay between the application of an external controlable parameter to
a material and its response. The easiest example is to consider what happens if the
driving force such as the electrical field is suddenly switched off after it has been
constant for a sufficiently long time so that an equilibrium distribution of dipoles has
been realized. We handle the transident reponse of a physical parameter after slightly
deviating from the equilibrium state in terms of the “relaxation” time in this chapter.
In the latter part, we also discuss the relaxation phenomena from the viewpoint
of the frequency dependence. This relaxation concept is essential to understand
the domain wall dynamics (Chapter 14), loss mechanisms (Chapter 6), and heat
conduction (Chapter 12).

5.2. Polarization Relaxation

5.2.1. Polarization Relaxation and Internal Energy

Landau and Khalatnikov developed a theory for the temperature dependence
of the “ralaxation time” of the order parameter, P, based on the Ginzburg–Landau
theory of phase transiditions [1,2]. This mean-field approach shows a divergence of
τ ∝ 1/(TC − T) near a second-order phase transision point, TC. The key assumption
is that the change of polarization P with time (i.e., ∂P

∂t ) is proportional to the internal
energy decrease rate with the unit order parameter change (i.e., − ∂U

∂P ). Around the
equilibrium/stable-state P = PS, ∂U

∂P = 0, from which we obtain PS. By shifting ∆P
from this point, the internal energy should increase. By introducing the “relaxation
time” τ, the inverse of which is taken as a proportional constant:

∂P
∂t

= − 1
τ

(
∂U
∂P

)
. (5.1)

5.2.2. Analysis in the Second-Order Phase Transition

We use the simplest “second-order phase transition” model here for a practical
calculation:

G(P, T) = (1/2)αP2 + (1/4)βP4 − PE [α = (T − T0)/ε0C]. (5.2)
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Recall the fact that in the ferroelectric phase (T < T0), the spontaneous polariza-
tion is expressed as

PS = ±
√
− α

β
=
√
(T0 − T)/ε0Cβ. (5.3)

Equation (5.1) is expressed in practice by

∂P
∂t

= − 1
τ′

∂G
∂P

= − 1
τ′
(αP + βP3 − E). (5.4)

We consider the initial polarization P0 (= PS + ε0εXE0
)

by applying a small

electric field E0 on a ferroelectric specimen with PS =
√
− α

β . Then, we calculate the

polarization change after a sudden reduction in E0. The meaning of Equation (5.4) is
to establish how quickly the P should return to the equilibrium state PS after sudden
termination of the field. Equation (5.4) can be solved by putting E = 0 as

t∫
0

(
− 1

τ′
)

dt =
P∫

P0

dP
(αP+βP3)

= 1
βPS

2

P∫
P0

[− 1
P + 1

2
1

(P−PS)
+ 1

2
1

(P+PS)
]dP− t

τ′

= 1
−α

[
−ln

(
P
P0

)
+ 1

2 ln
(

P−PS
P0−PS

)
+ 1

2 ln
(

P+PS
P0+PS

)]
.

Thus, we obtain
√√√√
[

1−
(

PS
P

)2
]

/[1− (
PS
P0

)2] = e−t/( τ′
−α ). (5.5)

Thus, the actual “relaxation time” τ” can be denoted by

τ′′ =
τ′

−α
=

τ′ε0C
(T0 − T)

∝ 1/(T0 − T) [α = (T − T0)/ε0C] (5.6)

From Equations (5.5) and (5.6), we can conclude the following items:

• The time constant is proportional to “permittivity” ε0ε
X .

• t→ ∞ gives P→ PS.
• With approaching T→ T0, τ→ ∞. The recovery time of P is very slow around

TC = T0.

Note here that the relaxation time τ” above is a measure of the time delay of√[
1−

(
PS
P

)2
]

. The relaxation time τ for ∆P = (P− PS) = PS[1−
(

PS
P0

)2
]e−t/( τ′

−2α )

is half of the above τ”. The “relaxation time” corresponds to the “reaction resistance”
or “dielectric loss”. A similar concept is discussed in Chapter 6.

5.3. Temperature Relaxation

The time dependence of temperature (uniform temperature in a small volume) is
considered in this section. For example, by the “electrocaloric effect”, the ferroelectric
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material’s temperature is changed with the electric field application under an adia-
batic condition. We start from an equation similar to the one in the previous section.

∂θ

∂t
= − 1

τ
(

∂U
∂θ

). (5.7)

The temperature change speed is proportional to the energy change per unit
temperature increase (i.e., proportional to the specific heat capacity cp). If we take
the Gibbs energy transformed from Equation (2.11) in Chapter 2 under stress-free
condition (X = 0),

G(T, X, E) =
1
2

(
∂2G
∂T2

)
θ2 +

1
2

(
∂2G
∂E2

)
E2 +

(
∂2G

∂T∂E

)
θE

= −1
2

(
cE

p

T

)
θ2 − 1

2

(
ε0ε

X
)

E2 + pθE,
(5.8)

where p is pyroelectric coefficient.
Equation (5.7) is transformed into

∂θ

∂t
=

1
τ′
[

(
cE

p

T

)
θ − pE]. (5.9)

The meaning of Equation (5.9) is to provide how quickly the θ should approach
the equilibrium status θs after sudden application of the field E. As you may real-
ize, the electrocaloric effect under an adiabatic condition indicates the temperature
change in the equilibrium status (( ∂θ

∂t ) = 0, in Equation (5.9)) as

θs =
pT
cE

p
E. (5.10)

Equation (5.9) can be solved as

−
∫ t

0
1
τ′
(

cE

T

)
dt =

∫ θ
0

dθ
(θs−θ)

,

− 1
τ′

(
cE

p
T

)
t = ln(θs − θ)− ln(θs),

(1− θ/θs) = e
−t/τ′( T

cE
p
)
.

(5.11)

We denote the actual relaxation time constant τ expressed by

τ = τ′
(

T
cE

p

)
. (5.12)

From Equations (5.11) and (5.12), we can conclude the following items:

• In a uniform (no space gradient) specimen, temperature change follows an
exponential trend with time: (1− θ/θs) = e−t/τ .
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• t → ∞ gives θ → θs. θs corresponds to the temperature change by the “elec-
trocaloric effect”.

• The time constant is proportional to the absolute temperature and inversely
proportional to the specific heat capacity cE

p . The larger the specific heat capacity
cE

p , and the lower the temperature, the lower the time constant τ. The recovery
time of θ is quicker. This τ is a roughly suitable rise time period of applying a
pseudo-step electric field.

5.4. From Time Dependence to Frequency Dependence

5.4.1. Time Dependence of Polarization Recovery

The “relaxation phenomenon” with a sudden switch-off of the electric field
is taken into account again in a ferroelectric crystal, after it has been constant for
a sufficiently long time. We expect that the electric-field-induced polarization ∆P
will go to zero to approach the stable spontaneous polarization PS. However, that
cannot happen instantaneously; some time delay is included. See Figure 5.1. The
polarization recovery, that is, relative ionic movement under the external field elimi-
nation, will take a characteristic time owing to the effective mass of ions in an atomic
potential in a lattice, which we will call the “relaxation time τ” of the system. We
expect a smooth recovery over the polarization with an electric field to zero within
the relaxation time τ. As derived in Section 5.2, with this behavior, as shown in
Figure 5.1, we expect that P decays starting at the time of the switch-off according to

∆P = ∆P(t = 0)e−t/τ . (5.13)

This simple equation describes the behavior of a system such as the polarization
change. Nevertheless, we know that a relation such as this is found whenever we
look at the decay of some ensemble of particles or objects from higher energy than
the equilibrium condition, or the change from the excited state to the base state, i.e.,
that has to overcome some energy barrier.
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Figure 5.1. Polarization relaxation phenomenon for a sudden reduction of electric
field. Source: Figure by author.

5.4.2. Frequency Dependence of Polarization

We described the “time dependent” P(t) of the polarization when we applied
some disturbance or E input to the material (switching the electrical field on–off).
When we consider a cyclical application of electric field, this relaxation time will
reflect the phase delay of the response. We now discuss the “frequency dependence”
of P(ω) with angular frequency ω, i.e., the output to a periodic harmonic input, E =
E0·sin(ωt). Fourier transform is suitable for analyzing a periodic steady phenomenon.
By knowing P(ω), we can express the response to any signal just as well. In other
words, we can “Fourier reverse-transform” P(t) into P(ω).

Since we already know the time dependence P(t) for a switch-off signal in the
previous section, let us derive P(ω) from that. Knowing Equation (5.13) defined in
the interval 0 < t < ∞, we conduct Fourier transformation expressed by

P(ω) =

∞∫

0

∆P0e−t/τ ·e−jωt·dt, (5.14)

where ∆P0 is the initial static polarization under a certain electric field E0, i.e., the
value of P(ω) forω = 0 Hz, and j =

√
−1. Thus, we obtain

P(ω) =
∆P0

ω0 + jω
, (5.15a)

ω0 = 1/τ. (5.15b)

The reader can understand that P(ω) is the polarization response of the system
when we jiggle it with an electrical field E = E0·exp(jωt).
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5.4.3. Complex Numbers and Debye Model

Complex Permittivity

Complex numbers are occasionally used in a “steady harmonic phenomenon”
such as the voltage–current relation. In a complex impedance Z∗ = Z′ + jZ′′ , the
real part Z′ stands for the voltage/current magnitude ratio and the imaginary part
Z′′/Z′ stands for the voltage vs. current phase lag.

Under the supposition D ≈ P in a high-permittivity ferroelectric, we have

P(ω) = ε0ε(ω)E(ω). (5.16)

The time dependence of P(ω) is assumed to be under the same ω as the electric
field. It is either given by e−j(ωt−ϕ), with ϕ accounting for a possible phase shift,
or simply by e−jωt, if we include the phase shift in ε(ω), which means it must be
complex. The second possibility is more powerful and popular. By combining
Equations (5.16) and (5.15a), we obtain

ε0ε(ω) =
ω0P(ω)

E(ω)
=

ω0P(ω = 0)
E0

1
ω0 + jω

= ε0εS
1

1 + j(ω/ω0)
, (5.17)

εS = ∆P0/ε0E0 (P(ω = 0) = ∆P0/ω0) is the “static permittivity”, i.e., the value at
zero frequency. Now, we can denote a complex permittivity as

ε(ω) = εS
1

1 + j(ω/ω0)
, (5.18)

then decompose ε(ω) in a real and an imaginary part, i.e., write it as

ε(ω)∗ = ε(ω)′ − jε(ω)′′ , (5.19)

we obtain

ε(ω)∗ = εS[
1

1 +
(

ω
ω0

)2 − j

(
ω
ω0

)

1 +
(

ω
ω0

)2 ] (5.20)

or 



ε(ω)′ = εS

1+
(

ω
ω0

)2

ε(ω)′′ =
εS

(
ω

ω0

)

1+
(

ω
ω0

)2

. (5.21)

Figure 5.2 plots the real and imaginary permittivity, ε(ω)′ and ε(ω)′′ , where a
typical relaxation phenomenon can be found, i.e., permittivity change with frequency,
around the characteristic frequency ω0 = 1/τ, or ωτ ≈ 1.
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Figure 5.2. Frequency dependence of real and imaginary permittivity. Source: Figure
by author.

Cole–Cole Circle

So far, we assumed that at high frequencies (ω0 < ω → ∞) the polarization is
essentially zero (i.e., ε(ω)′ → 0). That is not necessarily true in the most general
case—when we primarily discuss “ionic polarization”, “electronic polarization” still
remains, even at a high frequencies such as THz. If we take this into account, we have
to change our consideration of relaxation somewhat and introduce a new, simple
parameter ε′(ω � ω0) = ε∞. For the electronic polarization, we sometimes adopt
ε∞ = n2, where n is the refractive index of this material. This reasoning follows the
“Debye model”, and the following equations are called “Debye equations”:

ε(ω)∗ = [
(εS − ε∞)

1 + j
(

ω
ω0

) + ε∞] (5.22)

and 



ε(ω)′ = ε∞ + (εS−ε∞)

1+
(

ω
ω0

)2

ε(ω)′′ =
(εS −ε∞)

(
ω

ω0

)

1+
(

ω
ω0

)2

. (5.23)

Here, note that ε′(ω = 0) = εS and ε′(ω = ∞) = ε∞. ε’ is the real part of a complex
amplitude, which gives the amplitude of the response that is in phase with the driving
force, while ε” is the imaginary part, which gives the amplitude of the response that
is phase shifted by 90◦. Finally, let us consider the graphical relationship between ε’
and ε”. The reader can easily imagine the following relation:

[
ε(ω)′ − (εS+ε∞)

2

]2
+
[
ε(ω)′′

]2

= [− εS−ε∞
2 + (εS−ε∞)

1+
(

ω
ω0

)2 ]
2 + [

(εS−ε∞)
(

ω
ω0

)

1+
(

ω
ω0

)2 ]2 = ( εS−ε∞
2 )2.

(5.24)
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The locus of ε(ω)∗ is a simple half-circle, as illustrated in Figure 5.3. Note that the
graph is characterized by the three numbers that define a particular material, εs, ε∞,
andω0 = 1/τ.

ε" ω0 = 1/τ

ω  increase

ε∞
(εS + ε∞)

2

(εS − ε∞)
2

εS

ε'

Figure 5.3. Cole-Cole plot based on the Debye model. Source: Figure by author.

So far, we have not discussed much on the microscopic origin of the “relaxation
time”. Through Example Problem 5.1, the reader is requested to learn how the
macroscopic relaxation time is related with the microscopic potential minimum gap.

Example Problem 5.1

Consider an “order–disorder-type ferroelectric” with ions trapped in the same
“double-minimum potential” with a relatively low barrier between the two minima
(Figure 5.4). Thus, each unit lattice cell has a permanent dipole moment, and the
dipole–dipole coupling is taken into account at a temperature lower than the Curie
temperature. Under a quasi-DC field, the ion follows the electric field alternating
between the positive and negative potentials. However, with increasing drive fre-
quency, the ionic motion exhibits a delay with respect to the electric field due to the
potential barrier ∆U. This is an intuitive explanation for the “dielectric relaxation” in
a ferroelectric phase (refer to Mason’s treatment [3]).

+−

F

α+

ΔU

μF
μF

α−

Figure 5.4. Ion in a double-minimum potential. Source: [4] ©Uchino, K. Ferroelectric
Devices, 2nd ed. CRC Press, 2010; p. 125. Reproduced by permission of Taylor &
Francis Group.
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(1) Using a mathematical representation, derive the following “Debye dispersion
relation” for a mono-dispersive case (equivalent to Equation (5.18)):

E(ω) = εS/(1 + jωτ). (P5.1.1)

(2) Discuss how the above dispersion obeys the so-called “Cole–Cole relation” (i.e.,
the real and imaginary parts of permittivity trace a half circle on a complex
permittivity plane).

Solution

When an external electric field E is applied, the local field F in the crystal is
described by

F = E + γP, (P5.1.2)

where γ is the “Lorentz factor”, a positive feedback amplifier for the local field. Refer
to Section 1.2.3. The transition probability for an ion from the − to the + in Figure 5.4,
α+, and the opposite transition probability, α−, are expressed as

α+ = Γexp[−(∆U − µF)/kT], and (P5.1.3)

α− = Γexp[−(∆U + µF)/kT], (P5.1.4)

respectively, based on the Boltzmann distribution. Here, ∆U is the barrier height
between the two potential minima, µ is the dipole moment, and Γ is a constant
for normalizing the probability. One example is the energy required to switch the
leftward water molecule to the rightward water molecule in an ice crystal.

If we introduce the number of + (or −) direction dipoles per unit volume N+

(or N−), the total dipole number is given by N = N+ + N−, and the polarization (per
unit volume) is represented as

P = (N+−N−)µ (P5.1.5)

The time dependence will be expressed as

dN+/dt = N−α+−N+α−, (P5.1.6)

dN−/dt = N+α−−N−α+. (P5.1.7)

Then,

dP/dt = µ(dN+ /dt− dN− /dt) = 2µ(N−α+ −N+α−), (P5.1.8)

where
N+ = (1/2)(N + P/µ), (P5.1.9)

N− = (1/2)(N − P/µ). (P5.1.10)
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Suppose that the external electric field E = E0ejωt is small (PS � ε0εE) and that
the polarization is given by

P = PS + ε0εE0ejωt. (P5.1.11)

From Equation (P5.1.8),

Left side = (jω)ε0Ee = Right-side
= 2µ(N−Γ exp[−(∆U − µF)/kT]− N+Γ exp[−(∆U + µF)/kT]
= 2µ(N−Γ exp[−(∆U − (E + γP))/kT]− N+Γ exp[−(∆U + µ(E + γP))/kT]
= 2µ exp(−∆U/kT){N− exp[µ(E + γ(PS + ε0εE))/kT]
−N+ exp[−µ(E + γ(PS + ε0εE))/kT]}

furthermore, using Equations (P5.1.9) and (P5.1.10),

= 2µΓexp(−∆U/kT){(1/2)(N − P/µ)exp(µγPS/kT)exp[µ(1 + γε0ε)E/kT]
− (1/2)(N + P/µ)exp(−µγPS)/kT)exp[−µ(1 + γε0ε)E/kT].

Taking into account PS � ε0εE and exp(x) ≈ 1 + x (for x � 1), the above
calculation is transformed into:

(jω)ε0εE = 2µΓexp(−∆U/kT){(1/2)(N − P/µ)exp(µγPS/kT)
[1 + µ(1 + γε0ε)E/kT] − (1/2)(N + P/µ)exp(−µγPS)/kT)[1 − µ(1 + γε0ε)E/kT]

= 2Γexp(−∆U/kT)[µN{sinh(µγPS/kT) + µ(1 + γε0ε)(E/kT)cosh(µγPS/kT)}
− P{cosh(µγPS/kT) + µ(1 + γε0ε)(E/kT)sinh(µγPS/kT)}].

(P5.1.12)

Using the relation P = PS + ε0εE on Equation (P5.1.12), we obtain

(jω)ε0εE = 2Γexp(−∆U/kT)[µN{sinh(µγPS/kT)
+ µ(1 + γε0ε)(E/kT)cosh(µγPS/kT)} − PS{cosh(µγPS/kT)

+ µ(1 + γε0ε)(E/kT)sinh(µγPS/kT)}
− ε0εE{cosh(µγPS/kT) + µ(1 + γε0ε)(E/kT)sinh(µγPS/kT)}]

= 2Γexp(−∆U/kT)[µNµ(1 + γε0ε)(E/kT)cosh(µγPS/kT)
− PSµ(1 + γε0ε)(E/kT)sinh(µγPS/kT)} − ε0εEcosh(µγPS/kT)].

(P5.1.13)

For the last transformation, we used the relationship of µN{sinh(µγPS/kT) −
PS{cosh(µγPS/kT) = 0 and the neglect of the higher order E2. Introducing the static
permittivity εS atω = 0, we obtain

µNµ(1 + γε0εS)(E/kT)cosh(µγPS/kT)
− PSµ(1 + γε0εS)(E/kT)sinh(µγPS/kT)} − ε0εSEcosh(µγPS/kT) = 0.

(P5.1.14)

Now, for a high-frequency permittivity, from Equation (P5.1.13)

ε(ω) = εS/(1 + jωτ), (P5.1.15)

where
τ = (1 + γε0εS)τ0/cosh(µγPS/kT), (P5.1.16a)

τ0 = 1/2Γexp(−∆U/kT). (P5.1.16b)
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The subscript “s” of εS stands for a static value (ω = 0), and in the paraelectric
phase, it should follow the Curie–Weiss law:

ε0εs = ε0C/(T − TC). (P5.1.17)

The relaxation time τ ∝ 1/(T − TC), which increases significantly when ap-
proaching T → TC . This means that the recovery to the equilibrium polarization is
quite slow, which is called “critical slowing-down”.

Equation (P5.1.15) can be rewritten as

ε(ω) = ε’(ω) − jε”(ω),

where
ε’(ω) = εS/[1 + (ωτ)2], ε” (ω) = ωτεS/[1 + (ωτ)2]. (P5.1.18)

The so-called “Cole–Cole relation” is obtained from Equation (P5.1.18), which is
a half-circle with the following formula, and is illustrated in Figure 5.5.

(ε’(ω) − εS/2)2 + ε”(ω)2 = (εS/2)2. (P5.1.19)

ε"
ω0 = 1/  τ

ω  increase

ε∞ εS /2

εS /2

εS

ε'

Figure 5.5. Cole–Cole plot for a double-minimum potential model. Source: Figure
by author.

The permittivity for ω → ∞ is assumed to be ε∞ = 0 in this case, and the
maximum ε′′ = εS/2 is obtained at ω = ω0 = 1/τ or ωτ = 1. Equations (P5.1.16a)
and (P5.1.16b) indicate that the relaxation time τ is proportional to (1) exp(∆/kT),
in addition to (2) 1/(TC − T). The larger the dipole moment barrier height ∆U, the
longer the relaxation time τ.

Dipole Reorientation

Suffice it to say that typical relaxation times are around 10−11 s in dielectric
materials, which corresponds to frequencies in the GHz range, i.e., “cm waves”. We
must, therefore, expect that typical materials exhibiting dipole reorientation such
as “ice/water” will show some peculiar behavior in the “microwave range” of the
electromagnetic spectrum. Water molecule flip-over, i.e., dipole reorientation, will not
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follow above this particular frequencyω0 = 1/τ; thus, the imaginary permittivity, that
is, loss, increases significantly. This is the meal heating mechanism of the “microwave
oven”. In mixtures of materials, or in complicated materials with several different
dipoles and several different relaxation times, things become more complicated. The
smooth curves shown above may no longer be smooth because they now result
from a superposition of several smooth curves. Finally, it is also clear that τ may
vary quite a bit, depending on the material and the temperature. As discussed in
Section 5.2.2, the relaxation time is proportional to 1/α in the second-order phase
transition ferroelectrics:

τ =
τ′

−2α
∝

1
T0 − T

. (5.25)

When approaching the Curie temperature from low temperatures, the relaxation
time increases significantly.

5.4.4. Distribution Function of Relaxation Time

We introduced the simplest Debye model with a single relaxation time τ, whose
Cole–Cole plot of complex permittivity shows a perfect half-circle. However, when
we plot ε(ω)′ and ε(ω)′′ of the experimentally obtained data, the Cole–Cole plot is
deviated from a half-circle, which requires consideration of the τ distribution. We
can say that the permanent dipoles in a real dielectric material seem to have slightly
deviated potential barriers ∆U, leading to the distribution of the relaxation time.

Figure 5.6 shows such an example, where the Cole–Cole plot of complex per-
mittivity is observed by Hatta [5] in NaNO2 above the Curie temperature (i.e., para-
electric phase). Sodium nitrite composed of NO2 dipole moments is a water-soluble
ferroelectric crystal with the Curie temperature at 163.4 ◦C [6]. The center of the
complex permittivity circle seems to be located below the “real coordinate axis”.
Considering the line connecting the circle center and ε∞ on the real axis, the angle of
this line and the real coordinate axis is defined as α in “radian” (refer to Figure 5.6).
We define a new parameter β as

β ≡ 1− 2
π

α. (5.26)

176



160 MHZ

64 MHZ

32 MHZ

170.0 ºC
172.5 ºC
175.0 ºC
177.5 ºC
180.0 ºC
182.5 ºC
185.0 ºC
190.0 ºC
195.0 ºC
200.0 ºC

5 MHZ

9 GHZ,
24 GHZ

1 GHZ 600 MHZ

α ε'

ε''

500400300100 5.7º0

100

200

300

200

350 MHZ

1

3
4
5
6
7

6

8
9
10

1

2

2

3

4
5

6

789
10

Figure 5.6. Cole–Cole plot of complex permittivity in NaNO2. Source: Figure by author,
adapted from [7].

This parameter β is a measure of distribution of the relaxation time; β = 1
corresponds to the single relaxation time, and with an increase in the distribution,
the β value decreases. β = 0.94 in the case of NaNO2, that is, the time distribution is
rather small.

When the relaxation time has a distribution, Equation (5.23) is modified by
introducing a distribution function y(τ) as the following equation:





(ε(ω)′−ε∞)
(εS−ε∞)

=
∞∫
0

y(τ)dτ

1+(ωτ)2

ε(ω)′′
(εS−ε∞)

=
∞∫
0

ωτy(τ)dτ

1+(ωτ)2

. (5.27)

Hill and Ichiki adopted a Gaussian distribution to y(τ) [8]:

y(τ) = Ae−(τ/τ1)
2
, (5.28)

where τ1 is the standard deviation of the τ distribution and assumed to be tempera-
ture dependent as

τ1 =
B

T − TC
, (5.29)

where B is the constant.
The average relaxation time τ increases, as well as the standard deviation τ1,

when the temperature is reduced down to the Curie temperature.
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Chapter Essentials

1. Basic Equations for Relaxation Phenomena:

The change of polarization P with time (i.e., ∂P
∂t ) is proportional to the internal

energy decrease rate with the unit polarization change (i.e., − ∂U
∂P ).

∂P
∂t = − 1

τ

(
∂U
∂P

)
,

√[
1−

(
PS
P

)2
]

/[1− ( PS
P0
)2] = e−t/( τ′

−α ).

The temperature change speed is proportional to the energy change per unit
temperature increase (i.e., proportional to the specific heat capacity cp).

∂θ
∂t = − 1

τ

(
∂U
∂θ

)
,

(1− θ/θs) = e
−t/τ′( T

cE
p
)
.

2. Time Dependence vs. Frequency Dependence:

• Time dependence of polarization recovery:
∆P = ∆P(t = 0)e−t/τ .

• Frequency dependence of polarization:
P(ω) =

∫ ∞
0 ∆P0e−t/τe−jωtdt,{

P(ω) = ∆P0
ω0+jω

ω0 = 1
τ

,

ω0 = 1/τ.

3. Complex Permittivity—Cole–Cole Plot (Refer to Figures 5.2 and 5.3)
ε(ω)∗ = ε(ω)′ − jε(ω)′′,
ε(ω)∗ = [ (εS−ε∞)

1+j
(

ω
ω0

) + ε∞]





ε(ω)′ = ε∞ + (εS−ε∞)

1+
(

ω
ω0

)2

ε(ω)′′ =
(εS−ε∞)

(
ω

ω0

)

1+
(

ω
ω0

)2

.

4. Distribution Function of Relaxation Time



(ε(ω)′−ε∞)
(εS−ε∞)

=
∞∫
0

y(τ)dτ

1+(ωτ)2

ε(ω)′′

(εS−ε∞)
=

∞∫
0

ωτy(τ)dτ

1+(ωτ)2

,

Gaussian distribution to y(τ):
y(τ) = Ae−(τ/τ1)

2
,

where τ1 is the standard deviation of the τ distribution and is assumed to be
temperature dependent as

tau1 = B
T−TC

,

where B is the constant.
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Check Point

1. (T/F) The relaxation phenomenon is defined as a recovering phenomenon from
a deviated status to an equilibrium status. True or false?

2. (T/F) When we consider the temperature recovery, the speed is proportional to
free energy U change per temperature deviation θ, ∂U

∂θ . True or false?
3. (T/F) When we consider the polarization relaxation phenomenon in the ferro-

electric phase after shutting off the external electric field, the relaxation time is
directly proportional to (TC − T). True or false?

4. (T/F) When we consider the permittivity relaxation phenomenon in the para-
electric phase of an order–disorder-type phase transition material, the relaxation
time is inversely proportional to (T − TC). That is, the recovery time is very
slow when approaching the Curie temperature. True or false?

5. (T/F) The relaxor ferroelectric shows a decrease in permittivity with an increase
in the measuring frequency. True or false?

6. (T/F) When we plot the real and imaginary parts of permittivity on a 2D
map (Cole–Cole plot), the plots follow on an exact half-circle for all relaxor
ferroelectrics. True or false?

7. (T/F) The inverse of the relaxation time τ provides the frequency wherein the
maximum imaginary permittivity appears. True or false?

8. (T/F) Large imaginary permittivity stands for large dielectric loss, leading to
the absorption of input electric energy at that frequency. This is the principle of
“dielectric spectroscopy”. True or false?

9. When we draw the Cole–Cole plot with



ε(ω)′ = εS

1+
(

ω
ω0

)2

ε(ω)′′ =
εS

(
ω

ω0

)

1+
(

ω
ω0

)2

we can obtain a half-circle. Provide the circle center position with a complex
permittivity value.

10. When we draw the Cole–Cole plot with



ε(ω)′ = εS

1+
(

ω
ω0

)2

ε(ω)′′ =
εS

(
ω

ω0

)

1+
(

ω
ω0

)2

We can obtain a half-circle. Provide the angular frequency value that exhibits
the maximum ε(ω)′′ .

Chapter Problems

5.1 When the relaxation time is distributed, the permittivity dispersion can be
approximated as

ε(ω) = εS/[1 + (jωτ)β],

where 0 < β < 1. Discuss the Cole–Cole plot change in comparison with the
case β = 1 in Figure 5.3 (mono-dispersion model). Does it resemble Figure 5.6 in
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shape with the relaxation time distribution? If so, what is the relationship with
β and the angle α in the figure?

5.2 The “relaxor ferroelectrics” exhibit “dielectric relaxation” (frequency depen-
dence of the permittivity) from which their name is derived. The temperature
dependence of the permittivity for Pb(Mg1/3Nb2/3)O3 is plotted in Figure 5.7 at
various measuring frequencies [9]. Thus, accordingly, the “Curie point” is not
precisely defined, but the “Curie range” is sometimes adopted. The permittivity
of relaxor ferroelectrics in the paraelectric region obeys the following quadratic
or critical component relation [10,11]:

1/ε = 1/ε0 + (T − TC)2/C*,
1/ε = 1/ε0 + (T − TC)β/C*,
rather than the normal Curie–Weiss law
1/ε = (T − TC)/C.

Based on the concept of the relaxation time distribution and the permittivity
dispersion (modified Cole–Cole plot), discuss the phenomenological modified
Curie–Weiss law.
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Figure 5.7. Temperature dependence of the permittivity and loss tanδ in
Pb(Mg1/3Nb2/3)O3 for various measuring frequencies (kHz): (1) 0.4; (2) 1; (3)
45; (4) 450; (5) 1500; (6) 4500. Source: Source: [4] ©Uchino, K. Ferroelectric Devices,
2nd ed. CRC Press, 2010; p. 124. Reproduced by permission of Taylor & Francis
Group.
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Hint

We assumed the local composition distribution in complex perovskite crystals.
By superimposing the “normal” Curie–Weiss law for each cluster with slightly
different Curie temperatures, we obtain a rather broad permittivity peak as well
as the quadratic relationship with temperature [10]. On the other hand, by using
the “fractal analysis” of microdomains, we approached the critical exponent
explanation [11,12].
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6. Losses in Piezoelectrics—Complex
Number Utilization

6.1. Dielectric Losses

6.1.1. Dielectric Materials

In highly resistive dielectric materials, the constituent atoms are considered to
be ionized to a certain degree and are either positively or negatively charged (partic-
ularly ionic crystals). When an electric field is applied, cations are attracted to the
cathode and anions to the anode due to electrostatic interaction. This phenomenon
is known as “ionic polarization” of the dielectric, and the polarization is expressed
quantitatively as the sum of the electric dipoles per unit volume (C/m2). There are
three types of polarization: electronic, ionic, and dipole reorientation. Electronic
polarization is basically electron-cloud deformation under an electric field, which can
follow alternating fields with frequencies up to THz–PHz (1012–1015 cycle/sec, light
wave range), while ionic polarization responds up to GHz–THz (109–1012 cycle/sec,
microwave region). Permanent dipole reorientation can follow only up to MHz–
GHz (106–109 cycle/sec). Refer to Figures 1.1 and 1.2. As is well known, a polar
water molecule (H2O) is excited in a microwave oven at around 2 GHz, which ab-
sorbs the electromagnetic energy to increase the water temperature. This is also
the reason why ferroelectric materials with permanent dipoles cannot be used for
microwave-frequency dielectric materials; though their permittivity is typically high
at low frequencies (kHz), it decreases significantly when increasing the electric
field frequency.

Compared with air-filled capacitors, dielectric capacitors can store more electric
charge due to the dielectric polarization P induced by the external field, as schemati-
cally shown in Figure 6.1. The physical quantity corresponding to the total stored
electric charge per unit area is called the “electric displacement”, D, and is related to
the externally applied electric field E by the following expression:

D = ε0E + P = ε0εE. (6.1)

Here, ε0 is the vacuum permittivity (=8.854 × 10−12 F/m), ε is the material’s
“relative permittivity” (also simply called permittivity or “dielectric constant”, and,
in general, is a second-rank tensor property). In Figure 6.1, subscript “b” stands for
“bound” charge originated from charge on the top of the induced dipole moment,
and “f ” is for “free” charge supplied from the coated electrode metal via the power
supply, which usually screen/compensate the bound charge, leading to internal
electric field E = 0. Without an electrode coat or environmental floating charge, there
is no free charge, leading to electric displacement D = 0, or a so-called “depolarization
field” in the crystal (Edep = −P/ε0).
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Figure 6.1. Charge accumulation in a dielectric capacitor. Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 3. Reproduced by permission of
Taylor & Francis Group.

6.1.2. Dielectric Loss

The magnitude of induced polarization P depends on the crystal structure. As
discussed in Section 1.2.3, dielectric materials with high “Lorentz polarization factor”
γ should induce high polarization, leading to high permittivity. As imagined from
the response speed limitation of the ionic polarizability (GHz–THz) (Figure 1.2),
polarization induction requires some delay time after the external electric field E
application. In order to express the delay, we adopt the complex permittivity ε*
such that

D = ε*ε0E = ε0(ε’ − jε”)E = ε0ε’(1 − jtanδ)E. (6.2)

Here, j =
√
−1, and tanδ = ε”/ε’ is called the “dielectric loss factor” or “dissipation

factor”. Note that until Section 6.4, we do not discuss the dissipation factor in terms
of the intensive or extensive parameter’s viewpoint.

Figure 6.2 illustrates the electric displacement D (almost the same as polarization
P in ferroelectrics, because the permittivity is large ∼1000) vs. the electric field
E curve under stress-free conditions with some hysteresis. In a typical “delay”
case of the D generation after the electric field E application, the hysteresis is the
counterclockwise rotation (as indicated by arrows) on this narrow elliptic locus. Note
also that the hysteresis shape should be an “ellipse” in this complex notation; that is,
a rounded edge at the maximum field point, which suggests a discrepancy from the
actual experimental result, and the limitation of this complex parameter approach.
Typical ferroelectric P–E hysteresis curves usually exhibit a rather sharp edge shape
in practice, as shown in Figure 6.2. Example Problem 6.1 further illustrates the
numerical derivation of the loss factor from the observed D–E hysteresis curve.
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Figure 6.2. D vs. E (stress-free) curve with hysteresis. Source: Figure by author.

Example Problem 6.1

When the observed variation in electric displacement, D, can be represented as
if it had a slight phase lag with respect to the applied electric field (i.e., harmonic
approximation), we can describe the relation D vs. E as δ

E* = E0ejωt, (P6.1.1)

D* = D0ej(ωt − δ). (P6.1.2)

We can rewrite the relationship between D and E by squeezing the phase lag
into the “complex permittivity” ε:

D = ε*ε0E, (P6.1.3)

where the “complex dielectric constant”, ε*, is

ε* = ε’ − jε”, (P6.1.4)

ε”/ε’ = tanδ. (P6.1.5)

The integrated area inside the hysteresis loop, labeled we in Figure 6.2, is equiv-
alent to the energy loss per cycle per unit volume of the dielectric. It is defined for an
isotropic dielectric as:

we = −
∫

DdE= −
∫ 2π

ω

0
D

dE
dt

dt. (P6.1.6)

(1) Substituting the electric field, E, and electric displacement, D, into Equation (P6.1.6),
obtain the following equations:

we = πε”ε0E0
2 = πε‘ε0E0

2tanδ. (P6.1.7)
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(2) Verify an alternative expression (i.e., visual calculation from the hysteresis loop)
for the dissipation factor:

tanδ = (1/2π)(we/Ue), (P6.1.8)

where Ue, the integrated area so labeled in Figure 6.2, represents the energy
stored during a quarter cycle.

Solution

The integrated area inside the hysteresis loop, labeled we in Figure 6.2, is equiv-
alent to the energy loss per cycle per unit volume of the dielectric. It is defined as

we =−
∫

DdE = −
∫ 2π

ω
0 D dE

dt dt. Substituting the real parts of the electric field, E* (i.e.,
E0cos(ωt)), and electric displacement, D0cos(ωt − δ), into Equation (P6.1.6) yields:

we =
∫ 2π

ω
0 D0cos (ωt− δ)[E0ω· sin(ωt)]dt E0D0ω sin(δ)·

∫ 2π
ω

0 sin2(ωt)dt
= πE0D0 sin(δ),

(P6.1.9)

so that
we = πε” ε0E0

2 = πε’ε0E0
2tanδ. (P6.1.10)

When there is a phase lag, an energy loss (or non-zero we) will occur for every
cycle of the applied electric field, resulting in the heat generation in the dielectric
material. The quantity tanδ is referred to as the “dissipation factor”. The electrostatic
energy stored during a half cycle of the applied electric field is 2Ue, where Ue,
the integrated area so labeled in Figure 6.2, represents the energy stored during a
quarter cycle.

2Ue = 2[(1/2)(E0D0cosδ)] = (E0D0)cosδ (P6.1.11)

Knowing that ε’ε0 = (D0/E0)cosδ, Equation (P6.1.11) may be rewritten in the form:

2Ue = ε’ε0E0
2. (P6.1.12)

Then, an alternative expression for the dissipation factor can be obtained:

tanδ = (1/2π)(we/Ue). (P6.1.13)

Note that the factor 2π comes from the integration process for one cycle. In conclusion,
the loss dissipation factor tanδ is obtained by obtaining the area (equivalent to electric
energy) ratio on the experimentally obtained P−E hysteresis curve.

Ferroelectric materials are occasionally doped by donor or acceptor ions in order
to enhance the piezoelectric performance, and polycrystalline (ceramic) specimens
possess grain boundaries with various crystal dislocations/deficits. In these cases,
the material’s resistivity is occasionally degraded. Let us discuss the case of a slightly
conductive (or semiconductive) dielectric material, where the hysteresis apparently
becomes enhanced.
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We start from Gauss law, ∇·D = ρ, which is valid under the condition of
equilibrium. Here, ρ is the true charge density. Taking a “continuity equation”
of charge,

∂ρ

∂t
+ div(i) = 0, (6.3)

and the relations ∂
∂t → jω (harmonic approximation) and i = σE, we obtain

∇·(D−
(

jσ
ω

)
E) = 0 (Extended Gauss′s law). (6.4)

If we adopt D = ε*ε0E, we rewrite the equation as

ε0(ε
′ − j[ε” +

(
σ

ε0ω

)
])∇·E = 0. (6.5)

Thus, conductance enhances the imaginary loss part ε”, leading to the phase lag
increase and an apparently wider hysteresis curve. Note that the intrinsic dielectric
loss tanδ is not directly related with the measuring frequency, but the conductivity-
related “apparent dielectric loss” exhibits a significant frequency dependence (i.e.,
it diminishes with increasing the frequency ω). This is the experimental base to
distinguish the conductance loss in a piezoelectric material.

6.1.3. LCR Circuit

Analysis with Differential Equations

Capacitors are made of dielectric materials. The reader is probably familiar with
a resonance circuit composed of an inductor L and a capacitor C. Let us review the
loss handling with a discreate electric component viewpoint. We discuss on a series
LCR circuit (by adding a resistance R), as shown in Figure 6.3. Dielectric loss and
resistive loss in the inductor are expressed by a discrete resistor in the “equivalent
circuit” as introduced in Chapter 9. Under an applied voltage V(t), denoting the
common circuit current I(t) and charge on a capacitor Q, we obtain the equation:

L
(

dI
dt

)
+

Q
C

+ RI = V(t). (6.6)

L RC

V(t)

I(t)

Figure 6.3. LCR circuit. Source: Figure by author.
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Since I = dQ
dt , Equation (6.6) can be rewritten as

L
(

d2Q
dt2

)
+ R(

dQ
dt

) +
Q
C

= V(t), (6.7)

or

L
(

d2 I
dt2

)
+ R(

dI
dt

) +
I
C

=
dV
dt

. (6.8)

When we apply a regular AC voltage V(t) = V0sinωt and assume the steady
current with the same frequencyω and the phase delay φ, I(t) = I0sin(ωt − φ),

−ω2LI0sin(ωt− φ) + ωRI0cos(ωt− φ) + I0sin(ωt−φ)/C = ωV0sinωt.

The solution is
I(t) =

V0

Z
sin(ωt− φ), (6.9)

Z =

√
R2 + (Lω− 1

Cω
)2, (6.10)

tanφ =
(Lω− 1

Cω )

R
. (6.11)

When
(

Lω− 1
Cω

)
= 0, or ω = 1/

√
LC, the impedance Z = R, which is the

minimum in Z, and the current shows the maximum. This status is called “electric
resonance”. The frequency dependence of the impedance Z and phase tanφ is
discussed in Section 6.3.

Analysis with Complex Impedance

Equation (6.6) can be transformed as

L
(

dI
dt

)
+

1
C

∫
Idt + RI = V(t). (6.12)

Assuming a harmonic oscillation with ω, and taking ∂
∂t → jω and

∫
dt→ 1/jω,

we obtain
L(jωI) +

1
C
(

I
jω

) + RI = V(t). (6.13)

Thus, we define the impedance of inductance L and capacitance C as
{

jωL
1/jωC

. (6.14)

Then, the total complex impedance is given under a harmonic operation by

Z∗ = jωL +
1

jωC
+ R, (6.15)

187



which can also be expressed by

Z∗ = Z(1− jtanφ), (6.16)

Z =

√
R2 + (Lω− 1

Cω
)2, (6.17)

tanφ =
(Lω− 1

Cω )

R
. (6.18)

Note that Equations (6.17) and (6.18) are identical to Equations (6.10) and (6.11).
The reader can now clearly understand the easier analytical process with the complex
impedance usage.

6.2. Mechanical Loss/Damping Model

6.2.1. Mathematical Model of Mechanical Loss

The reader may remember the temple bell timbre. When hit suddenly, the
sound pressure level decays gradually without changing its timbre, that is, all fre-
quency components are damped in a similar fashion. On the contrary, in underwater
acoustics, the acoustic absorption by water medium is accelerated when increas-
ing the frequency. A lower-frequency sound navigation ranging (sonar) system is
required for detecting an enemy submarine from as far as possible. We introduce
three loss models in the following sections: solid damping, Coulomb damping, and
viscous damping.

Figure 6.4 shows a simple mass–spring (m: mass, c: spring constant) harmonic
vibration model (a) with a damper (ζ: damping factor) (b). Without a damper, using
notations displacement u and force F, we can describe the Newton equation as:

m
d2u
dt2 + cu = F(t). (6.19)

m m

F(t)

c c ζ

(a) (b)

u u

F(t)

Figure 6.4. A simple mass–spring harmonic vibration model (a) and with a damper
(b). Source: Figure by author.
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When F = 0, assuming the harmonic solution u(t) = u0e−iωt, Equation (6.19)
can be solved as (

−mω2 + c
)

u = 0 → ω =
√

c/m . (6.20)

By keeping the initial displacement amplitude u0, sinusoidal vibration with the
above frequency ω will continue forever without damping. The above ω =

√
c/m is

called the “resonance frequency” of this mechanical system.
Now, we consider a damper integration into Equation (6.19) as Figure 6.4b [2].

When the damping mechanism is associated directly with the displacement u, the
damping factor is irrelevant to the frequency, which corresponds to the above temple
bell case, and is called “solid damping”. On the other hand, as you know, in the
surface friction, the force direction changes sign (while keeping the force magnitude
constant) according to the vibration direction. The vibration damping in this case
does not behave in an exponential fashion with time, which is called “Coulomb
damping”. “Viscous damping” is observed occasionally for an object moving in
liquid at a relatively low speed. The damping term is represented in proportion to
the object velocity, ( du

dt ). Due to its mathematical simplicity (i.e., complex parameter
integration), the viscous damping formula is most popularly used even for solid
materials. These three models are further described in the following sections.

6.2.2. Solid Damping

Solid Damping/Structural Damping

The solid damping, sometimes called “structural damping”, originates from
the “internal friction” in the material, which is different from the “surface friction”
introduced in Section 6.2.3. The solid damping does not change with the vibration
frequency but is proportional to the “maximum stress” generated during the vibra-
tion cycle, which is also different from the “viscous damping” in Section 6.2.4. When
we impact a solid suddenly, various vibration modes are excited, and their sound
level decreases monotonously without changing the timbre. The temple bell does
not change its “tone” during the sound level decay. That is, all frequency modes
damp under a similar damping rate. Since the stress is almost proportional to the
strain in the “elastic deformation” range, we can rephrase that the solid damping is
proportional to the “maximum strain”.

Here, we introduce the damping force in proportion to the strain, irrelevant to
the operating frequency:

F = ζcx, (6.21)

where ζ is the non-dimensional (i.e., normalized) damping factor and c is the spring
constant. It is important to distinguish the situation from the modification of Equation
(6.19) with an effective force constant c(1 − ζ). The vibration will diminish according
to the damping force whilst keeping a similar resonance frequency of Equation (6.20).
Since the sign of the damping force is not clear, different from the case in “Coulomb
damping”, it is better to use the energy consumption method because analyzing the
damping procedure with normal kinetic equations is difficult.
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Though the vibration is not perfectly harmonic, the damping vibration is sup-
posed to be approximated by a harmonic model, if the damping factor ζ is reasonably
small. The energy loss per cycle is approximated by

∆W = 2π·(1
2
)x0F0 = πx0F0 = πζcx2

0. (6.22)

From the experiments, the solid damping energy loss is irrelevant to the operat-
ing frequency and proportional to the square of the maximum displacement x0. The
above harmonic assumption seems to be true in the case of small ζ of the system. The
logarithmic damping rate δ (“logarithmic decrement” is defined as ln

(
x1
x2

)
, where

x1 and x2 are the successive vibration amplitudes) of a free vibration via the solid
damping mechanism can be estimated from the energy loss ∆W as

δ =
∆W
2W

=
πζcx2

0

2× 1
2 cx2

0
= πζ. (6.23)

Equation (6.23) is occasionally utilized for determining the damping rate of
structural components of an airplane, such as wing, tail wing, and body structure.
The logarithmic damping factor δ is irrelevant to the frequency, similar to the case of
viscous damping (refer to Section 6.2.4).

Piezoelectric Passive Damper

Though the mechanism is different from the solid damping, since the analytical
process of energy loss per vibration cycle is analogous, the passive piezoelectric
damper is introduced here [3,4]. The principle of the piezoelectric vibration damper
is explained based on a piezoelectric ceramic single plate in Figure 6.5a. When an
external pulse force is applied to the piezo-plate, an electric charge is produced by the
direct piezoelectric effect (Figure 6.5b) [3]. Accordingly, the vibration remaining (i.e.,
ring-down vibration) after the removal of the external force induces an alternating
voltage, which corresponds to the intensity of that vibration, across the terminals of
the single plate. The electric charge produced is allowed to flow and is dissipated as
Joule heat, when a resistor is placed between the terminals (see Figure 6.5c). When the
external resistance is too large or small, the vibration intensity is not readily reduced,
and we need to tune the resistance to match exactly to the piezo-plate impedance,
that is, |1/jωC|, where ω is the cyclic frequency (i.e., the fundamental mechanical
resonance of the piezo-plate in this case), and C is the piezo-plate capacitance. The
reader might have learned that the electrical impedance matching indicates that the
external impedance should be adjusted to the “conjugate” of the internal impedance
“1/jωC”, that is, the inductor with a value of “j/ωC”. However, in this case, the
electric energy stored in the capacitor is not lost but flip-flops between the capacitor
and inductor without losing total energy. The resistive impedance shunt is essential
to dissipate the electrical energy via Joule heat.
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(a)

(b) (c)

Figure 6.5. Mechanical damping concept with a piezoelectric. (a) A single plate
piezoelectric sample; (b) direct piezoelectric effect; (c) electric energy dissipation
through resistance. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press,
2019; p. 399. Reproduced by permission of Taylor & Francis Group.

The bimorph piezoelectric component, which consists of an elastic beam sand-
wiched with two sheets of piezoelectric ceramic plates (Figure 6.6a), was utilized for
the mechanical damping demonstraton. The bimorph edge was hit by an impulse
force, and the transient vibration displacement decay was monitored by an eddy
current-type non-contact displacement sensor. Figure 6.6b shows the measured
displacement data which vibrates at the bimorph resonance frequency (295 Hz),
and Figure 6.7 shows the relationship between the damping time constant and an
external resistance. It can be seen that the damping time constant was minimized in
the vicinity of 6.6 kΩ, which is close to the impedance 1/ωC. Try Example Problem
6.2 to better understand the resistive impedance matching.
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Figure 6.6. Vibration damping change associated with external resistance change.
(a) Bimorph transducer for this measurement; (b) damped vibration with external
resistor. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 388.
Reproduced by permission of Taylor & Francis Group.
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Figure 6.7. Relationship between the damping time constant and the external
resistance. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p.
399. Reproduced by permission of Taylor & Francis Group.

Let us evaluate the damping constant theoretically. The electric energy UE
generated can be expressed by using the electromechanical coupling factor k and the
mechanical energy UM:

UE = UM × k2. (6.24)
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The piezoelectric damper transforms electric energy into heat energy via Joule
loss when the resistor R is connected, whilst the transforming rate of the damper can
be raised to a level of up to 50% when the electrical impedance is exactly matched
(refer to Example Problem 6.2). Accordingly, the vibration energy is transformed at a
rate of (1 − k2/2) times with energy vibration repeated since k2/2 multiplied by the
amount of mechanical vibration energy is dissipated as heat energy. As the square
of the amplitude is equivalent to the amount of energy, the amplitude decreases
at a rate of (1 − k2/2)1/2 times with every vibration repeated. In comparison with
Equation (6.21), the reader can understand that the damping factor, ζc in Equation
(6.21), corresponds to (k2/4) when k is not large, and that the damping is proportional
to the displacement x with no frequency dependence (merely electromechanical
coupling factor k dependence). If the resonance period is taken to be T0, the number
of vibrations for t sec is 2t/T0, since one cycle includes twice (positive and negative)
energy losing chance. Consequently, the amplitude in t sec is (1− k2/2)t/T0 . If the
residual vibration period is taken to be T0, the damping in the amplitude of vibration
is t sec can be expressed as follows:

(1− k2/2)
t/T0 =e−t/τ . (6.25)

Thus, the following relationship for the time constant of the vibration damping is
obtained:

τ = − T0

ln
(

1− k2

2

) . (6.26)

Now, let us examine the time constant of the damping using the results for
the bimorph. Substitution in Equation (6.26) of k = 0.28 and T0 = 3.4 ms produces
τ = 85 ms, which seems to be considerably larger than the value of approximately
40 ms obtained experimentally for τ (Figure 6.7). This is because the theoretical
derivation Equation (6.26) was conducted under the assumption of a loss-free (high
QM) bimorph. In practice, however, it originally involved mechanical loss, the time
constant of which can be obtained as the damping time constant under a short-
circuited condition, i.e., τs = 102 ms. The total vibration displacement can then be
expressed as e−t/τtotal = e−t/τs × e−t/τ . Accordingly,

1
τtotal

=
1
τs

+
1
τ

. (6.27)

Substitution in Equation (6.27) of τs = 102 ms and τ = 85 ms produces τtotal = 46 ms.
This conforms to the experimental results shown in Figures 6.6b and 6.7.

Example Problem 6.2

We consider the piezoelectric mechanical damping from a k33-type rod sample
under a small cyclic stress X = X0ejωt. See Figure 6.8. In order to obtain the maxi-
mum output electric power to consume as Joule heat, determine the external load
impedance Z. Capacitance of the piezo-device is C. When we consider the output
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electric energy, we consider the electric displacement D vs. the electric field E domain
as shown in Figure 6.9a. Answer the derivation process step-by-step as follows.

X = X0e jωt

Z in = 1/  jωC

D

ZPs
ioutiin

Piezo-actuator

Figure 6.8. Piezoelectric energy harvesting model. Source: [5] ©Uchino, K. Mi-
cromechatronics, 2nd ed. CRC Press, 2019; p. 395. Reproduced by permission of
Taylor & Francis Group.

(1) Calculate the “depolarization field” generated by the external stress for the
open circuit (Z = ∞): D = 0.

(2) Calculate the electric displacement D for the short circuit (Z = 0): E = 0, using
the piezoelectric constant d.

(3) Then, draw the D vs. E map under a certain load impedance Z.
(4) In order to maximize the consuming electric energy (i.e., hatched area in Fig-

ure 6.9a), we adopt: X = X0ejωt; D = dX0ejωt (no phase lag, nor dielectric loss is
considered). Since the total current generated by the piezoelectric transducer is
given by ( ∂D

∂t )

i =
∂D
∂t

= iin + iout = jωdX0. (P6.2.1)

Knowing the relationship, Ziniin = Ziout, we obtain:

iout(1 + jωCZ) = jωdX0. (P6.2.2)

Then, the power is calculated as

|P| = 1
2

Zi2out=
1
2

Z
(ωdX0)

2

(1 + (ωCZ)2)
. (P6.2.3)

After deriving the above equations by yourself, determine which Z value pro-
vides the maximum power and what the maximum power value is.

(5) Draw the output electric power vs. load Z curve.
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Solution

(1) We start from the piezoelectric constitutive equations:

D3 = ε0ε
X
33E3 + d33X3, (P6.2.4)

x3 = d33E3 + sE
33X3. (P6.2.5)

The open-circuit condition satisfies D3 = 0, leading to the depolarization field as

E3,dep = −(d33/ε0εX
33)X3. (P6.2.6)

In this case, from Equation (P6.2.5),

x3 = − d33
2

ε0εX
33

X3+sE
33X3 = (1−k33

2)sE
33X3.

Thus, we obtain the stiffened elastic compliance sD
33 of the piezo material:

sD
33 = (1−k33

2)sE
33. (P6.2.7)

(2) Short-circuit condition satisfies E3 = 0, leading to the charge generation D3 = d33X3.
In this case, the elastic compliance is sE

33.
(3) Now, we draw the D vs. E map under a certain load impedance Z. Refer

to Figure 6.9a. From (1), the intersect with the electric field axis is given by

E3,dep = −
(

d33
ε0εX

33

)
X3; while from (2), the intersect with the electric displacement

axis is given by D3 = d33X3. The triangular area created by the origin and two
intersects should be equal to the converted electrical energy per volume by the
external stress:

UME =

(
1
2

)
E3,depD3 =

(
1
2

)
(d33

2/ε0εX
33)X3

2. (P6.2.8)

Under a certain load impedance Z, the (D, E) point should be on the line passing
through the above two intersect points, which is shown in Figure 6.9a.

(4) Figure 6.9a indicates that the maximum consumed energy (shadowed area) can
be obtained at the (D, E) point, which is located at a half of both E3,dep and
D3,max, which is a half of UME. The maximum consumed electric energy should
be a half of the input mechanical energy.
A detailed energy analysis is made below. When we assume the sinusoidal
input stress X = X0ejωt and output electric displacement D = dX0ejωt via the
direct piezoelectric effect (d constant), we can derive the following current and
voltage relationships from Figure 6.8. We can understand that the piezo power-
supply has the internal impedance 1/jωC under an off-resonance frequency
(by neglecting the dielectric loss or effective conducting loss σ = 0), and this
piezoelectric “current supply” generates the total current density per area:

i =
∂D
∂t

= jωdX0. (P6.2.9)
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This current is split into internal “displacement current” iin and external cur-
rent iout,

i = iin + iout. (P6.2.10)

Then, because the potential/voltage should be the same on the top electrode of
the piezo component, we obtain:

Ziniin =Ziout. (P6.2.11)

Inserting the relation iin =
(

Z
Zin

)
iout = jωCZ·iout into Equation (P6.2.9),

iout(1 + jωCZ) = jωdX0. (P6.2.12)

Thus, we can obtain the output electric energy as

|P| = 1
2

∣∣∣Z·iout
2
∣∣∣ = 1

2
Z

(ωdX0)
2

(1 + (ωCZ)2)
. (P6.2.13)

(5) Figure 6.9b shows the electric load (resistive) dependence of the output electric

energy, which concludes that the maximum electric energy |P| = 1
4

ωd2X2
0

C can
be obtained at Z = 1/ωC, when we consider Z resistive, which is the situation
for dissipating the electric energy via Joule heat. In other words, the generated
electric energy in a piezo component can be spent maximum when the external
load resistive impedance matches exactly to the internal capacitive impedance
with a phase lag of −j(−90◦). The reader is reminded of the discussion in
the beggining of (4), that is, the energy consumption is

(
1
4

)
(d33

2/ε0εX
33)X3

2

from Equation (P6.2.8). This value is equivalent to |P| = 1
4

ωd2X2
0

C by taking into
account the piezoelectric rod size.
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Figure 6.9. Output electric energy calculation process under different external
impedances (a); output electric energy vs. external electrical load Z (b). Source: [5]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 396. Reproduced by
permission of Taylor & Francis Group.

In conclusion, a half of the converted electric energy (k33
2UM), that is,

(
1
2

)
UME =

( 1
2 )k33

2UM, can be consumed in the external resistive impedance when the external
impedance is adjusted to Z = 1/ωC.
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It is noteworthy that the input mechanical energy differs even if we keep the
input stress constant according to the external electric impedance, because the elastic
compliance is different depending on the electrical shunt condition; the elastic com-
pliance under the short-circuit condition is given by sE

33, and under the open-circuit
condition by sD

33 = (1 − k33
2)sE

33. How about that under Z = 1/ωC? We calculate the

“input mechanical energy 1
2 se f f

33 X2
0” under the Z-shunt condition from the second

constitutive equation:

x = d33E+ s33
EX = −d33

(
V
L

)
+ s33

EX = −
(

d33

L

)[
jωd33X0
1
Z + jωC

]
+ s33

EX. (P6.2.14)

The last transformation used Equation (P6.2.11). We obtained the effective elastic
compliance as

sE
e f f =

x
X

= sE
[

1− k33
2 jωCZ
(1 + jωCZ)

]
. (P6.2.15)

You can verify the above “effective elastic compliance” is equal to sE or sD = sE(1−
k31

2), when Z = 0 or ∞, respectively. Under Z = 1/ωC.

sE
e f f = sE

(
1− 1

2
k33

2 +
j
2

k33
2
)
= sE(1− k33

2 +
1
2

k33
4)(1− jtanϕ). (P6.2.16)

Note that the stress–strain phase lag is zero for the short- or open-circuit condition, but
it is not zero under Z = 1/ωC. The softer the piezoelectric elasticity is, the higher the
input mechanical energy is. Thus, from the “energy transmission coefficient” viewpoint,
Z = 1/ωC is slightly off from the optimized electrical impedance condition.

6.2.3. Coulomb (Friction) Damping

Friction Damping Dynamic Equation

“Coulomb damping” occurs when the mechanical object is contacted on a “dry
surface”. As learned in high-school physics, the Coulomb friction force F is almost
constant (irrelevant to the object speed) and is expressed by the product of the normal
force N and the friction constant µ:

F = µN. (6.28)

The friction constant changes from 0 to 1, but typical values are around 0.2–
0.4. Most importantly, the force changes its sign according to the motion direction.
We introduce the “Laplace transform” to solve this differential equation under this
nonlinear force condition below, referring to Chapter 8 for the Laplace transform. You
may skip this subsection tentatively because Chapter 14 gives the detailed solution
process. Figure 6.10a,b show a commercial friction damper and a schematic model
with mass m, spring constant c and friction contact, respectively. We can start from
the differential equation by using mass displacement u:

m
..
u + cu = ±F. (6.29)
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Figure 6.10. (a) Commercial friction damper; (b) schematic model with mass,
spring, and friction contact; (c) rectangular wave function representing friction
force. Source: [6] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC
Press, 2020; p. 92. Reproduced by permission of Taylor & Francis Group.

We can rewrite Equation (6.29) using ω =
√

c/m and a rectangular wave
function h(t) visualized in Figure 6.10c,

..
u + ω2u = h(t). (6.30)

Here, the amplitude A of h(t) is set F/m = µN/m, and a cyclic period (2T) is
taken as 2π/ω, corresponding to the resonance period of the original mass–spring
system. We will adopt the initial conditions as:

u(t = 0) = a,
.
u(t = 0) = 0. (6.31)

The initial mass position a (spring force c·a) should be taken to be reasonably
large so that the motion will start by competing with the frictional force µN:

a > A/ω2. (6.32)

Transient Response Analysis with Laplace Transform

Let us solve the differential equation, Equation (6.30), using Laplace transform.
Since a detailed solution is provided in Section 14.1.3, a brief introduction is given
here. We denote the Laplace transforms of the displacement u(t) and friction force
h(t) as U(s) and H(s): U(s) = Lu(t), H(s) = Lh(t). Equation (6.30) can be written as

L
[ ..
u
]
+ ω2U(s) = H(s). (6.33)
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Taking into account the initial condition u(t = 0) = a and u’(t = 0) = 0,

L
[ ..
u
]
= s2U − sa, (6.34)

and the Laplace transform of a rectangular wave expressed by

H(s) =
A
s

tanh(
Ts
2
) =

A
s
(1− 2e−Ts+2e−2Ts − 2e−3Ts + · · · ), (6.35)

we obtain the following equation:

(s2 + ω2)U − sa =
A
s
(1− 2e−Ts+2e−2Ts − 2e−3Ts + · · · ). (6.36)

We can now solve Equation (6.36) in terms of U(s)

U =
s·a

(s2 + ω2)
+

A
s(s2 + ω2)

(1− 2e−Ts+2e−2Ts − 2e−3Ts + · · · ). (6.37)

Remember that T = π/ω (a half of the resonance period).
We can now obtain the displacement u(t) solution for successive time intervals,

0 < t < T, T < t < 2T, 2T < t < 3T, · · · , where T is a half of the resonance period (i.e.,
ωT = π; refer to [5]):

u = acos(ωt) + A
ω2 (1− cos(ωt))

for 0 < t < T; u(T) = −a + 2A
ω2 ,

(6.38)

u = acos(ωt) + A
ω2 (1− cos(ωt))− 2A

ω2 (1− cos(ω(t− T))
for T < t < 2T; u(2T) = a− 4A

ω2
(6.39)

u = acos(ωt) + A
ω2 (1− cos(ωt))− 2A

ω2 (1− cos(ω(t− T))
+ 2A

ω2 (1− cos(ω(t− 2T))
for 2T < t < 3T; u(3T) = −a + 6A

ω2 .
(6.40)

We find that

(1) The system exhibits sinusoidal vibration with the resonance frequency given by
ω =

√
c/m, determined by the original mass and spring.

(2) Each successive “sinusoidal” displacement swing is ( 2A
ω2 ) shorter than the pre-

ceding one, until inside the dead region, that is, linear decay with time, different
from exponential decay in viscous damping in the next section. Figure 6.11
shows the linear vibration amplitude decay for the “Coulomb damping”, in
comparison with no damping-free vibration.

(3) There is the critical stop point of the vibration; that is, the minimum displace-
ment u(t) = A/ω2, below which the spring force cannot compete with the
friction force. This dead region is shown as a shadow band in Figure 6.11.
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Figure 6.11. Linear vibration amplitude decay for Coulomb damping. Source: [6]
©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 94.
Reproduced by permission of Taylor & Francis Group.

6.2.4. Viscous Damping

Different from the Coulomb damping for a dry surface (i.e., constant force),
“viscous damping” is applied for “lubricated surface” friction (i.e., time-dependent
force); so-called “dashpots” (i.e., shock absorber, buffer), illustrated in Figure 6.4b,
exhibit this behavior. It can also be applied for an object moving in viscous oil, or an
electro-active object moving in a magnetic field with its damping force in proportion
to the object speed. The damping force is introduced in proportion to the velocity v
of the mass m as

F = −ξv = −ξ
du
dt

, (6.41)

where ξ is the viscous damping coefficient. Thus, the dynamic equation of the mass
without external force in Figure 6.4b is described as

m
..
u = −cu−ξ

.
u. (6.42)

Taking the following notations,

ω0 =
√

c/m (base resonance frequency for zero damping), (6.43)

ζ = ξ/2mω0 (normalized damping factor (no dimension)), (6.44)

we obtain the normalized equation as follows, which is a differential equation equiv-
alent to the LCR circuit in Equation (6.7):

..
u + 2ζω0

.
u + ω0

2u = 0. (6.45)

Due to the obedient characteristic of the damping formula, we can easily solve
this differential equation using the Laplace transform, detailed in Section 8.2. Taking
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L[u(t)] = U(s), and Useful Theorem (b) in Section 8.2 with the initial conditions,
.
u(t = 0) = 0, u(t = 0) = u0,

[
s2U − su0

]
+ 2ζω0[sU − u0] + ω0

2U = 0. (6.46)

Then [
s2 + (2ζω0)s + ω0

2]U(s) = (s + 2ζω0)u0, or
U(s) = (s+2ζω0)u0

[s2+(2ζω0)s+ω0
2]

. (6.47)

Equation (6.47) is a general solution for U(s). In order to apply the inverse
Laplace transform, we need to consider three cases: 0 ≤ ζ < 1, ζ = 1, and 1 < ζ.

Under Damping (0 ≤ ζ < 1)

Rewriting Equation (6.47) as

U(s) = u0

[
(s + ζω0)

(s + ζω0)
2 + (1− ζ2)ω02

+
ζ√

1− ζ2

√
1− ζ2ω0

(s + ζω0)
2 + (1− ζ2)ω02

]
. (6.48)

then using the inverse Laplace transforms (numbers 9 and 10 in Table 8.1 in Chapter
8) for the first and second terms, we can obtain the solution:

u(t) = u0[exp(−ζω0t)cos
(√

1− ζ2ω0t
)
+

ζ√
1−ζ2

exp(−ζω0t)sin
(√

1− ζ2ω0t
)
].

(6.49)

We can understand that only when 1− ζ2 > 0, sinusoidal vibration can be
observed, which is called “light damping” or “under damping”. It is important to
note that the resonance frequency of this system is not ω0 but

√
1− ζ2ω0, as can been

seen in Equation (6.49). Refer to Figure 6.12 for u(0) = u0ζ = 0 shows the calculated
result for a simple cosine curve, u(t) = cos(ω0t), and ζ = 0.1 is for

u(t) = exp(−0.1ω0t)cos
(√

0.99ω0t
)
+

0.1√
0.99

exp(−0.1ω0t)sin
(√

0.99ω0t
)

.
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Figure 6.12. Free vibration amplitude decay for viscous damping. ζ = 1 corresponds
to the critical damping. Source: Figure by author.
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Critical Damping (ζ = 1)

Sinusoidal vibration can be observed only when 1− ζ2 > 0 is satisfied. When
ζ = 1, the vibration status is called “critical damping”. The response speed is not
as high as the “under damping” condition, but it is the quickest response with-
out any ringing vibration associated (i.e., “aperiodic” motion). Equation (6.47) is
transformed as

U(s) =
(s + 2ω0)u0

[s2 + (2ω0)s + ω02]
= u0[

1
s + ω0

+
ω0

(s + ω0)
2 ]. (6.50)

Then, using the inverse Laplace transforms (numbers 3 and 4 in Table 8.1 in Chapter 8)
for the first and second terms, we can obtain the solution:

u(t) = u0[exp(−ω0t) + ω0t· exp(−ω0t)] = u0(1 + ω0t)· exp(−ω0t) (6.51)

The curve denoted ζ = 1 in Figure 6.12 corresponds to the calculated result for

u(t) = (1 + ω0t)exp(ω0t).

Note that the critical damping condition exhibits the quickest decay of the
vibration without any ringing.

Over Damping (ζ > 1)

When the damping factor ζ > 1, “large damping” or “over damping” is ob-
served. Rewriting Equation (6.57) as

U(s) = u0

[
(s + ζω0)

(s + ζω0)
2 − (ζ2 − 1)ω02

+
ζω0

(s + ζω0)
2 − (ζ2 − 1)ω02

]
. (6.52)

Then, using the inverse Laplace transforms (numbers 7 and 8 in Table 8.1 in Chapter
8) for the first and second terms, we can obtain the solution:

u(t) = u0

[
exp(−ζω0t)cosh(

√
ζ2 − 1ω0t)+

ζ√
ζ2−1

exp(−ζω0t)sinh(
√

ζ2 − 1ω0t)
]

.
(6.53)

This motion is actually “aperiodic”, without exhibiting any ringing. The curve
denoted ζ = 2 in Figure 6.12 corresponds to the calculated result for

u(t) = 1.08exp (−0.27ω0t)− 0.08exp(−3.73ω0t).

6.2.5. Logarithmic Decrement

Definition of Logarithmic Decrement

When the damping factor ζ is small, a sinusoidal vibration continues, as shown
in Figure 6.13. Since Equation (6.49) can be rewritten as

u(t) = u0exp(−ζω0t)cos
(√

1− ζ2ω0t− φ

)
,
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the resonance angular frequency is given by
√

1− ζ2ω0, not by ω0, and the vibration
peak points which satisfy

cos
(√

1− ζ2ω0t− φ

)
= 1,

are almost bounded by the envelope of u(0)exp(−ζω0t). Though the contact point on
the envelope is slightly off from the amplitude maximum points, precisely speaking,
the deviation is negligibly small. The “logarithmic decrement” δ is defined by the
natural log of the ratio of two successive vibration amplitudes:

δ = ln
(

x1

x2

)
= ln

exp(−ζω0t)
exp(−ζω0(t + T0)

= ln[exp(ζω0T0)] = ζω0T0. (6.54)

Since the vibration resonance period T0 is given by T0 = 2π√
1−ζ2ω0

, the logarith-

mic decrement can be written as

δ =
2πζ√
1− ζ2

≈ 2πζ. (6.55)
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Figure 6.13. Damping factor determined by the logarithmic decrement. Source:
Figure by author.

Experimental Determination

Refer to Figure 6.13 for the notations. When ∆x2 is small, δ can be experimentally
obtained as follows:

δ = ln
(

x1

x2

)
= ln

(
x2 + ∆x2

x2

)
= ln

(
1 +

∆x2

x2

)
∼= ∆x2

x2
. (6.56)
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The so-called time constant τ determined from the envelope curve, exp(−t/τ),
is experimentally related with the damping factor ζ as τ = 1/ζω0. The logarithmic
decrement δ can also be determined from the energy loss. The total energy of this
system is estimated as 1

2 cx2. The energy loss per cycle ∆W can be estimated by

W − ∆W =
1
2

c(x− ∆x)2. (6.57)

Thus,

δ ∼= ∆x2

x2
∼= ∆W

2W
, (6.58)

δ is obtained by a half of the ratio: lost energy/total energy.

6.3. Bode Plot—Frequency Response of a System

6.3.1. Steady-State Oscillation

In the previous Section 6.2, we considered “free” vibration of a mass–spring-
damper system shown in Figure 6.14a (retaken from Figure 6.4b). Due to the
damper, the system gradually loses energy and the vibration amplitude decreases.
In this section, we consider steady-state forced oscillation under a harmonic force
f (t) = f 0sin(ωt).

m

m
f(t)

C ξ

ξωu

ξωu        mω2u

f0sin(ωt)

(c − mω2 )u

ωt
ϕ

ϕ

f0

cu u direction

(b)

(c)

(a)

u

ξu f 0cu

Figure 6.14. Mass–spring-damper model (a), and mass under forced oscillation
(b). Force vector analysis under forced oscillation (c). Source: [6] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 98. Reproduced
by permission of Taylor & Francis Group.
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Supposing the viscous damper, the sum of spring force, damping force, and
external force will generate the mass acceleration (see Figure 6.14b for the force
direction):

m
..
u = −ξ

.
u− cu + f (t), or

m
..
u + ξ

.
u + cu = f (t).

(6.59)

In order to simplify the equation, we will adopt the following notations:

• Resonance angular frequency for zero damping:

ω0
2 = c/m

[
ω0 =

√
c/m

]
. (6.60)

• Damping ratio ζ and damping factor ξ:

2ζω0 = ξ/m [ζ = ξ2mω0]. (6.61)

Equation (6.59) is now transformed into

..
u + 2ζω0

.
u + ω0

2u =
1
m

f (t). (6.62)

By taking L[u(t)] = U(s), L[f (t)] = F(s) with the initial conditions,
.
u(t = 0) = 0,

u(t = 0) = u0, we obtain
[
s2U − su0

]
+ 2ζω0[sU − u0] + ω0

2U = (1/m)F(s), then[
s2 + (2ζω0)s + ω0

2]U(s) = (s + 2ζω0)u0 + (1/m)F(s).
(6.63)

Thus, from the algebraic calculation, U(s) is expressed by

U(s) =
(s + 2ζω0)u0

[s2 + (2ζω0)s + ω02]
+

(1/m)F(s)
[s2 + (2ζω0)s + ω02]

. (6.64)

The first term on the right-hand side is called the “transient solution” (or “comple-
mentary function”), which is the solution when the external force f (t) = 0. As we
have discussed in Section 6.2, all solutions for different damping factors ζ include the
time dependence of exp(−ζω0t). Thus, the transient solution will disappear with a
time lapse. On the contrary, the second term will remain even after a long time-lapse,
called “steady-state oscillation”.

We further consider only the second term (i.e., steady-state oscillation) below:

U(s) = G(s)F(s), (6.65a)

G(s) =
1

m[s2 + (2ζω0)s + ω02]
. (6.65b)

The Laplace function G(s), relating the input function F(s) to the output function
U(s), is called the “transfer function”. As the denominator includes s2, this function
is called a “second-order system”. Knowing that when F(s) = 1, that is, f (t) = δ(t)
(impulse function), U(s) = G(s), the G(s) can be obtained experimentally by taking
Laplace transform of the output u(t) under the “impulse input” (hitting the system
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with a hammer!). When we consider only the “steady-state oscillation” under a
harmonic input, f (t) = f0sin(ωt), since its Laplace transform is expressed by ω

(s2+ω2)

and its “pole” exists at “s = ±jω”, we can discuss the frequency dependence of
the displacement u(t) from the “transfer function” by replacing s by “jω”, which
corresponds to the “Fourier transform”. By this replacement, Equation (6.65) can be
transformed as

U(jω) =
( f0/m)

[−ω2 + j2ζω0ω + ω02]
. (6.66)

6.3.2. Steady State—Reconsideration

We considered the frequency dependency of the displacement in the previous
section (Equation (6.66)). Direct displacement in the time domain is considered here.
Supposing that the displacement u(t) is excited with a slight delay after the force f (t)
(= f0sin(ωt)), the steady-state vibration is described as

u(t) = u0sin(ωt + φ) (φ < 0, delay). (6.67)

We consider four forces balance: inertial force, damping force, spring force,
and external force; the total sum as vectors should be zero. Refer to Figure 6.14c.
Knowing the phase change by the time derivative, we obtain

.
u = ωu0sin(ωt + φ + π

2 ),..
u = ω2u0sin(ωt + φ + π) = −ω2u0sin(ωt + φ).

Now, the original equation, m
..
u + ξ

.
u + cu = f (t), is transformed to

mω2u0sin(ωt + φ)− 2ζmω0ωu0sin
(
ωt + φ + π

2
)
− cu0sin(ωt + φ)+

f0sin(ωt) = 0.

Figure 6.14c describes:

1. The output displacement u(t) is delayed from the input force f (t). The phase
delay φ in the above equation is negative.

2. The spring force is opposite to the displacement.
3. The damping force is delayed 90◦ from the displacement and opposite to the

velocity. This is the definition of the viscous damping.
4. The inertial force is in phase with the displacement and opposite to the acceleration.
5. Four force vectors rotate at the angular velocity ω by keeping the relative

position fixed.

From the inserted triangle figure in Figure 6.14c, the following relations can be
derived:

u0 =
f0√

(c−mω2)2 + (2mζω0ω)2
, (6.68)

tan φ = −2mζω0ω

c−mω2 , (6.69)

u(t) =
f0sin(ωt + φ)√

(c−mω2)
2 + (2mζω0ω)2

. (6.70)
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Introducing the non-dimensional normalized form, taking u0(ω = 0), which
is equal to f 0/c, and zero-damping resonance frequency ω0 =

√
c/m, the above

equations are transformed as

Magnification factor :
u0

u0(ω = 0)
=

1√
[1− ( ω

ω0
)2]2 + (2ζ ω

ω0
)2

, (6.71)

Phase : tan φ = −
2ζ ω

ω0

1− ( ω
ω0

)2 . (6.72)

Since we adopted sin(ωt + φ), negative φ is obtained for the phase delay.
Figure 6.15 illustrated the magnification factor ( u0

u0(ω=0) ) and phase lag of the
displacement as a function normalized frequency ( ω

ω0
) for various damping ratios ζ

(ζ = 0.1, 0.2, 0.5, 1 and 2). When (ω/ω0) << 1.0, the inertial and damping force are
small, leading to small phase deviation. The force vs. displacement relation is close to
linear. When (ω/ω0) = 1.0, the inertial force becomes large to balance with the spring
force, and the external force compensates for the damping force, then the phase
becomes −90◦. The Lissajous curve between the force and displacement is a circle
(or ellipse) with a significantly magnified displacement. When (ω/ω0) >> 1.0, much
higher than the mechanical resonance frequency, the magnification factor becomes
small (displacement diminishing significantly, which approaches the mechanical
clamping status), and the phase approaches −180◦. The force–displacement curve
slope is opposite in comparison with the case (ω/ω0) << 1.0.
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6.3.3. Bode Plot

Equation (6.66) can also be written, using T = 1/ω0 (resonance period in radian
scale):

G(jω) =

(
m
f0

)
(m/ f0)U(jω)=

1
(−ω2T2) + 2ζ jωT + 1

. (6.73)

The “Bode plot” is a representation of the transfer function (amplitude and
phase) as a function of frequency on a logarithmic scale, as shown in Figure 6.16.
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Figure 6.16. The Bode diagram for a standard second-order system. Source: Figure
by author.
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First, let us consider “asymptotic straight curves” of the “gain” for the “low”
and “high” frequency regions.

• For ω→ 0, G(jω)→ 1. Thus, gain |G(jω)| = 1, so that, in decibels:

dB = 20log10(1) = 0. (6.74)

“0 dB/decade”, i.e., flat frequency dependence of the gain. Regarding the phase,
the real number “1” corresponds to 0◦. Gain and phase Bode plots are shown
on the left-hand side in Figure 6.16.

• For ω → ∞, G(jω) → 1/(−ω2T2) (N.B. do not immediately make G(jω) → 0;
otherwise, the frequency dependence of G(jω) cannot be obtained).

Gain : |G(jω)| =
∣∣∣∣

1
(−ω2T2)

∣∣∣∣, (6.75)

so that in decibels:

dB = −20log10(ωT)2 = −40log10(ωT). (6.76)

“−40 dB/decade” (or −12 dB/octave) with frequency. Regarding the phase, the
negative real number corresponds to −180◦, as indicated by the gain and phase
curves appearing on the right-hand side in Figure 6.16.

Second, we consider displacement for the resonance ω0 frequency.

• Resonance range: we will now consider the deviation from these two asymptotic
lines around the bend-point frequency, which is obtained from the relation
ωT = 1. Substituting the resonance condition ωT = 1 in Equation (6.73) yields:

G(jω) =
1

(2ζ jωT)
=

1
(2ζ j)

, (6.77a)

so that the gain and phase become [1/(2ζ)] and −90◦, respectively. The constant
ζ is the damping ratio.

dB = 20 log10(
1

(2ζ)
). (6.77b)

If ζ = 0 (loss-free), an infinite amplitude will occur at the bend-point frequency
(i.e., resonance frequency); while ζ is large (>1), the resonance peak will disap-
pear, and a monotonous decrease in amplitude is observed.

The “Lissajous curves” between the force and displacement are illustrated in
Figure 6.17; when (ω/ω0) << 1.0, there is a linear relation without a phase delay with
a right-up positive slope, while for (ω/ω0) >> 1.0, there is a linear relation with a
right-down negative slope because of 180◦ phase delay (i.e., negative sign). At the
resonance (ω/ω0) = 1.0, there is an elliptical Lissajous relation with the magnification
factor by (1/2ζ) along the displacement (under force f 0/c constant condition). The
phase lag −90◦ indicates the locus in counterclockwise with timelapse. Since this
Lissajous area on the force–displacement domain is related with the heat generation,
the actual energy dissipation seems to be increased when approaching 90◦. However,
since the displacement is significantly amplified (×1/2ζ) under the constant force,
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the dissipation factor evaluated by (dissipation energy/input energy) is actually
very similar.

Displacement DisplacementDisplacement

0 00

ω < ω0 ω > ω0ω = ω0

f ff

u uu0(ω = 0)/2ζ

Figure 6.17. The Lissajous curves between force and displacement. Source: Figure
by author.

6.3.4. Mechanical Quality Factor

There are multiple definitions for the “mechanical quality factor” Q, which are
approximately but not exactly equivalent. One of these definitions is the frequency-
to-bandwidth ratio of the mechanical resonator:

Q =
fr

∆ f
=

ωr

∆ω
, (6.78)

where fr is the resonant frequency, ∆f is the resonance width or “full width at
half maximum” (FWHM), i.e., the bandwidth over which the power of vibration
is greater than half the power at the resonant frequency, ωr = 2πfr is the angular
resonant frequency, and ∆ω is the angular half-power bandwidth. From the “Bode
plot” of the displacement in Figure 6.16, ∆ω should be obtained from 1/

√
2 of the

maximum displacement around the resonant frequency, which corresponds to 3 dB
down level in a 20 dB type gain plot (recall the mechanical power ∝ (displacement)2).
Since u0(ω0)

u0(ω=0) =
1

2ζ ω
ω0

, by putting u0
u0(ω=0) =

1√
[1−( ω

ω0
)2]2+(2ζ ω

ω0
)2

= 1√
2

1
2ζ ω

ω0
, we can

obtain
1− (

ω

ω0
)2 = ±2ζ

ω

ω0
, depending on

ω

ω0
< 1 or

ω

ω0
> 1. (6.79)

We obtain two roots, ω1
ω0

=
√

1 + ζ2 − ζ or ω2
ω0

=
√

1 + ζ2 + ζ, for either ω
ω0

<

1 or ω
ω0

> 1, respectively. Thus, ∆ω
ω0

= ω2−ω1
ω0

= 2ζ. The mechanical quality factor Qm
is expressed by

Qm =
ω0

∆ω
= 1/2ζ. (6.80)

The “mechanical quality factor” Q can also be obtained from the phase angle,
that is, “quadrantal frequencies”. Around the phase −90◦ frequency, which corre-
sponds to the resonance frequency, you can find the frequencies which provide the
phases −45◦ and −135◦ (i.e., ±45◦). These two frequencies correspond to the above
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ω1 and ω2, respectively, which can be verified as follows. By inserting ω1 and ω2
into Equation (6.73),

G(jω1,2) =
1

(−ω1,2
2T2) + 2ζ jω1,2T + 1

=
1

2ζ(
√

1 + ζ2 ± ζ)(∓1 + j)
. (6.81)

Since the phases at ω1 and ω2 are determined by the denominator (∓1 + j),
we can obtain −45◦ and −135◦ immediately. The reader now understands the
equivalency of the “quadrantal frequency method” to the above 3 dB down method.
In experiments, the quadrantal frequency method provides more accurate results
than the 3 dB up/down method.

6.3.5. Complex Algebra Method

Complex Displacement

The complex algebra method often facilitates solving differential equations, in
the case of a forced oscillation under a harmonic external force, since the steady-state
solution exhibits a “harmonic oscillation” with the same frequency as the input force.
As explained in Figure 6.14c, the output displacement u is delayed from the input
force f with phase lag φ, and keeping this phase lag, both vectors rotate at the angular
frequency of ω. Supposing that these vectors are expressed by complex parameters
such as

f (t) = f 0ejωt, (6.82)

u(t) = u0ej(ωt−φ) = u0e−jφejωt. (6.83)

f 0 and u0 correspond to the absolute length of the force and displacement vectors,
respectively. We write Equation (6.83) by using the complex vibration amplitude as

u(t) = u0
*ejωt, u0

* = u0e−jφ.

When we adopt Equations (6.82) and (6.83) into a mass–spring-damper model
in Figure 6.14a,

m
..
u + ξ

.
u + cu = f0ejωt. (6.84)

Using u(t) = u0
*ejωt, we obtain

(
−mω2 + jξω + c

)
u∗0 = f0. (6.85)

Accordingly,

u∗0 =
f0(

−mω2 + jξω + c
) =

f0e−jφ
√
(c−mω2)2 + (ξω)2

. (6.86)

The vibration amplitude and phase are obtained as:

u0 =
f0√

(c−mω2)2 + (ξω)2
, (6.87a)
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φ = tan−1 ξω

c−mω2 . (6.87b)

Complex Physical Parameter

From Equation (6.84), m
..
u + ξ

.
u + cu = f0ejωt, we assume harmonic vibration

u(t) with the same ω. Then,
(
−mω2 + jξω + c

)
u(t) = f0ejωt. (6.88)

We adopt a “complex spring constant” as

c∗ = c(1 + j
ξω

c
). (6.89)

Note that the viscoelastic damping-related imaginary part is frequency dependent.
Then, the dynamic equation is transformed as

(
−mω2 + c∗

)
u(t) = f0ejωt. (6.90)

We can understand that Equation (6.90) corresponds to a simple mass–spring os-
cillator with a complex spring constant. Under an assumption u(t) = u0ej(ωt−φ) =
u0e−jφejωt, the remaining solution process is the same in the previous subsection,
leading to the final results Equations (6.87a) and (6.87b).

Note that most of physical phenomena inevitably exhibit heat generation associ-
ated with losses or phase delay because a sort of delay in the output reaction occurs
from the input electric or mechanical force.

6.4. Intensive and Extensive Losses in Piezoelectrics

6.4.1. Energy Description of Intensive and Extensive Physical Parameters

We will extend the loss formulation to “piezoelectric” materials, including
“coupling phenomenon losses” in particular, by introducing complex numbers for
physical parameters in this section. Complex parameter usage limits the applica-
bility only for small damping situations, such as a damping ratio ζ less than 0.1
from a thermodynamic theory viewpoint. We need to obtain both “intensive” and
“extensive” losses in the piezoelectric characterization to realize accurate analysis in
piezo-device design by using computer simulation tools such as the “finite element
method”, because either loss will contribute in a different way depending on the
realizing vibration mode in piezoelectrics. This loss distinction is also essential for
creating a microscopic loss model in piezo materials; that is, in order to explain
loss mechanisms theoretically, we usually utilize the “extensive” losses, which are
calculated from “intensive” losses easily obtained experimentally.

According to IUPAC (The International Union of Pure, and Applied Chemistry),
an “extensive parameter” depends on the volume of the material, while an “intensive
parameter” is the ratio of two extensive ones and, therefore, is independent of
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the volume of the material [7]. If we cut an object in half, the mass, length, and
displacement (extensive properties) would halve, while the temperature, force, and
voltage (intensive properties) would not change. Consequently, the stress (X, first
derivative of force) and electric field (E, first derivative of voltage) are intensive
parameters, which are externally controllable, while the strain (x, first derivative of
displacement) and dielectric displacement (D) (or polarization (P), as defined by the
total dipole moments per volume) are extensive parameters, which are internally
determined in the material.

We start with the Gibbs free energy, G, in terms of intensive parameters, in
general differential form as:

dG = −xdX − DdE − SdT, (6.91)

where x and X are the strain and stress, D and E are the electric displacement
and electric field, and S and T are the entropy and temperature. Equation (6.91)
is the energy expression in terms of the externally controllable (which is denoted
as “intensive”) physical parameters X, E, and T. If we assume the simplest linear
phenomena for the elastic (Hooke’s law), dielectric, and electromechanical coupling
properties, we obtain the following Gibbs energy expression (refer to Chapter 2):

G = −(1/2)sEX2 − dXE− (1/2)ε0εXE2. (6.92)

The temperature dependence of the function is associated with the elastic com-
pliance, sE, the dielectric constant, εX, and the piezoelectric charge coefficient, d, and
the direct entropy expression is omitted (refer to the Devonshire theory in Chapter 4).
It is also noteworthy that the electromechanical coupling term XE (not XE2) indicates
the crystal symmetry (piezoelectrics belong to asymmetric class), which allows the
sign change of X or x simultaneously for the E direction change. The following two
piezoelectric equations (i.e., “piezoelectric constitutive equations”) are derived from
Equation (6.92):

x = − ∂G
∂X

= sEX + dE, (6.93)

D = −∂G
∂E

= dX + ε0εXE. (6.94)

Note that the Gibbs energy function provides intensive physical parameters: E—
constant elastic compliance sE, and X—constant permittivity εX .

On the other hand, when we consider the free energy in terms of the “extensive”
(that is, material-related) parameters of the strain, x, and electric displacement, D, we
start from the differential form of the Helmholtz free energy designated by A (refer
to Chapter 2), such that:

dA = Xdx + EdD − SdT. (6.95)

We now assume

A = (1/2)cDx2 − hxD + (1/2)κ0κxD2 [κ0 = (
1
ε0
)]. (6.96)
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From this energy function, we obtain another pair of piezoelectric constitutive equations:

X =
∂A
∂x

= cDx− hD, (6.97)

E =
∂A
∂D

= −hx + κ0κxD. (6.98)

where cD is the elastic stiffness at constant electric displacement (open-circuit condi-
tions), h is the inverse piezoelectric charge coefficient, and κx is the inverse dielectric
constant at a constant strain (mechanically clamped conditions).

Equations (6.93), (6.94), (6.97), and (6.98) should be written in tensor or matrix
notations in 3D description, precisely speaking, and the reader can imagine that
these pairs are mutually inverse tensor matrix relations. However, we initially obtain
the interrelations between the intensive and extensive physical parameters in the
one-dimensional form, simply for mathematical simplicity.

6.4.2. Piezoelectric Constitutive Equations with Losses

Intensive Losses

Since the detailed mathematical treatment has been described in a previous
paper [8], we summarize the essential results in this subsection. We start from the
“piezoelectric constitutive equation”:

(
x
D

)
=

(
sE d
d ε0εX

)(
X
E

)
, (6.99)

where x is the strain, X is the stress, D is the electric displacement, and E is the
electric field. Note that the original piezoelectric constitutive equations cannot yield
a delay–time-related loss, in general, without taking into account irreversible ther-
modynamic equations or dissipation functions. However, the “dissipation functions”
are mathematically equivalent to the introduction of “complex physical constants”
into the phenomenological equations, if the loss is small and can be treated as a
perturbation (“dissipation factor tangent” << 0.1).

Therefore, we will introduce complex parameters εX*, sE*, and d*, using *, in
order to consider the small hysteresis losses in dielectric, elastic, and piezoelectric
constants:

εX* = εX(1 − jtanδ’), (6.100)

sE* = s (1 − jtanφ’), (6.101)

d* = d(1 − jtanθ’). (6.102)

θ’ is the phase delay of the strain under an applied electric field, or the phase
delay of the electric displacement under an applied stress. Both delay phases should
be exactly the same if we introduce the same complex piezoelectric constant d* into
two constitutive equations of Equation (6.99). δ’ is the phase delay of the electric
displacement to an applied electric field under a constant stress (e.g., zero stress)
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condition, and φ’ is the phase delay of the strain to an applied stress under a constant
electric field (e.g., short-circuit) condition. We will consider these phase delays
as “intensive losses” because these losses are related with the intensive physical
parameters, εX, sE, and d. Note here that though the “loss factor” is not a volume-
dependent parameter, we will denote “intensive (or extensive) parameter-related
loss” as “intensive (or extensive) loss” for short. We take a negative sign in front
of the loss tangent, supposing that the extensive parameters are induced after the
intensive parameters are applied. So far, no negative “intensive loss factor” has been
reported experimentally.

Figure 6.18a–d correspond to the hysteresis model curves for practical exper-
iments: D vs. E curve under a stress-free condition, x vs. X under a short-circuit
condition, x vs. E under a stress-free condition, and D vs. X under a short-circuit
condition (D is calculated from measured current integration), respectively. Note
that these measurements are easily conducted in practice by changing the externally
controllable intensive parameters (E, X). The average slope of the D–E hysteresis
curve in Figure 6.18a corresponds to the permittivity εXε0 where the superscript
stands for X = constant (occasionally zero). Thus, tanδ’ is called the “intensive
dielectric loss tangent”, or “dissipation factor”. The situation of sE is similar; the
slope of the x–X relation is the elastic compliance under the E = constant condi-
tion. Though Figure 6.18a illustrates a sharp hysteresis edge around the maximum
(and minimum) electric field, similar to the actually observed hysteresis curve, the
complex parameter representation in Equation (6.100) indicates an elliptic shape
(counterclockwise rotation) with rounded edges. Though this discrepancy implies a
modeling inaccuracy (i.e., “viscoelastic damping” may not be a real phenomenon in
piezoelectrics), we will adopt the complex parameter method for the loss analysis for
mathematical simplicity.

D0
X0

(a)

(c)

(b)

(d)

E0

We

Wem

Ue

Uem
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~~
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Wem~ Uem~

Figure 6.18. (a) D vs. E (stress free), (b) x vs. X (short circuit), (c) x vs. E (stress
free), and (d) D vs. X (short circuit) curves with a slight hysteresis in each relation.
Source: Figure by author, adapted from [5].
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Since the areas on the D–E and x–X domains directly exhibit the electrical and
mechanical energies, respectively (see Figure 6.18a,b), the stored energies (during
a quarter cycle) and hysteresis losses (during a full electric or stress cycle) for pure
dielectric and elastic energies can be calculated as (refer to Example Problem 6.1 for
the detailed calculation process):

Ue = (1/2)εXε0E0
2, (6.103)

we = πεXε0E0
2tanδ’, (6.104)

Um = (1/2)sEX0
2, (6.105)

wm = πsEX0
2tanφ’. (6.106)

Here, Ue and Um stand for electrical and mechanical energy stored during a
quarter cycle, and we and wm are the electrical and mechanical hysteresis losses,
respectively. The dissipation factors, tanδ’ and tanφ’, can be experimentally ob-
tained by measuring the dotted hysteresis area and the stored energy area, that is,
(1/2π)(we/Ue) and (1/2π)(wm/Um), respectively. Note that the factor (2π) comes
from the integral per cycle.

The electromechanical hysteresis loss calculations, however, are more compli-
cated, because the areas on the x–E and P–X domains do not directly provide energy.
The areas on these domains can be calculated as follows, depending on the mea-
suring methods: when measuring the induced strain under an electric field, the
electromechanical conversion energy can be calculated as follows, by converting E to
stress X:

Uem =
∫

xdX= (
1
sE )

∫
xdx= (d2/sE)

∫ E0

0
EdE = (1/2)(d2/sE)E0

2, (6.107)

where x = dE. Then, using Equations (6.101) and (6.102), and from the imaginary part,
we obtain the loss during a full cycle as

wem = π(d2/sE)E0
2(2tanθ’ − tanφ’). (6.108)

Note that the area ratio in the strain vs. electric field measurement should
provide the combination of piezoelectric loss tanθ’ and elastic loss tanφ’ (not tanθ’
directly!). When we measure the induced charge under stress, the stored energy
Ume and the hysteresis loss wme during a quarter and a full stress cycle, respectively,
obtained similar results:

Ume =
∫

PdE = (1/2)(d2/ε0ε
X)X0

2, (6.109)

wme = π(d2/ε0ε
X)X0

2(2tanθ’ − tanδ’). (6.110)

Now, the area ratio in the charge vs. stress measurement provides the combina-
tion of piezoelectric loss tanθ’ and dielectric loss tanδ’. Hence, from the measurements
of D vs. E and x vs. X, we obtain tanδ’ and tanφ’, respectively, and either the piezo-
electric (D vs. X) or converse piezoelectric measurement (x vs. E) provides tanφ’
through a numerical subtraction. The above equations provide a traditional loss-
measuring technique on piezoelectric actuators, that is, measurement of polarization
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and strain induced by an electric field under the mechanical-free condition, and
measurement of polarization and strain induced by the external stress under the
short-circuit condition. You may recognize that the “piezoelectric” loss is a sort of
“hidden” parameter, which cannot be directly measured but is obtained from the
measurable combination loss. Another intriguing point is the loss subtraction: the
piezoelectric coupling loss contributes oppositely to the elastic or electric loss, which
means that normal electric and mechanical losses (these are merely added together)
can be cancelled somewhat by the piezoelectric loss.

Extensive Losses

In the previous subsection, we discussed the “intensive” dielectric, mechanical,
and piezoelectric losses (with prime notation) in terms of “intensive parameters”
X and E. In order to consider “physical meanings” of the losses (microscopic or
semi-macroscopic model) in the material (e.g., domain dynamics), we will introduce
the “extensive losses” [4] in terms of “extensive parameters” x and D. In practice,
intensive losses are easily measurable; extensive losses are not in the pseudo-DC
measurement but are obtainable from the intensive losses by using the so-called
“K-matrix” introduced later. When we start from the 1D piezoelectric equations in
terms of extensive physical parameters x and D,

(
X
E

)
=

(
cD −h
−h κ0κx

)(
x
D

)
, (6.111)

where cD is the elastic stiffness under D = constant condition (i.e., electrically open
circuit), κx is the inverse dielectric constant under x = constant condition (i.e., me-
chanically clamped), and h is the inverse piezoelectric constant d. We introduce the
“extensive” dielectric, elastic, and piezoelectric losses as

κx∗ = κx(1 + jtanδ), (6.112)

cD∗ = cD(1 + jtanφ), (6.113)

h∗ = h(1 + jtanθ). (6.114)

The sign “+” in front of the imaginary “j” is taken by a general induction
principle: “polarization induced after electric field application” and “strain induced
after stress application”. However, in terms of the “extensive piezoelectric loss” tanθ,
in the relation among electric displacement D (or polarization P) and strain x, we have
no idea which comes earlier, either D or x. In other words, is it polarization-originated
ferroelasticity or ferroelasticity-originated ferroelectricity?

It is notable that the permittivity under a constant strain (e.g., zero strain or
completely clamped) condition, εx∗, and the elastic compliance under a constant
electric displacement (e.g., open-circuit) condition, sD∗, can be provided as an inverse
value of κx∗ and cD∗, respectively, in this simplest one-dimensional expression. Thus,
using exactly the same losses in Equations (6.112) and (6.113),

εx∗= εx(1− jtanφ), (6.115)

sD∗= sD(1− tanφ), (6.116)

217



we will consider these phase delays again as “extensive losses”. Care should be
taken in the case of a general 3D expression, where this part must be translated as
“inverse matrix components” of κx∗ and cD∗ tensors. In order to realize an x-constant
status, we need to clamp 3D precisely, not just 1D, as introduced in the longitudinally
clamped capacitance in the k31 mode plate specimen in Chapter 7.

In order to obtain the interrelationship between the intensive and extensive
losses, we remind the reader of the physical property difference according to the
boundary conditions: E constant and D constant, or X constant and x constant in
the simplest 1D model. When an electric field is applied on a piezoelectric sample
as illustrated in the top part of Figure 6.19, this state will be equivalent to the
superposition of the following two steps: first, the sample is completely clamped
and the field E0 is applied (pure electrical energy (1/2)εxε0E0

2 is stored); second,
keeping the field at E0, the mechanical constraint is released (additional mechanical
energy (1/2)(d2/sE)E0

2 is necessary). The total energy should correspond to the total
input electrical energy (1/2)εXε0E0

2 under stress-free conditions (left figure). That is,
(1/2)εXε0E0

2 = (1/2)εxε0E0
2 + (1/2)(d2/sE)E0

2. A similar energy calculation can be
obtained from the bottom part of Figure 6.19, leading to the following equations:

εx/εX = (1− k2), (6.117)

sD/sE = (1− k2), (6.118)

κX/κx = (1− k2), (6.119)

cE/cD = (1− k2), (6.120)

where
k2 = d2/(sEε0ε

X) = h2/(cDκ0κx) [κ0 = (
1
ε0
)]. (6.121)

This k is called the “electromechanical coupling factor”, which is handled as a real
number in most of the cases in this book.

It is noteworthy that losses are not actual “intensive” or “extensive” parameters
at all, but define the “losses associated with the intensive or extensive parameters”
as “intensive or extensive losses” in simple expressions.
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Figure 6.19. Conceptual figure for explaining the relation between εX and εx, sE,
and sD. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 76.
Reproduced by permission of Taylor & Francis Group.

K-Matrix in the Intensive and Extensive Losses

In order to obtain the relationships between the intensive and extensive losses,
the following three equations derived from Equations (6.99) and (6.111) are essential
(derivation process in Example Problem 6.3):

sE =
1

cD
1

(1− h2

(cDκ0κx)
)

, (6.122)

ε0εX =
1

κ0κx
1

(1− h2

(cDκ0κx)
)

, (6.123)

d =
1
d

h2

(cDκ0κx)

(1− h2

(cDκ0κx)
)

. (6.124)

Replacing the parameters in Equations (6.122)–(6.124) by the complex parame-
ters in Equations (6.100)–(6.102), (6.112)–(6.114), we obtain the relationships between
the intensive and extensive losses:

tan δ′ = (1/(1− k2))
[
tan δ + k2(tan φ− 2 tan θ)], (6.125)
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tan φ′ = (1/(1− k2))
[
tan φ + k2(tan δ− 2 tan θ)], (6.126)

tan θ′ = (1/(1− k2))
[
tan δ + tan φ− (1 + k2) tan θ], (6.127)

where k is the “electromechanical coupling factor” defined by Equation (6.121), and
here as a real number. It is important that the “intensive dielectric, elastic, and
piezoelectric losses” (with prime) are mutually correlated with the “extensive di-
electric, elastic, and piezoelectric losses” (non-prime) through the electromechanical
coupling k2, and that the denominator (1 − k2) basically comes from the ratios,
εx/εX = (1− k2) and sD/sE = (1− k2), and this real part reflects the dissipation
factor when the imaginary part is divided by the real part.

Knowing the relationships between the intensive and extensive physical pa-
rameters (Equations (6.99) and (6.111)), and the electromechanical coupling factor k
(Equation (6.121)), we introduce the so-called “[K]-matrix” to interrelate the intensive
(prime) and extensive (non-prime) loss factors (attempt Example Problem 6.3 to
further understand the derivation process):




tan δ′

tan φ′

tan θ′


 = [K]




tan δ
tan φ
tan θ


, (6.128)

[K] =
1

1− k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2


, k2 =

d2

sE(εXε0)
=

h2

cD(κxκ0)
. (6.129)

The matrix [K] is proven to be “invertible”, i.e., K2 = I, or K = K−1, where I is the
identity matrix. Hence, the conversion relationship between the intensive (prime)
and extensive (non-prime) exhibits full symmetry:




tan δ
tan φ
tan θ


 = [K]




tan δ′

tan φ′

tan θ′


, and




tan δ′

tan φ′

tan θ′


 = [K]




tan δ
tan φ
tan θ


 (6.130)

The author again emphasizes that the extensive losses are more important for
considering the physical micro/macroscopic models and can be obtained mathemati-
cally from a set of intensive losses, which are obtained directly from the experiments
(in particular, pseudo-DC measurement).

Though we handle the electromechanical coupling factor k as a real parameter
in the above, if we introduce a sort of “electromechanical coupling loss”, it will be
derived as follows from Equation (6.121):

(
k2′′

k2′ ) = tan χ =
(
2tan θ′ − tan δ′ − tan φ′

)
= −(2tan θ − tan δ− tan φ). (6.131)

Note that the electromechanical coupling loss is an eigen function of Equation
(6.129) with the [K] matrix, that is, the unique constant, irrelevant of the intensive or
extensive description. The loss tan χ can be either positive or negative, depending on
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the piezoelectric loss magnitute tan θ′, which contributes to the mechanical quality
factor spectrum around the resonance and antiresonance frequencies, as discussed in
Chapter 7.

Example Problem 6.3

(1) Derive the [K]-matrix to interrelate the intensive and extensive losses:

[K] =
1

1− k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2


. (P6.3.1)

(2) Verify the following relationship first:

k2 =
d2

(sEε0εX)
=

h2

(cDκ0κx)
, (P6.3.2)

then, verify the “electromechanical coupling loss” relation:
(
2tan θ′ − tan δ′ − tan φ′

)
= −(2tan θ − tan δ− tan φ). (P6.3.3)

Hint

From the following pairs of equations, eliminate the parameters, X, E, x, and D.

x = sEX + dE, (P6.3.4)

D = dX + ε0εXE, (P6.3.5)

X = cDx− hD, (P6.3.6)

E = −hx + κ0κxD. (P6.3.7)

Solution

(1) From Equations (6.99) and (6.111)

(
x
D

)
=

(
sE d
d ε0εX

)(
X
E

)
=

(
sE d
d ε0εX

)(
cD −h
−h κ0κx

)(
x
D

)
. (P6.3.8)

Thus, the product of the matrix should be the identity matrix:

(
sEcD − dh −sEh + dκ0κx

dcD − ε0εXh −dh + ε0εXκ0κx

)
=

(
1 0
0 1

)
. (P6.3.9)

From these four component equations, we can derive the following equations
easily:

εXε0 =
1

κ0κx
[
1− h2

cDκ0κx

] =
1

κ0κx(1− k2)
, (P6.3.10)
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sE=
1

cD
[
1− h2

cDκ0κx

] =
1

cD(1− k2)
, (P6.3.11)

d =

h2

cDκ0κx

h
[
1− h2

cDκ0κx

] =
k2

h(1− k2)
. (P6.3.12)

Introducing the complex parameters, with prime losses on the left-hand side,
and non-prime losses on the right-hand side (the middle terms) of the above three
equations, we can obtain the following:

tan δ′ = (1/(1− k2))
[
tan δ + k2(tan φ− 2 tan θ)], (P6.3.13)

tan φ′ = (1/(1− k2))
[
tan φ + k2(tan δ− 2 tan θ)], (P6.3.14)

tan θ′ = (1/(1− k2))
[
tan δ + tan φ− (1 + k2) tan θ]. (P6.3.15)

The [K]-matrix (Equation (P6.3.1)) is automatically obtained from Equations
(P6.3.13)–(P6.3.15):

[K] =
1

1− k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2


 (P6.3.1)

(2) Substituting X, E in Equations (P6.3.4) and (P6.3.5) by Equations (P6.3.6) and
(P4.3.7), we obtain

x = sE(cDx− hD) + d(−hx + κ0κxD),
D = d(cDx− hD) + ε0εX(−hx + κ0κxD).

Upon rearranging,(
1 + dh− sEcD)x =

[
dκ0κx − hsE]D,(

dcD − hε0εX)x =
[
1 + dh− κ0κxε0εX]D.

Thus, from
(
1 + dh− sEcD)[1 + dh− κ0κxε0εX] =

(
dcD − hε0εX)[dκ0κx − hsE];

finally,
d2

(sEε0εX)
=

h2

(cDκ0κx)
. (P6.3.16)

Let us verify that Equation (P6.3.16) corresponds to the electromechanical cou-
pling factor, which is defined by k2 = (stored electrical energy/input mechanical
energy) or (stored mechanical energy/input electrical energy). We demonstrate the
electric energy input case (try for the mechanical energy input case by yourself). See
Figure 6.20a first, when we apply an electric field on the top and bottom electrodes
under a stress-free condition (X = 0). The input electric energy must be equal to
(1/2)ε0εXE2 from Equation (6.92), and the strain generated by E should be dE from
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Equation (P6.3.4). Since the converted/stored mechanical energy is obtained as
(1/2sE)x2 (E-constant or short-circuit condition), we obtain:

k2 =
[
(1/2)(dE)2/sE

]
/
[
(1/2)ε0εX E2

]
= d2/ε0εXsE (P6.3.17)

E Ps

x
d

D

h

Clamped XStress X = 0

−

+

−

+

(b)(a)

−

+

Ps

Figure 6.20. Calculation models of electromechanical coupling factor k for (a)
electric field input and (b) electric displacement input. Source: Figure by author.

On the contrary, we now consider the extensive parameter description. See
Figure 6.20b. The specimen generates delectric displacement D (under the open-
circuit condition) first along the spontanous polarization direction under the com-
pletely clamped condition (x = 0). The input electric energy must be equal to
(1/2)κ0κxD2 from Equation (6.96). Since the blocking force (for clamping) is given by
X = −hD and the converted/stored mechanical energy is obtained as 1

2

(
1

cD

)
X2 =

1
2

(
1

cD

)
(hD)2, we obtain:

k2 =

[
1
2

(
1

cD

)
X2 ]/[(1/2)κ0κx D2

]
=

h2

(cDκ0κx)
. (P6.3.18)

We can now understand that both d2

(sEε0εX)
and h2

(cDκ0κx)
mean the electromechan-

ical coupling factor, and the values are exactly the same.
Introducing the complex parameters, on both sides of Equation (P6.3.16), it is

obvious to derive the electromechanical coupling loss equation:
(
2tan θ′ − tan δ′ − tan φ′

)
= −(2tan θ − tan δ− tan φ). (P6.3.19)
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Example Problem 6.4

Verify that the following [K] matrix is “invertible”, i.e., K = K−1.

[K] =
1

1− k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2


. (P6.4.1)

Then, obtain the eigen function in terms of the vector component (tan δ′, tan φ′, tan θ′).

Solution

We calculate K2.

[K]× [K] = 1
1−k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2


× 1

1−k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2




= 1
(1− k2)2




1 + k4 − 2k2 0 0
k2 + k2 − 2k2 k4 + 1− 2k2 0

0 0 −2k2 − 2k2 + (−1− k2)2




=




1 0 0
0 1 0
0 0 1


 = I.

