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Abstract

The Korean government proposes introducing a transfer-type bus system to reduce urban
congestion. Transfer-type buses turn around at the Seoul border, requiring passengers to
transfer to other modes to reach downtown. These buses have shorter routes, allowing
reduced headways and increased bus supply. While this approach reduces congestion in the
downtown area, it may cause transfer resistance, making it essential to analyze willingness
to shift (WTS). This study uses a latent class model to categorize potential interregional
bus users into three types: transfer avoidance, cost-sensitive, and time-sensitive. Over
50% of users in each group express WTS, showing a positive response to the transfer-
type bus introduction. The choice model results indicate that the travel time and cost of
direct type buses affect WTS, suggesting that policies should consider these factors for
effective implementation.

Keywords: willingness to shift; latent class model; transfer-type bus; urban congestion

1. Introduction

As urban areas grow, the increase in commuting populations has led to significant
congestion in downtown areas, especially in Seoul, South Korea, due to urban expansion.
Efforts to alleviate congestion have included the implementation of congestion charges, but
challenges persist with the high demand for interregional buses during peak times, leading
to increased congestion and decreased competitiveness of public transportation [1]. In
2019, the Korean Ministry of Land, Infrastructure and Transport proposed a reorganization
of the bus system, introducing direct-type buses, which enter downtown directly, and
transfer-type buses, which require passengers to shift to other transportation modes at
transfer centers located at the city borders [2]. This measure aims to reduce downtown
congestion, shorten bus routes, and improve operation frequency and efficiency. However,
the success of this initiative depends on passengers” willingness to shift (WTS) to this new
system despite potential resistance due to the inconvenience of transferring. Therefore, it is
important to analyze users’” WTS before introducing the transfer-type bus system. Previous
studies have discussed the concept and importance of WTS [3-5].

2. Methodology

This study was developed to estimate WTS by considering the latent preferences of in-
terregional bus users. A stated preference (SP) survey was conducted with 502 interregional
bus users in the Seoul Metropolitan Area (SMA), consisting of a latent preference survey

Eng. Proc. 2025,102, 1 https://doi.org/10.3390/engproc2025102001
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and a bus choice survey. Using the latent preference survey data, latent class analysis (LCA)
was performed to classify users based on their latent behavioral preferences, and the WTS
for each class was estimated. A choice model was then developed to compare direct-type
buses, which enter downtown directly, and transfer-type buses, which require transfers at
the city boundary. The model’s reliability was verified.

Previous studies on WTS mainly relied on the binary logit model, which assumes
that all individuals share the same utility function, limiting its ability to capture user
diversity [6]. To address this, this study adopted the latent class model (LCM), which
accounts for taste heterogeneity (TH) by assuming the existence of different latent classes
with distinct choice utility functions [7]. The LCM consists of two components. The
membership model uses LCA to categorize users into distinct classes based on shared
characteristics and determine their probability of belonging to a specific class. The class-
specific choice model estimates the probability of individuals selecting a transportation
alternative within each latent class.

3. Results and Discussion

The three latent classes are estimated using LCA. Results show the probability of users
belonging to each class based on their responses to the latent class survey questions. Class
1 was defined as the transfer-avoidance type because it exhibited negative characteristics
related to transfer items and included 9.16% of users. Class 2 was defined as the cost-
sensitive type due to its positive characteristics concerning cost items, comprising 41.24% of
users. Class 3 was defined as the time-sensitive type as it showed common characteristics
regarding time items, with 49.60% of users belonging to this class. The study analyzed
the factors influencing the choice of transfer-type buses for each class of users, which are
presented in Table 1.

Table 1. Estimation results of the model.

Coefficient Parameter Standard Error p-Value
Xres —2.002 0.561 0.000
Xip 1.120 0.348 0.001
Variables Xitb_support 1.135 0.332 0.001
Xage_20 0.908 0.233 0.000
Class 1 Xttc Direct 0.031 0.017 0.070
Cox and Snell R? 0.133
Summary statistics Nagelkerke R* 0177
—2 Log-likelihood 456.632
Observation 368
Xres 0.307 0.183 0.094
Xincome_low 0.287 0.117 0.014
Variables Xcbp_fare 0.452 0.107 0.000
Xiob_self 0.836 0.327 0.011
Class 2 Xttc_Direct 0.033 0.008 0.000
Cox and Snell R? 0.029
Summary statistics Nagelkerke R 0.0%0
—2 Log-likelihood 2,109,358
Observation 1656




Eng. Proc. 2025,102, 1

Table 1. Cont.

Coefficient Parameter Standard Error

p-Value

Class 3

Xitb_support 0.588 0.130

0.000

Xcbp._fare 0.186 0.098

0.058

Variables

onb_student 0.720 0.172

0.000

XttC_Direct 0.033 0.015

0.024

Cox and Snell R? 0.028

Nagelkerke R? 0.037

Summary statistics
—2 Log-likelihood 2,686,118

Observation 1992
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Abstract

This study develops a high-speed rail demand prediction model based on access probability,
which quantifies the likelihood of passengers choosing a departure station among multiple
alternatives. Traditional models assign demand to the nearest station or rely on manual
calibration, often failing to reflect actual travel behavior and requiring excessive time
and resources. To address these limitations, this study integrates survey data, real-world
datasets, and machine learning techniques to model station choice behavior more accurately.
Key influencing factors, including headway, access time, parking availability, and transit
connections, were identified through passenger surveys and incorporated into the model.
Machine learning algorithms improved prediction accuracy, with SHAP analysis providing
interpretability. The proposed model achieved high accuracy, with an average error rate
below 3% for major stations. Scenario analyses confirmed its applicability in network
expansions, including GTX openings and the integration of mobility as a service. This
model enhances data-driven decision-making for rail operators and offers insights for rail
network planning and operations. Future research will focus on validating the model
across diverse regions and refining it with updated datasets and external data sources.

Keywords: transportation demand forecasting; high-speed rail; multi-station access
probability; travel behavior; machine learning; data-driven; multi-layer perceptron (MLP)

1. Introduction

Traffic demand forecasting plays a critical role in railway investment and operational
planning, yet traditional four-step models fail to accurately reflect passenger behavior.
These models typically assign demand to the nearest station within an administrative dis-
trict, disregarding alternative station choices. Studies show that only 47% of railway users
select the closest station; among multimodal travelers, this figure drops to 40% [1,2]. To
address this, network calibration is often applied, but it is resource-intensive and reliant on
subjective adjustments. Research highlights the importance of access time in station choice,
with one study finding it nearly twice as influential as in-vehicle time [3]. However, existing
studies primarily focus on identifying influencing factors rather than integrating station
choice and demand estimation into a unified forecasting model. Recent advancements
in big data, automation, and machine learning offer promising solutions for improving
demand forecasting accuracy. Machine learning models have demonstrated superior pre-
dictive performance compared to traditional logit-based approaches [4]. However, their
lack of interpretability remains a challenge, necessitating methods like SHAP (Shapley

Eng. Proc. 2025, 102, 2
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Additive Explanation) to enhance model transparency [5]. This study aims to develop
a machine learning-based demand forecasting model by estimating access probabilities,
overcoming the limitations of distance-based assignment models. By incorporating access
probabilities into station choice modeling, the proposed framework enhances prediction
accuracy and provides a more precise station-level demand estimation method for high-
speed rail networks. Its performance will be validated through real-world transportation
scenarios to ensure practical applicability.

2. Data & Methodology

This study models access probability to enhance high-speed rail (HSR) demand fore-
casting, estimating the likelihood of passengers selecting a departure station (Figure 1).
Given that the exact demand distribution across stations is unknown, an optimization
technique is applied, leveraging station-specific demand data and inter-zone rail traffic
volumes. The analysis identifies three alternative stations per zone based on centroid
distances, ensuring a realistic representation of station choice behavior. The estimated
access probabilities serve as outputs in the MLP model, while station-specific characteristics
act as input variables to refine demand predictions.

hJ
\,

Staton2
Figure 1. The concept of access probability in OD trips.

To support this estimation, the study utilizes 2019 KTDB O-D data, focusing on
five major rail lines, connecting 12 key departure stations in the Seoul metropolitan area
to 1135 zones nationwide. Each zone considers three alternative stations, resulting in
16,566 observations. The dataset integrates station accessibility, service frequency, and
operational factors, including access time (TMAP API, smart card data), train headways
(timetables), parking capacity, and transit connections. These variables, sourced from
2021-2023 datasets, account for regional and station-specific differences, forming a robust
foundation for access probability estimation and improving demand forecasting accuracy.

This study employs a multi-layer perceptron (MLP) model, a type of supervised
artificial neural network (ANN), to enhance high-speed rail (HSR) demand forecasting by
capturing complex, non-linear relationships between input variables and station choice
behavior. The model consists of three layers: an input layer, two hidden layers (with 8
and 6 units, respectively), and an output layer. Each node adjusts its activation through
backpropagation, minimizing errors using the Levenberg-Marquardt training algorithm.
The ReLU function is used for hidden layer activation, while Softmax represents station
choice probabilities in the output layer.

The dataset was split into 70% training and 30% testing sets, with feature scaling
applied using Standard Scaler to normalize input values. The model was implemented
using Keras, trained with Mean Squared Error (MSE) as the loss function and optimized
using Adam optimizer. The batch size was set to 32, with a learning rate of 0.001, and the
model was trained for 10 epochs. Performance was assessed through the Area Under the
Curve (AUC) metric, ensuring robust predictive accuracy.
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3. Results and Discussion

The optimization process effectively distributed trip volumes across three alternative
stations per zone, with access probabilities validated against Railway Statistical Yearbook
data, showing an error rate close to 0%. The MLP model demonstrated a strong predictive
performance (Table 1), achieving a Mean Squared Error (MSE) of 0.0214, a Mean Absolute
Error (MAE) of 0.0990, and a coefficient of determination (R?) of 0.7529. Errors were
below 1% for major stations (Seoul, Yeongdeungpo, Suseo, Gwangmyeong, Yongsan)
and within 3% for Dongtan, Haengsin, and Sangbong, though stations with low demand
(<5000 trips) showed higher errors, indicating limitations in sparsely used locations. SHAP
analysis identified train frequency, bus routes, headway, and parking capacity as key factors
influencing station choice, with lower train frequency and longer headways reducing
access probability.

