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Preface

The author has been teaching three graduate courses, “Ferroelectric Devices”
(Materials science and engineering-oriented), “Micromechatronics” (Electrical and
mechanical engineering-oriented), and “Application of Finite Element Method”
(Design engineering with computer simulation) regularly over 46 years.

As ferroelectric device development is really an interdisciplinary area between
physics, electrical, and mechanical engineering, my courses are open to any
department students without setting particular “prerequisite courses” in the
curriculum. However, in order to teach the course materials smoothly, I set
a “Prerequisite Knowledge Check”, which examines the students” basic physics
knowledge (high school and freshmen-level), covering physics, electrical, and
mechanical engineering. Refer to “Prerequisite Knowledge Check” on page xiv after
List of Contents. This quiz (exactly the same over 30 years) is conducted on the
tirst class-day, is evaluated, and the teaching level is changed every year. The figure
below plotted the average score (among 10 in total) change with year on Prerequisite
Knowledge Check for the “Micromechatronics” course. In the 1990s and early 2000s,
the average score was constantly 70-80%. However, in the middle of the 2000s, the
average score decreased year-by-year, and most recently, it is around only 30-40%;
there was significant reduction of basic engineering knowledge during 2005-2015.
Note that since the National Ranking of the Penn State University has not been
dropped significantly in these 10 years, this may not be related to the student-quality
degradation of the Penn State University. Rather, the author believes the basic
knowledge degradation in the graduate students seems to be a general tendency
due to the generation difference in the educational principle. The author points out
that the “turning point” of the average score in the middle of 2000s coincides with
the “Google Search Engine” starting time.

—
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In the Pre-“Google” age, we analyzed and calculated the physical model by
ourselves, and checked the correctness from the published papers (if any) in the
library. After finishing the experiment and summarizing our results, we used to
approach the published papers in order to find whether our result is reasonable,
or is explainable by some theories. On the contrary, the “Google” generation
takes a rather different approach. When the author indicates the need to research
something new, many of my current Ph. D. graduate students take the following
research steps: (1) searching the recent research papers on the indicated topics on
“Google”, (2) summarizing the results, picking up the unstudied parts by believing
the published results are correct, (3) setting the research plan for himself/herself.
Recently, even the reader’s professor (“Google generation”) may order you to
“search the recent published papers on the indicated topics” as your first job task.
Actually, the author’s generation is disappointed with the current students” lack
of skills or capabilities on various fundamental mathematical skills, such as linear
differential equations, linear algebra (tensor/matrix), or even unit exchange of
simple calculations between [cgs], [MKS], and [inch-pound] units. As there are
many pieces of computer software available on these analyses and calculations, the

students are reluctant to remember the basic knowledge and mathematical skills.

When the author started to write research papers on the “piezoelectric actuators”
in the early 1980s, most of my papers cited the previous studies from my own
publications, because I was one of the pioneers in this area, leading to less references
to be cited, and my distrustful eyes on the other researchers” data and analyses.
Thus, I usually received strong criticisms from the reviewers on this self-citation
issue. On the contrary, many of the present publications include plenty of reference
studies from the “Google” search engine (“more than a half of the citations should
be from the other research groups” seems to be a sort of the journal “acceptance”
criterion), and the author’s argument seems to be based on the belief on the previous
studies, seeking for “undone” research topics without repeating the same topic from
a different angle to find different results. The “Google” generation seems to be
intoxicated by big research data, including lots of “misleading” research content.

I have authored “Ferroelectric Devices 2" Edition (2010)”, “Micromechatronics
2"d Edition (2019)”, “FEM and Micromechatronics with ATILA Software (2008)”, all
published by CRC Press, being used for my regular three teaching courses under the
same course titles. However, in the last 10 years, due to the lack of “Prerequisite
Knowledge”, the students cannot digest the above textbooks completely. My
purpose of authoring this textbook, “Applied Mathematics in Ferroelectricity and
Piezoelectricity”, is to provide the reader a solid mathematical background for

studying ferroelectricity and piezoelectricity, in order to stop the above “Google
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Syndrome” (i.e., just relying on the internet information), and to cultivate the
reader’s mathematical skills. This book is a sort of “open access supplemental” book
to be used in parallel to the above textbooks, or to strengthen your analytical and

theoretical skills in the field of ferroelectricity and piezoelectricity.

Let me introduce the contents. Chapter 1 introduces the “Background”,
including an “overview of ferroelectrics” for the reader, who is not familiar with
ferroelectricity and piezoelectricity. The advanced reader can skip this fundamental
explanation. Based on the Taylor expansion approach, Chapter 2, “Linear Coupling
in Ferroelectrics”, introduces piezothermal and electrothermal couplings, in addition
to the piezoelectric coupling effect in detail. Most of the physical parameters
in piezoelectrics, such as elastic constant and permittivity, are dependent on
the constraint conditions (stress and electric constraint). Chapter 3, “Tensor/
Matrix Description in Piezoelectricity”, describes how to generate a physical
parameter tensor/matrix in a certain crystal symmetry using transformation matrix,
an advanced technique in linear algebraic equations. Chapter 4, “Nonlinear
Phenomenology”, demonstrates Landau and Devonshire phase transition theories
based on the higher-order Taylor expansion series, detailing the electromechanical
coupling terms. The phenomenology of antiferroelectrics and of solid solution
among ferro- and antiferroelectrics are also introduced, including how to integrate
the sublattice coupling terms. “Time-dependent phenomenology” is discussed in
Chapters 5, “Relaxation Phenomena”, where the recovery speed to the equilibrium
status is the focus. Dielectric relaxation models are also learned. Chapter 6 covers
“Losses in Piezoelectrics”, where we introduce a “complex number” for handling
“viscous damping”, in addition to “solid” and “Coulomb (friction) damping”. “Bode
plot” (gain, phase) is introduced from the engineering viewpoint. “Intensive and
extensive loss” difference is also the key in understanding the piezoelectricity.
Chapter 7, “AC Drive on Piezoelectrics”, is one of this book’s highlights, in which
we discuss both electrical and mechanical drive methods on piezoelectric resonance
and antiresonance modes, using the Fourier transform method. Various vibration
modes are introduced, including k3;, k33, disk, and bimorph design specimens. The
vibration mode difference between the resonance (zero impedance), antiresonance
(zero admittance), and the intermediate mode (under matched impedance) is also
described. To the contrary, “Pulse Drive on Piezoelectrics” in Chapter 8 describes
the Laplace transform method, which exhibits interesting triangular displacement
vibrations. The difference of the vibration analysis is pointed out among a
continuum piezoelectric specimen and a discrete mass-spring model (i.e., equivalent
circuit). Based on the discussion in Chapter 7, “Equivalent Circuit” is introduced

in Chapter 9. The piezoelectric performance can be simulated by using simple LCR
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circuit. Chapter 10, “Impedance Matching”, discusses both electrical and mechanical
impedance matching in order to enhance the efficiency in the system. Chapter
11, “Lattice Vibration”, discusses linear “harmonic” lattice vibration in terms of
linear differential equations in periodic phenomena. Specific heat can be derived
from the harmonic model. Nonlinear atomic spring and anharmonic phonon are
slightly introduced in the latter part, since ferroelectricity occurrence originates from
the phonon-phonon interaction. Extending the phonon discussion, Chapter 12,
“Heat Conduction”, describes another category of linear differential equation, that
is, the “diffusion equation”. Secondary electrothermal coupling factor is introduced
on this non-equilibrium phenomenon. Thermal analysis on DC- and AC-driven
piezoelectric transducers is also detailed. Chapter 13 is devoted to “Electro-optic
Effect”, where the derivation processes of necessary complicated physical formulae
are explained. This chapter provides the basic knowledge in understanding the
optical beam control. Finally, Chapter 14, “Nonlinear Oscillatory System”, considers
the mechanism of piezoelectric inertial motors based on friction (i.e., stick-slick
action) and chaotic oscillation under nonlinear recovery force. Though there are
multiple computer software just for receiving the solutions, the author’s intention is
to provide the manual calculation methods for deep understanding. Additionally,
further discussions on the lattice vibration under “anharmonic” potential, which
leads to thermal expansion, electrostriction, and phonon transfer/heat conductivity,

are made to supplement the contents in Chapters 11 and 12.

This textbook was written for undergraduates, graduate students, university
researchers, and industry engineers studying or working in the fields of
“ferroelectricity and piezoelectricity”.  Since this textbook is designed for
self-learning by the reader by himself/herself, professors in other areas, such
as piezo-MEMS or energy harvesting, who may not have strong physical and
mathematical backgrounds in ferroelectrics and piezoelectrics, are also very
welcome to learn the mathematical skills introduced in this book. Self-learning is

possible, aided by the availability of:

e Chapter Essentials;
e Check Points [Quick Answer in this book Appendix];
e Example Problems [“Solution” provided successively];

e Chapter Problems [“Hint” available successively].

The author strongly desires that the reader will be released from the “Google”
syndrome, and be a “Post-Google” generation, with your strong research philosophy
based on the mathematical/physical fundament concepts. Since this is the first

edition, critical review and content/typo corrections on this book are highly
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Prerequisite Knowledge Check

Studying “ferroelectricity and piezoelectricity” assumes certain basic

knowledge. Answer the following questions by yourself prior to referring to

the answers on the next page.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Provide definitions for the elastic stiffness, ¢, and elastic compliance, s, using stress
(X)—strain (x) equations.
Sketch a shear stress (X;) by arrows and the corresponding shear strain
(x4)/deformation on the square material depicted below.

3 N

—>

Describe an equation for the velocity of sound, v, in a material with mass density,
p, and elastic compliance, s.

Given a rod of length, L, made of a material through which sound travels
with a velocity, v, describe an equation for the fundamental extensional resonance
frequency, fr.

When two solid materials are brought into contact and moved along the contact
plane, friction force is introduced. How do you describe the friction force F in
terms of the force N normal to the contact plane and the friction constant ;.?
Provide the capacitance, C, of a capacitor with area, A, and electrode gap, ¢,
tilled with a material of relative permittivity, e,.

Describe an equation for the resonance frequency of the circuit pictured below:

C L
Given a power supply with an internal impedance, Zy, what is the optimum
circuit impedance, Z;, required for maximum power transfer?

Calculate the polarization P of a material with dipole density N (m~?) of the unit
cell dipole moment g-u (C-m). Provide a correct unit for P.

Q10 Provide the polarization, P, induced in a piezoelectric with a piezoelectric strain

coefficient, d, when it is subjected to an external stress, X.
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Answers: [70% or better score is expected.]

Q1

Q2

Q3
Q4
Q5
Q6

X=cx,x=5X

[Note: c stands for “stiffness” and s stands for “compliance”.]

Xy = 2X23 =2¢

[Note: A pair of anti-parallel forces creates X; or X3. Radian measure is
generally preferred for the angle ¢ unit or strain. This shear stress is not directly
equivalent to the diagonal extensional stress.]

V= U
f=v/2L
F=uN
C=cpe, (A/1)

Q7 f=1/27VLC

Q8

Q9

1 =2Zyor 2y =2Zy*

[Note: The current and voltage associated with Z; are V/(Zy + Z1) and [Z,/(Z,
+ Z1)]V, respectively, the product of which yields the power. The maximum
power transfer occurs when Zy/+/Z; = /Z; when impedance is resistive. When
the impedance is complex, Z; = Z,*].

P = Nqu [C/m?]

[Note: The unit of the polarization is given by C/m?, equivalent to the charge
density on the surface.]

Q10 P=dX

[Note: This is called the direct piezoelectric effect.]
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1. Background

1.1. Background of This Book

This textbook, Applied Mathematics in Ferroelectricity and Piezoelectricity, was au-
thored to provide the reader solid mathematical background for studying “ferroelec-
tricity and piezoelectricity”, as an open access supplement to my three course books:
Ferroelectric Devices 2nd Edition (2010), Micromechatronics 2nd Edition (2019), and FEM
and Micromechatronics with ATILA Software (2008), all published by CRC Press.

“Physics” prefers “simplicity”; converting a complicated phenomenon expressed
by a function f(x,y, - - - ) into a Taylor expansion form f ~ f(0,0,---) +a1x + by +
e apx? + b2y2 + c2xy + - - - (nonlinear handling), or a 1D to 3D analytical exten-
sion with linear algebraic equations (tensor/matrix), is a typical model simplification.
FEM (finite element method) computer software is popularly utilized to solve prac-
tical piezoelectric vibrations, but without simply adopting computer simulation,
analytical formulae for a simplified model sometimes provide us with a much easier
intuitive idea. Having a solid problem-solving mathematical skill renders the devel-
opment of new devices significantly easier from the author’s experience. The author
attempted to cover most of the necessary “applied mathematics” for learning the
areas of ferroelectricity and piezoelectricity much more deeply.

1.2. Overview of Ferroelectrics

We start with a brief overview of ferroelectrics for the reader who is not very
tamiliar with ferroelectricity and piezoelectricity. You can refresh your current
fundamental knowledge through this section.

Applications of “ferroelectrics” can be found in various devices such as high-
permittivity dielectric capacitors, ferroelectric memories, pyroelectric sensors, piezo-
electric devices, electro-optic devices, and PTCR (positive temperature coefficient of
resistivity) components. However, historically, with the existence of competitive ma-
terials, ferroelectric devices often failed to be commercialized. In photo-sensors, for
example, semiconductive materials are superior to ferroelectrics in terms of response
speed and sensitivity. Magnetic devices and flash memories are much more popular
in the memory field, and liquid crystals (LCD) and light-emitting diodes (LED) are
typically used for optical displays. The commercialization failure was related to a
lack of systematic and comprehensive accumulation of knowledge on ferroelectricity,
though we can recognize recent success in specific areas such as pyroelectric cameras
and ferroelectric memories.

This section covers the theoretical background of ferroelectric devices, before
focusing on practical materials and typical applications, including (1) crystal struc-
tures and ferroelectricity, (2) the origin of spontaneous polarization, (3) the origin
of field-induced strain, (4) piezoelectric constitutive equations, (5) ferroelectric ma-
terials, and (6) applications of ferroelectrics. This section is based on my textbook,
Ferroelectric Devices 2nd Edition [1].



1.2.1. Smart Materials

Ferroelectrics belong to “smart materials”. What is the definition of the “smart-
ness” of a material? Various effects relating the input (electric field, magnetic field,
stress, heat, and light) to the output (charge/current, magnetization, strain, tempera-
ture, and light) are summarized in Table 1.1. The input, voltage or stress, generates a
current or strain output (“electrical conductor” and “elastic” materials, which are
sometimes called “trivial” materials), relating to well-known phenomena such as
Ohm’s and Hooke’s laws. On the other hand, “pyroelectric” and “piezoelectric” ma-
terials, which generate an electric field with the input of heat and stress (unexpected
phenomenal!), respectively, are called “smart” materials. These off-diagonal cou-
plings have corresponding converse effects, namely, “electrocaloric” and “converse
piezoelectric” effects, and both “sensing” and “actuating” functions can be realized
in the same materials. Because ferroelectric materials exhibit most of these effects
(with the exception of the magnetic phenomena), ferroelectrics are said to be very
“smart” materials.

Table 1.1. Various effects in materials.

Input —> Material Device —> Output
Input Output
Change Magnetization Strain Temperature Light
_Current __ & P &
) " Electric—
Electric || Permittivity || . Converse piezo- Electric Electro-optic
. q.q magnetic .
Field || Conductivity || effect caloric effect effect
effect
Magneticl|  Magnetic- |l Magneti Magneto-
aghetic agneve Permeability || Magnetostriction agnetc agneto
Field || electric effect || caloric effect optic effect
|| Piezoelectric || Piezomagnetic . Mechano- Photoelastic
Stress Elastic constant
I effect L effect thermal effect effect
Heat | Pyroelectric I Pyromagnetic Therm.al 5 ettt Thgrrgal
. effect i effect expansion radiation
. 'l Photovoltaic IPhotomagnetic . Photothermal Refractive
Light | | Photostriction .
effect effect effect index
e o o e = -
Diagonal Coupling 1

Sensor T

Actuator

Source: Table by author, adapted from [1].

1.2.2. Crystal Structure and Ferroelectricity

So-called “dielectric” materials are electrically resistive, the constituent atoms
of which are considered to be ionized to a certain degree and are either positively
or negatively charged. In such ionic (or covalent in polymers) crystals, when an
electric field is applied, cations are attracted to the cathode direction and anions to
the anode due to electrostatic interaction. The electron clouds also deform, causing
“electric dipoles”. This phenomenon is known as “electric polarization” of the di-
electric, and the polarization is expressed quantitatively as the sum of the electric
dipoles per unit volume [C/m?]. Figure 1.1 schematically shows the origin of elec-



i

tric polarization. There are three primary contributions: “electronic”, “ionic”, and
“dipole reorientation-related”. The degree to which each mechanism contributes
to the overall polarization of the material depends on the frequency of the applied
tield. “Electronic polarization” can follow alternating fields with frequencies up
to THz-PHz (10'2-10'> cycles/second, higher than “visible light waves”), while
“jonic polarization” responds up to GHz-THz (10°-10'2 cycles/second, microwave
region). Thus, you should understand that the famous relation between the relative
permittivity € and refractive index n, i.e.,

e =n?, (1.1)

is only valid when the applied electric field has a frequency on the order of THz
or higher. On the contrary, “permanent dipole reorientation” can follow only up
to MHz-GHz (10°-10° cycles/second). Water is boiled by a 100 MHz microwave
oven. This is why ferroelectric materials with permanent dipoles cannot be used
as microwave dielectric materials; their permittivity, which is typically high at low
frequencies (kHz), decreases drastically with an increasing applied electric field
frequency. The frequency dependence of the total polarizability (or permittivity) is
depicted in Figure 1.2.

E=0

E—>
Electronic
Polarization
lonic
Polarization @W'@W_@ @M@

Dipole
Reorientation

Figure 1.1. Microscopic origins of electric polarization. Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 2. Reproduced by permission of
Taylor & Francis Group.
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Figure 1.2. Frequency dependence of polarizability (or permittivity). Source: [1]
©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 3. Reproduced by
permission of Taylor & Francis Group.

In comparison with air-filled capacitors, Figure 1.3 shows the charge storage
mechanism in a dielectric capacitor, where there is a greater charge due to the
dielectric polarization P. The physical quantity corresponding to the stored electric
charge per unit area is called the “electric displacement” D and is related to the

electric field E as follows:

D =¢gE + P = ¢¢qE.

. o7
E @ @ @ @ @ \ Dielectric
o, l
0,=0,*0;
os: Free Charge 0,: Bound Charge o,: True Charge

Figure 1.3. Charge accumulation in a dielectric capacitor. Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 3. Reproduced by permission of

Taylor & Francis Group.



Here, ¢j is the vacuum permittivity (=8.854 x 10712 F/ m) and ¢ is the “rela-
tive permittivity” of the material (also simply called the permittivity or “dielectric
constant”, functioning as a tensor property) (discussed in Chapter 3).

Depending on the crystal structure, the centers of the positive and negative
charges may not coincide, even without the application of an external electric field.
We say such crystals possess a “spontaneous polarization” (or “pyroelectric”). When
the spontaneous polarization of a dielectric can be reversed under an electric field, it
is called a “ferroelectric”.

Not every dielectric is a ferroelectric. Crystals can be classified into 32 “point
groups” according to their crystallographic symmetry, and these point groups can
be classified into two groups initially: one with a center of symmetry, and another
without, as summarized in Table 1.2. There are 21-point groups which do not possess
a center of symmetry. In crystals belonging to 20 of these point groups (the sole
exception being point group (432)), positive and negative charges are generated
on the crystal surfaces when appropriate stresses are applied. These materials are
known as “piezoelectrics” (discussed in Chapter 2).

Table 1.2. Crystallographic classification according to crystal centrosymmetry

and polarity.
Crystal Syst
Polarity Symmetry fystal System
Cubic Hexagonal Tetragonal Rhombohedral | Orthorhombic | Monoclinic | Triclinic
Centro(11) | m3m 6/mmm | 6/m | 4mmm | 4/m 3m 3 mmm 2/m 1
Nonpolar (22) 432 422 _
= 23 | 6226m2| & _ 4 32 222
Noncentro (21) | 43m 42m
Polar (Pyroelectric) (10) 6mm 6 4mm 4 3m 3 mm2 2m 1

Note: In the orange fields are piezoelectrics. Source: Table by author, adapted from [1].

“Pyroelectricity” is the phenomenon whereby, as the temperature of the crystal
is changed, electric charges corresponding to the change in the spontaneous polar-
ization with temperature appear on the surface of the crystal. Among pyroelectric
crystals, if the spontaneous polarization can be reversed by an external electric field
(not exceeding the breakdown limit of the crystal), they are called “ferroelectrics”.
Thus, there is some experimental ambiguity in this definition: in establishing “fer-
roelectricity”, it is necessary to apply an electric field to a pyroelectric material and
experimentally ascertain the polarization reversal.

1.2.3. Origin of Spontaneous Polarization

We consider a mechanism for why the polarization is generated spontaneously
with a decreasing temperature from a high temperature-stable, nonpolar, symmet-
ric crystal structure: that is, the spontaneous shifting of cations and anions. For
simplicity, let us assume that dipole moments result from the displacement of one
type of ion, A (electric charge g), relative to the crystal lattice. Consider the case in
which the polarization is caused by all the A ions being displaced equally in a lattice.
This type of ionic displacement can be expected through lattice vibrations at a finite
temperature. Figure 1.4 depicts some of the possible “eigen lattice vibrations” in a
perovskite-like crystal. The center solid black circles may correspond to B ions of
ABQOs. Figure 1.4a shows an initial cubic (symmetrical) structure, Figure 1.4b shows



a symmetrically elongated structure (i.e., no polarization is generated), Figure 1.4c
shows coherently shifted center cations (i.e., rightward polarization), and Figure 1.4d
exhibits a zig-zag (antipolarized) shift of the center cations (i.e., no net polariza-
tion). If one particular lattice vibration lowers the crystal energy, the ions will shift
and stabilize the crystal structure so as to minimize the energy. Starting with the
original cubic structure (a), if (b) is stabilized, only oxygen octahedra are distorted
without generating dipole moments (“acoustic mode”). On the other hand, when
(c) or (d) is stabilized, dipole moments are generated (“optical mode”). Since the
light wave preferably interacts with these dipole vibrations, these vibration modes
are called “optical modes”. The final stabilized states (c) and (d) correspond to
“polar/ferroelectric” and “antipolar/antiferroelectric” states, respectively. If these
particular modes become stabilized, with a decreasing temperature, the vibration
mode frequency decreases (i.e., “soft phonon mode”), and, finally, at a certain phase
transition temperature, this frequency approaches zero. Refer to Section 11.2 for a
detailed discussion.
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Figure 1.4. Some eigen lattice vibration modes in a perovskite: (a) initial cubic;
(b) elongated structure with no polarization; (c) polar structure; (d) antipolar
structure. Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p.
4. Reproduced by permission of Taylor & Francis Group.

Further, what type of energy motivates the dipole generation in a crystal? It fol-
lows that, at any individual A ion site, there exists a local field from the surrounding
polarization P, even if there is no external field. The concept of the “local field” is
illustrated schematically in Figure 1.5. It can be found that

E"¢ = Eo + Y i[3(pi-ri)r; — ri2pil/Ameori® = (v/3e)P. (1.3)
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Figure 1.5. Concept of the local field. E is given by E= E, +

i [3(piri)r; — r2p;]/4megr®. Source: Figure by author.

Example Problem 1.1 provides the derivation process of the above formula. This
local field is the driving force for the ion shift. Here, v is called the “Lorentz factor”.
For an isotropic cubic system, it is known that y = 1, but in some crystals, vy = 10
(significantly large) [2]. Section 11.3.3 describes the 7y derivation process. ¢ is the
vacuum permittivity and is equal to 8.854 x 10712 F/m. Though the electric field from
the dipole moment diminishes rather quickly with an increasing distance r (< 1/7%),
since there are so many dipoles in a condensed material as the Avogadro number
is 6.022 x 1023 mol~1, the local field E" is much larger than the externally applied
field E, particularly in anisotropic crystal structures. If the “ionic polarizability” of
ion A is a, then the dipole moment of the unit cell of this crystal is

u = (ocy/3¢g)P. (1.4)
The energy of this dipole moment (“dipole-dipole coupling”) is given by
waip = —RE"" = —(ocv?/9e0?)P2. (1.5)

We can understand that the mechanism seems to be a type of “positive feedback”;
that is, once a small fluctuation in P occurs in a crystal, which enhances the local field
E'¢ by a factor of y, the dipole-dipole coupling energy wgip decreases by a factor of y
squared. In other words, the polarized state becomes stabilized with an increase in P.
Defining N to be the number of atoms per unit volume, the dipole-dipole coupling
energy per unit volume is expressed as

Wdip = Nwdip = —(NCX‘YZ/9€02)P2. (16)

On the other hand, when the A ions are displaced from their nonpolar equilib-
rium positions, the elastic energy also increases, which stops the cation—anion ionic
separation. If the displacement is u, and the force constants are k and k’, then the
increase in the elastic energy per unit volume can be expressed as

Woias = N[(k/2)u® + (K /4)u?]. (1.7)



Here, k' (>0) is the higher-order force constant. It should be noted that in pyro-
electrics (i.e., polar status), k' plays an important role in determining the magnitude
of the dipole moment. Rewriting Equation (1.7) with

P = Nqu, (1.8)

where g is the electric charge, and combining it with Equation (1.6), the total energy
can be expressed as follows:

Wiot = Waip + Weis = [(k/2Ng?) — (Nay? /9¢g*) 1P + [K' /4N°q* 1% (1.9)

See Figure 1.6. We can understand that if the coefficient of the harmonic term
(k/2Ng?) of the elastic energy is equal to or greater than the coefficient of the dipole-
dipole coupling (Nay?/9¢y?), then P = 0; the A ions are stable and remain at the
nonpolar equilibrium positions. However, if [(k/2Ng?) — (Nay?/9¢?)] < 0, a more
stable state can be found with a shift from the equilibrium position (by solving

Wit — ).
Ps? = [(2Nay?/9ey?) — (k/Ng*)]/[K /N3g*]. (1.10)
dip Welas
P
P
Dipole Interaction Nonlinear Elastic Energy
Wiy = —(Nay?/9g¢?) P2 Wetas = (k/2Ng?)P, + (k'/4N3g*)P*

\

Figure 1.6. Energy explanation of the origin of spontaneous polarization. Source:

Total Energy
Whot = Waip + Welas

total

NN P

Figure by author, adapted from [1].

Spontaneous polarization can occur more easily in the perovskite-type crys-
tal structure (e.g., barium titanate) due to the higher value of the Lorentz factor y
(=10) [3] than found for other crystal structures, because the dipole—dipole coupling
energy is 100 times higher than that of normal dielectrics (refer to Section 11.3.3). It is
noteworthy that the polarizability is changed with the temperature (i.e., o increases
with a decrease in the temperature in oxide perovskites), which leads to a phase
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transition. With an increase in the ionic polarizability « with a decreasing tempera-
ture, even if [(k/2Ng?) — (Nay?/9¢¢?)] > 0 (paraelectric!) at a high temperature, this
value may become negative, leading to a ferroelectric phase transition at a certain
temperature. Considering a first approximation, namely, a linear relation between «
and the temperature, we can derive the well-known Curie-Weiss law:

[(k/2Ng?) — (Nay?/9¢¢?)] = (T — To)/ £oC. (1.11)

Phenomenological approaches with the theories of Landau and Devonshire are
introduced in Chapter 4.

The temperature dependence of the total energy Wi, curve is shown in 3D
(temperature axis) in Figure 1.7. One potential minimum at a high temperature will
split into two minimum branches at a low-temperature phase. This “Y”-shaped
phase splitting is called “bifurcation”. The critical point corresponds to the Curie
temperature T¢ (in this second-order transition case, also T¢c = T). Because the
total energy Wy, curve is symmetric with respect to the polarization P when the
external field E = 0 (see Figure 1.7, bottom), the probability of the state +Pg or —Pg
should be equal. Thus, with a decreasing temperature, passing through T¢, +Ps
domains and —Pg domains may arise locally in a specimen with an equal volumetric
ratio, leading to multidomain states. The total polarization should be zero because
of the compensation between the +Ps and —Ps domains. This state is called the
“depolarized /depoled” state. Refer to Section 14.2 to learn the domain structures.

| Curie Temperature T,

/. \1 L W

Electric field

\/i

Figure 1.7. Temperature and electric field dependence of the Landau free energy
curve. Source: Figure by author.

7

In order to generate ferroelectricity and piezoelectricity, we need the “poling’
process; that is, by applying a reasonably large external electric field, the polarization
direction is aligned in one direction (+Ps or —Pg). The electric field dependence of the
energy curve is shown in the inserted figure of Figure 1.7. Under the external electric
field, the energy curve becomes asymmetric, which promotes polarization switching
to one direction. When we apply +E, we expect the +Pg polarized structure, which



is called the “poling” process. Though we cannot expect a perfectly polarized state
thermodynamically, a large portion of the ferroelectric specimen will be polarized.

Example Problem 1.1
The electric potential arising from a point charge g at a distance r from the charge
is given by V = ﬁ 1 and the electric field is obtained as E = —grad(V) = ﬁ r%r,

where r stands for the position vector along the radius direction. Now, calculate the
electric field distribution surrounding a dipole (=4-u), that is, charges +g and —g are
situated at a short distance u, as illustrated in Figure 1.8.

z

+q
u| 0f
-
Figure 1.8. Electric potential calculation surrounding a dipole. Source: Figure
by author.
Hint

The distance of +g to point P, r{, and the distance of —g to point P, r,, are
expressed as

2 2
r = \/rz + % —ru-cosf, rp = \/1’2 + % + ru-cosf.

Solution

The electric potential at point P in Figure 1.8 is expressed by superposing the
potential from +g and —g as

V:41 1_41 1_ 4 1 _ ! . (PL1.1)
Teo T A7TEOT2 &0 \/rz—i—’fl—z—ru-cow \/rz—i—“zz—l-ru-cosé)

Since we are interested in the case in which r >> u, we can rewrite Equation
(P1.1.1) in the approximate form

V = g-u-cosb /4megr? = p-cosf/4megr? = p-r/4megr. (P1.1.2)
q p P
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The quantity p here is the dipole moment (product of the charge g and small distance
u) with the vector direction from —q to +4. Then, the electric field is obtained as

E = —grad(V), and knowing the gradient operator in the spherical coordinate is
grad(V) = ra—v + éla—v + bl a_v (P1.1.3)

ar r 00 " Prsing dp’

where 7, 8, @ are unit vectors along the 7, 8, and ¢ directions, we obtain the following;:

=)= o) - ()
= freys [P(2p-cost) + B(p-sind)] (P1.1.4)
[3(p-r)r— r’p| /4mepr®.

Above is the derivation process of Equation (1.3). The electric potential and field
contour are illustrated in Figure 1.5, which looks like a “dumbbell” shape.

Example Problem 1.2

Perovskite-type barium titanate, BaTiO3, exhibits a tetragonal symmetry at room
temperature, and the ion shift is illustrated in Figure 1.9. The lattice constants are ¢ =
4.036 (A) and a =3.992 (A ) Calculate the magnitude of the spontaneous polarization
for barium titanate.

6;2; /0036A\L ;OoslA \Bay

Oe P, o
CRUED

B o

a9 ——->

Figure 1.9. Ionic shifts in BaTiO3 at room temperature. Source: Source: [1] ©Uchino,
K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 7. Reproduced by permission of
Taylor & Francis Group.

Hint

First calculate the dipole moment u by the product of the ionic charge and the
ionic displacement, and then the polarization P = Ny (N: number of dipole moments
included in a unit volume). After calculating the dipole moment sum in a unit cell,
divide it by the unit volume.
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Solution

The dipole moment is defined as the product of the magnitude of the ion charge
and its displacement. The total dipole moment in a unit cell is calculated by summing
the contributions of all the BaZ*-, Ti**-, and O? -related dipoles. Each corner Ba ion
contributes 1/8, each O face ion contributes 1/2, and the center Ti contributes 1. Note
that four O?~ ions of the oxygen octahedron do not shift (this position is taken as the
origin), leading to zero contribution to the dipole moment.

P = 8[2e/8][0.061 x 10710 (m)] + [4€][0.12 x 10710 (m)]
+2[—2e/2][—0.036 x 10710 (m)] (P1.2.1)
= ¢e[0.674 x 10710 (m)] = 1.08 x 10~%° (C-m),

where ¢ is the fundamental charge: 1.602 x 10719 (C).
Next, the unit cell volume is given by

v =a’c = (3.992)%(4.036) x 1073 (m®) = 64.3 x 1073 (m?). (P1.2.2)

The spontaneous polarization represents the number of (spontaneous) electric dipoles
p per unit volume:

Ps=P/v=1.08 x 107 (C-m)/64.3 x 10730 (m?) = 0.17 (C/m?). (P1.2.3)

This theoretical value of Pg is in reasonable agreement with the experimental value
of 0.25 (C/m?).

1.2.4. Origin of Field-Induced Strain

Solid materials, especially inorganic materials, are elastically stiff but still expand
or contract depending on the change in the input parameters. The linear “strain”
(defined as the “displacement” AL/initial length L) caused by a temperature change
or stress is known as thermal expansion or elastic deformation, respectively. In
insulating materials, the application of an electric field can also cause deformation.
This is called “electric field-induced strain”. We consider the microscopic origin in
this section. The “piezoelectric constant” d and “electrostrictive coefficient” Q, M,
are derived phenomenologically in Chapter 4, and the microscopic strain formula
derivation is described in Section 14.3.3.

The word “electrostriction” is occasionally used, in a sense, to describe electric
tield-induced strain and, hence, frequently also implies the “converse piezoelectric
effect”. However, precisely speaking, the converse piezoelectric effect is defined as a
“primary” electromechanical coupling effect, that is, the strain is directly proportional
to the electric field, while electrostriction is a “secondary” coupling in which the strain
is proportional to the square of the electric field. Thus, they should be distinguished
theoretically. In practice, because the piezoelectricity of a ferroelectric which has
a centrosymmetric prototype phase at high temperature is considered to originate
from the “electrostrictive interaction”, these two effects are occasionally observed as
a combination (e.g., a high electric field induces a ferroelectric from a paraelectric
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phase). The above phenomena hold strictly under the assumptions that the object
material is a mono-domain single crystal, and that its state does not change under
the application of an electric field. In a practical piezoelectric ceramic, additional
strains accompanied by the reorientation of ferroelectric domains are also important.
The origin of electric field-induced strain is explained in [4]. For simplicity, we
consider an ionic crystal such as NaCl. Figure 1.10a,b show a 1D rigid-ion spring
model of the crystal lattice. The springs equivalently represent the cohesive force re-
sulting from the electrostatic Coulomb energy and the quantum mechanical repulsive
energy (detailed discussion in Section 14.3.2). Figure 1.10b shows the centrosymmet-
ric case, whereas Figure 1.10a shows the more general non-centrosymmetric case.
The springs joining the ions are all the same in Figure 1.10b, whereas in Figure 1.10a,
the springs joining the ions are different for the longer and shorter ionic distances;
in other words, hard and soft springs are arranged alternately. When we consider
the state of the crystal lattice in Figure 1.10a under an applied electric field, the
cations are drawn in the direction of the electric field and the anions in the opposite
direction, leading to a relative change in the inter-ionic distance. Note that the forces
on the hard and soft springs should be equal. Depending on the direction of the
electric field, the soft spring expands (or contracts) more than the contraction (or
expansion) of the hard spring, the subtraction of which causes a strain x (a unit cell
length change) in proportion to the electric field E. This is the “converse piezoelectric

effect”. When expressed as
x =dE, (1.12)

the proportionality constant d is called the “piezoelectric constant”.

On the other hand, in Figure 1.10b, the amounts of extension and contraction
of the spring are usually the same, and the distance between the two cations (lattice
parameter) remains the same; hence, there is no strain if the springs are ideally
harmonic. However, more precisely, ions are not connected by such ideal springs
called “harmonic springs”, in which force (F) = spring constant (k) x displacement (A)
holds. In most crystal lattice cases, the springs possess “anharmonicity” expressed by
F=kiA — kyA?; that s, they are somewhat easy to extend but hard to contract (a more
precise model is discussed in Section 14.3.3). Such an intrinsic directional difference
in the displacement causes a change in the lattice parameter, producing a strain
which is independent of the direction of the applied electric field (+E or —E) and,
hence, is an even function of the electric field. Regardless of the electric field direction,
extension always occurs in the unit cell size. This is called the “electrostrictive effect”
and can be expressed as

x = ME?, (1.13)

where M is called the “electrostrictive constant”.
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Figure 1.10. Microscopic explanation of piezoelectric strain (a) and electrostriction
(b). Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 8.
Reproduced by permission of Taylor & Francis Group.

Note that the 1D asymmetric crystal pictured in Figure 1.10a also possesses a
spontaneous bias of the electrical charge, or a spontaneous dipole moment. The total
dipole moment per unit volume is called the “spontaneous polarization”. When a
large reverse bias electric field is applied to a crystal that has a positively aligned
spontaneous polarization, another polarization status is formed which is another
stable crystal state in which the relative positions of the ions are reversed. In terms
of an untwinned single crystal, this is equivalent to rotating the crystal 180° about an
axis perpendicular to its polar axis. This is also understood from the potential double
minima in Figure 1.7. This transition, referred to as “polarization reversal”, also
causes a remarkable change in strain. This particular class of substances is referred to
as “ferroelectrics”, as mentioned in Section 1.2.2. Generally, what is actually observed
to be a field-induced strain is a complicated combination of the three basic effects
just described above.

A schematic of the polarization reorientation process or poling process in a poly-
crystalline specimen is visualized in Figure 1.11. First, the polycrystal is composed of
many small single crystals (each is called a “grain”) with random crystal orientations.
Thus, complete alignment of the polarization is impossible. Further, due to this
crystallographic misorientation, some residual stress exists in the specimen, which
promotes a multidomain status even under a high electric field. We start from the
initially negatively poled status “1”. You can notice some domains in each grain.
With an increasing electric field up to the “coercive” field Ec “2” (where the free
energy at —Pg reaches zero), the largest number of domains appears, and the total
polarization becomes almost zero. When we further increase the field to “3”, the
domain rapidly disappears to become close to the mono-domain state in each grain.
The slope of the strain vs. electric field around “3” corresponds to the piezoelectric
constant. Now, if we decrease the field down to the coercive field “4”, we may start to
observe some domain generation in the grains; then, finally at the zero field “5”, we
observe similar domains in each grain to those in state “1”, though the polarization
directions are opposite to those of state “1”.
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Figure 1.12 shows typical strain curves for piezoelectric lead zirconate titanate
(PZT)-based and electrostrictive lead magnesium niobate (PMN)-based ceramics [5].
The almost linear strain curve for PZT becomes distorted and shows large hystere-
sis with an increasing applied electric field level, which is due to the polarization
reorientation. On the other hand, PMN does not exhibit hysteresis under the electric
field cycle because no domain exists. However, the strain curve deviates from the
quadratic relation (E?), showing a saturation tendency at a high electric field level.
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Figure 1.11. Domain structure change with the external electric field in polycrys-
talline ferroelectrics. Source: Figure by author.
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Figure 1.12. Typical strain curves for piezoelectric lead zirconate titanate (PZT)-
based (a) and electrostrictive lead magnesium niobate (PMN)-based ceramics (b).
Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 9. Repro-
duced by permission of Taylor & Francis Group.

The converse piezoelectric effect is described above. Then, what about the
“direct piezoelectric effect”? This is the phenomenon whereby a charge (i.e., polariza-
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tion [C/m?]) is generated under the application of an external stress (N/ m?). The
piezoelectric equation can be described using the same piezoelectric coefficient d in
Equation (1.12) for the converse effect:

P =dX. (1.14)

1.2.5. Piezoelectric Constitutive Equations

When an electric field is applied on a piezoelectric material, displacement (AL)
or strain (AL/L) arises, as described in Section 1.2.4. When the applied electric
field and the generated stress are not large, as the first-order approximation, the
stress X and the dielectric displacement D can be represented by the following linear
equations (derivation process is detailed in Chapter 2):

_ ¢E
{ =S il G 6wk =1,2,3). (1.15a,b)
D, = dle ~+ gpe kEk

The above equations are referred to as “piezoelectric constitutive equations”. For
the reader’s sake, the number of independent parameters for the lowest-symmetry
trigonal crystal is 21 for sijE, 18 for d,,;;, and 6 for ¢,;X. The number of independent
parameters decreases with increasing crystallographic symmetry, as explained in
Chapter 3. Concerning polycrystalline ceramics such as PZTs, the poled axis is
usually denoted as the z-axis, and the ceramic is isotropic with respect to this z-axis
(Curie group Ceoy (com)). The number of non-zero matrix elements in this case is 10
(5115, s12F, s13%, s33F, and susF; da1, dss, and dis; e11% and e35%).

The input electric energy is transduced to the output mechanical energy, or
vice versa, in a piezoelectric. We introduce the concept of the “electromechanical
coupling factor” k, which corresponds to the rate of electromechanical transduction.
The internal energy U of a piezoelectric is given by the summation of the mechanical
energy Uy (= [ xdX) and the electrical energy U (= | DdE) in general. Then, U is
calculated as follows, where the linear relations Equation (1.15a,b) are applicable:

U = Uy + Ug
[(1/2)2,] SiEXiXi + (1/2) Ty i Em Xi
(1/2) i i XiEm + (1/2) Ygom €mk ExEm) (1.16)

= Umm + 2Upe + UgE
= (1/2)%,j5i" X Xi +2(1/2) Ly Ami Em Xi + (1/2) L €™ ExEm-

The s and ¢ terms represent purely mechanical and electrical energies (Up and
Ugr), respectively, and the d term denotes the energy transduced from electrical
to mechanical energy, or vice versa, through the piezoelectric effect (Uysg). The
electromechanical coupling factor k is defined by

k = Upme//Upm-UEE. (1.17)

Note that this definition is equivalent to the definition provided as follows:

k* = Upp/Ug = (Stored mechanical energy/Input electrical energy)  (1.18a)
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or
k* = Upe /Uy = (Stored electrical energy /Input mechanical energy).  (1.18b)

Let us obtain the coupling factor k in terms of physical properties (d, s, and
). When electric energy is supplied to a piezoelectric sample and some part is
transduced into mechanical energy, the square of the “electromechanical coupling
factor” k? is defined by

k? = (Stored mechanical energy)/(Input electrical energy)
= (1/2)(x* /5)/(1/2)(e0e E?) = (1/2)((dE)?/5)/(1/2)(e0eE?) [from x =dE]  (1.19)
= d?/sege.

The k is expressed in the form of d//seg€ in general, which varies with the driv-
ing mode (even in the same ceramic sample), with either a positive or negative value.
The |k31/k33 | ratio around 0.47 originates from the |d31/ds3 | ratio around 0.4 (i.e.,
Poisson’s ratio). The k value is primarily governed by the contributing piezoelectric 4
constant for that vibration mode. Note also that “k?” has an actual physical meaning
for representing the energy transduction ratio (no particular meaning in k itself).

When the field is alternating, mechanical vibration is generated in a piezoelectric
device, and if the driving frequency is adjusted to the mechanical resonance frequency
of the piezoelectric device, a large resonating strain is excited. This phenomenon
can be understood as a strain amplification due to input energy accumulation with
time (amplification in terms of time), which is called “piezoelectric resonance”. The
amplification factor is proportional to the mechanical quality factor Qu; (inversely
proportional to the elastic loss). Piezoelectric resonance is very useful for realiz-
ing medical and underwater ultrasonic transducers, piezo-transformers, actuators,
energy trap devices, etc. (detailed discussion in Chapter 7).

1.2.6. Electro-Optic Effect

Electro-optic devices have been widely commercialized as displays since the
1980s, initially exemplified by LCDs (i.e., liquid crystal displays); recently, they
have been refocused for optical communication applications. Light is an alternating
electromagnetic wave with electric and magnetic field vibration directions that are
almost perpendicular to one another, where the electric field induces an electric
polarization in a dielectric crystal, and the light itself is influenced by the crystal.
Because the oscillating frequency of the light is so high (PHz = 10'° Hz) that only
the “electronic polarization” can follow the electric field change (see Figure 1.2), the
permittivity of an optically transparent crystal (even in a ferroelectric crystal) is small,
not exceeding 10. The reader is reminded of the famous relation between the relative
permittivity ¢, at this high frequency and the refractive index n:

g, = n*[assuming magnetic permeability p, = 1]. (1.20)

When an external electric field (much lower than PHz) is applied to the crystal,
ion displacement is induced, deforming the shape of the electron cloud, and, conse-
quently, the “refractive index” n is changed. The refractive index is directly related
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to the electron density in a material. This phenomenon is called the “electro-optic
effect” [1]. Generally, the refractive index is treated as a symmetrical second-rank
tensor quantity and is represented geometrically by the “optical indicatrix”, which is
described by
2 2 2

x y z

o+ Lo 2=, 1.21

1’112 lez 1’132 ( )
where n1, ny, and n3 are the principal refractive indices. Refer to Chapter 13 for the
details. With the application of an electric field, the change in the inverse permittivity
k is given by a Taylor /Maclaurin expansion expression in terms of E:

k(E) —x(0) = rE+ RE* + - - - . (1.22)
Using x = 1/¢ = 1/n%, we obtain
1/ni*(E) — 1/n;*(0) = SrijEx + ZRijuExE). (1.23)

Here, n(E) and n(0) (=n() are the refractive indices at the E and the zero field. The
coefficient r;; is called the “primary electro-optic coefficient” (“Pockels effect”),
and Ry, is the secondary coefficient (“Kerr effect”). Remember that the Maclaurin
expansion is not based on ;;, but on 1/ nijz.
Considering the paraelectric phase of a perovskite crystal (m3m) as an example,

the Kerr coefficients are represented in the following matrix:

0 0 0 Rg O 0|

0 0 0 0 Rg O

0 0 0 0 0 Ry

meaning that the refractive indicatrix under an electric field applied along the z
direction is expressed as

x2 + ]/2 ZZ

2 2
ol ()R i (F)me]

=1. (1.24)

Let us consider the refractive index change under an external electric field in-
tuitively with a visual figure (Figure 1.13a). A cubic perovskite crystal is elongated
along the z-axis and contracted along both perpendicular x- and y-axes when an elec-
tric field E; is applied, via the “electrostrictive effect”. Consequently, the material’s
axial density or compactness will be decreased along the z-axis and densified along
the x- and y-axes, leading to a decrease in the refractive index nz and an increase in
the indices ny and 1y, as shown in Figure 1.13b. That is, the initial sphere becomes
a doughnut shape. Note that the refractive index is proportional to the electron
density or ion compactness along the polarized light electric field direction, which
is perpendicular to the light propagation direction. Taking into account the above
description, R11 and Ry in Equation (1.24) are positive and negative, respectively,
directly correlated with the electrostrictive coefficients M1 and M.

18



Extended Perovskite
Decrease of Refractive Index

(a)

Figure 1.13. (a) Perovskite unit cell change with electric field. (b) Corresponding
refractive indicatrix change of a cubic crystal with electric field (Kerr effect). The
original sphere becomes a doughnut shape. Source: Figure by author, adapted
from [1].

When light is transmitted along the y direction, the “phase retardation” I'y
between the “ordinary” (polarized along the x orientation) and “extraordinary”
waves (polarized along the electric field z orientation) can be expressed as

Ty = (27/A)(m0°/2)(Ri1 — Rio)L(V=/d)?, (1.25)

where d and L are the electrode gap and “optical path length”, respectively. By placing
the crystal between a pair of crossed polarizers arranged at +45° and —45° angles
with respect to the z-axis, as in Figure 1.14, the output light intensity is modulated as
a function of the applied voltage according to

I =Iosin®(T'y/2) = (1/2)Ip(1 — cosTy). (1.26)

The detailed derivation is described in Chapter 13.

Unpolarized Light . &~
%@ 7
< N
45° e
n,|d
g =
-45
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/ \ 4

Polarizer i

Electrooptic Crystal

Polarizer

Figure 1.14. Optical phase retardation through an electro-optic crystal. Notice the
crossed polarizer configuration. Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd
ed. CRC Press, 2010; p. 13. Reproduced by permission of Taylor & Francis Group.
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The variation in the light intensity with the applied voltage is shown in Fig-
ure 1.15. The sinusoidal intensity modulation period (second and third peaks) shrinks
with the voltage because the retardation I', is proportional to the “square” of the
applied voltage. This is the principle behind the operation of a “light shutter/valve”,
and the voltage required for the first intensity maximum (i.e., I'y = 71) is an important
characteristic called the “half-wave voltage”, given by

V. =d[A/ng®(Ry; — Ryp)L]YV2. (1.27)

Light Intensity

0 v: !
z, M2 Applied Voltage

Figure 1.15. Light intensity change of a Kerr effect electro-optic shutter with the
applied voltage. Source: Figure by author, adapted from [1].

Example Problem 1.3

PLZT 10/65/35, with a cubic symmetry, shows electro-optic coefficients Ry =
0.83 x 10710 [m2/V?2] and Ry, = —0.27 x 1071° [m2/V?], and ny = 2.49. Calculate
the “half-wave electric field” for a sample with L = 1 mm, when A = 633 nm light is
transmitted perpendicularly to the electric field, as in Figure 1.14.

Hint
The half-wave voltage is calculated from
Ty =(7/A)ng’Es*(Ry1 — Rip)L =, (P1.3.1)

where I'y is the phase retardation (see Equation (1.25)). Note also R = (Ry1 — Ry) =
1.1 x 1071 [m2/V?2].

Solution

E3 = [A/n3(Ri1—Ry2)L]V? = (633 x 1077/2.49% x 1.1 x 10710 x 1 x 10~%)1/2

= 6.1 x 10°[V/m].
(P1.3.2)
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How much does the refractive index change in practice? From the formula
no [1 — (%02>R11Ez2],

(% ) RuE:2 = (242) x 083 x 10716 x (61 x 10°)* ~ 1 x 1074,

The refractive index n changes by only 0.01%, even under the half-wave voltage ap-
plied.

1.2.7. Ferroelectric Materials

Quartz (SiO;) and zinc oxide (ZnO) are popular piezoelectric, but non-ferroelectric
(nonpolar), materials. The “direct” piezoelectric effect was first discovered in quartz
by Piere and Jacques Curie in 1880. Immediately after in 1881, the “converse piezo-
electric effect” was discovered by Gabriel Lippmann. The application of piezoelec-
tricity was motivated by the famous Titanic shipwreck and other shipwrecks from
World War I in the undersea transducer and sonar area. Paul Langevin developed
the so-called Langenvin-type transducer, which was originally composed of nat-
ural tiny quartz single crystals sandwiched by two metal blocks, in order to tune
the transducer resonance frequency around 26 kHz, which was a desired range for
underwater applications to detect German U-boats.

On the other hand, ferroelectricity was first discovered in Rochelle salt
(NaKC4H40O4-4H,0) in 1921. Though this material has been studied from an aca-
demic viewpoint, it has not been widely utilized in practice because it is water soluble
(i.e., non-durable in seawater) and its Curie temperature is just above room tempera-
ture. KH,PO, (KDP) was the second discovery in 1935, which is also water soluble,
and its Curie temperature is —150 °C. We needed to wait until World War II for the
third and most famous ceramic ferroelectric, i.e., barium titanate (BaTiO3), which was
actually first commercialized as a transducer material. In order to develop compact
capacitors for portable “radar” systems to be used in the battlefields, TiO,-based
conventional “condenser materials” were widely researched by doping various ions
such as CaO, SrO, BaO, MgO, and Fe,Os. Four groups in the US, Russia, Germany,
and Japan discovered BaTiO3 around almost the same time in World War II [6]. The
discovery of isomorphous PZT (lead zirconate titanate) after WWII established the
present wide and steady piezoelectric device market, which has been operating for
more than 60 years.

Barium Titanate (BT)

The basic properties of ferroelectrics are reviewed, using barium titanate as an
example. BaTiO3 has a perovskite crystal structure, as shown in Figure 1.16. Refer
to Figure 1.9 in Example Problem 1.2 for the accurate ionic displacements. The
paraelectric phase (nonpolar phase) at high temperature possesses no spontaneous
polarization with a cubic symmetry of O,—m3m. Below the transition temperature
T¢, called the “Curie temperature” (about 130 °C), spontaneous polarization arises,
with a slightly elongated crystal structure, that is, tetragonal C4,—4mm. The temper-
ature dependence of the spontaneous polarization Pg, spontaneous strain xg, and
permittivity (dielectric constant) ¢ is illustrated in Figure 1.17 for a “first-order phase
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transition” ferroelectric such as BT. Pg decreases with an increasing temperature
and vanishes suddenly at the Curie temperature, while ¢ tends to diverge near T¢.
Additionally, the reciprocal (relative) permittivity 1/¢ is known to be linear with
respect to the temperature over a wide range in the paraelectric phase (so-called
Curie-Weiss law),

e=C/(T —Ty), (1.28)

where C is the “Curie-Weiss constant”, and T is the “Curie-Weiss temperature”,
which is slightly lower than the exact transition temperature T¢. It is also known
that the spontaneous polarization Ps and the spontaneous strain xs follow the elec-
trostrictive coupling relationship

xs = QPs?, (1.29)

and xg decreases almost linearly with an increasing temperature. In the case of
BaTiO5 (BT), it exhibits the piezoelectric effect in the ferroelectric phase, while in
the paraelectric phase, it is non-piezoelectric and exhibits only the electrostrictive
effect (i.e., x = ME?). The general descriptions above are almost consistent with the
phenomenological approach for the “second-order” phase transition, except for jump
or discontinuous phenomena at the Curie temperature T¢, in the first-order phase
transition. Refer to Chapter 4.

The temperature dependence of the ferroelectric properties described above
suggests materials’ development strategies: capacitor materials are designed to
have a Curie temperature around room temperature (RT) because of the maximum
permittivity; memory materials should possess a T that is around 100 °C higher
than RT for obtaining a reasonably large Pg; the T¢ for pyro-sensors is just above

RT because of the large ’ %if ‘ ; piezoelectric transducer materials” T¢ is set typically

much higher than RT, and higher than 200 °C, in order to stabilize the Pg, even under
a high-voltage drive with excessive heat generation; the T for electro-optic (Kerr
effect) and electrostrictive devices is slightly lower than RT to use their paraelectric
state. In other words, we design practical materials with their Curie points suitable
for each application.

T,: Curie temperature

Figure 1.16. Crystal structures of BaTiO3: higher (left) and lower (right) than
Tc. Source: [1] ©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 17.
Reproduced by permission of Taylor & Francis Group.
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Figure 1.17. Temperature dependence of the spontaneous polarization, strain, and
permittivity in a ferroelectric. Source: Figure by author, adapted from [1].

The situation of BT is very complicated in practice. With a decreasing tempera-
ture, BT undergoes three successive phase transitions from the cubic to the tetragonal
phase at 130 °C, then from the tetragonal to the orthorhombic phase around 0 °C,
and, finally, from the orthorhombic to the rhombohedral phase at —90 °C. Figure 1.18
shows the temperature dependence of the permittivity along the c- and a-axes of the
tetragonal phase, according to these successive phase transitions. The polarization
direction change is also inserted in the crystal structures of the cubic, tetragonal,
orthorhombic, and rhombohedral phases [1].
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Figure 1.18. Various phase transitions in barium titanate (BT). Source: [1] ©Uchino,
K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 19. Reproduced by permission
of Taylor & Francis Group.
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Example Problem 1.4

Barium titanate at room temperature (tetragonal 4mm symmetry) has a crys-
tallographic anisotropy in the dielectric constant, as shown in Figure 1.18. The
permittivity along the spontaneous polarization direction &3 is much smaller than
that perpendicular to the spontaneous polarization direction ¢;. Let us consider the
electric poling of a uniformly oriented polycrystalline sample. Describe the change
in the permittivity before and after poling.

Solution

Before poling, the polarization direction in micro-crystals (i.e., grains) is ran-
domly oriented. Thus, the dielectric constant should have an average value between
g, and ¢, that is, €00 = <%) (ec + 2¢4). Since electric poling orients the polarization
mostly along the z-axis (or c-axis), the permittivity approaches ¢, leading to a de-
crease in the permittivity after poling. By measuring the permittivity decrease as a
function of the poling field, we can find the saturation tendency, meaning that we can
evaluate the minimum required electric field for the poling process. Statistical theory
(Uchida-Tkeda model) [7] suggests that the saturated Pg value in a polycrystalline
specimen should be 83% of that of the single crystal.

Lead Zirconate Titanate (PZT)

Lead zirconate titanate (Pb(Zr,Ti)O3, PZT) solid solution systems were discov-
ered in 1954 by Japanese researchers Shirane, Sawaguchi, and Takagi [8]. The phase
diagram of the PZT system is shown in Figure 1.19, where the “morphotropic phase
boundary” (MPB) between the tetragonal and rhombohedral phases exists around
the 52 PZ—48 PT composition. The significant piezoelectric properties of the MPB
composition were discovered by Jaffe [9] of the Clevite Corporation, and Clevite
obtained the most important PZT patent for transducer applications. Because of this
strong basic patent, Japanese piezo-ceramic companies were actually encouraged
to develop ternary systems to overcome the performance of the binary system and,
more importantly, to escape from Clevite’s patent: that is, PZT + a complex perovskite
such as Pb(Mg1 ,3Nb; /3)O3 (Matsushita Panasonic), Pb(Ni; ;3Nb,/3)O3 (NEC), and
Pb(Zn; /3Nb,,3)O3 (Toshiba), which is the basic composition at present. Figure 1.20
plots the dependence of several piezoelectric d constants on the composition near
the MPB in the PZT system. Note that the maximum piezoelectric performance is
obtained around the MPB composition in the pure PZT system.
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Figure 1.19. Phase diagram of lead zirconate titanate (PZT). Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 169. Reproduced by permission of
Taylor & Francis Group.
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Figure 1.20. Dependence of several d constants on the composition near the mor-
photropic phase boundary in the PZT system. Source: [1] ©Uchino, K. Ferroelectric
Devices, 2nd ed. CRC Press, 2010; p. 169. Reproduced by permission of Taylor &
Francis Group.

Relaxor Ferroelectrics

4

Relaxor ferroelectrics, many of which are composed of a “complex perovskite
structure, can be prepared in either polycrystalline or single-crystal forms. Different
from the previously mentioned normal ferroelectrics such as BT and PZT, the relaxor
types are characterized by (1) a broad phase transition from the paraelectric to the
ferroelectric state, (2) a significant frequency dependency of the dielectric constant
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(i.e., “dielectric relaxation”), and (3) a weak remanent polarization under E = 0.
Relaxor ferroelectrics have complex “disordered perovskite” structures.

A binary system of relaxor-type Pb(Mg; ;3Nb; /3)O3-PbTiO3 (or PMN-PT) ex-
hibits enormous electrostriction under an external electric field with almost zero
hysteresis, which is highly suitable for positioner applications. This relaxor ferroelec-
tric also exhibits an induced piezoelectric effect under a DC bias electric field. That
is, the electromechanical coupling factor k; varies with the external bias field. As
the DC bias field increases, the coupling increases and saturates. Since this behavior
is reproducible, these materials can be applied as ultrasonic transducers which are
tunable by the bias field [10].

Relaxor ferroelectrics with the morphotropic phase boundary (MPB) compo-
sition can be synthesized in single-crystal form rather easily. The author’s group
discovered superior electromechanical coupling in these crystals by manipulating
the crystal orientation in the late 1970s, which enhanced the performance for ul-
trasonic transducers and electromechanical actuators. Pb(Zn;,3Nb,,3)O3 (PZN)-
and Pb(Mg; /3Nb,/3)O3 (PMN)-based binary systems with PbTiO3 (PZN-PT and
PMN-PT) were demonstrated to have extremely large electromechanical coupling
factors [11,12]. Large coupling coefficients and large piezoelectric constants have
been found for crystals with the MPB composition. PZN-8%PT single crystals with a
rhombohedral symmetry were found to possess a high k33 value of 0.94 for the (001)
crystal cuts (567° cant from the spontaneous polarization direction); this is very high
compared to the k33 of conventional PZT ceramics of around 0.70~0.80.

PVDF

Thanks to Kawai’s efforts, polyvinylidene difluoride (PVDF or PVF,) was dis-
covered in 1969 [13]. Though the piezoelectric d constant (actuator figure of merit) is
not as high as that of piezo-ceramics, a high piezoelectric g constant (sensor figure of
merit) due to a low permittivity is attractive from the sensor application viewpoint.

PVDF is a polymer with monomers of CH,CF,, where H and F are aligned in
the opposite positions around the carbon chain, as shown in Figure 1.21. Because H
and F have positive and negative ionization tendencies, the monomer itself possesses
a dipole moment (upward dipole moment in the figure). Crystallization from the
melt forms the nonpolar «-phase, which can be converted into the polar 3-phase
by a uniaxial or biaxial drawing operation; the resulting dipoles are then reoriented
through electric poling.
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Figure 1.21. Molecular structure of polyvinylidene diflouride (PVDEF). Source: [1]
©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 19. Reproduced by
permission of Taylor & Francis Group.

Large sheets can be manufactured and thermally formed by a hot roller into
complex shapes. Piezoelectric polymers have the following characteristics: (a) small
piezoelectric d constants (for actuators), but large ¢ constants (for sensors), (b) light
weight and soft elasticity, leading to good “acoustic impedance matching” with
water and the human body, (c) a low mechanical quality factor Q,, allowing for
a broad resonance bandwidth. On the other hand, for actuator applications, the
PVDF polymer degrades the performance significantly under a large cyclical (AC)
electric field because of heat generation via a large viscous damping or elastic loss
factor. Even self-melting is observed in the worst scenario such as when it is operated
at its resonance frequency. Slow operation for actuators and energy harvesting is
definitely required.

Pb-Free Piezo-Ceramics

In 2006, the European community implemented the RoHS Directive (Restrictions
of the Use of Certain Hazardous Substances), which explicitly limits the usage of
lead (Pb) in electronic equipment. Basically, we may need to regulate the usage of
lead zirconate titanate (PZT), the most famous current piezoelectric ceramic, in the
future. The Japanese and European communities may experience governmental
regulation on the usage of PZT in the next 10 years. Pb (lead)-free piezo-ceramics
started to be developed after 1999. Pb-free materials include (1) (K,Na)(Ta,Nb)Os-
based, (2) (Bi,Na)TiO3, and (3) BaTiO3 materials, which were studied extensively in
the 1960s-1970s; this reminds us that “history will repeat itself” (i.e., “Piezoelectric
Renaissance”) after one generation (~30 years).

1.2.8. Applications of Ferroelectrics

Ferroelectric materials, especially polycrystalline ceramics, are very promising
for a variety of applications such as “high-permittivity capacitors”, “ferroelectric

memories”, “pyroelectric sensors”, “piezoelectric and electrostrictive transducers”,
“electro-optic devices”, and “PTC thermistors”. Refer to [1] for a detailed discussion.
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Capacitor dielectrics utilize the peak dielectric constant around the transition
(Curie) temperature, meaning that Tc should be adjusted around room temperature,
while for memory applications, the material must be ferroelectric at room tempera-
ture (refer to Figure 1.17). Since a large temperature derivative of the spontaneous
polarization is required for pyroelectric sensors, the T¢ is set to be just above room
temperature. The converse pyroelectric effect is called the “electrocaloric effect” (the
electric field generates the temperature decrease), which is becoming a new refrigera-
tion technique in this energy saving age. Piezoelectric materials are used for both
sensors and actuators, where the Tc should be significantly above room temperature.
Pressure and acceleration sensors are now commercially available in addition to
conventional piezo-vibrators. Precision positioners and pulse drive linear motors
have already been installed in precision lathe machines, semiconductor manufac-
turing apparatuses, and office equipment. Exciting developments can be found in
ultrasonic motors, aiming at being “electromagnetic and sound noise free”, and very
compact motor applications. Recently, in parallel to the new energy source programs,
piezoelectric energy harvesting systems have become popular. Waste mechanical
energy such as machine noise vibration, wind, and human walking vibration can be
converted into electrical energy for direct use in signal transmission or for charging
up batteries for portable electronics. Its target is set on the elimination of batteries
from portable electronic equipment that are hazardous to the world. Electro-optic
materials have widely been commercialized in displays (such as liquid crystal dis-
plays) and will become key components in optical communication systems in the
near future. Optical beam scanners, light valves, and switches are urgent necessities.
For thermistor applications, semiconductive ferroelectric ceramics with a positive
temperature coefficient of resistivity (PTCR) based on a junction effect have also been
developed from barium titanate-based materials.

From the actual worldwide revenue viewpoint of ferroelectric and piezoelec-
tric devices, “capacitors” share more than 50%, followed by “piezoelectric devices”
with ~30%, and then “PTCR thermistors” with ~15%. Because “piezoelectricity”
has a rather unique performance without finding strong competitors (electromag-
netic counterpart motors/transformers are inferior in terms of efficiency in compact
component domains smaller than 30 W), piezoelectric applications are currently ex-
panding significantly. Though the electro-optic and pyroelectric/electrocaloric effects
seem to be very intriguing personally, their revenue contributions are very small
from the industrial viewpoints at present. Three examples commercialized recently
with a high revenue amount (i.e., million-selling devices) are introduced below.

Piezoelectric Multilayer Actuators for Automobiles

Diesel engines are a better choice than regular gasoline cars from the energy
conservation and global warming viewpoint. When we consider the total energy
required for gasoline production, both “well-to-tank” and “tank-to-wheel” should be
taken into account. The energy efficiency, measured by the energy required to realize
the unit drive distance for a vehicle (M]/km), is of course better for high-octane
gasoline than diesel oil. However, since gasoline requires a huge amount of electrical
energy for its purification, gasoline is inferior to diesel fuel from the total energy
consumption viewpoint [14]. However, because conventional diesel engines generate
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toxic exhaust gases such as SOx and NOy due to insufficent burning of the fuel, new
diesel injection valves have been required to solve this problem. Siemens, Bosch, and
Toyota developed multi-injection-type diesel engines with piezoelectric multilayered
actuators. Figure 1.22 shows such a common rail-type diesel injection valve with an
ML piezo-actuator which produces high-pressure fuel and quick injection control.
Owning to the large force and quick response of the PZT ML actuator, a very fine mist
of diesel fuel can be injected in order to be burned effectively. ML piezo-actuators
should possess the highest reliability at an elevated temperature (150 °C) for a
long lifetime period (10 years) [15]. Piezoelectric actuators are namely the key to
increasing burning efficiency and minimizing toxic exhaust gases. The success of
this project seems to be attributed to the author’s “pulse drive technique” for ML
actuators without generating troublesome vibration ringing after the quick actuation,
which will be discussed in Chapter 8. The current research target of this project
includes Cu internal electrode usage for replacing the Ag-Pd electrode to reduce the
manufacturing cost of piezo-MLs.

Main
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Figure 1.22. (a) Common rail-type diesel injection valve with a piezoelectric multi-
layer actuator (courtesy of Denso Corporation). (b) Diesel injection timing chart.
Source: [16] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; pp. 460—461.
Reproduced by permission of Taylor & Francis Group.

Ultrasonic Motors (USMs) for Camera Modules

Surface wave-type traveling wave ultrasonic motors were firstly installed in
Canon EOS zoom/focus mechanisms in the 1990s. The necessity of camera modules
for mobile phones in the early 2000s accelerated the development of micro motors at
an inexpensive cost. The so-called “metal tube type” consisting of a hollow metal
cylinder and two PZT rectangular plates was developed by Penn State University
in the late 1990s (see Figure 1.23a). When one of the PZT plates, Plate X, is driven
(single-phase drive), a bending resonant vibration is excited basically along the x’-axis.
However, because of an asymmetrical mass (Plate Y), another hybridized bending
mode is excited with some phase lag along the y’-axis, leading to an elliptical locus
on this metal tube end in a clockwise direction, similar to a “hula-hoop” motion. The
rotor of this motor is a cylindrical tube with a pair of stainless ferrules pressing down
with a spring. The metal cylinder motor, 2.4 mm in diameter and 12 mm in length,
was driven at 62.1 kHz in both rotation directions. A no-load speed of 1800 rpm and
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a maximum output torque of 1.8 mN-m were obtained for bi-directional rotation
under an applied rms voltage of 80 V. The rather high maximum efficiency of about
28% for this small motor is a noteworthy feature [17,18]. Various modifications were
made for the stator, including a type with four PZT plates, arranged symmetrically
and driven by two-phase (sine and cosine) voltages (Chapter 7 handles the AC drive
technique for piezoelectrics).

Elastic hollow cylinder

Plate X

V’ Metal
Tube Motor

(a) (b)

Figure 1.23. (a) A “metal tube” motor structure using a metal tube and two rectan-
gular PZT plates. (b) Camera automatic zoom/focus mechanism with two metal
tube USMs. (c) Photo of the camera module installed in a Samsung flip-type cellular
phone in 2003. Source: [16] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019;
pp- 472-473. Reproduced by permission of Taylor & Francis Group.

Samsung Electromechanics, Korea, in collaboration with the author’s group,
developed a zoom and focus mechanism with two micro rotary motors in 2003. Two
micro metal tube motors with a 2.4 mm diameter and 14 mm length were installed
to control zooming and focusing lenses independently in conjunction with screw
mechanisms, as illustrated in Figure 1.23b [19]. A screw is rotated through a pulley,
which is then transferred to the lens up—-down motion. The square chip (3 x 3
mm?) on the camera module in Figure 1.23c is a high-frequency drive voltage supply.
Newscale Technologies (Victor, NY) integrated a screw in the metal tube motor and
commercialized “squiggle motors” worldwide for camera module applications, in
partnership with ALPS, Tamron, and TDK-EPC [20]. Samsung Electromechanics is
now utilizing much smaller micro-ML chip linear USMs for the Galaxy smartphone
series’ camera modules due to the thinner design necessity [21].

In parallel to the USM usage, Konica-Minolta, Japan, developed a smooth
impact drive mechanism (SIDM) using a multilayer (ML) piezo-element [22]. The
idea comes from the “stick and slick” condition of the ring object attached on a drive
rod. By applying a sawtooth-shaped voltage to a multilayer actuator, alternating slow
expansion and quick shrinkage are excited on the drive friction rod. A ring slider
placed on the drive rod will “stick” on the rod due to friction during a slow expansion
period, while it will “slick” during a quick shrinkage period, meaning that the slider
moves from one end of the rod to the other. Example Problem 14.1 demonstrates how
to simulate the slider motion via the “stick and slick” condition. The lens is attached
to this slider. When the voltage saw shape is reversed, an opposite motion can be
obtained. Piezo Tech, Korea, developed a similar SIDM motor, but using a bimorph,
instead of an ML actuator, that suppressed the manufacturing cost significantly. For
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TULAs (tiny ultrasonic linear actuators) [23], though a flexural bimorph is used, the
driving frequency is much higher than 40 kHz (ultrasonic range) due to their small
size (inertial motor principle is described in Chapter 14).

Piezoelectric Energy Harvesting Systems

One of the recent research interests is “piezoelectric energy harvesting”. Cyclic
electric energy generated in a piezoelectric component by environmental noise vi-
bration can be accumulated into a rechargeable battery. Originally, in the 1980s, we
consumed the converted electrical energy via Joule heat in order to rapidly damp the
noise vibration [24]. After transitioning into the 1990s, we started to accumulate this
energy in a rechargeable battery [25-27]. Because the generating power is limited
up to the 100 W level, the development target is not to compete with MW~GW
electric power projects with other renewable windmill /watermill or solar cell tech-
nologies, but to eliminate small single-use batteries that are hazardous to the world.
There are three major phases/steps associated with piezoelectric energy harvest-
ing: (i) mechanical-mechanical energy transfer, including “mechanical impedance
matching” and the mechanical stability of piezoelectric transducers under large
stresses (refer to Chapter 10), (ii) mechanical-electrical energy transduction, relating
to the electromechanical coupling factor in composite transducer structures, and
(iii) electrical-electrical energy transfer, including “electrical impedance matching”
(refer to Chapter 10). A suitable DC-DC converter is required to accumulate the
electrical energy from a high-impedance piezo-device into a rechargeable battery
(low impedance) [28] (Chapters 7 and 8 discuss both pulse and AC mechanical drive
techniques for receiving the maxium electric energy).

Our application target of the “cymbal” was set to hybridize vehicles with both
an engine and an electromagnetic motor, in collaboration with Toyota Central Re-
search Labs, reducing the engine vibration and harvested electrical energy (~1 W)
in car batteries to increase the mileage. A cymbal with a 29 mm diameter and 1~2
mm thickness (0.3 mm-thick stainless steel endcaps), to be inserted below a 7 kg
engine weight (70 N bias force), was shaken under an electromagnetic shaker (in an
experiment) at 100 Hz, which generated 80 mW of electric power [25,26]. By parallely
connecting nine cymbals embedded in rubber engine damping sheets, we succeeded
in obtaining a total electric power level close to 1 W for a rechargeable battery.

Another development target of piezo-energy harvesting can be found in the
small energy harvesting (mW) area for signal transfer applications, where the effi-
ciency is not a primary objective because the use period is limited. These applications
usually handle an impulse/snap action load to generate instantaneous electrical en-
ergy for transmitting signals for a short period (100 ms-10 s), without accumulating
the electricity in a rechargeable battery. NEC-Tokin developed an LED traffic light
array system driven by a piezoelectric windmill, which is operated by wind effec-
tively generated by passing automobiles. Successful million-selling products in the
commercial market belong mostly to this category at present, including the “Light-
ning Switch” [28] and the 25 mm caliber “programmable air-burst munition” [29].
The former, by PulseSwitch Systems, VA, is a remote switch for room lights, using a
unimorph piezoelectric component (Figure 1.24a). In addition to living convenience,
the Lightning Switch can reduce housing construction costs drastically, due to a
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significant reduction in the copper electric wire length and the labor of aligning it in
the ceiling. On the contrary, the 25 mm caliber “programmable air-burst munition
(PABM)” [29] is based on electricity generation with a multilayer piezo-actuator
under shot impact to maneuver the bullet via an operational amplifier, developed
by Micromechatronics Inc., PA, and ATK Integrated Weapon Systems, AZ, during
the revenge war against Afghanistan (2003). The current bullet seems to be a micro
missile with a programmable function (microcomputer for pin-point tageting). A
piezo-energy harvesting device was installed because the original button battery
(for operating microchips for 2-3 s to maneuver the bullet) decayed after only two
months under the high-temperature atomosphere of the Afghanistan battlefield.

Lightning Transmitter

Mounted in Transmitter

Piezoelectric
Thunder Element

Piezo ML

Figure 1.24. (a) Lightning Switch with a piezoelectric Thunder actuator (courtesy
of Face Electronics). (b) Programmable air-burst munition (PABM, 25 mm caliber)
developed by Micromechatonics. Source: Figure by author.

Though relatively large investments and research efforts are being devoted
to MEMS/NEMS and “nano-harvesting” devices, a positive comment cannot be
provided at the moment, except for the sensor applications [30]. Even for medi-
cal applications, the obtained /reported energy level of n(W~uW from one MEMS
component (this level practically refers to “sensors”, not “energy harvestors”, in
engineering) is a useless level, which originates from the inevitable small volume
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of the used piezoelectric material (i.e., thin films). A minimum of 0.1 mm? PZT is
required for generating a couple of megawatts (minimum level to be called “energy
harvesting”), because the current high-power PZT ceramics can handle a maximum
of 30 W/cm?3. In practice, at minimum, a 30 um-thick PZT film is required for main-
taining a small area less than 3 x 3 mm?. A total of 90% of the current research papers
do not satisfy this minimum requirement. Another solution is to invent a genius idea
of how to combine thousands of these nano-devices in parallel and synchronously in
phase. “Nano- or microgrid” research aimed at reaching a minimum 1 mW level by
connecting thousands of nano-harvesting devices is highly encouraged, rather than
merely the MEMS fabrication process from an academic viewpoint. Refer to [31].

Chapter Essentials

1. Ferroelectric and piezoelectric category:
Dielectrics > Piezoelectrics > Pyroelectrics > Ferroelectrics
2. Ferroelectric materials are very promising for a variety of applications:
High-permittivity capacitors (high permittivity around T¢);
Ferroelectric memories (large spontaneous polarization);
Pyroelectric sensors, electrocaloric refrigeration (large temperature depen-
dence of Pg);
e Piezoelectric/electrostrictive transducers, piezoelectric energy harvesting
(electromechanical k);
e  FElectro-optic devices (refractive index control);
e  PTC thermistors (semiconductor junction effect).

3. Origin of spontaneous polarization: balancing the following two types of en-
ergy:
e Dipole coupling with the local field —driving force of ionic displacement;
e  Flastic anharmonic term—impeding ionic displacement.
4.  Field-induced strains:
e  Piezoelectric strain —x = dE in an asymmetric crystal.
4 Difference in the harmonic term of the two equivalent springs.
e  Strain associated with polarization reorientations.
e  Electrostriction —x = ME? in a symmetric crystal.
4 Anharmonicity of the equivalent springs (slightly compliant for
extension).

5. Electro-optic effect: Refractive index change with an external electric field. The
secondary Kerr effect is frequently used. Devices making use of this effect
require a pair of crossed polarizers arranged at a ==45° angle with respect to the
electric field direction. Half-wave voltage: minimum voltage required for an
electro-optic crystal to exhibit the first maximum light intensity.

6.  Recent “million-selling” piezoelectric products:

e  Piezoelectric multilayer actuators for diesel injection valve control;
e  Ultrasonic motors (USMs and inertial type) for smartphone camera mod-
ules;
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e Piezoelectric energy harvesting devices for “programmable air-burst mu-
nition”

Check Point

1.

9.
10.

There are three microscopic origins of polarization: electronic polarization, ionic
polarization, and ( ). Fill in the blank.

The local field is the driving force for spontaneous polarization. What is the
positive feedback amplification factor “” called, which enhances the applied
electric field E?

(T/F) Taking into account a famous relation between the relative permittivity e
and the refractive index n: ¢ = n%, we can obtain 1 = 4 for a crystal with ¢ = 16
(at 1 kHz). Is this argument true or false?

Randomly oriented light passes through a polarizer. When we neglect the light
absorption by the polarizer, what percentage of the light intensity can we obtain
after the polarizer in comparison with the input intensity?

(T/F) The definition of the Pockels electro-optic coefficient 7y is given by an
expansion expression: 1/n;;(E) — 1/1;;(0) = Xr;jEy. True or false?

(T/F) The Curie temperature of a ferroelectric capacitor material should be
around room temperature. True or false?

(T/F) The Curie temperature of a piezoelectric transducer material should be
100 °C lower than room temperature. True or false?

(T/F) The Curie temperature of a pyroelectric sensor material should be 200 °C
higher than room temperature. True or false?

Provide the name of a representative polymer piezoelectric.

Provide the full expression of “PZT”.

Chapter Problems

1.1

(a)

(b)

Ferroelectricity disappears in general with a decreasing particle size. In order
to explain this phenomenon, we consider the energy fluctuation for a nano-size
ferroelectric particle as follows: Consider a 1D finite chain of two types of
ions, +q and —g, arranged alternately with a distance of a (see Figure 1.25a).
A nano-size crystal grows gradually, starting from a single positive ion, then
adding a pair of negative or positive ions, thus maintaining a crystal size of 2na
(n=1,2,3,...). With an increasing crystal size, the crystal Coulomb energy will
be changed as follows:

Uy = (2/4mege) [—(q°/a)]

Uy = (2/47eoe) [ (7°/a) + (7°/20)]

Us = (2/4mege) [—(q°/a) + (4%/2a) — (4°/3a)]

For the infinite (large) crystal, calculate the “Madelung constant” when the
saturated energy is expressed by

U = (—M/4mege)(g? / a). (CP1.1.1)

With an increasing crystal size layer by layer, how many layers are required to
stabilize the energy fluctuation to less than £10% around the Madelung energy?
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(a)

(b)

(a) 4 *t9 9 *q 49 +q 4
() ()
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1 3 5 7 9 n

(b) 1T T T T 1T T 1

o)

& Madelung Energy

3]

c

i

2 7
4T[£O a

Figure 1.25. One-dimensional linear chain (a), and Madelung energy (b). Source:
Figure by author.