It is also interesting to obtain the eigen value and eigen vector of Equation
(P6.4.1). Taking the determinant

∣∣∣∣∣∣∣∣

1
1−k2 − λ k2

1−k2
−2k2

1−k2

k2

1−k2
1

1−k2 − λ −2k2

1−k2

1
1−k2

1
1−k2

−1−k2

1−k2 − λ

∣∣∣∣∣∣∣∣
= 0, (P6.4.2)

we obtain the three eigen values of λ1 = λ2 = 1, λ3 = −1, and the eigen vector for
λ1 = λ2 = 1 as

x1 = −x2 + 2x3, x2 = x2, and x3 = x3. (P6.4.3)

This results in the value (2tan θ′ − tan δ′ − tan φ′) = −(2tan θ − tan δ− tan φ) be-
ing invariant, which corresponds to the loss for the electromechanical coupling
factor d2/(sEε0ε

X) = h2/(cDκxκ0). Note that the negative sign in this loss equation
comes from the definition difference of intensive and extensive losses in Equations
(6.100)–(6.102) and (6.112)–(6.114).

Example Problem 6.5

In this chapter, the piezoelectric coupling loss tan θ′ was introduced, in addition
to the well-known elastic loss tan φ′ and dielectric loss tan δ′. Describe why the
inclusion of tan θ′ is essential. The motivation is to explain the difference of Qm
at the resonance and at the antiresonance experimentally observed in most of the
PZT-based ceramics.
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Hint

The major problem is found in the present IEEE Standard on Piezoelectricity,
ANSI/IEEE Std. 176-1987, which many engineers are still using as the standard.
Figure 6.21 shows an equivalent circuit for a k31-type piezoelectric resonator, for
example, proposed by the IEEE Standard on Piezoelectricity. Only one loss param-
eter R1 results in the same mechanical quality factor Qm for both resonance and
antiresonance peaks in its admittance/impedance spectrum, as suggested in the
following forms for the k31 mode:

sE
11 = 1/

(
4ρ f 2

r l2
)

, (P6.5.1)

K2
31 =

π

2
far

fr
tan

(
π

2
∆ f
fr

)
where, K2

31 =
k2

31
1− k2

31
, (P6.5.2)

Qm =
Ymax2

m

8 ·ω0 · C · K2
31

. (P6.5.3)

This “Standard” does not include the terminology “piezoelectric loss”, nor does
it discuss the difference of mechanical quality factors QA (at resonance) and QB
(at antiresonance); that is, both are exactly the same, against many of the practical
experimental results and reports. Chapter 7 is devoted to solving this IEEE Standard
dilemma.

L1

R1

C1

C0

Figure 6.21. An equivalent circuit for a k31-type piezo-resonator by the IEEE Stan-
dard on Piezoelectricity. Source: Figure by author, adapted from [1].

Solution

The mechanical quality factors QA at the resonance and at the antiresonance
QB are expressed by using the three losses (piezoelectric tan θ′, elastic tan φ′, and
dielectric tan δ′) as follows (see Section 7.3.1 for the details):

QA,31 =
1

tan φ11
′ , ΩA,31 =

ωal
2vE

11
=

π

2
,
[

vE
11 = 1/

√
ρsE

11

]
, (P6.5.4)
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1
QB,31

=
1

QA,31
− 2

1 + ( 1
k31
− k31)2ΩB,31

2 (2tan θ31
′ − tan δ33

′ − tan φ11
′), (P6.5.5)

ΩB,31 =
ωbl
2vE

11
, 1− k31

2 + k31
2 tan ΩB

ΩB
= 0. (P6.5.6)

The mechanical quality factor QA,31 is given only by the elastic loss tan φ11
′,

while QB,31 at the antiresonance is given by the coupling of three losses (i.e., “elec-
tromechanical coupling loss” [2 tan θ′ − (tan φ′ + tan δ′)]). It is essential to men-
tion that the coupling loss tan θ′ is subtracted from the average of the normal
elastic and dielectric 1

2 (tan φ′ + tan δ′) so that the electromechanical coupling loss
[tan θ′− 1

2 (tan φ′ + tan δ′)] can be either positive or negative, which induces QA,31 <
QB,31 or QA,31 > QB,31, respectively, as demonstrated in Figure 6.22. Note again that
regardless of each loss value (even rather large), as long as the subtracted result is
small, the mechanical quality factor QB,31 at the antiresonance can be significantly
large (i.e., the heat generation is very small). All three losses are not always added,
but the coupling loss behaves for deducing the total loss.
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86 90

tanθ’ = 0.001
tanθ’ = 0.0025
tanθ’ = 0.004

88

Frequency (kHz)

Figure 6.22. Admittance simulation of a k31-type PZT plate by changing only the
piezoelectric loss tan θ′. Source: Figure by author, adapted from [1].

Chapter Essentials

1. Dielectric loss: though electronic polarization responds up to Peta Hertz, ionic
and dipolar polarization do have response limits, which provide the intrinsic
dielectric loss. Small conductance in the material contributes additional effective
dielectric loss.

2. LCR circuit: L
(

d2Q
dt2

)
+ R( dQ

dt ) +
Q
C = V(t) or L

(
d2 I
dt2

)
+ R( dI

dt ) +
I
C = dV

dt

I(t) = V0
Z sin(ωt− φ); Z =

√
R2 + (Lω− 1

Cω )2, tanφ =
(Lω− 1

Cω )
R .

3. Three mechanical loss models:

a. Solid damping – damping force F = ζcumax,
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b. Coulomb damping – damping force constant ±F – linear decay of the
displacement amplitude,

c. Viscous damping – damping force proportional to velocity F = ξ
.
u – expo-

nential decay of the displacement amplitude.

4. Steady-state oscillation for a mass–spring–dashpot model: m
..
u+ ξ

.
u+ cu = f (t).

ω0 =
√

c/m (ω0: resonance angular frequency for zero damping)
ζ = ξ/2mω0 (ξ, ζ: damping factor, ratio) (refer to Figure 6.16)

u(t) = f0 sin (ωt+φ)√
(c−mω2)

2
+(2mζω0ω)2

,

u0 = f0√
(c−mω2)

2
+(2mζω0ω)2

,

tan φ = − 2mζω0ω
c−mω2 .

5. Bode plot: asymptotic curves – 0 dB/decade, −40 dB/decade.
Resonance peak height = 20log10(

1
2ζ ).

6. Mechanical quality factor:
Qm = ω0

∆ω = 1/2ζ.
7. Complex algebra method, including a complex physical parameter such as a

complex elastic stiffness, is a useful tool for harmonic steady-state oscillation to
calculate the vibration amplitude and phase lag as a function of frequency.
→ the Bode diagram is a logarithmic plot of these parameters.

8. Piezoelectric constitutive equations:
Intensive parameter description x = − ∂G

∂X = sEX + dE,

D = − ∂G
∂E = dX + ε0εXE,

sE—elastic compliance under constant field, εX—dielectric constant under con-
stant stress, d—piezoelectric charge coefficient.

9. Interrelationship between intensive and extensive parameters:

cD = 1
sE

1
(1− d2

(sEε0εX )
)
, κ0κx = 1

ε0εX
1

(1− d2

(sEε0εX )
)
, h = 1

d

d2

(sEε0εX )

(1− d2

(sEε0εX )
)
.

10. Electromechanical coupling factor:

k2 = d2

(sEε0εX)
= h2

(cDκ0κx)
.

11. Constraint dependence of permittivity and elastic compliance:

εx/εX = (1− k2), sD/sE = (1− k2), κX/κx = (1− k2), cE/cD = (1− k2).

12. Intensive and extensive loss definitions:

εX∗ = εX(1− j tan δ′) κx∗κx(1 + j tan δ),
sE∗ = sE(1− j tan φ′) cD∗ = cD(1 + j tan φ),
d∗ = d(1− j tan θ′) h∗ = h(1 + j tan θ).

13. Intensive and extensive loss interrelation:
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


tan δ′

tan φ′

tan θ′


 = [K]




tan δ
tan φ
tan θ


 or




tan δ
tan φ
tan θ


 = [K]




tan δ′

tan φ′

tan θ′


,

where [K] = 1
1−k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2


.

14. The loss of the electromechanical coupling factor k is represented by (2tan θ′−
tan δ′ − tan φ′) = −(2tan θ − tan δ− tan φ), which is an eigen function of the
[K] matrix and invariant.

Check Point

1. (T/F) When we add a Coulomb damper to a mass–spring system under free
vibration (no external force), the vibration amplitude decreases exponentially.
True or false?

2. (Fill in the blank) There are three mechanical damping mechanisms: solid
damping, Coulomb (friction) damping, and [ ].

3. What is the Laplace transform for the Impulse δ(t) function?
4. What is the Laplace transform for the Heaviside Step function?
5. (T/F) The Laplace transform for sin(at) is 1/(s2 + a2). True or false?
6. (T/F) When L[u(t)] = U(s), its first differentiation with respect to t is given by

L
[

du(t)
dt

]
= sU(s)− u(0). True or false?

7. (T/F) The mechanical quality factor and the damping ratio ζ are related as
Qm = ω0

∆ω = 1/ζ. True or false?
8. (T/F) The complex spring constant is equivalent to the viscoelastic damping

model. True or false?
9. (T/F) The high-frequency portion of the Bode plot for the second-order system

is approximated with an asymptotic straight line having a negative slope of
20 dB/decade. True or false?

10. (T/F) As the polarization is induced after the electric field is applied (time
delay), the P vs. E hysteresis loop should show the clockwise rotation. True
or false?

11. We observed electric displacement D and applied an electric field E relation
as shown in Figure 6.2. Using the area of Ue and we, describe the dielectric
loss tanδ’.

12. (T/F) The hysteresis area of the strain x vs. electric field E corresponds directly
to the piezoelectric loss factor tanθ’. True or false?

13. (T/F) The permittivity of a piezoelectric under the mechanically clamped con-
dition is smaller than that under the mechanically free condition. True or false?

14. (T/F) The elastic compliance of a piezoelectric under the open-circuit condition
is larger than that under the short-circuit condition. True or false?

15. Provide the inverse matrix of the following [K] matrix:

[K] = 1
1−k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2


.
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Chapter Problems

6.1 (a) In a mass–spring-damper model in the free vibration condition, starting
from the initial displacement u0, verify that the logarithmic decrement δ given
by the following equation, where un is the vibration amplitude after the n cycles:

δ = 1
n ln ( u0

un
).

(b) The above δ is related with the damping ratio ζ as δ = 2πζ. In the free vibra-
tion condition, starting from the initial u0, calculate the required cycle number
for reducing the displacement by half (50%) as a function of the damping ratio ζ.

6.2 Let us consider a damper, the force of which is proportional to the displacement
with a phase in the same as velocity. This damper is modeled as a complex
spring constant c(1 + jγ). Solve the dynamic equation in a mass–spring-damper
system given as follows:

m
..
u + c(1 + jγ)u = 0.

Hint

Suppose that u(t) = u0e(α+jβ)t, then determine α and β.

α =
√

c
2m

√
−1 +

√
1 + γ2 ∼= γ

2

√
c
m , β = ±

√
c

2m

√
1 +

√
1 + γ2 ∼= ±

√
c
m ;

δ = ln ( u1
u2
) ∼= πγ.

6.3 Let us consider a mass–spring–dashpot system (Figure 6.14a). We apply a
sinusoidal force f 0sin(ωt) from the initial position u(t = 0) = u0. Verify the
following arguments:

(a) Transient response (vibration amplitude and phase) strongly depends
on the initial condition.

(b) Steady-state oscillation (vibration amplitude and phase) is irrelevant to
the initial condition.

6.4 The electrical LCR circuit and mechanical mass–spring–dashpot model are
shown in Figures 6.3 and 6.4b. Provide the dynamic equations (under the input
sinusoidal voltage or harmonic force) for both electric and mechanical systems.
Then, discuss the equivalency for obtaining the steady-state solutions for both
systems. This approach is the key to understanding the “equivalent circuit”
concept introduced in Chapter 9.

6.5 Consider an “order–disorder-type ferroelectric” with ions trapped in the same
“double-minimum potential” with a relatively low barrier between the two
minima (Figure 6.23). Thus, each unit lattice cell has a permanent dipole
moment, and the dipole–dipole coupling is taken into account at a temperature
lower than the Curie temperature. Under a quasi-DC field, the ion follows the
electric field alternating between the positive and negative potentials. However,
increasing drive frequency the ionic motion exhibits a delay with respect to the
electric field due to the potential barrier ∆U. This is an intuitive explanation for
the “dielectric relaxation” in a ferroelectric phase.
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Figure 6.23. Ion in a double-minimum potential. Source: Figure by author.

In Example Problem 5.1, we derived the following “Debye dispersion relation”
for a mono-dispersive case:

ε(ω) = εS/(1 + jωτ). (P6.5.1)

where

τ = (1 + γε0εS)τ0/cosh(µγPS/kT), (P6.5.2a)

τ0 = 1/2Γexp(− ∆U/kT). (P6.5.2b)

The subscript “s” of εS stands for a static value (ω = 0), and in the paraelectric
phase, it should follow the Curie–Weiss law:

ε0εS = ε0C/(T − TC). (P6.5.3)

The relaxation time τ ∝ 1/(T − TC), which increases significantly when ap-
proaching T → TC . This means that the recovery to the equilibrium polarization
is quite slow.

When we transform the permittivity ε(ω) as

ε(ω) = ε’(ω) − jε”(ω), (P6.5.4)

where

ε’(ω) = εS/[1 + (ωτ)2], (P6.5.5)

ε”(ω) = ωτεS/[1 + (ωτ)2]. (P6.5.6)

The so-called “Cole–Cole relation” is obtained from Equations (P6.5.5) and
(P6.5.6), which is a half-circle with the following formula, and illustrated in
Figure 6.24.

(1) Draw the D vs. E hysteresis curve. (2) Derive the dielectric loss tan δ′

formula. Do you think this loss generated the heat in the sample? (3) Obtain
ω0 = 1/τ, then calculate a practical number using a particular material.
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Figure 6.24. Cole–Cole plot for the Debye model. Source: Figure by author.
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7. AC Drive on Piezoelectrics—Fourier
Transform

We discuss the AC drive, in particular around the resonance frequency, on
piezoelectric devices by using Fourier transform analysis from both electrical and
mechanical excitation viewpoints. The reader will learn the difference between the
resonance and antiresonance operations.

7.1. Driving Methods of Piezoelectric Devices

7.1.1. Classification of Piezoelectric Actuators

Piezoelectric and electrostrictive actuators are classified into two major cate-
gories based on the type of drive voltage applied to the device and the nature of
the strain induced by the voltage, as depicted in Figure 7.1. They are: (1) “rigid
displacement devices”, for which the strain is induced unidirectionally, aligned with
the applied DC field, and (2) “resonant displacement devices”, for which an alter-
nating strain is excited by an AC field, in particular at the mechanical resonance
frequency (“ultrasonic motors”). The first category can be further divided into two
general types: “servo displacement transducers” (positioners), which are controlled
by a feedback system through a position detection signal, and “pulse drive motors”,
which are operated in a simple on/off switching mode. Since recent energy har-
vesting devices require the AC stress drive of the piezoelectric components, we also
discuss this drive in this chapter in parallel to the electric field drive.

Rigid
Strain

Servo 
Drive

Servo
Displacement
Transducer

Pulse Drive
Motor

Ultrasonic
Motor

Electrostrictor
(Hysteresis-free)

Soft Piezoelectric
(Low permittivity)

Hard Piezoelectric
(High        Q)

E x

x
ON

OFF

E

E x

t E

E

E

t

t

Feedback

Pulse

Sine

Eb

Eb

Em

Em

On/Off 
Drive

AC
Drive

Resonant
Strain

Figure 7.1. Classification of piezoelectric/electrostrictive actuators according to the
type of drive voltage and the nature of the induced strain. Source: [1] ©Uchino, K.
Micromechatronics, 2nd ed.; CRC Press, 2019; p. 268. Reproduced by permission of
Taylor & Francis Group.
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The response of the resonant displacement device is not directly proportional
to the applied voltage, but is strongly dependent on the drive frequency. Although
the positioning accuracy of this class of devices is not as high as that of the rigid
displacement devices, ultrasonic motors are able to produce very rapid motion due to
their high-frequency operation. Servo displacement transducers, which are controlled
by a feedback voltage superimposed on a DC bias, are used as positioners for optical
and precision machinery systems. In contrast, a pulse drive motor generates only
on/off strains, suitable for the impact elements of inkjet printers or injection valves.
The inertial motors used in camera zoom/focus mechanisms belong to this pulse
drive category, as discussed in Chapter 8.

The material requirements for each class of devices are different, and certain com-
positions will be better suited for particular applications [1]. Because the servo dis-
placement transducer suffers from “strain hysteresis” the most, a Pb(Mg1/3Nb2/3)O3-
PbTiO3 [PMN] “electrostrictive material” is preferred for this application. It should
be noted that even when a feedback system is employed, the presence of pronounced
strain hysteresis generally results in a much slower response speed. The pulse drive
motor, for which a quick response rather than a small hysteresis is desired, requires
a low-permittivity material under a current limitation of a power supply. “Soft
piezoelectrics” Pb(Zr,Ti)O3 (PZT) are preferred over the high-permittivity PMN for
this application. The ultrasonic motor, on the other hand, requires a very “hard
piezoelectric” with a high mechanical quality factor, Qm, in order to maximize the AC
strain and to minimize heat generation (from low elastic loss). Note that the figure of
merit for the resonant strain (i.e., displacement amplification factor) is characterized
by ( 8

π2 )QmdEL (d: piezoelectric strain coefficient, E: applied electric field, L: sample
length, Qm: mechanical quality factor). Although hard PZT materials have smaller
d coefficients in comparison with soft PZT, they also have significantly larger Qm
values, thus providing the high resonant strains needed for the motor devices.

7.1.2. Piezoelectric Driving Methods

There are three methods for actuator drive/control that are most commonly
employed: (1) pseudo-DC drive, (2) pulse drive, and (3) AC drive, which are typi-
cally used for displacement transducers, pulse drive motors, and ultrasonic motors,
respectively. Displacement transducers are usually controlled in a closed-loop mode.
Open-loop control can also be employed, but only when strain hysteresis is negligible
and temperature fluctuation during operation is very small. Closed-loop control
is a feedback method whereby the electric field-induced displacement of a ceramic
actuator is monitored, deviation from the desired displacement is detected, and
an electric signal proportional to this deviation is fed back to the ceramic actuator
through an amplifier to effectively correct the deviation. Since the “feedback control”
systems of piezoelectric devices have been described in detail in [1], we will skip
this category. The pulse drive motor is typically operated in an open-loop mode,
but special care must be taken to suppress displacement overshoot and/or vibra-
tion ringing that can occur after the pulse voltage is applied, which is discussed in
Chapter 8. The AC electric voltage around the resonance frequency range applied to
ultrasonic motors is not very large, but significantly amplified displacement can be
excited due to an amplified current under constant voltage drive, where the drive
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frequency must be precisely matched with the resonance frequency of the device
for the optimum performance. Heat generation, which is a potentially significant
problem with this design, can be effectively minimized with the proper selection
of operating parameters in the range around the resonance and antiresonance. In
this chapter, we will discuss the AC drive around the resonance and antiresonance
frequency range.

7.1.3. Mechanical Resonance

Let us recall the elementary physics on the mechanical resonance of a length L
rod with sound velocity v. The reader still remembers that the fundamental resonance
frequency is expressed by

f = v/2L. (7.1)

Knowing v = f λ, we obtain λ = 2L. Thus, the fundamental resonance mode
means that a standing wave with a half of the wavelength λ on the length L of the
specimen, as illustrated in Figure 7.2a m = 1. Figure 7.2a shows the strain distribution
of harmonic mechanical resonance modes from the fundamental m = 1 to second,
third, and fourth (m = 4) modes. Figure 7.2b illustrates the fundamental resonance
frequency (v/2L) derivation intuitively. Let us assume to apply a sudden tensile
stress (X) on the rod specimen, by applying a pair of step-function pulling forces F,
−F on both sides of the rod (top figure). This sudden stress application generates a
sort of shockwave-like wall between the extended portion (initiated at the rod end)
and the original zero strain portion close to both rod ends, as shown in the second
top figure (Chapter 8 provides the detailed analysis on the pulse drive). These strain
(x)-gap walls move inwards with the sound velocity v in the specimen, crossing
over at the rod center at a quarter of a cycle period. Further extension of the rod is
followed (which corresponds to the “overshoot”) until the maximum length (100%
overshoot of the expected length by the stress, i.e., sX) at half of the cycle period.
Then, the strain-gap walls are reflected at the rod ends and change the translation
direction to start the rod shrinkage. At the time of three-quarters of the cycle period,
the rod length returns to the expected length by the stress (i.e., x = sX, s: elastic
compliance). In order to return to the original status, the strain-gap wall needs to
travel the distance 2L with the sound velocity v, leading to the necessary cyclic time
period of 2L/v. In other words, the cyclic frequency should be v/2L, which is called
the “fundamental resonance frequency”.

As the reader remembers, the child swing does not need a large force, but a large
swing amplitude is obtained as long as you choose a suitable pushing frequency.
When the sinusoidal stress X is applied along the rod length, the same phenomenon
happens. With sweeping the drive frequency ω from low to the fundamental res-
onance frequency ωr, the strain and displacement is significantly enhanced under
the constant cyclical stress X. The strain enhancement is owing to the “synchronous”
(i.e., the same frequency and phase) mechanical energy input to the specimen, lead-
ing to infinite displacement if no loss is included. In practice, the amplification
factor is proportional to the mechanical quality factor Qm, inverse of the elastic
loss. When Qm = 1000, roughly 1000 small stress cycles are required to reach 1000-
times amplification. We can say “the displacement amplification in terms of “time”.
When the drive frequency is increased beyond ωr, the strain/displacement decreases
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quickly with the rate of −40 dB/decade approaching the clamped condition. This
phenomenon was discussed with the “Bode plot” in Section 6.3.3.

m = 1
(L = λ/2)

m = 2
(L = λ)

m = 3
(L = 3 λ/2)

m = 4
(L = 2λ)

(a)

X

−F F

t

(b)

Figure 7.2. Mechanical resonance in a rod specimen: (a) harmonic resonance modes;
(b) strain response to the step strain. Source: Figure by author.

When we increase the drive frequency further, up to 2ωr, the second harmonic
resonance appears and the strain/displacement is enhanced again. The vibration
mode includes a full wavelength λ on a length L specimen. Note, however, from the
second top figure of Figure 7.2a that the total rod length does not change because
both the rod ends become nodal lines, because the strain generated inside the rod
cancels out completely even though the local strain inside the rod is significant. As
you can imagine from this argument, m = 3 and m = 4 modes in Figure 7.2a exhibit
similar behavior to the cases of m = 1 and m = 2, respectively; The odd-number
harmonic resonance modes generate the total rod length enhancement, while the
even-number resonance modes keep the rod length constant (i.e., both rod ends are
the nodal lines) even though the inside local strain/displacement is largely excited.
The number of nodal lines N for the m-th mode is presented by

N = 2·
[m

2

]
+ 1. (7.2)

Here [m
2 ] is the “Gauss symbol”, which means the maximum integer number

≤m/2, which is popularly used when the odd and even number states are differentiated.
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We define the mechanical impedance as follows near the resonant frequency of
the rod: F(ω) = Zm(ω)v(ω), where F(ω) and v(ω) are the force and velocity on the
rod edges. Zm(ω) is the impedance as a function of ω. When Zm(ω) is minimum
or maximum, these frequencies are called “resonance” and “antiresonance” in the
mechanical vibration.

7.1.4. Piezoelectric Resonance and Antiresonance

There are various methods for characterizing piezoelectric performances in
piezoelectric materials: (1) pseudo-static, (2) admittance/impedance spectrum, and
(3) transient/ burst mode methods [2]. The admittance/ impedance spectrum method
is further classified into (1) constant voltage, (2) constant current, and (3) constant
vibration velocity methods. Piezoelectric resonance can be excited by either electrical
or mechanical driving, as shown in Figure 7.3. In a k31 mode piezoelectric plate, for
example, as long as the surface is electroded, the sound velocity along the length
direction is vE originated from s11

E, while in the no-electrode specimen, they are
vD and s11

D. In the normal IEEE Standard measuring technique [3], the specimen
should have electrodes and be excited by an electrical AC signal, while the resonance
on a no-electrode specimen can be excited only by the mechanical excitation. A
short-circuit condition realizes the resonance and an open-circuit condition provides
the antiresonance mode under the mechanical excitation method. In order to measure
the D-constant parameters (s11

D and its extensive elastic loss tanφ) directly, we need
to use a non-electrode sample under the mechanical driving method.

(A)

(B)

(C)

PS

vE

v = vE

[Short]

[Short] [Open]

[Open]

[No electrode]

N/A

Resonance

Antiresonance

Electrical Excitation

Mechanical Excitation

Resonance

Resonance

f = (vE/2L)(1 + ( )k231) Resonance
v = vD = vE/√1 − k2

31

vE = 1/ √ρsE11

 4   π2 

vE vE

vE

v = vE

vD

PS

PS

Figure 7.3. Resonance and antiresonance mode excitation under electrical or me-
chanical driving methods (visualization for k31 mode). Source: [1] ©Uchino, K.
Micromechatronics, 2nd ed.; CRC Press, 2019; p. 269. Reproduced by permission of
Taylor & Francis Group.

Figure 7.4 shows an example admittance spectrum of a 20 mm long k31 type
piezoelectric (PZT) plate specimen with the resonance frequency around 86 kHz.
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Measurement was performed under the vibration velocity/amplitude constant con-
dition (i.e., output mechanical energy constant). When the operating frequency is
lower than 10 kHz, this is considered an “off-resonance” drive, and its characteristic
is purely “capacitive” with the admittance phase lag of 90◦ [4]. When the operating
frequency is 86 or 89 kHz, the characteristic becomes “resistive” with a phase lag of
0◦, which corresponds to the resonance or antiresonance frequency, respectively. In
order to induce the same level of vibration velocity, low voltage and high current or
high voltage and low current are required in the resonance or antiresonance drive
(i.e., both are the mechanical resonance modes), respectively. We also introduced an
operating frequency at 88 kHz in the “inductive” region to minimize the required
input drive power in order to obtain the same vibration level. To the contrary, the
pulse drive of electric field includes a wide range of frequencies (pseudo-DC to
multiple higher-order resonance frequencies), which exhibit linear or parabolic total
displacement (not sinusoidal), in addition to the overshoot and/or vibration ringing
(discussed in Chapter 8).
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Figure 7.4. Application frequency ranges for displacement transducers, pulse drive
motors and ultrasonic motors. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.;
CRC Press, 2019; p. 268. Reproduced by permission of Taylor & Francis Group.

7.2. Piezoelectric Equations and Vibration Modes—Loss Free

7.2.1. Piezoelectric Constitutive Equations

When the applied electric field, E, and the stress, X, are small, the strain, x, and
the electric displacement, D, induced in a piezoelectric can be represented by the
following linear equations:

xi = sij
EXj + dmiEm, (7.3)

Dm = dmiXi + ε0εmk
XEk, (7.4)
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where (i, j = 1, 2, . . . , 6; m, k = 1, 2, 3). These are the “piezoelectric constitutive
equations”. There are 21 independent sij

E coefficients, 18 dmi coefficients, and 6
εmk

X coefficients for the lowest symmetry “trigonal” crystal. When considering
polycrystalline ceramic specimens such as PZT (Pb(Zr,Ti)O3, lead zirconate titanate),
the poling direction is typically designated as the z-axis. Poled ceramic is isotropic
with respect to this z-axis and has a Curie group designation C∞v (∞m). There are 10
non-zero matrix elements (s11

E, s12
E, s13

E, s33
E, s44

E, d31, d33, d15, ε11
X, and ε33

X) that
apply in the following discussion.

7.2.2. Longitudinal Vibration Mode via Transverse Piezoelectric Effect (k31 Mode)—Loss Free

This section and the next, Section 7.2.3, discuss the key difference between
the wave propagation direction “perpendicular (k31)” and “parallel (k33)” to the
spontaneous direction.

Vibration Modes

Let us consider a longitudinal mechanical vibration in a simple piezoelectric
ceramic plate via the transverse piezoelectric effect d31 with thickness b, width w,
and length L (b << w << L), pictured in Figure 7.5. When the polarization is in the z
direction and the x–y planes are the planes of the electrodes, the extensional vibration
along the x direction (1D model) is represented by the following dynamic equation:

ρ
∂2u
∂t2 = F =

∂X11

∂x
+

∂X12

∂y
+

∂X13

∂z
, (7.5)

where u is the displacement in the x direction of a small-volume element in the
ceramic plate, ρ is density of the piezoelectric material, and Xij‘s are stresses (only
the force along the x direction is our target). The relations between the stress, electric
field (only Ez exists, because Ex = Ey = 0 due to the electrodes on the top and bottom),
and the induced strains are described by the following set of equations:




x1
x2
x3
x4
x5
x6




=




s11
E s12

E s13
E 0 0 0

s12
E s11

E s13
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E s33
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0 0 0 s44
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X1
X2
X3
X4
X5
X6


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


0 0 d31
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0
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(7.6)
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Figure 7.5. Longitudinal vibration k31 mode of a rectangular piezoelectric plate.
Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 111. Repro-
duced by permission of Taylor & Francis Group.

Let us review the resonance of a piezoelectric plate when an AC electric field
of increasing frequency is applied. The length, width, and thickness extensional
resonance vibrations are excited successively. Consider a PZT plate with dimen-
sions 100 mm × 10 mm × 1 mm; these resonance frequencies correspond roughly to
10 kHz, 100 kHz, and 1 MHz for the fundamental length extensional mode. When
the frequency of the applied field is well below 10 kHz, the induced displacement
follows the AC field cycle, and the displacement magnitude is given by d31E3L. As we
approach the fundamental resonance frequency, a delay in the length displacement
with respect to the applied field begins to develop, and the amplitude of the displace-
ment becomes enhanced, showing the peak value of ( 8

π2 )QmdEL. At frequencies
above 10 kHz, the length displacement no longer follows the applied field and the
amplitude of the displacement is significantly reduced. With a further increase in the
frequency up to 100 kHz, now the width vibration is amplified (by neglecting the
higher-order harmonics of the length modes). Finally, around 1 MHz, the thickness
mode is excited by clamping the displacement both length- and widthwise.

When a very long, thin thickness and width plate (Figure 7.5) is driven in the
vicinity of this length fundamental resonance, X2 and X3 may be considered zero (a
free condition) throughout the plate. Since shear stress will not be generated by the
applied electric field Ez, only the following single equation applies:

X1 = x1/s11
E − (d31/s11

E)Ez. (7.7)

Substituting Equation (7.7) into Equation (7.5), and assuming that strain x1 =
∂u/∂x and ∂Ez/∂x = 0 (since each electrode is at the same potential), we obtain the
following dynamic equation:

ρ
∂2u
∂t2 =

1
sE

11
·∂

2u
∂x2 . (7.8)

Remember that the “E-constant” condition “sE
11” is the key characteristic in the k31

mode. Assuming a harmonic vibration equation of u(x,t) (i.e., sinusoidal vibration
in terms of both space x and time t) under an electric field E, Equation (7.8) is
transformed to:

−ω2ρs11
Eu = ∂

2
u/∂x2. (7.9)
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Here, ω is the angular frequency of the sinusoidal drive field Ez and the dis-
placement u. Supposing the displacement u also vibrates with the frequency of
ω, a general solution u = u1(x)ejωt + u2(x)e−jωt is substituted into Equation (7.9),
and with the boundary condition X1 = 0 at x = 0 and L (sample length) (due to the
mechanically free condition at the plate end), the following solution can be obtained
(refer to Example Problem 7.1):

(Strain) ∂u/∂x = x1 = d31Ez (
cos[ω(2x−L)

2v ]

cos(ωL
2v )

), (7.10)

(Displacement) u(x) = d31Ez(
v
ω
)

sin[ω(2x−L)
2v ]

cos(ωL
2v )

, (7.11)

(Total Displacement) ∆L =
∫ L

0
x1dx = d31EzL(2v/ωL)tan(ωL/2v). (7.12)

Here, v is the “sound velocity” (or “group velocity”) in the piezo-ceramic
given by

v = 1/
√

ρs11
E. (7.13)

The strain distribution in Equation (7.10) is symmetrically sinusoidal in respect
of x = L/2 position, and the maximum strain (i.e., the “nodal line”) exists at least on
this line. Note that ω→ 0 (i.e., pseudo-DC) makes Equation (7.10) equal to x1 = d31Ez;
that is, uniform strain distribution on the piezo-plate. It is also obvious that ∆L→
d31EzL under ω→ 0.

Example Problem 7.1

Let us consider a piezo-ceramic plate which vibrates via the transverse piezo-
electric effect (d31). Substituting a general solution u = u1(x)ejωt + u2(x)e−jωt into

−ω2ρs11
Eu = ∂2u/∂x2, (P7.1.1)

then with the boundary condition X1 = 0 at x = 0 and L, derive the strain

x1 = d31Ez (
cos[ω(L−2x)

2v ]

cos(ωL
2v )

); (v = 1/
√

ρs11
E). (P7.1.2)

Solution

Substituting a general solution u = u1(x)ejωt + u2(x)e−jωt into−ω2ρs11
Eu = ∂2u/∂x2,

we obtain

−(ω2

v2 )(u1(x)ejωt + u2(x)e−jωt) = (
∂2u1

∂x2 )ejωt + (
∂2u2

∂x2 )e−jωt. (P7.1.3)
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Since this equation should be satisfied for any time, u1 and u2 should satisfy

( ∂2u1
∂x2 ) =−(ω2

v2 )u1 and ( ∂2u2
∂x2 ) =−(ω2

v2 )u2, respectively. If we consider only the standing
wave as a solution, u(x) should be a “real” parameter, leading to the relation u1(x)
= u2(x) and u(x,t) = 2u1(x)cos(ωt). We will neglect cos(ωt) hereafter because this is
included in the cos(ωt) of the electric field. Thus, we suppose a general solution:

u1 = u2 = A1cos(
ω

v
x) + A2sin(

ω

v
x). (P7.1.4)

Now, the strain distribution on the plate can be calculated as

x1 = ∂u/∂x = 2(
∂u1

∂x
) = 2

(ω

v

)
[−A1sin(

ω

v
x) + A2cos(

ω

v
x)]. (P7.1.5)

Let us consider the boundary condition. From X1 = 0 = x1/s11
E − (d31/s11

E)Ez at
x = 0 and L, x1 = d31Ez (i.e., Ez = Emaxcos(ωt)) is obtained at both plate edges (without
considering the time lag or loss, the strain response should be simultaneous with the
electric field):

2(ω
v )[−A1sin(ω

v 0) + A2cos(ω
v 0)] = 2(ω

v )A2 = d31Ez,
2(ω

v )[−A1sin(ω
v L) + A2cos(ω

v L)] = d31Ez.

Thus, we obtain A1 = ( 1
2 )(

v
ω )d31Ez

[cos( ωL
v )−1]

sin( ωL
v )

, and A2 = ( 1
2 )(

v
ω )d31Ez. Finally,

inserting A1 and A2 into Equation (P7.1.5), we derive

(Strain) x1 = d31Ez [sinω(L− x)/v + sin(ωx/v)]/sin(ωL/v) = d31Ez (
cos[ω(L−2x)

2v ]

cos(ωL
2v )

), (P7.1.6)

(Displacement) u(x) = d31Ez(
v
ω
)

sin[ω(2x−L)
2v ]

cos(ωL
2v )

. (P7.1.7)

Remember that Ez is an AC field with the frequency ω. With increasing ω,
the stress concentration at the nodal line (x = L/2) will be enhanced. The strain
distribution on a rectangular plate is illustrated in Figure 7.6 for the resonance and
antiresonance frequencies; cosine shape with respect to the plate center (x = L/2) and
the amplitude depends on the drive frequency around the resonance frequency (∞
amplitude at the resonance, cos

(
ωL
2v

)
= 0).

Resonance 

m = 1

m = 2 m = 2

m = 1

Antiresonance 

Low coupling High coupling 

Figure 7.6. Strain distribution in the resonant and antiresonant states for a k31 type
piezoelectric plate. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press,
2019; p. 113. Reproduced by permission of Taylor & Francis Group.
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Electrical Admittance around Resonance and Antiresonance

When the specimen is utilized as an electrical component such as a filter or a
vibrator, the electrical admittance ((induced current/applied voltage) ratio) plays
an important role. We will establish the formula for characterizing the admittance
spectrum obtained from the k31 type piezo-plate specimen. Now, the electric dis-
placement constitutive equation (Equation (7.4)) is essential. Since the electrodes
are on the top and bottom of the piezo-plate, as shown in Figure 7.5, the required
equation is only D3:

D3 = d31X1 + ε33
X ε0E3. (7.14)

Only E3 and X1 are active (X2 = X3 = 0) in this case. The current flow into the
specimen is described by the surface charge increment, ∂D3/∂t. Note that D3 is
position dependent, though ∂E3/∂x = 0, since the stress is sinusoidally distributed in
the specimen, which generates polarization via a direct piezoelectric effect. Thus, the
total current is given by:

i = jωw
∫ L

0 D3dx = jωw
∫ L

0 (d31X1 + ε33
Xε0Ez)dx

= jωw
∫ L

0 [d31{x1/s11
E − (d31/s11

E)Ez}+ ε33
Xε0Ez]dx.

(7.15)

Using Equation (7.10), the admittance Y for the mechanically free sample is
calculated to be:

Y = (−i/V) = (i/Ezb)

= (jωwL/Ezb)
∫ L

0 [(d31
2/s11

E)(
cos
[
ω(2x−L)

2vE
11

]

cos
(

ωL
2vE

11

) )Ez + [ε33
Xε0−(d31

2/s11
E)]Ez]dx

= (jωwL/b)ε0ε33
LC[1 + (d31

2/ε0ε33
LCs11

E)(tan(ωL/2v11
E)/(ωL/2v11

E)]

= jωCd[1 +
k2

31
1−k2

31

tan(Ω11)
Ω11

] [Ω11 = (ωL/2vE
11)]

= jωC0[(1− k2
31) + k2

31
tan(Ω11)

Ω11
] [k31

2 = d31
2/ε0εX

33sE
11],

(7.16)

where w is the width, L the length, b the thickness of the rectangular piezo sample,
and V is the applied voltage. Note that Ez =−grad(V) (i.e., V =−Ezb), and the current
direction measured externally should be taken in opposition to the internal flow.
ε33

LC is the permittivity in a “longitudinally clamped” sample, which is given by

ε33
LC = ε33

X −
(

d31
2

ε0s11
E

)
= ε0ε33

X(1− k31
2); [k31

2 = d31
2/ε0εX

33sE
11]. (7.17)

Note, however, that this is not three-dimensionally clamped permittivity εx
33,

precisely speaking, which also reflects the later dielectric loss. Accordingly, Equa-
tion (7.16) can be understood as follows, under a constant input voltage/electric
field: the first term (jωwL/b)ε0ε33

LC = jωCd is called “damped (or longitudinally
clamped) capacitance”, which is directly proportional to ω, while the second term
jωC0k2

31
tan(Ω11)

Ω11
is called “motional capacitance”, which originates from the res-

onator’s size (length) change via the mechanical vibration and is strongly dependent
on ω like tan(ωL/2v11

E). When ω is small, tan(Ω11)
Ω11

→ 1, then the motional admittance
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becomes jωC0k2
31. The total input energy will split into the motional (mechanical)

and damped (electric) energy with the ratio k31
2 vs. (1− k31

2), respectively. How-
ever, as ω approaches the resonance frequency, motional admittance (or capacitance)
increases dramatically like tan(ωL/2v11

E), for which we can understand the ac-
cumulation/amplification of energy with respect to “time”. Figure 7.4 shows an
example admittance magnitude and phase spectra for a rectangular piezo-ceramic
plate (L = 20) for a fundamental longitudinal mode (k31) through the transverse piezo-
electric effect (d31), on the basis is Equation (7.16). Note that the shown data include
losses, and the 3 dB down method to obtain mechanical quality factor Qm is also
inserted in advance (Discussion is in Section 7.3).

The piezoelectric resonance is achieved when the admittance becomes infinite
or the impedance is zero (when the loss is negligible). The resonance frequency fA
is calculated from Equation (7.16) (tan(ωL/2v11

E) = ∞ by putting ωL/2v11
E = π/2),

and the fundamental frequency is given by

fA = ωA/2π = v11
E/2L = 1/(2L

√
ρs11

E). (7.18)

This resonance mode corresponds to the fundamental standing wave (λ/2 on L)
with the velocity v11

E on a rod with length L (i.e., fA = v11
E/2L). On the other hand,

the antiresonance state is generated for zero admittance or infinite impedance:

(ωBL/2v11
E)cot(ωBL/2v11

E) = −d31
2/ε0ε33

LCs11
E = −k31

2/(1 − k31
2). (7.19)

The final transformation is provided by the definition,

k31 = d31/
√

s11
E·ε33Xε0. (7.20)

Resonance and Antiresonance Vibration Modes

The resonance and antiresonance states are both mechanical resonance states
with amplified strain/displacement states, but they are very different from the
driving viewpoints. The mode difference is described by the following intuitive
model. In a high electromechanical coupling material with k almost equal to one,
the resonance or antiresonance states appear for tan(ωL/2v) = ∞ or 0 (i.e., ωL/2v =
(m − 1/2)π or mπ (m: integer)), respectively. The strain amplitude x1 distribution
for each state (calculated using Equation (7.10)) is illustrated in Figure 7.6. In the
resonance state, the strain distribution is basically sinusoidal with the maximum
at the center of the plate (x = L/2) (see the numerator). When ω is close to ωA,
(ωAL/2v) = π/2, leading to the denominator cos(ωAL/2v)→ 0. Significant strain
magnification is obtained. It is worth noting that the stress X1 is zero at the plate ends
(x = 0 and L), but the strain x1 is not zero, but is equal to d31EZ. According to these
large strain amplitudes, large capacitance changes (called “motional capacitance”)
are induced, and under a constant applied voltage the current can easily flow into
the device (i.e., admittance Y is infinite). To the contrary, at the antiresonance, the
strain induced in the device compensates completely in the plate (because extension
and compression are compensated. Recall Figure 7.2, even the harmonic modes),
resulting in no motional capacitance change in the total plate, and the current cannot
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flow easily into the sample (i.e., admittance Y zero). Thus, for a high k material
the first antiresonance frequency fB should be twice as large as the first resonance
frequency fA.

It is notable that both resonance and antiresonance states are in the mechanical
resonance, which can create large strain inside the sample under the minimum input
of electrical energy. When we use a constant voltage supply, the specimen vibration
is excited only at the resonance mode, because the electrical power is very small at
the antiresonance mode (due to high impedance). This provides a common miscon-
ception to junior engineers that “the antiresonance is not a mechanical resonance”. In
contrast, when we use a constant current supply, the vibration is excited only at the
antiresonance, instead, because of the large input voltage. The stress X1 at the plate
ends (x = 0 and L) is supposed to be zero in both cases. However, though the strain x1
at the plate ends is zero/very small (precisely, d31Ez, because of low voltage and high
current drive) for the resonance, the strain x1 at the plate ends is not zero (actually the
maximum, or the nodal lines) for the antiresonance (because of high voltage and low
current drive). This means that there is only one vibration node at the plate center for
the fundamental resonance (top left in Figure 7.6), and there are additional two nodes
at both plate ends for the first antiresonance (top right in Figure 7.6). The reason is
from the antiresonance drive, i.e., high voltage/low current (minimum power) drive
due to the high impedance. The converse piezo effect strain under E directly via
d31 (uniform strain in the sample) superposes on the mechanical resonance strain
distribution (distributed strain with nodes in the sample), two strains of which have
exactly the same level theoretically at the antiresonance for k31 ≈ 1.

In a typical case, where k31 = 0.3, the antiresonance state varies from the previ-
ously mentioned (high k31) mode and becomes closer to the resonance mode (top
center in Figure 7.6). The low-coupling material exhibits an antiresonance mode
where the capacitance change due to the size change (“motional capacitance”) is
compensated completely by the current required to charge up the static capacitance
(called “damped capacitance”). Thus, the antiresonance frequency fB will approach
the resonance frequency fA. The vibration mode of the antiresonance resembles that
of the resonance with slight shift of the anti-nodal lines into the plate.

7.2.3. Longitudinal Vibration Mode via Longitudinal Piezoelectric Effect (k33 Mode)—Loss Free

Piezoelectric Dynamic Equation

Let us now consider the longitudinal vibration k33 mode in comparison with
the k31 mode. When the resonator is long in the z direction and the electrodes
are deposited on each end of the rod, as shown in Figure 7.7, the following stress
conditions are satisfied:

X1 = X2 = X4 = X5 = X6 = 0 and X3 6= 0.
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Figure 7.7. Longitudinal vibration through the piezoelectric effect (d33) in a rod
(L� w ≈ b). Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019;
p. 116. Reproduced by permission of Taylor & Francis Group.

Thus, the constitutive equations are

X3 = (x3 − d33Ez)/s33
E, (7.21)

D3 = ε0ε33
XEz + d33X3, (7.22)

for this configuration. Assuming a local displacement u in the z direction, from
Equation (7.21) (Ez 6= 0 in this no-electrode along the wave propagation direction Z)
the dynamic equation is expressed by:

ρ
∂2u
∂t2 =

1
sE

33

[
∂2u
∂z2 − d33

∂Ez

∂z

]
. (7.23)

The electrical condition for the longitudinal vibration is not (∂Ez/∂z) = 0, but
rather (∂Dz/∂z) = 0. Inserting Equation (7.21) into Equation (7.22):

ε0εX
33

∂EZ
∂z + d33

sE
33
[( ∂2u

∂z2 )− d33(
∂EZ
∂z )] = 0, or

ε0εX
33(1− k2

33)(
∂EZ
∂z ) = − d33

sE
33
( ∂2u

∂z2 ).
(7.24)

Thus, Equation (7.23) becomes:

ρ
∂2u
∂t2 =

1
sD

33

∂2u
∂z2 (sD

33 = (1− k3
33)s

E
33). (7.25)

Compared with Equation (7.13) (v = 1/
√

ρs11
E) in the surface electroded (E-

constant) sample along the vibration direction, the non-electrode (D-constant) k33
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sample exhibits v33
D = 1/

√
ρs33D, which is faster (elastically stiffened) than in the

E-constant condition. Taking a similar calculation process to the k31 mode, we obtain

(Strain) x3 =
d33

ε0εX
33

D3[cos

(
ω

2vD
33
(2z− L)

)
/cos

(
ωL
2vD

33

)
], (7.26)

(Displacement) u3 =
d33

ε0εX
33

vD
33
ω

D3[sin

(
ω

2vD
33
(2z− L)

)
/cos

(
ωL
2vD

33

)
]. (7.27)

In comparison with the resonance/antriresonance strain distribution status in
the k31 mode in Figure 7.6, Figure 7.8 illustrates the strain distribution status in the
k33 mode. Because k31 and k33 modes possess E-constant and D-constant constraints,
respectively, in k31, the resonance frequency is directly related to v11

E or s11
E, while

in k33, the antiresonance frequency is directly related to v33
D or s33

D, c33
D. The

antiresonance in k31 and the resonance in k33 are subsidiary, originating from the
electromechanical coupling factors. It is also worth noting that with increasing the k
value toward 1, the ratio fB/fA approaches two in k31, while it can reach ∞ in k33, and
that the strain distribution at the resonance becomes almost flat or uniform in k33,
though the stress distributes sinusoidally with zero at the plate ends. The “extensive
parameters” s33

D, c33
D can be determined experimentally using the high-frequency

measurement, when the “depolarization field” cannot be compensated by the free
charge (no side electrode in the k33 specimen).

(a)

(b)

Resonance - Strain

Resonance - Strain

Antiresonance - Strain

Antiresonance - Strain

Low coupling

Low coupling

High coupling

High coupling

fA = vE/2L; vE = 1/√ρsE
11

D = 1/√ρsD
33

fB 
/fA 

      2

fB /fA 
        ∞ fB = vD/2L; v 

Figure 7.8. Strain distribution in the resonance and antiresonance states. Longitudi-
nal vibration through the transverse d31 (a) and longitudinal d33 (b) piezo effect in
a rectangular plate. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press,
2019; p. 117. Reproduced by permission of Taylor & Francis Group.
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Electrical Admittance around Resonance and Antiresonance

Admittance can also be calculated from (∂D3/∂t) with D3 = ε0ε33
XEz + d33X3 as

follows:

Y = i
−V =

jωε0εLC
33 (

wb
L )

1−k2
33





tan

(
ωL

2vD
33

)

(
ωL

2vD
33

)








= jωCd +
jωCd

[−1+1/k2
33{

tan(Ω33)
(Ω33)

}]

= jωCd +
1

[− 1
jωCd

+1/jωCdk2
33{

tan(Ω33)
(Ω33)

}]
.

(7.28)

Here we used Ω33 =

(
ωL

2vD
33

)
, εLC

33 = εX
33(1 − k2

33), sD
33 = sE

33(1 − k2
33), k2

33 =

d2
33

ε0εX
33sE

33
, vD

33 = 1/
√

ρsD
33, and Cd = ε0εLC

33

(
wb
L

)
. The first expression is to obtain the

resonance and antiresonance frequencies from Y = ∞ and 0 conditions. The second
expression is to show the “damped admittance” and the “motional admittance”,
separately, and the final expression is for an equivalent circuit construction, explicitly
revealing that the motional admittance branch should include the “negative capac-
itance” (with exactly the same damped capacitance value) in series with the pure
vibration related contribution proportional to tan(Ω33)/(Ω33).

The resonance frequency is obtained from Y = ∞, that is, from Equation (7.28)
(

ωL
2vD

33

)
= k2

33tan(
ωL
2vD

33
). (7.29)

To the contrary, the antiresonance frquency is obtained from Y = 0; that is,

tan

(
ωL
2vD

33

)
= ∞, or

ωL
2vD

33
=

π

2
, leading to fB =

vD
33

2L
. (7.30)

Unlike the k31 case, the k33 mode exhibits the antiresonance as a primary me-
chanical resonance frequency with a half-wavelength exactly on the rod length under
the sound velocity of vD

33 (i.e., stiffened vibration), and the resonance is a subsidiary
vibration mode associated with the electromechanical coupling.

Boundary Condition: E-Constant vs. D-Constant

Both dielectric permittivity ε and elastic compliance s exhibit significant dif-
ference in terms of electromechanical coupling factor k under different boundary
conditions: mechanically stress-free or clamped; electrical short circuit or open circuit,
as described in Subsection Extensive Losses in Chapter 6. The reader is reminded of
the relations:

εx/εX = (1− k2), sD/sE = (1− k2), where k2 = d2/(sEε0εX).

We discussed the k31 mode vibrator with E-constant s11
E and k33 mode with

D-constant s33
D for analyzing the dynamic equations in sections 7.2.2 and 7.2.3. Here,
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we reconsider the relation between these status differences from the “depolarization
field” viewpoint.

Let us consider boundary conditions in a piezoelectric plate with or without a
surface electrode, in which a mechanical longitudinal vibration wave is propagating
along the plate, as shown in Figure 7.9, where the spontaneous polarization PS
axis is perpendicular to the plate in (a) and (b), while in parallel to the plate in
(c). Figures merely illustrate the induced polarization ∆P and field E visually, with
the arrows. The “Gauss law”, static electromagnetic Maxwell relation, divD = ρ; or
divE = 1

ε0
(ρ− divP) indicates the depolarization field Edep = −(∆P

ε0
) originated from

the induce polarization by the piezoelectricity ∆P = d∆X, for instance, in a resistive
ferroelectric single crystal without surface electrodes (i.e., ρ = 0). Because this
stationary Edep is compensated by the migrating charge in a short period (~minutes),
we consider only AC ∆P associated with the mechanical vibration (i.e., D-constant).

If there are free charges ρ in the specimen plate, divE can be equal to zero by
compensating induced ∆P (induced by the stress as ∆P = d∆X) with ρ, leading to
an E-constant with respect to space/coordinate. In contrast, if there are no charges,
divD = 0 (D-constant), by generating a so-called “depolarization electric field”. With
piezoelectric coupling, D = ε0εXE + dX should be integrated into above divD = 0,
leading to

Edep = −( ∆P
ε0εX ), where ∆P = d∆X. (7.31)

When the surface is electroded in k31 mode (Figure 7.9a), charges ρ can easily
be supplied through the electrodes, as illustrated. Thus, ( ∂EZ

∂x ) = 0, or E-constant is
derived when the electrodes are connected to a voltage supply (small constant EZ
shown in the figure is from the power supply for exciting the mechanical wave),
or EZ = zero in the short circuit between the top and bottom electrodes. When
the surface does not have an electrode, no charge is supplied (Figure 7.9b). Thus,
the depolarization/reverse field is induced to maintain ( ∂DZ

∂x ) = 0, leading to D-
constant condition. That is, as shown in Figure 7.9b, both the induced polarization
∆P and depolarization field E are positively and negatively proportional to the stress
distribution, and cancel each other out. In the case of k33 mode (Figure 7.9c), though
the plate edges are electroded, there is no electrode along the wave propagation z axis
(parallel to the plate). Thus, no charge is available to compensate the polarization
modulation along the z direction, and the sound velocity along the polarization
direction should be a D-constant sound velocity based on s33

D. Needless to say,
when we made electrodes on the side of this k33 rod, free charge compensated the
depolarization field, leading to the E-constant v33

E and s33
E.
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Figure 7.9. Boundary conditions: E-constant vs. D-constant under dynamic waves.
(a) E-constant (≈0): k31 mode (Electrode); (b) D-constant (=0): k31 mode (No Elec-
trode); (c) D-constant (=0): k33 mode (No Side Electrode; Edge Electrode). Source: [1]
©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 118. Reproduced by
permission of Taylor & Francis Group.

However, it is noteworthy that the situation is different when the driving fre-
quency is pseudo-DC. Even in a k33 rod specimen, when the operating frequency
is low, the depolarization field attracts “stray” charges in the specimen or on the
specimen surface from the surrounding atmosphere, and it is canceled out (i.e., so-
called “screening”); that is, approaching to the E-constant condition, rather than
D-constant status. The elasticity seems to change from the original s33

D to s33
E when

the operating frequency decreases from >1 kHz down to 0.001 Hz, in practice. In
this sense, remember that the electromechanical coupling factors k31 and k33 are de-
fined at pseudo-static (pseudo-DC) operation, described with the E-constant elastic
compliances: 




k31 = d31√
sE

11ε0εX
33

k33 = d33√
sE

33ε0εX
33

. (7.32)

7.2.4. Other Vibration Modes—Loss Free

In addition to the k31 and k33 modes, there are several piezoelectric ceramic
resonators with different shapes and sizes. In order to determine both dielectric
permittivities (εX

33, εX
11), five elastic compliances (sE

33, sE
11, sE

13, sE
12, and sE

44), and three
piezoelectric constants (d33, d31 and d15) in piezo-ceramic materials with ∞mm sym-
metry, the measurements on “five” vibration modes are required, the specimen
configurations of which are illustrated in Figure 7.10, which correspond to (a), (b),
(c), (d), and (j) in Table 7.1. Table 7.1 summarizes the electromechanical coupling
factor definitions of various piezoelectric resonators with different shapes and elec-
trode configurations.
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Table 7.1. The electromechanical coupling factor definitions of various piezoelectric
resonators with different shapes and sizes.

X1 ≠ 0, X2 = X3 = 0 
x1 ≠ 0, x2 ≠ 0, x3 ≠ 0

X1 = X2 = 0, X3 ≠ 0 
x1 = x2 ≠ 0, x3 ≠ 0

X1 = X2 ≠ 0, X3 ≠ 0 
x1 = x2 = 0, x3 ≠ 0

X1 = X2 ≠ 0, X3 ≠ 0 
x1 = x2 ≠ 0, x3 = 0

X1 ≠ 0, X2 = 0, X3 ≠ 0 
x1 ≠ 0, x2 ≠ 0, x3 = 0

X1 ≠ 0, X2 ≠ 0, X3 ≠ 0 
x1 ≠ 0, x2 = 0, x3 = 0

X1 ≠ 0, X2 = 0, X3 ≠ 0 
X1 = 0, X2 ≠ 0, X3 ≠ 0

X1 = X2 = X3 = 0, X4 ≠ 0 
X1 = X2 = X3 = 0, X5 ≠ 0

X1 ≠ 0, X2 ≠ 0, X3 = 0 
x1 ≠ 0, x2 = 0, x3 ≠ 0

X1 = X2 ≠ 0, X3 = 0 
x1 = x2 ≠ 0, x3 ≠ 0

3k31

Factor Boundary Conditions Resonator Shape Definition

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

k33

kp

kp'

k31'

k33'

k24 = k15

k31''

k31'''

kt

3

3

3

Planar mode

Thickness mode

Radial mode

Width mode

Width mode

Width mode

Shear mode

Thickness mode

3

1

3

3

3

3

3

1

1

1

1

1

2

2

2

2

√ SE
11ε0εX

33

√ SE
55ε0εX

11

SE
33ε0εX33

1 − A2

√ 1 − B2

√ 1 − k 
2
31

1 − k2 
33

√ 1 − k 
2
33

√ 1 − k2
31

√  1 − σ

CD
33

1 − A2 

1 − k 
2 

33 − (k31 
− Bk33)

2

1 − σ

√

√

√

d31

d15

d33

kp  − Ak33

k33 − Bk31

k31

k31  Bk33

k31

k33

2

ε0εX
33

(kp − Ak33)2

1 + σ

√ sE
11sE

33

√ 2sE13
, B =Above A =

√ sE
33(sE

11 + sE
12)

sE
13

√

√

√

− (k31 − Bk33)
2

Note: Above A =
√

2SE
13√

SE
33(SE

11+SE
12)

, B = SE
13

SE
11SE

33
. Source: Table by author.
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Figure 7.10. Sketches of the sample geometries for five required vibration modes.
Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 179. Repro-
duced by permission of Taylor & Francis Group.

7.3. Piezo Equations and Vibration Modes—With Losses

7.3.1. Longitudinal Vibration Mode via Transverse Piezoelectric Effect (k31 Mode)—With Losses

Resonance Mode—QA

Now, we introduce the complex parameters into the admittance formula
Equation (7.16) around the resonance frequency [5,6]: ε3

X* = ε3
X(1 − jtanδ33

′),
s11

E* = s11
E(1 − jtanφ11

′), and d31* = d31(1 − jtanθ31
′).

Y = Yd + Ym = jωCd(1 − jtanδ33
′ ′ ′) + jωCdK31

2[(1 − j(2tanθ31
′ −

tanφ11
′)][(tan(ωL/2v11

E*)/(ωL/2v11
E*)],

(7.33)

where

C0 = (wL/t)ε0ε33
X (free electrostatic capacitance, real number), (7.34)

Cd = (1 − k31
2)C0 (damped/clamped capacitance, real number), (7.35)

k31
2 =

k2
31

1− k2
31

. (7.36)
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Note that the loss for the first term (“damped/clamped admittance”) is repre-
sented by the dielectric loss tanδ′ ′ ′:

tanδ33
′ ′ ′ = [1/(1 − k31

2)][tanδ33
′ + k31

2(tanφ11
′ − 2tanθ31

′)]. (7.37)

Though the formula is identical to Equation (6.135) in 1D expression through
the [K] matrix, tanδ33

′ ′ ′ is not exactly to the “extensive” non-prime loss tanδ, because
the extensive loss should be under a three-dimensionally clamped condition, not just
1D longitudinally clamped (Recall we used εLC

33 ).
Regarding the motional admittance term, taking into account

vE∗
11 =

1√
ρsE

11(1− jtan φ11
′)

= vE
11

(
1 + j

tan φ11
′

2

)
, (7.38)

we further calculate 1/[tan(ωL/2v*)] with an expansion-series approximation around
the A-type resonance frequency (ωAL/2v) = π/2. Using new frequency parameters,

ΩA =ωAL/2v11
E = π/2, ∆Ω = Ω − π/2 (<<1), (7.39)

we obtain

1
tan Ω* = cot

(π

2
+ ∆ΩA − j

π

4
tan φ11

′
)
= ∆ΩA − j

π

4
tan φ11

′. (7.40)

Thus, the “motional admittance” Ym is approximated around the first resonance
frequency ωA by

Ym = j(8/π2)ωACdK31
2[(1 − j(2tanθ31

′ − tanφ11
′)]/[(4/π)∆ΩA − jtanφ11

′]. (7.41)

The maximum Ym is obtained at ∆ΩA = 0:

Ym
max = (8/π2)ωACdK31

2(tanφ11
′)−1 = (8/π2)ωACdK31

2QA. (7.42)

The mechanical quality factor for A-type resonance QA = (tanφ11
′)−1 can be

proved as follows: QA is defined by QA = ωA/2∆ω, where 2∆ω is a full width of
the 3 dB down (i.e., 1/

√
2, because 20log10(1/

√
2) = −3.01) of the maximum value

Ym
max at ω = ωA. Since |Y|=|Y|max/

√
2 can be obtained when the “conductance =

susceptance”; ∆ΩA = π/4)tanφ11
′ (see the denominator of Equation (7.41)),

QA = ΩA/2∆ΩA = (π/2)/2(π/4)tanφ11
′ = (tanφ11

′)−1. (7.43)

Similarly, the maximum displacement umax is obtained at ∆Ω = 0:

umax = (8/π2)d31EZLQA. (7.44)

The maximum displacement at the resonance frequency is (8/π2)QA times larger
than that at a non-resonance frequency, d31EZL. Under the constant voltage/field
drive, the displacement is amplified at the resonance frequency, while under the
constant current drive, the displacement u and the impedance Z are amplified at the
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antiresonance frequency by the factor of (8/π2)QB. Example Problem 7.2 provides
the origin of the calibration factor (8/π2) for both maximum values of Ym

max and
umax at the fundamental resonance mode.

Example Problem 7.2

Under pseudo-DC operation, the input electric energy is split into the converted
mechanical energy by k2 and the stored electric energy by (1 − k2), leading to the
damped and motional capacitance ratio (1− k2) vs. k2. However, under the resonance
drive, though the damped admittance is provided by ωAC0(1 − k31

2), the maximum
of the motional admittance for the fundamental resonance frequency is described by

Ym
max = (8/π2)ωAC0k31

2QA. (P7.2.1)

The calibration factor (8/π2) (≈0.81) is required for the fundamental resonance
frequency, rather than just one. Explain why this calibration factor is required for the
fundamental resonance condition.

Hint

Calculate the motional admittance for higher-order resonance harmonics. The
fundamental resonance mode does not spend all mechanically converted energy, but
it is also shared by harmonics. Use the relation:

Σ[
1

(2m− 1)2 ] = (
π2

8
). (P7.2.2)

Solution

We start from Equation (7.33):

Ym = jωCdK31
2[(1 − j(2tanθ31

′ − tanφ11
′)][(tan(ωL/2v11

E*)/(ωL/2v11
E*)]. (P7.2.3)

Note that the A-type resonance is obtained at
(

ωA,n L
2vE

11

)
= n(π

2 ), where n = 1, 3,

5, . . . (the n-th higher-order harmonics) and vE
11

2
= 1/ρsE

11. Then, taking into account
the complex elastic compliance

vE∗
11 =

1√
ρsE

11(1− jtan φ11
′)

= vE
11

(
1 + j

tan φ11
′

2

)
, (P7.2.4)

we further calculate 1/[tan(ωL/2v*)] with an expansion-series approximation around
the A-type resonance frequency (ωAL/2vE

11) = n(π/2), taking into account that the
resonance state is defined in this case for the minimum impedance (maximum
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admittance) point. Using new frequency parameters, ΩA = ωAL/2v11
E = n(π/2),

∆ΩA = Ω − n(π/2) (<<1), we obtain the approximation

1
tan Ω∗

= cot
(

n
π

2
+ ∆ΩA − j

1
2
(n

π

2
)tan φ11

′
)
= ∆ΩA − j

nπ

4
tan φ11

′ (P7.2.5)

the “motional admittance” Ym is approximated around the n-th resonance frequency
ωA,n by

Ym,n = j(8/π2n2ωAC0k31
2/[(4/nπ)∆ΩA − jtanφ11

′]. (P7.2.6)

The maximum Ym is obtained at ∆ΩA= 0:

Ymax
m,n = (8/π2n2)ωAC0k31

2(tanφ11′)−1 = (8/π2n2)ωAC0k31
2Qm. (P7.2.7)

Supposing that the intensive elastic loss tan φ11’ or the mechanical quality
factor Qm is insensitive to the frequency difference among the higher-order harmonic
resonance frequencies, we can understand that each harmonic mode is originated
from the effective motional capacitance equal to (8/π2n2)C0k31

2, and the admittance
is enhanced by the factor of Qm. Under the resonance, the input cyclic electric energy
will excite the mechanical vibration and motional capacitance synchronously by
a factor of Qm by spending the cyclic excitation number proportional to Qm. The
motional capacitance is proportional to (1/n2) for the n-th order harmonic resonance
mode. Knowing a general relationship Σ[ 1

(2m−1)2 ] = ( π2

8 ) (m—positive integer), when

we add motional capacitances for all harmonic resonance modes:

(8/π2)C0k31
2 ∑

n=1, 3,5,...
(

1
n2 ) = C0k31

2. (P7.2.8)

Since the total motional capacitance for all harmonic resonance modes corre-
sponds exactly to the free capacitance minus damped capacitance, the calibration
factor (8/π2n2) can be understood as the distribution ratio of the mechanical energy
to all n-th harmonic modes. The above concept on the higher order harmonic modes
will be used in the Equivalent Circuit Model explained in Chapter 9.

Antiresonance Mode—QB

On the other hand, in PZT ceramics a higher quality factor at the antiresonance is
usually observed in comparison with that at the resonance point [7,8], the reason for
which was interpreted by Mezheritsky from the combination of three loss factors [8].
In this subsection, we provide an alternative and, more importantly, a user-friendly
formula to determine piezoelectric losses by analyzing the admittance/impedance
spectra at resonance and antiresonance [9]. The antiresonance corresponds to the
minimum admittance of Equation (7.33):

Y = (jωwL/b)ε0ε33
X[(1−k2)+ k2tan(ωL/2v11

E)/(ωL/2v11
E)],

(v11
E = 1/

√
ρsE

11) = jωC0[(1− k2
31) + k2

31
tan(Ω11)

Ω11
].
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Here, v11
E = 1/

√
ρsE

11, Ω11 = (ωL/2vE
11), and k31

2 = d31
2/ε0εX

33sE
11.

In the resonance discussion, we neglected the damped admittance, because
the motional admittance is significantly large due to tan(ωL/2v11

E*) ↗ ∞ . On
the contrary, in the antiresonance discussion, we basically consider the subtraction
between the damped and motional admittances; that is, the admittance should be
exactly zero when the loss is not included, or is only the minimum when we consider
the losses (that is, complex parameters) in Equation (7.33).

We introduce the normalized admittance Y’ for further calculation:

Y′ = 1− k31
2 + k31

2 tan(ωl/2vE
11)

ωl/2vE
11

= 1− k31
2 + k31

2 tan(Ω)

Ω
. (7.45)

Since the expansion series of tanΩ is convergent in this case, taking into account

1/vE∗
11 =

√
ρsE

11(1− jtan φ11
′) = (1/vE

11)
(

1− j tan φ11
′

2

)
,

we can apply the following expansion approximation in terms of tanφ11’:

tan(Ω*) = tan
(

Ω− j Ωtan φ11
′

2

)
= tan Ω− j Ωtan φ11

′

2cos2 Ω .

Introducing losses for the parameters in Equation (7.45) leads to

Y′ = 1− k31
2[1− j

(
2tan θ′31 − tan δ′33 − tan φ11

′)]

+k31
2[1− j

(
2tan θ31

′ − tan δ33
′ − tan φ11

′)] tan Ω*

Ω* .
(7.46)

Note that the “electromechanical coupling loss”
(
2tan θ31

′ − tan δ33
′ − tan φ11

′)

contributes significantly in this antiresonance discussion. We separate Y’ into con-
ductance G (real part) and susceptance B (imaginary part) as Y’ = G + jB:

G = 1− k31
2 + k31

2 tan Ω
Ω

. (7.47)

B =

(
k31

2 − k31
2 tan Ω

Ω

)(
2tan θ31

′ − tan δ′33 − tan φ11
′)− k31

2

2

(
1

cos2 Ω
− tan Ω

Ω

)
tan φ11

′. (7.48)

The antiresonance frequency Ωb is initially determined from G = 0 (refer to
Subsection Resonance/Antiresonance Frequency Definitions), and

1− k31
2 + k31

2 tan ΩB
ΩB

= 0. (7.49)

Using new parameters,
Ω = ΩB + ∆ΩB, (7.50)

similar to ∆ΩA for the resonance, ∆ΩB is also a small number, and the first-order
approximation of ( tan Ω

Ω ) in Equation (7.45) can be utilized.

tan Ω
Ω = tan ΩB

ΩB
+ 1

ΩB

(
1

cos2 ΩB
− tan ΩB

ΩB

)
∆ΩB.
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Neglecting the high order term, which has two or more small factors (loss factor
or ∆ΩB),

G =
k31

2

ΩB

(
1

cos2 ΩB
− tan ΩB

ΩB

)
∆ΩB. (7.51)

B =
(
2tan θ31

′ − tan δ33
′ − tan φ11

′)− k31
2

2

(
1

cos2 ΩB
− tan ΩB

ΩB

)
tan φ11

′. (7.52)

Consequently, the minimum absolute value of admittance can be achieved when
∆ΩB is zero. The antiresonance frequency ΩB is determined by Equation (7.49). In
order to find the 3 dB-up point, let G = B, where

√
G2 + B2 =

√
2B is satisfied:

k31
2

ΩB

(
1

cos2 ΩB
− tan ΩB

ΩB

)
∆ΩB =

(
2tan θ31

′ − tan δ33
′ − tan φ11

′)−
k31

2

2

(
1

cos2 ΩB
− tan ΩB

ΩB

)
tan φ11

′.
(7.53)

Further, since the antiresonance quality factor is given by

QB,31 =
ΩB

2|∆ΩB|
. (7.54)

Equation (7.53) can be represented as

k31
2

2QB,31

(
1

cos2 ΩB
− tan ΩB

ΩB

)

= −
(
2tan θ31

′ − tan δ33
′ − tan φ11

′)+ k31
2

2

(
1

cos2 ΩB
− tan ΩB

ΩB

)
tan φ11

′.

We can now obtain the result as

1
QB,31

= tan φ11
′ − 2

k31
2

(
2tan θ31

′ − tan δ33
′ − tan φ11

′)/
(

1
cos2 ΩB

− tan ΩB
ΩB

)
.

Or, as a final formula:

1
QB,31

=
1

QA,31
− 2

1 +
(

1
k31
− k31

)2
ΩB

2

(
2tan θ31

′ − tan δ33
′ − tan φ11

′). (7.55)

Note the following relation used in the formula transformation:

1
cos2 ΩB

− tan ΩB
ΩB

=
(1− k31

2)2ΩB
2 + k31

2

k31
4 . (7.56)

You may understand that in k31 mode, where the wave propagation direction
with the electrode is perpendicular to the spontaneous polarization direction, the
primary mechanical resonance (a half-wavelength vibration of the plate length)
corresponds to the “resonance” mode with the sound velocity v11

E, and the “an-
tiresonance” mode corresponds to the subsidiary mode via the electromechani-
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cal coupling. Additionally, from Equation (7.55), we can understand that when
(2tanθ

′
31 − tanδ

′
33 − tanφ′11) > 0, QB,31 > QA,31; while (2tanθ

′
31 − tanδ

′
33 − tanφ′11) < 0,

QB,31 < QA,31. From Figure 7.4, it is experimentally obvious that QB,31 > QA,31 in PZT
piezo-ceramics, leading to a conclusion that the piezoelectric loss is larger than the
average of the dielectric and elastic losses: (2tanθ

′
31 − tanδ

′
33 − φ′11) > 0.

7.3.2. Vibration Mode via Longitudinal Piezoelectric Effect (k33 Mode)—With Losses

The length extensional mode is shown in Figure 7.7, where L >> w, b. Recall that

the vibration velocity along the spontaneous polarization is given by vD = 1/
√

ρsD
33.

Taking into account the admittance formula given by Equation (7.28), we can derive
the impedance expression of the k33 mode bar in a similar fashion to k31 mode [10].

Z(ω) =
1

jωCd

(
1− k33

2 tan Ω
Ω

)
, (7.57)

where
Cd =

wb
L

ε0ε33
X
(

1− k2
33

)
, (7.58)

Ω =
ωL
2

√
ρsD

33 =
ωL
2

√
ρsE

33
(
1− k2

33
)
, (7.59)

k33
2 =

d33
2

ε0εX
33sE

33
. (7.60)

By introducing the complex parameters,

(
k33

2
)∗

= k33
2(1− jχ33), (7.61)

χ33 = 2tan θ33
′ − tan δ33

′ − tan φ33
′ (“electromechanicalcouplingloss”), (7.62)

Cd
∗ = Cd(1− jtan δ33

′′′ ) (dampedcapacitanceloss), (7.63)

tan δ33
′′′ =

1
1− k33

2

[
tan δ33

′ − k33
2(2tan θ33

′ − tan φ33
′)], (7.64)

Ω* = Ω
√

1− jtan φ33 ′′′ , (7.65)

tan φ33
′′′ =

1
1− k33

2

[
tan φ33

′ − k33
2(2tan θ33

′ − tan δ33
′)
]
. (7.66)

Note again that the parameters in k33 mode have similar forms to k31 mode,
and the difference is that the loss factors by −χ33, tanδ33

′ ′ ′, tan φ33
′ ′ ′, which show

identical forms to the “extensive loss” parameters in terms of “intensive losses”, but
are not the same, strictly speaking. The difference between the extensive (non-prime)
losses and these triple-prime losses comes from the 3D or 1D mechanically clamped
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conditions. Refer to the kt mode in the next subsection, where the loss factors are
purely “extensive losses” since the elastic stiffness c33

D is the primary parameter,
and the mechanical 3D clamp is practically satisfied. Compare the formula (b) and
(d) in Table 7.1. The thickness resonance frequency is high enough to suppress the
length/width vibration excitation. Therefore, a similar derivation process to the k31
mode can be applied, and the results for the k33 are given by

QB,33 =
1

tan φ33 ′′′
=

1− k33
2

tan φ33
′ − k33

2(2tan θ33
′ − tan δ33

′)
, (7.67)

1
QA,33

=
1

QB,33
+

2
k33

2 − 1 + ΩA
2/k33

2

(
2tan θ33

′ − tan δ33
′ − tan φ33

′). (7.68)

Unlike in the k31 mode, you may approximately understand that in k33 and kt
modes, where the wave propagation direction is parallel to the spontaneous polar-
ization direction, the primary mechanical resonance (a half-wavelength vibration of
the length or thickness) corresponds to the “antiresonance” mode with the sound
velocity v33

D, and the “resonance” state is the subsidiary mode via the piezoelec-
tric coupling. Additionally, from Equation (7.68) we can understand that when
(2tanθ

′
33 − tanδ

′
33 − tanφ′33) > 0, QB,33 > QA,33; while (2tanθ

′
33 − tanδ

′
33 − tanφ′33) < 0,

QB,31 < QA,31. From Equation (7.57) and setting Z = 0, the resonance frequency is
provided simply by

ΩA = k33
2tan ΩA [k33

2 =
d33

2

ε0εX
33sE

33
]. (7.69)

Note again that a half-wavelength of the vibration is longer than the rod length
at the resonance frequency (more uniform strain distribution than the sinusoid); a
half-wavelength is realized at the antiresonance frequency.

7.3.3. Loss and Mechanical Quality Factor in Other Modes

To obtain the loss factor matrix, “five vibration modes” need to be characterized
in PZT ceramics with ∞mm crystallographic symmetry (independently, two dielectric,
five elastic, and three piezoelectric loss components for either intensive and extensive
parameters), as summarized in Figure 7.10 and Table 7.1. The methodology is based
on the equations of quality factors QA (resonance) and QB (antiresonance) in various
modes with regard to loss factors and other properties [10]. We can measure QA and
QB for each mode by using the “3 dB-up/down method” (or “quadrantal frequency
method”) in the impedance/admittance spectra (see an example in Figure 7.4). The
experimental techniques to determine the mechanical quality factors are described
in Section 7.4. In addition to some derivations based on fundamental relations
of the material properties, all 20 loss factors (prime and non-prime tanδ33, tanδ11;
tanφ33, tanφ11, tanφ12, tanφ13, tanφ55; tanθ33, tanθ31, tanθ15) can be obtained for
piezoelectric ceramics. We derived the relationships between mechanical quality
factors QA (resonance) and QB (antiresonance) in all five required modes shown
in Table 7.1. The results for QA (resonance) and QB (antiresonance) formulae are
summarized below [10]:
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(a) k31 mode: (intensive elastic loss)
QA,31 = 1

tan φ11
′

1
QB,31

= 1
QA,31

− 2
1+( 1

k31
−k31)2ΩB,31

2 (2tan θ31
′ − tan δ33

′ − tan φ11
′)

ΩA,31 = ωa l
2vE

11
= π

2 ,
[
vE

11 = 1/
√

ρsE
11

]

ΩB,31 = ωb l
2vE

11
, 1− k31

2 + k31
2 tan ΩB

ΩB
= 0

(b) kt mode: (extensive elastic loss)
QB,t =

1
tan φ33

1
QA,t

= 1
QB,t
− 2

kt
2−1+ΩA,t

2/kt
2 (2tan θ33 − tan δ33 − tan φ33)

ΩB,t =
ωb l
2vD

33
= π

2 ,
[
vD

33 = 1/
√

ρ/cD
33

]

ΩA,t =
ωa l
2vD

33
, ΩA,t = kt

2tan ΩA,t

(c) k33 mode:

QB,33 = 1
tan φ′′′ 33

= 1−k33
2

tan φ33
′−k33

2(2tan θ33
′−tan δ33

′)
1

QA,33
= 1

QB,33
+ 2

k33
2−1+ΩA

2/k33
2

(
2tan θ33

′ − tan δ33
′ − tan φ33

′)

ΩB,33 = ωb l
2vD

33
= π

2 ,
[
vD

33 = 1/
√

ρsD
33

]
,

ΩA,33 = ωa l
2vD

33
ΩA,33, ΩA,33 = k33

2tan ΩA,33

(d) k15 mode (constant E—length shear mode): (intensive elastic loss)
QE

A,15 = 1
tan φ55

′
1

QE
B,15

= 1
QE

A,15
− 2

1+( 1
k15
−k15)2ΩB

2

(
2tan θ′15 − tan δ′11 − tan φ′55

)

ΩB = ωb L
2vE

55
= ωb L

2

√
ρsE

55, 1− k15
2 + k15

2 tan ΩB
ΩB

= 0

(e) k15 mode (constant D—thickness shear mode): (extensive elastic loss)
QD

B,15 = 1
tan φ55

1
QD

A,15
= 1

QD
B,15
− 2

k15
2−1+ΩA

2/k15
2 (2tan θ15 − tan δ11 − tan φ55)

ΩA = ωat
2vD

55
= ωat

2

√
ρ

cD
55

, ΩA = k15
2tan ΩA

Note again that because k31 and k33/kt modes possess E-constant and D-constant
constraints, respectively, in k31, the resonance frequency is directly related to v11

E or

s11
E as fA = vE

11
2L = 1/2L

√
ρsE

11, while in k33/kt, the antiresonance frequency is directly

related to v33
D or s33

D, c33
D as fB = vD

33
2L = 1/2L

√
ρsD

33 or 1/2b
√

ρ/cD
33. It is important

to distinguish k33 (X1 = X2 = 0, x1 = x2 6= 0) from kt (X1 = X2 6= 0, x1 = x2 = 0) from
the boundary conditions. Note the relations: sD

33 = sE
33(1− k2

33) and cE
33 = cD

33(1− k2
t ),

and k33 > kt in general. The pure “extensive loss” tanφ33 is obtained from the loss
relating to cD

33 from the definition, that is, in the kt mode. When the length of a rod k33
is not very long, the mode approaches the kt, and c33

D≈ 1/s33
D. The antiresonance in

k31 and the resonance in k33/kt are subsidiary, originating from the electromechanical
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coupling factors. We also remind the reader the relation for the “electromechanical
coupling factor losses” from Equation (6.131):

(
2tanθ

′ − tanδ
′ − tanφ

′)
= −(2tanθ − tanδ− tanφ). (7.70)

Since the side is not clamped (x1 = x2 6= 0) in the k33 mode (different from the
kt mode), the triple-prime losses in the previous section are not exactly equal to
non-prime extensive losses. The 3D-clamped kt mode exhibits the purely “extensive”
non-prime losses, though the Qm formulae for the k33 mode seems to be rather similar
to the extensive losses transformed from the intensive losses.

7.3.4. QA and QB in the IEEE Standard

It is also important to discuss the assumption in the IEEE Standard [3], where the
difference in the mechanical quality factors among the resonance and antiresonance
modes is neglected: that is, QA = QB. This historically originates from the neglection
of the coupling loss (i.e., “piezoelectric loss”) and the assumption of tanφ′ � tanδ′

around the resonance region, leading to only one loss factor; that is, the intensive
elastic loss. However, if we adopt our three-loss model, this situation (QA = QB)
occurs only when

(
2tanθ

′ − tanδ
′ − tanφ

′)
= 0, or tanθ

′
= (tanδ

′
+ tanφ

′
)/2. The

IEEE Standard corresponds only when the piezoelectric loss is equal to the average
value of the dielectric and elastic losses, which exhibits a serious contradiction to the
well-known PZT experimental results; that is, QA < QB. As we can realize in Figure 7.4
from the peak sharpness, the PZTs exhibit QA (resonance) < QB (antiresonance),
irrelevant to the vibration mode (Figure 7.4 is an example of the k31 mode). This
concludes that (tanδ33

′ + tanφ11
′ − 2tanθ31

′) < 0, or (tanδ33
′ + tanφ11

′)/2 < tanθ31
′ for

k31, and (tanδ33 + tanφ33 − 2tanθ33) > 0, or (tanδ33 + tanφ33)/2 > tanθ33 for kt. It is
worth noting that the intensive piezoelectric loss is larger than the average of the
dielectric and elastic intensive losses in Pb-contained piezo-ceramics.

7.4. Admittance Spectrum Characterization Method

7.4.1. Real Parameter Determination Method

Firstly, we introduce piezoelectric characterization methods of the real parame-
ters, and we describe how to calculate the electromechanical parameters in the k31
mode specimen (k31, d31, s11

E, and ε33
X) from the admittance/impedance spectrum

measurement for the reader’s convenience in getting acquainted. When we measure
the admittance/impedance of a piezoelectric specimen by changing the frequency,
a frequency spectrum similar to Figure 7.4 is observed, where the first and second
max/min peaks correspond to the resonance and antiresonance, respectively. The
parameters used in the following procedure are shown in the Figure 7.5 k31 mode.

(1) The sound velocity v in the specimen is obtained from the resonance frequency
fA (admittance peak frequency): fA = v/2L.

(2) Knowing the density ρ, the elastic compliance s11
E can be calculated from the

sound velocity v: v = 1/
√

ρs11
E.

(3) The electromechanical coupling factor k31 is calculated from the v value and the
antiresonance frequency fA through Equation (7.19): (ωBL/2v11

E)cot(ωBL/2v11
E)
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= −k31
2/(1 − k31

2); or k31
2/(1 − k31

2) = (π2/4)(∆f /fR), (∆f = fB − fA) (Approxi-
mation when k31 is not large.)

(4) Knowing the permittivity ε33
X from the independent measurement such as an

LCR meter or the admittance value jωC = jωε0ε( Lw
b ) under an off-resonance

condition, the d31 is calculated from k31: k31 = d31 /
√

s11
E·ε33X .

7.4.2. Resonance/Antiresonance under Constant Vibration Velocity

The admittance/impedance frequency spectrum is obtained conventionally by
measuring current under a constant voltage, sweeping the drive frequency around
the resonance/antiresonance frequency range. The admittance can also be deter-
mined by measuring the voltage under a constant current. However, with an increase
in the input power energy and vibration velocity of the piezoelectric specimen, signif-
icant spectrum distortion emerges around the resonance peak under constant voltage,
while significant distortion is exhibited around the antiresonance peak under con-
stant current [1,2]. Therefore, in order to identify both mechanical quality factors QA
and QB precisely, Uchino’s group developed the High-Power Piezoelectric Character-
ization System (HiPoCS), shown in Figure 7.11. One of the key pieces of equipment
includes NF Corporation’s power supply, which satisfies: maximum voltage: 200 (V),
maximum current: 10 (A), frequency range: 0–500 (kHz), and output impedance: <1
(Ω). In addition, the system is equipped with an infrared image sensor to monitor
the heat generation distributed in the test specimen. The impedance/admittance
curves by keeping the following various conditions: (1) constant voltage, (2) constant
current, (3) constant vibration velocity of a piezoelectric sample, and (4) constant
input power [11]. The key is that the values QA and QB can be different, and if we
precisely measure both values, the information on the piezoelectric loss tanθ′ can be
obtained. Thus, we proposed a simple, easy and user-friendly method to determine
the piezoelectric loss factor tanθ′ in k31 mode through admittance/impedance spec-
trum analysis. Adopting the useful formulae proposed by Zhuang and Uchino [6,7],
the intensive losses are obtained from the mechanical quality factor QA and QB for
the rectangular k31 mode:

QA,31 =
1

tan φ11
′ (7.71)

1
QB,31

=
1

QA,31
− 2

1 + ( 1
k31
− k31)2ΩB,31

2 (2tan θ31
′ − tan δ33

′ − tan φ11
′), (7.72)

where tanδ33
′, tanφ11

′, tanθ31
′ are intensive loss factors for ε33

T, s11
E, d31, and ΩB,31

is the normalized antiresonance frequency given by

ΩB,31 =
ωbl
2vE

11
[v11

E = 1/
√

ρ s11
E], (7.73a)

which should satisfy

1− k31
2 + k31

2 tan ΩB
ΩB

= 0, (7.73b)
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while the normalized resonance frequency is given by

ΩA,31 =
ωal
2vE

11
=

π

2
[v11

E = 1/
√

ρ s11
E]. (7.74)

Figure 7.12 shows an interface display of HiPoCS, demonstrating a rectangular
k31 plate measurement under a “constant vibration velocity” condition (i.e., out-
put mechanical displacement or converted mechanical energy is maintained and
remains almost constant). In order to keep the vibration velocity constant (i.e.,
stored/converted mechanical energy is constant), the current is almost constant,
and the voltage is minimized around the resonance, while the voltage is almost
constant and the current is minimized around the antiresonance frequency (bottom
of Figure 7.12). The apparent power is shown in the top of Figure 7.12 (for a specimen
of 80 mm L), which clearly indicates that the antiresonance operation requires less
power than the resonance mode to generate the same vibration velocity or stored
mechanical energy. We can conclude that the PZT transducer should be operated
at the antiresonance frequency, rather than the resonance mode, from the energy
efficiency viewpoint [12].

Oscilloscope
(TDS 4000)

Current Probe
(TCPA300)

Amplifier 
(NF 4025)

LabView®
Sweep Frequency 
& keep constant:

1.  Vibration Velocity
2.  Current
3.  Voltage
4.  Power
5.  DisplacementLaser Vibrometer 

(Polytec 3001A)

Flir Thermal Camera
(A40 with 100 μm close-up lens)

Admittance
/Impedance

Figure 7.11. Setup of the High-Power Piezoelectric Characterization System
(HiPoCS). Source: Figure by author, based on data from [11].
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Figure 7.12. Voltage and current change with frequency under the constant vi-
bration velocity condition. Source: [2] ©Uchino, K. High-Power Piezoelectrics and
Loss Mechanisms; CRC Press, 2020; p. 196. Reproduced by permission of Taylor &
Francis Group.

The admittance can be calculated from the voltage and current data at each
frequency from the bottom of Figure 7.12, which is plotted in Figure 7.13 (data are for
a specimen of 20 mm L). Note that this admittance curve is obtained by keeping the
same vibration velocity in all the frequency ranges below the resonance to above the
antiresonance frequencies, so that no significant spectrum distortion is recognized.
In order to obtain the QA and QB, 3 dB-down and -up methods are used for the
resonance and antiresonance frequencies, as indicated in Figure 7.13.
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Figure 7.13. Admittance magnitude and admittance phase spectra for a rectangular
piezo-ceramic plate for a fundamental longitudinal mode (k31) through the trans-
verse piezoelectric effect (d31). Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.;
CRC Press, 2019; p. 181. Reproduced by permission of Taylor & Francis Group.

7.4.3. Real Electric Power Method

Because the conventional admittance spectrum method can provide the me-
chanical quality factors only at two frequency points; that is, resonance QA and
antiresonance QB, knowing the Qm at any frequency was frustrating. A unique
methodology for characterizing the quality factor in piezoelectric materials was
developed in the ICAT by utilizing “real electrical power” measurements (including
the phase lag), e.g., P = V·Icosϕ, rather than the “apparent power” V·I, as shown in
the top of Figure 7.12 [13].

The mechanical quality factor, Qm, can be defined in general as

Qm = 2π
Energy Stored/Cycle
Energy Lost/Cycle

. (7.75a)

The ratio of elastic stored energy of an oscillator to the power being dissipated
electrically provides the mechanical quality factor:

Qm = 2π fr
Ue

Pd
, (7.75b)

where Ue is the maximum stored mechanical energy and Pd is the dissipated power,
measured in this experiment by Pd = electrically spent energy [13]. Because the
compliance of a piezoelectric material exhibits nonlinearity, the maximum kinetic
energy is used to define the stored energy term. For a longitudinally vibrating k31
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plate (see Figure 7.5 or the inserted figure in Figure 7.6 with the plate center x = 0),
the kinetic energy as a function of displacement, ux, is

Ue =
1
2

A
∫ L

2

− L
2

ρ

(
∂ux

∂t

)2
dx. (7.76)

Using the geometry of the rectangular plate with length L, width w, thickness b,
and assuming sinusoidal forcing at a frequency near the fundamental resonance (or
even near the antiresonance mode as shown in the center of Figure 7.6, as long as k31
is not large <40%), the spatial vibration is approximated as

ux(x, t) = VRMS
√

2sin
(πx

L

)
sin(2π f t). (7.77)

The maximum kinetic energy can be calculated as

Ue =
1
2

A
∫ L

2

− L
2

ρ
(

VRMS
√

2sin
(πx

L

))2
dx = V2

RMSρA
L
2

, (7.78)

where VRMS is the vibration velocity at the edge of the plate (RMS value of m/s), and
ρ, A, L are the mass density, cross-section area (=wb), and length of the specimen. The
relation between mechanical quality factor and real electrical power and mechanical
vibration is based on two concepts: (1) at equilibrium, the power input is the power
lost, and (2) the stored mechanical energy can be predicted using the known vibration
mode shape, as we did in Equation (7.78), which is almost valid even around the
antiresonance frequency in less than 1% accuracy. We can derive the following
equation from these concepts, which allows the calculation of the mechanical quality
factor at any frequency from the real electrical power (Pd) and tip RMS vibration
velocity (VRMS) measurements for a longitudinally vibrating piezoelectric resonator
(kt, k33, k31):

Qm,l = 2π f
1
2 ρV2

RMS
Pd/Lwb

. (7.79)

The change in mechanical quality factor was measured for an 80 mm long Hard
PZT (APC 851) ceramic plate (k31) under constant vibration condition of 100 mm/s
RMS tip vibration velocity (i.e., stored mechanical energy constant). The experimental
key in the HiPoCS usage is to determine the phase difference ϕ precisely to obtain
the cos(ϕ) value. The required power and mechanical quality factor Qm are shown
in Figure 7.14. The quality factor obtained at the resonance is within 2% agreement
with results from the impedance spectrum method (3 dB-down bandwidth). This
technique reveals the behavior of the mechanical quality factor at any frequency
from “below the resonance” to “above the antiresonance” frequencies. Moreover,
very interestingly, the mechanical quality factor reaches a maximum value between
the resonance and the antiresonance frequency, the point of which may suggest the
optimum condition for the transducer operation merely from an efficiency viewpoint,
also for understanding the behavior of piezoelectric material properties under high-
power excitation.
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Figure 7.14. Mechanical quality factor measured using real electrical power (in-
cluding the phase lag) for a hard PZT APC 851 k31 plate. Source: [2] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms; CRC Press, 2020; p. 198. Reproduced
by permission of Taylor & Francis Group.

7.4.4. Determination Methods of the Mechanical Quality Factor

Let us review the precise determination method of the mechanical quality factor
from the admittance or impedance spectrum around the resonance and antireso-
nance frequencies. The admittance spectrum on the k31 mode is shown in Figure 7.13.
Figure 7.15a,b show the admittance circle and its magnified vision around the an-
tiresonance frequency. The admittance circle acts as a plot of “conductance” G in the
horizontal axis and “susceptance” jB in the vertical axis by sweeping the frequency.
Though the “admittance circle” is useful for the QA around the resonance peak, the
“impedance circle” (“impedance” R vs. “reactance” X) is better for the QB around the
antiresonance peak, as illustrated in Figure 7.15c.
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Figure 7.15. (a) Admittance circle; (b) admittance circle magnified around the an-
tiresonance; (c) impedance circle for the antiresonance peak. Source: [2] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms; CRC Press, 2020; p. 198. Reproduced
by permission of Taylor & Francis Group.

266



Resonance/Antiresonance Frequency Definitions

The resonance angular frequency is defined by ωA, the most right on the mo-
tional admittance circle (the intersect (higher G) between the admittance circle and
the susceptance B = 0, ωA

′, is another definition as the resonance), while the antireso-
nance frequency is defined by ωB, the intersect (lower G) between the admittance
circle and the susceptance B = 0. Popularly used maximum and minimum frequen-
cies of the admittance magnitude (i.e., absolute value in the admittance spectrum),
ωm and ωn, are not exactly the resonance and antiresonance frequencies, precisely
speaking. Note the relationship: ωm <ωA =ω0 <ωB <ωn.

Mechanical Quality Factor Determination

(a) QA Determination (see Figure 7.15a)

• 3 dB down method around ωm

(QA
−1) = (ω2 − ω1)/ωm. (7.80)

• Quadrantal frequency method around ωA (±45◦ phase difference on the
admittance circle)

(QA
−1)’ = (ω2

′ − ω1
′)/ωA. (7.81)

Note ω1 (3 dB) < ω1
′ (quadrantal) < ω2 (3 dB) < ω2

′ (quadrantal). The difference
between (QA

−1) and (QA
−1)’ can be estimated as

(QA
−1)/(QA

−1)’ = 1 + 1/2M2, (7.82)

where M = |Ym|/|Yd| = 1/R1ωRCd = QAK and K = C1/Cd (1/K: capacitance ratio).
When we consider QA ≈ 1000, the deviation of QA values among these two ways is
less than 1 ppm (negligibly small).

(b) QB Determination (see Figure 7.15b,c):

• 3 dB up method around ωn

(QB
−1) = (ω4 − ω3)/ωn. (7.83)

• Quadrantal frequency method around ωA (±45◦ phase difference on the
impedance circle)

(QB
−1)’ = (ω4

′ − ω3
′)/ωB. (7.84)

In summary, in Figure 7.15 the admittance circle is useful for the QA around
the resonance peak, while the impedance circle is better for the QB around the
antiresonance peak.

7.4.5. Determination of the Three Losses from the Mechanical Quality Factors

A method for determining the piezoelectric loss is summarized for a piezoelec-
tric k31 mode plate sample here (refer to [14] for other modes):
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(1) Obtain tanδ’ from an impedance analyzer or a capacitance meter at a frequency
away (lower range) from the resonance/antiresonance range;

(2) Obtain the following parameters experimentally from an admittance/impedance
spectrum around the resonance (A-type) and antiresonance (B-type) range
(3 dB bandwidth method): ωa, ωb, QA, QB, and the normalized frequency
Ωb = ωbl/2v;

(3) Obtain tanφ’ from the inverse value of QA (quality factor at the resonance) in
the k31 mode;

(4) Calculate electromechanical coupling factor k31 from the ωa and ωb with the
IEEE Standard equation in the k31 mode:

k31
2

1− k31
2 =

π

2
ωb
ωa

tan[
π(ωb −ωb)

2ωa
]. (7.85)

(5) Finally obtain tanθ’ by the following equation in the k31 mode:

tanθ
′
=

tanδ
′
+ tanφ

′

2
+

1
4

(
1

QA
− 1

QB

)
[1 + (

1
k31
− k31)

2
Ωb

2]. (7.86)

As long as we have accurate ωa, ωb, QA, and QB, the above procedure can be
used. A general problem in determining accurate piezoelectric and loss parameters
is found in the k33 rod specimen, in which a relatively large electric field leak is
anticipated according to the aspect ratio (rod length/width).

Example Problem 7.3

The electromechanical coupling factor k can basically be obtained from the
resonance and antiresonance frequencies. However, there are several formulae for
this calculation, depending on the approximation level, which directly reflects the
accuracy of the piezoelectric loss tanθ, as indicated in the above section. Knowing
the experimental result on the impedance spectrum for a PZT-5 k33 rod specimen
shown in Figure 7.16: fA = 1.3fR (Antiresonance, Resonance frequencies), calculate
the k33 value of this PZT-5H by using the following three different formulae:

k33
2/(1 − k33

2) = (π2/4)(∆f /fR), (P7.3.1)

k33
2/(1 − k33

2) = (π2/8)(fA2− fR2)/fR2, (P7.3.2)

k33
2 = (π/2)(fR/fA)tan[(π/2)(∆f /fA)], (P7.3.3)

where ∆f = fA − fR.

268



(a)k33 = 0.70 fA = 465 kHz = 1.3fR

fR = 360 kHz

Frequency

Im
pe

da
nc

e

Figure 7.16. Impedance spectrum for (a) k33 PZT-5 rod specimen. Source: [1]
©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 119. Reproduced by
permission of Taylor & Francis Group.

Solution

(1) Similar to the most rough approximation for small k31, k31
2/(1 − k31

2) = (π2/4)
(∆f /fR), we use the following approximation for k33 mode:
k33

2/(1 − k33
2) = (π2/4)(∆f /fR) = (π2/4) × 0.3 = 0.749.

Thus, k33 = 0.654 (underestimation).
(2) When we use a better approximation (IRE Standard, “Marutake Approximation”):

k33
2/(1 − k33

2) = (π2/8)(fA2 − fR2)/fR2 = 0.851,
we obtain k33 = 0.678, higher value than the above (1) and close to the accurate
(3) (slightly over).

(3) When we use the accurate formula:
k33

2 = (π/2)(fR/fA)tan[(π/2)(∆f /fA)] = 0.458,
we can obtain k33 = 0.677. Note that k33

2/(1− k33
2) =−(2πfAL/2v)cot(2πfAL/2v)

is another accurate formula for the k33 mode. Different from the k31 mode
formula (k31

2/(1 − k31
2) = (π/2)(fA/fR)tan[(π/2)(∆f /fR)]), in the k33 mode

formula, the denominator is fA (not fR) because the antiresonance is the primary
vibration mode (the resonance is the primary vibration mode in the k31 case).

The reader should understand that the k value deviates from the accurate one
(the larger k, larger error) according to the approximation formula.

7.5. Vibration Characterization under Cyclic Stress

Let us start again from the piezoelectric constitutive equations for the k31 type
plate sample, shown in Figure 7.5:

x1 = s11
EX1 + d31Ez, (7.87a)

D3 = d31X1 + ε0ε33
XEz. (7.87b)

In Section 7.4, with the change in the operating frequency of the external elec-
tric field E, exciting the mechanical resonance, we measure the electrical admit-
tance/impedance. Then, we analyze the vibration modes under resonance and

269



antiresonance frequencies. We distinguish ε0ε33
X and ε0ε33

x under elastic compli-
ance s11

E constant condition. In the k33 type rod sample, the elastic compliance s33
D

is constant.
This section concerns the external mechanical operation, practically found in

piezoelectric energy harvesting systems. With the change in the drive frequency
of the external stress X, exciting the mechanical resonance, we measure the strain/
displacement or electrically generated power depending on the external impedance,
generated strain, and stored/output electric energy changes. Analogous to the
case, the piezoelectric specimen changes its elastic compliance significantly from
s11

E to s11
D with or without surface electrodes; the strain frequency spectrum in

the k31 specimen shows one enhancement peak at the resonance under the short
condition, while at the antiresonance it is shown under the open condition due to
the effective elastic compliance difference. Needless to say, neither case generates
the output electric energy, but merely stored electric energy in the piezo-device. In
order to maximize the output electric energy in the energy harvesting system, we
need to choose an electric impedance (resistive, in particular) that is matched to the
internal electric impedance of the piezoelectric specimen. This section describes the
mechanical resonance frequency and the corresponding effective elastic compliance
under a matched electrical impedance shunted on the piezoelectric device.

7.5.1. Piezoelectric Dynamic Equation for the k31 Mode Plate

Let us consider the same piezo-ceramic k31 plate, as shown in Figure 7.5. Sinu-
soidal force/pressure F and −F (angular frequency ω) are applied on the plate ends
at x = 0 and L along the length direction x. Thus,

F(t) = −bwX1(t), (7.88)

where the negative sign above is adopted merely due to the opposite direction
definition between pressure and stress. If the polarization is in the z direction and
x–y planes are the planes of the electrodes, the extensional vibration in the x (length)
direction is represented by the following dynamic equations (when the length L is
more than 4–6 times of the width w or the thickness b, we can neglect the coupling
modes with width or thickness vibrations):

ρ(∂2u/∂t2) = (∂X11/∂x), (7.89)

where ρ is the density of the piezo-ceramic, and u is the displacement of a small-
volume element in the ceramic plate in the x direction. Since Equation (7.87a) is
transformed into X1 = x1/s11

E − (d31/s11
E)Ez, we obtain

∂X1

∂x
=

1
sE

11

∂x1

∂x
− d31

sE
11

∂Ez

∂x
. (7.90)
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Because of the equal potential on each electrode, ∂Ez/∂x = 0, and knowing the
strain definition x1 = ∂u/∂x along the 1 (x) direction (non-suffix x corresponds to the
Cartesian coordinate), Equation (7.89) is transformed into

ρ
∂2u
∂t2 =

1
sE

11

∂2u
∂x2 . (7.91)

The following derivation is close to that which was performed in Subsection
Vibration Modes. If we assume a “harmonic vibration” equation at the angular
frequency ω, displacement u under a sinusoidal force application, we can simplify
Equation (7.91):

−ω2ρs11
Eu = ∂2u/∂x2 or −

(
ω

vE
11

)2

u(x) =
∂2u(x)

∂x2 . (7.92)

Here, vE
11 is the “sound velocity” along the length x direction in the piezo-ceramic

plate, expressed by

vE
11 = 1/

√
ρs11

E. (7.93)

The reader can easily understand that the above process corresponds to the
Fourier transform; that is, the time domain to frequency domain. Supposing the
displacement u also vibrates with the frequency of ω, a general solution of Equation
(7.92) is expressed by

u(x) = Asin

(
ω

vE
11

x

)
+ Bcos

(
ω

vE
11

x

)
. (7.94)

The strain x1(x) is given by taking the first derivative of u(x) of Equation (7.94) as

x1(x) =
∂u
∂x

= A
ω

vE
11

cos

(
ω

vE
11

x

)
− B

ω

vE
11

sin

(
ω

vE
11

x

)
. (7.95)

In order to determine the above two parameters, A and B, the boundary con-
dition under harmonic stress is imposed: X1 = X0ejωt at x = 0 and L (both plate
ends). Here, we will consider three cases: (1) short-circuit condition of the piezo-
plate, where Ez = 0, (2) open-circuit condition of the piezo-plate, where the current
I = ∂Q

∂t = 0 (or Dz = constant), and (3) matching impedance shunt condition.

Solution under Short-Circuit Condition

Since Ez = 0, x1 = s11
EX1 and D3 = d31X1 are the necessary equations. From the

first strain Equation (7.78a) at x = 0 and L, we obtain the following two equations:




A ω
vE

11
= sE

11X0

A ω
vE

11
cos
(

ω
vE

11
L
)
− B ω

vE
11

sin
(

ω
vE

11
L
)
= sE

11X0

. (7.96)
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Thus, 



A = (
vE

11
ω )sE

11X0

B = −( vE
11
ω )sE

11X0

sin
(

ω

2vE
11

L
)

cos
(

ω

2vE
11

L
)

, (7.97)

(Displacement) u(x) = (
vE

11
ω

)sE
11X0

sin[ω(2x−L)
2vE

11
]

cos( ωL
2vE

11
)

, (7.98)

(Strain) x1 = ∂u/∂x = sE
11X0 (

cos[ω(2x−L)
2vE

11
]

cos( ωL
2vE

11
)

). (7.99)

First, the displacement and strain are proportional to the external stress X0.
Second, their distributions in terms of x in Equations (7.98) and (7.99) are anti-
symmetrically and symmetrically sinusoidal in respect of x = L/2 position (the
numerator becomes maximum, cos(0) = 1), and the maximum strain (i.e., “nodal
line”) exists on this line. Note that ω→ 0 (i.e., pseudo-DC) makes Equation (7.99)
x1 = sE

11X0; that is, uniform strain distribution on the whole piezo-plate. For ω→(
ωL
2vE

11

)
= n π

2 [n: 1, 3, 5, . . . ], the denominator of both Equations (7.98) and (7.99)

approaches zero and the strain becomes infinite, which is called the “resonance”
frequency. The resonance frequency under a closed circuit is given by

fA =
vE

11
2L

. (7.100)

Now we use another set of constitutive equations with respect to electric dis-
placement D3 = d31X1. Taking into account Ez = 0, we calculate the total electric
current under AC stress X1 = X0ejωt:

I =
∂Q
∂t

= jωw
∫ L

0
D3dx = jωwd31

∫ L

0
X1dx = jωw

d31

sE
11

∫ L

0
x1dx. (7.101)

From Equation (7.99), we obtain
∫ L

0 x1dx = ∆L = sE
11X0

2vE
11

ω tan(ωL
2vE

11
).

Thus, the total current is represented by

I = jωw
d31

sE
11

sE
11X0

2vE
11

ω
tan(

ωL
2vE

11
) = j(

2wd31

sE
11

)sE
11X0vE

11tan(
ωL
2vE

11
). (7.102)

Here, ( 2wd31
sE

11
) is called the “force factor” to convert the mechanical input to the

electrical output, and “j” stands for 90◦ phase ahead to the total displacement change.
When ω is small the current increases in proportion to the frequency ω,

I = jω(
wd31

sE
11

)sE
11X0L, (7.103)
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and for ω →
(

ωL
2vE

11

)
= n π

2 [n: 1, 3, 5, . . . ]; that is, approaching the resonance, I

becomes infinite, similar to the total displacement behavior. Note that the short-
circuit condition merely exhibits the current output, and no electrical output due to
zero voltage.

Solution under Open-Circuit Condition

Since Ez 6= 0, we should use the original x1 = s11
EX1 + d31Ez, and D3 = d31X1 +

ε0ε33
XEz, and calculate the voltage generated on the electrode under AC stress on

both ends of the piezo-plate. An open-circuit condition means I = ∂Q
∂t = 0 (Q: total

charge collected from the surface electrodes). Integrating the constitutive equation of
the electric displacement, D3 = d31X1 + ε0ε33

XEz, with respect to the electrode area

Q = w
∫ L

0
D3dx = w

∫ L

0
[d31X1 + ε0εX

33Ez]dx. (7.104)

Meanwhile, from X1 = x1/s11
E − (d31/s11

E)Ez, we obtain

∫ L

0
X1dx =

1
sE

11

∫ L

0
(x1 − d31Ez)dx. (7.105)

Knowing that
∫ L

0 x1dx = ∆L = 2u(t, L) and Ez(t) = constant in terms of the
coordinate x (electrode on the surface along x), inserting Equation (7.105) into
Equation (7.104), we obtain

Q = w
{(

d31
sE

11

)
[2u(t, L)− d31Ez L] + ε0εX

33Ez L
}
= w

{(
d31
sE

11

)
2u(t, L) + ε0εX

33
(
1− k2

31
)
Ez(t)L

}

[k31 = d31/
√

s11
E·ε33X].

(7.106)

Equation (7.106) indicates that the total Q consists of the charge accumulated in
the “damped (clamped) capacitance” (the second term of the right-hand formula)
and the additional charge induced by the mechanical vibration (the first term, which

is called “motional capacitance”). Note the “force factor”
(

2w d31
sE

11

)
which converts

the mechanical input u to electrical output Q (or equivalently, vibration velocity
.
u

to current I in Equation (7.102)). The open-circuit condition, I = ∂Q
∂t = jωQ = 0,

results in the relation between the output electric field Ez and the total displacement
2u(t, L) as

Ez = −
k2

31
(1− k2

31)

1
Ld31

2u(t, L). (7.107)

It should also be noted that u(t, L) = −u(t, 0), symmetric for the displace-
ment profile.

Taking into account the electric field generated on the piezo-plate, we derive
a mechanical resonance frequency (which corresponds to the piezoelectric “antires-
onance frequency”). The displacement u and strain x1(x) are assumed to be ex-
pressed by

273



u(x) = Asin
(

ω
vE

11
x
)
+ Bcos

(
ω

vE
11

x
)

x1(x) = ∂u
∂x = A ω

vE
11

cos
(

ω
vE

11
x
)
− B ω

vE
11

sin
(

ω
vE

11
x
)

We start from x1 = s11
EX1 + d31Ez, or X1 = x1/s11

E − (d31/s11
E)Ez. This equation

should be satisfied under X0(t) at x = 0 and L, and we obtain the following two
equations:





sE
11X0 = A ω

vE
11
− k2

31
(1−k2

31)
1
L 2u(t, 0) = A ω

vE
11
− B k2

31
(1−k2

31)
2
L

sE
11X0 = A ω

vE
11

cos
(

ω
vE

11
L
)
− B ω

vE
11

sin
(

ω
vE

11
x
)
+

k2
31

(1−k2
31)

2
L [Asin

(
ω

vE
11

L
)
+ Bcos

(
ω

vE
11

L
)
]
.