Table 1. MLP estimation results.

Forecasted Value

Station Actual Value Estimated Value Difference  Error Rate
Seoul 85,022 85,011 -11 0%
Suseo 41,438 41,086 -352 -1%

Gwangmyeong 27,581 27,676 95 0%
Yongsan 25,764 25,782 18 0%
Dongtan 8249 8475 226 3%

Cheongnyangni 5055 5980 925 18%
Haengsin 4291 4170 -121 —3%

Pyeongtaek/Jije 3741 4592 851 23%

Suwon 3686 2861 -825 -22%

Yeongdeungpo 1320 1315 -5 0%

Sangbong 977 1010 33 3%
Yangpyeong 839 5 -834 -99%

The case study analysis assessed the impact of key variable changes on access proba-
bility and rail demand, demonstrating the model’s applicability in real-world scenarios.
One scenario analyzed the effect of mobility as a service (MaaS) on transit efficiency, show-
ing that reducing public transit access time by 10-30% led to a 2-5% increase in access
probability, with greater improvements observed in peripheral areas.

This study introduces a novel approach to rail demand forecasting, addressing the
limitations of traditional models while enhancing predictive accuracy. By incorporating
access probability, the proposed method provides valuable insights for optimizing station
accessibility and supporting data-driven policy and network planning.
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tion and design: S.-Y.H. and H.-C.P.; data collection: S.-Y.H.; analysis and interpretation of results:
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Abstract

Security checks (SCs) at metro stations are regarded as an effective measure to address
the heightened security risks associated with high ridership. Introducing SCs without
exacerbating congestion requires a thorough understanding of their impact on passenger
flow. Most existing studies were conducted where SCs are mandatory and fixed at certain
locations. This study presents a method for advising the scale and placement for SCs under
a more relaxed security setting. Using agent-based simulation with heterogeneous profiles
for both inbound and outbound passenger flow, existing bottlenecks are first identified.
By varying different percentages of passengers for SCs and locations to deploy SCs, we
observe the influence on existing bottlenecks and suggest a suitable configuration. In our
experiments, key bottlenecks are identified before tap-in fare gantries. When deploying
SCs near tap-in fare gantries as seen in current practices, a screening percentage of beyond
10% could exacerbate existing bottlenecks and also create new bottlenecks at SC waiting
areas. Relocating the SC to a point beyond the fare gantries helps alleviate congestion. This
method provides a reference for station managers and transport authorities for balancing
security and congestion.

Keywords: metro; security check; congestion; heterogeneous passenger; agent-based
simulation

1. Introduction

Urban rail transit systems, as the backbone of public transportation systems, are
essential for daily commuting and connectivity in major cities. As commuting, tourism and
entertainment activities return to pre-pandemic level, major metro stations are experiencing
congestion—particularly during peak hours and around major public events such as service
disruption, concerts and celebrations. Such crowding not only disrupts commuters’ travel
efficiency, but also heightens security risks. To address these concerns, security checks (SCs)
are considered necessary at metro stations, despite impacting passenger efficiency.

Globally, there are mainly three types of SCs at metro stations depending on passenger
coverage:

1. Comprehensive: All passengers need to go through door frame metal detectors and
their bags need to be checked with handheld metal detectors or X-ray machines.

2. Selective: Passengers are randomly checked at selected stations during regular emer-
gency preparedness exercises, major events, or sometimes daily operation.

3. Minimal: In this type, passengers are rarely checked upon entering metro stations,
hence minimizing the impact on passenger flow.

Eng. Proc. 2025,102,3 https://doi.org/10.3390/engproc2025102003
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Due to the varied adoption of SC practices worldwide, there have been limited studies
investigating their impact on passenger flow. Most research has been conducted under
the comprehensive SC mode. Some researchers focused on enhancing SC efficiency by
optimizing facility configurations. Yu et al. modelled passenger flow in a station in
Guangzhou using a simulation and found that existing SC facilities cannot meet the
requirements of passenger flow in extreme peak hours [1]. They proposed measures such
as adding SC machines and ticket vending machines and saw an improvement in crowd
density and the number of inbound passengers. Wei et al. suggested an optimal X-ray
conveyor belt length to reduce waiting time at SC queues based on the M/M/1/N queuing
model [2]. In a subsequent study [3], they recommended suitable combinations of X-ray
machines and detector doors that yield the shortest systematic and individual waiting time
and least serious congestion. Other studies explored expediting the SC process, such as
by adopting a dedicated SC channel [3-5] for passengers with small bags or skipping SCs
for passengers without bags [6]. These countermeasures have been proven effective in
reducing crowd density in areas prior to fare gantries, increasing served passengers and
shortening SC waiting time. However, there are still some gaps left to be addressed:

1. Most existing studies are conducted in mainland China under the comprehensive SC
type. This might be difficult to directly reference for other places where an SC is not a
norm, especially on how many passengers should be screened to avoid congestion.

2. Since SC facilities in these studies tend to be bulky, the locations for SCs are usually
fixed (at station entry points). There is one recent study [7] that considered mov-
ing SCs from the station hall to the entrance channel, which is sufficiently long for
congestion prevention. However, this might not apply for stations without long
entrance channels.

3. Most studies only simulate inbound passengers or passenger flow near SCs.
Only [7] has modelled alighting, boarding and transfer passengers when identifying
bottlenecks.

4. While some studies differentiate passenger profiles by luggage, the impact of such
heterogeneity on their behaviours is considered only in the context of SC channel
selection. More fine-grained behaviours such as passenger sizes, walking speeds and
preferences for facilities in the stations were not modelled accordingly.

This study proposes a method to evaluate the impact of SCs on heterogeneous pas-
sengers at metro stations where an SC is non-mandatory. An agent-based simulation
model with fine-grained passenger profiles and behaviours was built to identify bottleneck
areas. By exploring screening percentages of different profiles and varying locations of
SCs, we evaluated the influence on key bottleneck areas and suggested a suitable scale and
placement of SCs with the least disruption. This method serves as a guidance to station
managers or transport authorities for SC deployment.

2. Methodology
2.1. Simulation Environment

In this study, we build a microscopic passenger flow model for a metro station by
using AnyLogic software (version 8.9.3), which is widely adopted in research reviewed in
the previous section. To demonstrate the proposed method, the station layout, facilities,
and passenger statistics in City Hall station in Singapore were taken as an example. It
is an underground cross-platform interchange station in the central region of Singapore,
connecting two Mass Rapid Transit (MRT) lines, both operating high-capacity 6-car trainsets.
The station provides access to shopping malls, office buildings, tourist attractions and public
events such as the F1 race, National Day Parade and New Year’s Eve celebrations. During
the events, random screenings were conducted.
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Figure 1 shows the station layout and facilities. The station has three levels, the top
concourse level (denoted as B1) and platform levels below (denoted as B2 and B3), arranged
in two stacked island platforms. The green escalators on both sides connect Bl and B2 and
the yellow escalators, near the elevator, link B1 and B3.

Escalators

connecting
Bl and B2 - Escalators
Escalators connecting

connecting Bl and B2
Bl and B3

Usual SC
location
Ticket vending
echiney

Figure 1. Concourse layout and facilities.

Based on the farecard transaction data collected over 22 working days, as shared by [8],
the average passenger flow at the station peaks between 6 and 7 pm, with 6391 passengers
tapping in and 5487 passengers tapping out. In the simulation, we assign these inflow
passengers equally to both exits and outflow passengers to trains with a peak headway of
3 min.

There are three sets of fare collection gantries aligned with the passenger service centre
(PSC). We adopted an afternoon peak gantry direction setting as shown by the blue arrows
in Figure 1, where 12 gantries are dedicated to tapping out and 11 gantries for tapping in.
A bidirectional, wider gantry is placed on the left of the PSC for passengers with personal
mobility devices (PMDs) such as wheelchairs.

2.2. Passenger Profiles and Behaviour Models

To represent real-life passengers, we defined seven passenger profiles categorized
by age group, PMD usage and luggage usage: middle-aged adults (hereafter referred as
“adults”) without luggage, middle-aged adults with luggage, elderly adults (hereafter re-
ferred as “elders”) without luggage, elderly adults with luggage, children without luggage,
children with luggage, and PMD users. We assume the percentage of elders and children
and PMD users to be 10%, 10% and 1%, respectively, while the rest are adults. Within
each profile, 5% are laden with luggage. Table 1 shows the passenger profiles and their
parameters. The embedded social force model [6] is used to model passenger flow. The
speed and body diameter of non-PMD users were based on references [9,10]. The speed
of PMD users was based on [11] and the diameter was set in accordance with dimension
restriction by local authorities [12]. For luggage-laden passengers, the walking speed
is reduced by 30% [13] and the diameter is increased by 0.17 m [14] compared to those
without luggage.

We assume all passengers except PMD users prefer the gantry with the shortest queue.
If gantries have the same queue lengths, passengers chose the nearest gantry. Further, PMD
users choose the wider gantry. Since it is bi-directional, the queue length in this gantry is
counted by summing both sides. The time taken for tapping at fare gantries was assumed
to follow a uniform distribution between 1 s and 2 s based on our field observation.