Hint

Use the relation: In(1 + x) = x — xz_z + ’3—3 — -+ -. The value 2In2 = 1.386 is called
the Madelung constant for a 1D chain.

With an increasing crystal size, the crystal Coulomb energy will be changed as

follows:
_ 2 7 1 1 1 1
B e TG T S A R = s
Knowing the relation: In(1+1) =1—3+1— 7 +--- =In(2),
2 7
o = — — )In(2). P1.1.
u (4%505) ( a > n(2) (€ 3)
Since the Madelung constant is defined by
2
Uso = —( M ) (q—)M = 2In(2) = 1.386. (CP1.1.4)
47ene a

The Coulomb potential change at the center point is shown in Figure 1.25b as
a function of the crystal size n, with a final saturating value of the Madelung
energy. When the energy fluctuation is so large, a small energy imbalance
between the paraelectric and the ferroelectric state may not cause a phase
transition. Suppose that the minimum crystal size (2na) is required to main-
tain the potential energy fluctuation at less than £10% at the center positive
ion, even when adding or subtracting a pair of ions (i.e., n + 1 or n — 1). If
the basic crystal Coulomb energy is not stabilized to less than this degree of
fluctuation, we cannot expect the ferroelectric phase transition to occur as a
cooperative phenomenon.
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By equating 1/n = 10%, we obtain 7 = 10. If we use a = 4 A, 2na = 80 A =
8 nm. According to the study on amorphous PbTiOj3, the soft phonon mode
and the maximum permittivity indicate that the appearance of ferroelectricity
starts to be observed around 100 A, with an increasing crystalline size during
the annealing process. This crystalline size is in the same range as the above
theoretically estimated crystal size. The reader is requested to extend the
theory to the 2D model (try Example Problem 14.4 for 2D Madelung constant
calculation, which exhibits a much more stable idea than the 1D model).

1.2 Potassium tantalate niobate K(Tag ¢5Nbg35)O3 is cubic at room temperature.
By applying an electric field E, along a perovskite [100] axis, it exhibits an
induced polarization P3, electrostrictive strains x3 = Q11P3% and x; = Qq2P32,
and refractive index changes Ang = —(1/2)7103g11P32 and Any = —(1/2)ng> x
g12P32. Experimental values of these are: Q11 = 0.090 m*C~2, and Qp, = —0.035
m*C~2; g11 =0.136 m*C 2, and g1, = —0.038 m*C~2. Comparing the absolute
values between Q and g and the ratios Q11/Q12 and g11/¢12, discuss similarities
in terms of the crystal lattice compactness along and perpendicular to the
electric field.

1.3 PZT 5H and PZT 8 have the following physical parameters:

Physical Parameters PZT 5H PZT 8
ds3 (10712 m/V) 593 225
X3/ €0 3400 1000
s5(10712 m?/N) 20.8 135

(a) Calculate the electromechanical coupling factor k33 for both PZT specimens.

(b) Which specimen, PZT5H or PZTS, is a “hard” PZT? Explain the reason for
this judgement.
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2. Linear Coupling in Ferroelectrics—Taylor
Expansion Series

2.1. Thermodynamical Functions

2.1.1. Various Energy Descriptions

A thermodynamic phenomenological theory is discussed basically in the form
of expansion series of the “internal energy” U as a function of the physical properties;
the free energy is composed of “thermal energy” dQ, “mechanical energy” Xdx (stress
X, strain x), and “electrical energy” EdD (dielectric displacement D (almost equal to
polarization P in high-permittivity materials), electric field E) in ferroelectrics. When
a material is ferromagnetic, magnetic energy HdB is integrated. Further, thermal
energy dQ is given by dQ < TdS, where temperature is T and entropy is S. Equality

=" is true for a reversible process, and “<” is true for an irreversible process. We can
describe U as follows:

dU =dQ + Xdx + EdD < TdS + Xdx + EdD. (2.1)

According to the combination possibilities among (T, S), (X, x), and (E, D), there
are the following eight types of energy:

e Internal energy U=Q+W dU = TdS + Xdx + EdD (2.2)
e Helmholtz free energy A =U-TS dA = —SdT + Xdx + EdD (2.3)
e Enthalpy H=U—- Xx-ED dH = TdS — xdX — DdE (2.4)
e Elastic enthalpy Hi=U-Xx dH; = TdS — xdX + EdD (2.5)
e Electric enthalpy H,=U-ED dH, = TdS + Xdx — DAE (2.6)
e Gibbs free energy G=U-TS—Xx-ED dG= —SdT — xdX — DdE (2.7)
e Elastic Gibbs energy Gi=U—- TS - Xx dGy = —SdT — xdX + EdD (2.8)
e Electric Gibbs energy ~ Gp=U — TS—-ED dGy = —SdT + Xdx — DdE (2.9)

According to the IUPAC (International Union of Pure and Applied Chemistry),
an “extensive” parameter depends on the volume of the material (e.g., the length,
charge, or entropy S is halved by cutting the material in half), while an “intensive”
parameter is the ratio of two extensive parameters and, therefore, is independent
of the volume of the material (e.g., the force, voltage, or temperature T does not
change by cutting the material in half) [1]. Consequently, stress (X), the electric field
(E), and temperature (T) are intensive parameters, which are externally controllable,
while strain (x), electric displacement (D) (almost the same as polarization (P) in this
textbook), and entropy (S) are extensive parameters, which are internally determined
in a material. Internal energy U (per unit volume, [J/m3]) is described in terms of
“extensive” physical parameters (S, x, D). Since the phase transition and experiments
are normally conducted under external parameter changes by keeping some constant
such as T = constant (isothermal), X = 0 (stress free), or E = 0 (short circuit), the
Gibbs free energy described in terms of “intensive” physical parameters (T, X, E) is
the most popularly utilized type to analyze experimental data. On the other hand,
the elastic Gibbs energy G; is most convenient for discussing the ferroelectric phase
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transition due to two merits: (1) by describing higher-order Taylor expansion terms
of the “order parameter” D (or P), we can derive the spontaneous polarization; (2)
external X can be controlled explicitly, and E is easily related to (%%)T «- We discuss

Devonshire theory in Chapter 4.

2.1.2. Maxwell Relations

We can obtain some of the “Maxwell relationship” examples from Equations
(2.2)-(2.9) as follows, taking the second partial derivative:

D 9 , G 9 . 3G dx
=25y - (& (2.10a)

(ﬁ)T,E B (ﬁ(_ﬁ T.X'TE B (E)E 0X x,T)T,D JE 'T,x

0X 0 ,0A 0 0A oE

500 = 5 5 ko), = & oDty ~ G 1)
S 2, dG 0, 9G oD
B_E)TX = (B_E(_G_T)XE)TX = (8_(_8_E)X,T)T,X = (B_T)X,E' (2.10¢)

Equations (2.10a) and (2.10b) are for the piezoelectric d coefficients, discussed in Sec-
tion 2.2.1, while Equation (2.10c) is used in the “pyroelectric coefficient” p derivation
in Section 2.4.1.

Figure 2.1 shows a convenient memorization method for obtaining the Maxwell
relations. The arrow from “S” to “T” stands for the following: “T” is obtained from
the partial derivative of H; (D-constant) or H, (E-constant) in terms of “S”, or “S” is
obtained from the partial derivative of G; (D-constant) or G, (E-constant) in terms of
“T” with a negative sign (arrow direction is opposite!). The other arrow from “E” to
“—D” has similar meanings. Thus, we can obtain the following relations, leading to
the right-hand side Maxwell relations:

=y E=), - -
T = (§)E,‘ -D = (ﬁ)s — (g)s = —B(D%)E
-5 = (j)E; —-D :aé wlr 7 ()= (WaE
-S=(5%)p E=(53); — (%)T = _(_%)D
S Hl1 | -D
H2 Gl
E G2 T

Figure 2.1. Maxwell relation derivation chart. Source: Figure by author.
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2.1.3. Linear Energy Handling

We consider a practical formula of the Gibbs free energy G(T, X, E) for the case of
a small value change in temperature 6 = T — Tx (room temperature), external X, and
E (1D case). If the change in parameters is small, we may adopt the three-parameter
Taylor expansion approximation up to the second derivatives in order to discuss just
the linear relationships, based on the description by Mitsui et al. [2]:

G(T, X, E) = Go+ (3%)0+ (3% )X + (32 ) E+ (%) 0> + 4 (55) X2
T2 (3?5(2;>E2+<8T8X>9X+<8T8E>9E+<BX8E>XE 1

Taking into account dG = -S5dT-xdX — DdE, we first obtain the relations

Eﬁ) = —§ <3G> = —xp, and <3G> = —Dy. Since Sg is
(aT 6,X,E=0 0 \9X ) g x E=0 0s IE ) g X E=0 0 0

the entropy density at 6, X, E = 0, we take this as the “origin” value and set it as
So = 0. The values xy and Dy (=~ Py) are considered to be spontaneous strain and
spontaneous polarization in the ferroelectric phase of this material (refer to Chapter
4), and we set them as new “origins” in the discussion merely in the ferroelectric
phase. Now, Equation (2.11) can be transformed as follows:

oG 9’G G 9’G

5= —(ﬁ) = _(ﬁ)e - <8T8X>X_ <8T8E)E’ (2-122)
oG 0°G 0°G 0°G

= (5x) = Gmx)r- G )x () e
oG G 9’G 9’G

p=—(5F)=~(amr )0~ (33r)*~ (G )2 012

Based on the above linear relationships, we derive several types of “constitutive
equations” in the following sections.

2.2, Isothermal Process—Piezoelectric Coupling

2.2.1. Thermodynamical Meaning of Piezoelectric Constant
When the temperature is constant (i.e., “isothermal”), 8 = 0 in Equations
(1.12b) and (1.12c), we can obtain the “intensive” parameter-based piezoelectric

constitutive equations
x = sEX +dE, (2.13a)

D = dX + ¢pe*E, (2.13b)

where the following denotations are used: st is the elastic compliance under a
constant E, and gge* is the dielectric permittivity under a stress-free condition:

E 0°G
£ =—(58)
epeX = — a%%) (2.14)
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The Maxwell relation, Equation (2.10a), (g_g())T,E = (%)T,X' verifies that the
piezoelectric coefficients d in Equations (2.13a) and (2.13b) are thermodynamically
the same.

When we start from the Helmholtz free energy A (1A = —SdT + Xdx + EdD),
by taking a similar Taylor expansion approach, we obtain another set of piezoelectric

constitutive equations in terms of “extensive” parameters, x and D:
X=cPx—mD, (2.15a)

E = —hx + xox*D, (2.15b)

where cP is the elastic stiffness under a constant D, and xox* is the inverse permittivity
(ko = 1/€p) under a strain-free condition, and these coefficients are expressed by

Kok® = 32—A) . (2.16)

The Maxwell relation (%)Tx = (a—E)T p in Equation (2.10b) verifies that the
inverse piezoelectric coefficients h'in Equations (2.15a) and (2.15b) are thermodynam-

ically the same.

2.2.2. Electromechanical Coupling Factor

The term “electromechanical coupling factor” k is defined as the square value k?
of the ratio of the converted energy over the input energy: when electric to mechani-
cal,

k* = (Stored mechanical energy/Input electrical energy), (2.17a)

or when mechanical to electric,
k* = (Stored electrical energy /Input mechanical energy). (2.17b)

Let us derive Equation (2.17a) first practically, where an external electric field
Ej is applied to a piezoelectric material in a pseudo-static process. See Figure 2.2a,
where we apply an electric field on the top and bottom electrodes under a stress-free
condition (X = 0) [3]. The input electric energy must be equal to (1/ 2)-g9e3XEs? from
Equation (2.11) (under X = 0), and the output strain generated by E3 should be d33E3
from Equation (2.13a). Since the converted /stored mechanical energy is obtained as
(1/2-s33F)-x32, we obtain

kss®= [(1/2)(d33E3)* /533" 1/[(1/2)-€0e5™ E5®] = d33® /eges™ 533" (2.18a)
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Figure 2.2. Calculation models of the electromechanical coupling factor k for (a)
an electric input under a stress-free condition, and (b) a stress input under a short-
circuit condition. Source: Figure by author, adapted from [4].

Let us now consider Equation (2.17b), where an external stress X3 is applied
to a piezoelectric material in a pseudo-static process. Refer to Figure 2.2b. Under
a short-circuit condition (E3 = 0), the input mechanical energy must be equal to
(1/2) 5335 X3? from Equation (2.11), and the electric displacement D3 (or polarization
P3) generated by X3 should be equal to d33X3 from Equation (2.13b). This D3 can
be obtained by integrating the short-circuit current in terms of time through the
electric lead. Since the converted/stored electric energy is obtained as (1/2 ege3X)
D3?, we obtain

kas®= [(1/2e0e3” ) (d33X3)*)/[(1/2)-55" X5%] = das*/eoes™ 533" (2.18b)

It is essential to understand that the electromechanical coupling factor k (or k2,
which has a physical meaning of the energy transduction/conversion rate) can be
exactly the same for both converse (2.18a) and direct (2.18b) piezoelectric effects. The
conditions under constant X (stress free) or a constant E (short circuit) are considered
to be non-constrained.

2.2.3. Constraint Physical Parameters—Permittivity and Elastic Compliance

It is important to consider the conditions under which a material will be operated
when characterizing the dielectric constant and elastic compliance of that material [3].
When a constant electric field is applied to a piezoelectric sample, as illustrated in
Figure 2.3, top, the total input electric energy (left) should be equal to a combination
of the energies associated with two distinct mechanical conditions that may be
applied to the material: (1) stored electric energy under the “mechanically clamped
state”, where a constant strain (zero strain) is maintained and the specimen cannot
deform, and (2) converted mechanical energy under the “mechanically free state”,
in which the material is not constrained and is free to deform. This situation can be
expressed by

<%>€X€0E% = (%)exeoEg + (ﬁ)xz = <%)sx€0E(2) + <ZSLE> (dEo)?,
such that

42

42
X, _ .x x _ X 12 2
etey = e¥eg + (—SE) ore* =¢ (1 k ) k= = Xeg sF SE]. (2.19a)

43



When a constant stress is applied to the piezoelectric, as illustrated in Figure 2.3,
bottom, the total input mechanical energy will be a combination of the energies
associated with two distinct electrical conditions that may be applied to the material:
(1) stored mechanical energy under the “open-circuit state”, where a constant electric
displacement is maintained, and (2) converted electric energy (i.e., “depolarization
field”) under the “short-circuit condition”, in which the material is subject to a
constant electric field. This can be expressed as

(%)sEX% = (%)SDX% + (%)SXeOEZ = (%)SDX(Z) + (%)sxso (d/£083X)2 X3,

which leads to

&
eXgp st

2
sE=sP 4 < ;l ) orsP =sE(1 —K)[k ]- (2.19b)
E%EQ

In principle, if we measure the permittivity in a piezoelectric specimen under
stress-free and completely clamped conditions, we can obtain £X and ¥, respectively.
However, in practice, ¢* cannot be measured because of the experimental difficulty
of maintaining the ideal strain-free (clamped) condition for a long period. Similarly,
if we measure the strain in a piezoelectric specimen as a function of the applied stress
pseudo-statically, under short-circuit and open-circuit conditions, we can obtain s*
and sP, respectively. However, in practice, sP cannot be measured because of the
induced bound charge (or polarization) “screening” by the migrating charge in the
electrode, specimen, or surrounding atmosphere within a couple of minutes. Thus,
the clamped permittivity ¢* or open-circuit D-constant s” can only be measured
with high-frequency dynamical methods, such as an impedance analyzer around the
resonance/antiresonance frequencies. Constraint parameters are discussed again in
Chapter 9.

In conclusion, we obtain the following equations:

e /eX = (1-k), (2.20a)
sP /st = (1 -k, (2.20b)
where
2 & 2.21
k —_— m- ( * a)

We can also write equations of a similar form for the corresponding reciprocal
quantities:

KX /x5 = (1-K?), (2.22a)
cE/eP =1 -k, (2.22b)
where, in this context,
2
2o h (2.21b)

cP (kg ")
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Figure 2.3. Schematic representation of the response of a piezoelectric material
under (top) constant applied electric field and (bottom) constant applied stress
conditions. Source: [4] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019;
p- 76. Reproduced by permission of Taylor & Francis Group.

This new parameter k in Equation (2.21b) is also the “electromechanical coupling
factor” in the “extensive” parameter description and identical to the k in Equation
(2.21a). Note the k expression derivation from the piezoelectric constitutive equations,
Equations (2.13a), (2.13b), (2.15a), and (2.15b):

. 2
2 (Coupling factor) Y W2 .
k= = (Product of the diagonal parameters) ~— sEeXey — D (i &%) Ko =1/e0 .
Example Problem 2.1

(1)  Verify the relationship

d? h?
sEeXeg D (o)’
This value is defined as the square of an electromechanical coupling factor

(k?), which should be the same even for different energy description systems (i.e.,
intensive or extensive description).

(P2.1.1)

(2) Derive the following relationships:

_ 1 _ 1
" (ko) [ — (kox™) (1 — K2)’

P (xox™) ]

eXe (P2.1.2)
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oF = = — (P2.1.3)
eP[1 — cD(?con)] (1 =k)
h2
d — CD(Kon) _ k2 (P2 1 4)
% o .
Wl o] h1—K)

Solution

(1) When Equations (2.13a) and (2.13b) are combined with Equations (2.15a) and
(2.15b), we obtain

X = cP(sEX + dE) + h(dX + e9eXE), (P2.1.5)
E = —h(sEX + dE) + (xox¥)(dX + e9eXE), (P2.1.6)
Or upon rearranging,
(1 — cPsE + hd)X + (hegeX — PA)E =0, (P2.1.7)
[hst — (ox®)d] X + [1 — (xox*)eoeX + hd]E = 0. (P2.1.8)

Combining the last two equations yields

(1 — cPsE + hd)[1 — (xox¥)epeX + hd] — (hege® — Pd)[hst — (kox*)d] =0, (P2.1.9)

which, when simplified, produces the desired relationship:

d? h?
EeXeg = D (ro)” (P2.1.10)
(2) From the two constitutive equations
x sEd |[X X P —n][x
[D] - { L o M andlE] 1% o {D] (P2.111)
we obtain E D -
X S d c —h||x
lD] N ld eoeX| | —h Kon] {D_' (P2.1.12)
Thus, the following equation should be satisfied:
sEd [P —n 1 0
{d soex} {—h ko | = lo J. (P2.1.13)

Accordingly, sFcP — dh =1, —sth + dxgx* = 0, dcP — egeXh = 0, and —dh + egeXxor* =
1. Then, we obtain the relationships Equations (P2.1.2)—(P2.1.4), by expressing the
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X

intensive parameters gpe”, sE, and d in terms of the extensive parameters xok”*, cP, h,

and k2.

2.3. Adiabatic Process 1—Piezothermal Effect
2.3.1. Piezothermal Coupling Effect

When we discuss piezoelectric coupling phenomena, we assume the isothermic
condition; that is, the specimen temperature is maintained constant, and even the
energy conversion is conducted between the electrical and mechanical energy. We
next consider the “adiabatic process”; that is, the specimen is isolated from the exter-
nal heat source, and the temperature may be changed during the energy conversion
process by the external input. When the electric field is constant, E = 0 in Equations
(2.12a) and (2.12b), we can obtain the following equations:

9°G 9°G
9°G 9°G
or
CP
S = TG +ar X, (2.24a)
x =arf+stX, (2.24b)

where the following notations are used: C, is the “heat capacitance per volume”
under X = 0 and E = 0, and s* is the elastic compliance under a constant E:

C, — _T<32_G)
P ;"TZ X,E
E ?G
= — (32 . 2.2
s (3X2>E,T (2.25)

_ (2%
AL = <8TBX)E

Let us discuss here the diagonal expansion coefficient — (g%
specific heat capacity. Recall the relation dg = TdS in the “reversible” thermal process,
where dgq is the thermal energy flow per unit “volume”, given by the total energy

flow dQ = Vdg (V: volume). The heat capacitance C,, is defined by

) in terms of the

g 0S 0°G
r=ar =~ Ttk (aTZ)XE (226)
Here, we used the relation S = — <?)_(T;> E It is noteworthy that the “specific heat

capacity” ¢y, more popularly measured experimentally, is defined by the required
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thermal energy per unit “mass” to increase the unit temperature. Thus, the above Cp
is related to the specific heat capacity with the mass density p:

Cp = pcp (2.27)

The “piezothermal coefficient” «} is usually called the “linear thermal expansion

coefficient”, because — <%> L= (g—%) The piezothermal coefficient «; originates

from a nonlinear elastic vibration or the anharmonic phonon interaction, which will
be discussed in Chapter 11.

This piezothermal coefficient a; contributes to the converse effect; that is, a
temperature change under stress application. Considering an adiabatic condition,

Equation (2.24a) gives C—f@ = —aXorf =— Dé’l; X, which means that a sudden

T
tensile stress generates a temperature decrease. The reader might have experienced

in their elementary or middle school age the feeling of a “cool” temperature when
they touched a thick rubber band on their lip immediately after expanding it (I liked
this experiment, though I could not understand the principle correctly).

The “piezothermal coupling factor” k'™ can be defined from Equations (2.24a)
and (2.24b) by
: 2
P2 _ (Coupling factor) _ oy ? . (2.28)

(Product of the diagonal parameters) <Cp > SE

2.3.2. Constraint Physical Parameters—Heat Capacitance and Elastic Compliance

We can derive the completely “clamped” (strain x free) heat capacitance and the

o . . . 2 :
“adiabatic” elastic compliance in terms of kT” theoretically, as follows, though these
may not be useful physical parameters.

Clamped Specific Heat Capacity

Under a strain-free condition (x = 0), we obtain X = — ‘;‘—59 from Equation (2.24b).
We experience this effect when a train rail track bends on a hot summer day, which
occasionally causes derailment accidents. Since Equation (2.24a) gives

S = F0+a(-50) = F(1 -0,
we finally obtain
Cy = CX(1—k"T%). (2.29)

The heat capacitance becomes smaller under the mechanical clamping.

Adiabatic Elastic Compliance

Under an adiabatic condition (S = 0), we obtain 6 = —C—];(X 1 X from Equation

(2.24a). The reader is reminded of the feeling of a “cool” temperature when you
expanded (tensile stress) a rubber band quickly and touched it on their lip. Since
Equation (2.24b) gives

X = zxL(—ClpthX> +sEX =sE (1 — kPT2>X,
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we obtain

adia iso

sES = BT (1 — kPT2>. (2.30)

2.4. Adiabatic Process 2—Electrothermal Effect
2.4.1. Electrothermal Coupling Effect

When the stress is constant, X = 0 in Equations (2.12a) and (2.12c), we can

obtain the following equations:
9’G 2*G
( T2 ) <8T8E) 231a)

092G
> ( T ) E, (2.31b)
or
CE
S=-Lo—pE, (2.32a)
T
D = —pb + egeXE, (2.32b)

where the following denotations are used: CE is the heat capacitance (per unit
volume) under X = 0 and E = 0, and gpeX is the permittivity under constant stress X:

cF--1(59),,
goeX = —(%)T,X. (2.33)
p (aaTZaGE <

The primary electrothermal coupling coefficient p is usually called the “pyro-
electric coefficient”, defined by

%G oP
v~ (5m5) =Gy @31

where we intentionally used the relation (‘3—% )x = D (= P), since the permittivity eX

is large in ferroelectrics.
We can denote the primary “electrothermal coupling factor” kET from Equations
(2.32a) and (2.32b) as

VET? _ (Coupling factor)? _ p? (2.35)
(Product of the diagonal parameters) CE ' '
-+ )eoeX

2.4.2. Constraint Specific Heat Capacity

In Equation (2.33), we introduced the CE heat capacitance (per unit volume)
under X = 0 and E = 0; that is, under a short-circuit condition of a ferroelectric
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specimen’s surface electrodes. We may consider a different heat capacitance under
an open-circuit condition (i.e., D = constant or zero).

Taking the first derivative of Equation (2.32a) with respect to T by keeping X =
D=0,

3 Cp, 06 JE
(ﬁ)X,D B T(ﬁ XD p(ﬁ)X,D' (2.36)
From Equation (2.32b) at D = 0, we obtain
E= Lo, (2.37a)
o€
oE p
it = . 2.

(BT)X,D gpeX (2.37b)

If we consider that C{;—) = T(g—;) x,p and (g—?) xp = 1, we can obtain
co_ct_ TP ey P B kT 2.38
P_P_Soex_ ]_ p(_ ) (2.38)

=7y

It is important to note that Equation (2.38) is analogous to Equation (2.20b) to correlate
the D-constant and E-constant parameters in terms of the “coupling factors”, k& T2

and k2.

2.4.3. Constraint (Adiabatic) Permittivity

Permittivity has been defined isothermally thus far. However, we may consider
“adiabatic” permittivity theoretically when no heat flow is hypothesized, such as the
case where a ferroelectric specimen is suspended in a vacuum chamber [2].

From Equation (2.32b), isothermal permittivity (6 = 0) is given by

goe™! = )

= (3¢ (2.39)

X,T

Under an adiabatic condition, by inserting S = 0 into Equation (2.32a), we obtain

T
o — Z—E . (2.40)

p

Inserting Equation (2.40) into Equation (2.32b),
2
pT X,T X,T Tp

D=—-p-=E Y E = 11— E. 241
pcg + €p€ &o¢ C5€0€X] ( )

Thus, “adiabatic (S = constant) permittivity” is related to “isothermal (T = constant)
permittivity” again by using the primary electrothermal coupling factor kET as

0e™S = goeXT(1 - kETZ). (2.42)
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The permittivity is lower under the “adiabatic” condition, in comparison with
that under the isothermal condition.

2.4.4. Electrocaloric Effect

Electrocaloric materials were initially the focus of significant application interest
in the 1940s (during World War II). The US and Japan accelerated the research
for developing air-cooling systems, particularly in submarines, without generating
mechanical noise (such as air compressor-embedded refrigerators). Due to the
confidential military research, not many publications have been disclosed on this
research. The author personally learned this from his former advisor at university in
the 1960s, when the research on this topic was fading out because the electrocaloric
effect was insufficient then for practical applications. However, at the beginning of
the 21st century, we restarted its development in parallel to the enthusiasm on new
compact refrigeration techniques in the “sustainable” society. Our report on the giant
response in Pb(Zn;,3Nb,/3)O3-PbTiO3; (PZN-PT) bulk single crystals in 2003 [5],
being 0.3 °C under an applied 1 kV/mm electric field, ignited the “renaissance of the
electrocaloric effect”. Successive reports on the high response, such as 12 °C under
an applied electric field of 48 kV/mm in thin-film (or ribbon) lead zirconate-titanate
(PZT) by Mischenko et al. in 2006 [6] (that is equivalent to 0.25 °C under 1 kV/mm, a
lower performance than PZN-PT single crystals), and the demonstration of 12 °C
of cooling near room temperature with a ferroelectric polymer by Neese et al. in
2008 [7], also accelerated the research boom in electrocaloric devices.

Equation (2.32a) gives the necessary formula for the electrocaloric effect. Con-
sider an “adiabatic” condition, that is, dQ = TdS = 0, or a constant entropy dS =

0, and Equation (2.40), 6 = Z—EE . Here, Cg is the heat capacitance per unit volume
p

(which is related to the “specific heat capacity” per unit mass as CE = C{;: /p) un-

oP

der E = 0, and p is the pyroelectric coefficient given by p = —(57 ). A material’s

)x
development strategy should be a higher p and a lower CE at room temperature
(i.e., operation temperature of ~300 K). A decreasing temperature requires a large
negative electric field. In order to escape from the electric depoling, we usually
initially increase the electric field gradually (isothermally) and then make it short
circuit suddenly (adiabatically).

2.4.5. Values of “Electrothermal Coupling Factor” kET

Let us obtain a practical number for the “electrothermal coupling factor” kET

(Equation (2.35)) in PZTs at room temperature:
2 2
KET= — EP .
(%) ggeX
e  Pyroelectric coefficient p
Pb(Zro 5, Tig 48)O03—0.3-0.7 x 10~* [C/m?2-K] [8]
PZT-5A—0.3-0.5 x 10~* [C/m?2-K] [9]
Pb(Zrg 74Tig36)03—2.7 x 10~ [C/m?-K] [10]

e  Specific heat capacity c;,
PZT-APC841—340 [J/kg K] [11]
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PLZT(6/80/20)—[338 J/kg-K] [12]

The specific heat capacity is measured by differential scanning calorimetry
(DSC), where endothermic and exothermic processes are monitored by keeping
the input energy flow constant. Since the measuring time period is around 5-10
minutes, we cannot observe the difference between the short-circuited and open-
circuited ferroelectric specimens, that is, c* and cP. This probably happens because
the pyroelectrically induced charge is almost screened by the migrating free charge
during a rather long measuring time (several minutes).

e  Mass density p
PZT-APC841—7600 [kg/m?3] [11]

e  Permittivity eX
PZT-APC841—1375 [13]

Finally, the electrothermal coupling factor is calculated as follows:

KET2 .t (0.5x 10~4C/m?K)*
(@)808" (7600 L kgK) (8.854x 10-12£)x1375 (2.43a)
=1.11x 1079,
KET = 0.105%. (2.43b)

We can conclude that the electrothermal coupling factor kT in PZTs is two
orders of magnitude smaller than the electromechanical coupling factor k of 30-70%.
Though we discussed theoretical differences, the constraint condition difference
between the E- and the D-constant or isothermal and adiabatic conditions does not
provide a measurable difference in experimental values for the specific heat capacity
and permittivity.

Example Problem 2.2

There is a PLZT (6/80/20) ceramic disk 1 cm? in area and 1 mm in thickness that
is electrically poled along the thickness at room temperature (27 °C). For an external
electric field of 1 kV applied to this sample anti-parallel to the polarization, calculate
the temperature fall of the sample, using the following data: p = 76 nC-cm 2K~!,
and C, = 2.57 J-cm ™K ~1. Note that C, is the heat capacitance, not the specific heat
capacity ¢, here.

Solution

The necessary equation is

dT)s = p-(T/Cp)-(dE)s, (P2.2.1)
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where p =76 x 107° C-m2K™!, C, =257 x 10° J-m3K~!, T =300 K, and E = —10°
V/m. Then,

(dT)s =[76 x 107> C-m2K~! x 300K x (—10° V/m)]/
6 31 o (P2.2.2)
[2.57 x 10° J-m™>K™"] = — 0.089 °C.
The negative electric field generates the temperature decrease.

A negative electric field of 1 kV/mm is rather high, close to the coercive field
of PZT ceramics. Thus, if we work on this specimen experimentally, significant
performance decay is anticipated under a cyclical operation, due to the depoling.
In practice, by increasing the field gradually (i.e., isothermally) up to E = 10® V/m,
we suddenly (i.e., adiabatically) reduce the field to E = 0, meaning that we obtain a
similar temperature decrease, without causing the “depoling problem” in the sample
(under the supposition that an almost linear relation is sustained for both + and —
electric fields).

2.5. Definitions of the Electromechanical Coupling Factor

Five different (but equivalent) definitions were introduced for the “electrome-
chanical coupling factor” k, which corresponds to the rate of electromechanical
transduction: the input electric energy to the output mechanical energy, and vice
versa [4]. Notice the difference between the static k, and the dynamic k;,, which are
used for “off-resonance” and “resonance” applications, respectively.

2.5.1. Mason’s Definition

When we apply the electric field on a piezoelectric material or when we apply
the mechanical force on the sample pseudo-statically or off-resonance (w—0), the
electromechanical coupling factors are defined, respectively, by Mason [14] as follows:

k? = (Stored mechanical energy/Input electrical energy), (2.44a)

k? = (Stored electrical energy/Input mechanical energy). (2.44b)

Refer to Section 2.2.2 for the derivation process. Equations (2.18a) and (2.18b)
indicate that both the above Equations (2.44a) and (2.44b) can be calculated exactly

the same as
2= d?/eyeX sE. (2.45)

where d is the piezoelectric constant, gyeX is the permittivity under constant stress,
and st is the elastic compliance under a constant electric field condition. Recall
Figure 2.2 for the derivation process.

2.5.2. Definition in Materials

Recall Equation (2.11) under an isothermal condition 6 = 0:

1/0°G\ .,  1[/3*G)\ ., 0°G
G(X,E) _G0+§(m)x +§(W)E + (axaE)XE. (2.46)
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Denoting (g%), <32T§>’ and (;;—g}) as st, egeX, and d, respectively, the internal
energy (per unit volume) U of a piezoelectric is given by the summation of the

mechanical energy Uy, (= f xdX) and the electrical energy Ug (= f DdE), as follows:

U=Upm+Ug = [(1/2)%;; 5" X;Xi + (1/2) Lo i dmiEm Xi]
+[(1/2) L dmi XiEm + (1/2)+ Lk m €0€mic™ ExEm] = Uge +2 Uye + Uge - (247)
= (1/2)%j5i" X;Xi 4+ 2(1/2) Ly A Em Xi + (1/2) Ly €0 k™ ExEm-

The above description includes the 3D tensor representation (refer to Chapter 3
for the details). The s and ¢ terms represent purely mechanical and electrical energies
(Upm and Ugg), respectively, and the d term denotes the energy transduced from
the electrical to the mechanical energy or vice versa through the piezoelectric effect
(Upme)- The electromechanical coupling factor k is defined by

k* = Upgpz /UmmUE, or k = Upe/ v/ UpmUge (2.48)

That is, k is the ratio of Uy over the geometrical average of Uy and Ugg.
Using the above energy terms (Equation (2.47)) with the sE, ggeX, and d notations,

(sEX2)(3e0eXE2)  steXey '

2.5.3. Definition in Devices

Though the constitutive equations can be derived from the internal energy
in Equations (2.13a) and (2.13b) in general, since the key equations are limited
depending on the specimen geometry, there are several definitions according to the
mode or specimen geometry in consideration:

E
ol =le o) e

and the electromechanical coupling factor is defined by

2 (Coupling factor)? B (d)? 251)
~ (Product of the diagonal parameters)  ( sEegeX) '

Table 2.1 summarizes the electromechanical coupling k;; for typical piezoelectric
resonators with different shapes and sizes.
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Table 2.1. The characteristics of various piezoelectric resonators with different
shapes and sizes.

Factor Boun.d‘ary Resonator Shape Definition
Conditions
X1¢0,X2=X3=0 31\/; d31
(a) k31 X :’ﬁO/x ¢01x #0 g S EEE X
1 2 3 11 0 33
X,=X,=0,X,#0 % _d,
(b) k33 X1=%,720, %, %0 s fee ”
17427 % 43 Fundamental Mode 33 70733
X. =X, #0,X,=0 3 2
(c) kp xi =X22¢ 0, x310 @ k31 1-0
Planar/Radial Mode
X1=X,#0,X3#0 € e*
@ k| o == .
X1= X2—0, X3¢0 33 C33D
Thickness Mode
© |k =k X=X,=X;=0,X,#0 W _|>/71 L
24 ™15 x=x,= X-=0 X=# < E X
1=*2 3=0,x5#0 Shear Mode %55 €1y
0 d31 Type Bimorph 3T/‘lf i 2
keff Bending 4 31

Source: Table by author.

Simple Piezo-Plate Configuration

When the vibration mode can be expressed directly by the same constitutive
piezoelectric equations, the electromechanical coupling factor k of the resonator is
equal to the material’s electromechanical coupling factor, which are represented
merely by the material’s constants such as the piezoelectric constant, dielectric
permittivity, and elastic compliance (and Poisson’s ratio).

Examples can be found:

o Ky mode—lxl} _ {snE d3 {Xl} provides ks = oy
Ds d31 50833X E3 v/s11FepeszX ’
E
X3 533 d33 Xs} . J
° k22 mode— = rovides k33 = —(—3—;
33 lDJ { ds3 80533)(] {ES P 33 v/ s33fepessX

_ || 2(syy 4s12F)  2dy
* fpmode { } - { 2d3; £0€33%
provides k, = kz1/2/(1 — o).

Xp
Ej3

Because the piezoelectric Poisson ratio |ds;/d33 | ~ 1/3 in PZTs, supposing the
difference in elastic compliances s11F and s33F is just around 10%, the reader can
easily understand that k33 >> k3; by a factor of three. You can conclude similarly that
ky > k31 by a factor of V3 (0~ 1/3).
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Example Problem 2.3

Piezoelectric, dielectric, and elastic properties of representative PZTs: soft PZT-

5H, semi-hard PZT-4, and hard PZT-8, are summarized in Table 2.2. Using these data,
answer the following questions, and learn the interrelations between these parame-

ters.

()

(b)

(©)

(d)

From the values of the piezoelectric d constant and permittivity e, calculate
the piezoelectric ¢ constants, and compare these calculations with the values
already provided in Table 2.2. Recall that g is a figure of merit for the “sen-
sor” application.
From the values of the piezoelectric d constant, permittivity ¢, and elastic
compliance s, calculate the electromechanical coupling factors k, and compare
these calculations with the values in Table 2.2.
Calculate the elastic Poisson ratio, |s13E/s33F |, and piezoelectric Poisson ratio,
| d31/ds3 |, for the above three PZTs, then compare the similarity. The elastic
Poisson ratio, |s13F/s33F |, is essential to calculate the disk vibration (i.e., kp)
(refer to Chapter 7).
We apply 100 W of electric energy on a ks3-type PZT-4 rod. How much of that
electric energy will be converted to mechanical energy stored in the PZT rod?
Among that stored mechanical energy, how much, at most, can we spend on
the outside work, taking into account the mechanical impedance matching?

Solution

()

(b)

(©)

(d)

The example calculation for PZT-4 is performed with a ks3-type rod:

933= d3a/epesst =285 x 10712/8.854 x 10712 x 1300 = 24.8 x 1073 [Vm/N]
Calculate this similarly for g3; and g15, and for other PZTs.

The example calculation for PZT-4 is performed with a k33-type rod:

k33 = d33/ vV 833E€0€33X =

854 x 10712/1/15.2 x 10712 x 8.854 x 10~12 x 1300 = 0.68
Calculate this similarly for k3; and ky5, and for other PZTs.
PZT-5H: Is13F/s33F | =7.2 x 10712/20.8 x 10712 = 0.35

| ds1/dsz | =274 x 10712/593 x 10712 = 0.46
PZT-4: 15155 /533F 1 =5.3 x 10712/152 x 10712 =0.35

| ds1/dss | =122 x 10712/285 x 10712 = 0.42
PZT-8: 1s15F/533F | =4.8 x 10712/13.5 x 10712 = 0.36

| da1/dsz | =97 x 10712/225 x 10712 =0.43
Both Poisson ratios are close in number, but |ds;/ds3 | seems to be a little larger
than |Sl3E/S33E .
Mechanically converted and stored energy = 100 W x k332 = 49 W. Among
the stored mechanical energy, 1/3-1/4 is usually spent. The maximum output
mechanical energy is 1/2 of the stored energy = 25 W, when we choose the
external electrical load by exactly matching the internal impedance (=1/wC).
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Table 2.2. Piezoelectric, dielectric, and elastic properties of typical PZTs.

Physical Parameter Soft Semi-Hard Hard
PZT-5H PZT-4 PZT-8
EM Coupling Factor
ky 0.65 0.58 0.51
ka1 0.39 0.33 0.30
ka3 0.75 0.70 0.64
kis 0.68 0.71 0.55
Piezoelectric Coefficient
ds1 (1012 m/V) 274 -122 -97
ds3 593 285 225
dis 741 495 330
231 (102 Vm/N) -9.1 -10.6 -11.0
933 19.7 249 25.4
Q15 26.8 38.0 28.9
Permittivity
enX/eo 3400 1300 1000
enX/eo 3130 1475 1290
Dielectric Loss (tand) (%) 2.00 0.40 0.40
Elastic Compliance
suf (1012 m2/N) 16.4 12.2 11.5
s12F -4.7 —4.1 -3.7
s1af 7.2 -5.3 -4.8
s33F 20.8 15.2 135
saaf 43.5 38.5 32.3
Mechanical Qum 65 500 1000
Density p (10°kg/m?) 7.5 7.5 7.6
Curie Temperature T (°C) 193 325 300

Source: Table by author, adapted from various company catalogues.

Complicated Piezo Component Configuration

When the structure of a vibrator is complicated, the electromechanical coupling
factor k of the vibrator is dependent on the specimen geometry/size, in addition
to the material’s constants such as the piezoelectric constant, dielectric permittivity,
and elastic compliance (and Poisson’s ratio). An example can be found in bimorph
structures, where k is dependent on the elastic shim material (metal) and thickness.
Only for a pure piezo-plate bimorph without a shim is the electromechanical coupling
factor irrelevant to the specimen size; that is, korr = V/3/4-k1 for k31-type bimorphs.
Note that the bending or flexural mode exhibits a smaller electromechanical coupling
factor in comparison with that of the base k3; plate.

2.5.4. Constraint Condition Method

From the relations between the E-constant, E-constant elastic compliances, sk,

sP, stiffness cE, cP, stress-free and strain-free permittivity eoeX, €9e¥, and inverse
permittivity KokX, ko™ (refer to Equations (2.20a,b)—-(2.22a,b)):
sP ¢

2 _ _ _ _
1-KF=%=F=%=— (2.52)
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2.5.5. Dynamic Definition

Though the details are discussed in Chapter 9, the k3;-type piezoelectric plate
geometry and its four-terminal equivalent circuit are shown in Figure 2.4. In the
four-terminal equivalent circuit, the electric terminal parameters, voltage V and
current I, and the mechanical terminal parameters, force F and vibration velocity u,
at the plate end are related to each other as follows:

i =0 B e

The dynamic electromechanical coupling factor k,? is defined by “(complex
power in the mechanical branch)/(complex power in the electrical branch)” under
a short-circuit condition of the mechanical terminal, or “(complex power in the
electrical branch)/(complex power in the mechanical branch)” under a short-circuit
condition of the electrical terminal, which leads to

(A7)
2= —ahs | (2.54)
1+ (A5)
Since Z1 = jZy tan(‘é’—) Y1 =jwCy, A = Zd%lw/ and Zy = wbpv = % in the k3;

2
mode, k2 is w dependent. By taking w — 0, k3 — k%l = S,f S’SSX. This dynamic k

definition is particularly useful when considering/calculating a complex structured
piezo-transducer, which is detailed in Chapters 7 and 9.

— "T/[ A=
hTL ] F

\/k, >

Figure 2.4. (a) k31-type piezoelectric plate geometry; (b) four-terminal equivalent
circuit for k3; piezo-plate. Source: Figure by author.
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Chapter Essentials

1.

Useful free energy expressions:

e Internal energy U=Q+W dU = TdS + XdxEd

e Helmholtz free energy A=U—TS dA = —S5dT + Xdx + EdD
For isothermal analysis of the material’s properties.

e Enthalpy H=U-Xx—-ED dH= TdS — xdX — DdE
For adiabatic analysis under externally controllable parameters.

e Gibbs free energy G=U-TS—-Xx—ED dG= —S5dT —xdX — DdE
For isothermal analysis under externally controllable parameters.

e Elastic Gibbs energy Gi=U-TS — Xx dGy = —SdT — xdX + EdD

For isothermal analysis of polarization under a stress-free condition.
Isothermal Process—Piezoelectric Coupling
x =sEX +dE 2 d?
{D:dX+sosXE "~ eXgg sE
sF: elastic compliance under constant E; ggeX: dielectric permittivity under
stress free; d: piezoelectric constant
Adiabatic Process I—Piezothermal Coupling

_ S 2
S = T@ + (XLX kPT2 _ ar
x=apf+sEX (&)SE
T

Cp : heat capacitance per volume under X =0 and E = 0; sE: elastic compliance
under constant E; «;: linear thermal expansion coefficient
Adiabatic Process II—Electrothermal Coupling

Ch 2
S = 06— pE KET? — p
D = —pf + epeXE (C{f) X
— ] €o€
T
CE : heat capacitance (per unit volume) under X = 0 and E = 0; gge*: permittivity
under constant stress X; p: pyroelectric coefficient
Heat capacitance (per unit volume) C’f [J/Km™3]; specific heat capacity (per
unit mass) c? [J/kg-K]
Cp = pcy.

kET2

Typical electrothermal coupling factor in PZTs: =1 x 107 (much smaller

than k?).
Five definitions of the electromechanical coupling factor:

(@) Mason’s definition:

2
k? = (Stored mechanical energy/Input electrical energy)= ( S](;Z )gX)
0
o (4)°
k? = (Stored electrical energy /Input mechanical energy)= (sEegeX)’
0

(b) Material definition (under a static condition):
u= UMM + ZUME + UEE
= (1/2)Lsii" X;X; + 2(1/2) ¥ diEm X
L]

m,i
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2
X 2 41 2 @
+ (1/2)]51;1 e0€mr” ExEmk” = Upe™/UpmUEg = W-

(c) Device definition (under a static condition):
When the primary constitutive equations are defined in a certain piezo
component as
x]  [sEd [X
[D} N {d goeX {E] ’
(Coupling factor)? B (d)?
(Product of the diagonal parameters)  ( sEepeX)’
(d) Constraint condition method:

K2 =

Between the E-constant, E-constant elastic compliances, sk, sP, stiffness

cE, cP, stress-free and strain-free permittivity xox*, xox*, and inverse
permittivity xox*, xox*:
- N
sk D X g (sEepeX) P (xox™)
(e) Dynamic definition: four-terminal equivalent circuit (Figure 2.4b):
Voltage V and current I, and mechanical terminal parameters force F and

vibration velocity u:

[=0 AR

AZ

1
+ (Z1 Y, )
ky, = k for w — 0;
kyn = P,ky2: k for n-th resonance mode.

Check Point

1.

(T/F) When we discuss the material’s performance change with the external
electric field E and stress X under an isothermal condition, the Gibbs free energy

dG = —SdT — xdX — DdE is most convenient. True or false?
(T/F) The Maxwell relation (g—g)T E= (g—g)T y indicates that the piezoelectric

constant d for the direct piezoelectric effect and converse piezoelectric effect
should be exactly the same. True or false?

From the following piezoelectric constitutive equations, derive the electrome-
chanical coupling factor k:

X] [P —h][x
£ =% e )
(T/F) The elastic compliance of a piezoelectric material under a short-circuit
condition (sF) is smaller than that under an open-circuit condition (sP). True
or false?
Provide the relationship between the permittivity of a piezoelectric material

under a completely clamped condition (¢*) and that under a mechanically free
condition (eX).
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6. (T/F) The piezothermal effect indicates that the sudden tensile stress on a solid
material usually exhibits a temperature decrease in this material. True or false?

7. What do you usually call the converse effect of the piezothermal effect men-
tioned above?

8.  What do you usually call the converse electrocaloric effect?

9.  (T/F) In a pyroelectric material, the spontaneous polarization increases with an
increasing temperature. True or false?

10. Which is larger when |dsz | > [d3; |, lkaz | or lks; 1?

Chapter Problems

2.1 We consider a more general effect in a ferroelectric without keeping any external

parameters (temperature, stress, electric field) constant. Let us start from

C

S = Tpe +a; X — pE, (CP2.1.1)
x=ua;0+sEX +dE, (CP2.1.2)
D = —pb + dX + eoeXE. (CP2.1.3)

In comparison with the normal piezoelectric effect (constitutive equations),
what modification is required?

Hint

When we consider a sudden external electric field E application, in addition
to the normal piezoelectric effect, the electrothermal effect is superposed; that
is, temperature modulation should be taken into account. On the contrary,
when we consider a sudden stress X application, in addition to the normal
piezoelectric effect, the piezothermal effect is superposed; that is, temperature
modulation should be taken into account. Suppose that the “quick external
parameter (E or X) application” is considered to be “adiabatic”, dS = 0. From
Equation (CP2.1.1),

CP
Thus,
C
0= —(a; X — pE)/(Tp). (CP2.1.4)
Equations (CP2.1.2) and (CP2.1.3) can be transformed as follows:
C
x=—uap(a; X — pE)/(Tp) +sEX +dE,
C
D= pla; X — pE)/(Tp) +dX + egeXE.

By introducing the piezothermal and electrothermal coupling coefficients as fol-
lows:
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KPT2 — AL
(S2)se
d 2
KET2 _ P
o
(T)soex
the above piezoelectric constitutive equations are re-transformed as follows:
C
x :sE(l—kPTz)X—l-(d—l—och/(Tp))E, (CP2.1.5)
C
D = (d+arp/(Z£)X +e0eX(1 — kET?)E, (CP2.1.6)

We can understand that, in addition to the pure piezothermal effect on s and

the electrothermal effect on ggeX, the piezoelectric coefficient is also modified. If
we define a new electromechanical coupling factor as

2 (Coupling factor)?

(Product of the diagonal 2parame’cers)
C
(@ +arp/())

(SE(1 — kPT?)epeX (1 — kET?)

(CP2.1.7)

the formula indicates an enhancement of the electromechanical coupling factor
under an “adiabatic” condition. It is important to note the piezoelectric constant
modulation:

C C KkPTIET
(d+ och/(Tp)) = d[1+ lep/d(T”)] =d(1+——). (CP2.1.8)
The coupling coefficient d modification is a coupled description of three coupling

kPT kET

factors, namely, the piezothermal , electrothermal , and electromechanical
k coupling factors. Because kT and kfT << k in PZTs, a measurable difference
may not be anticipated in practice.
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3. Tensor/Matrix Description in
Piezoelectricity—Linear Algebraic Equations

3.1. Tensor Representation

3.1.1. Fundamentals in Tensor

A physical property is a relationship between an input physical parameter and
the corresponding output physical parameter. A physical parameter can be a “scalar”,
“vector”, or “tensor”. Some “intensive” and corresponding “extensive” parameters
are summarized below:

Thermal Electric Mechanical

intensive | Temperature T | Voltage V
Scalar -

extensive | Entropy S Charge Q Mass M

intensive | —grad(T) Electric field E; Force F;
Vector Floct C :

extensive | Heat flux g; Looe urren Displacement L;

displacement D; | density J;

intensive Stress X;;
Tensor - .

extensive Strain x;;

Remember that the IUPAC defines “extensive” and “intensive” parameters
according to the dependency on the material’s volume, as introduced in Chapter
2. Examples of linear physical properties include the following: First, the relation
between a scalar (zeroth-rank tensor) and a scalar (zeroth-rank tensor) is given by a
scalar constant, exemplified by the electric capacitance C for the charge Q and voltage
V relation Q = CV, or by the specific heat capacity ¢, for a temperature change ¢
and the thermal energy per mass Q: Q = ¢, (Do not confuse the same notation
Q). Second, the relation between a vector (first-rank tensor) and a vector (first-rank
tensor) is given by a second-rank (i.e., 1 + 1) tensor, exemplified by the permittivity
tensor for electric displacement D; and the E; relation

Dy €11 €12 €13 Eq
D, = | e €2 €23 E;
Ds €31 €3 €33 Es

Third, the relation between a second-rank tensor and a vector (first-rank tensor)
is given by a third-rank (i.e., 2 + 1) tensor, exemplified by the piezoelectric constant
tensor dji for stress Xj and the electric displacement D; (or polarization P;) relation
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D1 diin din d113 dy1 dan d213

D, [=|| din dio 123 |, | doz1 doxp dozs |,
Ds; diz1 dizp dus dy1 dyp dos
dzin dziz dsi3 X1 X2 X3
d31 dap d33 Xo1 X Xos
d31 daz dais Xz1 X3 Xs3

Note that [(first layer matrix), (second layer matrix), (third layer matrix)] is used,
because we cannot describe the 3D (3 x 3 x 3) tensor expression in a 2D paper.

In general, an input physical parameter X is correlated with an output parameter
Y with a proportional parameter A in a linear relation approximation:

Y = AX. 3.1)

If X and Y are p-rank and g-rank tensors, A is supposed to be expressed by using a (p
+ g)-rank tensor:

Yi]'...q = Z Aij...qlm...lem...p- (3.2)

Im..p

A p-rank tensor Xy, , is represented based on an (x, y, z) coordinate system.

3.1.2. Transformation Matrix

When a tensor described in an original (x, y, z) coordinate system is expressed by
using a different (x, i/, z’) coordinate system, a new tensor X’ can be represented as:

Xlij. p T Zlm. . .pailajm- . -aqulm. ..qr (3.3)

where g;; is called the “transformation matrix”. The transformation matrix is a
“unitary matrix” without an imaginary part, satisfying the following relation (inverse
matrix = transposed matrix):

a1 412 413 a1 dp1 4z
ap1 dxy 43 = | a2 ax»n azx . (3.4)
azp 4aszp ass a13 daz3 as3

Try to familiarize yourself with the transformation matrix through Example
Problem 3.1.

Example Problem 3.1

Provide the physical meaning of the following “transformation matrices”:
-1 0 0 -1 0 0 -1 0 O 0 10
@fo -1 0 ®f0 1 0;]0 -1 0[;d)|[-1 00
0 0-1 0 01 0 0 1 0 0 1
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Solution

(@) When we start from the transformation matrix definition,

x/ -1 0 0 X
yi=10 -1 o]yl (P3.1.1)
z/ 0 0 -1 z

The above transformation can generate the point (x, y, z) movement of x —
—x, ¥ — —Y, z — —z, which is illustrated in Figure 3.1a. This corresponds to the
centro-symmetrical transformation with respect to the origin (0,0,0).

-1 0 0
(b) 0 1 0 | generates the point movement x — —x, y — vy, z — z, which is
0 0 1
illustrated in Figure 3.1b. This corresponds to a mirror (y-z plane) -symmetrical
transformation.
-1 0 O
(c) 0 —1 0 | generates the point movement x — —x, y — —y, z — z, which
0o 0 1

is illustrated in Figure 3.1c. This corresponds to an axis (z-axis)-symmetrical
transformation by 180°, or 2-fold symmetry.

0O 1 0
(d) —1 0 0| realizes the point movement x — y, y — —x, z — z, which is
0 0 1

illustrated in Figure 3.1d. This corresponds to an axis (z-axis)-symmetrical
transformation by 90° or 4-fold symmetry.

z z
Y ( ) /}’
Xy z

z ol-t-o---<-0

/ ,’(x y ) (x y Z)
;7 | ‘

7 x X

(=x /72 (a) (b)

Figure 3.1. Cont.
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(= vy 2)

(0 (d)

Figure 3.1. Rotation matrix examples: (a) center symmetry, (b) mirror symmetry,
(c) 2-fold symmetry, and (d) 4-fold symmetry. Source: Figure by author.

The “rotation matrix” is one of the most important and useful transformation
matrices, which the reader needs to use all the time. The axial rotation for a rotation
angle 0 about a principal z-axis is expressed by

cosf sinf O
—sinf cosf 0 . (3.5)
0 0 1

3.1.3. Crystal Symmetry

The symmetry of crystals is determined by three elements: centrosymmetry,
mirror symmetry and axisymmetry. In centrosymmetry, there exists a point around
which all faces or edges are translated to parallel pairs on opposite sides of the
crystal. The plane of symmetry (“mirror plane”) is a plane by which the crystal may
be divided into two halves which are mirror images of each other. Axisymmetry
possesses a line around which a crystal may be rotated 360° /7 until it assumes a
congruent position; n may equal 2, 3, 4, or 6. These correspond, respectively to
2-fold, 3-fold, 4-fold, and 6-fold axes. Based on these elements, all crystals can be
classified into 32 “point groups” (that is, crystallographic symmetry), and these
point groups can be divided into two classes, one with a center of symmetry and
the other without, as indicated already in Table 1.2 in Chapter 1. There are 21 point
groups which do not have a center of symmetry, among which 20 groups (point
group (432) being the sole exception) exhibit positive and negative charges generated
on the crystal surfaces when appropriate stresses are applied. These materials are
known as “piezoelectrics”. On the contrary, “pyroelectricity” is the phenomenon
whereby, due to the temperature dependence of the spontaneous polarization, as the
temperature of the crystal is changed, electric charges corresponding to the change
in the spontaneous polarization appear on the surface of the crystal.

Let us consider three example symmetries, 4, 4mm and 32 for further clarification
of these symbols. Figure 3.2 shows the symbolic expression of crystal symmetry: 4,
4mm, 32. The crystal symmetry 4 possesses a 4-fold symmetry, which means that
a 90° rotation around the axis (usually defined as the z-axis) does not change any
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0 -1 0
part of the physical performance. The rotation matrix for this crystalis |1 0 0

0O 0 1
around the z-axis. The crystal symmetry 4mm, which is exemplified by tetragonal
BaTiOs3, possesses two mirror symmetry, as well as a 4-fold symmetry, which means
that a 90° rotation around the z-axis, and/or a mirror transformation with respect
to the y-z and x-z planes, should not change any physical properties. The transfor-

0 -1 0
mation matrices for this crystal are rotation [ 1 0 0 | around the z-axis, and
0 0 1
-1 0 0 1 0 0
mirrors | 0 1 0| and |0 —1 0 |. The crystal symmetry 32, exemplified by
0 01 0 0 1

alpha quartz, possesses a 3-fold symmetry around the z-axis and a 2-fold symmetry
around the x-axis, which means that a 120° rotation around the z-axis and a 180°
rotation around the x-axis should not change any part of the physical performance.

-1/2 V3/2 0
The rotation matrices for this crystal are | —/3/2 —1/2 0 | around the z-axis,
0 0 1
1 0 O
and [0 —1 0 | around the x-axis. Both are obtained from a general formula
0 0 -1

cosf sinf O
—sinf® cosf O
0 0o -1

Crystal
Symmetry

ANZYTava
Xpression dev VAV

Figure 3.2. Symbolic expression of crystal symmetry: 4, 4mm, 32. Source: Figure

32

by author.

3.2. Tensor Component Reduction with Crystal Symmetry
3.2.1. Dielectric Permittivity

We consider the tensor component reduction scheme in this section. We first
take the simplest tensor (i.e., matrix) for the dielectric permittivity, which is defined
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so as to correlate an applied electric field E (vector) with and the induced dielectric
displacement D (or polarization P, vector) as follows:

D = ¢p¢E. (3.6)

Since both the electric field and the dielectric displacement are first-rank tensor (that
is, vector) quantities, the permittivity should have a second-rank tensor representa-
tion (that is, with two suffixes); this is described as

Dy €11 €12 €13 Eq
Dz =& €1 €& €23 Ez ’ (3-7a)
D5 €31 €32 €33 E3
or
Di = Z€0€i]'E]'. (37b)
j

A physical property measured along two different directions must be equal if
these two directions are crystallographically equivalent. This consideration some-
times reduces the number of independent tensor components representing the
above property.

If the dielectric displacement D in an (x, y, z) coordinate system is described in
an (', y, 2) system as D', D and D’ are related using a unitary transformation matrix
as follows:

Dy’ a11 a1 413 Dy

Dy | = | axn ax ax D, |- (3.8)
/

Ds a1 Az as3 Ds

The electric field is transformed in the same way:

E{ a;1 a1 013 Eq
E)Y | = | an axn ax Ey |, (3.9a)
E5' az1  Aasy 433 Es
or
E/ = Z]. a;iEj. (3.9b)

Then, we can calculate the corresponding ¢’ tensor defined by

Dy’ E{
D, |=e¢ | E | (3.10)
D5’ Es'
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Inserting Equations (3.8) and (3.9a) into Equation (3.10),

a4 413 D, a4 M3 Eq
apy Az a3 D, =e0¢ | ay an an Ey |,
a1 a4sp a4z D3 a1 a4sp A4z E;
then »
D, a1 A4 413 a1 A 413 Eq
D, = | a1 axn ax3 eof' | ay ax axp Ep
D3 az|  a4sp  as3 a1 a4z 4as3 Es
From the definition in Equation (3.7a),
e’ e ed
e’ e’ €23
e31’ €3 €33/
—1
a1 412 a13 €11 €12 €13 a1 d12 413
— | 421 42 4az3 €21 €22 €23 a1 dpp a3 (3.11)
as1 a3z 433 €31 €32 €33 a31 d32 4ass3
a1 412 413 €11 €12 €13 a1 A1 4asi
— | 421 4z 4z €21 €22 €23 a2 dpp 4z ’
31 432 4ass €31 €32 £33 a13 a3 4as3
t
a1 412 413 a11 412 413
where weused | a5 a4y axp = ay] ay  a3 (unitary matrix!). We
asz1 432 433 a31 432 4ass

can now understand that the transformation of the second-rank tensor can be calcu-
lated by

81']'/ = Zaikaﬂskl. (3.12)
k1l

Two-Fold Axisymmetry

When the crystal has a 2-fold axis along the z-axis, the dielectric permittivity
should have the same tensor form in terms of this transformation, that is, the rotation
matrix of Equation (3.5) for 6 = 180°:

-1 0 O
0 -1 0
0O 0 1
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From the condition in Equation (3.11):

811/ 812/ 813/ -1 0 0 €11 €12 €13 -1 0 0
e’ e’ ey’ |=|0 -1 0 €1 €2 €23 0 -1 0 =
ez’ ex’  exs’ 0 0 1 €31 €32 €33 0 0

(3.13)

€11 €12 — €13
€1 &€ —E€23

—€&31 —€32 €33

!/ / /
€11 €12 €13
Because this crystal has a 2-fold symmetry, &€ =cor | e/ 0/ €3 =
/ / /
€31 €32 €33
€11 €12 €13

€y €» €3 | must be held for this 180° rotation transformation. Thus, the

€31 €32 €33
following equivalency should be derived:

€11 €12 — €13 €11 €12 €13
€1 € —€23 = | ey ex €3 |- (3.14)
—&€31 —€32 €33 €31 €32 €33

Using the logic that x = —x — x = 0, we can obtain

€31 = €13 = €3 = €23 =0
e11,€22,€33 70,

€12 = €21

The permittivity tensor form with four independent components is expressed by

11 €12 0

€12 €2 0
0 0 €33

7

It is very important to note that most physical constants have a “symmetric tensor’
form. The proof involves thermodynamical considerations. Refer to [1].
Four-Fold Axisymmetry

When the crystal has a 4-fold axis along the z-axis, the dielectric permittivity
should have the same tensor form in terms of this transformation, that is, the rotation
matrix of Equation (3.5) for 8 = 90°:
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-1 0 O
0 0 1

From the condition in Equation (3.11):

en' e e 0 1 0 €11 €12 €13 0 1 0
e’ e’ ex! || -1 0 0 €1 €0 €3 -1 0 O =
e31”  ex' 33’ 0 0 1 €31 € £33 0 0 1 (3.15)
€2 —&1 €23
—€12 €11 —€13
€32 —&1 ¢&33
en’ e’ e
Because this crystal has a 4-fold symmetry, & =cor | e/ €0/ €3 =
31’ e’ ez
€11 €12 €13
€3] €2 €23 must be held for this 90° rotation transformation. Thus, the
€31 €32 €33
following equivalency should be derived:
€2 —&21 €23 €11 €12 €13
—e1p €11 —€3 | = | €1 €xn €3 |- (3.16)
€32 —¢€31 €33 €31 €32 €33

Using the logic that x = —x — x = 0, we can obtain

€10 = €21 = €32 = €23 = €13 = €31 = 0,

€11 = €, €33 # 0.

We again used the “symmetric property” of the permittivity tensor for this
derivation. The permittivity tensor form with only two independent components is
expressed by

€11 0 0
0 €11 0
0 0 €33
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Example Problem 3.2

Tensile stress X and compressive stress —X (with the same magnitude) are
applied simultaneously along the (1 0 1) and (1 0 1) axes, respectively, to a cube
specimen shown in Figure 3.3. When we take the prime coordinates (1’ and 3'), the
stress tensor can be represented as

X 0 0
0O 0 0 |- (P3.2.1)
0 0-X
Using the transformation matrix A (i.e., 8 = —45° rotation along the 2’-axis in
cos 0 0 sind
Figure 3.3) 0 1 0 ,calculate A-X-A~1, and verify that the above

—sinf 0 cosf
stress is equivalent to a pure shear stress in the original (non-prime) coordinates.

Figure 3.3. Application of a pair of stresses, X and —X, to a cube of material. Source:

Figure by author.
Solution
Using 0 = —45°, we can obtain the transformed stress representation:
1/v2 0 —1/V2 X 0 0 1/v2 0 1/V2
AXAT =1 ¢ 10 0 0 0 0 10 =
1/v2 0 1/V2 0 0-X -1/v2 0 1/V2
/V2 /V2 /V2 /V2 (P3.2.2)
0 0 X
0 0 0
X 0 0

Note that the off-diagonal components X3 and X3; have the same magnitude X as
the original tensile and compressive stresses, which represent a pure “shear stress” in
the non-prime coordinate. A shear stress is equivalent to a combination of extension
and contraction stresses. Though an extensional stress applied along a diagonal
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direction 1’ exhibits an apparently similar diagonal distortion of the crystal without
contraction along the 3’ direction, a smaller contraction occurs only from the Poisson
ratio of the extension. This is not exactly equivalent to the pure shear deformation,
with a volume expansion.

Example Problem 3.3

Force is a vector, while stress (composed of a pair of forces) is a tensor. Suppose
that a shear stress X3 is applied to a square crystal and the crystal is deformed by 1°
angle as illustrated in Figure 3.4. Calculate the induced strain x5 (=2x31).

Solution

Since x5 = 2x31 = 2tan, ¢ = 2¢ = 1° and 1° = 1/180 radian, x5 = 0.017. Typical
strain in a piezoelectric ceramic is around 0.1% or 0.001, leading to the shear angle 0.1°.
Thus, 1° is unrealistic in practice. Prior to reaching this deformation, crack/collapse
will occur. Note that shear deformation is not accompanied by a volume change
(the shadowed area is the same as that of the original square), different from the
longitudinal deformation. Refer to Example Problem 3.2.

F————

‘IO

\

——F

1

Figure 3.4. Shear stress and strain configuration. Source: Figure by author.

3.2.2. Piezoelectric Constant

Piezoelectric coefficients, providing there is a relation of the induced strain x
(second-rank tensor) with the applied field E (vector), are represented by a third-rank
tensor (i.e., 1 +2=23):

x =dE, (3.17a)

or providing there is a relation of the induced polarization P with the applied stress
X, as
P=dX, (3.17b)

or as

x]'k = ZdijkEi/ (3.18a)
i

P; =) dijXj. (3.18b)
jk
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Note that the first suffix “i” in d;j; corresponds to the electric component, while
the second and third, “j k”, correspond to the stress and strain, which are “commu-
tative” or “symmetric”. The d tensor is composed of three layers of symmetrical
matrices (“j,k” are commutative):

dinin diz dis
Firstlayer (i =1) | dyp; di dios |-

diz1 dizp  dis3

dy11 doi2  doi3
Second layer (i =2) | dyy; dopn dooz |/ (3.19)

dys1  dazp  dos3

dz1n  dzi2 daiz
Third layer (l = 3) d321 d322 d323

dzz1 dzzp  d3s33

Recall again that if two physical parameters are represented using tensors of the
p-rank and g-rank, the property quantity which combines the two parameters in a
linear relation is represented by a tensor of the (p + g)-rank.

For a third-rank tensor such as the piezoelectric tensor, a transformation due to
a change in coordinate system is represented by

i’ =Y ) 1y Bit%m T imn- (3.20)

Note that, though we can use a simple matrix product formula for the axis
transformation of the vector and second-rank tensor, it is difficult to describe the
transformation of the third- or higher-order tensors.

Four-Fold Axisymmetry

When the crystal has a 4-fold axis along the z-axis, the transformation matrix is
given (Equation (3.5) for 6 = 90°) by

0 1 O
-1 0 O
0O 0 1

Taking into account the tensor symmetry in terms of the second and third
suffixes such that dyp3 = di32 and dy13 = dp31 (each matrix of the i-th layer of the
d tensor is symmetrical), we have “18 independent d;;’s” (i.e., each layer has 6
independent components). Notice initially that aj; = 1, a1 = —1, and a33 = 1, which
means that the second suffix is automatically determined (2, 1 or 3) when the first
suffix is given (1, 2, or 3) in the practical calculation.
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di11" = X1 0 0118 m 810 Aimn = 0120120120200 = (F1)(+1)(+1)dn2p = dpoo

(3.21)

Since d111/ = dlll/ we obtain dlll = dzzz.
d122" = Y1 yun 01182m 20 A1y = 120210210211 = (F1)(=1)(=1)da11 = do1y (3.22)
Since dyy’ = dy9p, we obtain dyyy = dp17.
dizs’ = a12a33a33d233 = (+1)(+1)(+1)daz3 = dp33 (3.23)
Since dq33’ = dq33, we obtain dq33 = dp33.
d1p3’ = a1pan1as3dys = (+1)(—=1)(+1)dp13 = —do13 (3.24)
Since d123/ = d123, we obtain d123 = —d213 = d132 = —d231.
diz1” = a1pa33a12d03p = (+1)(+1)(+1)daz = dozp (3.25)
Since d131/ = d131, we obtain d131 = d232 = d113 = d223.
di12’ = a1pa12a21d001 = (+1)(+1)(—1)da21 = —do1 (3.26)
Since dllzl = d112/ we obtain dllZ = —d221 = d121 = —d212.
dp11’ = ap1a12012d120 = (—1)(+1)(+1)d122 = —d122 (3.27)
Since d»11’ = dp11, we obtain dy1q = —dq99.
dopo’ = ap1ap1a01d111 = (—1)(=1)(=1)d111 = —din1 (3.28)
Since doyy’ = dpyn, we obtain dyyy = —dqq7.
dpzz’ = ap1a33a33d133 = (—1)(+1)(+1)d133 = —d133 (3.29)
Since d233/ = dy33, we obtain dp33 = —dq33.
dys’ = apaniassdins = (—1)(—=1)(+1)d113 = d113 (3.30)
Since d223/ = d223, we obtain d223 = dllg.
dyz1’ = apazzaindizy = (—1)(+1)(+1)d132 = —di32 (3.31)
Since d231/ = d231, we obtain d231 = —d132.
do1o’ = apanpazdipn = (=1)(+1)(—1)dip = di (3.32)
Since dp12’ = dp1p, we obtain dp1r = dqp1.
d311’ = azaainaindan = (+1)(+1)(+1)dap = dax (3.33)
Since d311’ = d311, we obtain daj1 = dapo.
dsp’ = azzapiandary = (+1)(—1)(—1)dz11 = da1n (3.34)
Since d322/ = d3y,, we obtain dzp; = d3qq.
dsss’ = asza33a33dazs = (+1)(+1)(+1)d333 = dazs (3.35)
Since d333’ = da33, we obtain the trivial dazz = da33.
dsps’ = aszaniazsdaiz = (+1)(—1)(+1)d313 = —dz13 (3.36)
Since d323/ = d323, we obtain d323 = —d313.
dsz1’ = as3a33a12dzz = (+1)(+1)(+1)d33 = dszp (3.37)
Since d331/ = d331, we obtain d331 = d33p.
da1s’ = aszaioanidsnt = (+1)(+1)(—=1dszyq = —d

312 = as3a1a21d31 = (+1)(+1)(=1)d3p; 321 (3.38)

Since d315’ = da1p, we obtain d31p = —d3p1.

From the above 18 total equations, we will obtain the necessary relations:

From Equations (P2.1.2) and (P2.1.7), we obtain d1; = d211 = —d122 = 0.
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From Equations (P2.1.1) and (P2.1.8), we obtain dq11 = dopp = —dq11 = 0.

From Equations (P2.1.6) and (P2.1.12), we obtain dy1p = —dap1 =djp1 = —do12 =
do12 = 0.

From Equations (P2.1.3) and (P2.1.9), we obtain dq33 = d33 = —d133 = 0.

From Equations (P2.1.16) and (P2.1.17), we obtain d3p3 = —d313 = —d331 = da31 =
From Equation (P2.1.18), we obtain d31p = d3p; = —d3p1 =0.

From Equation (P2.1.4), we obtain d1p3 = —d213 = d13p = —d231.

Considering the tensor symmetry with m and n such that djy3 = di3; and dp13 =
dy31 (each matrix of the i-th layer of the d tensor is symmetrical), we can obtain:

di11 = dopp = di1p = dip1 = do11 = dop1 = dp1o = d122 = d331 = d313 = d133 = d33)

= d3p3 = dp33 = d312 =d3p1 =0,

dazz # 0,

d311 = d3p,

d113 = d131 = dooz = do32,

di23 = d132 = —do13 = —db3y.

Then, we obtain the d tensor with four independent components (d333, 4311, d123,
d131) as follows:

First layer (i = 1) 0 0 dis |-
diz1 dipz 0
0 0 —dis
Second layer (i = 2) 0 0 diz; , (3.39)
—dipz dizz 0
Third layer (i = 3) 0 dsg O

4mm Symmetry

Barium titanate introduced in Chapter 1 has a crystal symmetry of point group
4mm at room temperature, which means that the crystal has additional mirror sym-
metry normal to the x-z plane and the y-z plane, in addition to the 4-fold axisymmetry
around the z-axis. The additional mirror transformation matrix should be

-1 0 O 1 0 O
0O 1 O and [ 0 -1 0
0O 0 1 0O 0 1

We now consider the four previous independent components (dss3, d311, d123,
dq31) for the transformation matrix; a;; = —1,ap =1, a33 = 1.
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o d333’ = aszazs3azadaszs = (+1)(+1)(+1)daz3

Since d333’ = d333, we obtain the trivial ds33 = d333. 040

o dy’ =agpanands = (F1)(—1)(-Ddsn (3.41)
Since d311’ = da11, we obtain the trivial d3j; = daj1.

o dia’ =apanassdis = (-1)(=1)(+1)d113 = dii (3.42)
Since d113’ = dq13, we obtain the trivial dy13 = d113.

o dips’ =ananassdin = (—1)(+1)(+1)d123 = —d123 (3.43)

Since dq3’ = dqp3, we obtain djp3 = —dqp3 = 0.

In conclusion, the mirror symmetry further eliminates
di3 = dizp = —dr13 = —dp31 = 0.

3.2.3. Reduction in the Tensor (Matrix Notation)

A third-rank tensor has 3% = 27 independent components in general. Since
djjx is symmetrical in j and k (which correspond to stress and strain), some of the
coefficients can be the same, leaving 18 independent d;; coefficients; this facilitates
the use of the matrix notation.

Thus far, all the equations have been developed in the full tensor notation.
However, when describing the tensor and/or calculating actual properties, it is
advantageous to reduce the number of suffixes as much as possible. This is done by
defining new symbols, for instance, dp; = dp11 and dj4 = 2d123: the second and third
suffixes (stress/strain) in the full tensor notation are replaced by a single suffix, from
1 to 6, in the matrix notation, as follows:

Tensor Notation 11 22 33 23,32 31,13 12,21
Matrix Notation 1 2 3 4 5 6

Note that only when the shear stress and strain (4, 5, 6) are included, the
multiplication factor “1/2” is required in these new matrix array; Equation (3.19) is
rewritten as:

d1 (%)dw d1s
dig di2 dig |,

dis (%) dig di3

Nl—= N[

First layer (i = 1)

Nl—= N[=

dyn (%)d% 1) dos
Second layer (i = 2) % drg dy % dr |, (3.44)
3 )das <%)d24 d3
d31 (%)d% 3 )dss
Third layer (i = 3) dss dsn [ %)daa

Nl— NI

d35 <%> d3s ds3
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The last two suffixes in the tensor notation correspond to those of the strain
components; therefore, for consistency, we make the following change in the notation
for the strain components:

1 1
X11  X12  X31 X1 (i)x6 2)%s5
_ 1 1
X12 X2 X3 | T 2)% X2 \z)% |- (3.45)
1 1
X31 X23 X33 5 |X5 (§>x4 X3

The (1/2)s in Equations (3.44) and (3.45) originate from the shear strain defi-
nition, xg = x1p + xp1, etc. (i.e., strain is an extensive parameter). Then, we have

xj=) dgE (i=1,2,3j=12..,6), (3.46a)
i
or
X1 diy dy ds;
X2 dip dyn d3
Eq
x3 | _ | diz dxs das 5| (3.46b)
X4 dig doy dzy E,
X5 dis dys dss
X6 dig dae dse

Concerning the stress components, the (1/2)s are unnecessary because the stress
is an intensive parameter.

X1 X Xz X, X¢ Xs
Xio X Xp3 | = | X6 X2 X4 |- (3.47)
X31 Xz Xs3 X5 X4 X3

The matrix notation has the advantage of compactness over the tensor notation,
and it makes it easy to display the coefficients on a plane diagram (the 3D d;j expres-
sion can be described by a 2D matrix expression). However, it must be remembered
that in spite of their form, the d;;’s do not transform like the components of a normal
second-rank tensor. Piezoelectric matrices for the point groups 4 and 4mm are written
(from Equation (3.39)) as

0 0 0 diy dis O 0 0 0 0 dis O
0 0 0 ds —du0 ||l 0 0o 0o ds 0 o] (348
d33 d3; dsz 0 0 0 d33 d3; dsz 0 0 O
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Example Problem 3.4

The room temperature form of x-quartz belongs to class 32. Taking into account
the crystal symmetry (refer to Figure 3.5), verify that the piezoelectric matrix (d;) is
given by only two independent components, d;; and dq4:

diy —dip 0 di O 0
0 0 0 0 —dy —2dp|. (P3.4.1)
0 0 0 O 0 0

Notice that the piezoelectric tensor must be invariant for a 120° rotation around
the 3-axis and for a 180° rotation around the 1-axis. The transformation matrices are
respectively,

—-1/2 3/2 0 1 0 0
—v3/2 —=1/2 0oland |0 -1 0
0 0 1 0 0 -1

A
AW

Figure 3.5. 32 symmetry. Source: Figure by author.

Solution

We start from the 2-fold symmetry analysis first, because the rotation matrix has
a simple structure with only 3 components, 1 for each row and column, to eliminate
as many components as possible from the initial 18 components (each layer matrix of
the djj tensor is symmetrical). The transformation change in the coordinate system
can be expressed as
d:]k = Z ailajmakndlmn. (P3.4.2)
Imn
In the 180° rotation matrix around the x-axis, all the elements equal zero except
for aj;; =1, ap = —1, and a3z = —1, which means in the original equation, d; ik #0
only wheni = [, j = m, and k = n. Thus, we can simplify the equation into:

;jk = Zuiiajjakkdijk. (P3.4.3)
ijk

Since each layer matrix (i = 1,2, 3) is symmetric, there are 6 components in each

layer, with 18 components in the whole tensor, thet are independent, which means

/ A/ / I ) / 7/ / A/ / A7/ / A/ / 7/
11y = dypy, 113 = dizy 1oy = dizy, dygy = Ay, Ay = sy, dips = dogg, A3y = iy,
df5 = d%s,, and d},s = dfs,. Then, we can use this equation to find all the elements
in the new matrix:
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For the first layer,

dip = (1)(1)(1)dnr = din
dl1, = a11411a22d112

dipp = (1)(1)(=1)d112 = —d11
d15 = a11a11433d113

di3 = (1)(1)(=1)dy1z = —d113
dpy = a11022020d122

dip = (1)(=1)(=1)d122 = d10
d}ps = A11420a33d123

dip3 = (1)(=1)(=1)d123 = d1n3
ds5 = A11433a33d133

dizz = (1)(=1)(—1)d133 = d133

we obtain:

dijy =din dijpp = —diz djy3 = —dis din 0 0

d/121 = —dip d/122 = dix d/123 = d123 — 0 dioo dipz |- (P3.44)
disy = —dis  digp, =diz diz; = diss 0 dixn diszs

For the second layer,

dy = (=1)(1)(1)da11 = —dany
dyy, = A20a11022d212

dyy = (=1)(1)(=1)da12 = do1o
dh5 = a22011a33d213

dy13 = (—1)(1)(—1)d213 = da13
dhon = A2A2020022)

dypo = (=1)(=1)(—1)dazz = —dox
dhyy = A20a20330d223

dyps = (—1)(—=1)(—1)ds = —dan3
sy = A22a330330d233

dyzs = (=1)(=1)(—=1)dazz = —do33

we obtain

dhyy = —do1  dhy, =dpip dhyy =dois 0 dop dos

dhoy =doiy Ay = —dom dlpy = —dpoz | = [dao1 0 0 |. (P3.45)
dhyy = dpiz  digy = —dpz  digy = —do33 dy; 0O 0

For the third layer,

ds = (=1)(1)(1)dz11 = —d3n
dglz = 330114224312
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3o = (=1)(1)(=1)d312 = da1n
df15 = a33011a33d313

d313 = (=1)(1)(=1)d313 = da13
sy = (330220220320

A3 = (1) (=1)(=1)ds22 = —d322
5 = 330220330323

33 = (=1)(=1)(=1)ds23 = —d323
dhas = 0220330330233

dyzs = (=1)(=1)(—=1)ds33 = —d333

we obtain

dhyy = —dsin dhy, =dsip diy; =dsis 0 d3ip daiz

dé21 = d312 dézz = —d3» dé23 = —dss | > |ds; O 0 |. (P3.4.6)
dygy = d313  dygy = —d3p  dyzy = —dz33 dzz; 0 0

In conclusion, knowing the tensor symmetry such as d1p3 = d13p and d31p = dsp1,
the 2-fold symmetry reduces the independent components down to eight.