Thus, 



A = sE
11X0/[ ω

vE
11
+

k2
31

(1−k2
31)

2
L tan

(
ωL

2vE
11

)
]

B = −sE
11X0tan

(
ωL

2vE
11

)
/[ ω

vE
11
+

k2
31

(1−k2
31)

2
L tan

(
ωL

2vE
11

)
]
, (7.108)

(Displacement) u(x) = sE
11X0

sin[ω(2x−L)
2vE

11
]

[ ω
vE

11
cos

(
ωL

2vE
11

)
+

k2
31

(1−k2
31)

2
L sin

(
ωL

2vE
11

)
]

, (7.109)

(Strain) x1 =
∂u
∂x

= sE
11X0

( ω
vE

11
)cos[ω(2x−L)

2vE
11

]

[ ω
vE

11
cos

(
ωL

2vE
11

)
+

k2
31

(1−k2
31)

2
L sin

(
ωL

2vE
11

)
]

. (7.110)

The mechanical resonance—that is, the displacement or strain maximum (∞)—can

be obtained when the denominator of Equations (7.109) and (7.110) [ ω
vE

11
cos
(

ωL
2vE

11

)
+

k2
31

(1−k2
31)

2
Lsin

(
ωL
2vE

11

)
] is equal to zero, which is obtained by the following equation:

(ωBL/2vE
11)cot(ωBL/2vE

11) = −k31
2/(1− k31

2) = −d31
2/ε33

LCs11
E, (7.111)

where ωB is the “antiresonance frequency”. You are reminded that under the short-

circuit condition the denominator of the displacement formula is cos
(

ωL
2vE

11

)
, then

the resonance condition
(

ωL
2vE

11

)
= π

2 . Taking the first approximation on Equation

(7.111) for a small k31, we obtain
{

fA = vE
11/2L

fB = (vE
11/2L)(1 + 4

π2 k2
31) (for small k31)

. (7.112)
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Example Problem 7.4

In a piezo-ceramic k31 plate, as shown in Figure 7.5, the fundamental resonance
frequency is given by fA = vE

11/2L, while the fundamental antiresonance frequency is
approximated as fB = fA(1 + 4

π2 k2
31). Derive this formula from the exact solution

equation: (ωBL/2vE
11)cot(ωBL/2vE

11) = −k31
2/(1 − k31

2).

Solution

Introducing ∆ω = (ωB −ωA), and knowing ωA = πvE
11/L, the equation

(ωBL/2vE
11)cot(ωBL/2vE

11) = −k31
2/(1 − k31

2) is transformed into

− k2
31(

1− k2
31
) =

(
π

2
+

∆ωL
2vE

11

) cos
(

π
2 + ∆ωL

2vE
11

)

sin
(

π
2 + ∆ωL

2vE
11

) = −
(

π

2
+

∆ωL
2vE

11

)
tan

(
∆ωL
2vE

11

)
. (P7.4.1)

Supposing that
(

∆ωL
2vE

11

)
= ∆ω/4 fA << 1, we use the Taylor expansion to tan(x) =

x + x3

3 + 2x5

15 + · · · into Equation (P7.4.1):
(

π

2
+

∆ωL
2vE

11

)
tan

(
∆ωL
2vE

11

)
=
(π

2
+ ∆ω/4 fA

)[
(∆ω/4 fA) +

1
3

(
∆ω

4 fA

)3
+ · · ·

]
=

k2
31(

1− k2
31
) . (P7.4.2)

Then,
π

2

(
∆ω

4 fA

)
=

k2
31(

1− k2
31
) . (P7.4.3)

Finally, we obtain the following relation for the case k2
31 << 1:

fB = fA + ∆ω/2π = f A(1 +
4

π2 k2
31). (P7.4.4)

Solution under Z-Shunt Condition

An external electrical impedance Z is connected to a piezoelectric k31 plate
(Figure 7.5). We start from the constitutive equations: x1 = s11

EX1 + d31Ez, and
D3 = d31X1 + ε0ε33

XEz. When we assume sinusoidal input force F(t) = −bwX1(t), and
stress X1(t) = X0ejωt at both ends of the piezo-plate symmetrically, we can also assume
the displacement u(x)ejωt and strain x1(x)ejωt as:

u(x) = Asin

(
ω

vE
11

x

)
+ Bcos

(
ω

vE
11

x

)
, (7.113)

x1(x) =
∂u
∂x

= A
ω

vE
11

cos

(
ω

vE
11

x

)
− B

ω

vE
11

sin

(
ω

vE
11

x

)
. (7.114)
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Knowing Ez(t) = constant in terms of the coordinate x, owing to the surface
electrode, at x = 0 and L, X1 = x1/s11

E − (d31/s11
E)Ez = X0:





sE
11X0 = A ω

vE
11
− d31Ez

sE
11X0 = A ω

vE
11

cos
(

ω
vE

11
L
)
− B ω

vE
11

sin
(

ω
vE

11
L
)
− d31Ez

. (7.115)

The output electric charge Q (i.e., no loss, no time lag) can be described as:

Q = w
∫ L

0
D3dx = w

∫ L

0
[d31X1 + ε0εX

33Ez]dx. (7.116)

While, from X1 = x1/s11
E − (d31/s11

E)Ez, we obtain

∫ L

0
X1dx =

1
sE

11

∫ L

0
(x1 − d31Ez)dx. (7.117)

Knowing that
∫ L

0 x1dx = 2u(L) and Ez = constant, we obtain

I =
.

Q =

{(
2wd31

sE
11

)
.
u(L) + ε0εX

33
(
1− k2

31
) .
EzwL

}

= jω
(

2wd31
sE

11

)
u(L) + jωε0εX

33(1− k2
31)EzwL.

(7.118)

Using V = bEz = Z·I and Cd = ε0εX
33
(
1− k2

31
)
wL/b, Equation (7.118) leads to the

following relations:

jω

(
2wd31

sE
11

)[
Asin

(
ω

vE
11

L

)
+ Bcos

(
ω

vE
11

L

)]
+ jωCdEzb− b

Z
Ez = 0. (7.119)

From Equations (7.115) and (7.119) we can derive A, B and Ez as follows:


ω
vE

11
0 −d31

ω
vE

11
cs − ω

vE
11

sn −d31

jω
(

2wd31
sE

11

)
sn jω

(
2wd31

sE
11

)
cs b(jωCd − 1

Z )







A
B
Ez


 =




sE
11X0

sE
11X0

0


, (7.120)

where the symbols sn = sin
(

ω
vE

11
L
)

and cs = cos
(

ω
vE

11
L
)

. Thus




A =
sE

11X0b(jωCd − 1
Z )cos

(
ωL

2vE
11

)

4

B = −
sE

11X0b(jωCd− 1
Z )sin

(
ωL

2vE
11

)

4

Ez = −
sE

11X0(jω 2wd31
sE
11

)sin
(

ωL
2vE

11

)

4

4 =

(
ω

vE
11

)
b
(

jωCd − 1
Z

)
cos
(

ωL
2vE

11

)
+ d31 jω

(
2wd31

sE
11

)
sin
(

ωL
2vE

11

)

. (7.121)
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The denominator4 = 0 gives the resonance condition for the stress operation.

When Z ≈ 0, a major contribution comes from the first term. Thus, cos
(

ωL
2vE

11

)
= 0

corresponds to the piezo resonance condition. While Z → ∞, the last equation is
transformed to

(
1− k2

31

)( ωL
2vE

11

)
cos

(
ωL
2vE

11

)
+ k2

31sin

(
ωL
2vE

11

)
= 0, or

(
ωL
2vE

11

)
cot

(
ωL
2vE

11

)
= − k2

31(
1− k2

31
) , (7.122)

which is a familiar formula for calculating the antiresonance frequency.
Now, by connecting Z = 1/ωCd (the supposed electrical matching resistive

impedance), we consider the minimization of the magnitude of4 for obtaining the
resonance condition.

4 = jω2wε0εX
33[
(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
+ k2

31sin
(

ωL
2vE

11

)

+j
(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
].

(7.123)

• For a small ω (much lower than the resonance frequency),

4 = jω2wε0εX
33[
(
1− k2

31
)(

ωL
2vE

11

)
+ k2

31

(
ωL

2vE
11

)
+ j
(
1− k2

31
)(

ωL
2vE

11

)
]

= jω2wε0εX
33

(
ωL

2vE
11

)
[1 + j

(
1− k2

31
)
].

(7.124)

The apparent dissipation factor tan ϕ =
(
1− k2

31
)

is quite high under Z = 1/ ωCd
resistive shunt case.

• For a frequency around the resonance frequency (ωRL
2vE

11
= π

2 , ∆ω = ω−ωR), taking

ωL
2vE

11
=

(
π
2 + ∆ωL

2vE
11

)
, cos

(
ωL
2vE

11

)
= − sin

(
∆ωL
2vE

11

)
, and sin

(
ωL
2vE

11

)
= cos

(
∆ωL
2vE

11

)

into account

4 = j(ωR + ∆ω)2wε0εX
33[−

(
1− k2

31
)(

π
2 + ∆ωL

2vE
11

)
sin
(

∆ωL
2vE

11

)

+k2
31cos

(
∆ωL
2vE

11

)
− j
(
1− k2

31
)(

π
2 + ∆ωL

2vE
11

)
sin
(

∆ωL
2vE

11

)
]

≈ jωR2wε0εX
33[−

(
1− k2

31
)(

π
2
)(∆ωL

2vE
11

)
+ k2

31 − j
(
1− k2

31
)(

π
2
)(∆ωL

2vE
11

)
].

(7.125)

The external impedance Z connection is equivalent to the loss tangent in-
crease, and

tan ϕ =
(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
/[
(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
+ k2

31sin
(

ωL
2vE

11

)
]

≈ −
(
1− k2

31
)(

π
2
)( ∆ωL

2vE
11

)
/[−

(
1− k2

31
)(

π
2
)( ∆ωL

2vE
11

)
+ k2

31]

≈ − (1−k2
31)

k2
31

(
π
2
)( ∆ωL

2vE
11

)
.

(7.126)

It is very interesting that the resistive shunt contributes largely to the dissipation, but
its contribution is small around the mechanical resonance frequency range, mainly
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due to significant enhancement of the real elastic compliance sE
11 at the resonance by

a factor of Qm.
The displacement u(x) and strain x1(x) are summarized here:





u(x) =
sE

11X0bωCd(j−1)cos
(

ωL
2vE

11

)

4 sin
(

ω
vE

11
x
)
+

sE
11X0bωCd(j−1)sin

(
ωL

2vE
11

)

4 cos
(

ω
vE

11
x
)

x1(x) =
sE

11X0bωCd(j−1)cos
(

ωL
2vE

11

)

4
ω

vE
11

cos
(

ω
vE

11
x
)
−

sE
11X0bωCd(j−1)sin

(
ωL

2vE
11

)

4
ω

vE
11

sin
(

ω
vE

11
x
). (7.127)

The energy spent in the resistive shunt Z = 1/ ωCd can be calculated from Equation

(7.121) as

Pout | = Re
[

1
2

VV∗

Z

]
= Re




b2

2Z




sE
11X0

(
jω 2wd31

sE
11

)
sin
(

ωL
2vE

11

)

(
ω

vE
11

)
b
(

jωCd − 1
Z

)
cos
(

ωL
2vE

11

)
+ d31 jω

(
2wd31

sE
11

)
sin
(

ωL
2vE

11

)




2
. (7.128)

If we consider a small ω (much lower than the resonance frequency),

|Pout| = b2

2 ω Lw
b ε0εX

33
(
1− k2

31
)

Re[
sE

11X0(jω 2wd31
sE
11

)

( 2
L )bω Lw

b ε0εX
33(1−k2

31)(j−1)+d31 jω
(

2wd31
sE
11

) ]

2

= 1
2 ω(Lwb)ε0εX

33
(
1− k2

31
)

Re[ d31X0(jω2w)

ω2wε0εX
33(1−k2

31)(j−1)+jω2wε0εX
33

(
d31

2

ε0εX
33sE

11

) ]
2

= 1
2 ω(Lwb)Re[

(d31X0)
2(1−k2

31)
ε0εX

33[−(1−k2
31)+j]

] = 1
2 ω(Lwb) (d31X0)

2

ε0εX
33

1
(1−k2

31)+
1

(1−k2
31)

.

(7.129)

Equation (7.129) can be understood as follows: because d31X0 = P3, and
1
2
(d31X0)

2

ε0εX
33

corresponds to the electric energy per cycle per unit volume converted

via the piezoelectric effect, the total power |Pout| can be obtained by multiplying
the volume (Lwb) and frequency ω. The last additional calibration factor by the
electromechanical coupling factor, 1

(1−k2
31)+

1

(1−k2
31)

= 1

2+
k4
31

(1−k2
31)

, is intriguing. When

k2
31 is not large (k31 < 30%), |Pout| becomes roughly 1/2 of the converted energy via

the “resistive Z” which matches the piezoelectric damped capacitance.

Example Problem 7.5

We consider the piezoelectric energy harvesting from a k33 type rod (unit area)
sample under a small cyclic stress X = X0ejωt. See Figure 7.17. In order to obtain the
maximum output electric power, determine the external load impedance Z. Answer
the derivation process step by step as follows. First “Constitutive Equations” are
provided as:

xs = s33
EX3+ d33Ez, (P7.5.1)
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D3 = d33X3+ ε0ε33
XEz. (P7.5.2)

X = X0e jωt

Z in = 1/  jωC

D

ZPs
ioutiin

Piezo-actuator

Figure 7.17. Piezoelectric energy harvesting model. Source: [1] ©Uchino, K. Mi-
cromechatronics, 2nd ed.; CRC Press, 2019; p. 395. Reproduced by permission of
Taylor & Francis Group.

(1) When we consider the output electric energy, we consider the electric displace-
ment D vs. electric field E domain as shown in the bottom figure. Calculate
the depolarization field for the open circuit (Z = ∞): D = 0. In this condition,
provide the elastic compliance sD

33.
(2) Calculate the electric displacement D for the short circuit (Z = 0): E = 0, using the

piezoelectric constant d33. In this condition, provide the elastic compliance sE
33.

(3) Draw the D vs. E map under a certain load impedance Z. Then calculate the
output power under the external load Z, and obtain the maximum power
condition; that is, the matching impedance Z.

(4) Calculate the input mechanical power under the load of the matching impedance
Z, then calculate the energy transmission coefficient λ defined by

λmax = (
Output electrical energy
Input mechanical energy

)
max

. (P7.5.3)

Solution

(1) Under the open-circuit condition, D = 0, leading to

E = − d
ε0εX X, (P7.5.4)

279



as depolarization field from Equation (P7.5.2). Inserting this depolarization
field to Equation (7.5.1), we obtain x = sEX + d

(
− d

ε0εX X
)
= sE(1− d2

sEε0εX )X
Thus, we obtain

sD = (1− d2

sEε0εX ) = sE(1− k2). (P7.5.5)

(2) Under short-circuit condition, E = 0 (this is true for k31 mode, but partially
true for k33 mode only for low-frequency operation). From Equation (P7.5.2)
we obtain

D = dX. (P7.5.6)

Under this condition, it is obvious that the elastic compliance is sE from Equa-
tion (P7.5.1).

(3) Figure 7.18c shows the D−E map to calculate the output electrical energy. The
intersect with the vertical line (E) should be (− d

ε0εX X) and the intersect with
the horizontal line (D) should be (dX). Under the shunt condition with Z,
the tracing line with changing Z should be on the straight line connecting
these intersects. At which point can we obtain the maximum output energy;
that is, the maximum rectangular area hatched on the figure? From simple
mathematical intuition, obviously this point should be a half of the vertical and
horizontal intersects, which leads to the area

U =
1
2

d
ε0εX X· 1

2
dX =

1
4

d2

ε0εX X2. (P7.5.7)
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dX0

S 
EX0

(1 − k2)    S 
EX0

X0

X0

dX0

X

X

D

X

Open

Open

Short

Short

Z

0

0

D

E 

0

(a)

(b)

(c)

Z

 −(d/εε0
X)    X0

Figure 7.18. Calculation models of the input mechanical and output electric energy.
(a) Stress vs. electric displacement; (b) stress vs. strain; (c) electric displacement vs.
field. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 396.
Reproduced by permission of Taylor & Francis Group.

More precisely, under an impedance Z shunt condition, we can expect a point (E,
D) on the line between the intersects of the above D0 = dX0 and E0 = − d

ε0εX X0:

E =
1

ε0ε
(D− dX0). (P7.5.8)

The output electrical energy can be calculated as

U = −DE = − D
ε0ε

(D− dX0) = −
1

ε0ε

(
D− 1

2
dX0

)2
+

1
4
(dX0)

2

ε0ε
. (P7.5.9)
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which is exactly the same result as Equation (P7.5.7). When the “ambient vibra-
tion energy is unlimited”, the above maximum output energy condition is the
final targeted status. Using Figure 7.17, let us calculate the output electric energy.
Sinusoidal input stress X = X0ejωt generates output electric displacement D =
dX0ejωt via direct piezoelectric effect (d constant). We can understand that the
piezo power supply has the internal impedance 1/jωC under an off-resonance
frequency (by neglecting the dielectric loss or effective conducting loss σ = 0),
and this piezoelectric “current supply” generates the total current

i =
∂D
∂t

= jωdX0. (P7.5.10)

This current is split into internal “displacement current” iin and external current
iout,

i = iin + iout. (P7.5.11)

Then, because of the potential/voltage should be the same on the top electrode
of the piezo component, we get

Ziniin = Ziout. (P7.5.12)

Inserting the relation iin =
(

Z
Zin

)
iout = jωCZ·iout into Equation (P7.5.11),

iout(1 + jωCZ) = jωdX0. (P7.5.13)

Thus, we can obtain the output electric energy as

|P| = Re[
1
2
|Ziout·iout

∗| = 1
2

Z
(ωdX0)

2

(1 + (ωCZ)2)
. (P7.5.14)

Figure 7.19 shows the electric load (resistive) dependence of the output electric
energy, which concludes that the maximum electric energy

|P| = 1
4

ωd2X2
0

C
, (P7.5.15)

can be obtained at Z = 1/ωC, when we consider Z resistive, which is the
situation for charging a rechargeable battery. In other words, the generated
electric energy in a piezo component can be spent maximally when the external
load resistive impedance exactly matches the internal impedance (absolute
value). Note the internal impedance is capacitive with phase lag of −j (−90◦).
Note that Equation (P7.5.15) is equivalent to Equation (P7.5.7), taking into
account the difference in the specimen size/volume and one cycle and per unit
time (second).
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Figure 7.19. Output electric energy vs. external electrical load Z. Source: [1]
©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 396. Reproduced
by permission of Taylor & Francis Group.

The reader is also reminded of the discussion in Subsection Solution under Z-
Shunt Condition, calculated from the piezoelectric constitutive equations for the
k31 mode. The difference in the above Equation (P7.5.15) from Equation (7.129)
can be found in the following calibration factor 1

(1−k2
31)+

1

(1−k2
31)

, originating

from the difference between “constant capacitance” here and “stress dependent
mechanical constraint” (such as εX

33 or εx1
33). Thus, precisely speaking, the above

conclusion should be modified as follows:

(a) Matching impedance is to be replaced by the “damped capancitance” Cd
from just capacitance C,

(b) The calibration factor 1
(1−k2

31)+
1

(1−k2
31)

is more precise, rather than 1/2 in

|P| = 1
2

ωd2X2
0

C
1

(1−k2
31)+

1

(1−k2
31)

.

We consider further two additional impedances matching: Z =
(

1
jωC

)∗
and

Z =
(

1
jωC

)
. When we consider Z “complex”, Z = Zin

∗ =
(

1
jωC

)∗
= jω

(
1

ω2C

)

provides the original electrical impedance matching. This condition corre-
sponds to LC series connection (i.e., ( 1

jωC ) and jωL), where L = 1/ω2C is
satisfied, leading to the LC resonance frequency exactly equal to the stress
application frequency ω. The energy generated by a piezo component will
be exchanged between the internal capacitance and external inductance, like
a “catch-ball”, without losing energy nor providing work externally. The ef-
fective elastic compliance sE

e f f approaches infinity. To the contrary, when we

consider Z =
(

1
jωC

)
, the same capacitance as the internal one is connected

to the external load, since converted energy is split to two equal capacitances,
sE

e f f = sE(1− 1
2 k2), in between the short- and open-circuit conditions. In order
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to take the energy out into a rechargeable battery, it is essential to connect the
resistive load.

(4) Energy Transmission Coefficient (Section 10.5.2 describes a more detailed deriva-
tion process). Since we need to use or accummulate energy externally, we
consider “resistive shunt”. Let us reconsider the power expendable on the
external electrical load Z from the “energy transmission coefficient” viewpoint.
Figure 7.18 summarizes the calculation processes of the input mechanical and
output electric energy under various impedance Zs: (a) the stress vs. electric dis-
placement relation; the area on this domain does not mean the energy, thus, we
need to translate this plot into (b) stress vs. strain relation to calculate the input
mechanical energy, and (c) electric displacement vs. electric field to calculate the
output electric energy. No electrically converted energy can actually be spent
under the short-circuit (zero impedance) or open-circuit (infinite impedance)
condition in the energy harvesting case. The “energy transmission coefficient”
is defined by

λmax = (Output electrical energy/Input mechanical energy)max. (P7.5.16)

The output electric energy has been calculated above as |P| = 1
2 Z (ωdX0)

2

(1+(ωCZ)2)
.

Now, we will calculate the input mechanical energy. You should notice that the
input mechanical energy also differs significantly depending on the external
electrical load Z. If you recall that the tunable elasticity according to the electric
constraint is sE (short circuit) or sD(open circuit), and further sD = sE(1− k2) in
particular, you can understand that the input mechanical energy (e.g., triangular
area made by OX0x0 for a short-circuit condition) differs largely depending on
the electrical load Z, as illustrated in Figure 7.18b (the slope; elastic compliance
changes according to Z). Now, second, let us calculate the load-Z dependence of
the input mechanical energy. We now calculate the “input mechanical energy”
from the second constitutive equation in Equation (P7.5.1):

x = dE + sEX = −d
(

V
t

)
+ sEX = −

(
d
t

)[
jωdX0

1
Z + jωC

]
+ sEX. (P7.5.17)

The last transformation used Equation (P7.5.13). We obtained effective elastic
compliance as

sE
e f f =

x
X

= sE
[

1−
(

S
t

)
jωZd2

sE(1 + jωCZ)

]
. (P7.5.18)

You can verify the above “effective elastic compliance” is equal to s11
E or sD =

sE(1− k2) (no electrode on the surface ideally), when Z = 0 or ∞, respectively.
Meanwhile, under Z = 1/ωC,

sE
e f f = sE

(
1− 1

2
k2 +

j
2

k2
)

. (P7.5.19)
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The resonance frequency f under the Z-shunt condition may be estimated as

f =
1

2L
√

ρsE
e f f

= fR

(
1 +

1
4

k2
)

, (P7.5.20)

which is higher than the short-circuit fA, but lower than the open-circuit condi-
tion fA(1 + 4

π2 k2
31). The input mechanical power under the Z-shunt condition

is derived as

|P|in =
ω

2
sE

e f f X0
2 =

ω

2

∣∣∣∣sE[1−
(

S
t

)
jωZd2

sE(1 + jωCZ)
]X0

2
∣∣∣∣. (P7.5.21)

The “energy transmission coefficient” λmax can be calculated from

λ =
|P|out
|P|in

=
1
2

Z
(ωdX0)

2

(1 + (ωCZ)2)
/

ω

2

∣∣∣∣sE[1−
(

S
t

)
jωZd2

sE(1 + jωCZ)
]X0

2
∣∣∣∣.

(P7.5.22)
Taking the maximization process in terms of Z, we can obtain the energy trans-
mission coefficient as

λmax = [(1/k)−
√
(1/k2)− 1]2 = [(1/k) +

√
(1/k2)− 1]−2. (P7.5.23)

We need to be aware that since the input mechanical energy is changed (even if
we keep the stress/force constant) due to the elastic compliance change with
the external electrical impedance, the condition for realizing the “maximum
transmission coefficient” is slightly off from the electrical impedance matching
point for the output energy maximum. When we take the matched electrical
impedance Z = 1/ωC, we obtain

λ =
k2

2
1

(2− k2)
, (P7.5.24)

which is slightly amaller than λmax of Equation (P7.5.23). We can also notice
that

k2/4 < λmax < k2/2,

depending on the k value (k < 0.95).

Chapter Essentials

1. Mechanical fundamental resonance frequency of a length L rod with sound
velocity v: f = v/2L. Knowing v = f·λ, we obtain λ = 2L, or the mode is exact a
half-wavelength standing wave on the rod.

2. Steady AC Drive methods of a piezoelectric component:

• Mechanical Drive

- Short-circuit condition with surface electrodes (E-constant)→ Reso-
nance mode
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- Open-circuit condition with surface electrodes (partially (1D) D-constant)
→ Antiresonance mode

- No surface electrodes (D-constant)

• Electrical Drive

- Admittance peak→ Resonance mode (Resistive characteristic)
- Impedance peak→ Antiresonance mode (Resistive characteristic)
- Intermediate frequency between Res and AntiRes→Max efficiency

(Inductive)
- Off-resonance (low frequency)→ (Capacitive characteristic)

3. Electric Excitation k31 Mode: Vibration direction perpendicular to PS

(a) Strain x1 = d31Ez ( cos[ ω(2x−L)
2v ]

cos( ωL
2v )

),

Displacement u(x) = d31Ez(
v
ω )

sin[ ω(2x−L)
2v ]

cos( ωL
2v )

,

(b) Admittance Y = jωCd[1 +
k2

31
1−k2

31

tan(Ω11 )
Ω11

] [Ω11 = (ωL/2vE
11)],

(c) Resonance/Antiresonance Frequencies
Resonance: ωA = πv11

E/L = π/(L
√

ρs11
E),

Antiresonance: (ωBL/2v11
E)cot(ωBL/2v11

E) = −k31
2/(1 − k31

2),
k31 = d31/

√
s11

E·ε33Xε0.
(d) Loss Factors

QA,31 = 1
tan φ11

′

1
QB,31

= 1
QA,31

− 2
1+( 1

k31
−k31)2ΩB,31

2

(
2tan

′
θ31 − tan

′
δ33 − tan

′
φ11

)
,

ΩA,31 = ωa l
2vE

11
= π

2

[
vE

11 = 1/
√

ρsE
11

]
,

ΩB,31 = ωb l
2vE

11
, 1− k31

2 + k31
2 tan ΩB

ΩB
= 0.

4. Electric Excitation k33 Mode: Vibration direction parallel to PS

(a) Strain x3 = d33
ε0εX

33
D3[cos

(
ω

2vD
33
(2z− L)

)
/cos

(
ωL

2vD
33

)
],

Displacement u3 = d33
ε0εX

33

vD
33
ω D3[sin

(
ω

2vD
33
(2z− L)

)
/cos

(
ωL

2vD
33

)
],

(b) Admittance Y = i
−V =

jωε0εLC
33 (

wb
L )

1−k2
33





tan

(
ωL

2vD
33

)

(
ωL

2vD
33

)








= jωCd +
jωCd

[−1+1/k2
33{

tan(Ω33)
(Ω33)

}]

[Ω33 = (ωL/2vD
33)],

(c) Resonance/Antiresonance Frequencies

Resonance:
(

ωA L
2vD

33

)
= k2

33tan(ωA L
2vD

33
)

Antiresonance: ωB L
2vD

33
= π

2

k33 = d33/
√

s33E·ε33Xε0
(d) Loss Factors
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QB,33 = 1
tan φ′′′ 33

= 1−k33
2

tan′ φ33−k33
2(2tan θ33

′−tan δ33
′)

,
1

QA,33
= 1

QB,33
+ 2

k33
2−1+ΩA

2/k33
2

(
2tan θ33

′ − tan δ33
′ − tan φ33

′),

ΩB,33 = ωb l
2vD

33
= π

2

[
vD

33 = 1/
√

ρsD
33

]
,

ΩA,33 = ωa l
2vD

33
, ΩA,33 = k33

2tan ΩA,33.

5. Admittance/Impedance Spectrum Measurement:

• Constant voltage method—suitable for antiresonance range
• Constant current method—suitable for resonance range
• Constant vibration velocity method—suitable for all resonance and antires-

onance ranges.

6. Mechanical Quality Factor Determination:

• “3 dB down/up method” on the admittance/impedance spectrum
• “Quadrantal frequency method” on the admittance (resonance) and impedance

circles (antiresonance)

7. Loss Determination Process from the Admittance Spectrum – k31 Case

(1) Obtain tanδ’ from an impedance analyzer or a capacitance meter at a
frequency away (lower range) from the resonance/antiresonance range;

(2) Obtain the following parameters experimentally from an admittance/
impedance spectrum around the resonance (A-type) and antiresonance
(B-type) range (3 dB bandwidth method): ωa, ωb, QA, QB, and the
normalized frequency Ωb = ωbl/2v;

(3) Obtain tanφ’ from the inverse value of QA (quality factor at the reso-
nance) in the k31 mode;

(4) Calculate the electromechanical coupling factor k31 from the ωa and ωb with

the IEEE Standard equation in the k31 mode: k31
2

1−k31
2 = π

2
ωb
ωa

tan[π(ωb−ωb)
2ωa

];

(5) Finally, obtain tanθ’ using the following equation in the k31 mode:

tanθ
′
= tanδ

′
+tanφ

′

2 + 1
4

(
1

QA
− 1

QB

)
[1 + ( 1

k31
− k31)

2
Ωb

2].

8. Mechanical Excitation k31 Mode: Vibration direction perpendicular to PS

(a) Short Circuit—Resonance

Strain x1 = sE
11X0 (

cos[ ω(2x−L)
2vE

11
]

cos( ωL
2vE

11
)

),

Displacement u(x) = (
vE

11
ω )sE

11X0

sin[ ω(2x−L)
2vE

11
]

cos( ωL
2vE

11
)

,

Resonance Frequency
(

ωA L
2vE

11

)
= π

2 .

(b) Open Circuit—Antiresonance

Strain x1 = sE
11X0

( ω

vE
11
)cos[ ω(2x−L)

2vE
11

]

[ ω

vE
11

cos
(

ωL
2vE

11

)
+

k2
31

(1−k2
31)

2
L sin

(
ωL

2vE
11

)
]
,
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Displacement u(x) = sE
11X0

sin[ ω(2x−L)
2vE

11
]

[ ω

vE
11

cos
(

ωL
2vE

11

)
+

k2
31

(1−k2
31)

2
L sin

(
ωL

2vE
11

)
]
,

Antiresonance Frequency (ωBL/2vE
11)cot(ωBL/2vE

11) = −k31
2/(1 − k31

2),
Approximate: fB = fA(1 + 4

π2 k2
31).

(c) Z-shunt Strain x1(x) =
sE

11 X0 bωCd (j−1)cos
(

ωL
2vE

11

)

4
ω

vE
11

cos
(

ω
vE

11
x
)
−

sE
11 X0 bωCd (j−1)sin

(
ωL

2vE
11

)

4
ω

vE
11

sin
(

ω
vE

11
x
)

,

Displacement u(x) =
sE

11 X0bωCd(j−1)cos
(

ωL
2vE

11

)

4 sin
(

ω
vE

11
x
)
+

sE
11 X0bωCd(j−1)sin

(
ωL

2vE
11

)

4 cos
(

ω
vE

11
x
)

4 =

(
ω

vE
11

)
b
(

jωCd − 1
Z

)
cos
(

ωL
2vE

11

)
+ d31 jω

(
2wd31

sE
11

)
sin
(

ωL
2vE

11

)
,

Matching Impedance Z = 1/ωCd,
Resonance Frequency f = fA(1 + 1

4 k2),
Elastic Compliance sE

e f f = sE(1− 1
2 k2 + j

2 k2),

Maximum Output Power |P| = 1
2

ωd2X2
0

C
1

(1−k2
31)+

1

(1−k2
31)
≈ 1

4
ωd2X2

0
C .

Check Point

1. (T/F) Piezoelectric “resonance” is a mechanical resonance mode, but the “an-
tiresonance” is not a mechanical resonance, at which the vibration amplitude is
not enhanced. True or false?

2. In a k31 piezo-ceramic plate, the first antiresonance frequency fA is observed
higher than the resonance frequency fR. What value does the ratio fA/fR ap-
proach with an increase in the electromechanical coupling factor k31?

3. (T/F) When we measure the admittance spectrum on a k31 type piezoelectric
plate specimen, the admittance minimum point corresponds to the resonance
point. True or false?

4. When we measure the admittance spectrum on a k31 type piezoelectric plate, the
phase changes from +90 to −90◦ around the resonance point with an increase
in drive frequency. What is the phase lag at the resonance point?

5. When we measure the admittance spectrum on a k31 type piezoelectric plate, the
phase changes from +90 to −90◦ around the resonance point with an increase in
drive frequency. What do you call the frequencies that provide the phase ±45◦?

6. (T/F) The fundamental resonance mode of the k33 mode has an exact half-
wavelength vibration on the rod specimen. True or false?

7. (T/F) The fundamental resonance mode of the k31 mode has an exact half-
wavelength vibration on the plate specimen. True or false?

8. Provide the relationship between the mechanical quality factor QM at the reso-
nance frequency and the intensive elastic loss in the k31 type specimen.

9. Provide the relationship between the mechanical quality factor QM at the an-
tiresonance frequency and the extensive elastic loss in the kt type specimen.

10. (T/F) The strain distribution in a high k33 rod specimen is more uniform at the
antiresonance mode than that at the resonance mode. True or false?

11. When (tanδ33
′ + tanφ11

′)/2 < tanθ31
′ is satisfied, which is larger for the k31 type

specimen—QA or QB?
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12. (T/F) When we drive the piezoelectric k31 plate mechanically under a sinusoidal
force, the resonance frequency should be the same for both the short-circuit and
open-circuit condition. True or false?

13. (T/F) When we drive the piezoelectric k31 plate electrically under constant
voltage condition, the admittance spectrum shows significant skew distortion
at the antiresonance frequency. True or false?

14. (T/F) The mechanical quality factors QA (at resonance) and QB (at antireso-
nance) should be the same in a piezoelectric k33 rod specimen. True or false?

15. (T/F) The mechanical quality factor QA at resonance is larger than QB at antires-
onance in a PZT piezoelectric k31 plate specimen. True or false?

16. (T/F) To generate the same vibration velocity of a piezoelectric transducer, the
resonance drive is the most efficient, rather than the antiresonance drive in PZT
based materials. True or false?

17. Can you find a more energy-efficient frequency for driving a PZT piezoelectric
k31 plate specimen than its resonance or antiresonance frequencies? If so, where
do you find this most efficient frequency?

18. (T/F) There is a highly resistive (no electric carrier/impurity in a crystal) piezo-
electric single crystal (spontaneous polarization PS) with a mono-domain state
without a surface electrode. The “depolarization electric field” in the crystal is
given by E = −( PS

εrε0
). True or false?

19. (T/F) In a k31 piezo-ceramic plate, the first antiresonance frequency fB and the
resonance frequency fA are related as fB = fA(1 + 4

π2 k2
31) when the electrome-

chanical coupling factor k31 is not large. True or false?
20. (T/F) In a k31 piezo-ceramic plate shunted by the external impedance Z, the

mechanical resonance exhibits between the piezoelectric resonance and antires-
onance frequencies. True or false?

Chapter Problems

7.1 When we neglect the piezoelectric loss tanθ’ (i.e., tanθ’ = 0) among three losses,
tanδ’, tanφ’, and tanθ’, discuss the relation of the mechanical quality factors at
the resonance QA and antiresonance frequencies QB. In the case of tanδ’ > 0,
tanφ’ > 0, which is larger—QA or QB?

7.2 The piezoelectric component with the capacitance C is driven by the external
stress X0ejωt. The input mechanical power |P|in and the output electric power
|P|out through the external impedance Z are calculated as

|P|in = ω
2 sE

e f f X0
2 = ω

2

∣∣∣∣sE[1−
(

S
t

)
jωZd2

sE(1+jωCZ) ]X0

2
∣∣∣∣,

|P|out =
1
2 Z (ωdX0)

2

(1+(ωCZ)2)
.

The “energy transmission coefficient” λmax can be calculated from

λ =
|P|out
|P|in

= 1
2 Z (ωdX0)

2

(1+(ωCZ)2)
/ ω

2

∣∣∣sE[1−
(

S
t

)
jωZd2

sE(1+jωCZ) ]X0
2
∣∣∣.

Taking the maximization process in terms of Z, verify the energy transmission
coefficient as
λmax = [(1/k) −

√
(1/k2)− 1]2 = [(1/k) +

√
(1/k2)− 1]−2.
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8. Pulse Drive on Piezoelectrics—Laplace
Transform

8.1. Impulse Applications of Piezoelectric Actuators

Many of the million-selling piezoelectric actuators are driven by “pulse drive”.
Electric field-controlled actuators include inkjet printers and diesel injection valves.
Diesel engines are recommended rather than regular gasoline cars from an energy
conservation and global warming viewpoint. When we consider the total energy
of gasoline production, both well-to-tank and tank-to-wheel, the energy efficiency,
measured by the total energy required to realize unit drive distance for a vehicle
(MJ/km), is of course better for high-octane gasoline than diesel oil. However, since
the electric energy required for purification is significant, the gasoline is inferior to
diesel fuel. As is well known, the conventional diesel engine, however, generates
toxic exhaust gases such as SOx and NOx due to insufficient burning of the fuel. In
order to solve this problem, new diesel injection valves with piezoelectric multilay-
ered actuators were developed by Siemens, Bosch, and Toyota [1,2]. Figure 8.1 shows
such a common rail-type diesel injection valve with a multilayer (ML) piezo-actuator
which produces high-pressure fuel and quick injection control. The piezoelectric
actuator is namely the key to increasing burning efficiency and minimizing the toxic
exhaust gases. The author’s contribution to this project was the “pulse drive tech-
nique” of the ML actuator without generating troublesome vibration ringing after
the quick actuation. On the other hand, a stress-controlled impulse drive is utilized
in PABM (programmable air-burst munition for 25 mm φ caliber) and a lightning
switch (remote control relay switch) [3,4].

Piezoelectric Actuator

Injector Body

Nozzle

Control Valve

Displacement 
Amplification Unit

(a)

Pilot Pre

Main

After

Injection

Post

(b)

Figure 8.1. (a) Common rail-type diesel injection valve with a piezoelectric multi-
layer actuator (courtesy of Denso Corporation); (b) diesel injection timing chart.
Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; pp. 460-461.
Reproduced by permission of Taylor & Francis Group.

In this chapter, after the review of the “Laplace transform”, we consider the
pulse electric field control of a piezo component in Section 8.3, then the stress-
controlled energy harvesting process on a piezoelectric specimen under an impulse
stress application is considered theoretically in Section 8.4.
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8.2. The Laplace Transform

Let us first review an important mathematical tool, the “Laplace transform”. The
Laplace transform is generally employed to treat the “transient response” to a pulse
input. The “Fourier transform” is preferred for cases where a continuous sinusoidal
input is applied, such as for resonance-type actuators, which was discussed in Chapter 7.

We consider a function u(t) which is defined for t ≥ 0 (u(t) = 0 for t < 0), and
satisfies |u(t)| ≤ keδt for all δ no less than a certain positive real number δ0. When
these conditions are satisfied, e−stu(t) is absolutely integrable for Re(s) ≥ δ0. We
define the Laplace transform:

U(s) = L[u(t)] =
∫ ∞

0
e−stu(t)dt. (8.1)

It is noteworthy that the input function u(t) should satisfy u(t) = 0 for t < 0.
The inverse Laplace transform is represented as L−1[U(s)]. Application of the useful
theorems for the Laplace transform that are listed below reduces the work of solving
certain differential equations by reducing them to simpler algebraic forms. The
procedure is applied as follows:

1. Transform the differential equation to the “s”-domain by means of the appro-
priate Laplace transform.

2. Manipulate the transformed “algebraic equation” using the useful “Theorems”.
3. The boundary conditions at t = 0, u(0) and

.
u(0), are integrated in the above.

4. Then, obtain L−1[U(s)] as an algebraic form of “s”.
5. Obtain the inverse Laplace transform from Table 8.1.

Useful Theorems for the Laplace Transform:

(a) Linearity:
L[au1(t) + bu2(t)] = aU1(s) + bU2(s)
L−1[aU1(s) + bU2(s)] = au1(t) + bu2(t)

(b) Differentiation with respect to t:
L
[

du(t)
dt

]
= sU(s) − u(0)

L
[

dnu(t)
dtn

]
= snU(s) − ∑ sn−kuk−1(0)

(c) Integration:
L[
∫

u(t)dt] = U(s)/s + (1/s)[
∫

u(t)dt]t=0
(d) Scaling formula:

L[u(t/a)] = aU(sa) (a > 0)
(e) Shift formula with respect to t:

u(t − k) = 0 for t < k [k: positive real number]. The u(t) curve shifts by k along
the positive t axis.

L[u(t − k)] = e−ksU(s)
(f) Differentiation with respect to an independent parameter:

L
[

∂u(t,x)
∂x

]
= ∂U(s,x)

∂x
(g) Initial and final values:

lim
t→0

[u(t)] = lim
|s|→∞

[sU(s)]

lim
t→∞

[u(t)] = lim
|s|→0

[sU(s)]
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Table 8.1. Some common forms of the Laplace transform.

H(t) G(s)

1 1(t): Heaviside Step function
1(t) = 1, t > 0; 1(t) = 0, t < 0 1/s

2 δ(t): Dirac Impulse function
δ(t) = ∞, t = 0; δ(t) = 0, t 6= 0 1

3 tn/n! (n: positive integer) 1/sn+1

4 e−at (a: complex) 1/(s + a)

5 cos(at) s/(s2 + a2)

6 sin(at) a/(s2 + a2)

7 cosh(at) s/(s2 − a2)

8 sinh(at) a/(s2 − a2)

9 e−btcos(at) a2 > 0 s+b
(s+b)2+a2

10 e−btsin(at) a2 > 0 a
(s+b)2+a2

11
H(t)

tba
1 1

s (e
−as − e−bs)

12
H(t) Slope (m)

ta

m
s2 (1 − e−as)

13
H(t)

t
a 2a 3a

1
s tanh

( as
2
)

14
H(t) Slope (m)

t
a 2a

m
s2 − ma

2s
[
coth

( as
2
)
− 1

]

Source: Table by author.

Example Problem 8.1

Compute the Laplace transform of the Heaviside function (“step function”):
1(t) = 0 when t < 0 and 1(t) = 1 when t ≥ 0.

Solution

L[1(t)] =

∞∫

o

e−st1(t)dt =
∞∫

o

e−stdt = (
1
s
)e−st|∞0 = 1/s. (P8.1.1)
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Example Problem 8.2

Using the result from the previous problem, L[1(t)] = 1/s, obtain the Laplace
transform for a pulse function defined by the following:

P(t) = 0 when t < a and t > b (here, 0 < a < b),
P(t) = 1 when a < t < b.

Solution

P(t) is obtained by superimposing the two step functions, 1(t − a) and −1(t − b).
Using the shift formula (Theorem (e)), we obtain the Laplace transform of P(t):

L[P(t)] = e−as(1/s) − e−bs(1/s) = (1/s)(e−as − e−bs). (P8.2.1)

8.3. Electric Pulse Drive on Piezoelectrics

8.3.1. General Solution for Longitudinal Vibration k31 Mode

Vibration Equation of the k31 Mode

Let us consider a longitudinal mechanical vibration in a simple piezoelectric
ceramic plate via the transverse piezoelectric effect d31 with thickness b, width w,
and length L (b << w << L), pictured in Figure 8.2. This specimen configuration is the
same as the one in Chapter 7. When the polarization is in the z direction and the x–y
planes are the planes of the electrodes, the extensional vibration along the x direction
(1D model) is represented by the following dynamic equation:

ρ
∂2u
∂t2 = F =

∂X11

∂x
+

∂X12

∂y
+

∂X13

∂z
, (8.2)

where u is the displacement in the x direction of a small-volume element in the
ceramic plate, ρ is the density of the piezoelectric material, and Xij’s are stresses (only
the force along the x direction is our target). The relations between the stress, electric
field (only Ez exists, because Ex = Ey = 0 due to the electrodes on the top and bottom),
and the induced strains are described by the following set of equations:



x1

x2

x3

x4

x5

x6




=




s11
E s12

E s13
E 0 0 0

s12
E s11

E s13
E 0 0 0

s13
E s13

E s33
E 0 0 0

0 0 0 s44
E 0 0

0 0 0 0 s44
E 0

0 0 0 0 0 2(s11
E − s12

E)







X1

X2

X3

X4

X5

X6




+




0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0







E1

0

0


. (8.3)

When a very long, thin thickness and width plate is driven in the vicinity of
this fundamental resonance, X2 and X3 may be considered zero throughout the plate.
Since shear stress will not be generated by the applied electric field Ez, only the
following single equation applies:

X1 = x1/s11
E − (d31/s11

E)Ez. (8.4)
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Substituting Equation (8.4) into Equation (8.3), and assuming that strain x1 =
∂u/∂x and ∂Ez/∂x = 0 (since each electrode is at the same potential), we obtain the
following dynamic equation:

ρ
∂2u
∂t2 =

1
sE

11

∂2u
∂x2 . (8.5)

Remember that the “E-constant” condition “sE
11” is the key characteristic in the

k31 mode.

y
z

0
b x

L

w

zP

Figure 8.2. Longitudinal vibration k31 mode of a rectangular piezoelectric plate.
Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 111. Repro-
duced by permission of Taylor & Francis Group.

Laplace Transform of the k31 Mode Vibration Equation

Let us solve Equation (8.5) of Figure 8.2 using the Laplace transform. Denot-
ing the Laplace transforms of u(t,x) and Ez(t) as U(s,x) and Ẽ(s), respectively (x:
coordinate along plate length), Equation (8.5) is transformed by Theorem (f) to:

ρsE
11s2U(s, x) =

∂2U(s, x)
∂x2 . (8.6)

We assume the following “initial conditions”:

Displacement : u(0, x) = 0 and velocity :
∂[u(0, x)]

∂t
= 0. (8.7)

We may also make use of the fact that:

ρs11
E = 1/v2, (8.8)

where v is the speed of sound in the piezoelectric ceramic under the E-constant
condition. To obtain a general “algebraic” solution of Equation (8.6) in terms of space
coordinate x, we assume:

U(s,x) = Ae(sx/v) + Be−(sx/v). (8.9)

The constants A and B can be determined by applying the “boundary conditions”
X1 = 0 at x = 0 and L:

X1 =
(x1 − d31Ez)

sE
11

= 0. (8.10)
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We also utilize the fact on the strain (Theorem (f)) that:

L[x1] = (∂U/∂x) = A(s/v)e(sx/v) − B(s/v)e−(sx/v). (8.11)

In conjunction with the boundary conditions at x = 0 and L of Equation (5.91) to yield:

A(s/v)− B(s/v) = d31Ẽ, (8.12a)

A(s/v)e(sl/v) − B(s/v)e−(sl/v) = d31Ẽ. (8.12b)

Thus, we obtain

A =
d31Ẽ(1 − e−sL/v)

(s/v)(esL/v − e−sL/v)
, (8.13a)

B =
d31Ẽ(1 − esL/v)

(s/v)(esL/v − e−sL/v)
, (8.13b)

and, consequently, Equations (8.9) and (8.11) become:

U(s, x) =
d31Ẽ(v/s)[e−s(L−x)/v + e−s(L+x)/v − e−sx/v − e−s(2L−x)/v]

(1− e−2sL/v)
, (8.14)

L[x1] =
d31Ẽ[e−s(L−x)/v + e−s(L+x)/v − e−sx/v − e−s(2L−x)/v]

(1− e−2sL/v)
. (8.15)

The inverse Laplace transforms of Equations (8.14) and (8.15) now provide the
displacement u(t,x) and strain x1(t,x). Making use of the Taylor expansion series

1/(1 − e−2sl/v) = 1 + e−2sl/v + e−4sl/v + e−6sl/v· · · , (8.16)

the strain, x1(t,x), can now be obtained by shifting the d31Ez(t) curves with respect
to t according to Theorem (e). We may also consider that since u(t,L/2) = 0 (from
U(s,L/2) = 0) and u(t,0) = −u(t,L) (from U(s,0) = −U(s,L)), the total displacement of
the plate device ∆L becomes equal to 2u(t,L). We finally arrive at the following:

U(s, L) =
d31Ẽ(v/s)(1− e−sL/v)

(1 + e−sL/v)
= d31Ẽ(v/s)[tanh(sL/2v)]. (8.17)

8.3.2. Displacement Response to a Step Voltage in the k31 Mode

We consider first a particular input of a “Heaviside step” electric field E(t) = E0
H(t). Since the Laplace transform of the step function is given by (1/s), Equation (8.17)
can be expressed by

U(s,x = L) = d31E0(v/s2)(1 − e−(sL/v))/(1 + e−(sL/v))
= d31E0(v/s2)(1 − 2e−(sL/v) + 2e−(2sL/v) − 2e−3sL/v + 2e−4sL/v· · · ). (8.18)
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Note that the base function of U(s,L), 1/s2, gives the base function of u(t,L) in
terms of t (i.e., ∝ t). It should also be noted that the final expansion terms will provide
the time shift of the base function; for example, “−2e−(sL/v)” means the time shift
by (L/v) of the base function multiplied by the factor of “−2”. The inverse Laplace
transform of Equation (8.18) yields by segmenting the time interval of (L/v) (by
superposing the e−sk terms):

u(t,L) = d31E0vt 0 < t < L/v,

(8.19)
u(t,L) = d31E0v[t − 2(t − L/v)] L/v < t < 2L/v,
u(t,L) = d31E0v[t − 2(t − L/v) + 2(t − 2L/v)] 2L/v < t < 3L/v,
u(t,L) = d31E0v[t − 2(t − L/v) + 2(t −2L/v) − 2(t − 3L/v)] 3L/v < t < 4L/v,

· · · · · · · · · · · ·

The transient displacement, ∆L (= 2·u(t,L)), produced by the step voltage, is
pictured in Figure 8.3 (since d31 is usually negative, Figure 8.3 is for E0 < 0). The
resonance period T of this piezoelectric plate corresponds to (2L/v), and the time
interval in Equation (8.19) is every (T/2). It is worth noting that the displacement
changes linearly, not sinusoidally. On the contrary, the displacement of a discrete-
component system changes sinusoidally, as demonstrated in Example Problem 8.3.
This transient response difference comes from the vibration medium difference:
continuum or discrete mechanical medium. In either case, continuous ringing occurs
under a step input when the loss is neglected.

T

E0 H( t)

0 2T Time

d31E0 L

2 d31E0 L

Δ L

Figure 8.3. Triangular displacement response to a Heaviside step function voltage
in a k31 piezoelectric plate. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC
Press, 2019; p. 312. Reproduced by permission of Taylor & Francis Group.

The strain distribution on a piezoelectric plate is also intriguing for this step
excitation case. From Equation (8.15), L(x1) is directly proportional to Ẽ; that is, the
strain distribution x1(x) follows exactly to E(t), the Heaviside step function. The strain
x1 at a certain point x suddenly becomes “d31E0” from “zero” with a certain time lag
depending on its coordinate x. Thus, as illustrated in Figure 8.4a, the strained portion
starts from both ends (x = 0 and L) of the piezo-plates at the time of step voltage applied.
These two symmetrical boundaries/walls between the strained and strain-free portion
(analogous to a shockwave) propagate with a piezo material’s sound velocity, v, in
opposition to each other, crossing over at the plate center, then generating the doubly
strained part in the center area (i.e., 2d31E0). Thus, when the walls reach the plate ends,
the plate length becomes the maximum (∆L = 2d31E0L), and we can understand the
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reason why 100% overshoot occurs under the step voltage applied. After that, the walls
bounce back in the opposite directions, and the plate starts to shrink linearly according
to the shrinkage of the strained portion. The linear displacement change originates
from the constant wall velocity (which is equal to the piezo material’s sound velocity
under the E-constant condition in this case). This triangular vibration ringing will
continue to be long when the loss is small. Figure 8.4b,c show the strain distribution on
a piezo-plate under a pseudo-DC triangular voltage, and under a sinusoidal voltage at
its resonance frequency, respectively, as references. The strain is uniformly generated in
the plate (x1 = d31E3) under a pseudo-CD condition (no stress appears in the plate),
while the strain and stress distribute sinusoidally with the maximum at the center part
(i.e., nodal line) under the resonance drive. The resonance mode can be understood as
a standing wave generated by the superposition of right-ward and left-ward traveling
waves with a half-wavelength exactly match to the rod length, so that the center node
strain is amplified significantly by the factor of (8/π2)Qm.

E E E
(a) (b) (c)

t t t

Figure 8.4. Strain distribution on a piezo-plate during the deformation process
under voltage: (a) step; (b) pseudo DC triangle; (c) resonance sine. Source: [2]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 113. Reproduced by
permission of Taylor & Francis Group.

Example Problem 8.3

The dynamic equation for a mechanical or an electrical system, composed
of discrete components; mass and spring (damper is neglected for simplicity); or
inductor, capacitor and resistor, shown in Figure 8.5a,b, are expressed by

M(d2u/dt2) + cu = F(t), (P8.3.1)
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where u: mass displacement, M: mass, c: spring constant, F: external force,

L(d2Q/dt2) + R(dQ/dt) + (1/C)Q = V(t), (P8.3.2)

where Q: charge, L: inductance, C: capacitance, R: resistance, V: voltage.
Consider the transient response u(t) and Q(t) in the case of Heaviside step

function of the force and voltage.

M

F( t)

C

(a)

L

C

R

V (t )

(b)

Figure 8.5. Discrete mechanical (a) and electrical (b) component systems. Source:
Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 314. Repro-
duced by permission of Taylor & Francis Group.

Solution

Because these two second differential equations are basically the same, we
will consider them only for the mechanical system. Since the force is a Heaviside
step function F(t) = F0H(t), the Laplace transform of the force is given by F0/s.
Equation (P8.3.1) can be expressed by taking the Laplace transformation as:

M[s2 + (c/M)] U = F0/s, (P8.3.3)

where U is the Laplace transform of the displacement u. U can be calculated by

U = F0/Ms(s2 + ω0
2) = (F0/Mω0

2){1/s − (1/2)[1/(s + jω0) + 1/(s − jω0)]},
[ω0

2 = c/M].
(P8.3.4)

Accordingly, using the inverse Laplace transforms (Item (1) and (5) of Table 6.1),
we can obtain:

u(t) = (F0/c)[H(t) - cosω0t]. (P8.3.5)

As illustrated in Figure 8.6, the step force excites a sinusoidal displacement
vibration of a discrete component of mass M, superposed on a step bias position.
Here, the time scale T is equal to the resonance period, 2π/ω0 (=2π

√
M/c). When

we neglect the damping factor, the vibration ringing will continue forever. Note
100% overshoot for every vibration. When we consider the damping factor ζ, as in
the LCR circuit in Figure 8.5b, the ringing will diminish gradually with the expo-
nential envelope curve of the time constant τ inversely proportional to the damping
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factor. Unlike the “continuum media” in Section 8.3.2, the “discrete component”
system (such as “equivalent circuits”) does not generate linear displacement, but a
sinusoidal response.

F0 H( t)
0 T

F0/c

u

2T Time

Figure 8.6. Sinusoidal displacement response to Heaviside step function force in
a discrete component system. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed.
CRC Press, 2019; p. 314. Reproduced by permission of Taylor & Francis Group.

8.3.3. Displacement Response to a Pulse Drive in the k31 Mode

Next, let us consider the response to a rectangular pulse voltage such as the
one pictured in the top left-hand corner of Figure 8.7a [5]. From (11) of Table 6.1, we
begin by substituting

Ẽ = (E0/s)(1− e−(nsL)/v), (8.20)

into Equation (8.17), which allows us to obtain the displacement ∆L for n = 1, 2, and
3. The quantity n is a time scale based on a half of the resonance period (=T/2) of the
piezoelectric plate.
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T
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Figure 8.7. (a) Transient displacement ∆L produced by a rectangular pulse voltage.
(Note that the time interval, T = (2L/v), corresponds to the resonance period of the
piezoelectric plate.) (b) Measurement on a bimorph tip displacement produced
by a pulse voltage. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press,
2019; p. 316. Reproduced by permission of Taylor & Francis Group.
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For n = 1,

U(s,x = L) = d31E0(v/s2)(1 − e−(sL/v))2/(1 + e−(sL/v))
= d31E0(v/s2)(1 − 3e-sL/v + 4e−2sL/v − 4e−3sL/v + · · · ). (8.21)

Similar to the “Heaviside Step” case, the base function of U(s,L), 1/s2, gives
the base function of u(t,L) in terms of t. The inverse Laplace transform of Equa-
tion (8.21) yields:

u(t,L) = d31E0vt 0 < t < L/v,

(8.22)
u(t,L) = d31E0v[t − 3(t − L/v)] L/v < t < 2L/v,
u(t,L) = d31E0v[t − 3(t − L/v) + 4(t − 2L/v)] 2L/v < t < 3L/v.

. . . . . . . . . . . .

The transient displacement, ∆L, produced by the rectangular pulse voltage is
pictured in Figure 8.7a (top-right) for n = 1. Only during the first (T/2) period (i.e.,
the field pulse applied period) the edge vibration velocity (∂u/∂t) is one half of the
following continuous ringings with the resonance period of T = (2L/v).

For n = 2, since Ẽ = (E0/s)(1 − e−(2Ls)/v) includes the denominator of Equa-
tion (8.17),

U(s,L) = d31E0(v/s2) (1 − 2e−sL/v + e−2sL/v). (8.23)

Thus,

u(t,L) = d31E0vt 0 < t < L/v,
(8.24)u(t,L) = d31E0v[t − 2(t − L/v)] L/v < t < 2L/v,

u(t,L) = d31E0v[t − 2(t − L/v) + (t − 2L/v)] = 0 2L/v < t < 3L/v.

In this case, the displacement, ∆L, occurs in a single pulse and does not exhibit
ringing as depicted in Figure 8.7a (bottom left). Remember that the applied field Ẽ
should include the denominator term (1 + e−sL/v) to realize finite expansion terms,
leading to a complete suppression of vibrational ringing.

For n = 3, U(s,L) is again expanded as an infinite series:

U(s,x = L) = d31E0 (v/s2)(1 − e−(3sL/v))(1 − e−(sL/v))/(1 + e−(sL/v))
= d31E0(v/s2)(1 − 2e−sL/v + 2e−2sL/v − 3e−3sL/v + 4e−4sL/v − 4e−5sL/v. . . ).

(8.25)

The displacement response for this case is pictured in Figure 8.7a (bottom right).
Note the displacement slope (plate edge vibration velocity) has twice the difference
among the field applied period and zero field.

Figure 8.7b shows the measurement data collected on a PZT bimorph tip dis-
placement produced by a pulse voltage; 10 ms corresponds to the resonance period
of this bimorph. Notice that the ringing is completely eliminated for n = 2; the pulse
width is adjusted exactly to the resonance period, and that the displacement curve is
linear or a triangular sequence. Though the bimorph configuration is different from
the k31 plate, the transient response mechanism seems to be similar to handle.

How precisely does the pulse width need to be adjusted? The calculated tran-
sient vibration for n = 1.9 appears in Figure 8.8. Notice the small amount of ringing
that occurs after the main pulse. The actual choice of n, then, will depend on the
amount of ringing that can be tolerated for a given application.
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0

2d31E0L

Figure 8.8. Transient displacement, ∆L, produced by a rectangular pulse voltage
(n = 1.9). Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 317.
Reproduced by permission of Taylor & Francis Group.

8.3.4. Displacement Response to a Pseudo-Step Drive in the k31 Mode

Next, we consider the displacement response of a rectangular plate to “pseudo-
step voltage” as illustrated in the top left of Figure 8.9a. The Laplace transform is
provided by the subtraction of a straight line 1/s2 with the time difference of (nL/v)
((12) of Table 6.1):

Ẽ = (E0v/nLs2)(1− e−nsL/v). (8.26)

Substituting Equation (8.26) into Equation (8.17), we will repeat similar calcula-
tions to the above to obtain the displacement ∆L for the time scale n = 1, 2, and 3 (the
time unit is one half of the resonance period (L/v). The difference from Section 8.3.2
is in the base function of U(s,L), 1/s3, which gives the base function of u(t,L) as t2/2
(parabolic curve).
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Figure 8.9. (a) Transient displacement ∆L induced in a rectangular plate for a
pseudo-step voltage. The time scale n is based on 1/2 of the resonance period
T. (b) Measurement on a bimorph tip displacement produced by a pseudo step
voltage. Source: Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press,
2019; p. 318. Reproduced by permission of Taylor & Francis Group.
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For n = 1,

U(s, L) = (d31Eo/L)(v2/s3)(1−e−sL/v)2

(1+e−sL/v)

= (d31Eo/L)(v2/s3)[1− 3e−sL/v + 4e−2sL/v − 4e−3sL/v + · · · ].
(8.27)

Notice that the base function of U(s,L), 1/s3, will lead to a base function of u(t,L) in
the form t2/2 (parabolic curve), such that:

u(t,L) = (d31E0v2/2L)t2 0 < t < L/v,

(8.28)u(t,L) = (d31E0v2/2L)[t2 − 3(t − L/v)2] L/v < t < 2L/v,
u(t,L) = (d31E0v2/2L)[t2 − 3(t − L/v)2 + 4(t − 2L/v)2] 2L/v < t < 3L/v.

· · · · · · · · · · · ·
The transient displacement for an actuator driven by the pseudo-step voltage

pictured in the top right of Figure 8.9a is seen to exhibit continuous ringing. Notice
that this curve is actually a sequence of parabolic curves. It is “not”sinusoidal!

For n = 2,

U(s,L) = (d31E0/2L)(v2/s3)[1 − 2e−sL/v + e−2sL/v]. (8.29)

Thus,

u(t,L) = (d31E0v2/4L)t2 0 < t < L/v,
(8.30)u(t,L) = (d31E0v2/4L)[t2 − 2(t − L/v)2] L/v < t < 2L/v,

u(t,L) = (d31E0v2/4L)[t2 − 2(t − L/v)2 + (t − 2L/v)2] = (d31E0L/2) 2L/v < t.
· · · · · · · · · · · ·

Neither overshoot nor ringing is apparent in the response for this case (i.e., the rise
time is set exactly to the resonance period) represented in Figure 8.9a (bottom left).
“When the Laplace transform of applied field Ẽ includes the term (1 + e−sL/v), the
expansion series terminates in finite terms, leading to a complete suppression of
mechanical ringing”.

For n = 3, U(s,L) is again expanded as an infinite series:

U(s,L) = (d31E0/3L)(v2/s3)[1 − 2e−sL/v + 2e−2sL/v − 3e−3sL/v + 4e−4sL/v − 4e−5sL/v. . . ]. (8.31)

The displacement response for this condition is represented by the curve appearing
in Figure 8.9a (bottom right).

As shown in Figure 8.9a, ∆L does not exhibit overshoot nor ringing for n = 2.
However, for n = 1 and 3, the overshoot and ringing follow continuously. Note again
that all the curves are composed of parabolic curves (“not” sinusoidal!) and that
the heights of the overshoot are 1/2 (50%) and 1/6 (17%) of d31E0L, respectively, for
n = 1 and 3.

You can also understand that the strain in the specimen is generated linearly
(not suddenly) with time, since the electric field changes such. Figure 8.9b shows
the measurement data collected on a PZT bimorph tip displacement produced by a
pseudo-step voltage; 10 ms corresponds to the resonance period of this bimorph.

This derivation process suggests an empirical process on how to suppress the
overshoot and/or ringing in a piezoelectric actuator system:
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(1) By applying a relatively steep rising voltage to the actuator, we can obtain the
resonance period first from the time period between the overshoot peak and
the successive peak point.

(2) Next, by adjusting the voltage rise time exactly to the resonance period, we can
eliminate the overshoot and/or ringing of the system vibration.

In other words, without using a mechanical damper (which loses energy), we
can diminish vibration overshoot or ringing just by adjusting the pulse width or
rise time of the applied voltage, which does not in fact lose energy. This procedure
is the key to the system development, having already been adopted to the diesel
injection valve control, inkjet printer, and cutting edge/tool position change with a
piezoelectric actuator in lathes, or other cutting machines.

8.3.5. Consideration of the Loss in Transient Response

In order to integrate elastic loss into Equation (8.5), ρ ∂2u
∂t2 = 1

sE
11

∂2u
∂x2 , we add a

viscous damping force term in proportion to the time derivative as

ρ
∂2u
∂t2 =

1
sE

11

∂2u
∂x2 + η

∂3u
∂x2∂t

. (8.32)

Taking the Laplace transformation, we obtain

Us2 = v2 ∂2U
∂x2 +

(
η
ρ

)
s ∂2U

∂x2 = v2 ∂2U
∂x2 [1 +

(
η

ρv2

)
s].

Then,

U
s2

(1 + ςs)
= v2 ∂2U

∂x2 . (8.33)

The displacement U(s,L) can then be obtained by making the following substitu-
tion in Equation (8.17):

s → s√
1 + ζs

. (8.34)

Since this solution includes a complicated “error function”, an approximate
solution for the piezoelectric resonance state was determined by Ogawa [6]. Recall
the “discrete component” system introduced in Chapter 6, with which we could
properly account for loss effects. With the damping factor ζ, the following equation
has been solved rather easily:

..
u + 2ζω0

.
u + ω0

2u = f (x) or Us2 + 2ζω0Us + ω0
2U = F(s).

This indicates the application limitation of the “equivalent circuit” to a continuum
media specimen.

Experimental results appear in Figure 8.10 [7]. The displacement ∆L produced by
a rectangular pulse voltage observed in this investigation is similar to the results shown
in Figure 8.9, except for the vibrational damping. With the loss inclusion, the triangular
shape is rounded and the amplitude is significantly damped. However, we still see
that when the pulse width of this rectangular voltage is adjusted to the piezoelectric
resonance period, T, or integral multiples of it, the vibrational ringing is eliminated.
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Figure 8.10. Displacement response of a lossy piezoelectric actuator under a rect-
angular pulse voltage. (a) Pulsewidth = T/2; (b) pulsewidth = T; (c) pulsewidth =
3T/2. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 320.
Reproduced by permission of Taylor & Francis Group.

8.4. Mechanical Pulse Drive on Piezoelectrics

In this section, we consider “impulse stress” applications, such as in a PABM
(programmable air-burst munition for 25 mm φ caliber) and a lightning switch (remote
control relay switch) [8]. This analysis is the basic theoretical approach of the electric
energy process on a piezoelectric specimen under an impulse stress application.

When an impulse force is applied to a piezoelectric actuator, an electric volt-
age/current vibration is excited via a mechanical vibration, the characteristics of
which depend on the pulse profile. Voltage overshoot and ringing are frequently
observed in piezoelectric “igniters”, even if we start from a compressive stress input.
Because the pulse drive may lead to the destruction of the piezo-actuator due to the
large tensile stress and high voltage associated with the vibration overshoot, we need
to more precisely examine the transient response of a piezoelectric device driven
by pulse stress. The reader is reminded that an “equivalent circuit” with a discrete
component cannot be adopted in the transient response analysis (including the stress
wave propagation) under the impulse drive.

8.4.1. Vibration Mode in the k31-Type Plate

Once again, we consider a longitudinal mechanical vibration in a simple piezo-
electric ceramic plate via the transverse piezoelectric effect d31 with thickness b,
width w, and length L (b << w << L), pictured in Figure 8.2. If we summarize the
assumptions again:

(1) Only Ez exists, because Ex = Ey = 0 due to the electrodes on the top and bot-
tom, and;

(2) Only X1 exists, because X2 and X3 may be set equal to zero through the plate
because the plate is very long with thin thickness and width. Under a low to
fundamental resonance frequency range, only the following two equations are
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essential to solve the dynamic equation around the resonance/antiresonance fre-
quencies:

x1 = s11
EX1 + d31Ez, (8.35)

D3 = d31X1 + ε0ε33
XEz. (8.36)

We start from the following dynamic equation for the stress operation:

ρ
∂2u
∂t2 =

1
sE

11

∂2u
∂x2 . (8.37)

General Solution for Longitudinal Vibration k31 Mode

We solve Equation (8.35) for a piezo-plate, using the “Laplace transform”. Equa-
tion (8.35) can be transformed by Laplace Theorem (b), by denoting the Laplace
transforms of u(t,x) and Ez(t) as U(s,x) and Ẽ(s), respectively (x: coordinate along
plate length):

ρsE
11s2U(s, x) =

∂2U(s, x)
∂x2 . (8.38)

We assume the following initial (t = 0) conditions:
Displacement: u(0,x) = 0 and velocity: ∂[u(0,x)]

∂t = 0.
We also make use of the sound velocity v along the x direction that:

ρs11
E = 1/v2. (8.39)

To obtain a general solution of Equation (8.36) in terms of space coordinate x,
we assume:

U(s,x) = Ae(sx/v) + Be−(sx/v). (8.40)

Now we consider the input force (pressure) F(t) on the both ends of the piezo-
plate. Since the stress is defined as positive for the tensile, we obtain

F(t) = −bwX1(t), (8.41)

and Equation (8.33) is transformed with the geometrical boundary condition X1 = X(t)
at x = 0 and L:

X(t) =
(x1 − d31Ez)

sE
11

. (8.42)

We denote the Laplace transform of external stress X(t) as X̃(s). We also utilize
the fact on the strain that:

L[x1] = (∂U/∂x) = A(s/v)e(sx/v) − B(s/v)e−(sx/v). (8.43)

Short-Circuit Condition

Equation (8.42) is reduced to x1 = s11
EX(t) at x = 0 and L, because of Ez = 0. Thus,

using Equation (8.43) yields the following two equations to solve the parameters A
and B at x = 0 and L:
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A(s/v) − B(s/v) = s11
EX̃,

A(s/v)e(sL/v) − B(s/v)e−(sL/v) = s11
EX̃.

Thus, we obtain

A =
sE

11X̃(1 − e−sL/v)

(s/v)(esL/v − e−sL/v)
, (8.44a)

B =
sE

11X̃(1 − esL/v)

(s/v)(esL/v − e−sL/v)
, (8.44b)

and, consequently, Equations (8.40) and (8.43) become:

U(s, x) = sE
11X̃

(v
s

)cosh
[

s(2x−L)
2v

]

cosh
(

sL
2v

) , (8.45a)

L[x1(s, x)] = sE
11X̃

sinh
[

s(2x−L)
2v

]

cosh
(

sL
2v

) . (8.45b)

By transforming the above equations into

U(s, x) =
sE

11X̃(v/s)[e−
s(L−x)

v + e−
s(L+x)

v − e−
sx
v − e−

s(2L−x)
v ]

(1− e−
2sL

v )
, (8.46a)

L[x1] =
sE

11X̃[e−
s(L−x)

v − e−
s(L+x)

v + e−
sx
v − e−

s(2L−x)
v ]

(1− e−
2sL

v )
, (8.46b)

and making use of the expansion series

1/(1 − e−2sl/v) = 1 + e−2sl/v + e−4sl/v + e−6sl/v· · · ,
the strain, x1(t,x), can now be obtained by shifting the sE

11X(t) curve with respect to t
according to Laplace Theorem (e). That is to say, the strain profile x1(t,x) should be
exactly the same as the stress profile X(t), and the displacement profile is the inverse
Laplace of sE

11X̃( v
s ). We may also consider that since u(t,L/2) = 0 (from U(s,L/2) = 0)

and u(t,0) = −u(t,L) (from U(s,0) = −U(s,L)) (i.e., symmetrical vibration), the total
displacement of the plate device ∆L becomes equal to 2u(t,L). We finally arrive at the
following relation:

∆L = 2U(s, L) =
2sE

11X̃
( v

s
)(

1− e−
sL
v

)

(
1 + e−

sL
v

) = 2sE
11X̃(v/s)[tanh(sL/2v)]. (8.47)

(a) First, we consider a particular input of “Heaviside step stress” X(t) = X0H(t).
Since the Laplace transform of the step function is given by (1/s) (Item 1 of
Table 8.1), the total displacement Equation (8.47) can be expressed by

2U(s,x = L) = 2s11
EX0(v/s2)(1 − e−(sL/v))/(1 + e−(sL/v))

= 2s11
EX0(v/s2)(1 − 2e−(sL/v) + 2e−(2sL/v) − 2e−3sL/v + 2e−4sL/v· · · ). (8.48)
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Note that the base function of U(s,L), 1/s2, gives the base function of u(t,L) in
terms of t (i.e., ∝ t, Item 3 in Table 8.1). The inverse Laplace transform of Equa-
tion (8.48) yields (by superposing the e−sk terms via the Laplace transformation
Theorem (e)):

2u(t,L) = 2s11
EX0vt 0 < t < L/v,

(8.49)
2u(t,L) = 2s11

EX0v[t − 2(t − L/v)] L/v < t < 2L/v,
2u(t,L) = 2s11

EX0v[t − 2(t − L/v) + 2(t − 2L/v)] 2L/v < t < 3L/v,
2u(t,L) = 2s11

EX0v[t − 2(t − L/v) + 2(t − 2L/v) − 2(t − 3L/v)] 3L/v < t < 4L/v.
· · · · · · · · · · · ·

The transient displacement, ∆L (=2u(t,L)), produced by the step stress is pic-
tured in Figure 8.11a (here X0 is positive for the tensile). The fundamental resonance
period of this piezoelectric plate corresponds to (2L/v), and the time interval in
Equation (8.49) is every (T/2). It is worth noting that the displacement changes “lin-
early”, not sinusoidally. Note that the vibration “ringing” will continue permanently
when we neglect the loss.
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Figure 8.11. (a) Total displacement ∆L; (b) strain x1 at the point x = L/4; (c) strain
wave dynamic profile, responding to a Heaviside step input stress in a continuum
piezoelectric plate (the k31 mode). Source: Figure by author.

The strain distribution on a piezoelectric plate is also intriguing for this step
excitation case. From Equation (8.45b), L(x1) is directly proportional to X̃; that is the
strain distribution x1(x) exactly follows X(t), the Heaviside step function. The strain
x1 at a certain point x becomes “s11

EX0” suddenly from “zero” with a certain time
lag depending on its coordinate x. Figure 8.11b shows the strain change with time at
the point x = L/4, which indicates two discrete strain levels s11

EX0, and 2s11
EX0 for

different time intervals. Strain wave dynamic modes are illustrated in Figure 8.11c.
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The strained portion starts from both ends (x = 0 and L) of the piezo-plates at the
time of step force applied at these ends. These two symmetrical boundaries/walls
between the strained and strain-free portion (analogous to a shockwave) propagate
with a piezo material’s sound velocity, vE

11, in opposition to each other, crossing over
at the plate center, then generating the doubly strained part in the center area (i.e.,
2s11

EX0). Thus, when the wall reaches the plate end, the plate length becomes the
maximum (∆L = 2s11

EX0L), and we can understand the reason why 100% overshoot
occurs under the step force applied. Note also that a minimum of one half of the
resonance period T/2 is required to reach to the maximum total displacement.

Because the ceramic is weaker for the tensile stress than for the compressive
stress, the ceramic plate may collapse T/4 later after the initial pressure applied
(i.e., when the doubly strained part is initiated). After T/2, the wall bounces back
in the opposite direction, and the plate starts to shrink linearly according to the
shrinkage of the strained portion. The linear displacement change is originated from
the constant wall velocity (which is equal to the piezo material’s sound velocity).
This triangular vibration ringing will remain long if the loss is small. The reader
is reminded that the step-like force/stress application generates a distinct step-like
strain discontinuity in the specimen, and this wave front propagates in the specimen
with a sound velocity. The vibration ringing will continue for a long period with the
average bias displacement at ∆L = s11

EX0L, as seen in Figure 8.11a. When you use an
Equivalent Circuit (EC) analysis, you will only obtain the sinusoidal vibration ringing
even under a step stress, because it cannot handle the step-like strain discontinuity
inside the ceramic specimen (the EC will handle a specimen just as a discrete spring
without the spring size and position).

(b) Next, let us consider the response to a “rectangular pulse stress” such as that
pictured in the top left-hand corner of Figure 8.12. This model corresponds to
practical clicking, kicking the piezo-plate. We begin by substituting

X̃ = (X0/s)(1− e−(nsL)/v), (8.50)

into Equation (8.47), which allows us to obtain the displacement ∆L for n = 1,
2 and 3. The quantity n is a time scale based on a half of the resonance period
(=T/2) of the piezoelectric plate.

For n = 1,

U(s,x = L) = s11
EX0(v/s2)(1 − e−(sL/v))2/(1 + e−(sL/v))

= s11
EX0(v/s2)(1 − 3e−sL/v + 4e−2sL/v − 4e−3sL/v + . . . ).

(8.51)

Similar to the step case, the base function of U (s,L), 1/s2, gives the base function
of u(t,L) in terms of t. The inverse Laplace transform of Equation (8.51) yields:

2u(t,L) = 2s11
EX0vt 0 < t < L/v,

(8.52)
2u(t,L) = 2s11

EX0v[t − 3(t − L/v)] L/v < t < 2L/v,
2u(t,L) = 2s11

EX0v[t − 3(t − L/v) + 4(t − 2L/v)] 2L/v < t < 3L/v.
· · · · · · · · · · · ·

The transient displacement, ∆L, produced by the rectangular pulse stress, is
pictured in Figure 8.12 (top right) for n = 1. The resonance period of this piezo-
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electric plate corresponds to (2L/v). Notice how continuous ringing occurs under
this condition.

For n = 2, since X̃ = (X0/s)(1 − e−(2Ls)/v) includes the denominator of Equa-
tion (8.47),

U(s,L) = s11
EX0(v/s2)(1 − 2e−sL/v + e−2sL/v). (8.53)

Thus,

2u(t,L) = 2s11
EX0vt 0 < t < L/v,

(8.54)2u(t,L) = 2s11
EX0v[t − 2(t − L/v)] L/v < t < 2L/v,

2u(t,L) = 2s11
EX0v[t − 2(t − L/v) + (t − 2L/v)] = 0 2L/v < t < 3L/v.

· · · · · · · · · · · ·
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Figure 8.12. Transient displacement ∆L produced by a rectangular pulse stress
with the pulse width of 1, 2, 3 of n(T/2). Note that the time interval, T = (2L/v),
corresponds to the fundamental resonance period of the piezoelectric plate. Source:
Figure by author.

In this case, the displacement, ∆L, occurs in a single pulse and does not exhibit
ringing as depicted in Figure 8.12 (bottom left). Remember again that the applied
field X̃ should include the denominator term (1 + e−sL/v) to realize finite expansion
terms, leading to a complete suppression of vibrational ringing.

For n = 3, U(s,L) is again expanded as an infinite series:

2U(s,x = L) = 2s11
EX0(v/s2)(1 − e−(3sL/v))(1 − e−(sL/v))/(1 + e−(sL/v))

= 2s11
EX0(v/s2)(1 −2e−sL/v + 2e−2sL/v − 3e−3sL/v + 4e−4sL/v − 4e−5sL/v · · · ). (8.55)

The displacement response for this case is pictured in Figure 8.12 (bottom right).
Note the displacement slope (plate edge vibration velocity) has twice difference
among the stress applied period and zero stress.
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The short-circuit condition, Ez = 0, yields the current response. The constitutive
equation of the electric displacement, D3 = d31X1 + ε0ε33

XEz, becomes simply D3 =
d31X1. Integrating this equation with respect to the electrode area

Q = w
∫ L

0 D3dx,

and from x1 = s11
EX1, we obtain

Q = wd31

L∫

0

X1dx = w
d31

sE
11

L∫

0

x1dx = w
d31

sE
11

∆L. (8.56)

Since the total current is provided by I = ∂Q
∂t , and ∆L = 2u(t, L),

I =
∂Q
∂t

= w
d31

sE
11

∂

∂t
(2u(t, L)). (8.57)

The total current response profile with time is given by the slope of the total
displacement ∆L. The proportionality constant ( 2wd31

sE
11

) against the vibration velocity
.
u(t, L) at the plate edge is called the “force factor”. Or, since the Laplace transform
of the total displacement is expressed by

2U(s, L) =
2sE

11X̃(v/s)(1− e−sL/v)

(1+e−sL/v)
= 2sE

11X̃(v/s)[tanh(sL/2v)],

we may express the Laplace transform of the total current Ĩ as

Ĩ = 2wd31X̃vtanh(
sL
2v

). (8.58)

Here L[ ∂
∂t (u(t, L))] = sU(s, L) was used. Figure 8.13 illustrates the transient dis-

placement ∆L (top) and current I (bottom) produced by rectangular pulse stress with
a pulse width of 1, 2 of n(T/2). Note that the time interval, T = (2L/v), corresponds
to the resonance period of the piezoelectric plate.

In conclusion, when we use the impulse stress input, the pulse width is impor-
tant: when the pulse width is exactly equal to the resonance period of the device, no
vibration ringing is followed, which is helpful to stop the temple bell timbre echo
completely. On the contrary, in order to generate “large displacement continuous
vibration ringing” for purpose of energy harvesting (Subsection Impedance Matching
Load Condition), the pulse width should be adjusted to:

(1) Exactly T/2 to obtain 100% overshoot (never take exactly to the resonance
period T);

(2) Longer than 100T (with high Qm) to practically realize the “negative Step-force”
(T ≈ 0.01 ms).

When we account for loss effects, the Laplace transform of the displacement
U(s,L) can be obtained by making the following substitution in Equation (8.38):

s → s√
1 + ςs

. (8.59)
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Open-Circuit Condition

The open-circuit condition means the total current I = 0, which yields the voltage
response generated on the electrode. Remember that the mechanical resonance under
the short or open circuit corresponds to the piezoelectric “resonance” or “antireso-
nance” frequency, respectively, which indicates that the vibration ringing time period
under the open-circuit condition should be “shorter” (i.e., elastically stiffer!) than
that under the short-circuit condition. When the electromechanical coupling factor is
not large, the antiresonance frequency is given by fB ≈ (vE/2L)(1+( 4

π2 )k
2
31

), higher
than the resonance frequency fA = (vE/2L). Integrating the constitutive equation of
the electric displacement, D3 = d31X1 + ε0ε33

XEz, with respect to the electrode area

Q = w
∫ L

0
D3dx = w

∫ L

0
[d31X1 + ε0εX

33Ez]dx. (8.60)

While, from X1 = x1/s11
E − (d31/s11

E)Ez, we obtain

∫ L

0
X1dx =

1
sE

11

∫ L

0
(x1 − d31Ez)dx. (8.61)

Knowing that
∫ L

0 x1dx = 2u(t, L) and Ez(t) = constant in terms of the coordinate
x, inserting Equation (8.61) into Equation (8.60), we obtain
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Q = w

{(
d31

sE
11

)
[2u(t, L)− d31Ez L] + ε0εX

33Ez L

}
= w

{(
d31

sE
11

)
2u(t, L) + ε0εX

33(1− k2
31)Ez(t)L

}
. (8.62)

The open-circuit condition, I = ∂Q
∂t = 0, results in the relation between the

electric field Ez and the total displacement 2u(t, L) as

∂Ez

∂t
= − k2

31(
1− k2

31
) 1

Ld31

∂

∂t
2u(t, L). (8.63)

Thus, the open-circuit boundary condition indicates that time dependence of Ez
is negatively proportional to the time dependence of average strain ∆L/L. It should
also be noted that u(t, L) = −u(t, 0), symmetric for the displacement profile. In other
words, the Laplace transform describes

Ẽ = − k2
31(

1− k2
31
) 2

Ld31
U(s, L). (8.64)

This electric field is a sort of “depolarization field” along the thickness direction,
originating from the D-constant condition merely along the z direction. If the D-
constant condition is held for all x, y, and z directions, the sound velocity will be vD.
However, in this k31 case, the sound velocity along the x direction is still vE, because
of the top electrode covering all length directions.

Thus, we solve the same dynamic equation as that under the short-circuit condition,

ρ
∂2u
∂t2 =

∂X1

∂x
. (8.65)

Since ∂X1
∂x = 1

sE
11

∂x1
∂x −

d31
sE

11

∂Ez
∂x , and the top and bottom electrodes keep the po-

tential/voltage constant along the x direction, ∂Ez
∂x = 0, the dynamic equation

(Equation 8.65) is reduced to:

ρ
∂2u
∂t2 =

1
sE

11

∂2u
∂x2 . (8.66)

Note here again that x1 = ∂u
∂x . To obtain a general solution of Equation (8.66) in

terms of space coordinate x, we assume:

U(s,x) = Ae(sx/v) + Be−(sx/v). (8.67)

Here, we denote the sound velocity v = 1/
√

ρsE
11 along x axis. Since the plate

surface is electroded, the sound velocity along the length direction is the same for
both short- and open-circuit conditions. Now we consider the input force (pressure)
F(t) on both ends of the piezo-plate. Since the stress is defined as positive for the
tensile, we obtain

F(t) = −bwX1(t), (8.68)
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and the “geometrical boundary condition” X1 = X(t) at x = 0 and L:

X(t) =
(x1 − d31Ez)

sE
11

. (8.69)

We denote the Laplace transform of external stress X(t) as X̃(s). We also utilize
the fact on the strain that:

L[x1] = (∂U/∂x) = A(s/v)e(sx/v) − B(s/v)e−(sx/v). (8.70)

If we rewrite Equation (8.69) as sE
11X̃(s) = L[x1]− d31Ẽ, and using Equation (8.64),

we obtain

sE
11X̃(s) = L[x1] +

k2
31(

1− k2
31
) 2

L
U(s, L). (8.71)

Different from the short-circuit condition, the external stress under the open-
circuit condition generates the total displacement term (second term of Equation (8.71))
originating from the induced electric field Ez (depolarization field). Using Equations
(8.67) and (8.70), and U(s, L) = −U(s, 0) yields the following two equations for the
condition at x = 0 and L to solve the parameters A and B:

A(s/v) − B(s/v) − k2
31

(1−k2
31)

2
L [A + B] = s11

EX̃,

A(s/v)e(sL/v) − B(s/v)e−(sL/v) +
k2

31
(1−k2

31)
2
L [Ae(sL/v) + Be−(sL/v)] = s11

EX̃.

Thus, we obtain

A =

sE
11X̃[

( s
v
)(

1 − e−
sL
v

)
+

(
2K2

31
L

)(
1 + e−

sL
v

)
]

esL/v[
( s

v
)
+ (2K2

31/L)]2 − e−sL/v[
( s

v
)
− (2K2

31/L)]2
, (8.72a)

B =

sE
11X̃[

( s
v
)(

1 − e
sL
v

)
−
(

2K2
31

L

)(
1 + e

sL
v

)
]

esL/v[
( s

v
)
+ (2K2

31/L)]2 − e−sL/v[
( s

v
)
− (2K2

31/L)]2
, (8.72b)

where we use a new notation

K2
31 =

k2
31(

1− k2
31
) , (8.73)

and, consequently, U(s, L) is expressed as:

U(s, x) = Ae
sL
v + Be−(

sL
v ) =

sE
11X̃{−2( s

v )+e
sL
v

[
( s

v )+
(

2K2
31

L

)]
+e−

sL
v

[
( s

v )−
(

2K2
31

L

)]
}

esL/v [( s
v )+(2K2

31/L)]
2− e−sL/v [( s

v )−(2K2
31/L)]

2 .
(8.74)
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It is important to note that when we consider the e−
sL
v term, which is essential

to sum up the time shift functions for future intervals with the unit of T/2 = L/v, the
term is composed of [s− (2K2

31v/L)], not merely of s. When we take into account s
on the (angular) frequency domain replaced by ω, the new ω at the antiresonance
condition [ωA − (2K2

31v/L)] seems to be equal to the resonance frequency ωR, which
was discussed in the previous section; that is, the antiresonance frequency is higher
than the resonance frequency, and the difference is proportional to K2

31 (modified
electromechanical coupling factor). Since further calculations are complicated, only
the expected results are described here. Figure 8.14 illustrates the transient dis-
placement ∆L produced by a rectangular pulse stress under open-circuit conditions
excited by the pulse width slightly shorter than (T/2) = L/vE, that is, half of the
fundamental antiresonance time period TA/2 = L

vE /(1 + 4
π2 k2

31). We expect similar
triangular (linear) displacement change to the case in the short-circuit condition. The
voltage/electric field change with time should be a similar triangular shape expected
from Equation (8.64).

ΔL

T 2T Time

Open-circuit
Closed-circuitn = 1

2sE11X0L

sE11X0L

0

Figure 8.14. Transient displacement ∆L produced by a rectangular pulse stress
under open- and short-circuit conditions with the pulse width close to (T/2). Source:
Figure by author.

We discussed Subsections Short-Circuit Condition and Open-Circuit Condition
under short-circuit and open-circuit conditions, in both of which we cannot expect
any electric energy harvesting in practice. In order to cultivate the energy, a suitable
electrical resistive impedance should be connected in the external circuit.

Impedance Matching Load Condition

An external electrical impedance Z is connected to a piezoelectric k31 plate
(Figure 8.15). When we assume impulse input stress X = X0(t), the output electric
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charge Q (i.e., no loss, no time lag) under the vibration ringing-down process at
almost the fundamental resonance frequency can be described as:

Q = w
∫ L

0
D3dx = w

∫ L

0
[d31X1 + ε0εX

33Ez]dx. (8.75)

While, from X1 = x1/s11
E − (d31/s11

E) Ez, we obtain

L∫

0

X1dx =
1

sE
11

L∫

0

(x1 − d31Ez)dx. (8.76)

Knowing that
∫ L

0 x1dx = 2u(t, L) and Ez(t) = constant in terms of the coordinate
x, and inserting Equation (8.76) into Equation (8.75), we obtain

Q = w

{(
d31

sE
11

)
2u(t, L) + ε0εX

33(1− k2
31)Ez(t)L

}
. (8.77)

Piezo-actuator

Zin = 1/jωRC
PS

D

iin

X = X0(t)

X = X0(t)

ioutZ

Figure 8.15. Electric energy harvesting model under the external electrical
impedance Z on a piezoelectric actuator. Source: Figure by author.

Note here that the motional capacitance enhancement can be neglected in this
off-resonance scenario due to no vibration enhancement via the mechanical quality
factor Qm during the ringing-down process after impulse stress. Taking Laplace
transform formulation for the force X̃0 and total polarization Q̃, Q̃ = d31X̃0,

I = ∂Q
∂t = iin + iout,

Ziniin = Ziout,

Ĩ = sQ̃ = CsṼ + Ṽ
Z = sd31X̃0.
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Thus, the effective impedance and the voltage/force relation is obtained as

Ṽ
Ĩ
=

1
sC + 1

Z
, (8.78)

Ṽ
X̃0

=
sd31

sC + 1
Z

. (8.79)

• When we adopt the step force, that is X̃0 = X0/s, we can obtain the voltage

Ṽ = d31X0
(sC+ 1

Z )
= d31X0

C
1

s+ 1
ZC

.

Taking an inverse Laplace transform, we obtain the voltage change with time
for the first impact as

V = (d31X0/C)e−t/ZC. (8.80)

However, this analysis leads the reader in the wrong direction: we do not
consider the vibration and voltage ringing with the resonance frequency, but consider
just one-time polarization generation.

• When we approximate the vibration ringing after the impulse force as cyclic
(sinusoidal) natural (resonance) vibration (though the actual displacement be-
havior is linear, not sinusoidal), we may adopt Fourier transform by replacing
the above Laplace form with s = jω for relatively long time-period. Here, ω
is considered to be the natural resonance frequency under the Z-shunt condi-
tion. The dynamic impedance of the piezo component (off-resonance) becomes
1/jωC. From V = I

jωC+ 1
Z
= jωd31X0

jωC+ 1
Z

and I = iout(1 + jωCZ), the output electric

energy is described as

|P|out =
1
2

Re[
1
2

Viout*] =
1
2

Z
(ωdX0)

2

(1 + (ωCZ)2)
. (8.81)

The maximum power energy |P| = 1
4

ωd2X2
0

C can be obtained when the external
impedance is adjusted to

Z = 1/ωC. (8.82)

In other words, the maximum “stored” electric energy can be spent by half when
the external resistive load impedance matches exactly to the internal impedance.
This is called resistive “electrical impedance matching”.

We now calculate the “input mechanical energy” under Z-shunt condition from
the second constitutive equation:

x = d31E + s11
EX = −d31

(
V
b

)
+ s11

EX = −
(

d31

b

)[
jωd31X0
1
Z + jωC

]
+ s11

EX. (8.83)
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The last transformation used Equation (8.79). We obtained effective elastic
compliance as

sE
e f f =

x
X

= sE[1− k31
2 jωCZ
(1 + jωCZ)

]. (8.84)

Under Z = 1/ωC, Equation (8.84) becomes

sE
e f f = sE(1− 1

2
k31

2 +
j
2

k31
2). (8.85)

The resonance period T may be estimated as

T = 2L
√

ρsE
e f f =T0(1−

1
4

k31

2
), (8.86)

which is shorter than the short-circuit condition T0, but longer than the open-circuit
condition T0(1− 4

π2 k2
31).

Let us calculate the energy spent in the external impedance Z, which should be
the matched external impedance of the piezoelectric energy harvesting system. The

“impulse” vibration energy UM (time averaged by
∫

hal f cycle
1
2

x0
2

sE dt) is transformed

into electric energy UE by the factor of k2 (UE = UM × k2), then a half of this energy
can be spent accumulating into a rechargeable battery ((1/2)k2 ×UM) when we
take the exact matching impedance condition for the piezo component. For the
next half cycle (i.e., opposite voltage and current during shrinkage), we start from
the mechanical energy (1 − k2/2)UM, without taking into account the elastic loss
(tan φ

′ � 1) in the system. As the square of the amplitude is equivalent to the amount
of energy, the amplitude decreases at a rate of (1− k2/2)1/2 times with every vibration
repeated. If the resonance period is taken to be T0, the number of vibrations for t
sec is 2t/T0. Consequently, the amplitude in t sec is (1− k2/2)t/T0 . If the residual
vibration period is taken to be T0, the damping in the amplitude of vibration is t sec
and can be expressed as follows:

(1− k2/2)
t/T0 = e−t/τ . (8.87)

Thus, the following relationship for the time constant of the vibration damping
is obtained.

τ = − T0

ln(1− k2/2)
. (8.88)

If we consider the elastic loss (tan φ
′

which corresponds to the damping constant
τS), the energy decay will be (1 − k2/2)e−T0/2τS UM every half cycle. Note that elastic
loss or its inverse “mechanical quality factor” QM are related with τS as

T0

τS
=

π

QM
. (8.89)

A similar process will be repeated every half cycle during the ringing-down process
after the step force is applied. The sequential energy ring-down process can be
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summarized in Table 8.2. The total loss energy (after n time sequences) can be
calculated as

1
2

k2UM

n

∑
n=0

[

(
1− 1

2
k2
)

e−
π

2QM ]
n
=

1
2

k2UM

1− [
(

1− 1
2 k2
)

e−
π

2QM ]
n

1−
(

1− 1
2 k2
)

e−
π

2QM

. (8.90)

Table 8.2. Electromechanical properties of the commercial PZT ceramics.

Sequence n Mechanical Energy Electrical Energy Spent/Accumulated Energy

0 UM k2UM
1
2 k2UM

1 (1− 1
2 k2)e−π/2QM UM k2(1− 1

2 k2)e−π/2QM UM 1
2 k

2
(1− 1

2 k2)e−π/2QM UM

2 [
(

1− 1
2 k2
)

e
− π

2QM ]
2
UM k2[

(
1− 1

2 k2
)

e
− π

2QM ]
2
UM

1
2 k

2
[
(

1− 1
2 k2
)

e
− π

2QM ]
2
UM

3 [
(

1− 1
2 k2
)

e
− π

2QM ]
3
UM k2[

(
1− 1

2 k2
)

e
− π

2QM ]
3
UM

1
2 k

2
[
(

1− 1
2 k2
)

e
− π

2QM ]
3
UM

...
...

...
...

n [
(

1− 1
2 k2
)

e
− π

2QM ]
n
UM k2[

(
1− 1

2 k2
)

e
− π

2QM ]
n
UM

1
2 k

2
[
(

1− 1
2 k2
)

e
− π

2QM ]
n
UM

Source: Table by author.

This indicates the following results according to the mechanical quality factor:

• High QM (~10,000) → Since the energy loss is small, the total energy accu-
mulated will reach almost the input mechanical energy UM after more than
10,000 ring-down processes.

• Low QM (~0.5)→ Since the original damping is large, the total energy loss will

be 1
2 k

2 1
0.96+0.02k2 , just slightly larger than 1

2 k
2
. This situation corresponds to only

one-time pulse displacement, discussed in Equation (8.80).

Figure 8.16 compares the transient displacement ∆L produced by rectangular
pulse stress under Z-shunt and short-circuit conditions with a pulse width close to
(T/2). When we use a matching impedance, the vibration amplitude decay rate is
determined by k2/2. Note the resonance period is shorter for the Z-shunt than for
the short-circuit condition, while it is longer than that of the open-circuit condition.
The total energy accumulation reaches almost the input mechanical energy UM after
multiple (~100 cycles) ring-down processes.
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ΔL

T 2T Time

Z-shunt Closed-circuit

(1 − k2/2)t/T

n = 1

2sE11X0L

sE11X0L

0

0

Figure 8.16. Transient displacement ∆L produced by rectangular pulse stress under
Z-shunt and short-circuit conditions with the pulse width close to (T/2). Source:
Figure by author.

Example Problem 8.4

In order to develop a piezoelectric energy harvesting device, a bimorph piezo-
electric element was prepared as shown in Figure 8.17a. An elastic beam was sand-
wiched with two sheets of piezoelectric ceramic plates, the characteristics of which
are summarized as:

Length
(mm)

Width
(mm)

Thickness
(mm)

Resonance keff
Mechanical

Qm
25 16 0.5 294 Hz 0.28 30

Now, the bimorph edge was hit by an impulse force, and the transient vibration
displacement decay (i.e., damping performance) was monitored under several con-
nected external resistances, including short- and open-circuit conditions. Figure 8.17b
shows the measured displacement data, which vibrate at almost the bimorph funda-
mental resonance frequency (295 Hz). The damping time constant was minimized
in the vicinity of 7 kΩ, which is close to the resistive impedance 1/ωC (C: bimorph
capacitance). From the data under short-circuit conditions, we obtain the damping
time constant τs = 102 ms, while under a matching impedance 6.6 kΩ, the damping
time constant is τ = 40 ms. Calculate the possible electric energy harvested during
the vibration ring-down process under the matching impedance condition.
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Piezoelectric ceramics
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Figure 8.17. Vibration damping change associated with external resistance change.
(a) Bimorph transducer for this measurement; (b) damped vibration with external
resistor. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 388.
Reproduced by permission of Taylor & Francis Group.

Solution

Since the bimorph exhibits the intrinsic damping time constant τs = 102 ms,
the observed damping time constant τ = 40 ms includes the intrinsic one. From
the relation

1
τtotal

=
1
τs

+
1
τk

. (P8.4.1)

The electromechanical coupling-factor-related damping time constant is obtained as
τk = 85 ms, which actually corresponds to the electric energy harvesting contribution.

Taking into account the resonance period T0 = 3.4 ms, from the equation for the
damping related with the electromechanical coupling factor,

τ = − T0

ln
(

1− k2

2

) , (P8.4.2)

we obtain k = 0.28, exactly the same as this bimorph keff obtained from the
impedance spectrum analysis.

Therefore, the total loss energy (after n time sequences) is given in Equa-
tion (8.90):

1
2

k2UM

1− [
(

1− 1
2 k2
)

e−
π

2QM ]
n

1−
(

1− 1
2 k2
)

e−
π

2QM

. (P8.4.3)

After the impulse mechanical energy UM on this bimorph with QM ~ 30 and k = 0.28,
Equation (P8.4.3) becomes 0.22UM (summation from the first 30 pulses), which is
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between 1
2 k

2
UM ( 1

2 k
2
= 0.039) and UM. Because of low QM, the loss seems to be

significant in comparison with loss-free (high QM) piezoelectric element.

Example Problem 8.5

We have a rectangular k31 piezo-ceramic plate (Figure 8.5). Using a Heaviside
voltage drive technique, the transient length displacement change is measured as
a function of time, and the displacement curve pictured in Figure 8.18 is obtained.
Explain how to determine the k31, d31 and Qm values from these data. The density ρ,
and dielectric constant ε33

X, of the ceramic must be known prior to the experiments.
You may also use the relationship: Qm = (1/2)ω0τ, where ω0 is the resonance angular
frequency (i.e., 2π/ω0 is the resonance period) and τ is the damping time constant.

Applied Voltage 
(V)

Displacement
(μm)

Time
Resonance period

Figure 8.18. Pulse drive technique for measuring the electromechanical parame-
ters. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 279.
Reproduced by permission of Taylor & Francis Group.

Solution

The pulse drive method is a simple method for measuring high voltage piezo-
electric characteristics, developed in the ICAT/Penn State in the early 1990s. By
applying a step electric field to a piezoelectric sample, the transient vibration dis-
placement (i.e., “ringing-down”) corresponding to the desired mode (extensional,
bending, etc.) is measured under a short-circuit condition (see Figure 8.18). Be-
cause the equipment cost could be minimized (in comparison with a commercialized
expensive “impedance analyzer”), this method was used previously. Notice that
one-time high-voltage application (though multiple time measurements are tech-
nically accumulated with a certain interval) and the following short period (~ms)
ringing vibration do not generate a measurable temperature rise experimentally
(<0.2 ◦C). The resonance period, stabilized displacement, and damping time constant
are obtained experimentally, from which the elastic compliance sE, piezoelectric
constant d, mechanical quality factor Qm and electromechanical coupling factor k can
be calculated. Using a rectangular k31 piezoelectric ceramic plate (length: L; width:
w; and thickness: b; poled along the thickness, as in the inserted figure in Figure 8.2),
we explain how to determine the electromechanical coupling parameters k31, d31,
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and Qm step by step below. The density ρ, permittivity ε33
X, and size (L, w, b) of the

ceramic plate must be known prior to the experiments.

1. From the stabilized displacement Ds, we obtain the piezoelectric coefficient d31:

Ds = d31EL. (P8.5.1)

2. From the ringing period, we obtain the elastic compliance s11
E:

T0 = 2L/v11
E = 2L(ρs11

E)1/2. (P8.5.2)

3. From the damping time constant, which is determined by the time interval to
decrease the displacement amplitude by 1/e, we obtain the mechanical quality
factor Qm:

Qm = (1/2)ω0τ, (P8.5.3)

where the resonance angular frequency ω0 = 2π/T0.
4. From the piezoelectric coefficient d31, elastic compliance s11

E, and permittivity
ε3

X, we obtain the electromechanical coupling factor k31:

k31 = d31/(ε0ε3
Xs11

E)1/2. (P8.5.4)

On the other hand, the antiresonance Qm can be obtained as follows: by suddenly
removing a large electric field from a piezoelectric sample, and keeping the open
circuit, the transient vibration displacement corresponds to the antiresonance mode.
The bias electric field (and the vibration velocity) dependence of piezoelectricity can
be measured. One drawback is the vibration velocity level: due to just one-time
high-voltage application, the induced displacement or strain level is limited.

Chapter Essentials

1. The Laplace transform—Beneficial to impulse transient analysis
U(s) = L[u(t)] =

∫ ∞
0 e−stu(t)dt.

• Differentiation with respect to t:

L
[

du(t)
dt

]
= sU(s) − u(0),

L
[

dnu(t)
dtn

]
= snU(s) − ∑ sn−kuk−1(0);

• Integration:
L[
∫

u(t)dt] = U(s)/s + (1/s)[
∫

u(t)dt]t=0;
• Shift formula with respect to t:

L[u(t − k)] = e−ksU(s).

2. Laplace Transform of the k31 Mode Vibration Equation—Electric Field Drive:

ρsE
11s2U(s, x) = ∂2U(s,x)

∂x2 ,

U(s, L) = d31 Ẽ(v/s)(1−e−sL/v)
(1+e−sL/v)

= d31Ẽ(v/s)[tanh(sL/2v)].

3. Pulse and Pseudo-Step Response of the k31 Mode—Electrical Drive (summa-
rized in Figures 8.7a and 8.9a).
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4. Laplace Transform of the k31 Mode Vibration Equation—Mechanical Stress
Drive (Summarized in Figure 8.13).

U(s, x) = sE
11X̃( v

s )
cosh[ s(2x−L)

2v ]

cosh( sL
2v )

,

L[x1(s, x)] = sE
11X̃ sinh[ s(2x−L)

2v ]

cosh( sL
2v )

.

5. Stress Pulse Response of the k31 Mode: Under matching impedance Z condi-
tions:
sE

e f f = sE[1− k31
2 jωCZ
(1+jωCZ) ],

when Z = 1/ωC, sE
e f f = sE(1− 1

2 k31
2 + j

2 k31
2), and T = 2L

√
ρsE

e f f = T0(1−
1
4 k31

2
).

6. Total electric energy (after n time sequences) harvested in the matched impedance
Z = 1/ωC:

1
2 k

2
UM

1−[(1− 1
2 k2)e

− π
2QM ]

n

1−(1− 1
2 k2)e

− π
2QM

,

which ranges between 1
2 k

2
UM (low QM) and UM (high QM).

Check Point

1. Using the Laplace transformation definition: U(s) = L[u(t)] =
∫ ∞

0 e−stu(t)dt,
calculate U(s) for the Heaviside step function u(t) = 1(t) [u(t) = 0 (t < 0); u(t) = 1
(t > 0)].

2. Derive the function u(t) for the Laplace Transform: U(s) = (m/s2)e−as. Note a
kink on the curve.

3. (T/F) When a piezoelectric actuator is driven by a rectangular pulse voltage, the
mechanical ringing is completely suppressed when the pulse width is adjusted
to exactly half of the resonance period of the sample. True or false?

4. When a piezoelectric actuator is driven by a Heaviside step voltage, the vibra-
tion displacement overshoot is excited (by neglecting mechanical loss). What is
the maximum overshoot range (percentage), in comparison with the normal
(pseudo-static) operation? Is it 10, 16.7, 33, 50, 100, or 200% larger than the
normal displacement?

5. (T/F) When a piezoelectric k31 plate is driven by Heaviside step mechanical
stress on the plate edges, the vibration displacement is exhibited linearly with
time. True or false?

6. (T/F) When a piezoelectric k31 plate is driven by a Heaviside step mechanical
stress on the plate edges, the resonance period under the short condition is
shorter than that under the open-circuit condition. True or false?

7. (T/F) Total electric energy (after n time sequences) harvested in a high Qm piezo
component under the pulse stress drive in the matched impedance Z = 1/ωC
reaches almost total input mechanical energy, irrelevant to the electromechanical
coupling factor k. True or false?

8. (T/F) When a piezoelectric k31 plate is driven by a “pulse” mechanical stress
with the pulse width exactly matching the resonance period, the electric energy
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harvested in the matched impedance Z = 1/ωC connected reaches 1
2 k2

31UM. UM:
input mechanical energy. True or false?

9. A piezoelectric plate was excited by a Heaviside step mechanical stress. We
observed the resonance period ω0 and the damping time constant τ of the
total displacement, which is determined by the time interval to decrease the
displacement amplitude by 1/e. Obtain the mechanical quality factor Qm from
these data.

10. (T/F) The resonance frequency of the k31 type piezo-plate excited by the stress
pulse drive under the matching impedance Z (=1/ωC) condition ranges be-
tween the piezoelectric resonance and antiresonance frequencies. True or false?

Chapter Problems

8.1 Using the k31 type piezo-plate (Figure 8.5), we consider the Heaviside step
stress application on the length edges. Calculate the total displacement ring-
down behavior under the open-circuit condition in comparison with the short-
circuit condition, the result of which is illustrated in Figure 8.14. Using a no-

tation, K2
31 =

k2
31

(1−k2
31)

, the Laplace form of displacement U(s,L) (=(1/2)∆L) is

expressed as: U(s, L) =
sE

11X̃
{
−2( s

v )+e
sL
v

[
( s

v )+
(

2K2
31

L

)]
+e−

sL
v

[
( s

v )−
(

2K2
31

L

)]}

e
sL
v

[
( s

v )+
(

2K2
31

L

)]2

− e−
sL
v

[
( s

v )−
(

2K2
31

L

)]2 .

Hint

Use f (s− a)→ eatF(t) for the [
( s

v
)
±
(

2K2
31

L

)
] terms to convert the resonance

frequency ωA = v/2L to the antiresonance frequency ωB, which satisfies the
relation: (ωBL/2v11

E)cot(ωBL/2v11
E) = −k31

2/(1 − k31
2). Since X̃ ∝ 1/s and

U(s, L) ∝ sE
11X̃(1/s) ∝ 1/s2, we can get the basic function ∝ t; linear relation

with time lapse.
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9. Equivalent Circuit

Mechanical and electrical systems are occasionally equivalent from the view-
point of a mathematical formula. Therefore, an electrician tries to understand me-
chanical system behavior from a more familiar LCR electrical circuit analysis, or vice
versa: a mechanic uses a mass-spring-damper model to understand an electric circuit.
However, because discrete components are used in the analysis, the “equivalent
circuit” analysis cannot provide the spatial analysis of the strain/displacement or
current/voltage in the specimen, as demonstrated in Chapter 8. Two important notes
must be taken into account: (1) mechanical loss is handled as “viscous damping”,
though the losses in piezoelectric ceramics may be “solid damping” in reality; (2) an
equivalent circuit approach is almost successful, as long as we consider a steady
sinusoidal (harmonic) vibration. Because the “equivalent circuit” approach is the
handling simplification from the “continuum media” to “discrete component”, some
discrepancies arise. For example, when we consider a transient response, such as a
pulse drive of a mechanical system with a finite specimen size, the equivalent circuit
analysis cannot generate a time-linear response of the specimen’s displacement.