PMD users can only choose elevators due to their mobility restrictions. For other pas-
sengers, the probability of choosing elevators varies with elders having a higher probability,
followed by adults and children. Such a probability is increased if the passenger carries
luggage. The probability for elders, adults and children without luggage is assumed to be
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10%, 5%, and 2.5%, which is doubled when the passenger is laden with luggage. They will
choose escalators instead if their waiting time for elevators exceeds 30 s. The elevator has a
capacity of 15 people, operating at 1 m/s. The escalators travel at 0.75 m/s during peak
hours as per local guidelines.

Table 1. Passenger profiles with parameters.

Profile Comfortable Speed (m/s) Diameter (m)

1 Adults without luggage v1~N (1.27,0.14) d1~U (0.44, 0.58)
2 Adults with luggage v1 X (1-30%) d1 +0.17

3 Elders without luggage v3~N (1.04, 0.21) d3~U (0.46,0.54)
4 Elders with luggage v3 X (1-30%) ds +0.17

5 Children without luggage v5~N (1.08, 0.23) ds~U (0.39, 0.45)
6 Children with luggage v5 X (1-30%) ds +0.17

7 PMD users v7~N (0.48, 0.21) 1.2

Based on field observations, most passengers inspected by security officers carry
luggage. To facilitate interpretation, we assume a screening probability of 1 for all luggage-
laden passengers and 0 for passengers without luggage. In other words, the screening
percentage is equivalent to the percentage of passengers with luggage. The time taken for
SCs was assumed to follow a uniform distribution from 7 s to 8 s [4]. More refined risk
modelling is underway as future study.

Although passengers can pay travel fares using bank cards, some still use stored-
value cards, which necessitates a visit to ticket vending machines for top-ups before
proceeding to fare gantries. Given the high traffic volume during peak hours, which may
discourage passengers from topping up, we assume these passengers constitute 1% of the
simulated population.

2.3. Experimental Design

We initially excluded SCs in the experiment to identify bottleneck areas at the station
concourse by observing the crowd density heatmap. Subsequently, SCs are added at the
usual location to evaluate their impact in these bottleneck areas. Finally, we experiment
on placing SCs at an unconventional location and evaluate congestions caused by SCs by
comparing their effect on the bottleneck areas. All experiments are run in Intel (R) Core
(TM) i7-1260P 2.10 Ghz Lenovo PC with 16 GB RAM sourced from Singapore.

3. Results and Discussion
3.1. Existing Bottlenecks with and Without SC

Figure 2 shows a heatmap visualizing the average crowd density without SCs. It is
at a logarithmic scale to reflect small variations. As highlighted by areas in yellow and
orange, key bottleneck areas occur before tap-in gantries, especially at the right gantry set
due to the narrower path. This is probably due to the higher rate of inflow than outflow
at fewer gantries. The dense areas near the escalators are caused by merging passengers
from both directions, which can be solved by setting guardrails for separation [7]. The
noticeably longer queue in front of the wider gantry is likely caused by the slower speed of
PMD users and the delay when faced with passengers waiting in the tap-out direction.
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Figure 2. Crowd density without SC.

Figure 3 shows the heatmap after setting up a SC at its usual location. The red rectangle
highlights the crowd in the SC queuing areas, which is still manageable under 1.33 pax/m?.
The crowd density at the right gantry set is increased and widened towards the middle
gantry set due to the increased passengers with paths to the SC location.

Figure 3. Crowd density with 5% SC.

3.2. Influence of SC Percentage

Figure 4 shows the congestion heatmap after increasing the SC percentage to 10% and
15%. Significant spillovers to the adjacent gantry sets are observed from 10%, making the
queue length of the wide tap-in gantry longer. This causes a greater issue when increasing
the percentage to 15%. The SC waiting area reached a higher density beyond 2.67 pax/m?
at a larger area, creating a new bottleneck. Because of the blockage, some passengers exiting
from the wide tap-out gantry experienced difficulty in reaching Exit A (shown in the red
dotted line).

Figure 4. Crowd density with 10% (left) and 15% (right) SC.

The results suggest that for the current simulation layout and experiment setting, the
optimal SC percentage that avoids causing additional congestion is between 5% and 10%.
If the percentage exceeds 10%, other SC locations may need to be considered.

3.3. Influence of SC Location

Given the impact of SCs on the non-paying areas, we explored moving SCs to after
the fare gantries. Inbound passengers are screened right after they tapped in, without
increasing travel distance drastically. Figure 5 shows the comparison under 5% and 10% of
the SC percentage. In both cases, the average crowd density in the SC waiting area reduces.
This is due to the smaller volume of tap-out passengers at the gantries near the PSC.
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Pre-gantry Post-gantry

Figure 5. Crowd density with 5% (top) and 10% (bottom) SC pre- and post-gantry.

If the SC percentage is increased for security concerns, other locations may be con-
sidered for SCs. These areas can be at the end of corridor connecting Exit B and corner
areas near the escalators connecting to B2. Both may help slow down passengers arriv-
ing at existing bottlenecks such as the one in front of the right tap-in gantry set and the
escalator clusters, thus reducing crowd density and increasing passenger travel time at
the concourse. Identifying the optimal location to balance the trade-off between reducing
crowd density and minimizing passenger travel time is one of the key future directions of
this ongoing research.

4. Conclusions

This study presents an agent-based modelling methodology to evaluate the influence
of the SC scale and location on metro station congestion under heterogeneous passenger
profiles. By comparing its influence on existing bottlenecks, we advise a 5-10% SC per-
centage at the current SC location and suggest exploring post-gantry SCs if the station
managers wish to further alleviate congestion at the SC queuing area.

Future research directions include verifying the method at more stations with real-life
data, exploring other underutilized areas for SCs, incorporating more diverse congestion
evaluation metrics, and changing the SC strategy from by luggage to by risk. Risk mod-
elling can leverage expert experience and be integrated with a computer-vision-based risk
detection system at station entrances for enhanced accuracy, facilitating more efficient
security screening.
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Abstract

Traffic congestion poses a significant challenge to modern urban environments, impacting
both driver satisfaction and road safety. This paper investigates the effectiveness of a smart
traffic light system (STL), a solution developed under the Intelligent Transportation System
(ITS) initiative by the Ministry of Works Malaysia, to address these issues in Malaysia. The
system integrates a network of sensors, Al-enabled cameras, and Automatic Number Plate
Recognition (ANPR) technology to gather real-time data on traffic volume and vehicle
classification at congested intersections. This data is utilized to dynamically adjust traffic
light timings, prioritizing traffic flow on heavily congested roads while maintaining safety
standards. To evaluate the system’s performance, a comprehensive study was conducted at
a selected intersection. Traffic patterns were automatically analyzed using camera systems,
and the performance of the STL was compared to that of traditional traffic signal systems.
The average travel time from the start to the end intersection was measured and compared.
Preliminary findings indicate that the STL significantly reduces travel times and improves
overall traffic flow at the intersection, with average travel time reductions ranging from
7.1% to 28.6%, depending on site-specific factors. While further research is necessary
to quantify the full extent of the system’s impact, these initial results demonstrate the
promising potential of STL technology to enhance urban mobility and more efficient and
safer roadways by moving beyond traditional traffic signal functionalities.

Keywords: smart traffic light (STL); intelligent transportation system (ITS); traffic flow
optimization; dynamic signal timing

1. Introduction

Traffic congestion is a persistent urban challenge, causing extended travel times,
increased fuel consumption and air pollution, and higher accident risks. These issues
have significant economic, environmental, and social consequences, demanding innovative
solutions. Globally, congestion’s financial burden reaches billions of dollars annually,
stemming from lost productivity and wasted fuel. Malaysia alone estimated RM13.09 billion
in congestion-related costs in 2015, including lost income and environmental damage.
Rapidly urbanizing cities like Kuala Lumpur face particularly acute congestion due to
increased vehicle ownership. Intelligent Transportation Systems (ITS) offer a promising
approach by using technology to optimize traffic flow, improve safety, and enhance air
quality. This paper, however, focuses on a key ITS component: Smart Traffic Lights (STLs).
We explore STL capabilities that extend beyond traditional “red and green” signal systems.
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This research investigates an STL implemented under Malaysia’s National Intelligent
Transportation Management Center (NITMC) initiative, a Ministry of Works project aimed
at alleviating congestion and improving road safety. Unlike traditional traffic lights, which
rely on preset timings and often fail to adapt to dynamic traffic conditions, the STL utilizes a
sophisticated approach. Integrating sensors, Al-powered cameras, and Automatic Number
Plate Recognition (ANPR) technology, the STL gathers and analyzes real-time traffic data.
This enables dynamic optimization of signal timings, prioritizing flow based on immediate
needs. This paper contributes to the understanding of ITS in traffic management by
analyzing the STL’s implementation and its impact on travel times and overall flow. This
case study highlights the benefits and potential of STLs, demonstrating their viability for
wider deployment. Ultimately, this research shows how STLs are transforming urban
mobility, moving beyond simple red and green light sequencing towards a more dynamic,
intelligent, and responsive system.