We will now work on the 3-fold symmetry. For a 120° rotation along the z-axis,
we have the following rotation matrix:

-1/2  /3/2 0
—3/2 —-1/2 0
0 0 1

Therefore, a7 = —1/2, a1p = —v/3/2, a1 = \/3/2, ayp = —1/2, and az3 = 1.
Note that from the previous solution, we obtained dj1p = dj13 = dip1 = di31 =
dy11 = dopp = dozp = dpo3 = dp33 = dz11 = dapp = dazp = d3p3 = dzz3 = 0, dq; =
d/m, dlpy = di12, .d§33 = di33, dﬁzg = dips, dyyy = do1o, diys -~ d21:f, délzl = d:/—nz,
d;513 = Id313. /We will celllculate the eight non-zero components, d},1, d1yy, d133, d193,
dy15, dy13, A3y, and dy, 5, below.

!/
o diy
!
di11 = L audtm@indimn = L 01181m@1nd1mn + 1 01281mA10d2mn
Imn mn mn

= apranandin + ananandin + a11a13a13d133
+2a11a12013d123+2012011012d212 + 2a12011 4130213, (P3.4.7)
d = (-3) () () + (=3) (1) (-3)dm +2(£) () (-3 )z,

)d122 + (-%)dm + (=2)do1p = din1.

[
_=
—_
—_

I
—~
|
[ec/leN)
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/
d122

/
dipy = X 01182820 A1y = Y 01102020 1mn + L 01202820 A2mn
Imn mn mn

= a11a21421d111 + 114220200122 + A11423a23d133 + 2a11a22a23d 123+

2a12a1a22d212+2a12a21a236213,

(P3.4.8)
= (D)) B+ () (D)Lt
2 () () - )i
diyy = (—3)d111 + <_%>d122 + (2)do1p = din.
di33
djas = ZZ a1183m 341 = Y A1103mA3nA1mn + Y A1203m83nd2mn
mn mn mn
= a11a31431d111 + a11432a32d122 + a11a433a33d133 + 2a11a32a33d 123+ (P3.49)
2a12a31a32d212+2a12a31a330213,
diz3 = <_%> (1)(1)d133 = (-%)dm = dy33.
13
dlos = ¥ 01182m 301y = L 01102m301mn + L A1202m3n2mn
Imn mn mn
= a11a21431d111 + 11422032122 + A11423a33d133 + A11422a33d 123+
a11a23a32d132 + a12a21a432d212 + a12a22a31d221 + a12a21a33d213+
(P3.4.10)

124234316231,
dlpy = (—%) (-%) (1)d123 + <_\/T§> (@) (1)da13,

dpy = 3123 + (—3)do1z = dios.
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/
d212

/ _ _
o = L 210120 A1y = Y A2101mA2n A 1mn + L 42201820 2mn
Imn mn mn

= ap1a11a21d111 + 214120224122 + A2141323d133 + A21412a23d123

+a2a11a20d212 + A22a12a21d221 + 204114230213 + A22413a21d231,

(P3.4.11)
_ 3 3 1
dy1p = (‘%) (‘%) (‘z)dlll + <—\/75> (@) (—%>d122+
1 1 1
(=3) (=3) (=3)dan + (—22) (42 (- 3) dorz
o = (—=3)din1 + (3)dion + (%)dzu = dp12.
dy3
d/213 =) a21a1ma3nd1mn = Y a1 A3nd1mn + Y 4220130 d2mn
Imn mn mn
= ax1a11a31d111 + 214124324122 + A21413433d133 + 421412433123
+a1a13a3pd132 + 200114324212 + 4220124310201 + A22a11a330213
(P3.4.12)
+axai3azdas,
_ 3 3
dyz = (‘%) (%) (1)di23 + <—%) (—%> (1213,
dhs = —3dios + 1dnz = dogs.
!/
312
dhy = ¥ a3@1mondimn = L 4330102020
Imn mn
= a33a11a22d312 + 61330112612161321 + ﬂ33011023d313 + a33a13g21d331, (P3413)
3o = (1)(—%) (—%>d312 +(1) <—§) (@)%21 = 1da12 — 3dsp1 = dapo.
li
313
dhys = ¥ 31013001y = L 43301mA3nA2mn
Imn mn
= a33a11a32ds12 + A334124314d321 + 4334114330313 + 330130314331, (P3.4.14)

313 = (1) <—%>(1)d313 = —1d313 = dags.
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We can summarize the eight obtained equations, Equations (P3.4.7)—(P3.4.14),
as follows:

[ 3d111 + digp + 231 = 0
di11 + 3d122 — 2d212 = 0
dz3 =0 [ di = —din
d123 + daz1 = 0 dy1p = —din
= . (P3.4.15)
di11 — di2 +2d212 =0 dyz1 = —diz3
d123 + daz1 = 0 (4133 = d312 = d331 =0
d31p =0
\ d3z =0
Using the matrix notation, di17 = d11, di22 = d1p = —d11, d123 = <%>d14 =
—dyz31 = — (%>d25, and dyp = <%>d26 = —dq11, we finally obtain the matrix form
as follows:
dp —din 0 dig O 0
0 0 0 0 —dy —2dy|. (P3.4.16)
0 0 0 0 0 0

Note that x-quartz has only two independent tensor/matrix components, di;
and d 14-

3.3. Tensor Description of Constitutive Equations

Two piezoelectric constitutive equations are shown below:

x = sEX +dE, (3.49a)

D = dX + ege*E. (3.49Db)

By using the vector and tensor (reduced matrix) notation, we can obtain
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1 sh St st sty Sis Sie X1
x2 S5 Sy Sy3 Sy Sy Sy X2
X3 _ 51 Sh Sy Sy S Sk X3
X4 N sh Si 541153 Sha 541155 54}156 Xy
X5 Sgl sk SE 554 sks Sk X5
X6 Sgl ng SEB 554 555 556 X6 (3.502)
din dy ds
dip dyp d3p .
1
n diz dxz ds3 E,
dig dyy dzy £
dis dys dss ’
dig dae d3e
Xy
X3
Dy din dip diz dis dis die <
Dy | = |dx dxn daz dy das do X3
D; d31 dzp dsz dzy dss dse X;L (3.50b)
Xe
Si{l Si{z 5%3 Ey
teo| ) & e E;
€3 % E;

Remember that the elastic and permittivity tensors are symmetric, but the
piezoelectric matrix is not symmetric, because “i” and “j” correspond to the electric
field and strain, respectively, and not commutative. We can also describe these matrix

expressions as

“zry
1

X; = SZ}:;X] + dmiEm

, (3.51a)
Dy =d,,; X; + Sos)nikEk

G,j=1,2-,6mk=1,23). (3.51b)

Note also that for d,;, i =4, 5, 6 (i.e., shear mode), d;;; = 2d;pq (pq should be 23,
31, 12).

Example Problem 3.5

Measured piezoelectric constant d;; values for right-handed quartz (crystal
symmetry 32) are given by
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23 23 0 —067 0 O
0 0 0 0 067 46 | x 10712 [C/N].
o 0 0 0 0 0

(a) For the case where a compressive stress of 1 kg-f/cm? is applied along the
1-axis of a quartz crystal, find the polarization generated (kg-f = kilogram
force = 9.8 N).

(b) For the case where an electric field of 100 V/cm is applied along the 1-axis, find
the strains generated.

Solution

(@) Considering the “compressive stress” has a negative sign, the polarization can
be expressed as

98,000
0
Py 23 23 0 067 0 0
pl=l 0 0o 0o 0 067 46|x10"2[C/N] 0 [N/mﬂ, (P3.5.1)
Py o 0 0 0 0 0 ’
0
0
) 23
p =0 |x107 [c/m. (P3.5.2)
P, 0

(b) The strain can be calculated as:

x1 23 0 0
% 23 0 0 1
0 0 0
- x1072[C/N] x | 0 | x 10* [v/m], (P3.53)
x4 067 0 0 .
x5 0 067 0
X6 0 46 0
X1 —-2.3
X2 2.3
0
- % 1075, (P3.5.4)
X4 —0.67
X5 0

X6 0
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Example Problem 3.6

Barium titanate shows a tetragonal crystal symmetry (point group 4mm) at room
temperature. Therefore, its piezoelectric constant matrix is given by (Equation (3.48)):

0 0 0 0 dyi 0
0 0 0 ds 0 0
dy3 d3 dy3 0 0 O

(a) Calculate the induced strain under an electric field applied along the crystal

c-axis (E3).
(b) Calculate the induced strain under an electric field applied along the crystal
a-axis (Eq).
Solution
X1 0 0 d31
x 0 0 d
2 ) ) d31 E,
S 3 E, (P3.6.1)
X4 0 d15 0
Es
X5 d15 0 0
X6 o 0 O

can be transformed into

X1 =Xy = d31E3/ X3 = d33E3’ (P3 6 2)

x4 = di5Ep, x5 = d15E1, x6 = 0.

(@) When Ej is applied, elongation in the c direction (x3 = d33E3, d33 > 0) and
contraction in the a and b directions (x1 = x, = d31E3, d31 < 0) are induced. The
ratio |ds1/ds3 | corresponds to “Poisson’s ratio” .

(b) When E; is applied, shear strain x5 (=2x31) = di5E; is induced. Figure 3.6a
illustrates a case of di5 > 0 and x5 > 0. The deformation can be intuitively
understood by the polarization cant under the electric field.
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T

Polarization

Figure 3.6. (a) Piezoelectric shear strain in the point group tetragonal 4mm, and
(b) [111] axis electrostrictive strain in the point group cubic m3m. Source: Figure
by author.

3.4. Matrix Notation of Electrostrictive Coefficients

In the solid state theoretical treatment of the phenomenon of piezoelectricity
(primary) or electrostriction (secondary electromechanical coupling), the strain xy; is
expressed in terms of the electric field E; or electric polarization P; as follows (refer
to the previous Section 1.2.4):

X =) digEi + ) MijnEE; =Y &iPi + Y QijuPiP;. (3.52)
i i i ij

Here, dj; and gj; are called the “piezoelectric coefficients”, and M;j; and Qi
are the “electrostrictive coefficients”. Since the E and x are first-rank and second-rank
tensors, respectively, d should be a third-rank tensor. However, E;E; and P;P; are
not tensors, precisely speaking, but we treat a combination of (E1?, E»?, E32, EoE3,
E3Eq, E1Ey) as if these are equivalent to a second-rank tensor. Note that these six
components are not independent at all. This is a smart way to convert the non-linear
behavior (electrostriction) to a linear algebra problem.

Using a similar reduction in the notation for the electrostrictive coefficients M;j,
we obtain the following equation corresponding to Equation (3.52):

1 dndndn Mn Man Msi Ma Msi Ma E?
X2 dip dn dy M My Mzm Mo Ms, Ma Ey?
Ey
X3 diz  dy ds Mz My Msz Myz  Mss Mg E3?
_ 5|+ . (3.53)
X4 dig  dos  da My My Mz My Mss  Me || E2E5
Es
xs dis  dos  das Mis My My Mys  Mss  Mes | | EE
Mg Mz Mszs My Mss Mg EE

X6 dig  das  dse

Tables 3.1 and 3.2 summarize the matrix notations of d and M for all crystallo-
graphic point groups [1].
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Table 3.1. Piezoelectric coefficient matrix. *

d =d._(n=1,2,3) i — electric field / polarization
% { mn ijk

_ Zd,“k (n=4,56) jk — strain / stress

mn

Symbol meanings

. Zero component
[ ] Non-zero component
@®—@® ctqualcomponents
@®——O Equalwith opposite signs
© -2 times of the @ connected point

| Centro symmetric point group
Point group 1, 2/m, mmm, 4/m, 4mmm, m3, m3m, §, Em, 6/m, 6/mmm. All components are zero.

Il Non-centro symmetric point group

Triclinic
Point group 1

e o o o o o
e o o o o o
e © o o o o/ (18)
Monoclinic
Point group 2 Point group 2
2%, ' 2|1
Standard ° 3 '_ o
orientation . (8) e o o
Point group m Point group m
. ) .
mJ_x
(Standard ’ ¢ °
orientation PY (10)
Orthorhombic
Point group 222 Point group mm2
Tetragonal
Point group 4 Point group 4
<0—0 ° >(4) <°—° >(4)
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Table 3.1. Cont.

Point group 422 Point group 4mm
(1) *—o o 3)
Point group 42m
2||x, . \
°/(2)
Cubic
Point group 432 Point group 43m, 23
(0) (1)
All components are zero
Rhombohedral
Point group 3 Point group 32
o .
. ._O\@)
—o o /@)
Point group 3m Point group 3m
mlx O_./@ ’_OX@
(Standard) .
orientation
—=o o —eo o - -/ (4)
Hexagonal
Point group 6 Point group 6mm
Point group 622 Point group 6
'
. . e
. . /()
Point group 6m2 Point group 6m2
(Standard) .
orientation
. . (1)

Source: [3] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 50. Reproduced by permission of
Taylor & Francis Group.
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Table 3.2. Electrostrictive coefficient matrix. *

an = Ql]kl (m/ n=1,2, 3)
* { Qun = ZQijkl (morn=4,5,6) ij — strain
Quun :4Qijkl (m, 1 =4,5,6) kl — electric field

Symbol meanings

o Zero component
(] Non-zero component
@®—@ ctqualcomponents
@®——O Equalwith opposite signs
® 2times of the @ connected component
©
X

2 times of the @ connected component

Q,—-Q,)

Trigonal
Point group 1, T

e © o o o o
e © o o o o
e © o o o o
e © o o o o
e © o o o o
e o o o o o/ (3
Monoclinic
Point group 2, m, 2/m
e o o ° e o o
e o o ° e o o
2 fold axis || x
2 o o ° e o o
Standard 2 fold axis || x.
orientation o e e H 3 ¢
e o o ° °
e - o/ (20 e o o (20)

Trigonal
Point group 222, mm2, mmm

e/ (12)
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Table 3.2. Cont.

Teragonal
Point group 4, 4, 4/m Point group 4mm, 42m, 422, 4/mmm
—eo o - —eo o - .
&—oO - - e/ (10) e e e - e/ (T)
Rhombohedral
Point group 3m, 32, 3m
< < (8)
Hexagonal
Point group 6, 6, 6/m Point group 6m2, 6mm, 622, 6/mmm
—eo o - - -
. . . . . X (6)
Cubic
Point group 23, m3 Point group 43m, 432, m3m
< \)(4) < .. \ 3)
Isotropic
\ ()

Source: [3] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 52. Reproduced by permission of
Taylor & Francis Group.
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Example Problem 3.7

Lead magnesium niobate (Pb(Mg; ;3Nb, ,3)O3) exhibits a cubic crystal symmetry
(point group m3m) at room temperature and thus, does not show piezoelectricity.
However, large electrostriction is induced under an applied electric field. The relation
between the strain and the electric field is given by:

X1 My My My, 0 0 0) Ey?
X Mp Mpp M 0 0 O E?
x3 [ _[ Mz Mip My 0 0 0 Es* ,  (P3.7.1)
X4 0 0 0 My 0 0 ErEs
x5 0 0 0 0 My O E3E4
X6 0 0 0 0 0 My EiE2

in a matrix representation (refer to Table 3.2, m3m symmetry). Calculate the induced
strain under an electric field applied along the [111] direction (based on a cubic
perovskite coordinate).

Solution

The electric field along the [111] direction, E[111}, is represented as (E[111]/ V3,
Epn/ V3, Eprnny/V/3). Substituting Eq = E; = E3 = Ejj117/+/3 into Equation (P3.7.1),
we obtain

X1 =X = x3 = (M1 + 2M1) Ep1111%/3 (=x11 = X2 = X33), (P3.7.2)

X4 = X5 =Xg = M44 E[111]2/3 (=2X23 = 2X31 = 2x12). (P3.7.3)

Extensional and shear strains occur in all perovskite primary axes. The distortion
is illustrated in Figure 3.6b. The strain x induced along an arbitrary direction is

given by
X = injlil]', (P3.7.4)
i,j

where [; is a direction cosine with respect to the i-axis. Therefore, the strain induced
along the [111] direction, x[111],/, is given by

X/ = Lij xij<1/\/§> (1/\/§>
= [x1+x2+x3 +2(x4/2+ x5/2+ x6/2)] /3 (P3.7.5)

= (M1 +2Myp + M44)E[111]2/3-
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On the other hand, the strain induced perpendicular to the [111] direction,
X[111] L, is calculated in a similar fashion as

gy = (M +2Mip — Mag/2)Epn*/3. (P3.7.6)

Figure 3.6b shows the distortion schematically. It is noteworthy that the volu-
metric strain (AV/V) is given by

X1y + 2L = (M1 + 2M)Ep. (P3.7.7)
Note that this volumetric strain is the same for (AV /V) under an electric field Eq:
X1+ 2xp = (M1 + 2 M1p)Eq?, (P3.7.8)

leading to the following conclusion: volume expansion (AV/V) is the same regardless
of the applied field direction.

3.5. Alternative Elastic Property Representation
3.5.1. Elastic Compliance and Stiffness

The elastic compliance and stiffness tensors/reduced matrices can be described
in general as

1 511 S12 %13 S14 S15 S16 X1

x2 Sp1 S22 523 Spa Sy5 Sog X2

X3 | _[S:1 S S Saa S Sz || X5 , (3.54)
X4 541 Sa2 543 Sua 545 Sue Xy

X5 551 Ss2 553 Ss4 Ss55 Ssg X5

X6 S61 562 %63 Sea Se5 Se6 X

X1 1 ‘12 %3 Cuu G5 Cpp 1

X2 Co1 Cop Cp3 Cyy Cp5 Cpp *2

X3 | |1 Cx €3 G G35 Ca || X3 ‘ (3.55)
X4 Cy1 Ca2 C43 Cyqa Cu5 Cyp X4

X5 €51 Cs2 €53 Csq €55 Csg X5

X C61 C62 C63 Coa Ce5 Cop X6
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The compliance and stiffness are mutually related as inverse matrices:

~1
‘1 %12 %3 Cuu G5 Ci6 S1 S12 %13 S14 S15 Si6
€1 G Co3 Coq Cp5 O 521 S22 S23 Sx4 S25 526
“1 32 C33 Caa (35 Cae |_ | %1 %32 %33 S S35 536 [ (3.56)
Cy1 Cpp C43 Caa C45 Cy S41 S S43 S44 545 Sg6
(51 Cs2 C53 Csg G55 s 551 552 Ss53 Ss54 S55  Sse
61 C62 C63 Cea Co5  Co6 S61 562 %63 Sea Se5 566

Compared with the “electrostrictive coefficient matrix”, which is not symmetric,
the “elastic constant matrix” is symmetric. Thus, there are 21 independent compo-
nents in the lowest symmetry crystals among 36 components.

A poled piezoelectric ceramic has a crystallographic (comm) symmetry (anisotropic)
with the elastic constant matrix (five independent components, s11, s33, S12, 513, 544)

(3.57)

n

—_

N

¥

—_

—_

H(I)

© (oM}
o O o O
o O O O O

0 0 0 0 2(511 — 512)

However, merely from the mathematical/analytical simplicity viewpoint, a
treatment with “piezoelectrically anisotropic”, but “elastically isotropic”, assumption
is often utilized in piezoelectric transducers. In an isotropic crystal, the elastic
compliance matrix is simplified as follows, with only two independent components,
s11 and sp»:

S11 S1p Spo 0 0 0

S15 811 S1o 0 0 0

S19 S12 511 0 0 0 (3.58)
0 0 2(s9—s12) 0 0
0 O 0 2(s11 — 512) 0
0 0 0 0 2(s; — s12)

The reason why the shear component sqg is given by 2(s1; — s1») can be intu-
itively explained as follows (refer to Example Problem 3.2): the shear stresses X1,
Xp1 are equivalent to X171’ (tensile), — X2, (compressive) in a 45° rotated coordinate
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system. If the material is isotropic, since the 45° rotation will not change the elastic
compliance, the strain xg should be the same for both stress conditions. We obtain

Xe = X12 + X1 = 51212(X12 + X01) = S66X6 = X} + X5y = (51111 X7 — 51122 X%,) +
(s1111 X35 — s1122X71) = 2(511 — 512) X7
Since X¢ = X11” (magnitude of the shear and longitudinal stresses should be equal

for this 45° rotation), we can conclude that sgg = 2(s17 — 512).
On the other hand, the elastic stiffness matrix (c1; and c17) is expressed as

€11 €1 Cqp 0 0 0
Cip €11 Cpp 0 0 0
Cip €10 Cqp 0 0 0
(3.59)
0 0 0 3(cq—c12) 0 0
0 0 O 0 2(cq; — c12) 0
0 0 O 0 0 2(cqy — c12)

From the condition (s;)-(c;;) = (I) (unity matrix), we obtain the following two
equations:

511011 +2812¢12 = 1
$12€11 + S11€12 + 512012 = 0

Accordingly, the relations between (s;j) and (c;;) are

C1q = (511+512) ( G511 = (C11+C12)
1 = (Sll —S12)(Sl1+2512) 11 (Cll_C12)(Cll+2C12)
_ 512 G1n = — 12
12 (s11—512) (s11+2512) 12 (c11—c12)(c11+2¢12) * (3.60)
1 _ 1 2 o _ 1
5\C —C e — S S e S
2(en —en) 2(sn—s12) (511 = 512) 3(c11—ci)

3.5.2. Young’s Modulus and Poisson’s Ratio

“Young’s modulus” (or the Young modulus) E is a mechanical property which
measures the stiffness of a solid material. It is defined by the relationship between
stress X and strain x in a material in the linear elasticity regime of a uniaxial defor-

mation:
X=E-x. (3.61)

The reader is more familiar with the Young modulus in mechanical engineer-
ing from their high school age, rather than elastic compliance in the physics field.
Because Young’s modulus is defined by the free condition (no clamping) along the
transversal direction, we had better consider that an inverse E corresponds to the

97



elastic compliance (because it is a stress-free, rather than strain-free, condition) in
practice. Taking into account the transversal shrinkage via Poisson’s ratio

o= —512/511, (362)

the elastic compliance matrix is represented by two parameters, E and o, in an
isotropic material as

1 —0 —0 0 0
—0 1 —0 0 0
1| -0 —0c 1 0 0
(sij) = (3.63)
Efo o0 0 21+0) 0 0
0O 0 0 2(1+0) 0
0O 0 ©0 0 2(1+0)

On the contrary, the elastic stiffness matrix is slightly more complicated than
the above, which can be derived from the relation (s;;)-(c;j) = (I) (unity matrix):

€11 €12 C12

12 €11 C12

, (3.64a)

o O O O

|62 12 1
(cis) »
0 0 0 Cq4
0 0 0 0 Cq4

o O O O O

where the matrix components are represented by Poisson’s ratio with Young’s
moduli as

— 1—
1 = o2
C12 = WE‘ . (364b)
— 1
C44 = mE

For the reader’s reference, the following equations provide another important
idea on ¢;j and s;;:

C11 = 1-c 1
T = OF0)(1—-20) 511

(3.65)
_ o? 1
€12 = (140)(1-20) s12
When we adopt 0 =1/4 — 1/3 (typical values for PZT’s), (1+01)z—10—%) =12-15
and m = 0.1 — 0.25. ¢y is slightly larger than the inverse of s11, while c1p

may be neglected depending on Poisson’s ratio o.
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3.5.3. Lamé Parameters

Another alternative representation often used is “Lamé parameters” (after
Gabriel Lamé, a French mathematician) in an isotropic elastic material, which is
analogous to the elastic stiffness from the viewpoint of the mechanical clamping
(strain-free) condition [2]. The “first and second Lamé parameters”, A and u, are
defined by both shear parameters as

A= C12, and U = Cop = (611 — C12)- (3.66)

N| -

Though the physical meaning of y is clear as the “shear modulus”, A = c1, may
not have a clear image. The elastic stiffness matrix is represented using the first and
second Lamé parameters as follows in an isotropic symmetry:

(A+2u) A A 0 0 0

A (A +2pu) A 0 0 0

A A A+2 0 0 0
(cij) = (A+24) (3.67)

0 0 0 w 0 0

0 0 0 u O

0 0 0 0 u

The diagonal ¢ can be obtained from Equation (3.66) as

c11 =A+2u (3.68)

The transformation relations between (E, o) and (A, ) are summarized as:

F— 1 (c11+c12) _ _Atp
S11 (c11—c12)(c11+2c12) — p(A+4p)

(3.69)
g = _Sﬂ = €12 = A
11 c11+ci2 2(A+u)

Lamé parameters are preferably used in sound propagation in a material. Taking
the material’s mass density p, the sound velocity for the longitudinal and transverse
waves is given by ¢ = (A +2u)/p and ¢ = j/p.

3.6. The Magnitude Ellipsoid

We derived the permittivity tensor form for a crystal with a 4-fold symme-
try with only two independent components in Subsection Four-Fold Axisymmetry

(page 71):

Dl €11 0 0 E1
D =& 0 €1 O E, |- (3.70)
Ds 0 0 e33 E;

We know the principal permittivity along x-, y-, or z-axis from this representation.
However, how can we obtain the permittivity along an arbitrary direction? The
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solution can be found by the elliptical surface, whose equation, when referring to the
principal axes of [sl-]-], is
2 2 2
& (3.71)
€y ey €5
This is called the “magnitude ellipsoid”, whose semi-axes are ¢, ¢,, and ¢;, as
illustrated in Figure 3.7.
The verification of this ellipsoid solution is conducted as follows. Let E =
(Ex, Ey, Ez), and since a constant (unit) electric field is applied on this crystal in
an arbitrary direction, E.2 + Ey2 + E,? = 1. From the relation D = (D, Dy, D;) =
(e0€11Ex, 80811Ey, €oes3E;), we obtain

D, D,? D,?
8282+8282+8282
07 ¢cx 0 ¢y 07 ¢z

= 1. (3.72)

Hence, the extremity of the vector D lies on the ellipsoid of Equation (3.71) (see
the details in Chapter 13).

In 4-fold tetragonal symmetry (4, 4, 4/m, 422, 4mm, 42m, 4/mmm), ex = ¢,
hence the permittivity ellipsoid is donut-shape (when e, > ¢,). On the contrary, in
orthogonal symmetry (222, mm2, and mmm), all principal ¢y, ¢,, and ¢, are different.
Thus, the three ellipsoid axes are all different.

z

Figure 3.7. Permittivity ellipsoid for a crystal with a tetragonal 4-fold symmetry.
Source: Figure by author.

Chapter Essentials

1.  When we correlate one input physical parameter X with an output parameter
Y, we introduce a proportional parameter A in a linear relation approximation:

Y =AX.

When X is a p-rank tensor, and Y'is a g-rank tensor, A is supposed to be expressed
by using a (p + g)-rank tensor:

Yz] g~ Zlm. . .pAij. ..qlm...p le. ..p

2. Transformation matrix: unitary
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a1 412 413 a1 d12 413
a1 4ax  4az3 — | 421 42 4az3 ’
asy 4z 4s3 asy 4z 4as3
-1 0 0 -1 0 O
centro-symmetry | 0 —1 0 |;mirrorsymmetry [ 0 1 0 |;rotation
0 0 -1 0 0 1
cosf@ sinf 0
matrix | —sinf cos@ 0
0 0 1

The shear stresses X15, X»1 are equivalent to X11” (tensile), —X5,” (compressive)
in a 45° rotated coordinate system.

Reduction in the Tensor (Matrix Notation):

Tensor Notation 11 22 33 23,32 31,13 12,21
Matrix Notation 1 2 3 4 5 6

Stress/strain, stress/strain reduced notation:

X1 X2 X3 X1 Xe Xs

Xip Xop Xz | = | X X2 X4,

X31 X2z Xs3 Xs Xy X3

X1 X2 X31 X1 (%)’% 3 )%
X12 X2 X23 | = % X6 X2 % X4
X31 X23 X33 3)xs (%)x4 X3

(Xl,Xz, X3, X4, X5, X6)r and (xl,xz, X3, x4,x5,x6).

Tensor Description of Piezoelectric Constitutive Equations (4mm Symmetry
Case)

X1 S;y S S;3 0 0 0 [ X; 0 0 dxn

X2 S;, S;; s;3 0 0 0 [ X2 0 0 dxn .
X3 _ 513 513 ss 0 0 0 X3 N 0 0 dss e |,
Xy 0 0 0 s, 0 0] X 0 di5 0 -

X5 0 0 0 0 sy, 0/[|xs ds 0 0 :
%g 0 0 0 0 0 s/ \Xe 0 0 0
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X1
X2

Dy 0 0 0 0 ds O en O 0 Eq
X3

Dy = 0 0 0 d15 0 0 +ée | 0 €11 0 E,
Xy

D3 d31 d31 d33 0 0 0 0 0 €33 E3
X5
X6

6.  Permittivity Ellipsoid:
2 2 2
izt =t
7.  Alternative Elastic Property Representation in Isotropic Materials

e  Young’s modulus and Poisson’s ratio

1 -0 -0 0 0 0
- 1 —c 0 0 0
(55) = % -0 -0 1 0 0 (E _ si' o= —512/511>
0 0 0 21+0) 0 0 n
0 0 0 0 2(1+0) 0
0 0 0 0 0 2(1+0)

° Lamé Parameters

(A +2p) A A 0 0 0
A (A +2p) A 0 0 0
A (A+21) 0 0 0 1
(cijf) = A=ci2, pt=ce6 = 5(011 —c12)]
0 0 w0 0
0 0 0 0
0 0 0 0 "
Check Point

1. (T/F) The following two force configurations are equivalent mathematically
(Figure 3.8). True or false?
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4

Figure 3.8. Shear stress (left) and uniaxial stress (right). Source: Figure by author.

2. The permittivity ¢;; tensor is a second-rank tensor. How many independent
components are there in general (in the lowest symmetry)?

3. The piezoelectric d;j tensor is a third-rank tensor. How many independent
components are there in general (in the lowest symmetry)?

4. The elastic compliance s;j; tensor is a fourth-rank tensor. How many indepen-
dent components are there in general (in the lowest symmetry)?

5. Provide two independent permittivity tensor components for a 4mm crystal
symmetry using a tensor notation ¢;;.

6. Provide three independent piezoelectric tensor components for a 4mm crystal
symmetry using a reduced notation d;.

7.  Provide two independent elastic compliance tensor components for an isotropic
crystal symmetry using a reduced notation s;;.

8.  In an isotropic crystal symmetry, provide the Young modulus E and Poisson
ratio in terms of the elastic compliance reduced notation s;;.

9. Inanisotropic crystal symmetry, provide the first and second Lamé parameters
in terms of the elastic stiffness reduced notation ¢;;.

cosf sinf 0
10.  (T/F) The rotation matrix (f) around the x-axisis givenby | —sinf cosf 0
0 0 1
True or false?
-1 0 0
11.  Choose the correct answer. The transformation matrix [ 0 1 0 | means:
0 01

(a) centro symmetry with respect to the origin (0,0,0); (b) 180° rotation with
respect to the x-axis; (c) mirror symmetry with respect to the y-z plane; (d) none
of the above.

Chapter Problems

3.1 Derive the relations between the compliances and the stiffnesses for a cubic

m3m symmetry.

Hint
The solution should be:
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(s11+s12)
C o
1= (o1 —s12) (511 +2512)
512

Cip = — .
12 (s11—512) (511 +2512)
_ 1
C44 = 5,

3.2 Knowing the permittivity tensor/matrix of a tetragonal (4-fold) symmetry:

€11 0 0
0 €11 0 ’
0 0 €33

calculate the permittivity of a crystal slab with the normal direction 0 from the
z-axis.

Hint

The permittivity ellipsoid for a tetragonal crystal is given by

2ot y2+ = =&l

811 €11

Since the dlrection 6 condition is given by
22 = (> +y*+2%) cos? 0, (x*> +y?) = (x2 + y? + %) sin? ¥,

(x2+y2+22)<s1n 0 _|_cos29> 2602,

833

eff —1/ (ssz c05229>.

e112 €33

3.3 Prove that the volume change of a cubic crystal under uniaxial tension X is

independent of the direction of the tension and is given by (s11 + 2s12) X.
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4. Nonlinear Phenomenology—Taylor
Expansion II

4.1. Fundamentals in Phenomenology

4.1.1. Introduction to Nonlinear Phenomenology

A thermodynamic phenomenological theory is discussed based on the free
energy expressed in the form of an expansion series in terms of the intensive and
extensive physical properties: one with electric field E (intensive) and polarization P
(extensive), one with temperature T (intensive) and entropy S (extensive), one with
stress X (intensive) and strain x (extensive), and, if applicable, one with magnetic
tield H (intensive) and magnetization M (extensive). In our ferroelectric discussion,
the last parameters will be neglected.

In Chapter 2, we considered a practical formula of the Gibbs free energy G(T,
X, E) for the case of a small change in temperature § = T — T (room temperature),
external X, and E (1D case). If the change in parameters is small, we may adopt the
three-parameter Taylor expansion approximation up to second derivatives in order
to discuss just the linear relationships:

o(r%.5) =G+ ()0 ()+ () + ()01 (28) ¢

4.1)
0°G \ 2
T2 <8E2>E +(8T8X>0X+( ) <8X8E>XE
Taking into account dG = —SdT — xdX — DdE, we first obtain the relations,
0G _ oG . B
(aT>9XE o = S0 (BX)GXE , = ¥ and <aE>9,X,E—0 = —Dy. Take these

constants as the new “origins”, and set them to “zero”. Then, Equation (4.1) can be
transformed as:

oG 9*G 9°G 9°G

= _(a_) = _(W)Q - (m)x— (m)’f (2.22)
G 9°G %G 9%2G

=(5x) = Grx)o- G )x - () 0
oG 9°G %G 9?G

D=- (ﬁ) = (m)" - (axaE)X - (@)E (129

Based on the above linear relationships, we derived several types of “constitutive
linear equations”.

However, as the reader is familiar with so-called “hysteresis” in the polarization—
electric-field and strain—electric-field relations, one of the characteristics in ferro-
electrics is the nonlinear performances. For this purpose, we will take higher-order
Taylor expansion terms in this chapter. Small hysteresis observed in small parame-
ter modulation of the electric field or stress can be treated as the phase delay (e.g.,
viscoelastic damping) in the linear relationship in Equation (4.2) primarily by inte-
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grating complex parameters into the physical coefficients. This situation is discussed
in Chapter 6 Loss in Piezoelectrics.

Let us start the fundamentals of Taylor expansion terms by taking Helmholtz
free energy, A=U — TS or dA = —SdT + Xdx + EdD in derivative expression, which
is useful for discussing the internal energy of material under an isothermal condition.
Taylor expansion approximation up to higher-order terms is described as follows:

AT, x,P) = Go+ (3)0+ (38 )x+ (36 )P+ 3 (54)e?
+3 <8x2> %(a—A> ( >9x+<aTaP)6P+<6x8P) P
+3(58)0°0+ 3 (28) 2 + 3(58) P + 1 (5 ) 0 + 3 (55 ) o
+h () + (s ) 0P+ 3 ()2 + 3 ()P +-

As you have learned, temperature is a scalar quantity (Oth-rank tensor), polar-
ization is a vector (1st-rank tensor), and strain is a tensor (2nd-rank tensor), and their
product should have characteristics of a (p + g)-rank tensor. For example, when
we take the transformation matrix on P;P;P (equivalent to P3 in 1D expression),
we need to take the treatment similar to the 3rd-rank tensor, and the Taylor expan-

(4.2)

. - 3 . .
sion coefficient <ap,%ﬁ) should be represented by three suffices as a;j, which

are handled as the 3rd-rank tensor. When we discuss the crystal symmetry, the

description of &;;; on a new coordinate is expressed by the transformation matrix
p ij p y

(a;j) as “;jk = Z Aj1AjmAkn Xy As another example, when we take x; PP (i = 1

2,---,6)or xlmP Py (Im =1, 2, 3), the Taylor expansion coefficient <—ax aPAaPk> (or

(%ﬁ)) should be represented by four suffices as «;,,jx, which are handled

as the 4th-rank tensor. When we discuss the crystal symmetry, the description of

Xpjk ON @ NEW coordinate system is expressed by the transformation matrix (aif)

as aj, = Y A1ofAmpAjgagLopgr- In this sense, we categorize the higher-rank tensor
opqr

terms under an isothermal condition (8 = 0) as:

PiP;Py (3); x;i PPy (4); x;x; Py (5); x;x;xy (6)

PiP; PPy (4); x;PiPc Py (5); xix; PPy (6); x;xjxk Py (7); xixjxx; (8)
PiP; PP Py, (5); x;Pi PP Py (6); x;x; P PPy (7); - -

P; PP Py Py, Py (6); Xi PP P Py Py 7); XiXj PP P Py 8); -

4.1.2. Elimination Theorem of Taylor Expansion Terms

Theorem 1. When the crystal possesses a “centrosymmetry”, the odd power of the expansion
tensor coefficient wjj...; becomes “zero”.

This theorem can be verified as follows: note the transformation matrix for cen-
-1 0 0

trosymmetry | 0 -1 O Asocl] 1= L Ajljy Applgy...p, and (ij---1) =
0 0 -1 fm---p
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(Im - - p), the multiplication of a;ajy, - - - a, = —1 for the odd number of a;’s. From
Xpp..p = —Qpy...p, We can conclude that agp,..., = 0. Another explanation is that
the centrosymmetry transformation changes the polarization P polarity, that is,
P;P;Py — —P;P;Py. In order to keep the Helmholtz energy constant, we should elim-
inate the odd power of the polarization terms. Needless to say, the odd power of the
strain terms remains, because x; itself is the even-rank tensor.

4.1.3. Polarization Expansion Series

Let us start from the simplest model with only polarization as an “order parame-
ter” in order to discuss the para- to ferroelectric phase transition. The order parameter
is created and determined by the cooperation of microscopic quantities and yet gov-
erns the behavior of the whole system. Using the Taylor expansion series of the free
energy in terms of the polarization P (a simple 1D model is initially adopted):

F(P) = F(0) + a1 P + aoP? + a3P? + a4P* + asP® + agP® + . .. (4.3)

Theorem 2. When we discuss the phase transition, we assume that enerqy description is
common through the paraelectric and ferroelectric phases and that the reduction of the Taylor
expansion terms follows the highest symmetry paraelectric phase. When the paraelectric phase
is “centrosymmetric”, the odd power of the expansion tensor coefficient a;;... becomes “zero”.

We assume that the free energy of the crystal should not change with polariza-
tion reversal (P — —P), because the charge or permittivity in the capacitance should
not be changed according to the capacitor orientation/upside down. This is the key
in practical electronic equipment. From the condition F(P) = F(—P), the expansion
series should not contain the odd power of terms of P, only even powers of P:

F(P) = ayP? + a,P* + agP® + . .. (4.4)

4.1.4. Temperature Expansion Series

Next, we take into account the expansion series in terms of P and temperature 0
(9 =T-— T())Z

F(P,0) = a,P% + asP* + agPO + ... + b10 + by0% + ... + c16P + ...

From S = — (3—5) = — by, we set by = 0, because a constant entropy is meaningless. The

term b,6? is a higher-order term of temperature to be neglected. Thus, we adopt only
c10P2. Note that a possible term 6P is omitted from the reason F(P) = F(—P) again
(as long as the higher temperature phase possesses centrosymmetry, such as a cubic
perovskite). It is important to understand that the product 6P? of the two parameters
(P? and 6) explain the “coupling effect”; that is, T change causes P change to keep
the same free energy (this effect is called the “pyroelectric” effect), or E application
causes T change (this is called the “electrocaloric” effect). For simplicity’s sake, we
introduce a new notation a by combining a,P? and c16P?:

(1/2)aP? = a,P +¢;TP? = (1/2) (L1 P2,
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The « is the only parameter with a temperature dependence. We also introduce the
following notations:

(1/4)BP*, (1/6)yP°.

4.1.5. Stress Expansion Series

Now, we construct the elastic Gibbs free energy form by adding the stress
expansion series:

Gi1(P, T, X) = (1/2a(T)P? + (1/4)BP* + (1/6)yP° + ... + d1 X + Do X? + ... + e PP X + ...
[«(T) = (T — To)/eoCl.

From x = —(g—)F() = —dj, and given that the constant strain is meaningless, we set d; =0
(strain origin). P?X is the fundamental electromechanical coupling (i.e., “electrostric-
tive coupling”), which explains the polarization generation under stress, or strain
generation under an electric field. This argument is also valid when spontaneous
polarization exists in the ferroelectric phase, in addition to the case that induced
polarization exists in the paraelectric phase. Needless to say, it is not valid in quartz,
which does not have the centrosymmetric paraelectric phase in the high temperature
range (quartz is not even a ferroelectric). Quartz includes the PX coupling term
in its discussion (i.e., the odd power of P can exist). Introducing new notations
dy = —(1/2)s (elastic compliance) and e; = —Q (electrostrictive coefficient), we finally
obtain popular “elastic Gibbs energy” Gi:

G1(P, X, T) = (1/2)a(T)P? + (1/4)BP* + (1/6)yP® — (1/2)sX? — QP>X

(4.5)
[a(T) = (T — Ty)/€oCl].

4.2. Landau Theory of the Phase Transition

We assume that the Landau free energy F in 1D is represented in terms of
polarization P (excluding stress terms initially) as:

F(P, T) = (1/2)aP? + (1/4)BP* + (1/6)yP® [a(T) = (T — Ty)/£oC]. (4.6)

The coefficients a, B, ¥ depend, in general, on the temperature; however, as discussed
in the previous section, only « is assumed to be temperature dependent (linearly)
in the following calculation. The phenomenological formulation should be applied
for the whole temperature range over which the material is in the paraelectric and
ferroelectric states (this is the fundamental assumption).

As the spontaneous polarization should be zero in the paraelectric state, the free
energy should be zero in the paraelectric phase at any temperatures above its Curie
temperature (or the phase transition temperature). To stabilize the ferroelectric state,
the free energy for a certain polarization P should be lower than “zero”. Otherwise,
the paraelectric state should be realized without making the phase transition. Thus,
at least, the coefficient a of the P? term must be negative for the polarized state to
be stable, while in the paraelectric state, it must be positive, passing through zero at
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some temperature Ty (“Curie-Weiss temperature”). In order to satisfy this argument,
we introduce a linear relation in terms of temperature:

o= (T —Ty)/eC, 4.7)

where C is taken as a positive constant called the “Curie-Weiss constant” and T is
equal to or lower than the actual transition temperature T (“Curie temperature”).
The temperature dependence of « is related on a microscopic level to the temperature
dependence of the ionic polarizability coupled with thermal expansion and other
effects of anharmonic lattice interactions. Refer to the discussion in Chapter 11 later.
The equilibrium polarization in an electric field E should satisfy the condition:

(F /9P) = E = aP + BP3 + ¢ P°. (4.8)
With no electric field applied, Equation (4.8) provides two cases:
P(a + BP* + yP*) = 0. (4.9)

(i) P =0 — This trivial solution corresponds to a paraelectric state.
(i) a+ BP?+ yP* =0 — This finite polarization solution corresponds to a ferroelec-
tric state.

4.2.1. Second-Order Phase Transition (In the Case of B > 0)

When B is positive, 7 is often neglected because nothing special is added by this
term. There are not many material examples which show this “second-order” transi-
tion; however, triglycine sulphate (TGS) is an example of a ferroelectric exhibiting the
second-order phase transition. We will discuss this in detail because this description
provides intuitive ideas on the phase transition owing to its mathematical simplicity.

The second-order transition is based on the Landau expression:

F(P, T) = (1/2)aP? + (1/4)BP* [a(T) = (T — To)/&oCl. (4.10)
Electric field is obtained by the first derivative of F in terms of P:
(OF /0P) = E = aP + BP°. (4.11)
Taking another derivative of E with respect to P, inverse permittivity is obtained:
1 1
P

_ _ oE _ 2
ﬁ_@_ (ﬁ) = a + 3BP% (4.12)

Now, under zero applied field conditions, let us obtain the spontaneous polar-
ization from Equation (4.11)

aPs + BPs> =0 [a = (T — Tp)/eoCl, (4.13)
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so that the following two states are possible:

Ps =0
{P 2 a _ To-T- (4.14)
5 p

Landau Free Energy Change with Temperature

Figure 4.1 plots the Landau free energy F(P, T) = (1/ 2)aP? + (1/ LL),BP4 as a
function of polarization P by changing the temperature T. Projected curves on the
F vs. polarization P domain are shown in Figure 4.1a. When T > T), since the
(1/2)aP? positive term dominates over the (1/4) ﬁP4 term, the free energy curve is
almost “convex” parabolic with single minimum at P = 0 (i.e., paraelectric phase).

. . . 2
As the inverse permittivity is obtained from the second derivative of F (i.e., <gT€>)
3/2
2

and the curvature of F is given by (3275) / {1 + <g—IF)) , we can conclude that the

inverse permittivity is visibly obtained from the “energy curvature” around the

energy minimum point (that is, <g—1§) = 0 point). With a decrease in temperature

T, the parabolic curvature (inverse permittivity) decreases continuously, leading to
the Curie-Weiss law. With a decrease in the temperature close to T (T ~ Tp), the
(1/2)aP? positive term almost diminishes and the (1/4)8P* term exhibits a very flat
potential minimum range, that is, the curvature becomes zero, or permittivity reaches
infinite. With a decrease in temperature T below T, the situation is rather different:
since the (1/2)aP? term is now negative, the free energy curve becomes “concave”
around P = 0, and the positive (1/4)BP* term competes and makes the curve “convex”
in the large P range. Thus, the free energy curve should show double minima at

P = 4+, /—% in the ferroelectric phase. The minimum energy at these points is
S B p 8y P

2 2
F(P,T) = (1/2)aP? + (1/4)BP* = — (%)% _ (ngozz)z ,

(4.15)
which indicates that the energy F is equal to “zero” (the F value in the paraelectric
phase) at T = Ty (phase transition temperature), and becomes lower in T < Ty than
that in the paraelectric phase. This is the reason why the phase transition from
paraelectric to ferroelectric phase occurs.

Landau free energy change associated with the second-order phase transitions
is shown in an extended form in terms of temperature in Figure 4.1b. The reader
can notice the energy minimum point tracing line, which splits into two lines from a
single line, resembling a Y-shape fork, at the phase transition temperature Tc = T,
which is called “bifurcation”. Mathematically, a bifurcation occurs when a small
smooth change made to the parameter value (“bifurcation parameter”, in this case
“n”) of a system causes a sudden topological change in its behavioral contour. The
occurrence of the double minima generates P-E hysteresis, as discussed in Subsection
Ferroelectric Phase (page 111).

The “order” of a phase transition was defined by Ehrenfest [1], who suggested
that the “n-th” order transition exhibits “continuity” of the (n — 1)-th derivative
of the Gibbs free energy G and “discontinuity” of the n-th derivative of G at the
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phase transition temperature. That is to say, the “first-order phase transition” will

show the discontinuity of the first derivative of G (i.e., entropy), 57 = —S, while
the second-order transition will show the discontinuity of the second derivative G
(i.e., specific heat capacity), c;l;: =-T (g%) XE We may translate this specific heat
capacity into P (or D) constant specific heat capacity,
0°G )
D 1
= T( , (4.16)

which is equivalent to Equation (4.15) without including the elastic energy term.
From Equation (4.15), we can derive
e F(PT) = gf,;;—ZQ — 0with T — Ty: F(Ps) < F(0) = 0, continuous to the
paraelectric phase.
OF(P,T) _ (Tp—T)

° AT~ = 2pegic? & —S — 0with T — Tj, continuous to the paraelectric phase.
?’F(P,T) __ 1
) T = T ape,ic & —cp , discontinuous to the paraelectric phase (zero).

The above analysis can explain why the handling of Equation (4.15) is for the
second-order transition.

Free Energy /
/

@ F / P
& |
e
Q
/ £ |Cur|e Temperature T.

PoIarlzatlonP

(a)

Figure 4.1. Landau free energy change associated with the second-order phase
transitions: (a) projected curves on F-P domain and (b) extended description with
temperature axis. Source: Figure by author.

Paraelectric Phase

For T > T, the trivial solution Ps = 0 is obtained, because Ps? = (Ty — T)/BeoC
becomes negative (unrealistic in physics). Thus, from Equation (4.10), the reader can
understand that the Landau free energy is zero in the whole range of the paraelectric
phase. By putting Ps = 0 in Equation (4.12), the permittivity in this temperature range
(i.e., paraelectric phase) is expressed by

i:a:(T—TO)/SOC,OrS_ C

o =TT (4.17)
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This permittivity relation in the paraelectric phase is popularly called the “Curie-
Weiss law”, where C is the “Curie-Weiss constant”, and T is the “Curie-Weiss
temperature”.

Ferroelectric Phase

For T < Ty, the solution

P2 = —% — (Ty — T)/ BeoC {or Ps = +,/(To — T)/ (B o C)]. (4.18)

provides the spontaneous polarization, which exhibits the minimum of the Landau
free energy (Equation (4.15)):

1) = 012t 079 = (1)o(-5) + ()p(-5)’ - -0
= —(1/4)(T - T)*/ee?C'B.

The above energy is lower than “zero” in the paraelectric phase, which explains
the phase transition from the paraelectric to ferroelectric phase.
The relative permittivity € in the ferroelectric phase is calculated as:

1/ege = 1/(0P/0E) = (a +3BP?) = [a +3B(—a/B)] = —2a,
L — 20 =2(Ty—T)/eoC, ore = (TgﬁzT).

o€

(4.19)

Figure 4.2 shows the variations of Ps and with temperature in the second-
order phase transition. The spontaneous polarization Ps decreases with increasing
temperature continuously (square root function) and becomes 0 at T = Tj. It is
notable that the permittivity becomes infinite (i.e., inverse permittivity = 0) at the
transition temperature (T = T)) and that the slope of the inverse permittivity in the
ferroelectric phase is twice that in the paraelectric phase.

Permittivity

@ £
2
€
¥ Inverse permittivity
o
& 1/
E Spontanedus
2 Ps
=
[a W

Tc Temperature

Figure 4.2. Spontaneous polarization and permittivity change associated with the
second-order phase transitions in a ferroelectric. Source: Figure by author.
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Let us now consider the polarization vs. electric field hysteresis curve at a
temperature T. We start from the potential minima obtained from (0F/dP) = E = aP +
BP3. By putting

y1 =aP + [3P3 and (4.20a)

v, =E, (4.20b)

a visual geometrical solution technique can be used, as illustrated in Figure 4.3a; that
is, the intersects of these two curves (y; = 1») provide the solution points: only one
intersect exists for T > T, while for T < T, there are three intersects. Under E = 0 at
T <Tc, we obtain Pg = + \/T% , which correspond to the spontaneous polarization.

Electric Field

T<T, — f/
7 / vo=k

/ PoIarizaty’\ \

Coercive Field

Hamiltonian H
(]

(a) (b)

Figure 4.3. (a) Polarization vs. electric field hysteresis curve, obtained from a
graphic technique. (b) Hamiltonian F(P, E) under the external electric field E.
Source: Figure by author.

Varying the electric field E up and down, we can understand that the shadowed
area in Figure 4.3a shows the polarization vs. electric field hysteresis loop, when we
assume the macroscopic all-polarization one-time reversal. The macroscopic coercive
field is obtained from the maximum/minimum point of the y; curve:

% —0 — a+38P>=0 — P =+/—a/3p. (4.21)

Since the coercive field is obtained from the y; max point,

vy = aP 4+ BP? = \/—a/3B [a + B(—a/3B)] = \/ —4a3/278. (4.22)

The shadowed area in Figure 4.3a shows the polarization vs. electric field hysteresis
loop, where arrows show the loop tracing way. The above coercive field is under the
assumption that the macroscopic whole polarization reverses at one-time, which is
10 times higher than the experimentally obtained coercive field (1 kV/mm), where,
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by segmenting the domain into multidomain states, the required electric field is
significantly reduced for the domain reversal in practice.

Figure 4.3b shows an alternative explanation for the domain reversal. Knowing
the relation Equation (4.11)

(OF/0P) = E = aP + BP3,

we introduce the Gibbs free energy by integrating the potential energy —E-P under
the external electric field E into Landau free energy:
Lo, 1,
G= szP + A_L‘BP — E-P. (4.23)
This Hamiltonian expression gives the negative slope line potential on the
original Landau free energy curve under a positive electric field application, as
illustrated in Figure 4.3b E = +Ej, which clearly indicates that the positive electric
field decreases the Hamiltonian energy of the positive spontaneous polarization state.
This is numerically obtained from the minimum energy point:

G

_ 3_F—o, 424
55 = 4P+ P —E=0 (4.24)

Since there are three roots 4, b, and c (a < b < ¢) for Equation (4.24), we put
34 (a/B)P—E/B=(P—a)(P—b)(P—c)=0. (4.25)

Accordingly, we obtain the following three equations:

a+b+c=0
ab+bc+ca = (a/p). (4.26)
abc =E/B
By solving the above, we obtaina = —, /—% + Al(E%), b=0+ AZ(E%), and ¢ =

+./—%+ A3(E 3). When P = ¢, we obtain the minimum energy. Note that with an
B &Y

increase in the electric field E, the polarization P (energy minimum point) is gradually
increased. From the initial spontaneous polarization state at P = a4, we will consider
the coercive electric field Ec to change the spontaneous polarization state to P = c.
This can be obtained when the energy curve at P = a becomes “flat”, that is, the
minimum condition is resolved, and the P = ¢ point becomes a unique minimum
energy state in the model. Figure 4.3b E = 2E is rather close to this condition. The

3/2
2
energy curve flatness is equivalent to “zero” curvature [(a—€> / {1 + < ) } ]

mathematically:
0’G
ap2
From the above, P = —/—a/38, leading to Ec = aP + BP3 = \/—4a3/27p . This

result is exactly the same as Equation (4.22).

— a+3BP* =0. (4.27)
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4.2.2. First-Order Phase Transition (In the Case of B < 0)
We now consider the case of f < 0 in Equation (4.6)
F(P, T) = (1/2)aP? + (1/4)BP* + (1/6)yP° [a(T) = (T — To)/eoCl.

In this case, 7y should be taken as positive in order to keep the polarization P in a finite
region around P = 0. As discussed later, this transition becomes “first order”, because

the first derivative of free energy, <§—IFJ>, already exhibits discontinuity from the
paraelectric to ferroelectric phase transition point (Tc). The equilibrium polarization
in an electric field E should satisfy the condition Equation (4.8):

(OF/0P) = E = aP + BP3 + yP°.
With no electric field applied, Equation (4.8) provides the spontaneous polarization
Equation (4.9):

P(a + BP? + yP*) = 0. (4.28)

We discuss two cases:
(i) P =0 — This trivial solution corresponds to a paraelectric state.
(ii) &+ BP? + yP* = 0 — This solution corresponds to a ferroelectric state.

The second case gives

Pgy = [—5 +/B - 47&1 /2] = [—ﬁ + \//32 —4y(T —Ty)/eoC| /27].  (4.29)

Example Problem 4.1

Is Pg? = [— B — \/B* — 4ya]/27y not another root for solving Equation (4.28)?

Solution

Since low temperature range (T — Tp) <0and y >0, \/B% — 4y(T — Tp) /&oC >
VB% = —B (or | B1; note that B < 0). Thus, [~ — /B2 — 49 (T — TO)/soc] /2v <0,
which is contradictory with Ps? because the physical parameter Ps should be a real

value. The spontaneous polarization should be positive or negative, but still a real
number, never an imaginary number.

Landau Free Energy Curves and Critical Temperatures

Let us calculate the free energy curves for various temperatures:
F(P, T) = (1/2)aP? + (1/4)BP* + (1/6)yP° [a(T) = (T — To)/oC]. (4.30)

As shown in Figure 4.4a, there are three critical temperatures, T;, Tc, and T, in
the first-order transition, in comparison with one unique temperature, Tc = Tj, in
the second-order transition. As derived in Equation (4.9), there are three potential
minima in general in Equation (4.30), —Ps, 0, and +Ps. Tj is the temperature where
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the side minimum starts (though this minima energy is much higher than the energy
at P =0). T¢ is the temperature where the side minimum minima energy becomes the
same as the energy at P = 0 (paraelectric). We believe this is the phase transition condi-
tion, though some temperature hysteresis is observed between the rising and falling
temperature process in practice. The lowest temperature Ty is the point where the
center (P = 0) minimum (convex) disappears or switches to the maximum (concave).
The following equation should be maintained for the energy minimum points:

(9F /0P) = E = aP + BP® + yP° = 0. (4.31)

e Tj Calculation

The T; can be calculated from the condition of “point of inflection” prior to
making the minimum; that is, the second derivative of F(P, T) is equal to 0:

0°F ) .

Note that this inflection point should correspond to the hypothetical inverse per-
mittivity % = 0 point, as discussed later in Subsection Permittivity (page 118).
Combining the above equation and

a + BP? + yP* =0, (4.33)

from Equation (4.31), we obtain P2 = —2a /. Then, from a + B(—2a/ B)* + v(—2a/ B)*
= 0, we obtain
w = B%/4y, or Ty= Ty + B?eoC /4. (4.34)

Note that the relation Equation (4.34) which can also be obtained from the condition
of the inside term of the root , /" in the spontaneous polarization solution Ps? =

—B+ /B — 47a| /271 should be >0.

e T Calculation

The transition temperature T is obtained from the condition that the Landau
free energy of the paraelectric and ferroelectric phases are equal, i.e., F = 0:

(1/2)aPs* + (1/4)BPs* + (1/6)yPs® =0, (4.35a)
which is valid only at T = T¢; the potential minima are obtained from
(9F /0P) = E = aP + BP® + yP° = 0. (4.36a)

This equation is valid for any temperature below and above the Curie temperature.
Knowing Ps # 0, Equations (4.35) and (4.36) are reduced to

a + (1/2)BP? + (1/3)yP* =0, (4.35b)

a+ BP? + 4P =0. (4.36b)
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Note again that Equation (4.36b) is valid for all temperatures below T, but Equation
(4.35b) is only valid at T = Tc. Eliminating the P* terms from these two equations
[3 x (4.35b)—(4.36b)],

[(3/2) — 1]BP*> +[3 — 1]Ja =0 — P*> = —4a/B. (4.37)

We then obtain the following equation from Equation (4.36b):

2
oc+/3(—4zx//3)+7(—4oc/ﬁ)2:0 — Ba+yx16a?/pP=0 - a = %’%

Taking into account our special case (valid only at T = T;), « = (T — Ty)/¢oC =
(T'c — Tp)/ €oC, the Curie temperature T¢ is calculated as

2
Te = Ty + (3/16) (;a sOC/’y>. (4.38)
Free Energy
T> T1
Te<T<Ty Permittivity €
T=T, g
¢ ‘% Inverse permittivity
3 1/e
o
[«
To<T<T. = ! ,
2 Spontaneous A
£ Ps N
[= A
L3
T< TO . ?\‘ 1/Epeak
s To Tc 7T’\ Temperature
Polarization P 1 7,

(a) (b)

Figure 4.4. (a) Free energy as a function polarization P at various temperatures.
(b) Spontaneous polarization and permittivity /inverse permittivity change associ-
ated with the first-order phase transitions in a ferroelectric. Source: [2] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 46. Reproduced by permission of
Taylor & Francis Group.

Spontaneous Polarization

We discuss the spontaneous polarization and permittivity change associated
with the first-order phase transitions in comparison with the second-order transition.
The spontaneous polarization decreases in proportion to /Ty — T down to zero
with an increase in temperature in the second-order transition, while in the first-
order transition, as illustrated in Figure 4.4b, the lean parabolic-like (resembling
to parabolic) curve is cut abruptly at the transition temperature T = T.. From the
spontaneous polarization expression in the first-order phase transition:

Ps = \/l—ﬂ +1/B? — 4704] /27]. (4.39)
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By putting & = < li at T = T, into Equation (4.39), we obtain the minimum realizable
spontaneous polarization as

Ps = [—ﬁ+\/ —4v( ﬁz)/ 2] = [-32 (440)

The Landau free energy minima start at T = T, and in the temperature range
T. < T < Ty, these minima are sustained, though these polarizations are not exper-
imentally observed because the energy at P = 0 is lower, making the paraelectric
phase more stable. It is also interesting that Ps minima start at T = T7, where the

condition B2 — 4ya = 0 is sustained, leaving Ps = /(— 2%) as the minimum value.
Note that the Ps = 0 state should not be realized in the ferroelectric phase in this
first-order transition model.

Let us confirm the “order” of a phase transition: that is to say, will the above
“first-order phase transition” treatment show the discontinuity of the first derivative

of G (i.e., entropy), “ aG —5”? We can derive:
e F(P,T) =(1 /2)¢xP5 + (1/4)BPs* + (1/6)yPs® — 0 with T — Tc: F(Ps) =
F(0) =0, continuous at T = T to the paraelectric phase.

JF(P,T dP.
o B = JLoP? ot (aPs + BP® + yP%) 4 o —S = (—hr) with T — To,

because of the jump Ps = / (—%) and (aPs + ﬁP53 ~+ vPs ) = 0, discontinu-
ous to the paraelectric phase.

The above analysis can explain why the handling of Equation (4.30) is for the
first-order transition.

Permittivity

The permittivity is obtained as

1 1  [(0E\ 5 1
e —<8_P> = (ﬁ) = a + 3BP* + 5yP*. (4.41)
oE
In the paraelectric phase (Ps = 0)
a=(T—Ty)/eC, ore= ¢ (4.42)
e 07750 (T—Ty) '

This permittivity relation in the paraelectric phase is popularly called the “Curie-
Weiss law”, where C is the “Curie-Weiss constant” and T is the “Curie-Weiss
temperature”. Different from the second-order transition, T will not reach Ty but
is stopped at T¢ with decreasing temperature. Thus, there exists the minimum of

1 _Tc=Ty _ 3P 1oy
goe ~ gC T 16 ¢’ 362
On the contrary, in the ferroelectric phase with

— l—ﬁ + /B — 4704} /27] or a + BP* 4 yP* = 0. (4.43)
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Using Equation (4.43), we can transform Equation (4.41) into

Loy 5(—a— BP?) = —4a — 28P2 (4.44)
o€

In order to calculate the T slope in the ferroelectric phase, we analyze the
approximate formula around the phase transition temperature T, (i.e., To < T < T¢).
Note here that (T - — T) is a small value, but (T, — T) is not small, because of T¢ =
To+ 3/ 16)(,8260C /) (temperature difference is 30—40 °C). We transform a as

T—-Ty 38> Tc-T
= = — , 4.45
“ eoC 167y eoC ( )

to proceed with the small value approximation ((Tc — T) < 1). Taking Equation
(4.43) into Equation (4.44),

L__4[X_2‘BP2__4 3ﬁ2_TC_T _'_,3_2_5\/'3 _4'7 167 EOC)
goe S 167y eoC % '

Considering (Tc — T) << 1, p <0, i.e., \/B? = —B, and the approximation /1 + x =
1+ 3 (ifx<<1):

(T B ala (1—3:‘”25509)

_ B _Tc-T\ B P 16y(Tc—T)
= —4(36 - §OC>+7+E\/HW

3% | 4(Tc-T) 167(Tc—T

2 2 T 4(Tc—T

80

Finally, we obtain

1 3[52+8(TC—T).

Ep€ 4’)’ S()C

(4.46)

Note first that the slope of the inverse permittivity vs. temperature in the
ferroelectric phase is eight-times larger than that in the paraelectric phase (normal
ﬁZ
~ oy ©
. T 4 .
the maximum permittivity ege = # (one-quarter of the paraelectric peak Value)

Curie-Weiss law with 1/C slope). The minimum inverse permittivity —-- 0f =

are obtained at T= T¢. The extrapolated inverse permittivity line intersect for the
paraelectric phase is, of course, T= Ty, while that for the ferroelectric phase is
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T=Ty="Ty+ 9;20$ , which is very close to Ty = Ty + % (with difference of only %).
This deviation may originate from the linear approximation used in the derivation
process above, as discussed in Subsection Landau Free Energy Curves and Critical
Temperatures.

In summary, in the “first-order phase transition”, the Curie temperature T¢ is
slightly higher than the Curie-Weiss temperature T, and that a discrete jump of
Pg appears at Tc. Additionally, the permittivity exhibits a finite maximum at T¢
(Figure 4.4b). Barium titanate is an example of a ferroelectric that undergoes a first-
order phase transition. Figure 4.4b also shows the variation in ¢ with temperature.
The slope of the inverse permittivity 1/¢ in the ferroelectric phase is eight times that
in the paraelectric phase. The extrapolated temperature of the inverse permittivity in
the paraelectric phase provides the normal Curie-Weiss temperature T, while the
extrapolated temperature of the inverse permittivity in the ferroelectric phase gives
the temperature T, (theoretically T;), as discussed above.

The free energy curves are plotted for the second- and first-order phase transi-
tions at various temperatures in Figures 4.1a and 4.4a, respectively. In the case of
B > 0, the phase transition is not associated with a latent heat but with a jump in
the specific heat; this is called a second-order transition. On the other hand, in the
case of B <0, the transition exhibits a latent heat (i.e., entropy S discontinuity), and
is called a first-order transition, where the permittivity shows a maximum and a
discontinuity of the spontaneous polarization appears at Tc. When T > T1, there is
only one free energy minimum; when T¢ < T < T, there are three potential minima.
P =0 is the lowest energy solution for T¢c < T < Ty, while P = £Pg exhibits the lowest
potential for Ty < T < Tc; when T < T, there are double minima of the free energy
(with the disappearance of the center minimum), which correspond to very stable
spontaneous polarizations. Due to the potential gap between three potential minima,
we observe significant temperature hysteresis of the phase transition between the
cycles of rising and falling temperature.

—E Hysteresis

Similar to Subsection Paraelectric Phase (page 111), we introduce electric Gibbs
energy by adding —EP to the Landau free energy, and we simulate the polarization
P—electric field E hysteresis:

Gy = Lep? + 1/3134 + 17136 — EP. (4.47)
2 4 6

Figure 4.5 illustrates the polarization vs. electric field hysteresis curve in the
“first-order” phase transition. Refer to the hysteresis curve of Figure 4.3a in the
second-order transition. A significant difference in the P—E hysteresis in the first-
order transition can be found in a “double hysteresis” in the temperature range
Tc < T < Ty, which cannot be observed in the second-order transition. The system
with multiple potential minima in the Gibbs energy (Figure 4.4a) can exhibit discon-
tinuous polarization induction (i.e., electric-field-induced ferroelectric phase) under
a high electric field. As shown in Figure 4.5, the P—E double hysteresis is observed

in a narrow temperature range.
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Figure 4.5. Polarization vs. electric field hysteresis curve in the first-order phase
transition. Source: Figure by author.

4.3. Devonshire Theory of the Phase Transition

In a ferroelectric whose prototype phase (high-temperature paraelectric phase)
is centrosymmetric and non-piezoelectric, the piezoelectric coupling term PX is
omitted and only the electrostrictive coupling term P?X is introduced. The theories
for electrostriction in ferroelectrics were formulated in the 1950s by Devonshire [3]
and Kay [4]. Let us assume that the elastic Gibbs energy (1D model) should be
expanded in a one-dimensional form:

Gi(P, X, T) = (1)aP?+ (3)BP*+ (1)rP° - (3)sX* - QP2X
o = (T —Tp)/eoC],

(4.48)

where P, X, and T are the polarization, stress, and temperature, respectively, and s
and Q are the elastic compliance and electrostrictive coefficient, respectively. This
leads to the following three equations: Equations (4.49), (4.50), and (4.51):

E— (%) = aP + BP? + yP° — 2QPX, (4.49)
Gy, )
1T (g_f)) — & +3BP2 + 5yP* — 20X. (4.51)

€€ oP
(%)

4.3.1. Casel: X =0

When the external stress X is zero, the following equations are derived:

E = aP + BP? + D%, (4.52)
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x = QP?, (4.53)

1
=t 38P% + 5y P*. (4.54)
0

Except for Equation (4.53), the analysis is exactly the same as that in the previous
section. When the external electric field is equal to zero (E = 0), two different states
are derived:

e P=0

o P2=(—B+/B?—4ay)/27.

Paraelectric Phase
The paraelectric phase is analyzed under the condition:
Ps =0 or P = gyeE (under small E modulation).

Equations (4.53) and (4.54) provide:
Permittivity: e = C/(T — Tp) (normal Curie-Weiss law). (4.55)

Electrostriction : x = Qe%eZEz. (4.56)

The “electrostrictive coefficient M” introduced in Equation (1.13) in Section 1.2.4 is
related to this electrostrictive Q coefficient through

M = Qe3e’E>. (4.57)

Ferroelectric Phase

Ferroelectric phase possesses:

Ps® = (—‘B +1/p? — 4047) /27 or P = PS + ¢peE (under small E modulation).

Equations (4.52) and (4.53) provide:

x = Q(Ps + €0eE)* = QPs? + 2e0eQPE + Qeae’ E2. (4.58)
1
—=at 3BP% 4 5yP* = —4a — 2BPs>. (4.59)
0

The total strain in Equation (4.58) is composed of three terms: the spontaneous
strain xg, the piezoelectric strain (proportional to E), and electrostriction (proportional
to E2; thus, we can define

Spontaneous strain: xg = QPs?, (4.60)
Piezoelectric constant: d = 2e5eQPsg, (4.61)

Electrostrictive strain:Q»s%s2 E?. (4.62)
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When the electric field E applied is much smaller than Ps/ege (typically, 0.3
(C/m?)/2000ey ~20 (kV/mm)), the third term in Equation (4.62) is neglected in
comparison with the piezostriction dE. We understand from Equation (4.58) that
“piezoelectricity” in a crystal with a centrosymmetric paraelectric phase is equivalent
to the “electrostrictive phenomenon biased by the spontaneous polarization”. Since
the temperature dependence of spontaneous polarization and permittivity are already
shown in Figure 4.4b, the temperature dependences of the mechanically related
parameters, spontaneous strain, and the piezoelectric constant in the first-order
phase transition are plotted in Figure 4.6b.

]
Spontaneous h
1

Spontaneous
o strain xs ¢ | strain xg '
L 5 N ;
—
g~ a N Piezoelectric ,’
o) o
g N s ~_ constant d
= N ©
-2 Piezoelegtric a
z constant|d Z
o N o
T, (=T,)
Temperature Temperature

(a) (b)

Figure 4.6. Temperature dependences of the spontaneous strain and the piezo-
electric constant in the second- (a) and first-order phase transition (b). Source: [2]
©Uchino, K. Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 48. Reproduced by
permission of Taylor & Francis Group.

Example Problem 4.2

In the case of a second-order phase transition, the elastic Gibbs energy is ex-
panded in a 1D form as follows:

Gi(P, X, T) = (1/2)aP? + (1/4)BP* — (1/2)sX* — QP?X, (P4.2.1)
where only the coefficient « is dependent on temperature, x = (T — T)/eoC, and
B > 0. From this, obtain the temperature dependence of the dielectric constant,

spontaneous polarization, spontaneous strain, and piezoelectric constant.

Solution

E = (3G1/0P) = aP + BP> — 2QPX, (P4.2.2)

x = —(0G1/9X) = sX + QP?. (P4.2.3)
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When an external stress is zero, we can deduce the three characteristic equations:

E = aP + BP3, (P4.2.4)
x=QP?, (P4.2.5)
1/€pe = (OE/OP) = a + 38P>. (P4.2.6)

By initially setting E = 0, we obtain the following two stable states: Ps?> =0 and —a/f
(i) Paraelectric phase (T > Tp): Ps =0

1/epe =, thene=C/(T — Ty) (Curie-Weiss law). (P4.2.7)

(ii) Ferroelectric phase (T < Ty):

j i\/ (To — T)/e0CP (P4.2.8)
1/g0e = a + 3BP? = —2a, then e = C/2(Ty — T), (P4.2.9)
xs = QPs% = Q(Tg — T)/eoCpB. (P4.2.10)

From Equations (P4.2.8) and (P4.2.9), the piezoelectric constant is obtained as

d = 260¢QPs = Q+\/eoC/B(Ty — T) /2. (P4.2.11)

The temperature dependence of the spontaneous strain xg and the piezoelectric
constant d in this second-order phase transition are plotted in Figure 4.6a. Refer to
Figure 4.6b in the first-order transition.

4.3.2. Case II: X # 0

Here, we discuss the simplest case of hydrostatic pressure p in a 1D model.
When a hydrostatic pressure p (usually by changing the sign, we define X; = X, =
X3 = —p) is applied, we obtain the following equations from Equations (4.49)-(4.51):

E = aP + BP3 + yP° +2QPp, (4.63)
o aG1 - 2
81—8 — a4 38P? + 5yP* +2Qp. (4.65)
0

Curie Temperature Shift

Equation (4.64) indicates the volumetric shrinkage under hydrostatic pressure
p, which seems to be trivial. To the contrary, Equation (4.63) is very intriguing;
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(x +2Qp)P + BP? + yP° = 0 when the external electric field E = 0, which indicates
that the Curie temperature decreases under hydrostatic pressure p, in the following:

(e +2Qp) = [T — (To — 2QeoCp)]/&oC. (4.66)

It is out of the scope of this book to go into, but the property issues of a few materials
are described here for the reader’s knowledge. We know an “empirical rule” on the
hydrostatic pressure effect on ferroelectric perovskite materials, that is, a 50 °C Curie
temperature decrease with 1 GPa hydrostric pressure application. This “50 °C/1 GPa
rate” of the phase transition decrease can be derived as follows.

The author’s group investigated electrostrictive coefficient Q and Curie-Weiss
constant C on various perovskite-type oxides, the results of which are summarized
in Table 4.1 [5,6]. It is important to note that the magnitude of the electrostrictive
coefficient Q;, does not depend on whether the polar state is ferroelectric, antifer-
roelectric, or paraelectric, but strongly depends on the crystal structure, such as
whether the two kinds of B and B’ ions are randomly distributed or ordered like
B-B’-B-B’ (1:1 order) in the oxygen octahedra. The electrostrictive coefficient Q in-
creases with the increasing degree of cation ordering and follows the sequence (1)
disordered, (2) partially ordered, (3) simple, and (4) ordered-type perovskites. For the
polar materials, their Curie-Weiss constants C are also listed in Table 4.1, showing
a completely opposite trend to the Q; values. Consequently, we found that the
invariant for the complex perovskite-type oxide is the product of the electrostrictive
coefficient and the Curie-Weiss constant:

Q,C = 3.1(£0.4) x 103 [m‘*C*ZK}. (4.67)

This “Q;C constant rule” can be understood intuitively if we accept the as-
sumption that the material whose dielectric constant changes easily with pressure
also exhibits a large change in the dielectric constant with the temperature, i.e., the
proportionality between the following two equations (discussed in Subsection Direct
Piezoelectric Effect):

Qn = [a(;_;s)} /2€0

If we take Q,C = 3.1 x 103 [m4C*2K} ,and under p = 1|GPa], we calculate

(4.68)

205e0Cp = 2 x 3.1 x 103 [m‘*C—ZK} X 8.854 x 1012 [Fm—l} x 1% 10° [Pa] = 55 [K]. (4.69)
This explains a well-known “empirical rule” on the hydrostatic pressure effect on

ferroelectric perovskite materials: that is, a 50 °C Curie temperature decrease with
1-GPa hydrostatic pressure application.
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Table 4.1. Electrostrictive coefficient Q; and Curie-Weiss constant C for various
perovskite oxide crystals.

Qn c QnC
Polarity Ordering Material [x10-2 [x10° [x10° References
m*C-2] K] m*C—2K]
Pb(Mg; /3Nb,/3)Os 0.60 47 2.8 [7,8]
Order Pb(Zny /5Nby3)0s 0.66 47 3.1 [[190]]
Partial
'% Order Pb(Sc1/2Ta1/2)O3 0.83 3.5 2.9 [11]
(7]
g . [12]
% BaTiOs 2.0 15 3.0 (13]
. PbTiO5 22 17 3.7 [14,15]
Simple
SrTiO3 4.7 0.77 3.6 [16,17]
(18]
KTaOj3 52 0.5 2.6 [19]
Partial
.§ Order Pb(Fe2/3U1/3)O3 — 2.3 - [20]
Q
%Oj Simple PbZrOs 2.0 1.6 3.2 [6,21]
5 Pb(Coy,2W1 )O3 - 1.2 - [22]
'-g Order 6]
< Pb(Mg1/2W1/2)03 6.2 0.42 2.6 [8]
'g E Disorder (K3/4Bil/4)(Zn1 /6Nb5/6)o3 0.55-1.15 - - [23]
zZ & Simple BaZrO; 2.3 - — [23]

Source: Table by author, based on data from [5,6].

Direct Piezoelectric Effect

A piezoelectric is occasionally used as a stress sensor, which is originated from
Equation (4.63) in ferroelectric phase, aPs + ﬁP53 + vPs® + 2QPsp = E. Under the
external electric field zero condition, the hydrostatic pressure will shift the phase
transition temperature in the form of (Typ — 2QeoCp). Thus, a Ps decrease is expected

under hydrostatic pressure. In a linear approximation, using <04P5 + BPg> + ')/PS5> ~ 0,
we can expect the “depolarization electric field” in the open-circuit crystal:

2QPsp = —E — AP = gpeE = —2¢0eQPsp. (4.70)

The reader can now understand that the polarization change AP is generated
in proportion to the pressure, and may also recall the relation of the piezoelectric
constant d and electrostrictive coefficient Q as

d = 2e0eQPs. 4.71)

Note here that above d and Q are d;, = d33 + 2d3; and Q; = Q11 + 2Q;, under
hydrostatic pressure. The piezoelectric stress sensor is to measure the charge or
voltage generated on the crystal under the stress.
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Permittivity Change with Pressure

Equation (4.65) indicates that the inverse permittivity changes linearly with
hydrostatic pressure p:

1/epe = a + 3BPg% + 5yPs* + 2Qp (Ferroelectric state), (4.72a)

a+2Qp = (T — Ty +2QeoCp)/(g9C) (Paraelectric state). (4.72b)

Therefore, the pressure dependence of the Curie-Weiss temperature T or the transi-
tion temperature T is derived as follows:

(dTo/dp) = (dTc/dp) = —2QeoC. (4.73)

As already introduced, the ferroelectric Curie temperature is decreased with increas-
ing hydrostatic pressure (when Qj, > 0).