The equivalent (electric) circuit (EC) is a commonly used tool which can greatly
simplify the process of design and analysis of the piezoelectric devices, in which
the circuit, in a standard form, reference [1] can only graphically characterize the
mechanical loss by applying a resistor (and sometimes dielectric loss). Different from
a pure mechanical system, a piezoelectric vibration exhibits an “antiresonance mode”
in addition to a “resonance mode”, due to the existence of the damped capacitance
(i.e., only part of the input electric energy is transduced into the mechanical energy).
As discussed in Chapter 6, without introducing the “piezoelectric loss” it is difficult
to explain the difference of the mechanical quality factors at the resonance and
antiresonance modes. Damjanovic therefore introduced an additional branch into
the standard circuit, which is used to present the influence of the piezoelectric
loss [2]. However, concise and decoupled formulae of three (dielectric, elastic, and
piezoelectric) losses have not been derived, which can be used for the measurement
of losses in piezoelectric material as a user-friendly method. We consider new
equivalent circuits of piezoelectric devices with these three losses in this chapter.

9.1. Equivalency between Mechanical and Electrical Systems

There are two classifications of LCR electrical circuits: series connection and
parallel connection for the equivalent circuit analysis. Though both circuits are
equivalent, in general, focused usage is different.

9.1.1. LCR Series Connection Equivalent Circuit

The dynamic equation for a pure mechanical system composed of a mass, a
spring, and a damper, illustrated in Table 9.1a, is expressed by

M(d2u/dt2) + ζ(du/dt) + c·u = F(t), or (9.1a)
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M(dv/dt) + ζv + c
∫ t

0
v dt = F(t), (9.1b)

where u is the displacement of a mass M, v is the velocity (= du/dt), c spring constant,
ζ damping constant of the dashpot, and F is the external force. Note that when a
continuum elastic material is considered, the actual damping may be “solid damping”
(as we discussed in the previous Section 6.2.2), but here we consider or approximate
the “viscous damping”, where the damping force is described in proportion to the
velocity, from a mathematical simplicity viewpoint.

On the other hand, the dynamic equation for an electrical circuit composed of a
“series connection” of an inductance L, a capacitance C, and a resistance R, illustrated
in Table 9.1b, is expressed by

L(d2q/dt2) + R(dq/dt) + (1/C)q = V(t), or (9.2a)

L(dI/dt) + RI + (1/C)
∫ t

0
I dt = V(t), (9.2b)

where q is charge, I is the current (= dq/dt), and V is the external voltage. Taking into
account the equation similarity (in this case, force vs. voltage and vibration velocity
vs. current), the engineer introduces an equivalent circuit; consider a mechanical sys-
tem using an equivalent electrical circuit, which is intuitively simpler for an electrical
engineer. In contrast, consider an electrical circuit using an equivalent mechanical
system, which is intuitively simpler for a mechanical engineer. Equivalency between
these two systems is summarized in the center column in Table 9.1. We consider the
“parallel connection” model in the next section, where force vs. current and vibration
velocity vs. voltage correlations are treated.

Table 9.1. Equivalency between mechanical and electrical systems, composed of
M (mass); c (spring constant); ζ (viscous damper); L (inductance); C (capacitance);
R (resistance). (a) Mechanical system; (b) LCR series connection; (c) LCR paral-
lel connection.

L

C

R

(b)

(c)

IV(t)

I(t)

CB GB

V

M

F(t)
(a)

C ζ

Mechanical

Force F(t)

Velocity v/u

Displacement u

Mass M

Spring Compliance 1/c

Damping ζ

Electrical (F − V)

Voltage V(t)

Current I

Charque q

Inductance L

Capacitance C

Resisance R

Electrical (F − I)

Current I(t)

Voltage V

--

Capacitance C

Inductance L

Conductance G LB 

Source: [3] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 325. Reproduced by
permission of Taylor & Francis Group.

When we consider “steady sinusoidal vibrations” of the system at the frequency
ω (V(t) = V0ejωt, I(t) = I0eiωt−δ), Equation (9.2) can be transformed into

[jωL + R + (1/jωC)]I = V, or (9.3a)

Y = I/V = [jωL + R + (1/jωC)]−1. (9.3b)
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Under a constant unit voltage (such as 1 V), the current (A) behavior provides
the frequency dependence of the “circuit admittance”. Thus, this series connection
equivalent circuit (EC) is useful to discuss the piezoelectric resonance mode with the
admittance maximum peak.

We consider the “Bode plot” of Equation (9.3b). A “Bode plot” is a graph of the
frequency response of a system, usually a combination of a magnitude and phase
angle, as introduced in Section 6.3. The admittance |Y| gain (i.e., 20 log10|Y|)
is plotted in Figure 9.1a as a function of frequency ω in a logarithmic scale. The
steady-state oscillation plot exhibits:

(1) A 20 dB/decade (∝ ωC) asymptotic curve with 90◦ phase in the low-frequency
region.

(2) The peak at ω0, resonance angular frequency for zero damping, given by
ω0 = 1/

√
LC, with the peak height |Y|max = (1/R), and Q =

√
L/C/R, which

corresponds to the quality factor.
(3) A −20 dB/decade (∝ 1/ωL) asymptotic curve with −90◦ phase in the high

frequency region.

Let us calculate the quality factor Q in the LCR circuit defined by ωR/2∆ωR,
where ∆ωR is the half width of the admittance frequency spectrum to provide the
1/
√

2 (3 dB down) of the maximum admittance (1/R) at the resonance frequency ωR.
Since these cut-off frequencies are provided by

1√
2
= 1√

[( ωc L
R )−( 1

ωc RC )]
2
+1

.

Then, two roots for the cut-off frequency ωC are given by

ωc1,c2 = ∓ R
2L +

√(
R
2L

)2
+
(

1
LC

)
.

Since 2∆ωR=ωc2 − ωc1 andωR= 1/
√

LC, the quality factor is expressed by

Q = ωR/2∆ωR =
(

1/
√

LC
)

/(R/L) =
√

L/C/R. (9.4)

When we consider the charge q (which corresponds to u), rather than current I
under the voltage (Equation (9.2a)):

L(d2q/dt2) + R(dq/dt) + (1/C)q = V(t).

Taking the harmonic oscillation, the above equation is transformed to

[−ω2L + jωR + (1/C)]q = V, or (9.5a)

q/V ==[−ω2L + jωR + (1/C)]−1. (9.5b)

The Bode plot of Equation (9.5b), known as a “standard second-order system”
(because of ω2 in the denominator), is shown in Figure 9.1b, where the gain of charge
q is plotted in a logarithmic scale and phase in a linear scale as a function of frequency
ω. The steady state oscillation plot exhibits:

(1) A 0 dB/decade asymptotic curve in the low frequency region.
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(2) A peak atω0, resonance angular frequency for zero damping, given by ω0 =

1/
√

LC, with the peak height (1/2ζ) =
√

L/C/R = Q, which corresponds to the
quality factor.

(3) A −40 dB/decade asymptotic curve in the high-frequency region.
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Figure 9.1. Bode diagram for a series LCR circuit: (a) admittance; (b) charge
(second-order system). Source: Figure by author, adapted from [4].
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9.1.2. LCR Parallel Connection Equivalent Circuit

Let us now consider the dynamic equation for an electrical circuit composed of
a “parallel connection” of an inductance LB, a capacitance CB, and a conductance GB
illustrated in Table 9.1c:

CB(dV/dt) + GB V + (1/LB)
∫ t

0
Vdt = I(t), (9.6)

where I is the current from the current supply, and V is the same voltage applied
on three components. In comparison with Equation (9.1b), equivalency between the
two mechanical and electrical systems is summarized in the last column in Table 9.1.
When we consider steady sinusoidal vibrations of the system at the frequency ω (I(t)
= I0ejωt, V(t) = V0eiωt−δ), Equation (9.6) can now be transformed into

[jωCB + GB + (1/jωLB)]V = I, or (9.7a)

Z = V/I = [jωCB + GB + (1/jωLB)]−1. (9.7b)

Under a unit constant current (such as 1 A), the voltage (V) behavior provides the
frequency dependence of the “circuit impedance”. Thus, this parallel connection EC
is preferred to discuss the piezoelectric “antiresonance mode” (i.e., B-type resonance)
with the impedance maximum peak.

Example Problem 9.1.

Two equivalent circuits in Table 9.1b,c are modeled for the same mechanical
system in Table 9.1a. Therefore, we can expect mutual relationships between these
inductance, capacitance, and resistance/conductance values. Obtain the mutual rela-
tionships.

Hint

Since the voltage–current behavior should be equivalent in these series and
parallel connection circuits, the admittance in Equation (9.3b) should be an inverse
of the impedance in Equation (9.7b).

Solution

Equating Z with 1/Y:

Z = [jωCB + GB + (1/jωLB)]−1 = 1/Y = [jωL + R + (1/jωC)], (P9.1.1)

we obtain the following equation:

CB

(
1
C
−ω2L

)
+

1
LB

(
L− 1

ω2C

)
+ RGB + j

[
GB

(
ωL− 1

ωC

)
+ R

(
ωCB −

1
ωLB

)]
= 1. (P9.1.2)
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In order to keep the same resonance frequency in both circuits,

ω2 =
1

LC
=

1
LBCB

, (P9.1.3)

should be maintained. Thus, Equation (P9.1.2) indicates another equation,

RGB = 1. (P9.1.4)

Though we have the circuit component flexibility, as long as LC = LBCB, the simplest
solution is the utilization of the same L, C, and R for LB, CB, and 1/GB.

Example Problem 9.2.

Knowing the mechanical system (mass M, spring c, and damper ζ) and the elec-
tric circuit (inductance L, capacitance C, and resistance R) equivalency, as shown in
Figure 9.2a, generate the electrical equivalent circuit corresponding to the mechanical
system described in Figure 9.2b.

c

ζ
v2

v1

x2

x1

f = c(x1− x2)

V = L

V = R(i1− i 2)f = ζ(v1 −v2)

f  =  m dt
di
dt

dvdtM

Q1

i1

i L

Q2

i2

C

R

V = 1C
(Q1−Q2)

dv

M
1

M
2

c
1

ζ

f (t)

c
2

c
3

(a) (b)

Figure 9.2. (a) Equivalency between mechanical components (mass M, spring c,
and damper ζ) and electric components (inductance L, capacitance C, and resistance
R). (b) Example problem. Source: Figure by author, adapted from [4].

Solution

Mass M, spring c, and damper ζ in a mechanical system are converted to
inductance L, inverse capacitance 1/C, and resistance R, respectively, as shown
in Figure 9.2a. Note here that only the mass is dependent on one displacement
parameter, while the spring and damper are expressed by the subtractions among
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two displacement parameters, which also reflect on the LCR components. Basically,
the force should be the same in the series connection of the mechanical components,
while the voltage should be the same in the electrical component circuit. Figure 9.3a
shows the mechanical system of the problem under the same force condition, then
Figure 9.3b shows transformation process into the electric components. Note that
the spring-damper parallel connection is transformed into a capacitor–resistor series
connection parallelly inserted to cover “two” closed circuit loops, while the mass
(i.e., L) should be inserted independently in one circuit loop. The final equivalent
circuit is shown in Figure 9.3c.

M
1

L

L
M

2

c
1

c
2

ζ

c
3

f (t)

v
1
Q

1

i1

c
R

L
2

L
1

C
1

v
2

v
3

Q
2

Q
1

c
Q

2

i
2

Q
1

Q
2

c
i
1

i2

i3

V (t)

(a) (b) (c)

Figure 9.3. (a) Mechanical system of the problem; (b) transformation process into
the electric components; (c) the final electrical equivalent circuit. Source: Figure
by author.

9.2. Equivalent Circuit (Loss Free) of the k31 mode

In Section 9.1, we handled purely mechanical and electrical systems separately,
where the principle equations are:

• Mechanical System:

ρ ∂2ui
∂t2 = Fi =

∂Xi1
∂x + ∂Xi2

∂y + ∂Xi3
∂z : Dynamic equation

x = grad(u) [x1 = ∂u
∂x , x2 = ∂v

∂y , x3 = ∂w
∂z ]: Strain and displacement

• Electrical System:
div(D) = σ: Gauss Law
E = −grad(V): Electric field and potential/voltage

• Piezoelectric System:
In addition to the above condition requirements, the following “piezoelectric
constitutive equations” must be satisfied in a piezoelectric system (polycrys-
talline ceramic case):
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


x1

x2

x3

x4

x5

x6




=


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s11
E s12

E s13
E 0 0 0

s12
E s11

E s13
E 0 0 0
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E s13

E s33
E 0 0 0

0 0 0 s44
E 0 0

0 0 0 0 s44
E 0

0 0 0 0 0 2
(
s11

E − s12
E)


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X2
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+




0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0
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


E1

E2

E3


,




D1

D2

D3


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


0 0 0

0 0 0

d31 d31 d33

0 d15 0
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
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+ ε0
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ε11 0 0

0 ε11 0

0 0 ε33







E1

E2

E3


.

Now, we introduce the equivalent circuit (EC) of piezoelectric devices, a widely
used tool which can greatly simplify the process of designing the devices. The key
in a piezoelectric device is illustrated schematically in Figure 9.4, where the input
electric energy is partially converted to the output mechanical energy by the factor
or k2, while the remaining energy (1 − k2) is stored in a capacitor (so-called damped
capacitance). Taking the above energy distribution condition into account, the con-
verted mechanical energy part is represented by the above-introduced LCR EC, while
the remaining electrical energy part is represented merely by an additional capacitor
(i.e., damped capacitance), then these two branches are connected in parallel to keep
the applied voltage constant for constructing the total system EC. The loss observed
as heat generation is usually small (around a couple of %), which is proportional to
the loss tangent/dissipation factor. Different from the previous section of a simple
LCR series connection, where only the resonance mode appears, when we include the
damped capacitance, the antiresonance mode appears, where the damped (pure elec-
trical component) and motional (originated from mechanical vibration) capacitances
are basically canceled out. In other words, the existence of the damped capacitance
is essential to generate the antiresonance mode.

Input electrical energy 100%

Loss Tangent

Mechanical energy converted 
k2

Electrical energy stored in a capacitor 
(1 − k2)

Figure 9.4. Energy conversion in a piezoelectric. Source: Figure by author, adapted
from [4].

Next, we consider how to translate the physical parameters in a continuum
medium into discrete component parameters, L, C, and R. First, we take the simplest
equivalent circuit (loss-free) for the k31 mode piezo-plate, as shown in Figure 9.5,
on which we already analyzed the resonance/antiresonance modes in detail in
Section 7.2.2. Because of the surface electrode, the elastic compliance and sound
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velocity along the wave propagation direction are E-constant; that is, sE
11 and vE

11. You
are reminded of the admittance equation:

Y = (jωwL/b)ε0ε33
LC
[
1 +

(
d31

2/ε0ε33
LCs11

E
)(

tan
(
ωL/2vE

11

)
/
(
ωL/2vE

11

)]

= (jωwL/b)ε0ε33
X
[
(1− k31) + k31

2
(

tan
(
ωL/2vE

11

)
/
(
ωL/2vE

11

)]

= jωCd

[
1 + k2

31
1−k2

31

tan(Ω11)
Ω11

]
= jωC0

[(
1− k2

31
)
+ k2

31
tan(Ω11)

Ω11

]
,

(9.8)

where w is the width, L the length, and b the thickness of the rectangular piezo
sample. We adopt the following notations to make the formulae simpler:

k31
2 = d31

2/ε0εX
33sE

11,

ε0ε33
LC= ε0ε33

X
(

1− k31
2
)

,

C0 = ε0εX
33

Lw
b (Free capacitance),

Cd = ε0εLC
33

Lw
b (Damped capacitance),

Ω11=
(
ωL/2vE

11
)
.

Equation (9.8) indicates that the first term originates from the “clamped capaci-
tance” (proportional to (1 − k2)), and the second term is the “motional capacitance”
associated with the mechanical vibration (proportional to k2). By splitting Y into the
damped admittance Yd and the motional part Ym,

Yd = jωCd = jωC0

(
1− k2

31

)
, (9.9)

Ym = jωCd

[
k2

31
1− k2

31

tan(Ω11 )

Ω11

]
= jωC0

[
tan(Ω11 )

Ω11

]
k2

31. (9.10)

y
z

0
b x

L

w

zP

Figure 9.5. A rectangular piezo-ceramic plate (L � w � b) for a longitudinal
mode through the transverse piezoelectric effect (d31). Source: [3] ©Uchino, K.
Micromechatronics, 2nd ed. CRC Press, 2019; p. 111. Reproduced by permission of
Taylor & Francis Group.

The damped branch can be represented by a capacitor with “damped capaci-
tance” Cd in Figure 9.6a. We connect the motional branch (mechanical vibration) in
“parallel” to this damped capacitance, because Equation (9.8) indicates the summa-
tion of these two admittances originated from two current flows under a constant
externally applied voltage. The formula of Ym is derived in the next section.
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Ym
Yd = j ωCd

Cd = (1 − k2)C0
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ImId
Cd

ωCd

Cd = (1 − k 
2)C0

Cn = (8/n2π 
2)k 
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L1 L3
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C1

Y
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V
Yd  

= j

C
1
 = (8/π2)k2C

0

(a) (b)

Figure 9.6. Equivalent circuit for the k31 mode (loss-free): (a) conceptual EC; (b) LC
series EC. Source: Figure by author, adapted from [4].

9.2.1. Resonance Mode

Because the maximum Y corresponds to the resonance mode, we can analyze

merely the motional Ym, which is much larger than Yd. Ym = jωCd

[
k2

31
1−k2

31

tan(Ω11 )
Ω11

]
is

infinite (∞) around the “A-type resonance” frequency, that is, ωAL/2v11
E = Ω11,A,n =

nπ/2 (n = 1, 3, 5, . . . ). Taking “Mittag-Leffler’s theorem” of tan(Ω11 )
Ω11

around ωA,n,

tan(Ω11 )

Ω11
= ∑∞

n:odd(
8

n2π2 )/{1−
(

Ω11

Ω11,A,n

)2

}. (9.11)

When we use a LC series connection equivalent circuit (EC) model in Table 9.1b
on the motional (mechanical vibration) branch, we convert the mass contribution
to L and elastic compliance to C, then construct Ln and Cn series connections as
shown in Figure 9.6b. Note here that a similar approach can be made for the parallel
connection EC, because of the equivalency among the series and parallel ECs (refer
to Example Problem 9.1). Each pair of (L1,C1), (L3,C3), . . . (Ln,Cn) contributes to
the fundamental, the second, and the n-th resonance vibration mode, respectively.
Remember that n is only for the odd number, or even number n does not show
up in the piezoelectric resonance, which corresponds basically to the antiresonance
mode. Though each branch is activated only at its own n-th resonance frequency,
the capacitance’s contribution remains even at an inactive frequency range, and in
particular at a low-frequency range (note the impedance of capacitance, 1/jωC, and
inductance, jωL. Under a low-frequency region, the inductance contribution will
disappear). Neglecting the damped admittance, the motional impedance of this LC
circuit around the A-type resonance ωA,n is approximated by

1/Ym,n = jωLn + 1/jωCn ≈ j(Ln + 1/ωA,n
2Cn)(ω − ωA,n), (9.12)

where ωA,n
2 = 1/LnCn. Using Equations (9.11) and (9.12), we can obtain the following

equation:

Ym = jωCd




k2
31

1− k2
31

∑∞
n:odd

8
n2π2{

1−
(

Ω11
Ω11,A,n

)2
}


 = ∑∞

n:odd
j(

Ln +
1

ωA,n
2Cn

)
(ωA,n −ω)

. (9.13)
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Taking into account further approximation, 1{
1−
(

Ω11
Ω11,A,n

)2
} ≈ ω11,A,n

2(ω11,A,n−ω11)
for

each n-th branch, we can obtain the following two equations which express the Ln,
Cn in terms of the transducer’s physical parameters:

Ln =
(

bLsE
11/4vE

11
2wd2

31

)
/2 = (ρ/8)(Lb/w)

(
sE2

11 /d2
31

)
, (9.14)

Cn = 1/ω2
A,nLn =

(
L/nπvE

11
)2
(8/ρ)(w/Lb)

(
d2

31/sE2
11
)

=
(
8/n2π2)(Lw/b)

(
d2

31/sE2
11
)
sE

11,
(9.15)

ωA,n = 1/
√

LnCn = nπ/L
√

ρsE
11. (9.16)

Note initially that Ln is a constant, irrelevant to n. All harmonics have the same
L, which is originated from the ceramic density ρ or the specimen mass M. Cn is pro-
portional to 1/n2 and the elastic compliance s11

E. Note that the parameter (d31/s11
E)

is distinguished in both Equations (9.14) and (9.15), which will be explained in the
next Section 9.3 as a “force factor” Φ = 2wd31/s11

E. The total motional capacitance

∑n Cn is calculated as follows, using an important relation Σ
[

1
(2m−1)2

]
= ( π2

8 ):

∑n Cn = ∑n
1
n2

(
8

π2

)(
Lw
b

)(
d2

31

sE
11

)
=

(
Lw
b

)(
d2

31

sE
11

)
= k31

2C0

[
k2

31 = d2
31/sE

11ε0ε33
X
]
. (9.17)

Therefore, we can understand that the total capacitance C0 = (wL/b) ε0ε33
X is

split into the damped capacitance Cd = (1 – k31
2)C0 and the total motional capacitance

k31
2C0, which is reasonable from the energy conservation viewpoint. You have now

learned how the continuum medium parameters are converted to discrete components.

9.2.2. Antiresonance Mode

Next, we consider the antiresonance n-th mode, where the total admittance
Y = 0 in Equations (9.8) and (9.12):

Y = jωCd

[
1 +

k2
31

1− k2
31

tan(Ω11 )

Ω11

]
= jωCd +

1
1

jωCn
+ jωLn

= 0. (9.18)

This admittance corresponds to the closed-circuit admittance under an externally
open-circuit condition (i.e., the smallest admittance condition). Accordingly, we
obtain the antiresonance (B-type) frequency ωB in terms of the EC circuit parameters:

ωB =

√(
1 +

Cn

Cd

)
/LnCn =

√(
1

Cn
+

1
Cd

)
/L. (9.19)

9.3. Equivalent Circuit of the k31 Mode with Losses

9.3.1. IEEE Standard Equivalent Circuit

Figure 9.7 shows the IEEE Standard equivalent circuit (EC) for the k31 mode
with only one elastic loss (tanφ’) [5]. This elastic loss introduction in the mechanical
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branch is based on the assumption that the elastic loss in a piezoelectric material
follows a “viscous damping” model, merely from the viewpoint of mathematical
simplicity. The dielectric or piezoelectric losses are neglected. In this EC model,
merely for the fundamental resonance mode, in addition to Equations (9.9), (9.14)
and (9.15) in the loss-free EC, the circuit analysis provides the following R and Q
(electrical quality factor, which corresponds to the mechanical quality factor in the
piezo-plate) relation:

Q =
√

LA/CA/RA. (9.20)

LA

CA

RA

Cd

Figure 9.7. Equivalent circuit for the k31 mode (IEEE). Source: [3] ©Uchino, K.
Micromechatronics, 2nd ed. CRC Press, 2019; p. 328. Reproduced by permission of
Taylor & Francis Group.

This R introduction means the inclusion of merely the elastic loss (i.e., tanφ11’
in the k31 mode), leading automatically to the relation QA (resonance) = QA (an-
tiresonance). In order to demonstrate the usefulness of the equivalent circuit model
for the piezoelectric device analysis, a simulation tool is introduced. The PSpice is
a popular circuit analysis software code for simulating the performance of elec-
trical circuits, which is widely distributed to students in the university Electri-
cal Engineering department. EMA Design Automation, Inc. in the United State
(http://www.ema-eda.com, accessed on 4 October 2022) is distributing a free down-
load “OrCAD Capture”, for this circuit-design solution software. The reader can ac-
cess to the download site, if you wish: http://www.orcad.com/products/orcad-lite-
overview?gclid=COaXitWJp9ECFcxKDQodCGMB0w (accessed on 4 October 2022).

Figure 9.8 shows the PSpice simulation process of the IEEE Standard k31 type.
Figure 9.8a shows an equivalent circuit for the k31 mode. L, C and R values were
calculated for PZT4 with 40 × 6 × 1 mm3 (Equations (9.14), (9.15), and (9.20)),
where the following data are used: Density—7500 kg/m3, sE

11—1.23 ×10−11 (m2/N),
d31—1.23 ×10−10 (m/V), εX

33—1300, tanφ′11—0.002, Qm—500.
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Figure 9.8. PSpice simulation of the IEEE type k31 mode. (a) Equivalent circuit for
the k31 mode. L, C and R values were calculated for PZT4 with 40 × 6 × 1 mm3.
(b) Simulation results on admittance magnitude and phase spectra. Source: [3]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 329. Reproduced by
permission of Taylor & Francis Group.

Figure 9.8b plots the simulation results of the current under 1V; that is, ad-
mittance magnitude and phase spectra. IPRINT1 (current measurement), IPRINT2,
and IPRINT3 are the current meters of the total admittance (� line), motional ad-
mittance (◦ line), and damped admittance (∇ line), respectively. First, the damped
admittance shows a slight linear increase with the frequency (jωCd) with +90◦ phase
in a full frequency range. Second, the motional admittance shows a peak at the
resonance frequency, where the phase changes from +90◦ (i.e., capacitive) to –90◦

(i.e., inductive). In other words, the phase is exactly zero at the resonance frequency.
The admittance magnitude decreases above the resonance frequency with a rate of
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−20 dB down in a “Bode plot”. Third, by adding the above two, the total admittance
is obtained. The admittance magnitude shows two peaks, maximum and minimum,
which correspond to the resonance and antiresonance points, respectively. You can
find that the peak sharpness (i.e., the mechanical quality factor) is the same for both
peaks, because only one loss is included in the equivalent circuit. The antiresonance
frequency is obtained at the intersect of the damped and motional admittance curves.
Because of the phase difference between the damped (+90◦) and motional (–90◦)
admittance, the phase is exactly zero at the antiresonance, and changes to +90◦ above
the antiresonance frequency. Remember that the phase is –90◦ (i.e., inductive) at a
frequency between the resonance and antiresonance frequencies.

9.3.2. Equivalent Circuit (EC) with Three Losses

Hamilton’s Principle

In Section 7.3.1, we derived the difference between the mechanical quality factor
QA at the resonance and QB at the antiresonance in the k31 specimen, based on the
three dielectric, elastic, and piezoelectric loss factors, tanδ’, tanφ’ and tanθ’. Recall
the following formulae Equations (7.43) and (7.55) for the k31 type specimen:

QA,31 = 1
tan φ11

′

1
QB,31

= 1
QA,31

− 2

1+
(

1
k31
−k31

)2
ΩB,31

2

(
2 tan θ31

′ − tan δ33
′ − tan φ11

′),





ΩA,31 = ωa l
2vE

11
= π

2 ,
[
vE

11 = 1/
√

ρsE
11

]

ΩB,31 = ωb l
2vE

11
, 1− k31

2 + k31
2 tan ΩB

ΩB
= 0

.

We now consider how to generate an EC with these three losses in order to real-
ize the difference between QA and QB even in the EC. We start from the “Hamilton’s
Principle”, a powerful tool for “mechanics” problem solving, which can transform a
physical system model to “variational problem” solving. We integrate loss factors
directly into the Hamilton’s Principle for a piezoelectric k31 plate (Figure 9.5) [6].
Referring to reference [6], the following admittance expression can be derived, which
is equivalent to Equation (7.33) in Section 7.3:

Y∗ = jω· lwb ·
(

ε0εX
33
′ − Re

[
(d∗31)

2

sE
11
∗

])
+ ω· lwb ·

(
ε0εX

33
′′ + Im

[
(d∗31)

2

sE
11
∗

])

+jω· 8lw
bπ2 ·Re

[
(d∗31)

2

sE
11
∗

]
·

π2

l2ρsE
11
∗

π2

l2ρsE
11
∗ −ω2

+ jω· 8lw
bπ2 ·

(
jIm
[
(d∗31)

2

sE
11
∗

])
·

π2

l2ρsE
11
∗

π2

l2ρsE
11
∗ −ω2

.
(9.21)

Among the above 4 terms in Equation (9.21), the first and second terms corre-
spond to the damped capacitance and its dielectric loss (i.e., the “extensive”—like
dielectric loss (tanδ”’) in Equation (7.33) in Section 7.3), respectively, while the third
and fourth terms correspond to the motional capacitance and the losses combining
with “intensive” elastic and piezoelectric losses.
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k31 Equivalent Circuit with Three Losses

Damjanovic [2] introduced a motional branch to describe the third term in
Equation (9.21), which contains a motional resistor, a motional capacitor, and a
motional inductor. Meanwhile, an additional branch is also injected into the classical
circuit [1] to pictorially express the last term in Equation (9.21) to present the influence
of the piezoelectric loss, where the new resistance, capacitance, and inductance are all
proportional to corresponding motional elements, with the proportionality constant

being jIm
[
(d∗31)

2

sE
11
∗

]/
Re
[
(d∗31)

2

sE
11
∗

]
.

Shi et al. proposed a concise equivalent circuit (EC) shown in Figure 9.9a with
three losses [6]. Compared with the IEEE Standard EC with only one elastic loss or the
Damjanovic’s EC with a full set of L, C, R, only one additional electrical element G′m
is introduced into the classical circuit [6]. The new coupling conductance can reflect
the coupling effect between the elastic and the piezoelectric losses. The admittance
of this new EC can be mathematically expressed as:

Y∗ = Gd + jωCd +
G′m + jωCm

(1 + G′m/Gm −ω2LmCm) + j(ωCm/Gm + ωLmG′m)
. (9.22)

The parameters of the new EC can therefore be obtained by comparing
Equation (9.21) with Equation (9.22) as new expressions of three “intensive” loss fac-
tors:

tan φ′ = ωCm/Gm [Gm = 1/Rm], (9.23a)

tan θ′ = tan
(
φ′ − β′

)
, (9.23b)

tan δ′ = k2
31 tan

(
2θ′ − φ′

)
+

Gd
ωCd

, (9.23c)

where the phase delay tan β′ = ωCm
G′m
−
√(

ωCm
G′m

)2
+ 1 denotes the disparity between

the piezoelectric and elastic components. From Equation (9.18), we learned that the
piezoelectric loss and elastic loss are always coupled in the E excitation measurement.
The value of β′ generally holds negative or approaches zero (when G′m → 0) in PZT
based piezo-ceramics, which implies that the piezoelectric loss is persistently larger
than or equal to the elastic component. The significance of the piezoelectric loss has
been therefore verified in theory from the equivalent circuit viewpoint.

Using the experimental data in Figure 9.9b, almost frequency-independent cir-
cuit parameters as Cd = 3.2 nF, Cm = 0.29 nF, Lm = 210 mH, and Gd = 0 (extensive
dielectric loss tanδ”’ is small) can be obtained, and the frequency dependent param-
eters (Gm and G′m) [6]. By manipulating Equations (9.23a)–(9.23c), we determined
intensive dielectric, elastic, and piezoelectric losses as a function of frequency, as
shown in Figure 9.9c.
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Figure 9.9. (a) Equivalent circuit proposed with three intensive loss factors; (b) ad-
mittance spectrum to be used in the simulation; (c) frequency spectra of intensive
loss dielectric, elastic and piezoelectric loss factors obtained from the admittance
spectrum (b) fitting, and (d) calculated mechanical quality factor Qm as a func-
tion frequency around the resonance and antiresonance frequencies. Source: [3]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 330. Reproduced by
permission of Taylor & Francis Group.

Quality Factor in the Equivalent Circuit

The mechanical quality factor, Qm, is always applied to evaluate the effect of
losses. When arriving at steady state, it can be expressed by:

Qm = 2π·energy stored/cycle
energy lost/cycle

. (9.24a)

The denominator is supposed to compensate for the dissipation, wloss; that is,∫
V wlossdV = π

2

∣∣v∗3
∣∣∣∣q∗3

∣∣ cos ϕ, where the phase difference between current and input
voltage, ϕ, ranges within

[
−π

2 , π
2
]
. Meanwhile, the reactive portion of the input

energy returns to the amplifier and is neither used nor dissipated. Furthermore, the
maximum stored and kinetic energies also reach equilibrium in an electrical cycle.
With definitions of energy items and appropriate substitutions, Qm can be calculated
as [7]:
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Qm =
ω2

a −ω2
r

cos ϕ
· ω2
∣∣∣ω2 − (ω∗r )

2
∣∣∣
∣∣∣ω2 − (ω∗a )

2
∣∣∣
. (9.25)

As ω2 approaches ω2
r or ω2

a , the phase difference will approach zero. (ω∗r )
2 and

(ω∗a )
2 are a sort of imaginary frequency including the loss factors, as described in [7].

Therefore, for low k2
31 materials, substituting Equation (9.25), mechanical quality

factors at the resonance and antiresonance frequencies can be calculated as:

QA =
1

tan φ′
=

1
Rm

√
Lm

Cm
, (9.26)

QB =
1

tan φ′ + 8K2
31

π2 [tan φ′ + tan δ′ − 2 tan θ′]

[
K31

2 = K31
2/
(

1− K31
2
)]

. (9.27)

Equations (9.26) and (9.27) obtained from a new equivalent circuit are basically
the same as we derived analytically in Section 7.3.1, Equations (7.43) and (7.55).
Hence, the calculation of Qm at these special frequencies has been verified by the
well-accepted conclusion. Not only at these frequencies, Equation (9.25) also in-
fers an advanced calculation method of Qm for a wide bandwidth. Figure 9.9d
shows the frequency spectrum of the mechanical quality factor Qm calculated from
Equation (9.25). You can clearly find that (1) the QB at antiresonance is larger than QA
at resonance, and (2) the maximum Qm (i.e., the highest efficiency) can be obtained at
a frequency between the resonance and antiresonance frequencies. This frequency
can theoretically be obtained by taking the first derivative of Equation (9.25) in terms
of ω as equal to zero, which suggests the best operating frequency of the transducer
to realize the maximum efficiency.

We derived the following equation from Equation (9.24a) as shown in Section 7.4.3,
which allows the calculation of the mechanical quality factor at any frequency from
the real electrical power (Pd) and tip RMS vibration velocity (VRMS) measurements
for a longitudinally vibrating piezoelectric resonator (kt, k33, k31):

Qm,l = 2π f
1
2 ρV2

RMS
Pd/Lwb

. (9.24b)

The change in mechanical quality factor was measured for an 80 mm long hard
PZT (APC 851) ceramic plate (k31) under constant vibration condition of 100 mm/s
RMS tip vibration velocity (i.e., stored mechanical energy constant). The required
power and mechanical quality factor Qm are shown in Figure 9.10. Notice the curve
resemblance between Figures 9.9d and 9.10. The quality factor obtained at the reso-
nance is within 2% agreement with results from the impedance spectrum method
(3 dB down bandwidth). This technique reveals the behavior of the mechanical qual-
ity factor at any frequency from “below the resonance” to “above the antiresonance”
frequencies. Moreover, very interestingly, the mechanical quality factor reaches a
maximum value between the resonance and the antiresonance frequency, the point
of which may suggest the optimum condition for the transducer operation from an
efficiency viewpoint.
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Figure 9.10. Mechanical quality factor measured using real electrical power (in-
cluding the phase lag) for a Hard PZT APC 851 k31 plate. Source: [4] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 198. Reproduced
by permission of Taylor & Francis Group.

9.4. Equivalent Circuit of the k33 Mode with Losses

Remember that the k33 mode is governed by the sound velocity vD, not by vE,
and that the antiresonance is the primary mechanical resonance given by f = vD/2L,
and the resonance is the subsidiary mode originated from the electromechanical
coupling factor k33. The difference from the k31 type oscillator with the “transversal”
piezoelectric effect is that the k33 type is primarily associated with the “depolarization
field” (that is, Edep = −∆P3/ε0εE

33, where ∆P3 is excited by the AC stress) created in
the “longitudinal” piezoelectric effect (k33, kt) oscillator, so that the sound velocity
is a D-constant, not an E-constant parameter. Let us consider the formulation of
the equivalent circuit (EC) for the k33 mode, in particular how to integrate the
“depolarization field effect”, using specimen geometry shown in Figure 9.11a.

Electrode

(a) (b)

Cd

L

C1

R1

− Cd

z
y
x

b
w

l P V (t)

Figure 9.11. (a) k33 mode piezo-ceramic rod; (b) equivalent circuit for the k33

mode. Source: [3] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 333.
Reproduced by permission of Taylor & Francis Group.
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9.4.1. Resonance/Antiresonance of the k33 Mode

Referring to the derivation process introduced in Section 7.2.3, we first summa-
rize the key formulae.

• The constitutive equations

X3 = (x3 − d33Ez)/s33
E, (9.28)

D3 = ε0ε33
XEz + d33X3. (9.29)

• Dynamic equation

ρ
∂2u
∂t2 =

1
sD

33

∂2u
∂z2

(
sD

33 =
(

1− k3
33

)
sE

33

)
. (9.30)

• Admittance is expressed as

Y =
jωε0εLC

33

(
wb
L

)


1− k2

33





tan
(

ωL
2vD

33

)

(
ωL

2vD
33

)








= jωCd +
jωCd[

−1 + 1/k2
33

{
tan(Ω33)
(Ω33)

}] . (9.31)

Here, we used Ω33 =

(
ωL

2vD
33

)
, εLC

33 = εX
33
(
1− k2

33
)
, sD

33 = sE
33
(
1− k2

33
)
, k2

33 =

d2
33

ε0εX
33sE

33
, vD

33 = 1/
√

ρsD
33, and Cd = ε0εLC

33

(
wb
L

)
. The second expression is to show the

“damped admittance” and the “motional admittance” separately.

9.4.2. Resonance/Antiresonance of the k33 Mode

When we consider the resonance condition, Y = ∞, the resonance frequency is
obtained from Equation (9.31) as

(
ωL
2vD

33

)
cot

(
ωL
2vD

33

)
= k33

2
(

vD
33 = 1/

√
ρsD

33

)
. (9.32)

Since the resonance is the subsidiary mode, the resonance frequency of the k33 mode
depends strongly on the electromechanical coupling factor k33 value.

To the contrary, the antiresonance mode is obtained by putting Y = 0, which

provides the condition, tan
(

ωL
2vD

33

)
= ∞. Thus, the antiresonance frequency is de-

termined by n(vD
33/2L) (n = 1, 3, 5, . . . ), and the vibration mode shows an exact

half-wavelength on the specimen with length L under sound velocity vD
33, while

the resonance is the subsidiary vibration mode as discussed above. This provides
an intriguing contrast to the k31 mode, where the resonance mode is the primary
vibration with a half-wavelength of the specimen of L, and the antiresonance is the
subsidiary vibration mode.
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9.4.3. Equivalent Circuit of the k33 Mode

We can rewrite Equation (9.31) further, as follows:

Y = jωCd +
1

− 1
jωCd

+ 1

j tan
(

ωL
2vD

33

)
2bwd33

2

ρvD
33 L2sE

33
2

, (9.33)

where Cd =

(
ε0ε

x3
33 bw
L

)
. The parameter εx3

33 is the same as the longitudinally clamped

permittivity, εLC
33 = εX

33
(
1− k2

33
)
. From Equation (9.33), we can understand that the

equivalent circuit of the k33 mode is composed of the first-term damped admittance
with a “damped capacitance” and the second term “motional admittance”. Addition-
ally, the motional branch is obtained by a series connection of so-called “negative
capacitance −Cd” (exactly the same absolute value of the damped capacitance in the

electric branch) and the pure motional admittance, j tan
(

ωL
2vD

33

)
2bwd33

2

ρvD
33L2sE

33
2 . Figure 9.11b

illustrates the fundamental mode equivalent circuit (EC) by translating the motional
admittance with only a pair of L and C. The IEEE Standard model includes only one
resistance R1, which corresponds to the elastic loss tan φ”’ in the material’s parameter.
The admittance should be the minimum at the antiresonance frequency, where the
pure mechanical resonance status is realized, because the damped capacitance should
be compensated by the negative capacitance –Cd in the closed loop circuit. On the
contrary, the admittance should be the maximum at the resonance, and the effective
motional capacitance in the motional branch is provided by 1/

(
1

C1
+ 1
−Cd

), which

provides s33
D (=s33

E(1 – k33
2)), rather than s33

E (i.e., origin of C1). The reader can
understand intuitively that the negative capacitance comes from the “depolarization
field”, or the D-constant status of the k33 vibration mode, different from the k31
E-constant mode. Figure 9.11b integrated a resistance R1 in series with L1 and C1 in
the pure mechanical branch. In comparison with Equations (9.14), (9.15), and (9.20)
in the k31 mode, the EC components, L, C, and R of the k33 mode can be denoted as:

Ln =
(

bLsD
33/4vD

33
2wd2

33

)
/2 = (ρ/8)(Lb/w)

(
sD2

33 /d2
33

)
, (9.34)

Cn = 1/ω2
A,nLn =

(
L/nπvD

33
)2
(8/ρ)(w/Lb)

(
d2

33/sD2
33
)

=
(
8/n2π2)(Lw/b)

(
d2

33/sD2
33
)
sD

33,
(9.35)

Rn =
√

Ln/Cn/Q. (9.36)

Here, sD
33 = sE

33
(
1− k2

33
)
, k2

33 =
d2

33
ε0εX

33sE
33

and Q = tanφ′ ′ ′ as the material’s constants.

9.5. Four- and Six-Terminal Equivalent Circuits (ECs)—k31 Case

Though the new two-terminal EC with three dielectric, elastic, and piezoelectric
losses is useful for basic no-load piezoelectric samples or the specimen characteriza-
tion process, we need to extend it to four- and six-terminal EC models in order to
consider the load effect for practical transducer/actuator applications with composite
structures such as Langevin transducers.
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9.5.1. Four-Terminal Equivalent Circuit

Four-Terminal Equivalent Circuit (Zero Loss)

We again consider the k31 type piezoelectric plate, whose admittance is described
by Equation (9.8). When we consider the damped electric branch and the motional
mechanical branch together, we can generate a two-terminal equivalent circuit (EC)
as shown in Figure 9.12a. However, since the electric and mechanical branches are
physically different, it is more reasonable to discuss these branches separately, which
intuitively creates a four-terminal (or two-port) equivalent circuit, as exemplified in
Figure 9.12b. The electric branch (left-hand side) is separated from the mechanical
branch (right-hand side) by a transformer, which transforms voltage and current
(electrical energy) to force and vibration velocity (mechanical energy), respectively,
with the transformer ratio of Φ and 1/Φ, in order to change the unit from the electric
to mechanical parameters (i.e., converse piezoelectric effect). This Φ is called the
“force factor”. In this case, the port on the mechanical branch can be mechanically
loaded (symmetrically in the four-terminal model), depending on the piezoelectric
composite structure. Vice versa, when the mechanical branch (right-hand-side)
is excited initially, the same transformer converts the input force and vibration
velocity to the output voltage and current by the same transformer ratios 1/Φ and
Φ, respectively. In this case, the port on the electrical branch can be loaded by a
combination of L, C, and R.

V V

Id
IdCd

Cd = (1 − k2)C0

C1 = (8/π2)k2C0

(a) (b)

C1
Cd

c1

LIm

Im

Im = ϕv ϕV = F'

F' F

 1 : ϕ

I l u/v.

Figure 9.12. (a) 2- and (b) 4-terminal ECs for k31 mode (zero loss). Source: [4]
©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 158.
Reproduced by permission of Taylor & Francis Group.

Let us formulate electric component parameters of the four-terminal EC of the
k31 plate in Figure 9.5. The motional current Im is given by

Im = EzbYm = EzbjωCd

(
k2

31
1− k2

31

)
tan(ωL/2v11)

(ωL/2v11)
, (9.37)

while the vibration velocity
.
u at the “plate edge” is described from Equation (7.11) in

Chapter 7 as
(∂u/∂t)x=L = jd31Ezv11 tan(ωL/2v11). (9.38)
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Taking into account the definition of the transformer ratio Φ in terms of current
and vibration velocity by

Im = Φ
.
u = Φ(∂u/∂t)x=L, (9.39)

Φ can be obtained as
Φ =

2wd31

sE
11

. (9.40)

Note the general relations: F’ = ΦV and Im =
.
u/Φ. Using the former in terms of

voltage V and force F’ by
ΦV = F’, (9.41a)

ΦEzb =

(
jωl +

1
jωc1

)
(∂u/∂t)x=L. (9.41b)

Note here that mechanical force F’ at the plate edge is obtained by the product
of vibration velocity (∂u/∂t)x=L and the “mechanical impedance”

(
jωl + 1

jωc1

)
. The

mechanical impedance is defined by

F′ = Zm
.

u (on the plate edge plane). (9.42)

In a popular mass-spring model, since the loss-free dynamic equation is given
by m ∂

.
u

∂t + c
∫ .

udt = F′, we obtain F′ =
(

jωm + c
jω

) .
u. By converting m and c to

l and 1/c1 in the EC, we obtain the mechanical impedance notation. Since the
voltage is given by the product of motional current Im and the impedance in the
two-terminal model,

V = Ezb =

(
jωL +

1
jωC1

)
Im, (9.43)

we obtain the relationship between the L, C1 in the two-terminal model and l, c1 in
the four-terminal model:

(
jωl +

1
jωc1

)
=

(
jωL +

1
jωC1

)
Φ2. (9.44)

We finally obtain the following relations in terms of the “force factor” Φ:

Φ2L = l, C1 /Φ2 = c1. (9.45)

The force factor = 2wd31/sE
11 has a practical value around 0.1 in the MKS unit

for PZTs.

Example Problem 9.3.

Figure 9.13 shows a composite piezoelectric oscillator, which is composed of the
k31 type piezoelectric plate and two metal plates bonded on both ends of the piezo-
plate. Supposing the piezo-plate length L and the metal length is L/2 symmetrically
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on both ends, consider the equivalent circuit of this composite oscillator with a metal
load to analyze the vibration mode.

PS
Metal

Piezoelectric

Metal

Figure 9.13. Composite piezoelectric oscillator. Source: [4] ©Uchino, K. High-
Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 160. Reproduced by
permission of Taylor & Francis Group.

Hint

A four-terminal (two-port) equivalent circuit (EC) for the k31 mode is given by
Figure 9.14a. Consider the elastic material’s equivalent circuit.

Solution

Figure 9.14a shows a four-terminal (two-port) EC for the k31 mode, on which
mechanical load can be applied. The resistance connected in series corresponds to the
mechanical loss. We consider load application cases. Based on the LCR parameters
in the two-terminal model:

Ln = (ρ/8)(Lb/w)
(
sE2

11 /d2
31
)
,

Cn =
(
8/n2π2)(Lw/b)

(
d2

31/sE2
11
)
sE

11,
Rn =

√
ln/cn/Q,

we obtain the force factor, inductance, capacitance, and resistance on the mechanical
branch:

Φ =
2wd31

sE
11

(P9.3.1)

ln = Φ2Ln = (ρ/2)(Lbw), (P9.3.2)

cn = Cn/Φ2 =
(

2/n2π2
)
(L/wb)sE

11, (P9.3.3)

rn = Φ2Rn =
√

ln/cn/Q. (P9.3.4)

Note the difference from the two-terminal model: the L, C components in
Figure 9.12a include the piezoelectric d constant explicitly, but the l, c components
above do not, because the electromechanical coupling is defined in the “force factor”
of the transformer. The mechanical branch parameters should be only pure elastic
parameters. ln is given by (1/2) of the piezo-plate total mass, while cn corresponds
to the inverse of the spring constant (2/π2 is the calibration factor in addition to the
normalization in terms of cross-section area wb and length L).

When the mechanical branch of the four-terminal EC is short circuited
(Figure 9.14b), i.e., reaches a mechanically free condition (the force F on the piezo-
plate ends is zero), this will be transformed to the two-terminal EC. On the contrary,
when the mechanical branch is open circuited, this condition corresponds to com-
pletely clamped (strain-free) on both plate ends.
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Figure 9.14c shows the model where the metal plate with the same width,
thickness, and length L/2 is bonded symmetrically on both ends of the piezoelectric
plate (total metal length L). The load is modeled by the LC “parallel” connection
in this case with the parameters lelast, celast, and relast, where ρ, smetal and Q are the
metal’s density, elastic compliance, and the inverse elastic loss, respectively:

lelast = ρ(Lbw), (P9.3.5)

celast =
(

1/n2π2
)
(L/wb)smetal , (P9.3.6)

relast =
√

lelast/celast/Q. (P9.3.7)

For the reader’s reference, if the metal plate is bonded symmetrically by cutting
half of the thickness on both the top and bottom surfaces of the piezo-plate, the
load is modeled by the above LC components in the “series” connection. You may
understand this situation by taking into account the mechanical impedance series or
parallel connection.

(c)(b)

(a)

Parallel connection of elastic plates

V F

ú/v

Id Cd

c1

c1
c1r1

r1

relas

celas
lelas

l l

lIm

1 : ϕ

I

Lo
ad

Figure 9.14. (a) 4-terminal equivalent circuit for the k31 mode; (b) a no load (short-
circuit) condition; (c) elastic plates attached in parallel. Source: [4] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 160. Reproduced
by permission of Taylor & Francis Group.
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Four-Terminal Equivalent Circuit with Three Losses

Uchino proposed a four-terminal equivalent circuit for a k31 mode plate, including
elastic, dielectric, and piezoelectric losses (Figure 9.15a), which can handle symmetri-
cal external mechanical losses [3]. The four-terminal EC includes an ideal transformer
with a voltage step-up ratio Φ to connect the electric (damped capacitance) and the
mechanical (motional capacitance) branches, where Φ = 2wd31/s11

E, called “force
factor” in this “electromechanical transformer”. New capacitances l, c1, and r1 are
related to L, C1 and R1 in the two-terminal EC given in Equations (9.14), (9.15), and
(9.20). Here, r1 and R1 correspond to the intensive elastic loss tanφ11’, which is
introduced in IEEE Standard mode:

l = Φ2L; c1 = C1/Φ2; r1 = Φ2R1, (9.46)

where Φ is the so-called “force factor”. Regarding the three losses, as shown in
Figure 9.15a in a k31 piezo-plate, in addition to the IEEE standard “elastic” loss r1
and “dielectric” loss Rd, we introduce the “coupling loss” rcpl in the force factor
(Φ = 2wd31/s11

E) as inversely proportional to (tanφ11’ − tanθ31’), which can be either
positive or negative, depending on the tanθ31’ magnitude. Figure 9.15b shows the
PSpice software simulation results for three values of rcpl. We can find that (1)
the resonance QA does not change with changing rcpl, (2) when rcpl = 100 kΩ (i.e.,
tanθ31’ ≈ 0), QA > QB, (3) when rcpl = 1 GΩ (i.e., tanφ11’ − tanθ31’ ≈ 0), QA = QB, and
(4) when rcpl = −100 kΩ (i.e., tanφ11’ − tanθ31’ < 0), QA < QB. Taking into account a
typical PZT case, where tanθ’ > (1/2) (tanδ’ + tanφ’), the well-known experimental
result QA < QB can be expected from the negative rcpl. Thus, the large piezoelectric
loss tanθ31’ in PZTs is the key to exhibiting the negative force factor loss, which leads
to the mechanical quality factor relation QA < QB.

V1
V2

ϕV1 = V2

I1 = ϕI2

I2 I2 + Icpl
Id I1

Cd
Rd

rcpl
c1 r1lI

Icpl

1 : ϕ
Ideal

I

(a)

Figure 9.15. Cont.
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(b)

Figure 9.15. (a) 4-terminal (2-port) EC for a k31 plate, including three losses (r1, Rd,
and rcpl); (b) PSpice simulation results on admittance for a k31 type PZT4 40 × 6 ×
1 mm3 plate. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019;
p. 332. Reproduced by permission of Taylor & Francis Group.

9.5.2. Six-Terminal Equivalent Circuit

Mason’s Equivalent Circuit

Mason introduced a famous six-terminal (3-port) equivalent circuit (EC) model,
relating to a “distributed element model” [8]. As illustrated in Figure 9.16, two ports
in the mechanical branch of the six-terminal (three-port) EC for the k31 piezoelectric
plate correspond to the two edges of the plate, on which different mechanical loads
can individually be applied, exemplified by a “Langevin transducer” with different
head and tail masses (i.e., “Tonpilz transducer”). Additionally, Mason’s EC does not
include any approximation, such as L and C component combination, which limits
the usage only for a particular resonance mode, and can be applied to any frequency.

V
Id

Cd

ImI

Z1

F1 F2

Z1

Z 1

u2u1

1 : ϕ'

Figure 9.16. 6-terminal equivalent circuit for a k31 mode. Source: Figure by author,
adapted from [3].

Let us determine the electronic components, Z1, Z2, and the force factor Φ’ in
the six-terminal EC model. We denote the displacement along the length of a plate
specimen (Figure 9.5), u, force, and vibration velocity on the edge, F1 and

.
u1 at x = 0,
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F2 and
.
u2 at x = L, in addition to the input voltage V and motional current Im, damped

current Id. Supposing a general solution of the displacement as

u = A cos(ωx/v) + B sin(ωx/v), (9.47)

and the boundary condition at x = 0,

A = u1, B = (∂u/∂x)1(v/ω)

we obtain

∂u/∂x = −(ω/v)u1 sin(ωx/v) + (∂u/∂x)1 cos(ωx/v), (9.48)

∂u/∂t =
.
u = jω[u1 cos(ωx/v) + (∂u/∂x)1(v/ω) sin(ωx/v)]. (9.49)

Now, we consider the force on the cross-section (wb) F is given by the stress
(tensile is positive)

F = −wbX1. (9.50)

Since strain is given as ∂u/∂x = d31Ez + sE
11X1,

F = −wb
sE

11

[(
∂u
∂x

)
− d31Ez

]
, (9.51)

or
F−Φ′V = −wb

sE
11
(∂u/∂x), (9.52)

where the force constant Φ′ is given by a half of Φ on the four-terminal EC, because
the mechanical branch in the four-terminal model is the combination of Φ′ of the two
ports in the six-terminal model.

Φ′ = Φ/2 =
wd31

sE
11

. (9.53)

When we adopt the boundary conditions at x = 0:

∂u
(∂x)1

= − sE
11

wb
(

F1 −Φ′V
)
, (9.54)

.
u1 = jωu1. (9.55)

Now Equation (9.49) becomes

∂u
∂t

=
.
u1 cos

(ωx
v

)
− j

vsE
11

wb
(

F1 −Φ′V
)

sin
(ωx

v

)
. (9.56)

At x = L,

.
u2 =

.
u1 cos(ωL/v)− j

vsE
11

wb
(

F1 −Φ′V
)

sin
(

ωL
v

)
. (9.57)
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Additionally, at x = L, using Equation (9.48):

F2 −Φ′V = −wb
sE

11
(∂u/∂x)2 =

(
−wb

sE
11

)[
−
(ω

v

)
u1 sin

(
ωL
v

)
+

.
u1 cos

(
ωL
v

)]
. (9.58)

Now we can rewrite the relationship among F1, F2,
.
u1,

.
u2:

.
u2 =

.
u1 cos(ωL/v)− j

1
Z0

(
F1 −Φ′V

)
sin
(

ωL
v

)
, (9.59)

F2 −Φ′V =
(

F1 −Φ′V
)

cos(ωL/v)− j
.
u1Z0 sin(ωL/v), (9.60)

I = jωCdV + Φ′
( .
u2 −

.
u1
)
. (9.61)

Note that the motional current is given by Φ′(u2 − u1). Now we can construct
the six-terminal EC as shown in Figure 9.16. In order to satisfy Equations (9.59)– (9.61),
we obtain all the components including Z1, Z2:

Cd =
Lwε0εX

33
(
1− k2

31
)

b
, (9.62)

Z0 = wbρv = wb

(
ρ

sE
11

)1/2

=
wb

vE
11sE

11
, (9.63)

Z1 = jZ0 tan

(
ωL
2vE

11

)
, (9.64)

Z2 =
Z0

j sin
(

ωL
vE

11

) , (9.65)

Φ′ =
wd31

sE
11

. (9.66)

Though the Mason’s equivalent circuit includes the frequency dependent Z1 and
Z2, these impedances can be translated into a pair of L and C for each individual
fundamental or higher order harmonic mode, if required.

Application of Six-Terminal EC

Dong et al. constructed a six-terminal equivalent circuit with three (dielectric,
elastic and piezoelectric) losses, which can handle symmetric external loads for a
k31 mode plate [9] and Langevin transducer by integrating the head and tail mass
loads [10], then estimate the optimum (i.e., minimum required input electrical energy)
driving frequency at which we can drive the transducer, as demonstrated with the
highest efficiency. In order to verify the feasibility of the EC circuit, a partial electrode
configuration was designed (Figure 9.17a), which reflects intensive and extensive
loss behavior on the electrode (center) and non-electrode (side) parts, respectively.
The center part was electrically excited, which actuates the side non-electrode elas-
tic load, then the vibration status was monitored from the admittance from this
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center portion. The non-electrode side portions were merely the mechanical load.
Figure 9.17b shows a combination of six-terminal ECs which model the center con-
stant E element (i.e., intensive losses, tanφ11’, tanδ33’, tanθ31’) and the side constant
D elements (i.e., extensive losses, tanφ11, tanδ33, tanθ31) by integrating loss factors
into Equations (9.62)–(9.66). Note that the non-electrode part was segmented into
20 parts on each side to calculate the voltage distribution generated on the surface
during the center actuation. The resonance and antiresonance frequencies and their
corresponding mechanical quality factors derived from the circuits are compared
with the actual sample with the load and boundary conditions [9]. The voltage
distribution of the non-electrode sample is simulated with the proposed equivalent
circuit (Figure 9.18) under the supposition that 20 segmented parts are covered by
narrow separated electrodes, which generates a discrete staircase curve. The voltage
simulation results have the same sinusoidal distribution trend (neglecting small
stepwise modulation) as the experiments, and the admittance curves show a good
agreement between the simulation and the measurements.
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Figure 9.17. A partial electrode configuration (a) and its EC (b) of a combination of
6-terminal ECs which models the center constant E element (i.e., intensive losses)
and the side constant D elements (i.e., extensive losses) by integrating loss factors.
Source: [4] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC Press,
2020; p. 164. Reproduced by permission of Taylor & Francis Group.
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Figure 9.18. Voltage distribution of non-electrode sample simulated with the new
6-terminal equivalent circuit. Source: [4] ©Uchino, K. High-Power Piezoelectrics and
Loss Mechanisms. CRC Press, 2020; p. 165. Reproduced by permission of Taylor &
Francis Group.

9.6. Four- and Six-Terminal Equivalent Circuits (ECs)—k33 Case

The k33 mode requires a “negative capacitance” inclusion in the equivalent
circuit (EC) in order to reflect a D-constant condition, or a “depolarization field”.

Since the sound velocity of the k33 mode is given by 1/
√

ρsD
33, which is larger than

1/
√

ρsE
11 of the k31 mode, the k33 mode is occasionally called a “stiffened mode”.

Equivalent circuits for the k33 mode are summarized for (a) a two-terminal model,
(b) a four-terminal model, and (c) a six-terminal model in Figure 9.19. There are
two possibilities to install the negative capacitor; the top and bottom show these
differences with the negative capacitor in the electric branch and in the mechanical
branch, respectively.

1 

(a) (b) (c)
Figure 9.19. Equivalent circuits for the k33 mode: Top and bottom show the differ-
ence with the negative capacitor installation. Source: Figure by author, adapted
from [4].
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When the negative capacitance is installed in the electrical branch, −Cd is
directly inserted, while when it is installed in the mechanical branch, −Cd/Φ 2 or
−Cd/Φ ’2 are inserted in series with other electrical components.

Note the difference between Φ and Φ ’ in the four- and six-terminal models:

Φ′ =
Φ

2
=

wbd33

LsD
33

. (9.67)

Z1 and Z2 in the six-terminal model are described as follows:

Cd =
wbε0εX

33
(
1− k2

33
)

L
, (9.68)

Z0 = wbρv = wb

(
ρ

sD
33

)1/2

=
wb

vD
33sD

33
, (9.69)

Z1 = jZ0 tan

(
ωL
2vD

33

)
, (9.70)

Z2 =
Z0

j sin
(

ωL
vD

33

) . (9.71)

We can integrate three losses, ε33
X* = ε33

X (1− jtanδ33’), s33
E* = s33

E (1− jtanφ33’),
d33

* = d33(1 − jtanθ33’), since the k33 mode does not strictly have the “extensive”
non-prime losses, and the electromechanical coupling factor k33 loss in the above
six-terminal circuit components, then simulate admittance/impedance response
from the circuit. Alternatively, we may integrate three losses as R1L, R2L separately
from X1L, X2L, as shown in Figure 9.17.

Chapter Essentials

1. Equivalency between mechanical and electrical systems (Refer to Table 9.1):
M(d2u/dt2) + ζ(du/dt) + cu = F(t), or M(dv/dt) + ζv + c

∫ t
0 vdt = F(t)

L(d2q/dt2) + R(dq/dt) + (1/C) q = V(t), or L(dI/dt) + RI + (1/C)
∫ t

0 I dt = V(t)
2. Equivalent circuits of a piezoelectric k31 plate (Figure 9.5):

Y = jωCd


1 + k31

2

1−k31
2

tan
(

ωL
2vE

11

)

(
ωL

2vE
11

)


.

Refer to Figures 9.12a, 9.7 and 9.12b, Figure 9.14a, respectively, for 2- and 4-
terminal models below.
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• Two-Terminal • Four-Terminal

Cd = (wL/b)ε0ε33
LC = (wL/b)ε0ε33

X(1 – k31
2)

Φ = 2wd31
sE

11
Ln = (ρ/8)(Lb/w)

(
sE2

11 /d2
31
)

Cn = 1
ω2

A,n Ln
=
(

8
n2π2

)(
Lw
b

)(
d2

31/sE2
11
)
sE

11

ln = Φ2Ln = (ρ/2)(Lbw)
cn = Cn/Φ2 =

(
2/n2π2)(Lw/b)sE

11

Rn =
√

Ln/Cn/Q rn = Φ2Rn =
√

ln/cn/Q

ωA,n = 1/
√

LnCn = 1/
√

ln/cn = nπ/L
√

ρsE
11

3. Equivalent circuits of a piezoelectric k33 rod (Figure 9.11a):
Y = jωCd +

1
− 1

jωCd
+ 1

j tan

(
ωL

2vD
33

)
2bwd33

2

ρvD
33 L2sE

33
2

.

The negative capacitance −Cd is inserted into the electrical branch in the two-
, four- or six-terminal circuit, or −Cd/Φ 2 or −Cd/Φ ’2 into the mechanical
branch in the four- or six-terminal circuit, respectively. Refer to Figure 9.19a,
Figure 9.11b, Figure 9.19b, and Figure 9.19c, respectively, for 2-, 4- and 6-terminal
models below.

• Two-Terminal • Four-Terminal

Cd = (wb/L)ε0εX
33
(
1− k2

33
)

Φ = 2wd33
sD

33
Ln = (ρ/8)

(
L3/wb

)(
sE2

33 /d2
33
)

Cn =
(
8/n2π2)(wb/L)

(
d2

33
sE2

33

)
sE

33
(
1− k2

33
) ln = Φ2Ln = (ρ/2)(Lbw)

cn = Cn/Φ2 =
(
2/n2π2)(L/wb)sD

33

Rn =
√

Ln/Cn/Q rn = Φ2Rn =
√

ln/cn/Q

ωA,n = 1/
√

LnCn = 1/
√

ln/cn = nπ/L
√

ρsD
33

• Six-Terminal

Φ′ = Φ/2 = wd33
sD

33

Z0 = wbρv = wb
√

ρ

sD
33

= wb
vD

33sD
33

, Z1 = jZ0 tan
(

ωL
2vD

33

)
, Z2 = Z0

jsin
(

ωL
vD

33

)

Check Point

1. (T/F) When we consider an equivalent electric circuit of a mechanical system in
terms of LCR series connection, the inverse of the spring constant c corresponds
to capacitance C. True or false?

2. (T/F) Because of the damped capacitance in the equivalent circuit of a piezo-
electric oscillator, the antiresonance mode emerges in addition to the resonance
mode. True or false?

3. (T/F) The permittivity under a mechanically clamped condition is larger than
that under a mechanically free condition. True or false?
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4. (T/F) The elastic compliance under an open-circuit condition is larger than that
that under a short-circuit condition. True or false?

5. How can you describe the quality factor Q in a series connected LCR circuit?
6. In the k33 type two-terminal equivalent circuit, in addition to the damped

capacitance Cd and motional capacitance Cm, we need to insert a negative
capacitance. What should be the value of this negative capacitance?

7. Provide the force factor formula in the k31 type four-terminal equivalent circuit,
in terms of d31, εX

33, sE
11 and the specimen size, w, b, and L.

8. (T/F) The fundamental resonance mode of the k31 mode has an exact half-
wavelength vibration on the plate specimen. True or false?

9. Provide the relationship between the mechanical quality factor QM at the reso-
nance frequency with the intensive elastic loss in the k31 type specimen.

10. When (tanδ33’ + tanφ11’)/2 < tanθ31’ is satisfied, which is larger for the k31 type
specimen—QA or QB?

Chapter Problems

9.1 When a piezoelectric actuator is driven by a step pulse voltage with the pulse
width exactly adjusted to the resonance period, the vibration displacement ∆L
is generated linearly with time, and only one triangular shape displacement
is realized without any vibration ringing (refer to Chapter 8). However, when
a step pulse voltage with the pulse width exactly adjusted to the resonance
period is applied on an equivalent circuit (L, C, R, and Cd) of this piezo-actuator,
the resulting displacement is a sinusoidal pulse (not a triangular shape), as
shown in Figure 9.20. Derive the time dependence of these displacements, then
understand the limitation of the EC model for the transient vibration analysis.

Voltage Shape

yz

0

0
0 0

Time

Time Time

d31E0L

2d31E0L

ΔL ΔL

F0 
/C

T

T T

V

b x
L

w

Pz

Cd

L

C

R

V(t)

Figure 9.20. Comparison among continuous solid state model and equivalent
circuit model. Source: Figure by author, adapted from [4].

9.2 The Rosen type transformer is a combination of the k31 (thin electrode gap) and
k33 (large electrode gap) transducers boded at one end of each other, as illus-
trated in Figure 9.21a. In the EC of the transformer in Figure 9.21b, impedance
parameters in Table 9.2 below can be applied. When k31 side (thin electrode
gap) is used for the input, and k33 side (large electrode gap) for the output,
large voltage step-up is expected. Using Mason’s equivalent circuits for these
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two length expander bars, calculate the maximum step-up voltage ratio for this
Rosen-type transformer under an open-circuit condition.

Vin

P P

L

RL Vout

L'
w

w't t'

(a)

Ci 0 C00
Zi2 Z02

Zi2 Zo1Zi1 Zo2 
N0 : 1

V1 V2

I1 I21 : Ni

(b)

Figure 9.21. (a) Structure of the Rosen-type piezoelectric transformer; (b) Equiv-
alent circuit of the piezo-transformer. Source: [4] ©Uchino, K. High-Power Piezo-
electrics and Loss Mechanisms. CRC Press, 2020; p. 170. Reproduced by permission
of Taylor & Francis Group.

Table 9.2. Parameters in the equivalent circuit of Rosen-type piezo-transformer.

k31 Part k33 Part

Clamped capacitance Cio =
Lwε0εX

33(1−k2
31)

2t Coo =
2w′t′ε0εX

33(1−k2
33)

L′

Characteristic
mechanical impedance Z0 = wt

(
ρ

sE
11

)1/2 Z!
0 = w′t′ρvD

b =

w′t′
(

ρ

sD
33

)1/2

Other mechanical
equivalent impedances

Zi2 = jZ0

j sin
(

ωL
4vE

b

) Z02 =
jZ!

0

j sin
(

ωL′
4vD

b

)

Zi1 = jZ0 tan
(

ωL
4vE

b

)
Z01 = jZ!

0 tan
(

ωL′
4vD

b

)

Force factor
Ni =

wd31
sE

11
=

wd31
sE

11

√
ε0εX

33
sE

11
k31

N0 = 2w′t′d33
L′sD

33
=

w′t′
L′

(
ε0εX

33
sD

33

)1/2
k33

Wave velocity vE
b =

(
1

ρsE
11

)1/2
vD

b =

(
1

ρsD
33

)1/2

Source: Table by author, adapted from [11].
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10. Impedance Matching—Transmittance
and Reflectance

Consider the stored electric energy in a battery or the stored mechanical energy
in a spring. Can we spend 100% of the stored energy as the output work? The
simplest answer is NO! Then, how much potential energy can we use as output
work? 70, 50, 30%, or less? This chapter will find the answer to this question.

10.1. Principles of Electric Impedance Matching

10.1.1. Electric Impedance Matching with a Battery

Let us start from a fundamental knowledge check on this issue with a battery in
Example Problem 10.1 [1,2].

Example Problem 10.1.

Given a power supply (such as a DC battery) with an internal impedance, Z0,
what is the optimum circuit impedance, Z1, required for maximum power transfer?

Refer to Figure 10.1.

Z0
Z1

Battery

V

Figure 10.1. Impedance matching with a power supply. Source: Figure by author.

Solution

A battery is a constant voltage (V) supply with an internal impedance Z0 during
a suitable time period. Referring to Figure 10.1, the current and voltage associated
with an external impedance Z1 are expressed by V/(Z0 + Z1) and [Z1/(Z0 + Z1)]V,
respectively. The product of these yields the power spent in this external load Z1:

P =

[
V

Z0 + Z1

]
· Z1V
Z0 + Z1

=
Z1

(Z 0 + Z1)
2 V2. (P10.1.1)
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To maximize the power (or most effectively spend the battery energy), the
following maximization relation should be satisfied:

∂P
∂Z1

=
Z0 − Z1

(Z 0 + Z1)
3 V2 = 0. (P10.1.2)

When impedance is resistive, the power will be maximum at Z1 = Z0, with Pmax =(
1
4

)
V2

Z0
. To adjust the external impedance exactly to the internal impedance, (Z1 = Z0)

is called “impedance matching”. Note that the same amount of power P =
(

1
4

)
V2

Z0
is

spent inside the battery (usually this is converted to the heat generation), leading
to the total power P =

(
1
2

)
V2

Z0
. With an open-circuit condition, the battery has the

total power capability of
(

1
2

)
V2

Z0
, while with a short-circuit condition, this power is

consumed completely as joule heat in the battery. This is the primary reason for the
battery fire of smartphones or laptops.

10.1.2. Electric Impedance Matching in AC Circuits

Impedance is the disturbance rate of electric energy or current from a voltage
source. For AC signals, it usually changes with frequency ω. The impedances of
three basic components—inductor, capacitor, and resistor—are represented by jωL,
1/jωC, and R. The unit of electrical impedance is (ohm), similar to resistance. Thus,
in general, impedance has a complex value.

Z∗ = R + jX, (10.1)

where real part R is “resistance”, and imaginary part X is called “reactance”. In a
simple case under low-frequency ω (i.e., direct-current (DC)-like) drive, the reactance
of the inductor (jωL) may be negligible or zero, leading to the pure resistive scenario,
as demonstrated in Example Problem 10.1, while the reactance of the capacitor
(1/jωC) approaches very large or infinite, leading to zero current or an open-circuit
condition.

Let us now calculate the maximum power transfer in the case of a complex
source and load impedance ZS and ZL, as illustrated in Figure 10.2. Similar to
Example Problem 10.1, the complex AC current I* and complex AC voltage V*
associated with an external impedance ZL are expressed by V*/(ZS + ZL) and [ZL/(ZS
+ ZL)]V*, respectively. Referring to Example Problem 10.2, the “active power” spent
in this external load ZL can be provided by the real part of

(
1
2

)(
V∗ I∗

)
, where the

“top bar” I∗ is the “conjugate” of I∗ as follows:

P = Re
{(

1
2

)(
V∗ I∗

)}
= Re

{(
1
2

)
ZLV

ZS+ZL
·
[

V
ZS+ZL

]}
=

Re

{(
1
2

)
RL+jXL[

(R S+RL)
2+(X S+XL)

2]V2

}
=
(

1
2

)
RL[

(R S+RL)
2+(X S+XL)

2]V2.
(10.2)
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V

AC Power Supply
Z S = 

R S + 
jX

S

Z L = 
R L + 

jX
L

Figure 10.2. Impedance matching with an AC power supply. Source: Figure
by author.

The imaginary part of Equation (10.2) is identified as “reactive power”. To maxi-
mize the power transfer, the following maximization relations should be satisfied:

Imaginary parameter (X S + XL)
2 = 0 → XL = −XS, (10.3)

Real parameter
∂P

∂RL
=

(
1
2

)
RS − RL

(R S + RL)
3 V2 = 0 → RL = RS. (10.4)

In the impedance matching case, the external and internal power rates are the
same, (1/8)V2/RS, leading to the total power of (1/4)V2/RS or (1/2)Vrms

2/RS

using the effective voltage Vrms

(
= V/

√
2
)

, equivalent description to the pure re-
sistive DC circuit in Example Problem 10.1. Factor (1/2) comes from the integral
operation

∫
IdV for obtaining the power. In conclusion, in order to maximize power

transfer (i.e., “impedance matching”), the external impedance should be adjusted to
the “conjugate of the internal impedance”, that is,

ZL = ZS or RL + jXL = RS − jXS, (10.5)

when the output power in the load shares half of the total power while keeping the
same amount of power in the source circuit.

Example Problem 10.2.

When we apply complex AC voltage V∗ = Vejωt between two terminals, we
obtain the complex current I∗. Verify that the expended electric power between these
two terminals can be expressed by the real part of the product

(
1
2

)(
V∗·I∗

)
, where

the “top bar” I∗ is the conjugate of I∗.
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Solution

Denoting ϕ for the delay phase angle of the current against the voltage, we
can describe

V∗ = Vejωt, I∗ = Iej(ωt−ϕ). (P10.2.1)

Now, the real part of the product
(

1
2

)(
V∗·I∗

)
is calculated as

Re
[(

1
2

)(
V∗·I∗

)]
=
(

1
2

)
V∗ ·I∗+V∗ ·I∗

2 =
(

1
2

)(
1
2

)
[
Vejωt Ie−j(ωt−ϕ) + Ve−jωt Iej(ωt−ϕ)

]
=
(

1
2

)(
1
2

)
[
VIej(ϕ) + VIe−j(ϕ)

]
=
(

1
2

)
V·I· cos(ϕ).

(P10.2.2)

As the final formula of Equation (P10.2.2) is the “average electric power” of
the voltage–current relation, we can conclude that Re[

(
1
2

)(
V∗·I∗

)
] should be the

average electric power. Here, (1/2) is the origin of the “effective RMS voltage”, and
the current is 1/

√
2.

In an alternating current (AC) circuit, the reactance depends on frequency, so
circuits that are impedance matched at one frequency may not be impedance matched
if the frequency is changed. Impedance matching over a wide band will generally
require complex, filter-like structures with many components, except in the trivial
case of constant source and load resistances, when a transformer can be used.

The concept of impedance matching found its first applications in electrical
engineering but is also relevant in other applications in which a form of energy, not
necessarily electrical, is transferred between a source and a load.

10.2. Transmission/Reflection of Elastic Waves

10.2.1. Mechanical Wave Equations in an Isotropic Material

We discussed the equivalency among the electric circuit and mechanical system
in Chapter 9: Equivalent Circuit. Ohm’s law between the voltage and current (V = RI)
corresponds to the relationship between force and vibration velocity (F = Zmv, Zm :
“mechanical impedance”) originated from Hooke’s law between force and displace-
ment (F = c∆L). Knowing the vibration velocity given by v = ∂∆L

∂t = jω∆L in
alternating displacement, we may introduce mechanical impedance as Zm = c/jω,
which is consistent to Z = 1/jωC of an electric capacitor. When the source mechani-
cal system has the internal mechanical impedance, we need to consider the external
mechanical impedance for optimizing the mechanical energy transfer.
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We consider the “elastically isotropic” assumption in this chapter because of
its simplicity. Then, we can adopt the simple Hooke’s law using only two “elastic
stiffnesses”, c11 and c12 as follows:




X1
X2
X3
X4
X5
X6




=




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 1

2 (c11 − c12) 0 0
0 0 0 0 1

2 (c11 − c12) 0
0 0 0 0 0 1

2 (c11 − c12)







x1
x2
x3
x4
x5
x6




. (10.6)

In isotropic elastic materials, “Lamé parameters” (first parameter λ and shear
modulus µ) are often utilized conventionally. The first and second parameters, λ and
µ, are defined by both shear parameters as

λ = c12, and µ = c66 =
1
2
(c11 − c12). (10.7)

The elastic stiffness matrix can also be represented as follows in the isotropic sym-
metry:

(
cij
)
=




(λ + 2µ) λ λ 0 0 0
λ (λ + 2µ) λ 0 0 0
λ λ (λ + 2µ) 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




. (10.8)

The above Lamé parameters definitions derive Poisson’s ratio:

σ =
c12

c11 + c12
=

λ

2(λ + µ)
. (10.9)

The sound velocity for the longitudinal and transverse waves in isotropic mate-
rials is c2

l = (λ + 2µ)/ρ and c2
t = µ/ρ, taking the material’s mass density ρ, as we

derive them in the next section.
On the contrary, when we use the inverse notations with elastic compliances,

we denote



x1
x2
x3
x4
x5
x6




=




s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 2(s11 − s12) 0 0
0 0 0 0 2(s11 − s12) 0
0 0 0 0 0 2(s11 − s12)







X1
X2
X3
X4
X5
X6




. (10.10)
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An alternative set of elastic parameters in isotropic materials is composed of
“Young’s modulus” E and “Poisson’s ratio” σ, where E = 1/s11 and σ = −s12/s11.

(
sij
)
=

1
E




1 −σ −σ 0 0 0
−σ 1 −σ 0 0 0
−σ −σ 1 0 0 0
0 0 0 2(1 + σ) 0 0
0 0 0 0 2(1 + σ) 0
0 0 0 0 0 2(1 + σ)




. (10.11)

We have also the following relations: c11 = 1−σ
(1+σ)(1−2σ)

E, c12 = σ
(1+σ)(1−2σ)

E.

Knowing the strain and displacement relations as x1 = ∂u
∂x , x2 = ∂v

∂y , and

x3 = ∂w
∂z , the following stress vs. displacement relations are obtained using the

Lamé parameters:





X1 = λ∆ + 2µ ∂u
∂x

X2 = λ∆ + 2µ ∂v
∂y

X3 = λ∆ + 2µ ∂w
∂z

,





X4 = µ
(

∂v
∂z +

∂w
∂y

)

X5 = µ
(

∂w
∂x + ∂u

∂z

)

X6 = µ
(

∂u
∂y + ∂v

∂x

) , (10.12)

where ∆ = ∂u
∂x + ∂v

∂y + ∂w
∂z .

In order to discuss the mechanical/sound energy transfer, we now introduce
the dynamic equation in a continuum elastic media with isotropic elastic properties.
Newton equation is adopted to a small volume element at the position (x, y, z),
taking into account the force that is provided by the stress gradient in terms of the
coordinate as follows:





ρ
(

∂2u
∂t2

)
=
(

∂X11
∂x

)
+
(

∂X12
∂y

)
+
(

∂X13
∂z

)

ρ
(

∂2v
∂t2

)
=
(

∂X21
∂x

)
+
(

∂X22
∂y

)
+
(

∂X23
∂z

)

ρ
(

∂2w
∂t2

)
=
(

∂X31
∂x

)
+
(

∂X32
∂y

)
+
(

∂X33
∂z

) , (10.13)

where ρ is the density of the elastic material; u, v, and w are the displacements of a
small volume element in the material in the x-, y- and z-directions, respectively. In
the pure mechanical wave discussion, we tentatively neglect the electromechanical
coupling (i.e., piezoelectric effect) in order to simplify the analysis. Using the Lamé
parameters, Equation (10.13) can be rewritten as

ρ
∂2

∂t2




u
v
w


 = (λ + µ)




∂
∂x
∂

∂y
∂
∂z


∆ + µ∇2




u
v
w


, (10.14)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .
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10.2.2. Plane Wave Propagation

The propagating plane wave in an isotropic elastic material keeps the “equi-
phase plane” always in a parallel plane. Thus, if we assume a sinusoidal harmonic
wave with time dependence of e−jωt, and denote the “direction cosine” of the normal
axis to the equi-phase plane as (l, m, n), this equi-phase plane can be described as

lx + my + nz = p, (10.15)

where l2 + m2 + n2 = 1. The displacement (u, v, w) can be described as




u
v
w


 =




u0
v0
w0


e−j{ωt−k(lx+my+nz)}. (10.16)

Here, ω is the angular frequency, and k is the wave vector with the following
relations:

k2
1 + k2

2+k2
3 = k2

(
l2 + m2 + n2

)
= k2. (10.17)

Since the dynamic Equation (10.13) can be rewritten as

Left-side : ρ
(

∂2ui
∂t2

)
= −ρω2ui,

Right-side :
∂Xij
∂xj

=
∂(cijmnxmn)

∂xj
= cijmn

∂2um
∂xj∂xn

= − 1
2 k2cijmn

(
lmljun + lnljum

)
.

(10.18)

By putting the above equation as

k2




A11 A12 A13
A21 A22 A23
A31 A32 A33






u
v
w


 = ρω2




u
v
w


, (10.19)

let us solve this eigenvalue problem. In the isotropic material expressed in
Equation (10.6), the Aij can be given by





A11 = c11l2 + c66m2 + c66n2

A22 = c66l2 + c11m2 + c66n2

A33 = c66l2 + c66m2 + c11n2
,





A12 = A21 = (c12 + c66)lm
A23 = A32 = (c12 + c66)mn
A31 = A13 = (c12 + c66)nl

. (10.20)

Note c66 = 1
2 (c 11 − c12

)
. Thus, denoting the eigenvalue as C, we solve the

following equation:

∣∣∣∣∣∣

c11l2 + c66m2 + c66n2 − C (c12 + c66)lm (c12 + c66)nl
(c12 + c66)lm c66l2 + c11m2 + c66n2 − C (c12 + c66)mn
(c12 + c66)nl (c12 + c66)mn c66l2 + c66m2 + c11n2 − C

∣∣∣∣∣∣
= 0.

Three eigenvalues of the above equation, C1, C2, and C3, can be obtained irrele-
vant to (l, m, n) as

C1 = c11, and C2 = C3 = c66. (10.21)
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From C = ρω2

k2 and the phase velocity vp = ω
k =

√
C
ρ , we obtain two characteris-

tic sound (phase) velocities, that is, longitudinal (primary (P) wave) and transversal
(two secondary (S) waves, orthogonal each other) types:

vp1 =

√
c11

ρ
=

√
λ + 2µ

ρ
, and vp2 = vp3 =

√
c66

ρ
=

√
µ

ρ
. (10.22)

You recognize that vp1 > vp2 = vp3; the P wave propagates faster than the S
wave. As the longitudinal P wave reaches the target point first in the “earthquake”,
this wave was, in fact, named “primary” historically.

10.2.3. Elastic Wave Transmission/Reflection at the Interface

There exists only the transverse electromagnetic wave in an isotropic material,
while both longitudinal and transverse elastic waves exist in an elastic material,
which makes the situation more complicated in the analysis. We consider here
the transmission/reflection of three different waves: (1) secondary-horizontal (SH),
(2) primary (P), and (3) secondary-vertical (SV) waves between two phases [3]. In
an infinite elastic medium, these three waves exist independently, but in a finite size
medium, P and SV waves are usually coupled at the medium interface, depending
on the beam angle.

SH Waves

We consider first the SH wave because of the simplicity. SH has the displacement
direction perpendicular to the wave propagation direction and in parallel to the
interface plane (sound velocity

√
c66
ρ ), which exhibits an equivalent “Snell’s law” in

optics. The model of this analysis is illustrated in Figure 10.3, where two material
phases 1 and 2 (with density, elastic shear stiffness µ (“Lamé shear modulus”), and
wavenumbers k, ρ1, µ1, k1, ρ2, µ2, k2) create an interface on the x-y plane, and incident,
reflection, and transmission waves are illustrated with cant angles θ θi, θt

1, and θt
2,

respectively. Since the SH wave is the transverse type, only the shear elastic stiffness
is sufficient for the analysis. We neglect the wave absorption during the propagation
tentatively in the following analysis. We may assume the displacements v (only along
the y-direction, normal to Figure 10.3 plane; u = w = 0) of the incident, reflection
(phase 1), and transmission (phase 2) waves as

vi = vi0e−i{ωt−k1(sin θi ·x+cos θi ·z)}, (10.23)

vr = vr0e−i{ωt−k1(sin θ1
t ·x−cos θ1

t ·z)}, (10.24)

vt = vt0e−i{ωt−k2(sin θ2
t ·x+cos θ2

t ·z)}. (10.25)
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z

x

vt: Transmission wave

vr: Reflection wave

vi: Input wave

Phase 2: ρ2, µ2, k2

Interface boundary

θt
2

Phase 1: ρ1, µ1, k1
θt

1θ i

Figure 10.3. Transmission/reflection of SH acoustic wave. Source: Figure by author.

The stress boundary conditions at z = 0 (interface between phases 1 and 2)
should satisfy 




X(i)
3 + X(r)

3 = X(t)
3

X(i)
4 + X(r)

4 = X(t)
4

X(i)
5 + X(r)

5 = X(t)
5

, vi + vr = vt. (10.26)

Here, the boundary conditions for X3 and X5 are automatically satisfied because
all stress components are zero. Regarding the X4 (shear stress on the z − x plane)
boundary condition, the displacement continuity should be maintained at z = 0 (on
the interface plane), so that displacement v should satisfy the above condition on a
plane z = 0; that is, the relation

vi0e−i{ωt−k1(sin θi ·x)} + vr0e−i{ωt−k1(sin θ1
t ·x)} = vt0e−i{ωt−k2(sin θ2

t ·x)}, (10.27)

should be satisfied for any time t and position x, leading to the following relations:

θi = θ1
t , (10.28)

vi0 + vr0 = vt0, (10.29)

k1

(
sin θ1

t

)
= k2

(
sin θ2

t

)
. (10.30)

Here, the wavenumber k1 and k2 are given by

k1 =
ω

ct1
= ω

√
ρ1

µ1
, k2 =

ω

ct2
= ω

√
ρ2

µ2
. (10.31)

In order for stress X4 to satisfy the continuity condition on a plane z = 0

µ1vi0k1 cos θ1
t − µ1vr0k1 cos θ1

t = µ2vt0k2 cos θ2
t . (10.32)
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Then, we can obtain the following reflectance and transmittance relations:

vr0

vi0
=

(
1−

√
ρ2µ2
ρ1µ1
· cos θ2

t
cos θ1

t

)

(
1 +

√
ρ2µ2
ρ1µ1
· cos θ2

t
cos θ1

t

) ,
vt0

vi0
=

2(
1 +

√
ρ2µ2
ρ1µ1
· cos θ2

t
cos θ1

t

) . (10.33)

Note that Equation (10.33) indicates the energy conservation; that is, the incident
wave energy is equal to the sum of the reflected and transmitted wave energy
[ vt0−vr0

vi0
= 1]. In order to minimize the reflectance (or 100% transmittance), the

following relation must be maintained:

√
ρ2µ2
ρ1µ1

·cos θ2
t

cos θ1
t
= 1. (10.34)

When the incident wave is normal to the phase boundary plane ( θ1
t = 0

)
, in

particular, knowing µ = c66,

√
ρ1µ1 =

√
ρ2µ2 or

√
ρ1c66,1 =

√
ρ2c66,2. (10.35)

Since we define the “mechanical/acoustic impedance” by the form of
√

ρc,
the reader can understand that the mechanical energy (SH wave) efficient transfer
requires the “mechanical impedance matching” between the adjacent two phases.

P and SV Waves

Next, we consider the P wave with the displacement in parallel to the wave
propagation direction (sound velocity

√
c11/ρ), and the SV wave with a displacement

direction perpendicular to the wave propagation direction and perpendicular to
the interface plane (the same sound velocity

√
c66/ρ as the SH wave). Both the

displacements u and w of the incident, as well as reflection and transmission waves,
should be taken into account, with full descriptions as follows [3]:

• Incident

P Wave :

{
u(P)

i = A(P)
i sin θ1

pe−i{ωt−k1
p(sin θ1

p ·x+cos θ1
p ·z)}

w(P)
i = A(P)

i cos θ1
pe−i{ωt−k1

p(sin θ1
p ·x+cos θ1

p ·z)}
, (10.36)

SV Wave :

{
u(S)

i = A(S)
i cos θ1

t e−i{ωt−k1
t (sin θ1

t ·x+cos θ1
t ·z)}

w(S)
i = −A(S)

i sin θ1
t e−i{ωt−k1

t (sin θ1
t ·x+cos θ1

t ·z)}
. (10.37)

• Reflection

P Wave :

{
u(P)

r = A(P)
r sin θ1

pe−i{ωt−k1
p(sin θ1

p ·x−cos θ1
p ·z)}

w(P)
r = −A(P)

r cos θ1
pe−i{ωt−k1

p(sin θ1
p ·x−cos θ1

p ·z)}
, (10.38)

SV Wave :

{
u(S)

r = A(S)
r cos θ1

t e−i{ωt−k1
t (sin θ1

t ·x−cos θ1
t ·z)}

w(S)
r = A(S)

r sin θ1
t e−i{ωt−k1

t (sin θ1
t ·x−cos θ1

t ·z)}
. (10.39)
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• Transmission

P Wave :

{
u(P)

t = A(P)
t sin θ2

pe−i{ωt−k2
p(sin θ2

p ·x+cos θ2
p ·z)}

w(P)
t = A(P)

t cos θ2
pe−i{ωt−k2

p(sin θ2
p ·x+cos θ2

p ·z)}
, (10.40)

SV Wave :

{
u(S)

t = A(S)
t cos θ2

t e−i{ωt−k2
t (sin θ2

t ·x+cos θ2
t ·z)}

w(S)
t = −A(S)

t sin θ2
t e−i{ωt−k2

t (sin θ2
t ·x+cos θ2

t ·z)}
. (10.41)

We can solve the waveforms based on the boundary conditions at z = 0.
{

u(P)
i + u(S)

i + u(P)
r + u(S)

r = u(P)
t + u(S)

t

w(P)
i + w(S)

i + w(P)
r + w(S)

r = w(P)
t + w(S)

t

, (10.42)

X(i)
3 + X(r)

3 = X(t)
3 , X(i)

5 + X(r)
5 = X(t)

5 . (10.43)

As further analyses are lengthy, we skip the derivation step and leave it for
the reader to carry out by referring to [3]. Instead, we introduce the simplest trans-
mission/reflection model of the P acoustic wave under the normal incident wave
situation illustrated in Figure 10.4. We describe the incident, reflected, and transmit-
ted stress waves with normalized w displacement notations (which are proportional
to the stress) as 




wi = eik1
p ·z

wr = Re−ik1
p ·z

wt = Teik2
p ·z

, (10.44)

where R and T denote the reflectance and transmittance coefficients, respectively.
The total normalized stress values in Phase 1 and Phase 2 (the equi-stress wave plane
is parallel to the phase boundary) are expressed as

{
X1(z) = eik1

p ·z + Re−ik1
p ·z

X2(z) = Teik1
p ·z

. (10.45)

From the stress continuation boundary condition at z = 0, we first obtain the re-
lation

1 + R = T. (10.46)

Second, taking into account ρ
(

∂2w
∂t2

)
=
(

∂X3
∂z

)
, and imposing continuity of

particle velocity (along the z direction), we need also the following relation:
(

k1
p/ρ1

)
(1− R)= (k 2

p/ρ2

)
T. (10.47)

Knowing the “phase velocity” (i.e., “sound velocity”) vp = ω
k , Equations (10.46)

and (10.47) result in 



R =
ρ2vp2−ρ1vp1
ρ2vp2+ρ1vp1

T =
2ρ2vp2

ρ2vp2+ρ1vp1

. (10.48)
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Thus, minimizing the reflectance (or 100% transmittance), the following relation
must be maintained:

ρ1vp1 = ρ2vp2. (10.49)

We may define the mechanical impedance by the product of density and phase

sound velocity ρ·vp. As vp1 =
√

c11
1

ρ1
and vp2 =

√
c11

2

ρ2
, the above condition is

equivalent to √
ρ1c11

1 =
√

ρ2c11
2. (10.50)

We can also define the mechanical/acoustic impedance by the form of
√

ρc
(c: elastic stiffness). The reader can again understand that the efficient transfer
of mechanical energy requires the mechanical impedance matching between two
phases, irrelevant to the longitudinal (P wave) or transverse (SH, SV) waves.

Interface boundary

e jk1z Re−jk1z

wt Transmission wave 

wr Reflection wave

Phase 1: ρ1, c1, k1 

wi Incident wave

Phase 2: ρ2, c2, k2

z

x

Te jk2z

Figure 10.4. Transmission/reflection of P acoustic wave. Source: Figure by author.

10.3. Acoustic Impedance Matching

The “acoustic impedance” parameter is a measure of the impedance that a
system presents to the acoustic flow against an acoustic pressure applied to the
system. This concept is important, for example, in designing the piezoelectric energy
harvesting systems, where the environmental mechanical energy is converted into
electrical energy. The acoustic impedance Zm is used for evaluating the acoustic
energy transfer between two “continuum materials”, which is defined, in general, by

Zm = (pressure/volume velocity). (10.51a)

Recall the mechanical impedance in a “discrete component” system is defined by

Zm = (force/vibration velocity) or F = Zmv. (10.51b)

In a simple mass–spring model, the mechanical impedance is given by the
spring constant c as Zm = c/jω.
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10.3.1. Acoustic/Mechanical Impedance Derivation

In an isotropic, solid material, the dynamic equation is expressed by

ρ

(
∂2u
∂t2

)
=

(
∂X11

∂x

)
+

(
∂X12

∂y

)
+

(
∂X13

∂z

)
= −

(
∂p
∂x

)
, (10.52)

in a 1D form. From p = X11, X11 = c11x11, we obtain

ρ

(
∂2u
∂t2

)
= c11

(
∂2u
∂x2

)
or
(

∂2u
∂t2

)
= v11

2
(

∂2u
∂x2

) [
sound velocityv11 =

√
c11
ρ

]
. (10.53)

The constitutive law of non-dispersive linear acoustics in 1D gives a relation
between stress (pressure) and strain from Equations (10.52) and (10.53) as follows:

p = −ρv2
(

∂u
∂x

)
, (10.54)

where p is the acoustic pressure, ρ mass density, and v is the sound wave speed in
the medium. This equation is valid both for fluids and solids.

• Fluids − ρv2 = K (K: bulk modulus);
• Solids − ρv2 = K + 4/3G (G: shear modulus) for longitudinal waves and ρv2 = G

for transverse waves.

From Equation (10.53), we assume a general displacement solution u(x,t) for a
traveling plane wave as

u(x,t) = f (x − vt). (10.55)

Then, we obtain pressure p(x,t) and each “volume/particle velocity” v(x,t) = ∂u
∂t

are represented by {
p(x, t) = −ρv2 f ′(x− vt)
v(x, t) = −v f ′(x− vt)

. (10.56)

From the definition in Equations (10.51) and (10.56), the acoustic/mechanical
impedance defined by pressure/volume velocity is obtained as follows:

Z =
p(x, t)
v(x, t)

= ρv. (10.57)

Since v =
√

c/ρ in a solid material, Z can be translated to

Z =
√

ρc , (10.58)

where ρ is the density, and c is the elastic stiffness of the material.

10.3.2. Designing Acoustic Impedance Matching

Concept of Acoustic Impedance Matching

Acoustic (or mechanical) impedance matching is necessary for transferring
mechanical energy from one material to the other efficiently. Figure 10.5 illustrates
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a conceptual cartoon for two extreme cases. The mechanical work performed by
one material on the other is evaluated by the product of the applied force F and
the displacement ∆L: W = F × ∆L. If the material is very soft, the force F can be
very small, leading to a very small W (practically, no work!). This corresponds to
“pushing a curtain”, exemplified by the case in which the acoustic wave is generated
in water directly by an elastically hard PZT transducer. Most of the acoustic energy
generated in the PZT (large force and small displacement) is reflected at the interface,
and only a small portion of acoustic energy transfers into water (large displacement
is required). On the other hand, if the material is very hard, the displacement ∆L
will be very small, again leading to a very small W. This corresponds to “pushing a
wall”. Polymer piezoelectric polyvinylidene di-fluoride (PVDF) (large displacement
and small force) cannot drive a hard steel part effectively (large force is required).
Therefore, the “acoustic impedance” must be adjusted between the transducer and
acoustic energy transferring medium to maximize the output mechanical power.

√
ρ1c1 =

√
ρ2c2, (10.59)

where ρ and c are the density and elastic stiffness, and subscripts 1 and 2 denote
the two materials. In practice, an acoustic impedance matching layer (elastically
intermediate material between PZT and water, such as a polymer) is inserted between
two phases (1 and 2). More precisely, the acoustic impedance Z should be chosen the
geometrical average

√
Z1Z2 of Z1 in phase 1 and Z2 in phase 2 so that the transfer of

mechanical energy in the PZT to water will be optimized.

Work W = F × Δ  L

Wow,
heavy!

Easy!

Δ L = 0

F = 0

"Pushing a curtain, and 
pushing a wall"

(Japanese proverb, 
meaning "useless task")

Figure 10.5. Mechanical impedance matching. Source: Figure by author.

In more advanced discussions, there are three kinds of impedances; specific
acoustic impedance (pressure/particle speed), acoustic impedance (pressure/volume
speed), and radiation impedance (force/speed). See reference [4] for the details.
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Acoustic Impedance of Piezoelectric Materials

(a) PZT Ceramics

The acoustic-wave-transmitting object in medical diagnostic and underwater
sonar applications is basically water. First, let us calculate the acoustic impedance
of water. Taking into account ρ = 1000 kg/m3 and the sound velocity v = 1.5 km/s,
we obtain Z = ρv = 1.5 × 106 kg/m2·s = 1.5 MRayls. The unit (Rayl) = (kg/m2·s)
is used for the acoustic impedance, named after John William Strutt, third Baron
Rayleigh. On the other hand, the acoustic impedance of the PZT’s is calculated from
ρ = 7750 kg/m3, s33

E = 18.8 × 10−12 m2/N for “soft” PZT 5A, and ρ = 7600 kg/m3,

s33
E = 13.9 × 10−12 m2/N for “hard” PZT 8, for example; Z =

√
ρc ≈

√
ρ/sE

33 =

20 MRayls and 24 MRayls, respectively. Due to this large difference in the acoustic
impedance in the PZT ceramics and water, the energy transmission problem occurs
if we set the PZT transducer directly on the water medium.

(b) Piezoelectric Polymers

Polymer piezoelectric transducer materials such as polyvinylidene difluoride
(PVDF) are more suitable from the acoustic impedance matching viewpoint, because
of ρ = 1780 kg/m3, Young’s modulus Y = 8.3 × 109 N/m2, and Z =

√
ρY = 3.8

MRayls, much closer to water. However, due to small piezoelectric actuator figures
of merit, that is, piezoelectric d constants, their application is limited to sensors such
as heart-rate/pulse measurements or hydrophones.

(c) PZT: Polymer Composites

Piezocomposites comprising a piezoelectric ceramic and a polymer phase are
promising materials because of their excellent and readily tailored properties. The
geometry for two-phase composites can be classified according to the dimensional
connectivity of each phase into 10 structures: 0-0, 0-1, 0-2, 0-3, 1-1, 1-2, 1-3, 2-2,
2-3 and 3-3 [5]. A 1-3 piezocomposite such as the PZT-rod/polymer composite is
the most promising candidate, which is composed of PZT fibers embedded in a
polymer matrix, as shown in Figure 10.6a. The original fabrication process involves
the injection of epoxy resin into an array of PZT fibers assembled with a special
rack [6]. After the epoxy is cured, the sample is cut, polished, electroded on the top
and bottom, and finally, electrically poled. The die-casting technique has also been
employed to make rod arrays from a PZT slurry [7].

The effective piezoelectric coefficients d* and g* of the composite can be in-
terpreted as follows: When an electric field E3 is applied to this composite, the
piezo-ceramic rods extend easily because the polymer is elastically very soft (assum-
ing the electrode plates that are bonded to its top and bottom are rigid enough). Thus,
d33* is almost the same as 1d33 of the PZT itself.

d33
* = 1d33. (10.60)

Similarly,
d33

* = 1V 1d33, (10.61)

where 1V is the volume fraction of phase 1 (piezoelectric). On the other hand, when
an external stress load is applied to the composite, the elastically stiff piezo-ceramic
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rods will support most of the load, and the effective stress is drastically enhanced
and inversely proportional to the volume fraction. Thus, larger induced electric fields
and larger g* constants are expected, defined as follows:

g33
∗ = d33

∗/ε0ε∗ = 1d33/1Vε1
0ε3 = 1g33/1V. (10.62)
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Figure 10.6. (a) A 1-3 composite of PZT rods and polymer. The top and bottom
planes are rigid electrodes; (b) volume fraction dependence of the permittivity
ε and the piezoelectric constants d33 and g33 in the 1-3 PZT: polymer composite.
Source: [8] ©Uchino, K. Piezoelectric Composite Materials. Woodhead Publishing,
2010; p. 318. Reproduced by permission of Elsevier B.V.

Figure 10.6b shows the piezoelectric coefficients for a PZT–Spurr epoxy com-
posite with 1-3 connectivity, measured with a Berlincourt d33 meter [6]. As predicted
by the model for this composite, the measured d33* values are almost independent
of volume fraction but are only about 75% of the d33 value of the PZT 501A ceramic.
This discrepancy may be due to incomplete poling of the rods. A linear relation
between the permittivity and the volume fraction 1V is satisfied, resulting in a sig-
nificant increase in g33* with decreasing fraction of PZT. Therefore, 1-3 composites
can enhance the piezoelectric g coefficient by an order of magnitude with decreasing
volume fraction of PZT, while the d coefficient remains constant.

The advantages of this composite are high coupling factors, low acoustic
impedance, good matching to water or human tissue (more than 70% of a human
body is water!), mechanical flexibility, broad bandwidth in combination with a low
mechanical quality factor, and the possibility of making un-diced arrays by simply
patterning the electrodes. The thickness-mode electromechanical coupling of the
composite can exceed the kt (0.40~0.50) of the constituent ceramic, approaching
almost the value of the rod-mode electromechanical coupling, k33 (0.70~0.80) of
that ceramic [9]. The acoustic impedance matching to tissue or water (1.5 MRayls)
of the typical piezo-ceramics (20~30 MRayls) is significantly improved when they
are incorporated in forming a composite structure, that is, by replacing the dense,
stiff ceramic with a low density, soft polymer. Piezoelectric composite materials are
especially useful for underwater sonar and medical diagnostic ultrasonic transducer
applications. This composite design is suitable for energy harvesting under plate-
perpendicular force (cyclic or impact) because of the very high effective thickness
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electromechanical coupling factor, close to k33 value of the PZT ceramic with much
lower effective acoustic impedance.

Although the PZT composites are very useful for acoustic transducer applica-
tions, care must be taken when using them in continuously operating transducer
applications. Under an applied DC field, the field-induced strain exhibits large
hysteresis and creep due to the “viscoelastic property” of the polymer matrix. More
serious problems are found when they are driven under a high AC field, related to the
generation of heat. The heat generated by ferroelectric hysteresis in piezo-ceramics
cannot be dissipated easily due to the very low thermal conductivity of the polymer
matrix, which results in rapid degradation of piezoelectricity.

Several flexible PZT composites such as “Active Fiber Composite” (AFC) and
“Macro Fiber Composite” (MFC) (Figure 10.7) are commercially available and used
for high-bending displacement actuators and transducers even for energy harvesting
systems. Major advantages of those fiber composites over conventional piezoelec-
tric elements are their flexibility and toughness, both far superior, compared with
monolithic PZT bulk ceramics, although fiber composites fail to drive elastically
hard metal or ceramic structures. Furthermore, due to their thin, planar geometry,
fiber composites can easily be integrated into composite laminates [10]. Previously, a
PVDF film was used for implantable physiological power supply [11] and inserted
for recovering some of the mechanical power in the process of human walking [12].
For the alternative, the advanced piezo fiber composite (MFC) commercialized from
Smart Material Corporation (Sarasota, FL) was experimentally demonstrated and
confirmed for the energy conversion component by the Penn State group [13].

The MFC is an actuator design that was developed at the NASA Langley Re-
search Center. The piezoelectric fibers, manufactured by a computer-controlled
dicing saw (rectangular cross-section) and embedded in the epoxy matrix, were sand-
wiched between two layers of polyimide film that had a conductive interdigitated
electrode pattern printed on the inner surface. There are two types of MFC, depend-
ing on the polling direction. The poling direction of the d33 type is parallel along the
fiber length, and each segment has an opposite polling direction by interdigitated
electrodes, as shown in Figure 10.7a. For the d31 type, the poling direction is from the
top to the bottom along the fiber thickness. The MFC is extremely flexible, durable,
and has the advantage of higher electromechanical coupling coefficients granted
through the interdigitated electrodes (Figure 10.7b).

Previously, the d33 mode type of the MFC was tested to charge batteries, but
Sodano et al. [14] claimed that the MFC did not produce a high current because of
the construction of the MFC. As the interdigitated electrodes of the original d33 type
made the small segments connect in series, high voltage but a low current is obtained,
owing to small capacitance in the d33 type. By contrast, the d31 mode type of MFC
(M8528 P2), fabricated by Smart Material Corp., is composed of the piezo-ceramic
fibers in the MFC cut by 350 µm width and 170 µm thickness from the piezoelectric
wafer by a computer-controlled dicing saw. The total dimensions of MFC are 85 mm
in length, 28 mm in width, and 0.3 mm in thickness. Uchino et al. tested the d31 mode
type of MFC under a small mechanical vibration source to generate enough current
for mobile phone battery charging owing to its reasonably large capacitance [13].
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Figure 10.7. Macro Fiver Composite (MFC) by Smart Material Corporation: (a) com-
posite structure; (b) photo of MFC (Courtesy by Smart Material Corp.). Source: [2]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 403. Reproduced by
permission of Taylor & Francis Group.

10.3.3. Acoustic Impedance Matching Layer in Ultrasonic Transducers

Ultrasonic waves are now used in various fields. The sound source is made from
piezoelectric ceramics with high acoustic impedance. In particular, hard piezoelectric
materials with a high QM are preferable because of high-power generation without
heat generation. A liquid medium (water) is usually used for sound energy transfer.
Ultrasonic washers/cleaners, ultrasonic hydrophones/microphones, sonars for short-
distance remote control, underwater detection, fish finding, and non-destructive
testers are typical applications. The applicationtion of Piezoelectric materials as
ultrasonic scanning detectors is useful in medical electronics for clinical purposes
ranging from diagnosis to therapy and surgery.

Medical Ultrasonic Probe

One of the most important applications is based on the ultrasonic echo field [15,16].
Ultrasonic transducers convert electrical energy into mechanical form when generat-
ing an acoustic pulse and convert mechanical energy into an electrical signal when
detecting its echo. The transmitted waves propagate into a body, and echoes are
generated, which travel back to be received by the same transducer. These echoes
vary in intensity according to the type of tissue or body structure based on the acous-
tic impedance mismatch between two tissue phases, thereby creating images. An
ultrasonic image represents the mechanical properties of the tissue, such as density
and elasticity (i.e., “acoustic impedance”). For example, the cancer tissue is stiffer
than the normal tissue. We can recognize anatomical structures in an ultrasonic
image since the organ boundaries and fluid-to-tissue interfaces are easily discerned.
The ultrasonic imaging process can also be carried out in real time. This means
we can follow rapidly moving structures such as the heart valve without motion
distortion. In addition, ultrasound is one of the safest diagnostic imaging techniques.
It does not use ionizing radiation, in contrast to X-rays; thus, it is routinely used for
fetal and obstetrical imaging. Useful areas for ultrasonic imaging include cardiac
structures, the vascular systems, the fetus, and abdominal organs such as the liver
and kidney.
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Figure 10.8 shows the basic ultrasonic transducer geometry. The transducer is
mainly composed of (1) “matching”, (2) “piezoelectric material”, and (3) “backing
layers” [17]. One or more matching layers are used to increase sound transmissions
into tissues. The backing is added to the rear of the transducer in order to dampen
the acoustic back wave and to reduce the pulse duration (i.e., quick decay of the ring-
down vibration). Piezoelectric materials are used to generate and detect ultrasound
(f = 2~4 MHz, λ = 0.4~0.7 mm). In general, broadband transducers should be used
for medical ultrasonic imaging. The broad bandwidth response corresponds to a
short pulse length (due to low Qm or large elastic loss), resulting in better axial
resolution. Three factors are important in designing broad bandwidth transducers;
“acoustic impedance matching”, a “high electromechanical coupling coefficient” of
the transducer, and “electrical impedance matching”. These “pulse-echo transducers”
operate based on thickness kt mode resonance of the piezoelectric thin plate. Further,
a low planar mode coupling coefficient kp (or k31) is beneficial for limiting energies
being expended in non-productive lateral mode, which generates a so-called “ghost
image” [18]. A large dielectric constant is necessary to enable a good electrical
impedance match to the system, especially with tiny piezoelectric sizes.
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Figure 10.8. Basic transducer geometry for acoustic imaging applications. Source:
Figure by author, based on data from [1].