2. Literature Review

Traffic signal control has evolved significantly since early systems like the Sydney
Coordinated Adaptive Traffic (SCAT) system [1]. SCAT’s pioneering vision anticipated
the potential for systems to learn from traffic, adapt dynamically, and identify vehicles—
concepts that became foundational to modern Intelligent Transportation Systems (ITS).
This emphasis on real-time adaptation remains central to ITS research. Subsequent work
has explored Adaptive Traffic Control Systems (ATCS), connected vehicle technologies,
and real-time data analysis to optimize traffic signals, reduce delays, and enhance network
performance [2,3]. These advancements build upon the foundation laid by early innovators.
However, complex traffic scenarios, especially those involving emergency vehicles, present
ongoing challenges. Prioritizing emergency vehicle movement while minimizing disrup-
tion requires solutions beyond traditional signal timing. Qin and Khan [4], offer valuable
insights, proposing control strategies using real-time data and optimization algorithms
to improve emergency vehicle signal pre-emption (EVSP) effectiveness. This exemplifies
smart traffic management’s ability to address specific, real-world problems, moving beyond
the limitations of older systems. In Malaysia, government policies actively support ITS
development and implementation. The “Malaysian ITS Blueprint 2019-2023" and the “Na-
tional Transport Policy 2019-2030” highlight ITS’s strategic importance in modernizing the
nation’s transportation sector [5,6]. Kuala Lumpur City Hall (DBKL) explores technological
solutions, including ITS, to address urban congestion [7]. The Malaysian Institute of Road
Safety Research (MIROS) has developed guidelines for Tidal Flow Systems, demonstrating
a commitment to innovative traffic management [8]. Furthermore, the establishment of
the Malaysia National Al Office (NAIO) and the National Artificial Intelligence Roadmap
2021-2025 (AI-RMAP) signals a strong commitment to fostering a robust Al ecosystem.
This focus on Al directly aligns with the technological underpinnings of ITS, particularly
the Al-driven capabilities of STL. The NAIO will play a key role in promoting Al-powered
solutions like STLs within Malaysia’s infrastructure [9,10]. This study contributes to this
progress by evaluating STL effectiveness in addressing traffic congestion, specifically its
capabilities beyond traditional systems. By examining the STL's real-time adaptability and
impact on traffic flow, this research demonstrates how these advanced systems are moving
beyond basic traffic regulation towards a future of dynamic, intelligent, and responsive
urban mobility in Malaysia.

3. Methodology

This study employed a mixed-methods approach, combining quantitative data anal-
ysis with visual observations to comprehensively understand the STL’s impact and its
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capabilities beyond the limitations of conventional traffic signal control. The STL was
deployed at strategically selected intersections in State of Terengganu, Kedah and Selangor
to demonstrate its effectiveness in real-world scenarios.

3.1. System Architecture and Data Collection

The STL deployed in all locations moves beyond simple red and green signalization
by employing a sophisticated architecture designed for real-time traffic management. This
architecture comprises the following:

1. A Network of Sensors: Strategically positioned sensors were used to capture granular
data on traffic volume and vehicle speed.

2. Al-Powered Cameras: These cameras were deployed to monitor and analyze traffic
patterns, providing a comprehensive understanding of traffic dynamics beyond basic
vehicle counts. This included identifying vehicle types and recognizing unusual
traffic patterns.

3. Automatic Number Plate Recognition (ANPR) Technology: Integrated ANPR tech-
nology enables vehicle identification and tracking, contributing to a more detailed
understanding of traffic flow and individual vehicle movements.

This seamless integration of sensors, Al, and ANPR facilitated the collection and
processing of extensive real-time data, forming the foundation for the system’s adaptive
capabilities. Figure 1 below is the smart traffic light’s system architecture.
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Figure 1. Smart traffic light’s system architecture.

3.2. Study Location

The STL was implemented at strategically selected intersections across three states in
Malaysia: Terengganu, Kedah, and Selangor. These locations were chosen to evaluate the
system’s performance under diverse traffic conditions and urban contexts. The locations
are as follows:

1.  Terengganu: The STL was deployed along a 6.8 km corridor on Jalan Sultan Mah-
mud, extending towards Jalan Kuantan-Kuala Terengganu in Kuala Terengganu.
This corridor encompasses five interconnected intersections (J1 to J5). The site was
purposively selected due to its high traffic volumes, particularly during peak hours,
and its strategic importance in connecting key areas of the city. The interconnected
nature of the intersections provided a valuable opportunity to assess the system’s
ability to coordinate traffic flow across multiple junctions.

2. Kedah: The STL was implemented along a 7.3 km corridor on Jalan Lencong Timur,
encompassing five intersections (J1 to J5). This corridor was chosen due to its consis-
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tently high traffic density and significant congestion, particularly during commuting
hours. It serves as a vital artery for both local and regional traffic, making it an
ideal location to evaluate the system’s capacity to manage and optimize high-volume
traffic flow.

3. Selangor: The STL was installed along a 3.7 km corridor on Jalan Subang, extending
towards Persiaran Jubli Perak. This included eight intersections (PE26 to PE44).
This corridor was selected for its significant traffic congestion, particularly during
peak commuting hours, and its importance as a major arterial road connecting to
key highways within the Selangor city center. The recurring congestion provided a
suitable setting to evaluate the system’s ability to manage and optimize traffic flow
on a major urban thoroughfare. Figures 2 and 3 below are the study location of STL.
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Figure 2. Location of intersection that implemented STL in Terengganu (left) and Kedah (right).
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Figure 3. Location of intersection that implemented STL in Selangor.
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3.3. Data Analysis and System Optimization

The data collected was used to dynamically adjust traffic light timings, prioritizing
traffic flow based on real-time conditions. The Al algorithms at the heart of the STL were
trained using historical traffic data from each location. These algorithms were further
refined through continuous machine learning, enhancing their predictive accuracy and
responsiveness to changing traffic patterns. This iterative learning process allows the
system to move beyond pre-programmed timing sequences, adapting intelligently to
optimize traffic flow in a way that traditional traffic lights cannot. This methodology
was designed to specifically evaluate the advanced capabilities of the STL, demonstrating
how its intelligent features enable it to surpass the limitations of traditional traffic lights
towards dynamic and responsive traffic management. The results of this implementation
and analysis will be presented in the following section.

4. Result and Findings

This section presents the results of the STL's implementation, demonstrating its capa-
bilities beyond the limitations of traditional traffic signal control. The analysis focuses on
the key performance indicator of travel time, showcasing the system’s ability to dynamically
optimize traffic flow.

Travel Time Analysis

The analysis of travel time data collected from Terengganu, Kedah, and Selangor
sites revealed compelling evidence supporting the positive impact of the STL on traffic
flow. Preliminary findings showcased a statistically significant reduction in traveling times
across all locations and various data collection times, as illustrated in Table 1, Figures 4-9.

Table 1. Result of STL implementation in Terengganu, Kedah and Selangor.

. . . Average Travel Time Average Travel Time Percentage
Location Data Collection Time Before STL (s) After STL (s) Improvement (%)
Terengganu (7.00 am-8.30 am) 422.7 392.6 7.10
Terengganu (5.00 pm—6.30 pm) 4455 400.5 10.10
Kedah (7.00 am-8.30 am) 738.9 523.9 28.60
Kedah (5.00 pm—6.30 pm) 720.7 597.3 16.40
Selangor (7.00 am-8.30 am) 662.9 540.3 184
Selangor (5.00 pm—6.30 pm) 790.3 635.6 18.8
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Figure 4. The traveling time in Terengganu STL location (7.00 am—-8.30 am).
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Figure 5. The traveling time in Terengganu STL location (5.00 pm—6.30 pm).
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Figure 6. The traveling time in Kedah STL location (7.00 am~-8.30 am).
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Figure 7. The traveling time in Kedah STL location (5.00 pm-6.30 pm).
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Figure 8. The traveling time in Selangor STL location (7.00 am-8.30 am).
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Figure 9. The traveling time in Selangor STL location (5.00 pm—6.30 pm).

These results underscore the efficacy of the STL in adapting to real-time traffic condi-
tions and optimizing signal timings to reduce delays and enhance traffic flow efficiency.
Moving beyond the fixed-time cycles of conventional traffic lights, the STL dynamically
adjusts signal phases based on actual traffic demand, as evidenced by the observed reduc-
tions in travel time. The variations in improvement percentages between locations and
times of day further highlight the system’s ability to respond to the unique traffic patterns
and demands of different areas and periods. The substantial reductions in travel times
observed in all states—Terengganu, Kedah and Selangor—translate to significant time
savings for commuters, leading to improved productivity, reduced fuel consumption, and
lower emissions. These benefits have positive implications not only for individuals but
also for businesses and the overall economy. Moreover, the improved traffic flow efficiency
facilitated by the STL can contribute to a decrease in traffic congestion, further enhancing
the quality of life in urban areas. This demonstrates the potential of intelligent traffic man-
agement systems to create more sustainable and livable cities, a clear advancement beyond
the capabilities of traditional traffic signal technology. While this paper focuses primarily
on travel time analysis, future research will delve into other performance indicators, such
as queue length and stop time. This subsequent phase of the study will provide a more
comprehensive understanding of the STL's overall impact on traffic network performance
and further highlight its advanced capabilities beyond the red and green.
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5. Conclusions

This study has demonstrated the effectiveness of STL in mitigating urban traffic con-
gestion, showcasing their capabilities that extend far beyond the limitations of traditional
red and green signal systems. By integrating AI, ANPR, and real-time data analysis, STL
dynamically optimizes traffic light timings, leading to significant improvements in travel
times and traffic flow. The system’s adaptability to varying traffic conditions, as evidenced
by the results from implementations in the states of Terengganu, Kedah and Selangor, is
central to these achievements. This research underscores that the true potential of STL
technology lies in its ability to learn and respond to real-time traffic dynamics, a clear
departure from the static nature of conventional traffic signals. Beyond enhancing traffic
efficiency, STL shows promise in improving road safety and environmental sustainability
by reducing fuel consumption and emissions and further research is needed to explore
long-term implications, scalability, and cost-effectiveness. The implementation of STL
technology aligns with the Malaysian government’s focus on Al and ITS to address urban
challenges, particularly within the framework of the National Intelligent Transportation
Management Center (NITMC) initiative. As Malaysia advances towards becoming a high-
tech nation, adopting innovative solutions like STL will be crucial in creating sustainable,
efficient, and resilient transportation networks. This study highlights the transformative
potential of STL technology, illustrating how it is not merely controlling traffic but actively
shaping a new era of urban mobility. By moving beyond the simple red and green, smart
traffic lights are paving the way for a brighter, more connected future, where intelligent
systems optimize traffic flow, enhance safety, and contribute to a better quality of life.
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Abstract

This study presents an Al-enhanced pedestrian simulation model for subway stations,
combining the Social Force Model (SFM) with LiDAR trajectory data from Samseong Station
in Seoul. To reflect time-dependent behavioral differences, RMSProp-based optimization is
performed separately for the morning peak, leisure hours, and evening peak, yielding time-
specific parameter sets. Compared to baseline models with static parameters, the proposed
method reduces prediction errors (MSE) by 50.1% to 84.7%. The model integrates adaptive
learning rates, mini-batch training, and L2 regularization, enabling robust convergence and
generalization across varied pedestrian densities. Its accuracy and modular design support
real-world applications such as pre-construction design testing, post-opening monitoring,
and capacity planning. The framework also contributes to Sustainable Urban Mobility
Plans (SUMPs) by enabling predictive, data-driven evaluation of pedestrian flow dynamics
in complex station environments.