Though we can measure the permittivity change with stress in the ferroelectric
phase, since the piezoelectric effect can generate the charge or voltage (via a direct
piezoelectric effect), we usually apply this effect to develop stress sensors. Let
us consider here the converse effect of “electrostriction”, that is, the paraelectric
material’s response to an external stress, which is also applicable to sensors. Since
an electrostrictive material does not have a spontaneous polarization, it does not
generate any charge under stress, but does exhibit a change in permittivity (see
Equation (4.72b)):

A(1/epe) = 2QX. (4.74)

This is the “converse electrostrictive effect”. A bimorph structure which can
subtract the static capacitances of two dielectric ceramic plates can provide superior
stress sensitivity and temperature stability [24]. The capacitance changes of the top
and bottom plates in the bimorph have opposite signs for uniaxial stress (bending
stress) and the same sign for temperature change. The response speed is limited by
the capacitance measuring frequency to about 1 kHz. Unlike piezoelectric sensors,
electrostrictive sensors are effective in the low frequency range (less than 1 kHz),
especially pseudo-DC. On the contrary, the stress sensor made from a piezoelectric
is suitable for higher frequency, above 10 Hz up to 10 kHz (i.e., the mechanical
resonance frequency), because the piezo-generated charge leaks under very low
frequency (e.g., less than 1 Hz) and loses accuracy.

Example Problem 4.3

Barium titanate has da3 = 320 x 10712 C/N, . (=¢) = 800 and Q33 = 0.11 m*C—2
at room temperature. From this, estimate the spontaneous polarization Pg.

Solution

Let us use the relationship:

d33 = 28063Q33P5. (P4.3.1)
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Ps can be obtained as

Ps =dz3/2e0e3Q33 (P4 3 2)

=320 x 10712 [C/N]/{2 x 8.854 x 10712 [F/m] x 800 x 0.11 [m*C~2]} = 0.21 [C/m?].

4.3.3. Temperature Dependence of Electrostriction

We treat the “electrostrictive coefficient” Q as a temperature-independent con-

stant in the Devonshire theory. How is the actual situation experimentally? Several
expressions for the electrostrictive coefficient Q have been given so far, from the data
obtained by independent experimental methods such as:

(1)
2)

)
4)

electric-field-induced strain in the paraelectric phase;

spontaneous polarization and spontaneous strain (X-ray diffraction) in the
ferroelectric phase;

d constants from the field-induced strain in the ferroelectric phase or from
piezoelectric resonance;

pressure dependence of permittivity in the paraelectric phase.

Nearly equal values of Q can be obtained by the above methods. Figure 4.7

shows the temperature dependence of the electrostrictive coefficients Q33 and Q3
observed for a complex perovskite Pb(Mg; ;3Nb; ,3)O3 single-crystal specimen whose
Curie temperature is near 0 °C [25]. It is seen that there is no significant anomaly
in the electrostrictive coefficient Q through the temperature range in which the
paraelectric to ferroelectric phase transition occurs and piezoelectricity appears. Q is
verified to be almost temperature-independent.
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Figure 4.7. Temperature dependence of the electrostrictive constants Q33 and Q3
measured in a single crystal Pb(Mg; ;3Nb; /3)O3. Source: [2] ©Uchino, K. Ferroelec-
tric Devices, 2nd ed. CRC Press, 2010; p. 51. Reproduced by permission of Taylor &
Francis Group.
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4.4. Phenomenological Approach in Solid Solutions

One of the strategies for designing ferroelectric materials is to select a material
with a suitable Curie temperature. As described in Chapter 1, for capacitor dielectrics,
the peak dielectric constant around the transition (Curie) temperature is utilized,
while for memory applications, the material must be ferroelectric at room tempera-
ture. A large temperature dependence of the spontaneous polarization below T¢ is
sought for pyroelectric sensors. On the other hand, piezoelectric materials are used as
sensors and actuators, where the T should be much higher than room temperature.
Electro-optic materials, which are key components in displays and optical commu-
nication systems, mostly use the Kerr effect, which requires a T lower than room
temperature. Barium-titanate-based semiconductive ferroelectric ceramics are used
for “thermistor” application by setting their T¢ around the temperature at which a
positive temperature coefficient (PTC) is desired. In this section, we consider how
we can manipulate the Curie temperature by using the solid solution methodology.

Let us consider an example for piezoelectric application. In general, Pb(Zr,Ti)O3
(PZT), PbTiO3 (PT), (Pb,La)(Z1,Ti)O3 (PLZT), and PZT-based ternary ceramics are
utilized for piezoelectric applications. Their piezoelectric coefficients are summarized
in the international data book:

K. H. Hellwege et al.: Landolt-Bornstein, Group III, Vol.11, Springer-Verlag,
N.Y. (1979).

Figure 4.8 shows the composition dependence of the permittivity and the elec-
tromechanical coupling factor k, for the PZT system [26].
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Figure 4.8. Composition dependence of the permittivity and the electromechan-
ical coupling factor kj, in the PZT system. Source: [2] ©Uchino, K. Ferroelectric
Devices, 2nd ed. CRC Press, 2010; p. 76. Reproduced by permission of Taylor &
Francis Group.

129



If we do not have this sort of comprehensive experimental data, how can we
estimate the values for the solid solutions between PbTiO3 and PbZrO3? In gen-
eral, physical properties of a solid solution between A and B, (1 — x)A — xB, can
be estimated by a “phenomenological theory” [27,28]. Expanding the theories in
Section 4.3, we assumed a linear combination of the elastic Gibbs energy of each
component in terms of the molar fraction of two end-members. As described in
the following Equation (4.75), the solid solution provides reasonable first-order
estimates of the Curie temperature, spontaneous polarization and strain, permit-
tivity, piezoelectric constant, and electromechanical coupling. Abe et al. reported
a good example of theoretical fitting to experimental results for the solid solution
(1 — x)Pb(Zn1 ;3Nb; /3)O3-xPbTiO3 [28], where the following linear summation of
each energy term of both end-members, A and B, in terms of the molar ratio (1 — x):x
is adopted:

G1(P, X, T) = (1/2)[(1 — x)an + xap]P? + (1/4)[(1 — x)B4 + xBpIP*
+(1/6)[(1 — x)ya + xyg]P® — (1/2)[(1 — x)s4 + xsp]X? — [(1 — x)Qa + xQpIP2X  (4.75)

(g =(T — To,a)/Ca,ap = (T — To)/Cp).

This simplest assumption, that is, linear change of each parameter, «, B, 7, s,
and Q, reduces the calculation process significantly, though this is not a precise
energy combination procedure. By expanding Equation (4.75) into the 3D expression
with Py, Py, P3, X11, X33, Xu4, etc. for realizing cubic, tetragonal, and rhombohedral
symmetry phases, the elastic Gibbs energy is calculated for a certain composition x
and temperature T. Then, the lower energy phase is taken as a stable phase at that
particular point (x, T). Figures 4.9-4.12 show these fittings calculated on the basis
of the end-member data listed in Table 4.2. The transition temperature from the
tetragonal to cubic phase (Curie temperature) changes linearly with the composition
x, as the reader can imagine, while the transition temperature from the rhombohedral
to tetragonal phase is calculated by comparing the G; for both phases. We should
point out some discrepancies in (1) the concave curvature of the MPB (“morphotropic
phase boundary”) with composition and (2) the maximum dielectric constant peak
shape in the intermediate composition, which are different from the expectation
deduced from the simplest linear summation of expansion coefficients.
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Table 4.2. Coefficients for Pb(Zn;,3Nb,,3)O3 (PZN) and PbTiO3 (PT) used in
calculating the transition temperature and lattice parameters in (1 — x)PZN-xPT.

Constants PZN PT
To (°C) 130 478.8
C (105 oC) 4.7 15
£11 (107 m°C—2F 1) —13.7 —29.0
£1p (108 m®>C—2F 1) —~1.0 15.0
(111 (108 m°C—4F 1) 10.3 15.6
(112 (108 m°C—4F 1) 6.8 12.2
Qq1 (1072 m*C2) 24 8.9
Q1 (1072 m*C2) —0.86 —26
Qus (1072 m*C"?) 16 675
ac (A) 4.058 3.957
Source: Table by author, based on data from [2].
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4.5. Phenomenology of Antiferroelectricity
4.5.1. Antiferroelectrics

The previous sections dealt with the case in which the directions of the sponta-
neous dipoles are parallel to each other in a crystal (“polar crystal”). In this section,
we handle anti-parallel orientation, which lowers the “dipole—dipole interaction
energy” (“antipolar” or “antiferroelectric” crystals). Figure 4.13 displays the orien-
tation of the spontaneous electric dipoles in an antipolar state in comparison with
a nonpolar and a polar state. In an antipolar crystal, where the free energy of an
antipolar state does not differ appreciably from that of a polar state, the application
of an external electric field or mechanical stress may cause a transition of the dipole
orientation to a parallel state. Such crystals are called “antiferroelectrics”.
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Figure 4.13. Schematic arrangement of the spontaneous dipoles in nonpolar (a),

(a)

(b)

stripe type

checker board type
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polar (b), and antipolar (c) materials. Source: Figure by author.
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Figure 4.14 illustrates the relationship between E (applied electric field) and P
(induced polarization) in paraelectric, ferroelectric, and antiferroelectric phases. In
a paraelectric phase, the P-E relation is almost linear; in a ferroelectric phase, there
appears to be a hysteresis caused by the transition of the spontaneous polarization
between the positive and negative directions (see Figure 4.5); in an antiferroelectric
phase, in a low electric field, the induced polarization is proportional to E (due to
zero net spontaneous polarization), and when E exceeds a certain value E;, the
crystal becomes ferroelectric (i.e., electric-field-induced phase transition), and the
polarization shows hysteresis with respect to E. After removal of the electric field,
the crystal returns to its antipolar state; hence, no spontaneous polarization can be
observed as a whole. This is called a “double hysteresis curve”.

We previously introduced the double-hysteresis in the first-order phase transi-
tion in Figure 4.5, where the paraelectric (zero spontaneous dipole) to ferroelectric
phase transition is associated. Though the hysteresis curve is apparently similar, the
double-hysteresis in this antiferroelectric is associated with the antipolar spontaneous
dipole moment reoriented or realigned under a high electric field.

Polarization Polarization IIIII Polarization

/ lElectric field mﬂ “Electric field
; E
Electric field 7/ j £ | ‘

24
(Y]] [VI]
@) (b) ©

Figure 4.14. Polarization vs. electric field hysteresis curves in paraelectric (a),

ferroelectric (b), and antiferroelectric (c) materials. Source: Figure by author.

4.5.2. Phenomenology of Antiferroelectrics

Here, we discuss the introduction of electrostrictive coupling to the Kittel’s free
energy expression for antiferroelectrics [29]. Though Suzuki and Okada discussed the
antiferroelectric phenomenology, it was not sufficient because they did not include
the sublattice coupling [30]. The simplest model for antiferroelectrics is the “one-
dimensional two-sublattice model”. It treats the coordinates as 1D, and a superlattice
(twice the unit lattice) is formed from two neighboring sublattices, each having a
sublattice polarization P, and Pj,. In comparison with the previous “intra-coupling”
(or self-coupling) of single polarization P, the sublattice coupling handles the next-
nearest-neighbor “inter-coupling”. The state P, = P, represents the ferroelectric
phase, while P, = —Pp, the antiferroelectric phase. For the electrostrictive effect, if we
ignore the coupling between the two sublattices, the strains from the two sublattices
are QP,2 and QP;?, respectively (assuming equal electrostrictive constants Q for both
sublattices), leading to the total strain of the crystal, represented by

x = QP2 + Pp?)/2. (4.76)

134



Uchino also modeled the sublattice coupling for the electrostrictive effect, since
antiferroelectricity originates from the coupling between the sublattices [6]. The
coupling term for the electrostriction () is introduced in the following form:

G1 = (1/4)a(P,? + Py?) + (1/8)B(P,* + Pp*) + (1/12)(P,° + Py%)

4.77
+(1/2)nP,Py — (1/2)x1p? + (1/2)Qp(Pa% + Py? + 2QP,Py)p, &7

in which the hydrostatic pressure p is employed in this simple 1D model, xt is the
isothermal compressibility, and Qj, (=Q11 + 2Q12) and Qj,-() are the intra- and inter-
coupling electrostrictive constants. Introducing the transformations Pr = (P, + Py)/2
and Py = (P, — Pp)/2 leads to the following expression:

G1 = (1/2)a(Pr? + Pa?) + (1/4)B(Pr* + Pg* + 6 Pr?PA?)
+(1/6)y(Pr® + PA® + 15PF*P A2 + 15PF?Py*) + (1/2)(Pr? — P4?) (4.78)
—(1/2)x1p? + QuIPr? + PA% + Q(Pr? — P4?)]p.

The dielectric and elastic relationships for the intensive parameters are as follows:

8G1/8Pp =E= PF[IX +17+ ZQh(l + Q)p + ﬁPFZ + 3‘3PA2

(4.79)
+ yPr* + 10yPr2P4% + 5vP4%],

0G1/9Pa =0=Pala — 77 +2Qu(1 — Q)p + BPa> + 3BPr? + YPa* + 107Pr?P 4> + 59PF%], (4.80)

0G1/dp = AV /V = —x7p + Qu(1 + Q)P + Qu(1 — Q)P4%. (4.81)

Hence, the induced volume change in the paraelectric phase can be related to
the induced “ferroelectric” polarization by the following formula:

(AV/V)ing = Qu(1 + Q)P i (4.82)

On the contrary, below the phase transition temperature, which, for antiferro-
electrics, is usually called the “Neel temperature”, the spontaneous volume strain
and the spontaneous antiferroelectric polarization are related as

(AV/V)s = Qu(l — Q)P 5°. (4.83)

Even if the perovskite crystal shows Qj, > 0, in general, the spontaneous volume
strain can be positive or negative, depending on the value of (2 ((2 <1 or (2 > 1), that
is, if the inter-sublattice coupling is stronger than the intra-sublattice coupling (i.e.,
() > 1), a volume contraction is observed at the Neel point. This is quite different from
ferroelectrics such as BaTiO3; and PbTiO3, which always show a volume expansion at
the Curie temperature. Figure 4.15 schematically illustrates the spontaneous strains
in 1D form in a crystal for () > 1 (stronger inter-coupling). When P, and P} are
in the parallel configuration (ferroelectric phase), the ()-term acts to increase the
spontaneous strain xs, in comparison with Q(P,? + P;?)/2; when they are in the
anti-parallel configuration (antiferroelctric phase), the ()-term acts to decrease the
spontaneous strain, in comparison with Q(P.% + Py?) /2.
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(a) Ferroelectric Arrangement
x=Q(1+Q)P,+P,)%4

I I
[ [
— —
x=QP,? T l x=QP,?

(b) Antiferroelectric Arrangement
x=Q(1-Q)(P, - P,)?/4

Figure 4.15. Intuitive explanation of the sublattice coupling with respect to elec-
trostriction (for () > 0). Source: Figure by author.

4.5.3. Electric Field-Induced Phase Transition: AFE—FE

Suggested from Equations (4.79) and (4.80), we can expect that the ferroelectric
state (Pr) becomes more stable than the antiferroelectric state (P4) under an electric
field, because of the potential energy —PrE formula added onto the elastic Gibbs
energy. Accordingly, we can induce the phase transition from antiferroelectric (AFE)
to ferroelectric (FE) phase by increasing the applied electric field E, and the double-
hysteresis in the P—E relation as shown in Figure 4.14. The isotropic volumetric
change associated with the field-induced transition from the antiferro- to ferroelectric
phase is estimated by the subtraction between Equations (4.82) and (4.83):

(AV/V) = Qu(1 + Q)Prs* — Qu(l — Q)P4 s* =2Q,OPF . (4.84)

Here, we assume that the magnitudes of P, and Pj, do not change drastically through
the phase transition; that is, Pr s =~ P4 s.

Temperature Dependence of the Phase Transition

The phenomenological model in Section 4.5.2 effectively explains the experimen-
tal results for the PbZrO3-based antiferroelectric perovskite crystal and other ceram-
ics [6]. Introduced here are the results on the antiferroelectric ceramic Pbg 99INbg o2
[(Zro.6S10.4)1- Tiyl0.98O3 [31,32]. Figure 4.16a shows the relation between the electric
tield and polarization in the AFE ceramic y = 0.06 (i.e., Pbg 99Nbg 02 [(Zr9 SN0 4)0.94-
Tig.06]0.9803). The typical double and ferroelectric hysteresis loops are observed at
room temperature and —76 °C, respectively, while a transitive shape with humps
is observed at intermediate temperatures. The transitive process can be observed
more clearly in the strain curve. Figure 4.16b shows the transversely induced strains.
The forced transition from AFE to FE at room temperature is characterized by a huge
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discontinuous extension strain. On the other hand, a typical ferroelectric butterfly-
type hysteresis is observed at —76 °C, corresponding to polarization reversal. It is
important to note that the strain discontinuities associated with the phase transition
have the same positive expansion in both longitudinal and transverse directions with
respect to the electric field (i.e., the apparent Poisson’s ratio is negative), while the
piezostriction is negative and positive in the transverse (d3;) and longitudinal (ds3)
directions, respectively, which will be further discussed in Section 4.5.4.

A sort of “shape memory effect” is observed on this loop at —4 °C. That is,
when a large electric field is applied to an annealed AFE specimen, a massive strain
AL/L of about 7 x 10~# is produced and maintained metastably, even after the field
is removed. After applying a small reverse field or thermal annealing, the original
AFE shape is observed. In comparison with conventional “shape memory metal”,
the shape change is controlled by the electric field rather than the external stress
or temperature.

Temperature PolarizationP ~ Temperature AL/L
(C/m?)
167 °C // 55°C 5x 1074
/ 0.2
150 °C _—
° //
62°C J 0.2 26°C 5x107
o ﬁ
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L; e vx [ [
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(a) (b)

Figure 4.16. Polarization (a) and transverse elastic strain (b) induced by electric
field for several temperatures in PNZST (y = 0.06). Source: Figure by author,
adapted from [33].

Temperature Dependence of the Phase Transition

The reverse critical field related to the FE-AFE transition is plotted with solid
lines in the phase diagram for the sample with y = 0.06 in Figure 4.17a, in which the
temperature-field points are based on the measurements in permittivity, polarization
and strain [32]. In the temperature range from —30 °C to 10 °C, a hump-type
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hysteresis in the field vs. polarization curve and an inverse hysteresis in the field-
induced strain are observed: this has often previously been misinterpreted as another
AFE phase, different from the phase above 10 °C. The annealed state below —30 °C
down to —200 °C is AFE. However, once the FE state is induced, the AFE phase is
never observed during a cycle of the rising and falling electric field. The critical field
line for the FE-to-AFE transition (the solid line) in the temperature range —30 °C to
10 °C intersects the coercive field line for the + FE to — FE reversal (the dashed line)
below —30 °C. Figure 4.17b visualizes a 3D phase diagram for understanding the
bifurcation and the AFE-FE transformation hysteresis.
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Figure 4.17. (a) Phase diagram with hysteresis on the temperature vs. bias electric
field plane for the Pbg 99Nbg 02 [(Zr 6Sn0.4)0.94Tig.0610.908 O3 ceramic. (b) A schematic
3D view for understanding the bifurcation and the AFE-FE transformation hystere-
sis. Source: Figure by author, based on data from [32].
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Composition Dependence of the Induced Strain

The strain curves induced transversely by the external field at room temperature
for samples of several different compositions are shown in Figure 4.18 [32]. The
molar fraction of Tj, y, is increased from 0.06 (Figure 4.18a) to 0.065 (Figure 4.18c).
The initial state was obtained by annealing at 150 °C, which is above the Curie (or
Neel) temperature for all the samples. A typical double hysteresis curve (Type I)
is observed in the sample containing y = 0.06 (Figure 4.18a). Large jumps in the
strain are observed at the forced phase transitions from the AFE to the FE phase
(AL/L=8 x 107%). In comparison, the strain change with electric field in either the
AFE or FE state is rather small: this suggests a possible application for the material
as a “digital displacement transducer”, having OFF/ON displacement states. The
difference in the strain between that occurring in the initial state and that appearing
in a cyclic process at E = 0 kV/cm is also noteworthy, which is explained by the
“antiferroelectric domain reorientation” via the field-induced phase transition from
AFE to FE [31].

In the sample with y = 0.063, a Ti concentration slightly higher than that just
described, the field-induced FE phase will not return to the AFE state, even after
decreasing the field to zero (Type II, Figure 4.18b): this is called “memorizing” the
FE strain state. In order to obtain the initial AFE state, a small reverse bias field is
required. On the contrary, Figure 4.18c shows the strain curve for the sample with
y = 0.065, which exhibits irreversible characteristics during an electric field cycle
(Type III). The initial antiferroelectric strain state can only be recovered by thermal
annealing up to 50 °C.

These strain curve data can construct a phase diagram of the system Pbg 9g9Nbyg o2
[(Zrg.6Sng.4)1-4 Tiyl0.9sO3 at room temperature with respect to the composition y and
the applied electric field E (Figure 4.19). If the Ti concentration of the horizontal
axis is redefined in terms of temperature and evaluated in the opposite direction,
this phase diagram is topologically the same as the phase diagram of Figure 4.17
(if the horizontal axis is reversed). The key feature of this phase diagram is the
existence of the three phases, namely the AFE, the positively poled FE (+FE), and
the negatively poled FE (—FE) phases, the boundaries of which are characterized by
the two transition lines corresponding to rising and falling electric fields; hysteresis
originated from “bifurcation”, similar to Figure 4.17b.

The composition regions I and IV exhibit the typical double hysteresis and
ferroelectric “butterfly domain reversal”, respectively. The shape memory effect is
observed in regions II and III. It is important to consider the magnitude of the electric
field associated with the +FE — AFE transition (notice the direction of the arrow).
Let us consider the transition process under an inverse bias field after the +FE is
induced by the positive electric field. If the magnitude of the field for the +FE — AFE
transition is smaller than the coercive field for +FE — —FE (region II, 0.0625 < y <
0.065), the AFE phase appears once under a small inverse field, then the —FE phase
is induced at the AFE — —FE transition field. In this case, the shape memory is
reversible to the initial state only with the application of a reverse electric field (Type
IT); this is very useful! On the other hand, if the +FE — —FE coercive field is smaller
than the +FE — AFE field (region III, 0.0625 < y < 0.085), the domain reversal to —FE
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appears without passing through the AFE phase. The initial state can be obtained by
thermally annealing up to 50-70 °C (Type III).

Ferroelectric phase Ferroelectric phase
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Figure 4.18. Electric-field-induced strain in PbolgngO.Oz[(Zr0.6sn0.4)1_yTiy]0.9go3
antiferroelectric ceramics. Source: Figure by author, adapted from [33].
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Figure by author, adapted from [33].
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4.5.4. 3D Antiferroelectric Phenomenology

We expand the phenomenology to a three-dimensional formulation [34]. Con-
sidering the simplest case of a tetragonal spontaneous distortion of the primitive
perovskite cell, let us start by reducing the 3D polarization (P P, P3) to a simple form
(0 0 P3). The elastic Gibbs free energy is represented by using two-sublattice polariza-
tion P, and Py, ad stress X under a cubical supposition that si3F =s11F, s31F = s10F,
etc., for simplicity:

G = Ja(Pas? + Pp3?) + 1/8B(Paz* + Pya*) + 1/12(Py3® + Py3®) + 311PasPys
— 1553E(X02 + X2 + X32) — s E(Xa Xa + Xo X5 + X3X1) — J5aaF(Xa? + X52 + X¢2) (4.85)
— 1Q33(Pa3? + Pp3?) X5 — $Q31(Pas? + Pp3?)(X1 + X2) — q33Pa3PyaXs — 431Pa3Ppa(Xy + Xo).

Here, Q33 and Q37 denote the conventional longitudinal and transversal electrostric-
tive coefficients (intra-sublattice coupling), and q33 and g3; are the corresponding
inter-sublattice coupling parameters (the ratio q/Q was denoted as (2 in the previous
section). Introducing the transformations

Pr3 = (Pa3 + Pp3)/2, Pasz = (Pas — Py3)/2, (4.86)

leads to four types of stable states under zero applied electric field: nonpolar
(Pp3 = Pa3 =0), polar (Pr3 # 0, P43 = 0), antipolar (Pr3 = 0, P43 # 0), and semipo-
lar (Pr3 # 0, Pa3 # 0) states. The spontaneous polarization and strains derived
from the free energy function are summarized as follows for the ferroelectric and
antiferroelectric states:

e  Ferroelectric:
Py3=0
Prs® = [~ + {1/4p% — 47(T — Tc(X))/eC}' 21/ 27,

Tc(X) =Tc + 260C{(Q33 + q33) X3 + (Q31 + 931)(X1 + X2)}, (4.88)

(4.87)

x3 = 5335 X3 + 531 5(X1 + X2) + (Q33 + 33)Pr3, (4.89)
x1 = s33E X7 + 5315 (Xp + X3) + (Q31 + 931)Pr3?, (4.90)

(AV/V) = (s33F +2531F)(X1 + Xa + X3) + (Qa3 + 2Q31 + 433 + 2931)Pr3®. (4.91)

e Antiferroelectric:

Pr3 =0
(4.92)
Pas? = [—B+{1/4p* — 4y(T — Tn(X))/&C}/2]/2,
Tn(X) = Ty + 2e9C{(Q33 — 933) X5 + (Q31 — 931)(X1 + X2)}, (4.93)

x3 = 5335 X3 + 831 5(X1 + X2) + (Q33 — 433)Pas>, (4.94)
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x1 = 5335 X1 + 8315 (X + X3) + (Qa1 — 931)Pas’, (4.95)

(AV/V) = (s33F + 2531 5)(Xq + Xp + X3) + (Q33 + 2Q31 — q33 — 2931)Paz>.  (4.96)

Here, T¢c and Ty are the Curie and Neel temperatures, respectively, and C is the
Curie-Weiss constant. Note again that we presume the cubical symmetry physical
parameter components.

Estimation of 433 and g31

The values of 433 and 431 can be obtained from the strain changes associated with
the electric-field-induced and thermally induced phase transitions. The spontaneous
strains generated at the phase transition from paraelectric to antiferroelectric are
described as

x3 = (Q33 — q33)Pas’, (4.97)

x1=(Qs1 — 431)Pas’. (4.98)

On the contrary, the strain changes associated with the field-induced transition
from antiferroelectric to ferroelectric are given by

Ax3 = (Q33 + 33)Pr3® — (Q33 — 433)Pa3* = 2933PF3%, (4.99)

Axy = (Qs1 + 431)Pra® — (Q31 — 431)Pas® = 231 Pr3>. (4.100)

Here, we have assumed that Pr3 ~ P43 because only the flipping of polarizations
P, and P, would occur at the transition. Let us estimate the 33 and g3; values using ex-
perimental strains and polarization data for Pbg 99INbg 02 [(Zrg 6Sng.4)0.94Ti0.0610.9803-
The field-induced change in lattice parameters is plotted in Figure 4.20a [35]. The
forced transition from the AFE to the FE phase gives rise to the simultaneous increase
in a and c in the perovskite unit cell, thereby keeping the tetragonality, c/a, nearly
constant. Since the angle v makes only a negligible contribution to the volume
change, the strain change at the phase transition is nearly isotropic with a magnitude
of AL/L. =85 x 1074, Tt is noteworthy that this AL/L is the same observed in Fig-
ure 4.18a macroscopically. We observe minor changes in the parameters c, c¢/a, and 7y
between AFE-FE on-set and FE-AFE off-set electric fields. The intensity change in
the X-ray reflections with the application of an electric field suggests that the sponta-
neous polarization in the FE state lies in the c-plane, parallel with the perovskite [110]
axis, and that the sublattice polarization configuration in the AFE state is very similar
to that of PbZrOj; [36]. Figure 4.20b illustrates the simplest two-sublattice model.
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Figure 4.20. (a) Variation of lattice parameters with bias electric field at room
temperature (y = 0.06). (b) Two-sublattice model of the polarization configuration
for the AFE and FE states. Source: Figure by author, adapted from [33].

Using the above data and (8T /8p) of the PbZrOs-based sample [31], we derive:
Pr3 =Pa3=0.4(Cm2),
Axz=Ax; =8 x 1074,
Qn = Qa3 +2Q3 =05 x 1072 (m*-C?),
gn = q33 +2g31 = 0.9 x 1072 (m*.C~2).
We then derive the following parameter values:
Qa3 =15 x 1072 (m*-C2), Q3; = —0.5 x 1072 (m*.C~?),
g33 = 0.3 x 1072 (m*-C~2), g3; = 0.3 x 1072 (m*.C~2).

It is noteworthy that g33 and g31 have the same positive sign (accidentally almost
the same value), while Q33 and Qs; have the opposite sign with a “piezoelectric
Poisson’s” ratio of 1/3. Figure 4.21 illustrates the spontaneous strains in a crystal
schematically for (2 > 0 (you may interpret () = q33/Q33 in the figure). When P, and
Py are in the parallel configuration (ferroelectric phase), the ()-term acts to increase
the strain xg; when they are in the anti-parallel configuration (antiferroelctric phase),
the ()-term acts to decrease the strain. The difference from Figure 4.15 (1D model) can
be found in the isotropic volumetric expansion due the positive value of sublattice
electrostrictive coupling coefficient g3.
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(a) Ferroelectric Arrangement

x3=(Qs3 +qa3) (P, + Py)?/4
X1 = (Qa1 + q31) (P, + Py)*/4

______

______
o] . /
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x1=0Q3:P,?<0 x1=Q31P2<0

—
H

______________

(b) Antiferroelectric Arrangement

x3=(Qs3 - q33)(Pu - Py)?/4
x1 = (Q31 = g31) (P, = Py)?/4

Figure 4.21. Spontaneous strain changes associated with sublattice interactions in
the electrostrictive effect. Illustration is drawn in the case of 433 and g31 > 0. Source:
Source: Figure by author, adapted from [34].

Piezoelectric Anisotropy Related to Sublattice Coupling

The PZT system possesses both ferroelectric and antiferroelectric phases de-
pending on the composition. Thus, let us consider the piezoelectric coefficients in
the “ferroelectric state” with the “sublattice polarization” coupling. Under a small
external field E modulation, the polarization is given by

Pr3 = P35 + €0€3E3, (4.101)

where g3 is the relative permittivity. Using Equations (4.89) and (4.90), longitudinal
and transversal strains are represented as

x3 = (Q33 + 433)Pr3,s% + 2(Q33 + 433)063Pr3,sE3 + (Q33 + g33)e0e3E3?,  (4.102)

x1 = (Q31 + 431)Pra,s* + 2(Q31 + 431)€063Pr3,sE3 + (Qa1 + g31)e0°e3*E3*.  (4.103)

The first term describes the spontaneous strains, and Figure 4.21 illustrates the
spontaneous strain changes due to the sublattice interactions in the case of 433, q31 > 0.
When the spontaneous polarization Pr3 s exists, the third term (pure electrostriction)
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may be negligibly small in comparison with the second term (piezostriction), and
the piezoelectric d coefficients are denoted as

daz = 2(Q33 + g33)€0€3Pr3 3, (4.104)

dz1; = 2(Q31 + g31)€0€3Pr3 5. (4.105)

Different from the normal formula, d3; = 2Q3;e0€3 P35, the above equations include the
sublattice coupling g3; parameters. Using the above physical parameters in Subsection
Estimation of g33 and g3 and e3 = 600, we can evaluate d33 =72 X 1072 m/V and
dy; = —8 x 10712 m/V.

This estimated value is close to the experimentally obtained d3; = —7 x 10712 m/V,
as shown in Figure 4.22, though we use a rough isotropic elastic approximation such
as s33F = 511, 831F = s15F, etc. The “piezoelectric Poisson’s” ratio d; /dz3 is given by
(Q31 +g31)/(Qs3 + g33), and it can differ from the usual value Q31/Qs3 (= —1/3) of
the normal ferroelectrics, owing to the values of 433 and g31. Using the above values

again, we can estimate d3; /dsz = —(1/9), that is, huge anisotropy.

AL/L~8.2x10™

Strain AL/L

2x10°®

1

2.25 2.325 2.40
(kV/mm)

d.. =-7x10"2m/V

31

Electric Field (kV/mm)

Figure 4.22. Piezoelectric d3; measurement in the induced ferroelectric phase

in Pbgg9Nbg 02[(Zrg6Sn0.4)0.94Tig.06]0.9803. Source: Figure by author, adapted
from [37].

Regarding the anisotropy of the electromechanical coupling factors k; and k,

which are represented as
ki = &1 /%, (4.106)
\/s5heR V€33
dsz; 2
k, = \/ . 4.107
y JEX V1 —0 .

511€33

145



Then, supposing again that s5;~ sf;, % ~ 0.75, and o ~ 1/3, we obtain
33

ke/ky ~ 0.5d33/d3;. (4.108)

For the antiferroelectric-based piezoelectrics, taking into account the above
discussion d31/d33 = —(1/9), kt/k, will be equal to 4.5, much larger than the normal
PZT value around 2.0.

Table 4.3 lists several anisotropic piezoelectric data for field-biased PNZSTs,
PbZrOs- and PbTiO3-based ceramics [37,38]. The electromechanical coupling factors
ki (thickness mode) and k, (planar mode) range from 0.5 to 0.6 and from 0.05 to 0.15,
respectively, and the anisotropy (k;/ky) reaches more than 4.0. In contrast, the ratio
(kt/kp) for the intermediate composition of the solid solution Pb(Zr,Ti)O3 will not
exceed 2.5, which is also listed in Table 4.3 [37].

Table 4.3. Anisotropic piezoelectric constants in field-biased PNZSTs, PbZrOs- and
PbTiO3-based ceramics.

Electromechanical Coupling Factor

Composition

Pbg.99Nby 02 [(Zro.65n0.4)0.937Ti0.06310.9803
under 22.5 kV /em 0.456 0.114 4.00

Pbg.99Nby 02 [(Zro.65n0.4)0.936 Ti0.06410.9803
under 22.5 kV /em 0.501 0.123 4.15

Pbg.99Nbo 02 [(Zrg.65n0.4)0.934 Ti0.06610.9803
under 22.5 KV /cm 0.622 0.137 4.56

Pbg.99Nby 02 [(Zrg.6Sn0.4)0.920 Ti0.08010.9803
under 22.5 KV /cm 0.575 0.145 4.02

Pbg.99Nby 02 [(Z19.6510.4)0.910 Tio.09010.98 03
under 22.5 KV /cm 0.564 0.136 4.15
Pb(Zry 9 Tig 1)O3 [38] 0.325 0.072 452
(Pbg.sCag ) TiOs [39] 0.530 0.050 10.60
Pb(Zry 5Tig 5)O3 [40] 0.752 0.388 1.938

Source: Table by author, based on data from [37].

It is interesting to note that most of the PZT-based compositions exhibiting
“piezoelectric anisotropy” are closely related with “antiferroelectricity” or “sub-
lattice” structure. Some of them based on PbZrOj3 are originally antiferroelectric
at a low temperature or even at room temperature, and the ferroelectricity is in-
duced under a high electric field applied (i.e., poling process). Ca-modified PbTiOs
[(Pbg.gCag2)TiO3] ceramics [39] possess huge anisotropy with a crystallographic su-
perlattice structure observed in the annealed state, suggesting an antiferroelectric-like
sublattice structure.

As a final remark, even if the sample is not originally antiferroelectric, the
perovskite-type piezoelectric ceramics with large piezoelectric anisotropy (k¢ /k, > 3)
may possess rather large “sublattice dipole coupling” as the microscopic origin.
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4.6. Phenomenology of AFE-FE Solid Solution

A phenomenological theory for the solid solutions systems between the ferro-
electric Pb(Fe; /3W1,3)O3 and antiferroelectric Pb(M;,,W1,,)O3 (M = Mn, Co, Ni)
compositions is introduced in this section. These solid solution systems have been
investigated to discover new multifunctional (ferromagnetic—ferroelectric) materi-
als [22]. In this section, only ferroelectric properties are focused. The phase diagram
of experimentally determined Pb(Fe;,3W1,3)O3- Pb(M;,,W1,2)O3 (M = Mn, Co,
Ni) is shown in Figure 4.23a [27]. For mathematical simplicity, we introduce the
second-order phase transition treatment [9].

We take Kittel’s free energy expression in the 1D two-sublattice model for a
ferro- or antiferroelectric crystal, analogous to Equation (4.85) with an —EP potential
energy term to discuss the electric field dependence of properties:

Gi = aj(T)(P® + Py?) + 1/2Bi(Pa* + Py*) + 11;PaPy + §; (Pa® + Py?)PaPy — E(Py + Py).  (4.109)

Here, i = 1 and 2 denote the suffixes for Pb(Fe; ,3W1,3)O3 and Pb(M; ,,W1,2)O3,
respectively. P, and P, are the polarization of the two sublattices, and E is the
externally applied electric field. The terms 7 and ( are introduced to account for
an antiferroelectric and a successive ferroelectric phase transition, respectively [27].
The P,?P,? and (P,® + P,°) terms are omitted for simplicity. « is the only coefficient
assumed to depend on temperature. Since the solid solution crystal (except the end
member Pb(Fe; /3W1,3)O3) has the 2 x 2 x 2 ordered structure, it is reasonable to
adopt the two-sublattice mode for these systems.

4.6.1. Phenomenological Expression for the Solid Solution

We assume that the Gibbs free energy of the solid solution can be expressed
as follows:

G= (1 — X)G1 + xGy
= [og + x(ap — a1)](Pa® + Pp?) + 1/2[B1 + x(B2 — B1)I(Pa* + Pp*) (4.110)
+[n1 + x(2 — 11)1PaPp + [C1 + x(C2 — Cl)](Paz + Pb2)Pan — E(Pg + Py),

where x represents the mole faction of Pb(M; ,,W1,,)O3. We also assume that the
temperature-dependent coefficient «; is

;= agi(T—T;)[i=1,2], (4.111)

where T; is the Curie-Weiss temperature, not equal to the actual transition temper-
ature of crystal i, as shown later. Introducing new expressions for the coefficients:

a(T,x) = [ + x(wgp — ag) (T — T1) + (T1 — To)axgox = ag(1 + a1x)(T — T1) + apx,
B(x) = p1 + x(B2 — B1) = Po(x — X0),
n(x) =n1 +x(12 = 11) = 17olx — x1),
C(x) =1 +x(02 — C1) = Co(x — x2),

(4.112)
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we obtain a simple form of the free energy:

G = a(T,x)(Ps? + Py2) + 1/2B(x)(Ps* + Pp*) + n(x)P, Py

(4.113)
+ C(x)(Paz + sz)PuPb — E(Pgy + Pp).

It is essential to the expression that the physical properties of the solid solution are
determined only for the linear combination of the expansion coefficients of the two
end-members. Transformations P = (P, + Pp)/V/2, p=(Ps— Pp)/ V2 lead to the
following expression:

G(T, x, P, p) = (a + 17/2)P? + (& — 11/2)p?

(4.114)
+(B/4+/2)P* + (3/2)BP*p* + (B/4 — {/2)p* — EP.

4.6.2. Stable State under E =0

The stable state conditions for E = 0 which give the minimum free energy in the
P—p plane are as follows:

(g_@ = Pl2wty+ (B+20)P + 37| =0, (4.115)
(3%) = plaw—y+ (8202 +3p77] =0, (4116)
%G 2 2
(W) = (2a+ 1) +3(B +20)P* +3Bp~ > 0, (4.117)
%G 2 2
(8_;92> = (2a—1n)+3(B—20)p~+3BP- >0, (4.118)

2G\ [ #G PG \> (%G (G )
(= )l—=|-(—) =(=— || =— | — (68Pp)” > 0. 4.119
/ (8P2)<8p2> <8P8P) (8P2)<8p2) (65PP) (+119)
Four types of polar state are possible from Equations (4.114)—(4.119):

I Nonpolar (Paraelectric)

Ps=0,ps=0,
20+17>0,20 — >0, (4.120)

Minimum energy G, = 0.
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II  Polar (Ferroelectric)
Ps? = —(2a+1)/(B+20), ps =0,

2140 <0,(28) = (20— 9) =3+ )/ (B+20 >0, i)

o . . 1 (2“+17)2
Minimum energy Gp = — ;o

(B+28)

III  Antipolar (Antiferroelectric)

Ps =0, ps* = —(2a — 1)/ (B —20),

2
20—y <0,(28) = 2a+n) —362a—1)/(B=20) >0, (4122)
Minimum energy G, = _411 ((2 g_—zng);.

IV Semipolar (Ferrielectric)

Ps? = [(B—20) (2 +17) —3B(2a — )] /4(2B* + C?)),
ps® = [(B+20)(2a —17) —3B(2a + )] /4(28* + 7%)), (4.123)
(B+22) > 0,(B—20) >0, f = —16(28” + %) Ps2ps®.

Since f < 0 in Equation (4.123), the ferrielectric state is not realized as a stable
state (i.e., metastable as the maximum point in these solid solutions.

4.6.3. Permittivity

Inverse permittivity 1/¢ge, (nonpolar state), 1/¢ege), (polar state), and 1/¢pe,

(antipolar state), defined as <g—1§>, are calculated from Equation (4.114), and they

prove to be expressed by the similar formula with Equation (4.117), i.e., for nonpolar,
polar, and antipolar phases by

1/e0en = 2a+17),
1/e0ep = —2(2a +17), (4.124)
1/e0es = a+1) —3 p2a—1n) /(B —20).

4.6.4. Phase Transition Temperature

Since the equations (2a +#) = 0 or (2a — #7) = 0 are realized at the paraelectric—
ferroelectric or antiferroelectric transition temperatures, respectively, we can derive
the composition x dependence of the transition temperature:

(@) x <xp: paraelectric — ferroelectric transition

Tc =T, — [azx + (%)qo(x — xl)] /ag(1+ ayx), (4.125)

149



(b) x> xq: paraelectric — antiferroelectric transition

Ty =Ty — {azx — (%)qo(x — xl)] /ao(1+ aix). (4.126)

It is noticeable that the prefixed signs of 77(x) are different in Equations (4.125)
and (4.126), and 7(x) itself changes sign at x = x7, which leads to a transition
temperature curve anomaly (e.g., sometimes, the transition temperature is a mini-
mum) at x = x1. The relation 0 < x1 (= —#1,(72 — 171)) < 1 is always realized since
Pb(Fe; /3W1,3)O3 and Pb(M; /,W1,7)O3 are ferro- and antiferroelectric, i.e., 71 <0
and 772 > 0.

If x > x1, another transition antiferroelectric—ferroelectric phase occurs at a
temperature below Ty, owing to the existence of the { term. The temperature Tj is
calculated from the condition G, = G, (see Equations (4.121) and (4.122)), as

To =Ty — [azx n (g)iyo(x _ xl)] Jag(1 + a1x), (4.127)

o B+20Y\ (,_ |B+2C B+2¢
<1+ ﬁ—zg)/<1 5—2§>’O<ﬁ—2§<1' (4.128)

4.6.5. Comparison with Experimental Results

where

From the experimental data obtained from the phase diagrams listed in Table 4.4
and Equations (4.125)—(4.128), we obtain the significant coefficient ratios of the
expansion coefficients of the free energy summarized in Table 4.5. The value of
Ty was assumed to be zero since T} was common to the three systems and was
found to be nearly equal to zero from the average of the experimental data. The
values of coefficients change systematically with the component M. The parameter 75,
considered to represent the degree of antiferroelectricity, shows an increase similar
to 170/ ap in order of Mn, Co, and Ni.

Figure 4.23b shows the theoretical phase diagrams of the three systems calcu-
lated with the parameters listed in Table 4.5. Reasonable agreement is obtained
between the calculated curves and the experimental ones (Figure 4.23a). Example
calculations made for 0.15Pb(Fe; ;W1 ,3)03-0.85Pb(Co; /W /2)O3 are shown in Fig-
ure 4.24a—c. The free energies at three possible stable states are plotted as a function
of temperature in Figure 4.24a, where the dashed (antiferroelectric) curve at T = 87 K,
that is, successive phase transitions occur, such as para-(224 K)-antiferroelectric-(87
K)-ferroelectric. Figure 4.24b shows the ferroelectric spontaneous polarization Ps,
and antiferroelectric ps. Figure 4.24c shows the permittivity change, which peaks
at both phase transition temperatures. The low-temperature peak is, however, too
sharp and too large compared with the experimental curve shown in [27], probably
due to neglecting the term (P,° + P,%).
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Figure 4.23. Phase diagrams of Pb(Fe; ,3W1,3)O3- Pb(M; ,,W1,7)O3 (M = Mn, Co,
Ni): experimental results (thick curved lines), and calculated (fine linear lines) from
the data in Table 4.5. Source: Figure by author, adapted from [27].
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Figure 4.24. Calculations for 0.15Pb(Fe; ,3W1,3)O3-0.85Pb(Coy /W1 ,2)O3: (a) free
energy change, (b) spontaneous polarization, and (c) permittivity. Source: Figure
by author, based on data from [27].
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Table 4.4. Experimental data of phase diagrams for the systems Pb(Fe; /3W; /3)O3-

Pb(M1,2W1/2)O3.
M X1 Tc (x=0) Te (x =x1) Ty (x=0) To(x=1)
Mn 0.9-0.95 203 K 298412 K 429 K (<77 K)
Co 0.65-0.7 203 135 311 100
Ni 0.6-0.7 203 114 291 113

Source: Author’s compilation based on data from [27].

Table 4.5. Theoretical data of phase diagrams used for the systems Pb(Fe, ,3W1 ,3)O3-

Pb(M; /,W1,2)Os.

M X1 T, aq axlag nolagp x (x> x1)
Mn 0.95 0 0.06 —452 427 35.0
Co 0.67 0 0.02 —204 606 1.55
Ni 0.64 0 0.01 —179 634 1.01

Source: Author’s compilation based on data from [27].

4.7. Advanced Phenomenology with Higher-Order Expansion
4.7.1. Bias Electric Field and Stress Dependence of Piezoelectric Properties

Taking into account the DC bias external electric field and stress dependence of
the material property, an extended phenomenological formula should be required.
Since most of the material properties show approximate linear changes under external
biases, we can restrict the expansion functions of the material properties to merely

the first order approximation. Therefore, the material properties can be expressed
accordingly:

E X
i (B, X) = s + s B+ s[5 X, (4.129)
E X
dij(E/ X) = dij + dfjk) -E; + df].k) - X, (4.130)
&i(E,X) = e + el B 4+ 69X, (4.131)

It should be noted that sl(].],i) and sl(].),? are fifth rank and sixth rank tensors, respectively.

This section considers the higher-order material properties described in Equa-
tions (4.129)—(4.131), in addition to the primary s,-jE , djj, and e;X, based on the experi-
mental data obtained for a soft PZT (PIC-255, PI Ceramics, Germany) [41]. Table 4.6
lists the DC electric field and compressive stress bias dependence of dielectric per-
mittivity, elastic compliance, and piezoelectric constant. Note that the change in the
parameters is only 2-3% of the original parameter values. We will discuss the higher-

order expansion terms to explain these deviations under the DC bias conditions.

4.7.2. Phenomenological Higher-Order Integration

We adopt the Landau-Devonshire phenomenological theory to examine the
first-order transition in the tetragonal-rhombohedral morphotropic phase boundary
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(MPB) PZT composition behavior and material properties. Due to a lack of single
crystal PZT data, the PZT Landau energy coefficients are mainly measured using
indirect methods [42]. Haun et al. developed a comprehensive thermodynamic
model for the entire solutions of PZT [43]. Though the current thermodynamic
models are in good agreement with various experimental data, these models must be
modified to explain the external bias dependency. Daneshpajooh et al. developed the
phenomenological formula for the effect of nonlinearity observed by the application
of DC stress and an electric field [41].

Table 4.6. Experimental and calculated higher-order thermodynamic terms.

Parameter PIC-255 (Measured) PIC-255 (Fitting)
de33/9E3 (1074 m/V) —2.02 £ 0.08 —0.8+06
d|ds1|/9E; (10717 C-m/N-V) —3340.1 —7+42
de33/9X3 (1076 1/Pa) 32402 2+14
Q333 (10‘11 m® /CZN) 9+7.1
Qu13 (10*11 m6/C2N) —6+43
s333 (10720 1/Pa?) —4+30
(1/35333X3) / (1/2 533X3) 1.1-2.2%
(1/2 Q333X3P2) / (Q11 P2 X3) 1.9-3.8%
(1/2 Qu13X2P%)/(1/2 5 X3) 0.6-1.2%

Source: Table by author, based on data from [41].

Since we mainly focus on ferroelectricity phenomena, the thermodynamic model
is described as a power series of polarization, stress, and electrostrictive coupling
along the crystallographic axes. In order to explain the compliance change under
external biases, higher-order piezoelectric coupling terms and higher-order elastic
expansion terms should be introduced. Since our research focus is on k31 (P; =
P2 = 0, X3 = X2 = 0) and k33 (P1 = P2 = 0, X1 = X2 = 0) modes for the MPB
composition PZT ceramic, taking into account PZT’s crystallographic symmetry
(comm or 6mm symmetry class) and the k3; and k33 mode geometric configurations,
the thermodynamic elastic Gibbs free energy equation is modified with the following
additional terms:

AGy(P,X) = $a1P2 + 1 B11Ps + %’71111)36 — Py (s X2 + 533X§)-

~0u68 - 0 RO

where the “shaded” last terms on the first and second equation lines are newly
introduced to the elastic Gibbs free energy description. It should be noted that only
a; = (T —Tp)/eoC is considered to be temperature dependent, which represents
the “Curie-Weiss” law in the paraelectric phase. The parameters Ty, s;;, sijk, Qyj,
and Q;j are the Curie-Weiss temperature, fourth- and sixth-rank elastic compliance
tensor components (reduced notation), and fourth- and sixth-rank electrostrictive

(4.132)
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coefficient tensor components (reduced notation), respectively (i,j, k=1,2, - - -, 6).
In materials which experience the first-order transition (8 < 0), the elastic Gibbs
function is expanded up to the sixth power of polarization. In the following sections,
we discuss the phenomenology of ferroelectricity under external stress and an electric
field, based on Equation (4.132).

4.7.3. Bias Electric Field and Stress Dependence of Physical Parameters

The external DC electric field and stress can considerably affect the piezoelectric
material properties. The reader is first reminded of the following relations:

E; = (3G, /dP), (4.133)
X; = —(8G1 /aX,), (4134)
1/epe; = (azc;1 /apﬁ). (4.135)

From Equation (4.132), we obtain the following equations:

E3(P, X) = a1 Ps + B11 P + 1111 P5 — 2(Qu1 XaP5 + Q12 X1 P5)
—(Q333X3P5 + Q113 X3 Ps3)

(4.136a)
= aMf Py + B11 P + 1111 5
(applicable for both k31 and k33 modes),
x1 (X, P) = sH X1 + Q12P? (for ks mode), (4.137a)
x3(X, P) = s/ X5 + Q11 P? (for k33 mode), (4.138a)

where

“‘i’ff =1 —2011X3 — <Q333X§ + Q113X%> (for both k31 and k33 modes), (4.136b)

Si{f = s11 + Qu13P5 (for k3; mode), (4.137b)

Sgéf = 533 + 5333 X3 + Q333P§ (fOI‘ k33 mode). (4.138b)

The stress dependence of compliance is a combination of the primary and sec-
ondary elastic behavior and the higher-order electrostriction of the material. Since the
spontaneous polarization changes under external electric field, the bias electric field
dependence of material compliance is merely due to spontaneous polarization change.
Therefore, the material properties including piezoelectric d constant (d;; = €o¢;.8ij), &
constant (g;; = — (aZG/aP,-aX]- )), and inverse permittivity (1/€o¢;; = (82G/8P,-8P]-> )
can be calculated as follows:

1/e0e3(X, E) = af 3811 P3 + 5911115, (4.139)
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g31 = 2Q12P3 +2Q113X1 P3; d31 = 2¢0e3(Q12 + Q113X1) P3(k3; mode),  (4.140)

833 = 2Q11P3 +2Q333 X3 Ps; d3z = 2¢e0e3(Q11 + Q333X3) P3(ks3 mode).  (4.141)

In order to find the effect of the external electric field and stress effects on the
polarization status inside material at room temperature, Equations (4.132)—(4.138)
should be solved to find the equilibrium ferroelectric states under these biases.
Accordingly, using the calculated spontaneous polarization at equilibrium states,
the DC electric field and compressive stress dependence of material properties are
calculated based on Equations (4.139)—(4.141).

External Electric Field Effect on k3; Mode PZT

The inverse permittivity should change under the presence of an external DC
field. The electric field and dielectric stiffness in the presence of the external field (E)
can be expressed in the k3; plate (from Equations (4.133)—(4.135)) as

Ey = a1 P5 + ‘311P33 + ’)’111P§), (4.142)
x1 = QP35 (4.143)
1/e0e; = ay +3B11P% + 57111 P5. (4.144)

Under a positive external electric field, the Curie temperature shifts to higher
temperatures while showing a spontaneous polarization discontinuity at the Curie
temperature. In order to calculate the material property behavior including inverse
permittivity (1/epg;), piezoelectric coefficients (d;;), and elastic compliance (s;j), it is
necessary to find the free energy minima. Using numerical methods, the correspond-
ing spontaneous polarization (Ps) under an external electric field can be calculated
from Equation (4.142) and elastic Gibbs free energy minima. We conducted the
tirst-order approximation of spontaneous polarization under an external field for a
PZT 50/50 by referring to the paper by Amin et al. [44]. At room temperature, the
first-order approximation of spontaneous polarization shows less than 0.2% devia-
tion from numerical results. Accordingly, since the effect of the DC electric field on
material properties is inherited by spontaneous polarization change, piezoelectric
and permittivity also show little deviation (less than 1%). According to Equations
(4.133)-(4.138), the inverse permittivity and piezoelectric coefficients under an exter-
nal electric field at room temperature can be formulated as follows. The second-order
material properties used in Equations (4.129)—(4.131) can be deduced as follows:

() _ 9e3(E,X) /% [2(A—Bu) [ 5A—2pn
€330 = JE3 < A > P <(A_‘BH)3>, (4.145)

dds3(E, X) > 3B7 —3BuA — 8w
d%;, = ——— = —40u71n
dE3 (A2 — B A)®

odz1 (E, X) 367 — 3B11A — 817111
g(E) _ 931 40,42, 2P
313 8E3 Qer)/lll (A2 B 511A)3

) (4.146a)

) (4.146b)
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() _ 9s1(E,X) _ Qus | 271
S = 9, A \|A—pBy’ (4.147)

A= /B — 4. (4.148)

Based on Equation (4.147), in order to discuss the elastic compliance change un-
der an electric field, the reader can now understand that a higher-order nonlinear
electrostriction effect Q113 should be integrated.

where A is defined as

External Stress Effect on the PZT Phenomenological Theory

The thermodynamic theory can also be applied for the explanation of stress
effect on ferroelectric properties. The elastic Gibbs energy expressed in Equation
(4.132) derives the electric field E3 under external stress X3,

E3(P,X) = m1P5 + B11P5 + 1111 P — 2Q11P3X3 — Q111 P X3

/ 3 5 (4.149)
= a1 P+ 1Py + v P3,
where Déll =1 — 2Q11X3 - Q111P3X§.
Similar to Equations (4.145)—(4.147), using the first-order approximation, the
second-order material properties under a constant pre-stress condition at the ferro-
electric phase can be derived as follows:

(xX) 883(E, X) - 4Q11'Y%11 < 2A - Bn ) (4 150)

Exq’ = = — , .

33 aX3 A3 (A _ 511)2
4% _ dds3(E, X) —2v20% (5% —5p11A — 12a171m1) . 2v2Qu1 (B3 — PuA — 2a17111) 4151
33 0X3 3 A—Bn 5/2 - 2 (A=Bn 5/2 ’ ( ) )
A ’)’111( T ) A’Ylll( Y111 )
x) _ 09s33(E, X) Qi1 X Qu

s = T = e HasHES, (4.152)

where A = \/ 13%1 — 417111, as in the previous Subsection External Electric Field Ef-

fect on k3; Mode PZT. The permittivity change under external stress can be explained
by the conventional thermodynamic models due to ready-integrated higher-order
dielectric stiffness parameters. However, based on Equations (4.151) and (4.152), the
piezoelectric constant d and elastic compliance s change under external stress can be
obtained merely by integrating higher-order nonlinear elastic s333 and electrostriction
Q111 coefficients.

Table 4.6 lists the above simulated permittivity, elastic compliance, and piezo-
electric constant change with bias electric field and compressive stress in the measure-
ments. Though the errors for these evaluations are not small, the general tendency
can be explained. Note that the modulation by bias in the primary parameters is
only 2-3% (not very large). Figure 4.25 shows the comparison of phenomenological
model predictions vs. experimental data on €%, sL;, and d33 under DC electric field
bias (Figure 4.25a—c) and under compressive stress bias (Figure 4.25d—f). Though
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the prediction bands are rather wide (due to the error propagation), the estimated
trend lines are in relatively good agreement with the experimental data. The DC bias
dependence of physical parameters will help with constructing the domain dynamic
models, as discussed in Chapter 14.

1650+ = Experimental Data 15.751
Phenomenological Model

Prediction Band

{1 (b)
L — 1 —
-150 0 150 300 -150 0 150 300
DC Bias field (V/mm) DC Bias field (V/mm)

®m  Experimental Data

20007 | — Phenomenological Model )
b = Experimental Data Prediction Band JPtas
______ Phenomenological Model
~o | Prediction Band
— 2004 N
= .
<
(&)
= w
i -
< 1504
() 1 (@
L] b L] b L] b L] 1 1800 T T T T T
-150 0 150 300 20 30 40
DC Bias field (V/mm) Compressive Stress (MPa)
= Experimental Data
2204 Phenomenological Model
4204 Prediction Band
—  21.54
=
<
o
S
N 21.04
P 4004
—
i
L(u/) 20.51
20.0 T T T T T 380 T T T T T 1
20 30 40 20 30 40
Compressive Stress (MPa) Compressive Stress (MPa)

Figure 4.25. Comparison of phenomenological model predictions vs. experimental
data on 8§3, s§3, and ds3 under DC electric field bias (a—c); and under compressive
stress bias (d—f). Source: Figure by author, adapted from [41].
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Chapter Essentials

1.

Elimination Theorem of Taylor Expansion Terms

Theorem 1. When the crystal possesses a “centrosymmetry”, the odd power of the
expansion tensor coefficient a;j...; becomes “zero”.

Theorem 2. When we discuss the phase transition, we assume that energy description
is common through the paraelectric and ferroelectric phases and that the reduction in
the Taylor expansion terms follows to the highest symmetry paraelectric phase. When
the paraelectric phase is “centrosymmetric”, the odd power of the expansion tensor
coefficient w;j...; becomes “zero”.

Landau Phase Transition Theory

Second-Order Phase Transition (in the Case of g > 0) (Figure 4.2 )

F(P, T) = (1/2)aP? + (1/4)BP* [a(T) = (T — Ty)/&oC]
(OF/dP) = E = P + BP?
# = (g-g) = a + 3BP?
e  Paraelectric Phase (T > Ty = T¢)
Ps=0

L e (T-T/enCore = oy

e  Ferroelectric Phase (T < Ty =T¢)
Ps* = —% = (To — T)/BeoC, or Ps = £/(To —= T)/ (B €0 C)

sg = —20=2(Ty —T)/eoC, or e = 725

Coercive field: Ec = aP + BP3 = \/—443/27p
First-Order Phase Transition (in the Case of 3 < 0) (Figure 4.4b)

F(P, T) = (1/2)aP? + (1/4)BP* + (1/6)yP® [a(T) = (T — Tg)/&oC]
(OF/dP) = E = aP + BP3 + yP° = 0
e = (35) =« +3pP2 4 5y Pt
e  Paraelectric Phase (T > T¢)
Ps=0

L e (T- /e ore = s

Ti= To + B?eoC/4y
Tc=To+ (3/16)(BeoC/ )
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e  Ferroelectric Phase (T < T¢)

P?=[-B+ /B2 — 4704} /2]

2
L= —an—2pp? & 3 4+ M D

eo€ eoC

Devonshire Phase Transition Theory
G(PXT) = (3)ar ¢ (3) 8P+ (5)70° — (3)sx7 - Qpx
[« = (T = To)/e0oC]

= (%) = aP+ BP® +7P° - 2QPX

1 (g_;:;) — a4+ 3BP2 4+ 5yP* — 20X

e  Paraelectric Phase (T > T¢)
Ps =0 or P = gpeE (under small E modulation)
Permittivity: ¢ = C/(T — Ty) (normal Curie-Weiss law)
Electrostriction: x = Qe%szEz

e  Ferroelectric Phase (T < T¢)

Ps? = (—p +\/,82—740c’y)/2y or P = Ps + ¢peE (under small E modulation)

x = Q(Ps + g9eE)? = QPs? + 2e0eQPsE + Qe3e?E?

o = &+ 3BP? +57P* = —4a — 2P5”

Spontaneous strain: xg = QP¢?

Piezoelectric constant: d =2 ¢ € QPg

Electrostrictive strain: Qe3e?E? (usually neglected)

Phenomenological Approach in Solid Solutions

Gi(P, X, T) = (1/2)[(1 — x)wa + xap|P? + (1/4)[(1 — x)Ba + xBp] P*

+(1/6)[(1 — x)ya +xyB]P® — (1/2)[(1 — x)s4 + xs5]X* — [(1 — x)Qa + xQp|P*X
(xa = (T —Tona)/e0Ca, = (T — Tog)/€0Cp)

Phenomenology of Antiferroelectrics

G1 = (1/9a(Ps? + Py?) + (1/8)B(Pa* + Py*) + (1/12)y(P,6 + P%) + (1/2)nP,P,,

— (1/Dx1p* + (1/DQu(Pa® + Py + 20P,Py)p

Introducing the transformations Pr = (P, + Pp)/2 and P4 = (P, — Pp)/2 leads to
the following expression:

159



G1= (1/2)a(Pr? + P4%) + (1/4)B(Pr* + Pa* + 6PF?P4?)
+ (1/6)y(Pr® + P4® + 15Pr4P 42 + 15PF%P 4 %)
+ (1/25(Pr? — P4%) — (1/2)x1p? + QulPr? + Pa% + Q(Pr? — P42)]p.

The piezoelectric d coefficients in a sublattice material are denoted as ds3 =
2(Q33 + q33)80€3Pp3’5, d31 = 2(Q31 + q31)€0€3pp315. Thus, when a large piezo—
electric anisotropy (1d33/ds; | > 4) is observed, we may anticipate positive
inter-sublattice electrostrictive coupling g3; in the material with a sort of crys-
tallographic superlattice structure.

Check Point

1.

10.

Elastic Gibbs energy is given by:
G1 = (1/2)aP? + (1/4)BP* + (1/6)yP® — (1/2)sX? — QP?X.

Why do we not include the “odd-number” power terms of P? Answer simply.

(T/F) The phenomenology suggests that the piezoelectric constant d of a fer-
roelectric material increases with a decrease in temperature below its Curie
temperature. True or false?

(T/F) The phenomenology suggests that the Curie temperature of a ferroelectric
material is always lower than (or equal to) the Curie-Weiss temperature. True
or false?

How is the piezoelectric coefficient d related with the electrostrictive coefficient
Q, spontaneous polarization Ps, and relative permittivity ¢, in a ferroelectric
phase in the 1D phenomenology? Provide the simplest formula.

(T/F) The Landau phenomenology on the second-order phase transition derives
the linear decrease in the spontaneous polarization with a temperature rise
below T¢. True or false?

(T/F) The Landau phenomenology on the second-order phase transition derives
the linear decrease in the spontaneous strain down to zero with a temperature
rise below T¢. True or false?

(T/F) The Landau phenomenology on the second-order phase transition derives
the linear decrease in the inverse permittivity down to zero with a temperature
rise below T (ferroelectric phase). However, the slope is four-times steeper
than the slope of that in the paraelectric phase. True or false?

(T/F) The MPB composition of the PZT system exhibits the maximum electrome-
chanical coupling k, piezoelectric coefficient d, and the minimum permittivity e.
True or false?

(T/F) The electrostrictive coefficient M, defined by strain x = ME? (E: applied
electric field), is rather insensitive to the temperature change, even through the
phase transition temperature Tc. True or false?

(T/F) The phenomenology of antiferroelectrics with the sublattice coupling
suggests a possibility of large piezoelectric anisotropy in the field-induced
piezoelectric phase, in comparison with a normal ferroelectric material. True
or false?
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Chapter Problems

4.1

4.2

4.3

Referring to a paper by Amin et al. [44], consider the necessary expansion terms
in 3D Devonshire phenomenological theory.
Hint

Consider which term stabilizes primarily, tetragonal (P; = P, =0, Ps # 0),
orthorhombic (P, = 0, P; = P; # 0) or rhombohedral (P; = P, = P; #0)
symmetry structure?

AG(P,X) = 3 (x1P? + aoP? + a3P2) + 1 (B11P} + BoPs + BasPy)
+3 (B12PEP3 + B2aP3P5 + ... )+ (1 P + 7222 P5 + 7333P5)
+¢ (1121 PFPEPE 4 1123PFPEP2 + .. ) — 5 (511X + 520 X3 + 533X3)
—(12X1 X2 + 513X1 X3 + 523X X3) — ... — (Qu1PEX1 4+ QuP3Xo + Q33 P53 X3)
—(QpP2X1 + Qi3 X1P2 +...) — (QuXyPoPs+...) +...
Landau free energy for the first-order phase transition is given by
F(P, T) = (1/2)aP? + (1/4)BP* + (1/6)yP®  [a(T) = (T — To)/£oCl.

The temperature dependence of the spontaneous polarization is illustrated in
the Figure 4.4b, the curve shape of which seems to be the lean parabola in the
second-order phase transition shown in the Figure 4.2. If we approximate the
spontaneous polarization in the first-order transition (Figure 4.4b) as the lean
parabola of the second-order transition shifted along the positive temperature
axis, what is the state of the numerical deviation from the real curve on the left?
The temperature slope of the inverse permittivity in the Tp < T < T¢ range
gives 8 in the first-order transition theoretically. How about the lean-parabola
approximation?

Hint

First — order transition: Pg = \/{—‘B +1/B% — 4}/0{} /27], (CP4.2.1)

Second — order transition: Ps = /—a/p. (CP4.2.2)

At T = T, we obtain & = % = 136/1 The lean-parabola shifted curve is
obtained from Equation (CP4. 2 2) by this amount. Taking the Taylor expansion
in terms of (T, — T) (a small value << 1) on this shifted curve and Equation
(CP4.2.2), compare the deviation.

A significant difference in the P—E hysteresis in the first-order transition can be
found in a “double hysteresis” in the temperature range Tc < T < T;, which
cannot be observed in the second-order transition. Gibbs energy by adding
—EP to the Landau free energy is given by
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G = faP?+ {pP* + L yP® — EP.

The system with multiple potential minima in the Gibbs energy (Figure 4.4a)
can exhibit discontinuous polarization induction (i.e., electric-field-induced
ferroelectric phase) under a high electric field. As shown in Figure 4.5, the P—E
double hysteresis is observed in a narrow temperature range. Calculate the
electric field for the double-hysteresis on-set and off-set at a temperature T,
which is in the temperature range Tc < T < Tj.

References

1.  Tisza, L. On the General Theory of Phase Transitions. In Phase Transformations in Solids;
Smoluctowski, R., Mayer, ].E., Weyl, W.A., Eds.; Wiley: New York, NY, USA, 1951.

2. Uchino, K. Ferroelectric Devices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010.

3. Devonshire, A.F. Theory of Ferroelectrics. Adv. Phys. 1954, 3, 85-130. [CrossRef]

4. Kay, H.F. Electrostriction. Rep. Prog. Phys. 1955, 18, 230-250. [CrossRef]

5. Uchino, K.; Nomura, S.; Cross, L.-E.; Newnham, R.-E.; Jang, S.-J. Electrostrictive Effect in
Perovskites and Its Transducer Applications. J. Mater. Sci. 1981, 16, 569-578. [CrossRef]

6. Uchino, K.; Cross, L.E.; Newnham, R.E.; Nomura, S. Electrostrictive Effects in Antiferro-
electric Perovskites. J. Appl. Phys. 1981, 52, 1455-1459. [CrossRef]

7. Uchino, K,; Nomura, S.; Cross, L.E.; Jang, S.J.; Newnham, R.E. Electrostrictive Effect in
Lead Magnesium Niobate Single Crystals. J. Appl. Phys. 1980, 52, 1142-1145. [CrossRef]

8.  Nomura, S.; Jang, S.J.; Cross, L.E.; Newnham, R.E. Structure and Dielectric Properties
of Materials in the Solid Solution System Pb(Mg; /3Nb; /3)O3:Pb(W; ,,Mg;2)O3. |. Am.
Ceram. Soc. 1979, 62, 485-488. [CrossRef]

9. Nomura, S.; Kuwata, J.; Jang, S.J.; Cross, L.E.; Newnham, R.E. Electrostriction in
Pb(Zny /3Nb,/3)O3. Mater. Res. Bull. 1979, 14, 769-774. [CrossRef]

10. Kuwata, J.; Uchino, K.; Nomura, S. Diffuse Transition in Lead Zinc Niobate. Ferroelectrics
1979, 22, 863-867. [CrossRef]

11.  Setter, N.; Cross, L.E. Order-Disorder Perovskite Ferroelectrics. In Proceedings of the
82nd Annual Meeting of the American Ceramic Society, Chicago, IL, USA, 29 April 1980;
p- 52-E-80.

12. Yamada, T. Electromechanical Properties of Oxygen-Octahedra Ferroelectric Crystals. J.
Appl. Phys. 1972, 43, 328-338. [CrossRef]

13. Johnson, C.J. Some Dielectric and Electro-Optic Properties of BaTiO3 Single Crystals.
Appl. Phys. Lett. 1965, 7, 221-223. [CrossRef]

14. Gavrilyachenko, V.G.; Fesenko, E.G. Piezoelectric effect in lead titanate single crystals.
Sov. Phys. Chrystallogr. 1971, 16, 549.

15. Fesenko, E.G.; Gavrilyachenko, V.G.; Zarochentsev, E.V. Ferroelectric Properties of Lead
Titanate Single Crystals. Bull. Acad. Sci. USSR, Phys. Ser. 1970, 34, 2262-2549.

16. Samara, G.A. Pressure and Temperature Dependences of the Dielectric Properties of the
Perovskites BaTiO3 and SrTiOs. Phys. Rev. 1966, 151, 378. [CrossRef]

17.  Bell, R.O.; Rupprecht, G. Elastic Constants of Strontium Titanate. Phys. Rev. 1963, 129, 90.
[CrossRef]

18. Uwe, H.; Sakudo, T. Electrostriction and Stress-Induced Ferroelectricity in KTaOs. J. Phys.
Soc. Jpn. 1975, 38, 183-189. [CrossRef]

19. Uwe, H,; Unoki, H.; Fujii, Y.; Sakudo, T. Stress induced ferroelectricity in KTaO3. Commun.
Solid State Phys. 1973, 13, 737-739. [CrossRef]

20. Uchino, K.; Kojima, F.; Nomura, S. Phase transition in the Pb(Fe; /3U; /3)O3-PbZrO;

system. Ferroelectrics, 1977, 15, 69-71. [CrossRef]

162



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Samara, G.A. Pressure and Temperature Dependence of the Dielectric Properties and
Phase Transitions of the Antiferroelectric Perovskites: PbZrOs and PbHfOs3. Phys. Rev.
1970, B1, 3777. [CrossRef]

Bokov, V.A.; Kizhaev, S.A.; Myl'nikova, LE.; Totov, A.G. Magnetic and Electrical Proper-
ties of Antiferroelectric Lead Cobalt Tungstate. Sov. Phys. Solid State 1965, 6, 2419.
Uchino, K.; Cross, L.E.; Newnham, R.E.; Nomura, S. Electrostrictive Effects in Non-polar
Perovskites. Phase Transit. 1980, 1, 333-341. [CrossRef]

Uchino, K. Force Sensor with Electrostrictive Bimorph Devices. In Proceedings of the
Study Committee on Barium Titanate XXXI, Tokyo, Japan, 20 May 1983; pp. 171-1067.
Kuwata, J.; Uchino, K.; Nomura, S. Electrostrictive Coefficients of Pb(Mb, ;3Nb; /3)O3
Ceramics. Jpn. J. Appl. Phys. 1980, 19, 2099. [CrossRef]

Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics; Academic Press: New York, NY, USA,
1971; p. 142.

Uchino, K.; Nomura, S. Phenomenological Theory of Ferroelectricity in Solid Solution
Systems Pb(Fe; ;3W1,3)03-Pb(M1 ,,W1,2)O3 (M = Mn, Co, Ni). Jpn. J. Appl. Phys. 1979,
18,1493-1497. [CrossRef]

Abe, K.; Furukawa, O.; Inagawa, H. Calculations concerning the phase diagram, dielec-
tric constant and lattice parameters for the Pb(Zn; ;3Nb; /3)O3-PbTiO3 solid solution.
Ferroelectrics 1988, 87, 55—-64. [CrossRef]

Kittel, C. Theory of Antiferroelectric Crystals. Phys. Rev. 1951, 82, 729. [CrossRef]
Suzuki, I.; Okada, K. Phenomenological Theory of Antiferroelectric Transition. IV. Ferri-
electric. J. Phys. Soc. Jpn. 1978, 45, 1302-1308. [CrossRef]

Uchino, K. Electrostrictive Effect in Antiferroelectrics. Solid State Phys. 1982, 17, 371-380.
Uchino, K. Digital Displacement Transducer Using Antiferroelectrics. Jpn. J. Appl. Phys.
1985, 24, 460. [CrossRef]

Uchino, K. Shape Memory Ceramics. In Shape Memory Materials; Otsuka, K., Wayman,
C.M,, Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 184-202.

Uchino, K.; Oh, K.-Y. Piezoelectric Anisotrophy and Polarization Sublattice Coupling in
Perovskite Crystals. J. Am. Ceram. Soc. 1991, 74, 1131-1134. [CrossRef]

Uchino, K.; Nomura, S. Electrostriction in PZT-Family Antiferroelectrics. Ferroelectrics
1983, 50, 191-196. [CrossRef]

Fujishita, H.; Hoshino, S. A Study of Structural Phase Transitions in Antiferroelectric
PbZrO3 by Neutron Diffraction. J. Phys. Soc. Jpn. 1984, 53, 226-234. [CrossRef]

Oh, K.-Y,; Saito, Y.; Furuta, A.; Uchino, K. Piezoelectricity in the Field-Induced Ferro-
electric Phase of Lead Zirconate-Based Antiferroelectrics. . Am. Ceram. Soc. 1992, 75,
795-799. [CrossRef]

Kobayashi, T.; Uchino, K. Piezoelectric Anisostropy with Sublattice Electrostrictive
Coupling. In Abstract of 48th Autumn Meeting of the Japan Society of Applied Physics, Nagoya,
Japan, October 1987; Japan Society of Applied Physics: Tokyo, Japan, 1987.

Yamamoto, T.; Saho, M.; Okazaki, K.; Goo, E. Electrical Properties and Microstructure of
Ca Modified PbTiO3 Ceramics. Jpn. |. Appl. Phys. 1987, 26, 57. [CrossRef]

Berlincourt, D.A.; Cmolik, C.; Jaffe, H. Piezoelectric Properties of Polycrystalline Lead
Titanate Zirconate Compositions. Proc. IRE 1960, 48, 220. [CrossRef]

Daneshpajooh, H.; Park, Y.; Scholehwar, T.; Hennig, E.; Uchino, K. DC bias electric field
and stress dependence of piezoelectric parameters in lead zirconate titanate ceramics—
Phenomenological approach. Ceram. Int. 2020, 46, 15572-15580. [CrossRef]

Haun, M.],; Furman, E.; Jang, S.J.; Cross, L.E. Thermodynamic theory of the lead
zirconate-titanate solid solution system, part I: phenomenology. Ferroelectrics 1989, 99,
13-25. [CrossRef]

163



43.

44.

Haun, M.].; Furman, E.; McKinstry, H.A.; Cross, L.E. Thermodynamic theory of the lead
zirconate-titanate solid solution system, part II: tricritical behavior. Ferroelectrics 1989, 99,
27-44. [CrossRef]

Amin, A.; Haun, M.],; Badger, B.; McKinstry, H.; Cross, L.E. A phenomenological
Gibbs function for the single cell region of the PbZrO3: PbTiO3 solid solution system.
Ferroelectrics 1985, 65, 107-130. [CrossRef]

164



5. Relaxation Phenomena—Time-Dependent
Phenomenology

5.1. Introduction to Relaxation Phenomena

Phenomenology, as so far discussed, is used for an equilibrium status (no time
dependence). However, if the deviation is small due to the equilibrium status, the
material property may return to the stable point (due to the energy minimization
condition). The “relaxation phenomenon” in physics and chemistry is an effect
related to the delay between the application of an external controlable parameter to
a material and its response. The easiest example is to consider what happens if the
driving force such as the electrical field is suddenly switched off after it has been
constant for a sufficiently long time so that an equilibrium distribution of dipoles has
been realized. We handle the transident reponse of a physical parameter after slightly
deviating from the equilibrium state in terms of the “relaxation” time in this chapter.
In the latter part, we also discuss the relaxation phenomena from the viewpoint
of the frequency dependence. This relaxation concept is essential to understand
the domain wall dynamics (Chapter 14), loss mechanisms (Chapter 6), and heat
conduction (Chapter 12).

5.2. Polarization Relaxation

5.2.1. Polarization Relaxation and Internal Energy

Landau and Khalatnikov developed a theory for the temperature dependence
of the “ralaxation time” of the order parameter, P, based on the Ginzburg-Landau
theory of phase transiditions [1,2]. This mean-field approach shows a divergence of
T« 1/(Tc — T) near a second-order phase transision point, Tc. The key assumption
is that the change of polarization P with time (i.e., %—1;) is proportional to the internal
energy decrease rate with the unit order parameter change (i.e., — %—g). Around the
equilibrium /stable-state P = Ps, %—llf = 0, from which we obtain Ps. By shifting AP
from this point, the internal energy should increase. By introducing the “relaxation
time” 7, the inverse of which is taken as a proportional constant:

opP 1 /09U

5.2.2. Analysis in the Second-Order Phase Transition

We use the simplest “second-order phase transition” model here for a practical
calculation:

G(P, T) = (1/2)aP? + (1/4)BP* — PE [ac= (T — Tp)/eoCl- (5.2)
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Recall the fact that in the ferroelectric phase (T < Ty), the spontaneous polariza-

tion is expressed as
o
Ps =+, /_E — \/(To —T)/eoCB. (5.3)

Equation (5.1) is expressed in practice by

JoP 1 0G 1 3
We consider the initial polarization Py (= Ps + e9¢XEg) by applying a small
electric field Ej on a ferroelectric specimen with Ps = , /— % Then, we calculate the

polarization change after a sudden reduction in Ej. The meaning of Equation (5.4) is
to establish how quickly the P should return to the equilibrium state Ps after sudden

termination of the field. Equation (5. 4) can be solved by putting E =0 as
t

P
f<_%>dt:i)f ((xP+/3P3 5p2f P+2 (P— P)+2(P—|}P)]dp—$
0

0
~ i) + b () + dn ()

Thus, we obtain
_ 5 _ (5521 — /()
\lll ( )]/[1 ( O)]_e . (5.5)

Thus, the actual “relaxation time” 7” can be denoted by

!
o = T eoC

oD 1/(To—T) [a = (T — Tp)/eoC] (5.6)

From Equations (5.5) and (5.6), we can conclude the following items:

The time constant is proportional to “permittivity” egeX.

t — oo gives P — Ps.

With approaching T — Ty, T — oo. The recovery time of P is very slow around
Tc =To.

Note here that the relaxation time 7”7 above is a measure of the time delay of

2 2 T/
{1 — <%> ] The relaxation time T for AP = (P — Ps) = Ps[1 — <Po> Je~t/ (=)

7

is half of the above 1”. The “relaxation time” corresponds to the “reaction resistance
or “dielectric loss”. A similar concept is discussed in Chapter 6.

5.3. Temperature Relaxation

The time dependence of temperature (uniform temperature in a small volume) is
considered in this section. For example, by the “electrocaloric effect”, the ferroelectric
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material’s temperature is changed with the electric field application under an adia-
batic condition. We start from an equation similar to the one in the previous section.