There are various types of transducers used in ultrasonic imaging. Multiple
element array transducers permit discrete elements to be individually accessed by
the imaging system and enable electronic focusing in the scanning plane to various
adjustable penetration depths through the use of phase delays. A linear array is a
collection of elements (Figure 10.9a) arranged in one direction, producing a rectangu-
lar display. As illustrated in Figure 10.9b, a thin PZT (thickness 0.3 mm for 2~4 MHz
ultrasonic wave) wafer is segmented into 128 elements with the separation pitch of
0.3~0.5 mm. In a phased array transducer, the acoustic beam is steered by signals that
are applied to the elements with delays, creating a sector display. This segmentation
also enhances the electromechanical coupling much higher from kt, approaching
k33 mode. The acoustic impedance of the “matching layer” is to be chosen as a
“geometric average” value of the piezoelectric element impedance Z1 (~20 MRayls)
and the water impedance Z2 (~1.5 MRayls), that is,

√
Z1Z2 (~5.5 MRayls). In practice,

the PZT thin wafer is initially coated by epoxy-based polymer (glass-filled type to
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tune Young’s modulus) with the acoustic impedance 3–7 MRayls. Then, the rubber
covers as the second impedance matching layer (see the center photo of Figure 10.9c).
A curved linear (or convex) array is a modified linear array whose elements are
arranged along an arc to permit an enlarged trapezoidal field of view (Figure 10.9c).

T

L
W

(a) Vibrator element

Piezoelectric vibrator

Baking

(b) Structure of an array-type ultrasonic probe

(c)

Figure 10.9. (a) Basic transducer geometry for acoustic imaging applications; (b) lin-
ear array type ultrasonic probe; (c) photos of convex linear array ultrasonic probes.
Source: Figure by author, based on data from [1].

Cymbal Underwater Sonar

In contrast to the flexural bimorph designs, flextensional “cymbal” transducers
use the flexural motion of only the metal shells by keeping the PZT disk with
longitudinal vibration mode (much higher electromechanical coupling factor keff).
The use of metal endcap motion offers one great advantage over the flexural disks,
that is, no bending deformation on the ceramic material. Cymbal transducers consist
of a piezoelectric disk (poled in the thickness direction) sandwiched between two
metal endcaps (Figure 10.10a). The caps contain a shallow cavity on their inner
surface. When acting as a sensor or energy harvesting device, the cavities allow
the incident axial stress to be converted into large radial and tangential stresses of
opposite signs, causing d31 and d33 contributions of the piezoelectric to add in the
effective sensitivity of the device (i.e., force amplification mechanism). Conversely,
the presence of the cavities allows the caps to convert and amplify the small radial
displacement of the disk into a much larger axial displacement normal to the surface
of the caps when used as an actuator (i.e., displacement amplifier) [19].

For underwater sonar applications, in the low-frequency range, the flexten-
sional transducer is one of the competing technologies with 1-3 composites or
Langevin/Tonpilz transducers. The cymbal, which is a miniaturized class V flex-
tensional transducer, has received attention because of its small size, low cost and
weight, and thin profile. There are no other technologies that can match these char-
acteristics, which are key to some applications in the Navy, including underwater
automated vehicles (UAVs). However, single cymbal transducers are not well suited
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for most underwater applications because of their high Qm and low bandwidth.
Thus, cymbal transducer elements were built into 3 × 3 arrays to enhance their
underwater characteristics in terms of the power level and acoustic beam directivity.
Figure 10.10b shows a photo of the 3 × 3 arrays. We used “polyurethane” for pot-
ting material of the cymbal transducers for the following three reasons: (1) fixing
structure of the 3 × 3 arrays, (2) electric insulation, and (3) acoustic impedance match-
ing to water [20]. The acoustic impedance of polyurethane is rather tunable from
1.6 to 6.9 MRayls depending on the foam rate prepared in the polymeric material.

PZT Disk

Polyurethane

Metal Endcap

(a) (b)

Figure 10.10. (a) Single cymbal potted in polyurethane; (b) 3 × 3 arrays, potted in
polyurethane. Source: Figure by author.

10.4. Impedance Matching in Piezoelectric Energy Harvesting

10.4.1. Impedance Matching in Piezoelectric Devices

Piezoelectric devices convert the input electric energy to the output mechanical
energy or vice versa. The complex matter exists in the situation that the elastic
compliance depends on the electric external load and the permittivity depends on
the mechanical external load, owing to the electromechanical coupling (piezoelec-
tric) effect. This section will discuss both the electrical and mechanical impedance
matching in the piezoelectric devices, in particular in the case of piezoelectric en-
ergy harvesting.

Energy harvesting from unused mechanical power has been a recently devel-
oped topic in industrial and academic research units, in particular by using piezo-
electric transducers, aiming at elimination of “environmentally hazardous” small
batteries. There are three major phases/steps associated with piezoelectric energy
harvesting: (1) mechanical–mechanical energy transfer, including mechanical stabil-
ity of the piezoelectric transducer under large stresses, and mechanical impedance
matching; (2) mechanical–electrical energy transduction, relating with the electrome-
chanical coupling factor in the composite transducer structure; (3) electrical–electrical
energy transfer, including electrical impedance matching, such as a DC–DC con-
verter to accumulate the energy into a rechargeable battery. The reader needs to first
understand the concept of “mechanical transformer” and “electrical transformer” to
tune the mechanical and electrical impedance for obtaining the maximum energy
transfer rate.
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10.4.2. “Pushing a Curtain and Pushing a Wall”

Wasted or unused mechanical energy (vibration source) should be transferred
properly to the energy converter such as piezoelectric devices. Mechanical impedance
matching is one of the important factors we have to take into account. The mechanical
impedance of the material is defined by Z = (ρc)1/2, where ρ and c are the density and
elastic stiffness, respectively, or “effective parameter” values in a composite structure.
The receiving part of the mechanical energy in a piezoelectric device should be
designed to match the mechanical/acoustic impedance with the vibration source.
Otherwise, most of the vibration energy will be reflected at the interface between
the vibration source and the harvesting piezoelectric device. Remember a Japanese
proverb, “pushing a curtain and pushing a wall [useless task!]”, both cases of which
will not transfer mechanical energy efficiently (Figure 10.5). Figure 10.11a,b exhibit
these two extreme examples we consider in this section: (a) high energy harvesting
from a “hard machine”, such as an engine, and (b) low energy harvesting from a “soft
machine”, such as human motion. In addition to mechanical impedance matching,
mechanical strength and damping factor (i.e., loss) of the device are also important.

The “cymbal transducer” is a preferred device for high-power purposes [21,22].
A cymbal transducer consists of a piezoelectric ceramic disk and a pair of metal end-
caps. The metal endcaps play important roles as displacement-direction convertors
and displacement amplifiers under electric field operation (Figure 10.11c). For the
energy harvesting application, the cymbal structure behaves as a force amplifier
and an effective “mechanical impedance transformer/tuner”, as well as protecting
the PZT ceramic from the impact force. The cymbal transducer has a relatively
high coupling factor (keff) and high effective stiffness (but tunable!), in comparison
with unimorphs/ bimorphs, which makes it suitable for a high force mechanical
source. On the contrary, the flexible transducer is a preferred device for elastically
soft applications [23]. The Macro Fiber Composite (MFC) is an actuator that offers
reasonably high performance and flexibility in a cost-competitive manner (Smart
Material Corp.) (Figure 10.11d). The MFC consists of rectangular piezo-ceramic rods
sandwiched between layers of adhesive and electroded polyimide film. This film
contains interdigitated electrodes that transfer the applied voltage directly to and
from the ribbon-shaped rods. This assembly enables in-plane poling, actuation, and
sensing in a sealed, durable, ready-to-use package. The MFC composites are useful
for harvesting energy in flexible, large bending structures, though the effective elec-
tromechanical coupling factor keff is not large. However, usage with metal or ceramic
elastically stiff structures is not recommended due to the mechanical impedance
mismatch. Uchino et al. developed intelligent clothing (“IC”, i.e., “wearable energy
harvesting system”) with piezoelectric energy harvesting system of flexible piezo-
electric textiles [24], aiming at a power source for charging up portable equipment
such as cellular phones, health monitoring units, or medical drug delivery devices.
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 Figure 10.11. Two extreme vibration source examples: (a) high energy harvesting
from a “hard” machine, such as an engine, and (b) low energy harvesting from a
“soft” machine, such as human motion; (c) operating principle of the cymbal and
its photo; (d) Macro Fiber Composite (MFC) (Courtesy by Smart Materials Corp.).
Source: Figure by author.

10.4.3. Energy Transfer Measurement for the Case of Cymbal

Energy transfer or reflection rate from the “stiff” electromagnetic shaker to a
cymbal was analyzed by changing the rigidity of the cymbal endcap (i.e., by changing
the endcap thickness, 0.3, 0.4, and 0.5 mm). The characterization system used for
measuring the response of the cymbal under a controlled stress environment is shown
in Figure 10.11a. The mounting assembly was designed to transfer the maximum
mechanical energy onto the piezoelectric transducer. The vibration generated using
the mechanical shaker resembles that of a car engine and was applied to the cymbal
without any damping material. A large, amplitude shaker (model type 4808, Bruel
and Kjaer Instruments Inc., Norcross, GA) has the capability of applying a high force
level up to 112 N in a frequency range of 5 Hz to 10 kHz. The shaker was driven at
various voltages and frequencies using a function generator (HP 33120A, Agilent
Technologies, Santa Clara, CA) and a high-power current amplifier (type 2719, Bruel
and Kjaer Instruments Inc.) to produce a cyclic force of the required magnitude
and frequency. The output signal from the cymbal was monitored using a digital
oscilloscope (TDS 420A, Tektronix, Richardson, TX). The output voltage generated
from the cymbal was passed through the rectifier and charged to a capacitor and
successively discharged through a resistive load. The cymbal transducers were tested
under a high vibration source with prestressed conditions applied using a hydraulic
press (Fred S. Carver Inc.). All experiments were performed on an isolated bench to
avoid mechanical interference from the surrounding environment.
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Figure 10.12 shows the example output voltage waveforms from the cymbal
transducer under a cyclic force depending on prestress condition at 100 Hz frequency.
Prestress is the pressure applied by the mass of the vibration source to the cymbal
transducer. AC forces of 7.8 N and 40 N at 100 Hz were applied for zero-prestress
and prestressed (67 N) conditions, respectively. Under the zero-prestress condition,
intermittent, spiky, high voltage was observed because the vibration source bottom
block hit the cymbal similar to a bang-bang mode, while under prestress (larger than
the AC amplitude), steady ± sinusoidal voltage was observed, which seems to be
much stable as the energy harvesting system.
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Figure 10.12. Output voltage of the cymbal transducer under two prestressed
conditions. A force of 7.8 N and 40 N at 100 Hz was applied for zero-prestress
and prestressed conditions, respectively. Source: [25] ©Uchino, K. Essentials of
Piezoelectric Energy Harvesting. World Scientific, 2021; p. 133. Reproduced by
permission of World Scientific Publishing.

Once we obtain the sinusoidal vibration on the cymbal device, we can evaluate
the transferred mechanical energy into the cymbal transducer as follows: Refer to
Figure 10.13. In order to obtain the source energy, we measure initially the free
vibration amplitude u of the load mass M at the angular frequency ω (here at 100
Hz). Then, the average kinetic energy (per second, i.e., “power”) can be evaluated as

∫ 1

0

1
2

M
(

du
dt

)2
dt =

1
4

Mω2u0
2. (10.63)
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Figure 10.13. Energy evaluation methods for the vibration source (a) and for
the transferred energy to the cymbal (b). Source: [25] ©Uchino, K. Essentials of
Piezoelectric Energy Harvesting. World Scientific, 2021; p. 133. Reproduced by
permission of World Scientific Publishing.

To obtain the transferred mechanical energy to the cymbal, we now measure
the cymbal AC displacement w change under prestressed condition at the angular
frequency ω. Knowing the effective spring constant ceff (i.e., effective elastic stiffness)
of the cymbal transducer by measuring the displacement w and force F beforehand,
F = ceff·w, we can evaluate the mechanical energy in the cymbal (per second) from

∫ 1

0

1
2

ce f f (w)2dt =
ω

8π
ce f f (w0)

2. (10.64)

10.4.4. Endcap Thickness Dependence of Mechanical Energy Transmission

The force generated by the electromagnetic shaker is proportional to the payload
mass M and the generated acceleration, which is controlled by the applied voltage.
The acceleration of the payload was computed by performing the real-time differen-
tiation of measured vibration velocity. The vibration velocity was measured by using
Polytec Vibrometer (Tustin, CA). Several payload masses (100–1000 g) were used in
the experiment. The cymbal transducer was bonded on the payload by using a sili-
cone rubber sealer. A bias DC force was applied on the transducer using a hydraulic
system (Fred S. Carver INC.) to avoid the separation problem, i.e., bang-bang shock
(demonstrated in Figure 10.12). The mechanical energy transferred to the cymbal
was evaluated from the cymbal deformation and its effective stiffness.

Figure 10.14 shows mechanical energy flow analysis from the vibration source
to the cymbal transducer, measured on three types of cymbal transducers: endcap
thickness of 0.3 mm and 0.4 mm with and without bias force under various cyclic
vibration levels and drive durations. We used a “burst” drive from 1 to 20 second
time period for accumulating the mechanical energy by using payload masses of
120 g (for low stress) or 820 g (for high stress). This limited-time measurement
originated from the used capacitor’s specification; the rectified voltage was used for
charging the capacitor Crec of 10 µF in open condition during the charging time (t),
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for which the capacitor was charged up to 200 V. Note that the measurement results
in Figure 10.14 include the energy joule (not the power W, joule per second) during a
certain charging period.

(1) The energy transmission rate depends significantly on the endcap thickness
(for 0.3 mm, 83–87%, while for 0.4 mm, 46%), because of the “effective elastic
stiffness” difference, that is, 0.4 mm may be too thick/rigid from the optimized
“mechanical impedance matching” to the shaker’s effective elasticity.

(2) With increasing the bias stress level, the handling mechanical energy level by
changing the payload mass increases significantly by suppressing the bang-
bang shock.

(3) However, when we increased the AC force level up to 70 N by using a payload
mass of 820 g, the sample with 0.3 mm thick endcaps was damaged, because it
is too fragile for this high stress.

Therefore, we need to take a compromised strategy between the two strategies,
that is, (1) keeping the “mechanical impedance matching” by reducing the applying
stress level for thinner endcaps, or (2) increasing the applying stress level for thicker
endcaps by sacrificing the impedance matching.
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Figure 10.14. Energy flow on three types of cymbal transducers: endcap thickness
of 0.3 mm and 0.4 mm with and without bias force under various vibration levels
and drive durations. Source: [25] ©Uchino, K. Essentials of Piezoelectric Energy
Harvesting. World Scientific, 2021; p. 134. Reproduced by permission of World
Scientific Publishing.

The above discussion is supported by the generated electrical energy level in the
cymbal transducers, as shown in Figure 10.15 [22]. A rectification circuit is composed
of a full-wave rectifier and a capacitor for storing generated electrical energy of the
cymbal transducer in the case of off-resonance (Details are described in Section 10.5).
Using this circuit, the output power was measured across the resistive load directly
without any amplification circuit to characterize the performance of different cymbal
transducers. The maximum rectified voltage Vrec of a capacitor Crec (10 µF) was
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charged up to 248 V after saturation. Figure 10.15 shows the output electrical power
from various cymbal transducers under AC and DC mechanical loads as a function
of external load resistance. Endcap thickness made of steel was changed from 0.3 mm
to 0.5 mm. Prestress (DC bias load) to the cymbal was set constant at 66 N, and
applied AC (100 Hz) force was varied experimentally from 40 N to 70 N by changing
the load mass. For a small force drive (40 and 55 N), the power level increased with
decreasing the endcap thickness (from 0.5, then 0.4, and finally 0.3 mm), which is
due to the energy transmission rate from the vibration source via the mechanical
impedance matching. With increasing the force level up to 70 N, the maximum power
of 53 mW was obtained at an electric load of 400 kΩ with a 0.4 mm steel endcap,
because the cymbal sample with a 0.3 mm thick endcap could not endure under this
high force drive (i.e., the cavity depth is collapsed). The electric impedance matching
is described in the next section. Note that the maximum power was obtained due
to the large input mechanical vibration level (via mechanical impedance matching)
and also due to the effective electromechanical coupling factor keff of the cymbal
design with different endcap thickness. From only the energy efficiency viewpoint,
the 0.3 mm thick sample is the best because of the best electromechanical coupling
factor keff and mechanical impedance matching, though it is too fragile for practical
high-power-level applications.
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Figure 10.15. Change in output electrical power from the various cymbal trans-
ducers under different 100 Hz AC mechanical load (shown as @ xx N under 66 N
constant DC bias) with external electrical load resistance. Source: [25] ©Uchino, K.
Essentials of Piezoelectric Energy Harvesting. World Scientific, 2021; p. 134. Repro-
duced by permission of World Scientific Publishing.
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10.4.5. Electrical Impedance Matching in Piezoelectric Energy Harvesting

A piezoelectric energy harvesting system under sinusoidal stress application
on a piezoelectric component connected with the external electrical impedance Z
is shown in Figure 10.16. When we assume sinusoidal input stress X = X0ejωt and
output electric displacement D = dX0ejωt via direct piezoelectric effect (d constant),
we can derive current and voltage relationships from Figure 10.16 (supposing that
ω is low enough not to cause the resonance). We can understand that the piezo-
electric power supply has the internal impedance 1/jωC under an off-resonance
frequency (by neglecting the dielectric loss or effective conducting loss σ = 0), and
this piezoelectric “current supply” generates the total current

i =
∂D
∂t

= jωdX0. (10.65)

X = X0e jωt

Z in = 1/  jωC

D

ZPs
ioutiin

Piezo-actuator

Figure 10.16. Piezoelectric energy harvesting model. Source: [2] ©Uchino, K.
Micromechatronics, 2nd ed. CRC Press, 2019; p. 395. Reproduced by permission of
Taylor & Francis Group.

This current is split into internal “displacement current” iin and external current
iout,

i = iin + iout. (10.66)

Then, because the potential/voltage should be the same on the top electrode of
the piezoelectric component, we obtain

Ziniin = Ziout . (10.67)

Inserting the relation iin =
(

Z
Zin

)
iout = jωCZ·iout into Equation (10.66),

iout(1 + jωCZ) = jωdX0. (10.68)
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Thus, we can obtain the output electric energy as

|P| = 1
2

∣∣∣Z·iout
2
∣∣∣ = 1

2
Z

(ωdX0)
2

(
1 + (ωCZ)2

) . (10.69)

Figure 10.17 shows the electric load (resistive) dependence of the output electric

energy, which concludes that the maximum electric energy |P| = 1
4

ωd2X2
0

C can be
obtained at Z = 1/ωC, when we consider Z resistive, which is the situation for charg-
ing up a rechargeable battery. In other words, the “generated” electric energy in a
piezo component can be spent maximum when the external load impedance matches
exactly to the internal impedance absolute value. Note the internal impedance is
capacitive with a phase lag of −j (i.e., −90◦).
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Figure 10.17. Output electric energy vs. external electrical load Z. Source: [2]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 396. Reproduced by
permission of Taylor & Francis Group.

We further consider two additional impedance matching: Z =
(

1
jωC

)∗
(i.e., con-

jugate) and Z =
(

1
jωC

)
. When we consider the Z “complex”, Z = Zin

∗ =
(

1
jωC

)∗
=

jω
(

1
ω2C

)
provides the traditional electrical impedance matching. This condition

corresponds to LC series connection (i.e.,
(

1
jωC

)
and jωL), where L = 1/ω2C is

satisfied, leading to the LC resonance frequency exactly equal to the stress applica-
tion frequency ω. The energy generated by a piezo component will be exchanged
between the internal capacitance and external inductance, similar to a “catch ball”,
while neither losing energy nor providing work externally. On the contrary, when
we consider Z =

(
1

jωC

)
, the same capacitance as internal is connected to the external

load. The converted energy is just split into two equal capacitances. In order to take
the energy out into a rechargeable battery, a resistive load is essential to connect.
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10.4.6. DC–DC Converters

The reader has learned that the “acoustic impedance matching” layer (such as
silicon rubber) should be inserted between a high acoustic impedance PZT and a low
impedance water medium in order to maximize the mechanical energy transfer. In
a similar sense, you can imagine that we need an “electrical impedance converter”
between a high electrical impedance piezoelectric transducer (∼300 kΩ) and a low
impedance rechargeable battery (∼50 Ω). This component may be called a digital
“electric transformer”. However, different from the conventional analog double-coil
transformer, this “converter” can be applied for DC voltage.

High-frequency “switching converters” are power conditioning circuits whose
semiconductor devices operate at a frequency that is “fast compared to the variation
of input and output waveforms” [26]. They are used most often over linear regulators
as a more efficient interface between DC systems operating at disparate voltage levels
and are the workhorse of computer and consumer electronic power supply circuitry
today. Switching power supplies offer the following two distinct advantages over
linear voltage regulators:

(1) As they are truly power converters and not simply voltage regulators, switching
converters are quite efficient even when the difference between input and
output voltages is large. On the other hand, the average values of the input and
output currents in a linear regulator must be the same. Therefore, the power lost
through a linear regulator is the product of the input current with the difference
between the input and regulated output voltages. As piezoelectric voltage
signals typically have a relatively large domain, and it is disadvantageous to
clamp this signal, linear regulators encounter some obvious drawbacks that
switching converters are well suited to meet.

(2) Switching converters conserve input-to-output power, regulating either voltage
or current at the output stage. In contrast, a linear regulator is an active resistive
divider in series with the load. They regulate the output voltage by dissipating
excess power for a given input current. The switching converter can be thought
of as “impedance converters” because the average DC output current can
be smaller or larger (step-up or step-down converter, respectively) than the
average DC input current [27]. This impedance conversion property is the
second notable advantage to using a switching converter over a linear regulator
with direct discharge because of the large impedance mismatch inherent in
this design.

Analysis of DC–DC Converters

Three kinds of DC–DC converters were analyzed by the author’s group for the
piezoelectric energy harvesting circuit application [28].

• Buck PWM DC–DC converter;
• Buck–boost PWM DC–DC converter;
• Transformer-isolated buck–boost PWM converter or a flyback converter.

Their circuit designs are shown in Figure 10.18. A “buck converter” (a) is
identical to the switching regulator. Try Example Problem 10.1 for refreshing your
knowledge on switching regulator. A “buck–boost converter” (b) is a type of DC–DC
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converter that has an output voltage magnitude that is either greater than or less
than the input voltage magnitude. Note the position exchange between the diode
and inductance from the buck converter. A “flyback converter” (c) is a kind of buck–
boost converter with a slight difference in the usage of a transformer, instead of a
single inductor.
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Figure 10.18. DC–DC converters: (a) buck converter, (b) buck–boost converter,
and (c) flyback converter. Source: [25] ©Uchino, K. Essentials of Piezoelectric Energy
Harvesting. World Scientific, 2021; p. 234. Reproduced by permission of World
Scientific Publishing.

Example Problem 10.3.

On the basis of the current switching function of the MOSFET, explain the
function of the “switching regulators” (also called “step-down buck choppers”)
shown in Figure 10.18a.

Hint

Let us review a “power MOSFET”, which is popularly used in the piezoelectric
actuator drive [2]. The symbol of the MOSFET is shown in Figure 10.19a, and its drain
current vs. drain-source voltage characteristics are plotted in (b), which corresponds
to 500 V, 50 A class power MOSFET. By keeping the drain-source voltage (VDS) at
5 V, the drain current can be significantly changed from 0 to 60 A by changing the
gate-source voltage (VGS) from 0 to 5.5 V, which creates the current ON–OFF switch
by controlling the gate-source voltage.
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K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 344. Reproduced by permission
of Taylor & Francis Group.

Solution

The switching regulator is occasionally used as a step-down voltage/step-up
current converter (popular DC–DC converter), significant output impedance modu-
lation, without using an electromagnetic transformer, which kills the size and weight
in a power system. Figure 10.20 shows the simplest switching regulator composed
of only a single MOSFET, inductor L, diode, and the resistive load R (capacitor C is
occasionally added to stabilize the ripple waveform) under a DC constant voltage
(battery). (a) and (b) illustrate the operations for the MOSFET on and off stages,
respectively. When the gate-source voltage with a rectangular waveform (reasonably
high carrier frequency with the “duty ratio” d = ( Ton

Ton+To f f
)) is applied, the MOSFET

behaves as an ON-and-OFF switch. During the ON stage (Figure 10.20a), E–FET–L–R
is the current flow route, so that v0 = E, but vR does not reach E so quickly because
of the inductor (which needs to accumulate the electrical energy first), while during
OFF state (Figure 10.20b), v0 = 0, but vR does not reach to 0 so quickly; moreover,
because the inductor will release the electrical energy, or generate the “reverse elec-
tromotive force”, the current still continues to flow in the route L–R–D now. Note
first that the average voltage of a rectangular waveform (0–E) with the duty ratio
(d) is estimated as d·E. Voltage waveforms of v0, vL, and vR of the step-down buck
chopper are illustrated as a function of time in Figure 10.20c, where you can find first
v0 as exactly the “similar” rectangular waveform to the MOSFET gate voltage with 0
to E voltage height (unipolar). On the contrary, vL shows the same waveform but a
negative bias voltage equal to vR. Since vR is obtained as the subtraction v0–vL, we
can conclude that the vR is almost constant around the average voltage d·E. More
detailed information on the vR behavior is described using Figure 10.20c. Without
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using a capacitance, the vR exhibits a ripple mode of an exponential curve with a
time constant τ = (L/R) in an L–R circuit. In order to minimize the ripple level, the
carrier time period (inverse of the carrier frequency) should be chosen much less
than the circuit time constant (L/R) first. An additional smoothing capacitance C
helps more with realizing almost constant output voltage d·E. Carrier frequency is set
at 1 kHz in our cymbal energy harvesting system, which is high enough, compared
with the operating frequency 100 Hz, but should be as low as possible not to increase
the switching losses.
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Figure 10.20. Switching regulator: (a) ON and (b) OFF operation; (c) voltage wave-
forms of v0, vL, and vR of the step-down buck chopper. Source: [25] ©Uchino, K.
Essentials of Piezoelectric Energy Harvesting. World Scientific, 2021; p. 232. Repro-
duced by permission of World Scientific Publishing.

Each converter’s analysis is divided into the following four main categories:

(a) Converter description (see Figure 10.18);
(b) Analysis of ideal converter in discontinuous conduction mode;
(c) Determination of optimal duty cycle of the converter for energy harvesting;
(d) Loss analysis of a non-ideal converter in discontinuous conduction mode.

For the sake of simplicity, all the converters considered here are fixed frequency.
Given below is the origin of losses in a conventional fixed-frequency DC–DC con-
verter:

• Load-Dependent (Conduction) Losses

- MOSFET “ON” resistance;
- Diode forward drop;
- Inductor/transformer winding resistance;
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- Capacitor ESR.

• Frequency-Dependent (Switching) Losses

- MOSFET output capacitance;
- MOSFET gate capacitance;
- Diode capacitance;
- Diode stored minority charge;
- Inductor and transformer core loss;
- Snubber loss;
- Gate driver loss.

• Other Fixed Losses

- Controller circuitry losses;
- MOSFET, diode, and capacitor leakage currents.

Reference [28] contains the detailed derivation of the optimal duty cycle, opera-
tion, and estimated power loss of the converters in the “Discontinuous Conduction”
chapter for the buck–boost and flyback converter topologies. Table 10.1 summa-
rizes the conduction losses in buck, buck–boost, and flyback converters operating in
discontinuous conduction mode.

Losses in almost all the cases have the following correlations:

• Proportional to the cube of input voltage: Losses increase with high-voltage-
generating devices;

• Inversely proportional to the square root of the inductance value and switch-
ing frequency;

• Inversely proportional to the output voltage.

Assuming input voltage ~150 V (~310/2) and output voltage ~12 V, the losses
in a buck converter are 10% less than buck–boost converter under optimal operating
conditions. More precisely, we obtained the following results, where the loss is
compared with the rate (buck converter/buck–boost converter):

Conduction Loss Switching Loss
Inductor Loss 0.83 0.83
MOSFET Loss 0.91 Assuming same toff and L

Diode Loss 0.90

Based on the loss analysis for the DC–DC converters above the following results
can be drawn:

• Strong arguments can be made to show “buck converter” is better than “buck–
boost” in terms of conduction and switching losses;

• Buck converter is even a better choice for devices that do not generate high volt-
ages;

• For “flyback converters”, however, the design is not optimized, so a direct
comparison is not possible. However, strong intuitive arguments can be made
to show higher losses associated with this converter.
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Table 10.1. Conduction losses in the three converters operating in discontinuous
conduction mode.

Converter Diode Loss Inductor Loss MOSFET Loss

Buck
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Vg−Vo
) 3

2 Vg
3
2

3
√

L f s ·Vo
+

(
2ωCcymbal

π

)
Vg
(

Vg−Vo
)

Vf

Vo

8RL

(
ωCcymbals

π

) 3
2 (

Vg−Vo
) 1

2 Vg
5
2

3
√

L f s ·Vo

8RDS
(

ωCcymbals

) 3
2
(

Vg−Vo
) 1

2 Vg
3
2

3
√

L f s

Buck–
Boost

8RF

(
ωCcymbal

π

) 3
2

V3
g

3
√

L f s ·Vo
+

V2
g

(
2ωCcymbal

π

)

Vo
· Vf

8RL

(
ωCcymbal

π

) 3
2

V2
g (Vg−Vo)

3
√

L f s ·Vo

8RDS

(
ωCcymbal

π

) 3
2

V2
g

3
√

L f s

Flyback

8RFV3
g

(
Np
Ns

)( ωCcymbal
π

) 3
2

3
√

M f s ·Vo
+

V2
g

(
2ωCcymbal

π

)

Vo
· Vf

8Rp

(
Vg+

(
Np
Ns

)
Vo

)2
(

ωCcymbal
π

) 3
2

3
√

M f s
+

8V3
g Rs

(
ωCcymbal

π

) 3
2

3
√

M f s ·Vo

(
Np
Ns

)

8RDSV2
g

(
ωCcymbal

π

) 3
2

3
√

M f s

Source: Table by author, based on data from [28].

Cymbal Energy Harvesting into Rechargeable Battery

A buck DC–DC converter was chosen for the cymbal energy harvesting systems
in order to store the energy into a rechargeable battery [21]. The beneficial reasons
include the following advantages:

• Low power loss: ~3 mW for the gate drive circuitry;
• Inexpensive and small: component count for the entire circuit = 8;
• Operates at a fixed “optimal duty cycle” of 2% for high excitation: no compli-

cated control of frequency generation is required;
• Very reliable and durable: the circuit had been tested for several hours, and it

works without any performance degradation;
• Low stress on the MOSFET switch and other components: better efficiency and

cheap components.

The basic theory for the converter is summarized as follows: (1) The purpose of
the external circuit is to maximize the “average power” transferred to the electrical
load. (2) The condition for maximum average power transfer requires that the load
impedance must be equal to the complex conjugate of the “Thevenin impedance”.
(3) The optimal duty cycle of the converter is calculated to be as the following
equation, using the mechanical excitation frequency ω, inductance value of Buck
filter L, and the switching frequency of the converter fS:

Doptimal =

√
4ωLVgCcymbal fs

π
(
Vg −Vo

) . (10.70)

Figure 10.21 shows an electrical energy harvesting circuit composed of a full-
wave rectifier, a rechargeable battery, and a DC–DC buck converter designed on
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the basis of the “maximum power transfer theorem” at an “optimal duty cycle”.
We chose the switching frequency ~1 kHz, high enough in comparison with the
operating frequency of the piezoelectric component (~100 Hz) but low enough to
reduce the switching losses. The “duty cycle” ~2% can be calculated by substituting
the values in Doptimal in Equation (10.70). We may expect a 50-time voltage step-down
and 50-time current step-up, leading to the 2500-time impedance reduction ideally,
if we neglect any losses in the circuit. Since the matching impedance to the cymbal
component is 400 kΩ, we may expect the matching impedance down to 200 Ω.
Figure 10.22 plots the duty cycle (1–5%) dependence of the obtained power through
the buck converter. Irrelevant to the electrical load, 2% provides the maximum,
as Equation (10.70) indicates. However, from Figure 10.22, the maximum output
power can be obtained at 5 kΩ (i.e., matching impedance), which is an order of
magnitude higher than ideally expected above. The sizes of the inductor and filter
capacitor were set to 33 mH and 100 µF, which are high enough inductance to reduce
the output current ripple and high enough capacitance to keep the output voltage
ripple-free. Low power consumption PWM (“pulse width modulation”) generator
“LM555” was used then for the “duty cycle” generation. Amplified output current
was applied for charging the battery, with the power increase by approximately
10 times, compared with direct charging. Power supply continued to the load
irrespective of the mechanical input fluctuations. A DC–DC buck converter designed
to allow transfer of 43 mW power out of 53 mW from the cymbal (81% efficiency)
by converting the original impedance 300 kΩ down to 5 kΩ, with a 2% duty cycle
and at a switching frequency of 1 kHz. The power loss in the gate drive circuit of the
buck converter was estimated at ~3 mW, which is much smaller than the cultivated
energy of 43 mW into a rechargeable battery.
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Figure 10.21. DC–DC buck converter designed for converting the original
impedance 300 kΩ down to 5 kΩ with a 2% duty cycle. Source: [25] ©Uchino,
K. Essentials of Piezoelectric Energy Harvesting. World Scientific, 2021; p. 236. Repro-
duced by permission of World Scientific Publishing.
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Figure 10.22. Duty cycle dependence of the obtained power through the buck con-
verter. Source: [25] ©Uchino, K. Essentials of Piezoelectric Energy Harvesting. World
Scientific, 2021; p. 237. Reproduced by permission of World Scientific Publishing.

Multilayered Cymbal

Since the “buck converter” introduced in the previous subsection cannot reduce
the output impedance sufficiently to match with the rechargeable battery (~50 Ω),
we should further reduce the output impedance. However, reducing the duty ratio
to much less than 2% is not practically feasible. Thus, an alternative strategy is
to reduce the output impedance of the piezoelectric transducer by changing the
piezoelectric transducer structure. Multilayered (ML) cymbal structures have lower
impedance [29], different from a popular reason for the ML usage to reduce the
driving voltage for actuator applications. Figure 10.23a,b show cross-sectional views
of single- and multilayered (ML) cymbal transducers. With increasing the number n
of the layers by keeping the total thickness constant, output impedance decreases by
the factor of (1/n2), owing to their capacitance increase in an opposite way, as you are
familiar with. As shown in Figure 10.23c, the maximum output power shifts to the
lower resistance direction with an increase in the layer number, which means output
impedance can be controlled by the number of layers in the piezoelectric transducer
structure. You can find that the matching impedance 300 kΩ in the single-layer
cymbal is reduced down to 3 kΩ by using a 10-layer cymbal. Note that the total
power is the same for all ML piezoelectric components, as long as we keep the same
total PZT volume.

400



(a)

(b)

1 mm (10 layers)

40

1

O
ut

pu
t P

ow
er

 (m
W

)

10 100 1000

60

80

100

1-layer of 1000 μm
2-layer of 500 μm
4-layer of 250 μm
10-layer of 100 μm

(c)
Resistive Load (kΩ)

Figure 10.23. (a) Single-layer cymbal and (b) multilayered (ML) cymbal trans-
ducer; (c) output power characteristics of the ML cymbal transducers. Source: [25]
©Uchino, K. Essentials of Piezoelectric Energy Harvesting. World Scientific, 2021; p.
237. Reproduced by permission of World Scientific Publishing.

It is worth noting that the performance becomes much superior by combining
the ML cymbal structure and the DC–DC buck converter, as shown in Figure 10.24.
When we compare first the output voltage from the 10-layer cymbal with or without
the DC–DC converter, no significant difference can be found, only a continuous
increase in the output voltage for both cases with increasing the resistive load. On
the contrary, the output power of the 10-layer cymbal with or without the DC–DC
converter presents significant differences—using the buck converter reduces the
maximum power level from 100 mW to 80 mW, with the matching load shift from
5 kΩ to 2 kΩ. However, the output power around 50 Ω (“matching impedance”
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to the rechargeable battery) differs significantly—50 mW with the converter and
less than 10 mW without the converter. This load-insensitive broadening effect is
essential to the usage of the DC–DC buck converter, but the reason needs to be
clarified in the future.
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Figure 10.24. Load resistance dependence of the harvesting energy from the ML
piezoelectric component. Source: [25] ©Uchino, K. Essentials of Piezoelectric Energy
Harvesting. World Scientific, 2021; p. 238. Reproduced by permission of World
Scientific Publishing.

10.5. Energy Transmission Coefficient

10.5.1. Modification of the Piezoelectric Dynamic Analysis

In the previous section, we modeled the piezoelectric energy harvesting system
on an external electrical load Z, where a piezoelectric device with piezoelectric
constant d and capacitance C is excited by a constant cyclic stress X at a frequency of
ω. we can obtain the output electric energy as

|P| = 1
2

∣∣∣Z·iout
2
∣∣∣ = 1

2
Z

(ωdX0)
2

(
1 + (ωCZ)2

) . (10.71)

Equation (10.71) concludes that the maximum electric energy |P| = 1
4

ωd2X2
0

C can
be obtained at Z = 1/ωC, which corresponds to the “electrical impedance matching”.

However, the above derivation was made from a rough approximation on the
basis of two assumptions or simplifications: (1) The elasticity of the piezoelectric
does not change with the external load Z and (2) the capacitance (or permittivity) of
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the piezoelectric does not change under alternating stress application. If the reader
recalls the following relations with the “electromechanical coupling factor” k:

εx/εX =
(

1− k2
)

, (10.72a)

sD/sE =
(

1− k2
)

, (10.72b)

where k is given by

k2 =
d2

sEεXε0
, (10.73)

it is obvious that the above assumption is only valid for a small coupling factor k.
When the external load Z is large (Z = ∞), the elasticity becomes “stiff” (i.e., sD),
while when Z = 0 (short circuited), the elasticity becomes “soft” (i.e., sE). The reader
can speculate that when the load Z is intermediate, the elasticity will be also in the
middle of sD and sE. Therefore, even though the stress is maintained constant X0, the
transferred mechanical energy from the vibration source to the piezoelectric differs,
largely depending on the external impedance. We may need to normalize the input
mechanical energy constant for maximizing the output harvesting electric energy.
On the other hand, when the stress is zero, the permittivity should be large (i.e.,
εX), while when large “blocking stress” (which clamps the strain completely, x = 0)
is applied, the permittivity becomes stiff or as small as εx. Thus, under AC stress
application, since the permittivity depends on the stress modulation, the reader can
easily understand that we cannot use constant free permittivity εX or capacitance C
in order to obtain the power maximization external impedance.

Since we need to use or accumulate energy externally, we consider “resistive
shunt” for further discussions. When the vibration source generates sinusoidal
continuous force, not all the electrically stored energy (in this case, “power”) in
the piezoelectric can be actually taken out under the mechanical drive, and the
actual work performed by the piezoelectric component depends on the external
electrical load, as we roughly derive the electrical impedance matching above. Let us
reconsider the power expendable on the external electrical load Z from the “energy
transmission coefficient” viewpoint in this section. Figure 10.25 summarizes the
calculation processes of the input mechanical and output electric energy under
various impedance Zs—namely, (a) in the stress X vs. electric displacement D
relation, the area on this domain does not mean the energy; thus, we need to translate
this plot into (b) stress X vs. strain x relation, to calculate the input mechanical
energy. Note that the input mechanical energy differs depending on the external
load Z (the triangle area made of 0X0Z); (c) electric displacement D vs. electric field
E to calculate the output electric energy. Similar to the situation in an electrically
driven piezo-actuator, in which with a zero mechanical load or a complete clamp
(no strain), no output work (“pushing a curtain and pushing a wall”) is performed,
no electrically converted energy can be actually spent under the short-circuit (zero
impedance) or open-circuit (infinite impedance) condition in the energy harvesting
case. Let us consider the formula derivation for Figure 10.18c. First, the electrical
energy output can be calculated from the constitutive equations.
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Figure 10.25. Calculation models of the input mechanical and output electric energy.
(a) Stress vs. electric displacement; (b) stress vs. strain; (c) electric displacement vs.
field. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 396.
Reproduced by permission of Taylor & Francis Group.

(
D
x

)
=

(
ε0ε d
d sE

)(
E
X

)
. (10.74)

The short-circuit condition (E = 0) gives D0 = dX0, while the open-circuit con-
dition (D = 0) gives E0 = −dX0/ε0ε. The triangular area of OD0E0 ( 1

2 dX0·
(

dX0
ε0ε

)
=

1
2
(dX0)

2

ε0ε ) means the total electric energy converted from the mechanical vibration.
Thus, under an impedance Z shunt condition, we can expect a point (E, D) on the
straight line [E =

(
1

ε0ε

)
D−

(
d

ε0ε

)
X)] between the terminals of the above D0 and E0,

with the slope
(

1
ε0ε

)
(i.e., inverse permittivity) of the line D0E0 under the supposition

of constant permittivity of εX , irrelevant to the stress modulation.
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The “energy transmission coefficient” λ is related to the electromechanical
coupling factor k but defined differentially by

λmax = (Output mechanical energy/Input electrical energy)max, (10.75a)

in the actuator application or alternatively by

λmax = (Output electrical energy/Input mechanical energy)max, (10.75b)

in the energy harvest application. The difference of the above from the definition of
electromechanical coupling factor k2 is “stored/converted energy” in the numerator
in k2 or “output/spent energy” in λ.

10.5.2. Piezoelectric Dynamic Equation under Resistive Shunt Condition

Though Subsection Solution under Z-Shunt Condition in Chapter 7 handles the
electrical energy analysis under the AC stress conditions, we analyze it in this section
again in detail from the electric impedance matching viewpoint. We now analyze the
piezoelectric vibration mode under AC stress application with the external electrical
load Z. Let us consider a piezo-ceramic k31 plate, as shown in Figure 10.26. Sinusoidal
force/pressure F and −F (angular frequency ω) are applied on the plate ends at x = 0
and L along the length direction x.

F(t) = −bwX1(t). (10.76)

y
z
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b x
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Pz

Figure 10.26. Longitudinal vibration k31 mode of a rectangular piezoelectric plate.
Source: [2] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 111. Repro-
duced by permission of Taylor & Francis Group.

If the polarization is in the z-direction and x-y planes are the planes of the
electrodes, the extensional vibration in the x (length) direction is represented by the
following dynamic equations (when the length L is more than 4~6 times of the width
w or the thickness b, we can neglect the coupling modes with width or thickness
vibrations):

ρ
(

∂2u/∂t2
)
= (∂X11/∂X), (10.77)

where ρ is the density of the piezo-ceramic, and u is the displacement of a small vol-
ume element in the ceramic plate in the x-direction. Only the following two equations
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are essential to solve the dynamic equation around the resonance/antiresonance fre-
quencies:

x1 = s11
EX1 + d31Ez, (10.78a)

D3 = d31 X1 + ε0ε33
XEz. (10.78b)

Since Equation (10.78a) is transformed into X1 = x1/s11
E− (d31/s11

E)Ez, we ob-
tain

∂X1

∂x
=

1
sE

11

∂x1

∂x
− d31

sE
11

∂Ez

∂x
. (10.79)

Due to the equal potential on each electrode, ∂Ez/∂x = 0, and knowing the
strain definition x1 = ∂u/∂x along the 1 (x) direction (non-suffix x corresponds to the
Cartesian coordinate), Equation (10.77) is transformed into

ρ
∂2u
∂t2 =

1
sE

11

∂2u
∂x2 . (10.80)

If we assume a “harmonic vibration” equation of u under a sinusoidal force
application, we can simplify Equation (10.80) as

−ω2ρs11
Eu = ∂2u/∂x2 or −

(
ω

vE
11

)2

u(x) =
∂2u(x)

∂x2 , (10.81)

where ω is the angular frequency of the sinusoidal force, u displacement, and vE
11

is the “sound velocity” along the length x-direction in the piezo-ceramic plate, ex-
pressed by

vE
11 = 1/

√
ρs11

E. (10.82)

Supposing the displacement u also vibrates with the frequency of ω, a general
solution of Equation (10.81) is expressed by

u(x) = Asin

(
ω

vE
11

x

)
+ Bcos

(
ω

vE
11

x

)
. (10.83)

From Equation (10.83), the strain x1(x) is given by

x1(x) =
∂u
∂x

= A
ω

vE
11

cos

(
ω

vE
11

x

)
− B

ω

vE
11

sin

(
ω

vE
11

x

)
. (10.84)

In order to determine the above two parameters, A and B, the boundary con-
dition is imposed: X1 = X0ejωt at x = 0 and L (both plates’ ends). We consider here
the impedance (Z) shunt condition. Knowing the piezoelectric constitutive equation
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s11
EX1 = x1 − d31Ez, where Ez(t) = constant in terms of the coordinate x, owing to the

surface electrode,




sE
11X0 = A ω

vE
11
− d31Ez

sE
11X0 = A ω

vE
11

cos
(

ω
vE

11
L
)
− B ω

vE
11

sin
(

ω
vE

11
L
)
− d31Ez

. (10.85)

The output electric charge Q (i.e., no loss, no time lag) can be described from
the piezoelectric constitutive equation (Equation (10.78b)) D3 = d31X1 + ε0ε33

XEz as

Q = w
∫ L

0
D3dx = w

∫ L

0
[d 31X1 + ε0εX

33Ez

]
dx. (10.86)

While, from X1 = x1/s11
E − (d31/s11

E)Ez, we obtain
∫ L

0 X1dx = 1
sE

11

∫ L
0 (x 1 − d31Ez)dx.

Knowing that
∫ L

0 x1dx = 2u(L) and Ez = constant, we obtain

I =
.

Q =

{(
2wd31

sE
11

)
.
u(L) + ε0εX

33
(
1− k2

31
) .
EzwL

}

= jω
(

2wd31
sE

11

)
u(L) + jωε0εX

33
(
1− k2

31
)
EzwL.

Using V = bEz = Z·I and Cd = ε0εX
33
(
1− k2

31
)
wL/b, Equation (10.86) leads to the

following relations:

jω

(
2wd31

sE
11

)[
Asin

(
ω

vE
11

L

)
+ Bcos

(
ω

vE
11

L

)]
+ jωCdEzb− b

Z
Ez = 0. (10.87)

From Equations (10.85) and (10.87), we can derive A, B, and Ez as follows:




ω
vE

11
0 −d31

ω
vE

11
cs − ω

vE
11

sn −d31

jω
(

2wd31
sE

11

)
sn jω

(
2wd31

sE
11

)
cs b

(
jωCd − 1

Z

)







A
B
Ez


 =




sE
11X0

sE
11X0

0


, (10.88)

where sn = sin
(

ω
vE

11
L
)

and cn = cos
(

ω
vE

11
L
)

. Thus, we can obtain





A =
sE

11X0b(jωCd− 1
Z ) cos

(
ωL

2vE
11

)

∆

B = −
sE

11X0b(jωCd− 1
Z ) sin

(
ωL

2vE
11

)

∆

Ez = −
sE

11X0

(
jω 2wd31

sE
11

)
sin
(

ωL
2vE

11

)

∆

, (10.89)
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where the denominator ∆ is the determinant of the matrix of Equation (10.88) calcu-
lated as

∆ =
(

ω
vE

11

)
b
(

jωCd − 1
Z

)
cos
(

ωL
2vE

11

)
+ d31 jω

(
2wd31

sE
11

)
sin
(

ωL
2vE

11

)

= jω2wε0εX
33

[(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
+ k2

31 sin
(

ωL
2vE

11

)]
+
(

ω
vE

11

)
b
Z cos

(
ωL
2vE

11

)
.

(10.90)

When ∆→ 0 , the displacement amplitudes A, B, and the generated electric field
Ez will approach infinite if we neglect the loss. This condition is considered to be
mechanical resonance.

(a) When Z→ 0 (i.e., short circuited), the last term
(

ω
vE

11

)
b
Z cos

(
ωL

2vE
11

)
is the major

contribution, which leads to the resonance condition of cos
(

ωL
2vE

11

)
= 0, or

ωL
2vE

11
= π

2 . This is the piezoelectric resonance mode condition in the k31 plate.

(b) When Z→∞ (i.e., open circuited), since the last term is neglected, the resonance
condition should be:

(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
+ k2

31 sin
(

ωL
2vE

11

)
= 0, or

(
ωL

2vE
11

)
cot
(

ωL
2vE

11

)
= − k2

31
(1−k2

31)
,

(10.91)

which is the familiar formula for calculating the piezoelectric antiresonance
frequency.

(c) Now, by connecting Z = 1/ωCd to combine the cos
(

ωL
2vE

11

)
terms together, we

consider the minimization of the magnitude of ∆ for obtaining the mechanical
resonance condition as follows:

∆ = jω2wε0εX
33

[(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
+ k2

31 sin
(

ωL
2vE

11

)
+

j
(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)]
.

(10.92a)

• For a small ω (much lower than the resonance frequency),

∆ = jω2wε0εX
33

[(
1− k2

31
)(

ωL
2vE

11

)
+ k2

31

(
ωL

2vE
11

)
+ j
(
1− k2

31
)(

ωL
2vE

11

)]

= jω2wε0εX
33

(
ωL

2vE
11

)[
1 + j

(
1− k2

31
)]

.
(10.92b)

The apparent dissipation factor tan ϕ =
(
1− k2

31
)

is quite high under
Z = 1/ωCd resistive shunt case.
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• For a frequency around the resonance frequency ( ωR L
2vE

11
= π

2 , ∆ω = ω−ωR

)
,

taking ωL
2vE

11
=

(
π
2 + ∆ωL

2vE
11

)
, cos

(
ωL

2vE
11

)
= − sin

(
∆ωL
2vE

11

)
, and sin

(
ωL

2vE
11

)
=

cos
(

∆ωL
2vE

11

)
into account

∆ = j(ωR + ∆ω)2wε0εX
33

[
−
(
1− k2

31
)(

π
2 + ∆ωL

2vE
11

)
sin
(

∆ωL
2vE

11

)
+

k2
31 cos

(
∆ωL
2vE

11

)
− j
(
1− k2

31
)(

π
2 + ∆ωL

2vE
11

)
sin
(

∆ωL
2vE

11

)]

≈ jωR2wε0εX
33

[
−
(
1− k2

31
)(

π
2
)( ∆ωL

2vE
11

)
+ k2

31 − j
(
1− k2

31
)(

π
2
)( ∆ωL

2vE
11

)]
.

(10.93)

The external impedance Z connection is equivalent to the loss tangent
increase, and

tan ϕ =
(
1− k2

31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
/
[(

1− k2
31
)(

ωL
2vE

11

)
cos
(

ωL
2vE

11

)
+ k2

31 sin
(

ωL
2vE

11

)]

≈ −
(
1− k2

31
)(

π
2
)( ∆ωL

2vE
11

)
/
[
−
(
1− k2

31
)(

π
2
)( ∆ωL

2vE
11

)
+ k2

31

]

≈ − (1−k2
31)

k2
31

(
π
2
)( ∆ωL

2vE
11

)
.

(10.94)

It is important to note that the resistive shunt contributes largely to the apparent
dissipation. In other words, this large dissipation in the piezoelectric component
stands for efficient piezoelectric energy harvesting in the external load. However,
the apparent dissipation becomes small around the mechanical resonance frequency
range, compared with the amplified motional current (note that we neglected the
piezo material-originated losses).

The displacement u(x) and strain x1(x) under the external impedance Z are
summarized as follows:




u(x) =
sE
11X0bωCd(j−1) cos

(
ωL

2vE
11

)

∆ sin
(

ω
vE

11
x
)
+

sE
11X0bωCd(j−1) sin

(
ωL

2vE
11

)

∆ cos
(

ω
vE

11
x
)

x1(x) =
sE
11X0bωCd(j−1) cos

(
ωL

2vE
11

)

∆
ω

vE
11

cos
(

ω
vE

11
x
)
−

sE
11X0bωCd(j−1) sin

(
ωL

2vE
11

)

∆
ω

vE
11

sin
(

ω
vE

11
x
)

. (10.95)

The electric power spent in the resistive shunt Z = 1/ωCd can be calculated by

|Pout| = Re
[(

1
2

)(
V∗·I∗

)]
, (10.96)

from Example Problem 10.2., initially, we obtain the following from Equation (10.89):

1
2

V2

Z
=

1
2
(bEz)

2

Z
=

b2

2Z




sE
11X0

(
jω 2wd31

sE
11

)
sin
(

ωL
2vE

11

)

(
ω

vE
11

)
b
(

jωCd − 1
Z

)
cos
(

ωL
2vE

11

)
+ d31 jω

(
2wd31

sE
11

)
sin
(

ωL
2vE

11

)




2

. (10.97)
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If we consider a small ω (much lower than the resonance frequency),

1
2

V2

Z = b2

2 ω Lw
b ε0εX

33
(
1− k2

31
)



sE
11X0

(
jω 2wd31

sE
11

)

( 2
L )bω Lw

b ε0εX
33(1−k2

31)(j−1)+d31 jω
(

2wd31
sE
11

)




2

= 1
2 ω(Lwb)ε0εX

33
(
1− k2

31
)

 d31X0(jω2w)

ω2wε0εX
33(1−k2

31)(j−1)+jω2wε0εX
33

(
d31

2

ε0εX
33sE

11

)




2

= 1
2 ω(Lwb)

(d31X0)
2(1−k2

31)
ε0εX

33[−(1−k2
31)+j]

.

(10.98)

Thus, the output electrical power is given by

|Pout| = Re
[(

1
2

)(
V∗·I∗

)]
=

1
2

ω(Lwb)
(d31X0)

2

ε0εX
33

1(
1− k2

31
)
+ 1

(1−k2
31)

. (10.99)

In Equation (10.99), because d31X0 = P3, and 1
2
(d31X0)

2

ε0εX
33

corresponds to the electric

energy per unit volume converted via the piezoelectric effect with some calibration
factor by the electromechanical coupling factor, 1

(1−k2
31)+

1

(1−k2
31)

= 1

2+
k4
31

(1−k2
31)

. The

power obtained from this piezoelectric k31 specimen is expressed by the product
of frequency ω and volume (Lwb). When k2

31 is not large (k31 < 30%), |Pout| be-
comes roughly 1/2 of the converted energy via the resistance Z, which matches the
piezoelectric damped capacitance.

Differently from Equations (10.69) and (10.71), in which we did not consider
the difference depending on the mechanical constraint (i.e., εX

33 or εx1
33) from the exact

solution, in Equation (10.99), the following factors are considered:

(1) Matching impedance should be replaced by the “damped” capacitance Cd rather
than only a capacitance C;

(2) The calibration factor 1
(1−k2

31)+
1

(1−k2
31)

is more precise, rather than 1/2 in |P| =

1
2

ωd2X2
0

C
1

(1−k2
31)+

1

(1−k2
31)

.

Recall that the mechanical excitation of a piezoelectric plate under a short-
circuit condition exhibits a so-called “piezoelectric resonance mode” with the elastic
compliance s11

E, while the mechanical excitation of a piezoelectric plate under an
open-circuit condition exhibits a so-called “piezoelectric antiresonance mode” with
lower “effective elastic compliance” s11, e f f

E (i.e., higher peak frequency, though the
device elastic compliance should be s11

E theoretically). We now calculate the “input
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mechanical energy” under a Z-shunt condition from the second constitutive equation
(Equation (10.78b) and Equation (10.92)) under the low frequencyω:

x = d31Ez + s11
EX = d31


−

sE
11X0

(
jω 2wd31

sE
11

)
sin
(

ωL
2vE

11

)

∆


+ s11

EX

= d31


−

sE
11X0

(
jω 2wd31

sE
11

)
sin
(

ωL
2vE

11

)

jω2wε0εX
33

(
ωL

2vE
11

)
[1+j(1−k2

31)]


+ s11

EX= s11
EX0

[
1− k31

2

1+j(1−k31
2)

]
.

(10.100)

We can obtain effective elastic compliance as

sE
e f f =

x
X

= sE


1− k31

2

1 + j
(

1− k31
2
)


 = sE


1− k31

2

1 +
(

1− k31
2
)2 + j

(
1− k31

2
)

1 +
(

1− k31
2
)2


. (10.101)

Thus, under Z = 1/ωC, we can conclude that the real part of the effective elastic
compliance is given by

Re
[
sE

e f f

]
= sE


1− k31

2

1 +
(

1− k31
2
)2


 ≈ sE

(
1− 1

2
k31

2
)

[for small k31]. (10.102)

Though the above derivation was made under a low-frequency region, if we
extrapolate the idea to high frequency, the mechanical resonance frequency f may be
estimated as

f = 1/2L
√

ρsE
e f f = fR

(
1 +

1
4

k31
2
)

[for small k31], (10.103)

which is higher than the short-circuit condition fR (i.e., piezoelectric resonance fre-
quency) but lower than the open-circuit condition fA (i.e., piezoelectric antiresonance
frequency), approximated as fA = fR

(
1 + 4

π2 k2
31

)
. Under the resistive shunt con-

dition, the elastic compliance exhibits intermediate between sE and sD, then the
mechanical resonance frequency seems to exist also in between the resonance and
antiresonance frequencies.

Thus far, in the above, we concentrated only on the maximization of the output
electrical energy. Now, we will consider the maximization of the “energy trans-
mission coefficient”, taking into account the input mechanical energy. Though we
already handled this concept in Example Problem 7.5, we describe here a more de-
tailed derivation. The “energy transmission coefficient” in the piezoelectric energy
harvesting system is defined by Equation (10.75b) as follows:

λmax = (Output electrical energy/Input mechanical energy)max.

As you have learned above, the input mechanical energy differs significantly
depending on the external electrical load Z, even under the constant AC stress
condition, because the elastic compliance changes with Z. If you recall that the
tunable elasticity according to the electric constraint is sE (short circuit) or sD (open
circuit), and further sD = sE(1− k2) in particular, in the transverse effect k31 case,
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you can understand that the input mechanical energy (e.g., the triangular area
made by OX0x0) differs largely depending on the electrical load Z, as illustrated in
Figure 10.18b (the slope, elastic compliance changes according to Z). Let us calculate
the load Z dependence of the input mechanical energy. Instead of Equation (10.89) in
the precise analysis, we will use the simplified electric field for the simple analysis.
From Equations (10.67) and (10.68) for the low k condition,

Vz = SZiout = S
jωdX0Z

(1 + jωCZ)
. (10.104)

Note that since iout is originally derived from ∂D
∂t , the total current requires to be

multiplied by the area S. Thus, we can obtain the output electric energy as

|P|out = Re
[

S2

2
(
Z·iout

)
·iout

]
=

S2

2
Z

(ωdX0)
2

(
1 + (ωCZ)2

) , (10.105)

where iout stands for the conjugate of iout. Then, the second constitutive equation in
Equation (10.78b) leads to the following equation:

x = dE + sEX = −d
(

V
t

)
+ sEX = −

(
d
t

)[
jωdX0

1
Z + jωC

]
+ sEX. (10.106)

We obtain effective elastic compliance as

sE
e f f =

x
X

= sE
[

1−
(

S
t

)
jωZd2

sE(1 + jωCZ)

]
. (10.107)

You can verify that the above “effective elastic compliance” is equal to sE or
sD = sE

(
1− k31

2
)

, when Z = 0 or ∞, respectively, using C = ε0εX
33

(
S
t

)
and k31

2 =

d31
2/sEε0εX

33. The total input mechanical power under the Z-shunt condition can be
derived as

|P|in = Re
[
(St)

ω

2

(
X0sE

e f f

)
X0

]
= (St)

ω

2
sE


1−

(
S
t

) C
(

ωZ d)2

sE
[
1 + (ωCZ)2

]


X0

2. (10.108)

The volume (S·t) was multiplied by the unit volume elastic energy. The “energy
transmission coefficient”, defined by

λmax = (Output electrical energy/Input mechanical energy)max.

in the energy harvesting application, can now be calculated from

λ =
|P|out
|P|in

= S2 1
2 Z (ωdX0)

2

[1+(ωCZ)2]
/(St)ω

2 sE
[

1−
(

S
t

) C(ωZ d)2

sE[1+(ωCZ)2]

]
X0

2

= ωCZk2/
[
1 + (ωCZ)2(1− k2)].

(10.109)
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Taking the maximization process in terms of Z, we can obtain the optimized
impedance Z as follows:

∂λ

∂Z
= 0→ Z =

1√
1− k2

1
ωC

. (10.110)

This impedance value is in between the free capacitance C and the damped
capacitance

(
1− k2)C. Then, the energy transmission coefficient is expressed as

λmax =

[
(1/k)−

√
(1/k2)− 1

]2
=

[
(1/k) +

√
(1/k2)− 1

]−2
. (10.111)

However, we need to be aware that since the input mechanical energy is changed
(even if we keep the stress/force constant), due to the elastic compliance change with
the external electrical impedance (see Equation (6.16)), the condition for realizing
the “maximum transmission coefficient” is slightly off from the electrical impedance
matching point. When we take the matched electrical impedance Z = 1/ωC, we obtain

λ =
k2

2
1

(2− k2)
, (10.112)

which is slightly smaller than λmax of Equation (10.111). We can also notice that from
Equation (10.111) (monotonous increase with respect to k increase),

k2/4 < λmax < k2/2,

depending on the k value. For a small k (< 0.3), λmax ≈ k2/4, and for a large k (up to
0.9), λmax ≈ k2/3 ~ k2/2. When k is unrealistically high (~0.98), λmax approaches 1.

Example Problem 10.4.

Not all converted/stored energy can be actually used, and the actual work per-
formed depends on the mechanical load under an electric field application. With a
zero mechanical load or a complete clamp (no strain) condition, no output mechanical
work is performed, and even a strain is generated under an electric field. Remem-
ber that the work is given by (Force) × (Displacement). The energy transmission
coefficient for the actuator is defined by

λmax = (Output mechanical energy/Input electrical energy)max. (P10.4.1)

Based on Figure 10.27, which illustrates the calculation process of the input
electrical and output mechanical energy in a piezoelectric actuator, derive the energy
transmission coefficient expressed as

λmax =

[
(1/k)−

√
(1/k2)− 1

]2
=

[
(1/k) +

√
(1/k2)− 1

]−2
. (P10.4.2)
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Figure 10.27. Calculation of the input electrical and output mechanical energy:
(a) load mass model for the calculation, (b) electric field vs. induced strain curve,
(c) stress vs. strain curve, and (d) electric field vs. polarization curve. Source: [2]
©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 131. Reproduced by
permission of Taylor & Francis Group.

Hint

Let us consider the case where an electric field E is applied to a piezoelectric
under constant external stress X (< 0, because compressive stress is necessary to
output work). This corresponds to the situation that a mass is put suddenly on
the actuator, as shown in Figure 10.27a. Figure 10.27b shows two electric-field vs.
induced-strain curves, corresponding to two conditions—under a mass load and
no load. As the area on the “field-strain” domain does not mean the energy, we
should use the “stress–strain” and “field-polarization” domains in order to discuss
the mechanical and electrical energy, respectively. Figure 10.27c illustrates how to
calculate mechanical energy. Note that the mass shrinks the actuator first by sX (s:
piezo material’s compliance, and X < 0). This mechanical energy sX2 is a sort of
“loan” of the actuator credited from the mass, which should be subtracted later (i.e.,
“paying back”). This energy corresponds to the bottom hatched area in Figure 10.27c.
By applying the step electric field, the actuator expands by the strain level dE under a
constant stress condition. This is the mechanical energy provided from the actuator to
the mass, which corresponds to |dEX|. Similar to paying back the initial “loan”, the
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output work (from the actuator to the mass) can be calculated as the area subtraction
(shown by the top dotted area in Figure 10.27c).

∫
(−X) dx = −(dE + sX)X. (P10.4.3)

We can now initially consider this equation merely to maximize the output
mechanical energy. The maximum output energy can be obtained when the top
dotted area in Figure 10.27c becomes maximum under the constraint of the rectan-
gular corner point tracing on the line (from dE on the vertical axis to –dE/s on the
horizontal axis). Since the work–energy Equation (P10.4.3) can be transformed as

−s(X + dE
2s

)
2 + (dE)2

4s , X = − dE
2s provides the maximum mechanical energy of (dE)2

4s .
Therefore, the load should be half of the maximum generative stress when we apply
the maximum electric field E.

The above mechanical energy maximization condition is not the best condition
from the “energy transmission coefficient” viewpoint; that is, input electric energy
is overspent. Figure 10.27d illustrates how to calculate the electrical energy spent.
The mass load X generates the “loaned” electrical energy by inducing P = dX (see
the bottom hatched area in Figure 10.27d). By applying a sudden electric field E, the
actuator (such as a capacitor) receives the electrical energy of ε0εE2. Thus, the total
energy is given by the area subtraction (shown by the top dotted area in Figure 10.27d)

∫
(E)dP =(ε0εE + dX)E. (P10.4.4)

Now, from the maximization condition of (Output mechanical energy/Input
electrical energy),

λ = −(dE + sX)X/(ε0εE + dX)E, (P10.4.5)

choose a proper load X, which corresponds to a sort of matching mechanical impedance.

Solution

The energy transmission coefficient is defined by

λ = (Output mechanical energy/Input electrical energy).

Considering the case where an electric field E is applied to a piezoelectric under
a constant external stress X, λ can be calculated as

λ = −x·X/P·E = −(dE + sX)X/(ε0εE + dX)E
= −[d(X/E) + s(X/E)2]/[ε0ε + d(X/E)].

(P10.4.6)

We need to determine an appropriate stress X under a certain applied field E so
as to maximize the λ value. Letting y = X/E, then

λ = −(sy2 + dy)/(dy + ε0ε). (P10.4.7)
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The maximum λ can be obtained when y satisfies

(dλ/dy) = [−(2sy + d)·(dy + ε0ε) + (sy2 + dy)d]/(dy + ε0ε)2 = 0. (P10.4.8)

Then, from y0
2 + 2(ε0ε/d)y0 + (ε0ε/s) = 0,

y0 = (ε0ε/d)
[
−1 +

√
(1− k2)

]
, (P10.4.9)

where k2 = d2/(s·ε0ε) [electromechanical coupling factor]. Note that among the two
roots y0 = (ε0ε/d)[−1 ±

√
(1− k2)], only y0 = (ε0ε/d)[−1 +

√
(1− k2)] is valid for

realizing the meaningful maximum point, since the “−” root provides (d2λ/dy2) > 0,
that is, λ minimum position.

By inserting y = y0 into λ(y), we can obtain the maximum value of λ as follows:

λmax = −{s[−2(ε0ε/d)y0 − (ε0ε/s)] + dy0}/(dy0 + ε0ε)
=
[
dy0
(
2/k2 − 1

)
+ ε0ε

]
/(y0 + ε0ε)

=
{[
−1 +

√
(1− k2)

] (
2/k2 − 1

)
+ 1
}

/
{[
−1 +

√
(1− k2)

]
+ 1
}

=
[
(1/k)−

√
(1/k2)− 1

]
2.

(P10.4.10)

The relation between energy transmission coefficient λmax and electromechan-
ical coupling factor k is plotted in Figure 10.28, where you can also find the ratio
λmax/k2, which changes from 1/4 for small k to 1/2 for large k (<0.9). Though the
λmax/k2 approaches 1, when k is very close to 1, this is very unrealistic in most piezo-
electric applications. It is also worth noting that the maximum condition stated above
does not agree precisely with the condition that provides the “maximum output
mechanical energy”. The maximum output energy can be obtained when the dotted
area in Figure 10.27c becomes maximum under the constraint of the rectangular
corner point tracing on the strain line, which corresponds to (1/2)k2. Therefore, the
load should be half of the maximum generative stress (i.e., “blocking stress”), and
the mechanical energy at that point: −[dE − s(dE/2s)](−dE/2s) = (dE)2/4s. In this
case, since the input electrical energy is given by [ε0εE + d(−dE/2s)]E, the energy
transmission coefficient λ is calculated as

λ = 1/2[(2/k2) − 1] = (1/4)k2 + (1/8)k4 + (4/64)k6 + . . . (P10.4.11)

The above λ is close to the value λmax when k is small but has a slightly different
value when k is large, as predicted theoretically.

λmax =

[
(1/k)−

√
(1/k2)− 1

]2
= (1/4)k2 + (1/8)k4 + (5/64)k6 + . . . (P10.4.12)
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Figure 10.28. Energy transmission coefficient λmax vs. electromechanical coupling
factor k. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 134.
Reproduced by permission of Taylor & Francis Group.

Chapter Essentials

Mechanical Impedance Matching

1. Improvement of mechanical-to-mechanical energy transfer between two phases
requires the concept of “mechanical impedance matching”.

2. The mechanical/acoustic impedance is expressed by
Z = ρvp (including liquid, ρ: mass density, vp: sound phase velocity) or
Z =

√
ρc (solid material, c: elastic stiffness).

3. Example of acoustic impedance:
Water: Z = 1.5 × 106 kg/m2·s = 1.5 MRayls;
Polymer: 3.8 MRayls;
PZT: 20–24 MRayls;
Steel: 45 MRayls.

4. Acoustic piezoelectric medical and underwater transducer is mainly composed
of three layers: (1) impedance matching, (2) piezoelectric material, and (3)
backing layers. One or more matching layers are used to increase sound trans-
missions from the piezoelectric material to the medium, or vice versa. The
backing is added to the rear of the transducer in order to dampen the acoustic
back wave and to reduce the pulse duration. Piezoelectric materials are used to
generate and detect ultrasound (20~40 kHz for SONAR, 2~4 MHz for medical
diagnosis).

Electrical Impedance Matching

5. The internal impedance of a piezoelectric component is “capacitive” under an
off-resonance operation, 1/jωC, with an absolute value of 100s kΩ at 100 Hz
(in piezoelectric energy harvesting).
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6. Electric Impedance Matching: External impedance Z1 is adjusted to “conjugate”
of the internal impedance Z∗0 , in general. However, in this impedance matching,
energy will make a catch-ball between the internal capacitance and external
inductance. A resistive load is essential to harvest the energy and adjusted to
the “absolute internal impedance” of the piezoelectric component (1/ωC) for
obtaining the maximum output power.

7. When the input mechanical energy is unlimited (such as environmental water
or wind flow), the impedance matching for obtaining the maximum output
power is the primary target.

8. MOSFET is popularly used for an ON–OFF switching regulator.
9. As the output impedance from the piezoelectric energy harvesting device is too

high to accumulate the energy directly into a rechargeable battery, we should
adopt a DC–DC converter for the impedance matching purpose.

10. DC–DC converters: Among forward converter, buck converter, buck–boost con-
verter, flyback converter, the buck converter is the best suited for piezoelectric
energy harvesting, from the simplest design and high-efficiency viewpoints.

Impedance Matching in Piezoelectrics

11. Under a constant force X0, the input mechanical energy into a piezoelectric
transducer changes with the shunted external impedance Z as follows:

|P|in = Re
[
(St)ω

2

(
X0sE

e f f

)
X0

]
= (St)ω

2 sE
[

1−
(

S
t

) C(ωZ d)2

sE[1+(ωCZ)2]

]
X0

2,

where S: area, t: electrode gap of piezoelectric component, and the volume (S·t)
is multiplied on the unit volume elastic energy. This is originated from the
effective complex elastic compliance sE

e f f under Z shunt expressed as

sE
e f f =

x
X = sE

[
1−

( s
t
) jωZd2

sE(1+jωCZ)

]
.

Recall that sE
e f f approaches sE or sD = sE(1− k2), when Z = 0 or ∞, respectively.

12. When the input mechanical/electrical energy is limited, the “energy transmis-
sion coefficient” is the FOM:

• λmax = (Output electrical energy/Input mechanical energy)max (piezoelec-
tric energy harvesting);

• λmax = (Output mechanical energy/Input electrical energy)max (actua-
tor/transducer application).

Both are expressed with the electromechanical coupling factor k as

λmax =
[
(1/k)−

√
(1/k2)− 1

]2
=
[
(1/k) +

√
(1/k2)− 1

]−2
.

When the input energy is unlimited, |P|out =
(

1
2

)
k2|P|in (under the impedance

matching condition).

Check Point

1. (T/F) Mechanical impedance in a solid material is given by Z =
√

ρs (solid
material, s: elastic compliance). True or false?
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2. Knowing ρ = 7750 kg/m3, s33
E = 18.8× 10−12 m2/N for “soft” PZT 5A, calculate

its acoustic impedance.
3. (T/F) When we consider a mechanical wave transmission from one phase to

another, as long as the incident wave is normal to the boundary interface, 100%
energy transmittance is expected. True or false?

4. What is the unit of mechanical impedance Z, which is equivalent to the MKS
unit of (kg/m2·s)?

5. Acoustic impedance definition has two ways in solid materials, Z = ρvp and
Z =

√
ρc. Derive the sound velocity formula vp in terms of density ρ and elastic

stiffness c.
6. Fill in the blank: An acoustic piezoelectric medical and underwater transducer

is mainly composed of three layers: (1) ( ), (2) piezoelectric material, and (3)
backing layers.

7. (T/F) External load resistance should be adjusted to the internal impedance
of the piezo-energy harvesting component for obtaining the maximum output
power. True or false?

8. There is a battery (total energy = 1 kJ) with an internal impedance of 75 Ω.
How much energy can be spent for the external work roughly by matching the
external load impedance?

9. Calculate the electrical impedance 1/jωC of a piezoelectric component with
capacitance 1 nF at the off-resonance frequency of 100 Hz.

10. The above impedance is significantly larger than the internal impedance of
rechargeable batteries (~50 Ω). What kind of circuit is required to match the
impedance between the piezoelectric component and the battery?

11. Among three DC–DC converters—buck, buck–boost, and Flyback—which is
the best suitable converter for the piezoelectric energy harvesting system?

12. Fill in the blank: A DC–DC converter is composed of (a) MOSFET switching
device, (b) inductor, (c) capacitor, and (d) ( ).

13. (T/F) A full-wave rectifier is represented by the following circuit (Figure ??).
True or false?

14. (T/F) When the losses of the electronic components are neglected, input power
= output power is ideally expected in a Buck converter. When we take the duty
ratio (on/off time period ratio) as 2%, the impedance can be reduced by 50
theoretically. True or false?

15. The effective elastic compliance under Z shunt is expressed as

sE
e f f =

x
X = sE

[
1−

( s
t
) jωZd2

sE(1+jωCZ)

]
.

Calculate sE
e f f for Z = ∞.

16. In the above effective complex elastic compliance, when we choose Z =

1/jωC (capacitive load), calculate sE
e f f , which should be between sE and sD =

sE(1− k2).
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in
out

Figure 10.29. A full-wave rectifier. Source: Figure by author.

Chapter Problems

10.1 Figure 10.30 shows a piezoelectric energy harvesting system with an elastically
soft (polyimide-base) piezoelectric composites (MFCs) bonded on the steel
beam structure, a part of machinery vibrating at 50 Hz. Discuss why this system
is NOT recommended in terms of the “mechanical impedance matching” step
by step.

Figure 10.30. Piezoelectric energy harvesting system. Source: Image by author.

(1) Calculate the acoustic impedance of steel from the following data: ρ =
8000 kg/m3, Y (∼ c11) = 200 GPa.

(2) Calculate the acoustic impedance of polyimide from the following data:
ρ = 1450 kg/m3, Y (∼ c11) = 2.5 GPa.

(3) Supposing the SH wave (transversal wave) from the steel and using
the transmittance ratio equation for the normal elastic wave, vt0

vi0
=

2(
1+
√

ρ2c66.2
ρ1c66.1

) , calculate the transmittance ratio, taking into account the

acoustic impedances in (1) and (2). You can find very small mechanical
energy is transmitted into the piezoelectric component due to the large
acoustic impedance mismatch.

10.2 A “monolithic hinge lever mechanism” is applied to amplify a small displace-
ment generated in a piezoelectric multilayer (ML) actuator. Figure 10.31 illus-
trates a structure of the hinge lever used in a dot-matrix printer in the 1980s.
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Discuss the design principle of the mechanism in terms of the concept of “me-
chanical impedance matching”.

Actuators

1st stage arms

Hot electrode

U shaped base

Leaf springs

Printing wire

Figure 10.31. Hinge lever mechanism with multilayer actuators. Source: [25]
©Uchino, K. Essentials of Piezoelectric Energy Harvesting. World Scientific, 2021;
p. 136. Reproduced by permission of World Scientific Publishing.

Hint

The displacement 20 µm generated in an ML with the blocking force of 200 N
(with the elastic stiffness constant 200/20 × 10−6 (N/m)) is amplified to 500
µm (amplification × 25) at the tip of the printing wire, by sacrificing the force
level a little less than 8 N. The first-stage arms generate × 5 displacement via
the geometric distance ratio, and the push–pull leaf springs provide additional
× 5 amplification. Thus, the effective elastic stiffness constant can be estimated
by 8/500 × 10−6 (N/m). Using this mechanical amplifier (sometimes called
“mechanical transformer”) with a total displacement amplification ratio of 25,
we can generate effective elastic compliance by a factor of (25)2. Supposing
that the mass density of the materials is the same order, we can expect the
effective mechanical impedance (F/

.
u) reduction by a factor of 1/(25)2 in order

to transfer mechanical energy of the printing wire onto the soft paper. The
“mechanical transformer” can be recognized as a “mechanical impedance con-
verter”, analogous to the relation of an “electromagnetic transformer” with an
“impedance/admittance converter”. Similar to the electromagnetic transformer,
which exhibits Vin Iin ≈ Vout Iout when the loss is neglected, the mechanical
transformer exhibits Fin∆Lin ≈ Fout∆Lout when the energy transfer loss (from
the actuator to the tip of the printing wire) is neglected. Note that the effective
elastic stiffness is equivalent to F/∆L.
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11. Lattice Vibration—Linear Differential
Equation in Periodic Phenomena

Based on the linear differential equation under harmonic spring in periodic phe-
nomena, we describe the lattice vibration and the concept of “phonon” in this chapter,
which is interrelated with the ferroelectric transition. Specific heat can be derived
from the harmonic oscillation. We describe briefly the nonlinear atomic spring in
the periodic lattice (i.e., anharmonic phonon), which is essential to explain “thermal
conductivity”, to connect with the detailed description in Chapter 14 “Nonlinear
Oscillatory Systems”.

Remember the fact that ferroelectric-originated piezoelectric materials exhibit
the phase transition associated with phonon mode “softening” (in particular, transver-
sal optical phonon mode), as introduced in Section 1.2.3. Using the “first-principle”
calculations, Zhang et al. obtained elastic compliances, heat capacity, and thermal
expansion coefficient, based on phonon dispersion curves [1]. Though the detailed
discussion is beyond our target in this chapter, we introduce here briefly basic
concepts on the lattice vibration and “phonon”, based on books by Ashcroft and
Mermin [2], Ishii [3], and Kittel [4]. This chapter treats mainly “harmonic” (i.e., linear
spring constant) oscillations with a brief description of the anharmonic oscillations
in the last part.

11.1. Lattice Vibration—Monatomic Chain Model

A simple mass M—spring K model was discussed in Chapter 9, which gives
the resonance angular frequency of ω0 =

√
K/M. The lattice vibration in a crystal is

modeled by cascading a large number of these mass–spring units. Since 3D modeling
is beyond the level of this textbook, we discuss the 1D chain model in this chapter.
As an infinite size of crystals is difficult to be modeled, we introduce a particular
boundary condition in a finite-sized crystal.

11.1.1. Solution under Free-End Boundary Condition

With increasing the component atom number in a crystal, a relatively coopera-
tive phenomenon occurs as a whole system. We consider first the simplest one-atom
(mass M) 1D chain (number of atoms N) connected by a harmonic spring (spring
constant K), as shown in Figure 11.1a (first, note two end atoms in a free condition).
We consider free lattice vibration with no external force, such as stress or electric field.
When we denote the displacement of the n-th atom from the equilibrium position as
un, we can obtain the following set of Newton equations:

M
..
u1 = −K(u1 − u2),

M
..
un = −K(un − un−1)− K(un − un+1)(n = 2, 3, · · · , N − 1),

M
..
uN = −K(uN − uN−1).

(11.1a)
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Note that the force is always created by the subtraction of the adjacent atom’s
displacement. Assuming a harmonic vibration, un ∝ ejωt, where ω is the frequency,

−Mω2u1 = −K(u1 − u2),
−Mω2un = −K(un − un−1)− K(un − un+1) (n = 2, 3, · · · , N − 1),

−Mω2uN = −K(uN − uN−1).
(11.1b)

Thus, we can write the following matrix formula:

ω2u = [F]u, (11.2)

where u is an N-dimensional vector with the components of un, and [F] is a symmetric
matrix with the components.

Fnm =

(
K
M

)
{(2− δn1 − δnN)δnm − δn,m−1 − δn,m+1}. (11.3)

Here, we used “Kronecker δnm”, which means that δnm = 1 for n = m; δnm = 0
for n 6= m. If we explicitly write Equation (11.2) in the matrix notation,

ω2




u1
u2
...

uN


 =

(
K
M

)



1 −1 0 · · ·
−1 2 −1 · · ·

...
...

...
...

· · · 0 −1 1







u1
u2
...

uN


. (11.4)

We will now solve the “eigenvalue equation” of Equation (11.2). Knowing the
matrix component relation

(
K
M

)[(
Mω2

K
− 2
)

un + un−1 + un+1

]
= 0, (11.5)

and the boundary condition for the “free end” (u0− u1 = uN − uN+1 = 0), assuming
a general solution of “difference equation” as Equation (11.5) in the form of un ∝ Pn,
we obtain the following characteristic equation:

P2 +

(
Mω2

K
− 2
)

P + 1 = 0. (11.6)

When
∣∣∣Mω2

K − 2
∣∣∣ < 2, we can put

(
Mω2

K
− 2
)
≡ −2cos ka ≡ −

(
ejka + e−jka

)
(0 < ka < π) (11.7)

where k and a are the “wavenumber” and the “lattice unit size”. The solution of
Equation (11.6) is expressed as

P = exp(±jka). (11.8)
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Then, we can express a general solution of Equation (11.2) as

un = Aexp (jkan) + Bexp(−jkan). (11.9)

The “free-end” boundary condition (u0 − u1 = uN − uN+1 = 0) gives the
following relations:





u0 = A + B = u1 = Aexp (jka) + Bexp(−jka)
uN+1 = Aexp (jka(N + 1)) + Bexp(−jka(N + 1))

= uN = Aexp (jkaN) + Bexp(−jkaN).

To realize the meaningful solution (or A and B values), at least the following
“determinant = 0” should be satisfied:

∣∣∣∣
1− exp(jka) 1− exp(−jka)

exp(jkaN)[1− exp(jka)] exp(−jkaN)[1− exp(−jka)]

∣∣∣∣ = 0. (11.10)

This requirement determines the solutions regarding the k value

ka =
( α

N

)
π (α = 1, 2, · · · , N − 1), (11.11)

and for un,

un ∝ [1− exp(−jka)]exp (jkan)− [1− exp(jka)]exp(−jkan) =
4jsin

(
ka
2

)
cos ka

(
n− 1

2

)
.

(11.12)

Notice that Equation (11.12) means a “standing wave”. Taking the normalizing
factor determined by ∑N

n=1 un
2 = 1, we obtain the eigenvectors and eigenfrequencies

as follows:

un(α) =

√
2
N

cos
απ

N

(
n− 1

2

)
(α = 1, 2, · · · , N − 1), (11.13)

ωα = 2

√
K
M

sin
απ

2N
= 2

√
K
M

sin
kαa
2

. (11.14)

Note here that when we adopt the “free-end” boundary condition, N atoms
create (N − 1) freedom (α = 1, 2, · · · , N − 1) for

∣∣∣Mω2

K − 2
∣∣∣ < 2. When

∣∣∣Mω2

K − 2
∣∣∣ = 2,

unique solution ω0 = 0, un(0) =
√

1
N exists. However, when

∣∣∣Mω2

K − 2
∣∣∣ > 2, no

solution exists to satisfy the “free-end” boundary condition.
kαa ≡

(
α
N
)
π is called “wavenumber”, and the relationship between the fre-

quency and wavenumber (Equation (11.4)) is called the “dispersion relation”. As
shown in Figure 11.2a, ω ∝ k is valid only for a low k range (long wavelength λ);
that is, a “wave packet” (a mixture of low- and high-frequency waves) shape distorts
significantly via frequency dispersion. This is the reason why “ω(k) vs. k” curve is
called the “dispersion relation”. Since a crystal has a large N, ωα exists densely ((N
− 1) modes) just 0 ≤ ωα ≤ ωL = 2

√
K/M, in particular, close to the maximum ωL.

The density of modes is discussed in Section 11.1.3.
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(b) Two-atom lattice chain
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Figure 11.1. Monatomic (a) and diatomic (b) linear chain lattice models connected
by the same springs. Source: Figure by author.
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Figure 11.2. ω–k dispersion curve and photon spectral density for (a) monatomic
1D lattice chain model and (b) diatomic 1D lattice change model. Notice the ω gap
between the acoustical and optical branches in the diatomic chain model. Source:
Figure by author.
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11.1.2. Solution under Periodic Boundary Condition

In the case of large crystal (N→∞), we occasionally use the so-called “periodic
boundary condition”, instead of the “end-free” condition; that is, the end atom (N-th)
is connected with the first atom with a spring K to the lattice chain as a “ring”. Refer
to Figure 14.29 in Chapter 14. In this case, Equation (11.3) is modified as

Fnm =

(
K
M

)
(2δnm − δn,m−1 − δn,m+1 − δn1δmN − δnNδm1), (11.16)

and Equation (11.4) is modified as

ω2




u1
u2
...

uN


 =

(
K
M

)



2 −1 0 · · ·
−1 2 −1 · · ·

...
...

...
...

· · · 0 −1 2







u1
u2
...

uN


. (11.17)

Different from Equation (11.4), the [F] matrix now keeps the [· · · − 1 2− 1 · · ·]
sequence for all—no stop end of the crystal lattice. We now solve the above “difference
equation” under the “periodic boundary condition”, u0 − uN = uN+1 − u1 = 0.

The results are slightly different from Equations (11.13) and (11.14).

un(α) =





√
2−δα,0−δ2[ α

2 ],N

N cos 2πn
N
[

α
2
]
(α = even number)√

2
N sin 2πn

N
[

α
2
]
(α = odd number)

, (11.18)

ωα = 2

√
K
M

sin
π

N

[α

2

]
(α = 1, 2, 3, · · · , N), (11.19)

where
[

α
2
]

is the “Gauss symbol”, which means the maximum integer number≤ α/2.
The key difference due to the boundary condition change is the “doubled unit cell”;
that is, even and odd number position atoms are not identical (Equation (11.18)).
The wavenumber kαa ≡

( 2π
N
)[

α
2
]

exhibits “double-degenerated” eigenvalues, which
correspond to the following two eigenfunctions:

un(t) = Acos(kαan±ωαt). (11.20)

These waves correspond to left-ward and right-ward propagating waves. Since
the “periodic boundary” condition has a somewhat ring shape, clockwise and coun-
terclockwise waves can exist, which provide the “degeneration” of the two modes. In
contrast, the “free end” or “fixed end” condition results in “standing waves”. Taking an
atomic distance “a”, the wavelength Λ and wave “group velocity” v are expressed by

Λ = 2πa/kα, (11.21a)

v = Λ
(ωα

2π

)
= 2

√
K
M

sin(kα/2)
kα

a. (11.21b)
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Equation (11.21b) means that the wave velocity depends on the wavenumber;
thus, a wave packet with a different frequency mixture distorts with time lapse. When
considering only a long-wavelength range (kαa� 1), the wave velocity approaches
v0 = 2

√
K/Ma, and ω ∝ k is valid (no dispersion), which provides the Debye

approximation for heat capacitance calculation in Section 11.1.4.

11.1.3. Phonon Spectral Density

1D Lattice Chain Model—Boundary Condition Difference

The density of modes in the 1D monatomic chain is considered. In this case,
1D chain with length L (Figure 11.1a) carries (N − 1) modes under the “free end”
condition. Each normal mode is a “standing wave” as follows:

un(α) =
√

2
N cos απ

N

(
n− 1

2

)
=
√

2
N cos kαa

(
n− 1

2

)
e−jωat

(α = 1, 2, · · · , N − 1),
(11.22)

ωα = 2

√
K
M

sin
kαa
2

, (11.23)

ka =
( α

N

)
π orkα = α

(π

L

)
[L = Na]. (11.24)

From Equation (11.24), eigenvalues (α = 1, 2, · · · , N − 1) of a 1D lattice chain
on the wave vector k distribute uniformly, as illustrated in Figure 11.3a(1). One
eigenmode exists per every

(
π
L
)

interval of wave vector k.
On the contrary, the results under “periodic” condition are slightly different,

shown as follows:

un(α) =





√
2−δα,0−δ2[ α

2 ],N

N cos 2πn
N
[

α
2
]
(α = even number)√

2
N sin 2πn

N
[

α
2
]

(α = odd number)
, (11.25)

ωα = 2

√
K
M

sin
π

N

[α

2

]
(α = 1, 2, 3, · · · , N), (11.26)

kα = α′
(

2π

L

)
α′ = 0, ± 1, ± 2, ± 3, · · · , ± N. (11.27)

The Gauss symbol
[

α
2
]

usage in Equation (11.26) means two modes (even num-
ber n mode and smaller odd number (n − 1) mode) give the same ωα, that is,
“double-degenerated” eigenvalues. Due to a “ring” connection of atom 1 and atom
N, the clockwise and counterclockwise rotating waves generate the same energy
(or frequency) wave on the ring (i.e., “degeneration”). The situation is visualized
in Figure 11.3a(2). Refer also to Figure 14.29 in Chapter 14. From Equation (11.27),
eigenvalues (α′ = 1, 2, · · · , N − 1, N) of a 1D lattice chain on the wave vector k
distribute uniformly, but in this case, two eigenmodes exist per every

( 2π
L
)

interval
of wave vector k. Note again here that because “odd” and “even” number atoms are
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not identical in Equation (11.25), the unit cell size “a” seems to behave “2a”, which
provides the doubled interval (2π/L) in the k space.

(1) Free end condition

(2) Periodic condition

Wave Vector k

(N − 1) modes

(N + 1) modes

π
L

2π
L

10π 10π0
L L

3π
L

4π
L

5π
L

6π
L

7π
L

8π
L

9π
L

− 8π
L 

8π
L

6π
L

4π
L

2π
L

6π
L 

4π
L 

2π
L 

− − − −

(a)

π/a

π/a

ky

kz

k

0 kx

(b)

Figure 11.3. (a) Eigenvalue distribution difference of a 1D lattice chain on the wave
vector k, depending on the boundary conditions: (1) free end and (2) periodic
condition; (b) eigenvalue distribution of a 3D lattice on the wave vector k. Source:
Figure by author.

1D Lattice Chain Model—Density of Modes

Both “free-end” and “periodic” boundary conditions give basically similar mode
density on the wave vector domain: one eigenmode per every

(
π
L
)

interval of wave
vector k (0 < k < π/a) in the free end, and one eigenmodes per

( 2π
L
)

interval of wave
vector k (−π/a < k < π/a) in the periodic (in other words, the same frequency has
double-generated modes). As expressed in Equations (11.11) and (11.27), the phonon
modes are uniformly distributed in terms of wavenumber k. However, in terms
of frequency ω, the distribution is not uniform. Due to the sinusoidal relationship,
ω ∝ sin ka

2 , the flat part of the dispersion curve in Figure 11.2a condenses phonon
modes significantly.

Since the accumulated mode number N is expressed as = N(kα) = ∑kα
0 (1) =(

L
π

)
kα, the mode density D(k) in the integral form is uniform, given by D(k)dk =

∂N
∂k dk =

(
L
π

)
dk. We are interested in the density of modes D(ω), which is defined as
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the number of modes per unit frequency range. From D(k)dk =
(

L
π

)
dk, the number

of modes D(ω)dω in the interval ω to ω + dω is calculated in 1D lattice model by

D(ω)dω =

(
L
π

)
dk
dω

dω =

(
L
π

)
dω

(dω/dk)
. (11.28)

From Equation (11.23), ωα = 2
√

K
M sin kαa

2 ,

(
dω

dk

)
= 2

√
K
M

a
2

cos
ka
2

=

√
K
M

a

√
1−

(
M
4K

)
ω2. (11.29)

Accordingly,

D(ω) = 2
(

N
π

)
/

√(
4K
M

)
−ω2. (11.30)

The number of phonon eigenvalues that exist between the frequency ω and
(ω + dω) is denoted as Ng(ω)dω, where N is the total number of atoms and g(ω) is
called “spectral density”.

g(ω) =
D(ω)

N
=

(
2
π

)
/
√

ωL2 −ω2
[
ωL = 2

√
K/M

]
(11.31)

Figure 11.2a inserted a “modified phonon spectral density” (i.e., “frequency
square spectral density”), G

(
ω2), which is defined as

G
(
ω2)d

(
ω2) = 2ωG

(
ω2)dω = g(ω),

G
(
ω2) = g(ω)

2ω = 1
πω
√

ωL2−ω2
. (11.32)

As the reader can notice, there are two singularities in Equation (11.32); ω = 0
and ω = ωL = 2

√
K/M] (ωL is the maximum frequency of all eigenmodes). The

modified phonon spectral density in Figure 11.2a exhibits two peaks around ω = 0
and ω = ωL, and symmetrical with respect to ω = ωL/2 =

√
K/M, as anticipated.

3D Lattice Model—Density of Modes

We apply periodic boundary conditions on N3 monatomic cells within a cube
of side length L, so that k can be determined by the condition (similar to Equation
(11.10)) as follows:

exp
[
j
(
kxx + kyy + kzz

)]
= exp

[
j
(
kx(x + L) + ky(y + L) + kz(z + L)

)]
. (11.33)

Thus,

kx, ky, kz = 0, ± 2π

L
, ± 4π

L
, ± 6π

L
, · · · , ± Nπ

L
. (11.34)
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We can state that there is one allowed mode per volume
( 2π

L
)3

in the k space of
−π

a < kx, ky, kz < π
a . Refer to Figure 11.3b. In other words, the mode density per

unit volume of k can be described as
(

L
2π

)3
=

V
8π3 . (11.35)

11.1.4. Lattice Heat Capacitance

Phonon Introduction

The reader now understands that there are N lattice vibration eigenmodes for
N eigenvalues in the N-chain crystal lattice. As the actual crystal size includes the
Avogadro number (1023 per mol) of atoms of N, the energy gap among eigenvalues
is very small. It is worth noting that the vibration mode/energy discretization does
not need to deduce the quantization. However, merely due to the analogy to the
“photon” introduction by A. Einstein, who introduced the famous energy description
with lightwave frequency as

E = }ω [} = h/2π , and h = 6.626× 10−34J·s
]
, (11.36)

the energy of a lattice vibration can be quantized. The quantum of energy is called
a “phonon”. Thermal vibrations in crystals can be explained by thermally excited
phonons, such as the thermally excited photons of black-body electromagnetic radia-
tion in a cavity. The reader may recall the “particle and wave duality” concept. The
energy of an elastic model of angular frequency ω is expressed with using Planck’s
constant again,

E =

(
n +

1
2

)
}ω [} = h/2π , and h = 6.626× 10−34J·s

]
, (11.37)

when the mode is excited to quantum number n, that is, when the mode is occupied
by n phonons. The term

(
1
2

)
}ω is the “zero-point energy” of the mode.

Planck Distribution

Let us consider a set of identical harmonic oscillators in thermal equilibrium.
The ratio of the phonons (vibration modes) in their (n + 1)th quantum state of
excitation to the number of the n-th state is assumed to follow the Boltzmann (or
Gibbs) distribution (the probability of a state is proportional to the Boltzmann factor
related with its state energy), as shown below:

Nn+1

Nn
= e−

}ω
kBT , (11.38)
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where kB is the Boltzmann constant, 1.381 × 10−23 (J/K). Thus, the fraction of the
total number of phonons in the n-th quantum state is given by

Nn

∑∞
α=0 Nα

=
e−n }ω

kBT

∑∞
α=0 e−α }ω

kBT
=

(
1− e−

}ω
kBT

)
e−n }ω

kBT . (11.39)

Here, we used a formula ∑∞
α=0 xα = 1

1−x (assuming x < 1). The average
excitation quantum number of a phonon can now be calculated as

〈n〉 = ∑∞
n=0 ne−n }ω

kBT

∑∞
α=0 e−α }ω

kBT
=

[
x

(1−x)2

]

[
1

1−x

] =
e−

}ω
kBT

1− e−
}ω

kBT
=

1

e
}ω

kBT − 1
. (11.40)

Here, we used the first derivative of the above formula in terms of x, then
multiplied by x: ∑∞

α=0 αxα = x
(1−x)2 .

Lattice Heat Capacitance—Einstein Model

“Heat capacitance” of a material Cp is defined per unit volume (J/Km3), while
the “specific heat capacity” cp is defined per unit mass (J/K·kg) so that Cp = cp × ρ,
where ρ is mass density (kg/m3). Cp is defined as the number of heat units to raise
block of unit area and unit length (i.e., per unit volume) 1 ◦C in temperature (refer to
next Chapter 12 for the details), formulated as

Cp =
∂Q
∂T

= T
∂S
∂T

, (11.41)

where Q, S, and T are the heat quantity, entropy per volume (J/K·m3), and absolute
temperature (K).

According to the Gibbs (or Boltzmann) statistical dynamics for the equilibrium
status, thermodynamical properties in a crystal lattice vibration are determined by
the eigenvalues of the phonons. If we adopt the Planck distribution formula Equation
(11.40),

〈n〉 = ∑∞
n=0 ne−n }ω

kBT

∑∞
α=0 e−α }ω

kBT
=

1

e
}ω

kBT − 1
=

1
2

[
coth

(
}ω

2kBT

)
− 1
]

. (11.42)

Here, the final transformation used is

1

e
}ω

kB T −1
= 1

2

(1+e
}ω

kB T
)
+

(
1−e

}ω
kB T

)

e
}ω

kB T −1
= 1

2




(1+e
}ω

kB T
)

e
}ω

kB T −1
− 1


 = 1

2




(
e

}ω
2kB T +e

− }ω
2kB T




(
e

}ω
2kB T −e

− }ω
2kB T

) − 1


.
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As the average internal energy (i.e., thermal energy) of a phonon at frequencyω
is expressed by 〈n〉}ω, for total N phonons, we may assume (under the supposition
that phonons occupy all eigenmodes)

U = N〈n〉}ω =
N}ω

e
}ω

kBT − 1
. (11.43)

The heat capacitance of the phonons is obtained as

Cp =
∂U
∂T

= NkB

(
}ω

kBT

)2 e
}ω

kBT

[
e

}ω
kBT − 1

]2 . (11.44)

This simplest model is called the “Einstein model”. In 3D and 3N degree of
freedom’s case, the above NkB should be replaced by 3NkB. Figure 11.4 shows the
temperature dependence of the heat capacitance calculated by the Einstein model in
an insulating solid material, in comparison with that by the Debye approximation
introduced in the next section. Temperature is normalized by θE = }ω/kB. At
high temperature, both models approach Cp = 3NkB. Though it is not the real heat
capacitance “per volume” when we use the Avogadro number NA =6.022 × 1023

(Mole−1), 3NkB is equal to 24.94 (J/K/mol) for any materials theoretically. This
heat capacitance per mole is called the “Dulong–Petit value”. At low temperature,
Equation (11.44) decreases exponentially, as

Cp ∝ e−
}ω

kBT , (11.45)

which is actually contradictory to the experimentally obtained results, that is, the
empirical rule of Cp ∝ T3. Thus, the Debye model is proposed in the next subsection.
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Figure 11.4. Comparison of the Einstein and Debye models’ approximation to the
heat capacitance. Source: Figure by author.
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Lattice Heat Capacitance—Debye Model

Introduction to the Debye Model

Let us recall the semiconductor physics you have learned. Refer to Figure 11.5a,
where the density of orbitals of the electron is plotted as a function of energy. The
“Fermi level” is defined as almost the top electron energy level occupied by actual
electrons in the bandgap structure (possible eigenmode alignment on the energy
scale). As one eigenenergy level can be occupied by two electrons (up and down spin),
in general (i.e., “degeneration”), about a half lower energy levels are occupied by
the electrons, and the higher band part will be empty at low temperature. However,
with increasing the temperature, owing to the thermal energy kBT, trapped electrons
(area 1) are excited to a higher level (area 2) according to Boltzmann distribution. The
Debye model of phonon mode is analogous to this electron band occupancy model.

We have discussed monatomic lattice vibration discrete eigenmodes so far. The
Einstein model calculated the average number 〈n〉 for all energy levels. Suppos-
ing that if the actual phonons occupy only lower energy levels (considering the
degeneration), higher energy levels will be empty. The Debye model introduces this
type of top frequency, which modifies the lattice heat capacitance formula from the
Einstein model.
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Figure 11.5. (a) Density of orbitals of electron as a function of energy; (b) phonon
mode density as a function of frequency (Debye model); (c) phonon mode density
vs. frequency (Einstein model). Source: Figure by author.

Mode Density Inclusion

The energy in thermal equilibrium of a collection of phones with various fre-
quencies ωk is given by

U = ∑k nk}ωk. (11.46)

It is mathematically convenient to replace the summation with an integral when
the frequency discretion ∆ω is sufficiently narrow in comparison with the frequency
value ω, which is

U =
∫

dk[n(k)}ω(k)] =
∫

dω
(

∂k
∂ω

)
[n(ω, T)}ω]

=
∫

dωD(ω)[n(ω, T)}ω],
(11.47)
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where we defined

D(ω) =

(
∂k
∂ω

)
. (11.48)

The “mode density” D(ω) means that the crystal has D(ω)dω modes of vibra-
tion in the frequency range (ω, ω + dω). This definition is equivalent to Equation
(11.30) already discussed in the previous section.

Though we have not considered D(ω) explicitly in the Einstein’s model calcula-
tion, we can obtain the mode density under the following assumption:

U =
∫

dω
1
〈n〉

(
∂〈n〉
∂ω

)
[N〈n〉}ω] =

∫
dωD(ω)[n(ω, T)}ω]. (11.49)

Recall that 〈n〉 is the average excitation quantum number of a phonon. Therefore,

D(ω) =
N
〈n〉

(
∂〈n〉
∂ω

)
= N

(
∂ln〈n〉

∂ω

)
. (11.50)

Knowing 〈n〉 = 1

e
}ω

kBT −1
(from Equation (11.42)), we obtain

D(ω) =
}

kBT
N

1− e−
}ω

kBT
. (11.51)

Equation (11.51) is plotted for different temperatures in Figure 11.5c. For a
low temperature

D(ω)→ N}
kBT

, (11.52)

(the mode density is almost constant), while for a high temperature,

D(ω)→ N
ω

. (11.53)

The mode density decreases rapidly with frequency; the higher frequency modes
will not contribute much.

Debye Approximation

In the Debye approximation, the “group velocity” of sound is constant: ω =
v·k. This sound velocity (non-dispersive) formula can be derived from a general
displacement description u(x, t) ∝ ej(kx−ωt) and v = ∂x

∂t ; that is, we consider only
lower frequency range in Figure 11.2a, where we can keep sin x ≈ x,

ω = 2

√
K
M

sin
ka
2
≈
√

K
M

ka. (11.54)

In other words, the highest frequency ωD mode occupied is lower than the
sinusoidally saturating range. The total number of modes with wave vector less than
k is given by the product of mode density Equation (11.35)
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(
L

2π

)3
= V

8π3 ,

and the sphere volume of radius kD in Figure 11.3b.

N =
V

8π3

(
4π

3
k3
)
=

V
6π2v3 ω3. (11.55)

The phonon mode density can be calculated as

D(ω) =
dN
dω

=
V

2π2v3 ω2, (11.56)

which is illustrated in Figure 11.5b.
Using 〈n〉 in Equation (11.40), the thermal energy for 1D linear chain is given by

U =
∫

dωD(ω)[n(ω, T)}ω] =
∫ ωD

0
dω

(
V

2π2v3 ω2
)(

}ω

e
}ω

kBT − 1

)
. (11.57)

The major difference from the “Einstein model” in Equation (11.43) can be
found in (1) the limited integration range (up to ωD) and (2) the mode density D(ω)
introduction. Assuming again the sound velocity v is isotropic for 3D, the energy for
3D may be obtained just by multiplying factor three (each phonon has three degrees
of freedom) on Equation (11.57) as follows:

U =

(
3V}

2π2v3

)∫ ωD

0
dω

(
ω3

e
}ω

kBT − 1

)
=

(
3V(kBT)4

2π2v3}3

)∫ xD

0
dx
(

x3

ex − 1

)
, (11.58)

where x = }ω
kBT and

xD =
}ωD
kBT

= θD/T. (11.59)

Since the Debye temperature θD can be expressed as

θD =
}v
kB
·
(

6π2N
V

)1/3

, (11.60)

so that

U = 9NkBT(T/θD)
3
∫ xD

0
dx
(

x3

ex − 1

)
, (11.61)

where N is the number of atoms in the specimen and xD = θD/T. The heat capaci-
tance can be calculated by taking the first derivative of U in terms of T. As Equation
(11.61) includes the integral, which is also dependent on T, we had better use the first
equation in Equation (11.58) for further calculation.

Cp =
∂U
∂T

=

(
3V}2

2π2v3kBT2

)∫ ωD

0
dω




ω4e
}ω

kB T

(e
}ω

kB T − 1
)2


 = 9NkB(T/θD)

3
∫ xD

0
dx

x4ex

(e x − 1
)2 . (11.62)
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The calculated result of Cp is shown in Figure 11.4. At high temperature T � θD
the heat capacitance approaches the classical value 3NkB, which is equal to 24.94
J/mole/K. At very low temperature, since xD is large, the integral region can be
approximated xD → ∞ . Knowing a general relation

∫ ∞
0 dx

(
x3

ex−1

)
= 6∑∞

1 α−4 =

π4/15, we obtain U = 3π4NkBT4/5θD
3, leading to

Cp =
∂U
∂T

=
12π4

5
NkB(T/θD)

3. (11.63)

This is a famous “Debye T3 Law”.

11.2. Lattice Vibration—Diatomic Chain Model

11.2.1. 1D Lattice Diatomic Chain Model

We now consider the two-atom (mass M and m, rock-salt-like) 1D chain (total
number of atoms 2N) connected by a harmonic spring (spring constant K), as shown
in Figure 11.1b [2,3]. The two-species atom, a closer model to actual “ionic” crystals,
introduces a new concept on two categories, “acoustic” and “optical” branches, into
the lattice vibration, which suggests a better idea on the spontaneous polarization
induction. When we denote the displacement of the n-th atom from the equilib-
rium position as un in two species aligned alternately, the dynamic equations are
expressed as

{ −mω2u2n = −K(u2n − u2n+1)− K(u2n − u2n−1)
−Mω2u2n+1 = −K(u2n+1 − u2n)− K(u2n+1 − u2n+2)

. (11.64)

Mass m (or M) is located at an even (or odd) number lattice position and assum-
ing the solutions { √

mu2n = Qe1exp(jkan)√
Mu2n+1 = Qe2exp(jkan)

. (11.65)

Note here that the unit cell length “a” above is doubled length in comparison
with the monatomic chain model. Equation (11.64) can be calculated as

{
ω2e1 = 2K

m e1 − K√
Mm

[1 + exp(−jka)]e2

ω2e2 = − K√
Mm

[1 + exp(jka)]e1 +
2K
M e2

. (11.66)

In the matrix notation,
ω2e = D(k)e, (11.67)

e ≡
(

e1
e2

)(
e1

2 + e2
2 = 1

)
, (11.68)

D(k) =

( 2K
m − K√

Mm
[1 + exp(−jka)]

− K√
Mm

[1 + exp(jka)] 2K
M

)
. (11.69)

The lattice chain has a unit cell of size a with M and m atoms, which is dou-
ble in comparison with the monatomic model, and e1 and e2 are the “polarization
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(displacement) vectors” of m (even number position) and M (odd number position),
respectively. From Equation (11.67), the eigenvalueω should satisfy

ω4 − 2K
(

1
M

+
1
m

)
ω2 +

4K2

Mm
sin2

(
ka
2

)
= 0. (11.70a)

The solution of the above equation is given by

ω±2(k) = K





1
m

+
1
M
±
√(

1
m

+
1
M

)2
− 4

Mm
sin2

(
ka
2

)
. (11.70b)

We assume there are N unit cells with two M and m atoms in the unit cell (2N
atoms in total), with a unit cell size of a, and the “period boundary condition” is
adopted in this model. For N→∞, the summation equation is converted to an integral
equation, and ka will vary from −π to π. At k = 0,

ω±2(0) =

{
0

2K
(

1
m + 1

M

) , (11.71a)

while, at k = π/a, from ω±2(π/a) = K
[(

1
m + 1

M

)
±
(

1
m − 1

M

)]
[supposing M > m]

ω±2(π/a) =
{

2K/M
2K/m

. (11.71b)

11.2.2. Dispersion Curve of Diatomic Chain Model

Comparison of the Dispersion Curves among Diatomic and Nonatomic Models

Figure 11.2b illustrates the dispersion curves, plotted in the ka range of −π ∼ π
(because of the period symmetry). There are two branches in the vibration modes
with a frequency gap between

√
2K/M and

√
2K/m at the “Brillouin zone” ends

k = −π/a and π/a, where no solution (i.e., phonon mode) exists.
If we take the case of M = m, this gap should disappear and the dispersion

curve should also be equivalent to that of the one-atom model in Figure 11.2a. How
should we translate the still-remaining two branches in the diatomic model into one
branch in the monatomic model? The reader can imagine the twofold sine curve in
Figure 11.2a at k = −π/2a orπ/2a, so that we can generate basically two branches.
Since the unit cell of the diatomic chain “a” is actually “2a” in the monatomic model,
the unit cell in the k space should correspond to “π/2a” in the monatomic model.