Keywords: pedestrian traffic flow; social force model; rmsprop optimization; pedestrian
trajectory analysis; crowd simulation

1. Introduction

In recent years, subways have gained renewed attention as a key component of sus-
tainable urban transportation systems due to their environmental benefits and operational
reliability. Enhancing the service quality of subway systems requires a balanced approach
that encompasses both network-level expansions—such as new lines and transfer hub—and
improvements to the physical environment within subway stations themselves. However,
most prior research has predominantly focused on the former, addressing line extensions
and intermodal connectivity, while studies examining the internal dynamics of pedestrian
flow and operational efficiency within subway stations remain relatively scarce.

This research gap is increasingly problematic in the context of current urban trans-
portation trends, which emphasize the complexification and upscaling of transit nodes.
Modern subway stations are evolving into multi-functional complexes that integrate com-
mercial, business, and cultural spaces, forming highly intricate pedestrian environments.
A prominent example is the study site of this paper, Samseong Station in Seoul, which is
currently undergoing development into a large-scale intermodal transit center scheduled
for completion in 2028 [1]. Once completed, the station will feature a vertically and hori-
zontally layered spatial structure that connects underground and aboveground facilities.
These structural transformations are expected to generate non-linear and highly variable
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pedestrian flow patterns, necessitating precise modeling and monitoring capabilities to
ensure operational safety and efficiency [2,3].

Moreover, as urban populations age and demand for inclusive mobility increases,
ensuring safe and comfortable access for transportation-disadvantaged groups, such as
older adults and people with disabilities, has become a critical objective. Key infrastructure
components—such as elevators, ramps, and navigational aids—must be continuously
monitored and maintained. This requires a high-fidelity pedestrian flow model capable of
accurately reproducing real-world movement patterns and dynamic crowd interactions
within complex station environments [4].

In sustainability-oriented transportation research, evaluation criteria must extend
beyond environmental considerations such as greenhouse gas emissions or air pollutant
reduction. A comprehensive framework must also account for pedestrian safety, inclusive
accessibility, temporal demand variability, and adaptive service quality [5]. Pedestrian de-
mand in subway stations exhibits substantial temporal variation. During the morning and
evening peaks (07:00-09:00 and 18:00-19:00), stations—particularly those adjacent to major
office and commercial complexes—tend to experience high levels of crowding and con-
gestion due to concentrated commuting activity. In contrast, during midday leisure hours
(14:00-14:30), which represent off-peak periods, pedestrian volumes are relatively lower,
and individual walking behaviors become more pronounced, often reflecting personal
spatial preferences rather than collective movement patterns.

These temporal differences highlight the importance of modeling pedestrian flow
separately by time period, as pedestrian patterns vary significantly across different hours
of the day [6]. Conducting simulations based on distinct time-of-day scenarios allows
for more accurate prediction of crowd dynamics and individual walking behavior [7].
Moreover, incorporating external factors—such as weather conditions, local events, and
infrastructure malfunctions—can further enhance the realism of the model and improve its
applicability for planning and operational policy development.

To address these challenges, this study employs the Social Force Model (SFM) to
develop a calibrated, data-driven simulation of pedestrian flow within Samseong Station.
By leveraging real-world pedestrian trajectory data, the study conducts time-of-day-specific
parameter optimization to reproduce observed patterns of interaction and congestion.
Through this process, the model aims to evaluate and improve pedestrian safety, walking
comfort, and operational resilience within complex subway station environments. The
objective of this study aligns with the promotion of sustainable urban transport strategies in
accordance with the guidelines of Sustainable Urban Mobility Plans (SUMPs), particularly
in the context of the growing adoption of Intelligent Info-mobility Systems. Ultimately,
this research contributes to the development of sustainable, inclusive, and intelligently
managed urban transportation systems. Unlike conventional studies that focus primarily
on transit network expansions, this work emphasizes in-station pedestrian dynamics as a
vital dimension of sustainability, offering practical insights into efficient facility operation
and user-centered design in large-scale, multifunctional transit hubs.

2. Literature Review
2.1. Social Force Model: Structure and Extensions

Originally proposed by Helbing and Molnar (1995), the Social Force Model (SFM)
remains a foundational framework in pedestrian dynamics research [8]. The model de-
scribes pedestrian motion as the result of three core forces: a driving force, which reflects
the pedestrian’s intention to reach a destination at a desired speed; a repulsive force, which
accounts for collision avoidance with other pedestrians and obstacles; and an attractive
force, which models tendencies to approach companions, shops, or other points of interest.
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Owing to its intuitive formulation and interpretability grounded in physical analogies,
the SFM has been widely adopted in both academic studies and commercial simulation
platforms such as VISSIM.

However, the original SFM adopts a deterministic approach, applying uniform pa-
rameter values across all pedestrians regardless of individual differences. As a result, the
model fails to account for heterogeneity in physical capacity, psychological preferences,
or contextual behavior, limiting its predictive accuracy in real-world environments. To
address this limitation, Han et al. (2022) proposed an extended version of the SFM that
incorporates fuzzy inference, enabling the model to simulate individual decision-making
under uncertainty [7]. This enhancement allows the model to capture more realistic in-
terpersonal interactions by incorporating linguistic variables and fuzzy logic into the
force-based framework.

Recent advancements have further expanded the scope of SFM by applying it to
shared spaces involving vehicle-pedestrian interactions. In particular, Yang et al. (2020)
introduced a force component framework that differentiates interaction effects based
on direction (e.g., front, rear, lateral) [9]. Their model, calibrated and validated using
empirical trajectory data, demonstrated credible performance in replicating various types
of interactions. However, it relied on the assumption of homogeneous parameters across
all pedestrians, which limited its ability to accurately represent individual-level behavioral
responses to vehicle interactions.

These findings underscore the importance of adapting model parameters based on
contextual factors such as time-of-day congestion levels or travel purposes. Yang et al. rec-
ommended several improvements, including individual parameter calibration, customized
loss functions, and interaction-type-specific formulations. These directions highlight the
growing recognition that pedestrians should no longer be treated as reactive particles
governed by uniform rules, but rather as adaptive agents interacting with heterogeneous
and dynamic environments.

Consequently, advancing the SFM requires embedding behavioral heterogeneity, con-
textual sensitivity, and task-specific optimization strategies into the modeling process. Such
enhancements will improve the realism, generalizability, and applicability of pedestrian
simulations in complex urban scenarios.

2.2. Data-Driven Approaches: Machine Learning and Deep Learning

While rule-based pedestrian models such as the Social Force Model (SFM) provide
interpretability and a clear physical foundation, they are limited in their ability to capture
the full complexity and variability of pedestrian behavior—particularly in dynamic and non-
standard environments. To address these limitations, data-driven approaches leveraging
machine learning (ML) and deep learning (DL) have emerged as powerful alternatives
capable of learning pedestrian patterns directly from trajectory data.

In the realm of machine learning, a wide range of supervised algorithms has been
applied to enhance the realism of pedestrian simulations. Decision Trees and Random
Forests have also been utilized to infer decision-making logic in complex environments [10].
These models typically convert features such as speed, direction, and local density into
structured inputs for learning, and they often demonstrate high predictive accuracy even
with relatively small datasets.

Deep learning further advances pedestrian modeling by enabling the capture of high-
dimensional, nonlinear relationships in large-scale data. Convolutional Neural Networks
(CNNis) are frequently employed to extract spatial features and predict pedestrian flow
fields [11], whereas Long Short-Term Memory (LSTM) networks excel in learning temporal
patterns and forecasting future trajectories [12]. Generative Adversarial Networks (GANs)
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have also been used to augment trajectory datasets by synthesizing realistic movements [13],
and Reinforcement Learning (RL) has been applied to simulate adaptive decision-making
under dynamic conditions, such as emergency evacuations [14].

Collectively, ML and DL approaches offer an expanded modeling capacity by sup-
porting adaptive, probabilistic, and individualized representations of pedestrian behavior.
However, these approaches come with trade-offs. DL-based models often require substan-
tial computational resources and large annotated datasets. Therefore, balancing model
fidelity with deployment efficiency remains a key concern when applying such methods in
real-world contexts.

Given the deterministic limitations of the classical SFM and its sensitivity to uniform
parameter settings, the integration of ML and DL into pedestrian modeling is not only
promising but necessary. These data-driven methods can complement the interpretable
structure of physics-based models like SFM, enhancing their behavioral realism and predictive
accuracy. In complex urban environments where pedestrian movement is influenced by
diverse contextual factors, a hybrid framework that combines SFM with ML/DL-based
components—such as parameter calibration, trajectory prediction, or decision modeling—can
provide a more flexible and scalable solution for pedestrian simulation.

3. Analysis of Pedestrian Behavior in Subway Stations
3.1. Study Area

Samseong Station, located at the intersection of Teheran-ro and Yeongdong-daero
in Gangnam-gu, Seoul, is a major subway hub characterized by a multi-level structure
that integrates both underground and above-ground facilities. Its strong connectivity to
surrounding commercial zones, including COEX, has made it a critical node for pedestrian
activity in the city’s transit network. The focus area of this study is the passenger concourse
adjacent to the turnstiles leading to Seolleung-bound trains—recognized as a high-density
pedestrian zone due to its proximity to transfer points and commercial accessways. As
such, this area is expected to exhibit diverse and dynamic pedestrian behaviors.