0 19U
F
The temperature change speed is proportional to the energy change per unit
temperature increase (i.e., proportional to the specific heat capacity c,). If we take
the Gibbs energy transformed from Equation (2.11) in Chapter 2 under stress-free
condition (X = 0),

(5.7)

1/0*°G\ ,,  1/[/0°G\ ., 0°G
G(T,X,E)_§<W>9 +§<@>E +(6T8E>9E
1 [ cE 1 (5.8)
_ Y2t X\ p2
= 2<T>9 2<£0£ >E + pOE,

where p is pyroelectric coefficient.
Equation (5.7) is transformed into

E
> - %[<%)9_p5y (5.9)

The meaning of Equation (5.9) is to provide how quickly the 6 should approach
the equilibrium status 05 after sudden application of the field E. As you may real-
ize, the electrocaloric effect under an adiabatic condition indicates the temperature
change in the equilibrium status ((%) = 0, in Equation (5.9)) as

%:Eg_ (5.10)
Cp

Equation (5.9) can be solved as

=3 (%)t = m(es—6) - (e, (511)

We denote the actual relaxation time constant T expressed by

(T
r:r(£>. (5.12)

From Equations (5.11) and (5.12), we can conclude the following items:

e In a uniform (no space gradient) specimen, temperature change follows an
exponential trend with time: (1 —6/6;) = e */T.
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o t— oogives 0 — 0s. 05 corresponds to the temperature change by the “elec-
trocaloric effect”.

e The time constant is proportional to the absolute temperature and inversely
proportional to the specific heat capacity CE . The larger the specific heat capacity

c’; , and the lower the temperature, the lower the time constant 7. The recovery
time of 0 is quicker. This T is a roughly suitable rise time period of applying a
pseudo-step electric field.

5.4. From Time Dependence to Frequency Dependence

5.4.1. Time Dependence of Polarization Recovery

The “relaxation phenomenon” with a sudden switch-off of the electric field
is taken into account again in a ferroelectric crystal, after it has been constant for
a sufficiently long time. We expect that the electric-field-induced polarization AP
will go to zero to approach the stable spontaneous polarization Ps. However, that
cannot happen instantaneously; some time delay is included. See Figure 5.1. The
polarization recovery, that is, relative ionic movement under the external field elimi-
nation, will take a characteristic time owing to the effective mass of ions in an atomic
potential in a lattice, which we will call the “relaxation time 7" of the system. We
expect a smooth recovery over the polarization with an electric field to zero within
the relaxation time 7. As derived in Section 5.2, with this behavior, as shown in
Figure 5.1, we expect that P decays starting at the time of the switch-off according to

AP = AP(t =0)e /7. (5.13)

This simple equation describes the behavior of a system such as the polarization
change. Nevertheless, we know that a relation such as this is found whenever we
look at the decay of some ensemble of particles or objects from higher energy than
the equilibrium condition, or the change from the excited state to the base state, i.e.,
that has to overcome some energy barrier.
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Electric Field

Polarization

T

Figure 5.1. Polarization relaxation phenomenon for a sudden reduction of electric
field. Source: Figure by author.

5.4.2. Frequency Dependence of Polarization

We described the “time dependent” P(t) of the polarization when we applied
some disturbance or E input to the material (switching the electrical field on—off).
When we consider a cyclical application of electric field, this relaxation time will
reflect the phase delay of the response. We now discuss the “frequency dependence”
of P(w) with angular frequency w, i.e., the output to a periodic harmonic input, E =
Ey-sin(wt). Fourier transform is suitable for analyzing a periodic steady phenomenon.
By knowing P(w), we can express the response to any signal just as well. In other
words, we can “Fourier reverse-transform” P(t) into P(w).

Since we already know the time dependence P(t) for a switch-off signal in the
previous section, let us derive P(w) from that. Knowing Equation (5.13) defined in
the interval 0 < t < oo, we conduct Fourier transformation expressed by

P(w) = / APye /T et gt (5.14)
0

where AP is the initial static polarization under a certain electric field Ey, i.e., the
value of P(w) for w =0 Hz, and j = v/ —1. Thus, we obtain

ARy
P(w) = oot i’ (5.15a)
wo =1/7. (5.15b)

The reader can understand that P(w) is the polarization response of the system
when we jiggle it with an electrical field E = Eg-exp(jwt).
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5.4.3. Complex Numbers and Debye Model

Complex Permittivity

Complex numbers are occasionally used in a “steady harmonic phenomenon”
such as the voltage—current relation. In a complex impedance Z* = Z' 4 jZ", the
real part Z’ stands for the voltage/current magnitude ratio and the imaginary part
Z" | Z' stands for the voltage vs. current phase lag.

Under the supposition D ~ P in a high-permittivity ferroelectric, we have

P(w) = gpe(w)E(w). (5.16)

The time dependence of P(w) is assumed to be under the same w as the electric
field. It is either given by e /(?!~9) with ¢ accounting for a possible phase shift,
or simply by e/}, if we include the phase shift in e(w), which means it must be
complex. The second possibility is more powerful and popular. By combining
Equations (5.16) and (5.15a), we obtain

woP(w)  woP(w=0) 1 1

= — = _— 5.17
E(w) Ey wo + jw E0!5514—]((4)/wo) ( )

goe(w) =

es = APy/eoEp (P(w = 0) = APy/wy) is the “static permittivity”, i.e., the value at
zero frequency. Now, we can denote a complex permittivity as

1
—fgq— 5.18
e(w) €57 T+ i(w/wo) (5.18)
then decompose ¢(w) in a real and an imaginary part, i.e., write it as
p gmary p
e(w)* =¢e(w) —je(w)", (5.19)
we obtain
w
* 1 wy
e(w)” = &g 5 — ] (wo) 5] (5.20)
w w
1+(2) 1+ (2)
or D e
E(w) - 1+(i)2
Ss(aﬁ) . (5.21)
g(w)" = —%5
1+(5)

Figure 5.2 plots the real and imaginary permittivity, e(w)’ and &(w)”, where a
typical relaxation phenomenon can be found, i.e., permittivity change with frequency,
around the characteristic frequency wy = 1/7, or wt ~ 1.
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Figure 5.2. Frequency dependence of real and imaginary permittivity. Source: Figure
by author.

Cole—Cole Circle

So far, we assumed that at high frequencies (wp < w — o) the polarization is
essentially zero (i.e., e(w) — 0). That is not necessarily true in the most general
case—when we primarily discuss “ionic polarization”, “electronic polarization” still
remains, even at a high frequencies such as THz. If we take this into account, we have
to change our consideration of relaxation somewhat and introduce a new, simple
parameter ¢ (w > wy) = €. For the electronic polarization, we sometimes adopt
€00 = n?, where 1 is the refractive index of this material. This reasoning follows the

“Debye model”, and the following equations are called “Debye equations”:

* [ (SS _800)

e(w)” = : + €c0) (5.22)
1+j( %)
and

e(w) = oo + (€5 —¢eo)
() s
L, (es ) () ¢ (5-23)

¢(w)" = —— 0L

1+ (%)

Here, note that ¢/ (w = 0) = €5 and €/ (w = o) = €. €’ is the real part of a complex
amplitude, which gives the amplitude of the response that is in phase with the driving
force, while ¢” is the imaginary part, which gives the amplitude of the response that
is phase shifted by 90°. Finally, let us consider the graphical relationship between ¢’
and ¢”. The reader can easily imagine the following relation:

(5.24)
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The locus of e(w)” is a simple half-circle, as illustrated in Figure 5.3. Note that the
graph is characterized by the three numbers that define a particular material, ¢, €co,
and wg=1/71.

g" wO = 1/'[

W increase

7 7 NoOf
€ (ss +€_) €
2

Figure 5.3. Cole-Cole plot based on the Debye model. Source: Figure by author.

So far, we have not discussed much on the microscopic origin of the “relaxation
time”. Through Example Problem 5.1, the reader is requested to learn how the
macroscopic relaxation time is related with the microscopic potential minimum gap.

Example Problem 5.1

Consider an “order—disorder-type ferroelectric” with ions trapped in the same
“double-minimum potential” with a relatively low barrier between the two minima
(Figure 5.4). Thus, each unit lattice cell has a permanent dipole moment, and the
dipole—dipole coupling is taken into account at a temperature lower than the Curie
temperature. Under a quasi-DC field, the ion follows the electric field alternating
between the positive and negative potentials. However, with increasing drive fre-
quency, the ionic motion exhibits a delay with respect to the electric field due to the
potential barrier AU. This is an intuitive explanation for the “dielectric relaxation” in
a ferroelectric phase (refer to Mason’s treatment [3]).

\|
\
\J

— > F

Figure 5.4. Ion in a double-minimum potential. Source: [4] ©Uchino, K. Ferroelectric
Devices, 2nd ed. CRC Press, 2010; p. 125. Reproduced by permission of Taylor &
Francis Group.
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(1) Using a mathematical representation, derive the following “Debye dispersion
relation” for a mono-dispersive case (equivalent to Equation (5.18)):

E(w) = e5/(1 + jw1). (P5.1.1)

(2) Discuss how the above dispersion obeys the so-called “Cole—Cole relation” (i.e.,
the real and imaginary parts of permittivity trace a half circle on a complex
permittivity plane).

Solution

When an external electric field E is applied, the local field F in the crystal is
described by
F=E+vP, (P5.1.2)

where vy is the “Lorentz factor”, a positive feedback amplifier for the local field. Refer
to Section 1.2.3. The transition probability for an ion from the — to the + in Figure 5.4,
o+, and the opposite transition probability, «_, are expressed as

oy =T'exp[—(AU — uF)/kT], and (P5.1.3)

o =Texp[—(AU + uF)/kT], (P5.1.4)

respectively, based on the Boltzmann distribution. Here, AU is the barrier height
between the two potential minima, u is the dipole moment, and I' is a constant
for normalizing the probability. One example is the energy required to switch the
leftward water molecule to the rightward water molecule in an ice crystal.

If we introduce the number of + (or —) direction dipoles per unit volume N
(or N_), the total dipole number is given by N = N, + N_, and the polarization (per
unit volume) is represented as

P=(Ny—N_)u (P5.1.5)

The time dependence will be expressed as

ANy /dt = N_ay—Nyox_, (P5.1.6)
AN_/dt = Ny —N_o. (P5.1.7)
Then,
dP/dt = u(dNy /dt —dN_ /dt) =2u(N_oey —Nio_), (P5.1.8)
where
N,y =(1/2)(N+P/n), (P5.1.9)

N_ =(1/2)(N — P/ ). (P5.1.10)
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Suppose that the external electric field E = Ege/“* is small (Ps > ggeE) and that
the polarization is given by

P = Pg + epeEgel*. (P5.1.11)
From Equation (P5.1.8),

Left side = (jw)egEe = Right-side

= 2u(N_Texp[— (AU — uF)/kT] — N+T exp[— (AU + uF) /kT|

= 2u(N_Texp[— (AU — (E+YP))/kT] — NyT' exp[— (AU + u(E +vP))/kT]
= 2uexp(—AU/kT){N_exp[u(E +v(Ps + eoeE)) /kT]

~ N exp|—u(E + v(Ps + e9¢E) ) /KT]}

furthermore, using Equations (P5.1.9) and (P5.1.10),

=2ul'exp(—AU/kT){(1/2)(N — P/u)exp(uyPs/kT)exp[u(l + veoe)E/KT]

— (1/2)(N + P/ u)exp(—puyPs)/kT)exp[—u(1 + yeoe)E/KT].

Taking into account Pg > ¢peE and exp(x) ~ 1 + x (for x < 1), the above
calculation is transformed into:

(jw)epeE = 2uTexp(—=AU/kT){(1/2)(N — P/u)exp(uyPs/kT)
[1+u(1+vege)E/KT] — (1/2)(N + P/ u)exp(—uyPs)/kT)[1 — u(1 + yege)E/KT]
= 2Texp(—AU/kT)[uN{sinh(yyPs/kT) + u(1 + yeoe)(E/kT)cosh(pyPs /kT)}
— Plcosh(uyPs/KT) + u(1 + veoe)(E/KT)sinh(uyPs /KT))].

(P5.1.12)

Using the relation P = Pg + ¢geE on Equation (P5.1.12), we obtain

(jw)egeE = 2Texp(—AU/kT)[uN{sinh(puyPs /kT)
+ u(1 + vege)(E/kT)cosh(uyPs/kT)} — Ps{cosh(uyPs/kT)
+ u(1 +veoe)(E/kT)sinh(uyPs /kT)}
— goeE{cosh(uyPs/kT) + u(1 + yeoe)(E/kT)sinh(puyPs /kT)}]
=2l'exp(—AU/kT)[uNu(1 + yeoe)(E/kT)cosh(uyPs/kT)
— Psu(1 + veoe)(E/kT)sinh(uyPs/kT)} — ege Ecosh(uyPs/kT)].

(P5.1.13)

For the last transformation, we used the relationship of uN{sinh(yyPs/kT) —
Ps{cosh(iyPs/kT) = 0 and the neglect of the higher order E2. Introducing the static
permittivity eg at w = 0, we obtain

uNu(1 +vepes)(E/kT)cosh(uyPs /kT)

— Psu(1 +veges)(E/kT)sinh(uyPs/kT)} — egesEcosh(uyPs/kT) = 0. (P5.1.14)
Now, for a high-frequency permittivity, from Equation (P5.1.13)
e(w)=¢es/(1+jwT), (P5.1.15)
where
T =(1+veges)To/cosh(uyPs/kT), (P5.1.16a)

To = 1/2Texp(—AU/KT). (P5.1.16b)
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The subscript of 5 stands for a static value (w = 0), and in the paraelectric
phase, it should follow the Curie-Weiss law:

EpEs — E()C/(T — Tc). (P5.1.17)

The relaxation time T o« 1/(T — T¢), which increases significantly when ap-
proaching T — T . This means that the recovery to the equilibrium polarization is
quite slow, which is called “critical slowing-down”.

Equation (P5.1.15) can be rewritten as

e(w) = &'(w) — je"(w),

where
¢ (w) = es/[1 + (w7)?], € (w) = wteg/[1 + (wT)?]. (P5.1.18)

The so-called “Cole—Cole relation” is obtained from Equation (P5.1.18), which is
a half-circle with the following formula, and is illustrated in Figure 5.5.

(e'(w) — €5/2)% + " (w)? = (e5/2)°. (P5.1.19)

w,=1/t
€
|

W increase

85/

/ /

€. £/2 &

Figure 5.5. Cole—Cole plot for a double-minimum potential model. Source: Figure
by author.

The permittivity for w — oo is assumed to be e, = 0 in this case, and the
maximum ¢’ = €5/2 is obtained at w = wy = 1/7 or wt = 1. Equations (P5.1.16a)
and (P5.1.16b) indicate that the relaxation time 7 is proportional to (1) exp(A/kT),
in addition to (2) 1/(T¢c — T). The larger the dipole moment barrier height AU, the
longer the relaxation time 7.

Dipole Reorientation

Suffice it to say that typical relaxation times are around 10~!! s in dielectric
materials, which corresponds to frequencies in the GHz range, i.e., “cm waves”. We
must, therefore, expect that typical materials exhibiting dipole reorientation such
as “ice/water” will show some peculiar behavior in the “microwave range” of the
electromagnetic spectrum. Water molecule flip-over, i.e., dipole reorientation, will not
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follow above this particular frequency wg = 1/7; thus, the imaginary permittivity, that
is, loss, increases significantly. This is the meal heating mechanism of the “microwave
oven”. In mixtures of materials, or in complicated materials with several different
dipoles and several different relaxation times, things become more complicated. The
smooth curves shown above may no longer be smooth because they now result
from a superposition of several smooth curves. Finally, it is also clear that T may
vary quite a bit, depending on the material and the temperature. As discussed in
Section 5.2.2, the relaxation time is proportional to 1/« in the second-order phase
transition ferroelectrics:
T/ 1
o To—T
When approaching the Curie temperature from low temperatures, the relaxation
time increases significantly.

T =

(5.25)

5.4.4. Distribution Function of Relaxation Time

We introduced the simplest Debye model with a single relaxation time 7, whose
Cole—Cole plot of complex permittivity shows a perfect half-circle. However, when
we plot e(w)’ and e(w)” of the experimentally obtained data, the Cole-Cole plot is
deviated from a half-circle, which requires consideration of the T distribution. We
can say that the permanent dipoles in a real dielectric material seem to have slightly
deviated potential barriers AU, leading to the distribution of the relaxation time.

Figure 5.6 shows such an example, where the Cole—Cole plot of complex per-
mittivity is observed by Hatta [5] in NaNO; above the Curie temperature (i.e., para-
electric phase). Sodium nitrite composed of NO, dipole moments is a water-soluble
ferroelectric crystal with the Curie temperature at 163.4 °C [6]. The center of the
complex permittivity circle seems to be located below the “real coordinate axis”.
Considering the line connecting the circle center and e« on the real axis, the angle of
this line and the real coordinate axis is defined as « in “radian” (refer to Figure 5.6).
We define a new parameter 3 as
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Figure 5.6. Cole—Cole plot of complex permittivity in NaNO,. Source: Figure by author,
adapted from [7].

This parameter B is a measure of distribution of the relaxation time; g =1
corresponds to the single relaxation time, and with an increase in the distribution,
the B value decreases. § = 0.94 in the case of NaNO,, that is, the time distribution is
rather small.

When the relaxation time has a distribution, Equation (5.23) is modified by
introducing a distribution function y(7) as the following equation:

(s(w)/—sm) _}O y(1)dt
(es—€w) 2 14(w1)?

oo : (5.27)
e(w)"  _ f wty(t)dt
(€5 —¢c0) 1+(wt)?

0

Hill and Ichiki adopted a Gaussian distribution to y(7) [8]:

y(t) = Ae_(T/Tl>2, (5.28)

where 17 is the standard deviation of the T distribution and assumed to be tempera-
ture dependent as

(5.29)

where B is the constant.

The average relaxation time T increases, as well as the standard deviation 7,
when the temperature is reduced down to the Curie temperature.
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Chapter Essentials

1.

Basic Equations for Relaxation Phenomena:

The change of polarization P with time (i.e., aa—lz) is proportional to the internal
energy decrease rate with the unit polarization change (i.e., — %—g).

)
J[- )] n-Grr- e

The temperature change speed is proportional to the energy change per unit
temperature increase (i.e., proportional to the specific heat capacity cy).

0 __ 1(JU

o T T (m)
—t/r/(l)

(1-0/6)=e % .

Time Dependence vs. Frequency Dependence:

e Time dependence of polarization recovery:
AP = AP(t = 0)e /T,
e  Frequency dependence of polarization:
P(w) = [ APpe~"/Te~Iwtdt,
{ P(w) = gt
Wy = % ’

wy=1/7.
Complex Permittivity—Cole—Cole Plot (Refer to Figures 5.2 and 5.3)
e(w)” = e(w) - je(w)”,
e(w)* = [{E875=) e ]

()
( r_ - (e5—€c0)
e(w) =€+ 1+((;;3))2
"_ (es—€c0) a% )
SR

Distribution Function of Relaxation Time
(@) —ew) _ T y(v)dr

(6s—¢c0) 0 1+(wt)?
e(w) oowry(r)dr ’
L (65—¢c0) _g‘ 1+(wt)?

Gaussian distribution to y(7):
y(r) = Ae—(T/Tl)Z,
where 17 is the standard deviation of the T distribution and is assumed to be

temperature dependent as

B

tau; = T—T¢

where B is the constant.
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Check Point

1. (T/F) The relaxation phenomenon is defined as a recovering phenomenon from
a deviated status to an equilibrium status. True or false?

2. (T/F) When we consider the temperature recovery, the speed is proportional to
free energy U change per temperature deviation 6, %—g. True or false?

3. (T/F) When we consider the polarization relaxation phenomenon in the ferro-
electric phase after shutting off the external electric field, the relaxation time is
directly proportional to (Tc — T). True or false?

4. (T/F) When we consider the permittivity relaxation phenomenon in the para-
electric phase of an order—-disorder-type phase transition material, the relaxation
time is inversely proportional to (T — T¢). That is, the recovery time is very
slow when approaching the Curie temperature. True or false?

5. (T/F) The relaxor ferroelectric shows a decrease in permittivity with an increase
in the measuring frequency. True or false?

6. (T/F) When we plot the real and imaginary parts of permittivity on a 2D
map (Cole—Cole plot), the plots follow on an exact half-circle for all relaxor
ferroelectrics. True or false?

7. (T/F) The inverse of the relaxation time T provides the frequency wherein the
maximum imaginary permittivity appears. True or false?

8.  (T/F) Large imaginary permittivity stands for large dielectric loss, leading to
the absorption of input electric energy at that frequency. This is the principle of
“dielectric spectroscopy”. True or false?

9.  When we draw the Cole-Cole plot with

s(w)l = - 2
b(i)
e(w)" = s (‘%)
o
we can obtain a half-circle. Provide the circle center position with a complex
permittivity value.
10.  When we draw the Cole—Cole plot with
5(“))/ = .
b(is)
)’ = <),
(i)
We can obtain a half-circle. Provide the angular frequency value that exhibits
the maximum ¢(w)".
Chapter Problems
5.1 When the relaxation time is distributed, the permittivity dispersion can be

approximated as
g(w) = es/[1+ (jwT)B],

where 0 < B < 1. Discuss the Cole—Cole plot change in comparison with the
case B = 1 in Figure 5.3 (mono-dispersion model). Does it resemble Figure 5.6 in
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shape with the relaxation time distribution? If so, what is the relationship with
B and the angle « in the figure?

The “relaxor ferroelectrics” exhibit “dielectric relaxation” (frequency depen-
dence of the permittivity) from which their name is derived. The temperature
dependence of the permittivity for Pb(Mg; ;3Nb, /3)O3 is plotted in Figure 5.7 at
various measuring frequencies [9]. Thus, accordingly, the “Curie point” is not
precisely defined, but the “Curie range” is sometimes adopted. The permittivity
of relaxor ferroelectrics in the paraelectric region obeys the following quadratic
or critical component relation [10,11]:

1/e=1/e + (T — T¢)*/C*,

1/e=1/eo+ (T — Tc)P/C*,

rather than the normal Curie-Weiss law

1/e=(T — T¢)/C.

Based on the concept of the relaxation time distribution and the permittivity
dispersion (modified Cole—Cole plot), discuss the phenomenological modified
Curie-Weiss law.
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Figure 5.7. Temperature dependence of the permittivity and loss tand in
Pb(Mg1,/3Nb;/3)O3 for various measuring frequencies (kHz): (1) 0.4; (2) 1; (3)
45; (4) 450; (5) 1500; (6) 4500. Source: Source: [4] ©Uchino, K. Ferroelectric Devices,
2nd ed. CRC Press, 2010; p. 124. Reproduced by permission of Taylor & Francis
Group.
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Hint

We assumed the local composition distribution in complex perovskite crystals.
By superimposing the “normal” Curie-Weiss law for each cluster with slightly
different Curie temperatures, we obtain a rather broad permittivity peak as well
as the quadratic relationship with temperature [10]. On the other hand, by using
the “fractal analysis” of microdomains, we approached the critical exponent
explanation [11,12].
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6. Losses in Piezoelectrics—Complex
Number Utilization

6.1. Dielectric Losses
6.1.1. Dielectric Materials

In highly resistive dielectric materials, the constituent atoms are considered to
be ionized to a certain degree and are either positively or negatively charged (partic-
ularly ionic crystals). When an electric field is applied, cations are attracted to the
cathode and anions to the anode due to electrostatic interaction. This phenomenon
is known as “ionic polarization” of the dielectric, and the polarization is expressed
quantitatively as the sum of the electric dipoles per unit volume (C/m?). There are
three types of polarization: electronic, ionic, and dipole reorientation. Electronic
polarization is basically electron-cloud deformation under an electric field, which can
follow alternating fields with frequencies up to THz-PHz (10'2-10% cycle/sec, light
wave range), while ionic polarization responds up to GHz-THz (10°-10'2 cycle/sec,
microwave region). Permanent dipole reorientation can follow only up to MHz-
GHz (10°-10° cycle/sec). Refer to Figures 1.1 and 1.2. As is well known, a polar
water molecule (H;O) is excited in a microwave oven at around 2 GHz, which ab-
sorbs the electromagnetic energy to increase the water temperature. This is also
the reason why ferroelectric materials with permanent dipoles cannot be used for
microwave-frequency dielectric materials; though their permittivity is typically high
at low frequencies (kHz), it decreases significantly when increasing the electric
field frequency.

Compared with air-filled capacitors, dielectric capacitors can store more electric
charge due to the dielectric polarization P induced by the external field, as schemati-
cally shown in Figure 6.1. The physical quantity corresponding to the total stored
electric charge per unit area is called the “electric displacement”, D, and is related to
the externally applied electric field E by the following expression:

D =¢9E + P = ¢qg¢E. (6.1)

Here, ¢ is the vacuum permittivity (=8.854 x 10712 F/m), ¢ is the material’s
“relative permittivity” (also simply called permittivity or “dielectric constant”, and,
in general, is a second-rank tensor property). In Figure 6.1, subscript “b” stands for
“bound” charge originated from charge on the top of the induced dipole moment,
and “f” is for “free” charge supplied from the coated electrode metal via the power
supply, which usually screen/compensate the bound charge, leading to internal
electric field E = 0. Without an electrode coat or environmental floating charge, there
is no free charge, leading to electric displacement D = 0, or a so-called “depolarization
field” in the crystal (Eg,, = —P/¢0).
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Figure 6.1. Charge accumulation in a dielectric capacitor. Source: [1] ©Uchino, K.
Ferroelectric Devices, 2nd ed. CRC Press, 2010; p. 3. Reproduced by permission of
Taylor & Francis Group.

6.1.2. Dielectric Loss

The magnitude of induced polarization P depends on the crystal structure. As
discussed in Section 1.2.3, dielectric materials with high “Lorentz polarization factor”
v should induce high polarization, leading to high permittivity. As imagined from
the response speed limitation of the ionic polarizability (GHz-THz) (Figure 1.2),
polarization induction requires some delay time after the external electric field E
application. In order to express the delay, we adopt the complex permittivity e*
such that

D = ¢e*egE = gp(e’ — je”)E = g€’ (1 — jtand)E. (6.2)

Here, j = v/—1, and tand = ¢” /¢’ is called the “dielectric loss factor” or “dissipation
factor”. Note that until Section 6.4, we do not discuss the dissipation factor in terms
of the intensive or extensive parameter’s viewpoint.

Figure 6.2 illustrates the electric displacement D (almost the same as polarization
P in ferroelectrics, because the permittivity is large ~1000) vs. the electric field
E curve under stress-free conditions with some hysteresis. In a typical “delay”
case of the D generation after the electric field E application, the hysteresis is the
counterclockwise rotation (as indicated by arrows) on this narrow elliptic locus. Note
also that the hysteresis shape should be an “ellipse” in this complex notation; that is,
a rounded edge at the maximum field point, which suggests a discrepancy from the
actual experimental result, and the limitation of this complex parameter approach.
Typical ferroelectric P-E hysteresis curves usually exhibit a rather sharp edge shape
in practice, as shown in Figure 6.2. Example Problem 6.1 further illustrates the
numerical derivation of the loss factor from the observed D-E hysteresis curve.
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Figure 6.2. D vs. E (stress-free) curve with hysteresis. Source: Figure by author.

Example Problem 6.1

When the observed variation in electric displacement, D, can be represented as
if it had a slight phase lag with respect to the applied electric field (i.e., harmonic
approximation), we can describe the relation D vs. E as &

E* = Ege/“*, (P6.1.1)

D* = Dgel (Wt = 9), (P6.1.2)

We can rewrite the relationship between D and E by squeezing the phase lag
into the “complex permittivity” e:

D = e*¢yE, (P6.1.3)
where the “complex dielectric constant”, €¥, is
e*=¢ —je”, (P6.1.4)

€’ /¢ =tand. (P6.1.5)

The integrated area inside the hysteresis loop, labeled w, in Figure 6.2, is equiv-
alent to the energy loss per cycle per unit volume of the dielectric. It is defined for an
isotropic dielectric as:

21
o = — [ paE= — [ © D%t (P6.1.6)
0 dt

(1) Substituting the electric field, E, and electric displacement, D, into Equation (’6.1.6),
obtain the following equations:

We = ’7'[8”80E02 = 7T£'€0E02ta1’15. (P6.1.7)
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(2) Verify an alternative expression (i.e., visual calculation from the hysteresis loop)
for the dissipation factor:

tand = (1/2mn)(w./U,), (P6.1.8)

where U, the integrated area so labeled in Figure 6.2, represents the energy
stored during a quarter cycle.

Solution

The integrated area inside the hysteresis loop, labeled w, in Figure 6.2, is equiv-
alent to the energy loss per cycle per unit volume of the dielectric. It is defined as

o
we =— [ DAE = — [,* DYEdt. Substituting the real parts of the electric field, E* (i.e.,
Egcos(wt)), and electric displacement, Dycos(wt — ), into Equation (P6.1.6) yields:

Pud 2
We = [4“ Dycos (wt — 8)[Eow- sin(wt)]dt EgDyw sin(8)- [ sin®(wt)dt (P6.1.9)
= TCE()DO Sil‘l((S),

so that
we = e” egEg® = me’eyEg tand. (P6.1.10)

When there is a phase lag, an energy loss (or non-zero w,) will occur for every
cycle of the applied electric field, resulting in the heat generation in the dielectric
material. The quantity tand is referred to as the “dissipation factor”. The electrostatic
energy stored during a half cycle of the applied electric field is 2U,, where U,,
the integrated area so labeled in Figure 6.2, represents the energy stored during a

quarter cycle.
2U, = 2[(1/2)(EgDgcosd)] = (EgDg)cosd (P6.1.11)

Knowing that €’ey = (Dg/Eg)cosd, Equation (P6.1.11) may be rewritten in the form:
2U, = €’gyEy>. (P6.1.12)
Then, an alternative expression for the dissipation factor can be obtained:
tand = (1/2m)(we/ U,). (P6.1.13)

Note that the factor 27t comes from the integration process for one cycle. In conclusion,
the loss dissipation factor tand is obtained by obtaining the area (equivalent to electric
energy) ratio on the experimentally obtained P—E hysteresis curve.

Ferroelectric materials are occasionally doped by donor or acceptor ions in order
to enhance the piezoelectric performance, and polycrystalline (ceramic) specimens
possess grain boundaries with various crystal dislocations/deficits. In these cases,
the material’s resistivity is occasionally degraded. Let us discuss the case of a slightly
conductive (or semiconductive) dielectric material, where the hysteresis apparently
becomes enhanced.
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We start from Gauss law, V-D = p, which is valid under the condition of
equilibrium. Here, p is the true charge density. Taking a “continuity equation”
of charge,

% +div(i) =0 (6.3)
ot ' '
and the relations % — jw (harmonic approximation) and i = oE, we obtain

jo
w

V(D — ( )E) = 0 (Extended Gauss's law). (6.4)

If we adopt D = e*¢yE, we rewrite the equation as

I it o
eo(e —jle” + (m—w)])V-E =0. (6.5)

Thus, conductance enhances the imaginary loss part ¢”, leading to the phase lag
increase and an apparently wider hysteresis curve. Note that the intrinsic dielectric
loss tand is not directly related with the measuring frequency, but the conductivity-
related “apparent dielectric loss” exhibits a significant frequency dependence (i.e.,
it diminishes with increasing the frequency w). This is the experimental base to
distinguish the conductance loss in a piezoelectric material.

6.1.3. LCR Circuit

Analysis with Differential Equations

Capacitors are made of dielectric materials. The reader is probably familiar with
a resonance circuit composed of an inductor L and a capacitor C. Let us review the
loss handling with a discreate electric component viewpoint. We discuss on a series
LCR circuit (by adding a resistance R), as shown in Figure 6.3. Dielectric loss and
resistive loss in the inductor are expressed by a discrete resistor in the “equivalent
circuit” as introduced in Chapter 9. Under an applied voltage V(t), denoting the
common circuit current I(t) and charge on a capacitor Q, we obtain the equation:

ar\  Q B
L<E> + S HRI=V(1). (6.6)
L C R

Tus

Figure 6.3. LCR circuit. Source: Figure by author.
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Since I = dd_(tg’ Equation (6.6) can be rewritten as

42Q dQ, Q _
L(W) + R(E) to= V(t), (6.7)
o d? d d
I I I 14

When we apply a regular AC voltage V(t) = Vpsinwt and assume the steady
current with the same frequency w and the phase delay ¢, I(t) = Ipsin(wt — ¢),

—w?LIpsin(wt — ¢) + wRIgcos(wt — ¢) + Ipsin(wt — §)/C = wVysinwt.

The solution is

I(t) = %sin(wt —¢), 69)
1

Z— \/R2 +(lw— )2, (6.10)
_ 1

tang = L - Cw) 6.11)

When <Lw — &) =0, orw = 1/vVLC, the impedance Z = R, which is the
minimum in Z, and the current shows the maximum. This status is called “electric
resonance”. The frequency dependence of the impedance Z and phase tan¢ is
discussed in Section 6.3.

Analysis with Complex Impedance

Equation (6.6) can be transformed as

a1
L(a) + E/ Idt + RI = V(t). 6.12)

Assuming a harmonic oscillation with w, and taking % — jw and [dt — 1/jw,
we obtain

L(jwl) + é(jiw) FRI=V(b). (6.13)

Thus, we define the impedance of inductance L and capacitance C as

Wl
{ 1]/6};; o (6.14)

Then, the total complex impedance is given under a harmonic operation by

1
* = — 1
Z ]cuL+].wC +R, (6.15)
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which can also be expressed by

Z* =Z(1 — jtang), (6.16)
1
Z= \/R2 + (Lw — a)z, (6.17)
_ L
tang = (LWR—C“’) (6.18)

Note that Equations (6.17) and (6.18) are identical to Equations (6.10) and (6.11).
The reader can now clearly understand the easier analytical process with the complex
impedance usage.

6.2. Mechanical Loss/Damping Model
6.2.1. Mathematical Model of Mechanical Loss

The reader may remember the temple bell timbre. When hit suddenly, the
sound pressure level decays gradually without changing its timbre, that is, all fre-
quency components are damped in a similar fashion. On the contrary, in underwater
acoustics, the acoustic absorption by water medium is accelerated when increas-
ing the frequency. A lower-frequency sound navigation ranging (sonar) system is
required for detecting an enemy submarine from as far as possible. We introduce
three loss models in the following sections: solid damping, Coulomb damping, and
viscous damping.

Figure 6.4 shows a simple mass—spring (m: mass, c: spring constant) harmonic
vibration model (a) with a damper (¢: damping factor) (b). Without a damper, using
notations displacement u and force F, we can describe the Newton equation as:

d?u

My +cu = F(t). (6.19)

c c ‘_C

m m
iu
F(t) l F(t) l
(a) (b)

Figure 6.4. A simple mass—spring harmonic vibration model (a) and with a damper
(b). Source: Figure by author.
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When F = 0, assuming the harmonic solution u(t) = uge 1wt Equation (6.19)
can be solved as

(—mw2+c>u:0 — w=+Vc/m. (6.20)

By keeping the initial displacement amplitude ug, sinusoidal vibration with the
above frequency w will continue forever without damping. The above w = +/c/m is
called the “resonance frequency” of this mechanical system.

Now, we consider a damper integration into Equation (6.19) as Figure 6.4b [2].
When the damping mechanism is associated directly with the displacement u, the
damping factor is irrelevant to the frequency, which corresponds to the above temple
bell case, and is called “solid damping”. On the other hand, as you know, in the
surface friction, the force direction changes sign (while keeping the force magnitude
constant) according to the vibration direction. The vibration damping in this case
does not behave in an exponential fashion with time, which is called “Coulomb
damping”. “Viscous damping” is observed occasionally for an object moving in
liquid at a relatively low speed. The damping term is represented in proportion to
the object velocity, (‘2—?). Due to its mathematical simplicity (i.e., complex parameter
integration), the viscous damping formula is most popularly used even for solid
materials. These three models are further described in the following sections.

6.2.2. Solid Damping
Solid Damping/Structural Damping

The solid damping, sometimes called “structural damping”, originates from
the “internal friction” in the material, which is different from the “surface friction”
introduced in Section 6.2.3. The solid damping does not change with the vibration
frequency but is proportional to the “maximum stress” generated during the vibra-
tion cycle, which is also different from the “viscous damping” in Section 6.2.4. When
we impact a solid suddenly, various vibration modes are excited, and their sound
level decreases monotonously without changing the timbre. The temple bell does
not change its “tone” during the sound level decay. That is, all frequency modes
damp under a similar damping rate. Since the stress is almost proportional to the
strain in the “elastic deformation” range, we can rephrase that the solid damping is
proportional to the “maximum strain”.

Here, we introduce the damping force in proportion to the strain, irrelevant to
the operating frequency:

F = Ccex, (6.21)

where ( is the non-dimensional (i.e., normalized) damping factor and c is the spring
constant. Itis important to distinguish the situation from the modification of Equation
(6.19) with an effective force constant ¢(1 — ). The vibration will diminish according
to the damping force whilst keeping a similar resonance frequency of Equation (6.20).
Since the sign of the damping force is not clear, different from the case in “Coulomb
damping”, it is better to use the energy consumption method because analyzing the
damping procedure with normal kinetic equations is difficult.
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Though the vibration is not perfectly harmonic, the damping vibration is sup-
posed to be approximated by a harmonic model, if the damping factor ( is reasonably
small. The energy loss per cycle is approximated by

1
AW = 2n.(§)x0F0 = mtxoFy = 7{cx3. (6.22)

From the experiments, the solid damping energy loss is irrelevant to the operat-
ing frequency and proportional to the square of the maximum displacement xy. The
above harmonic assumption seems to be true in the case of small ¢ of the system. The
logarithmic damping rate J (“logarithmic decrement” is defined as In (%) , where

x1 and x; are the successive vibration amplitudes) of a free vibration via the solid
damping mechanism can be estimated from the energy loss AW as

2
AW 7gexg

:2W_2><%cx%

= (. (6.23)

Equation (6.23) is occasionally utilized for determining the damping rate of
structural components of an airplane, such as wing, tail wing, and body structure.
The logarithmic damping factor ¢ is irrelevant to the frequency, similar to the case of
viscous damping (refer to Section 6.2.4).

Piezoelectric Passive Damper

Though the mechanism is different from the solid damping, since the analytical
process of energy loss per vibration cycle is analogous, the passive piezoelectric
damper is introduced here [3,4]. The principle of the piezoelectric vibration damper
is explained based on a piezoelectric ceramic single plate in Figure 6.5a. When an
external pulse force is applied to the piezo-plate, an electric charge is produced by the
direct piezoelectric effect (Figure 6.5b) [3]. Accordingly, the vibration remaining (i.e.,
ring-down vibration) after the removal of the external force induces an alternating
voltage, which corresponds to the intensity of that vibration, across the terminals of
the single plate. The electric charge produced is allowed to flow and is dissipated as
Joule heat, when a resistor is placed between the terminals (see Figure 6.5c). When the
external resistance is too large or small, the vibration intensity is not readily reduced,
and we need to tune the resistance to match exactly to the piezo-plate impedance,
thatis, |1/jwC |, where w is the cyclic frequency (i.e., the fundamental mechanical
resonance of the piezo-plate in this case), and C is the piezo-plate capacitance. The
reader might have learned that the electrical impedance matching indicates that the
external impedance should be adjusted to the “conjugate” of the internal impedance
“1/jwC”, that is, the inductor with a value of “j/wC”. However, in this case, the
electric energy stored in the capacitor is not lost but flip-flops between the capacitor
and inductor without losing total energy. The resistive impedance shunt is essential
to dissipate the electrical energy via Joule heat.
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Figure 6.5. Mechanical damping concept with a piezoelectric. (a) A single plate
piezoelectric sample; (b) direct piezoelectric effect; (c) electric energy dissipation
through resistance. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press,
2019; p. 399. Reproduced by permission of Taylor & Francis Group.

The bimorph piezoelectric component, which consists of an elastic beam sand-
wiched with two sheets of piezoelectric ceramic plates (Figure 6.6a), was utilized for
the mechanical damping demonstraton. The bimorph edge was hit by an impulse
force, and the transient vibration displacement decay was monitored by an eddy
current-type non-contact displacement sensor. Figure 6.6b shows the measured
displacement data which vibrates at the bimorph resonance frequency (295 Hz),
and Figure 6.7 shows the relationship between the damping time constant and an
external resistance. It can be seen that the damping time constant was minimized in
the vicinity of 6.6 k(), which is close to the impedance 1/wC. Try Example Problem
6.2 to better understand the resistive impedance matching.
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Figure 6.6. Vibration damping change associated with external resistance change.
(a) Bimorph transducer for this measurement; (b) damped vibration with external

resistor. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 388.
Reproduced by permission of Taylor & Francis Group.
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Figure 6.7. Relationship between the damping time constant and the external
resistance. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p.
399. Reproduced by permission of Taylor & Francis Group.

Let us evaluate the damping constant theoretically. The electric energy Ug
generated can be expressed by using the electromechanical coupling factor k and the
mechanical energy Up;:

Up = Uy X k2. (6.24)
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The piezoelectric damper transforms electric energy into heat energy via Joule
loss when the resistor R is connected, whilst the transforming rate of the damper can
be raised to a level of up to 50% when the electrical impedance is exactly matched
(refer to Example Problem 6.2). Accordingly, the vibration energy is transformed at a
rate of (1 — k?/2) times with energy vibration repeated since k? /2 multiplied by the
amount of mechanical vibration energy is dissipated as heat energy. As the square
of the amplitude is equivalent to the amount of energy, the amplitude decreases
at a rate of (1 — k?/2)!/2 times with every vibration repeated. In comparison with
Equation (6.21), the reader can understand that the damping factor, (c in Equation
(6.21), corresponds to (k? /4) when k is not large, and that the damping is proportional
to the displacement x with no frequency dependence (merely electromechanical
coupling factor k dependence). If the resonance period is taken to be T, the number
of vibrations for t sec is 2t/ T, since one cycle includes twice (positive and negative)

energy losing chance. Consequently, the amplitude in ¢ sec is (1 — k?/ 2)t/T°. If the
residual vibration period is taken to be T, the damping in the amplitude of vibration
is t sec can be expressed as follows:

(1—Kk2/2)"T0 ==t/ (6.25)

Thus, the following relationship for the time constant of the vibration damping is

obtained:
To

Now, let us examine the time constant of the damping using the results for
the bimorph. Substitution in Equation (6.26) of k = 0.28 and Ty = 3.4 ms produces
T = 85 ms, which seems to be considerably larger than the value of approximately
40 ms obtained experimentally for T (Figure 6.7). This is because the theoretical
derivation Equation (6.26) was conducted under the assumption of a loss-free (high
Qu) bimorph. In practice, however, it originally involved mechanical loss, the time
constant of which can be obtained as the damping time constant under a short-
circuited condition, i.e., Ts = 102 ms. The total vibration displacement can then be
expressed as e~/ Totl = ¢t/ x ¢=t/T. Accordingly,

T=— (6.26)

1 1 1
==+ (6.27)
Ttotal Ts T

Substitution in Equation (6.27) of T; = 102 ms and T = 85 ms produces T;s,; = 46 ms.
This conforms to the experimental results shown in Figures 6.6b and 6.7.

Example Problem 6.2

We consider the piezoelectric mechanical damping from a k33-type rod sample
under a small cyclic stress X = Xoe/“f. See Figure 6.8. In order to obtain the maxi-
mum output electric power to consume as Joule heat, determine the external load
impedance Z. Capacitance of the piezo-device is C. When we consider the output
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electric energy, we consider the electric displacement D vs. the electric field E domain
as shown in Figure 6.9a. Answer the derivation process step-by-step as follows.

Z, =1/jwC

Piezo-actuator __ |

TPS E J/iin V4 J/iout

444

Figure 6.8. Piezoelectric energy harvesting model. Source: [5] ©Uchino, K. Mi-

cromechatronics, 2nd ed. CRC Press, 2019; p. 395. Reproduced by permission of
Taylor & Francis Group.

(1) Calculate the “depolarization field” generated by the external stress for the
open circuit (Z = 00): D = 0.

(2) Calculate the electric displacement D for the short circuit (Z = 0): E =0, using
the piezoelectric constant d.

(3) Then, draw the D vs. E map under a certain load impedance Z.

(4) In order to maximize the consuming electric energy (i.e., hatched area in Fig-
ure 6.9a), we adopt: X = Xpel“*; D = dXye/“* (no phase lag, nor dielectric loss is
considered). Since the total current generated by the piezoelectric transducer is
given by (%—?)

oD

i= o = ijy + lout = jwdX. (P6.2.1)

Knowing the relationship, Z;,i;,, = Ziyyt, we obtain:

Then, the power is calculated as

1 1 dXo)*
p| =Lz _ 1y (wdXo) . (P6.2.3)
2 2 1+ (wCZ)%)

After deriving the above equations by yourself, determine which Z value pro-
vides the maximum power and what the maximum power value is.
(5) Draw the output electric power vs. load Z curve.
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Solution

(1)

(2)
)

4)

We start from the piezoelectric constitutive equations:

D3 = egeyEs + d33 X3, (P6.2.4)
x3 = ds3E3 + 55, X3. (P6.2.5)
The open-circuit condition satisfies D3 = 0, leading to the depolarization field as
Esgep = —(d33/€0€33) X3. (P6.2.6)
In this case, from Equation (P6.2.5),
X = — B Xo4shy Xa = (1-ka”)shyXo.

Thus, we obtain the stiffened elastic compliance s, of the piezo material:
s = (1—ks3?)sk;. (P6.2.7)

Short-circuit condition satisfies E3 = 0, leading to the charge generation D3 = d33X3.
In this case, the elastic compliance is s5;.
Now, we draw the D vs. E map under a certain load impedance Z. Refer

to Figure 6.9a. From (1), the intersect with the electric field axis is given by

80833
axis is given by D3 = d33X3. The triangular area created by the origin and two
intersects should be equal to the converted electrical energy per volume by the
external stress:

E3dep = — ( d3§( > X3; while from (2), the intersect with the electric displacement

1 1
Upp = <§>E3,de,,D3 = (E) (d33° / e0eds) X32. (P6.2.8)

Under a certain load impedance Z, the (D, E) point should be on the line passing
through the above two intersect points, which is shown in Figure 6.9a.

Figure 6.9a indicates that the maximum consumed energy (shadowed area) can
be obtained at the (D, E) point, which is located at a half of both E3 4., and
D3 jax, which is a half of Upsr. The maximum consumed electric energy should
be a half of the input mechanical energy.

A detailed energy analysis is made below. When we assume the sinusoidal
input stress X = Xpe/“! and output electric displacement D = dXye/“! via the
direct piezoelectric effect (d constant), we can derive the following current and
voltage relationships from Figure 6.8. We can understand that the piezo power-
supply has the internal impedance 1/jwC under an off-resonance frequency
(by neglecting the dielectric loss or effective conducting loss ¢ = 0), and this
piezoelectric “current supply” generates the total current density per area:

oD

lzg

= jwdXo. (P6.2.9)
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)

is current is split into interna isplacement current” i;,, and external cur-
Th t lit int t 1 “displ t t” i;, and ext 1

rent ioy¢,
i - im + iout. (P6.2.10)

Then, because the potential /voltage should be the same on the top electrode of
the piezo component, we obtain:

Zintin =Ziout- (P6.2.11)

Inserting the relation i;,, = (%)iout = jwCZ- 1oy into Equation (P6.2.9),

iout(1+ jwCZ) = jwdXp. (P6.2.12)
Thus, we can obtain the output electric energy as

1 . 1 wdXo)?
P| = —‘Z.zouﬁ‘ _ 1y (wdXo) . (P6.2.13)
2 2 1+ (wCZ)%)

Figure 6.9b shows the electric load (resistive) dependence of the output electric

2 32
energy, which concludes that the maximum electric energy | P| = %% can

be obtained at Z = 1/wC, when we consider Z resistive, which is the situation
for dissipating the electric energy via Joule heat. In other words, the generated
electric energy in a piezo component can be spent maximum when the external
load resistive impedance matches exactly to the internal capacitive impedance

with a phase lag of —j(—90°). The reader is reminded of the discussion in

the beggining of (4), that is, the energy consumption is (%) (d33%/ g0eds) X35>
d

272
from Equation (P6.2.8). This value is equivalent to | P| = ] “ CXO by taking into

account the piezoelectric rod size.

: 5
Q
0 ax, D QE 1 )
= 4 (dX)*/e€,
Short §
()
Z 5
o
~(d/eXe )X 3
0""0 | Open
0 1/wC Load Z

(a) (b)

Figure 6.9. Output electric energy calculation process under different external
impedances (a); output electric energy vs. external electrical load Z (b). Source: [5]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 396. Reproduced by
permission of Taylor & Francis Group.

In conclusion, a half of the converted electric energy (k332 Up), thatis, <%) Upg =

(%)k332 Uy, can be consumed in the external resistive impedance when the external
impedance is adjusted to Z = 1/wC.
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It is noteworthy that the input mechanical energy differs even if we keep the
input stress constant according to the external electric impedance, because the elastic
compliance is different depending on the electrical shunt condition; the elastic com-
pliance under the short-circuit condition is given by sk;, and under the open-circuit
condition by s} = (1 — k33?)sk;. How about that under Z = 1/wC? We calculate the
“input mechanical energy %ng;f
constitutive equation:

X5 ” under the Z-shunt condition from the second

wdy X
JEERT0 | 4 s EX. (P6.2.14)
7+]wC

v d
x = ds3E + 533" X = —da3 (f) sl X =— (%)

The last transformation used Equation (P6.2.11). We obtained the effective elastic
compliance as

jwCZ } . (P6.2.15)

E X E 2
ff TX T ° [ B 1+ jwCZ)
You can verify the above “effective elastic compliance” is equal to s or sP = sF(1 —
k31%), when Z = 0 or o, respectively. Under Z = 1/wC.

Sepf =" (1 - %ki%sz + %k332> =sF(1—kss” + %k334)(1 _jtang).  (P6.2.16)

Note that the stress—strain phase lag is zero for the short- or open-circuit condition, but
it is not zero under Z = 1/wC. The softer the piezoelectric elasticity is, the higher the
input mechanical energy is. Thus, from the “energy transmission coefficient” viewpoint,
Z = 1/wC is slightly off from the optimized electrical impedance condition.

6.2.3. Coulomb (Friction) Damping
Friction Damping Dynamic Equation

“Coulomb damping” occurs when the mechanical object is contacted on a “dry
surface”. As learned in high-school physics, the Coulomb friction force F is almost
constant (irrelevant to the object speed) and is expressed by the product of the normal
force N and the friction constant y:

F = uN. (6.28)

The friction constant changes from 0 to 1, but typical values are around 0.2-
0.4. Most importantly, the force changes its sign according to the motion direction.
We introduce the “Laplace transform” to solve this differential equation under this
nonlinear force condition below, referring to Chapter 8 for the Laplace transform. You
may skip this subsection tentatively because Chapter 14 gives the detailed solution
process. Figure 6.10a,b show a commercial friction damper and a schematic model
with mass m, spring constant c and friction contact, respectively. We can start from
the differential equation by using mass displacement u:

mu + cu = +F. (6.29)
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Figure 6.10. (a) Commercial friction damper; (b) schematic model with mass,
spring, and friction contact; (c) rectangular wave function representing friction
force. Source: [6] ©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC
Press, 2020; p. 92. Reproduced by permission of Taylor & Francis Group.

We can rewrite Equation (6.29) using w = +/c/m and a rectangular wave
function h(t) visualized in Figure 6.10c,

it 4+ w?u = h(t). (6.30)

Here, the amplitude A of h(t) is set F/m = uN/m, and a cyclic period (2T) is
taken as 271/ w, corresponding to the resonance period of the original mass—spring
system. We will adopt the initial conditions as:

u(t=0)=a, u(t=0)=0. (6.31)

The initial mass position a (spring force c-a) should be taken to be reasonably
large so that the motion will start by competing with the frictional force uN:

a> A/ (6.32)

Transient Response Analysis with Laplace Transform

Let us solve the differential equation, Equation (6.30), using Laplace transform.
Since a detailed solution is provided in Section 14.1.3, a brief introduction is given
here. We denote the Laplace transforms of the displacement u(t) and friction force
h(t) as U(s) and H(s): U(s) = Lu(t), H(s) = Lh(t). Equation (6.30) can be written as

L[i] +w?U(s) = H(s). (6.33)
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Taking into account the initial condition u(t = 0) =4 and u’(t = 0) =
L[ii] = s*U — sa, (6.34)
and the Laplace transform of a rectangular wave expressed by

A Ts, A
H(s) = Ztanh(?s) =50~ 2e” T542e72T 2735 .1y, (6.35)

we obtain the following equation:
2 2 A —~Ts —3Ts
(s"+w)U —sa = Z(l 2e 54207215 _ 2 + ). (6.36)

We can now solve Equation (6.36) in terms of U(s)

S-a A T 3T
U=t a2 12072 e SE ) (6.37)

Remember that T = 77/ w (a half of the resonance period).

We can now obtain the displacement u(t) solution for successive time intervals,
0<t<T, T<t<2T,2T <t<3T,---,where T is a half of the resonance period (i.e.,
wT = m; refer to [5]):

u = acos(wt) + =5 A1 - cos(wt))

for0<t<T, u(T) = —a+ w2, (6.38)
u = acos(wt) + %(1 — cos(wt)) — W—A(l — cos(w(t -T)) 6.39
for T <t <2T; u(2T) =a— (639)

u = acos(wt) + %(1 — cos(wt)) — i—‘;‘(l - cos(w(t -T))
+i)—f2‘(1 — cos(w(t —2T)) (6.40)

for 2T < t < 3T; u(3T) = —a + 4
We find that

(1)  The system exhibits sinusoidal vibration with the resonance frequency given by

w = y/c/m, determined by the original mass and spring.

(2) Each successive “sinusoidal” displacement swing is (i}—‘;‘) shorter than the pre-
ceding one, until inside the dead region, that is, linear decay with time, different
from exponential decay in viscous damping in the next section. Figure 6.11
shows the linear vibration amplitude decay for the “Coulomb damping”, in
comparison with no damping-free vibration.

(3) There is the critical stop point of the vibration; that is, the minimum displace-
ment u(t) = A/w?, below which the spring force cannot compete with the

friction force. This dead region is shown as a shadow band in Figure 6.11.
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Figure 6.11. Linear vibration amplitude decay for Coulomb damping. Source: [6]
©Uchino, K. High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 94.
Reproduced by permission of Taylor & Francis Group.

6.2.4. Viscous Damping

Different from the Coulomb damping for a dry surface (i.e., constant force),
“viscous damping” is applied for “lubricated surface” friction (i.e., time-dependent
force); so-called “dashpots” (i.e., shock absorber, buffer), illustrated in Figure 6.4b,
exhibit this behavior. It can also be applied for an object moving in viscous oil, or an
electro-active object moving in a magnetic field with its damping force in proportion
to the object speed. The damping force is introduced in proportion to the velocity v

of the mass m as

du
F=-Cv=-C—, 6.41
fo = —¢ (641)
where ¢ is the viscous damping coefficient. Thus, the dynamic equation of the mass
without external force in Figure 6.4b is described as

mu = —cu—_;u. (6.42)

Taking the following notations,

wo = V¢/m (base resonance frequency for zero damping), (6.43)
¢ = ¢/2mwy (normalized damping factor (no dimension)), (6.44)

we obtain the normalized equation as follows, which is a differential equation equiv-
alent to the LCR circuit in Equation (6.7):

i + 20wott + wo?u = 0. (6.45)

Due to the obedient characteristic of the damping formula, we can easily solve
this differential equation using the Laplace transform, detailed in Section 8.2. Taking
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L[u(t)] = U(s), and Useful Theorem (b) in Section 8.2 with the initial conditions,
u(t=0) =0, u(t=0) = u,

[szu — suo} + 2Cwo[sU — ug] + woU = 0. (6.46)
Then
[s2 + (2¢wo)s + wo?]U(s) = (s + 2wy )ug, or
U(s) = (s+2wo)ug (6.47)
[s?+(20wo)s+wo?]”

Equation (6.47) is a general solution for U(s). In order to apply the inverse
Laplace transform, we need to consider three cases: 0 < ¢ <1, =1,and 1 < .

Under Damping (0 < ¢ < 1)
Rewriting Equation (6.47) as

U(S) = up (S + ng) + g V 1—- CZWO
(54 Cwo)® + (1= P)we?2  V1—22 (5+ Cwo)? + (1 — 12)wp?

then using the inverse Laplace transforms (numbers 9 and 10 in Table 8.1 in Chapter
8) for the first and second terms, we can obtain the solution:

u(t) = uo[exp(—éwot)cos<mwot)+
\/1€—_g2 exp(—gwot)sin(\ /1 — ézwot)].

We can understand that only when 1 — ¢?> > 0, sinusoidal vibration can be
observed, which is called “light damping” or “under damping”. It is important to
note that the resonance frequency of this system is not wg but y/1 — {?wy, as can been
seen in Equation (6.49). Refer to Figure 6.12 for u(0) = uo{ = 0 shows the calculated
result for a simple cosine curve, u(t) = cos(wpt), and ¢ = 0.1 is for

] . (6.48)

(6.49)

1
u(t) = exp(—O.lwot)Cos<\/0.99w0t> + %99 exp(—O.lwot)sin(\/0.99w0t>.

Normalized Displacement u(t)

Figure 6.12. Free vibration amplitude decay for viscous damping. ¢ =1 corresponds
to the critical damping. Source: Figure by author.
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Critical Damping ( = 1)

Sinusoidal vibration can be observed only when 1 — 2 > 0 is satisfied. When
¢ = 1, the vibration status is called “critical damping”. The response speed is not
as high as the “under damping” condition, but it is the quickest response with-
out any ringing vibration associated (i.e., “aperiodic” motion). Equation (6.47) is
transformed as

(s + 2wp)up B 1 wo

uo[

Us) = [s2 4 (2wp)s + we?] T 's + wp " (s+w0)2]'

(6.50)

Then, using the inverse Laplace transforms (numbers 3 and 4 in Table 8.1 in Chapter 8)
for the first and second terms, we can obtain the solution:

u(t) = uolexp(—wot) + wot- exp(—wot)] = up(1 + wot)-exp(—wot)  (6.51)

The curve denoted ¢ = 1 in Figure 6.12 corresponds to the calculated result for

u(t) = (1+ wot)exp(wot).

Note that the critical damping condition exhibits the quickest decay of the
vibration without any ringing.

Over Damping (¢ > 1)

When the damping factor { > 1, “large damping” or “over damping” is ob-
served. Rewriting Equation (6.57) as

(s + Cwp) n Cwo
(s + Cwo)® — (12 —Dwe? (s + fwy)® — (22 — 1)wy?

U(s) = ug

] . (652)

Then, using the inverse Laplace transforms (numbers 7 and 8 in Table 8.1 in Chapter
8) for the first and second terms, we can obtain the solution:

u(t) = ug [exp(—@wot)cosh(\/@2 — lwot)+

(6.53)
\/% exp(—Cwot)sinh (/% — 1w0t)] .

This motion is actually “aperiodic”, without exhibiting any ringing. The curve
denoted ¢ = 2 in Figure 6.12 corresponds to the calculated result for

u(t) = 1.08exp (—0.27wpt) — 0.08exp(—3.73wot).

6.2.5. Logarithmic Decrement

Definition of Logarithmic Decrement

When the damping factor { is small, a sinusoidal vibration continues, as shown
in Figure 6.13. Since Equation (6.49) can be rewritten as

u(t) = upexp(—Lwot)cos (\/1 — (Pwot — 4)),
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the resonance angular frequency is given by /1 — {%wy, not by wy, and the vibration
peak points which satisfy

cos<\/§w0t — <p> =1,

are almost bounded by the envelope of 1(0)exp(—{wot). Though the contact point on
the envelope is slightly off from the amplitude maximum points, precisely speaking,
the deviation is negligibly small. The “logarithmic decrement” J is defined by the
natural log of the ratio of two successive vibration amplitudes:

e ¥ exp(—Cwot) B
o= ln<x—2) = lnexp(—gwo(t T In[exp(¢woTh)] = CwoTo. (6.54)

Since the vibration resonance period T is given by Ty = \/12_#, the logarith-
2w

mic decrement can be written as

27T
5= 2% 27, (6.55)
1-¢2

1
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Figure 6.13. Damping factor determined by the logarithmic decrement. Source:
Figure by author.
Experimental Determination

Refer to Figure 6.13 for the notations. When Ax; is small, § can be experimentally
obtained as follows:

5= 1n(ﬁ) _ h(w) _ ln(1+ %) ~ BY2. (6.56)
X2 X2 X2
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The so-called time constant T determined from the envelope curve, exp(—t/7),
is experimentally related with the damping factor { as T = 1/{wg. The logarithmic
decrement J can also be determined from the energy loss. The total energy of this
system is estimated as %cxz. The energy loss per cycle AW can be estimated by

1
W—AW = Se(x - Ax)?. (6.57)
Thus,
~ sz ~ AW
o= = o (6.58)

J is obtained by a half of the ratio: lost energy/total energy.

6.3. Bode Plot—Frequency Response of a System
6.3.1. Steady-State Oscillation

In the previous Section 6.2, we considered “free” vibration of a mass—spring-
damper system shown in Figure 6.14a (retaken from Figure 6.4b). Due to the
damper, the system gradually loses energy and the vibration amplitude decreases.
In this section, we consider steady-state forced oscillation under a harmonic force

£(8) = fosin(w).

u direction

TN
Mmwu mo)l\“
C ‘_ & g
PR Y\ S
n (c)
iu
— m
fosin(wt)
(a) (b)

Figure 6.14. Mass—spring-damper model (a), and mass under forced oscillation
(b). Force vector analysis under forced oscillation (c). Source: [6] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms. CRC Press, 2020; p. 98. Reproduced
by permission of Taylor & Francis Group.
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Supposing the viscous damper, the sum of spring force, damping force, and
external force will generate the mass acceleration (see Figure 6.14b for the force
direction):

mu = —Cu —cu+ f(t), or

mu + ¢u+cu = f(t). (6:59)
In order to simplify the equation, we will adopt the following notations:
e Resonance angular frequency for zero damping:
wo? =c/m [wo = \/c/m] . (6.60)
e Damping ratio ¢ and damping factor :
20wy = ¢/m [{ = E2mawy). (6.61)
Equation (6.59) is now transformed into
. . 2 1
U+ 2fwou + wpu = Ef(t)' (6.62)

By taking L[u(t)] = U(s), L[f(t)] = F(s) with the initial conditions, u(t = 0) =0,
u(t = 0) = ug, we obtain

[s2U — sug] + 2¢wo[sU — ug] + wo*U = (1/m)F(s), then

[52 + (20wg)s + wOZ} U(s) = (s +2Cwq)ug + (1/m)F(s). (6.63)
Thus, from the algebraic calculation, U(s) is expressed by
U(s) = — 8T 26wo)u (1/m)E(s) 660

[s2 + (2Cwo)s + we?]  [s%2 + (2Cwp)s + wp?]’

The first term on the right-hand side is called the “transient solution” (or “comple-
mentary function”), which is the solution when the external force f(t) = 0. As we
have discussed in Section 6.2, all solutions for different damping factors  include the
time dependence of exp(—{wyt). Thus, the transient solution will disappear with a
time lapse. On the contrary, the second term will remain even after a long time-lapse,
called “steady-state oscillation”.

We further consider only the second term (i.e., steady-state oscillation) below:

U(s) = G(s)F(s), (6.65a)

Gls) = m(s? + (2Cwo)s + we?] (6.650)

The Laplace function G(s), relating the input function F(s) to the output function
U(s), is called the “transfer function”. As the denominator includes s?, this function
is called a “second-order system”. Knowing that when F(s) = 1, that is, f(t) = J(f)
(impulse function), U(s) = G(s), the G(s) can be obtained experimentally by taking
Laplace transform of the output u(t) under the “impulse input” (hitting the system
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with a hammer!). When we consider only the “steady-state oscillation” under a
harmonic input, f(t) = fosin(wt), since its Laplace transform is expressed by (524(;;—(4;2)
and its “pole” exists at “s = £jw”, we can discuss the frequency dependence of
the displacement u(t) from the “transfer function” by replacing s by “jw”, which
corresponds to the “Fourier transform”. By this replacement, Equation (6.65) can be

transformed as

o (fo/m)
U(jew) = [—w? + 2Cwow + w?]’ (6.66)

6.3.2. Steady State—Reconsideration

We considered the frequency dependency of the displacement in the previous
section (Equation (6.66)). Direct displacement in the time domain is considered here.
Supposing that the displacement u(t) is excited with a slight delay after the force f(t)
(= fosin(wt)), the steady-state vibration is described as

u(t) = ugsin(wt + ¢) (¢ <0, delay). (6.67)

We consider four forces balance: inertial force, damping force, spring force,
and external force; the total sum as vectors should be zero. Refer to Figure 6.14c.
Knowing the phase change by the time derivative, we obtain

u = wulsin(wt + ¢ + 7),
it = w?ulsin(wt + ¢ + ) = —w?ulsin(wt + ¢).

Now, the original equation, mii + ¢u + cu = f(t), is transformed to
mw?u0sin(wt + ¢) — 2{mwowulsin(wt + ¢ + F) — culsin(wt + ¢)+

fosin(wt) = 0.
Figure 6.14c describes:

1.  The output displacement u(t) is delayed from the input force f(¢). The phase
delay ¢ in the above equation is negative.

2. The spring force is opposite to the displacement.

3.  The damping force is delayed 90° from the displacement and opposite to the
velocity. This is the definition of the viscous damping.

4.  The inertial force is in phase with the displacement and opposite to the acceleration.

5. Four force vectors rotate at the angular velocity w by keeping the relative
position fixed.

From the inserted triangle figure in Figure 6.14c, the following relations can be
derived:

uy = fo ) (6.68)
\/(c — mw?)? + (2mlwow)?
_ 2mlwow
tan¢ = P—— (6.69)
u(t) = fosin(wt + ¢) . (6.70)

\/(c — mw?)? + (2mlwow)?
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Introducing the non-dimensional normalized form, taking uy(w = 0), which
is equal to fo/c, and zero-damping resonance frequency wyp = +/c/m, the above
equations are transformed as

e e Up 1
Magnification factor : — = , (6.71)
nolw=0) - ()72 + (2545)?
W
Phase : tan¢ = ——“ZSZ. (6.72)
1-— w_o)

Since we adopted sin(wt + ¢), negative ¢ is obtained for the phase delay.

Figure 6.15 illustrated the magnification factor (ﬁ) and phase lag of the
displacement as a function normalized frequency (a%o) for various damping ratios ¢
(€=0.1,0.2,0.5,1 and 2). When (w/wp) << 1.0, the inertial and damping force are
small, leading to small phase deviation. The force vs. displacement relation is close to
linear. When (w/wy) = 1.0, the inertial force becomes large to balance with the spring
force, and the external force compensates for the damping force, then the phase
becomes —90°. The Lissajous curve between the force and displacement is a circle
(or ellipse) with a significantly magnified displacement. When (w/wyg) >> 1.0, much
higher than the mechanical resonance frequency, the magnification factor becomes
small (displacement diminishing significantly, which approaches the mechanical
clamping status), and the phase approaches —180°. The force-displacement curve
slope is opposite in comparison with the case (w/wyp) << 1.0.

6

Magnification Factor u/u0
w

0 0.5 1 1.5 2 2.5 3 3.5

Normalized Frequency w/w

(a)

Figure 6.15. Cont.
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Figure 6.15. Magnification factor (ﬁ) (a) and phase (b) as a function-
normalized frequency () for various damping ratios C. Source: Figure by author.

6.3.3. Bode Plot

Equation (6.66) can also be written, using T = 1/w (resonance period in radian

scale):

Glje) = (

m ) 1
E) (m/ fo)U(jw)= (—w?T?) + 20jwT + 1

(6.73)

The “Bode plot” is a representation of the transfer function (amplitude and
phase) as a function of frequency on a logarithmic scale, as shown in Figure 6.16.

Gain (dB)

Phase (deg)

Figure 6.16.

by author.

40

20

o

-90

-180

The Bode diagram for a standard second-order system. Source: Figure
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7

First, let us consider “asymptotic straight curves” of the “gain” for the “low’
and “high” frequency regions.

e Forw — 0, G(jw) — 1. Thus, gain | G(jw)| =1, so that, in decibels:
dB =20logo(1) = 0. (6.74)

“0 dB/decade”, i.e., flat frequency dependence of the gain. Regarding the phase,
the real number “1” corresponds to 0°. Gain and phase Bode plots are shown
on the left-hand side in Figure 6.16.

e For w — o, G(jw) — 1/(—w?T?) (N.B. do not immediately make G(jw) — 0;
otherwise, the frequency dependence of G(jw) cannot be obtained).

Gain : |G(j

1
jw)| = ‘—(—wm) , (6.75)

so that in decibels:
dB = —20logo(wT)? = —40logo(wT). (6.76)

“—40 dB/decade” (or —12 dB/octave) with frequency. Regarding the phase, the
negative real number corresponds to —180°, as indicated by the gain and phase
curves appearing on the right-hand side in Figure 6.16.

Second, we consider displacement for the resonance wy frequency.

e  Resonance range: we will now consider the deviation from these two asymptotic
lines around the bend-point frequency, which is obtained from the relation
wT = 1. Substituting the resonance condition wT = 1 in Equation (6.73) yields:

1 1
G(jw) = , = ~, (6.77a)
V)= g ~ 2j)
so that the gain and phase become [1/(2{)] and —90°, respectively. The constant
( is the damping ratio.

dB = 20 loglo(i). (6.77b)

(2¢)
If = 0 (loss-free), an infinite amplitude will occur at the bend-point frequency
(i.e., resonance frequency); while ( is large (>1), the resonance peak will disap-
pear, and a monotonous decrease in amplitude is observed.

The “Lissajous curves” between the force and displacement are illustrated in
Figure 6.17; when (w/wp) << 1.0, there is a linear relation without a phase delay with
a right-up positive slope, while for (w/wp) >> 1.0, there is a linear relation with a
right-down negative slope because of 180° phase delay (i.e., negative sign). At the
resonance (w/wyp) = 1.0, there is an elliptical Lissajous relation with the magnification
factor by (1/2() along the displacement (under force f(/c constant condition). The
phase lag —90° indicates the locus in counterclockwise with timelapse. Since this
Lissajous area on the force—displacement domain is related with the heat generation,
the actual energy dissipation seems to be increased when approaching 90°. However,
since the displacement is significantly amplified (x1/2¢) under the constant force,

209



the dissipation factor evaluated by (dissipation energy/input energy) is actually
very similar.

u ) (w=0)/2C u
Displacement 4 Displacement Displacement

A
VA

w< Wy w = Wy w > Wy

Figure 6.17. The Lissajous curves between force and displacement. Source: Figure
by author.

6.3.4. Mechanical Quality Factor

There are multiple definitions for the “mechanical quality factor” Q, which are
approximately but not exactly equivalent. One of these definitions is the frequency-
to-bandwidth ratio of the mechanical resonator:

f r Wy

Q= AT A’ (6.78)
where f, is the resonant frequency, Af is the resonance width or “full width at
half maximum” (FWHM), i.e., the bandwidth over which the power of vibration
is greater than half the power at the resonant frequency, w, = 2nf, is the angular
resonant frequency, and Aw is the angular half-power bandwidth. From the “Bode
plot” of the displacement in Figure 6.16, Aw should be obtained from 1/+/2 of the
maximum displacement around the resonant frequency, which corresponds to 3 dB

down level in a 20 dB type gain plot (recall the mechanical power (displacement)z).
: up(wo) _ 1
Since o(w=0) ~ %Z L, by putting ( ) = \/[1—(§)2]2+(2§%O) \[ prgcs SAa, We can

0

obtain w
1-— (CU_O) j:2§— depending on CU_O <1lor (70 > 1. (6.79)
We obtain two roots, w—(l) :A\/ 1+7%2—Cor Z—g = /14 (2 + , for either o <
. Wo —W . .
.1 or ;= > 1, respectively. Thus, ¢ = =25 = 27. The mechanical quality factor Qy,
is expressed by
wo
=—=1/2. 6.80
Qu = 1o =1/2¢ (6.80)

The “mechanical quality factor” Q can also be obtained from the phase angle,
that is, “quadrantal frequencies”. Around the phase —90° frequency, which corre-
sponds to the resonance frequency, you can find the frequencies which provide the
phases —45° and —135° (i.e., 45°). These two frequencies correspond to the above
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w1 and w», respectively, which can be verified as follows. By inserting w; and w»
into Equation (6.73),

1 1

G(jwi2) = (—w122T2) + 20jwr T + 1 - 20(V1+ 2+ (F1+))

(6.81)

Since the phases at w; and w, are determined by the denominator (F1 + j),
we can obtain —45° and —135° immediately. The reader now understands the
equivalency of the “quadrantal frequency method” to the above 3 dB down method.
In experiments, the quadrantal frequency method provides more accurate results
than the 3 dB up/down method.

6.3.5. Complex Algebra Method

Complex Displacement

The complex algebra method often facilitates solving differential equations, in
the case of a forced oscillation under a harmonic external force, since the steady-state
solution exhibits a “harmonic oscillation” with the same frequency as the input force.
As explained in Figure 6.14c, the output displacement u is delayed from the input
force f with phase lag ¢, and keeping this phase lag, both vectors rotate at the angular
frequency of w. Supposing that these vectors are expressed by complex parameters
such as

f() =fod ™", (6.82)
u(t) = uge V=9 = yge PV, (6.83)

fo and u( correspond to the absolute length of the force and displacement vectors,
respectively. We write Equation (6.83) by using the complex vibration amplitude as

u(t) = uy vt uy" = uge 9.

When we adopt Equations (6.82) and (6.83) into a mass—spring-damper model
in Figure 6.14a, '
mii + &+ cu = foel“!. (6.84)

Using u(t) = ug'e/ !, we obtain
(—mw2 +jéw + c) uy = fo. (6.85)

Accordingly,

* fO — fOe_j(P 6.86
Ug (_mwz _|_j§a)—}—c) \/(C—ma)2)2_|_ (éw)z. (6.86)

The vibration amplitude and phase are obtained as:

uy = fo ) (6.872)
V(e = ma?)? + ()’
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-1 Gw
¢ = tan p—— (6.87b)

Complex Physical Parameter

From Equation (6.84), mii + i + cu = fpe/f, we assume harmonic vibration
u(t) with the same w. Then,

(—mw2 +jéw + c> u(t) = foel“t. (6.88)

We adopt a “complex spring constant” as

¢ =c(1 +]CTw) (6.89)
Note that the viscoelastic damping-related imaginary part is frequency dependent.
Then, the dynamic equation is transformed as

<—mw2 + c*)u(t) = foel. (6.90)

We can understand that Equation (6.90) corresponds to a simple mass—spring os-
cillator with a complex spring constant. Under an assumption u(t) = uge/(“t=9) =
upe 19/ ¢!, the remaining solution process is the same in the previous subsection,
leading to the final results Equations (6.87a) and (6.87b).

Note that most of physical phenomena inevitably exhibit heat generation associ-
ated with losses or phase delay because a sort of delay in the output reaction occurs
from the input electric or mechanical force.

6.4. Intensive and Extensive Losses in Piezoelectrics

6.4.1. Energy Description of Intensive and Extensive Physical Parameters

We will extend the loss formulation to “piezoelectric” materials, including
“coupling phenomenon losses” in particular, by introducing complex numbers for
physical parameters in this section. Complex parameter usage limits the applica-
bility only for small damping situations, such as a damping ratio { less than 0.1
from a thermodynamic theory viewpoint. We need to obtain both “intensive” and
“extensive” losses in the piezoelectric characterization to realize accurate analysis in
piezo-device design by using computer simulation tools such as the “finite element
method”, because either loss will contribute in a different way depending on the
realizing vibration mode in piezoelectrics. This loss distinction is also essential for
creating a microscopic loss model in piezo materials; that is, in order to explain
loss mechanisms theoretically, we usually utilize the “extensive” losses, which are
calculated from “intensive” losses easily obtained experimentally.

According to IUPAC (The International Union of Pure, and Applied Chemistry),
an “extensive parameter” depends on the volume of the material, while an “intensive
parameter” is the ratio of two extensive ones and, therefore, is independent of
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the volume of the material [7]. If we cut an object in half, the mass, length, and
displacement (extensive properties) would halve, while the temperature, force, and
voltage (intensive properties) would not change. Consequently, the stress (X, first
derivative of force) and electric field (E, first derivative of voltage) are intensive
parameters, which are externally controllable, while the strain (x, first derivative of
displacement) and dielectric displacement (D) (or polarization (P), as defined by the
total dipole moments per volume) are extensive parameters, which are internally
determined in the material.

We start with the Gibbs free energy, G, in terms of intensive parameters, in
general differential form as:

dG = —xdX — DdE — SdT, (6.91)

where x and X are the strain and stress, D and E are the electric displacement
and electric field, and S and T are the entropy and temperature. Equation (6.91)
is the energy expression in terms of the externally controllable (which is denoted
as “intensive”) physical parameters X, E, and T. If we assume the simplest linear
phenomena for the elastic (Hooke’s law), dielectric, and electromechanical coupling
properties, we obtain the following Gibbs energy expression (refer to Chapter 2):

G = —(1/2)sEX? — dXE — (1/2)egeXE2. (6.92)

The temperature dependence of the function is associated with the elastic com-
pliance, sE, the dielectric constant, X, and the piezoelectric charge coefficient, d, and
the direct entropy expression is omitted (refer to the Devonshire theory in Chapter 4).
It is also noteworthy that the electromechanical coupling term XE (not XE?) indicates
the crystal symmetry (piezoelectrics belong to asymmetric class), which allows the
sign change of X or x simultaneously for the E direction change. The following two
piezoelectric equations (i.e., “piezoelectric constitutive equations”) are derived from
Equation (6.92):

_ G _ E
x = o0 =s'X+dE, (6.93)
D= —g—g = dX + egeXE. (6.94)

Note that the Gibbs energy function provides intensive physical parameters: E—
constant elastic compliance s£, and X—constant permittivity eX.

On the other hand, when we consider the free energy in terms of the “extensive”
(that is, material-related) parameters of the strain, x, and electric displacement, D, we
start from the differential form of the Helmholtz free energy designated by A (refer
to Chapter 2), such that:

dA = Xdx + EdD — SdT. (6.95)

We now assume

A= (1/2)cPx*> — hxD + (1/2)kox*D? [r9 = (5)]. (6.96)
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From this energy function, we obtain another pair of piezoelectric constitutive equations:

0A D
X = g =C x—hD, (697)
0A .
E = 3D = —hx + ko™ D. (6.98)

where cP is the elastic stiffness at constant electric displacement (open-circuit condi-
tions), h is the inverse piezoelectric charge coefficient, and «* is the inverse dielectric
constant at a constant strain (mechanically clamped conditions).

Equations (6.93), (6.94), (6.97), and (6.98) should be written in tensor or matrix
notations in 3D description, precisely speaking, and the reader can imagine that
these pairs are mutually inverse tensor matrix relations. However, we initially obtain
the interrelations between the intensive and extensive physical parameters in the
one-dimensional form, simply for mathematical simplicity.

6.4.2. Piezoelectric Constitutive Equations with Losses

Intensive Losses

Since the detailed mathematical treatment has been described in a previous
paper [8], we summarize the essential results in this subsection. We start from the
“piezoelectric constitutive equation”:

E
()= (o ) () 65

where x is the strain, X is the stress, D is the electric displacement, and E is the
electric field. Note that the original piezoelectric constitutive equations cannot yield
a delay-time-related loss, in general, without taking into account irreversible ther-
modynamic equations or dissipation functions. However, the “dissipation functions”
are mathematically equivalent to the introduction of “complex physical constants’
into the phenomenological equations, if the loss is small and can be treated as a
perturbation (“dissipation factor tangent” << 0.1).