Origin of Frequency Gap

Basically, there are two different resonance frequency oscillators—one is mass
M connected with two springs 2K (ω =

√
2K/M), and the other is mass m con-

nected with two springs 2K (ω =
√

2K/m). Depending on the mode (optical or
acoustic), these resonance frequencies reflect directly without allowing the vibration
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frequencies in between. The frequency in between these two frequencies becomes
“imaginary” from Equation (11.70b).

Flatness of the Dispersion Curves at the Brillouin Zone

In addition to the frequency gap at the Brillouin zone, the reader can notice the
flatness of the dispersion curves, which indicates a somewhat “singularity” of the
mode density such as

D(ω) =

(
2N
π

)
/
√

ωm2 −ω2, (11.72)

similar to Equation (11.31). This can be verified from Equation (11.70b): by taking the
first derivative of Equation (11.70b), then putting k = −π/a orπ/a, we can obtain
“zero” as follows:

d
dk ω±2(k) = d

dk

[
K
(

1
m + 1

M

)2
±
√(

1
m + 1

M

)2
− 4

Mm sin2
(

ka
2

)]

= ∓
4a

Mm sin( ka
2 )cos( ka

2 )√
( 1

m + 1
M )

2− 4
Mm sin2( ka

2 )
= 0←

[
cos
(

π
2
)
= 0

]
.

(11.73)

11.2.3. Optical and Acoustic Modes

Difference among Optical and Acoustic Modes

ω+
2(k) corresponds to the upper curve, which is called the “optical branch”.

This branch approaches to ωL with k→ 0

ωL =

√
2K
(

1
m

+
1
M

)
. (11.74)

Around k = 0, the “polarization vector” e satisfies

√
me1 +

√
Me2 = 0, (11.75)

which indicates that the two species of atoms move in opposite directions by keeping
the center of gravity position. When we consider ionic crystals such as rock salt
(or PZT), Na+ and Cl− ions move in opposite directions, leading to the electric
polarization deviation. This phonon mode can easily couple with the external electric
field such as “optical light” electric wave, in particular, “infrared” light; thus, it is
called the “optical branch”.

On the contrary, the lower branch ω−2(k) in Figure 11.2b is called the “acoustic
branch”. This branch approaches ω ∝ k with k→ 0 , which is a long-wavelength
vibration transfer with a constant wave speed. The polarization vector e satisfies the
following condition at k = 0: √

me1 =
√

Me2. (11.76)

Two species of atoms displace in the same direction with the same amplitude.
Thus, no electric polarization is induced.
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Visualization of Optical and Acoustical Modes

The above argument is visualized in Figure 11.6, which shows acoustical and
optical waves in a 1D diatomic lattice chain, illustrated by the mass (shown as +
and − ions) displacements (longitudinal displacements are illustrated vertically
for the visual simplicity) for the modes for different wavelengths near zero to the
“Brillouin zone edge” (k = π/a). The optical mode at k ≈ 0 (Figure 11.6, top-right
image) seems to be a ferroelectric phase with spontaneous polarization if this mode
is “softening”, while the acoustic modes do not generate the electric dipole moments
(Figure 11.6, top-left image). In this simple illustration, the acoustical and optical
modes at k = π/a are apparently indistinguishable (Figure 11.6, bottom).
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Figure 11.6. Optical and acoustical waves in a 1D diatomic lattice chain, illustrated
by the mass displacements for the modes for different wavelengths near zero to the
Brillouin zone (k = π/a). Source: Figure by author.

11.2.4. Phonon Spectral Density

As you may recognize, the phonon modes are uniformly distributed in terms of
“wave number” k. However, in terms of frequency ω, the distribution is not uniform
but clustered. Due to the sinusoidal relationship, ω ∝ sin ka

2 (Equation (11.28b)), the
flat parts of the dispersion curve in Figure 11.2b condense phonon modes significantly.
The number of phonon eigenvalues that exist between the frequency ω and (ω + dω)
is denoted as D(ω)dω = Ng(ω)dω, where N is the total number of atoms and
g(ω) is called “spectral density”. Figure 11.2b inserted a “frequency square spectral
density”, G

(
ω2) = g(ω)

2ω = 1
πω
√

ωL2−ω2
. Notice the difference from Figure 11.2a, that

is, the peak of D(ω) can be found in both acoustical and optical branches.

11.3. Ferroelectric Phase Transition

11.3.1. “Soft Phonon” Mode

Recall the discussion on the origin of spontaneous polarization in Section 1.2.3.
Why does a particular crystal experience the shifting of cations and anions and
become spontaneously polarized? The reason is briefly explained below. For sim-
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plicity, we assume that dipole moments result from the displacement of one type of
ion relative to the crystal lattice. This kind of ionic displacement can be expected
through lattice vibrations at a finite temperature. Figure 11.7 shows some of the
possible “eigen-lattice vibrations” in a perovskite-like crystal: (a) shows an initial
cubic (symmetrical) structure; (b) is a symmetrically elongated one (i.e., no polar-
ization is generated), which corresponds to an “acoustic mode”; (c) has coherently
shifted center cations (i.e., the right-ward polarization), which corresponds to an
“optical mode”; (d) exhibits an antipolarized shift of the center cations (i.e., no net
polarization). You can imagine easily the similarity of Figure 11.7 to the discussions
conducted on the “two-atom chain mode” above. If one particular lattice vibration
lowers the crystal energy, the ions will shift and stabilize the crystal structure so as to
minimize the energy. Starting from the original cubic structure (a), if (b) is stabilized
(acoustical mode at k ≈ 0), only a phase with oxygen octahedra distorted with no
dipole moment (acoustic mode) is induced, that is, “structural phase transition”. On
the other hand, when (c) (optical mode at k ≈ 0) or (d) (optical mode at k = π/a) is
stabilized, dipole moments are generated, leading to “polar/ferroelectric” and “an-
tipolar/antiferroelectric” states, respectively. If a particular mode becomes stabilized,
the vibration mode frequency decreases (i.e., “soft phonon mode”), and finally at a
certain phase transition temperature, this frequency approaches zero. The phonon
softening is originated from the phonon–phonon coupling under a nonlinear spring
model, as we will discuss in Chapter 14.

(a)

z

(b) (c) (d)

Figure 11.7. Some possible eigen-lattice vibration modes in a perovskite crystal.
Source: [5] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 4. Reproduced
by permission of Taylor & Francis Group.

11.3.2. Local Field Lorentz Factor

What kind of energy motivates the dipole generation in a crystal? In a simple
word, it is the “Lorentz factor”. At any individual ion site, there exists a local field
from the surrounding polarization P, even if there is no external field. The “local
field” can be described as

Eloc = E0 + ∑i[3(pi·ri)ri − ri
2pi]/4πε0ri

5 = (γ/3ε0)P. (11.77)
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Here, γ is called the “Lorentz factor” (tensor parameter in general). Though the
electric field from the dipole moment diminishes rather quickly with increasing the
distance r (∝ 1/r3), since there are so many dipoles in a condensed material as the
Avogadro number (6.022 × 1023 mol−1), the local field Eloc is sometimes much larger
than the externally applied field E0. For an ideally isotropic cubic system, it is known
that γ = 1, but in some crystals, γ = 10 (significantly large) [6]. ε0 is the permittivity
of vacuum and is equal to 8.854 × 10−12 F/m. If the “ionic polarizability” of our
focusing ion is α, then the dipole moment of the unit cell of this crystal is given by

µ = (αγ/3ε0)P. (11.78)

Thus, the energy of this dipole moment (“dipole–dipole coupling”) is given by

wdip = −µEloc = −(αγ2/9ε0
2)P2. (11.79)

We can understand that the mechanism seems to be a “positive feedback”; that
is, once a small fluctuation of P occurs in a crystal, which enhances the local field Eloc

by a factor of γ, then the dipole–dipole coupling energy wdip decreases by a factor of
“γ squared”. In other words, the polarized state becomes stabilized with an increase
in P. Defining N to be the number of atoms per unit volume, the dipole–dipole
coupling energy per unit volume is expressed as

Wdip = Nwdip = −(Nαγ2/9ε0
2)P2. (11.80)

This is the spontaneous polarization motivation principle. However, the ionic
separation does not continue but stops because of the suppression force from the
atomic spring property. When the ions are displaced from their nonpolar equilib-
rium positions, the elastic energy also increases, which stops the cation–anion ionic
separation (see Figure 11.1b). Different from the pure harmonic spring model in
Section 11.1.2, we introduce higher-order anharmonicity, force constants k and k’, for
the ionic displacement u. Then, the increase in the elastic energy per unit volume can
be expressed as

Welas = N[(k/2)u2+ (k′/4)u4], (11.81)

where k′ (>0) is the higher-order force constant. It should be noted that in pyro-
electrics (i.e., polar status), k′ plays an important role in determining the magnitude
of the dipole moment (i.e., “electrothermal coupling”). Rewriting Equation (11.81)
with polarization, we obtain

P = Nqu, (11.82)

where q and N are the electric charges and the number of dipoles per unit volume,
and combining with Equation (11.80), the total energy can be expressed as follows
(see Figure 11.8):

Wtot = Wdip + Welas = [(k/2Nq2) − (Nαγ2/9ε0
2)]P2 + [k′/4N3q4]P4. (11.83)

From this, one can see that if the coefficient of the harmonic term (k/2Nq2) of the
elastic energy is equal to or greater than the coefficient of the dipole–dipole coupling
(Nαγ2/9ε0

2), then P = 0; the ions are stable and remain at the nonpolar equilibrium
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positions. However, if [(k/2Nq2) − (Nαγ2/9ε0
2)] < 0, because Wtot exhibits negative

parabolic around the region P ≈ 0, more stable state can be found with a shift from
the equilibrium position (from ∂Wtot

∂P = 0) as

PS
2 = [(2Nαγ2/9ε0

2) − (k/Nq2)]/[k′/N3q4]. (11.84)

Therefore, in order to realize the above spontaneous polarization stabilization,
the following conditions should be satisfied:

(1) The Lorentz factor γ should be sufficiently large (crystal structure dependent);
(2) The ionic polarizability α of the focusing ion should be sufficiently large (ionic

species dependent);
(3) If the polarizability α decreases with an increase in temperature, “double-

minima” to “single-minimum” phase transition is expected at a certain temper-
ature, which satisfies Equation (11.84) = 0.

(a) Dipole Interaction 
Wdip = −(Nαγ2/9ε0

2)P2

Wdip Welas

P

P

Wtotal

P

(b) Nonlinear Elastic Energy
Welas = (k/2Nq2)P2 + (k'/4N3q4)P4

(c) Total Energy 
Wtot = Wdip + Welas

Figure 11.8. Energy explanation of the origin of spontaneous polarization:
(a) dipole interaction—motivation to promote the dipole moment; (b) elastic
energy—deceleration not to increase the dipole; (c) total energy—double min-
ima to realize the spontaneous polarization. Source: Figure by author, adapted
from [5].

Example Problem 11.1.

Knowing that the electric field at a distance r from a dipole moment p is given
by
[
3(p·r)r− r2p

]
/4πε0r5 (see Example Problem 1.1), the Lorentz local field in a

crystal is described as

Eloc = E0 + ∑i

[
3(pi·ri)ri − r2

i pi

]
/4πε0r5. (P11.1.1)
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Calculate the Lorentz field along the z-axis Eloc
z for a uniform (simple cubic) crystal

with all pz parameters aligned.

Solution

Under an external electric field E0, dipole moment p is induced along the z-axis
in a uniform crystal. We consider a small hypothetical sphere cavity in the crystal.
Since the dipole charges are compensated in a uniform crystal, the bound charges
existing on the cavity surface, as illustrated in Figure 11.9, will be the origin of the local
field. We consider the charge distribution on a narrow ring band because of the z-axis
crystal symmetry. The surface charge density (per unit area) of the cavity should be
effectively “−Pcosθ” (think + and− charge distribution), resulting in charge on the ring
(2πasinθ·adθ·Pcosθ). Considering Coulomb’s law from a charge, Er = q/4πε0r2, the
z-component is given by the direction cosine component, Ez = Ercosθ.

Now, the local field Eloc
z can be calculated as

Eloc
z = E0 +

(
1

4πε0

)∫ π
0 [2πasinθ·adθ·Pcosθ]·(cosθ)/a2

= E0 +
(

P
2ε0

)∫ π
0 (sinθ·cosθ·cosθ)dθ = E0 +

(
P

2ε0

)(
1
4

)∫ π
0 (sinθ + sin3θ)dθ

= E0 +
(

1
3ε0

)
P.

(P11.1.2)

In consideration of the Lorentz factor definition Equation (11.77), the γ = 1 is a
uniform cubic symmetry dielectric.

r
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ϕ

a · sinθ

a · dθ p

θ

+
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++++
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−

−
− − −

−
−

−

Figure 11.9. Spherical coordinate for the Lorentz field calculation. Source: Figure
by author.

11.3.3. Modified Lorentz Factor in Barium Titanate

We consider now why BaTiO3 (BT) exhibits extraordinarily large Lorentz factor γ,
in comparison with NaCl, where γ = 1. This is the key to slowing down the phonon
frequency and stabilizing the ferroelectric phase. We introduce here the Devonshire–
Slater theory [7,8], in which it is assumed that the BT crystal is electrically poled along
the z-axis; thus, all the ions are polarized also along the z-axis. All equivalent ions are
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assigned from 1 to 5 (Ba = 1, Ti = 2, O = 3, 4, and 5) in the mother phase cubic BT crystal,
as shown in Figure 11.10. Knowing each ionic sublattice in a “simple cubic structure”,
which results in γ = 1 at each lattice point, the founders of the theory assumed the local
electric field at an off-lattice point (u, v, w) to be different from

(
P

3ε0

)
, expressed as

Eloc = E0 +

(
1
ε0

)[
1
3
+ S(u, v, w)

]
P, (11.85)

where S(u, v, w) is the crystal-structure-dependent modulation of the γ factor from
(1/3). The normalized coordinates, (u, v, w), are based on the unit lattice parameter.
McKeehan [9,10] and Luttinger–Tisza [11] calculated S(u, v, w) when the dipoles
are aligned also along the z-axis and obtained the following results:





S(0, 0, 0) = S
(

1
2 , 1

2 , 1
2

)
= 0

S
(

0, 1
2 , 1

2

)
= 0.3448

S
(

1
2 , 1

2 , 0
)
= −0.6896

S
(

1
2 , 0, 0

)
= −1.196

S
(

0, 0, 1
2

)
= 2.392

. (11.86)

Note that the structural relations S
(

1
2 , 1

2 , 0
)
= −2·S

(
0, 1

2 , 1
2

)
and S

(
0, 0, 1

2

)
=

−2·S
(

1
2 , 0, 0

)
. It is important to understand that the detailed crystal structure (here,

perovskite) exhibits the enhancement of the local field, different from the situation in
a simple cubic NaCl type (i.e., γ = 1).

Ti: 2 Ba: 1

O:4O:3

O:5

Figure 11.10. Unit cell of BaTiO3 with numbers on the ions: Ba: 1, Ti: 2, and O: 3, 4,
5. Source: Figure by author.

Let us calculate the local field explicitly for each ion position. For example,
Eloc

1 at the Ba ion position can be calculated from self P1, Ti ion P2, and three O ion

P3, P4 and P5. Since S(0, 0, 0) = S
(

1
2 , 1

2 , 1
2

)
= 0, the first two contributions are

purely 1/3 (simple cubic structure). While the contributions from equivalent P3 and
P4 are S

(
1
2 , 0, 1

2

)
and S

(
0, 1

2 , 1
2

)
, respectively, and that from P5 is S

(
1
2 , 1

2 , 0
)

. It is
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important to take into account the number of ions and their unit lattice contribution;
that is, O is aligned in two symmetric positions and the oxygen ion is situated on
the face center (i.e., a half contribution), leading to “one” contribution to a unit cell.
For another example, Eloc

2 at the Ti ion position can be calculated from self P2, Ba ion

P1, and three O ion P3, P4 and P5. Since S(0, 0, 0) = S
(

1
2 , 1

2 , 1
2

)
= 0, the first two

contributions are again purely 1/3 (simple cubic structure), while the contributions
from equivalent P3 and P4 are S

(
0, 1

2 , 0
)

and S
(

1
2 , 0, 0

)
, respectively, and that

from P5 is S
(

0, 0, 1
2

)
. All results including other local fields at oxygen positions are

summarized as follows:



Eloc
1

Eloc
2

Eloc
3

Eloc
4

Eloc
5




= E0 +

(
1
ε0

)




1
3

1
3

1
3 + 1

2 p 1
3 + 1

2 p 1
3 − p

1
3

1
3

1
3 − 1

2 q 1
3 − 1

2 q 1
3 + q

1
3 + 1

2 p 1
3 − 1

2 q 1
3

1
3 − p 1

3 + 1
2 p

1
3 + 1

2 p 1
3 − 1

2 q 1
3 − p 1

3
1
3 + 1

2 p
1
3 − p 1

3 + q 1
3 + 1

2 p 1
3 + 1

2 p 1
3







P1

P2

P3

P4

P5




. (11.87)

Here, we used the notations, p = −S
(

1
2 , 1

2 , 0
)
= 0.6896 and q = S

(
0, 0, 1

2

)
=

2.392 for simplicity. The reader can notice that the contribution of q is significant
and that the most amplified Lorentz factor

(
1
3 + q ) is found in two terms, Eloc

2 =

· · · · · · +
(

1
3 + q

)
P5 and Eloc

5 = · · · +
(

1
3 + q

)
P2 + · · · . We may conclude that the

Lorentz field enhancement is primarily originated from Ti: 2 and O: 5 (aligned along
the z-axis) interaction, which may be originated from the hybridization among the
dumbbell shape dz orbital of the Ti4+ and the dumbbell shape pz orbital of the O2−.

Both large γ and large polarizability are essential to amplify the dipole coupling
energy to promote the ionic separation to initiate the spontaneous polarization in
a crystal. Taking into account the polarizability αk of the ion k, we can denote the
polarization as

Pk = αkEloc
k /v (v : unit cell volume). (11.88)

Inserting Equation (11.88) into Equation (11.87), we can obtain the simultaneous
equations of Pk in terms of E0 and αk. Then, we obtain the total polarization P = ∑k Pk
as a function of the external field E0 and obtain the permittivity equation. As the
Lorentz field enhancement is primarily originated from Ti: 2 and O: 5 (aligned along
the z-axis) interaction, Slater assumed that the polarizabilities of Ba and O are merely
from electronic polarization, but only the Ti polarizability is composed of both ionic
and electronic polarizations, which is

α2 = αion
2 + αel

2 . (11.89)

By using the electronic polarizabilities of all ions obtained from optical measure-
ment, he obtained the permittivity expression as a function of αion

2

ε = 3.84 +
1.93

1− 5.39
(

4παion
2

v

) . (11.90)
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His conclusion is summarized as follows:

(1) Overall, 37% of the spontaneous polarization comes from Ti ion (31% from αion
2

and 6% from αel
2 );

(2) A total of 59% of PS comes from αel
5 of O: 5, and 6% from other oxygens αel

3 and
αel

4 ;
(3) Only 2% is from αel

1 of Ba: 1.

The origin of the spontaneous polarization in BaTiO3 comes primarily from (1)
enhanced Lorentz factor γ at the Ti position and (2) enhanced ionic polarizability of
the Ti ion (i.e., Ti ion shift is easiest among all ions) in the z-direction chain Ti-O-Ti-O
of a BaTiO3 crystal.

In order to simulate the spontaneous polarization magnitude, we also need to
find out the origin of nonlinear elastic constant k′ (i.e., anharmonicity) in Equation
(11.81), which is considered in Chapter 14.

11.4. Nonlinear Elastic Performances in the Crystal Lattice

Important nonlinear equilibrium effects include the “thermal expansion” and
“electrostriction” originated from the lattice spring nonlinearity and nonequilibrium
effect, whereas the “thermal conductivity” originated from the anharmonic dynamic
lattice vibration. Heat transport in dielectric solids is by way of elastic dynamic
vibrations of the lattice (i.e., phonons) [2], which is discussed in Chapter 12. Since
Chapter 14 describes the details of “nonlinear oscillatory systems”, this section
provides a simple introduction to them.

11.4.1. Nonlinearity in Crystal Potential

When we use the theory of cohesive forces in ionic crystals, proposed by
Born [12], we can set the potential function involving an inverse power type of
repulsive energy of the form in a simple crystal-like NaCl as

U = −Mq2

r
+

Nb
rn , (11.91)

where M is the Madelung constant for Coulombic energy, N is the coordination
number, and b is the potential constant for the quantum mechanical energy [13]. We
assume a relatively large number, 9–11, for quantum mechanical repulsive potential
1/rn. Expanding the potential function around the equilibrium position (rn−1

0 =
nNb/Mq2), we obtain the following form as a function of ∆r (= r − r0):

∆U = U(r)−U(r0) = f (∆r)2 − g(∆r)3, (11.92)

where f = (n− 1)Mq2/2r3
0 and g = (n + 4)(n− 1)Mq2/6r4

0. It is essential to realize
the curvature difference in the positive and negative region; that is, the lattice spring
is softer for extension than for contraction.

11.4.2. Thermal Expansion and Electrostriction

The ionic displacement ∆r is supposed to be generated under small electric field
(E) applied and under finite temperature T. Using the Boltzmann distribution for
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Gibbs energy ∆V± = ∆U ± qE∆r, the average equilibrium separation at an elevated
temperature under an applied electric field E is approximated as follows:

< ∆r± > ∼
∫ ∞
−∞ ∆rexp

(
−∆V±

kT

)
d∆r/

∫ ∞
−∞ exp

(
−∆V±

kT

)
d∆r

∼ 3gk
4 f 2 T ± q

2 f E + 3gq2

4 f 3 E2,
(11.93)

where subscripts ± denote the ion pairs in the positive and negative directions of the
electric field, respectively. The strain is therefore given by

< ∆r+ > + < ∆r− >

2r0
=

3gk
4 f 2r0

T +
3gq2

4 f 3r0
E2, (11.94)

where the first term represents thermal expansion and the second term, electrostric-
tion (no piezoelectricity is expected in this cubic symmetry). Due to the softer lattice
spring performance for extension, thermal expansion (i.e., positive strain) is observed.
The reader can understand that both coefficients are originated from “g”, which is an
anharmonic term g(∆r)3 in Equation (11.92), and that neither thermal expansion nor
electrostriction occurs when the crystal is rigorously harmonic (that is, only f (∆r)2

term in Equation (11.92)).

11.4.3. Anharmonic Phonon Modes and Thermal Conductivity

Thermal energy can be stored in the lattice vibration normal phonon modes
(i.e., harmonic) as a vibration amplitude. We obtained heat capacitance for harmonic
lattice vibration models in this chapter. However, in a rigorously harmonic crystal,
the phonon states are stationary (i.e., “standing wave”), widespread in the crystal
uniformly with a monotone frequency as a wave (not an isolated wave packet or
particle-like phonon). Since phonon vibration is not disturbed by dopants, for ex-
ample, we can state that the thermal resistance is zero, or thermal conductivity is
infinite, leading to a completely uniform temperature distribution in a crystal [2].
However, when the atomic energy potential includes nonlinear term, “cubic” an-
harmonic term just introduced in Equation (11.92) or “quartic” term in Equation
(11.81), the resonance frequency should include at least 2ω0 or 3ω0, and higher-order
harmonic modes. According to the uncertainty of the resonance frequency from
the definite ω = ω0 to ∆ω =|ω−ω0|, the phonon distribution changes from an
infinitely widespread state in a crystal to a relatively packet status (i.e., localized
existence). From Equation (11.13), we assume the normal phonon eigenfunctions as

uα(t) ∝ sin kαa· cosωαt. (11.95)

Taking into account a modified “phonon spectral density” (i.e., frequency square
spectral density), g(ω)

2ω as the summation weight, and the low-frequency acoustic
mode dispersion relation kα ∝ ωα, we calculate the sum of un(t)’s, which exist in ∆ω

∑n
α=1 uα(t) ∝∑n

α=1
sin ωαacos ωαt

ωα
. (11.96)
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Once multiple phonons are generated synchronously via the anharmonic po-
tential interactions, the phonon energy localization is expected (not uniformly dis-
tributed as a separated harmonic vibration), leading to the concept of wave-to-particle
transition (i.e., the reason for the terminology introduction of “phonon” from the
elastic lattice vibration wave). If we rephrase the above argument in a reverse way, by
having an excess of phonons with similarly directed group velocities (i.e., by touch-
ing a heat source on the solid crystal), the anharmonic part of the ionic interaction
plays the wave packet into creation, destruction, or scattering of various frequency
phonons, which corresponds to “thermal resistivity” (i.e., the inverse of thermal
conductivity).

Chapter Essentials

1. One-atom (a) and two-atom (b) linear chain lattice models connected by the
same springs provide the dispersion curves, plotted in the ka range of −π ∼ π
(see figure below). Frequency gap between

√
2K/M and

√
2K/m, where no

solution (i.e., phonon mode) exists, can be found in the two-atom model (Fig-
ures 11.1 and 11.2).

2. Heat capacitance: Both models reach Cp → 3NkB at high temperature.

(a) Einstein model—Cp = ∂U
∂T = NkB

(
}ω
kBT

)2 e
}ω

kBT
[

e
}ω

kBT −1

]2

(b) Debye model—Cp = 9NkB(T/θD)
3∫ xD

0 dx x4ex

(e x−1)
2 Debye’s “T3 law” is

applied at low temperatures.

3. The Lorentz factor γ (local field amplification factor) in a simple cubic crystal is

1, leading to the local field given by E0 +
(

1
3ε0

)
P. The Lorentz factor is enhanced

depending on the crystal structure. The perovskite BaTiO3 exhibits γ ≈ 10.
4. The origin of the spontaneous polarization in BaTiO3 comes primarily from (1)

enhanced Lorentz factor γ at the Ti position and (2) enhanced ionic polarizability
of the Ti ion (i.e., Ti ion shift is easiest among all ions) in the z-direction chain
Ti-O-Ti-O of a BaTiO3 crystal.

5. Nonlinearity in crystal lattice: Born’s model is

U = −Mq2

r
+

Nb
rn ,

where M is the Madelung constant for Coulombic energy, N is the coordination
number, and b is the potential constant for the quantum mechanical energy.

6. Taking the Taylor expansion of the Born’s model around r = r0 (potential
minimum point), we obtain

∆U = U(r)−U(r0) = f (∆r)2 − g(∆r)3,
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where f = (n− 1)Mq2/2r3
0 and g = (n + 4)(n− 1)Mq2/6r4

0. Based on Boltz-
mann distribution, we can derive the lattice parameter change with temperature
T (i.e., thermal expansion) and external field E (i.e., electrostriction) as follows:

< ∆r+ > + < ∆r− >

2r0
=

3gk
4 f 2r0

T +
3gq2

4 f 3r0
E2.

7. (a) An ideal crystal with rigorously harmonic atomic potential should exhibit
zero thermal resistance, or infinite thermal conductivity, leading to completely
uniform temperature distribution in a crystal.
(b) An actual crystal with an anharmonic atomic potential exhibits a localized
phonon packet, leading to the thermal distribution in a crystal and the finite
thermal conductivity.

Check Point

1. (T/F) One-atom 1D lattice chain model with N atoms connected by the same
lattice spring results in N eigenfrequencies and vibration eigenmode in general.
True or false?

2. (T/F) The boundary condition difference, “free-end atoms” or “periodic (ring-
connected) atoms”, in the one-atom 1D lattice chain model connected by the
same lattice spring is found in double-degenerated eigenvalues in the former
boundary condition. True or false?

3. (T/F) Two-atom 1D lattice chain model connected by the same lattice spring
results in the frequency gap between

√
2K/M and

√
2K/m, where no solution

(i.e., phonon mode) exists. True or false?
4. There exist two categories of the lattice vibration modes around the low k

region in a two-atom 1D lattice chain model connected by the same lattice
spring: (1) two species of atoms displace in the same direction and (2) two
species of atoms displace in the opposite directions each other. Which is called
the “optical” branch?

5. The Lorentz factor γ is defined in the relationship between the local field and
polarization as Eloc = (γ/3ε0)P. Provide the value of γ in a simple cubic crystal.

6. (T/F) A large Lorentz factor γ in BaTiO3 is one of the reasons why it transforms
into a ferroelectric phase from a cubic phase with reducing the temperature.
True or false?

7. (T/F) The equivalent lattice spring in a crystal seems to have a tendency to be
“softer” for extension than for contraction. True or false?

8. The strain in a crystal under electric field E and finite temperature T is ex-
pressed by

< ∆r+ > + < ∆r− >

2r0
=

3gk
4 f 2r0

T +
3gq2

4 f 3r0
E2,

in the Born atomic model, where f and g are the harmonic and cubic anharmonic
terms of the lattice springs. How do you call the first and second terms with
phenomenological terminologies (such as “piezoelectric strain”)?
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9. (T/F) An ideal crystal with rigorously harmonic atomic potential should exhibit
zero thermal conductivity or infinite thermal resistivity. True or false?

10. (T/F) The finite thermal conductivity introduces the temperature distribution
in a crystal, which is originated from a phonon phenomenon in an anharmonic
lattice potential. True or false?

Chapter Problems

11.1 Consider a diatomic linear chain of identical atoms (mass M) connected by two
types of springs of alternating strengths (K and G), as shown in the Figure 11.11.
Calculate the dispersion curve (i.e., ω vs. k relation) for this 1D lattice model.

u1 uN−1u2 uN
K

M M M M M MM

GKKGKG

Figure 11.11. A diatomic linear chain of identical atoms (mass M) connected by
springs of alternating strengths. Source: Figure by author.

Hint

We take a unit cell length “a” for the diatomic cell with two springs, K and G.
The harmonic potential energy can be written as

Uharm =

(
K
2

)
∑
n
[u1(na)− u2(na)]2 +

(
G
2

)
∑
n
[u2(na)− u1((n + 1)a)]2,

where we write u1(na) for the displacement of the atom that oscillates about
the site na (n-th lattice cell site) and u2(na) for the displacement of the atom
that locates in the center of the lattice cell. We assume K ≥ G without losing
generality. The equations of atomic motion are now expressed as

M
..
u1(na) = − ∂Uharm

∂u1(na) = −K[u1(na)− u2(na)]− G[u1(na)− u2((n− 1)a)],

M
..
u2(na) = − ∂Uharm

∂u2(na) = −K[u2(na)− u1(na)]− G[u2(na)− u1((n + 1)a)].

Assuming wave solutions with frequency ω and wave vector k,

u1(na) = u1ej(kna−ωt),

u2(na) = u2ej(kna−ωt),

we need to determine u1 and u2 on the basis of the Born–von Karman periodic
boundary condition. By substituting above u1(na) and u2(na) expression into
the dynamic equations, we can obtain the following two coupled equations:
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[
Mω2 − (K + G)

]
u1 +

(
K + Ge−jka

)
u2 = 0,

(
K + Gejka

)
u1 +

[
Mω2 − (K + G)

]
u2 = 0.

Similar to the discussion in Section 11.1.1, To realize the meaningful solution (or
u1 and u2 values), at least the following “determinant = 0” should be satisfied:
∣∣∣∣∣∣

[
Mω2 − (K + G)

] (
K + Ge−jka

)
(

K + Gejka
) [

Mω2 − (K + G)
]

∣∣∣∣∣∣
= 0.

The above leads to the following relation:

[
Mω2 − (K + G)

]2
=
∣∣∣K + Ge−jka

∣∣∣
2
= K2 + G2 + 2KG·cos(ka).

We can obtain two positive solutions for ω2,

ω±2(k) =
K + G

M
±
(

1
M

)√
K2 + G2 + 2KG·cos(ka)

}
,

with the following relation according to the above solutions:

u2

u1
= ∓

(
K + Gejka

)
/
∣∣∣∣K + Ge−jka

∣∣∣∣.

The negative − sign means the vibration mode with the adjacent atoms displac-
ing in opposite direction each other (i.e., “optical branch”), while + corresponds
to the mode with the adjacent atoms displacing in the same direction (i.e.,
“acoustic branch”). We assume there are N unit cells with two springs (K and G)
in the unit cell with a unit cell size of a, and the “period boundary condition” is
adopted in this model. For N→∞; ka will vary from 0 to π. At k = 0,

ω±2(0) =

{
2(K+G)

M
0

,

while at k = π/a, from ω±2(π/a) = K+G
M ± K−G

M

]
(supposing K > G),

ω±2(π/a) =
{

2K/M
2G/M

.

The frequency gap exists between
√

2K/M and
√

2G/M, where no solution (i.e.,
phonon mode) exists.
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12. Heat Conduction—Linear Differential
Equation II

We discussed so far the equilibrium and time-dependent (dynamic) phenomenol-
ogy in the uniform ferroelectric specimen (that is, the uniform temperature distri-
bution in a specimen). We will discuss spatially nonuniform (i.e., “space-gradient”)
phenomenology in this chapter. The concept of “heat flow” is introduced, where
the exponential trend with time such as (1− θ/θs) = e−t/τ is not sustained correctly.
The secondary electrothermal coupling factor kλ is also discussed in this chapter,
the PZT value of which seems to be much larger than the primary electrothermal

coupling factor kET2
= p2

(CE
p /T)ε0εX introduced in Chapter 2. It is noted that thermal

conductivity varies significantly with the electric boundary condition (i.e., short or
open circuit), as well as with the ferroelectric compositions. Heat generation analyses
in practical piezoelectric devices are also introduced in the last part of this chapter.

12.1. Heat Conduction Model

12.1.1. 1D Heat Transfer Model

We develop a simple 1D heat transfer model, as shown in Figure 12.1a, where a
uniform disk or rod is thermally isolated so that no heat escapes (i.e., impervious)
from its sides hypothetically [1]. The temperature gradient is introduced, and we
define the temperature function θ(x,t) (= (T − TR) difference from the TR) at a point
a distance x from one end of a rod, assuming isotropic thermal conductivity. We
introduce the following three parameters:

• Q—“Heat quantity”. Scalar quantity. The unit of heat quantity is usually calorie
(cal), and 1 cal corresponds to 4.186 J in energy; q—“Heat flow” (or “flux”).
Vector quantity = −grad(Q). Quantity of heat passing through the cross-section
of rod per unit area per unit time; that is, q is the thermal energy flow from Q (J),
the unit should be (J/m2/s) = (W/m2);

• λ—“Thermal conductivity”. Second rank tensor quantity. Thermal or heat
conductance per unit length of material. The unit is (W/m·K). The inverse
1/λ (inverse tensor, in general) is the “thermal resistance”, which measures the
temperature drop per unit length when heat flux is unity;

• Cp—“Heat capacitance” of material per unit volume. Scalar quantity = specific
heat capacity cp (cE

p , cD
p ) × density ρ, number of heat units to raise block of unit

area and unit length (i.e., per unit volume) 1 ◦C in temperature, formulated as
Cp = ∂q

∂T ;
• cp—“Specific heat capacity” per unit mass. Scalar quantity. The specific heat

capacity (J/(kg·K)) is determined per unit mass (kg), which must be multiplied
by density (kg/m3) to obtain the heat capacitance per unit volume (J/(m3·K)).
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A

0 x L xx + dx

    T(x,t) T + dT

B

Adjustable 
heating 
tape

Thermocouple

Copper rod

Teflon Ring

Sample

Foam insulation

(a) (b)

Figure 12.1. (a) The 1D thermal diffusion model; (b) experimental setup for de-
termining directional thermal diffusivity. Source: [2] ©Uchino, K. High-Power
Piezoelectrics and Loss Mechanisms; CRC Press, 2020; pp. 183, 184. Reproduced by
permission of Taylor & Francis Group.

The total heat quantity Q is transferred from T1 on A to T0 on B through the area
S along the length L during the time t; the “thermal conductivity” λ is defined as a
proportional constant in the following equation:

Q = λS
T1 − T0

L
t. (12.1)

If we convert this macroscopic formula into derivative form, taking heat quantity
Q along a short distance interval x and x + dx in the time duration dt, then the
temperature difference θ(x, t) and θ(x + dx, t), or θ(x, t)− θ(x + dx, t) = θ(x, t)−[

θ(x, t) +
(

∂θ
∂x

)
dx
]
= −

(
∂θ
∂x

)
dx. Equation (12.1) is converted as

q = λ
θ(x, t)− θ(x + dx, t)

dx
dt = −λ

(
∂θ

∂x

)
dt. (12.2)

The above equation is considered as input heat quantity at x, q(x, t). As the
same formula may be valid at (x + dx) as output from this narrow slab, total heat
quantity increase dq can be evaluated as the following subtraction:

dq = q(x, t)− q(x + dx, t) = −λ

[(
∂θ

∂x

)
−
{(

∂θ

∂x

)
+

(
∂2θ

∂x2

)
dx
}]

dt = λ

(
∂2θ

∂x2

)
dxdt, (12.3)

where dq is the thermal energy flow per unit “volume”, given by the total energy
flow dQ = vdq (v: volume). Heat capacitance Cp is defined by

Cp =
∂q
∂T

= T(
∂S
∂T

)
X,E

. (12.4)

Here, we used the thermodynamic relation dq = TdS. When we introduce heat
capacitance (required heat quantity for increasing 1 ◦C) per unit volume Cp,

dq = Cpdθdv = Cpdθdx. (12.5)
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Note here that dv = Sdx, and S = 1 in our model. Equation (12.3) can be
transformed as

Cpdθdx = λ
(

∂2θ
∂x2

)
dxdt.

We finally obtain a 1D heat transfer equation as

(
∂θ

∂t

)
=

λ

Cp

(
∂2θ

∂x2

)
=

λ

cpρ

(
∂2θ

∂x2

)
= αT

(
∂2θ

∂x2

)
. (12.6)

The proportional constant λ
cpρ is called “thermal diffusivity” αT , which is prac-

tically measured by temperature monitoring by the setup shown in Figure 12.1b.
The Teflon ring suppresses the side thermal dissipation. Specific heat capacity cp is
defined per unit mass, related with heat capacitance Cp as Cp/ρ. Units and typical
numbers of the necessary parameters in PZT’s are summarized as follows:

• Thermal conductivity λ—0.6∼1.3 (W/(m·K));
• Specific heat capacity cp—340∼420 (J/(kg·K));
• Mass density ρ—7600 (kg/m3);
• Thermal diffusivity αT—2.7∼5.1 × 10−7 (m2/s).

12.1.2. Solution of 1D Heat Transfer Equation

Let us now solve the heat Equation (12.6) in this section.
(

∂θ
∂t

)
= αT

(
∂2θ
∂x2

)
.

We adopt the initial and boundary conditions as follows:

• At x = 0: θ(x = 0, t) = θ0, and ∂θ(x,t)
∂t = 0 (“isothermal condition”: by attaching

a large heat reservoir on x = 0 at t = 0, high temperature θ0 is maintained
continuously);

• At x = L: ∂θ(x,t)
∂x = −

(
1
λ

)
q = 0 (“isolated condition”: impervious (i.e., no heat

transfer) at x = L, thus, θ is time dependent, started from room temperature TR
(i.e., θ(L, t = 0) = 0));

• At t = 0: θ(x > 0, t = 0) = 0 (initial temperature of the whole part starts from
room temperature).

Fourier Expansion Series Approach

Since the solution θ(x, t) of Equation (12.6) should be less than the maximum
temperature θ0 at surface A, and with t→ ∞ , it should approach θ0, we assume the
following form:

θ(x, t) = θ0 − e−mtu(x), (12.7)

where m is a constant and u(x) is the function of x to be determined. On substituting
Equation (12.7) in Equation (12.6), we obtain the following equation of the time-
independent function: (

∂2u
∂x2

)
= −( m

αT
)u. (12.8)
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Using a new parameter p,

p2 = (
m
αT

). (12.9)

The above equation becomes

(
∂2u
∂x2

)
+ p2u = 0. (12.10)

Then, the general solution can be assumed in the Fourier series as

u(x) = Asin(px) + Bcos(px), (12.11a)

∂u(x)
∂x

= p[Acos(px)− Bsin(px)]. (12.11b)

Taking into account the boundary conditions: (a) θ(x = 0, t) = θ0 requires
∂θ(x,t)

∂t = me
mt

u(x) = 0, we can obtain u(x = 0) = 0, (b) ∂θ(x,t)
∂x = 0 at x = L requires

∂u(x)
∂x = 0, {

A sin(0) + B cos(0) = 0
A cos(pL)− B sin(pL) = 0

. (12.12)

Thus, the following condition should be satisfied, in addition to B = 0:

Acos(pL) = 0. (12.13)

Nontrivial solutions for p are

pL = (n +
1
2
)π, or p = (n +

1
2
)π/L (n = 0, 1, 2, 3, · · · ). (12.14)

For each value of n, the n-th solution can be identified as

un(x) = Ansin((n +
1
2
)π/L)x. (12.15)

Then,

mr = αT p2 = αT((n +
1
2
)π/L)

2
. (12.16)

Now, the solution of θ(x, t) is expressed by the summation of all un(x) weighted
by e−mrt as

θ(x, t) = θ0 −
∞

∑
n=1

Ane−αT((n+ 1
2 )π/L)

2
tsin((n +

1
2
)π/L)x, (12.17)

where An parameters are determined from the initial condition, θ(x, t = 0) = 0; that

is
∞
∑

n=1
Ansin((n + 1

2 )π/L)x = θ0.
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Merely for the simplicity, taking only the first term in the series (n = 0) as an
approximation [3], we derive the temperature profile at x = L (isolated end) as follows:

θ(L, t) = θ0 − A0e−αT(π/2L)2tsin(π/2L)L= θ0[1− e−αT(
π
2L )

2t]. (12.18)

By examining the transient temperature profile at the “insulated side” of the
sample (see Figure 12.1b), the thermal diffusivity αT can directly be calculated by
finding the time constant τ experimentally. By fitting the temperature profile at x = L
with θ0[1− e−t/τ ], we can obtain τ, leading to αT from

αT =
L2

(π
2 )

2τ
. (12.19)

Laplace Transform Approach

Let us now solve the heat Equation (12.6) using the Laplace operator.
(

∂θ
∂t

)
= αT

(
∂2θ
∂x2

)
.

Taking Θ as the Laplace transform of θ(x, t) (i.e., Θ = L[θ(x, t)]) [1], we have

(
∂2Θ
∂x2

)
=

s
αT

Θ. (12.20)

We may assume the solution form as

Θ = Ae
√

s
αT

x
+ Be

−
√

s
αT

x
. (12.21)

Knowing the inverse Laplace transform found in Laplace transform Table in
Reference [1],

L−1
[
e−a
√

s
]
=

a

2
√

πt3
e−a2/4t, (12.22)

and a = ∓ x√
αT

, Equation (12.18) can be transformed into

θ(x, t) = −A
x√
αT

2
√

πt3
e−x2/4tαT + B

x√
αT

2
√

πt3
e−x2/4tαT . (12.23a)

We consider the following boundary condition: A large heat source (θ = θ0) is
attached suddenly (t = 0) on surface A (x = 0) in Figure 12.1a; that is, heat flux is
given as a step function with respect to time (i.e., “isothermal condition” at x = 0).
Excluding immediately after t = 0 and adjacent to x = 0 point, we consider the region
t > δ, x > δ’ and assume the following equation in most of the rod material’s length:

θ(x, t) = θ0e−x2/4tαT . (12.23b)

Equation (12.23b) is rather an “error function” in terms of coordinate x, and
indicates that
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• At x = 0, θ(x = 0, t) = θ0—the temperature is constant at θ0 (i.e., “isothermal”),
irrelevant to time after attaching to a large heat source;

• At x = L, θ(L, t) = θ0e−L2/4tαT —isolated or “impervious condition” (i.e., no
heat transfer) at x = L, started from room temperature TR (i.e., θ(L, t = 0) = 0).
By measuring temperature change with t at x = L, we can obtain the thermal
diffusivity αT .

Figure 12.2a shows temperature distribution profiles as functions of position x
for various time lapses, and Figure 12.2b shows the temperature change with time
at the position x = L. This simulation used the following values: θ0 = 15 ◦C, L =
2× 10−3 (m), αT = 8× 10−7 (m2/s). As can be seen, heat flux penetration speed for
a 2 mm thick sample does not take longer than 0.5 s, and the temperature monitoring
finishes in less than 3 s. Even in a thicker specimen with 10 mm, the measuring time
is still shorter than 30~40 s. It is noteworthy that the temperature distribution profile
as a function of position x is not a simple exponential curve but resembles a half
positive part of the so-called “error function” when the abrupt step-function heat
flux is inserted from the position x = 0 at t = 0. As the curve profile of Figure 12.2b
resembles a simple exponential curve, we used the approximate formula Equation
(12.18) in Subsection Fourier Expansion Series Approach, which is

θ(L, t) = θ0[1− e
−t/( L2

αT (π/2)2
)
]. (12.24a)

We can verify this handling equivalency with the exact formula,

θ(L, t) = θ0e−L2/4tαT . (12.24b)

By putting A = e−(
L2

4αT
)/t, we obtain 1

ln A = − t
( L2

4αT
)
, then e−t/( L2

4αT
)
= e

1
ln A . Tak-

ing Taylor expansion,

e
1

ln A ≈ 1− A + · · ·
we verify the relation

e−L2/4tαT ≈ [1− e−t/( L2
4αT

)
]. (12.25)

Thus, the thermal diffusivity αT is obtained from the experimentally obtained
time constant τ as

αT =
L2

4τ
. (12.26)

However, note the numerical factor difference; that is, (π/2)2 in Equation
(12.24a), and 4 in Equation (12.25). This means that the αT determined with Equation
(12.19) from the experimental time constant τ is overestimated in comparison with
the αT value with Equations (12.26) by the factor of 4/(π/2)2. This difference is
originated from the neglection of the higher-order harmonic terms (n = 1, 2, · · · ) in
Equation (12.17). The absolute αT values may need to be modified by this factor from
the previously reported values in Reference [3] if required.
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Figure 12.2. (a) Temperature distribution profiles as a function of position x for
various time lapses and (b) temperature change with time at the position x = L.
Source: Figure by author.

Example Problem 12.1.

Two material disks with different thermal conductivities, λ1 and λ2, are lami-
nated with thicknesses L1 and L2, as shown in Figure 12.3; then, outer surfaces A and
C (area S is common) are maintained at T1 and T2 (T1 > T2), respectively. Calculate
temperature T and thermal energy flow Q on contact surface B.

Hint

When the two-surface temperature of a disk specimen (thickness L) is main-
tained at T1 and T2 (T1 > T2), the thermal conductivity λ is defined as

Q = λ t S
T1 − T2

L
, (P12.1.1)

where Q is the quantity of heat transferred from high-temperature surface to low-
temperature surface via surface S in time duration t.

Solution

Supposing that T1 > T2, and the temperature on contact surface B is T, the
thermal energy flow Q via the surface area S in time duration t should be expressed
by the following equations under a steady state:

Q = λ1tS
T1 − T

L1
= λ2tS

T − T2

L2
. (P12.1.2)

Thus, temperature T is obtained from λ1
T1−T

L1
= λ2

T−T2
L2

; then,

T =

λ1
L1

T1 +
λ2
L2

T2
λ1
L1

+ λ2
L2

. (P12.1.3)
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Accordingly, the normalized energy flow q per unit area and unit time defined
by Q/St is calculated as

q =
λ1λ2

L1λ2 + L2λ1
(T1 − T2). (P12.1.4)

The effective thermal conductivity of the series connection composite material
is expressed by

κe f f =
1

L 1
λ1

+ L 2
λ2

. (P12.1.5)

A B

L1

λ1

L2

λ2

C

T1 T T2

S

Figure 12.3. Thermal conductivity model. Source: Figure by author.

Example Problem 12.2.

Referring to Figure 12.1a, we consider a particular case that the length L is long
enough in comparison with the radius r. The end surface A is maintained at θ0 (high
temperature) from the heat source, and another end surface B is kept at θ = 0 (room
temperature) after obtaining the steady temperature profile on this sample rod. Use
the bulk thermal conductivity λ, surface thermal conductivity αS, and mass density ρ
in the calculation.

Hint

The rate at which heat is lost from a rod as a consequence of surface radiation
into the surrounding air at a constant temperature TR is proportional to the difference
in temperature (T − TR) = θ and to the surface area of the element. Therefore, the
1D heat transfer equation may be modified as

(
∂θ

∂t

)
= αT

(
∂2θ

∂x2

)
− αSθ. (P12.2.1)
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Solution

Taking the x-axis along the rod length, we consider the quantity of heat passing
through a cross-section of rod per unit time on the x to x + dx narrow slab. First, the
heat transfer quantity rate is calculated as

dQ
dt

= λS
(

∂2θ

∂x2

)
dx (Here, S = πr2). (P12.2.2)

Second, heat dissipation from the side surface is expressed as

αSS′θdt(here, S
′
= 2πrdx). (P12.2.3)

Thus, the change rate of the quantity of heat per unit area (S = πr2 = 1) in this
slab is expressed as

dq
dt

= λ

(
∂2θ

∂x2

)
− 2αS

r
θ. (P12.2.4)

Under a steady state, (
∂2θ

∂x2

)
=

2αS
λr

θ. (P12.2.5)

Equation (P12.2.5) is solved under the boundary conditions θ = θ0 at x = 0, and
θ = 0 at x = ∞. Since a general solution is expressed by

θ = A·exp

(√
2αS
λr

x

)
+ B·exp

(
−
√

2αS
λr

x

)
. (P12.2.6)

A = 0, B = θ0 are derived. The temperature profile under the steady state is
provided as

θ(x) = θ0·exp

(
−
√

2αS
λr

x

)
. (P12.2.7)

12.1.3. Thermal Diffusivity Measurements

We can find previous papers [4,5], which report on the thermal properties of PZT
ceramics at low temperature (20–300 K), indicating a transition temperature between
50 K and 80 K, and at high temperature (300–800 K), characterizing the effect of phase
transition on the thermal properties. Uchino’s group investigated the relationship
of thermal properties with electrical boundary conditions (a short- or open-circuit
condition) and poling status in the PZTs and other ferroelectric piezoelectric ceramics,
which are described in this chapter. A significantly large “secondary electrothermal
coupling factor” kλ

33
2 is introduced, much larger than the primary electrothermal

coupling factor kET2 introduced in Chapter 2.
A user-friendly new experimental setup for measuring the thermal diffusivity

of PZTs is introduced. Though Reference [3] reported the details of the experimental
setup, we summarize it briefly for the reader’s sake (see Figure 12.1b). The hot
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isothermal condition was imposed on a flat disk sample in our experiments by
suddenly being applied on the top surface (x = 0) at t = 0. The increase in transient
temperature of the bottom side of the disk specimen is analytically similar to an
exponential formulation with a classic time constant, as described in the previous
section in Equations (12.18) and (12.19), which provides the time constant τ, then
αT = L2

( π
2 )

2τ
(this value may need to be calibrated with Equation (12.26) for the absolute

value analysis). The thermal diffusivity is given proportionally to the “inverse time
constant 1/τ”. This method hosts a variety of advantages over other methods such
as (1) high accuracy, (2) low cost, (3) elimination of interface effects, and (4) small
specimen size. Best of all, (5) the measuring time period is short (10~20 s) enough for
measuring the difference between the short- and open-circuit conditions. The accuracy
of this setup has already been demonstrated in several materials with low-to-medium
thermal diffusivity (0.1~3 × 10−6 m2/s). The thermal diffusivity measurements in
this experiment have an accuracy of 5% or better for some standard materials such as
Fused Quartz and Pyrex 7740, in comparison with the literature values [3].

Using this method, the thermal diffusivity αT was measured on “poled” and
“unpoled” commercially available hard PZT ceramic disks, APC 841 (APC Int’l.,
Mackeyville, PA USA), of a diameter of 51 mm with thickness 2–5 mm [6]. The “un-
poled” sample was “depoled” by heating the specimen, annealing, and then checking
their no piezoelectric response on a conventional d33 meter. The thermal diffusivity
was measured in the direction of polarization for the poled samples. In parallel, the
absolute value of heat capacity of a small specimen was measured using the DSC
Q2000 (TA Instruments, New Castle, DE, USA) by comparing it to a sapphire refer-
ence sample. The “specific heat capacity (per mass)” and density are, respectively, cp
= 340 J/kg·K and ρ = 7600 kg/m3. The specific heat capacity difference between cE

p

and cD
p could not be detected under electrical boundary condition difference (short

and open circuit) because the differential scanning calorimetry (DSC) took too long
(5 min) to keep the “depolarization field”, as well as unmeasurably small difference
theoretically, as shown below. Table 12.1 summarizes thermal diffusivity, specific
heat capacity, and thermal conductivity of a hard PZT (APC 841), for unpoled and
poled under different electrical boundary conditions (open and short circuit) [6].
Note the significant difference in “thermal diffusivity” obtained experimentally in
these three electrical constraint conditions. The origin of this difference is discussed
in the following section.

Table 12.1. Thermal diffusivity, specific heat capacity, and thermal conductivity of
a Hard PZT, for unpoled and poled under different electrical boundary conditions.

Hard PZT
Thermal

Diffusivity
αT (107 m2/s)

+/−
Specific Heat

Capacity
cp (J/kg K)

Thermal
Conductivity
λ (W/m K)

+/−

Unpoled 4.32 0.34 cUP
p = 340 1.12 0.10

Open Circuit 5.02 0.23 cD
p = 340 1.30 0.06

Short Circuit 8.25 0.78 cE
p = 340 2.13 0.23

Source: Table by author.
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12.1.4. Thermal Diffusivity under Different Electrical Constraints

It is an intriguing fact that experimentally obtained “thermal diffusivity” ex-
hibits the largest in a poled specimen under short-circuit condition, followed by a
poled specimen under open-circuit condition, and the smallest in an unpoled speci-
men; all disk samples have electrodes on both the top and bottom surfaces. As the
thermal diffusivity is expressed by (repeated from Equation (12.6))

αT =
λ

cpρ
, (12.27)

where λ, cp, and ρ are thermal conductivity, specific heat capacity, and mass density,
respectively. The difference in αT must be the combined effect of λ and cp differences
(the density ρ may not be changed by the electric constraint condition).

Specific Heat Capacity—Scalar Parameter

Recall the two types of “specific heat capacity” in Section 2.4.2, cE
p and cD

p . We
introduced cE

p for specific heat capacity (per unit mass) under X = 0 and E = 0, that is,
under a short-circuit condition of a ferroelectric specimen’s surface electrodes. We
consider a different specific heat capacity under an open-circuit condition (i.e., D =
constant or zero). If we denote CD

p = ρcD
p = T( ∂S

∂T )X,D, we can obtain

ρcD
p = ρcE

p −
Tp2

ε0εX = ρcE
p (1− kET2

)αT =
λ

cpρ
. (12.28)

Here, the primary “electrothermal coupling factor” kET is given by

kET2
=

p2
(

ρcE
p

T

)
ε0εX

. (12.29)

We decided first cE
p = 340 J/kg·K from the DSC equipment on the short-circuit

specimen. Then, let us calculate cD
p for the open-circuit specimen, using the following

PZT-APC841 specimen values:

Pyroelectric coefficient p = 0.5× 10−4 (C/m2·K);
Specific heat capacity cE

p = 340 (J/kg·K);
Mass density ρ = 7600 (kg/m3);
Permittivity εX = 1375.

Thus, the primary electrothermal coupling factor is calculated as

kET2
= (0.5×10−4C/m2·K)

2

 7600 kg

m3 ·340 J
kg ·K

300 K


(8.854×10−12 F

m )×1375

= 0.11× 10−6,

then, cD
p = cE

p

(
1− kET2

)
= 340 J/kg·K. We can conclude that cD

p and cE
p show no

measurable difference in this PZT. Finally, an unpoled specimen is supposed to be
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composed of a mixture of cD
p and cE

p , such as 1
3

(
cD

p + 2cE
p

)
, which is also the same

value as above. See the center column data of Table 12.1.

Thermal Conductivity—Tensor Parameter

Using αT = λ
cpρ with ρ = 7600 kg/m3, we calculated thermal conductivity λ, as

listed in the last column of Table 12.1. First, note that the thermal conductivity λij is a
second-rank tensor, different from the scalar “specific heat capacity”. Second, notice
that the thermal diffusivity difference is mainly attributed to the thermal conductivity
λ difference, depending on the electrical constraint conditions, even after reasonable
calibration with cE

p and cD
p (no distinguishable difference).

Let us discuss the difference among the measured thermal conductivity λ val-
ues for poled short-circuit, poled open-circuit, and unpoled specimens. Note that
once poled, the piezo-ceramic crystallographic symmetry becomes ∞mm (equivalent
symmetry to 6 mm in terms of tensor notations). First, the open-circuit thermal
conductivity λD

33 = 1.30 is 0.61 times of the short-circuit conductivity λE
33 = 2.13. We

denote the superscripts E and D of the conductivity λ, supposing that the sample is
roughly maintained “electric field E constant” and “electric displacement D (or P)
constant” during a rather short experimental time period less than 10 s. Subscript
“33” stands for the tensor component relating to heat flux vector q3 and x-component
of the temperature gradient−grad(θ) (i.e., vector) along the spontaneous polarization
PS direction. Second, the unpoled specimen exhibits a crystallographic symmetry of
isotropic cubic m3m (different from the poled specimens), and the thermal conductiv-
ity λu

11 = 1.12 shows the smallest value, 14% less than that of the poled open-circuit
case (See the last column of Table 12.1). Different from the scalar analysis, the tensor
analysis is directly coupled with the material’s crystallographic symmetry. The un-
poled specimen cannot be discussed in parallel with the poled specimens because of
the crystallographic symmetry difference. Shekhani et al. proposed a new dynamic
“secondary electrothermal coupling factor” kλ33 [6], in the relationship between the
open-circuit λD

33 and short-circuit thermal conductivity λE
33 such as

λD
33 = λE

33(1− kλ33
2
). (12.30)

This secondary electrothermal coupling factor kλ33 = 62% calculated for the
above PZT-APC841 is remarkably higher than the primary electrothermal coupling
factor kET = 0.105 % of the same PZT specimen. The background theoretical ap-
proach is discussed in Section 12.2.

Thermal Conductivity in Pb-Free Piezoelectrics

In 2006, European Union started Restrictions on the use of certain Hazardous
Substances (RoHS), which explicitly limits the usage of lead (Pb) in electronic equip-
ment. Basically, we may need to regulate the usage of lead zirconate titanate (PZT),
currently, the most widely used piezoelectric ceramics, in the future. Due to this
background, research on Pb-free piezoelectrics is now accelerated, including their
high-power performance. A comparison between the maximum vibration velocity in
Pb-free piezoelectric and PZTs indicates 1 m/s (rms) vs. 0.6 m/s in k31-type plate
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specimens. Table 12.2 summarizes the preliminary data on thermal conductivity in
NKN-based materials with the PZT value (both unpoled samples). Pb-free piezo-
ceramics such as (Na,K)NbO3- and (Bi,Na)TiO3-based materials show much higher
maximum vibration velocity than the PZTs [7,8]. The much larger thermal conductiv-
ity found in NKN-based materials, compared with PZTs, may also contribute to this
good high-power performance in NKN-based ceramics, because of the definition of
the maximum vibration velocity, which is defined under the maximum temperature
rise 20 ◦C from room temperature. The heat generated at the nodal point diffuses
quickly due to large thermal conductivity. Try Chapter Problem 12.1 to learn how
the conductivity decreased the maximum temperature at the nodal point.

Table 12.2. Thermal properties of NKN-Cu in comparison with Hard PZT.

Thermal Properties cp (J/kg·K) λ (W/m/K)

Hard PZT 420 1.25
NKN-Cu 580 3.10

Source: Table by author.

12.2. Dynamic Electrothermal Coupling Factor

This section handles the “steady state” of the heat conduction process in order
to establish the steady-state comprehensive equations; that is, in the heat transfer
equation,

(
∂θ
∂t

)
= λ

cpρ

(
∂2θ
∂x2

)
= αT

(
∂2θ
∂x2

)
, the case of

(
∂θ
∂t

)
= 0 is in consideration.

The time dependence
(

∂
∂t

)
will not show up. Try Example Problem 12.3, where the

thermal conductivity can be obtained from the temperature profile θ as a function of
coordinate x, without time dependence monitoring of temperature.

Example Problem 12.3.

Referring to Figure 12.1a, we consider a particular disk specimen case with the
length L area S. The end surface A is maintained at θ0 (high temperature) with a
heat source, and another end surface B is kept at θ = 0 (room temperature) with a
heat sink. After obtaining the steady temperature profile, calculate the temperature
distribution as a function of coordinate x in this disk specimen by using the thermal
conductivity λ, specific heat capacity cp, and mass density ρ.

Solution

We will start from a general thermal conduction equation, taking an x-axis along
the rod length (

∂θ

∂t

)
= αT

(
∂2θ

∂x2

)
, (P12.3.1)
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under the steady-state condition and αT = λ
cpρ :

λ

cpρ

(
∂2θ

∂x2

)
= 0. (P12.3.2)

It is important to remember that the time dependency is not exactly an exponen-
tial function but an “error function” and that the “steady-state” space dependency is
expressed correctly by an exponential function. Equation (P12.3.2) is solved under
the boundary conditions θ = θ0 at x = 0 and θ = 0 at x = L. Since a general solution
is expressed by

θ = A·exp

(√
λ

cpρ
x

)
+ B·exp

(
−
√

λ

cpρ
x

)
, (P12.3.3)

we obtain the following requirements:
{

A + B = θ0

A·exp
(√

λ
cpρ L

)
+ B·exp

(
−
√

λ
cpρ L

)
= 0 . (P12.3.4)

Taking into account the determinant

∣∣∣∣∣
1 1

exp
(√

λ
cpρ L

)
exp
(
−
√

λ
cpρ L

)
∣∣∣∣∣ =

exp
(
−
√

λ
cpρ L

)
− exp

(√
λ

cpρ L
)

,





A = −θ0exp
(
−
√

λ
cpρ L

)
/
[
exp
(√

λ
cpρ L

)
− exp

(
−
√

λ
cpρ L

)]

B = θ0exp
(√

λ
cpρ L

)
/
[
exp
(√

λ
cpρ L

)
− exp

(
−
√

λ
cpρ L

)] . (P12.3.5)

Thus, the temperature profile under the steady state is provided as

θ(x) = [−θ0exp
(
−
√

λ
cpρ L

)
·exp

(√
λ

cpρ x
)
+ θ0exp

(√
λ

cpρ L
)
·exp

(
−
√

λ
cpρ x

)
]

/[exp
(√

λ
cpρ L

)
− exp

(
−
√

λ
cpρ L

)
]

= θ0[exp
(
−
√

λ
cpρ (x− L)

)
− exp

(√
λ

cpρ (x− L)
)
]/[exp

(√
λ

cpρ L
)
− exp

(
−
√

λ
cpρ L

)
].

(P12.3.6)

Since the solution formula is sinh
(√

λ
cpρ (x− L)

)
, as long as we measure tem-

perature θ(x0) at one point x = x0, we can determine αT and then λ value.

12.2.1. Thermal Conductivity Tensor

When a difference of temperature θ is maintained between different parts of
a material, there is a flow of heat q per unit surface area per unit time period, in
general [9]. The heat flow (i.e., heat flux) (unit: W/m2) is defined by −grad(Q)/S
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(Q: heat quantity per unit time, S: cross-sectional area) and also expressed in terms of
temperature gradient in Equation (12.2)

q = −λ

(
∂θ

∂x

)
, (12.31a)

where the proportional constant λ is called “thermal conductivity” (unit: W/K·m). If
we extend this formula into 3D form, a thermal conductivity tensor can be obtained.
If q1, q2, and q3 are the quantities of heat traversing, unit time, and unit areas (called
“heat flux”) perpendicular to Ox1, Ox2, Ox3, respectively, we can define the heat
flux vector q described by (q1, q2, q3). In a thermally isotropic material, the heat
conduction obeys the following law:

q = −λ grad(T). (12.31b)

On the other hand, in an anisotropic material in general, the heat conduction
law is modified as

q = −[λ] grad(T), or




q1
q2
q3


 = −




λ11 λ12 λ13
λ21 λ22 λ23
λ31 λ32 λ33







∂T
∂x1
∂T
∂x2
∂T
∂x3


, (12.31c)

where the vector q is not parallel to grad(T), in general. [λ] is the “thermal conduc-
tivity tensor”. We adopt the so-called “Onsager’s principle”, that is, the symmetry of
the thermal conductivity tensor (see Section 12.2.3).

λij = λji. (12.32)

It is important to note here that when the off-diagonal components exist in the
[λ] matrix, the two vectors, q and grad(T), are not in parallel but keep a cant angle,
in general. Remember that a symmetric tensor can be transformed into a “diagonal
tensor” by referring to its “principal axes” as follows:




λ11 λ12 λ31
λ12 λ22 λ23
λ31 λ23 λ33


→




λ1 0 0
0 λ2 0
0 0 λ3


,

which helps us handle the analysis in a much simpler way. Try Example Problem
12.4 for this diagonalization.

Example Problem 12.4.

Verify that a symmetric matrix can be “diagonalized” using a “unitary matrix”;
thus, if A is a symmetric matrix, there is a unitary matrix U such that UAUt is a
diagonal matrix with non-negative entries.
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Solution

Symmetric matrix: A = At; unitary matrix: U* = U−1 (for real matrix, U =
U−1), where the superscripts, t, *, and −1 stand for “transposed”, “conjugate”, and
“inverse” matrix, respectively.

We consider here so-called “transformation matrices” with real components (see
Section 3.1 in Chapter 3), in particular, such as point symmetric, mirror-symmetric,
and rotation matrices.



−1 0 0
0 −1 0
0 0 −1


,




1 0 0
0 1 0
0 0 −1


, and




cos θ sin θ 0
− sinθ cos θ 0

0 0 1




The transformation matrices are all “unitary” (not “symmetric”!). Let us demon-
strate the rotation matrix U on the thermal conductivity matrix (under the symmetric
assumption) in a simple 2D model. Taking the operation U[λ]U−t, the original
coordinate axes are rotated by angle θ, leading to


 cos θ sin θ

− sinθ cos θ




λ11 λ12

λ12 λ22




 cos θ −sin θ

sin θ cos θ


 =


 [λ11 cos2θ + 2λ12sin θcos θ + λ22 sin2θ] [−λ11sin θcos θ + λ12(cos2

θ−sin2θ) + λ22sin θcos θ]

[−λ11sin θcos θ + λ12(cos2
θ−sin2θ) + λ22sin θcos θ] [λ11 sin2θ − 2λ12sin θcos θ + λ22 cos2θ]


.

(P12.4.1)

In order to obtain the diagonal matrix, the off-diagonal component should be
zero, that is,

−λ11sin θcos θ + λ12(cos2θ−sin2θ) + λ22sin θcos θ = 0.

Note that because of λ12 = λ21 (symmetry), U[λ]Ut becomes also symmetric.
Then, the off-diagonal components of U[λ]Ut can be “zero” simultaneously. Thus,
we obtain the rotation angle θ, which satisfies

tan2θ = −2λ12/(λ11 + λ22). (P12.4.2)

A similar process can be expanded for obtaining the principal axes in the 3D ten-
sor.

12.2.2. Two Special Cases of Steady Heat Flow

Since the two vectors q and grad(T) are not in parallel, in general, to simplify
the analysis, we usually consider two special sample geometries: (a) flat plate and (b)
long rod.

Heat Flow across a Flat Plate

The first geometry is illustrated in Figure 12.4a. As two surfaces of a large flat
plate of crystal are in contact with two good conductors that maintain the surfaces at
different temperatures, the isothermal contour must run parallel to the surfaces of
the crystal (except for the edge parts). Thus, the temperature gradient is assumed to
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be perpendicular to the plate, and the heat flow vector lies in some other direction.
In the analysis, our focus is merely −( ∂T

∂x1
), and the following three equations stand:

q1 = −λ11(
∂T
∂x1

), q2 = −λ12(
∂T
∂x1

), q3 = −λ31(
∂T
∂x1

). (12.33)

Since the transverse heat flow is measured, λ11 is the quantity most readily
measured in the experiment. Refer to Figure 12.1b.

Heat Flow Down a Long Rod

Figure 12.4b illustrates a crystal in a long-rod form with the same crystal orien-
tation as in Figure 12.4a. If a temperature difference is maintained between the two
ends of the rod, the conductivity of the crystal is supposed to be much larger than
that of its surroundings. Thus, the direction of heat flow must be parallel to the rod
axis. In this case, our focus is merely q1, and the following equation is obtained:

q1 = −
[

λ11

(
∂T
∂x1

)
+ λ12

(
∂T
∂x2

)
+ λ31

(
∂T
∂x3

)]
. (12.34)

Or, using the “thermal resistivity” defined by the inverse conductivity matrix as




λ11 λ12 λ31
λ12 λ22 λ23
λ31 λ23 λ33



−1

=




r11 r12 r31
r12 r22 r23
r31 r23 r33


, (12.35)

the following three equations are obtained:
(

∂T
∂x1

)
= −r11q1,

(
∂T
∂x2

)
= −r21q1,

(
∂T
∂x3

)
= −r31q1. (12.36)

Since the temperature gradient along the length of the rod
(

∂T
∂x1

)
is most easily

measured in the experiment, the thermal resistivity component r11 is immediately
obtained from this rod measurement. Though the isothermal contour is not pre-
cisely perpendicular to the rod axis x1, because the rod diameter is not large in
comparison with the length, the temperature deviation in the cross-section is not
measurably large.

x1

q
q

−gradT
−gradT

x1

(a) (b)

Figure 12.4. Heat flow models: (a) across a flat plate and (b) down a long rod.
Source: Figure by author.
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12.2.3. Thermodynamical Arguments—Onsager’s Principle

We have discussed the symmetry of tensors such as permittivity, elastic compli-
ance, and piezoelectric constant in Chapter 3. The symmetry of these tensors follows
because we are able to write the expression for the energy of a crystal as a function
of the electric field and stresses. We need to emphasize the fact that energy is a
function only of these variables (provided they are not too large to keep the linear
relationship).

For instance (refer to Chapter 2), the Gibbs free energy (dG = −SdT − xdX −
DdE) can be represented in the Taylor expansion series in terms of only electric field
(E1, E2, E3) as

G(E1, E2, E3) = ∑
i,j

1
2

(
∂2G

∂Ei∂Ej

)
EiEj. (12.37)

Taking the first derivative in terms of Ei, we obtain

Di = −
(

∂G
∂Ei

)
= −∑

j

(
∂2G

∂Ei∂Ej

)
Ej. (12.38)

From the definition of the linear permittivity,




D1
D2
D3


= ε0




ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33






E1
E2
E3


, (12.39)

we can understand the interrelation of the permittivity with the Gibbs energy as

εij = −
(

∂2G
∂Ei∂Ej

)
. (12.40)

As we believe the exchangeable relation in the energy derivative equations,
(

∂2G
∂Ei∂Ej

)
=
(

∂2G
∂Ej∂Ei

)
,

we can derive the symmetric property of the permittivity matrix, which is

εij = ε ji. (12.41)

Such a procedure used above cannot be used in a dynamic transfer phenomenon
such as thermal conduction, because no such energy expression exists, though we
introduced the symmetry of the thermal conductivity matrix in advance, in Example
Problem 12.4.

Another important issue of the aforementioned tensors is related to the “equilib-
rium state”; for example, when we describe “elasticity”, we strain the crystal, and we
can work as slowly as we want from one equilibrium state to another. Conventional
“thermodynamics” is almost equivalent to a “reversible phenomenon”. We may call
it, in fact, a “thermostatic” theory. On the other hand, thermal conduction cannot be
described as an equilibrium state. In the 1930s, Onsager formulated advanced ther-
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modynamics of “irreversible processes”, which is expanded further for the purpose
of our thermal conduction in the next section.

12.2.4. Thermodynamical Treatment of Thermal Conductivity

Based on the discussion conducted by Nye [9], we consider here the thermody-
namical treatment of thermal conductivity in piezo-ceramic PZTs.

Review of Electrothermal Effect

First, we review the content of the primary electrothermal effect discussed
in Chapter 2, that is, a “reversible phenomenon”. Under the stress-free condition
(neglecting piezoelectric effect), we can obtain the following constitutive equations in
pyroelectric materials, in terms of temperature θ = (T − TR), electric field E, entropy
S per unit volume (J/K/m3), and electric displacement D per unit area (C/m2):

S = −
(

∂2G
∂T2

)
θ −

(
∂2G

∂T∂E

)
E, (12.42a)

D = −
(

∂2G
∂T∂E

)
θ −

(
∂2G
∂E2

)
E, (12.42b)

or
S = (CE

p /T)θ − pE, (12.43a)

D = −pθ + ε0εXE, (12.43b)

where the following notations are used and denoted as CE
p : “heat capacitance”

(per unit volume) under X = 0 and E = 0 (CE
p = ρcE

p
, cE

p : “specific heat capacity”),

ε0εX: permittivity under constant stress X, p: pyroelectric coefficient. Though all
Cp, εX and p are temperature and the electric field dependent in general on large
modulation of θ and E, we adopt the followings as a matter of fact,





ρcE
p = −T

(
∂2G
∂T2

)
X,E

ε0εX = −
(

∂2G
∂E2

)
T,X

p =
(

∂2G
∂T∂E

)
X

. (12.44)

The primary “electrothermal coefficient” p is usually called “pyroelectric coeffi-
cient”, defined by

p =

(
∂2G

∂T∂E

)

X
= −( ∂P

∂T
)

X
, (12.45)

where we used the relation ( ∂G
∂E )X = D (≈ P).
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We can denote the primary “electrothermal coupling factor” kET from Equations
(12.43a) and (12.43b) as

kET2
=

(Couplingfactor)2

(Productofthediagonalparameters)
=

p2
(

ρcE
p /T

)
ε0εX

. (12.46)

Utilizing typical values of coefficients in a PZT (APC 841), we obtain p =
0.5× 10−4 [C/m2·K], cE

p = 340 (J/kg·K), ρ = 7600 (kg/m3), εX = 1375, and the

primary electrothermal coupling factor is calculated as kET2
= 0.11× 10−6—a very

small energy transduction rate!

Constraint Heat Capacitance and Permittivity

In Equation (12.44), we introduced CE
p heat capacitance (per unit volume) under

X = 0 and E = 0, that is, under a short-circuit condition of a ferroelectric specimen’s
surface electrodes. We may consider a different specific heat capacity under an open-
circuit condition or no surface electrode, ideally (i.e., D = constant or zero). Taking the
first derivative of Equation (12.43a) with respect to T by keeping X = D = 0,

(
∂S
∂T

)
X,D

= (
CE

p

T
)(

∂θ

∂T
)

X,D
− p(

∂E
∂T

)
X,D

. (12.47)

From Equation (12.43b) at D = 0, we obtain

E =
p

ε0εX θ, (12.48)

(
∂E
∂T

)
X,D

=
p

ε0εX . (12.49)

If we denote CD
p = T( ∂S

∂T )X,D and ( ∂θ
∂T )X,D = 1, we can obtain

CD
p = CE

p −
Tp2

ε0εX = CE
p [1−

p2
(

CE
p /T

)
ε0εX

] = CE
p (1− kET2

). (12.50)

Though heat capacitance Cp changes theoretically depending on the E-constant
or D-constant condition, a distinguishable difference cannot be anticipated because of
the small value of the “primary electrothermal coupling factor”, kET2

= 0.11× 10−6.
On the other hand, permittivity defined isothermally may change in an adiabatic

condition theoretically when no heat flow is hypothesized, such as the case where
a ferroelectric specimen is suspended in a vacuum chamber [10]. From Equation
(12.43b), isothermal permittivity (θ = 0) is given by

ε0εX,T = (
∂D
∂E

)
X,T

. (12.51)

474



Under “adiabatic condition”, by putting S = 0 in Equation (12.43a), we obtain
the temperature θ change under electric field E applied as

θ =
pT
CE

p
E. (12.52)

Inserting Equation (12.52) into Equation (12.43b),

D = −p
pT
CE

p
E + ε0εX,TE = ε0εX,T

[
1− Tp2

CE
p ε0εX

]
E. (12.53)

Thus, “adiabatic (S = constant) permittivity” is related to “isothermal (T = con-
stant) permittivity” again by using the primary electrothermal coupling factor kET as

ε0εX,S = ε0εX,T(1− kET2
). (12.54)

We have learned above that if the electrothermal effect exists in a crystal, its heat
capacitance Cp and permittivity εX are changed theoretically by the external electric
constraint (E- or D-constant condition), though the difference is not distinguishably
large due to the small value of kET2.

Modified Onsager’s Principle

Let us now consider the “irreversible thermodynamics” of thermal conductivity
and derivation of the “secondary coupling factor kλ

33” by using a “space-gradient
model” in Figure 12.5. Note again that the time dependence is not considered in the
steady-state analysis, but the energy flow per second is considered (unit: W = J/s).

θ 0 θ 2 θ = 0

q1

P0

0

A B

L x

q2

P1

q3

P2

q4

P3

θ1 θ 3 θ 4

Figure 12.5. A 1D thermal conduction model of an electrothermal material under
open-circuit condition. Source: Figure by author.

Electrothermal Equations

To refresh the reader’s mind, the reversible phenomenon (no heat flow), i.e.,
Equations (12.43a) and (12.43b), are repeated below (θ = (T − TR)):
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{
S = (CE

p /T)θ − pE
D = −pθ + ε0εXE

.

Note here that we consider basically unit volume values such as S = (J/Km3).

The 1D Thermal Conduction Model

We will now consider thermal conduction equation derivation under a “steady-
state” condition, by converting the thermal parameters into “space-gradient” com-
ponents. As shown in Figure 12.5, when the end surfaces A and B of a flat-plate
crystal are maintained isothermally at θ = θ0 (high temperature) and at θ = 0 (room
temperature), with heat source and sink (i.e., “heat reservoir”) contacted, the temper-
ature distribution in space (recall Example Problem 12.3) generates also the spatial
distribution of heat flux, polarization, and electric field, as illustrated in Figure 12.5.

Thermal Conductivity Equations

Initially, entropy dS = dQ/T is considered in a unit volume. Then, heat flux,
defined by q = −grad(Q), is the quantity of heat passing through the cross-section
of rod per unit area per unit time (unit: W/m4); that is, dq is the thermal energy flow
from unit “volume” Q, given by the total energy flow dQ = Sdqdx (S: surface).




q1
q2
q3


 = −T∇(S) = −T




∂S
∂x1
∂S
∂x2
∂S
∂x3


[q : W/m4, S : W/K/m3]. (12.55)

On the other hand, thermal conductivity is defined in the following equation:

q = −[λ]∇(T), or



q1
q2
q3


 = −




λ11 0 0
0 λ22 0
0 0 λ33







∂T
∂x1
∂T
∂x2
∂T
∂x3


[W/m4]

(12.56)

In parallel, the temperature gradient is introduced as

∇(θ) =




∂θ
∂x1
∂θ

∂x2
∂θ

∂x3


 [K/m] (12.57)

The operator “Del” or “Nabra” ∇ is the “space gradient”, ∇ = i d
dx + j d

dy + k d
dz

, which is also expressed by grad(scalar). Next, we introduce the “space-gradient”
parameters into the vector, and electric parameters, D (or P), and E, with “divP”
and divE for the conversion. Referring to Table 12.3, the conversion principle is
summarized as follows:

S→ −∇(S) , θ → −∇(θ) ; P→ ∇·P , E→ ∇·E .
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Let us now consider the parameter exchanges from Equations (12.43a) and
(12.43b):

−∇(S) = q
T

= (λ′/T)(−∇(T)) + p′(divE), (12.58a)

with unit of [WK−1m−3/m] = [Wm−4/K] = [λ′/K]·[K/m] + [p′·Vm−1/m] = total
unit [W/Km4],

divP = p′(−∇(T)) + ε0ε′(divE), (12.58b)

With unit of [Cm−2/m] = [p′·K/m] + [CV−1m−1·Vm−1/m] = total unit [C/m3].

Table 12.3. Space-gradient-related equations of physical parameters.

Integral Form Derivative Form

Thermal
Properties Entropy S =

t
(Qth/T)dV

(unit: J/K)

(unit volume)
grad(s) = q/T
(unit: J/K·m4)

Electric
Properties Potential V = −

∫
E·dx

(unit: V)
E = −grad(V)

(unit: V/m)

Charge Qe =
s

PdS
(unit: C)

(unit volume)
P = grad′(Qe)
(unit: C/m2)

Polarization
(unit volume)

div P = σ
(unit: C/m3)

Source: Table by author.

New parameters, λ′, ε0ε′, and p′ are introduced above, relating to the non-
prime parameters, but due to the difference in driving force parameters ((−∇(T))
and (divE)) and in base units (volume and time), modification from the original
parameters may be required. If we confirm the (unit) of all parameters, by referring
to the following lines of Equations (12.58a) and (12.58b), we can derive the unit of λ’
= (W/K·m3), ε0ε = (C/Vm) without particular discrepancy. However, regarding the
coupling parameter p′, Equation (12.58a) gives (C/m2K·s), while Equation (12.58b)
gives (C/m2·K), having discrepancy with (1/s) because the heat energy is defined
per second. If we admit this discrepancy due to the steady state, taking the permission
(W) equivalent to (J), p′ has the same unit of the pyroelectric coefficient. Note also
that because the polarization equation is based on unit volume, the thermal energy
equation is also normalized as the unit volume energy density (J/m3) intentionally.

In our simple model, we focus only on the x-direction component, which we
assume in the spontaneous polarization direction PS. Temperature gradient provides
the polarization modulation ∆P locally and equivalent charge σ = div(P), which may
also generate depolarization field E in the specimen, depending on the open- or short-
circuit condition. By keeping the temperature distribution, we consider the driving
parameters (such as intensive parameters) as (−∇(T)) (vector parameter) and (divE)
(scalar parameter) for determining the extensive-like parameters −∇(S) = ( q3

T ) and
(divP). Knowing the facts in the 1D model—namely, that (1) qx = −λ ∇(θ), and
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(2) heat flux seems to be controlled by the electric field E (or (divE)), the difference
between λD

33 and λE
33 may be derived. Note that the above equations are valid merely

when the room temperature is reasonably low from the Curie temperature, enough
to satisfy ∇

(
p
′)

, ∇(ε0ε)� p′, ε0ε; that is, the change in pyroelectric-like coefficient
and permittivity with temperature (or space coordinate x) is reasonably small.

Secondary Electrothermal Coupling Coefficient kλ
33

From Equations (12.58a) and (12.58b), we define a new “secondary electrother-
mal coupling coefficient” kλ

33 as

kλ
33

2
=

(Coupling factor)2

(Product of the diagonal parameters)
=

Tp′2

λε0εX . (12.59)

This is a significant assumption in order to explain the difference experimentally
observed between λE

33 under a short-circuit condition and λD
33 under an open-circuit

condition, though Equations (12.58a) and (12.58b) are not in an equilibrium state
but in an irreversible state. If we assume divP = 0 under an open-circuit condition,
we obtain

(divE) =
p
′

ε0εX (∇(θ)), (12.60)

from Equation (12.58b); then, Equation (12.58a) is transformed into

q = λ(−∇(T)) + Tp
′
(divE) = λ(1− Tp

′2

λε0εX )(−∇(T)). (12.61)

Thus, we can derive the following equation:

λD
33 = λE

33 (1− kλ
33

2
). (12.62)

The reader can understand that Equation (12.59) provides the support for Equa-

tion (12.62) formula. The experimental result λD
33 = 0.61 λE

33 gives kλ
33

2
= Tp′2

λE
33ε0εX =

0.39. Knowing λE
33 = 2.13 W/K·m/m2 and εX = 1375, T = 300K, we can obtain

p
′
= 0.58× 10−5 (C/m2K·s), which is 1/10 smaller than the “reversible” pyroelectric

coefficient p = 0.5× 10−4 (C/m2·K). Significant enhancement of the “secondary
electrothermal coupling” comes from the very small thermal conductivity λ in
comparison with heat capacitance Cp.

12.2.5. Thermal Conductivity Dependence on Electric Constraint Condition

Thermal Conductivity Review

Thus far, we have introduced reversible electrothermal phenomenon equations,
Equations (12.43a) and (12.43b),

{
S = (CE

p /T)θ − pE
D = −pθ + ε0εXE

,
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followed by the irreversible electrothermal phenomenon equations, Equations (12.58a)
and (12.58b),

{
−∇(S) = (λ/T)(−∇(T)) + p

′
(divE)

divP = p′(−∇(T)) + ε0ε0εX(divE)
.

Then, we introduced the primary and secondary electrothermal coupling factors
as follows:

kET2
= p2

(
ρcE

p /T
)

ε0εX
,

kλ
33

2
= Tp′2

λε0εX ,

which show practical values of kET2
= 0.11× 10−6 and kλ

33
2
= 0.39, originated from

very small thermal conductivity λ in comparison with the heat capacitance Cp, as well
as the difference among the pyroelectric coefficient p and p’ in the irreversible phe-
nomenon. Though theoretical and experimental background has not been clarified
yet, we will discuss below a possible model of why this amplified coupling parameter
kλ

33
2 is derived, which leads to the thermal conductivity changes depending on the

electrical boundary condition on the specimen from the microscopic viewpoint.

Grain/Domain Model

We propose an assumption on the “depolarization field” generation during
sudden temperature rise by pyroelectric effect, as shown in Figure 12.6: (a) a poled
specimen under the short-circuit condition, (b) a poled specimen under the open-
circuit condition, and (c) unpoled specimen. As a polycrystalline PZT specimen is
composed of multiple microcrystals, the situation is not actually so simple as de-
scribed here. However, we assume that poled specimens are handled as a completely
aligned single-crystal-like with monodomain, while the unpoled specimens have no
net polarization, but each grain (i.e., microcrystal) generates the polarization change
with temperature, which generates the so-called “depolarization field”, described as
Edep = −( ∆P

ε0εX ) in each domain and grain if no free charge is migrating in the crystal.
Note first that the “heat capacity” is a “scalar” parameter, the value of which

is not affected by the specimen orientation. When a specimen is poled and short
circuited with electrodes on the whole specimen (except for the narrow specimen
sides) in Figure 12.6a, the depolarization field inside the material should be zero
because the free charge in the electrode covers the bound charge on the surface
and compensate the internal field; thus, cE

p is expected to be observed. On the
contrary, under the open-circuit condition, despite the surface electrode, which
provides E-constant two-dimensionally on the disk surface, along the heat flow
direction, D-constant seems to be maintained (at least a short time period) by the
depolarization field generation, as illustrated in Figure 12.6b. We can expect to
observe cD

p in the short experimental period (such as 10 seconds). Remember that
with or without the internal electric field depending on the open- or short-circuit
conditions, cE

p ≈ cD
p in practice. A complex situation is expected in an unpoled

specimen: Though the polarization directions are randomly aligned in the specimen,
since each grain experiences the polarization reduction ∆P with temperature, the
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internal depolarization field may be generated in each grain. We assume no free
charge on the grain boundary region inside the specimen to compensate for the
depolarization field, though the total macroscopic field may be zero. However,
because the adjacent grain exhibits the random direction of local polarization, the
bound charge on a single grain edge may partially be concealed by the adjacent
grain/domain bound charges (Figure 12.6c). Thus, the specific heat capacity cD

p is
expected to be observed as the value in between cD

p and cE
p . Note, however, that the

short measuring time is essential to find the cD
p value.
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(a) (b) (c)

Figure 12.6. Depolarization field generation during temperature rise by pyroelectric
effect: (a) poled specimen under short-circuit condition, (b) poled specimen under
open-circuit condition, and (c) unpoled specimen. Source: Figure by author.

Though the practical values of cD
p and cE

p in PZTs are not measurably different be-
cause of a small primary electrothermal coupling factor kET

33 , the above grain/domain
configuration model on the E-constant or D-constant situation has been supported
by Park’s recent report on the elastic performances [11]. The study reported the
elastic compliances and elastic losses on various PZT piezo-ceramic specimens: (1)
poled/short-circuited, (2) poled/open-circuited, and (3) unpoled k31 and k33 spec-
imens. Due to the large electromechanical coupling factor k33 and k31 in PZTs, the
difference among sD

33 and sE
33 can easily be distinguished. The following inequality

relationship holds, regardless of hard and soft type PZT:

1. sD
33 < sD

11 < se f f < sE
11 < sE

33,
2. tan φ’’’

33 < tan φ11 < tan φe f f < tan φ’
11 ≈ tan φ’

33.

Here, the subscript “eff ” means the values on unpoled specimens. From the
inequality relationship above, we can conclude that elastic compliance and elastic loss
of unpoled piezoelectric ceramics are not simply derived from a statistical average of
sD

33 and sD
11 or corresponding elastic losses but “intermediate” between intensiveness

and extensiveness; the electrical constraint condition of unpoled piezo-ceramics is
not purely the D-constant condition. Relationship 1 was proposed by Fett et al. [12],
and relationship 2 was demonstrated by Xie [13] in the measurement of elastic loss
of unpoled piezoelectric ceramic. The intermediate elastic property of unpoled
piezoelectric ceramic can be explained with a simplified assumption—i.e., each grain
is treated as being a microscale single crystal with a multidomain state that has no
net polarization (Figure 12.6c). For unpoled cases, even though the polarization
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is randomly assigned, each domain in a grain possesses spontaneous polarization
and generates a “depolarization field” for a short period, in general, if the grain
boundary is highly insulative with no migrating charge. However, there are two
possibilities—namely, that the surface-bound charges between the adjacent grains
have either the same polarity (++ or − −) or opposite polarity (+ and −). The grain
boundary with the same polarity area may exhibit a D-constant condition, while the
boundary with the opposite polarity will screen the depolarization field effectivity
(similar to the surface electrode), leading to the E-constant condition. Therefore,
unpoled piezoelectric ceramic shows a mix of D- and E-constant behaviors in terms
of elasticity (elastic compliance and elastic loss).

Heat Flux in Grain/Domain Model

Now, we will touch upon large differences between λD
33 and λE

33 with large “sec-
ondary electrothermal coupling factor” kλ

33= 0.62, comparable to the electromechanical
coupling factor k33. Why does this significant enhancement come in the “irreversible”
process, in comparison with the “reversible” phenomenon with “primary electrother-
mal coupling factor” kET = 0.105 %? We discuss a microscopic “phonon model” on
the heat flow in conjunction with the above phenomenological explanation. Refer to
Chapter 14 on the phonon interaction with anharmonic lattice springs.

A significant difference in magnitude between “specific heat capacity” and
“thermal conductivity” exists in a flow of heat energy; that is, “phonon” is always
propagating in a crystal from high temperatures to low temperatures in the heat flow
process (i.e., heat flux q), even though the “steady-state” condition is realized. In
“unpoled” specimens, owing to the random alignment of grain/domain orientations,
the propagating phonon is reflected and/or scattered at the grain/domain bound-
aries in a bulk specimen because of the acoustic impedance (

√
ρc, c: elastic stiffness)

mismatch between the adjacent grains and domains (recall sD
33 < sD

11). Thus, thermal
resistivity increase (or conductivity decrease) is anticipated, compared with poled
specimens. Refer to the thermal conductivity data of unpoled specimens in Table 12.1.

Once poled, due to the better crystallographic alignment, thermal conductivity
should increase significantly, though the grain boundary reflections still remain.
The difference between λD

33 and λE
33 may be attributed to the “depolarization field”

generated by temperature gradient via the primary pyroelectric effect. Temperature
gradient generates the polarization deviation ∆P, which generates the depolarization
field Edep = −( ∆P

ε0εX ) in parallel to the spontaneous polarization, in order to satisfy
the D-constant condition, when the top and bottom electrodes are open circuited.
On the other hand, when the electrodes are short circuited, the depolarization field
is canceled, leading to the E-constant condition. Compared with a normal (E = 0)
phonon propagation speed, the local electric field (constraint condition) in a crystal
may impede the lattice vibration or phonon propagation suppression. This may
explain the difference between λD

33 and λE
33 and large “secondary electrothermal

coupling factor” kλ
33, though this is just one of the explanation possibilities.

12.3. Thermal Analysis on Piezoelectric Transducers

Based on the aforementioned knowledge, we introduce two practical thermal
analysis case studies in piezoelectric transducers in this section. Heat generation
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in piezoelectric materials originates from three losses—dielectric, elastic, and piezo-
electric losses. The hysteresis curves—dielectric displacement D vs. electric field E,
elastic strain x vs. stress X, and piezoelectric x vs. E under a stress-free condition,
and D vs. X under a short-circuit condition—correspond to the dielectric, elastic, and
piezoelectric coupling losses, respectively.

We discuss the heat generation mechanisms of piezoelectric actuators under
(1) off-resonance operation for actuator applications (under a large electric field, 1
kV/mm or higher), where the dielectric loss is the primary origin, and (2) resonance
(or antiresonance) operation for ultrasonic transducer applications (under a high
vibration condition at a low electric field, 100 V/mm or lower), where the elastic loss
is the primary heat generation factor. The temperature distribution profile on the
piezoelectric specimen was simulated with three terms: (1) heat generation from the
material’s losses, (2) thermal diffusion/conduction in a specimen, and (3) thermal
radiation into the environment. As the thermal diffusion/conduction coefficients
significantly affect the temperature profile analysis, the contents discussed in the
previous sections are very essential.

12.3.1. Pseudo-DC Piezoelectric Actuators

Heat Generation from Multilayer Actuators

Zheng et al. reported the heat generation at an off-resonance frequency from
various configurations of multilayer (ML)-type piezoelectric ceramic (soft PZT) actu-
ators [14]. Figure 12.7 shows the structure of the multilayer piezoelectric actuators.
The temperature change with time in the actuators was monitored when driven at 3
kV/mm (high electric field) and 300 Hz (much lower frequency than the resonance
frequency) (Figure 12.8a). The specimen temperature reached 140 ◦C, depending on
the size, showing an exponential increase with the operation time lapse. Figure 12.8b
plots the saturated temperature as a function of Ve/A, where Ve is the effective
volume (electrode overlapped part, abL in the figure), and A is the all-surface area.
As the temperature was uniformly generated in a bulk sample (no significant stress
distribution, except for the small inactive portion of the external electrode sides),
this linear relation is reasonable because the volume Ve generates the heat, which is
dissipated through area A. Thus, if we need to suppress the temperature rise, a small
Ve/A design is preferred. Instead of a single ML, four (1/4) small MLs connected in
parallel are preferred.
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External
electrode 

Polarization direction 
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b

L

Internal electrode

Figure 12.7. Multilayer piezoelectric actuator structure. Source: [2] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms; CRC Press, 2020; p. 174. Reproduced
by permission of Taylor & Francis Group.
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Figure 12.8. (a) Temperature change with driving time for ML actuators; (b) tem-
perature rise at off-resonance vs. Ve/A in various size soft PZT ML actuators (Ve:
volume, A: surface area). Source: [2] ©Uchino, K. High-Power Piezoelectrics and
Loss Mechanisms; CRC Press, 2020; p. 174. Reproduced by permission of Taylor &
Francis Group.

Thermal Analysis on ML Actuators

According to the law of energy conservation, the amount of heat stored in the
piezoelectric, which is just the difference between the rate at which heat is generated,
Qg, and that at which the heat is dissipated, Qd, can be expressed as

Qg − Qd = Vρcp(dT/dt), (12.63)

where it is assumed that a “uniform temperature distribution” exists throughout
the sample, and V is the total volume, ρ is the mass density, and cp is the specific
heat capacity (per mass) of the specimen. The heat generation in the piezoelectric is
attributed to losses. Thus, the rate of heat generation, Qg, is expressed as

Qg = wfVe, (12.64)
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where w is the loss per driving cycle per unit volume, f is the driving frequency,
and Ve is the effective volume of active ceramic (no-electrode parts are omitted).
According to the measurement conditions (no significant stress in the sample at
off-resonance), w may correspond primarily to the dielectric hysteresis loss (i.e., P-E
hysteresis), we, which is expressed in terms of the intensive dielectric loss tanδ’ as

w = we = πεXε0E0
2tanδ’. (12.65)

If we neglect the transfer of heat through conduction, the rate of heat dissipation
(Qd) from the sample is the sum of the rates of heat flow by radiation (Qr) and by
convection (Qc), that is,

Qd = Qr + Qc = eAσ(T4 − To
4) + hcA(T − To), (12.66)

where e is the emissivity of the sample, A is the sample surface area, σ is the Stefan–
Boltzmann constant, To is the initial sample temperature, and hc is the average
“convective heat transfer coefficient”. Thus, Equation (12.63) can be written in the
following form:

wfVe − Ak(T)(T − To) = Vρcp(dT/dt), (12.67)

where the quantity
k(T) = σe(T2+ To

2)(T + To) + hc, (12.68)

is the overall “heat transfer coefficient”. If we assume that k(T) is relatively insensitive
to temperature change (if the temperature rise is not large), solving Equation (12.67)
for the rise in temperature of the piezoelectric sample yields

T − To = [wfVe/k(T)A](1 − e−t/τ), (12.69)

where the time constant τ is expressed as

τ = ρcpV/k(T)A. (12.70)

We can understand that the specimen temperature rise follows only when the
heat transfer coefficient k(T) is nearly constant.

As t→ ∞ the maximum temperature rise in the sample becomes

∆T = wfVek(T)A, (12.71a)

while, as t→ 0, the initial rate of temperature rise is given by

dT/dt = (wTfVe/ρcpV) = ∆T/τ, (12.71b)

where wT can be regarded under these conditions as a measure of the total loss of
the piezoelectric. The dependence of k(T) on applied electric field and frequency is
shown in Figure 12.9a,b, respectively. Note that k(T) is almost constant, as long as the
driving voltage or frequency is not very high (E < 1 kV/mm, f < 2 kHz). The total
loss, wT, as calculated from Equation (12.71b), is given for three multilayer specimens
in Table 12.4, three values of which are almost the same in less than 2% deviation. In
parallel, we measured the P-E hysteresis losses under stress-free conditions. The we
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values obtained using Equation (12.65) are also listed in Table 12.4 for comparison. It
is intriguing that the extrinsic P-E hysteresis loss contributes more than 90% of the
calculated total loss associated with the heat generated in the operating piezoelectric
specimen [14,15]. We can conclude that the heat generation of the piezoelectric
specimen under high-electric field off-resonance operation is primarily originated
from the intensive dielectric loss factor, tanδ’.
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Figure 12.9. Overall heat transfer coefficient, k(T), plotted as a function of applied
electric field (a), and of frequency (b) for a PZT ML actuator with 7 × 7 × 2
mm3 driven at 400 Hz. Source: [2] ©Uchino, K. High-Power Piezoelectrics and Loss
Mechanisms; CRC Press, 2020; p. 176. Reproduced by permission of Taylor &
Francis Group.

Table 12.4. Loss and overall heat transfer coefficient for PZT multilayer samples
(under E = 3 kV/mm, f = 300 Hz) [14].

Actuator 4.5 × 3.5 × 2.0 mm3 7.0 × 7.0 × 2.0 mm3 17 × 3.5 × 1.0 mm3

wT (kJ/m3)
[= ρcpV

f Ve
( dT

dt )t→0]
19.2 19.9 19.7

P-E hysteresis loss
(kJ/m3) 18.5 17.8 17.4

k(T) (W/m2 K) 38.4 39.2 34.1

Source: [2] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms; CRC Press, 2020;
p. 176. Reproduced by permission of Taylor & Francis Group.

12.3.2. Resonance Drive Piezoelectric Transducers

Heat Generation from a Resonating Piezoelectric Specimen

Tashiro et al. observed the heat generation in a rectangular piezoelectric plate
during a resonating drive [16]. Even though the electric field is not large, consid-
erable heat is generated due to the large induced strain/stress at the resonance.
The maximum heat generation was observed at the nodal regions for the resonance
vibration, which correspond to the locations where the maximum strains/stresses
are generated.

The ICAT at Penn State University also worked on the heat generation compre-
hensively in rectangular piezoelectric k31 plates (Figure 12.10) when driven at the
resonance [17]. The temperature distribution profile in a PZT-based plate sample was
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observed with a pyroelectric infrared camera (FLIR Systems ThermaCAM S40 outfit-
ted with a 200 mm lens), as shown in Figure 12.11, where the temperature variations
are shown in a sample driven at (a) the first (28.9 kHz) and (b) second resonance
(89.7 kHz) modes, respectively. The highest temperature (bright spot) is evident at
the nodal line areas of the length resonance for the specimen in Figure 12.11a,b. This
observation supports that the heat generated in a resonating sample is primarily
originated from the intensive elastic loss, tanφ’. Remember that the “maximum
vibration velocity” is defined as the velocity under which 20 ◦C temperature rise
occurs at the maximum temperature point (i.e., nodal line!) in the sample.

y
z

0
b x

L

w

Pz

Figure 12.10. A rectangular piezo-ceramic plate (L � w � b) for a longitudinal
mode through the transverse piezoelectric effect (d31). Source: [18] ©Uchino, K.
Micromechatronics, 2nd ed.; CRC Press, 2019; p. 111. Reproduced by permission of
Taylor & Francis Group.
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Figure 12.11. Temperature variations in a PZT-based plate sample observed with
an infrared camera, driven at (a) first resonance and (b) second resonance mode.
Source: [2] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms; CRC Press,
2020; p. 177. Reproduced by permission of Taylor & Francis Group.

Heat Generation at the Antiresonance Mode

The resonance and antiresonance are both mechanical resonances with the elec-
trical admittance maximum and almost zero (or maximum), respectively, when
electrically excited. We can amplify the generating displacement (or vibration veloc-
ity) significantly by the factor of mechanical quality factor QA at the resonance under
constant voltage drive, while by QB at the antiresonance under constant current
drive. In the k31 mode, we derived the mechanical quality factors QA and QB as
follows [19]:

QA,31 =
1

tan φ11’
, (12.72a)

1
QB,31

=
1

QA,31
− 2

1 + ( 1
k31
− k31)2ΩB,31

2

(
2tan

′
θ31 − tan

′
δ33 − tan

′
φ11

)
, (12.72b)
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where tanδ33
′, tanφ11

′, tanθ31
′ are intensive loss factors for ε33

X, s11
E, d31, respectively,

and ΩB,31 is the normalized antiresonance frequency as follows:

ΩA,31 =
ωal
2vE

11
=

π

2
, [v11

E = 1/
√

ρs11
E] (12.73a)

ΩB,31 =
ωbl
2vE

11
, [1− k31

2 + k31
2 tan ΩB

ΩB
= 0] (12.73b)

where the antiresonance (normalized) frequency ΩB,31 is k31 dependent and can be
obtained from the equation, 1− k31

2 + k31
2 tan ΩB

ΩB
= 0. As the intensive dielectric loss

tanθ31
′ is larger than (tan δ33’ + tan φ11’)/2 in PZT piezo-ceramics, QB at antireso-

nance is higher than QA at resonance; that is, the antiresonance operation seems to
be more efficient than the resonance drive.

Figure 12.12a,b show temperature variations in a PZT-based plate specimen
driven at the (a) antiresonance and (b) resonance frequency under the same vibra-
tion velocity (i.e., almost the same output mechanical energy), which clearly exhibit
lower temperature rise in the antiresonance, than that in the resonance drive. Re-
member the similar resonance and antiresonance vibration modes for a reasonable
electromechanical coupling factor k31 = 30% [17]. In comparison with the fundamen-
tal resonance mode, though the antiresonance mode exhibits the strain-zero lines (i.e.,
anti-node lines) slightly inside from the plate edges for this small k31 case, the overall
vibration configurations for resonance and antiresonance modes are rather close to
each other—more specifically, as long as the vibration velocity at the plate edge is
the same, the total mechanical energy is assumed to be the same for both resonance
and antiresonance operations. Numerical profiles of the temperature distribution for
the A- and B-type resonance modes are shown in Figure 12.12c for various vibration
velocity, which seems to be pseudo-sinusoidal curves in terms of the length position
coordinate. Under the same vibration velocity, 550 mm/s RMS, the resonance nodal
line area shows the temperature up to 100 ◦C, while the antiresonance mode shows
the maximum around 60 ◦C, indicating a dramatic reduction in heat generation
under the antiresonance drive.

Trefl = 20 Tatm = 20 Dst = 0.2 
2/ 6/08  7:23:39 AM   −40 - +120 e =  1 .00

+1  29.4
+2  28.7
+3  28.2

− 27.6

31

27

°C

29.5

FLIR

25.9

1 2 3

x−

+1  30.5
+2  29.4
+3  28.1

−

31

−x  28.0

Trefl = 20 Tatm = 20 Dst = 0.2 
2/ 6 /08  8:05:55 AM   −40 - + 120  e =  1 .00

27

°C

30.6

FLIR

26.2

1 2 3

−

(a) (b)

Figure 12.12. Cont.
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Figure 12.12. Temperature variations in a PZT-based plate specimen observed with
a pyroelectric infrared camera when driven at the (a) antiresonance and (b) reso-
nance frequency; (c) numerical temperature profile for the A- and B-type resonance
modes. Source: [2] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms; CRC
Press, 2020; p. 178. Reproduced by permission of Taylor & Francis Group.

Thermal Analysis on the Resonance Mode

Heat Transfer Modeling

We developed a 1D heat transfer model for the k31 mode piezoelectric rectangu-
lar plate around the resonance/antiresonance frequency range [20]. In comparison
with the off-resonance model, where the heat is generated primarily from the dielec-
tric loss and the uniform temperature distribution profile due to no particular stress
in the specimen, the resonance case generates the heat originated from the intensive
elastic loss on sinusoidal stress distribution of a specimen. Since the initial heat
source is sinusoidally distributed in the specimen, we need to integrate the thermal
diffusivity of the piezo-ceramic in order to analyze the temperature distribution of
the sample. We set the following assumptions for developing the heat diffusion
equation:

(1) The 1D heat conduction of the specimen takes the coordinate x-axis along the
length of the k31 specimen;

(2) Heat generation is proportional to strain squared (i.e., elastic energy), dis-
tributed on the specimen;

(3) Heat dissipation occurs via convection (to air) and radiation. Conduction
is neglected.
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Using a temperature parameter T(x,t), which is defined as the temperature of a
sliced volume ∆x from the position coordinate x to (x + ∆x) at time t, the following
equation is assumed:

∂T(x, t)
∂t

=
λ

cpρ

∂2T(x, t)
∂x2 +

qg(x)
cpρ

− hd
cpρ

[T(x, t)− Tair], (12.74)

where λ is thermal conductivity (unit: W/m·K); cp (cE in the k31 case) is specific heat
capacity (unit: J/kg·K; ρ is the density; (λ/cpρ) = αT is called thermal diffusivity
(unit: m2/s). The first term of the right-hand side of Equation (12.74) describes the
temperature distribution in respect of position x, which changes the shape with time.
The second term corresponds to the temperature increment caused by heat generation
per unit volume (divided by cpρ), which may exhibit a sinusoidal distribution. The
third term indicates the heat dissipation proportional to the temperature difference
∆T from the ambient temperature Tair. The main difference from the heat generation
model of ML actuators under off-resonance is the integration of the thermal conduc-
tivity due to the temperature distribution in a specimen. Recall Example Problem
12.2 for the dissipation treatment.

Regarding heat generation, we further assume that qg(x) is expressed in propor-
tion to the square of the sinusoidally distributing strain, as visualized in Figure 12.13,
because the applied electric field is small

qg(x) = ghcos2
(πx

L

)
. (12.75)

Heat dissipation hd is a proportional constant to (T − Tair), similar to “surface
thermal conductivity” introduced in Example Problem 12.2.

Position

qg(x)

Strain

0

k31 Vibration

Figure 12.13. Heat generation modeling in proportion to strain square. Source:
Figure by author.

Temperature Distribution Profile Change with Time

We prepared a piezoelectric k31 rectangular plate specimen with 80× 14× 2 mm3

in size with a hard PZT composition (APC 841, American Piezo Company, USA) for
both admittance and thermal imaging observation purposes. We used a constant
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vibration velocity method for the measurements under 300 mm/s RMS, which
stands for keeping the mechanical vibration energy constant. Figure 12.14a shows
the temperature distribution profile change with time after driving. You can notice
that the plate edge temperature increases significantly with time lapse, primarily
due to the thermal diffusion in the PZT from the nodal highest point to the edge
lowest temperature point. The saturated temperature distribution profile for the
k31 specimen is shown in Figure 12.14b, which can be used for calculating the total
thermal dissipation energy gh. A small temperature dent at x = 0 originated from the
heat dissipation by the center sample-holding rod conduction, which is neglected in
the simulation [18].
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Figure 12.14. (a) Temperature distribution profile change with time after driving;
(b) the saturated temperature distribution profile for k31 specimen with 80× 14×
2mm3. Source: [2] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms; CRC
Press, 2020; p. 180. Reproduced by permission of Taylor & Francis Group.

If we adopt the most general definition of the mechanical quality factor as

Qm = 2π
Energy Stored/Cycle
Energy Lost/Cycle

, (12.76)

we can obtain Qm from

Qm = 2π f (
ρV2

rms
hg

). (12.77)

Note that this is the unique approach to determine the mechanical quality factor
by using merely the thermal data, without using any electrical energy information.