According to public smart card transaction data released by the Seoul Open Data
Plaza in 2024, Samseong Station ranks as the seventh most heavily used subway station
in South Korea among 338 stations analyzed [15]. With over 100,000 daily boarding
and alighting events, the station consistently handles substantial pedestrian volumes.
Given the presence of extensive underground corridors that connect the station directly
to COEX and other major commercial complexes, the actual pedestrian flow through
the underground space is likely even higher. These conditions make Samseong Station
particularly suitable for studying time-sensitive and spatially complex pedestrian dynamics
in an urban transit setting

To further contextualize the study, pedestrian traffic on Wednesday, 12 July 2017—a
typical weekday during the high-travel summer vacation period—was analyzed using
public data from the Seoul Open Data Portal. As shown in Table 1, the station recorded
64,847 boardings and 67,206 alightings on that day. During the morning peak (07:00-09:00),
90.4% of trips were alightings, reflecting intense inbound commuter flows. In contrast,
during the midday leisure hours (14:00-15:00), boarding and alighting were nearly balanced,
suggesting movement patterns shaped by shopping and tourism. In the evening peak
(17:00-19:00), 78.5% of transactions were boardings, indicating high outbound demand.

29



Eng. Proc. 2025,102,5

Table 1. Pedestrian traffic at Samseong Station on 12 July 2017.

Morning Peak Leasure Hours Evening Peak
(07:00-09:00) (14:00-15:00) (17:00-19:00)

Direction Boarding Alighting Boarding Alighting Boarding Alighting

Time

Pedestrian

. 2171 21,545 2630 2759 19,761 6168
traffic

These temporal asymmetries in boarding-alighting patterns emphasize the importance
of time-sensitive pedestrian management strategies, particularly near major exits. The
observed midday movement toward COEX also underscores the potential for coordination
between transit infrastructure and adjacent commercial entities. By incorporating such
time-dependent behavioral variations into simulation models, this study aims to improve
the predictive accuracy and operational relevance of pedestrian flow modeling in complex
subway environments.

3.2. LiDAR Data Collection and Preprocessing

In combination with the passenger flow data, this paper also utilizes pedestrian
trajectory data collected via LIDAR (Light Detection and Ranging, Model: L-T1103-MRS57B,
Manufacturer: SICK Ltd., Waldkirch, Germany) sensors on the same day (12 July 2017). The
pedestrian trajectory data used in this study were collected inside a subway station in Seoul,
as part of a prior study by Jo et al. (2018), which aimed to analyze pedestrian trajectory
patterns based on LiDAR-based pedestrian tracking [16]. LiDAR technology enables
high-resolution capture of pedestrian positions, velocities, accelerations, and movement
directions. LiDAR data were collected near the turnstiles leading to Seolleung-bound trains.
Figure 1a illustrates the trajectory data collected via LiDAR, while Figure 1b presents the
detailed station layout of Samseong Station. The dataset includes Unix time, trajectory
ID, x, y, and z coordinates, velocity, acceleration, direction, and angular velocity. Kalman
filtering was applied to refine trajectory data and correct occlusions near the flap gate.
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Figure 1. Trajectory data collected via LiDAR and the station layout of Samseong Station.

In Figure 1b, the numbers within green circles indicate the subway exits at Sam-
seong Station, and the gray-colored text represents various facilities located within the
underground station area.

From the LiDAR trajectory data, the characteristics of subway passengers at Samseong
Station can be analyzed in relation to their connectivity with surrounding facilities. Pedes-
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trians choosing specific exits tend to reflect the characteristics of the destinations connected
to those exits. For example, exits 3 and 4 of Samseong Station are directly connected to the
COEX shopping complex, suggesting that passengers using these exits are likely traveling
for shopping and leisure activities. In contrast, exits 5 and 6 are connected to major office
buildings, indicating that passengers using these exits are predominantly commuting to
and from work.

Trajectory analysis revealed that during the morning peak hours, approximately 51%
of pedestrian flow was directed toward exits 3 and 4. During leisure hours, pedestrian
movement to exits 3 and 4 accounted for only 22%. In the evening peak hours, approx-
imately 25% of passengers used exits 3 and 4. These findings highlight the correlation
between exit selection and travel purpose, demonstrating how subway passenger behavior
is influenced by the surrounding environment.

The fundamental flow—density relationship was used to analyze pedestrian traffic flow
with the equation g = u-k, where Q represents the pedestrian flow rate (person/min/m),
u is the average pedestrian velocity (m/s), and k is the pedestrian density (person/m?).
The pedestrian density was estimated based on a total walkable area of 133 m?, while
velocity values were derived from LiDAR trajectory data. Figure 2 illustrates the flow—

density relationship.

Flow rate (ped/min/m)

Flow rate (ped/minim)

(a) Morning Peak (b) Leisure Hours (c) Evening Peak

Figure 2. Fundamental flow—density diagram for pedestrian traffic flow (by time of day).

The results show that during the morning peak hours (07:00-09:00), the Level of
Service (LOS) ranged from C to D, indicating moderate to high congestion. During leisure
hours (14:00-15:00), the LOS ranged from A to B, suggesting relatively smooth pedes-
trian movement. In the evening peak hours (17:00-19:00), the LOS ranged from B to C,
highlighting increasing congestion due to high boarding rates.

4. Model Development
4.1. Mathematical Formulation of the Social Force Model

Pedestrian movement in complex environments is influenced by various factors,
including individual intention, interactions with other pedestrians, and environmental con-
straints. The Social Force Model (SFM) provides a force-based approach to simulate these
dynamics, capturing both self-propulsion and repulsive interactions [8]. By formulating
pedestrian motion as a function of social forces, the model effectively represents realistic
walking behaviors in high-density areas [17,18].

In this model, the total force f; acting on pedestrian i is given by:

S (1) — 3, S
fi:mi%:mi M +)fii+ L fiw ey

! j#i w
where:

N
- fi denotes the total force acting on pedestrian i
- m,is the pedestrian’s mass
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NO¢

- ©v(t) is the current velocity at time ¢

1

- 09(t) is the desired velocity at time ¢t

- T; represents the relaxation time (i.e., how quickly a pedestrian adapts to the desired
velocity)
*> .

- fijis the repulsive force from another pedestrian

=
- fiw is the repulsive force from a wall or obstacle W

The repulsive interaction force with other pedestrians is modeled as:

t —

- :—d;
fz/ = {A exp( zl lj) 711] + qog(Tl] dz )%ij}ni]‘ +wg(rij — d,])A?ﬂ t,‘]' (2)
1

Similarly, the repulsive interaction with walls or obstacles, modeled as a psychological
avoidance behavior, is given by:

— P
fiw = {Aiexp<rl Bd

where:

-
vt

N
) My + (Pg( zw)ﬁlw}ﬁiw + C‘)g(ri - dzw)( i 1w) tiw (3)

- djjand dj,, are distances from pedestrian i to pedestrian j or wall W, respectively
- r,] = rl + rj the sum of their radii

- n; ijs n; iw are unit normal vectors (pointing from j or W toward i)
- =
- tij, tiy are tangential direction vectors

— o —)
- Ayy= (v j— v i) -t jj, the tangential component of the relative velocity

- g(x) is aramp function defined as:
gx)=xifx>0

This formulation captures both intentional and reactive components of pedestrian
behavior, making the SFM particularly suitable for simulating complex environments such
as subway stations. To enhance model fidelity, six parameters are calibrated using empirical

—

trajectory data: reaction time (7;), desired velocity (v? (1)), social force constant (4;), distance
scale (B;), body force (¢), and sliding friction force (w). A dedicated optimization strategy
is introduced in the following section to estimate these parameters effectively based on
real-world trajectory data.

Since the Social Force Model generates different pedestrian trajectories depending on
the parameter settings, accurate calibration of these parameters is essential for achieving
high simulation accuracy [19]. Improper parameter configurations can lead to unrealistic
behaviors, such as unnatural acceleration or collision patterns, especially in dense and
dynamic environments. Therefore, the optimization process plays a critical role in ensuring
that the model faithfully replicates the nuanced variations in pedestrian flow observed in
actual subway station contexts.

4.2. RMSProp-Based Optimization Strateqy

To calibrate the SFM parameters, this study proposes an integrated optimization
framework that combines adaptive learning rates (RMSProp), mini-batch training, and
L2 regularization.

RMSProp dynamically adjusts the learning rate for each parameter based on the
variance of recent gradients, making it particularly well-suited for problems involving a
large number of parameters, as is the case in the current study [20]. The algorithm provides
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stable convergence in regions with dense pedestrian interactions while enabling rapid
optimization in sparse data environments, making it an effective calibration method for
large-scale pedestrian dynamics simulations [17].

Unlike conventional optimization techniques such as Genetic Algorithms (GA) or Dif-
ferential Evolution (DE), which are often computationally intensive and slow to converge,
RMSProp has been widely recognized in deep learning for its efficiency and robustness.
Leveraging these strengths, the algorithm is used in this study to calibrate the key parame-
ters of the Social Force Model (SFM) using empirical pedestrian trajectory data.

To further improve optimization efficiency and generalization performance, several
complementary strategies are incorporated, including mini-batch training, L2 regulariza-
tion, and early stopping. Mini-batch training allows for stable and scalable handling of large
trajectory datasets, while L2 regularization suppresses excessive parameter magnitudes
and mitigates overfitting. In addition, the early stopping technique automatically termi-
nates training when the validation loss fails to improve over a fixed number of iterations,
reducing redundant computation and enhancing the model’s generalizability.

The loss function is defined as the mean squared error (MSE) between the predicted
and observed pedestrian velocity vectors, serving as a quantitative measure of how accu-
rately the model replicates real-world movement patterns. The complete RMSProp-based
optimization procedure is summarized as a pseudo-code in Table 2.