Therefore, we will introduce complex parameters ¢ " and d, using *, in
order to consider the small hysteresis losses in dielectric, elastic, and piezoelectric
constants:

7

X* JE
;S

X' = eX(1 — jtand’), (6.100)
sE' =5 (1 — jtang), (6.101)
d =d(1 — jtand’). (6.102)

¢’ is the phase delay of the strain under an applied electric field, or the phase
delay of the electric displacement under an applied stress. Both delay phases should
be exactly the same if we introduce the same complex piezoelectric constant d” into
two constitutive equations of Equation (6.99). ¢’ is the phase delay of the electric
displacement to an applied electric field under a constant stress (e.g., zero stress)
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condition, and ¢’ is the phase delay of the strain to an applied stress under a constant
electric field (e.g., short-circuit) condition. We will consider these phase delays
as “intensive losses” because these losses are related with the intensive physical
parameters, eX sk, and d. Note here that though the “loss factor” is not a volume-
dependent parameter, we will denote “intensive (or extensive) parameter-related
loss” as “intensive (or extensive) loss” for short. We take a negative sign in front
of the loss tangent, supposing that the extensive parameters are induced after the
intensive parameters are applied. So far, no negative “intensive loss factor” has been
reported experimentally.

Figure 6.18a—d correspond to the hysteresis model curves for practical exper-
iments: D vs. E curve under a stress-free condition, x vs. X under a short-circuit
condition, x vs. E under a stress-free condition, and D vs. X under a short-circuit
condition (D is calculated from measured current integration), respectively. Note
that these measurements are easily conducted in practice by changing the externally
controllable intensive parameters (E, X). The average slope of the D-E hysteresis
curve in Figure 6.18a corresponds to the permittivity eXey where the superscript
stands for X = constant (occasionally zero). Thus, tané” is called the “intensive
dielectric loss tangent”, or “dissipation factor”. The situation of s is similar; the
slope of the x—X relation is the elastic compliance under the E = constant condi-
tion. Though Figure 6.18a illustrates a sharp hysteresis edge around the maximum
(and minimum) electric field, similar to the actually observed hysteresis curve, the
complex parameter representation in Equation (6.100) indicates an elliptic shape
(counterclockwise rotation) with rounded edges. Though this discrepancy implies a
modeling inaccuracy (i.e., “viscoelastic damping” may not be a real phenomenon in
piezoelectrics), we will adopt the complex parameter method for the loss analysis for
mathematical simplicity.

N
N u
- %(”ﬁ v e "
) X X
/ k % :

(a) (b)

Dyf=mmnm--
~ Wem ~ Uem
N
’ / A

(c) (d)

~ Wem

Figure 6.18. (a) D vs. E (stress free), (b) x vs. X (short circuit), (c) x vs. E (stress
free), and (d) D vs. X (short circuit) curves with a slight hysteresis in each relation.
Source: Figure by author, adapted from [5].
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Since the areas on the D-E and x—X domains directly exhibit the electrical and
mechanical energies, respectively (see Figure 6.18a,b), the stored energies (during
a quarter cycle) and hysteresis losses (during a full electric or stress cycle) for pure
dielectric and elastic energies can be calculated as (refer to Example Problem 6.1 for
the detailed calculation process):

U, = (1/2)eXegEy?, (6.103)
w, = eXegEy>tand’, (6.104)

Uy = (1/2)sFX,?, (6.105)
Wy, = 1isE X2 tangy’. (6.106)

Here, U, and U, stand for electrical and mechanical energy stored during a
quarter cycle, and w, and wy, are the electrical and mechanical hysteresis losses,
respectively. The dissipation factors, tané” and tan¢’, can be experimentally ob-
tained by measuring the dotted hysteresis area and the stored energy area, that is,
(1/2m)(w./U,) and (1/27)(wy, /Uy,), respectively. Note that the factor (271) comes
from the integral per cycle.

The electromechanical hysteresis loss calculations, however, are more compli-
cated, because the areas on the x—E and P-X domains do not directly provide energy.
The areas on these domains can be calculated as follows, depending on the mea-
suring methods: when measuring the induced strain under an electric field, the
electromechanical conversion energy can be calculated as follows, by converting E to
stress X:

1 Eo
Un = / xdX= () / xdx= (d?/sE) /0 EdE = (1/2)(d%/sE)E2,  (6.107)

where x = dE. Then, using Equations (6.101) and (6.102), and from the imaginary part,
we obtain the loss during a full cycle as

Wem = 1(d? /sF)Ey?(2tand’ — tang’). (6.108)

Note that the area ratio in the strain vs. electric field measurement should
provide the combination of piezoelectric loss tanf” and elastic loss tan¢” (not tanf’
directly!). When we measure the induced charge under stress, the stored energy
Uye and the hysteresis loss wy,, during a quarter and a full stress cycle, respectively,
obtained similar results:

Upe = / PAE = (1/2)(d?/e0eX) Xo2, (6.109)

Wye = T(d? / £0e%) X2 (2tand’ — tand”). (6.110)

Now, the area ratio in the charge vs. stress measurement provides the combina-
tion of piezoelectric loss tanf” and dielectric loss tand’. Hence, from the measurements
of D vs. E and x vs. X, we obtain tané” and tan¢’, respectively, and either the piezo-
electric (D vs. X) or converse piezoelectric measurement (x vs. E) provides tan¢g’
through a numerical subtraction. The above equations provide a traditional loss-
measuring technique on piezoelectric actuators, that is, measurement of polarization
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and strain induced by an electric field under the mechanical-free condition, and
measurement of polarization and strain induced by the external stress under the
short-circuit condition. You may recognize that the “piezoelectric” loss is a sort of
“hidden” parameter, which cannot be directly measured but is obtained from the
measurable combination loss. Another intriguing point is the loss subtraction: the
piezoelectric coupling loss contributes oppositely to the elastic or electric loss, which
means that normal electric and mechanical losses (these are merely added together)
can be cancelled somewhat by the piezoelectric loss.

Extensive Losses

In the previous subsection, we discussed the “intensive” dielectric, mechanical,
and piezoelectric losses (with prime notation) in terms of “intensive parameters”
X and E. In order to consider “physical meanings” of the losses (microscopic or
semi-macroscopic model) in the material (e.g., domain dynamics), we will introduce
the “extensive losses” [4] in terms of “extensive parameters” x and D. In practice,
intensive losses are easily measurable; extensive losses are not in the pseudo-DC
measurement but are obtainable from the intensive losses by using the so-called
“K-matrix” introduced later. When we start from the 1D piezoelectric equations in
terms of extensive physical parameters x and D,

X P —n X
(-5 )

where cP is the elastic stiffness under D = constant condition (i.e., electrically open
circuit), k* is the inverse dielectric constant under x = constant condition (i.e., me-
chanically clamped), and / is the inverse piezoelectric constant d. We introduce the
“extensive” dielectric, elastic, and piezoelectric losses as

K = 1" (1 + jtand), (6.112)
cP* = P (1 + jtang), (6.113)
h* = h(1+ jtan®). (6.114)

o4

The sign “+” in front of the imaginary “j” is taken by a general induction
principle: “polarization induced after electric field application” and “strain induced
after stress application”. However, in terms of the “extensive piezoelectric loss” tan6,
in the relation among electric displacement D (or polarization P) and strain x, we have
no idea which comes earlier, either D or x. In other words, is it polarization-originated
ferroelasticity or ferroelasticity-originated ferroelectricity?

It is notable that the permittivity under a constant strain (e.g., zero strain or
completely clamped) condition, £**, and the elastic compliance under a constant
electric displacement (e.g., open-circuit) condition, s*, can be provided as an inverse
value of ¥* and cP*, respectively, in this simplest one-dimensional expression. Thus,
using exactly the same losses in Equations (6.112) and (6.113),

e =¢e*(1 — jtang), (6.115)

sP*=sP (1 — tang), (6.116)
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we will consider these phase delays again as “extensive losses”. Care should be
taken in the case of a general 3D expression, where this part must be translated as
“inverse matrix components” of x** and cP* tensors. In order to realize an x-constant
status, we need to clamp 3D precisely, not just 1D, as introduced in the longitudinally
clamped capacitance in the k3; mode plate specimen in Chapter 7.

In order to obtain the interrelationship between the intensive and extensive
losses, we remind the reader of the physical property difference according to the
boundary conditions: E constant and D constant, or X constant and x constant in
the simplest 1D model. When an electric field is applied on a piezoelectric sample
as illustrated in the top part of Figure 6.19, this state will be equivalent to the
superposition of the following two steps: first, the sample is completely clamped
and the field E is applied (pure electrical energy (1/2)e*eoEg? is stored); second,
keeping the field at Ey, the mechanical constraint is released (additional mechanical
energy (1/2)(d?/sF)Eq? is necessary). The total energy should correspond to the total
input electrical energy (1/2)eXeqEq? under stress-free conditions (left figure). That is,
(1/2)eXegEy? = (1/2)e¥egEg* + (1/2)(d?/sF)Ey?. A similar energy calculation can be
obtained from the bottom part of Figure 6.19, leading to the following equations:

e /eX = (1-K), (6.117)
sP/sE = (1K), (6.118)
KX/ = (1—K), (6.119)
cE/eP =1 -k, (6.120)
where
K2 = 2/ (sEeoe®) = 12/ (i) [1cp = (%)]. (6.121)

This k is called the “electromechanical coupling factor”, which is handled as a real
number in most of the cases in this book.

It is noteworthy that losses are not actual “intensive” or “extensive” parameters
at all, but define the “losses associated with the intensive or extensive parameters”
as “intensive or extensive losses” in simple expressions.
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Total Input Electrical Energy Stored Electrical Energy Stored Mechanical Energy
= (1/2)e,e”E,2 = (1/2)e,&E 2 =(1/2)(d /s Ey?

_________ { . . $
——— - . Strain
T _— x=dE,
Mechanically clamped Electrically short-circuited
Total Input Mechanical Energy Stored Mechanical Energy Stored Electrical Energy
- E = Dy 2
=(1/2)s on =(1/2)s X, = (1/2)(d2/£o€x)xoz
+ +
__________ ? R
= + Polari ation/I\ field
. o . L Polarization ~ Reverse field
Electrically short-circuited Electrically open-circuited

P =dx, E =dX,/e,e

Figure 6.19. Conceptual figure for explaining the relation between eX and &%, sF,

and sP. Source: [5] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 76.
Reproduced by permission of Taylor & Francis Group.

K-Matrix in the Intensive and Extensive Losses

In order to obtain the relationships between the intensive and extensive losses,
the following three equations derived from Equations (6.99) and (6.111) are essential
(derivation process in Example Problem 6.3):

1 1
E__ - -
"= 1 = ), (6.122)
(cProx¥)
1 1
X
goe” = = 5 , (6.123)
0 (1 = )
_n
d= l(cD"—O"z) (6.124)
d(1— )
(cPrgx®)

Replacing the parameters in Equations (6.122)—(6.124) by the complex parame-
ters in Equations (6.100)—(6.102), (6.112)—(6.114), we obtain the relationships between
the intensive and extensive losses:

tand’ = (1/(1—Kk?)) {tan& + K*(tan ¢ — 2tan 9)], (6.125)
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tan¢’ = (1/(1 —k?)) [tangb + k*(tan — 2tan 9)], (6.126)

tan@’ = (1/(1 —k?)) [tané +tan¢ — (14 k?) tan 6], (6.127)

where k is the “electromechanical coupling factor” defined by Equation (6.121), and
here as a real number. It is important that the “intensive dielectric, elastic, and
piezoelectric losses” (with prime) are mutually correlated with the “extensive di-
electric, elastic, and piezoelectric losses” (non-prime) through the electromechanical
coupling k?, and that the denominator (1 — k?) basically comes from the ratios,
e*/eX = (1 —k?) and sP/sF = (1 —k?), and this real part reflects the dissipation
factor when the imaginary part is divided by the real part.

Knowing the relationships between the intensive and extensive physical pa-
rameters (Equations (6.99) and (6.111)), and the electromechanical coupling factor k
(Equation (6.121)), we introduce the so-called “[K]-matrix” to interrelate the intensive
(prime) and extensive (non-prime) loss factors (attempt Example Problem 6.3 to
further understand the derivation process):

tan ¢’ tan ¢
tan ¢' | = [K] |tan ¢ |, (6.128)
tan 6’ tan 0
1 k2 —2k?
1 d2 h?
Kl=—— |k 1 =2k |, K= = . 6.129
K 1—k? 1 1 —1-2 sE(eXeg) P (x*Ko) ( )

The matrix [K] is proven to be “invertible”, i.e., K% =1 or K=K"!, where I is the
identity matrix. Hence, the conversion relationship between the intensive (prime)
and extensive (non-prime) exhibits full symmetry:

tan ¢ tan ¢’ tan ¢’ tan ¢
tan ¢| = [K] |tan ¢’ |, and |tan ¢' | = [K] |tan ¢ (6.130)
tan 0 tan 6’ tan 6’ tan 0

The author again emphasizes that the extensive losses are more important for
considering the physical micro/macroscopic models and can be obtained mathemati-
cally from a set of intensive losses, which are obtained directly from the experiments
(in particular, pseudo-DC measurement).

Though we handle the electromechanical coupling factor k as a real parameter
in the above, if we introduce a sort of “electromechanical coupling loss”, it will be
derived as follows from Equation (6.121):

2//
(%) =tan y = (2tan ¢’ —tan ¢’ —tan ¢') = —(2tan 6 — tan & — tan ¢). (6.131)

Note that the electromechanical coupling loss is an eigen function of Equation
(6.129) with the [K] matrix, that is, the unique constant, irrelevant of the intensive or
extensive description. The loss tan ) can be either positive or negative, depending on
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the piezoelectric loss magnitute tan €', which contributes to the mechanical quality
factor spectrum around the resonance and antiresonance frequencies, as discussed in
Chapter 7.

Example Problem 6.3

(1) Derive the [K]-matrix to interrelate the intensive and extensive losses:

. 1 k> —2k?
K] = T ko1 =2k . (P6.3.1)
1 1 —-1-k

(2)  Verify the following relationship first:

2 d? h?
k= = = , P6.3.2
(sEegeX)  (cPxox¥) ( )
then, verify the “electromechanical coupling loss” relation:
(2tan 6’ —tan ¢’ — tan ¢’) = —(2tan 0 — tan § — tan ¢). (P6.3.3)

Hint

From the following pairs of equations, eliminate the parameters, X, E, x, and D.

x =sEX +dE, (P6.3.4)
D = dX + ¢pe*E, (P6.3.5)
X =cPx—hD, (P6.3.6)
E = —hx + xox*D. (P6.3.7)

Solution

(1) From Equations (6.99) and (6.111)

X sE 4 X E g Dy .
(D> - (d eosx) (E) - (d eosx) (_h Kon> (D>- (P6.3.8)

Thus, the product of the matrix should be the identity matrix:

sEcP —dh  —sEh + dipk*® 1 0
(ch — egeXh —dh—l—eoeXKOKx) - (O 1)' (P6:3.9)

From these four component equations, we can derive the following equations
easily:
eXeg = ! = ! (P6.3.10)
O_KOKx[l— h2 ] _Kon(l—kz)’ .

cProre*
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o cD [1 K2 ] - CD(l _kz)/ (P6.3.11)
cDixre*
h2
CDKOKx kz
- = : P6.3.12
! R ( )
cProrx

Introducing the complex parameters, with prime losses on the left-hand side,
and non-prime losses on the right-hand side (the middle terms) of the above three
equations, we can obtain the following:

tand’ = (1/(1—Kk?)) [tan& + k*(tan ¢ — 2tan 9)], (P6.3.13)
tan¢’ = (1/(1 —k?)) {tan(p + Kk?*(tané — 2 tan 9)], (P6.3.14)
tan®’ = (1/(1 —k?)) [tané +tan¢ — (14 k?) tan 6)]. (P6.3.15)

The [K]-matrix (Equation (P6.3.1)) is automatically obtained from Equations

(P6.3.13)—(P6.3.15):
. 1 K2 -2k
[K] [kz 1 =2k ] (P6.3.1)

=1 _12
e E R T

(2) Substituting X, E in Equations (P6.3.4) and (P6.3.5) by Equations (P6.3.6) and
(P4.3.7), we obtain
x = sE(cPx — hD) + d(—hx + xok*D),
D = d(cPx — hD) + eoeX(—hx + xok*D).
Upon rearranging,
(14 dh — sEcP)x = [dior™ — hst]D,
(dcP — hegeX)x = [14 dh — xox*egeX] D.

Thus, from (1 + dh — sEcP) [1 + dh — xor*egeX] = (dcP — hegeX) [drox™ — hst];

finally,
42 h2

(FeoX) — (Prger)’ (P6.3.16)

Let us verify that Equation (P6.3.16) corresponds to the electromechanical cou-

pling factor, which is defined by k? = (stored electrical energy/input mechanical

energy) or (stored mechanical energy/input electrical energy). We demonstrate the

electric energy input case (try for the mechanical energy input case by yourself). See

Figure 6.20a first, when we apply an electric field on the top and bottom electrodes

under a stress-free condition (X = 0). The input electric energy must be equal to

(1/2)epeXE? from Equation (6.92), and the strain generated by E should be dE from
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Equation (P6.3.4). Since the converted/stored mechanical energy is obtained as
(1/2sF)x? (E-constant or short-circuit condition), we obtain:

K2 = [(1 /2)(dE)? /SE] / [(1/2)sosX EZ} = d2 /egeXsE (P6.3.17)

Stress X =0 Clamped X

T«

(a) (b)

Figure 6.20. Calculation models of electromechanical coupling factor k for (a)
electric field input and (b) electric displacement input. Source: Figure by author.

On the contrary, we now consider the extensive parameter description. See
Figure 6.20b. The specimen generates delectric displacement D (under the open-
circuit condition) first along the spontanous polarization direction under the com-
pletely clamped condition (x = 0). The input electric energy must be equal to
(1/2)xox*D? from Equation (6.96). Since the blocking force (for clamping) is given by

X = —hD and the converted /stored mechanical energy is obtained as % (c%) X? =

% (%) (hD)z, we obtain:

c

2
K2 = B (C%)Xz]/[(l/Z)Kon DZ] = m (P6.3.18)

We can now understand that both d and 2 mean the electromechan-
(sEegeX) (cProrx)

ical coupling factor, and the values are exactly the same.
Introducing the complex parameters, on both sides of Equation (P6.3.16), it is
obvious to derive the electromechanical coupling loss equation:

2tan @’ — tan &’ — tan ¢’) = —(2tan 6 — tan § — tan @). (P6.3.19)
¢ ¢
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Example Problem 6.4

Verify that the following [K] matrix is “invertible”, i.e., K = K1

. 1 k2 —2k?
K] = T o1 2k |. (P6.4.1)
1 1 —-1-k

Then, obtain the eigen function in terms of the vector component (tané’, tan ¢’, tan 6').

Solution
We calculate K2.
1 k2 —2kK? 1 k2 —2k?
KIx[Kl=2a| ¥ 1 =2k | x| k¥ 1 -2k
1 1 —1-—k2 1 1 —1-—k2
1+ k* — 2k? 0 0
—m k2 + K2 —2k> k*+1 -2k 0
0 0 —2k% — 2k* + (=1 — k?)?
1 0 0
=101 0|=1
0 0 1

It is also interesting to obtain the eigen value and eigen vector of Equation
(P6.4.1). Taking the determinant

1 A K2 —2k?
1—k§{2 1—Kk? 1—1}2%
1 —2 _
T2 e A e =0, (P6.4.2)
1 1 —1-k* A
1—k2 1—k? 1—k?
we obtain the three eigen values of A = A, =1, A3 = —1, and the eigen vector for
}\1 = 7\2 =1as
X1 = —xp + 2x3, Xp = Xp, and x3 = x3. (P6.4.3)

This results in the value (2tan 6’ — tan ¢’ — tan ¢') = —(2tan 6 — tan é — tan ¢) be-
ing invariant, which corresponds to the loss for the electromechanical coupling
factor d?/(sFegeX) = h?/(cPx*«kY). Note that the negative sign in this loss equation
comes from the definition difference of intensive and extensive losses in Equations
(6.100)—(6.102) and (6.112)—(6.114).

Example Problem 6.5

In this chapter, the piezoelectric coupling loss tan 6’ was introduced, in addition
to the well-known elastic loss tan ¢’ and dielectric loss tan ¢’. Describe why the
inclusion of tan 6’ is essential. The motivation is to explain the difference of Qy,
at the resonance and at the antiresonance experimentally observed in most of the
PZT-based ceramics.
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Hint

The major problem is found in the present IEEE Standard on Piezoelectricity,
ANSI/IEEE Std. 176-1987, which many engineers are still using as the standard.
Figure 6.21 shows an equivalent circuit for a k3;1-type piezoelectric resonator, for
example, proposed by the IEEE Standard on Piezoelectricity. Only one loss param-
eter Ry results in the same mechanical quality factor Q,, for both resonance and
antiresonance peaks in its admittance/impedance spectrum, as suggested in the
following forms for the k3; mode:

st =1/ (4pf212), (P6.5.1)
Af K2
K2, = T (T here, K2, = 31 _ P6.5.2
31 = 2fr (2 5, where, K3, = 1—k§1' (P6.5.2)
2
Qe —m— (P6.5.3)
8- wo C- K%l

This “Standard” does not include the terminology “piezoelectric loss”, nor does
it discuss the difference of mechanical quality factors Q4 (at resonance) and Qp
(at antiresonance); that is, both are exactly the same, against many of the practical
experimental results and reports. Chapter 7 is devoted to solving this IEEE Standard
dilemma.

Figure 6.21. An equivalent circuit for a k3;-type piezo-resonator by the IEEE Stan-
dard on Piezoelectricity. Source: Figure by author, adapted from [1].

Solution

The mechanical quality factors Q4 at the resonance and at the antiresonance
Qg are expressed by using the three losses (piezoelectric tan @', elastic tan ¢’, and
dielectric tan J') as follows (see Section 7.3.1 for the details):

Qazl =

1 wyl T
0 =4 = 1 E | P6.5.4
fan ¢ny’ Aj31 zlel > [vn / psu} ( )

225



1 1

2

Qps1 Qas 1+ (é — k31)2Qp 31

[ tan Q)
Qpjz = 260_1;5’ 1— ka1® + k1 ” a?) 4
’n B

The mechanical quality factor Q 4 31 is given only by the elastic loss tan ¢17’,
while Qp 31 at the antiresonance is given by the coupling of three losses (i.e., “elec-
tromechanical coupling loss” [2tan6’ — (tan ¢’ + tand’)]). It is essential to men-
tion that the coupling loss tan ¢’ is subtracted from the average of the normal
elastic and dielectric %(tan ¢’ + tan¢’) so that the electromechanical coupling loss
[tan 6’ — } (tan ¢’ + tan 8’)] can be either positive or negative, which induces Q4 31 <
Qpj1 or Qa31 > Qp3i, respectively, as demonstrated in Figure 6.22. Note again that
regardless of each loss value (even rather large), as long as the subtracted result is
small, the mechanical quality factor Qp 31 at the antiresonance can be significantly
large (i.e., the heat generation is very small). All three losses are not always added,

but the coupling loss behaves for deducing the total loss.

5 (2tan 031 — tan 833’ — tan ¢11’), (P6.5.5)

= 0.

— -2 -';“.
& 107 JA
o
-c ,’I \‘
= L .
Qo ~
@© .
2 ﬁ“x,
3 N
c 1074 ~. /o
© -
-g ---tanf =0.001 v\
< - — tan@ =0.0025
— tan® =0.004
10°© . . .
86 88 90

Figure 6.22. Admittance simulation of a k3;-type PZT plate by changing only the

Frequency (kHz)

piezoelectric loss tan 6. Source: Figure by author, adapted from [1].

Chapter Essentials

1. Dielectric loss: though electronic polarization responds up to Peta Hertz, ionic
and dipolar polarization do have response limits, which provide the intrinsic
dielectric loss. Small conductance in the material contributes additional effective

dielectric loss.

2. LCR circuit: L (%‘3

I(t) = %sin(wt —¢); Z = \/R2 + (Lw — &5)2, tang = —(ngci‘”).

)-i-R(dd—?)—F% =V (t) orL<

a1
dr?

3.  Three mechanical loss models:

a. Solid damping — damping force F = {cttyqy,
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10.

11.

12.

13.

b.  Coulomb damping — damping force constant +F — linear decay of the

displacement amplitude,
C. Viscous damping — damping force proportional to velocity F = {u — expo-
nential decay of the displacement amplitude.
Steady-state oscillation for a mass—spring—dashpot model: mii + ¢u + cu = f(t).
wo = v/ c¢/m (wp: resonance angular frequency for zero damping)
{ = ¢/2mwy (¢, {: damping factor, ratio) (refer to Figure 6.16)
u(t) _ fo sin (wt+¢) )
\/ (c—mew?)*+(2mwow)?

_ fo
MO - 2 5/
\/(c—mw )+ (2mlwyw)
tan ¢ = ——zcniii"fff

Bode plot: asymptotic curves — 0 dB/decade, —40 dB/decade.
Resonance peak height = 20log;, ( 21—5)

Mechanical quality factor:

Qm = 3% =1/2¢.
Complex algebra method, including a complex physical parameter such as a
complex elastic stiffness, is a useful tool for harmonic steady-state oscillation to
calculate the vibration amplitude and phase lag as a function of frequency.
— the Bode diagram is a logarithmic plot of these parameters.

Piezoelectric constitutive equations:

Intensive parameter description X = — g—)G( =sEX +dE,

D = -9 = dX + epeXE,
sE—elastic compliance under constant field, eX—djelectric constant under con-
stant stress, d—piezoelectric charge coefficient.
Interrelationship between intensive and extensive parameters:

d2
D_ 1 1 x 1 1 1 (sRepeX)
— SE —( _ d2 )/ KOK — SQEX (1_ d2 ), h — d—(l_ d2 )
(sEsosX) (sEsosX) (SESOSX)

Electromechanical coupling factor:

k2 = d? — h?
(sFegeX) (cPigrex)”

Constraint dependence of permittivity and elastic compliance:

e/eX =(1—-k?),sP/sE = (1K), «X/x* = (1—Kk?), cE/cP = (1 —K?).
Intensive and extensive loss definitions:

eX* = eX(1—jtand’) x¥*x*(1+jtand),

st =sE(1 —jtang’) cP* =cP(1+jtang),

d*=d(1—jtan®’) h* = h(1+ jtan®).

Intensive and extensive loss interrelation:
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14.

tan ¢’ tan & tan § tan ¢’
[tangb’ ] [K][tangb ] or[tancp] [K][ tan ¢’ ],

tan 6/ tan 6 tan 6 tan 6’

1 kK -2k
where [K] = 5| K2 1 -2k |.

1—k2
1 1 —-1-k
The loss of the electromechanical coupling factor k is represented by (2tan 6’ —
tan ¢’ — tan ¢') = —(2tan 0 — tan § — tan ¢), which is an eigen function of the
[K] matrix and invariant.

Check Point

1.

AN

10.

11.

12.

13.

14.

15.

(T/F) When we add a Coulomb damper to a mass—spring system under free
vibration (no external force), the vibration amplitude decreases exponentially.
True or false?

(Fill in the blank) There are three mechanical damping mechanisms: solid
damping, Coulomb (friction) damping, and [ I

What is the Laplace transform for the Impulse J(t) function?

What is the Laplace transform for the Heaviside Step function?

(T/F) The Laplace transform for sin(at) is 1/ (s? + a?). True or false?

(T/F) When L[u(t)] = U(s), its first differentiation with respect to t is given by

L [dlfigt)] = sU(s) — u(0). True or false?

(T/F) The mechanical quality factor and the damping ratio { are related as
Qm = 3% =1/C. True or false?

(T/F) The complex spring constant is equivalent to the viscoelastic damping
model. True or false?

(T/F) The high-frequency portion of the Bode plot for the second-order system
is approximated with an asymptotic straight line having a negative slope of
20 dB/decade. True or false?

(T/F) As the polarization is induced after the electric field is applied (time
delay), the P vs. E hysteresis loop should show the clockwise rotation. True
or false?

We observed electric displacement D and applied an electric field E relation
as shown in Figure 6.2. Using the area of U, and w,, describe the dielectric
loss tand’.

(T/F) The hysteresis area of the strain x vs. electric field E corresponds directly
to the piezoelectric loss factor tanf’. True or false?

(T/F) The permittivity of a piezoelectric under the mechanically clamped con-
dition is smaller than that under the mechanically free condition. True or false?
(T/F) The elastic compliance of a piezoelectric under the open-circuit condition
is larger than that under the short-circuit condition. True or false?

Provide the inverse matrix of the following [K] matrix:

1 kK =2k
K] =25k 1 =2k |.

1—k2
1 1 —-1-—k2
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Chapter Problems

6.1

6.2

6.3

6.4

6.5

(@) In a mass—spring-damper model in the free vibration condition, starting
from the initial displacement u, verify that the logarithmic decrement ¢ given
by the following equation, where 1, is the vibration amplitude after the n cycles:
6=1n (72)-

(b) The above ¢ is related with the damping ratio { as 6 = 27t(. In the free vibra-
tion condition, starting from the initial u, calculate the required cycle number
for reducing the displacement by half (50%) as a function of the damping ratio (.
Let us consider a damper, the force of which is proportional to the displacement
with a phase in the same as velocity. This damper is modeled as a complex
spring constant ¢(1 + j7y). Solve the dynamic equation in a mass—spring-damper
system given as follows:

mu~+c(1+ jy)u =0.
Hint
Suppose that u(t) = 1ge(**/P)!, then determine « and .

w= /L —1+\/1+72g%\/%,;3:i /14117 gi\/%;

6=In(3l) = my.

Let us consider a mass—spring—dashpot system (Figure 6.14a). We apply a
sinusoidal force fypsin(wt) from the initial position u(t = 0) = uy. Verify the
following arguments:

(@) Transient response (vibration amplitude and phase) strongly depends
on the initial condition.

(b)  Steady-state oscillation (vibration amplitude and phase) is irrelevant to
the initial condition.

The electrical LCR circuit and mechanical mass—spring—-dashpot model are
shown in Figures 6.3 and 6.4b. Provide the dynamic equations (under the input
sinusoidal voltage or harmonic force) for both electric and mechanical systems.
Then, discuss the equivalency for obtaining the steady-state solutions for both
systems. This approach is the key to understanding the “equivalent circuit”
concept introduced in Chapter 9.

Consider an “order—disorder-type ferroelectric” with ions trapped in the same
“double-minimum potential” with a relatively low barrier between the two
minima (Figure 6.23). Thus, each unit lattice cell has a permanent dipole
moment, and the dipole-dipole coupling is taken into account at a temperature
lower than the Curie temperature. Under a quasi-DC field, the ion follows the
electric field alternating between the positive and negative potentials. However,
increasing drive frequency the ionic motion exhibits a delay with respect to the
electric field due to the potential barrier AU. This is an intuitive explanation for
the “dielectric relaxation” in a ferroelectric phase.
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Figure 6.23. Ion in a double-minimum potential. Source: Figure by author.

In Example Problem 5.1, we derived the following “Debye dispersion relation”
for a mono-dispersive case:

e(w) =¢es/(1 +jwT). (P6.5.1)
where
T = (1 + yepes)To/cosh(pyPs /kT), (P6.5.2a)
To = 1/2T'exp(— AU/KT). (P6.5.2b)
The subscript “s” of €5 stands for a static value (w = 0), and in the paraelectric

phase, it should follow the Curie-Weiss law:
goes = 9C/(T — T¢). (P6.5.3)

The relaxation time T « 1/(T — T¢), which increases significantly when ap-
proaching T — T . This means that the recovery to the equilibrium polarization
is quite slow.

When we transform the permittivity e(w) as

e(w) = €' (w) — je"(w), (P6.5.4)

where
£(w) = eg/[1 + (wT)?], (P6.5.5)
¢ (w) = wteg/[1 + (wWT)?]. (P6.5.6)

The so-called “Cole—Cole relation” is obtained from Equations (P6.5.5) and
(P6.5.6), which is a half-circle with the following formula, and illustrated in
Figure 6.24.

(1) Draw the D vs. E hysteresis curve. (2) Derive the dielectric loss tan ¢’
formula. Do you think this loss generated the heat in the sample? (3) Obtain
wo = 1/7, then calculate a practical number using a particular material.
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Figure 6.24. Cole—Cole plot for the Debye model. Source: Figure by author.

References

1.  Uchino, K. Ferroelectric Devices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010.

2. Thomson, W.T. Mechanical Vibrations; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1953.

3. Uchino, K;; Ishii, T. Mechanical Damper Using Piezoelectric Ceramics. |. Ceram. Soc. Jpn.
1988, 96, 863. [CrossRef]

4. Uchino, K. Piezoelectric Energy Harvesting Systems-Essentials to Successful Develop-
ments. J. Energy Technol. 2018, 6, 829-848. [CrossRef]

5. Uchino, K. Micromechatronics, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019.

6.  Uchino, K. High-Power Piezoelectrics and Loss Mechanisms; CRC Press: Boca Raton, FL,
USA, 2020; ISBN 978-0-367-54069-2.

7.  Tobergte, D.R.; Curtis, S. IUPAC Compendium of Chemical Terminology—The “Gold Book”;
International Union of Pure and Applied Chemistry: Zurich, Switzerland, 2013; p. 53.

8.  Uchino, K.; Hirose, S. Loss Mechanisms in Piezoelectrics: How to Measure Different

Losses Separately. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 307-321.
[CrossRef] [PubMed]

231



7. AC Drive on Piezoelectrics—Fourier
Transform

We discuss the AC drive, in particular around the resonance frequency, on
piezoelectric devices by using Fourier transform analysis from both electrical and
mechanical excitation viewpoints. The reader will learn the difference between the
resonance and antiresonance operations.

7.1. Driving Methods of Piezoelectric Devices

7.1.1. Classification of Piezoelectric Actuators

Piezoelectric and electrostrictive actuators are classified into two major cate-
gories based on the type of drive voltage applied to the device and the nature of
the strain induced by the voltage, as depicted in Figure 7.1. They are: (1) “rigid
displacement devices”, for which the strain is induced unidirectionally, aligned with
the applied DC field, and (2) “resonant displacement devices”, for which an alter-
nating strain is excited by an AC field, in particular at the mechanical resonance
frequency (“ultrasonic motors”). The first category can be further divided into two
general types: “servo displacement transducers” (positioners), which are controlled
by a feedback system through a position detection signal, and “pulse drive motors”,
which are operated in a simple on/off switching mode. Since recent energy har-
vesting devices require the AC stress drive of the piezoelectric components, we also
discuss this drive in this chapter in parallel to the electric field drive.

E Feedback x
E Servo
Servo W Displacement
Drive Transducer
Electrostrictor
.. (Hysteresis-free)
Rigid ' E, E y
Strain E| E.  Pulse .
’ON
On/Off Pulse Drive
Drive Motor
Soft Piezoelectric
P (Low permittivity)
t oFF E, E
£ X
Sine Ultrasonic
Resonant ___AC Motor
Strain Drive
/ I Hard Piezoelectric
(HighQ)

VAR
Figure 7.1. Classification of piezoelectric/electrostrictive actuators according to the
type of drive voltage and the nature of the induced strain. Source: [1] ©Uchino, K.

Micromechatronics, 2nd ed.; CRC Press, 2019; p. 268. Reproduced by permission of
Taylor & Francis Group.
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The response of the resonant displacement device is not directly proportional
to the applied voltage, but is strongly dependent on the drive frequency. Although
the positioning accuracy of this class of devices is not as high as that of the rigid
displacement devices, ultrasonic motors are able to produce very rapid motion due to
their high-frequency operation. Servo displacement transducers, which are controlled
by a feedback voltage superimposed on a DC bias, are used as positioners for optical
and precision machinery systems. In contrast, a pulse drive motor generates only
on/off strains, suitable for the impact elements of inkjet printers or injection valves.
The inertial motors used in camera zoom/focus mechanisms belong to this pulse
drive category, as discussed in Chapter 8.

The material requirements for each class of devices are different, and certain com-
positions will be better suited for particular applications [1]. Because the servo dis-
placement transducer suffers from “strain hysteresis” the most, a Pb(Mg1 ,3Nb, /3)O3-
PbTiO3 [PMN] “electrostrictive material” is preferred for this application. It should
be noted that even when a feedback system is employed, the presence of pronounced
strain hysteresis generally results in a much slower response speed. The pulse drive
motor, for which a quick response rather than a small hysteresis is desired, requires
a low-permittivity material under a current limitation of a power supply. “Soft
piezoelectrics” Pb(Zr,Ti)O3 (PZT) are preferred over the high-permittivity PMN for
this application. The ultrasonic motor, on the other hand, requires a very “hard
piezoelectric” with a high mechanical quality factor, Q,,, in order to maximize the AC
strain and to minimize heat generation (from low elastic loss). Note that the figure of
merit for the resonant strain (i.e., displacement amplification factor) is characterized
by (%)deEL (d: piezoelectric strain coefficient, E: applied electric field, L: sample
length, Q,;: mechanical quality factor). Although hard PZT materials have smaller
d coefficients in comparison with soft PZT, they also have significantly larger Q,
values, thus providing the high resonant strains needed for the motor devices.

7.1.2. Piezoelectric Driving Methods

There are three methods for actuator drive/control that are most commonly
employed: (1) pseudo-DC drive, (2) pulse drive, and (3) AC drive, which are typi-
cally used for displacement transducers, pulse drive motors, and ultrasonic motors,
respectively. Displacement transducers are usually controlled in a closed-loop mode.
Open-loop control can also be employed, but only when strain hysteresis is negligible
and temperature fluctuation during operation is very small. Closed-loop control
is a feedback method whereby the electric field-induced displacement of a ceramic
actuator is monitored, deviation from the desired displacement is detected, and
an electric signal proportional to this deviation is fed back to the ceramic actuator
through an amplifier to effectively correct the deviation. Since the “feedback control”
systems of piezoelectric devices have been described in detail in [1], we will skip
this category. The pulse drive motor is typically operated in an open-loop mode,
but special care must be taken to suppress displacement overshoot and/or vibra-
tion ringing that can occur after the pulse voltage is applied, which is discussed in
Chapter 8. The AC electric voltage around the resonance frequency range applied to
ultrasonic motors is not very large, but significantly amplified displacement can be
excited due to an amplified current under constant voltage drive, where the drive
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frequency must be precisely matched with the resonance frequency of the device
for the optimum performance. Heat generation, which is a potentially significant
problem with this design, can be effectively minimized with the proper selection
of operating parameters in the range around the resonance and antiresonance. In
this chapter, we will discuss the AC drive around the resonance and antiresonance
frequency range.

7.1.3. Mechanical Resonance

Let us recall the elementary physics on the mechanical resonance of a length L
rod with sound velocity v. The reader still remembers that the fundamental resonance
frequency is expressed by

f=uv/2L. (7.1)

Knowing v = fA, we obtain A = 2L. Thus, the fundamental resonance mode
means that a standing wave with a half of the wavelength A on the length L of the
specimen, as illustrated in Figure 7.2a m = 1. Figure 7.2a shows the strain distribution
of harmonic mechanical resonance modes from the fundamental m = 1 to second,
third, and fourth (m = 4) modes. Figure 7.2b illustrates the fundamental resonance
frequency (v/2L) derivation intuitively. Let us assume to apply a sudden tensile
stress (X) on the rod specimen, by applying a pair of step-function pulling forces F,
—F on both sides of the rod (top figure). This sudden stress application generates a
sort of shockwave-like wall between the extended portion (initiated at the rod end)
and the original zero strain portion close to both rod ends, as shown in the second
top figure (Chapter 8 provides the detailed analysis on the pulse drive). These strain
(x)-gap walls move inwards with the sound velocity v in the specimen, crossing
over at the rod center at a quarter of a cycle period. Further extension of the rod is
followed (which corresponds to the “overshoot”) until the maximum length (100%
overshoot of the expected length by the stress, i.e., sX) at half of the cycle period.
Then, the strain-gap walls are reflected at the rod ends and change the translation
direction to start the rod shrinkage. At the time of three-quarters of the cycle period,
the rod length returns to the expected length by the stress (i.e., x = sX, s: elastic
compliance). In order to return to the original status, the strain-gap wall needs to
travel the distance 2L with the sound velocity v, leading to the necessary cyclic time
period of 2L /v. In other words, the cyclic frequency should be v/2L, which is called
the “fundamental resonance frequency”.

As the reader remembers, the child swing does not need a large force, but a large
swing amplitude is obtained as long as you choose a suitable pushing frequency.
When the sinusoidal stress X is applied along the rod length, the same phenomenon
happens. With sweeping the drive frequency w from low to the fundamental res-
onance frequency wy, the strain and displacement is significantly enhanced under
the constant cyclical stress X. The strain enhancement is owing to the “synchronous”
(i.e., the same frequency and phase) mechanical energy input to the specimen, lead-
ing to infinite displacement if no loss is included. In practice, the amplification
factor is proportional to the mechanical quality factor Q;,, inverse of the elastic
loss. When Q,; = 1000, roughly 1000 small stress cycles are required to reach 1000-
times amplification. We can say “the displacement amplification in terms of “time”.
When the drive frequency is increased beyond w;, the strain/displacement decreases

234



quickly with the rate of —40 dB/decade approaching the clamped condition. This
phenomenon was discussed with the “Bode plot” in Section 6.3.3.

X—
— = -
m=1
(L=2/2) < — < "I i
|| =
/\ ) -
m=2 | o || < |
(L=2)
[ — [T < |
[ —> |
m=3 m
(L=3A/2) — \_7/ —>
[ — [T < ]
= [ < 1
» AT /\\J
(Zn=_z/1) >¢ ¥ — 5| & =
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Figure 7.2. Mechanical resonance in a rod specimen: (a) harmonic resonance modes;
(b) strain response to the step strain. Source: Figure by author.

When we increase the drive frequency further, up to 2w,, the second harmonic
resonance appears and the strain/displacement is enhanced again. The vibration
mode includes a full wavelength A on a length L specimen. Note, however, from the
second top figure of Figure 7.2a that the total rod length does not change because
both the rod ends become nodal lines, because the strain generated inside the rod
cancels out completely even though the local strain inside the rod is significant. As
you can imagine from this argument, m = 3 and m = 4 modes in Figure 7.2a exhibit
similar behavior to the cases of m =1 and m = 2, respectively; The odd-number
harmonic resonance modes generate the total rod length enhancement, while the
even-number resonance modes keep the rod length constant (i.e., both rod ends are
the nodal lines) even though the inside local strain/displacement is largely excited.
The number of nodal lines N for the m-th mode is presented by

N =2 [%} 1. (7.2)

Here %] is the “Gauss symbol”, which means the maximum integer number

<m/2, which is popularly used when the odd and even number states are differentiated.
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We define the mechanical impedance as follows near the resonant frequency of
the rod: F(w) = Zy(w)v(w), where F(w) and v(w) are the force and velocity on the
rod edges. Z,,(w) is the impedance as a function of w. When Z,,(w) is minimum
or maximum, these frequencies are called “resonance” and “antiresonance” in the
mechanical vibration.

7.1.4. Piezoelectric Resonance and Antiresonance

There are various methods for characterizing piezoelectric performances in
piezoelectric materials: (1) pseudo-static, (2) admittance/impedance spectrum, and
(3) transient/ burst mode methods [2]. The admittance/ impedance spectrum method
is further classified into (1) constant voltage, (2) constant current, and (3) constant
vibration velocity methods. Piezoelectric resonance can be excited by either electrical
or mechanical driving, as shown in Figure 7.3. In a k3; mode piezoelectric plate, for
example, as long as the surface is electroded, the sound velocity along the length
direction is ¥ originated from s11 %, while in the no-electrode specimen, they are
oP and s11P. In the normal IEEE Standard measuring technique [3], the specimen
should have electrodes and be excited by an electrical AC signal, while the resonance
on a no-electrode specimen can be excited only by the mechanical excitation. A
short-circuit condition realizes the resonance and an open-circuit condition provides
the antiresonance mode under the mechanical excitation method. In order to measure
the D-constant parameters (s11” and its extensive elastic loss tang) directly, we need
to use a non-electrode sample under the mechanical driving method.

Resonance Electrical Excitation
| x4 > 4 |
= Antiresonance
[Short] ©
I R beo — o -
[Short] o [Open]  of /A
| (B) PS | | |
<> (—)m [Open] UE
Resonance | © 5 |
S
— —E
0= I')/"’ 2 hid ‘>‘\<‘| [No electrode] oP
Resonance
vE = 1/VpsE,; v=0" | o — o |
f=(@F/2L)(1 + (gz)kzgl) Resonance

v=7°P= vE/\/ITkZ31

Mechanical Excitation

Figure 7.3. Resonance and antiresonance mode excitation under electrical or me-
chanical driving methods (visualization for k3; mode). Source: [1] ©Uchino, K.
Micromechatronics, 2nd ed.; CRC Press, 2019; p. 269. Reproduced by permission of
Taylor & Francis Group.

Figure 7.4 shows an example admittance spectrum of a 20 mm long k3; type
piezoelectric (PZT) plate specimen with the resonance frequency around 86 kHz.
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Measurement was performed under the vibration velocity /amplitude constant con-
dition (i.e., output mechanical energy constant). When the operating frequency is
lower than 10 kHz, this is considered an “off-resonance” drive, and its characteristic
is purely “capacitive” with the admittance phase lag of 90° [4]. When the operating
frequency is 86 or 89 kHz, the characteristic becomes “resistive” with a phase lag of
0°, which corresponds to the resonance or antiresonance frequency, respectively. In
order to induce the same level of vibration velocity, low voltage and high current or
high voltage and low current are required in the resonance or antiresonance drive
(i.e., both are the mechanical resonance modes), respectively. We also introduced an
operating frequency at 88 kHz in the “inductive” region to minimize the required
input drive power in order to obtain the same vibration level. To the contrary, the
pulse drive of electric field includes a wide range of frequencies (pseudo-DC to
multiple higher-order resonance frequencies), which exhibit linear or parabolic total
displacement (not sinusoidal), in addition to the overshoot and/or vibration ringing
(discussed in Chapter 8).
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o Res/Antires (Resistive) Drive
1072
@
S
2 17
-
O
----------- <N U W1 YN R N A W, A S F—————
=
o 1074
[S)
c
(1]
p=
'g 107
<
wlwm (.02
106 1 1 A1
86 87 88 85/ 90 91

Off-Resonance Frequency (kHz)

(Capacitive) Drive
Min Power (Inductive) Drive

Figure 7.4. Application frequency ranges for displacement transducers, pulse drive
motors and ultrasonic motors. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.;
CRC Press, 2019; p. 268. Reproduced by permission of Taylor & Francis Group.

7.2. Piezoelectric Equations and Vibration Modes—Loss Free

7.2.1. Piezoelectric Constitutive Equations

When the applied electric field, E, and the stress, X, are small, the strain, x, and
the electric displacement, D, induced in a piezoelectric can be represented by the
following linear equations:

X; = SijEXj + dmiEm/ (7.3)

Dy = dyyiX; + €0&mi” Ex, (7.4)
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where (i,j=1,2,...,6; m, k=1, 2, 3). These are the “piezoelectric constitutive
equations”. There are 21 independent sl-jE coefficients, 18 d,,; coefficients, and 6
enk coefficients for the lowest symmetry “trigonal” crystal. When considering
polycrystalline ceramic specimens such as PZT (Pb(Zr1,Ti)O3, lead zirconate titanate),
the poling direction is typically designated as the z-axis. Poled ceramic is isotropic
with respect to this z-axis and has a Curie group designation Ceop (com). There are 10
non-zero matrix elements (SllE, Sle, 513E, S33E, S44E, ds1, dzz, dis, 811X, and ¢33 X) that
apply in the following discussion.

7.2.2. Longitudinal Vibration Mode via Transverse Piezoelectric Effect (k3; Mode)—Loss Free

This section and the next, Section 7.2.3, discuss the key difference between
the wave propagation direction “perpendicular (k3;)” and “parallel (ks3)” to the
spontaneous direction.

Vibration Modes

Let us consider a longitudinal mechanical vibration in a simple piezoelectric
ceramic plate via the transverse piezoelectric effect d3; with thickness b, width w,
and length L (b << w << L), pictured in Figure 7.5. When the polarization is in the z
direction and the x—y planes are the planes of the electrodes, the extensional vibration
along the x direction (1D model) is represented by the following dynamic equation:

821/[ —F— aXH 4 aXu 4 8X13

Por dx dy dz 7.5)

where u is the displacement in the x direction of a small-volume element in the
ceramic plate, p is density of the piezoelectric material, and X;s are stresses (only
the force along the x direction is our target). The relations between the stress, electric
field (only E; exists, because Eyx = E, = 0 due to the electrodes on the top and bottom),
and the induced strains are described by the following set of equations:

[x1] st sppf o osisE 0 0 0 1 /X1
X2 spf suF szt 0 0 0 X2
x3| _ |s1sF sisF osasP 0 0 0 X3
xa| | O 0 0 suf 0 0 Xy
X5 0 0 0 0 sub 0 X5
| X6 | 0 0 0 0 0 2(811E — SlZE)_ X6 (7 6)
0 0 dy :
0 0 dy
Lo o d33] %1
0 ds 0 |[g]
ds 0 0
0 0 0
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Figure 7.5. Longitudinal vibration k3; mode of a rectangular piezoelectric plate.

Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 111. Repro-
duced by permission of Taylor & Francis Group.

Let us review the resonance of a piezoelectric plate when an AC electric field
of increasing frequency is applied. The length, width, and thickness extensional
resonance vibrations are excited successively. Consider a PZT plate with dimen-
sions 100 mm x 10 mm x 1 mm; these resonance frequencies correspond roughly to
10 kHz, 100 kHz, and 1 MHz for the fundamental length extensional mode. When
the frequency of the applied field is well below 10 kHz, the induced displacement
follows the AC field cycle, and the displacement magnitude is given by d3; E3L. As we
approach the fundamental resonance frequency, a delay in the length displacement
with respect to the applied field begins to develop, and the amplitude of the displace-
ment becomes enhanced, showing the peak value of (%)deEL. At frequencies
above 10 kHz, the length displacement no longer follows the applied field and the
amplitude of the displacement is significantly reduced. With a further increase in the
frequency up to 100 kHz, now the width vibration is amplified (by neglecting the
higher-order harmonics of the length modes). Finally, around 1 MHz, the thickness
mode is excited by clamping the displacement both length- and widthwise.

When a very long, thin thickness and width plate (Figure 7.5) is driven in the
vicinity of this length fundamental resonance, X, and X3 may be considered zero (a
free condition) throughout the plate. Since shear stress will not be generated by the
applied electric field E,, only the following single equation applies:

X1 =x1/s11F — (d31/s11F)E:. (7.7)

Substituting Equation (7.7) into Equation (7.5), and assuming that strain x; =
ou/dx and dE,/dx = 0 (since each electrode is at the same potential), we obtain the
following dynamic equation:

P?u 1 u

— = —=—F. 7.8

P = S ox? 7:8)

Remember that the “E-constant” condition ”sfl ” is the key characteristic in the k3;
mode. Assuming a harmonic vibration equation of u(x,t) (i.e., sinusoidal vibration
in terms of both space x and time t) under an electric field E, Equation (7.8) is

transformed to: )
—wzpsHEu =0 u/ox>. (7.9)
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Here, w is the angular frequency of the sinusoidal drive field E, and the dis-
placement u. Supposing the displacement u also vibrates with the frequency of
w, a general solution u = up(x)e/ Lt + uy(x)e /@ is substituted into Equation (7.9),
and with the boundary condition X; = 0 at x = 0 and L (sample length) (due to the
mechanically free condition at the plate end), the following solution can be obtained
(refer to Example Problem 7.1):

Cos[w(Z;U_L) ]

Strain ou/ox = x1 =ds1E
( ) 1 31E; ( cos(‘é’—{f)

), (7.10)

v Sin[w(Zx—L)]
(Displacement) u(x) = d31EZ(—)—3)UL),

(7.11)
w”  cos(%y

L
(Total Displacement) AL = / x1dx = d31E;L(2v/wL)tan(wL/2v). (7.12)
0

Here, v is the “sound velocity” (or “group velocity”) in the piezo-ceramic
given by

v=1//ps1E. (7.13)

The strain distribution in Equation (7.10) is symmetrically sinusoidal in respect
of x = L/2 position, and the maximum strain (i.e., the “nodal line”) exists at least on
this line. Note that w — 0 (i.e., pseudo-DC) makes Equation (7.10) equal to x1 = d31 E;
that is, uniform strain distribution on the piezo-plate. It is also obvious that AL —
d31EzL under w — 0.

Example Problem 7.1

Let us consider a piezo-ceramic plate which vibrates via the transverse piezo-
electric effect (d31). Substituting a general solution u = uq(x)e/®! + uy(x)e7*! into

—wzpsHEu = 9%u/9x?, (P7.1.1)

then with the boundary condition X; = 0 at x = 0 and L, derive the strain

COS[(/J(LZZZX)]

x1 = ds1E

); (v=1/4/psuF). (P7.1.2)

Solution

Substituting a general solution u = u1(x)e ! + uy(x)e /%! into —w?ps1 Fu = 9%u/0x?,
we obtain
(Uz 82u1

() () + u(x)e ) = (S5

azuz

jat
)

Je JwE, (P7.1.3)
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Since this equation should be satisfied for any time, u; and u; should satisfy

(a;;zl )=—(% )u1 and (a )= —(‘;Lzz)up_, respectively. If we consider only the standing
wave as a solutlon u(x) should be a “real” parameter, leading to the relation u;(x)
= up(x) and u(x,t) = 2u(x)cos(wt). We will neglect cos(wt) hereafter because this is

included in the cos(wt) of the electric field. Thus, we suppose a general solution:
Uy = Uy = Alcos(%x) + Azsin(%x). (P7.1.4)

Now, the strain distribution on the plate can be calculated as

aﬂ) = 2<%>[ Alsm( 5 x) + Apcos(— x)] (P7.1.5)

X1 =du/ox =2( B

Let us consider the boundary condition. From X1 =0 = x1/s11F — (d31/511F)E; at
x=0and L, x; =d3 E; (i.e., E; = Ejuxcos(wt)) is obtained at both plate edges (without
considering the time lag or loss, the strain response should be simultaneous with the
electric field):

2(%)[—Als%n(%0) + Acos(£0)] =2(%) Ay =dn Es,

2(¥)[—Agsin(%L) + Apcos(%L)] = d3i E..

. cos 1] .

Thus, we obtain A; = (%) (%)d:ﬂEzﬁ and Ay = (1)(2)ds;E;. Finally,
inserting A; and A, into Equation (P7.1.5), we derive

[ w(L— Zx)]

L
(“z’v

Ccos

(Strain) xq = d3 E; [sinw(L — x) /v + sin(wx/v)]/sin(wL/v) = d31 E; ( ), (P7.1.6)

29( L)]

v sm[

(Displacement) u(x) = d31Ez(— (P7.1.7)

) wL)

W’ cos(%;

Remember that E, is an AC field with the frequency w. With increasing w,
the stress concentration at the nodal line (x = L/2) will be enhanced. The strain
distribution on a rectangular plate is illustrated in Figure 7.6 for the resonance and
antiresonance frequencies; cosine shape with respect to the plate center (x = L/2) and
the amplitude depends on the drive frequency around the resonance frequency (oo

amplitude at the resonance, cos( > > = 0).

Resonance Antiresonance
Low coupling High coupling
m=1 m=1
PN
m=2 m=2

N (AT
L— e — | o = oo [ o S o o

Figure 7.6. Strain distribution in the resonant and antiresonant states for a k3; type

piezoelectric plate. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press,
2019; p. 113. Reproduced by permission of Taylor & Francis Group.
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Electrical Admittance around Resonance and Antiresonance

When the specimen is utilized as an electrical component such as a filter or a
vibrator, the electrical admittance ((induced current/applied voltage) ratio) plays
an important role. We will establish the formula for characterizing the admittance
spectrum obtained from the k3; type piezo-plate specimen. Now, the electric dis-
placement constitutive equation (Equation (7.4)) is essential. Since the electrodes
are on the top and bottom of the piezo-plate, as shown in Figure 7.5, the required
equation is only Dj3:

D3 = d31X1 + 833X eoEs. (714)

Only E; and X; are active (X; = X3 = 0) in this case. The current flow into the
specimen is described by the surface charge increment, dD3/0dt. Note that Ds is
position dependent, though dE3/0dx = 0, since the stress is sinusoidally distributed in
the specimen, which generates polarization via a direct piezoelectric effect. Thus, the
total current is given by:

1 = jwwaL D3dx = jwwaL (d31X1 + 833X80Ez)dx

_ (7.15)
= ]wwaL [da1{x1/511F — (d31/511F) E} + e33%eoE:]dx.

Using Equation (7.10), the admittance Y for the mechanically free sample is
calculated to be:
Y = (—i/V) = (i/Ezb)
cos {7“’ (Z’E_L) }

= <jwwL/Ezb>foL[(d_o,f/su%<(—u33)>EZ + [eas®eo—(dn?/su) E,Jdx

2oy (7.16)
= (ijUL/b)€0€33LC [1 + (d%12/80833LC511E)(tan(wL/ZUHE)/(a)L/Z’(JHE)]
. k an
= jwCall+ 7 "] [Qn = (wL/20fy)
= jwCo[(1 —k3) + k3 mr}%%l)] [ka1” = d31”/eoeXyst ],

where w is the width, L the length, b the thickness of the rectangular piezo sample,
and V is the applied voltage. Note that E, = —grad(V) (i.e., V = —E;b), and the current
direction measured externally should be taken in opposition to the internal flow.

e33LC is the permittivity in a “longitudinally clamped” sample, which is given by
d 2
€33LC = 533X — (805111}5) = 80833X(1 - k312); [k312 = d312/€08§3sfl]. (7.17)

Note, however, that this is not three-dimensionally clamped permittivity 533‘3,
precisely speaking, which also reflects the later dielectric loss. Accordingly, Equa-
tion (7.16) can be understood as follows, under a constant input voltage/electric
field: the first term (jwwL/b)egess™C = jwCy is called “damped (or longitudinally
clamped) capacitance”, which is directly proportional to w, while the second term
ijoké% is called “motional capacitance”, which originates from the res-
onator’s size (length) change via the mechanical vibration and is strongly dependent

on w like tan(wL/2v11F). When w is small, % — 1, then the motional admittance
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becomes jwCok3,. The total input energy will split into the motional (mechanical)
and damped (electric) energy with the ratio k3,2 vs. (1 — k3;?), respectively. How-
ever, as w approaches the resonance frequency, motional admittance (or capacitance)
increases dramatically like tan(wL/ 2011 F), for which we can understand the ac-
cumulation/amplification of energy with respect to “time”. Figure 7.4 shows an
example admittance magnitude and phase spectra for a rectangular piezo-ceramic
plate (L = 20) for a fundamental longitudinal mode (k3;) through the transverse piezo-
electric effect (d31), on the basis is Equation (7.16). Note that the shown data include
losses, and the 3 dB down method to obtain mechanical quality factor Q,;, is also
inserted in advance (Discussion is in Section 7.3).

The piezoelectric resonance is achieved when the admittance becomes infinite
or the impedance is zero (when the loss is negligible). The resonance frequency f4
is calculated from Equation (7.16) (tan(wL/20v11F) = 0 by putting wL/2v11F = 71/2),
and the fundamental frequency is given by

fa=wa/2m =v1E/2L = 1/(2Ly/ps11E). (7.18)

This resonance mode corresponds to the fundamental standing wave (A/2 on L)
with the velocity v11F on a rod with length L (i.e., f4 = v11£/2L). On the other hand,
the antiresonance state is generated for zero admittance or infinite impedance:

(wpL/2011F)cot(wpL/2011F) = —d31?/epeas st = —ks12/ (1 — ka1?). (7.19)

The final transformation is provided by the definition,
ks1 = ds1//s11*F-e33%eo. (7.20)

Resonance and Antiresonance Vibration Modes

The resonance and antiresonance states are both mechanical resonance states
with amplified strain/displacement states, but they are very different from the
driving viewpoints. The mode difference is described by the following intuitive
model. In a high electromechanical coupling material with k almost equal to one,
the resonance or antiresonance states appear for tan(wL/2v) = co or 0 (i.e., wL/2v =
(m — 1/2)m or mmt (m: integer)), respectively. The strain amplitude x; distribution
for each state (calculated using Equation (7.10)) is illustrated in Figure 7.6. In the
resonance state, the strain distribution is basically sinusoidal with the maximum
at the center of the plate (x = L/2) (see the numerator). When w is close to wy,
(waL/2v) = /2, leading to the denominator cos(w4L/2v) — 0. Significant strain
magnification is obtained. It is worth noting that the stress X is zero at the plate ends
(x =0 and L), but the strain x; is not zero, but is equal to d31Ez. According to these
large strain amplitudes, large capacitance changes (called “motional capacitance”)
are induced, and under a constant applied voltage the current can easily flow into
the device (i.e., admittance Y is infinite). To the contrary, at the antiresonance, the
strain induced in the device compensates completely in the plate (because extension
and compression are compensated. Recall Figure 7.2, even the harmonic modes),
resulting in no motional capacitance change in the total plate, and the current cannot
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flow easily into the sample (i.e., admittance Y zero). Thus, for a high k material
the first antiresonance frequency fg should be twice as large as the first resonance
frequency f4.

It is notable that both resonance and antiresonance states are in the mechanical
resonance, which can create large strain inside the sample under the minimum input
of electrical energy. When we use a constant voltage supply, the specimen vibration
is excited only at the resonance mode, because the electrical power is very small at
the antiresonance mode (due to high impedance). This provides a common miscon-
ception to junior engineers that “the antiresonance is not a mechanical resonance”. In
contrast, when we use a constant current supply, the vibration is excited only at the
antiresonance, instead, because of the large input voltage. The stress X; at the plate
ends (x = 0 and L) is supposed to be zero in both cases. However, though the strain x;
at the plate ends is zero/very small (precisely, d3; E,, because of low voltage and high
current drive) for the resonance, the strain x; at the plate ends is not zero (actually the
maximum, or the nodal lines) for the antiresonance (because of high voltage and low
current drive). This means that there is only one vibration node at the plate center for
the fundamental resonance (top left in Figure 7.6), and there are additional two nodes
at both plate ends for the first antiresonance (top right in Figure 7.6). The reason is
from the antiresonance drive, i.e., high voltage/low current (minimum power) drive
due to the high impedance. The converse piezo effect strain under E directly via
d31 (uniform strain in the sample) superposes on the mechanical resonance strain
distribution (distributed strain with nodes in the sample), two strains of which have
exactly the same level theoretically at the antiresonance for k3; ~ 1.

In a typical case, where k31 = 0.3, the antiresonance state varies from the previ-
ously mentioned (high k31) mode and becomes closer to the resonance mode (top
center in Figure 7.6). The low-coupling material exhibits an antiresonance mode
where the capacitance change due to the size change (“motional capacitance”) is
compensated completely by the current required to charge up the static capacitance
(called “damped capacitance”). Thus, the antiresonance frequency fp will approach
the resonance frequency f4. The vibration mode of the antiresonance resembles that
of the resonance with slight shift of the anti-nodal lines into the plate.

7.2.3. Longitudinal Vibration Mode via Longitudinal Piezoelectric Effect (k33 Mode)—Loss Free

Piezoelectric Dynamic Equation

Let us now consider the longitudinal vibration k33 mode in comparison with
the k33 mode. When the resonator is long in the z direction and the electrodes
are deposited on each end of the rod, as shown in Figure 7.7, the following stress
conditions are satisfied:

X1:X2:X4:X5:X6:OandX37é0.
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Figure 7.7. Longitudinal vibration through the piezoelectric effect (ds3) in a rod
(L > w = b). Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019;
p- 116. Reproduced by permission of Taylor & Francis Group.

Thus, the constitutive equations are

X3 = (x3 — dssEz)/s33F, (7.21)

D3 = ege33™Ez + d33 X3, (7.22)

for this configuration. Assuming a local displacement u in the z direction, from
Equation (7.21) (E; # 0 in this no-electrode along the wave propagation direction Z)
the dynamic equation is expressed by:

2 2
ou 1 la u BEZ}. (723)

T P

The electrical condition for the longitudinal vibration is not (dE,/dz) = 0, but
rather (0D, /0z) = 0. Inserting Equation (7.21) into Equation (7.22):

808%{38522 + d33 [(822) _ (aEZ)] —0, or
2 aEZ d33 (724)
g0y (1 - k33) £) = (822)
Thus, Equation (7.23) becomes:
9%u 1 %u D 3 F
o = s, sD 922 (s33 = (1 — k33)s33)- (7.25)

Compared with Equation (7.13) (v = 1/4/ps11F) in the surface electroded (E-
constant) sample along the vibration direction, the non-electrode (D-constant) ka3
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sample exhibits o3P =1/+/ ps33P, which is faster (elastically stiffened) than in the
E-constant condition. Taking a similar calculation process to the k3; mode, we obtain

. d33 w wL
(Strain) x3 = Ds[cos| —=(2z—L) | /cos| —= ], (7.26)
€063, [ 20?3( ) 20 )
. d33 U3D3 . w wL
Displacement) u3 = —2Dslsin| —=(2z—L) | /cos| —= | |. 7.27
(Disp ) s goeny W 3| 203%( ) 202, ) (7.27)

In comparison with the resonance/antriresonance strain distribution status in
the k31 mode in Figure 7.6, Figure 7.8 illustrates the strain distribution status in the
k33 mode. Because k31 and k33 modes possess E-constant and D-constant constraints,
respectively, in k31, the resonance frequency is directly related to v11F or s11F, while
in k33, the antiresonance frequency is directly related to v33P or s33P, c33P. The
antiresonance in k3; and the resonance in k33 are subsidiary, originating from the
electromechanical coupling factors. It is also worth noting that with increasing the k
value toward 1, the ratio fg/f4 approaches two in k31, while it can reach oo in k33, and
that the strain distribution at the resonance becomes almost flat or uniform in k33,
though the stress distributes sinusoidally with zero at the plate ends. The “extensive
parameters” s337, c33P can be determined experimentally using the high-frequency
measurement, when the “depolarization field” cannot be compensated by the free
charge (no side electrode in the k33 specimen).

Resonance - Strain Antiresonance - Strain

@ IFe T o | Be. . — o JFFK. —

— mE o mE E
f,=0v2L0 =1/Nps 1 folfi—2
Resonance - Strain Antiresonance - Strain

folf, = = fo=0°/2L; 0P = 1/\/psf’33

Figure 7.8. Strain distribution in the resonance and antiresonance states. Longitudi-
nal vibration through the transverse d3; (a) and longitudinal ds3 (b) piezo effect in
a rectangular plate. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press,
2019; p. 117. Reproduced by permission of Taylor & Francis Group.
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Electrical Admittance around Resonance and Antiresonance

Admittance can also be calculated from (dD3/9t) with D3 = ege3s*E, + d33 X3 as
follows:

Y — _; _ ]wsoség( b) — jwcd + ijim( )
tan< w{i > [—1+1/k 3{ ( ) }]
1-k2 2v33
( oL ) (7.28)
2'0?3

= ijd +

I~ o+ foCaly {1y

Here we used (33 = (Z‘QJ,L) e55 = ex(1—K5), shy = si(1—KBy), k35 =

d2 . . . .
505% n 033 =1/4/ ps33, and C; = sos (”ib>. The first expression is to obtain the
resonance and antiresonance frequencies from Y = co and 0 conditions. The second

expression is to show the “damped admittance” and the “motional admittance”,
separately, and the final expression is for an equivalent circuit construction, explicitly
revealing that the motional admittance branch should include the “negative capac-
itance” (with exactly the same damped capacitance value) in series with the pure
vibration related contribution proportional to tan(Q33)/(Qs3).

The resonance frequency is obtained from Y = oo, that is, from Equation (7.28)

wL wL
—— k3stan . 7.29
(22)%) 33 (2 :%) ( )

To the contrary, the antiresonance frquency is obtained from Y = 0; that is,

wL wL T b
tan| —= | = o0, or —= = —, leading to fg = 33 7.30

Unlike the k31 case, the k33 mode exhibits the antiresonance as a primary me-
chanical resonance frequency with a half-wavelength exactly on the rod length under
the sound velocity of 031?3 (i.e., stiffened vibration), and the resonance is a subsidiary
vibration mode associated with the electromechanical coupling.

Boundary Condition: E-Constant vs. D-Constant

Both dielectric permittivity € and elastic compliance s exhibit significant dif-
ference in terms of electromechanical coupling factor k under different boundary
conditions: mechanically stress-free or clamped; electrical short circuit or open circuit,
as described in Subsection Extensive Losses in Chapter 6. The reader is reminded of
the relations:

e /eX = (1—k?),sP /st = (1 —k?), where k? = d? / (sFepe¥X).

We discussed the k3; mode vibrator with E-constant s11F and k33 mode with
D-constant s33P for analyzing the dynamic equations in sections 7.2.2 and 7.2.3. Here,
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we reconsider the relation between these status differences from the “depolarization
field” viewpoint.

Let us consider boundary conditions in a piezoelectric plate with or without a
surface electrode, in which a mechanical longitudinal vibration wave is propagating
along the plate, as shown in Figure 7.9, where the spontaneous polarization Ps
axis is perpendicular to the plate in (a) and (b), while in parallel to the plate in
(c). Figures merely illustrate the induced polarization AP and field E visually, with
the arrows. The “Gauss law”, static electromagnetic Maxwell relation, divD = p; or
divE = % (o — divP) indicates the depolarization field Ez., = — (%—5) originated from
the induce polarization by the piezoelectricity AP = dAX, for instance, in a resistive
ferroelectric single crystal without surface electrodes (i.e., p = 0). Because this
stationary Eg, is compensated by the migrating charge in a short period (~minutes),
we consider only AC AP associated with the mechanical vibration (i.e., D-constant).

If there are free charges p in the specimen plate, divE can be equal to zero by
compensating induced AP (induced by the stress as AP = dAX) with p, leading to
an E-constant with respect to space/coordinate. In contrast, if there are no charges,
divD = 0 (D-constant), by generating a so-called “depolarization electric field”. With
piezoelectric coupling, D = eosx E + dX should be integrated into above divD = 0,

leading to

AP
Egep = —(807),where AP = dAX. (7.31)

When the surface is electroded in k3; mode (Figure 7.9a), charges p can easily
be supplied through the electrodes, as illustrated. Thus, (ng—xz) =0, or E-constant is
derived when the electrodes are connected to a voltage supply (small constant Ez
shown in the figure is from the power supply for exciting the mechanical wave),
or Ez = zero in the short circuit between the top and bottom electrodes. When
the surface does not have an electrode, no charge is supplied (Figure 7.9b). Thus,
the depolarization/reverse field is induced to maintain (aa%) = 0, leading to D-
constant condition. That is, as shown in Figure 7.9b, both the induced polarization
AP and depolarization field E are positively and negatively proportional to the stress
distribution, and cancel each other out. In the case of k33 mode (Figure 7.9¢), though
the plate edges are electroded, there is no electrode along the wave propagation z axis
(parallel to the plate). Thus, no charge is available to compensate the polarization
modulation along the z direction, and the sound velocity along the polarization
direction should be a D-constant sound velocity based on s33”. Needless to say,
when we made electrodes on the side of this k33 rod, free charge compensated the

depolarization field, leading to the E-constant v33F and s33F.
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Figure 7.9. Boundary conditions: E-constant vs. D-constant under dynamic waves.
(a) E-constant (=0): k3; mode (Electrode); (b) D-constant (=0): k3; mode (No Elec-
trode); (c) D-constant (=0): k33 mode (No Side Electrode; Edge Electrode). Source: [1]
©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 118. Reproduced by
permission of Taylor & Francis Group.

However, it is noteworthy that the situation is different when the driving fre-
quency is pseudo-DC. Even in a k33 rod specimen, when the operating frequency
is low, the depolarization field attracts “stray” charges in the specimen or on the
specimen surface from the surrounding atmosphere, and it is canceled out (i.e., so-
called “screening”); that is, approaching to the E-constant condition, rather than
D-constant status. The elasticity seems to change from the original s33” to s33F when
the operating frequency decreases from >1 kHz down to 0.001 Hz, in practice. In
this sense, remember that the electromechanical coupling factors k3; and k33 are de-
fined at pseudo-static (pseudo-DC) operation, described with the E-constant elastic
compliances:

kyp = —2L_
Ve (7.32)

k33 = "=

533€0¢33

7.2.4. Other Vibration Modes—Loss Free

In addition to the k3; and k33 modes, there are several piezoelectric ceramic
resonators with different shapes and sizes. In order to determine both dielectric
permittivities (8%(3, ei(l), tive elastic compliances (353, s’fl, 51153, sfz, and sff4), and three
piezoelectric constants (ds3, d3; and dy5) in piezo-ceramic materials with comm sym-
metry, the measurements on “five” vibration modes are required, the specimen
configurations of which are illustrated in Figure 7.10, which correspond to (a), (b),
(c), (d), and (j) in Table 7.1. Table 7.1 summarizes the electromechanical coupling
factor definitions of various piezoelectric resonators with different shapes and elec-
trode configurations.
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Table 7.1. The electromechanical coupling factor definitions of various piezoelectric
resonators with different shapes and sizes.

Factor |Boundary Conditions Resonator Shape Definition
X1#20, X,=X53=0

(a) k31 N ’ 3T_> ( —- / Ed#

x,#20,x,#20,x,#0 ¢ 5 VSE 1608555

X1=X2=0,X3¢0 3_)| = ﬁ ds
33 x,=x,#0,x,#0 — — VSEe0e%s,

®| k

© P x=x,#20,x,#0 Wil-o

Planar mode

ol & X, =X,#0,X,#0 | 4] 0 -
x,=x,=0,x,#0 - CP5
Thickness mode
3 -
@] k' X, =X,%0,%,#0 _k-aAk,
P x,=x,#0,x,=0 \/m\/l——kz33

Radial mode

' X, #0,X,#20,X,=0 3] 2: k, 1o
O ks x,#0,x,=0,x,#0 1 1-k  17°

—>
Width mode

3
o [XiF0X,=0X,%0 2141’ k, Bk,
) 31 x1¢0,x2¢0,x3=0 V1=K
>

Width mode

1 2 (k - Ak_)?
h k " Xl;éo’ X2¢O’ X3¢0 3 /%233_(1{31_3]{33)2
M |y #0,%,20,%,=0 Ll 2
1-k 33_(k31_Bk33)

Thickness mode

|

1
3
X #0,X,=0, X, #0 ‘_l/ k,, - Bk
. ' 1 72 73 2 33
D1 ks |x =0,x,20,X,#0 ﬁ fi-pVi-k,

Width mode
X =X, =X,=0,X,#0 Nz ds
Nk =k 1 2 3 Ay 1 [ " % E—
01520 = S5l —x =X =0, X, #0 T?l<— Coes
Shear mode
E E
Note: Above A = v2Siy ,B= ES 13 Source: Table by author.
\/S3E3(Sf1+sf2) 511533
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Electrode

k., plate —

" Electrode ¢
b0 T |2
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3
Figure 7.10. Sketches of the sample geometries for five required vibration modes.

Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 179. Repro-
duced by permission of Taylor & Francis Group.

7.3. Piezo Equations and Vibration Modes—With Losses
7.3.1. Longitudinal Vibration Mode via Transverse Piezoelectric Effect (ks; Mode)—With Losses

Resonance Mode—Q 4

Now, we introduce the complex parameters into the admittance formula
Equation (7.16) around the resonance frequency [5,6]: e3%* = e3%X(1 — jtandsz’),
SllE* = SllE(l - jtan(j)n’), and d31* = d31(1 - jtan031’).

Y= Yd +Y :]de(l - jtan533’”) +ijdK312[(1 — j(2tan631’ -

tangn)l[(tan(wL/20115)/ (L / 201, E4)], 739
where
Co = (wL/t)egess™ (free electrostatic capacitance, real number), (7.34)
C;=(1—kxn?)Co (damped/clamped capacitance, real number), (7.35)
) _ kg
k1= = e (7.36)
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Note that the loss for the first term (“damped/clamped admittance”) is repre-
sented by the dielectric loss tand’’’:

tan(533”’ =[1/(1 — k312)][tan533’ + k312(tan¢11’ — 2tan931')]. (7.37)

Though the formula is identical to Equation (6.135) in 1D expression through
the [K] matrix, tandzs'"’ is not exactly to the “extensive” non-prime loss tand, because
the extensive loss should be under a three-dimensionally clamped condition, not just
1D longitudinally clamped (Recall we used ség )-

Regarding the motional admittance term, taking into account

!/
o — L — of, (1 + jtanz"’ 1 ) (7.38)
\/951151(1 — jtan ')

we further calculate 1/[tan(wL/2v*)] with an expansion-series approximation around
the A-type resonance frequency (waL/2v) = 7t/2. Using new frequency parameters,

Qu =wpL/2011F =7/2, AQ = Q — 71/2 (<<1), (7.39)

we obtain

T
2

= cot( 5 + A0, — jgtan%l’) — AQ — jgtan(pn’. (7.40)

tan ()

Thus, the “motional admittance” Yy, is approximated around the first resonance
frequency w4 by

Yy =j(8/m*)waCiKa*[(1 — j(2tanfz’ — tang11’)]/[(4/m)AQ4 — jtangyy']. (7.41)
The maximum Y7, is obtained at AQ) 4 = 0:
Y = 8/ 1)waCaKar* (tang1y) ' = 8/ 1")waCyKa1*Qa- (7.42)

The mechanical quality factor for A-type resonance Q4 = (tangy;’)~! can be
proved as follows: Qg4 is defined by Q4 = w4 /2Aw, where 2Aw is a full width of
the 3 dB down (i.e., 1/1/2, because 20logo(1/ V/2) = —3.01) of the maximum value
Y, at w = w4. Since | Y1 =1Y1™2/\/2 can be obtained when the “conductance =
susceptance”; AQy = 7t/4)tang1’ (see the denominator of Equation (7.41)),

Qa = Qa/20Q0 = (11/2)/2(t/4)tandyy’ = (tangy,”) . (7.43)
Similarly, the maximum displacement u"*** is obtained at A} = 0:
u" = (8/1*)d51EzLQ4. (7.44)

The maximum displacement at the resonance frequency is (8/ 71%)Q4 times larger
than that at a non-resonance frequency, d3;1EzL. Under the constant voltage/field
drive, the displacement is amplified at the resonance frequency, while under the
constant current drive, the displacement u and the impedance Z are amplified at the
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antiresonance frequency by the factor of (8/71%)Qp. Example Problem 7.2 provides
the origin of the calibration factor (8/ %) for both maximum values of Y,,,” and
u™** at the fundamental resonance mode.

Example Problem 7.2

Under pseudo-DC operation, the input electric energy is split into the converted
mechanical energy by k? and the stored electric energy by (1 — k?), leading to the
damped and motional capacitance ratio (1 — k?) vs. k. However, under the resonance
drive, though the damped admittance is provided by wCo(1 — k312), the maximum
of the motional admittance for the fundamental resonance frequency is described by

Y, = (8/ 112w 4Cok312Qa. (P7.2.1)

The calibration factor (8/72) (~0.81) is required for the fundamental resonance
frequency, rather than just one. Explain why this calibration factor is required for the
fundamental resonance condition.