Shekhani et al. measured the admittance spectrum on the above PZT sample
(80× 14× 2 mm3) with the resonance frequency at 20.04 kHz at room temperature
and obtained Qm = 507 by a 3 dB down method on an admittance spectrum. Then,
the sample was excited under the vibration velocity of 400 mm/s for 30 s, which
corresponds to the heat dissipation of 11.6 W/m2. Figure 12.15 shows the Qm
obtained at three frequencies slightly above the resonance frequency (20.04 kHz).
The Qm values around 550 agree with the extrapolated values from the above 507.
Thus, we can conclude that this thermal method can determine Qm reasonably at
any frequency around the resonance and antiresonance region. An increase in Qm
with increasing the frequency suggests that the maximum Qm frequency (i.e., the
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highest efficiency) exists between the resonance and antiresonance frequencies [20].
Figure 12.15 suggests that the maximum mechanical quality factor should be obtained
in between the resonance and antiresonance frequencies, as Yuan et al. demonstrated
in Langevin transducers [21].
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Figure 12.15. Change in Qm with frequency (fr ≈ 20.006 kHz). Source: [2] ©Uchino,
K. High-Power Piezoelectrics and Loss Mechanisms; CRC Press, 2020; p. 181. Repro-
duced by permission of Taylor & Francis Group.

12.4. Electrothermal Conductivity—Future Research

The primary and secondary electrothermal coupling phenomena in ferroelectrics
were introduced in this chapter from the viewpoint of thermodynamics, in particular,
thermal property differences among unpoled and poled PZTs in the poling direction
for open-circuit and short-circuit conditions. The derivation processes for the primary
electrothermal “coupling factor” kET was discussed comprehensively, the rather small
values of which concluded that the specific heat capacity under both E-constant cE

p

and D-constant cD
p condition are not distinguishably different in PZTs. On the

contrary, the secondary electrothermal effect (i.e., thermal conductivity) exhibits
a significant difference between λE

33 and λD
33 (λD

33 = 0.61 λE
33) depending on the

short- or open-circuit conditions. We proposed a new secondary “electrothermal
coupling factor” kλ for thermal conductivity analysis so that the relationship λD

33 =

λE
33 (1 − kλ

33
2
) is sustained. The significant difference between the primary and

secondary electrothermal coupling factors may be related to the microscopic phonon
transfer mechanisms, the details of which should be explored in future research.
The primary effect includes “pyroelectric” and “electrocaloric” phenomena, and the
secondary effect includes the space-gradient (i.e., first-derivative) phenomena, such
as “thermal conductivity” and local “electric displacement” gradient. The reader
learned also how to simulate the temperature distribution profile on a piezoelectric
specimen driven under off-resonance and resonance frequency conditions. The
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author expects to investigate further theoretical expansion in the application areas of
electrothermal coupling and industrial products.

Chapter Essentials

1. Heat transfer equation:
(

∂θ
∂t

)
= λ

Cp

(
∂2θ
∂x2

)
= λ

cpρ

(
∂2θ
∂x2

)
= αT

(
∂2θ
∂x2

)
,

αT : thermal diffusivity (m2/s); λ: thermal conductivity (W/K/m); Cp: heat
capacitance (J/K/m3); cp: specific heat capacity (J/K/kg); cp = Cp/ρ, ρ: density
(kg/m3).

2. (a) Solution θ(x, t) at x = L for high temperature θ0 isothermal, low temperature
θ = 0 isolated:

Solution 1: θ(L, t)= θ0[1− e−αT(
π
2L )

2t],
Solution 2: θ(x, t) = θ0e−x2/4tαT .

(b) Solution θ(x, t = ∞) for high temperature θ0 isothermal, low temperature
θ = 0 isothermal:

θ(x) = θ0[exp(−√αT(x− L))− exp(
√

αT(x− L))]/[exp(
√

αT L)− exp(−√αT L)].

3. Thermal conductivity λ (W/m K) change with electric constraint in PZT:
Unpoled Open Circuit Short Circuit

1.12 1.30 2.13
4. Primary electrothermal effect:

{
S = (CE

p /T)θ − pE
D = −pθ + ε0εXE

,

Pyroelectric coefficient p = −( ∂P
∂T )X ;

Primary electrothermal coupling factor: kET2
= p2

(CE
p /T)ε0εX = 0.11× 10−6;

Heat capacitance: CD
p = CE

p (1− kET2
);

Permittivity: ε0εX,S = ε0εX,T(1− kET2
).

5. Secondary electrothermal effect:
{−∇(S) = q

T = (λ′/T)(−∇(T)) + p′(divE)
divP = p′(−∇(T)) + ε0ε′(divE)

,

Secondary electrothermal coupling factor: kλ
33

2
= Tp′2

λε0εX = 0.39;

Thermal conductivity: λD
33 = λE

33 (1− kλ
33

2
);

Isothermal, adiabatic permittivity may be different, reflecting kλ
33.

6. Origins of piezo-ceramic heat generation:
(a) Off-resonance: intensive dielectric loss tanδ’;
(b) Resonance/antiresonance: intensive elastic loss tanφ’;

7. Heat flow equation u(x,t) in a k31 type rectangular piezoelectric plate:
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∂u(x,t)
∂t = κ

cpρ
∂2u(x,t)

∂x2 +
qg(x)
cpρ −

hdP
cpρA [u(x, t)− Tair],

where λ: thermal conductivity (unit: W/m K); cp: specific heat capacity (J/kg·K);
ρ: mass density (kg/m3). At the resonance (due to the temperature distribu-
tion in a specimen) thermal conductivity/diffusivity is essential to discuss the
“maximum vibration velocity”.

Check Point

1. (T/F) Thermal energy drifts merely from high-temperature to low-temperature
region. True or false?

2. (T/F) One-dimensional heat transfer equation is expressed as
(

∂2θ
∂t2

)
= αT

(
∂2θ
∂x2

)
,

where θ = T − TR, t and x are time and 1D coordinate, and αT is the thermal
diffusivity. True or false?

3. (T/F) We consider a particular disk specimen case with the length L area S.
The end surface A is maintained at θ0 (high temperature) with a heat source,
and another end surface B is kept at θ = 0 (room temperature) with a heat sink.
After obtaining the steady temperature profile, the temperature distribution
as a function of coordinate x in this disk specimen is given by the exponential
function of x. True or false?

4. (T/F) Heat capacitance Cp of material is defined per unit volume as Cp = ∂Q
∂T ,

where Q is the heat quantity per volume. True or false?
5. What is the difference between specific heat capacity cp and heat capacitance

Cp? Provide the relationship equation using the material’s mass density ρ.
6. (T/F) Thermal conductivity λ is defined as a proportional constant between the

heat flux (heat flow) and the temperature gradient; q = −λ
(

∂θ
∂x

)
. The λ has a

“scalar” property. True or false?
7. (T/F) When we describe the thermal conductivity λ in a matrix form, the

thermal conductivity matrix becomes symmetric, because we are able to write
the expression for the heat energy of a crystal as potential energy. True or false?

8. Whose name is crowned on the principle that provides the symmetric property
of the thermal conductivity λ matrix? Provide the scientist’s name.

9. In a pyroelectric crystal, provide the relationship equation between the specific
heat capacity under E-constant cE

p and D-constant cD
p conditions in terms of

the primary electrothermal coupling factor kET , which is given by kET2
=

p2
(

ρcE
p /T

)
ε0εX

(p: pyroelectric coefficient; cE
p : specific heat capaticy).

10. Which loss factor among dielectric tanδ’, elastic tanφ’, and piezoelectric tanθ’
contributes primarily to the piezoelectric k31 specimen driven under off-resonance
(100 Hz) and high electric field (1 kV/mm)?

11. Which loss factor among dielectric tanδ’, elastic tanφ’, and piezoelectric tanθ’
contributes primarily to the piezoelectric k31 specimen driven under its mechan-
ical resonance and low electric field (30 V/mm)?

12. (T/F) When a piezoelectric plate specimen is driven under its mechanical
resonance, the maximum temperature rise is observed at its anti-node lines
because of the largest vibration amplitude. True or false?
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Chapter Problems

12.1 Heat flow equation (T(x,t) is the temperature parameter) is given by

∂T(x,t)
∂t = λ

cpρ
∂2T(x,t)

∂x2 +
qg(x)
cpρ −

hdP
cpρA [T(x, t)− Tair],

where λ is thermal conductivity (unit: W/m·K), cp is specific heat (unit: J/kg·K),
and a coupled parameter λ

cpρ = αT is called thermal diffusivity (unit: m2/s).
Based on the data in Table 12.2, for the thermal conductivity of NKN-Cu and
Hard PZT, simulate the saturated temperature distribution profile difference
between NKN-Cu and Hard PZT specimens, similar to Figure 12.16.

Position (m)

0

25

20

15
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5

0.14 W/m·K (PZT-5H) 2 W/m·K (PZT-19)

0 0.01−0.02−0.03 0.04
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m
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ra

tu
re

 R
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e 
 (°

C)

−0.01 0.02 0.03−0.04

Figure 12.16. Saturated temperature distribution profile difference between PZT-5H
and PZT-19. Source: [2] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms;
CRC Press, 2020; p. 182. Reproduced by permission of Taylor & Francis Group.

Hint

In addition to a large difference in thermal conductivity λ, a large difference
even in the mass density ρ (check the mass density of NKN and PZT by yourself)
provides a significant difference in the thermal diffusivity αT . You should obtain
a much larger difference in the temperature profile than Figure 12.16, where
merely the difference in thermal conductivity (with almost the same density of
PZT’s) was demonstrated.

12.2 A thin bar of the uniform section is bent into the form of a circular ring of large
radius r. At one point, P, in the ring, steady temperature θ0 is maintained. Heat
is assumed to radiate from the ring surface to the air. Assuming that the air is
at zero θ temperature (i.e., room temperature), show that when a steady state is
established, the temperature of the ring is given by

θ =θ0
cosh

√
αS(x−πr)

cosh
√

αSπr ,

where αS is the radiation coefficient (or surface conductivity), defined by the
following equation (refer to Example Problem 12.2):
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(
∂θ
∂t

)
= αT

(
∂2θ
∂x2

)
− αSθ

The coordinate x is measured around the ring so that x = 0 at P.
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13. Electro-Optic Effect—The Indicatrix

Among various application fields of ferroelectric materials, electro-optic devices
have been focused recently from the optical information technology boom. Since the
newcomers are occasionally embarrassed by various math equations, as the author
felt 50 years ago, this chapter is for the sake of these readers.

13.1. Optical Birefringence

Let me remind you of some physical phenomena, which you already experi-
enced at your middle/high school age.

13.1.1. Double Refraction

Figure 13.1 shows the “double refraction” demonstration observed in calcite
(CaCO3). The characters are seen doubly through this crystal, which is known
as “double refraction”. Double refraction originates from “birefringence”, which
means the anisotropic refractive indices in the crystal. When a light ray incidents
upon a birefringent material, the ray is split by polarization into two rays taking
slightly different paths. This effect was first described by the Danish scientist Rasmus
Bartholin in 1669, who observed it in calcite. This phenomenon indicates that the
light beam can be modified by the refractive index change.

Figure 13.1. Double refraction demonstration in calcite. Source: Photo by author.

13.1.2. Optical Polarizer

In order to assemble an electro-optic device/system, a pair of so-called polarizers
(which are usually denoted “polarizer and analyzer”) are mandatory components. An
optical polarizer is an optical filter that lets light waves (i.e., electromagnetic waves) of
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a specific polarization with such electric field orientation pass through while blocking
light waves of other polarizations, which is visually shown in Figure 13.2. It can
filter a beam of light of undefined or mixed polarization into a beam of well-defined
polarization, which is “polarized light”. In Figure 13.2, the original unpolarized
light includes the rays with randomly oriented electric field (E) directions, only the
horizontally aligned E component of which (i.e., optical polarization direction) can
pass this polarizer. Due to this E field alignment, the incident optical beam intensity
reduced by 1/2 (i.e., the average of direction cosine square, cos2θ) after passing
this filter theoretically. The magnetic field (H) keeps close to orthogonal to the E
field direction.

Unpolarized Light

Polarizer

Polarization 
direction

Electric field

Figure 13.2. Function of an optical polarizer. Source: Figure by author.

The common types of polarizers are linear polarizers and circular polarizers.
Certain crystals, due to the effects described by crystal optics, show “dichroism”,
preferential absorption of light, which is polarized in particular directions. They
can therefore be used as linear polarizers. The well-known crystal of this type is
tourmaline. A Polaroid polarizing filter functions similarly on an atomic scale to
the wire-grid polarizer. It was originally made of microscopic herapathite crystals.
Its current H-sheet form is made from polyvinyl alcohol (PVA) plastic with iodine
doping. Stretching of the sheet during manufacture causes the PVA chains to align
in one particular direction. Valence electrons from the iodine dopant are able to
move linearly along the polymer chains, but not transverse to them. Therefore,
incident light polarized parallel to the chains is absorbed by the sheet; while light
polarized perpendicularly to the chains is transmitted. The durability and practicality
of Polaroid makes it the most common type of polarizer in use, for example for
sunglasses, liquid crystal displays, and the electro-optic devices. It is also much
cheaper than other types of polarizers.

Example Problem 13.1

Transmitting light intensity change of a pair of optical polarizers is monitored
with changing of the angle of the two polarization directions, demonstrated in
Figure 13.3. Neglecting uniform light absorption by the polarizer sheet, the transmit-
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tance changes from 100% to 0% with changing the cant angle from 0◦ to 90◦. Provide
the intensity formula as a function of the cant angle.

Solution

Through one polarizer, only the electromagnetic wave with the electric field E
direction along page top-down direction can pass, so that the light intensity I1

out will
be a half in comparison with the incident beam:

I1
out = Iin

(
1

2π

) 2π∫

0

cos2θdθ = Iin

(
1

2π

) 2π∫

0

1 + cos2θ

2
dθ = Iin/2. (P13.1.1)

The light ray already aligned along page top-down direction will pass through
the second polarizer with a cant angle θ. Since the electric field along the polarization
direction of the second polarizer is given by E·cosθ, the output ray intensity I2

out
should be provided by

I2
out = I1

out·cos2θ = I1
out

1 + cos2θ

2
. (P13.1.2)

With changing the cant angle θ from 0◦, 45◦, 90◦, I2
out changes sinusoidally from

1, 0.5, and down to 0.

(a) (b)

(c) (d)

Figure 13.3. Transmitting light intensity change of a pair of optical polarizers with
changing the angle. (a) θ = 0

◦
; (b) θ = 30

◦
; (c) θ = 60

◦
; (d) θ = 90

◦
. Source: [1]

©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 16. Reproduced by
permission of Taylor & Francis Group.
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13.1.3. Magic with “Scotch Tape”

The author demonstrates “Scotch Tape magic” in the class, which other man-
ufacturers’ products have not succeeded with so far. A Scotch Tape (put on an
isotropic thin glass plate) is sandwiched by a pair of polarizers. Dark and bright
conditions are reversed in comparison with Example Problem 13.1, as demonstrated
in Figure 13.4a,b. When the analyzer (second polarizer) is arranged along the tape’s
extended direction (i.e., 45◦ cant), no Scotch Tape shadow is observed, but the in-
tensity is reduced by half (Figure 13.4c). This is the base for understanding the
“birefringence” and “retardation” of the inserted optical material between a pair
of polarizers.

(a) (b)

(c)

Figure 13.4. Demo with a pair of optical polarizers by changing the angle, with
sandwiching of a Scotch Tape. (a) θ = 0

◦
; (b) θ = 90

◦
; (c) θ = 45

◦
. Source: [1]

©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 16. Reproduced by
permission of Taylor & Francis Group.

What is the reason for this effect? Scotch Tape is manufactured by stretching
the tape, so that the refractive index along the tape is different from that of the
width direction. This refractive index difference between different crystallographic
axes (i.e., birefringence) and the optical path length (i.e., tape thickness) “acciden-
tally” generates the phase “retardation” in Scotch Tape (not in other manufacturers’
products); in other words, the polarization direction (E component plane of the
electromagnetic wave) is rotated (or retarded) by π/2, 90◦. That is why the “crossed-
nicols” (90◦ cant) polarizer/analyzer arrangement provides the light transmission
(Figure 13.4b); or why the parallel polarizer/analyzer arrangement provides the
light shutting (Figure 13.4a). This type of optical component is called a “quarter-
wave plate” (that causes π/2 phase retardation). This situation exhibits the above-
mentioned “Scotch Tape magic”. It is essential to note that the refractive index
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principal axis (extension direction) of the Scotch tape should be arranged with 45◦

with respect to the polarizer directions. By inserting an electro-optic PLZT (replacing
Scotch Tape) and inducing the birefringence under an electric field, a similar dark and
bright conversion can be introduced continuously by changing the applied electric
field in a PLZT light valve.

13.2. Refractive Indicatrix

13.2.1. Refractive Index Definition

Since light is an alternating electromagnetic wave with electric and magnetic
field vibration directions mutually perpendicular to one another, the electric field
induces an electric polarization in a dielectric crystal, and the light itself is influ-
enced by the crystal. Let us start from “Maxwell’s electromagnetic wave equations”
in vacuum:

∂2E
∂x2 = (

1
c2 )

∂2E
∂t2 , and

∂2B
∂x2 = (

1
c2 )

∂2B
∂t2 . (13.1)

Note here that c is the light velocity [3× 108 m/s], which is provided in vacuum
by 1/

√
ε0µ0 (ε0: vacuum permittivity, 8.854 × 10−12 F/m; µ0: vacuum permeability,

4π × 10−7 H/m). When we consider a dielectric crystal, the permittivity is defined
as a proportional constant in the electric displacement D and electric field E with the
unit of ε0:

D = ε0εE. (13.2)

The Maxwell’s equation for E in Equation (13.1) can be rewritten in a dielectric
crystal as

∂2E
∂x2 = ε0εµ0µ

∂2E
∂t2 = (

n
c
)

2 ∂2E
∂t2 . (13.3)

Thus, the light velocity in a dielectric crystal (under the assumption of magnetic
inactivity µ ∼= 1) is expressed by

v = c/
√

ε. (13.4)

As the refractive index n is defined by (c/v), we obtain the relation between the
permittivity and refractive index:

n =
√

ε. (13.5)

The alternating frequency of the light is so high (PHz = 1015 Hz) that only the
“electronic polarization” can follow the electric field change (refer to Figure 1.2), and
the relative permittivity of an optically transparent crystal is small, not exceeding 10.
The well-known electro-optic material, PLZT’s (Pb-doped PZT), have n = 2.4 ∼ 2.5,
which are in the highest group in dielectric crystals, though semiconductor crystals
exhibit higher values such as 3.42–3.48 in silicon, and 4.05–4.01 in germanium. Note
that the relative permittivity value of 1000 in ferroelectrics such as barium titanate and
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PZT’s are originated from “ionic polarization”, as we detailed in Subsection Lattice
Heat Capacitance—Einstein Model in Chapter 11 Equation (13.5) is equivalent to:

ε = n2. (13.6)

Since we can understand that the refractive index comes from a coupling phe-
nomenon between the electromagnetic wave and crystal electrons, the higher electron
density should exhibit the higher refractive index, in general. As the reader has
learned in your school age, silica glass has only n ≈ 1.5, which has much smaller
mass density and electron density than PLZT.

13.2.2. Refractive Indicatrix Construction

Refractive Indicatrix Definition

Remember that the permittivity tensor is a symmetric matrix, which can be
converted to a “diagonal matrix”. Thus, n2 should also have a symmetry property,
and through the crystal axis rotation, we should obtain only the three diagonal
components (n1, n2, n3) along the principal axes.

If x, y, z are the principal exes of the dielectric permittivity (or the refractive
index) tensor, the “indicatrix” is defined by the equation:

x2

n1
2 +

y2

n22 +
z2

n32 = 1. (13.7)

Equation (13.7) shows a “Biaxial ellipsoid”, the most general case.

Inverse Permittivity Ellipsoid

The representation of Equation (13.7) is equivalent to the following expres-
sion: [2]

B1x2 + B2y2 + B3z2 = 1, (13.8)

where B1 = 1
n1

2 = 1
ε1

, B2 = 1
n2

2 = 1
ε2

and B3 = 1
n3

2 = 1
ε3

. This expression is called
an “inverse permittivity ellipsoid”, which covers a wider concept of “quadrics (or
conicoids)” introduced by Eisenhart in the 1930s [3].

A general quadric formula

B11x2 + B12xy + B13xz+B21yx + B22y2 + B23yz + B31zx + B32zy + B33z2 = 1. (13.9)

Reminds the reader the symmetric matrix of Bij, because of the permittivity
matrix symmetry and obvious relations xy = yx, etc.




B11 B12 B31
B12 B22 B23
B31 B23 B33


. (13.10)
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A symmetric matrix can be transformed into a diagonal matrix (refer to Example
Problem 12.4): 


B1 0 0
0 B2 0
0 0 B3


. (13.11)

The final diagonal matrix corresponds to the “representation quadric” of the
“inverse permittivity ellipsoid”.

13.2.3. Effect of Crystal Symmetry

Thus far, we have handled the general case where the optical properties of the
crystal are not restricted by crystal symmetry. In this section, we will consider the
crystal symmetry on the refractive indexes.

Cubic Crystals

The refractive indicatrix for a cubic symmetry crystal is a “sphere” and, since
all directions show a uniform refractive index, there is no “double refraction” or
“birefringence”.

Hexagonal, Tetragonal, Trigonal Crystals

For hexagonal, tetragonal and trigonal crystals, the indicatrix is the indicatrix
that becomes a symmetric ellipsoid of revolution about the principal symmetry axis.
With z as this rotation axis, the Equation (13.7) is rewritten:

x2+y2

no2 +
z2

ne2 = 1. (13.12)

Figure 13.5 illustrates refractive indicatrix configurations for a uniaxial crystal:
(a) negative indicatrix, and (b) positive indicatrix. “Negative” or “positive” are
defined by the difference between two refractive indexes; when (ne − no) is negative
or positive, “negative” or “positive”, respectively. The indicatrix is an ellipsoid
of revolution, and the radius of the central circular section is no (suffix “o” stands
for “ordinary” ray). The two rays polarized along x and y directions will transmit
the crystal with the velocity of c/no (slower speed in Figure 13.5a), while one ray
polarized along the z direction will transmit the crystal with the velocity of c/ne
(faster speed in Figure 13.5a), where the suffix “e” stands for an “extraordinary” ray;
that is, only a unique polarized light ray with faster light velocity. Suppose a point
light source is situated in the center of the crystal, the wave front surface should form
a “positive ellipse” in the case of Figure 13.5a, the opposite shape of the refractive
indicatrix. A similar discussion is sustained in a “positive” crystal in Figure 13.5b.
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Figure 13.5. Indicatrix configurations for a uniaxial crystal: (a) negative crystal and
(b) positive crystal. Source: Figure by author.

Biaxial Crystals

The refractive indicatrix shape and wave surface for a biaxial crystal is not
as simple as that for a uniaxial crystal. The reader is requested to show from the
indicatrix construction that the wave surface consists of two sheets, and that each
principal plane cuts the sheets in a circle and an ellipse.

Example Problem 13.2

Ordinary and extraordinary rays are incident on a BaTiO3 single crystal, as
shown in Figure 13.6.

(1) Which ray, horizontally polarized or vertically polarized ray, is the extraordi-
nary ray? Explain the physical reason for this decision.

(2) Which ray, horizontally polarized or vertically polarized ray, transmits faster?
Explain the physical reason for this decision.

(3) Explain why “birefringence” (ne − no) causes “phase retardation” intuitively.

PS

1

3

2

Figure 13.6. Ordinary and extraordinary incident rays into a BaTiO3 single crystal.
Source: Figure by author.
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Solution

(1) BaTiO3 has tetragonal 4mm symmetry at room temperature with the sponta-
neous polarization direction along the 3 axis. As the revolution axis is the 3 axis,
the extraordinary ray should be the vertically (3 axis) polarized ray, and the
remaining two horizontally polarized rays, one with E direction in the 1 axis
(on Figure 13.6) and the other with E polarized in the 2 axis, which is the ray
propagating from the page-normal direction (not on this figure).

(2) The tetragonality in BT occurs at the phase transition (Curie) temperature with
spontaneous strain, extension along the 3 axis, in parallel shrinkage along the
1 and 2 axes, as schematically illustrated in Figure 13.7a. The electron density
dilution along the 3 axis and concentration along the 1 and 2 axes may exhibit
the decrease and increase in the refractive index, as shown in Figure 13.7b. The
horizontally polarized extraordinary ray experiences the lower ne, leading to
the faster transmitting speed in the BT crystal. On the contrary, the vertically
polarized (with E in 1 direction) ordinary ray experiences the higher no, leading
to the slower transmitting speed in the BT crystal.

(3) Refer to Figure 13.7c [1]. As the light velocity of the extraordinary and ordinary
rays is given by c/ne (faster) and c/no (slower), considering the same frequency
(v = f λ), the wavelengths of the extraordinary (polarized along z-direction)
and the ordinary (polarized along x) waves are described as

λz= λ0/ne, (P13.2.1)

λx= λ0/no, (P13.2.2)

where λ0 is the wavelength of the incident light, and the numbers of waves
existing in the crystal with an optical path length of L are L/λz and L/λx,
respectively, the phase difference between these waves (“retardation” Γy) is
given by

Γy = 2π(L/λz − L/λx) = (2π/λ0)L(ne − no). (P13.2.3)

The retardation Γy is proportional to the “birefringence” ∆n = (ne − no).
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Figure 13.7. Cont.
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Extraordinary Ray

longer λ

shorter λ

c/ne: faster
E3

 Ordinary Ray

c/no: slowerE1 

Optical pathlength

(c)

Figure 13.7. (a) Barium titanate (BT) elongated tetragonal symmetry. (b) Refrac-
tive indicatrix configuration of BT. (c) Ordinary and extraordinary incident ray
transmission in BT single crystal. Source: Figure by author, adapted from [1].

13.3. Electro-Optic Effect

13.3.1. Introduction to the Electro- and Elasto-Optic Effects

Electro- and Elasto-Optic Effects

When an external electric field is applied to a crystal, ionic displacement is
induced, deforming the shape of the electron cloud, and consequently the “refractive
index” is changed. This phenomenon is called the “electro-optic effect”. Similarly,
when an external stress is applied to a crystal elastic deformation, it also generates
the electron cloud and electron density modulation in a crystal, leading to the “elasto-
optic effect”.

Assuming small modulation under the electric field E and strain x, we consider
the “inverse permittivity ellipsoid” deformation under Taylor expansion series. Let
us start from the general quadric representation:

Bijxixj (= ∑
i,j

Bijxixj) = 1, (13.13)

where Bij = ε0(
∂Ei
∂Dj

) is the inverse permittivity symmetric matrix. Recall that in a
uniaxial crystal such as ∞mm (piezo-ceramics), 4mm (BaTiO3, PbTiO3), the refractive
indicatrix has a simple form with the principal axes, which will be utilized in practical
electro-optic devices:

x2+y2

n1
2 +

z2

n32 = 1. (13.14a)

In general, the change of refractive index produced by electric field and stress is
small (i.e., a small change in the shape, size and orientation of the indicatrix), and we
can introduce this change in the coefficients Bij. If we take just lower-order terms of
the electric field E and strain x, the change in Bij may be represented by

∆Bij = r′ ijkEk + R′ ijklEkEl + · · ·+ pijkl xkl + · · · (13.14b)
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It is noteworthy that the electro-optic materials we consider here are “piezo-
electric or ferroelectric” in many cases, which possess the following constitutive
equation:

xij = sijklXkl + dkijEk + MklijEkEl . (13.15)

Even if we consider that the external stress Xkl is zero, the crystal under electric
field E applied exhibits the induced strain, which reflects to ∆Bij via elasto-optic
effect as:

∆Bij = (r′ ijk + pijmndkmn)Ek + (R′ ijkl+pijmn Mklmn)EkEl . (13.16)

Thus, we will define new electro-optic coefficients rijk and Rijkl by combining
primary (pure, intrinsic) electro-optic coefficient and secondary (via elasto-optic
effect through crystal deformation) effect:

∆Bij = ∆(1/n2
ij) = ∑

k
rijkEk + ∑

k,l
RijklEkEl . (13.17)

The linear electro-optic effect (first term) is observed in asymmetric crystals
(such as in a ferroelectric phase), and called “Pockels effect”, while the quadratic
electro-optic effect (second term) is observed in symmetric crystals (such as in a
paraelectric cubic phase), and called “Kerr effect”, according to the discoverers.

Primary and Secondary Electro-Optic Effects

Though the author mentions r′ ijk and R′ ijkl as “primary”, and pijmndkmn and
pijmn Mklmn as “secondary” electro-optic effect, the secondary effect is not much
smaller than the primary effect.

Let us evaluate the primary and secondary effect contributions. Refer to Ta-
ble 13.1, which lists Pockels (1st) and Kerr (2nd) electro-optic coefficients for var-
ious materials. In typical PLZT specimens, r = 5× 10−10 m/V, when we apply
E = 106 V/m, we expect ∆B = ∆

(
1

n2

)
= 5× 10−4. Since PLZT has the piezoelectric

strain level x = 0.1% under E = 106 V/m, and elasto-optic coefficient p ≈ 10−1, we
expect ∆B = ∆

(
1

n2

)
= 10−4. Among ∆B = 5× 10−4, 20% are from the secondary

electro-optic effect. In the PLZT “Kerr” optical shutter explained in the next section,
when we measure the electro-optic Kerr coefficient Rijkl , roughly a half reduction is
observed typically for the completely clamped (no strain induction) specimen. Care
must be taken for holding the electro-optic specimen in the device holder so as not to
generate stress by the holding jig.
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Table 13.1. Pockels (1st) and Kerr (2nd) electro-optic coefficients for various
materials.

Materials r (×10−10 m/V)

Pockels Electro-optic
Coefficient

LiNbO3 0.17
PLZT 8/65/35
(GS = 10 µm) 5.23

PLZT 8/65/35
(GS = 3 µm) 6.12

Materials R (×10−16 m2/V2)

Kerr Electro-optic
Coefficient

KTa065Nb0.35O3 5.30
PLZT 9/65/35

(GS = 2 µm) 9.12

PLZT 10/65/35
(GS = 2 µm) 1.07

Source: Table by author.

Example Problem 13.3

In a cubic crystal, the refractive index change for the z-polarized wave (i.e.,
extraordinary ray) under an external electric field along z-axis is expressed by the
following equation:

1/nz
2(Ez) − 1/n0

2 = R11Ez
2, (P13.3.1)

where n0 stands for the refractive index at Ez = 0. Derive the direct formula of
nz(Ez).

Solution

Taking into account the derivative relation, ∆
(

1
n2

)
= −(2/n3)∆n, we obtain

∆(1/n2) = R11E2
z = −

(
2
n3

)
∆n. (P13.3.2)

Thus,
∆n = nz(Ez)− n0 = −(n3/2)R11E2

z , or
nz(Ez) = n0 − (n3/2)R11E2

z .
(P13.3.3)

Do not forget the factor of [−(2/n3)], when ∆n is discussed.

13.3.2. Electro-Optic Device—Light Intensity Modulator

Electro-Optic Device—Overview

With the application of an electric field E, the change in refractive index is given
by a Taylor expansion expression in terms of E [1]:

1/nij
2(E) − 1/nij

2(0) = ΣrijkEk + ΣRijklEkEl. (13.18)
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Here, n(E) and n(0) (n0) are the refractive indices at E and zero field, respec-
tively, rijk is the linear “electro-optic coefficient” (“Pockels effect”), and Rijkl is the
quadratic coefficient (Kerr effect). Remember that the expansion is not based on nij,
but on 1/nij

2.
Using the controllable refractive index, we can develop two categories of electro-

optic devices: (1) light intensity modulator, and (2) light beam deflector. The first
devices utilize the phase retardation of ordinary and extraordinary rays coupled
with crossed-nicols polarizer/analyzer in order to modulate the light beam intensity,
occasionally called “light valves” or “light shutter”. Giant Kerr effects in PLZT
ceramics or in KTa065Nb0.35O3 single crystals are popularly utilized.

On the contrary, the beam deflector is used to change the light propagation direc-
tion (i.e., the light bends toward higher refractive index side). Waveguides prepared
on a single crystal LiNbO3 are rather popular, which is discussed in Section 13.3.3.

Electro-Optic Coefficient Tensor

Let us consider the symmetry of the electro-optic coefficient tensors. Equation (13.17)
is reminded

∆Bij = ∆
(

1
n2

ij

)
= ∑

k
rijkEk + ∑

k,l
RijklEkEl .

First, nij and Bij are a symmetric matrix, we can denote them as ni and Bi

with i = 1, 2, · · · , 5, 6. Then, since EkEl = ElEk, we may also adopt E2
m with

m = 1, 2, · · · , 6 for convenience’s sake. Finally, we obtain

∆Bi = ∆(1/n2
i ) = ∑

k
rikEk + ∑

k,l
RimE2

m [i, m = 1, 2, · · · , 5, 6; k = 1, 2, 3]. (13.19)

We can describe rik with (6× 3) matrix, and Rim with (6× 6) matrix.

(a) Linear electro-optic coefficient

The refractive indicatrix under an electric field applied is expressed as:




∆(1/n2
1)

∆(1/n2
2)

∆(1/n2
3)

∆(1/n2
4)

∆(1/n2
5)

∆(1/n2
6)




=




r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43
r51 r52 r53
r61 r62 r63







E1
E2
E3


. (13.20)

Single crystal LiNbO3 belongs to the crystal symmetry 3m and is optically
uniaxial, with ordinary refractive indexes n11 = n22 = no, and extraordinary index
n33 = ne. In this case, the electro-optic coefficient matrix is
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


0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0

r51 0 0
−r22 0 0




.

When we consider only E3 as a non-zero field with keeping E1 = E2 = 0, we
obtain only two applicable equations:





∆
(

1
n2

3

)
= r33E3

∆
(

1
n2

1

)
= ∆

(
1

n2
2

)
= r13E3

. (13.21)

Thus, {
ne(Ez) = ne − (ne

3/2)r33E3
no(Ez) = no − (no

3/2)r13E3
. (13.22)

Taking into account the electro-optic data for LiNbO3 at room temperature,
λ = 632.8 nm:

• ne = 2.200, no = 2.286
• rX

c = r33 − (no/ne)
3r13 = 0.19× 10−10m/V

under the electric field Ez = 105 V/m applied, the refractive index changes for
extraordinary and ordinary rays are roughly ∆ne = 20× 10−6 and ∆no = 5× 10−6.

(b) Quadratic electro-optic coefficient

Considering the paraelectric phase of a perovskite crystal (m3m) as an exam-
ple, the Kerr coefficients are represented in the following matrix with only three
independent components:



R11 R12 R12
R12 R11 R12
R12 R12 R11
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

R44 0 0
0 R44 0
0 0 R44




,

so that the refractive indicatrix under an electric field applied is expressed as:




∆(1/n2
1)

∆(1/n2
2)

∆(1/n2
3)

∆(1/n2
4)

∆(1/n2
5)

∆(1/n2
6)




=




R11 R12 R12
R12 R11 R12
R12 R12 R11
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

R44 0 0
0 R44 0
0 0 R44







E2
1

E2
2

E2
3

E2
4

E2
5

E2
6




. (13.23)
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If we consider only E2
3 as a non-zero field with keeping E2

1 = E2
2 = 0, we obtain

only two applicable equations:




∆
(

1
n2

3

)
= R11E2

3

∆
(

1
n2

1

)
= ∆

(
1

n2
2

)
= R12E2

3

. (13.24)

Thus, {
nz(Ez) = n0 − (n3/2)R11E2

z
nx(Ez) = n0 − (n3/2)R12E2

z
. (13.25)

Or in an indicatrix formula,

x2 + y2

n02[1−
(

n0
2

2

)
R12Ez

2]
2 +

z2

n02[1−
(

n0
2

2

)
R11Ez

2]
2 = 1. (13.26)

Light Shutter Construction

The refractive index change under an external electric field is explained intu-
itively as follows. When an electric field Ez is applied to a cubic perovskite crystal,
the crystal is elongated along the z-axis and contracted along both the x and y axes.
Consequently, the material’s density or compactness will be decreased along the z
axis and densified along the x and y axes, leading to a decrease in the refractive index
nz and an increase of the indices nx and ny, as shown in Figure 13.7b (Sphere becomes
a doughnut-shape), and expressed in Equation (13.23). Note that the refractive index
is proportional to the electron density or ion compactness along the polarized light
electric field direction, which is perpendicular to the light propagation direction.
Taking into account the above description, R11 and R12 in Equation (13.22) should be
positive and negative, respectively.

(a) EO device setup

Refer to Figure 13.8. When light is transmitted along the y direction, a cubic
electro-optic (EO) specimen (such as PLZT) with a rectangular shape (optical path
length: L) is put between two crossed-nicols polarizer/analyzer arranged at ±45◦

with respect to the z-axis. Assuming voltage Vz applied to the specimen with an
electrode gap d, and light with a wavelength of λ (incident intensity: I0) is trans-
mitted through it, we will derive the output light intensity I(Vz) by neglecting light
absorption in the EO specimen. We denote the necessary parameters as listed below:

• Refractive index at E = 0 : n0,
• Electro-optic Kerr coefficients : R11, R12,
• Phase retardation: Γy,
• Reflectance at the crystal surface (normal incidence): Re = [(n − 1)/(n + 1)]2.

The output light intensity is reduced twice, once at the inlet, and once again
at the outlet crystal surfaces by a factor of (1 − Re)2. The reader should also notice
that the incident light (after passing through the first polarizer) has ordinary and
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extraordinary light components of equal magnitudes, because of the 45◦ cant angle
of the polarizer.

(b) Retardation calculation

In a cubic structure, the refractive index change under an external electric field
along the z-axis is expressed by the following two equations:

1/nz
2(Ez) − 1/n0

2 = R11Ez
2, (13.27)

1/nx
2(Ez) − 1/n0

2 = R12Ez
2. (13.28)

Taking into account the relation, d(1/n2) = −(2/n3)dn,

nz(Ez) = n0 − (1/2) n0
3R11Ez

2, (13.29)

nx(Ez) = n0 − (1/2) n0
3R12Ez

2, (13.30)

where R11 > 0 and R12 < 0 in most cases. Since the wavelengths of the extraordi-
nary (polarized along z-direction) and the ordinary (polarized along x) waves are
described as

λz = λ0/nz, (13.31)

λx = λ0/nx, (13.32)

where λ0 is the vacuum wavelength of the incident light, and the numbers of waves
existing in the crystal with an optical path length of L are L/λz and L/λx, respectively,
the phase difference between these waves (“retardation” Γy) is described by

Γy = 2π(L/λx − L/λz) = (2π/λ0)L∆n = (2π/λ0)L(1/2)n0
3(R11 − R12)(Vz/d)2. (13.33)

The retardation is proportional to the birefringence ∆n (=nx − nz).

(c) Polarizer/analyzer arrangement

First, in comparison with the unpolarized light intensity, the intensity after one
polarizer is just a half (by neglecting the light absorption by the polarizer). We will
take this intensity after one polarizer as the incident light intensity I0. Second, we
describe the linearly polarized light incident on the PLZT in terms of its electric field
vector as (

ex

ez

) √
I0

(sin[(2π
λ0
)y−ωt]

sin[(2π
λ0
)y−ωt]

)
. (13.34)

Note here that 45◦ arrangement generates the same electric field amplitude
along x and z directions, and that the relationship I = e2/2, i.e., the intensity is an
average of e2 in terms of time. Third, the output light from the PLZT can be described
as (

ex

ez

) √
(1− Re)2 I0

( sin[(2π
λ0
)y−ωt + φ]

sin[(2π
λ0
)y−ωt + φ− Γy]

)
. (13.35)

Remember to consider twice reflections on the front and backside of the PLZT
sample, which reduces the light intensity by (1 – Re)2. Additionally, basically the
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extraordinary ray speed corresponding to output ez is faster than the ordinary ray
speed (ex), leading to the phase delay of Γy in ez when we consider the optical path

length L, which reflects in the term sin[
(

2π
λ0

)
y−ωt + φ− Γy]. Fourth, through the

second polarizer (i.e., analyzer) arranged now at the −45◦ orientation, the electric
field component in this direction e−45cant is represented (taking into account the
electric field vector projection on this −45◦ orientation) by:

ex/
√

2− ez/
√

2 = (1− Re)
√

I0/2{sin[(2π/λ0)y−ωt + φ]− sin[(2π/λ0)y−ωt + φ− Γ]}
= (1− Re)

√
I0/2[(1− cos Γy) sin[(2π/λ0)y−ωt + φ] + sin Γy cos[(2π/λ0)y−ωt + φ].

(13.36)

Finally, the output intensity through the 2nd polarizer (−45◦ cant) is obtained
from the relation I = e−45cant

2/2:

I = (1/2)(1− Re)2(I0/2)[(1− cos Γy)
2 + (sin Γy)

2] = (1− Re)2 I0(
1− cosΓy

2
) (13.37)

Unpolarized Light

45º

−45º

+

Polarizer

Electrooptic Crystal−

ne

n 0 d

L

Polarizer

Figure 13.8. Optical phase retardation through an electro-optic crystal. Notice the
crossed-nicols polarizer/analyzer configuration with the principal optical axis±45◦

cant. Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 13.
Reproduced by permission of Taylor & Francis Group.

(d) Half-wave voltage

Remember that the retardation Γy is given by Equation (13.30), Γy = (2π/λ0)L(1/2)

n0
3(R11 − R12)(Vz/d)2. Note that by increasing Γy from 0, π/2 and π, ( 1−cosΓy

2 ) value
increases from 0, 1/2, then 1. Figure 13.9 shows the output intensity I (actually
(1 − Re)2 I0) as a function of applied voltage Vz, which exhibits maximum and
minimum successively. The “half-wave voltage”, which is defined as the voltage
required to exhibit the first maximum in the transmitted light intensity, is given from
the condition, cosΓy = −1 or Γy = π. When we use a sample with Keer (secondary)
electro-optic effect, Γy is expressed by Equation (13.30), and the half-wave voltage
can be obtained as

Vz,λ/2 = d

√
λ0

Ln 3
0 (R11 − R12)

. (13.38)
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The intensity maxima can be sequentially obtained with increasing the applied
voltage. Notice that these half-wave, one-and-a-half-wave, and two-and-a-half-wave
voltages are not arranged linearly, due to the nonlinear (quadratic) Kerr electro-
optic effect.

Li
gh

t I
nt

en
si

ty
(1 − Re)2I

0

0 Vz, λ/2 Applied Voltage

Figure 13.9. Variation in the light intensity of a Kerr-effect electro-optic shutter
with applied voltage. Source: Figure by author, adapted from [1].

Example Problem 13.4

A PLZT specimen with a cubic symmetry has the refractive index n0 = 2.49. A
specimen with light pass-length L = 5 mm and electrode gap d = 1 mm was set in
Figure 13.10a system. When λ = 633 nm laser light was transmitted perpendicular
to the electric field, we obtained the light intensity change with applied voltage as
shown in Figure 13.10b. Note that the maximum intensity voltage (i.e., half-wave
voltage) was 150 V. Calculate the electro-optic coefficient (R11 − R12) for this PLZT
specimen.

Solution

The half-wave voltage is determined from the following condition on the retar-
dation Γy:

Γy = (π/λ)n0
3E3

2(R11 − R12)L = π. (P13.4.1)

The electro-optic coefficient (R11 − R12) is calculated from

(R11 − R12) = λ/n3
0E2

3 L. (P13.4.2)

Putting E3 = 150 V
1 mm = 1.5 × 105 V

m , λ = 633 × 10−9 m, n0 = 2.49 and L =

5× 10−3 m into Equation (P13.4.2), the electro-optic coefficient can be calculated as

(R11 − R12) = 633× 10−9/2.493·(1.5× 105)
2·5× 10−3 = 3.6× 10−16 [m2/V2]
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Applied Voltage (V)(b)

Figure 13.10. (a) Construction of an electro-optic light shutter. (b) Light intensity
change with applied voltage. Source: Figure by author.

Example Problem 13.5

PLZT light valve 2D array with a multilayer pixel structure was developed for a
projection-type color display, as shown in Figure 13.11a. Under the luminous flux of
light source 104 lm, and distance from the projector 1.5 m, the brightness on a screen
vs. applied voltage for red, green and blue lights was measured as in Figure 13.11b.
The half-wave voltages among three lights were different. The first maximum in the
light intensity was obtained at 160 V for red, 150 V for green and 130 V for blue light.

(1) Explain the reason physically why the half-wave voltage differs according to
red, green and blue lights.

(2) Supposing that the refractive index n (=2.49), and that the electro-optic coeffi-
cient (R11 − R12) [= 3.6 × 10−16 (m2/V2)] does not change significantly around
the wavelength range of these three lights, calculate the wavelength of these
three lights from the half-wave voltage observed.

Solution

The half-wave voltage is obtained from
Γy = (π/λ)n0

3E3
2(R11 − R12)L = π.

(1) Since the half-wave voltage is provided by the above equation, according to the
illumination light wavelength, the required voltage differs, as formulated in
Equation (P13.5.1):

λ = n0
3E3

2(R11 − R12)L. (P13.5.1)

Thus, for a shorter wavelength, a smaller electric field is required.
(2) Taking into account the electrode gap of 0.45 mm, E3 = 3.55, 3.33 and 2.89 × 105

[V/m] for R, G and B, respectively, and a path length L given by (1.0 − 0.1) mm
(note that the surface depth 0.1 mm is an inactive layer):

λ = 2.493 × (3.55 × 105)2(3.6 × 10−16)(0.9 × 10−3),
λ = 630 [nm] (for red),

λ = 555 [nm] (for green),
λ = 418 [nm] (for blue).

(P13.5.2)
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13.3.3. Electro-Optic Device—Light Deflector

There are three categories for deflecting optical beam direction [4]: (1) electro-
optic crystal prism usage, (2) space gradient of refractive index, and (3) digital light
deflection with birefringent crystal prisms.

Electro-Optic Crystal Prism

We fabricate an isosceles triangular prism from an electro-optic crystal such as
KTN [K(Ta,Nb)O3], as shown in Figure 13.12. Then, putting electrodes on the top and
bottom of the triangular surface, we apply the electric field along the normal direction
of the triangle. If the strain is positive, the refractive index ne for the extraordinary
ray should be reduced. The light beam polarized along the page-normal direction
should deflect from the dashed line (high n) to the sold line (low n). If we denote the
beam size ω, light wavelength λ, and the refractive index change under electric field
∆n, resolution point number N can be evaluated by

N = (∆n/n2λ)(
L
W

)ω. (13.39)

10 mm
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[electrode gap: 0.45 mm]

(a) (b)

Figure 13.11. (a) PLZT light valve array with a multilayer pixel structure. (b) Bright-
ness on a screen vs. applied voltage for red, green, and blue lights. The half-wave
voltages among three lights are different. [Luminous flux of light source: 104 lm,
distance from the projector: 1.5 m]. Source: ©Uchino, K. Ferroelectric Devices, 2nd ed.
CRC Press, 2010; pp. 246–247. Reproduced by permission of Taylor & Francis Group.

L

Low n

High n

W

Figure 13.12. Light beam deflection with an electro-optic crystal prism. Source:
Figure by author.
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LiNbO3 Waveguide

Light waveguides can be fabricated by depositing a high-refractive index layer on
a substrate. The principle of the waveguide is shown schematically in Figure 13.13 [5].
Like an optical fiber, the light tends to bend toward high refractive-index side, so
that the light should be confined in the narrow high refractive-index layer fabricated
on the crystal. Two diagrams of (a) slab and (b) graded-index waveguide are shown
in this figure. Nb-diffused LiNbO3 single crystals are commonly used, in which
high density Nb-concentrating in LN layer exponentially decreased from the top
to bottom layer. Note that the higher atomic number ion should have the higher
electron density and refractive index. Wave-functions for the TE0 and TE1 mode
are also shown in the refractive-index profiles [5]. Note that the graded refractive
index exhibits the continuous light beam deflection toward the high refractive index
layer. This is the principle of how to trap the light beam in thin surface layer, and the
waveguide principle.

(a)

(b)

n3 n2 n1

n3 Superstrate 

n1 Film

n2 Substrate

TE1  TE0

Di
st

an
ce

 x

Figure 13.13. Diagrams of (a) slab and (b) graded-index waveguides. The wave-
functions for the TE0 and TE1 modes are shown in the refractive-index profiles.
Source: ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 253. Repro-
duced by permission of Taylor & Francis Group.

Figure 13.14a,b are typical “planar” and “ridge type electro-optic waveguides”,
which are the way to apply electric field on the electro-optic crystal [6]. Though
fabrication of a planar type is easy, the non-uniform distribution of the applied
electric field is a problem. On the other hand, as you can imagine, the ridge type
requires a sophisticated manufacturing technology, but the device function is close
to the ideal. The c-axis is the extraordinary ray direction in LiNbO3. The transmitted
light intensity is 45◦ cant from the c-axis so that the retardation is easily modulated by
applying a relatively low voltage via the change in the extra- and ordinary refractive
indexes (Equation (13.22)).{

ne(Ez) = ne − (ne
3/2)r33E3

no(Ez) = no − (no
3/2)r13E3

.
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Using the −45◦ cant analyzer, the output light intensity is monitored. Phase
modulation by 1 radian can be achieved by applying a voltage of 0.3 V with power
consumption of several µW/MHz.

Electrode

Guided light beam

LiNbO3 crystal

Electrode

c-axis
Ridge

Substrate

Waveguide

(a)

(b)

Figure 13.14. Electro-optic waveguides: (a) planar-type and (b) ridge-type. Source:
©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 254. Reproduced by
permission of Taylor & Francis Group.

PZT Thin-Film Waveguide

With improving the film quality of PZT/PLZT, electro-optic applications have
been investigated. Figure 13.15a illustrates a fundamental structure of an optical
waveguide fabricated on a semiconductor substrate, and Figure 13.15b shows the
SEM picture of the ridge-type PLZT thin-film optical waveguide [7]. Note that
no columnar-like microstructure can be observed, which, once it exists, increases
light scattering. A Y-type 1 × 2 optical switch using a PLZT thin-film waveguide
was developed by Nashimoto et al. [7], as shown in Figure 13.16a. By applying
electric voltage, the refractive index below is decreased, leading to the laser beam
channel selection to a higher refractive index channel. Y separation length is a
half of the digital switch using LiNbO3 (LN), because the electro-optic coefficient is
larger in PLZT. Figure 13.16b shows its optical transmission loss of a slab-type PLZT
thin-film optical waveguide, demonstrating its optical high quality. Figure 13.17a
demonstrates voltage response of the optical switch. Under 10 V applied, −22 dB
cross talk (contrast ratio) can be obtained, which is compared with several tens volts
in the conventional LN switch. The response speed 20 ns shown in Figure 13.17b
corresponds to the RC time constant.
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Nb: SrTiO3 semiconductor substrate
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Figure 13.15. (a) Fundamental structure of an optical waveguide fabricated on a
semiconductor substrate. (b) SEM picture of the ridge-type PLZT thin-film optical
waveguide. Source: ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010;
p. 254. Reproduced by permission of Taylor & Francis Group.
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Figure 13.16. (a) Y-type 1 × 2 optical switch using a PLZT thin-film waveguide.
(b) Optical transmission loss characteristics of a slab-type PLZT thin-film optical
waveguide. Source: ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010;
p. 255. Reproduced by permission of Taylor & Francis Group.
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Figure 13.17. (a) Voltage response of the Y-type 1 × 2 optical switch. Under 10 V
applied, −22 dB cross talk (contrast ratio) can be obtained. (b) Response speed
demonstration. Source: ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010;
p. 256. Reproduced by permission of Taylor & Francis Group.
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Chapter Essentials

1. The refractive index n of a material is a reflection of the dielectric constant
(i.e., relative permittivity) ε, which exhibits interaction with the electromagnetic
wave (~PHz). The formula: ε = n2.

2. Quadric formula of “inverse permittivity ellipsoid”:

B11x2 + B12xy + B13xz+B21yx + B22y2 + B23yz + B31zx + B32zy + B33z2 = 1,

or



B11 B12 B31
B12 B22 B23
B31 B23 B33


→




B1 0 0
0 B2 0
0 0 B3


 [Symmetric matrix is transformed

into a diagonal matrix].

Refer to Figure 13.5.
3. Refractive indicatrix:

x2

n1
2 +

y2

n2
2 +

z2

n3
2 = 1 [Biaxial],

x2+y2

n1
2 + z2

n3
2 = 1 [Uniaxial],

x2+y2+z2

n0
2 = 1 [Isotropic].

4. Electro-optic Effect: Combination of primary electro-optic and secondary effect
via elasto-optic effect:

∆Bij = r′ ijkEk + R′ ijklEkEl + pijkl xkl .

Strain follows “piezoelectric/electrostrictive” constitutive equation:

xij = dkijEk + MklijEkEl .

Thus,

∆Bij = (r′ ijk + pijmndkmn)Ek + (R′ ijkl + pijmn Mklmn)EkEl = rijkEk + RijklEkEl .
The secondary effect is comparable with the primary electro-optic effect.

5. Kerr effect formula in a cubic crystal:




∆(1/n2
1)

∆(1/n2
2)

∆(1/n2
3)

∆(1/n2
4)

∆(1/n2
5)

∆(1/n2
6)




=




R11 R12 R12
R12 R11 R12
R12 R12 R11
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

R44 0 0
0 R44 0
0 0 R44







E2
1

E2
2

E2
3

E2
4

E2
5

E2
6




.
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Under E2
3 as non-zero field (E2

1 = E2
2 = 0):





∆
(

1
n2

3

)
= R11E2

3

∆
(

1
n2

1

)
= ∆

(
1

n2
2

)
= R12E2

3

→
{

nz(Ez) = n0 − (n3/2)R11E2
z

nx(Ez) = n0 − (n3/2)R12E2
z

,

x2+ y2

n0
2[1−

(
n0

2
2

)
R12Ez

2]
2 +

z2

n0
2[1−

(
n0

2
2

)
R11Ez

2]
2 = 1 [Indicatrix form].

6. Light Shutter/Valve: Crossed-nicols polarizer/analyzer setup (Refer to Fig-
ures 13.8 and 13.9).

I = (1− Re)2 I0 (
1−cosΓy

2 )2,

where the phase retardation Γy is given by

Γy = (2π/λ0)L(1/2)n0
3(R11 − R12)(Vz/d)2.

7. Half-wave voltage: from Γy = π condition Vz,λ/2 = d
√

λ0
L n 3

0 (R11−R12)

8. Electro-optic Devices:

(a) Light intensity modulation.
(b) Light beam deflection.

Check Point

1. (T/F) The refractive index is roughly determined by the electron density (per
volume) of the material. True or false?

2. We apply the electric field on cubic PLZT 9/65/35 along the 3 axis direction.
Does the refractive index for the polarized light along the 3 axis (i.e., extraordi-
nary light) increase or decrease with the electric field?

3. The randomly oriented light passed through a polarizer. When we neglect the
light absorption by the polarizer, what % of the light intensity can we obtain
theoretically after one polarizer, in comparison with the input intensity.

4. (T/F) The definition of Pockels electro-optic coefficient r1jk is given by an
expansion expression: 1/nij(E) − 1/nij(0) = ΣrijkEk. True or false?

5. (T/F) Suppose a point light source is situated in the center of a uniaxial crystal
with a “negative” refractive indicatrix, the light wave front should form a
“negative ellipse”. True or false?

6. In a uniaxial crystal with “negative” refractive indicatrix, which light wave
travels faster, the extraordinary or ordinary ray?

7. Which PLZT composition is most popularly used for making a Kerr electro-optic
device, 7/62/38, 7/65/35, 8/65/35, 9/65/35, or none of them?

8. Which color light has the lowest half-wave voltage, red, green, or blue, suppos-
ing that the electro-optic coefficient is almost the same for all three colors?

9. (T/F) A lower refractive index layer is fabricated on the top surface layer of
LiNbO3 single crystal substrate in order to trap the light in this low index thin
layer. True or false?
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10. We fabricate two optical switches by using KTN 65/35 and PLZT 9/65/35,
respectively. The Kerr electro-optic coefficients (R11 − R12) for KTN and PLZT
are 5.3 × 10−16 m2/V2 and 9.1 × 10−16 m2/V2. Suppose that the same electric
field is applied for both optical switches, which device can reduce the optical
path length (i.e., device thickness), KTN or PLZT?

Chapter Problems

13.1 Let us consider a cubic PLZT thin film (1 µm in thickness) deposited on a semi-
conductive SrTiO3 substrate with the following two electrode configurations:
(a) surface electrode for lateral electric field and (b) surface electrode for normal
electric field (Refer to Figure 13.18a,b).

(1) Discuss the merits and demerits of the above two electrode configura-
tions.

(2) Suppose that the substrate is made of transparent single crystal and the
electrode in Figure 13.18b is made of a transparent material such as SnO2.
Do you think the device will work as a light intensity modulator for light
transmitted normally to the PLZT film?

Light direction

Light direction

PLZT film

(a)

(b)

Figure 13.18. Two electrode configurations for PLZT thin-film optical waveguides:
(a) surface electrode and (b) surface electrode. Source: Figures by author.

Hint

(1) Consider the birefringence and the shape of the refractive indicatrix induced by
the electric field. Uniform electric field distribution is better for precise control
of the light beam.

(2) Consider the phase retardation equation: Γy = (π/λ)n0
3E3

2(R11 − R12)L. The
retardation comes from the existence of both extraordinary and ordinary rays in
the light beam. When the incident beam from the normal to the electrode, that
is, in parallel to the electric field, the light beam faces to both ordinary refractive
indexes in cross direction. No Kerr effect will work in this situation.

Even if the PLZT with uniaxial composition (8/65/35) exhibits a Pockels effect
with the optical principal axis on the film, is the path length L = 1 µm sufficient
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for obtaining Γy = π? How high of an electric field is required in this case? Is
this field a realistic number achievable on the PLZT film specimen?
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14. Nonlinear Oscillatory Systems—
Nonlinear Differential Equation

Ferroelectricity originates from nonlinear self-coupling of the polarizations,
while the electric-field-induced strain is a coupled phenomenon of linear piezo-
electric and nonlinear electrostriction with the mechanical parameter. In this chap-
ter, we handle nonlinear oscillatory phenomena related to ferroelectrics and piezo-
electrics. We cover (1) mechanical nonlinear vibration systems in piezoelectric de-
vices with friction damping, frequency spectrum skew/hysteresis phenomena in
impedance/admittance at the piezoelectric resonance, (2) domain wall structure
and dynamics, (3) nonlinear lattice spring effect, thermal expansion and electrostric-
tion, and (4) lattice vibration with phonon localization in crystal imperfections, and
phonon transfer in nonlinear potential to explain the thermal conductivity.

14.1. Mechanical Nonlinear Oscillatory Systems

Piezoelectric devices are often coupled with mechanical structures that include
various nonlinear phenomena, such as snap-switch function and surface friction. We
start to handle the mechanical nonlinear systems to be acquainted with mathematical
procedures on nonlinear differential equations.

14.1.1. Elementary Oscillations

One of the oldest oscillating systems the reader learned in middle to high school
is the so-called “simple pendulum”, as illustrated in Figure 14.1. This consists of a
“light-weight” rigid rod of length L (no length change) with a point mass m at one
end, the other end being hinged at a fixed-point O, so that the pendulum can axially
swing freely in on particular vertical planes under gravity conditions. Most of you
still remember the famous “Foucault pendulum” in the museum.

O

0 mg

θ

θ0 L

Figure 14.1. The simple pendulum. Source: Figure by author.

Using Newton dynamic equation, we can describe this simple pendulum as:

m
∂2Lθ

∂t2 = −mg·sinθ. (14.1)
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Or
∂2θ

∂t2 +
( g

L

)
·sinθ = 0. (14.2)

You have learned the solution when θ � 1, and sinθ ≈ θ even in high school
physics:

∂2θ

∂t2 +
( g

L

)
θ = 0. (14.3)

This is a simple harmonic oscillation, and the general solution can be represented
by a sinusoidal equation:

θ(t) = Asin(ωt) + Bcos(ωt). (14.4)

Here, the angular frequency ω, which corresponds to the natural resonance
frequency, should satisfy

ω =
√

g/L. (14.5)

If we take the initial condition, θ = θ0 and ∂θ
∂t =

.
θ = 0 (start from the rest) at

t = 0,
θ(0) = Asin(0) + Bcos(0) = θ0 → B = θ0.
θ(0) = Acos(0)− Bsin(0) = 0→ A = 0

we finally obtain
θ(t) = θ0cos(

√
g/L·t). (14.6)

so that the pendulum resonance period becomes

Tperiod = 2π
√

L/g. (14.7)

Note that Tperiod is proportional to
√

L, independent of the amplitude θ0, in the
simplest pendulum (harmonic) oscillation case.

14.1.2. Large Swings of the Pendulum—Nonlinear Dynamic Equation

Resonance Frequency Modification—Complete Elliptic Integral

Let us now consider the large swinging situation of Equation (14.2) to consider
the nonlinear oscillation behavior:

∂2θ

∂t2 = −
( g

L

)
·sinθ = −ω2sinθ. (14.8)

Multiplying 2( ∂θ
∂t ) on both sides of Equation (14.8), we integrate both sides,

taking into account the boundary conditions: θ = θ0 and ∂θ
∂t = 0 at t = 0:

(
∂θ

∂t

)2
= −2ω2

∫ t

0
sinθ

(
∂θ

∂t

)
dt = 2ω2[cos θ]θθ0

= (ω2/2)[cos θ − cos θ0].
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As a consequence,
(

∂θ
∂t

)
=
√

2ω
√

cos θ − cos θ0,
or

dt =
√

L
2g

dθ√
(cosθ−cos θ0)

.
(14.9)

Anticipating the amplitude dependence of the resonance period, the period Tθ0
is calculated as “twice the time taken by the pendulum to swing from θ = −θ0 to
θ = +θ0”:

Tθ0 = 2

√
L

2g

∫ θ0

−θ0

dθ√
(cosθ − cos θ0)

. (14.10)

Using the trigonometric relations: cos θ = 1 − 2sin2( θ
2 ) and cos θ0 = 1 −

2sin2( θ0
2 ), Equation (14.10) is transformed into

Tθ0 =

√
L
g

θ0∫

−θ0

dθ√
sin2

(
θ0
2

)
− sin2( θ

2 )

. (14.11)

In order to utilize so-called “complete elliptic integral of the first kind”, K(k),
defined by

K(k) =
π/2∫

0

dφ√
1− k2sin2φ

, (14.12)

we further transform Equation (14.11). First, the initial condition reflects to k as

k = sin
(

θ0

2

)
. (14.13)

Then, we introduce new angle parameter φ as

sin
(

θ

2

)
= k·sinφ. (14.14)

Hence,

dθ =
2kcosφdφ

cos
(

θ
2

) =
2kcosφdφ√
1− k2sin2φ

.

we can finally obtain with “complete elliptic integral of the first kind”, K(k),

Tθ0 = 4

√
L
g

∫ π/2

0

dφ√
1− k2sin2φ

= 4

√
L
g
·K(k). (14.15)

K(k = sin(θ0/2)) is tabulated as a function θ0 in Table 14.1 [1].

• For θ0 = 0: The value of K(k = 0) = π/2, so that Tθ0=0 = 2π
√

L/g, exactly the
same as Equation (14.7).
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• For θ0 = 2◦: we have Tθ0=2◦ = 1.000076·Tθ0=0.
• For θ0 = 60◦: we have Tθ0=60◦ = 1.073·Tθ0=0. Up to 60◦, we may handle the

linear dynamic equation.
• For θ0 = 90◦: we have Tθ0=90◦ = 1.18·Tθ0=0. Note that even for θ0 = π/2 (large

amplitude), the resonance frequency modification is only 18%.
• For θ0 = 178◦: we have Tθ0=178◦ = 3.46·Tθ0=0. Now the resonance frequency is

significantly decreased, when the initial position approaches an upside-down
point (180◦), because the staying time around the upside-down position is
elongated significantly.

Vibration Mode Change

Complete elliptic integral of First kind K(k) merely provides the resonance
period change. Now we introduce so-called “phase plane” concept to obtain the
phase paths and vibration modes [2].

Table 14.1. Complete elliptic integrals of First kind: K(k) =
∫ π/2

0
dφ√

1−k2sin2φ
and

k = sin
(

θ0
2

)
.

θ0 0◦ 2◦ 4◦ 6◦ 8◦ 10◦ 12◦ 14◦ 16◦ 18◦

K 1.5708 1.5709 1.5713 1.5719 1.5727 1.5738 1.5751 1.5767 1.5785 1.5805

θ0 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 75◦ 80◦ 85◦ 90◦

K 1.5828 1.5981 1.6200 1.6490 1.6858 1.7312 1.7578 1.7868 1.8189 1.8541

θ0 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 178◦ 180◦

K 1.9356 2.0347 2.1565 2.3088 2.5046 2.7681 3.1534 3.8317 5.4349 ∞

Source: Table by author.

First, Equation (14.8) ∂2θ
∂t2 = −

( g
L
)
·sinθ can be transformed into

..
θ + sin θ = 0, (14.16)

by introducing a reduced notation of time t̃:

t̃ = t/
√

L/g. (14.17)

Next, Equation (14.16) is recast as a first-order system [2]:
{

y =
.
θ

.
y = −sin θ

. (14.18)

A “phase plane” is a graphical display of a differential equation, typically
of a nonlinear type. Using the improved “Euler method” (see Subsection Euler’s
Method), Acheson integrated under the boundary conditions: θ = θ0, and

.
θ = 0 at

t̃ = 0; that is, the pendulum is released from rest [2], which is introduced below.
Euler method is a first-order numerical procedure to solve “ordinary differential
equations” under an initial condition (such as angle θ(0) and

.
θ(0)). Since the error
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per step is proportional to the square of the step size, the accumulated error at a
given time is also proportional to the step size, as introduced in the next section.

When θ0 is small, the result is an oscillation that is nearly simple harmonic
(i.e., linear!), as shown in Figure 14.2a for θ0 =−π

4 . Even when θ0 is π
2 , we see from

Figure 14.2b that the form of the oscillation is not much changed, with an almost
circular path in the phase plane (θ vs.

.
θ), and a resonance period only 18% larger than

the small amplitude value Tθ0=0. However, when the pendulum is released very
close to its “upside-down” position (θ0 = 179◦), Figure 14.2c exhibits a significantly
different oscillation mode: (1) the resonance period is much longer, and (2) the
vibration amplitude change with time is not sinusoidal anymore, but approaches
a rectangular pulse-like mode. We can understand that around θ0 = ±179◦ (i.e.,
almost upside-down position), the pendulum motion is very slow, which appears as
sharp bends at θ ≈ ±π (or ±179◦) and

.
θ = 0 position in Figure 14.2c.

~t

−4

4

−4 −4

0 0 0

4 4 4

π/4

π/4 π/2 π

π/2

π

θ

θ θ θ

θ θ θ

θ
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4 4 4

50 50

θ

~t~t
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4 4

(a)

−4 −4−4

(b) (c)

4

2

0
−π π 2π

θ

θ

−4

−2

(d)

Figure 14.2. θ vs.t̃ and phase plane (θ vs.
.
θ) plots for the pendulum equation: (a)

θ0 = π/4 or 45◦; (b) θ0 = π/2 or 90◦, and (c) θ0 = 3.124139 or 179◦. (d) Direction
field in the phase plane and traces out various phase paths starting from different
initial conditions. Source: Figure by author, adapted from [2].

If we simulate this problem under the boundary conditions: θ = θ0, and
.
θ 6= 0

at t̃ = 0, this initial angular velocity creates different results. Figure 14.2d shows a
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direction field in the phase plane and traces out various phase paths starting from
different initial conditions. For example, let us consider the initial position θ = 0 at
t̃ = 0. When the initial angular velocity

.
θ < 2, closed curves around the origin can be

traced in the phase plane, denoting to-and-fro pendulum swing. Note the orthogonal
crossing at two positions,

.
θ = 0 and θ = ±π, which we have discussed above

in Figure 14.2d. However, when the initial velocity
.
θ > 2, the phase paths show

periodical increase and decrease in
.
θ, but never change the sign; that is, persistent

whirling motions of the pendulum around the hinge. As θ = ±π represent the
identical position of the pendulum in space (exactly the upside-down position), it
is in fact good to roll the portion of the phase plane −π < θ < π around a cylinder,
and view the phase space as the surface of a cylinder. All periodic motions are then
represented by topologically closed curves, the ones encircling the cylinder being
“whirling” ones, the others corresponding to motions in which the pendulum swings
to-and-fro.

Euler’s Method

Though introduction to the computer simulation software is not the objective of
this textbook, we briefly introduce an approximation technique here for the reader’s
reference. If the reader is not interested in obtaining the actual calculation technique,
you may skip this subsection. “Euler’s method” is one of the most famous calculation
techniques to be utilized for solving the nonlinear differential equations. Figure 14.3
illustrates this process visually.

0

x0

x3

x2

x1

x(t)

t1 t2 t3

True solution

Time
h hh

Slope 
f(x0,0)

Slope 
f(x1,t1)

Slope 
f(x2,t2)

Figure 14.3. Euler’s method. Source: Figure by author, adapted from [2].

Merely for the simplicity, we consider the first-order derivative equation:

dx
dt

= f (x, t), with x = x0 at t = 0. (14.19)

In order to obtain the time dependence of x(t), it may not be difficult for the
reader to approach the following “broken sequential line” method, by referring to
Figure 14.3. From the initial condition: x = x0 at t = 0, we may approximate x = x1
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at t = t1 (just small time interval h after the origin) by using the slope ( dx
dt )t=0. Since

( dx
dt )t=0 = f (x0, 0), the following equation seems to be the first approximation:

x1 = x0 + h· f (x0, 0). (14.20)

We take another step forward in the same way: from x1 at t1 to t2 at the same
interval h after. Using a new slope at the point (x1, t1), that is ( dx

dt )t=t1
= f (x1, t1), we

can obtain
x2 = x1 + h· f (x1, t1). (14.21)

Now the reader can understand how we can estimate the next point value with
the time interval h,

xnew = xold + h· f (xold, told). (14.22)

Knowing the old values (xold, told), we can estimate the future values succes-
sively. Two points to be mentioned for this approximation method:

(1) The deviation from the true function x(t) becomes larger when the time in-
terval h is not sufficiently small. The smaller the increment step is, the better
accuracy. However, because of the increase of the calculation point number, the
calculation time becomes long.

(2) When the function x(t) is monotonous as changing time, the accuracy becomes
high. In order to improve the calculation accuracy, instead of h· f (xold, told) in
Equation (14.22), 1

2 h·[ f (xold, told) + f (xnew, tnew)] is suggested. Refer to Refer-
ence [2] for further learning. If the reader uses “MatLab” software (MathWorks
Inc., Natick, MA, USA) for solving nonlinear differential equations, this ad-
vanced Euler’s method is adopted in it.

14.1.3. Oscillatory System with Friction

Different from a “simple pendulum” that handles “nonlinear force sin θ” in the
previous section, the “mass–spring” model in this section treats a “linear spring”
coupled with a sort of damper, which includes linear (viscous damping) or nonlinear
friction (Coulomb damping) in this section. Though we described the damping
mechanisms in Chapter 6, the reader is reminded of this topic here again from a
different angle.

Viscous Damping—Conventional Approach

Figure 14.4a shows the simplest “mass–spring” model, which the reader is very
familiar with. Denoting the mass displacement as u, the Newton dynamic equation
of this system is expressed by neglecting losses:

m
..
u = −cu. (14.23)

Thus, by using
ω0 =

√
c/m, (14.24)

we obtain the equation
..
u + ω0

2u = 0. (14.25)
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m m

F(t)

c c ζ

(a) (b)

u u

F(t)

Figure 14.4. A simple mass–spring harmonic vibration model (a) and with a damper
(b). Source: Figure by author.

We now understand that the solution u(t) as

u(t) = u0cos(ω0t), (14.26)

if we take the initial condition at t = 0: u(0) = u0,
.
u(0) = 0. Additionally, ω0 means

the natural mechanical resonance angular frequency.
The “viscous damping” is applied for “lubricated surface” friction (i.e., time-

dependent force); so-called “dash pot” (i.e., shock absorber, buffer), illustrated in
Figure 14.4b, exhibits this behavior. It can also be applied for an object moving in
viscous oil, or an electro-active object moving in a magnetic field with its damping
force in proportion to the object speed. Though the loss mechanisms observed in
piezoelectric materials are not actually “viscous”, we occasionally adopt this model
often just from a mathematical simplicity viewpoint, as introduced in Chapter 6. The
damping force is introduced in proportion to the velocity v of the mass m as

F = −ξv = −ξ
du
dt

, (14.27)

where ξ is called viscous damping coefficient. Thus, the dynamic equation of the
mass without external force in Figure 14.4b is described as

m
..
u = −cu− ξ

.
u. (14.28)

Taking the following normalized notations,

ω0 =
√

c/m (base resonance frequency for zero damping), (14.29)

ζ = ξ/2mω0 (normalized damping factor (no dimension)), (14.30)

we obtain the normalized equation,

..
u + 2ζω0

.
u + ω0

2u = 0. (14.31)
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Due to the obedient characteristic of the damping formula, we can easily solve
this differential equation using the Laplace transform (refer to Section 8.2). Tak-
ing L[u(t)] = U(s), and Theorem “differentiation with respect to t”: L

[
dnu(t)

dtn

]
=

snU(s) − ∑ sn−kuk−1(0) with the initial conditions,
.
u(t = 0) = 0, u(t = 0) = u0,

[s2U − su0] + 2ζω0[sU − u0] + ω0
2U = 0. (14.32)

Then,

U(s) =
(s + 2ζω0)u0

[s2 + (2ζω0)s + ω02]
. (14.33)

• Under Damping (0 ≤ ζ < 1)

Rewriting Equation (14.33) as

U(s) = u0

[
(s + ζω0)

(s + ζω0)
2 + (1− ζ2)ω02

+
ζ√

1− ζ2

√
1− ζ2ω0

(s + ζω0)
2 + (1− ζ2)ω02

]
, (14.34)

then using the inverse Laplace transforms (#9 in Table 8.1), we can obtain the solution:

u(t) = u0[exp(−ζω0t)cos
(√

1− ζ2ω0t
)
+

ζ√
1−ζ2

exp(−ζω0t)sin
(√

1− ζ2ω0t
)
].

(14.35)

• Critical Damping (ζ = 1)

Equation (14.33) is transformed as

U(s) =
(s + 2ω0)u0

[s2 + (2ω0)s + ω02]
= u0[

1
s + ω0

+
ω0

(s + ω0)
2 ], (14.36)

then, using the inverse Laplace transforms (#3 and 4 in Table 8.1), we can obtain the
solution:

u(t) = u0[exp(−ω0t) + ω0t·exp(−ω0t)] = u0(1 + ω0t)·exp(−ω0t). (14.37)

• Over Damping (ζ > 1)

U(s) = u0

[
(s + ζω0)

(s + ζω0)
2 − (ζ2 − 1)ω0

2 + ζω0
1

(s + ζω0)
2 − (ζ2 − 1)ω0

2

]
. (14.38)

From the inverse Laplace transforms (#7 and 8 in Table 8.1), we can obtain the
solution:

u(t) = u0

[
exp(−ζω0t)cosh

(√
ζ2 − 1ω0t

)
+

ζ√
ζ2−1

exp(−ζω0t)sinh(
√

2 − 1ω0t)
]

.
(14.39)
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Figure 14.5 shows free vibration amplitude decay in viscous damping models
for the above three cases: 0 ≤ ζ < 1, ζ = 1, and 1 < ζ. The key in the viscous
damping is an “exponential decay” of vibration like exp(−ζω0t). Three important
issues to note here:

(1) The case ζ = 1 corresponds to the critical damping, at which the oscillation
becomes actually “aperiodic”, without exhibiting any ringing.

(2) In the cases 0 ≤ ζ < 1, the oscillation is periodic. However, the resonance
frequency is not the base ω0 =

√
c/m, but

√
1− ζ2ω0. The damping factor

actually modulates the resonance frequency.
(3) The “logarithmic decrement” δ is defined by the natural log of the ratio of two

successive vibration amplitudes (useful in experimental data analysis):

δ = ln
(

x1

x2

)
= ln

exp(−ζω0t)
exp(−ζω0(t + T0))

= ln[exp(ζω0T0)] = ζω0T0. (14.40)

Since the vibration resonance period T0 is given by T0 = 2π/
√

1− ζ2ω0, the
logarithmic decrement can be written with the damping factor ζ as

δ =
2πζ√
1− ζ2

≈ 2πζ. (14.41)
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Figure 14.5. Free vibration amplitude decay for viscous damping. Source: Figure
by author.

Coulomb (Friction) Damping

Now, we consider a nonlinear friction model, different from the “viscous” damp-
ing. Coulomb damping occurs when the mechanical object is contacted on a “dry
surface”. As learned in high school physics, the Coulomb friction force F is almost
constant (irrelevant to the object speed), and expressed by the product of the normal
force N and the friction constant µ:

F = µN.
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The friction constant changes from 0 to 1, but typical values are around 0.2–0.4.
Instead of the dashpot in Figure 14.3b, new illustrations are given in Figure 14.6
for your easy recognition. Figure 14.6a,b show a commercial friction damper and a
schematic model with mass m, spring constant c and friction contact, respectively.
We can start from the differential equation by using mass displacement u:

m
..
u + cu = ±F. (14.43)

We can rewrite Equation (14.43) using ω =
√

c/m and a rectangular wave
function h(t) visualized in Figure 14.6c,

..
u + ω2u = h(t). (14.44)

Here, the amplitude A of h(t) is set F/m = µN/m (constant force with sign change
with the moving direction), and a cyclic period (2T) is taken as 2π/ω, corresponding
to the resonance period of the original mass–spring system. We will adopt the initial
conditions as:

u(t = 0) = a,
.
u(t = 0) = 0. (14.45)

The initial mass position a (spring force c·a) should be taken as reasonably large,
so that the motion will start by competing the frictional force µN:

a > A/ω2. (14.46)

(a)

c

h(t)
A =

T = 2T 3T

F 
m

π
ω

u

t

m

Force F

(b)

(c)

Figure 14.6. (a) Commercial friction damper, (b) schematic model with mass, spring,
and friction contact, and (c) rectangular wave function representing friction force.
Source: [3] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC Press,
2020; p. 92. Reproduced by permission of Taylor & Francis Group.

Let us solve the differential equation, Equation (14.44), using “Laplace trans-
form”, which is a useful mathematical tool for this sort of non-sinusoidal, anharmonic
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input force. We denote the Laplace transforms of the displacement u(t) and friction
force h(t) as U(s) and H(s): U(s) = Lu(t), G(s) = Lh(t). Equation (14.46) can be
written as [4]

L
..
u + ω2U(s) = H(s). (14.47)

Taking into account the initial condition u(t = 0) = a and
.
u(t = 0) = 0 ([from

Theorem: L
[

dnu(t)
dtn

]
= snU(s) − ∑ sn−kuk−1(0)),

L
..
u = s2U − sa, (14.48)

and the Laplace transform of a rectangular wave expressed by (from #13 in Table 8.1)

H(s) =
A
s

tanh(
Ts
2
) =

A
s
(1− 2e−Ts + 2e−2Ts − 2e−3Ts + ···), (14.49)

we obtain the following equation:

(s2 + ω2)U − sa =
A
s
(1− 2e−Ts + 2e−2Ts − 2e−3Ts + ···). (14.50)

We can now solve it in terms of U(s)

U =
s·a

(s2 + ω2)
+

A

s(s2 + ω2)
(1− 2e−Ts + 2e−2Ts − 2e−3Ts + ···). (14.51)

Remember T = π/ω (“a half of the resonance period”).
Knowing 1

s(s2+ω2)
= 1

ω2 [
1
s − s

(s2+ω2)
], and the famous inverse Laplace trans-

forms as follows (Table 8.1):

L−1 1
s
= 1 (step function, t > 0); L−1 s

(s2 + ω2)
= cos(ωt);

and the “time-shift theorem” L[u(t− a)] = e−asU(s), we can obtain the displacement
u(t) solution for successive time intervals, 0 < t < T, T < t < 2T, 2T < t < 3T, · · · , where
T is a half of the resonance period (i.e., ωT = π, cos ωT = −1) (refer to Reference [4]):

u = acos(ωt) +
A

ω2 (1− cos(ωt)) for 0 < t < T; u(T) = −a +
2A
ω2 (14.52)

u = acos(ωt) + A
ω2 (1− cos(ωt))− 2A

ω2 (1− cos(ω(t− T)) for T < t < 2T;
u(2T) = a− 4A

ω2

· · · · · · · · · · · · · · ·
(14.53)

We find that

(1) The system has the resonance frequency provided by ω =
√

c/m, determined
by the original mass and spring.

(2) Each successive sinusoidal swing is ( 2A
ω2 ) shorter than the preceding one, un-

til inside the dead region, that is, “linearly decay” with time, different from
popular “exponential decay” in the viscous damping in the previous section.

535



Figure 14.7 shows the linear vibration amplitude decay for the Coulomb damp-
ing, in comparison with no damping free vibration.

(3) There is the critical stop point of the vibration; that is, the minimum displace-
ment u(t) = A/ω2, below which the spring force cannot compete with the
friction force.

We can derive the displacement amplitude decay by 2( 2A
ω2 ) per cycle from the

energy consumption analysis. We consider here the vibration amplitude decrease
from the work by the friction force. When we consider a half cycle from the mass
velocity zero to the next zero state (from t = 0 to t = T), the kinetic energy change
should be zero. Supposing that the vibration amplitude is reduced by ∆u from the
initial u0 = a to −u0 (but not reaching to −a), the spring potential energy change
should equate to the work by the friction force F times moving distance (2u0 − ∆u):

1
2

c
[
u2

0 − (u0 − ∆u)2
]
= F(2u0 − ∆u). (14.54)

Thus, neglecting (∆u)2, Equation (14.54) gives

∆u = 2F/c. (14.55)

This implies that the vibration amplitude is reduced by 2F/c per a half cycle,
which is exactly the same conclusion from the above summary item (2), taking into
account 2F/c = ( 2A

ω2 ). The last relation can be derived from the definitions: A = F/m
and ω2 = c/m. The Coulomb damping exhibits linear vibration amplitude decay
of the sinusoidal oscillation (Figure 14.7), rather than exponential amplitude decay
(Figure 14.5)!
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Figure 14.7. Linear vibration amplitude decay for Coulomb damping. Source: [3]
©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 94.
Reproduced by permission of Taylor & Francis Group.
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Example Problem 14.1

We proposed a simple “stick–slick motion” analysis model. Figure 14.8a shows
a model via friction model, where M is the slider mass, N, normal force, and D(t)
and V(t) are the displacement and velocity of the moving base. Friction constant
µ can be different for static and dynamic conditions, but we handle them as the
same and constant regardless of velocity (Figure 14.8b). When we drive the moving
base (displacement and velocity) with an ideal sawtooth shape as a function of
time, as shown in Figure 14.8c, impact force can be estimated as a function of time
(Figure 14.8d). Under the above assumption, derive the slider position x(t) as a
function time [5,6].

(a) (b)

(d)

(f)

(c)

(e)

Slider
N μ(vr)

D(t)

V(t)

μd

−μd
−μs

Mv1/τ
Mv2/τ

−μd

M x

t
t

t0

t

t

D(  t)

T1
T1

T1

Tst1
Tst2

μ(t)
x(t)

F(t)

T1

T0

−v2

−v2

v1

T0
T0

T0

Moving Base
V(  t)

vr = V (t) − x 
μd

μs

.

Figure 14.8. Stick–slick motion analysis via friction model (a): friction constant as a
function of velocity (b), sawtooth displacement and velocity—as a function of time
(c), impact force as a function of time (d), friction constant vs. time (e), and slider
position change as a function of time. Source: [4] ©Uchino, K. Micromechatronics,
2nd ed. CRC Press, 2019; p. 512. Reproduced by permission of Taylor & Francis
Group.

Solution

First, the moving base (stator) is assumed to be operated like a saw-tooth
displacement motion (slow 0 < t < T1 and quick T1 < t < T0) shown in Figure 14.8c, so
that the constant velocity rightward v1 and leftward –v2. Note v1 < v2 for the “slow
and quick” sequence.

Second, we assume the two mass motion equations for the “slick” and “stick”
conditions. We define the velocity vr of the mass relative to the base velocity:
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vr = V(t)− .
x. (P14.1.1)

When vr 6= 0, that is, under “slick/slip” condition, we adopt

M
..
x = Nµ(vr) = sgn(vr)Nµd. (P14.1.2)

We use the same dynamic friction constant µd to the static friction constant µd
from the formula simplicity, while when vr = 0, that is, under “stick” condition:

x = D(t) and
.
x = V(t). (P14.1.3)

Third, we consider abrupt force at the time when the base velocity suddenly
changes. Recall the fundamental relation between the impact force and momentum
change:

F·∆t = ∆(Mv). (P14.1.4)

• At t = 0: Velocity sudden change (step function) from 0 to v1 is assumed to be
made during a short time period τ. The impulse force is estimated as Mv1/τ.

• At t = T1: Velocity change from v1 to 0 provides the impulse force of −Mv1/τ,
supposing the time duration τ. Immediately after −v2 is applied, which gener-
ates the impulse force of −Mv2/τ.

• At t = T2: Velocity change from −v2 to 0 provides the impulse force of Mv2/τ.

The above impulse forces are illustrated in Figure 14.8d. According to the
friction force vs. momentum, we categorize the situation into three:

(1) Stick and stick (no slip) Nµs(> Nµd) >
Mv2

τ

(
> Mv1

τ

)

(2) Stick and slick Mv2
τ > Nµs(> Nµd) >

Mv1
τ

(3) Slick and slick Mv2
τ > Mv1

τ > Nµs(> Nµd)

Case (1) does not provide the slider motion relative to the moving base (no
interest!), while case (3) can provide the slider motion, but no large thrust of
the slider is expected in practice because of the slick condition (useless from
the application viewpoint!). Thus, we consider the case (2) stick and slick
combination in more details.

The initial impact force (Mv1/τ) generates a constant acceleration slipping
motion of the slider (thus, parabolic increase in displacement) until Tst1, where
.
x = V(t) (catching the speed of the base), then the slider is sticked on the moving
base with almost constant velocity. We formulate the above address mathematically.
Let the dynamic equation

M
..
x = Nµ(vr) = Nµ(t), (P14.1.5)

be converted into the Laplace transform formula, knowing µ(t) as a rectangular
wave shape illustrated in Figure 14.8e, which is expressed by

(
1
s

)[(
1− e−T1s)−

(
e−T1s − e−T0s)] in the Laplace transform:

Ms2 x̃ = Nµd

(
1
s

)[(
1− e−T1s

)
−
(

e−T1s − e−T0s
)]

, (P14.1.6)
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where x̃(s) is the Laplace transform of mass position x(t). Thus, the solution of the
position under a one-time pulse drive is expressed by

x̃ =
Nµd
M

(
1
s3

)(
1− 2e−T1s

)
+ e−T0s. (P14.1.7a)

Or under a period/cyclic pulse drive with the periodicity T0:

x̃ =
Nµd
M

(
1
s3

)(
1− 2e−T1s + e−T0s

)(
1 + e−T0s

)
, (P14.1.7b)

Knowing the inverse Laplace transform
(

1
s3

)
→ ( 1

2 )t
2 , in the initial interval

(i.e., slipping) 0 < t < Tst1, the position change will follow:

x(t) = (
1
2
)

Nµd
M

t2,
.
x(t) =

Nµd
M

t. (P14.1.8)

Once the time reaches Tst1, since the mass velocity catches up to the base speed,
the stick mode arrives, then the constant velocity

.
x(t) = v1 is continued during Tst1

< t < T1. Tst1 is obtained from

.
x(Tst1) =

Nµd
M

Tst1 = v1 → Tst1 =
M

Nµd
v1. (P14.1.9)

The initial part 0 < t < T1 of x(t) is drawn in Figure 14.8f, which consists
of a parabolic (slick) and a linear curve (stick) connection. The position x(t) and
acceleration

.
x(t) at t = T1 are given by the following equations, which are the initial

condition of the following interval T1 < t < T0:

{
x(T1) =

(
1
2

)
Nµd
M T1

2 + v1(T1 − Tst1) =
(

1
2

)
Nµd
M T1

2 + v1T1 − M
Nµd

v2
1.

.
x(T1) = v1

(P14.1.10)

Let us now elaborate similarly on the time period T1 < t < T0. After T1, the
base moves backward very quickly with the velocity v2 (in addition to the reduction
of v1), which should induce at least slicking condition on the slider mass until Tst2
(rather close to T0, since the base motion speed is very quick). The dragging friction
is shown in Figure 14.8e with using the same friction constant µd:

x̃ =
Nµd
M

(
1
s3

)(
1− 2e−T1s + e−T0s

)
. (P14.1.11)

We solve Equation (P14.1.11) under the initial conditions in Equation (P14.1.10).
Thus, T1 < t < Tst2, and we may obtain

{
x(t) =

[(
1
2

)
Nµd
M T1

2 + v1T1 − M
Nµd

v2
1

]
−
(

1
2

)
Nµd
M [2(t− T1)

2]
.
x(t) = v1 +

Nµd
M (−t + T1)

. (P14.1.12)

Tst2 can be determined by
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.
x(tst2) = v1 +

Nµd
M

(−tst2 + T1) = −v2.

Thus,

Tst2 = T1 +
M

Nµd
(v1 + v2). (P14.1.13)

The slider is again sticked from Tst2 to T0, but this period may be short because
of v2 > v1. Or, if v2 is too large, Tst2 > T0 may happen; that is, no stick may be
realized. The slider motion for this latter time period is schematically shown in
Figure 14.8f again by a combination of quadratic and linear lines [5,6].

Practical slider translational motion was tested on a rod-type stator piezo-impact
motor [5]. Figure 14.9 demonstrates the tip displacement of the base rod by support-
ing the slider ring. In the test setup, from the experimental simplicity, the motor is
held from the mobile ring (slider) element and the stator rod movement was moni-
tored by a laser vibrometer under a drive condition of 59 kHz. The linear average
speed of the mobile element, superposed with zig-zag vibrational displacement, can
be calculated as 5 mm/s under a condition of 4 mN thrust or blocking force, which
basically comes from the friction force Nµd. Since the moving base displacement
(sawtooth shape) does not have a sufficient “fall” slope, Tst2 comes early, then the
slider seems to be stuck, which reflects linear decrease after a small hump.
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Figure 14.9. Practical slider motion of the “translational-rotary” inertial motor.
Source: [4] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 513. Repro-
duced by permission of Taylor & Francis Group.

14.1.4. Oscillatory System with Elastic Nonlinearity

Admittance Frequency Spectrum Distortion Phenomena

When we measure the admittance (i.e., current/voltage) frequency spectrum for
a piezoelectric device, we observe a peak around its resonance frequency. However,
with increasing the drive voltage (leading to the vibration amplitude increase), (1) the
peak frequency shifts to a lower frequency and (2) the peak admittance decreases

540



significantly, as demonstrated in Figure 14.10. The PZT specimen used here is a k31
type rectangular plate with 80 mm·L× 10 mm·w× 1 mm·t in size. In order to explain
these behaviors, we provided an equivalent electric circuit model with variable
parameters with applied voltage/current (see Figure 14.11) [7]. Recall that Cd is
the damped capacitance (real electric capacitance of the piezo-ceramic), and CA, LA,
and RA are the motional components, corresponding to elastic compliance, mass,
and elastic loss, respectively. The fundamental equations for the current (which
corresponds to the admittance under a constant voltage condition) for both motional
and electrical branches in the equivalent circuit are given by





LA
d2 I1
dt2 + RA

dI1
dt + I1

C1
= ωV

I2
Cd

= ωV
I = I1 + I2

. (14.56)
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Figure 14.10. Experimental admittance frequency spectra under constant voltage
condition in a piezoelectric ceramic PZT. Source: [3] ©Uchino, K. High-Power Piezo-
electrics and Loss Mechanisms. CRC Press, 2020; p. 192. Reproduced by permission
of Taylor & Francis Group.

Since the motional branch contributes primarily to the resonance mode, we focus
on the top equation of Equation (14.56). Introducing the nonlinear characteristics to
the capacitor and resistor elements (no change on inductor, because of mass) [7],

LA
d2 I1

dt2 + (RA1 + RA2 I1
2)

dI1

dt
+

I1

C1
+

I1
3

C2
= ωV, (14.57)

where both values of RA2 and C2 are positive in most of the cases. The nonlinearity
of the resistance, which corresponds to the increase in elastic loss factor of the PZT
by increasing the vibration level, decreases the mechanical quality factor Qm, and
the admittance peak value, as well as broadening the spectrum peak significantly. To
the contrary, the nonlinearity of the capacitance, which corresponds to the increase
in the elastic compliance, provides significant skewness of the spectrum, also ad-
mittance jump and spectrum hysteresis under high vibration level with respect to
frequency sweep.

541



Cd CA

LA

RA

Figure 14.11. Equivalent circuit for the k31 mode (IEEE). Source: Figure by author.

Forced Duffing Equation

As we focus on the resonance peak frequency shift and the admittance spectrum
skew primarily, we focus merely on the motional branch, and neglect the resistance
nonlinearity (i.e., the admittance peak value does not decrease) and normalize with
respect to LA (such as r = (RA1/LA) and c1 = (1/C1LA)). Equation (14.57) is trans-
formed into the following simpler equation merely with the capacitance nonlinearity
(“Forced Duffing Equation”) [2]:

..
I + r

.
I + c1 I + c2 I3 = ωV, (14.58)

where c1 and c2 are elastic stiffness parameters, and c2 may be negative, so that
the elastic softening (leading to the resonance frequency decrease) is induced with
the current I (i.e., corresponding to vibration velocity) increase. When the external
voltage V is provided by Vcos(ωt − φ), we assume that the final steady state of
current is expressed as:

I = Icosωt,

as the first approximation. Taking into account the trigonometric relation:

cos3ωt =
(

1
4

)
cos(3ωt) +

( 3
4
)
cos(ωt).

Equation (14.58) can be transformed into

(
−ω2 + jωr + c1

)
I +

(
3
4

)
c2 I3 +

(
1
4

)
c2 I3cos(3ωt) = ωV. (14.59a)

Supposing that an impedance analyzer only selectively monitors the fundamental
frequency ω, we must have

−
(

3
4

)
c2 I3 +

(
ω2 − jωr−ω0

2
)

I + ωV = 0 (14.59b)

Here, ω0
2 = c1 is the natural angular frequency of the system without the nonlinear

term. Equation (14.60) provides the amplitude of the current I with the frequency of
the external voltage V. The solutions of the above cubical equation can be obtained
by a visual analysis illustrated in Figure 14.12a, which shows two curves:
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Cubic curve: y = −
( 3

4
)
(c2/c1)·I3, and

Straight line: y =

(
1− ω2

ω2
0
− jωr

c1

)
·I − ωV
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Figure 14.12. (a) Visual solution technique of the cubical equation. (b) The relation
between the equilibrium current I0 and the modulation current ε. Source: Figure
by author.

The figure is drawn by neglecting the loss term r and keeping −ωV
c1

almost
constant around ω = ω0 just from the simplicity. The roots of the current I are
obtained from the abscissa of the intersecting points of these two curves. When the
frequency is small (ω � ω0), under the straight-line slope slightly lower than “1”,
there are three roots (a, a’ and c’). In practice, we may start from the point “a” (low
current). With increasing the frequency, that is, with reducing the straight-line slope,
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two points “a” and “a’” start to merge into “b”, the specific frequency at which is
ωc, slightly lower than ω0. Above ωc, there exists only one solution at the point “c”,
which causes a sudden current jump with a 180◦ phase change. We may call this
transition as “positive to negative current branch transition”. A further frequency
increase to ω0 gives the slope “0”, leading to the current decrease from “c” to “d”.
When the frequency is larger (ω > ω0), the straight-line slope becomes negative,
and the current magnitude becomes monotonously decreased to zero. Now, we
consider the frequency decreasing process. At a high frequency (ω > ω0) there is
only one solution. By reducing the frequency, the current will be gradually increased
from the point “e”, “d” to “c”. Although at this point the straight-line touches on
the cubic curve, the current position may go up to “c’”. However, since another
solution at the point “a” seems to be more stable (i.e., lower energy), the status will
be transitioned from the negative current branch to the positive current branch with
some frequency lag (that is, “hysteresis”), which shows the admittance spectrum
simulation as a function of drive frequency ω using MatLab (an abbreviation of
“matrix laboratory”, developed by MathWorks, MA, USA) R2020a version. MatLab
software integrates the advanced “Euler” approximation method, which can help
with solving the normal differential equations and algebraic equations numerically,
and plotting on the figure. The figure is made under a constant damping factor
r = 0.01 (i.e., Qm = 100) and c1 = 1 (i.e., normalized). We change the nonlinear
elasticity c2 = 0, −0.01, and− 0.05, and voltage = 0.1 and 0.5, the results of which
are superposed on one figure. First, comparing three graphs of c2 = 0, −0.01, and
−0.05, the reader can recognize that the skewness and hysteresis of the admittance
frequency spectrum are enhanced significantly with an increase of the nonlinear
elasticity (−c2); in addition, the peak admittance value decreases. Notice also that
the transition temperature ωc from the positive current branch to the negative branch
(i.e., 180◦ phase change) is decreased with (−c2), which is expected from the effective
elastic stiffness decrease with nonlinearity. Second, the increase of applied voltage
increases overall admittance value, also exhibits the ωc decrease and hysteresis
increase. These simulations explain the experimental results shown in Figure 14.10,
where the admittance peak shift and skewness increase was obtained with an increase
of the vibration velocity (i.e., applied voltage). The peak value decrease cannot be
explained by the elastic nonlinearity, but by the loss parameter r increase (equivalent
to the increase in the elastic loss factor tan φ′ physically).

Concept of the “Bifurcation”

Let us consider the admittance spectrum hysteresis from the concept of “bifur-

cation” theory. Starting from the linear resonance relation, I = V/
√

r2 + (ω− c1
ω )

2,
Equation (14.58) may be modified with the addition of the nonlinear elastic contribu-
tion c2 as

I0 + (
c2

c1
)I0

3 = ε ≡ ωV0/

√
r2 + (ω− c1

ω
)

2
, (14.60)

where subscript “0” stands for the peak values of sinusoidal voltage/current, and the
right-hand-side term ε is the external modulation of current induced by the applied
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voltage via impedance. Note that ε is varied with the voltage proportionally, and
with frequency ω significantly around the resonance frequency ω0 =

√
c1.

To obtain the equilibrium current I0, if it exists because of the nonlinear coupling
term, let us modulate the current by ε with the external voltage/current. To see how
I0 depends on ε, let us consider reversely from the mathematical simplicity (see
Figure 14.12b); that is, ε as a function of I0,

dε

dI0
= 1 + (c2/c1)I0

2. (14.61)

Since the primary elastic stiffness is always positive, we set c1 > 0. If c2 > 0,
dε
dI0

> 0 is sustained for any I0; that is, the value of ε increases steadily with I0 (see
Figure 14.12b, monotonous curve), while if c2 < 0,

(1) I0 <
√−c1/c2: The value of ε increases steadily with I0 (see Figure 14.12b).

(2) I0 >
√−c1/c2: There are two stationary solutions from dε

dI0
= 0:

I0 = ±
√
−c1/c2. (14.62)

Refer to Figure 14.12b (wider scale curve). The value of ε hypothetically de-
creases (dashed line) with an increase in I0 for small I0 (dashed line), which changes
the sign at I0 = ±√−c1/c2. Once this condition occurs, I0 value between−√−c1/c2
and +

√−c1/c2 does not show up, but a current jump (which corresponds to the
admittance jump under constant voltage operation).

If we turn the graphs of Figure 14.12b through 90◦ and plot them together in a
3D way, so that the equilibrium current I0 states can be seen as a function of both
modulation current ε and higher-order elastic parameter (−c2/c1)I0

2 (Figure 14.13b).
The key feature is the fold in the surface (i.e., so-called “bifurcation”), and if we project
this part down onto the ε vs. (−c2/c1)I0

2 plane, we obtain the cusped region shown
in the figure. For any pair of values , (−c2/c1)I0

2 outside this region, there is just one
equilibrium solution I0, but for any (ε,(−c2/c1)I0

2) within the cusped region, there
are three equilibrium I0 solutions. The “intermediate” one of these, corresponding
to some point on the “middle” (shaded) section of the fold in Figure 14.13b, can be
shown to be unstable (unrealizable in practice), while the other two are stable.

Bearing the previous analysis in mind, we can then consider the admittance spec-
trum skew and hysteresis with sweeping the drive frequency around the resonance
frequency. According to the simulation in Figure 14.13b shown for the normalized pa-
rameters, the original resonance frequency under low oscillation level [i.e., ωr =

√
c1]

is “1”, and admittance is in an arbitrary unit. First, regarding the admittance peak
shift, if we assume ωr =

√
c1 + c2 I0

2, the elastic softening (c2 < 0) with the current
level increase leads to the shift to the lower frequency. Under a very low voltage and
vibration level (that is, I0 <

√−c1/c2 even around the resonance frequency when r is
reasonably large), we observe an almost symmetrical admittance frequency spectrum
at the resonance frequency ω0 =

√
c1 for the linear equation (i.e., nonlinearity is

negligible). With increasing the voltage, because the current is significantly ampli-
fied by a factor of the mechanical quality factor (Qm) around the resonance region
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(with the drive frequency sweep), (1 + (c2/c1)I0
2) will approach “zero”, leading

to the bifurcation critical point 1 (= −(c2/c1)I0
2) on Figure 14.13a. Considering

the horizontal axis, we move from the left-corner to the “1” point, where the route
bifurcates. Once the voltage and corresponding (−c2/c1)I0

2 exceeds 1, there are
two stable solutions, which generates a current jump and frequency spectrum hys-
teresis of the current (which is equivalent to “admittance” under constant voltage
drive condition) between −√−c1/c2 and +

√−c1/c2 theoretically, depending on
the frequency sweep direction, increasing or decreasing. In practice, the hysteresis
also depends on the frequency sweep speed, and on the environmental temperature
(higher temperature, lower hysteresis due to the thermal fluctuation kBT).

c2 = −0.05
V = 0.1

c2 = −0.01
V = 0.5
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Figure 14.13. (a) Admittance spectrum simulation as a function of drive frequency.
(b) Illustration of the equilibrium I0 states as a function of both modulation current
ε and higher-order elastic parameter (−c2/c1)I0

2. Source: Figure by author.
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Example Problem 14.2

In order to solve the “Forced Duffing Equation”

..
I + r

.
I + c1 I + c2 I3 = ωV, (P14.2.1)

where c1 and c2 are elastic stiffness parameters, and c2 may be negative, we assumed
that the final steady state of the current is expressed as:

I = I0cosωt, (P14.2.2)

as the first approximation, under the external voltage V expressed as Vcos(ωt− ϕ).
However, we neglected the higher order frequency contribution

(
1
4

)
c2 I0

3cos(3ωt)
and obtained the following equation:

(
−ω2 + jωr + c1

)
I0 =

(
3
4

)
c2 I0

3 = ωV0, (P14.2.3)

Obtain the higher approximation by taking into account the higher order har-
monic contribution.

Solution

The forced Duffing equation in Equation (14.58) can be transformed as

d2 I
dt2 = ωV0cosωt− (jωr + c1)I0cosωt−

(
3
4

)
c2 I0

3cosωt−
(

1
4

)
c2 I0

3cos(3ωt). (P14.2.4a)

Knowing the relation in Equation (P14.2.3) in the first approximation, we obtain

d2 I
dt2 = −ω2 I0cosωt−

(
1
4

)
c2 I0

3cos(3ωt). (P14.2.4b)

Integrating Equation (P14.2.4a,b) in terms of t, we obtain a higher approximation:

I = I0cosωt +
(

1
36

)
(c2/ω2) I0

3cos(3ωt) (P14.2.5)

This second approximation can be substituted into the original Equation (14.58) for
obtaining the third approximation.

14.1.5. Mechanical Bistability

Mechanical Bistability Function

Mechanical bistability, such as a snap-action switch, has been used in many
places, including a historical toy music instrument known as “Pop-Pen”, even from
the 18th century in Japan. Figure 14.14a shows an Utamaro Kitagawa’s “Ukiyoe”
picture drawing a lady playing “Pop-Pen”. A slightly dented thin glass bottom plate
of a flask (so-called “Biedro”) has bistable positions. Light exhale and inhale air pres-
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sure can easily exchange the dent position up-or-down, during which action, a rather
loud audible sound like “Pop” and “Pen” comes out. Piezoelectric actuator devices
occasionally utilize mechanical bistability to save the operating energy. Figure 14.14b
illustrates a mechanical latching relay developed by Omron Corporation, Japan, in
the 1980s [8]. The latch mechanism possesses two mechanically stable positions,
one ON-position and the other OFF-position on the “Movable Piece”, so that no
continuous electric voltage is required on the “piezoelectric unimorph”, except for
only switching the contact condition between ON and OFF. We discuss the analysis of
the “mechanical bistability” in this section. Chapter Problem 14.1 shows an advanced
model in practical designs; a stressed beam with slight bent.

Base 10 mm

Piezoelectric 
Unimorph

Contact

Movable Piece

Leaf Spring

(a) (b)

Figure 14.14. (a) “Pop-Pen”, a mechanical bistability toy music instrument in the
18th century in Japan. (b) Piezoelectric mechanical relay (snap-action) developed
by Omron Corporation, Japan. Source: [4] ©Uchino, K. Micromechatronics, 2nd ed.
CRC Press, 2019; p. 452. Reproduced by permission of Taylor & Francis Group.

Two-Spring–Mass Model

A two-spring–mass model can be considered for the mechanical latching relay,
as illustrated in Figure 14.15. Two springs with lengths a little longer than R are
connected with the distance 2R. The original angle set is denoted as α. When we
push down the center light mass (mass is supposed to be neglected in the analysis),
we denote the angle θ. Since the spring shrinkage is estimated by

∆L =
R

cos α
− R

cos θ
. (14.63)

Spring elastic energy in the two springs will be calculated as

U(θ) = 2·1
2

k(
R

cos α
− R

cos θ
)

2
, (14.64a)

where k is the spring constant. Using cos θ = 1− 1
2 θ2 for a small angle, Equation (14.64a)

is transformed into

U(θ) = kR2(1 +
1
2

α2 − 1− 1
2

θ2)
2
=

1
4

kR2
(

α4 − 2α2θ2 + θ4
)

. (14.64b)
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On the other hand, the work on the mass from the force is evaluated by the
product of force and displacement. Since the displacement is given by

Displacement = R(tanα− tan θ) = R(α− θ). (14.65)

Now, the total energy of the springs and mass is represented by

V(θ) = U(θ)− FR(α− θ) =
1
4

kR2(α4 − 2α2θ2 + θ4)− FR(α− θ). (14.66)

2R

θ

Force F

Figure 14.15. Two springs and mass model for the mechanical bistability. Source:
Figure by author.

Total energy of the springs and mass as a function of (α− θ) for changing F
is shown in Figure 14.16a. The initial single minimum at θ = α (case (1)) starts to
generate another minimum around θ = −α with the application of F (case (2)). Then,
case (3) shows that the minimum at θ = −α is deeper than that at θ = α, but due
to the small potential barrier, the status is still maintained at θ = α. By increasing F
further, and diminishing the potential barrier, the status changes suddenly from α to
−α (case (4)).

Taking the first derivative of Equation (14.66) to find the potential minimum
points:

∂

∂x
V(θ) = kR2

(
−α2θ + θ3

)
+ FR = 0. (14.67)

We obtain the
F = kR

(
α2θ − θ3

)
. (14.68)

Finally, using Figure 14.16b, let us understand the mechanical bistability. First,
load force F vs. angle θ dependence follows a “symmetric cubic equation”, Equation
(14.68). Second, when the load F = 0, there are three solution statuses: θ = α, 0, and −
α, among which θ = 0 is a hypothetical solution, or cannot be observed in practice.
Third, the snapping action process with increasing the load force F is shown by arrows
in Figure 14.16b. With increasing the load force F, angle θ gradually decreases from
the initial α. When the load F reaches the local maximum, Position 1, angle θ suddenly
jumps to less than −α. Once this jump occurs, even the load F is decreased to zero,
θ = −α (another stable position) is realized. Since the curve is point symmetry, it is
easy to understand the opposite snap-action from θ = −α to α.
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Figure 14.16. (a) Total energy of the springs and mass as a function of (α− θ) for
changing F. (b) Force vs. angle dependence of the mechanical bistability model.
Source: Figure by author.