Table 2. Pseudo-code for RMSProp-based parameter optimization of the Social Force Model.

Input: & (RMSProp decay rate), v (learning rate), 6y (initial parameter set), LOSS (mean
squared error),

Initialize: v, < 0 (Set moving average of squared gradients to zero)

best_params < 6 (Set the best parameters to the initial values)

best_loss <— oo (Initialize the best loss to infinity)

Main Loop:

For each mini-batch:

Step 1. Predict velocities with Social Force Model:

Step 2. Loss Calculation: LOSS = %Zﬁﬂvi — 731-)2

Step 3. Gradient Computation: g = Vy)LOSS

Step 4: RMSProp Gradient Update: v; = av; 1 + (1 —a)g?

Step 5: Parameter Update 6; = 6;_1 — 7\/273;';6

Step 6: Update best_params < 6; and best_loss <— LOSS if conditions met
Step 7: Early Stopping Check

If no improvements:

Terminate

Output: Return optimal parameter set 0

4.3. Simulation Setup

The simulation environment was constructed to replicate the physical layout of the
observed pedestrian space. Four rectangular exits were placed along the domain bound-
aries, corresponding to real-world egress points at Samseong Station. To represent physical
constraints, two vertical and two horizontal static walls were added. Each pedestrian was
assigned a mass of 80 kg, and the simulation time step (At) was set to 0.2 s.

Initial values for the six SFM parameters—reaction time (7;), desired speed (v,), social
force constant (4;), distance scale (B;), body force (¢), and sliding friction force (w)—were set
based on prior literature (0.5, 1.3, 2000, 0.08, 1.2 x 10°, 2.4 x 10°) and randomly perturbed
within predefined bounds informed by domain expertise. The RMSProp-based optimization
was conducted separately for three time segments—morning peak (07:00-09:00), leisure
hours (14:00-15:00), and evening peak (17:00-19:00)—using trajectory data collected via
LiDAR sensors.
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To ensure efficiency and generalization, a mini-batch size of 1024 was used. RMSProp
parameters included a learning rate of 1 x 1074, decay rate (B) of 0.9, and ¢ = 1 x 1078.
Parameter updates were bounded within plausible ranges, and L2 regularization (A =1 x 10~%)
was applied to prevent overfitting.

5. Simulation Results
5.1. Training and Validation Loss Analysis

Model performance was evaluated by computing the mean squared error (MSE)
between predicted and observed pedestrian velocity vectors in both the x and y directions.
The training and validation loss curves for each time segment are presented in Figure 3,
illustrating stable convergence under varying pedestrian flow conditions. These results
indicate that the RMSProp-based calibration effectively reduced prediction errors without
overfitting, thereby supporting the reliability of the simulation results.

Morning %10° Lunch %1073 Evening

Training

p— " Training
Validation 7

Validation

Loss

o 4+ N w & o o ~ © ©

0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30
Epoch Epoch Epoch

(a) Morning Peak (b) Leisure Hours (c) Evening Peak

Figure 3. Training validation curves of (a) morning peak, (b) leisure hours, (c) evening peak.

The optimization algorithm was applied to three datasets corresponding to distinct time
periods: the morning peak (07:00-09:00), leisure hours (14:00-14:30), and the evening peak
(18:00-19:00). Each period exhibited different pedestrian dynamics, suggesting the potential
need for time-specific parameter optimization. Nevertheless, a uniform model structure was
applied across all datasets. The learning curves revealed three consistent patterns:

i.  rapid convergence in the early phase due to adaptive learning rate adjustment;
ii. stable decline in both training and validation losses during the mid phase;
iii. early stopping in the final phase to prevent overfitting.

Figure 3 illustrates these learning and validation curves for each time of day, high-
lighting the model’s adaptability to various levels of crowd density.

5.2. Time-Specific SEM Parameter Analysis

The optimized parameters of the Social Force Model varied significantly by time
period. During the morning peak, the desired velocity was relatively high at 0.66 m/s,
reflecting the urgency of commuter behavior. In contrast, the leisure period exhibited lower
interaction intensity and more balanced movement patterns. During the evening peak,
the social force coefficients increased, indicating the need to capture complex pedestrian
interactions and congestion patterns during that time. Table 3 presents the optimized
parameter values for different time periods. The parameter optimization results revealed
variations across different time periods. During the morning peak, commuters exhibited
a higher desired velocity (0.66 m/s) due to their urgency to reach their destinations. In
leisure hours, pedestrian interactions were relatively lower, resulting in more balanced
movement patterns. In the evening peak, the social force parameters increased, reflecting
complex pedestrian interactions and congestion management needs.
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Table 3. Parameter optimization results by time periods.

Parameter T; (s) 29(t) (m/s) A;(N) B;(N) (kg?;_z) (kg-mci)ls_l)
Morning Peak 1.00 0.66 1990.99 0.05 119,506.60 241,587.90
Leisure Hours 1.00 0.50 2069.95 0.05 126,146.60 226,296.80
Evening Peak 1.00 0.50 2170.85 0.05 117,868.50 245,919.70

5.3. Comparing MSE Between Before and After Optimization

The effectiveness of the optimization was further assessed by comparing MSE values
before and after training. As illustrated in Figure 4, the MSE decreased from 0.1221 to 0.0609
during the morning peak, from 0.3738 to 0.0572 during leisure hours, and from 0.0965 to
0.0381 during the evening peak. This represents a reduction ranging from a minimum of
50.1% to a maximum of 84.7%, demonstrating an enhanced explanatory power in capturing
pedestrian behavior. This result suggests that the MSE before optimization varies by time
of day, indicating that the default SFM’s performance depends on specific pedestrian flow
characteristics. In contrast, the MSE after optimization suggests that similar performance
can be achieved for each time-of-day dataset once the optimization is completed, thereby
enhancing the model’s reliability and credibility.

MSE Before and After Optimization

0.3738 = Before Optimization
0.35¢ EEm After Optimization

0.30F
0.25f

0.20}

o
-
w

Mean Squared Error (MSE)
#
o

0.05t

0.00

Morning Peak Leisure Hours Evening Peak
Time Periods

Figure 4. Reduction of mean squared error (MSE) After Optimization (by time-of-day).

The overall accuracy of the model’s prediction performance improved after optimiza-
tion, as further illustrated in Figure 5. A time-series comparative analysis revealed several
key findings: During the morning peak, the optimized model generated predictions that
closely aligned with the observed average speed, accurately capturing the initial low-speed
walking state. During leisure hours, the predicted speed better reflected variations in ob-
served speed and exhibited greater sensitivity to periodic fluctuations in walking velocity.
In the evening peak, the pre-optimization model struggled to represent atypical walking
patterns accurately.
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5.4. Velocity Prediction Accuracy Analysis

To assess the temporal accuracy of the model, the predicted pedestrian speeds (both
before and after optimization) were compared with the observed speeds for each time of
day. The velocity-over-time plots for each period are presented in Figures 5-7, where each
figure consists of three panels: the left panel shows the observed pedestrian speeds, the
middle panel shows the speeds predicted by the before-optimization model, and the right
panel shows the speeds predicted by the after-optimization model. Specifically, Figure 5
presents results for the morning peak and for the leisure hours, and Figure 7 presents
results for the evening peak period.
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Figure 6. Velocity over time during leisure hours: observed, before optimization, and after optimization.
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Figure 7. Velocity over time during evening peak: observed, before optimization, and after optimization.

During the morning peak, the optimized model more accurately captured the ini-
tial low-speed walking state observed in the empirical data. For the leisure period, the
model effectively reproduced periodic fluctuations in walking speed. Notably, the ob-
served trajectory data revealed a recurring pattern in which walking speeds increased at
intervals of approximately 2-3 min. The optimized model successfully predicted this phe-
nomenon, reflecting a realistic response to train arrival schedules in the subway station—an
important feature of pedestrian dynamics during this period. In the evening peak, the
pre-optimization model failed to capture irregular walking behaviors. However, after
optimization, the model was able to reflect such atypical patterns more clearly. Visual
inspection of the velocity curves confirms that the optimized model produced significantly
more accurate predictions under complex evening conditions.
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Overall, the before-optimization model exhibited noticeable errors in segments charac-
terized by periodic speed fluctuations, whereas the after-optimization model substantially
reduced these errors and accurately reproduced time-dependent walking dynamics across
all time periods. These findings confirm that the Social Force Model can effectively capture
pedestrian behavior in diverse subway station environments when its parameters are
rigorously calibrated through an appropriate optimization process.

6. Conclusions

This study developed a pedestrian-flow simulation tailored to the intricacies of Sam-
seong Station in Seoul by fusing high-resolution LiDAR trajectories with a Social Force
Model (SFM) whose parameters were rigorously calibrated via an RMSProp optimiza-
tion scheme. Segmenting the dataset into three distinct time-of-day intervals—morning
peak, leisure hours, and evening peak—enabled the model to reproduce the pronounced
temporal heterogeneity in walking behavior that arises from shifting trip purposes and
fluctuating density levels.

The RMSProp-based calibration markedly enhanced predictive fidelity, most notably
in velocity estimation. The optimized model faithfully replicated gradual acceleration
patterns characteristic of the morning commute, cyclic speed oscillations during midday
leisure activity, and the erratic dynamics associated with evening congestion. Crucially, it
retained high reliability under dense, unstable flow conditions, underscoring its robustness
for real-world deployment.

Beyond its empirical accuracy, the model offers immediate operational value for con-
gestion mitigation and real-time station management, and its computational efficiency
makes it well-suited for integration into digital twin platforms that support dynamic
scenario analysis and emergency-response training. Ultimately, the proposed modeling
approach serves as a foundational tool for the implementation of Sustainable Urban Mo-
bility Plans (SUMPs), particularly as Intelligent Info-mobility Systems gain momentum in
urban infrastructure. By aligning data-driven simulation with policy-oriented objectives,
this research contributes to the creation of mobility strategies that are inclusive, adaptive,
and sustainable.