Hint

Calculate the motional admittance for higher-order resonance harmonics. The
fundamental resonance mode does not spend all mechanically converted energy, but
it is also shared by harmonics. Use the relation:

Y—]=(—). (P7.2.2)
Solution

We start from Equation (7.33):

Yo = jwCiKs1?[(1 — j(2tanfs;’ — tangyq)][(tan(wL /2011 5%) /(WL /2011 5#)]. (P7.2.3)

Note that the A-type resonance is obtained at (Q;?JSL> =n(%), wheren=1,3,
11

5, ... (the n-th higher-order harmonics) and v’flz = 1/psk,. Then, taking into account
the complex elastic compliance

1 t !

o = = ok, <1 + ]%(PH) (P7.2.4)
\/psfl(l — jtan¢q1”)

we further calculate 1/[tan(wL/2v*)] with an expansion-series approximation around

the A-type resonance frequency (w4L/ 20‘151) = n(7r/2), taking into account that the
resonance state is defined in this case for the minimum impedance (maximum
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admittance) point. Using new frequency parameters, Q4 = waL/2v11F = n(nt/2),
AQ 4 = Q) — n(nt/2) (<<1), we obtain the approximation

7T

tan O* 2 2

1 T 1
= Z4AAQ, -
cot(n +AQ ]2(n 1

)tan (Plll) =ANQy — jﬂtangbll’ (P7.2.5)

the “motional admittance” Y, is approximated around the n-th resonance frequency
wA,n by

Youn = j(8/ m*n?waCoksi?/[(4/nm)AQ — jtangy']. (P7.2.6)

The maximum Y/, is obtained at AQ) 4= 0:
Ynn;,ix = (8/nznz)wACOk312(tan4>11')_1 = (8/7r2n2)wAC0k312Qm. (P7.2.7)

Supposing that the intensive elastic loss tan ¢1;" or the mechanical quality
factor Qy, is insensitive to the frequency difference among the higher-order harmonic
resonance frequencies, we can understand that each harmonic mode is originated
from the effective motional capacitance equal to (8/ 7212)Coks12, and the admittance
is enhanced by the factor of Q,,. Under the resonance, the input cyclic electric energy
will excite the mechanical vibration and motional capacitance synchronously by
a factor of Q,;, by spending the cyclic excitation number proportional to Q;,. The

motional capacitance is proportional to (1/n?) for the n-th order harmonic resonance
1

(2m—1)°

we add motional capacitances for all harmonic resonance modes:

mode. Knowing a general relationship X[ | = (%2) (m—positive integer), when

1
(8/7*)Cokn® ) () = Cokar™ (P7.2.8)
n=1, 3,5,...

Since the total motional capacitance for all harmonic resonance modes corre-
sponds exactly to the free capacitance minus damped capacitance, the calibration
factor (8/71?n?) can be understood as the distribution ratio of the mechanical energy
to all n-th harmonic modes. The above concept on the higher order harmonic modes
will be used in the Equivalent Circuit Model explained in Chapter 9.

Antiresonance Mode—Qg

On the other hand, in PZT ceramics a higher quality factor at the antiresonance is
usually observed in comparison with that at the resonance point [7,8], the reason for
which was interpreted by Mezheritsky from the combination of three loss factors [8].
In this subsection, we provide an alternative and, more importantly, a user-friendly
formula to determine piezoelectric losses by analyzing the admittance/impedance
spectra at resonance and antiresonance [9]. The antiresonance corresponds to the
minimum admittance of Equation (7.33):

Y = (jwwL/b)egessX[(1—k?)+ k*tan(wL /2011 F) /(wL/20v11F)],
(oF =1/y/psk) = jwCol (1 — K3y) + K3 ml ),
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Here, v11F =1/, /psE,, Q11 = (wL/20%;), and k312 = d31” /epedssty.

In the resonance discussion, we neglected the damped admittance, because
the motional admittance is significantly large due to tan(wL/ 2011F%) Moo, On
the contrary, in the antiresonance discussion, we basically consider the subtraction
between the damped and motional admittances; that is, the admittance should be
exactly zero when the loss is not included, or is only the minimum when we consider
the losses (that is, complex parameters) in Equation (7.33).

We introduce the normalized admittance Y’ for further calculation:

ytan(wl/20F) » tan(Q))

Y =1—ky? 4k 1— kg2 4 ks o (7.45)

wl/20E

Since the expansion series of tan() is convergent in this case, taking into account

/v = \/Psﬁ(l —jtan¢yy’) = (1/051)(1 _]tamp11 >,

we can apply the following expansion approximation in terms of tan¢q; "

tan(Q*) = tan(Q — 20 — fan 0 — Qtanf“
=2 ] 2c02 02

Introducing losses for the parameters in Equation (7.45) leads to

Y =1 — ks *[1 —j(2tan 6}, — tan 8, — tan y1”) ]

+k31”[1 — j(2tan 631" — tan d33" — tan ¢1y”) | tagg'

(7.46)

Note that the “electromechanical coupling loss” (2tan 63" — tan é33’ — tan ¢11’)
contributes significantly in this antiresonance discussion. We separate Y’ into con-
ductance G (real part) and susceptance B (imaginary part) as Y’ = G + jB:

tan ()
G=1- k312 + k312 ar;) . (7.47)
tan Q) ka2 1 tan Q) ,
= (k312 - k312 ag ) (2tan 631/ — tan (51/3)3 - tan<p11’) - % (COSZ() - a;)tan (Pll . (74:8)

The antiresonance frequency (), is initially determined from G = 0 (refer to
Subsection Resonance/ Antiresonance Frequency Definitions), and

>tan Op
QOp

1— ks + ks = 0. (7.49)

Using new parameters,
O =Qp+ AQgp, (7.50)

similar to AQ)4 for the resonance, AQ)p is also a small number, and the first-order
approximation of (*2) in Equation (7.45) can be utilized.

tanQ _ tanQp | 1 1 tanQB
0 - 0p T 0 <c05203 AQp.
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Neglecting the high order term, which has two or more small factors (loss factor

or AQB),
k312 1 tan Qg
G = — AQp. 7.51
Qp \cos2Qp  Qp B (7.51)
ka2 1 tan ()
- ! / ! 31 B /
B = (2tan 63’ — tands3’ —tan¢y’) — 5 (c0s2 0 )tan $11'. (7.52)

Consequently, the minimum absolute value of admittance can be achieved when
AQ)p is zero. The antiresonance frequency () is determined by Equation (7.49). In
order to find the 3 dB-up point, let G = B, where /G2 + B2 = /2B is satisfied:

k31 1 tan ) _ / / /
(32_13 (c052 o~ 0 B ) AQp = (Ztan 031" — tand33" — tan ¢q ) — (7.53)
M 1 _ tanQp tan ¢ / )
2\ cos? Qp Qp 11 -
Further, since the antiresonance quality factor is given by
QOp
= —. 7.54
QB31 21A0| (7.54)
Equation (7.53) can be represented as
k312 1 . tan Qg
20Qp31 \ cos? Op Qp
2
= — (Ztan 931/ — tan 533/ — tan (])11/) + k% (Coszlﬂg — taggB>tan (PH/.
We can now obtain the result as
2 1 tan O)p
= tan 11/ - — 2tan931/ — tan533' — tan 11/ /< — )
Q31 ¢ ka? ( o1r') cos? Op Qp

Or, as a final formula:

11 2
- o 2
Qa1 Qast 4 n < 1 —k31) 02

k31

(2tan 931/ — tan (533, — tan (])11’). (7.55)

Note the following relation used in the formula transformation:

1 B tan Qg (1 — k312)2QB2 + k312

= . 7.56
cos? Op QOp kst (7.56)

You may understand that in k3; mode, where the wave propagation direction
with the electrode is perpendicular to the spontaneous polarization direction, the
primary mechanical resonance (a half-wavelength vibration of the plate length)
corresponds to the “resonance” mode with the sound velocity v11E, and the “an-
tiresonance” mode corresponds to the subsidiary mode via the electromechani-
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cal coupling. Additionally, from Equation (7.55), we can understand that when
(2tan6;1 — tan(%3 — tangy;) >0, Qp 31 > Qa,31; while (Z’tanQI31 — tan5é3 — tangy,; ) <0,
QB 31 < Qa 31. From Figure 7.4, it is experimentally obvious that Qg 31 > Q4 31 in PZT
piezo-ceramics, leading to a conclusion that the piezoelectric loss is larger than the

average of the dielectric and elastic losses: (2’can<9;)1 — tan5é3 —¢11) >0.

7.3.2. Vibration Mode via Longitudinal Piezoelectric Effect (k33 Mode)—With Losses

The length extensional mode is shown in Figure 7.7, where L >> w, b. Recall that

the vibration velocity along the spontaneous polarization is given by vP = 1//psZ..

Taking into account the admittance formula given by Equation (7.28), we can derive
the impedance expression of the k33 mode bar in a similar fashion to k3; mode [10].

1 rtan ()
7 = (1—-k , 7.57
@) jwcd( * 0 ) 757
where b
w

Co = eoezs™ (1 _ k§3), (7.58)

wL wL
Q=—-y pshy = > ps5; (1 —k33), (7.59)

da3”
ksg? = . (7.60)
£0€33553

By introducing the complex parameters,
<k332> = k33®(1— jxas), (7.61)

X33 = 2tan 633’ — tan d33" — tan ¢33’ (“electromechanicalcouplingloss”),  (7.62)

Cs* = C4(1 — jtan d33”" ) (dampedcapacitanceloss), (7.63)

2

1
tan d33"” = [tan 533/ — k332 (2tan 933/ — tan (f)33/)] , (7.64)
1 — ka3

O = Q4/1 — jtan ¢z3"”, (7.65)

tan 33" = ] 1k 5 [tan 4)33/ — k332 (2tan 933/ — tan 533,)] . (7.66)
— K33

Note again that the parameters in k33 mode have similar forms to k3; mode,
and the difference is that the loss factors by —x33, tandss’”’, tan ¢33’"/, which show
identical forms to the “extensive loss” parameters in terms of “intensive losses”, but
are not the same, strictly speaking. The difference between the extensive (non-prime)
losses and these triple-prime losses comes from the 3D or 1D mechanically clamped
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conditions. Refer to the k; mode in the next subsection, where the loss factors are
purely “extensive losses” since the elastic stiffness c33” is the primary parameter,
and the mechanical 3D clamp is practically satisfied. Compare the formula (b) and
(d) in Table 7.1. The thickness resonance frequency is high enough to suppress the
length /width vibration excitation. Therefore, a similar derivation process to the k3;
mode can be applied, and the results for the k33 are given by

1 1 — kg3?
QB3 = = p 5 y —, (7.67)
tan ¢33 tan ¢33" — k33 (2tan 033" — tan d33 )

1 1 2

= + 2tan 933/ — tan 533/ — tan 33/ . (7.68)
QA,33 QB,33 k332 -1+ QAz/k332 ( (P )

Unlike in the k31 mode, you may approximately understand that in k33 and k;
modes, where the wave propagation direction is parallel to the spontaneous polar-
ization direction, the primary mechanical resonance (a half-wavelength vibration of
the length or thickness) corresponds to the “antiresonance” mode with the sound
velocity v337, and the “resonance” state is the subsidiary mode via the piezoelec-
tric coupling. Additionally, from Equation (7.68) we can understand that when
(2tan(9/33 - ’canél33 — tangy,) >0, Qp 33 > Qa 33; while (2tan0é3 - tanél33 — tangy,) <0,
Q31 < Qa31. From Equation (7.57) and setting Z = 0, the resonance frequency is
provided simply by
dzy’

X E )
€0€33533

Note again that a half-wavelength of the vibration is longer than the rod length
at the resonance frequency (more uniform strain distribution than the sinusoid); a
half-wavelength is realized at the antiresonance frequency.

Oy = k332tan (P [k332 = (7.69)

7.3.3. Loss and Mechanical Quality Factor in Other Modes

To obtain the loss factor matrix, “five vibration modes” need to be characterized
in PZT ceramics with comm crystallographic symmetry (independently, two dielectric,
five elastic, and three piezoelectric loss components for either intensive and extensive
parameters), as summarized in Figure 7.10 and Table 7.1. The methodology is based
on the equations of quality factors Q4 (resonance) and Qp (antiresonance) in various
modes with regard to loss factors and other properties [10]. We can measure Q4 and
Qg for each mode by using the “3 dB-up/down method” (or “quadrantal frequency
method”) in the impedance/admittance spectra (see an example in Figure 7.4). The
experimental techniques to determine the mechanical quality factors are described
in Section 7.4. In addition to some derivations based on fundamental relations
of the material properties, all 20 loss factors (prime and non-prime tandsz, tandyy;
tangss, tangy, tangy, tangis, tangss, tanbzz, tands;, tands) can be obtained for
piezoelectric ceramics. We derived the relationships between mechanical quality
factors Q4 (resonance) and Qp (antiresonance) in all five required modes shown
in Table 7.1. The results for Q4 (resonance) and Qg (antiresonance) formulae are
summarized below [10]:
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(@) kz; mode: (intensive elastic loss)
QA 31 = on 4,11

1 2 I o /
QB,31 ~ Qs 1+( —k31)2Qp31 5 (2tan 031" — tan d33’ — tan¢7’)

Qpz = ;;“l =73 [011 = 1/\/9511]
0 1—k ks B8 =0
B3l = o, E , n°+ =

(b) k; mode: (extenswe elastic loss)

2 _ _
Q_A,t = QB,t kt2—1+QA,t2/kt2 (2tan 033 — tan d33 — tan (P33)

!
Qg = 45 = 3, [0h = 1/4/0/ch)]

l 2
Qar = %, Q= ki“tan Oy g

(¢) ks3 mode:

_ 1 _ 1-k
QB 33 — 777 — 2 33 7
! tan ¢™ 33 tan4>33’—k33 (2tan 633 —tan533/)
1 1 2 I I I
Qas — Qs + k21100 ks (Ztan 033 tan d33 tan ¢33 )

_ wpl _ D _ D
Qpss = # =72 [2’33 = 1/\/P533}
Qajss = QA 53, Qa3 = kaz“tan Qg 33
(d) ks mode (constant E—length shear mode): (intensive elastic loss)
1
QA 15~ tangs’
1 1 —— (2tan 015 — tan §}; — tan ¢%s)
Q515 QA,lS 1+(@*k15) Qp
L L 2tan Q)
Qp = % = <= JpsE, 1 —ks® + kys” B8 = 0

(e) ki5 mode (constant D—thickness shear mode): (extensive elastic loss)

QD _ 1
B,15 7 tan ¢Ps5
Q2’15 QBD,15 k152—1+0A

wyt wyt 2

. (2tan 015 — tan 17 — tan ¢ss5)

Note again that because k31 and k33/k; modes possess E-constant and D-constant
constraints, respectively, in k31, the resonance frequency is directly related to v11* or

E
s11F as fa = % 1/2L ps 11» while in k33 /k;, the antiresonance frequency is directly
D

related to vs3” or s33P, ca3” as fp = % =1/2L, /ps33 or1/2b, /p/c33 It is important
to distinguish k33 (X1 = X5 =0, x; = xp # 0) from k; (X7 = Xp # 0, x1 = xp = 0) from
the boundary conditions. Note the relations: s, = sk (1 — k%;) and ¢k = ¢ (1 —k2),
and kq; > k in general. The pure “extensive loss” tan¢s; is obtained from the loss
relating to 2, from the definition, that is, in the k mode When the length of a rod k33
is not very long, the mode approaches the k;, and c33”~ 1/s33P. The antiresonance in

k31 and the resonance in k33 /k; are subsidiary, originating from the electromechanical
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coupling factors. We also remind the reader the relation for the “electromechanical
coupling factor losses” from Equation (6.131):

(Ztané)/ —tané — tan4>,> = —(2tanf — tand — tang). (7.70)

Since the side is not clamped (x1 = x # 0) in the k33 mode (different from the
k: mode), the triple-prime losses in the previous section are not exactly equal to
non-prime extensive losses. The 3D-clamped k; mode exhibits the purely “extensive”
non-prime losses, though the Q;, formulae for the k33 mode seems to be rather similar
to the extensive losses transformed from the intensive losses.

7.3.4. Q4 and Qg in the IEEE Standard

It is also important to discuss the assumption in the IEEE Standard [3], where the
difference in the mechanical quality factors among the resonance and antiresonance
modes is neglected: that is, Q4 = Qp. This historically originates from the neglection
of the coupling loss (i.e., “piezoelectric loss”) and the assumption of tan¢’ > tand’
around the resonance region, leading to only one loss factor; that is, the intensive
elastic loss. However, if we adopt our three-loss model, this situation (Q4 = Qp)

occurs only when <2tan9/ —tand — tamp/) =0, or tanf = (tand + tanc])l) /2. The

IEEE Standard corresponds only when the piezoelectric loss is equal to the average
value of the dielectric and elastic losses, which exhibits a serious contradiction to the
well-known PZT experimental results; thatis, Q4 < Qp. As we can realize in Figure 7.4
from the peak sharpness, the PZTs exhibit Q4 (resonance) < Qp (antiresonance),
irrelevant to the vibration mode (Figure 7.4 is an example of the k3; mode). This
concludes that (tands3’ + tangy’ — 2tanfs;’) < 0, or (tandsz’ + tang11’)/2 < tanfz’ for
k31, and (tandss + tangsz — 2tanflzz) > 0, or (tandsz + tangsz)/2 > tanfssz for k;. It is
worth noting that the intensive piezoelectric loss is larger than the average of the
dielectric and elastic intensive losses in Pb-contained piezo-ceramics.

7.4. Admittance Spectrum Characterization Method
7.4.1. Real Parameter Determination Method

Firstly, we introduce piezoelectric characterization methods of the real parame-
ters, and we describe how to calculate the electromechanical parameters in the k3;
mode specimen (k31, d31, s11F, and e33%) from the admittance /impedance spectrum
measurement for the reader’s convenience in getting acquainted. When we measure
the admittance/impedance of a piezoelectric specimen by changing the frequency,
a frequency spectrum similar to Figure 7.4 is observed, where the first and second
max/min peaks correspond to the resonance and antiresonance, respectively. The
parameters used in the following procedure are shown in the Figure 7.5 k3; mode.

(1) The sound velocity v in the specimen is obtained from the resonance frequency
fa (admittance peak frequency): f4 = v/2L.

(2) Knowing the density p, the elastic compliance s11
sound velocity v: v = 1/+/ps11E.

(3) The electromechanical coupling factor k3; is calculated from the v value and the
antiresonance frequency f4 through Equation (7.19): (wgL/2v11F)cot(wpL/20v11F)

E can be calculated from the
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= —k312/(1 — k31?); or k312 /(1 — ka1?) = (72 /4)(Af /1), (Of = f — fa) (Approxi-
mation when k3 is not large.)

(4) Knowing the permittivity 33X from the independent measurement such as an

LCR meter or the admittance value jwC = jwege( LTw) under an off-resonance

condition, the d3; is calculated from k3i: k31 = d31 /+/s11E-e33%.

7.4.2. Resonance/Antiresonance under Constant Vibration Velocity

The admittance /impedance frequency spectrum is obtained conventionally by
measuring current under a constant voltage, sweeping the drive frequency around
the resonance/antiresonance frequency range. The admittance can also be deter-
mined by measuring the voltage under a constant current. However, with an increase
in the input power energy and vibration velocity of the piezoelectric specimen, signif-
icant spectrum distortion emerges around the resonance peak under constant voltage,
while significant distortion is exhibited around the antiresonance peak under con-
stant current [1,2]. Therefore, in order to identify both mechanical quality factors Q4
and Qp precisely, Uchino’s group developed the High-Power Piezoelectric Character-
ization System (HiPoCS), shown in Figure 7.11. One of the key pieces of equipment
includes NF Corporation’s power supply, which satisfies: maximum voltage: 200 (V),
maximum current: 10 (A), frequency range: 0-500 (kHz), and output impedance: <1
(Q)). In addition, the system is equipped with an infrared image sensor to monitor
the heat generation distributed in the test specimen. The impedance/admittance
curves by keeping the following various conditions: (1) constant voltage, (2) constant
current, (3) constant vibration velocity of a piezoelectric sample, and (4) constant
input power [11]. The key is that the values Q4 and Qp can be different, and if we
precisely measure both values, the information on the piezoelectric loss tan6’ can be
obtained. Thus, we proposed a simple, easy and user-friendly method to determine
the piezoelectric loss factor tanf’ in k3; mode through admittance/impedance spec-
trum analysis. Adopting the useful formulae proposed by Zhuang and Uchino [6,7],
the intensive losses are obtained from the mechanical quality factor Q4 and Qp for
the rectangular k3; mode:

1

— 7.71
tan (Pl 1 ! ( )

Qazl =

11 2
Qps1 Qast 1+ (& —k31)2Qp 517

31

(2tan 3" — tandzy’ — tan¢yy’), (7.72)

where tandsz/, tang1’, tanfs;” are intensive loss factors for 337, s11F, d31, and Qg 31
is the normalized antiresonance frequency given by

l

Opjz1 = —bE [onF =1/4/p s11E], (7.73a)
207,
which should satisfy
(@)
1= kay? 4 kg 220228 _ (7.73b)

Op
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while the normalized resonance frequency is given by

wyl T
Quz = 20%1 = E[UnE =1/4/p siiF]. (7.74)

Figure 7.12 shows an interface display of HiPoCS, demonstrating a rectangular
k31 plate measurement under a “constant vibration velocity” condition (i.e., out-
put mechanical displacement or converted mechanical energy is maintained and
remains almost constant). In order to keep the vibration velocity constant (i.e.,
stored/converted mechanical energy is constant), the current is almost constant,
and the voltage is minimized around the resonance, while the voltage is almost
constant and the current is minimized around the antiresonance frequency (bottom
of Figure 7.12). The apparent power is shown in the top of Figure 7.12 (for a specimen
of 80 mm L), which clearly indicates that the antiresonance operation requires less
power than the resonance mode to generate the same vibration velocity or stored
mechanical energy. We can conclude that the PZT transducer should be operated
at the antiresonance frequency, rather than the resonance mode, from the energy
efficiency viewpoint [12].

Oscilloscope
(TDS 4000)

Current Probe
(TCPA300)

LabView®
Sweep Frequency
...... & keep constant:

Vibration Velocity
Current

Voltage

Power
Displacement

PP B =

Laser Vibrometer
(Polytec 3001A)

< Flir Thermal Camera
- (A40 with 100 um close-up lens)

Figure 7.11. Setup of the High-Power Piezoelectric Characterization System
(HiPoCS). Source: Figure by author, based on data from [11].
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Constant Vibration Velocity Sweep
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Figure 7.12. Voltage and current change with frequency under the constant vi-
bration velocity condition. Source: [2] ©Uchino, K. High-Power Piezoelectrics and
Loss Mechanisms; CRC Press, 2020; p. 196. Reproduced by permission of Taylor &
Francis Group.

The admittance can be calculated from the voltage and current data at each
frequency from the bottom of Figure 7.12, which is plotted in Figure 7.13 (data are for
a specimen of 20 mm L). Note that this admittance curve is obtained by keeping the
same vibration velocity in all the frequency ranges below the resonance to above the
antiresonance frequencies, so that no significant spectrum distortion is recognized.
In order to obtain the Q4 and Qp, 3 dB-down and -up methods are used for the
resonance and antiresonance frequencies, as indicated in Figure 7.13.
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Figure 7.13. Admittance magnitude and admittance phase spectra for a rectangular
piezo-ceramic plate for a fundamental longitudinal mode (k31) through the trans-
verse piezoelectric effect (d31). Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.;
CRC Press, 2019; p. 181. Reproduced by permission of Taylor & Francis Group.

7.4.3. Real Electric Power Method

Because the conventional admittance spectrum method can provide the me-
chanical quality factors only at two frequency points; that is, resonance Q4 and
antiresonance Qp, knowing the Q;, at any frequency was frustrating. A unique
methodology for characterizing the quality factor in piezoelectric materials was
developed in the ICAT by utilizing “real electrical power” measurements (including
the phase lag), e.g., P = V-Icos¢, rather than the “apparent power” VI, as shown in
the top of Figure 7.12 [13].

The mechanical quality factor, Qy,, can be defined in general as

0, = nEnergy Stored /Cycle
""" Energy Lost/Cycle

(7.75a)

The ratio of elastic stored energy of an oscillator to the power being dissipated
electrically provides the mechanical quality factor:

Qm = 27Tfr%/ (7.75b)
Py

where U, is the maximum stored mechanical energy and P, is the dissipated power,
measured in this experiment by P; = electrically spent energy [13]. Because the
compliance of a piezoelectric material exhibits nonlinearity, the maximum kinetic
energy is used to define the stored energy term. For a longitudinally vibrating k3,
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plate (see Figure 7.5 or the inserted figure in Figure 7.6 with the plate center x = 0),
the kinetic energy as a function of displacement, u,, is

1 5 Oy 2
U, = EA/_ép( - ) dx. (7.76)

Using the geometry of the rectangular plate with length L, width w, thickness b,
and assuming sinusoidal forcing at a frequency near the fundamental resonance (or
even near the antiresonance mode as shown in the center of Figure 7.6, as long as k3;
is not large <40%), the spatial vibration is approximated as

1y (x, 1) = VRMS\/Esin<%)sin(2nft). (7.77)

The maximum kinetic energy can be calculated as

1 5 ./ TTXN\\ 2 L
ue = EA/IE p(VRMs\/ESI]ﬁ(T)) dx = VI%MSPAE’ (778)

where Vs is the vibration velocity at the edge of the plate (RMS value of m/s), and
p, A, L are the mass density, cross-section area (=wb), and length of the specimen. The
relation between mechanical quality factor and real electrical power and mechanical
vibration is based on two concepts: (1) at equilibrium, the power input is the power
lost, and (2) the stored mechanical energy can be predicted using the known vibration
mode shape, as we did in Equation (7.78), which is almost valid even around the
antiresonance frequency in less than 1% accuracy. We can derive the following
equation from these concepts, which allows the calculation of the mechanical quality
factor at any frequency from the real electrical power (P;) and tip RMS vibration
velocity (Vrps) measurements for a longitudinally vibrating piezoelectric resonator
(kt, ka3, ka1):
20VRus
The change in mechanical quality factor was measured for an 80 mm long Hard
PZT (APC 851) ceramic plate (k31) under constant vibration condition of 100 mm/s
RMS tip vibration velocity (i.e., stored mechanical energy constant). The experimental
key in the HiPoCS usage is to determine the phase difference ¢ precisely to obtain
the cos(¢) value. The required power and mechanical quality factor Q,, are shown
in Figure 7.14. The quality factor obtained at the resonance is within 2% agreement
with results from the impedance spectrum method (3 dB-down bandwidth). This
technique reveals the behavior of the mechanical quality factor at any frequency
from “below the resonance” to “above the antiresonance” frequencies. Moreover,
very interestingly, the mechanical quality factor reaches a maximum value between
the resonance and the antiresonance frequency, the point of which may suggest the
optimum condition for the transducer operation merely from an efficiency viewpoint,
also for understanding the behavior of piezoelectric material properties under high-
power excitation.

Qm = 21f (7.79)
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Figure 7.14. Mechanical quality factor measured using real electrical power (in-
cluding the phase lag) for a hard PZT APC 851 k3; plate. Source: [2] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms; CRC Press, 2020; p. 198. Reproduced
by permission of Taylor & Francis Group.

7.4.4. Determination Methods of the Mechanical Quality Factor

antiresonance peak, as illustrated in Figure 7.15c.

jB
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w,'(quadrantal)
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w (3dB) %1 (a 2} .
increase /4
w,, JwCq
w
/4 V3 (:
1/2R, [ Wa=W, b=l /4
w. w, G
UJB wA' G
w,(3dB)

w,' (quadrantal)

(b)

Let us review the precise determination method of the mechanical quality factor
from the admittance or impedance spectrum around the resonance and antireso-
nance frequencies. The admittance spectrum on the k3; mode is shown in Figure 7.13.
Figure 7.15a,b show the admittance circle and its magnified vision around the an-
tiresonance frequency. The admittance circle acts as a plot of “conductance” G in the
horizontal axis and “susceptance” jB in the vertical axis by sweeping the frequency.
Though the “admittance circle” is useful for the Q4 around the resonance peak, the
“impedance circle” (“impedance” R vs. “reactance” X) is better for the Qp around the

X

Figure 7.15. (a) Admittance circle; (b) admittance circle magnified around the an-
tiresonance; (c) impedance circle for the antiresonance peak. Source: [2] ©Uchino, K.
High-Power Piezoelectrics and Loss Mechanisms; CRC Press, 2020; p. 198. Reproduced
by permission of Taylor & Francis Group.
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Resonance/ Antiresonance Frequency Definitions

The resonance angular frequency is defined by w4, the most right on the mo-
tional admittance circle (the intersect (higher G) between the admittance circle and
the susceptance B = 0, w4/, is another definition as the resonance), while the antireso-
nance frequency is defined by wg, the intersect (lower G) between the admittance
circle and the susceptance B = 0. Popularly used maximum and minimum frequen-
cies of the admittance magnitude (i.e., absolute value in the admittance spectrum),
wm and wy, are not exactly the resonance and antiresonance frequencies, precisely
speaking. Note the relationship: w; < w4 = wy < Wp < Wy.

Mechanical Quality Factor Determination

(@) Qa Determination (see Figure 7.15a)

e 3 dB down method around wy;,

(Qa™Y) = (wa — wi)/ W (7.80)

e  Quadrantal frequency method around wy (£45° phase difference on the
admittance circle)

(Qa™ Y = (w2 — w1/ wa. (7.81)

Note wy (3 dB) < wy’ (quadrantal) < w; (3 dB) < w,’ (quadrantal). The difference
between (Q4 1) and (Q4 ')’ can be estimated as

(Qa1/(Qaly =1+1/2M7, (7.82)

where M = 1Y, | /1Y, =1/RyjwrCy = QaKand K = C;/C; (1/K: capacitance ratio).
When we consider Q4 ~ 1000, the deviation of Q4 values among these two ways is
less than 1 ppm (negligibly small).

(b) Qp Determination (see Figure 7.15b,c):
e 3 dB up method around w;,

Q1) = (wyg — w3)/wy. (7.83)

e  Quadrantal frequency method around w4 (£45° phase difference on the
impedance circle)

Q1) = (wy — w3')/wp. (7.84)

In summary, in Figure 7.15 the admittance circle is useful for the Q4 around
the resonance peak, while the impedance circle is better for the Qp around the
antiresonance peak.

7.4.5. Determination of the Three Losses from the Mechanical Quality Factors

A method for determining the piezoelectric loss is summarized for a piezoelec-
tric k31 mode plate sample here (refer to [14] for other modes):

267



(1) Obtain tand” from an impedance analyzer or a capacitance meter at a frequency
away (lower range) from the resonance/antiresonance range;

(2)  Obtain the following parameters experimentally from an admittance/impedance
spectrum around the resonance (A-type) and antiresonance (B-type) range
(3 dB bandwidth method): w,, wy, Qa, Qp, and the normalized frequency
Qp = wyl/2v;

(3) Obtain tan¢g’ from the inverse value of Q4 (quality factor at the resonance) in
the k31 mode;

(4) Calculate electromechanical coupling factor k3; from the w, and w;, with the
IEEE Standard equation in the k3; mode:

2 _
Koi” o T — @)y (7.85)
1— k3 2 wy 2wy

(5) Finally obtain tanf” by the following equation in the k3; mode:

Qa Qs

As long as we have accurate w,, wp, Qa, and Qp, the above procedure can be
used. A general problem in determining accurate piezoelectric and loss parameters
is found in the k33 rod specimen, in which a relatively large electric field leak is
anticipated according to the aspect ratio (rod length/width).

2
2 1 1+ (——ks1) Q7. (7.86)

tan6
ka1

/ tand’ + tang’ 1( 11 ) 1

Example Problem 7.3

The electromechanical coupling factor k can basically be obtained from the
resonance and antiresonance frequencies. However, there are several formulae for
this calculation, depending on the approximation level, which directly reflects the
accuracy of the piezoelectric loss tanf, as indicated in the above section. Knowing
the experimental result on the impedance spectrum for a PZT-5 k33 rod specimen
shown in Figure 7.16: f4 = 1.3fg (Antiresonance, Resonance frequencies), calculate
the k33 value of this PZT-5H by using the following three different formulae:

k33®/ (1 — kag?) = (°/4)(Af /fR), (P7.3.1)
ksa? /(1 — ksa?) = (7% /8)(fa— fr*)/fr%, (P7.3.2)
ksa? = (7/2)(fr/fa)tanl(7t/2)(Af /f4)], (P7.3.3)

where Af =f4 — fr.
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(a)ks; = 0.70 fa=465kHz = 1.3f;

Impedance

fr =360 kHz

Frequency

Figure 7.16. Impedance spectrum for (a) k33 PZT-5 rod specimen. Source: [1]

©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 119. Reproduced by

permission of Taylor & Francis Group.

Solution

(1)

(2)

)

Similar to the most rough approximation for small k31, k312/(1 — k312) = (7% /4)
(Af /fr), we use the following approximation for k33 mode:

k332 /(1 — ksz?) = (772 /4)(Af /fR) = (7% /4) x 0.3 = 0.749.

Thus, k33 = 0.654 (underestimation).

When we use a better approximation (IRE Standard, “Marutake Approximation”):
kss?/(1 — ksz?) = (1% /8)(fa% — fr*)/fx* = 0.851,

we obtain k33 = 0.678, higher value than the above (1) and close to the accurate
(3) (slightly over).

When we use the accurate formula:

ksz? = (71/2)(fr /fa)tan[(71/2)(Af /fa)] = 0.458,

we can obtain k33 = 0.677. Note that k332 /(1 — k33?) = —(27tf4L /20)cot(2rtfa L/ 20)
is another accurate formula for the k33 mode. Different from the k3; mode
formula (k312/(1 — k312) = (7t/2)(fa/fr)tan[(7t/2)(Af /fr)]), in the k33 mode
formula, the denominator is f4 (not fr) because the antiresonance is the primary
vibration mode (the resonance is the primary vibration mode in the k3; case).

The reader should understand that the k value deviates from the accurate one

(the larger k, larger error) according to the approximation formula.

7.5. Vibration Characterization under Cyclic Stress

Let us start again from the piezoelectric constitutive equations for the k3; type

plate sample, shown in Figure 7.5:

X1 = sllEXl + d31EZ, (787&)

D3 = d31X1 + 80833XEZ. (787b)

In Section 7.4, with the change in the operating frequency of the external elec-

tric field E, exciting the mechanical resonance, we measure the electrical admit-
tance/impedance. Then, we analyze the vibration modes under resonance and
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antiresonance frequencies. We distinguish g0e33™ and gpez3™ under elastic compli-
ance s11F constant condition. In the k33 type rod sample, the elastic compliance 5330
is constant.

This section concerns the external mechanical operation, practically found in
piezoelectric energy harvesting systems. With the change in the drive frequency
of the external stress X, exciting the mechanical resonance, we measure the strain/
displacement or electrically generated power depending on the external impedance,
generated strain, and stored/output electric energy changes. Analogous to the
case, the piezoelectric specimen changes its elastic compliance significantly from
s11F to s11P with or without surface electrodes; the strain frequency spectrum in
the k3; specimen shows one enhancement peak at the resonance under the short
condition, while at the antiresonance it is shown under the open condition due to
the effective elastic compliance difference. Needless to say, neither case generates
the output electric energy, but merely stored electric energy in the piezo-device. In
order to maximize the output electric energy in the energy harvesting system, we
need to choose an electric impedance (resistive, in particular) that is matched to the
internal electric impedance of the piezoelectric specimen. This section describes the
mechanical resonance frequency and the corresponding effective elastic compliance
under a matched electrical impedance shunted on the piezoelectric device.

7.5.1. Piezoelectric Dynamic Equation for the k3; Mode Plate

Let us consider the same piezo-ceramic k31 plate, as shown in Figure 7.5. Sinu-
soidal force/pressure F and —F (angular frequency w) are applied on the plate ends
at x = 0 and L along the length direction x. Thus,

F(t) = —bwXy(t), (7.88)

where the negative sign above is adopted merely due to the opposite direction
definition between pressure and stress. If the polarization is in the z direction and
x—y planes are the planes of the electrodes, the extensional vibration in the x (Iength)
direction is represented by the following dynamic equations (when the length L is
more than 4-6 times of the width w or the thickness b, we can neglect the coupling
modes with width or thickness vibrations):

0(%u/ot?) = (8Xq1/9x), (7.89)

where p is the density of the piezo-ceramic, and u is the displacement of a small-
volume element in the ceramic plate in the x direction. Since Equation (7.87a) is
transformed into X; = x1/s511F — (d31/511F)E2, we obtain

8X1 . 1 8x1 . d31 BEZ

Tx oF ax s dx (7.90)
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Because of the equal potential on each electrode, 0E,/0dx = 0, and knowing the
strain definition x; = du/dx along the 1 (x) direction (non-suffix x corresponds to the
Cartesian coordinate), Equation (7.89) is transformed into

0%u 1 d%u
=5 = 7T 35" 7.91
ar sk, ox? (7.91)
The following derivation is close to that which was performed in Subsection
Vibration Modes. If we assume a “harmonic vibration” equation at the angular

frequency w, displacement 1 under a sinusoidal force application, we can simplify
Equation (7.91):

2
2 E, _ 2 2 | @ _azu(x)
w"ps11 U = 0“u/ox" or (vfl) u(x) = 5z (7.92)

Here, vf, is the “sound velocity” along the length x direction in the piezo-ceramic
plate, expressed by

of = 1//psn . (7.93)
The reader can easily understand that the above process corresponds to the

Fourier transform; that is, the time domain to frequency domain. Supposing the
displacement u also vibrates with the frequency of w, a general solution of Equation

(7.92) is expressed by
u(x) = Asin (%x) + Bcos (%x) . (7.94)
1 ’n
The strain x1(x) is given by taking the first derivative of u(x) of Equation (7.94) as
Jou w w w w
x1(x) = =— = A——cos (—x) — B—sin(—x). (7.95)
dx 8 of g oL

In order to determine the above two parameters, A and B, the boundary con-
dition under harmonic stress is imposed: X; = Xoe/“! at x = 0 and L (both plate
ends). Here, we will consider three cases: (1) short-circuit condition of the piezo-
plate, where E, = 0, (2) open-circuit condition of the piezo-plate, where the current

I = %—? = 0 (or D, = constant), and (3) matching impedance shunt condition.

Solution under Short-Circuit Condition

Since E, =0, x; = 5117 X7 and D5 = d31X; are the necessary equations. From the
first strain Equation (7.78a) at x = 0 and L, we obtain the following two equations:

w _ E

A%cos(%L) — B%sin(%L) =sEX,

o1 11 o1 11

(7.96)
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Thus,

w
oF 51“822% L> , (7.97)
B= (%)S%XOCOS( " L)
2'0:?1
E sin[ (2L
. 911\ E 207
(Displacement) u(x) = (—)s; X, T (7.98)
w cos (57 )
207y
2x—L
L cos[“2E ]
(Strain) x1 = du/0x = sy; X, ( ) (7.99)
cos(%)

First, the displacement and strain are proportional to the external stress Xp.
Second, their distributions in terms of x in Equations (7.98) and (7.99) are anti-
symmetrically and symmetrically sinusoidal in respect of x = L/2 position (the
numerator becomes maximum, cos(0) = 1), and the maximum strain (i.e., “nodal
line”) exists on this line. Note that w — 0 (i.e., pseudo-DC) makes Equation (7.99)
xp = sh X, that is, uniform strain distribution on the whole piezo-plate. For w —

2‘;’—%) = n% [n:1,3,5,...], the denominator of both Equations (7.98) and (7.99)
11
approaches zero and the strain becomes infinite, which is called the “resonance”
frequency. The resonance frequency under a closed circuit is given by

E

1
= —. 7.100
fA o1 ( )

Now we use another set of constitutive equations with respect to electric dis-
placement D3 = d3;X;. Taking into account E, = 0, we calculate the total electric
current under AC stress X; = Xoe/“":

I = Ba? = ]ww/ D3dx = ]wwd31/ Xqdx = ]ww—/ x1dx. (7.101)

From Equation (7.99), we obtain fo x1dx = AL = sle t n(

Thus, the total current is represented by

d31 E 2v %51 wL . 2ZUd31 E E wL
I = jww—-:s X tan = 71 X071 tan(—=). 7.102
j £ 1140, (2011) j( £ )511 X011 (2?1{51) ( )

Here, (zz:d“ ) is called the “force factor” to convert the mechanical input to the

11
electrical output, and “j” stands for 90° phase ahead to the total displacement change.
When w is small the current increases in proportion to the frequency w,

ZUdgl
E
1

I = jw(—22)sh X, L, (7.103)
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and for w — (2“2’]—]5) = n% [n: 1, 3,5, ...]; that is, approaching the resonance, I
11

becomes infinite, similar to the total displacement behavior. Note that the short-

circuit condition merely exhibits the current output, and no electrical output due to

zero voltage.

Solution under Open-Circuit Condition

Since E, # 0, we should use the original x; = s115Xq + d3E,, and D3 = d3; X4 +
gge33*XE;, and calculate the voltage generated on the electrode under AC stress on
both ends of the piezo-plate. An open-circuit condition means [ = aa_t = 0 (Q: total
charge collected from the surface electrodes). Integrating the constitutive equation of
the electric displacement, D3 = d31 X1 + o€z~ E,, with respect to the electrode area

L L
Q=w / Dadx = w / [y X1 + e0eS Exdx. (7.104)
0 0

Meanwhile, from X; = x1/s11F — (d31/511 F)E2, we obtain
L 1 L
/ Xydx = / (x, — ds Ez)dx. (7.105)
0 s11/0

Knowing that fOL x1dx = AL = 2u(t,L) and E,(t) = constant in terms of the
coordinate x (electrode on the surface along x), inserting Equation (7.105) into
Equation (7.104), we obtain

11 11

(k31 = da1/+/s11E-e33%].

Equation (7.106) indicates that the total Q consists of the charge accumulated in
the “damped (clamped) capacitance” (the second term of the right-hand formula)
and the additional charge induced by the mechanical vibration (the first term, which

Q- w{ ("l—) [2u(t, L) — day ExL] +eos§‘3EzL}: W{ (’%)2”““ + oz (1 - "él)Ez(t)L} (7.106)

is called “motional capacitance”). Note the “force factor” <2wi%1) which converts
11

the mechanical input u to electrical output Q (or equivalently, vibration velocity u
to current I in Equation (7.102)). The open-circuit condition, I = aa_(tg = jwQ =0,
results in the relation between the output electric field E, and the total displacement
2u(t, L) as
E,=— il ! 2u(t, L) (7.107)
f (-8 Ldy T T '

It should also be noted that u(t,L) = —u(t,0), symmetric for the displace-
ment profile.

Taking into account the electric field generated on the piezo-plate, we derive
a mechanical resonance frequency (which corresponds to the piezoelectric “antires-
onance frequency”). The displacement u and strain x;(x) are assumed to be ex-
pressed by
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u(x) = Asin( of ) +Bcos<?x)

x1(x) =¥ =A% cos| %x) —B%sin X
1( ) ax h (Uﬂ ) fl ( f1 )

We start from x1 = 511Xy + da1Ez, or X1 = x1/s11F — (d31/511F)E=. This equation
should be satisfied under Xy(t) at x = 0 and L, and we obtain the following two
equations:

0 vh (1”‘%1) M a (1’]‘%1
E _ w W o w k 2 :
spXy=A 3 COS(E[) - Basm(ayo + g 3]%1) Z[Asm(v“’?L + Bcos( E L)]
Thus,
k2
A=sEX /[w 4 s 2tcm(—L>
1o [Ufl (1-13,) Lkz 201y | , (7.108)
— —gE wL ) /1w 312 wl
B = syt ( £ ) /155 + Sy foen (5 )
Sin[cu(Zx; L) ]
(Displacement) u(x) = s§; X, 20}11 , (7.109)
w wL 31 2 wL
igeos (2) + i ton( k)
w w(2x—L)
au (T)COS[ 20k ]
(Strain) x1 = F s11 X, L 1 (7.110)

The mechanical resonance—that is, the displacement or strain maximum (co)—can

be obtained when the denominator of Equations (7.109) and (7.110) [%COS(w—L) +
11

E
2vp;

2
( 1%%1) %sin (%) ] is equal to zero, which is obtained by the following equation:
(wpL/20T))cot(wpL/20%)) = —kg1*/ (1 — kg1?) = —dz*/exs"Csy B, (7.111)

where wp is the “antiresonance frequency”. You are reminded that under the short-

circuit condition the denominator of the displacement formula is cos ( SoF > then
11

1
(7.111) for a small k31, we obtain

{ fa =k /2L

the resonance condition (;’—é) = 7. Taking the first approximation on Equation

fo = (o, /2L)(1 + - 4k3,) (forsmall ky;)’ (7.112)
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Example Problem 7.4

In a piezo-ceramic k3, plate, as shown in Figure 7.5, the fundamental resonance
frequency is given by f4 = 011 /2L, while the fundamental antiresonance frequency is
approximated as fp = fa(l+ — 4 2 k%,). Derive this formula from the exact solution

equation: (wBL/Zvll)cot(wBL/ZvH) = —kn12/(1 — k312).

Solution

Introducing Aw = (wp —w,), and knowing ws = 7ok, /L, the equation
(wBL/val)cot(wBL/val) = —k31%/(1 — k3;?) is transformed into

s AwL

K2, 7 Awl COS(Z + 2vﬁ) 7 AwL AwL

TU-8) T \2 2 2 ) g ) Y
31 mn Sin(g_,_év_a%f) 11 o1

Supposing that A“’L = Aw/4f4 << 1, we use the Taylor expansion to tan(x) =
PP ) y p

x+ 54+ %4 into Equation (P7.4.1):

7 AwL AwL 4 1/Aw\® K3,
(2+ 2, >tan(zvﬁ> = (§+Aw/4fA) {(Aw/4fA)+3<4fA) +1 - (1_k%1) (P7.4.2)

Then,

AN
: (4fA) - ey (P7.4.3)

Finally, we obtain the following relation for the case k3, << 1:

fB=fa+Aw/2m=f,(1 + k 1) (P7.4.4)

Solution under Z-Shunt Condition

An external electrical impedance Z is connected to a piezoelectric k3; plate
(Figure 7.5). We start from the constitutive equations: x; = s11£Xq1 + ds Ez, and
D3 = d31 X7 + €9e33XE,. When we assume sinusoidal input force F(t) = —bwX;(t), and
stress X1 (f) = Xoe/“’! at both ends of the piezo- plate symmetrically, we can also assume

the displacement 1 (x)e/*! and strain x; (x)e/*" as:

u(x) = Asm( “ > + Bcos(%x), (7.113)
VT “n

0
x1(x) = = = A2-cos| —2-x | — Bg-sin| —=-x . (7.114)
ox U1 U1 U1 011
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Knowing E,(t) = constant in terms of the coordinate x, owing to the surface
electrode, atx =0 and L, X = x1/s11F — (d31/s11F)E; = Xo:

51ElXO = Av% — dglEz
. : (7.115)
sEXyg=A%L —F-Cos “L)—-B% F sin —ds E;
1 U11 Z’11

1 1

The output electric charge Q (i.e., no loss, no time lag) can be described as:
L L
Q= w/ D3dx = w/ [d31 X1 + e0es Ezdx. (7.116)
0 0
While, from X; = x1/s11F — (ds1/s11 F)E;, we obtain

dex = —+ ( X1 — d31EZ)dx. (7117)
511 /0

Knowing that fOL x1dx = 2u(L) and E; = constant, we obtain

I=Q= { (2“’331) (L) +epely (1 — kgl)EzwL}

511

7.118
= jw —5151 u(L) + jweyeds (1 — k3, Ezw

Using V = bE; = Z-I and C; = ¢ye5; (1 — k3;)wL/b, Equation (7.118) leads to the
following relations:

2wd
w ( wE 31 ) Asin ( L) + Bcos ( )
511 011 011

From Equations (7.115) and (7.119) we can derive A, B and E; as follows:

+ jwCyEb — b ZE:=0.  (7119)

cs — Y sn —
o ol 3 B|=[siXo|,  (7.120)
jw(—zfgﬂ)sn jw(—zz:g“)cs b(jwCy — %) E. 0
where the symbols sn = sm( L) and cs = cos (vE L). Thus
11 11

p

311X0b(jwcd — % )cos ( 2‘“{5 )

_ 1
- A
519 Xob(jwCy )sm( é
B _ 2'011
z (7.121)
SHXO(]CU
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The denominator A = 0 gives the resonance condition for the stress operation.

2le1
corresponds to the piezo resonance condition. While Z — oo, the last equation is
transformed to

k
(1 - kgl) (%)cos( wL ) +k3lsm<w£> =0, or (%)cot(%) =—-—3L_ (7.122)
207 20, 207 207 205 (1—k3))

which is a familiar formula for calculating the antiresonance frequency.

Now, by connecting Z = 1/wC; (the supposed electrical matching resistive
impedance), we consider the minimization of the magnitude of A for obtaining the
resonance condition.

_ X 2 L L
A = jw2wegegs [ (1 — k3) (ﬁ)cos(Z ﬁ> + k3lsm<2‘;?>

When Z ~ 0, a major contribution comes from the first term. Thus, cos (“’—L> =0

(7.123)
i 2 wl wl
"‘](1 — k31) (E)COS<E) ]
e  For a small w (much lower than the resonance frequency),
A = jw2wepes[ (1 - K5;) < ) +k3 ( ) +i(1—k3) (20 >]
" (7.124)

= jw2wepes | 22 ) [1+j(1—K3)].

The apparent dissipation factor tan ¢ = (1 — k3, ) is quite high under Z = 1/ wC,
resistive shunt case.

e  For a frequency around the resonance frequency ( RlEf = 7,Aw = w — wg), taking

wL T AwL wL : AwL : L AwL
e = =+ == cos| - = —sin| T and sin ~F = COS\ -
20, ( 2 20k ) ! 2v; 203, )7 20, 20,

nto account

A = j(wR + Aw)2wepeXs[— (1 — k) (%f + AT“E)““ A%L)

207 2011
+k%1COS<§U—aiEI;) - ](1 — k%l) ( + AwL) 11’1(%2]—“?1“ ] (7125)
~ juorueoc - (1~ ) (3) (44 ) +1, - 11 - ) () (348 )1

The external impedance Z connection is equivalent to the loss tangent in-
crease, and

tan ¢ = (1k§1)<“’L )cos(2 F )/[(1k§1)<“’L )cos(2 ’ > +k3lsm(2“’§>]

z—(l—ké)(z)(g?)/[ (1-8)(5 >(M)+k | (7.126)

It is very interesting that the resistive shunt contributes largely to the dissipation, but
its contribution is small around the mechanical resonance frequency range, mainly
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due to significant enhancement of the real elastic compliance sf; at the resonance by
a factor of Qy,.
The displacement u(x) and strain x1(x) are summarized here:

u(x) =

sf XobwCy (j— 1)cos<2“’é ) sf XobwCy (j— 1)sm<2“’L )
= sin(féx) + i cos(‘gx)
i (7.127)

sE, XobwCy(j—1)cos < 2“% )
x1(x) = Nl W cos
A h

sF XobwCy (j— 1)sm<2“’l}%1> . ‘
Z’11

E X A —gSin

“n

The energy spent in the resistive shunt Z = 1/ wC; can be calculated from Equation

(7.121) as

2
. sk Xo (]wzwg31 )sm( ‘:’)L >
Pual = Re[ 3 V7] = ke | £ S G TP G (7.128)
(%)b(ﬂucd - 7>cos( ) +d31]w(2w‘131)sm(2‘*f )
If we consider a small w (much lower than the resonance frequency),
. 2wd31 2
2 sty Xo (jw E )
Pal = oo kizeqely (1 — k3, Rel : |
(%)ba) Legeds (1-K3 )(j71)+d31jw(zz:§fl)
— Leo(Lwb)eoel (1 — K2, Re| ”’%Xo(f‘fzm ] (7.129)
wasosg(?,(l—k%l) ji—1) —Q—]wasosé( - ?)’(1 N )
2 33°11
— Leo(Luwb)Re[ 520 0 K)o (Lap) Un o) 1

1-Kk3) ) +j T
€0 33[ ( ) ]] 80333 ( 31)+ (1_]%1)
Equation (7.129) can be understood as follows: because d31Xyg = P3, and

1 (d31X)*
> 2’3832 corresponds to the electric energy per cycle per unit volume converted

via the piezoelectric effect, the total power |P,,t| can be obtained by multiplying
the volume (Lwb) and frequency w. The last additional calibration factor by the

electromechanical coupling factor, ( 1 = 1k4 , is intriguing. When

- )+~
S

k%l is not large (k31 < 30%), | Pout| becomes roughly 1/2 of the converted energy via
the “resistive Z” which matches the piezoelectric damped capacitance.

Example Problem 7.5

We consider the piezoelectric energy harvesting from a k33 type rod (unit area)
sample under a small cyclic stress X = Xge/“’!. See Figure 7.17. In order to obtain the
maximum output electric power, determine the external load impedance Z. Answer
the derivation process step by step as follows. First “Constitutive Equations” are
provided as:

Xs = S33° X5+ dasE, (P7.5.1)
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1)

(2)

D3 = d33X3+ 80833XEZ. (P7.5.2)

z,,=1/jwC

Piezo-actuator __|

TPS E J/iin Z J/iout

0 Z

Figure 7.17. Piezoelectric energy harvesting model. Source: [1] ©Uchino, K. Mi-

cromechatronics, 2nd ed.; CRC Press, 2019; p. 395. Reproduced by permission of
Taylor & Francis Group.

When we consider the output electric energy, we consider the electric displace-
ment D vs. electric field E domain as shown in the bottom figure. Calculate
the depolarization field for the open circuit (Z = o0): D = 0. In this condition,
provide the elastic compliance s5).

Calculate the electric displacement D for the short circuit (Z = 0): E =0, using the
piezoelectric constant ds3. In this condition, provide the elastic compliance s%,.

(3) Draw the D vs. E map under a certain load impedance Z. Then calculate the
output power under the external load Z, and obtain the maximum power
condition; that is, the matching impedance Z.

(4) Calculate the input mechanical power under the load of the matching impedance
Z, then calculate the energy transmission coefficient A defined by

Output electrical ener
Amax = (I P . &Y ) . (P7.5.3)
nput mechanical energy ", .
Solution
(1) Under the open-circuit condition, D = 0, leading to
d
E=- X, (P7.5.4)

goeX
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(2)

)

as depolarization field from Equation (P7.5.2). Inserting this depolarization
field to Equation (7.5.1), we obtain x = s X + d(—go%X) =sb(1— &2 )X

sEgpeX

Thus, we obtain

42
D E 2
=(1-—=)=s"(1-k%). P7.5.
= (1= o) = F(1= ) (#755)
Under short-circuit condition, E = 0 (this is true for k3; mode, but partially
true for k33 mode only for low-frequency operation). From Equation (P7.5.2)

we obtain
D =dX. (P7.5.6)

Under this condition, it is obvious that the elastic compliance is s* from Equa-
tion (P7.5.1).

Figure 7.18c shows the D—E map to calculate the output electrical energy. The
intersect with the vertical line (E) should be (— %%X ) and the intersect with

the horizontal line (D) should be (dX). Under the shunt condition with Z,
the tracing line with changing Z should be on the straight line connecting
these intersects. At which point can we obtain the maximum output energy;
that is, the maximum rectangular area hatched on the figure? From simple
mathematical intuition, obviously this point should be a half of the vertical and
horizontal intersects, which leads to the area

1 d 1 1 d?
U=-"" x. 24x=-% _x2 P7.5.7
2e9eX” 2 4 gpeX ( :
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N
dXg|-======m=m=mmmmmmmeaae :
: >
0 X, X
(a)
X/
SEX0
(1-k%)SEX,
N
7
X
(b)
E/\
5‘0 ax, N
SSearess Short D
SRR
V4
—(d/ee X)X
(d/egy )X, Open

(c)

Figure 7.18. Calculation models of the input mechanical and output electric energy.
(a) Stress vs. electric displacement; (b) stress vs. strain; (c) electric displacement vs.
field. Source: [1] ©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 396.
Reproduced by permission of Taylor & Francis Group.

More precisely, under an impedance Z shunt condition, we can expect a point (E,

D) on the line between the intersects of the above Dy = d Xy and Ej) = — €0%XO:
1
E=—(D —dXy). (P7.5.8)
Ep€

The output electrical energy can be calculated as

2 2
U= -DE = —B(D —dXo) = 1 (D — 1dxo> 41 (dXo)” (P7.5.9)
€0¢€ €p€ 2
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which is exactly the same result as Equation (P7.5.7). When the “ambient vibra-
tion energy is unlimited”, the above maximum output energy condition is the
final targeted status. Using Figure 7.17, let us calculate the output electric energy.
Sinusoidal input stress X = Xoe/! generates output electric displacement D =
dXoel“t via direct piezoelectric effect (d constant). We can understand that the
piezo power supply has the internal impedance 1/jwC under an off-resonance
frequency (by neglecting the dielectric loss or effective conducting loss ¢ = 0),
and this piezoelectric “current supply” generates the total current
_adD

i= =" = jwdXo. (P7.5.10)

is current is split into interna isplacement current” i;,, and external curren
Th t is split into internal “displ t t” i;,, and external t

iout;

i — ilﬂ + iout. (P7.5.11)

Then, because of the potential/voltage should be the same on the top electrode
of the piezo component, we get

Zintin = Ziout- (P7.5.12)

Inserting the relation i;,, = (%)iout = jwCZ-ipyt into Equation (P7.5.11),
iout(1 4+ jwCZ) = jwdXj. (P7.5.13)

Thus, we can obtain the output electric energy as

1, (wdXo)®
27 (14 (wCZ)?)

1. .
|P| — Re[§|Zlout'lout*| — . (P7.5.14)

Figure 7.19 shows the electric load (resistive) dependence of the output electric
energy, which concludes that the maximum electric energy

1 wd?X3

P| = - P7.5.1

can be obtained at Z = 1/wC, when we consider Z resistive, which is the
situation for charging a rechargeable battery. In other words, the generated
electric energy in a piezo component can be spent maximally when the external
load resistive impedance exactly matches the internal impedance (absolute
value). Note the internal impedance is capacitive with phase lag of —j (—90°).
Note that Equation (P7.5.15) is equivalent to Equation (P7.5.7), taking into
account the difference in the specimen size/volume and one cycle and per unit
time (second).
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F X /ee,!

Output Electric Energy

N

0 1/wC LoadZ

Figure 7.19. Output electric energy vs. external electrical load Z. Source: [1]
©Uchino, K. Micromechatronics, 2nd ed.; CRC Press, 2019; p. 396. Reproduced
by permission of Taylor & Francis Group.

The reader is also reminded of the discussion in Subsection Solution under Z-
Shunt Condition, calculated from the piezoelectric constitutive equations for the
k31 mode. The difference in the above Equation (P7.5.15) from Equation (7.129)
can be found in the following calibration factor ( , originating

R )
from the difference between “constant capacitance” here and “stress dependent

mechanical constraint” (such as e%; or €3}). Thus, precisely speaking, the above
conclusion should be modified as follows:

(a) Matching impedance is to be replaced by the “damped capancitance” Cy
from just capacitance C,

(b) The calibration factor = k§1)—1|r : n ) is more precise, rather than 1/2 in
1—k31

wd2X(2) 1
¢ (1—k§1)+(1_+§1)'

Pl =13

We consider further two additional impedances matching: Z = (ﬁ) " and
VAES <](+C> When we consider Z “complex”, Z = Z;,* = <]wLC>* = ]aJ(ﬁ)
provides the original electrical impedance matching. This condition corre-
sponds to LC series connection (i.e., (](%C) and jwL), where L = 1/w?C is
satisfied, leading to the LC resonance frequency exactly equal to the stress
application frequency w. The energy generated by a piezo component will
be exchanged between the internal capacitance and external inductance, like
a “catch-ball”, without losing energy nor providing work externally. The ef-

fective elastic compliance sff £ approaches infinity. To the contrary, when we

consider Z = ( w%), the same capacitance as the internal one is connected

to the external load, since converted energy is split to two equal capacitances,
sff ;= E(1— %kz), in between the short- and open-circuit conditions. In order
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(4)

to take the energy out into a rechargeable battery, it is essential to connect the
resistive load.

Energy Transmission Coefficient (Section 10.5.2 describes a more detailed deriva-
tion process). Since we need to use or accummulate energy externally, we
consider “resistive shunt”. Let us reconsider the power expendable on the
external electrical load Z from the “energy transmission coefficient” viewpoint.
Figure 7.18 summarizes the calculation processes of the input mechanical and
output electric energy under various impedance Zs: (a) the stress vs. electric dis-
placement relation; the area on this domain does not mean the energy, thus, we
need to translate this plot into (b) stress vs. strain relation to calculate the input
mechanical energy, and (c) electric displacement vs. electric field to calculate the
output electric energy. No electrically converted energy can actually be spent
under the short-circuit (zero impedance) or open-circuit (infinite impedance)
condition in the energy harvesting case. The “energy transmission coefficient”
is defined by

Amax = (Output electrical energy/Input mechanical energy)ay.  (P7.5.16)

(wdXy)®
(1+(wCZ)?)"
Now, we will calculate the input mechanical energy. You should notice that the
input mechanical energy also differs significantly depending on the external
electrical load Z. If you recall that the tunable elasticity according to the electric
constraint is s£ (short circuit) or s” (open circuit), and further sD =sE (1—k?)in
particular, you can understand that the input mechanical energy (e.g., triangular
area made by OXxy for a short-circuit condition) differs largely depending on
the electrical load Z, as illustrated in Figure 7.18b (the slope; elastic compliance
changes according to Z). Now, second, let us calculate the load-Z dependence of
the input mechanical energy. We now calculate the “input mechanical energy”
from the second constitutive equation in Equation (P7.5.1):

e d(7) (1)

The last transformation used Equation (P7.5.13). We obtained effective elastic
compliance as

The output electric energy has been calculated above as |P| = %Z

]deo

T +sEX. (P7.5.17)
7+]CUC

E x E S jwZd?
=—=s5|1—-(- . P7.5.18
eff T x T ° l (t)sE(l +jwCZ) ( )
You can verify the above “effective elastic compliance” is equal to s11F or sP =

sE(1 — k?) (no electrode on the surface ideally), when Z = 0 or o, respectively.
Meanwhile, under Z = 1/wC,

L
sEp=sF (1 — K %kz). (P7.5.19)
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The resonance frequency f under the Z-shunt condition may be estimated as

f= L fr (1 - jikz), (P7.5.20)
2L, /st

which is higher than the short-circuit f4, but lower than the open-circuit condi-
tion fa(1+ %kgl). The input mechanical power under the Z-shunt condition
is derived as

(P7.5.21)

; 2
CgsE[l—<S) JWZd” _yy 2|

w
Pl = =sb X2 = = =
IPlin = 5 5ersXo t )sE(1 + jwCZ)

The “energy transmission coefficient” A, can be calculated from

Eq_ (S jwZd? 2
e (t 0 1 jwcz)

(P7.5.22)
Taking the maximization process in terms of Z, we can obtain the energy trans-
mission coefficient as

/\ — |P|0ut — 1 7 (deO)Z g
Pl 2 (1+ (wCZ)?) 2

Amax = [(1/K) =/ (1/K2) =12 = [(1/k) + [/ (1/k2) = 1] 2. (P7.5.23)

We need to be aware that since the input mechanical energy is changed (even if
we keep the stress/force constant) due to the elastic compliance change with
the external electrical impedance, the condition for realizing the “maximum
transmission coefficient” is slightly off from the electrical impedance matching
point for the output energy maximum. When we take the matched electrical
impedance Z = 1/wC, we obtain

K1
A= —— P7.5.24
7 T (P7.5.24)
which is slightly amaller than A, of Equation (P7.5.23). We can also notice
that
K2 /4 < Apax <K2/2,

depending on the k value (k < 0.95).

Chapter Essentials

1.

Mechanical fundamental resonance frequency of a length L rod with sound
velocity v: f = v/2L. Knowing v = f-A, we obtain A = 2L, or the mode is exact a
half-wavelength standing wave on the rod.

Steady AC Drive methods of a piezoelectric component:

e Mechanical Drive

- Short-circuit condition with surface electrodes (E-constant) — Reso-
nance mode
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Open-circuit condition with surface electrodes (partially (1D) D-constant)
— Antiresonance mode
No surface electrodes (D-constant)

e Electrical Drive

Admittance peak — Resonance mode (Resistive characteristic)
Impedance peak — Antiresonance mode (Resistive characteristic)
Intermediate frequency between Res and AntiRes — Max efficiency
(Inductive)

Off-resonance (low frequency) — (Capacitive characteristic)

Electric Excitation k3; Mode: Vibration direction perpendicular to Pg

(a)

(b)
()

(d)

COS[ 2x L]
Strain x; = d31E; (——2%— ey )
sin[ w(2x—L) ]
Displacement u(x) = d31EZ(—)W/
20
Admittance Y = jwCy[1 + 1 3k12 %] [OQ11 = (WL/ZU%)],

Resonance/ Antiresonance Frequenc1es

Resonance: w4 = oyt /L = t/(L\/ps11E),
Antiresonance: (wgL/2v11F)cot(wpL/2v11E) = —k312/(1 — k312),

k31 = dz1//s11E-e33%¢p.

Loss Factors

1
QAs1 = Grgyy
1 1 2 / B / - /
Os1 — Qo 1+(f—k31)203 " (Ztan 031 — tan Jd33 — tan gbn),

Qazr = 2“%11 =7 [011 = 1/\/5]

w 2tan Q)
Opa1 = —Zvlflgl, 1— k31 + ka1 552 = 0.

Electric Excitation k33 Mode: Vibration direction parallel to Pg

(a)

(b)

(©)

(d)

Strain x3 = %D;;[cos(z (2z — )) /cos(%)],

0€33

Displacement 13 = d3§< 5 Ds[sin (2z — )) /cos <wv—15> I

goegy W 20 ,DP 200,
wb )
Admittance Y = -, = jweoess () = jwCy + ]wcfz -
wl _ K2 an(033)
tan| 5 [-1+1/ 33{ (as) 1
1-K2, 2% 33

P‘

(2)
[Q33 = (wL/205))],
Resonance/Antiresonance Frequencies
. [ wal ) _ 12 wal
Resonance: < 200 ) kstan (24 ) )

. wpL
Antiresonance: -5y = 7
2033

kss = dss/+/s33F-€33%eq

Loss Factors
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Qp33 = = Lka
4 tan (PW 33 tan/ %733 —k332 (Ztan 933/ —tan 533/) ’

1 1

/ / /
Oam — Qs + PREEE RS ITI: (2tan 033" — tandsz’ — tan ¢33 ),
— wl _ 7 D _ D
QOpgs = 20D T2 [7’33 = 1/\/ Psaa}f

wal 2
Qazs =30 Oass = ks tan Q3.

Admittance/Impedance Spectrum Measurement:

e Constant voltage method—suitable for antiresonance range

e  Constant current method—suitable for resonance range

e  Constant vibration velocity method—suitable for all resonance and antires-
onance ranges.

Mechanical Quality Factor Determination:

e “3dBdown/up method” on the admittance/impedance spectrum
e  “Quadrantal frequency method” on the admittance (resonance) and impedance
circles (antiresonance)

Loss Determination Process from the Admittance Spectrum — k3; Case

(1) Obtain tand” from an impedance analyzer or a capacitance meter at a
frequency away (lower range) from the resonance/antiresonance range;
(2)  Obtain the following parameters experimentally from an admittance/

impedance spectrum around the resonance (A-type) and antiresonance
(B-type) range (3 dB bandwidth method): w,, wy, Qa, Op, and the
normalized frequency )y, = wyl/2v;

3) Obtain tan¢g’ from the inverse value of Q4 (quality factor at the reso-
nance) in the k31 mode;

4) Calculate the electromechanical coupling factor k31 from the w, and w; with

the IEEE Standard equation in the k3; mode: — k = Fotta [(w#_uwb)] ;

(5) Finally, obtain tanf” using the following equatlon in the k3; mode:
! tand’ +t 2
tanf = w + 7 (QA (o] ) [1 + ( — k31) sz].

Mechanical Excitation k3; Mode: Vibration dlrectlon perpendicular to Pg

(a) Short Circuit—Resonance
COS[ L()(ZXE—L) ]
. 20
Strain x1 = T, X, ( —r wlLl) ),
21){51
. o sin| “’@;E—L) ]
Displacement u(x) = (%)SEXOW,
20k
11

U1
(b) Open Circuit—Antiresonance

Resonance Frequency (“’AL> = 7.

(UT)COS[ > -

. _ <E
Strain x1 = s; X, - " 2, T\
[4- ok cos 2E + ]
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Displacement u(x) = sk, X,

K2 ’
w wL 31 2o wL
[-%-cos + £sin| Y& ]
E < 3 ) >\ L ( 3 )
T ) (1-4) 2oy

Antiresonance Frequency (wgL/ 2vfl)cot(wBL / val) = —k312/(1 — k312),
Approximate: fp = fa(1+ 5k3;).

7T
. oF XobwCy (j—1)cos (& sby XobwCy (j—1)sin | 2
(c) Z-shunt Strain x, (x) = - <2‘11> %cos(%x) - - (2‘11> %sin(%x»
. s% ngde(j—l)cos<2‘;’£ ) SF] Xowad(j—l)sin<2‘;’é
Displacement u(x) = — b sin(v%x) iy t Cos(z%x
11 11

_|_
. ; _1 wL o 2wdar i [ wL
A = (lel>b<]de Z>COS(2lel> +d31]w( ) )mn(%fl),
Matching Impedance Z = 1/wCy,
Resonance Frequency f = fa(1+ 1k%),

Elastic Compliance sff ;= sE(1—JKk2+ %kz),

. 42 X2 d2x2
Maximum Output Power |P| = %w 0 iR L 1% %
1-k2,)+ 4 C
31 (17}(%1 )
Check Point
1.  (T/F) Piezoelectric “resonance” is a mechanical resonance mode, but the “an-

10.

11.

tiresonance” is not a mechanical resonance, at which the vibration amplitude is
not enhanced. True or false?

In a k3; piezo-ceramic plate, the first antiresonance frequency f4 is observed
higher than the resonance frequency fgr. What value does the ratio f4 /fr ap-
proach with an increase in the electromechanical coupling factor k3;?

(T/F) When we measure the admittance spectrum on a k3; type piezoelectric
plate specimen, the admittance minimum point corresponds to the resonance
point. True or false?

When we measure the admittance spectrum on a k3; type piezoelectric plate, the
phase changes from +90 to —90° around the resonance point with an increase
in drive frequency. What is the phase lag at the resonance point?

When we measure the admittance spectrum on a k3; type piezoelectric plate, the
phase changes from +90 to —90° around the resonance point with an increase in
drive frequency. What do you call the frequencies that provide the phase +45°?
(T/F) The fundamental resonance mode of the k33 mode has an exact half-
wavelength vibration on the rod specimen. True or false?

(T/F) The fundamental resonance mode of the k3; mode has an exact half-
wavelength vibration on the plate specimen. True or false?

Provide the relationship between the mechanical quality factor Qs at the reso-
nance frequency and the intensive elastic loss in the k3; type specimen.
Provide the relationship between the mechanical quality factor Qy at the an-
tiresonance frequency and the extensive elastic loss in the k; type specimen.
(T/F) The strain distribution in a high k33 rod specimen is more uniform at the
antiresonance mode than that at the resonance mode. True or false?

When (tandss’ + tan¢11’)/2 < tanfs;’ is satisfied, which is larger for the k31 type
specimen—Q4 or Qp?
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12.

13.

14.

15.

16.

17.

18.

19.

20.

(T/F) When we drive the piezoelectric k3; plate mechanically under a sinusoidal
force, the resonance frequency should be the same for both the short-circuit and
open-circuit condition. True or false?

(T/F) When we drive the piezoelectric k3; plate electrically under constant
voltage condition, the admittance spectrum shows significant skew distortion
at the antiresonance frequency. True or false?

(T/F) The mechanical quality factors Q4 (at resonance) and Qp (at antireso-
nance) should be the same in a piezoelectric k33 rod specimen. True or false?
(T/F) The mechanical quality factor Q4 at resonance is larger than Qg at antires-
onance in a PZT piezoelectric k3; plate specimen. True or false?

(T/F) To generate the same vibration velocity of a piezoelectric transducer, the
resonance drive is the most efficient, rather than the antiresonance drive in PZT
based materials. True or false?

Can you find a more energy-efficient frequency for driving a PZT piezoelectric
k31 plate specimen than its resonance or antiresonance frequencies? If so, where
do you find this most efficient frequency?

(T/F) There is a highly resistive (no electric carrier /impurity in a crystal) piezo-
electric single crystal (spontaneous polarization Ps) with a mono-domain state
without a surface electrode. The “depolarization electric field” in the crystal is
given by E = —(81:—30). True or false?

(T/F) In a k3; piezo-ceramic plate, the first antiresonance frequency f and the
resonance frequency f4 are related as fg = fa(1+ %kgl) when the electrome-
chanical coupling factor k3; is not large. True or false?

(T/F) In a k31 piezo-ceramic plate shunted by the external impedance Z, the
mechanical resonance exhibits between the piezoelectric resonance and antires-
onance frequencies. True or false?

Chapter Problems

7.1

7.2

When we neglect the piezoelectric loss tanf’ (i.e., tanf” = 0) among three losses,
tand’, tan¢g’, and tanf)’, discuss the relation of the mechanical quality factors at
the resonance Q4 and antiresonance frequencies Qp. In the case of tandé’ > 0,
tan¢g’ > 0, which is larger—Q4 or Qp?
The piezoelectric component with the capacitance C is driven by the external
stress Xpe/“!. The input mechanical power |P|;, and the output electric power
|P|,,; through the external impedance Z are calculated as

0 2
Pli = $5t5%0" = 35500 () e X,

7

|P| — 1 (de())Z
out = 27 (14(wCZ)?)"
The “energy transmission coefficient” A,y can be calculated from
_ |P|out — l (WdXO)z g‘ E _ (E) jWZdZ 2‘
A= \Plin 2Z(1+(wCZ)2) /5571 t ) sE(1+jwCZ) 1Xo7).
Taking the maximization process in terms of Z, verify the energy transmission
coefficient as

Amax = [(1/k) — /(1/K2) =12 = [(1/k) + /(1/K?) = 1] 2.

289



References

1.

10.

11.

12.

13.

14.

Uchino, K. Micromechatronics, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019.

Uchino, K. High-Power Piezoelectrics and Loss Mechanisms; CRC Press: Boca Raton, FL,
USA, 2020.

ANSI/IEEE Standards 176-1987; IEEE Standard on Piezoelectricity. The Institute of Electri-
cal and Electronics Engineers: New York, NY, USA, 1988.

Zheng, ].; Takahashi, S.; Yoshikawa, S.; Uchino, K.; de Vries, ] W.C. Heat Generation in
Multilayer Piezoelectric Actuators. J. Am. Ceram. Soc. 1996, 79, 3193-3198. [CrossRef]
Uchino, K.; Zheng, ].; Joshi, A.; Chen, Y.H.; Yoshikawa, S.; Hirose, S.; Takahashi, S.; de
Vries, ].W.C. High Power Characterization of Piezoelectric Materials. J. Electroceram. 1998,
2,33-40. [CrossRef]

Uchino, K. Ferroelectric Devices, 2nd ed.; CRC: Boca Raton, FL, USA, 2010.

Hirose, S.; Aoyagi, M.; Tomikawa, Y.; Takahashi, S.; Uchino, K. High Power Characteris-
tics at Antiresonance of Piezoelectric Transducers. Ultrasonics 1996, 34, 213. [CrossRef]
Mezheritsky, A.V. Efficiency of excitation of piezoceramic transducers at antiresonance
frequency. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 484. [CrossRef]
[PubMed]

Zhuang, Y.; Ural, S.0.; Rajapurkar, A.; Tuncdemir, S.; Amin, A.; Uchino, K. Derivation
of Piezoelectric Losses from Admittance Spectra. Jpn. J. Appl. Phys. 2009, 48, 041401.
[CrossRef]

Zhuang, Y.; Ural, S.0.; Tuncdemir, S.; Amin, A.; Uchino, K. Analysis on Loss Anisotropy
of Piezoelectrics with comm Crystal Symmetry. Jpn. J. Appl. Phys. 2010, 49, 021503.
[CrossRef]

Ural, S.0.; Tuncdemir, S.; Zhuang, Y.; Uchino, K. Development of a High Power Piezo-
electric Characterization System and Its Application for Resonance/Antiresonance Mode
Characterization. Jpn. J. Appl. Phys. 2009, 48, 056509. [CrossRef]

Hirose, S.; Aoyagi, M.; Tomikawa, Y.; Takahashi, S.; Uchino, K. High Power Character-
istics at Antiresonance Frequency of Piezoelectric Transducers. In Proceedings of the
Ultrasonics International 1995, Edinburgh, UK, 5-7 July 1995; Elsevier: Amsterdam, The
Netherlands, 1996; pp. 213-217.

Shekhani, H.N.; Uchino, K. Evaluation of the mechanical quality factor under high power
conditions in piezoelectric ceramics from electrical power. J. Eur. Ceram. Soc. 2014, 35,
541-544. [CrossRef]

Uchino, K.; Zhuang, Y.; Ural, 5.0. Loss Determination Methodology for a Piezoelectric
Ceramic: New Phenomenological Theory and Experimental Proposals. |. Adv. Dielectr.
2011, 1, 17-31. [CrossRef]

290



8. Pulse Drive on Piezoelectrics—Laplace
Transform

8.1. Impulse Applications of Piezoelectric Actuators

Many of the million-selling piezoelectric actuators are driven by “pulse drive”.
Electric field-controlled actuators include inkjet printers and diesel injection valves.
Diesel engines are recommended rather than regular gasoline cars from an energy
conservation and global warming viewpoint. When we consider the total energy
of gasoline production, both well-to-tank and tank-to-wheel, the energy efficiency,
measured by the total energy required to realize unit drive distance for a vehicle
(MJ/km), is of course better for high-octane gasoline than diesel oil. However, since
the electric energy required for purification is significant, the gasoline is inferior to
diesel fuel. As is well known, the conventional diesel engine, however, generates
toxic exhaust gases such as SOy and NOy due to insufficient burning of the fuel. In
order to solve this problem, new diesel injection valves with piezoelectric multilay-
ered actuators were developed by Siemens, Bosch, and Toyota [1,2]. Figure 8.1 shows
such a common rail-type diesel injection valve with a multilayer (ML) piezo-actuator
which produces high-pressure fuel and quick injection control. The piezoelectric
actuator is namely the key to increasing burning efficiency and minimizing the toxic
exhaust gases. The author’s contribution to this project was the “pulse drive tech-
nique” of the ML actuator without generating troublesome vibration ringing after
the quick actuation. On the other hand, a stress-controlled impulse drive is utilized
in PABM (programmable air-burst munition for 25 mm ¢ caliber) and a lightning
switch (remote control relay switch) [3,4].

4 Main

Piezoelectric Actuator ,
/I/ Y

Control Valve

Displacement
Amplification Unit

Injector Body

Injection

Nozzle | |

(b)

Figure 8.1. (a) Common rail-type diesel injection valve with a piezoelectric multi-
layer actuator (courtesy of Denso Corporation); (b) diesel injection timing chart.
Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; pp. 460-461.
Reproduced by permission of Taylor & Francis Group.

In this chapter, after the review of the “Laplace transform”, we consider the
pulse electric field control of a piezo component in Section 8.3, then the stress-
controlled energy harvesting process on a piezoelectric specimen under an impulse
stress application is considered theoretically in Section 8.4.
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8.2. The Laplace Transform

Let us first review an important mathematical tool, the “Laplace transform”. The
Laplace transform is generally employed to treat the “transient response” to a pulse
input. The “Fourier transform” is preferred for cases where a continuous sinusoidal
input is applied, such as for resonance-type actuators, which was discussed in Chapter 7.

We consider a function u(t) which is defined for t > 0 (u(t) = 0 for t < 0), and
satisfies | u(t)| < ke’ for all § no less than a certain positive real number 6y. When
these conditions are satisfied, e *'u(t) is absolutely integrable for Re(s) > §;. We
define the Laplace transform:

U(s) = Lu(t)] = /0 e Stu(tdt. 8.1)

It is noteworthy that the input function u(t) should satisfy u(t) = 0 for t < 0.
The inverse Laplace transform is represented as L~ ![U(s)]. Application of the useful
theorems for the Laplace transform that are listed below reduces the work of solving
certain differential equations by reducing them to simpler algebraic forms. The
procedure is applied as follows:

‘“”_7
S

1.  Transform the differential equation to the
priate Laplace transform.

Manipulate the transformed “algebraic equation” using the useful “Theorems”.
The boundary conditions at ¢ = 0, #(0) and #(0), are integrated in the above.
Then, obtain L~1[U(s)] as an algebraic form of “s”.