14.2. Domain Wall Structures and Dynamics

Chapter 4 described how nonlinear phenomenology induces the paraelectric-
to-ferroelectric transition. However, that phenomenology assumed a mono-domain
state in a single crystal, where the coercive field derived is 10 times higher than
practically observed in a single crystal. The key reason comes from the domain
segmentation due to the total crystal energy minimization. This section treats the
dynamic phenomenology with domain walls. We describe first on the static domain
formation, and the domain wall models, then discuss the domain wall dynamics. This
section is largely devoted to a comprehensive domain structure textbook, “Domain
Structure in Ferroelectrics and Related Materials” by Sidorkin [9].
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14.2.1. Ginzburg–Landau Functional—Domain Wall Structure Phenomenology

Formulation of Ginzburg–Landau Functional

Landau phenomenological theory was introduced in Chapter 4, where we
assume that the Landau free energy F in 1-D is represented in terms of polarization
P as:

F(P,T) = (1/2)αP2 + (1/4)βP4, (14.69)

in the simplest second-order phase transition’s case. That is, only the intra-coupling
in the uniform polar cluster distribution (i.e., mono-domain state) is taken into
account. Only the coefficient α is temperature dependent,

α = (T − T0)/ε0C (14.70)

where C is taken as a positive constant called the “Curie–Weiss constant” and T0 is
equal to or lower than the actual transition temperature TC (“Curie temperature”), in
general (the first-order transition). β is supposed to be constant, and positive in this
second-order transition case. The phenomenological formulation should be applied
for the entire temperature range over which the infinitely large crystal is uniformly
in its paraelectric and ferroelectric states. We discuss the form of this expansion
in the case of multidomain status in a finite-size specimen shown in Figure 14.17a,
without taking into account the depolarization energy initially (that is, a rather
thick single crystal specimen). Taking the Cartesian coordinate, z: polarization
direction, and x: perpendicular to the 180◦ domain wall planes, we consider the
P(x) distribution function in a narrow slab x to x + ∆x (Figure 14.17b). If, as the
first approximation, we assume that the cells (or slabs), x, do not influence each
other, the free energy can be decomposed into a sum (or an integral in a continuum
approximation) of contributions of each cell. Since +PS and −PS do not change the
energy in Equation (14.69) at all, the energy form is exactly the same. In the second
step, we take the inter-coupling between neighboring cells into account by a term
describing an increase of free energy if the polarization P(x) in neighboring cells
differ from each other. x = 0 is taken at the domain boundary center point, and
P(x) = +PS at x = ∞, and P(x) = -PS at x = −∞, without losing generality. This is
achieved by a term κ(∇P(x))2; that is, “second power” (symmetry with respect to the
crystal up-side-down) of grad (P(x)). Thus, we represent F in the form of the famous
“Ginzburg–Landau functional”:

F(P(x), T) =
∫

dx[
α

2
P(x)2 +

β

4
P(x)4 +

κ

2
(∇P(x))2]. (14.71)

We consider the minimization of the Ginzburg–Landau functional F(P(x),T) with
respect of P. If the existence of the κ term reduces the free energy, these guarantees
“multidomain status” stability in practical single crystals. The minimization condi-
tion, (∂F/∂P) = 0, provide the following relation (Derivation process is in Example
Problem 14.2):

κ

(
d2P
dx2

)
= αP + βP3. (14.72)
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If we adopt the equation for the relaxation of P(x), that is, if we assume that the
polarization change ∆P with time ∆t is proportional to the free energy decrease with
respect to the polarization change ∆P, we obtain the “time-dependent Ginzburg–
Landau equation”:

dP
dt

= − ∂F
∂P

= −αP− βP3 + κ∆P, (14.73)

where the proportional constant is taken as (– 1) from the simplicity viewpoint, and
P is now treated as a function of space, x, and time, t. The time dependent equations
are handled in Section 14.2.3. The typical features of Equation (14.73) in the static
condition are:

• A linear term, −αP, where the coefficient α changes its sign at the Curie–Weiss
temperature T = T0,

• A nonlinear term, −βP3, which serves for a stabilization of the system,
• A “diffusion” term, κ∆P, where ∆ is the Laplacian operator.
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Figure 14.17. (a) The 180◦ domain walls in BaTiO3 (001) plate (top view, no elec-
trode). (b) Multidomain model of 180◦ domain walls on a ferroelectric plate (no
electrode). Source: Figure by author.

Example Problem 14.3

In order to derive the following second-derivative equation (Equation (14.72)),
which is equivalent to Equation (14.73) under steady state condition (i.e., dP

dt = 0):

κ(
d2P
dx2 ) = αP + βP3, (P14.3.1)

we consider the minimization of the time-independent Ginzburg–Landau functional
with respect of P,

F(P(x), T) =
∫ ∞

−∞
[
α

2
P(x)2 +

β

4
P(x)

4
+
κ

2
(

dP
dx

)
2
]dx. (P14.3.2)

Using the minimization condition, (∂F/∂P) = 0, derive Equation (P14.3.1) [8].
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Solution

We denote f (P) = α
2 P(x)2 + β

4 P(x)
4
. Then, we consider a slight change of polar-

ization δP around the energy minimum point P. Let us take the expansion series:

f (P + δP) = f (P) +
f ′(P)

1!
δP +

f ′′(P)
2!

(δP)2, (P14.3.3)

κ

2
[
d(P + δP)

dx
]2 =

κ

2
[
dP
dx

+
d(δP)

dx
]2 =

κ

2
(

dP
dx

)
2
+ κ

(
dP
dx

)
d(δP)

dx
+

κ

2
[
d(δP)

dx
]2. (P14.3.4)

Then, we obtain

F(P + δP) =
∫ ∞
−∞ [ f (P + δP) + κ

2 (
d(P+δP)

dx )2]

dx =
∫
[ f (P)+ κ

2 (
dP
dx )

2]dx +
∫
[ f ′(P)δP + κ( dP

dx )
d(δP)

dx ]dx + · · ·
= F(P) + δF + δ2F + · · ·

(P14.3.5)

The first term in the right-hand-side of Equation (P14.3.5) describes the ther-
modynamic potential of the optimum distribution P(x), with respect to which the
variation is performed. It coincides with the original Equation (P14.3.2). The follow-
ing terms represent, respectively, the first and second variations of the free energy.

The equality to zero of the first variation δF = 0 enables us to find the distribution
P(x), corresponding to the minimum F. Taking into account integration by parts

∫
[ f ′(P)δP + κ(

dP
dx

)
d(δP)

dx
]dx =

∫
[ f ′(P)− κ(d2P/dx2)](δP)dx. (P14.3.6)

The derivation of the above Equation (P14.3.6) is from the two facts that d
dx

(
dP
dx δP

)
=

d2P
dx2 δP + dP

dx
d(δP)

dx , and that
∫ ∞
−∞

d
dx

(
dP
dx δP

)
dx = dP

dx δP|∞−∞ = 0 (note that the slope dP
dx

should be zero at a point far from x = 0). Since Equation (P14.3.6) should be zero for
any δP, the expression in the braces is equal to zero:

κ

(
d2P
dx2

)
=

d f
dx

= αP + βP3. (P14.3.7)

The sign of the second variation δ2F makes it possible to evaluate the stability
(maximum or minimum) of the corresponding solution. We will skip this process
here and remain for Chapter Problem 14.2.

Domain Wall Formula

We now solve the static domain wall structure equation from Equation (14.72):

κ(
d2P
dx2 ) = αP + βP3. (14.74)
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The domain wall exists at x = 0, and away from the boundary where the homo-
geneous state is implemented, that is, the second derivative ( d2P

dx2 ) = 0. The value of
P at a point far from the wall can be determined from the conventional equation:

αP0 + βP0
3 = 0, (14.75)

which in the case of ferro-phase with the spontaneous polarization P0 gives

P0
3 = −α/β(α < 0). (14.76)

To determine the structure of the 180◦ domain wall in the vicinity of x = 0, we
use the following boundary conditions:

{
P(+∞) = P0

P(−∞) = −P0
. (14.77)

First, both parts of Equation (14.74) are multiplied by (dP/dx) and integrated
with respect to dx, taking into account the conditions Equation (14.77). Consequently,
we obtain

κ

2
(

dP
dx

)
2
= f [P(x)]− f [P0] (14.78)

where f (P) = α
2 P(x)2 + β

4 P(x)4. Separating the variables in Equation (14.78) gives

∫ dP√
f [P(x)]− f [P0]

=
∫ dx√

κ/2
. (14.79)

Taking into account the specific value P0
2, the difference f [P(x)] − f [P0] is

transformed to the form

f [P(x)]− f [P0] =
β

4
[P2

0 − P2]
2

(14.80)

Expanding the resultant difference of the squares into multipliers

1
P2

0 − P2
=

1
2P0(P0 + P)

+
1

2P0(P0 − P)
, (14.81)

and integrating Equation (14.79), taking Equations (14.80) and (14.81) into account,
we obtain

1√
βP0

∫ [ dP
(P0 + P)

+
dP

(P0 − P)

]
=

1√
βP0

ln
(P0 + P)
(P0 − P)

=

√
2
κ

x. (14.82)

Assuming that the center of the domain boundary is situated at x = 0, where
P = 0, we obtain the following distribution of polarization around the boundary.

P(x) = P0tanh(
x
δ
) [Note that tanh x =

ex − e−x

ex + e−x ], (14.83)
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δ =
1
P0

√
2κ

β
=

√
2κ

−α
. (14.84)

It is important to note that the polarization distribution around the domain
wall follows a hyperbolic tangent function in this simple “Ginzburg–Landau Func-
tional” case. In accordance with Equation (14.83) and Figure 14.18, quantity δ is
naturally referred to as the half of the domain boundary thickness. As indicated
by Equation (14.84), this thickness depends greatly on temperature and increases
significantly when approaching the Curie point TC (= T0 in our simplest second-order
transition) due to α→ 0. Figure 14.19 illustrates expected polarization distribution
configurations in a multiple domain structure with the width d, and domain wall
thickness δ at a low temperature (a), at an intermediate temperature (b), and a tem-
perature close to the Curie temperature (c). A step function-like thin domain wall
at a low temperature becomes diffused with increasing the temperature, exhibiting
the polarization P(x) distribution in a hyperbolic tangent in terms of position coordi-
nate x. When approaching the Curie temperature, the domain wall becomes very
vague, as though the polarization distribution is sinusoidal with the periodicity of 2d
(Figure 14.19c). This model suggests the optical lattice vibration mode (i.e., optical
phonon) “softening”, that is, vibration frequency “slowing down” (at small wave
vector k = 2π/λ = π/d) of a ferroelectric during cooling process from the paraelectric
to the ferroelectric phase.
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[1 − tanh  2(—)]2  
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x

δ
x

δ

Figure 14.18. Domain wall models: polarization distribution (solid line) and do-
main wall energy distribution (dashed line). Source: [3] ©Uchino, K. High-Power
Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 294. Reproduced by permis-
sion of Taylor & Francis Group.
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(a)

(b)

(c)

T << Tc

T < Tc

T → Tc

2d

Figure 14.19. Polarization distribution configurations in a multidomain structure
with the width d at various temperatures. Source: [3] ©Uchino, K. High-Power Piezo-
electrics and Loss Mechanisms. CRC Press, 2020; p. 294. Reproduced by permission
of Taylor & Francis Group.

Domain Wall Energy

The surface density of the energy of the stationary wall γ0 is obtained as a result
of substituting the distribution Equation (14.83) into Equation (14.71), and is less
than the energy of the homogeneous state. Consequently, taking into account that
dP0/dx = 0, the first integral Equation (14.78) and the ratio Equation (14.80), we find

γ0 =
∫ ∞
−∞

[
f [P(x)]− f [P0] +

κ
2

(
dP
dx

)2
]

dx [from Equation (14.78)]

2
∫ ∞
−∞[ f [P(x)]− f [P0]]dx [using Equation (14.80) f [P(x)]− f [P0] =

β
4

[
P2

0 − P2]2]
= β

2 P4
0
∫ ∞
−∞

[
1− tanh2( x

δ

)]2
dx = − αP2

0 δ
2

∫ ∞
−∞

dx
δ

cosh4( x
δ )

[using Equation (14.76) P2
0 = −α/β]

= − 2
3 αP2

0 δ = 4
3 P2

0 (
κ
δ ) [from Equation (14.84)].

(14.85)

Note here that a general integral relation,
∫ ∞
−∞

dx
cosh4(x)

= sinhx
3cosh3x

|∞−∞ + 2
3

∫ ∞
−∞

dx
cosh2(x)

=

2
3 tanhx|∞−∞ = 4

3 .

14.2.2. Static Domain Structures

Since we obtain the domain wall energy from the phenomenology in Equation
(14.85), we consider the static domain structures of a finite size single crystal by
integrating all energy terms. We will work again on a simple 180◦ domain arrange-
ment shown in Figure 14.17b with domain width d and domain crystal thickness tcrys.
Following the Chenskii’s approach [10], we describe the

G1 − G0
1 =

∫
(

α

2
P2 +

β

4
P4)dV + We + Wdip + Wx. (14.86)

Here, We, Wdip, and Wx are “depolarization energy”, “dipole interaction en-
ergy” (that is, the “domain wall energy”, given in Equation (14.85), excluding the
polarization energy [ α

2 P2
0 + β

2 P4
0 ] term), and “elastic energy” (via piezoelectric effect,

xi = gijPj), which are provided, respectively, by
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We = ε∗P2
0 V(

d
tcrys

), (14.87)

Wdip = −KαP2
0 δ
(

V
d

)

[K = 2
3 in Equation (14.85), but different for the first-order transition.],

(14.88)

Wx =
1
2

∫

V
X·xdV =

1
2

∫

V
cijxixjdV =

1
2

cijgijPjgjkPk. (14.89)

Now, Equation (14.86) can be rewritten as

G1 − G0
1 =

α

2
P2

0 +
β

4
P4

0 + ε∗P2
0 V
(

d
tcrys

)
− KαP2

0 δ

(
V
d

)
+

1
2

cg2P2
0 . (14.90)

From the static condition, dP
dt = − ∂G1

∂P = 0, we obtain

∂G1
∂P = 0 = (2 ε∗d

tcrys
− 2Kδα/d + α+cg2)P0 + βP3

0 ,

P2
0 = − 1

β

(
α + cg2 + 2 ε∗d

tcrys
− 2Kδα/d

)
.

Then, the equilibrium domain width d and the polarization P0 can be obtained
from the minimization condition ∂G1

∂d = 0;

d =

√
−Kδαtcrys

ε∗
, (14.91)

P2
0 = −α + cg2

β
. (14.92)

Note that the spontaneous polarization is slightly modified by the existence of
the piezoelectricity under the multidomain configuration, and the elastic energy term
cg2 should be replaced, depending on the crystal symmetry, by (c33g33

2 + 2c11g31
2)

in the 4 mm case, for example.

14.2.3. Domain Wall Dynamics in Phenomenology

We now aim to determine the parameters of the moving domain wall. We
will assume the effective mass of the domain wall, m*, and its displacement u, with

effective kinetic energy like ( 1
2 )m

∗( du
dt )

2
in a periodic potential modulated by the

distance a (maybe the crystal unit cell). We further assume the effective charge, e*,
which links u with polarization P and a.

Domain Wall Dynamic Equation

In order to discuss the dynamic response, we introduce the kinetic energy T
into the potential energy expressed in Equation (14.71). A general expression of the

kinetic energy T = 1
2 ρ( ∂u

∂t )
2

(ρ: density of the crystal) can be rewritten as

T =
1
2

µ(
∂P
∂t

)
2
, (14.93)
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taking into account P = e∗u/a3 (proportional to the displacement), and a new
parameter µ is a sort of mass proportional to the material’s density normalized by
the effective charge, which is verified as the “mobility” later, and is provided by

µ = ρa6/e∗2. (14.94)

The full energy expression (kinetic and potential energy) can be provided by

Φ =
∫

dx[F + T] =
∫

dx[
1
2

µ

(
∂P
∂t

)2
+

1
2

κ

(
∂P
∂x

)2
+

α

2
P2 +

β

4
P4]. (14.95)

Note that we neglect the depolarization energy and elastic energy in the present
discussion. Under the energy minimum condition, ∂Φ

∂P = 0, we derive

µ
∂2P
∂t2 − κ

∂2P
∂x2 + αP + βP3 = 0 [refer to Example Problem 14.3]. (14.96)

When we consider the dissipation Γ and the presence of the external electric
field E, which is actually essential to discuss the dielectric loss, we can expand the
formula as follows:

µ
∂2P
∂t2 + Γ

∂P
∂t
− κ

∂2P
∂x2 + αP + βP3 = E. (14.97)

Domain Wall Motion under Zero Field

In order to understand the domain wall configuration change with the motion,
we initially consider the simpler Equation (14.96) (i.e., no loss), where no external
electric field is applied. That is, free domain wall vibration, after the initial sudden
strain release. We will adopt an assumption that the distribution profile of polar-
ization in the moving wall maintains P(x,v) = P(x − vt), where v is the velocity of
the domain wall motion; that is, the domain wall behaves as a “travelling wave” by
keeping the wall structure. This leads to a general relation,

∂P
∂t

= −v
∂P
∂x

. (14.98)

Then, taking new parameters
x′ = x − vt, (14.99)

κ′ = κ − µv2 = κ(1 − v2/c0
2) [c0

2 = κ/µ], (14.100)

we can rewrite Equation (14.96) in the following equation:

κ′
∂2P
∂x′2

= αP + βP3. (14.101)

The solution is obvious from Equation (14.83), and expressed as

P(x, v) = P0tanh(
x− vt

δ′
), (14.102)
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δ′ =

√
2κ′

−α
=

√
2κ(1− v2/c2

0)

−α
= δ

√
(1− v2/c2

0) [α < 0]. (14.103)

The limiting velocity of the domain wall motion is c0 =
√

κ/µ, and the domain

wall width seems to be reduced by the factor of
√
(1− v2/c2

0), a similar formula to
the relativistic “Lorentz factor”. Let us determine the domain wall energy under the
velocity v: from Φ−Φ(P0), obtain as

γ(v) = −2
3

αP2
0 δ· 1√

(1− v2/c2
0)

=
γ0√

(1− v2/c2
0)

. (14.104)

where γ0 = − 2
3 αP2

0 δ as given in Equation (14.85). If we adopt a similar relationship
among “energy and the mass” to the relativity theory (i.e., energy = mc2), we may
introduce the effective mass m* as follows:

γ(v) =
γ0√

(1− v2/c2
0)

= m∗(v)c2
0. (14.105)

The effective mass is expressed as

m∗(v) =
γ0/c2

0√
(1− v2/c2

0)
=

m∗0√
(1− v2/c2

0)
[m∗0 = γ0/c2

0], (14.106)

which increases with increasing the velocity. When the velocity is small, the kinetic
energy is estimated by

T = (m∗(v)−m∗0) c2
0 ≈

1
2

m∗0v2, (14.107)

which re-proves the validity of the effective mass description, taking into account

the initial introduction of the kinetic energy T = 1
2 ρ( ∂u

∂t )
2
.

Domain Wall Motion with Dissipation under an Electric Field

Taking into account the dissipation and the electric field application, let us
derive the dielectric loss from the formula expressed in Equation (14.97):

µ ∂2P
∂t2 + Γ ∂P

∂t − κ ∂2P
∂x2 + αP + βP3 = E.

We first examine its asymptotic solution. Away from the boundary, where all
the derivatives are equal to zero, the asymptotic values of the polarization are the
roots of the equation:

αP + βP3 = E. (14.108)

As the derivation process is schematically illustrated in Figure 14.20a, under
E 6= 0, the three roots, P1, P2, and P3, have no longer the symmetry: “P0 = P1 =
−P2 =

√
− α

β and P3 = 0 under E = 0” changes to “P1 > P0, |P2| < P0 and P3 6= 0”.
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Figure 14.20b shows the expected distribution of polarization in a domain wall under
the external electric field E (solid line), in comparison with the stationary profile
under E = 0 (dashed line).
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Figure 14.20. (a) Roots of the polynomial αP + βP3 = E under various external field
E. (b) Distribution of polarization in a stationary domain wall and in a domain wall
under the external electric field. Source: Figure by author.

Absolute permittivity ε·ε0 is obtained from ( ∂P
∂E ), and from Equation (14.108),

εε0 = (
∂E
∂P

= 1/(α + 3βP2) (14.109)

Thus, the relative permittivity under very small electric field E at P1, P2, and
P3 is given, respectively, by taking into account P1 = −P2 =

√
−α/β and P3 = 0, as

follows:
P1, P2: εε0 = 1/(−2α) = C/2(T0 − T). (14.110)

P3: ε·ε0 = 1/(α) = −C/(T0 − T) [hypothetical negative capacitance at T < T0]. (14.111)
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On the other hand, the macroscopic coercive field is obtained from the maxi-
mum/minimum point of y1 = αP + βP3 curve: that is, from ∂y1

∂P = 0, α + 3βP2 = 0.
Then, P =

√
−α/3β . Since the coercive field is obtained from the maximum y1 point,

y1 = αP + βP3 =
√
−α/3β [+(−α/3β)] =

√
−4α3/27β . (14.112)

We may not need to consider the AC electric field amplitude higher than this
macroscopic coercive field (usually >10 kV/mm).

As the second step, we rewrite Equation (14.97) by using the normalized param-
eters, p = P/P0, E′ = E/(−α)P0:

1
2

δ2

c2
0

∂2 p
∂t2 +

Γ

α

∂p
∂t
− 1

2
δ2 ∂2 p

∂x2 + p + p3 = E′. (14.113)

Further taking a new position/time parameter ξ for the moving domain wall
with the velocity v,

ξ =
√

2(x− vt)/δ
√
(1− v2/c2

0), (14.114)

and the relationships,
∂2 p
∂t2 =

∂2 p
∂ξ2

2v2

δ2(1− v2/c2
0)

, (14.115)

∂2 p
∂x2 =

∂2 p
∂ξ2

2
δ2(1− v2/c2

0)
. (14.116)

Equation (14.113) can be transformed into

∂2 p
∂ξ2 + v

∂p
∂ξ
− p− p3 + E′ = 0, (14.117)

where

v =

√
2Γ

αδ
√
(1− v2/c2

0)
v [Since α < 0, v < 0]. (14.118)

Due to the damping factor Γ, the domain wall experiences a sort of dragging
force proportional to v, which is also proportional to the wall velocity v with an
opposite direction (i.e., viscous damping).

When the electric field E is not large, the solution of Equation (14.117) may be
modified from the asymptotic solution for v = 0 (no dissipation), and E’ = 0: that is,

p
p0

= tanh
( x

δ

)
=

exp
( x

δ

)
− exp

(
− x

δ

)

exp
( x

δ

)
+ exp

(
− x

δ

) = 1− 2
exp

( 2x
δ

)
+ 1

. (14.119)

Denoting the three roots under E by

P1/P0 = a, P2/P0 = b, P3/P0 = c, (14.120)
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let us find the solution of Equation (14.117) in the following form, according to
Reference [11]:

p(ξ) = a +
b− a

exp
(
(b−a)ξ√

2

)
+ 1

. (14.121)

Then, the dimensionless roots of the polynomial should satisfy the following
relation:

p3 + p− E′ = (p− a)(p− b)(p− c). (14.122)

We can initially obtain the following general relationship among a, b, and c:

a + b + c = 0, ab + bc + ca = 1, and abc = E′. (14.123)

Substitution of Equation (14.121) into Equation (14.117) verifies that the function
of Equation (14.121) is the solution of Equation (14.117) only when

v = − (a + b− 2c)√
2

=
3c√

2
. (14.124)

By equating Equation (14.118) and Equation (14.124), and c = P3/P0 ≈ ε0εE/P0
= (1/α)E/P0, we obtain.

Thus, when v << c0, we can write the velocity in proportion to the applied
electric field E:

v =
3
2

E
P0

δ

Γ
= µE, (14.125)

where the proportional constant—mobility—can be expressed by

µ =
3
2

δ

P0

1
Γ

. (14.126)

It is interesting to note that the mobility expression, Equation (14.126), can
be directly derived from the original equation, Equation (14.97), by assuming the
following items:

(1) The external field and the dissipation factor have little influence on the moving
domain wall profile,

(2) The domain wall profile is determined by Equation (14.96) without field nor
dissipation,

(3) The dissipation term and electric field may be equivalent; Γ ∂P
∂t = E, and

(4) ∂P
∂t = −v ∂P

∂x ≈ −v(P0/δ).

Therefore, E = Γ ∂P
∂t = −Γv(P0/δ), or v = 3

2
E
P0

δ
Γ , exactly the same as

Equation (14.125).
When we consider the steady polarization induction P = P0 + p = P0 +

p0ej(ωt+Φ) (Φ: phase lag), according to the input AC electric field E = E0ejωt. From
the following equation,

µ
∂2 p
∂t2 + Γ

∂p
∂t

+ α(P0 + p) + β(P0 + p)3 = µ
∂2 p
∂t2 + Γ

∂p
∂t

+
(

α + 3βP0
2
)

p = E, (14.127)
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we obtain

ε·ε0 =
∂P
∂E

=
∂p
∂E

=
p0

E0
=

e−jΦ

−ω2µ + jωΓ− 2α
. (14.128)

If we adopt the following notations:

ω2
0 = −2α/µ, (14.129)

2ζω0 = Γ/µ, (14.130)

the permittivity and the dielectric loss tanΦ can be obtained as

|ε·ε0| =
1√

(−2α− µω2)2 + (2µζω0ω)2
, (14.131)

tanΦ =
2µζω0ω

−2α− µω2 . (14.132)

For a low frequency, ε·ε0 approaches to 1/(−2α) and tanΦ are expressed as
Γω/(−2α). In conclusion, the dielectric loss is expressed in proportion to the domain
wall viscous damping factor Γ and the measuring frequency ω in the above single
domain-wall model. The damping factor Γ is originated from various factors, such
as impurity doping (i.e., “hard” and “soft” PZT’s) and crystallographic dislocations.
How to further analyze the origin of the damping factor Γ is remained to the reference
book by Sidorkin [9]. It is also worth noting that dielectric loss tanΦ will enhance
significantly with increasing the temperature to the Curie point (−2α→ 0). Both
permittivity and the dissipation factor tanΦ are expected to exhibit the maximum
around the Curie temperature range, that is already a well-known fact in various
ferroelectrics experimentally.

14.3. Nonlinear Elastic Performances in the Crystal Lattice

14.3.1. Phonon Mode in Harmonic and Anharmonic Crystals

We discussed primarily the harmonic lattice vibration in Chapter 11, and the
heat conduction in Chapter 12. This Section 14.3 introduced the importance of the
lattice anharmonicity (i.e., lattice spring nonlinearity) to generate thermal expansion,
electrostriction, and isothermal compressibility of the crystal under equilibrium
status; that is, from static viewpoint. In the following Section 14.4, we introduce
the anharmonic lattice vibration in crystals and discuss the relationship with the
thermal conductivity from the phonon interaction (i.e., collision) viewpoint. The
discussion in these sections is highly indebted to “Solid State Physics” authored by
Ashcroft and Mermin [12], and by Kittel [13]. The phenomena dominated by the
lattice anharmonicity are categorized into “equilibrium” and “transport” properties,
described in the following.

Equilibrium Properties

We can find many equilibrium properties in crystals observable at any tempera-
ture, to which we need to adopt “anharmonic” terms in the ionic interaction energy
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to explain consistently. As we already learned, “thermal expansion” and “electrostric-
tion” are the important ones. In a rigorously harmonic crystal, the equilibrium crystal
size/volume would not depend on temperature (i.e., no thermal dilatation!). The
existence of anharmonic terms is also the key to explain the elastic constant depen-
dence on temperature and stress, as well as the difference between the adiabatic and
isothermal elastic constants. Subsection Adiabatic Elastic Compliance in Chapter 2

derived the relationship: sE,S
adia= sE,T

iso

(
1− kPT2

)
, where kPT2

= αL
2

( Cp
T

)
sE

. The reader

will learn how to handle the anharmonicity in the lattice vibration mathematically in
the following part of this section.

Transport Properties

Two lattice vibration modes do not interact in a pure harmonic crystal; a single
wave does not decay or change form with time. The wave will spread in the whole
crystal, and no localization is expected. Thus, rigorously harmonic crystals should
exhibit an “infinite thermal conductivity” as explained in Chapter 11. However,
the thermal conductivity of a normal insulating material (that is, electron transfer
contribution is neglected) is still limited by various factors: (1) even in a “crys-
tallographically perfect” crystal, the lattice vibration anharmonicity generates the
resistance of phonon transfer in the crystal, (2) crystal imperfection, such as impurity
doping, ionic vacancies, and dislocations. These two important factors on the trans-
port property are described in Section 14.4. Let me remind you of the “particle–wave
duality” idea again here: heat transfer requires localized phonons, which interact
with each other (i.e., so-called “phonon collision”), leading to the resistivity to trans-
fer thermal energy. Wave or phonon coupling/interaction, and the wave localization
principle is the key to understand the heat conductivity mechanisms.

14.3.2. Nonlinearity in Crystal Potential

If the effective elastic energy potential for the crystal atoms possesses nonlin-
earity or anharmonicity, “thermal expansion”, “electrostriction”, and “isothermal
compressibility” come out under equilibrium status. According to our previous
paper [14], we introduce the derivation process of these effects.

The potential energy U in a crystal is determined by a “relative distance” of
atoms; that is, for instance, in NaCl crystal, supposing that Na position is R′ and
Cl position is R in the physical coordinate, the potential is defined by r = R− R′.
Due to the crystal lattice periodicity, we take additional considerations. We shall
here use the theory of cohesive forces in ionic crystals, proposed by Born [15]. In the
interests of simplicity, we derive various formulae for a two-ion rock-salt structure.
We start from the potential function involving an inverse power type of repulsive
quantum-mechanical energy and the Coulombic energy, illustrated in Figure 14.21:

U = −Mq2

r
+

Nb
rn , (14.133)

where M is the Madelung constant for Coulombic energy, instead of merely the
nearest neighbor’s interaction. This is to take all crystal lattice periodic atoms into
account. (Refer to Example Problem 14.5 on how to obtain the Madelung constant.)
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On the other hand, N in the second term is the coordination number, and b a potential
constant for the quantum mechanical energy. We assume relatively large numbers
9–11 for quantum mechanical repulsive potential 1/rn. Expanding the potential
function around the equilibrium position (rn−1

0 = nNb/Mq2 from the condition
∂U
∂r = 0), we obtain the form as a function of ∆r (=r − r0):

∆U = U(r)−U(r0) = f (∆r)2 − g(∆r)3, (14.134)

where f = (n− 1)Mq2/2r3
0 and g = (n + 4)(n− 1)Mq2/6r4

0. It is essential to realize
the curvature difference in the positive and negative region of ∆r, as seen from
Figure 14.21; that is, the lattice spring is softer for extension than for contraction.
For keeping the positive value of g, the negative sign was adopted in front of g in
Equation (11.134).
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Figure 14.21. 1D ionic crystal model by Born for a two-ion rock-salt structure.
Source: Figure by author.

14.3.3. Thermal Expansion and Electrostriction

The ionic displacement ∆r is supposed to be generated under a small electric
field (E) applied and under a finite temperature (T). Using the Boltzmann distribution
for Gibbs energy ∆V± = ∆U ± qE∆r under, the average equilibrium separation at an
elevated temperature under an applied electric field E is approximated as follows:

< ∆r± > ∼
∞∫
−∞

∆r exp
(
−∆V±

kBT

)
d ∆r/

∞∫
−∞

exp
(
−∆V±

kBT

)
d∆r

∼ 3gkB
4 f 2 T ± q

2 f E + 3gq2

4 f 3 E2,
(14.135)

where subscripts ± denote the position shifts for ion pairs (Na+1 and Cl−1) in terms
of the electric field, respectively (i.e., opposite direction due to the charge difference
+q and −q). Refer to Example Problem 14.4 for the derivation process.
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Knowing the crystal unit cell size is given by (2r0), the strain is therefore given
by the summation of the + and − shifts:

< ∆r+ > + < ∆r− >

2r0
=

3gkB

4 f 2r0
T +

3gq2

4 f 3r0
E2, (14.136)

where the first term represents thermal expansion and the second term, electrostric-
tion (no piezoelectricity is expected in this cubic symmetry). Note that the second
term in Equation (14.135) ± q

2 f E corresponding to the absolute position shifts of

Na+1 and Cl−1, which is in the same direction (i.e., just the translation), does not
contribute to the crystal lattice strain! Figure 14.21 visualizes the −q ion average
position drift (with respect to +q position) with elevating temperature. Due to the
softer lattice spring performance for extension, thermal expansion (i.e., positive
strain) is observed. The reader can understand that both thermal expansion and
electrostrictive coefficients originate from “g”, which is an anharmonic term g(∆r)3

in Equation (14.134), and that neither thermal expansion nor electrostriction occur
when the crystal is purely harmonic (that is, only f (∆r)2 term in Equation (14.134)).
Knowing the polarization P, obtained from the harmonic term and given by,

P =
q < ∆r >

2r3
0

=
q2

4 f r3
0

E, (14.137)

the thermal expansion coefficient αL and electrostrictive Q coefficient (defined by
(∆r/r) = QP2) can be describe with atomic parameters in the Born model as:

αL =
3gkB

4 f 2r0
=

(n + 4)kB
2n(n− 1)Nb

rn
0 (14.138)

Q = (
3gq2

4 f 3r0
)/(

q2

4 f r3
0
)

2

=
4(n + 4)M

nNb
rn+3

0 (14.139)

Here, kB and M are Boltzmann and Madelung constants, respectively.

14.3.4. Isothermal Compressibility

Using the “First Law” of thermodynamics of dU = −pdV (p: hydrostatic
pressure, V: volume), the isothermal compressibility χT becomes:

1
χT

= −V
(

∂p
∂V

)

T
= V

(
∂2U
∂V2

)

T
. (14.140)

Changing the variable from V to r and developing the result leads to the equation

χT =
18r4

0
(n− 1)Mq2 =

18
n(n− 1)Nb

rn+3
0 . (14.141)

Comparing Equations (14.139) and (14.141), we obtain the relationship χT ∝ Q.
The compressibility and electrostrictive coefficient are induced strain originated from
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the same crystal lattice anharmonic potential against the force and electric field; we
can say that elastically soft crystals also exhibit soft electrostrictively!

Example Problem 14.4

Considering the following anharmonic atomic potential energy in a diatomic
ionic crystal (+q and −q);

∆U = f (∆r)2 − g(∆r)3, (P14.4.1)

where ∆r (=r − r0), which is the distance modulation from the equilibrium position
r0, calculate the average atomic position shifts < ∆r± > for a + and − ions, when
an electric field E is applied. ∆V± = ∆U ± qE∆r can be adopted for the Boltzmann
distribution function as

< ∆r± > ∼
∞∫

−∞

∆r exp
(
−∆V±

kBT

)
d ∆r/

∞∫

−∞

exp
(
−∆V±

kBT

)
d∆r. (P14.4.2)

Solution

The potential ∆V± is expressed as

∆V± = f (∆r)2 − g(∆r)3 ± qE∆r. (P14.4.3)

Taking into account, g, qE� f ,

exp
(
−∆V±

kBT

)
= exp

(
− f (∆r)2

kBT

)
exp

(
−−g(∆r)3±qE∆r

kBT

)

= exp
(
− f (∆r)2

kBT

)[
1 + g

kBT (∆r)3 ∓ qE
kBT ∆r

]

= exp
(
− f (∆r)2

kBT

)[
1 + g

kBT (∆r)3 + · · ·
][

1∓ qE
kBT ∆r + 1

2

(
qE

kBT

)2
(∆r)2

]

= exp
(
− f (∆r)2

kBT

)[
1 + g

kBT (∆r)3 ∓ qE
kBT ∆r∓ gqE

(kBT)2 (∆r)4

+ 1
2

(
qE

kBT

)2
(∆r)2 + 1

2

(
g

kBT

)(
qE

kBT

)2
(∆r)5

]

(P14.4.4)

As the odd-power of (∆r)n will disappear in the integration from −∞ to ∞, we
neglect the even-power of (∆r)n (including “1”) in Equation (P14.4.4), then

< ∆r± > ∼

∫ ∞
−∞ ∆r exp

(
− f (∆r)2

kB T

)
[ g

kB T (∆r)3 ∓ qE
kB T ∆r + 1

2 (
g

kB T )(
qE

kB T )
2
(∆r)5]d ∆r

∫ ∞
−∞ exp

(
− f (∆r)2

kB T

)
d ∆r

, (P14.4.5)
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where we neglect g, qE terms in the denominator calculation. Now, we use well-
known integral equations relating to the exp

(
−ax2):

∞∫

0

xnexp
(
−ax2

)
dx =

Γ
[

n+1
2

]

2a
n+1

2
. (P14.4.6)

Here, Γ
(

1
2

)
=
√

π, Γ
( 3

2
)
= 1

2
√

π, Γ
( 5

2
)
= 1·3

22

√
π, Γ

( 7
2
)
= 1·3·5

23

√
π, Γ

( 9
2
)
=

1·3·5·7
24

√
π, · · ·

The denominator is equal to
∫ ∞
−∞ exp

(
− f (∆r)2

kBT

)
d∆r =

√
πkBT

f , while the nu-

merator 1st, 2nd and 3rd terms are calculated [note the factor “2” for the integration∫ ∞
−∞ xnexp

(
−ax2)dx] as:

∫ ∞
−∞

g
kBT (∆r)4 exp

(
− f (∆r)2

kBT

)
d ∆r = g

kBT Γ
( 5

2
)
( kBT

f )
5/2

,

∓
∫ ∞
−∞

qE
kBT (∆r)2 exp

(
− f (∆r)2

kBT

)
d ∆r = qE

kBT Γ
( 3

2
)
( kBT

f )
3/2

,

∫ ∞
−∞

1
2 (

g
kBT )(

qE
kBT )

2
(∆r)6 exp

(
− f (∆r)2

kBT

)
d ∆r = 1

2 (
g

kBT )(
qE

kBT )
2

Γ
( 7

2
)
( kBT

f )
7/2

.

Finally, we obtain our targeted equation:

< ∆r± > ∼ 3gkB

4 f 2 T ± q
2 f

E +
3gq2

4 f 3 E2, (P14.4.7)

Example Problem 14.5

To understand the reason why the ferroelectricity will disappear with decreasing
particle size, we can consider the energy fluctuation for a nano-size ferroelectric
particle as follows: Consider a one-dimensional finite chain of two kinds of ions +q
and−q, arranged alternately with a distance of a (see Figure 14.22), as you challenged
in Chapter Problem 1.1. A nano-size crystal grows gradually, starting from a single
positive ion, and adding a pair of negative or positive ions, thus keeping a crystal
size 2na (n = 1, 2, 3, . . .). With increasing crystal size, the crystal Coulomb energy will
be changed as:

U1 =
(

2
4πε0ε

)
[−
(

q2

a

)
],

U2 =
(

2
4πε0ε

)
[−
(

q2

a

)
+
(

q2

2a

)
],

U2 =
(

2
4πε0ε

)
[−
(

q2

a

)
+
(

q2

2a

)
−
(

q2

3a

)
],

. . . . . . . . . . . .

For the infinite (large) crystal, we can calculate the “Madelung Constant” when

the saturated energy is expressed by U =
(

M
4πε0ε

)
[−
(

q2

a

)
], with the relation: ln(1 + x)
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= x − x2/2 + x3/3 − x4/4 + · · · = 2log2 = 1.386 is called “Madelung constant” for
one-dimensional chain.

−q

−3a

−q −q −q

+3a

+q +q

0

1 5

En
er

gy
 U Madelung Energy

(a)

(b)

n

+q

9

q2
a− 

+2a−2a

73 

−a +a

4πε0
2

Figure 14.22. Madelung energy calculation in 1D diatomic ionic lattice chain. (a)
1D lattice chain; (b) coulombic energy change. Source: Figure by author.

Now, the problem assigned to the reader is on a 2D array. A two-dimensional
array of positive and negative ions forms a square pattern, with alternative charges
at each adjacent position, as shown in Figure 14.23.

(a) Calculate the Madelung constant, which is larger than the Madelung constant
for the 1D chain (2 ln2 = 1.386).

(b) By increasing the crystal size layer by layer, how many layers are required to
stabilize the energy fluctuation less than ±0.1% around the Madelung energy?
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Figure 14.23. Madelung energy calculation in 2D ionic lattice square pattern. Source:
Figure by author.
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Solution

We select an area with boundaries “through” the outermost ions, that is, toned
layers in Figure 14.23. We will use the fraction on these ions that is shared by this
area, i.e., one-half of the edge ions and one-fourth of the corner ions in the 2D pattern.

First Layer:

− ions at the distance a: four with 1/2
+ ions at

√
2a: four with 1/4

−2/1 + 1/
√

2 = −1.2929

Second Layer:

− ions at the distance a: four with 1/2
+ ions at

√
2a: four with 3/4

+ ions at 2a: four with 1/2
− ions at

√
5a: eight with 1/2

+ ions at 2
√

2a: four with 1/4
−2/1 + 3/

√
2 + 2/2 − 4/

√
5 + 1/(2

√
2) = −0.3140

Third Layer:

2/2 − 4/
√

5 + 3/(2
√

2) − 2/3 + 4/
√

10 − 4/
√

13 + 1/(3
√

2) = −0.0036

The fourth square layer is small enough.

(a) Madelung Constant 1) +2) +3) ' −1.610(5) [This is larger than that for the 1-D
chain (2ln2 = 1.386)].

(b) Since (-0.0036)/(-1.610) = 0.2%, to keep the energy fluctuation below 0.1%,
n = 4 is required. The crystal size 8a× 8a is required. Note that the 2-D crystal
exhibits a much stable structure than the 1-D crystal; that is, smaller crystal
size may provide ferroelectricity with the crystal dimensionality.

14.4. Lattice Vibration and Thermal Conductivity

Section 14.4.1 describes the “mode coupling” possibility even in harmonic
lattice vibrations in crystal imperfections, started from simple small number lattice
chains to large number atomic models. Section 14.4.2 handles the phonon interaction
and collision processes. Finally, a thermal conductance model is introduced in
Section 14.4.3.

14.4.1. Phonon Mode Coupling in Crystal Imperfections

This section introduces how the imperfection in a crystal affects the lattice
vibrations in practice. Though this may not directly induce the thermal transfer, the
reader can understand how the lattice vibration modes are localized and couple each
other even in “harmonic lattice” vibrations. We start from simple 3-mass–4-spring
models in order to describe the vibration eigen modes variation with slight “mass” or
“spring constant” changes. The discussion is extended to large number atom crystals
in the latter part.
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Imperfect Lattice Vibration—Mass Modulation

Let us consider the modulated lattice vibration in a crystal imperfection.
Figure 14.24a illustrates a 1D “atom–spring” connection model with “harmonic
springs”. Only three atoms are taken into account in our further discussion from the
mathematical simplicity. Considering harmonic oscillation, that is, ∂2xn

∂t2 = −ω2xn,
we construct the Newton dynamic equations for three masses (refer to Equation (11.1)
in Chapter 11):





−m1ω2x1 + (k1x1 + k2(x1 − x2)) = f1
−m2ω2x2 + (k2(x2 − x1) + k3(x2 − x3)) = f2
−m3ω2x3 + (k3(x3 − x2) + k4x3) = f3

(14.142)

or



k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4







x1

x2

x3


−ω2




m1 0 0
0 m2 0
0 0 m3







x1

x2

x3


 =




f1

f2

f3


. (14.143)

k1

k

k2

k
m
f1 = 0

εm
f2 = 0

m
f3 = 0

k3

k

k4

k

m1 m2 m3

x1 x2 x3

f1 f2 f3

(a)

λ1 =

λ3 = 3

λ2 = 2

1

1

1 1

1

−1

−1

0

3
2

1
2

(b)

Figure 14.24. (a) 3 mass–4 spring model. m2 has a different mass. (b) Eigen functions
for three λ1, λ2, and λ3, which correspond to a half-wave, one-wave, and 1.5-wave
mode, respectively. Source: Figure by author.

We adopt first the mass modulation case: (1) all springs are the same with spring
constant k, (2) masses are the same with m, except for one center mass with εm (ε is
the normalized mass with respect to m), and (3) no force is applied for calculating
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eigen function under free oscillation. The reader can recognize that m2 center mass
may be an “impurity” atom. Under this specified case, Equation (14.143) can be
transformed into:




2k −k 0
−k 2k −k
0 −k 2k






x1
x2
x3


−ω2




m 0 0
0 εm 0
0 0 m






x1
x2
x3


 =




0
0
0


. (14.144)

Then, 


2 −1 0
−1 2 −1
0 −1 2






x1
x2
x3


− mω2

k




1 0 0
0 ε 0
0 0 1






x1
x2
x3


 =




2− λ −1 0
−1 2− ελ −1
0 −1 2− λ






x1
x2
x3


 =




0
0
0


.

(14.145)

Here, we used a new notation for normalizing the “eigen frequency square”:

λ =
mω2

k
= (

ω

ω0
)

2
, (14.146)

where ω0 =
√

k/m, which is the resonance frequency of the “one-mass–one
spring” system.

Eigen Frequency

The eigen frequency square λ (or frequencies ω) can be obtained by taking the
determinant of Equation (14.136) equal to “zero”.

∣∣∣∣∣∣

2− λ −1 0
−1 2− ελ −1
0 −1 2− λ

∣∣∣∣∣∣
= (2− λ)2(2− ελ)− 2(2− λ)

= (2− λ)
[
ελ2 − 2(ε + 1)λ + 2

]
= 0.

(14.147)

We can now obtain three roots for λ, which are eigen values:

λ1 = [(ε + 1)−
√

ε2 + 1]/ε; λ2 = 2; and λ3 = [(ε + 1) +
√

ε2 + 1]/ε. (14.148)

The subscripts, “1”, “2”, and “3” are put from low to high frequencies. Eigen
values are tabulated for typical ε values below:

ε λ1 λ2 λ3

4/3 1/2 = 0.5 2 3

1 2−
√

2 = 0.59 2 2 +
√

2 = 3.14

1/3 4−
√

10 = 0.84 2 4 +
√

10 = 7.16

The reader can understand that the middle λ2 is not affected by the center mass
modulation, but λ1 and λ3 are modulated: in comparison with the values for ε = 1,
(2±
√

2), the heavier mass provides smaller values (i.e., lower frequencies), while the
lighter mass exhibits larger values. In particular, by reducing the impurity mass, the
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λ3 frequency increases significantly in comparison with that (2 +
√

2) in the uniform
lattice chain.

Eigen Function

Let us calculate the “eigen mode function” in the case of ε = 4/3, which
corresponds to a heavier doping mass. Eigen mode for λ1 = 1/2 can be obtained
from Equation (14.145) as:




2− 1
2 −1 0

−1 2− 4
3 · 12 −1

0 −1 2− 1
2






ψ11
ψ21
ψ31


 = 0. (14.149)

Thus, ψ11 = 1, ψ21 = 3/2, and ψ31 = 1. Similarly for λ2 = 2, ψ12 = 1, ψ22 = 0,
and ψ32 = −1; for λ3 = 3, ψ13 = 1, ψ23 = −1, and ψ33 = 1. The results on the eigen
mode functions are illustrated in Figure 14.24b (Solid lines). Note that the amplitudes
of each eigen mode functions are plotted by adjusting ψ11 = ψ12= ψ13 = 1 [unit],
which should be normalized later in the practical numerical calculation process. Note
also that the eigen mode functions ψ11, ψ21, and ψ31 are the motion amplitude when
oscillated at a particular eigen frequency, λ1, λ2, or λ3, not the actual displacement
of the mass, x1, x2, or x3, directly under external force. The mass displacement
under external force applied should be calculated by combining these three eigen
modes in a suitable ratio (refer to Subsection Phonon—Phonon Interaction, Collision).
Eigen functions for three, λ1, λ2, and λ3, correspond roughly to a half-wave (all
mass displacements are in the same sign), one-wave (the mass displacements are
symmetrical with the node at the center mass), and 1.5-wave mode (three masses
show up-down successive amplitudes), respectively. As the mass-modulated center
mass is at the node (no motion) in the λ2 mode, the mass modulation (i.e., ε change)
does not affect the eigen frequency λ2 = 2.

We calculate next the eigen function in the case of ε = 1/3, which corresponds
to a lighter doping mass. Eigen mode for λ1 = (4−

√
10) can be obtained from

Equation (14.145) as:




2− (4−
√

10) −1 0
−1 2− 1

3 ·(4−
√

10) −1
0 −1 2− (4−

√
10)






ψ11
ψ21
ψ31


 = 0. (14.150)

Thus, ψ11 = 1, ψ21 =
(√

10− 2
)
= 1.16, and ψ31 = 1. Similarly for λ2 = 2,

ψ12 = 1, ψ22 = 0, and ψ32 = −1; for λ3 = 3, ψ13 = 1, ψ23 = −
(

2 +
√

10
)
= −5.16,

and ψ33 = 1. The results are also superposed in Figure 14.24b in the dashed lines.
Eigen functions for three, λ1, λ2, and λ3, correspond to a half-wave, one-wave, and
1.5-wave mode, respectively, the same as the previous results. The difference can be
found only in the nearest neighbors of the center mass m2. Due to a light mass of m2,
the amplitude at λ1 is suppressed, while that at λ3 is significantly amplified (overscale
in this figure). Note again that the λ2 mode does not change at all, because the m2 is
situated at the node. It is not difficult to estimate λ1 = [(ε + 1)−

√
ε2 + 1]/ε; λ2 = 2;

and λ3 = [(ε + 1) +
√

ε2 + 1]/ε for ε→ 0 limit. λ1 → 1 ; λ2 = 2; and λ3 → ∞ . In
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conclusion, the mass change itself without changing the coupling (spring) strength,
three eigen frequencies are not merged, but keeping the three modes separately
without making so-called “mode coupling”. Most importantly, light-weight impurity
doping enhances the vibration amplitude of that atom locally at the highest eigen
frequency, λ3, indicating the phonon localization (see Subsection Localized Impurity
Lattice Vibration).

Lattice Mode Coupling—Spring Constant Modulation

Next, we adopt the “spring constant modulation” case: (1) all masses are the
same with m with no mass at the center (i.e., two mass model), (2) springs are the
same with spring constant k, except for two center springs with εk (ε is the normalized
spring constant with respect to k), and (3) free oscillation (no force is applied) in order
to calculate the eigen mode functions. Refer to Figure 14.25a. The missing center
mass and modification of the adjacent springs may indicate a model of an “atomic
vacancy” or discontinuity of the oscillation mode. Under the above specified case,
Equation (14.143) can now be transformed into:




k + εk −εk 0
−εk 2εk −εk

0 −εk εk + k






x1
x2
x3


−ω2




m 0 0
0 0 0
0 0 m






x1
x2
x3


 =




0
0
0


. (14.151)

Then 


1 + ε −ε 0
−ε 2ε −ε
0 −ε 1 + ε






x1
x2
x3


− mω2

k




1 0 0
0 0 0
0 0 1






x1
x2
x3




=




1 + ε− λ −ε 0
−ε 2ε −ε
0 −ε 1 + ε− λ






x1
x2
x3


 =




0
0
0


.

(14.152)

Here, we used the notation Equation (14.146) again: λ = mω2

k .

k

k

εk

εk

εk

εk

k

k

m

m

m

m

x1

x1

x3

x3

λ2 = 1 + ε

λ1 = 1

(a)

Figure 14.25. Cont.
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Figure 14.25. (a) A 2 mass–4 spring model. m2 = 0 and center springs are weak.
(b) Two eigen functions for λ1 and λ2 as a function of time (top); and mass vibration
beat of displacement x1 and x3. Source: Figure by author.

Eigen Frequency

The eigen frequencies λ or ω under free condition can be obtained by taking the
determinant of Equation (14.152) equal to “zero”.

∣∣∣∣∣∣

1 + ε− λ −ε 0
−ε 2ε −ε
0 −ε 1 + ε− λ

∣∣∣∣∣∣
= 2ε(1 + ε− λ)2 − 2ε2(1 + ε− λ)

= 2ε(1− λ)(1 + ε− λ) = 0.

(14.153)

We can now obtain two roots for λ, which are eigen frequencies:

λ1 = 1; and λ2 = (1 + ε). (14.154)

Note that because m2 was set to be zero, only two eigen frequencies and modes
appear in this case. You can verify that when ε = 1, the solution is the same as the
mass zero (ε = 0) status in the previous section. For the reader’s reference; when we
put m2 = m, very low frequency λ3 = 2ε comes out (primarily m2 and εk vibration),
in addition to the solutions of λ1 = (1 + ε); and λ2 =

(
1 + ε + 9

4 ε2).

Eigen Function

Let us calculate the eigen function in the case of small ε (low spring constant, or
weak coupling between m1 and m3). Eigen function for λ1 = 1 can be obtained from
Equation (14.152) as:




1 + ε− 1 −ε 0
−ε 2ε −ε
0 −ε 1 + ε− 1






ψ11
ψ21
ψ31


 = 0. (14.155)
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Thus, ψ11 = 1, ψ21 = 0, and ψ31 = 1. Similarly for λ2 = (1 + ε),




1 + ε− (1 + ε) −ε 0
−ε 2ε −ε
0 −ε 1 + ε− (1 + ε)






ψ11
ψ21
ψ31


 = 0, (14.156)

ψ12 = 1, ψ22 = 0, and ψ32 = −1. The results are illustrated in Figure 14.25a. Note that
the eigen functions for two λ1 and λ2 correspond to in-phase (all mass displacements
are in the same sign), and out-of-phase (the mass displacements are symmetrical
with the node at the center mass), respectively. In conclusion, the spring constant
changes two eigen frequencies significantly, and reducing the center part coupling
makes λ1 and λ2 be merged. Thus, so-called “mode coupling” is expected, which is
further discussed in Subsection Mode Coupling Effect.

Normalized Mode Functions

The mass motion in physical coordinates can be obtained by the conversion
from the “eigen mode coordinate”. This subsection describes the conversion process
in practice. The mass–spring combination shown in Figure 14.26a is analyzed by
the dynamic equations, by coupling the adjacent masses with springs (in physical
coordinates), where each individual mass cannot be analyzed independently from
the adjacent couplings. On the other hand, the meaning of eigen frequency and
its corresponding eigen mode are visually shown in Figure 14.26b. The 3 mass–4
spring model in Figure 14.24a has three eigen frequencies, λ1, λ2 and λ3, and three
corresponding eigen mode functions. The three eigen mode functions based on the
effective mass and spring constant are independent of each other (no interaction
in-between), which is called an “orthogonal relationship”, and each mode at that
eigen frequency does not depend on time; in contrast, the actual mass motion x1,
x2, and x3 are a mixed mode of the above three eigen mode functions, and time
dependent in general according to the external force.

Let us start from the dynamic equations based on the eigen mode coordinate,
for instance, in the 3 mass–4 spring model:





..
Z1 + λ1Z1 = g1..
Z2 + λ2Z2 = g2..
Z3 + λ3Z3 = g3

, (14.157)

where Zn and gn are the displacement and force in the eigen mode coordinate, and
Z1, Z2 and Z3 are mutually independent. Note that the effective mass in the eigen
mode coordinate in Equation (14.157) becomes all unity, because of the eigen function
normalization in terms of the mass, as we repeat again later:

m∗1 = m∗2 = m∗3 = 1. (14.158)

We denote the three eigen functions as:
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



(ψ1) =




ψ11
ψ21
ψ31




(ψ2) =




ψ12
ψ22
ψ32




(ψ3) =




ψ13
ψ23
ψ33




. (14.159)

Here, the first suffix i of ψij (matrix “row”) corresponds to the mass number mi,
and the second suffix j (matrix “column”) corresponds to the eigen value λj. The
total eigen function is defined by

[ψ] = [(ψ1), (ψ2), (ψ3)] =




ψ11 ψ12 ψ13
ψ21 ψ22 ψ23
ψ31 ψ32 ψ33


. (14.160)

k1 k2 kn
m1 m2 mn

x1 x2 xn
f1

z1
z2 zn

m*
1 = 1 m*

2 = 1 m*n = 1

k1* = λ1 k*
2 = λ2 k*n = λn

g1 g2 gn

f2 fn
(a)

(b)

Figure 14.26. Normalized mode function derivation process: relation between (a)
physical mass–spring coordinate, and (b) eigen mode coordinate. Note each eigen
mode is isolated. Source: Figure by author.

The necessary equation to transform the forces between physical and eigen
mode coordinates is:




g1
g2
g3


 = [ψ]t




f1
f2
f3


 =




ψ11 ψ21 ψ31
ψ12 ψ22 ψ32
ψ13 ψ23 ψ33






f1
f2
f3


. (14.161)

In order to obtain the force vector (g1 g2 g3) in the eigen mode coordinate, we
transform the force vector ( f1 f2 f3) in the physical coordinate by multiplying [ψ]t.
Since the eigen mode function [ψ] is defined by assembling each eigen mode function
(ψn) in a column, to get all contributions of f1, f2, and f3 to λn mode, we should use
the “transposed matrix” [ψ]t.
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Example Numerical Values

A calculation example is taken from the 3 mass–4 spring model explained in
the previous subsection, in particular mass modulation ε = 4/3 (i.e., heavier mass
model). The numerical values used are summarized below:

m1 m2 m3 k1 k2 k3 k4

3 4 3 1 1 1 1

λ1 λ2 λ3 f1 f2 f3

1/6 2/3 1 1 0 0

ψ11 ψ21 ψ31 ψ12 ψ22 ψ32 ψ13 ψ23 ψ33

1 3/2 1 1 0 −1 1 −1 1

In order to simplify the calculation, m1 = 3 (3 times more than the calculation in
Subsection Phonon—Quantization, Energy, Momentum, Velocity) was taken rather
than general mass m. Accordingly, λ1 = 1/6, λ2 = 2/3, and λ3 = 1 (1/3 of the
previously calculated). Recall the eigen value λ1 = ω2

1 (because of m∗1 = 1); that is,
the eigen value is not directly proportional to the frequency, but the square of the
angular eigen frequency.

Normalization

Since the eigen mode functions in the table are not normalized, each mode is
normalized in terms of the mass matrix [M]:

(ψ1)
t[M](ψ1) =

(
1

3
2

1
)



3 0 0

0 4 0

0 0 3







1
3
2

1


 = 3 + 9 + 3 = 15. (14.162)

Thus, the new (ψ1) is expressed by:

(ψ1) =
1√
15




1
3
2

1


 =




1√
15
3

2
√

15
1√
15


. (14.163)

Normalizing also for (ψ2) and (ψ3), the total [ψ] = [(ψ1), (ψ2), (ψ3)] is obtained:

[ψ] = [(ψ1), (ψ2), (ψ3)] =




1√
15

1√
6

1√
10

3
2
√

15
0 − 1√

10
1√
15

− 1√
6

1√
10


 =




0.26 0.41 0.32

0.39 0 −0.32

0.26 −0.41 0.32


. (14.164)

Due to this eigen function normalization in terms of the mass, the effective mass
in the eigen mode coordinate becomes all unity, m∗1 = m∗2 = m∗3 = 1, as mentioned
already in Equation (14.158).
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Time Dependence of Zn

We now apply f1 = 1 on m1, and f2 = f3 = 0. From Equation (14.160), we can
obtain (g1 g1 g1)




g1

g2

g3


 = [ψ]t




f1

f2

f3


 =




1√
15

3
2
√

15
1√
15

1√
6

0 − 1√
6

1√
10
− 1√

10
1√
10







1

0

0


 =




1√
15
1√
6

1√
10


. (14.165)

Thus, Equation (14.157) is transformed (the effective masses are all unity) into




..
Z1 +

1
6 Z1 = 1√

15..
Z2 +

2
3 Z2 = 1√

6..
Z3 + Z3 = 1√

10

. (14.166)

Since the above three equations are independent of each other, we now obtain
the time dependence of Zn merely by sin and cos functions:





Z1(t) = 1
1√
6

× 1
1√
15

∫ t
0 sin 1√

6
(t− τ)dτ = 6

√
15(1− cos 1√

6
t)

Z2(t) = 1√
2
3

× 1
1√
6

∫ t
0 sin

√
2
3 (t− τ)dτ = 3

2

√
6(1− cos

√
2
3 t)

Z3(t) = 1√
1
× 1

1√
10

∫ t
0 sin (t− τ)dτ =

√
10(1− cos t)

. (14.167)

Response Function of xn(t)

Finally, we obtain each mass displacement xn as a function of time, which is
related as:

[x] = [ψ][Z]. (14.168)

Thus,

[x] =




x1(t)

x2(t)

x3(t)


 =




1√
15
3

2
√

15
1√
15


× Z1(t) +




1√
6

0

− 1√
6


× Z2(t) +




1√
10

− 1√
10

1√
10


× Z3(t)

=




1√
15
3

2
√

15
1√
15


× 6

√
15(1− cos 1√

6
t) +




1√
6

0

− 1√
6


× 3

2

√
6(1− cos

√
2
3 t)

+




1√
10

− 1√
10

1√
10


×

√
10(1− cos t).
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Finally, we obtain each individual mass point movement as a function time:




x1(t) = 17
2 − 6cos 1√

6
t− 3

2 cos
√

2
3 t− cos t

x2(t) = 8− 9cos 1√
6

t +cos t

x3(t) = 11
2 − 6cos 1√

6
t + 3

2 cos
√

2
3 t− cos t

. (14.169)

Even though only m1 is excited by a step-wise force, all moss positions qn(t)
oscillate under a mixed mode of all three eigen mode functions, starting from x1(0) =
x2(0)= x3(0) = 0. We can also recognize that the lowest eigen frequency mode [i.e.,
cos 1√

6
t] contributes the largest for all three positions.

Mode Coupling Effect

We reconsider the spring constant modulation case already discussed in Sub-
section Lattice Mode Coupling—Spring Constant Modulation: (1) all masses are
the same with m with no mass at the center (i.e., two mass model), and (2) springs
are the same with spring constant k, except for two center springs with εk (ε is the
normalized spring constant with respect to k). Refer to Figure 14.25a. We consider
here “free oscillation” (no external force) started from the initial conditions at t = 0:

x1 = x0,
.
x1 = 0; x3 = 0,

.
x2 = 0.

Under the above specified case, Equation (14.143) can now be transformed into:


k + εk −εk 0

−εk 2εk −εk

0 −εk εk + k







x1

x2

x3


−ω2




m 0 0

0 0 0

0 0 m







x1

x2

x3


 =




0

0

0


.

Then, using the notation Equation (14.146) again: λ = mω2

k , the above equation
is transformed into



1 + ε− λ −ε 0

−ε 2ε −ε

0 −ε 1 + ε− λ







x1

x2

x3


 =




0

0

0


.

We obtained two roots for λ, which are eigen values:

λ1 = 1; and λ2 = (1 + ε).

If we convert the above eigen values into the eigen frequencies, using λ = mω2

k ,
we obtain:

ω1 =
√

k/m = ω0, and ω2 =
√

k/m
√
(1 + ε) ≈ ω0(1 +

ε

2
). (14.170)

The eigen function in the case of small ε (low spring constant, or weak coupling
between m1 and m3). Eigen function for λ1 = 1 can be obtained from Equation
(14.152) as:



1 + ε− 1 −ε 0

−ε 2ε −ε

0 −ε 1 + ε− 1







ψ11

ψ21

ψ31


 = 0,
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leading to ψ11 = 1, ψ21 = 0, and ψ31 = 1. Similarly for λ2 = (1 + ε),


1 + ε− (1 + ε) −ε 0

−ε 2ε −ε

0 −ε 1 + ε− (1 + ε)







ψ11

ψ21

ψ31


 = 0,

ψ12 = 1, ψ22 = 0, and ψ32 = −1. The results were visualized in Figure 14.25a.
The eigen mode functions for two, λ1 and λ2, corresponding to in-phase (all mass
displacements are in the same sign) and out-of-phase (the mass displacements are
symmetrical with the node at the center mass), respectively.

Using the same derivation process of eigen mode functions and mass displace-
ment functions in the previous subsections, it is not difficult to derive mass motion
as a function of time:

{
x1(t) = 1

2 x0(cos ω1t + cos ω2t)

x2(t) = 1
2 x0(cos ω1t− cos ω2t)

. (14.171)

Figure 14.25b Top shows two eigen functions for ω1 and ω2 as a function of time.
You can notice that there are two sinusoidal oscillations with multiple overlapping
(in-phase) and out-of-phase parts periodically. Now the solution of the mass positions
consists of a linear superposition of both eigen mode functions cos ω1t and cos ω2t in-
phase and out-of-phase. To clarify the nature of the solutions of Equation (14.171), we
transform them by using elementary trigonometric relations, and the approximation,
ω2 −ω1 = ε

2 ω0 and ω2 + ω1 = 2ω0:
{

x1(t) = x0(cos ω0t·cos 1
4 εω0t)

x2(t) = x0(sin ω0t·sin 1
4 εω0t)

. (14.172)

Therefore, x1(t) is essentially a simple harmonic oscillation with frequency ω0,
starting from the “maximum” amplitude x0. This ω0 is the resonance frequency of
one mass m and one spring k connection system; that is, ω0 =

√
k/m. On the contrary,

the cos 1
4 εω0t term itself varies in a simple harmonic matter, though much more

slowly on account of the smallness of ε. This second term generates an amplitude
envelope of the fast sinusoidal variation of cos ω0t, as shown in Figure 14.25b Center.
In-phase part exhibits the maximum amplitude, while out-of-phase part shows the
minimum (almost zero) amplitude. In particular, the amplitude decays slowly to
zero at a time t = 2π/εω0. On the other hand, x2(t) is also essentially a simple
harmonic oscillation with frequency ω0, started from “zero” with 90◦ phase delay
from x1(t). The oscillations of x2 built up after the x1(t) vibration from zero to the
maximum x0 (Figure 14.25b Bottom). As time continues, the pattern reverses, so
that one complete to-and-fro transfer of energy takes place in a time 4π/εω0, during
which each individual oscillator will have executed 2/ε cycles of period 2π/ω0.
Exchange of lattice vibration energy between the weakly coupled spring oscillators
indicates the “phonon mode coupling” and “phonon energy transfer”.
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Localized Impurity Lattice Vibration

We extend to consider now an infinite monatomic (mass M) lattice chain con-
nected by the same spring constant K, except for the origin impurity atom mass
m = M(1− ε) [16]. The dynamic equation of this lattice chain model (similar to
Section 11.1.1) is described under the “periodic boundary” condition by

−Mω2(1− εδn0)un = −K(2un − un−1 − un+1) [−∞ < n < ∞]. (14.173)

In a perfect lattice chain (ε = 0), the lattice vibration frequency exists

0 ≤ ω ≤ ωL ≡ 2
√

K/M. (14.174)

Is there a possibility to exhibit an additional eigen vibration mode in the range
ω > ωL because of the impurity? Equation (14.174) leads to the following “difference
equation” except for n = 0 [refer to Equation (11.5)]:

un+1 −
(

2− Mω2

K

)
un + un−1 = 0 [n 6= 0]. (14.175)

In the range ω > ωL, we get the relation 2− Mω2

K < −2, so that we can take
parameter change as

2− Mω2

K
= −2cosh κ [κ > 0]. (14.176)

Thus, we can find a possible solution: unα(−1)nexp (±κn). Under the boundary
condition that n→ ±∞ needs to remain a realistic solution satisfying |un| < ∞, the
solution should be only in the form of

un ∝ (−1)nexp (−κ|n|) [−∞ < n < ∞]. (14.177)

Now, the parameter κ can be determined from the dynamic equation, Equation
(14.173), for n = 0, which should satisfy Equation (14.177):

2(1 + cosh κ)(1− ε) = 2[1 + exp (−κ)]. (14.178)

We obtain the required conditions as follows:

{
exp (−κ) = (1− ε)/(1 + ε)

ω2 = ω2
L/(1− ε2)

. (14.179)

In order to realize the range ω > ωL, ε > 0 is required. In conclusion, as long as
one impurity atom with mass m “lighter than the other lattice mass M”, we can expect
an impurity vibration mode with a frequency a little higher than the normal spectrum
top ωL. As derived from Equation (14.177), this mode should decay exponentially
with increasing |n| from the position n = 0. That is, this mode is “localized” around
the origin position.
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Ishii showed the computer simulation results on a 1D chain lattice model with
N = 50 and a couple of impurity atoms with m = 0.33M, which is shown in
Figure 14.27 [16]. The “frequency square spectral density” G(ω2) defined as

G
(
ω2) = g(ω)

2ω

[in a normal nonatomic lattice chain, this is equal to 1
πω
√

ωL2−ω2
]

(14.180)

is shown in Figure 14.27a, where many spiky peaks can be observed above the normal
top frequency ωL. As we discussed in Equation (14.177), the impurity vibration
modes should be localized, which is also demonstrated in the computer simulation
in Figure 14.27b. Mode number is arranged from low to high frequency sequence (50
modes in total equal to N = 50). In comparison with the low n states, which distribute
rather uniformly in a whole crystal, the higher number states (which correspond to
the sharp and spiky spectrum density modes) are clearly localized some particular
position in a crystal and vibration decays rather sharply with the distance. This
argument is consistent with the conclusion from a simple 3-mass–4-spring model
with one mass lighter than other lattice masses shown in Figure 14.24b.
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Figure 14.27. (a) Frequency square spectral density, and (b) eigen modes in a
1D lattice chain with some light-weight impurity doping. Phonon localization is
realized with the impurity doping. Source: Figure by author, adapted from [16].

14.4.2. Phonon Collision Process

Light is an electromagnetic wave which follows Maxwell wave propagation
equations. On the other hand, light is a particle, a so-called “photon” based on
Planck constant: h = 6.626× 10−34 [J·s] or } = 1.054× 10−34 [J·s]. Photon energy
and momentum are defined by E = }ω and p = }k, respectively. Note that though
the photon does not have mass, the momentum can be defined. Similarly, the lattice
vibration is a mechanical wave, while at the same time it is a sort of particle called a
“phonon”.
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Phonon—Quantization, Energy, Momentum, Velocity

(a) Quantization of Energy

The lattice vibration energy can be quantized. This energy quantum is called
a “phonon”. Each eigen vibration mode in a crystal lattice corresponds to one
phonon. Thermal vibrations in a crystal are thermally excited phonons. The energy
of a vibration mode of angular frequency ω is expressed on the basis of the Planck
constant }:

E = (n +
1
2
)}ω. (14.181)

when the mode is excited to quantum number n; that is, when the mode is occupied
by n phonons. The term ( 1

2 )}ω is the zero point energy of the mode, which is the
lowest quantum energy of the frequency ω mode. We can translate this energy into
the vibration wave energy as follows.

Consider the mode u = u0cos Kxcos ωt (standing wave), where u is the displace-
ment of a volume element ρdV from the equilibrium position in a crystal. The energy
of the oscillator is given by the sum of kinetic and potential energy, when averaged
in terms of time, a half and a half ratio; that is, 1

2 (n + 1
2 )}ω for each. Since the kinetic

energy of a unit volume particle is expressed by 1
2 ρ( ∂u

∂t )
2 (ρ: mass density), we can

evaluate the time average kinetic energy as

1
2

ρV(ωu)2 =
1
2

ρVω2u2
0cos2 ωt =

1
4

ρVω2u2
0. (14.182)

Thus,

u2
0 = 2

(
n +

1
2

)
}/ρVω. (14.183)

This relates the crystal displacement in a given frequency vibration mode to
quantum mechanics Planck constant } and phonon occupancy n of the modes.

(b) Phonon momentum

A phonon of wave vector k interacts with particles such as phonons and electrons
as if it had a momentum of }k, the same formula as photons. The phonons on the
crystal lattice do not carry actual physical momentum because a phonon coordinate
involves relative coordinates (that is, r = R− R′) of the atoms. Considering a 1D
lattice chain with periodic mass M, and the vibration amplitude of the mass as uα,
the physical momentum of a whole crystal can be expressed by

p = M
d
dt∑α

uα [α = 1, 2, · · · , N]. (14.184)

When the crystal carries a phonon k, which is expressed by uα = u0ejαka (except
for k = 0. This is obtained from the “periodic boundary condition”, referring to
Chapter 11), Equation (14.184) is transformed into

p = M
d
dt∑α

u0ejαka = Mu0
d
dt
(1− ejNka)/(1− ejka). (14.185)
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Due to the “periodic boundary condition”, the last atom’s displacement u0ejNka

should be equal to the first atom’s displacement:

u0ejNka = u0. (14.186)

This leads the conclusion, p = M d
dt ∑α u0ejαka = 0. The only exception mode

k = 0, since this is just a uniform translation of the whole crystal, no phonon
momentum can be carried.

A phonon behaves as if its momentum were }k for most applications, which is
called the “crystal momentum”. For example, this “phonon momentum” is used to
explain the incident X-ray “photon” and the scattered “photon” relation.

(c) Phonon velocity

We have mentioned the mass velocity ( ∂u
∂t ) based on the mass vibration dis-

placement in the previous subsection. The total summed velocity becomes zero
from Equation (14.185), while the averaged velocity of each mass is obtained from
Equation (14.183),

ωu0 =

√
2
(

n +
1
2

)
}/ρV. (14.187)

However, these are not a phonon velocity. The velocity of a wave packet
(localized or isolated phonon) is the “group velocity” or “sound velocity”, defined as

vg = dω/dk or in 3D vg = gradk ω(k), (14.188)

which is obvious from the general wave function

u = u0ej(kx±ωt). (14.189)

The group velocity is the velocity of energy transmission in the crystal. For
instance, the 1D monatomic lattice chain model in Chapter 11 gives the relation of
the eigen frequency to the wave vector through Equation (11.14):

ωα = 2

√
K
M

sin
απ

2N
= 2

√
K
M

sin
kαa
2

. (14.190)

Taking the first derivative of ω in terms of k,

vg =
dω

dk
= a

√
K
M

cos
ka
2
≈ a

√
K
M

[1− 1
2

(
ka
2

)2
]. (14.191)

For small k region, vg is constant, and the formula ω = vgk can be applied; while
for the k region close to k = π/a (i.e., Brillouin zone boundary), since cos ka

2 ≈ 0, vg
approaches zero.

(d) Wave Equation vs. Diffusion Equation

The wave equation of a rod material is described by
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∂2u
∂t2 = v2 ∂2u

∂x2 , (14.192)

where u is the displacement of a small volume ρdV, x is the rod length coordinate,
and v is the sound velocity, given by 1/

√
ρs11 (ρ: mass density, s11: elastic compliance

along x-direction). We can verify that the solution includes a rather general function
like u(x, t) = f (x− vt). From practical first and second derivatives in terms of time t
and the coordinate x (we use a new parameter, X = (x− vt)),

∂u
∂x

=
∂ f
∂X

∂X
∂x

=
∂ f
∂X
→ ∂2u

∂x2 =
∂2 f
∂X2 ; while

∂u
∂t

=
∂ f
∂X

∂X
∂t

= −v
∂ f
∂X
→ ∂2u

∂t2 = v2 ∂2 f
∂X2 .

Thus, we can derive the original equation ∂2u
∂t2 = v2 ∂2u

∂x2 ; that is, f (x − vt) is a
solution!

Suppose that the following Gaussian distribution of the initial displacement
(this is a model of the local pinching condition):

u(x, t) = exp [− (x± vt)2

a2 ]. (14.193)

At the initial t = 0, a single peak Gaussian distribution is the starting shape. As
long as this formula is a kind of f (x− vt), it is obvious to verify that this Gaussian
distribution will satisfy the wave equation. With time-lapse, keeping the curve shape,
but the wave is split into two waves, rightward and leftward with the velocity v
(this is called the “group velocity” or “sound velocity”). Figure 14.28a shows this
situation, which is analogous to a “wave packet” (or a “localized phonon”) traveling
in a crystal. Note, however, that the phonon velocity v is constant only for an acoustic
mode (i.e., low frequency and wavevector range, ω = vk). With approaching the
Brillouin zone boundary, v is significantly decreased.

We learned the diffusion equation in Chapter 12:

∂T
∂t

= αT
∂2T
∂x2 , (14.194)

where αT is the “thermal diffusivity”. In order to emphasize the difference be-
tween the “diffusion equation” Equation (14.194) and the “wave equation”
Equation (14.192), we will take again a Gaussian distribution for the localized heat
source:

T = T0 exp
(
− x2

a2

)
at t = 0. (14.195)

Recall the solving process by using the Laplace transform explained in Subsec-
tion Laplace Transform Approach in Chapter 12. Taking T̃ as the Laplace transform
of T(x, t) (i.e., Θ = L[θ(x, t)]), we have

(
∂2T̃
∂x2

)
=

s
αT

T̃. (14.196)
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We may assume the solution form as

T̃ = Ae
√

s
αT

x
+ Be

−
√

s
αT

x
. (14.197)

Knowing the inverse Laplace transform, L−1
[
e−a
√

s
]

= a
2
√

πt3 e−a2/4t and
a = ∓ x√

αT
, and using the initial Equation (14.195), the solution can be obtained as

T(x, t) =
T0√

(1 + 4αT t
a2 )

exp[− x2

(a2 + 4tαT)
]. (14.198)

Figure 14.28b shows the local temperature diffusion process in a crystal, follow-
ing Equation (14.198). The solution clearly evolves from the wave equation result in
Figure 14.28a. The heat simply spreads out on a time scale of order a2/αT , which will
be small if αT is large; that is, the crystal has a good thermal diffusivity or thermal
conductivity. This diffusing speed rate is evaluated by the phonon mean-free path
length and collision rate, as discussed in Section 14.4.3.
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Figure 14.28. (a) Wave packet traveling in a crystal, following the wave equation.
(b) Local temperature diffusion process in a crystal, following the diffusion equation.
Source: Figure by author.

Brillouin Zone

Let us review the 1D monatomic and diatomic lattice chain model discussed in
Chapter 11, recited in Figure 14.29a Top, which resulted in the eigen frequency ω(k)
vs. wavevector k dispersion curve shown in Figure 14.29b Top, where the k range is
only from −π/a to π/a. Why is this narrow k range sufficient?

The lattice vibration wave is illustrated in Figure 14.30, where the component
atoms are vibrating in an atomic potential well (equivalent to the harmonic spring
connection) represented by a sinusoidal thin sold line. When we describe the “travel-
ing wave” as

u = u0 exp j(kx±ωt), (14.199)
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the velocity is given by

vg =
dω

dk
. (14.200)
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Figure 14.29. (a) One-dimensional monatomic lattice chain model (Top) and un-
der the periodic boundary condition (ring) (Bottom). (b) Eigen frequency ω(k)
vs. wavevector k dispersion curve (Top) and its folding picture. Source: Figure
by author.

a
Figure 14.30. Lattice traveling wave shown by thick solid line, the component
atoms of which are vibrating in an atomic potential well represented by sinusoidal
thin sold line. Source: Figure by author.

Introducing the atomic distance “a”, and denoting the atomic displacement of
the n-th atom as u0, the ratio of the displacements of two successive atoms is given by

un+1/un = exp j(ka). (14.201)
Supposing u1 = u0 exp j(ka), we obtain uN = u0 exp j(Nka). If we adopt the

“periodic boundary condition”, that is, as shown in Figure 14.29a Bottom, two ends
of the 1D lattice chain are topologically connected as a “ring”, and the N-th atom
should be exactly the same as the hypothetical 0-th atom:

uN = u0 exp j(Nka) ≡ u0. (14.202a)

Accordingly, we obtain

exp j(Nka) = 1 → Nka = 2απ(α = 0, ±1, ±2, · · · ). (14.202b)

588



Though the wavevector k can be changed from −∞ to ∞, as long as we take a
minimum 2π interval, all waves exp j(nka) will behave exactly the same in a periodic
fashion. As shown in Figure 14.29b Bottom, we can consider the ω vs. k dispersion
curve on a “cylindrical space”. Normally, k from (−π/a) to (π/a) range is sufficient,
which is called the “first Brillouin zone”. Since the zone ends (−π/a) and (π/a) are
equivalent (or connected on the cylindrical space), the larger k wave corresponds to
the second-round position on the cylinder space, which is called “second Brillouin
zone”. The need for the second Brillouin zone is introduced in the next section on
the phonon collision process.

If we reconsider the sound velocity in this view, the group velocity is given
by vg = dω

dk . For k = 0, all atomic displacement un = u0 (constant). Since this
corresponds to just a simple translation, group velocity is obviously zero. For the
zone boundary k = ±π/a, the displacement un = u0exp j(nka) = (−1)nu0. This
expression is not a “traveling wave”, but a “standing wave”, that is, the group

velocity is obviously zero. This can also be verified as follows: since ω = 2
√

K
M sin ka

2 ,

vg = dω
dk = a

√
K
M cos ka

2 = 0 (Note ka = ±π). The traveling wave property is
maintained during the interval −π/a < k < π/a.

Phonon—Phonon Interaction, Collisio

(a) Crystal Anharmonicity and Wave Packet

Thermal energy can be stored in the lattice vibration normal phonon modes as
a vibration amplitude. However, in a perfectly harmonic crystal, the phonon states
are stationary, wide-spread in the crystal uniformly with a monotone frequency as a
wave (that is, NOT an isolated wave packet or particle-like phonon). This situation
comes from the “uncertainty principle” single frequency ω “phonon” particle will not
identify its position. Since phonon vibration is not disturbed by dopants, for example,
we can say the thermal resistance is zero, or “thermal conductivity is infinite”,
leading to completely uniform temperature distribution in a crystal. However,
when the atomic energy potential includes nonlinear term, “cubic” anharmonic
term introduced in Equation (14.134) or “quartic” term, the resonance frequency
should include at least 2ω0 or 3ω0, higher order harmonic modes. According to the
uncertainty of the resonance frequency from the definite ω = ω0 to ∆ω = |ω−ω0|,
the phonon distribution changes from infinitely wide-spread state in a crystal to a
sort of packet status (i.e., localized existence). Figure 14.31 demonstrates a phonon
wave packet generation from the anharmonic lattice vibration. We assume the normal
phonon eigenfunctions as

uα(t)α sin kαa· cos ωαt. (14.203)

Taking into account the frequency square spectral density, g(ω)
2ω , as the summa-

tion weight, and the low frequency acoustic mode dispersion relation kα ∝ ωα (i.e.,
Debye model), we calculate the sum of un(t)’s, which exist in ∆ω

n

∑
α=1

uα(t) ∝
n

∑
α=1

sin ωαacos ωαt
ωα

. (14.204)
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Individual wave forms (time dependence) uα(t) are illustrated for ωα= 1, 2, 3
and 0.2 in Figure 14.31, for the reader’s reference. Here, we took the atomic distance
a = 1 as a normalized unit. One, two, and three sinusoidal eigen wave forms and a
rather flat long-wavelength shape (ωα= 0.2) are shown. When we sum up wave forms
up to ωα = 3, the top wave packet can be obtained. Note that if we add ωα up to ∞
ideally, the wave shape should theoretically be a square pulse inserted in Figure 14.31.
Once multiple phonons are generated synchronously via the anharmonic potential
interactions, the phonon energy localization is expected (not uniformly distributed as
a separated harmonic vibration), leading to the concept of wave-to-particle transition
(i.e., the reason of the terminology introduction of “phonon” from the elastic lattice
vibration wave). Recall the discussion in Subsection Localized Impurity Lattice
Vibration, where the impurity vibration modes (even under “harmonic” potential)
can be localized, as demonstrated in the computer simulation in Figure 14.27b. If
we rephase the above argument in a reverse way, by having an excess of phonons
with similar directed group velocities (i.e., by touching a heat source on the solid
crystal), the anharmonic part of the ionic interaction plays the wave packet into
creation, destruction or scattering of various frequency phonons, which corresponds
to “thermal resistivity” (i.e., inverse of thermal conductivity).
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Figure 14.31. Phonon wave packet generation from the anharmonic lattice vibration.
Source: Figure by author.

(b) Phonon Mean Free Path

Once isolated phonon modes are existing in a crystal, we now consider the
isolated phonon (as a particle) transfer in the crystal lattice. The phonon “mean free
path l” is defined as the average transfer distance of one phonon until its scattering
by (1) geometrical boundary (like a crystal surface), (2) lattice imperfection (such
as impurity, crystal deficit (vacancy, dislocation, etc.), and (3) other phonons. If the
crystal lattice force is rigorously harmonic, there is no mechanism for collisions
between different phonons (i.e., infinite mean free path in a crystallo-graphically
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perfect crystal). With anharmonic lattice interactions, there is a coupling between
different phonons, which limits the value of the mean free path. Since the theory of
the anharmonic coupling on thermal resistivity is beyond this book’s objective, we
briefly explain the empirical laws and three-phonon collision process in the section.

The mean free path length seems to be proportional to 1/T at high temperature.
Since the total number of excited phonons is proportional to T, the collision probabil-
ity of a given phonon would be proportional to the number of phonons, leading to
l ∝ 1/T. The thermal resistivity/conductivity is defined during the phonon transfer
process, that is, heat transfer from a high temperature to a low temperature to finalize
the equilibrium status. Note that the phonon collisions with a static imperfection or
a crystal boundary will not establish thermal equilibrium, because such collisions do
not change the energy of individual phonons: the frequency of the incident phonon
and that of the scattered phonon is the same. Realizing the frequency modulation
from the incident phonon and the scattered phonon is essential to establish the
phonon energy change (Recall the phonon energy is given by proportional to ω,
E = (n + 1

2 )}ω).

(b) Three-phonon collision process

We consider three-phonon collision process. One phonon k1 collides with
another phonon k2, then k3 is the scattered phonon, expressed as:

k1 + k2 = k3. (14.205)

The total momentum of the phonons does not change by such a collision
(Figure 14.32a). Since the momentum (defined by “}k”) change can be calculated as:

J = ∑
k

nk}k, (14.206)

where nk is the phonon density (number of phonons with wavevector k), then in the
equilibrium status, the process in Equation (14.205) (i.e., k3 − k1 − k2 = 0) establish
J = 0; that is, no total momentum remains, or no heat flow is expected. This process
is called “normal collision process”.

However, if we generate hot phonons on one end of the crystal rod by attaching
a heat source, the hot phonons down a rod with keeping J 6= 0. How can we explain
it? Rudolf Peierls (German and British, 1907–1996) contributed the important three-
phonon process for the thermal conductivity theory, so-called “Umklapp” (German
meaning “flipping over”) collision process, expressed as:

k1 + k2 = k3 + G, (14.207)

where G is a reciprocal lattice vector (wavevector) with x, y, and z component
magnitude of integer number times of 2π/a, as illustrated in Figure 14.32b. When k1
and k2 are both positive, k3 should also be positive direction in the normal process,
while in the Umklapp process, according to the negative G, positive k1 and k2
can generates negative k3 [= k1 + k2 −G]. The “negative” k3, that is, the backward
phonon scattering is the key to explain the thermal “resistance”. This reciprocal lattice
vector addition can be understood from the cylindrical map of the dispersion curve
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(Figure 14.29b); G adding corresponds to the second round (or the second Brillouin
zone) position (k′3 = k1 + k2), which is equivalent to the first Brillouin zone position
(k3 = k1 + k2 −G). At temperatures higher than the “Debye temperature” θD (Recall
Subsection Debye Approximation in Chapter 11), all phonons are excited because
kBT > }ωL. Thus, a substantial portion of all phonon collisions are U-process.

The energy of phonons k1 and k2 suitable for Umklapp to occur is of the or-
der of

(
1
2

)
k

B
T, because the magnitudes of the phonons k1 and k2 must be longer

than
(

1
2

)
G (otherwise, addition will not reach out of the first Brillouin zone). The

Umklapp process should conserve energy just as for the normal process, because
the second-round rotation on the dispersion curve cylinder should be equivalent to
the first Brillouin zone performance. However, because of a little low temperature,
the number of suitable phonons of the high energy

(
1
2

)
k

B
θD required may vary

roughly in proportion to e−θD/2T , according to the Boltzmann factor. In summary,
the phonon mean free path seems to be the mean free path for Umklapp collisions
between phonons and for all collisions between phonons.
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Figure 14.32. (a) Normal k1 + k2 = k3, and (b) Umklapp k1 + k2 = k3 + G phonon
collision processes in a 2D square lattice model. Source: Figure by author.

14.4.3. Thermal Conductance Model

First, the sound velocity of the longitudinal wave (p-wave) is faster than the
transverse waves (s-waves) in dielectric solid. Thus, thermal conductivity seems to be
determined primarily by the speed of longitudinal phonons. Second, phonons in the
acoustical branch dominate the phonon heat conduction as they have greater energy
dispersion and a greater distribution of phonon velocities. Additional “optical
modes” can also be caused by the presence of charge or mass at lattice points.
Though it is implied that the sound velocity of the optical modes is low, and their
contribution to the lattice thermal conduction is small in general [17], the optical
mode contribution seems to also be important in ferroelectric materials such as PZTs,
because of their low-frequency “soft-phonon” modes, which are highly interacted
with the electric field.
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Phenomenological Expression of Thermal Conductivity

Let us review the phenomenological treatment in Chapter 12. The thermal
conductivity λ is defined by

qx = −λ

(
∂T
∂x

)
dt or dq = λ

(
∂2T
∂x2

)
dxdt, (14.208)

where qx is the heat flux (or heat flow), that is, quantity of heat passing through
a cross section of crystal rod per unit area per unit time. The unit of q should be
[J/m2/s = W/m2]. We introduce heat capacitance Cp, the required heat quantity for
increasing 1 ◦C per unit volume,

dq = CpdTdV = CpdTdx [dV = Sdx, where S = 1 (unit area) here]. (14.209)

From Equations (14.208) and (14.209), we obtain

Cpdθdx = λ

(
∂2T
∂x2

)
dxdt→

(
∂T
∂t

)
=

λ

Cp

(
∂2T
∂x2

)
. (14.210)

Quantum Phonon Expression

When the phonon number n deviates from the equilibrium value n0, thermal
current qx arises as expressed by

qx =
1
V ∑ }ω(n− n0)vx, (14.211)

where } is the “reduced Planck constant” (= h/2π), and vx is the energy transport
velocity (i.e., group velocity) of the phonon. There are two mechanisms to cause time
variation of n in a particular thin slice segmented region in a disk sample: (1) The
number of phonons that diffuse into and diffuse out between the considering region
and neighboring regions, and (2) phonon decay inside the same region into other
phonons. A special form of the Boltzmann equation provides

dn
dt

= (
∂n
∂t

)
di f f .

+ (
∂n
∂t

)
decay

. (14.212)

Time variation in the latter term is described with a relaxation time (τ) approxi-
mation [14]. Assuming the spirit of “Drude model”, the phonon collision occurs in
a distance l = vxτ (vx: energy transport velocity) in terms of the relaxation time τ.
Though the microscopic origin is not clear, this relaxation time concept has already
been integrated in Chapter 5.

(
∂n
∂t

)
decay

= −(n− n0)/τ. (14.213)

When we consider a “steady-state” condition such as a case that temperature
T1 and T2 is maintained on both sides on a crystal plate for transferring the thermal
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energy steadily, we may assure dn
dt = 0; that is, the local thermal equilibrium (i.e.,

dynamic equilibrium) is assumed, leading to the equation

(
∂n
∂t

)
di f f

= −(∂n
∂t

)
decay

= −vx
∂n0

∂T
∂T
∂x

. (14.214)

Using the relaxation time approximation for the Boltzmann equation and assum-
ing steady-state conditions, the phonon thermal conductivity λ can be determined:

λ = Cpvx
2τ. (14.215)

An alternative derivation process is as follows: Knowing the temperature differ-
ence between the ends of a mean free path “l” of the phonon

∆T =
dT
dx

l =
dT
dx

vxτ. (14.216)

The net heat flux (Equation (14.211)) is therefore described as

qx = −Cp〈vx
2〉τ dT

dx
. (14.217)

The averaging the velocity relation between one direction and three directions:〈
vx

2〉 = 1
3
〈
v2〉 provides the final formula:

λ =
1
3

Cpv2τ=
1
3

Cpvl. (14.218)

E- and D-Constant Thermal Conductivity

Finally, we consider the empirically obtained formula of “secondary electrother-
mal coupling factor kλ

33” in Chapter 12, which is expressed by:

λD
33 = λE

33 (1− kλ
33

2
). (14.219)

The reader still remembers a significant difference of the thermal conductivity
according to the electric constraint condition, that is, E-constant (short circuit) or
D-constant (open circuit). The experimental result on a Hard PZT (APC 841) gives

λD
33 = 0.61 λE

33, and kλ
33

2
= Tp′2

λE
33ε0εX = 0.39.

If we believe the thermal conductivity expression Equation (14.218), we need to
find out the origin: is it due to significant electric constraint dependence of (a) heat
capacitance Cp, (b) sound velocity v, or (c) the relaxation time τ? We discuss these
three factors below.

(a) Heat Capacitance Cp

Subsection Specific Heat Capacity—Scalar Parameter gives

CD
p = CE

p (1− kET2
), (14.220)
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where the primary “electrothermal coupling factor” kET is given by

kET2
=

p2
(

ρcE
p

T

)
ε0εX

. (14.221)

Since kET2
= 0.11 × 10−6 in a Hard PZT (very small!), we can neglect this

contribution.

(b) Sound Velocity v

The sound velocity is given by v = 1/
√

ρs33, then the elastic compliance follows

sD
33 = sE

33

(
1− kt

2
)

. (14.222)

where kt is the thickness electromechanical coupling factor. D-constant boundary
condition decreases the elastic compliance (i.e., elastically hardening), leading the
enhancement of the sound velocity. This tendency gives an opposite argument to
explain the thermal conductivity relation λD

33 = λE
33 (1− kλ

33
2
).

(c) Relaxation Time τ

In conclusion, the significant difference between λD
33 and λE

33 needs to be ex-
plained by the difference of the relaxation time τ according to the electric boundary
condition. That is, the internal “depolarization field” in an open-circuit crystal may
decrease the relaxation time τ significantly. If we assume the “internal electric field”
accelerates: (1) the number of phonons that diffuse in and out between the consider-
ing and neighboring regions, and (2) phonon decay inside the same region into other
phonons, the relaxation time decrease can be explained.

Chapter Essentials

1. Large Swings of the Pendulum—Nonlinear Dynamic Equation:
∂2θ
∂t2 = −

( g
L
)
·sinθ = −ω2sinθ,

Tθ0 = 4
√

L
g
∫ π/2

0
dφ√

1−k2sin2φ
= 4

√
L
g · K(k) where “complete elliptic integral of

the first kind” is K(k) =
∫ π/2

0
dφ√

1−k2sin2φ
.

2. Coulomb (Friction) Damping:
m

..
u + cu = ±F,

u = a cos(ωt) + A
ω2 (1− cos(ωt)) for 0 < t < T; u(T) = −a + 2A

ω2 ,
u = a cos(ωt) + A

ω2 (1− cos(ωt)) − 2A
ω2 (1 − cos(ω(t− T)) for T < t < 2T,

u(2T) = a− 4A
ω2

. . .. . .. . .
Resonance frequency: ω =

√
c/m, and “linearly decay” of amplitude with time

by 2A
ω2 .

3. Admittance Frequency Spectrum Distortion Phenomena:

LA
d2 I1
dt2 + (RA1 + RA2 I1

2) dI1
dt + I1

C1
+ I1

3

C2
= ωV,

595



∗ Resistivity (loss factor) nonlinearity - Qm decrease;
∗Capacitance (elastic compliance) nonlinearity—Spectrum distortion and fre-
quency hysteresis.

4. Two-Spring–Mass Buckling Model—Mechanical Bistability:

F = kR
(
α2θ − θ3).

5. Ginzburg–Landau Functional—Domain Wall Structure:

F(P(x),T) =
∫

dx[ α
2 P(x)2 + β

4 P(x)4 + κ
2 (∇P(x))2].

Domain wall structure:

P(x) = P0tanh( x
δ ) , δ = 1

P0

√
2κ
β =

√
2κ
−α .

Domain wall energy:

γ0 = − 2
3 αP2

0 δ = 4
3 P2

0 (
κ
δ ).

6. Dynamic domain wall motion is analyzed by:

µ ∂2P
∂t2 + Γ ∂P

∂t − κ ∂2P
∂x2 + αP + βP3 = E,

where Γ is the dissipation factor and E is the applied external electric field E.
Permittivity and dielectric loss tanΦ can be obtained as

|εε0| = 1√
(−2α−µω2)

2
+(2µζω0ω)2

,

tanΦ =
2µζω0ω

−2α−µω2 .

Here, ω2
0 = −2α/µ, and 2ζω0 = Γ/µ. For a low frequency,

εε0≈ 1/(−2α),
tanΦ≈Γω/(−2α).

7. Nonlinearity in Crystal Potential:
∆U = U(r)−U(r0) = f (∆r)2 − g(∆r)3

Thermal expansion and electrostriction are originated from anharmonic term g:

Strain x = <∆r+>+<∆r−>
2r0

= 3gkB
4 f 2r0

T + 3gq2

4 f 3r0
E2.

8. Impurity on the Lattice Vibration:
Impurity doping with a light-weight mass introduces localized wave packets
(i.e., isolated phonons) in high frequency range in a simple 3-mass–4-spring
model and a large lattice mass–spring model.

9. Anharmonicity in the lattice potential introduces higher-order harmonic high
frequency wave modes, which generates wave packets (i.e., isolated phonons).

10. Phonon energy is described by
E = (n + 1

2 )}ω,
which follows the Boltzmann distribution.

11. Phonon momentum is described by
p = }k.
Two phonon collision processes: (a) Normal k1 + k2 = k3, and (b) Umklapp
k1 + k2 = k3 + G.

12. Thermal conductivity—Phonon interaction viewpoint:
λ = 1

3 Cpv2τ= 1
3 Cpvl (Cp: heat capacitance, v: sound velocity, τ: phonon relax-

ation time)
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In pyroelectrics, the depolarization field may reduce the relaxation time τ
significantly.

Check Point

1. (T/F) We demonstrate large swings of a pendulum with a mass and solid rod
under free vibration started from a rest position (angle θ). By increasing the
cant angle θ, close to the upside-down position, the cycle period T decreases
because the acceleration force is increased. True or false?

2. (T/F) We consider a mass–spring oscillator under free vibration with Coulomb
(friction) damping condition, started from a spring largely extended position.
The vibration amplitude decays exponentially with time lapse. True or false?

3. We consider a LCR circuit with nonlinear performance in terms of current
for all L, C, and R components. Which component’s nonlinearity contributes
significantly on the admittance spectrum shape skew and hysteresis?

4. (T/F) The solution of the nonlinear differential equation κ( d2P
dx2 ) = αP + βP3

(boundary condition: P(−∞) = −P0, P(+∞) = P0) includes P(x) = P0tanh( x
δ ),

where δ = 1
P0

√
2κ
β =

√
2κ
−α . True or false?

5. (T/F) One-atom 1D lattice chain model with N atoms connected by the same
lattice “harmonic” springs results in N eigen wave modes with all sinusoidal
waves. True or false?

6. (T/F) The thermal expansion or electrostriction cannot be observed in a rigor-
ously harmonic atomic potential crystal. True or false?

7. (T/F) The isolated phonon can be generated by the light-weight mass atom
doping in a crystal, even though the lattice potential is rigorously harmonic.
True or false?

8. (T/F) The isolated phonon can be generated by the anharmonicity of the lattice
potential. True or false?

9. There are two phonon collision processes: (a) Normal: k1 + k2 = k3, and
(b) Umklapp: k1 + k2 = k3 + G. Which process contributes to the “thermal
resistance”?

10. (T/F) Thermal conductivity is expressed as λ= 1
3 Cpvτ, where Cp: heat capaci-

tance, v: sound velocity, τ: phonon relaxation time. True or false?

Chapter Problems

14.1 Analyze the mechanical bistability function in a bent plate, as illustrated in
Figure 14.33 below. Suppose the compressive force T on a total length l plate
generates two stable positions a and −a along the perpendicular directions at
the center points.

Hint

Necessary parameters for the “stressed rod” analysis:

• Area: A, Bending rigidity: EI (E: flexural modulus (Pa), I: second moment
of area (m)), Critical stress: TC = π2EI/l2,

• Perpendicular displacement (stable point): y0(x) = asin π
l x,

• Distributed load on the rod: qsin π
l x,
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• Perpendicular displacement: y(x) = a1sin π
l x,

• Normalized force: α = T/TC; a1 = u
α−1 a,

• Normalized center displacement: ξ = a1
a = u

α−1 ,

• Normalized load: u = l4

π4
q

EIa ,
• Normalized moment of inertia: m = 4I

Aa2 ,

From the following two relations,



Original rod length =
l∫

0

√
1 + ( dy0

dx )
2
dx + TC l

EA

Loaded rod length =
l∫

0

√
1 + ( dy

dx )
2
dx + Tl

EA

.

we obtain
1 = u2

(α−1)2 + (α− 1)m

Then, we finally obtain the following nonlinear equation:
ξ − ξ3 = mu.
We can use Figure 14.33 for further discussion.

T

l

a1aT

Figure 14.33. Mechanical bistability in a bent plate. Source: Figure by author.

14.2 We consider the minimization of the time-independent Ginzburg–Landau func-
tional with respect of P,

F(P(x),T) =
∫ ∞
−∞ [ α

2 P(x)2 + β
4 P(x)

4
+ κ

2 (
dP
dx )

2
]dx.

By changing the polarization P by δP, we calculate the free energy change

F(P + δP) =
∞∫
−∞

[ f (P + δP) + κ
2 (

d(P+δP)
dx )

2
]dx

=
∫
[ f (P)+ κ

2 (
dP
dx )

2
]dx +

∫
[ f ′(P)δP + κ( dP

dx )
d(δP)

dx ]dx + · · ·
= F(P) + δ F + δ2 F + · · ·
From the first derivation δF = 0, we can derive

κ(d2P
dx2 ) = αP + βP3.

The sign of the second variation δ2F makes it possible to evaluate the stability
(maximum or minimum) of the corresponding solution. Calculate δ2F practi-
cally, then discuss the system stability from the sign of δ2F.

Hint

δ2F =
∫
[ f ′′(P)

2! (δP)2 + κ
2 [

d(δP)
dx ]

2
]dx + · · · =

∫
δP[ κ

2
d2

dx2 +
1
2

d2 f
dP2 ]δPdx

Thus, you need to solve the dynamic equation in a potential field V(x) =
1
2

d2 f
dP2 = 1

2 (α + 3βP(x)2). Verify maximum V(x) = - α > 0 away from the bound-
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ary, and δ2F > 0. Thus, we can conclude that δF = 0 point corresponds to the
minimum point.

14.3 In Section 14.2.1, we adopted the second-order transition case, from the static
domain wall structure equation:

κ( d2P
dx2 ) = αP + βP3.

When we expand the discussion to the first-order transition,

f (P) = (1/2)αP2 + (1/4)βP4 + (1/6)γP6,

discuss the differences from the second-order type in terms of the domain wall
structure formula and the domain wall energy (Figure 14.34).

−4 −2

0.5

1

1.5

2 4

P(x)
P0

x
−0.5

−1

−1.5

0
0

δ

Figure 14.34. Polarization distribution profile of the domain wall for the case of
the first-order transition. Source: [3] ©Uchino, K. High-Power Piezoelectrics and Loss
Mechanisms. CRC Press, 2020; p. 316. Reproduced by permission of Taylor &
Francis Group.

Hint

We start from the equation given by κ
(

d2P
dx2

)
= αP + βP3 + γP5, where β < 0,

γ > 0. Away from the domain boundary, the spontaneous polarization is now
given by P0 = β

γ (
√

1− αγ
β2 − 1).

Then, similar handling to Equation (9.48), we obtain the following equation:

κ
2 (

dP
dx )

2
= f [P(x)]− f [P0] =

[
P2

0 − P2]2[ γ
6 P2 + β

4 + γ
3 P2

0 ].

We can obtain the following formulae:

P(x) = P0
sinh( x

δ )√
cosh2( x

δ )+ε
,

δ =
√

κ

γP4
0+

β
2 P2

0
,

ε =
2γP2

0
4γP2

0+3β
.

Refer to the inserted figure. Note the presence of a metastable (or flat) state at P
= 0 as an intermediate state in the first-order transition case, in comparison with
a simple tanh(x/δ) curve. The domain wall energy density can be calculated
as follows:
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γ0 =
∫ ∞
−∞

[
f [P(x)]− f [P0] +

κ
2

(
dP
dx

)2
]

dx = 2
∫ ∞
−∞[ f [P(x)]− f [P0]]dx

= 2
∫ ∞
−∞

[
P2

0 − P2]2[ γ
6 P2 + β

4 + γ
3 P2

0

]
dx =

αP2
0

δ (1 + ε)2∫ ∞
−∞

cosh2t
ε+cosh2t

dt = KP2
0 (

κ
δ )

[K =
∫ ∞
−∞

cosh2t
ε+cosh2t

dt is a numerical factor].
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Appendix A. Answers to “Check Point”

Chapter 1

1) Dipole reorientation 2) Lorentz factor
3) False (frequency should be THz for

permittivity)
4) 50%

5) False (1/n2 should be expanded) 6) True
7) False (200 °C higher) 8) False
9) PVDF, polyvinylidene difluoride 10) Lead zirconate titanate

Chapter 2

1) True 2) True
3) k2 = h2

cDκ0κx 4) False (sD = sE(1− k2))
5) εx = εX(1− k2) 6) True
7) Thermal expansion 8) Pyroelectric effect
9) False (PS decreases) 10) |k33| (recall k2 = d2

sEε0εxX )

Chapter 3

1) False (another diagonal compressive stress
is required)

2) 6 (symmetric matrix)

3) 18 4) 36
5) ε11, ε33 6) d33, d31, and d15
7) s11 and s12 8) E = 1

s11
, σ = −s12/s11

9) λ = c12, µ = c66 = 1
2 (c 11 − c12

)
10) False (around x-axis


1 0 0
0 cos θ sin θ

0 − sinθ cos θ


)

11) (c) ((x,y,z)→ (−x,y,z))

Chapter 4

1) By changing P to −P, the energy should be
the same, G1(P) = G1(−P).

2) False (d shows maximum
just below TC)

3) False (higher) 4) d = 2ε0εrPSQ
5) False (∝

√
TC − T) 6) True

7) False (−2 times steeper) 8) False (all maximum)
9) False (temperature sensitive as with ε2) 10) True
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Chapter 5

1) True 2) True
3) False (inversely proportional) 4) True

5) True 6)
False (circle center is below ε” = 0
axis)

7) True 8) True
9) εS

2 + j0 10) ω0 (maximum ε” = εS
2 )

Chapter 6

1) False (linear decrease) 2) Viscous damping
3) 1 4) 1/s
5) False (it is sin (at)/a) 6) True
7) False (Qm = 1/2ζ) 8) True
9) False (−40 dB/decade) 10) False (counterclockwise)

11) tan δ’ = (1/2π)(we/Ue) 12)
False (combination (2tanθ′ − tan
δ′))

13) True (εx = εx(1− k2)) 14) False (sD = sE(1− k2))

15)
1

1−k2




1 k2 −2k2

k2 1 −2k2

1 1 −1− k2




(“invertible”)

Chapter 7

1)
False (both are mechanical
resonance)

2) 2

3) False (admittance maximum) 4) 0◦ (resistive)

5) Quadrantal frequencies 6)
False (antiresonance mode is a
half-wavelength)

7) True 8) QM = 1/ tanφ’
9) QM = 1/tan φ 10) False (resonance is more uniform)

11) QA < QB 12)
False (short circuit and open
circuit correspond to resonance
and antiresonance)

13) False (at the resonance frequency) 14) False (theoretically different)
15) False (QA < QB) 16) False (antiresonance is better)

17)
Between resonance and
antiresonance frequencies

18) False (E = – ( PS
ε0

)
)

19) True 20) True
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Chapter 8

1) 1/s 2)
u(t) = 0 for 0 < t < a;
u(t) = m(t− a) for a ≤ t

3) False (exactly to the resonance period) 4) 100%
5) True 6) False (Short-condition is softer)
7) True 8) True
9) Qm = (1/2)ω0τ 10) True

Chapter 9

1) True 2) True
3) False (εx = εX(1− k2)) 4) False (sD = sE(1− k2))
5) Q =

√
L/C/R 6) −Cd

7) Φ = 2wd31
sE

11
8) True

9) QM = 1/tan φ11’ 10) QA < QB

Chapter 10

1) False (Z =
√

ρc; elastic stiffness) 2)
Z =

√
ρ/s = 20.3× 106 =

20.3 Mrayls
3) False (impedance matching) 4) Rayl
5) vp =

√
c/ρ 6) Matching layer

7) True 8) 0.5 kJ
9) 1/(2 × 3.14 × 100 × 10−9) = 1.59 MΩ 10) DC–DC converter
11) Buck converter 12) Diode

13) True 14)
False (2500 times; current 50
times)

15)
sE

e f f = sE
[
1−

(
S
t

)
jωd2

sE jωC

]
=

sE[1− k2] = sD
16)

sE
e f f = sE

[
1−

(
S
t

)
d2

sE ·2C

]
=

sE
(

1− 1
2 k2
)

Chapter 11

1) True 2) False (degeneracy is for the periodic boundary
condition)

3) True 4) (2), in the opposite directions
5) γ = 1 6) True
7) True 8) First: thermal expansion; second: electrostriction
9) True 10) Partially true (impurities and crystal deficiencies

also cause the thermal resistance)
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Chapter 12

1) True 2)
False (time derivative should be the first derivative(

∂θ
∂t

)
= αT

(
∂2θ
∂x2

)
)

3) True 4) True
5) cp = Cp/ρ (specific heat capacity is defined per unit mass)

6)
False (heat flux and temperature gradient are both vectors; thus, λ should be
a tensor)

7)
False (since it is not an equilibrium condition, it cannot be written as a
potential)

8) Lars Onsager (1903–1976)

9)
cD

p =

cE
p

(
1− kET2

) 10) Dielectric loss tanδ’

11) Elastic loss tanφ’ 12) False (maximum temperature rise can be observed
at its nodes)

Chapter 13

1) True 2)
Decrease (because the PLZT is elongated along the
3-axis due to electrostriction)

3) 50% 4)
False (expansion is based on 1/nij

2(E), not on
1/nij(E))

5) False (lower refractive index gives higher light speed)
6) Extraordinary ray (lower refractive index gives higher light speed)
7) 9/65/35 8) Blue (because λ is the shortest)
9) False (high n layer on the top for waveguide)

10)
PLZT (Vz,λ/2 = d

√
λ0

Ln 3
0 (R11−R12)

; L can be reduced for a larger (R11 − R12)

material)

Chapter 14

1)
False (T increases significantly, because the pendulum almost stops at the
upside-down position)

2)
False (the amplitude decays linearly with
time)

3)
C (capacitance
nonlinearity)

4) True 5) True
6) True 7) True
8) True 9) “Umklapp” process

10)
False (λ = 1

3 Cpv2τ= 1
3 Cpvl, where Cp is the heat capacitance, v is the sound

velocity, τ is the phonon relaxation time, and l is the mean free path length)
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