Obtain the inverse Laplace transform from Table 8.1.

-domain by means of the appro-

Gl LN

Useful Theorems for the Laplace Transform:
(a) Linearity:

Llauq(t) + buy(t)] = alq(s) + bU5(s)

L= Yall(s) + bUy(s)] = auq(t) + buy(t)
(b) Differentiation with respect to t:

L d”“)] = sU(s) — u(0)

dt

L d"st,St)] = s"U(s) — L s" *uk—1(0)
(c) Integration:

L[ [ u(t)dt] = U(s)/s + (1/s)[[ u(t)dt],_,
(d) Scaling formula:

Llu(t/a)] = al(sa) (a > 0)
(e) Shift formula with respect to t:

u(t — k) =0 for t <k [k: positive real number]. The u(t) curve shifts by k along
the positive t axis.

Llu(t — k)] = e *U(s)
(f) Differentiation with respect to an independent parameter:

(g) Initial and final values:
lim[u(t)] = lim [sU(s)]

t—0 |s|—o0

lim [u(t)] = g‘igo[su(S)]

t—o0 ‘
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Table 8.1. Some common forms of the Laplace transform.

H(t) G(s)
1(t): Heaviside Step function

1 1) =1,¢>0;1(5) =0, ¢ <0 1/s
5 (t): Dirac Impulse function 1

5(t) =00, t=0; 5(t)=0, t#0
3 t" /n! (n: positive integer) 1/s"+1
4 e (a: complex) 1/(s + a)
5 cos(at) s/(s* + a?)
6 sin(at) a/(s* +a®)
7 cosh(at) s/(s?> — a?)
8 sinh(at) a/(s*> — a?)
9 e~Pcos(at) a®> > 0 (S;;)’ﬁ
10 e~sin(at) a> > 0 —(Hb’;sz

H(t

)
11 | al bl Tl , %(efas _ e—bs)

Slope (m)
H(t) p
12 S sz(l — %)

a

H(t)
13 ; ltanh (%)
a 2a 3a

H(b) gSIope (m)
14 % — Be[coth(%) — 1]

a 2a

Source: Table by author.

Example Problem 8.1

Compute the Laplace transform of the Heaviside function (“step function”):
1(t) =0when t <0 and 1(t) =1 when t > 0.

Solution

o0

L) = [eh(pdr= [ et = (%)65t|8°:1/s. (P8.1.1)

0
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Example Problem 8.2

Using the result from the previous problem, L[1()] = 1/s, obtain the Laplace
transform for a pulse function defined by the following;:

P(t)=0whent<aandt>b (here, 0 <a<b),

P(t)=1whena<t<b.

Solution

P(t) is obtained by superimposing the two step functions, 1(t — a) and —1(t — b).
Using the shift formula (Theorem (e)), we obtain the Laplace transform of P(t):

LIP(H] = e (1/s) — e P5(1/s) = (1/s) (™™ — e~ ). (P8.2.1)

8.3. Electric Pulse Drive on Piezoelectrics
8.3.1. General Solution for Longitudinal Vibration k3; Mode
Vibration Equation of the k3; Mode

Let us consider a longitudinal mechanical vibration in a simple piezoelectric
ceramic plate via the transverse piezoelectric effect d3; with thickness b, width w,
and length L (b << w << L), pictured in Figure 8.2. This specimen configuration is the
same as the one in Chapter 7. When the polarization is in the z direction and the x—y
planes are the planes of the electrodes, the extensional vibration along the x direction
(1D model) is represented by the following dynamic equation:

82u 0 8X11 aX12 8X13
P =F="¢ + oy T

(8.2)

where u is the displacement in the x direction of a small-volume element in the
ceramic plate, p is the density of the piezoelectric material, and Xij’s are stresses (only
the force along the x direction is our target). The relations between the stress, electric
field (only E; exists, because Eyx = E, = 0 due to the electrodes on the top and bottom),
and the induced strains are described by the following set of equations:

x1 suf spb st 0 0 X1 0 d3

X2 spf snf o osif 0 0 Xo 0 d31 E,

X3 _ S]3E 513E 533E 0 0 0 X3 n 0 0 d33 ol. (83)
Xy 0 0 0 suf 0 0 Xy 0 ds O

X5 0 0 0 0 syt 0 X5 ds 0 0

| X6 | | 0 0 0 0 0 2(spf—s12F)] \Xe 0 0 0

When a very long, thin thickness and width plate is driven in the vicinity of
this fundamental resonance, X, and X3 may be considered zero throughout the plate.
Since shear stress will not be generated by the applied electric field E,, only the
following single equation applies:

X1 =x1/s1F — (d31/5115)Ez. (8.4)
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Substituting Equation (8.4) into Equation (8.3), and assuming that strain x; =
du/ox and dE, /dx = 0 (since each electrode is at the same potential), we obtain the
following dynamic equation:

9%u 1 0%u

Remember that the “E-constant” condition “sk;” is the key characteristic in the

k31 mode.

zZ
N y
7
/M ™ >
b7 2 = .
0

Figure 8.2. Longitudinal vibration k3; mode of a rectangular piezoelectric plate.
Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 111. Repro-
duced by permission of Taylor & Francis Group.

Laplace Transform of the k3; Mode Vibration Equation

Let us solve Equation (8.5) of Figure 8.2 using the Laplace transform. Denot-
ing the Laplace transforms of u(t,x) and E.(t) as U(s,x) and E(s), respectively (x:
coordinate along plate length), Equation (8.5) is transformed by Theorem (f) to:

sk 52U (s, x) = % (8.6)
We assume the following “initial conditions”:
Displacement : #(0, x) = 0 and velocity : [ (8(1’ i = 0. (8.7)
We may also make use of the fact that:
psit =1/0%, (8.8)

where v is the speed of sound in the piezoelectric ceramic under the E-constant
condition. To obtain a general “algebraic” solution of Equation (8.6) in terms of space
coordinate x, we assume:

U(s,x) = Ae*/?) 4 Be=6x/0) (8.9)

The constants A and B can be determined by applying the “boundary conditions”
Xi=0atx=0andL:
(x1 — dsiE;)

E
511

X1 =

= 0. (8.10)
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We also utilize the fact on the strain (Theorem (f)) that:
L[x1] = (0U/9x) = A(s/0)e*/?) — B(s /v)e™ */0). (8.11)
In conjunction with the boundary conditions at x = 0 and L of Equation (5.91) to yield:

A(s/v) — B(s/v) = dsE, (8.12a)

A(s/0)el/?) — B(s/v)e V%) = d4 E. (8.12b)

Thus, we obtain B
d31E(1 — €_SL/U)

A= (5/0) (@177 —e=L/oy’ (8.13a)
B= (s /iljs)l(fs(Ll/v__eSZZZ/v)’ (8.13b)

and, consequently, Equations (8.9) and (8.11) become:
U(s,x) = d3 E(v/s)[e—s(L—x)/v jZle—j(:j;;)L//z;)_ esx/0 _ p=s(2L—)/0] P
L] — Aoy Eles(L=)/0 4 p=s(L+x)/0 _ p=sx/v _ p=s(2L-x)/v] 515

(1 _ e*ZSL/U)

The inverse Laplace transforms of Equations (8.14) and (8.15) now provide the
displacement u(t,x) and strain x1 (f,x). Making use of the Taylor expansion series

1/(1 — 67251/0) -1+ 67251/0 + 67451/0 + 67651/21_ .. (8.16)

the strain, x1(t,x), can now be obtained by shifting the d3; E,(t) curves with respect
to t according to Theorem (e). We may also consider that since u(t,L/2) = 0 (from
U(s,L/2) = 0) and u(t,0) = —u(t,L) (from U(s,0) = —U(s,L)), the total displacement of
the plate device AL becomes equal to 2u(t,L). We finally arrive at the following:

B d311§(v/s)(1 — 5L/
- (1 i e—sL/v)

U(s, L) = ds1E(v/s)[tanh(sL/20)]. (8.17)

8.3.2. Displacement Response to a Step Voltage in the k3; Mode

We consider first a particular input of a “Heaviside step” electric field E(t) = Eg
H(t). Since the Laplace transform of the step function is given by (1/s), Equation (8.17)
can be expressed by

U(s,x = L) = d1 Eg(v/s?)(1 — e~ CL/2)) /(1 + = 6L/2))

— d31E0(U/SZ)(1 _ 267(5L/v) + 267(25L/v) _ 2ef3sL/zJ + 2€*4SL/U_ . ) (8'18)
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Note that the base function of U(s,L), 1/52, gives the base function of u(t,L) in
terms of t (i.e., « t). It should also be noted that the final expansion terms will provide
the time shift of the base function; for example, “_2e~6L/Y)” means the time shift
by (L/v) of the base function multiplied by the factor of “—2". The inverse Laplace
transform of Equation (8.18) yields by segmenting the time interval of (L/v) (by
superposing the e~k terms):

u(t,L) = ds1 Equt O<t<L/v,

u(t,L) = ds1Equ[t — 2(t — L/v)] L/v<t<2L/v,

u(t,L) = ds1Egu[t — 2(t — L/v) + 2(t — 2L/ v)] 2L/v<t<3L/v, (8.19)
u(t,L) = ds1Equ[t — 2(t — L/v) + 2(t —2L/v) — 2(t — 3L/v)] 3L/v<t<4L/v,

The transient displacement, AL (= 2-u(t,L)), produced by the step voltage, is
pictured in Figure 8.3 (since d3; is usually negative, Figure 8.3 is for Ey < 0). The
resonance period T of this piezoelectric plate corresponds to (2L/v), and the time
interval in Equation (8.19) is every (T/2). It is worth noting that the displacement
changes linearly, not sinusoidally. On the contrary, the displacement of a discrete-
component system changes sinusoidally, as demonstrated in Example Problem 8.3.
This transient response difference comes from the vibration medium difference:
continuum or discrete mechanical medium. In either case, continuous ringing occurs
under a step input when the loss is neglected.

AL N

nglEoL I

d31E0L I

Figure 8.3. Triangular displacement response to a Heaviside step function voltage
in a k31 piezoelectric plate. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC
Press, 2019; p. 312. Reproduced by permission of Taylor & Francis Group.

The strain distribution on a piezoelectric plate is also intriguing for this step
excitation case. From Equation (8.15), L(x;) is directly proportional to E; that is, the
strain distribution x; (x) follows exactly to E(t), the Heaviside step function. The strain
x1 at a certain point x suddenly becomes “d31 Ey” from “zero” with a certain time lag
depending on its coordinate x. Thus, as illustrated in Figure 8.4a, the strained portion
starts from both ends (x = 0 and L) of the piezo-plates at the time of step voltage applied.
These two symmetrical boundaries/walls between the strained and strain-free portion
(analogous to a shockwave) propagate with a piezo material’s sound velocity, v, in
opposition to each other, crossing over at the plate center, then generating the doubly
strained part in the center area (i.e., 2d3; Eg). Thus, when the walls reach the plate ends,
the plate length becomes the maximum (AL = 2d3;EgL), and we can understand the
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reason why 100% overshoot occurs under the step voltage applied. After that, the walls
bounce back in the opposite directions, and the plate starts to shrink linearly according
to the shrinkage of the strained portion. The linear displacement change originates
from the constant wall velocity (which is equal to the piezo material’s sound velocity
under the E-constant condition in this case). This triangular vibration ringing will
continue to be long when the loss is small. Figure 8.4b,c show the strain distribution on
a piezo-plate under a pseudo-DC triangular voltage, and under a sinusoidal voltage at
its resonance frequency, respectively, as references. The strain is uniformly generated in
the plate (x; = d3; E3) under a pseudo-CD condition (no stress appears in the plate),
while the strain and stress distribute sinusoidally with the maximum at the center part
(i.e., nodal line) under the resonance drive. The resonance mode can be understood as
a standing wave generated by the superposition of right-ward and left-ward traveling
waves with a half-wavelength exactly match to the rod length, so that the center node
strain is amplified significantly by the factor of (8/7%)Qy,.

(a) (b) (c)
E E E
| | | | |
<«
= == -1 [ = 1
) é—
&«
|« 1 «— | | < — P | [ x < x |
«
|(—) | «—— | <—>| | <~ <> g | = =< Pos
-—>

E Ig | hid hid hid | = =< >

Figure 8.4. Strain distribution on a piezo-plate during the deformation process
under voltage: (a) step; (b) pseudo DC triangle; (c) resonance sine. Source: [2]
©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 113. Reproduced by
permission of Taylor & Francis Group.

Example Problem 8.3

The dynamic equation for a mechanical or an electrical system, composed
of discrete components; mass and spring (damper is neglected for simplicity); or
inductor, capacitor and resistor, shown in Figure 8.5a,b, are expressed by

M(d?u/df*) + cu = E(b), (P8.3.1)
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where u: mass displacement, M: mass, c: spring constant, F: external force,
L@d*Q/df*) + R@Q/dt) +(1/C)Q = V(#), (P8.3.2)

where Q: charge, L: inductance, C: capacitance, R: resistance, V: voltage.
Consider the transient response u(t) and Q(t) in the case of Heaviside step
function of the force and voltage.

L
C
C
R
(b)

V(t)

F(t)
@)

Figure 8.5. Discrete mechanical (a) and electrical (b) component systems. Source:

Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 314. Repro-
duced by permission of Taylor & Francis Group.

Solution

Because these two second differential equations are basically the same, we
will consider them only for the mechanical system. Since the force is a Heaviside
step function F(t) = FoH(t), the Laplace transform of the force is given by Fy/s.
Equation (P8.3.1) can be expressed by taking the Laplace transformation as:

MIs? + (c/M)] U =Fy/s, (P8.3.3)
where U is the Laplace transform of the displacement u. U can be calculated by

U = Fy/Ms(s? + wg?) = (Fo/Mwo®){1/s — (1/2)[1/(s + jew) + 1/(s — jwo)l},

or? eI (P8.3.4)

Accordingly, using the inverse Laplace transforms (Item (1) and (5) of Table 6.1),
we can obtain:
u(t) = (Fo/c)[H(t) - coswyt]. (P8.3.5)

As illustrated in Figure 8.6, the step force excites a sinusoidal displacement
vibration of a discrete component of mass M, superposed on a step bias position.
Here, the time scale T is equal to the resonance period, 27t/ wq (=27tv/M/c). When
we neglect the damping factor, the vibration ringing will continue forever. Note
100% overshoot for every vibration. When we consider the damping factor g, as in
the LCR circuit in Figure 8.5b, the ringing will diminish gradually with the expo-
nential envelope curve of the time constant T inversely proportional to the damping
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factor. Unlike the “continuum media” in Section 8.3.2, the “discrete component
system (such as “equivalent circuits”) does not generate linear displacement, but a
sinusoidal response.

7

Figure 8.6. Sinusoidal displacement response to Heaviside step function force in
a discrete component system. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed.
CRC Press, 2019; p. 314. Reproduced by permission of Taylor & Francis Group.

8.3.3. Displacement Response to a Pulse Drive in the k3; Mode

Next, let us consider the response to a rectangular pulse voltage such as the
one pictured in the top left-hand corner of Figure 8.7a [5]. From (11) of Table 6.1, we
begin by substituting

E = (Eg/s)(1—e L)/7y, (8.20)

into Equation (8.17), which allows us to obtain the displacement AL for n =1, 2, and
3. The quantity 7 is a time scale based on a half of the resonance period (=T/2) of the
piezoelectric plate.
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Figure 8.7. (a) Transient displacement AL produced by a rectangular pulse voltage.
(Note that the time interval, T = (2L/v), corresponds to the resonance period of the
piezoelectric plate.) (b) Measurement on a bimorph tip displacement produced
by a pulse voltage. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press,
2019; p. 316. Reproduced by permission of Taylor & Francis Group.
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Forn=1,

U(s,x = L) = d31 Eg(v/s?)(1 — e CL/9)2 /(1 + e~ (L)) 8.21)
= d51Eg(v/s%)(1 — 3¢ L/0 + 4= BL/0 — go=35L/v ), '
Similar to the “Heaviside Step” case, the base function of U(s,L), 1/ s2, gives
the base function of u(t,L) in terms of t. The inverse Laplace transform of Equa-
tion (8.21) yields:

u(t,L) = dz1Equt O<t<L/v,
u(t,L) = d31Equ[t — 3(t — L/v)] L/v<t<2L/v, (8.22)
u(t,L) = dz1Equ[t — 3(t — L/v) + 4(t — 2L /v)] 2L /v <t <3L/v. '

The transient displacement, AL, produced by the rectangular pulse voltage is
pictured in Figure 8.7a (top-right) for n = 1. Only during the first (T/2) period (i.e.,
the field pulse applied period) the edge vibration velocity (du/0t) is one half of the
following continuous ringings with the resonance period of T = (2L /7).

For 1 = 2, since E = (Ey/s)(1 — e~?9)/?) includes the denominator of Equa-
tion (8.17),

U(s,L) = d31 Eg(v/s?) (1 — 2¢5L/0 4 g~ 2L/0y, (8.23)
Thus,
M(t,L) = d31E00t O<t<L/v,
u(t,L) = ds1Eqou[t — 2(t — L/v)] L/v<t<2L/v, (8.24)

u(t,L) =ds1Egu[t — 2(t — L/v) + (t —2L/v)] =0 2L /v <t<3L/v.

In this case, the displacement, AL, occurs in a single pulse and does not exhibit
ringing as depicted in Figure 8.7a (bottom left). Remember that the applied field E
should include the denominator term (1 + e~*1/?) to realize finite expansion terms,
leading to a complete suppression of vibrational ringing.

For n =3, U(s,L) is again expanded as an infinite series:

U(s,x = L) = d31 Eg (v/82)(1 — e~ GL/0) (1 — ¢~ 6L/ /(1 4 e~ CL/2))

= d31E0(v/s2)(1 — e SL/v  Dp=25L/v _ 3p=35L/v 4 ge—4sL/v _ gp=5sL/v ). (8.25)

The displacement response for this case is pictured in Figure 8.7a (bottom right).
Note the displacement slope (plate edge vibration velocity) has twice the difference
among the field applied period and zero field.

Figure 8.7b shows the measurement data collected on a PZT bimorph tip dis-
placement produced by a pulse voltage; 10 ms corresponds to the resonance period
of this bimorph. Notice that the ringing is completely eliminated for n = 2; the pulse
width is adjusted exactly to the resonance period, and that the displacement curve is
linear or a triangular sequence. Though the bimorph configuration is different from
the k3; plate, the transient response mechanism seems to be similar to handle.

How precisely does the pulse width need to be adjusted? The calculated tran-
sient vibration for n = 1.9 appears in Figure 8.8. Notice the small amount of ringing
that occurs after the main pulse. The actual choice of n, then, will depend on the
amount of ringing that can be tolerated for a given application.
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Figure 8.8. Transient displacement, AL, produced by a rectangular pulse voltage
(n =1.9). Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 317.
Reproduced by permission of Taylor & Francis Group.

8.3.4. Displacement Response to a Pseudo-Step Drive in the k3; Mode

Next, we consider the displacement response of a rectangular plate to “pseudo-
step voltage” as illustrated in the top left of Figure 8.9a. The Laplace transform is
provided by the subtraction of a straight line 1/s* with the time difference of (nL/v)

((12) of Table 6.1):

Substituting Equation (8.26) into Equation (8.17), we will repeat similar calcula-
tions to the above to obtain the displacement AL for the time scale n =1, 2, and 3 (the
time unit is one half of the resonance period (L/v). The difference from Section 8.3.2
is in the base function of U(s,L), 1/s°, which gives the base function of u(t,L) as 2/2

(parabolic curve).

E = (Egv/nLs*)(1 — e "L/?),
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Figure 8.9. (a) Transient displacement AL induced in a rectangular plate for a
pseudo-step voltage. The time scale 7 is based on 1/2 of the resonance period
T. (b) Measurement on a bimorph tip displacement produced by a pseudo step
voltage. Source: Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press,
2019; p. 318. Reproduced by permission of Taylor & Francis Group.
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Forn=1,

2 /3 —sL/032
U(s, L) = (dg1 Eo/L)(02/5%) (1—e*17)
’ 1 sL/v
- 2 73V st/v( +e ,ZQL/U _ 4.—3sL/v o ... (8.27)
(ds1E,/L)(v*/s”)[1 — 3e 4+ 4e A N

Notice that the base function of U(s,L), 1/s%, will lead to a base function of u(t,L) in
the form 2 /2 (parabolic curve), such that:

u(t,L) = (ds31 Egv? /2L)t> 0<t<L/v,
u(t,L) = (d31 Eqv? /2L)[t> — 3(t — L/v)?] L/v<t<2L/v, 8.8
u(t,L) = (d31Egv? /2L)[t? — 3(t — L/v)? + 4(t — 2L/v)?] 2L/v <t <3L/v. (8.28)

The transient displacement for an actuator driven by the pseudo-step voltage
pictured in the top right of Figure 8.9a is seen to exhibit continuous ringing. Notice
that this curve is actually a sequence of parabolic curves. It is “not”sinusoidal!

Forn=2,
U(s,L) = (d31 Eo/2L)(@0% /$3)[1 — 2e7SL/? 4 ¢~ 2L/7), (8.29)
Thus,
u(t,L) = (d31E002 /4L)i’2 O<t<L/y,
u(t,L) = (d31 Egv? /4L)[#2 — 2(t — L/v)?] L/v<t<2L/v, (8.30)

u(t,L) = (d31Egv? /AL)[1? — 2(t — L/v)? + (t — 2L/)?] = (d31EoL/2) 2L/v < t.

Neither overshoot nor ringing is apparent in the response for this case (i.e., the rise
time is set exactly to the resonance period) represented in Figure 8.9a (bottom left).
“When the Laplace transform of applied field E includes the term (1 + ¢~*L/?), the
expansion series terminates in finite terms, leading to a complete suppression of
mechanical ringing”.

For n =3, U(s,L) is again expanded as an infinite series:

U(s,L) = (d31Eo/3L)(0% /s3)[1 — 2L/ 4 0= 25L/0 _ 3p=35L/v  gp=4sL/v _ gpo=5sL/v 1 (8.31)

The displacement response for this condition is represented by the curve appearing
in Figure 8.9a (bottom right).

As shown in Figure 8.9a, AL does not exhibit overshoot nor ringing for n = 2.
However, for n = 1 and 3, the overshoot and ringing follow continuously. Note again
that all the curves are composed of parabolic curves (“not” sinusoidal!) and that
the heights of the overshoot are 1/2 (50%) and 1/6 (17%) of d3; EoL, respectively, for
n=1and 3.

You can also understand that the strain in the specimen is generated linearly
(not suddenly) with time, since the electric field changes such. Figure 8.9b shows
the measurement data collected on a PZT bimorph tip displacement produced by a
pseudo-step voltage; 10 ms corresponds to the resonance period of this bimorph.

This derivation process suggests an empirical process on how to suppress the
overshoot and/or ringing in a piezoelectric actuator system:
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(1) By applying a relatively steep rising voltage to the actuator, we can obtain the
resonance period first from the time period between the overshoot peak and
the successive peak point.

(2) Next, by adjusting the voltage rise time exactly to the resonance period, we can
eliminate the overshoot and/or ringing of the system vibration.

In other words, without using a mechanical damper (which loses energy), we
can diminish vibration overshoot or ringing just by adjusting the pulse width or
rise time of the applied voltage, which does not in fact lose energy. This procedure
is the key to the system development, having already been adopted to the diesel
injection valve control, inkjet printer, and cutting edge/tool position change with a
piezoelectric actuator in lathes, or other cutting machines.

8.3.5. Consideration of the Loss in Transient Response

In order to integrate elastic loss into Equation (8.5), pZ4 5 t2 = 5%327”2‘, we add a
11

viscous damping force term in proportion to the time derivative as

Pu 1 du 3u
ou_ ou 2
o = oE a2 T Toxat (8.32)

Taking the Laplace transformation, we obtain

U = 22 4 (1)s2Y = 22Uy ()]

Then,
U s2 _ 2 a2u.
(1 + gs) dx?2

(8.33)

The displacement U(s,L) can then be obtained by making the following substitu-

tion in Equation (8.17):
s

VI+ T

Since this solution includes a complicated “error function”, an approximate
solution for the piezoelectric resonance state was determined by Ogawa [6]. Recall
the “discrete component” system introduced in Chapter 6, with which we could
properly account for loss effects. With the damping factor ¢, the following equation
has been solved rather easily:

il + 20wt + wo?u = f(x) or Us? + 20wolUs + wo?U = F(s).
This indicates the application limitation of the “equivalent circuit” to a continuum
media specimen.

Experimental results appear in Figure 8.10 [7]. The displacement AL produced by
a rectangular pulse voltage observed in this investigation is similar to the results shown
in Figure 8.9, except for the vibrational damping. With the loss inclusion, the triangular
shape is rounded and the amplitude is significantly damped. However, we still see
that when the pulse width of this rectangular voltage is adjusted to the piezoelectric
resonance period, T, or integral multiples of it, the vibrational ringing is eliminated.

(8.34)
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Figure 8.10. Displacement response of a lossy piezoelectric actuator under a rect-
angular pulse voltage. (a) Pulsewidth = T/2; (b) pulsewidth = T; (c) pulsewidth =
3T /2. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 320.
Reproduced by permission of Taylor & Francis Group.

8.4. Mechanical Pulse Drive on Piezoelectrics

In this section, we consider “impulse stress” applications, such as in a PABM
(programmable air-burst munition for 25 mm ¢ caliber) and a lightning switch (remote
control relay switch) [8]. This analysis is the basic theoretical approach of the electric
energy process on a piezoelectric specimen under an impulse stress application.

When an impulse force is applied to a piezoelectric actuator, an electric volt-
age/current vibration is excited via a mechanical vibration, the characteristics of
which depend on the pulse profile. Voltage overshoot and ringing are frequently
observed in piezoelectric “igniters”, even if we start from a compressive stress input.
Because the pulse drive may lead to the destruction of the piezo-actuator due to the
large tensile stress and high voltage associated with the vibration overshoot, we need
to more precisely examine the transient response of a piezoelectric device driven
by pulse stress. The reader is reminded that an “equivalent circuit” with a discrete
component cannot be adopted in the transient response analysis (including the stress
wave propagation) under the impulse drive.

8.4.1. Vibration Mode in the k3;-Type Plate

Once again, we consider a longitudinal mechanical vibration in a simple piezo-
electric ceramic plate via the transverse piezoelectric effect d3; with thickness b,
width w, and length L (b << w << L), pictured in Figure 8.2. If we summarize the
assumptions again:

(1) Only E; exists, because E = E, = 0 due to the electrodes on the top and bot-
tom, and;

(2) Only X; exists, because X, and X3 may be set equal to zero through the plate
because the plate is very long with thin thickness and width. Under a low to
fundamental resonance frequency range, only the following two equations are
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essential to solve the dynamic equation around the resonance/antiresonance fre-

quencies:
x1=s511"Xq +dn E, (8.35)

D3 = d31X1 + 80833XEZ. (8.36)

We start from the following dynamic equation for the stress operation:

9%u 1 0%u
— pum— _— T . . 7
Par = SE a2 (8.37)

General Solution for Longitudinal Vibration k3; Mode

We solve Equation (8.35) for a piezo-plate, using the “Laplace transform”. Equa-
tion (8.35) can be transformed by Laplace Theorem (b), by denoting the Laplace
transforms of u(t,x) and E,(t) as U(s,x) and E (s), respectively (x: coordinate along
plate length):

92U(s, x)
osE 52U (s, x) = T R (8.38)
We assume the following initial (¢ = 0) conditions:
Displacement: u(0,x) = 0 and velocity: w =0.
We also make use of the sound velocity v along the x direction that:
psiF =1/ (8.39)

To obtain a general solution of Equation (8.36) in terms of space coordinate x,

we assume:
U(s,x) = Aet¥/?) 4 Be=(x/0), (8.40)

Now we consider the input force (pressure) F(t) on the both ends of the piezo-
plate. Since the stress is defined as positive for the tensile, we obtain

F(t) = —bwX4(t), (8.41)
and Equation (8.33) is transformed with the geometrical boundary condition X; = X(¢)
atx=0and L: i E

X(t) = 1= e 2), (8.42)
511

We denote the Laplace transform of external stress X(t) as X(s). We also utilize
the fact on the strain that:

L[x1] = (OU/9x) = A(s/0)e*/?) — B(s/v)e™ */V). (8.43)

Short-Circuit Condition

Equation (8.42) is reduced to xq = s11EX(f) at x = 0 and L, because of E, = 0. Thus,
using Equation (8.43) yields the following two equations to solve the parameters A
and Batx=0and L:
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A(s/v) — B(s/v) = s1EX, N
A(s/0)eL/?) — B(s/v)e~ 6L/0) = 511 EX.

Thus, we obtain
sfl)?(l — e/

A= (o o)l — e (8.44a)
E X 1 — sL/v
_ X - (8.44b)
(S/U) (esL/v _ e—sL/v)
and, consequently, Equations (8.40) and (8.43) become:
u(s,x) = shX(2) 5] (8.45a)
5 cosh(%)
. ~sinh[s(2§;”}
L{x1(s,x)] = s11 X (8.45b)
cosh(%)
By transforming the above equations into
E )/Z _s(Lv—x) _s(L;—x) _ _% _ _s(ZLU—x)
U(s,x) = uX@/s)le e T ez 5 (8.46a)
(1—e %)
E 5{ _s(Lv—x) B _s(L;—x) _% _ _s(ZLU—x)
Lix] = uXl ¢ T re e 5 (8.46b)
(1—e7)

and making use of the expansion series
1/(1 — 6—251/0) =1+ 2l/v 4 p=4sl/v  p=6sl/v, .

the strain, x; (#,x), can now be obtained by shifting the s, X(t) curve with respect to ¢
according to Laplace Theorem (e). That is to say, the strain profile x;(t,x) should be
exactly the same as the stress profile X(t), and the displacement profile is the inverse
Laplace of lel)z (%). We may also consider that since u(t,L/2) = 0 (from U(s,L/2) = 0)
and u(t,0) = —u(t,L) (from U(s,0) = —U(s,L)) (i.e., symmetrical vibration), the total
displacement of the plate device AL becomes equal to 2u(t,L). We finally arrive at the
following relation:

2sE X(2)(1—e ¥
AL = 2U(s L) = 1 6 () — 2sE, X(v/s)[tanh(sL/20)].  (8.47)

(1+e_%)

(a) First, we consider a particular input of “Heaviside step stress” X(t) = XqH(#).
Since the Laplace transform of the step function is given by (1/s) (Item 1 of
Table 8.1), the total displacement Equation (8.47) can be expressed by

2U(s,x = L) = 2511 EXo(v/s2)(1 — e~ 6L/0)) /(1 4 e~ 6L/0))

= 2511 EXp(0/52)(1 — 2~ GL/9) 1 2= (5L/0) _ pp=3sL/v | pp—4sL/v. ). (8.48)
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Note that the base function of U(s,L), 1/52, gives the base function of u(t,L) in
terms of ¢ (i.e., o< t, Item 3 in Table 8.1). The inverse Laplace transform of Equa-
tion (8.48) yields (by superposing the e~*f terms via the Laplace transformation
Theorem (e)):

2u(t,L) = 2511 E Xgot 0<t<L/v,

2u(t,L) = 2511 EXou[t — 2(t — L/v)] L/v<t<2L/v,

2u(t,L) = 2511 E Xgu[t — 2(t — L/v) + 2(t — 2L/v)] 2L/v<t<3L/v, (8.49)
2u(t,L) = 2511 E Xou[t — 2(t — L/v) + 2(t — 2L/v) — 2(t — 3L/v)] 3L/v <t <4L/v.

The transient displacement, AL (=2u(t,L)), produced by the step stress is pic-
tured in Figure 8.11a (here Xy is positive for the tensile). The fundamental resonance
period of this piezoelectric plate corresponds to (2L/v), and the time interval in
Equation (8.49) is every (T/2). It is worth noting that the displacement changes “lin-
early”, not sinusoidally. Note that the vibration “ringing” will continue permanently
when we neglect the loss.

[ =
(b) (©

Figure 8.11. (a) Total displacement AL; (b) strain x; at the point x = L/4; (c) strain
wave dynamic profile, responding to a Heaviside step input stress in a continuum
piezoelectric plate (the k3; mode). Source: Figure by author.

The strain distribution on a piezoelectric plate is also intriguing for this step
excitation case. From Equation (8.45b), L(x1) is directly proportional to X; that is the
strain distribution x;(x) exactly follows X(t), the Heaviside step function. The strain
x1 at a certain point x becomes “s11EXo” suddenly from “zero” with a certain time
lag depending on its coordinate x. Figure 8.11b shows the strain change with time at
the point x = L/4, which indicates two discrete strain levels 511Xy, and 2s11E X for
different time intervals. Strain wave dynamic modes are illustrated in Figure 8.11c.
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The strained portion starts from both ends (x = 0 and L) of the piezo-plates at the
time of step force applied at these ends. These two symmetrical boundaries/walls
between the strained and strain-free portion (analogous to a shockwave) propagate
with a piezo material’s sound velocity, vf;, in opposition to each other, crossing over
at the plate center, then generating the doubly strained part in the center area (i.e.,
2511EX(). Thus, when the wall reaches the plate end, the plate length becomes the
maximum (AL = 2s11F XoL), and we can understand the reason why 100% overshoot
occurs under the step force applied. Note also that a minimum of one half of the
resonance period T/2 is required to reach to the maximum total displacement.

Because the ceramic is weaker for the tensile stress than for the compressive
stress, the ceramic plate may collapse T/4 later after the initial pressure applied
(i.e., when the doubly strained part is initiated). After T /2, the wall bounces back
in the opposite direction, and the plate starts to shrink linearly according to the
shrinkage of the strained portion. The linear displacement change is originated from
the constant wall velocity (which is equal to the piezo material’s sound velocity).
This triangular vibration ringing will remain long if the loss is small. The reader
is reminded that the step-like force/stress application generates a distinct step-like
strain discontinuity in the specimen, and this wave front propagates in the specimen
with a sound velocity. The vibration ringing will continue for a long period with the
average bias displacement at AL = s11E XL, as seen in Figure 8.11a. When you use an
Equivalent Circuit (EC) analysis, you will only obtain the sinusoidal vibration ringing
even under a step stress, because it cannot handle the step-like strain discontinuity
inside the ceramic specimen (the EC will handle a specimen just as a discrete spring
without the spring size and position).

(b) Next, let us consider the response to a “rectangular pulse stress” such as that
pictured in the top left-hand corner of Figure 8.12. This model corresponds to
practical clicking, kicking the piezo-plate. We begin by substituting

X = (Xo/s)(1 — e~ L)/vy, (8.50)

into Equation (8.47), which allows us to obtain the displacement AL forn =1,
2 and 3. The quantity n is a time scale based on a half of the resonance period
(=T/2) of the piezoelectric plate.

Forn=1,

U(s,x = L) = s11EXp(v/s?)(1 — e~ CL/D)2 /(1 4 e~ GL/0))

Sl
=511EXo(v/s?)(1 — 3e7SL/0 4 4= 2L/v _ ge=3L/v 4 ), (8:51)

Similar to the step case, the base function of U (s,L), 1/ 2, gives the base function
of u(t,L) in terms of t. The inverse Laplace transform of Equation (8.51) yields:

2u(t,L) = 2511 E Xt 0<t<L/v,
2u(t,L) = 2511 E X[t — 3(t — L/v)] L/v<t<2L/v, 8.52)
2u(t,L) = 2511 EXou[t — 3(t — L/v) + 4(t — 2L /)] 2L/v <t <3L/v. '

The transient displacement, AL, produced by the rectangular pulse stress, is
pictured in Figure 8.12 (top right) for n = 1. The resonance period of this piezo-
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electric plate corresponds to (2L/v). Notice how continuous ringing occurs under
this condition.

For n = 2, since X = (Xo/s)(1 — e~ L9/?) includes the denominator of Equa-
tion (8.47),

U(s,L) = s115Xo(v/s%) (1 — 2e5L/7 4 o= 2L/0y, (8.53)
Thus,
2u(t,L) = 2511 EX ot 0<t<L/v,
2u(t,L) = 2511 EXou[t — 2(t — L/v)] L/v<t<2L/v, (8.54)

2u(t,L) = 2511 EXou[t — 2(t — L/v) + (t — 2L/v)] =0 2L/v < t<3L/v.
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Figure 8.12. Transient displacement AL produced by a rectangular pulse stress
with the pulse width of 1, 2, 3 of n(T/2). Note that the time interval, T = (2L/v),
corresponds to the fundamental resonance period of the piezoelectric plate. Source:
Figure by author.

In this case, the displacement, AL, occurs in a single pulse and does not exhibit
ringing as depicted in Figure 8.12 (bottom left). Remember again that the applied
field X should include the denominator term (1 + e ~55/?) to realize finite expansion
terms, leading to a complete suppression of vibrational ringing.

For n =3, U(s,L) is again expanded as an infinite series:

2U(s,x = L) = 2511EXo(0/5%)(1 — e~ GL/D)(1 — ¢~ 6L/2)) /(1 4 e~ (L/2))

— 2511EX0(U/52)(1 _zest/v + 28725L/v o 36735L/U + 4674514/0 . 46755L/v L ) (855)

The displacement response for this case is pictured in Figure 8.12 (bottom right).
Note the displacement slope (plate edge vibration velocity) has twice difference
among the stress applied period and zero stress.
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The short-circuit condition, E, = 0, yields the current response. The constitutive
equation of the electric displacement, D3 = d31 X + eoea3<E,, becomes simply D3 =
d31X;. Integrating this equation with respect to the electrode area

Q= waL Dsdx,

and from x1 = s11£X7, we obtain

= wd31/X1 X = wd—zl x1dx = wﬂAL (8.56)
11 ST

Since the total current is provided by I = %—?, and AL = 2u(t, L),

0Q  d3 0

1= %% —
ot ~ VSE ot

(2u(t, L)). (8.57)

The total current response profile with time is given by the slope of the total

deg,l )

displacement AL. The proportionality constant (=31 ) against the vibration velocity

u(t, L) at the plate edge is called the “force factor Or, since the Laplace transform
of the total displacement is expressed by

25%%(0/5)(1— e’SL/”)

ZU(S, L) - (1+€—5L/v)

= 2sF, X(v/s)[tanh(sL/20)],

we may express the Laplace transform of the total current T as

I = 2wdz Xotanh( %). (8.58)

Here L[% (u(t, L))] = sU(s, L) was used. Figure 8.13 illustrates the transient dis-
placement AL (top) and current I (bottom) produced by rectangular pulse stress with
a pulse width of 1, 2 of n(T/2). Note that the time interval, T = (2L/v), corresponds
to the resonance period of the piezoelectric plate.

In conclusion, when we use the impulse stress input, the pulse width is impor-
tant: when the pulse width is exactly equal to the resonance period of the device, no
vibration ringing is followed, which is helpful to stop the temple bell timbre echo
completely. On the contrary, in order to generate “large displacement continuous
vibration ringing” for purpose of energy harvesting (Subsection Impedance Matching
Load Condition), the pulse width should be adjusted to:

(1) Exactly T/2 to obtain 100% overshoot (never take exactly to the resonance
period T);

(2) Longer than 100T (with high Q) to practically realize the “negative Step-force
(T = 0.01 ms).

When we account for loss effects, the Laplace transform of the displacement
U(s,L) can be obtained by making the following substitution in Equation (8.38):

7

S

V1 + ¢s
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Figure 8.13. Transient displacement AL (top) and current I (bottom) produced by a
rectangular pulse stress with the pulse width of 1, 2 of n(T/2). Note that the time
interval, T = (2L/v), corresponds to the resonance period of the piezoelectric plate.
Source: Figure by author.

Open-Circuit Condition

The open-circuit condition means the total current I = 0, which yields the voltage
response generated on the electrode. Remember that the mechanical resonance under
the short or open circuit corresponds to the piezoelectric “resonance” or “antireso-
nance” frequency, respectively, which indicates that the vibration ringing time period
under the open-circuit condition should be “shorter” (i.e., elastically stiffer!) than
that under the short-circuit condition. When the electromechanical coupling factor is

not large, the antiresonance frequency is given by fg ~ (vF/ 2L)(1—|—(%)k§ ) higher

than the resonance frequency f4 = (v /2L). Integrating the constitutive equation of
the electric displacement, D3 = d31 X1 + o€z E,, with respect to the electrode area

L L
Q= w/ D3dx = w/ [dy X1 + eoens Ez]dx. (8.60)
0 0
While, from Xl =X1 /SllE — (d31 /SllE)EZ, we obtain
L 1 (L
/ Xydx = / (x, — d3 Ex)dx. (8.61)
0 s11/0

Knowing that fOL x1dx = 2u(t, L) and E,(t) = constant in terms of the coordinate
x, inserting Equation (8.61) into Equation (8.60), we obtain
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Q= w{ (@1) [2u(t,L) — d31 E; L] +50£§3EZL} = w{ <d31 )Zu(t L) +eoeds (1 — k3, ) Ex(t) } (8.62)

1 bl

The open-circuit condition, I = aa—? = 0, results in the relation between the
electric field E, and the total displacement 2u(t, L) as

o, K, 1 9
at._—(l_ké)L%lgzmﬁL) (8.63)

Thus, the open-circuit boundary condition indicates that time dependence of E,
is negatively proportional to the time dependence of average strain AL/L. It should
also be noted that u(t, L) = —u(t,0), symmetric for the displacement profile. In other
words, the Laplace transform describes

E_ K, 2
(1 - k%l) Ldz

U(s,L). (8.64)

This electric field is a sort of “depolarization field” along the thickness direction,
originating from the D-constant condition merely along the z direction. If the D-
constant condition is held for all x, y, and z directions, the sound velocity will be oD,
However, in this k31 case, the sound velocity along the x direction is still v¥, because
of the top electrode covering all length directions.

Thus, we solve the same dynamic equation as that under the short-circuit condition,

8214 8X1
Since agil = %a% - ’S% aa and the top and bottom electrodes keep the po-
tential /voltage constant along the x direction, % = 0, the dynamic equation
(Equation 8.65) is reduced to:
0%u 1 d%u
% FY- % 32 (8.66)

Note here again that x; = a” . To obtain a general solution of Equation (8.66) in
terms of space coordinate x, we assume

U(s,x) = Ae*/?) 4 Be=(¥/0), (8.67)

Here, we denote the sound velocity v = 1//psk; along x axis. Since the plate
surface is electroded, the sound velocity along the length direction is the same for
both short- and open-circuit conditions. Now we consider the input force (pressure)
F(t) on both ends of the piezo-plate. Since the stress is defined as positive for the

tensile, we obtain
F(t) = —bwXy(t), (8.68)
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and the “geometrical boundary condition” X; = X(t) at x =0 and L:

(x7 — d3Ey)
sk '
11

X(t) = (8.69)

We denote the Laplace transform of external stress X(t) as X(s). We also utilize
the fact on the strain that:

L[x1] = (OU/9x) = A(s/0)e*/?) — B(s/v)e™ */V). (8.70)

If we rewrite Equation (8.69) as sfl)N( (s) = L[x1] — d3 E, and using Equation (8.64),
we obtain
k2 SU(s, L). (8.71)
(1-k3) L '

Different from the short-circuit condition, the external stress under the open-
circuit condition generates the total displacement term (second term of Equation (8.71))
originating from the induced electric field E, (depolarization field). Using Equations
(8.67) and (8.70), and U(s, L) = —U(s,0) yields the following two equations for the
condition at x = 0 and L to solve the parameters A and B:

shX(s) = L[x1] +

AGs/0) — B/0) 2k2) 2[4 + B] = s,EX,

A(s/v)eL/?) — B(s /v)e GL/?) +(1 3}(12) 2[AeBL/) 4 Be= 6L/ = 511 EX.
)

Thus, we obtain

A= 5 (8.72a)
esL/v[(%) (21(2 /L — e sL/v (%) 2K2 ]
I (1 - eF) - (Bh) (1+ o
_ 5, (8.72b)
esL/v[(S) (2](2 /L — e sL/v (%) _ 2K2 /L)]
Where we use a hew notation
2 &
K , (8.73)
-8

and, consequently, U(s, L) is expressed as:

U(s, x) = Ae + Be~ (%) =
SER(—2(2) e {(;)+(2’<§1)}+e%{(;)(%§1)}}' (8.74)

esL/0[(2)+(2K3, /D — g—sL/v[<%>—(2K§1/L)]2
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It is important to note that when we consider the e~ % term, which is essential
to sum up the time shift functions for future intervals with the unit of T/2 = L/v, the
term is composed of [s — (2K3,0/L)], not merely of s. When we take into account s
on the (angular) frequency domain replaced by w, the new w at the antiresonance
condition [w4 — (2K%;v/L)] seems to be equal to the resonance frequency wg, which
was discussed in the previous section; that is, the antiresonance frequency is higher
than the resonance frequency, and the difference is proportional to K%, (modified
electromechanical coupling factor). Since further calculations are complicated, only
the expected results are described here. Figure 8.14 illustrates the transient dis-
placement AL produced by a rectangular pulse stress under open-circuit conditions
excited by the pulse width slightly shorter than (T/2) = L/, that is, half of the
fundamental antiresonance time period T4 /2 = # /(1+ %kél). We expect similar
triangular (linear) displacement change to the case in the short-circuit condition. The
voltage/electric field change with time should be a similar triangular shape expected
from Equation (8.64).

AL A

Closed-circuit

25, XL

Figure 8.14. Transient displacement AL produced by a rectangular pulse stress
under open- and short-circuit conditions with the pulse width close to (T /2). Source:
Figure by author.

We discussed Subsections Short-Circuit Condition and Open-Circuit Condition
under short-circuit and open-circuit conditions, in both of which we cannot expect
any electric energy harvesting in practice. In order to cultivate the energy, a suitable
electrical resistive impedance should be connected in the external circuit.

Impedance Matching Load Condition

An external electrical impedance Z is connected to a piezoelectric k3; plate
(Figure 8.15). When we assume impulse input stress X = X/ (t), the output electric
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charge Q (i.e., no loss, no time lag) under the vibration ringing-down process at
almost the fundamental resonance frequency can be described as:

L L
Q= w/o D3dx = w/o [dy X1 + e0e Exdx. (8.75)

While, from X; = x1/s11F — (d31/511F) Ez, we obtain

L

L
/ Xydx = - / (x, — d3 Ex)dx. (8.76)
0 °11

Knowing that fOL x1dx = 2u(t, L) and E,(t) = constant in terms of the coordinate
x, and inserting Equation (8.76) into Equation (8.75), we obtain

Q= w{ (d—ill>2u(t,L) + ey (1 — k%l)Ez(t)L}. (8.77)

511

Piezo-actuator

|
l
|
|
|
{
|
Zy = Ljw e | 7 J/lout
: s
|
|
|
|
|
|

Figure 8.15. Electric energy harvesting model under the external electrical
impedance Z on a piezoelectric actuator. Source: Figure by author.

Note here that the motional capacitance enhancement can be neglected in this
off-resonance scenario due to no vibration enhancement via the mechanical quality
factor Qy, during the ringing-down process after impulse stress. Taking Laplace
transform formulation for the force Xy and total polarization Q, Q = d3; Xo,

b . .

I = a—? = Ijn + tout,

Zintin = Ziout,

I=sQ=CsV+ % = sd31§(v0.
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Thus, the effective impedance and the voltage/force relation is obtained as

1% 1

== - (8.78)
I sC + 7

‘7 Sd31

== o (8.79)
0 sC + 7

e  When we adopt the step force, that is XVO = Xp/s, we can obtain the voltage

d3nXo _ dnXo 1
(sC+%) C st

Taking an inverse Laplace transform, we obtain the voltage change with time
for the first impact as

V = (dy Xo/C)e /€. (8.80)

However, this analysis leads the reader in the wrong direction: we do not
consider the vibration and voltage ringing with the resonance frequency, but consider
just one-time polarization generation.

e  When we approximate the vibration ringing after the impulse force as cyclic
(sinusoidal) natural (resonance) vibration (though the actual displacement be-
havior is linear, not sinusoidal), we may adopt Fourier transform by replacing
the above Laplace form with s = jw for relatively long time-period. Here, w
is considered to be the natural resonance frequency under the Z-shunt condi-
tion. The dynamic impedance of the piezo component (off-resonance) becomes

. iwda X . . .
1/jwC. From V = ijIJr% = ]]‘:)gjrg and [ = ip,¢(1 + jwCZ), the output electric

energy is described as

1 (wdXg)?
57 T CZD (8.81)

1 1. .
|P|out = E Re[EVZOMf*] =

2y2
The maximum power energy | P| = 1 wdCXO can be obtained when the external

impedance is adjusted to

Z=1/wC. (8.82)

In other words, the maximum “stored” electric energy can be spent by half when
the external resistive load impedance matches exactly to the internal impedance.
This is called resistive “electrical impedance matching”.

We now calculate the “input mechanical energy” under Z-shunt condition from
the second constitutive equation:

Jjwdz1 Xo

+s11EX. (8.83
%Jrij 1 (8.83)

1% d
x =dsiE + 511" X = —ds (3) +sfX =— (%)
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The last transformation used Equation (8.79). We obtained effective elastic
compliance as

sy = % = sE[1 - k312(1fj—¢cuzcz)]' (8.84)
Under Z = 1/wC, Equation (8.84) becomes
strp=st(1— %kglz + %kglz). (8.85)
The resonance period T may be estimated as
1. 2
T =2L psfff =To(1— stl ), (8.86)

which is shorter than the short-circuit condition Ty, but longer than the open-circuit
condition Ty(1 — 25k% ).

Let us calculate the energy spent in the external impedance Z, which should be
the matched external impedance of the piezoelectric energy harvesting system. The

2
“impulse” vibration energy Uy (time averaged by [}, ¢ .\, 32%-dt) is transformed

into electric energy Uf by the factor of k> (U = Uy, x k?), then a half of this energy
can be spent accumulating into a rechargeable battery ((1/2)k* x Uy;) when we
take the exact matching impedance condition for the piezo component. For the
next half cycle (i.e., opposite voltage and current during shrinkage), we start from
the mechanical energy (1 — k?/2)U,,, without taking into account the elastic loss
(tan qbl < 1) in the system. As the square of the amplitude is equivalent to the amount
of energy, the amplitude decreases at a rate of (1 — k?/2)!/2 times with every vibration
repeated. If the resonance period is taken to be T, the number of vibrations for ¢

sec is 2t/ Ty. Consequently, the amplitude in t sec is (1 — k?/ Z)t/To. If the residual
vibration period is taken to be Ty, the damping in the amplitude of vibration is f sec
and can be expressed as follows:

(1—Kk2/2)"T0 = et/ (8.87)

Thus, the following relationship for the time constant of the vibration damping

is obtained.
T

T (11— k2/2)

(8.88)
If we consider the elastic loss (tan 4)/ which corresponds to the damping constant

T5), the energy decay will be (1 — k?/2)e~T0/27511); every half cycle. Note that elastic
loss or its inverse “mechanical quality factor” Qs are related with 7g as

TO 7T

— = — 8.89

s Qm (8.59)
A similar process will be repeated every half cycle during the ringing-down process
after the step force is applied. The sequential energy ring-down process can be
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summarized in Table 8.2. The total loss energy (after n time sequences) can be
calculated as

T n
172\ ,7 20
1 n 1 g n 1 1—1{(1— zk )e M]
“KPum Y. [(1 — -k2>e M| = kU . (8.90)
2 2 2 1- (1 - %k2)e‘*2 7

Table 8.2. Electromechanical properties of the commercial PZT ceramics.

Sequence n Mechanical Energy Electrical Energy Spent/Accumulated Energy
0 u KU Latll
1 1— 1g2 %T/ZQMU K2(1 — L1k2 ﬁ/7I'£/2QMU 1,2 122 iV;/ZQ

(1= 2k%)e ;M (1= 2k%)e hel 2k (1 — 3k%)e MzuM
2 [(1-3R)e @ un  R(1-3k2)e 2] Uy K(1- 3k )e 2] Uy
__n 3 __n 3 _ 3

3 [(1 - %kz)e 0um | Uy, kz[(1 - %kz)e 0u | Uy %kz[(l - %kz)e 0m | Uy,
. .,L n ' __m n ' __nm n
n [(1— %kz)e 0u | Uy kz[(l— %kz)e 0u | Uy %kz[(l— %k2)e 0u | Uy

Source: Table by author.

This indicates the following results according to the mechanical quality factor:

High Qps (~10,000) — Since the energy loss is small, the total energy accu-
mulated will reach almost the input mechanical energy U, after more than
10,000 ring-down processes.

Low Qs (~0.5) — Since the original damping is large, the total energy loss will

be %kzm, just slightly larger than %kz. This situation corresponds to only
one-time pulse displacement, discussed in Equation (8.80).

Figure 8.16 compares the transient displacement AL produced by rectangular
pulse stress under Z-shunt and short-circuit conditions with a pulse width close to
(T'/2). When we use a matching impedance, the vibration amplitude decay rate is
determined by k? /2. Note the resonance period is shorter for the Z-shunt than for
the short-circuit condition, while it is longer than that of the open-circuit condition.
The total energy accumulation reaches almost the input mechanical energy U, after
multiple (~100 cycles) ring-down processes.
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Figure 8.16. Transient displacement AL produced by rectangular pulse stress under
Z-shunt and short-circuit conditions with the pulse width close to (T /2). Source:

Figure by author.

Example Problem 8.4

In order to develop a piezoelectric energy harvesting device, a bimorph piezo-
electric element was prepared as shown in Figure 8.17a. An elastic beam was sand-
wiched with two sheets of piezoelectric ceramic plates, the characteristics of which
are summarized as:

Length Width Thickness Resonance K Mechanical
(mm) (mm) (mm) 7 Qm
25 16 0.5 294 Hz 0.28 30

Now, the bimorph edge was hit by an impulse force, and the transient vibration
displacement decay (i.e., damping performance) was monitored under several con-
nected external resistances, including short- and open-circuit conditions. Figure 8.17b
shows the measured displacement data, which vibrate at almost the bimorph funda-
mental resonance frequency (295 Hz). The damping time constant was minimized
in the vicinity of 7 k(), which is close to the resistive impedance 1/wC (C: bimorph
capacitance). From the data under short-circuit conditions, we obtain the damping
time constant 7; = 102 ms, while under a matching impedance 6.6 k(}, the damping
time constant is T = 40 ms. Calculate the possible electric energy harvested during
the vibration ring-down process under the matching impedance condition.
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Figure 8.17. Vibration damping change associated with external resistance change.
(a) Bimorph transducer for this measurement; (b) damped vibration with external
resistor. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 388.
Reproduced by permission of Taylor & Francis Group.

Solution

Since the bimorph exhibits the intrinsic damping time constant 7; = 102 ms,
the observed damping time constant T = 40 ms includes the intrinsic one. From

the relation , , ,
= —+ —. (P8.4.1)
Trotal Ts Tk

The electromechanical coupling-factor-related damping time constant is obtained as
T = 85 ms, which actually corresponds to the electric energy harvesting contribution.

Taking into account the resonance period Tp = 3.4 ms, from the equation for the
damping related with the electromechanical coupling factor,

_ T
(-5
we obtain k = 0.28, exactly the same as this bimorph k. obtained from the

impedance spectrum analysis.

Therefore, the total loss energy (after n time sequences) is given in Equa-
tion (8.90):

T=— (P8.4.2)

n

Ly 1~ (0 )

5 . (1 - %kZ)e‘ﬁ (P8.4.3)

After the impulse mechanical energy Uy on this bimorph with Qp ~ 30 and k = 0.28,
Equation (P8.4.3) becomes 0.22U; (summation from the first 30 pulses), which is
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between %kZUM (%k2 = 0.039) and U);. Because of low Q,, the loss seems to be
significant in comparison with loss-free (high Q) piezoelectric element.

Example Problem 8.5

We have a rectangular k3; piezo-ceramic plate (Figure 8.5). Using a Heaviside
voltage drive technique, the transient length displacement change is measured as
a function of time, and the displacement curve pictured in Figure 8.18 is obtained.
Explain how to determine the k31, d3; and Q,, values from these data. The density p,
and dielectric constant e33%, of the ceramic must be known prior to the experiments.
You may also use the relationship: Q;; = (1/2)woT, where wy is the resonance angular
frequency (i.e., 27t/ wy is the resonance period) and 7 is the damping time constant.

Applied Voltage
(V)

A\

Displacement
(um)

JES————

Resonance period

Figure 8.18. Pulse drive technique for measuring the electromechanical parame-
ters. Source: [2] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 279.
Reproduced by permission of Taylor & Francis Group.

Solution

The pulse drive method is a simple method for measuring high voltage piezo-
electric characteristics, developed in the ICAT/Penn State in the early 1990s. By
applying a step electric field to a piezoelectric sample, the transient vibration dis-
placement (i.e., “ringing-down”) corresponding to the desired mode (extensional,
bending, etc.) is measured under a short-circuit condition (see Figure 8.18). Be-
cause the equipment cost could be minimized (in comparison with a commercialized
expensive “impedance analyzer”), this method was used previously. Notice that
one-time high-voltage application (though multiple time measurements are tech-
nically accumulated with a certain interval) and the following short period (~ms)
ringing vibration do not generate a measurable temperature rise experimentally
(<0.2 °C). The resonance period, stabilized displacement, and damping time constant
are obtained experimentally, from which the elastic compliance sF, piezoelectric
constant d, mechanical quality factor Q,, and electromechanical coupling factor k can
be calculated. Using a rectangular k3; piezoelectric ceramic plate (length: L; width:
w; and thickness: b; poled along the thickness, as in the inserted figure in Figure 8.2),
we explain how to determine the electromechanical coupling parameters k31, d31,
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and Qy, step by step below. The density p, permittivity e33%, and size (L, w, b) of the
ceramic plate must be known prior to the experiments.

1.  From the stabilized displacement Ds, we obtain the piezoelectric coefficient d3:

D = ds EL. (P8.5.1)

2. From the ringing period, we obtain the elastic compliance sq1*:

To =2L/v11F = 2L(ps11F)/2. (P8.5.2)

3.  From the damping time constant, which is determined by the time interval to
decrease the displacement amplitude by 1/¢, we obtain the mechanical quality
factor Qy;:

Om =1/2)wot, (P8.5.3)

where the resonance angular frequency wg = 27t/T).
4. From the piezoelectric coefficient d3;, elastic compliance s11E, and permittivity

3%, we obtain the electromechanical coupling factor ks;:

ka1 = ds1/ (epeaXsi B)12. (P8.5.4)

On the other hand, the antiresonance Q; can be obtained as follows: by suddenly
removing a large electric field from a piezoelectric sample, and keeping the open
circuit, the transient vibration displacement corresponds to the antiresonance mode.
The bias electric field (and the vibration velocity) dependence of piezoelectricity can
be measured. One drawback is the vibration velocity level: due to just one-time
high-voltage application, the induced displacement or strain level is limited.

Chapter Essentials

1. The Laplace transform—Beneficial to impulse transient analysis
U(s) = Llu(t)] = [, e Stu(t)dt.
e Differentiation with respect to t:
L [d;@] — sU(s) — u(0),
L [%] = s"U(s) — Ls" kuk=1(0);
e Integration:
L[ fu(t)dt] = U(s)/s + (1/s)[[ u(t)dt],_,;
e  Shift formula with respect to t:
Llu(t — k)] = e *sU(s).
2. Laplace Transform of the k3; Mode Vibration Equation—Electric Field Drive:

pshys2U (s, x) = 45, )
U(s, L) = DEREIZEEE) — a3 E(u/s)[tanh(sL/20)]

3. Pulse and Pseudo-Step Response of the k3; Mode—Electrical Drive (summa-
rized in Figures 8.7a and 8.9a).
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4.  Laplace Transform of the k3; Mode Vibration Equation—Mechanical Stress
Drive (Summarized in Figure 8.13).

h[2Z )

U(s, x) = 5 X(2 )%()]'
inh[ (22 —L)

Lixi(s, x)] = SHX%

5. Stress Pulse Response of the k31 Mode: Under matching impedance Z condi-

tions: .
E _ (E 2_jw
Sopp =71 —kan m]'
when Z = 1/wC, seff sE(1— Yk31? + Lk31?), and T = 2L psff = To(1—
1k31 )-
6.  Total electric energy (after n time sequences) harvested in the matched impedance
Z =1/wC: )
2 1-[(1-1Kk%)e M
121, o L0=2F)e )

1 (1-1R2)e

which ranges between %kz Upr (low Qp) and Uy (high Q).

Check Point

1. Using the Laplace transformation definition: U(s) = = [y e Stu(t) dt
calculate U(s) for the Heaviside step function u(t) = 1(t) [u(t) 0(t<0);u(t)=
(t>0)].

2. Derive the function u(t) for the Laplace Transform: U(s) = (m/ s%)e%. Note a
kink on the curve.

3. (T/F) When a piezoelectric actuator is driven by a rectangular pulse voltage, the
mechanical ringing is completely suppressed when the pulse width is adjusted
to exactly half of the resonance period of the sample. True or false?

4. When a piezoelectric actuator is driven by a Heaviside step voltage, the vibra-
tion displacement overshoot is excited (by neglecting mechanical loss). What is
the maximum overshoot range (percentage), in comparison with the normal
(pseudo-static) operation? Is it 10, 16.7, 33, 50, 100, or 200% larger than the
normal displacement?

5. (T/F) When a piezoelectric k3; plate is driven by Heaviside step mechanical
stress on the plate edges, the vibration displacement is exhibited linearly with
time. True or false?

6. (T/F) When a piezoelectric k3; plate is driven by a Heaviside step mechanical
stress on the plate edges, the resonance period under the short condition is
shorter than that under the open-circuit condition. True or false?

7.  (T/F) Total electric energy (after n time sequences) harvested in a high Q,, piezo
component under the pulse stress drive in the matched impedance Z =1/wC
reaches almost total input mechanical energy, irrelevant to the electromechanical
coupling factor k. True or false?

8.  (T/F) When a piezoelectric k3; plate is driven by a “pulse” mechanical stress
with the pulse width exactly matching the resonance period, the electric energy
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10.

harvested in the matched impedance Z = 1/wC connected reaches %k%l Up. Ups:
input mechanical energy. True or false?

A piezoelectric plate was excited by a Heaviside step mechanical stress. We
observed the resonance period wj and the damping time constant 7 of the
total displacement, which is determined by the time interval to decrease the
displacement amplitude by 1/e. Obtain the mechanical quality factor Q;, from
these data.

(T/F) The resonance frequency of the k3; type piezo-plate excited by the stress
pulse drive under the matching impedance Z (=1/wC) condition ranges be-
tween the piezoelectric resonance and antiresonance frequencies. True or false?

Chapter Problems

8.1

Using the k31 type piezo-plate (Figure 8.5), we consider the Heaviside step
stress application on the length edges. Calculate the total displacement ring-
down behavior under the open-circuit condition in comparison with the short-
circuit condition, the result of which is illustrated in Figure 8.14. Using a no-

2
tation, K%l = ( :3}(1%1) , the Laplace form of displacement U(s,L) (=(1/2)AL) is

shix{20set [+ ()] # [0 (%) [}

expressed as: U(s,L) =

Hint
2
Use f(s —a) — e F(t) for the [(2) + (ﬂ(%)] terms to convert the resonance

frequency wys = v/2L to the antiresonance frequency wp, which satisfies the
relation: (wpL/2v11F)cot(wpL/2v11E) = —ks312/(1 — kx2). Since X o« 1/s and
U(s,L) o sF,X(1/5) o 1/5?, we can get the basic function « t; linear relation
with time lapse.
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9. Equivalent Circuit

Mechanical and electrical systems are occasionally equivalent from the view-
point of a mathematical formula. Therefore, an electrician tries to understand me-
chanical system behavior from a more familiar LCR electrical circuit analysis, or vice
versa: a mechanic uses a mass-spring-damper model to understand an electric circuit.
However, because discrete components are used in the analysis, the “equivalent
circuit” analysis cannot provide the spatial analysis of the strain/displacement or
current/voltage in the specimen, as demonstrated in Chapter 8. Two important notes
must be taken into account: (1) mechanical loss is handled as “viscous damping”,
though the losses in piezoelectric ceramics may be “solid damping” in reality; (2) an
equivalent circuit approach is almost successful, as long as we consider a steady
sinusoidal (harmonic) vibration. Because the “equivalent circuit” approach is the
handling simplification from the “continuum media” to “discrete component”, some
discrepancies arise. For example, when we consider a transient response, such as a
pulse drive of a mechanical system with a finite specimen size, the equivalent circuit
analysis cannot generate a time-linear response of the specimen’s displacement.

The equivalent (electric) circuit (EC) is a commonly used tool which can greatly
simplify the process of design and analysis of the piezoelectric devices, in which
the circuit, in a standard form, reference [1] can only graphically characterize the
mechanical loss by applying a resistor (and sometimes dielectric loss). Different from
a pure mechanical system, a piezoelectric vibration exhibits an “antiresonance mode”
in addition to a “resonance mode”, due to the existence of the damped capacitance
(i.e., only part of the input electric energy is transduced into the mechanical energy).
As discussed in Chapter 6, without introducing the “piezoelectric loss” it is difficult
to explain the difference of the mechanical quality factors at the resonance and
antiresonance modes. Damjanovic therefore introduced an additional branch into
the standard circuit, which is used to present the influence of the piezoelectric
loss [2]. However, concise and decoupled formulae of three (dielectric, elastic, and
piezoelectric) losses have not been derived, which can be used for the measurement
of losses in piezoelectric material as a user-friendly method. We consider new
equivalent circuits of piezoelectric devices with these three losses in this chapter.

9.1. Equivalency between Mechanical and Electrical Systems

There are two classifications of LCR electrical circuits: series connection and
parallel connection for the equivalent circuit analysis. Though both circuits are
equivalent, in general, focused usage is different.

9.1.1. LCR Series Connection Equivalent Circuit

The dynamic equation for a pure mechanical system composed of a mass, a
spring, and a damper, illustrated in Table 9.1a, is expressed by

M(d?u/dt?) + {(du/dt) + c-u = E(t), or (9.1a)
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M(do/dt) +Cv+c/0tvdt — F(b), (9.1b)

where u is the displacement of a mass M, v is the velocity (= du/dt), c spring constant,
¢ damping constant of the dashpot, and F is the external force. Note that when a
continuum elastic material is considered, the actual damping may be “solid damping”
(as we discussed in the previous Section 6.2.2), but here we consider or approximate
the “viscous damping”, where the damping force is described in proportion to the
velocity, from a mathematical simplicity viewpoint.

On the other hand, the dynamic equation for an electrical circuit composed of a
“series connection” of an inductance L, a capacitance C, and a resistance R, illustrated
in Table 9.1b, is expressed by

L(d*q/dt*) + R(dq/dt) + (1/C)q = V(¢), or (9.2a)

L(dI/dt) + RI + (1/C) /Ot Ldt = V(b), (9.2b)

where g is charge, I is the current (= dg/dt), and V is the external voltage. Taking into
account the equation similarity (in this case, force vs. voltage and vibration velocity
vs. current), the engineer introduces an equivalent circuit; consider a mechanical sys-
tem using an equivalent electrical circuit, which is intuitively simpler for an electrical
engineer. In contrast, consider an electrical circuit using an equivalent mechanical
system, which is intuitively simpler for a mechanical engineer. Equivalency between
these two systems is summarized in the center column in Table 9.1. We consider the
“parallel connection” model in the next section, where force vs. current and vibration
velocity vs. voltage correlations are treated.

Table 9.1. Equivalency between mechanical and electrical systems, composed of
M (mass); c (spring constant); { (viscous damper); L (inductance); C (capacitance);
R (resistance). (a) Mechanical system; (b) LCR series connection; (¢) LCR paral-
lel connection.

Mechanical Electrical (F-V) Electrical (F-1) %
Force F(t) Voltage V(t) CurrentI(t) Q(t) C \l/ I (b
C C Velocity v/it Current I Voltage V R %
Displacement u Charqueq --

M Mass M Inductance L Capacitance C

Spring Compliance 1/c Capacitance C Inductance L 174 @ — ()

F(t) . : =

@ Damping C Resisance R Conductance G
a

Source: [3] ©Uchino, K. Micromechatronics, 2nd ed. CRC Press, 2019; p. 325. Reproduced by
permission of Taylor & Francis Group.

When we consider “steady sinusoidal vibrations” of the system at the frequency
w (V(t) = V!, I(t) = Ipe'* %), Equation (9.2) can be transformed into

[jwL + R+ (1/jwC)l =V, or (9.3a)
Y =1/V =[jwL + R + (1/jwC)] . (9.3b)
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Under a constant unit voltage (such as 1 V), the current (A) behavior provides
the frequency dependence of the “circuit admittance”. Thus, this series connection
equivalent circuit (EC) is useful to discuss the piezoelectric resonance mode with the
admittance maximum peak.

We consider the “Bode plot” of Equation (9.3b). A “Bode plot” is a graph of the
frequency response of a system, usually a combination of a magnitude and phase
angle, as introduced in Section 6.3. The admittance |Y| gain (i.e., 20 logjp | Y'I)
is plotted in Figure 9.1a as a function of frequency w in a logarithmic scale. The
steady-state oscillation plot exhibits:

(1) A 20dB/decade (x wC) asymptotic curve with 90° phase in the low-frequency
region.

(2) The peak at wy, resonance angular frequency for zero damping, given by
wo = 1/+/LC, with the peak height | Y| ;,5x = (1/R), and Q = /L/C/R, which
corresponds to the quality factor.

(3) A —20 dB/decade (x 1/wL) asymptotic curve with —90° phase in the high
frequency region.

Let us calculate the quality factor Q in the LCR circuit defined by wgr/2Awg,
where Awp, is the half width of the admittance frequency spectrum to provide the
1/+/2 (3 dB down) of the maximum admittance (1/R) at the resonance frequency wg.
Since these cut-off frequencies are provided by

1 1 ,
V2 I~ (ke ) 11

Then, two roots for the cut-off frequency wc are given by

2
Wel,c2 = :F% + \/(%) + <%>

Since 2Awgr= wy — w1 and wg=1/+/LC, the quality factor is expressed by

Q = wR/2AwR = (1/vIC)/(R/L) = VL/C/R. 9.4)

When we consider the charge g (which corresponds to u), rather than current I
under the voltage (Equation (9.2a)):

L(d%q/dt?) + R(dg/dt) + (1/C)q = V().

Taking the harmonic oscillation, the above equation is transformed to
[~w?L + jwR + (1/C)g =V, or (9.5a)

q/V ==[-w’L + jwR + (1/C)] L. (9.5b)

The Bode plot of Equation (9.5b), known as a “standard second-order system”
(because of w? in the denominator), is shown in Figure 9.1b, where the gain of charge
q is plotted in a logarithmic scale and phase in a linear scale as a function of frequency
w. The steady state oscillation plot exhibits:

(1) A 0dB/decade asymptotic curve in the low frequency region.
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(2) A peak at wy, resonance angular frequency for zero damping, given by wg =

1/+/LC, with the peak height (1/27) = /L/C/R = Q, which corresponds to the
quality factor.
(3) A —40dB/decade asymptotic curve in the high-frequency region.
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Figure 9.1. Bode diagram for a series LCR circuit: (a) admittance; (b) charge
(second-order system). Source: Figure by author, adapted from [4].
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9.1.2. LCR Parallel Connection Equivalent Circuit

Let us now consider the dynamic equation for an electrical circuit composed of
a “parallel connection” of an inductance Lp, a capacitance Cpg, and a conductance Gp
illustrated in Table 9.1c:

C(dV/dt) + Gy V + (1/Lg) /Ot vdt = I(t), 9.6)

where [ is the current from the current supply, and V' is the same voltage applied
on three components. In comparison with Equation (9.1b), equivalency between the
two mechanical and electrical systems is summarized in the last column in Table 9.1.
When we consider steady sinusoidal vibrations of the system at the frequency w (I(t)
= [pe/“t, V(1) = Vel@t=9), Equation (9.6) can now be transformed into

[ijB + GB + (1/ijB)]V =1, or (9.7a)

Z=V/I=[jwCg + Gp + (1/jwLp)] 1. (9.7b)

Under a unit constant current (such as 1 A), the voltage (V) behavior provides the
frequency dependence of the “circuit impedance”. Thus, this parallel connection EC
is preferred to discuss the piezoelectric “antiresonance mode” (i.e., B-type resonance)
with the impedance maximum peak.

Example Problem 9.1.

Two equivalent circuits in Table 9.1b,c are modeled for the same mechanical
system in Table 9.1a. Therefore, we can expect mutual relationships between these
inductance, capacitance, and resistance/conductance values. Obtain the mutual rela-
tionships.

Hint

Since the voltage—current behavior should be equivalent in these series and
parallel connection circuits, the admittance in Equation (9.3b) should be an inverse
of the impedance in Equation (9.7b).

Solution

Equating Z with 1/Y:
Z = [jwCp + Gp + (1/jwLp)] ' =1/Y = [jwL + R + (1/jwC)], (P9.1.1)

we obtain the following equation:

CB<(1j —sz> + Ll—B (L — wiC> + RGp +j[GB (cuL - wlc) +R<wCB — wlLBH =1. (P9.1.2)
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In order to keep the same resonance frequency in both circuits,

1 1
2
= = P9.1.
“ T IC T LyCy’ (P9.1.3)
should be maintained. Thus, Equation (P9.1.2) indicates another equation,

RGp = 1. (P9.1.4)

Though we have the circuit component flexibility, as long as LC = LgCp, the simplest
solution is the utilization of the same L, C, and R for Lg, Cg, and 1/Gg.

Example Problem 9.2.

Knowing the mechanical system (mass M, spring ¢, and damper () and the elec-
tric circuit (inductance L, capacitance C, and resistance R) equivalency, as shown in
Figure 9.2a, generate the electrical equivalent circuit corresponding to the mechanical
system described in Figure 9.2b.

IO

gk
-
-

1

J_ C2$LJZIZ
cT f=oi-2y) 3 R@ .

c f=clx~x) E@ %C @\E V=%(Q1—Qz) M

-

¥

V=R(-1,) P
7%;)2 .............. 2
| ‘,
t d . di
My fem zTéL V=12
| £
(a) (b)

Figure 9.2. (a) Equivalency between mechanical components (mass M, spring c,
and damper () and electric components (inductance L, capacitance C, and resistance
R). (b) Example problem. Source: Figure by author, adapted from [4].

Solution

Mass M, spring ¢, and damper ¢ in a mechanical system are converted to
inductance L, inverse capacitance 1/C, and resistance R, respectively, as shown
in Figure 9.2a. Note here that only the mass is dependent on one displacement
parameter, while the spring and damper are expressed by the subtractions among
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two displacement parameters, which also reflect on the LCR components. Basically,
the force should be the same in the series connection of the mechanical components,
while the voltage should be the same in the electrical component circuit. Figure 9.3a
shows the mechanical system of the problem under the same force condition, then
Figure 9.3b shows transformation process into the electric components. Note that
the spring-damper parallel connection is transformed into a capacitor-resistor series
connection parallelly inserted to cover “two” closed circuit loops, while the mass
(i.e., L) should be inserted independently in one circuit loop. The final equivalent
circuit is shown in Figure 9.3c.

YOOI I4 1))
----------- %l_w_
25
|

% 9y
czéLJ:IZ Al ve
M, djidvz ______ éL -
2 () y
=
%ﬂ 0, i
(a) (b) (c)

Figure 9.3. (a) Mechanical system of the problem; (b) transformation process into
the electric components; (c) the final electrical equivalent circuit. Source: Figure

i
1
1

by author.

9.2. Equivalent Circuit (Loss Free) of the k3; mode

In Section 9.1, we handled purely mechanical and electrical systems separately,

where the principle equations are:

Mechanical System:

2. . ' ‘ . '
P % =k = a;iél + 35?/12 + 85(2131 Dynamlc equation

x = grad(u) [x; = g—’;, Xy = g—;, X3 = %—Z’]: Strain and displacement

Electrical System:

div(D) = o: Gauss Law

E = —grad(V): Electric field and potential/voltage

Piezoelectric System:

In addition to the above condition requirements, the following “piezoelectric
constitutive equations” must be satisfied in a piezoelectric system (polycrys-
talline ceramic case):
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[x1] [s11F sF si3F 0 0 1 /X% 0 0 dn
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Now, we introduce the equivalent circuit (EC) of piezoelectric devices, a widely
used tool which can greatly simplify the process of designing the devices. The key
in a piezoelectric device is illustrated schematically in Figure 9.4, where the input
electric energy is partially converted to the output mechanical energy by the factor
or k?, while the remaining energy (1 — k?) is stored in a capacitor (so-called damped
capacitance). Taking the above energy distribution condition into account, the con-
verted mechanical energy part is represented by the above-introduced LCR EC, while
the remaining electrical energy part is represented merely by an additional capacitor
(i.e., damped capacitance), then these two branches are connected in parallel to keep
the applied voltage constant for constructing the total system EC. The loss observed
as heat generation is usually small (around a couple of %), which is proportional to
the loss tangent/dissipation factor. Different from the previous section of a simple
LCR series connection, where only the resonance mode appears, when we include the
damped capacitance, the antiresonance mode appears, where the damped (pure elec-
trical component) and motional (originated from mechanical vibration) capacitances
are basically canceled out. In other words, the existence of the damped capacitance
is essential to generate the antiresonance mode.

Input electrical energy 100%

(1 -k?)

Loss Tangent /I

Figure 9.4. Energy conversion in a piezoelectric. Source: Figure by author, adapted
from [4].

Mechanical energy converted| Electrical energy stored in a capacitor I
2

Next, we consider how to translate the physical parameters in a continuum
medium into discrete component parameters, L, C, and R. First, we take the simplest
equivalent circuit (loss-free) for the k3; mode piezo-plate, as shown in Figure 9.5,
on which we already analyzed the resonance/antiresonance modes in detail in
Section 7.2.2. Because of the surface electrode, the elastic compliance and sound
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velocity along the wave propagation direction are E-constant; that is, sF; and vf;. You
are reminded of the admittance equation:

Y = (jwwL/b)egessc [1 + (d312/€0€33LC511E> (tan(wL/vaJ / (wL/val)}

= (jwwL/b)eqess™ (1~ k1) + ksi? (tan (wL/20f, ) / (wL /208, ) | (9.8)
= jCa1+ {5 2 | = oo [ (1 - K3y) + KB, )]

where w is the width, L the length, and b the thickness of the rectangular piezo
sample. We adopt the following notations to make the formulae simpler:

ks1? = d1%/e0essty,

e0eas C= eoex™ (1 - k312),

Co = €0e3; L (Free capacitance),

Cy = eoe5$ H2 (Damped capacitance),

011: ((,UL/Z’UEO.

Equation (9.8) indicates that the first term originates from the “clamped capaci-
tance” (proportional to (1 — k?)), and the second term is the “motional capacitance”
associated with the mechanical vibration (proportional to k?). By splitting Y into the
damped admittance Y; and the motional part Y,

Y, = jwCy = jwCy (1 - k§1>, 9.9)
k2 tan(Qll ) tan(Qll )
Y,y = jwC 31 = jwC | ——2 | K,. 9.10
m e 1-k3;, Qn e Ol On ]31 10
<
N

L
b1 2 % 5 x

0

L

Figure 9.5. A rectangular piezo-ceramic plate (L > w > b) for a longitudinal
mode through the transverse piezoelectric effect (d31). Source: [3] ©Uchino, K.
Micromechatronics, 2nd ed. CRC Press, 2019; p. 111. Reproduced by permission of
Taylor & Francis Group.

The damped branch can be represented by a capacitor with “damped capaci-
tance” C; in Figure 9.6a. We connect the motional