Nevertheless, this study primarily focused on conventional pedestrian interactions.
Future research should aim to incorporate more complex behavioral mechanisms, includ-
ing responses to environmental cues such as signage, spatial constraints, and real-time
congestion feedback. Furthermore, accounting for individual-level heterogeneity—such as
age, baggage possession, and other personal attributes—along with group-based dynamics
will be essential for enhancing the model’s descriptive richness and applicability. The
establishment of standardized benchmarking frameworks is also crucial for evaluating
model performance across diverse subway station types and structural configurations.
Addressing these research directions will substantially improve the predictive accuracy,
scalability, and generalizability of pedestrian simulation models, thereby advancing the
design of safer, more intelligent, and operationally efficient subway systems.
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Abstract

Bikeshare systems usually relocate bikes to respond to a mismatch between demand and
bike supply, imposing substantial costs to operators despite the effort to encourage users
to participate in voluntary rebalancing. This study initiates a search for a new strategy
that can involve single station-based (SSB) riders and consider their bikes as the reserve
of the current bike balance, resulting in the virtual expansion of station capacity. Thus,
the behaviors of bike riders related to SSB trips are compared to investigate the potential
applications. The results from analyzing the data of Citi Bike in New York City indicate that
13.4% of total trips were SSB, and the average trips per origin and destination (OD) pair
was 2.6 times higher. Also, distinctive characteristics such as mean trip time regarding user
groups and bike types were statistically significant within numerous OD pairs, implying
the need for separate policies for both groups. Based on the analysis, stations with the
highest expected benefit are identified.

Keywords: bikeshare system; rebalancing policy; single station-based trips; user behavior;
station capacity

1. Introduction

Bikeshare systems (BSSs) have been iconic urban mobility services in many global
cities since they were introduced as an alternative to transportation modes depending
on internal combustion engine vehicles. Meanwhile, it is natural that users of a BSS fall
into two heterogenous groups: residents who conduct daily travels, and visitors who
temporarily stay. We can guess their behavioral differences would be substantial due to
the distinct circumstances that lead them to use bikeshares. One interesting point is the
proportion of users who check out and return bikes at the same station. It is expected that
short-term customers will be the majority of them, as they are more likely to ride bikes to
look around nearby. These “single station-based (SSB)” trips can play an important role
in BSS station capacity management, functioning as an additional storage of bikes. This
study, therefore, demonstrates data analyses that can verify the benefit of considering SSBs
as one of the alternatives to manage dock capacity. Annual members and casual users are
separately grouped to take into account their behavioral differences.

2. Relevant Literature and Research Gap

Bikeshare users choose between annual membership and a casual pass according to
attributes such as their length of stay, trip purposes, or “willingness-to-cycle”, affecting
discrepancies in trip behaviors. Thus, many studies have shown the heterogeneity in
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BSS user groups and distinguished riders by the passes they held. While several studies
included them as factors influencing the result [1], some addressed direct comparisons of
two user types as the main research objective to derive meaningful insights [2,3].

BSS station capacity, usually equivalent to the number of docks, affects the convenience
of users [4]. However, excessive capacity may lead to an increasing need for rebalancing
bikes since the station retains more bikes to be relocated to other stations unless it is one
of the popular pickup points. Therefore, planners designate the location and specification
of bike stations by expected demand distribution at the planning stage [5]. Although a
rebalancing strategy based on portable stations that can function as independent stations
or be appended to existing ones was proposed [6], operators need to pay attention to the
relocation of portable stations and become reluctant to actively apply capacity management
to their system.

Instead of modifying the number of docks, it may be possible to “virtually” keep bikes
at stations by incorporating bike fleets for SSB trips as the “reserve”. Stations with many
SSB trips can have the potential to attract more demand by providing larger bike fleets if
the number of bikes to be returned is appropriately predicted. In this context, this study can
provide a background for the development of a BSS station capacity management scheme
that ensures simple implementation and modification without physical adjustment.

3. Methodology
3.1. Preprocessing of Citi Bike Historical Usage Dataset

Monthly usage data with abnormal records and daily data associated with the precipi-
tation history from NOAA Online Weather Data (NOWData) were deleted. There remained
four bike-user groups since there are two pass types and two bike types: members with
classic bikes (MC), members with e-bikes (ME), casual users with classic bikes (CC), and
casual users with e-bikes (CE). First, pass type is the only clue that can differentiate the
customer type between casual users and annual members, assuming that they relate with
them. Second, different bike types affect the trip duration, one of the core factors compared
in this study.

3.2. Single Station-Based Trip Identification

The objective of this part is to verify if the composition of bike-user types in SSB trips
is differentiated from that in trips between different stations regarding both the amount
and proportion of trips. Among several possible reasons to return to the point where they
checked bikes out, riding a bike as a recreational activity such as physical exercise or jaunts
may also be a primary purpose. Then, it can be expected that casual users may perform
this kind of trip pattern more frequently than annual members. Although members would
take more recreational trips in total, the proportion may be higher with casual users. The
contingency table approach can be adequately applied to this question [7].

4. Results and Discussion

Table 1 shows the composition of trips. Only OD pairs with more than six trips
were chosen to conduct the two-sample Kolmogorov-Smirnov (K-S) test, a non-parametric
statistical test based on empirically cumulated density function, which requires at least
six samples [8]. Figure 1 indicates the rejection rate of tests per paired type in different
trip patterns.

The higher value means a larger discrepancy. First, trip duration distributions of classic
and electric bike trips by casual users become similar if their trip pattern is an SSB OD pair.
Second, for users who rode the same bike type, their trip duration distributions were more
similar if their trips were not SSB. This result implies that casual users have higher chances

40



Eng. Proc. 2025, 102, 6

to perceive riding the bike itself as a recreational activity and are less attentive to reducing
their trip duration. From the results, annual members and casual users seem to show
distinct bike usage behaviors in terms of spatiotemporal distribution and potential purpose
of bike usage. This heterogeneity should be considered when designing a voluntary bike
rebalancing program for casual users which has never been implemented in reality.

Table 1. Number of trips per trip types with non-zero trips.

Trio T Annual Members Casual Users
Ti e Total
P yP Classic Bikes Electric Bikes Classic Bikes Electric Bikes ota
SSB trips 224,239 109,164 128,934 50,429 512,766
(1306 pairs) (43.7%) (21.3%) (25.1%) (9.8%) (100.0%)
Avg, trips per 1717 83.6 98.7 38.6 392.6
OD pair
Normal trips 1,902,012 551,973 617,423 238,598 3,310,006
(21,622 pairs) (57.5%) (16.7%) (18.7%) (7.2%) (100.0%)
Avg, trips per 88.0 255 28.6 11.0 153.1
OD pair
Total 2,126,251 661,137 746,357 289,027 3,822,772
‘ Single Station-based OD pairs ‘ | Normal OD pairs |

Casual
user

Casual
user

Classic Classic
bike cc ] bike cc ]
N 25.4% 34.7%
?
Electric Electric
-/ —_ —_ J —_

Figure 1. Rejection rate of K-S tests among bike-user groups for different trip types.

The most promising benefit of the proposed approach is clear: capacity expansion
without additional massive capital investment and rebalancing effort. The system can
induce SSB riders to bring their bikes back to the stations where they checked them out.
A future research direction can aim to quantify the impact of the proposed virtual station
capacity management. The system can add a function that asks whether a user would
return the bike to the origin station. Collecting this information in advance can support
a more sophisticated estimation of the number of available bikes. Moreover, additional
surveys may reveal the relationship between compensation and participation rate, which
should differ by user group.
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Abstract

Autonomous driving systems have the potential to reduce traffic accidents dramatically;
however, conventional modules often struggle to accurately detect risks in complex envi-
ronments. This study presents a novel risk recognition system that integrates the reasoning
capabilities of a large language model (LLM), specifically GPT-4, with traffic engineering
domain knowledge. By incorporating surrogate safety measures such as time-to-collision
(TTC) alongside traditional sensor and image data, our approach enhances the vehicle’s
ability to interpret and react to potentially dangerous situations. Utilizing the realistic
3D simulation environment of CARLA, the proposed framework extracts comprehensive
data—including object identification, distance, TTC, and vehicle dynamics—and reformu-
lates this information into natural language inputs for GPT-4. The LLM then provides
risk assessments with detailed justifications, guiding the autonomous vehicle to execute
appropriate control commands. The experimental results demonstrate that the LLM-based
module outperforms conventional systems by maintaining safer distances, achieving more
stable TTC values, and delivering smoother acceleration control during dangerous scenar-
ios. This fusion of LLM reasoning with traffic engineering principles not only improves
the reliability of risk recognition but also lays a robust foundation for future real-time
applications and dataset development in autonomous driving safety.

Keywords: risk recognition system; autonomous driving; autonomous driving

1. Introduction

Recent NHTSA reports indicate that 94% of traffic accidents stem from human error [1],
prompting significant interest in the use of autonomous driving for accident prevention [2].
However, current systems still struggle to interpret the complex interactions among small
vehicles, emergency vehicles, and pedestrians [3]. To address these shortcomings, recent
research has begun leveraging large language models (LLMs) such as GPT-4 [4], which
exhibit emergent reasoning capabilities comparable to human judgment [5]. However,
many studies overlook transportation domain knowledge—particularly surrogate safety
measures (SSMs)—and rely on unrealistic 2D simulations.

This study enhances risk recognition and system reliability by integrating GPT-4 with
the time-to-collision (TTC) metric in a realistic 3D simulation environment, CARLA 0.9.14.
Our approach combines advanced LLM reasoning with critical transportation engineering
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insights, offering a promising direction for more robust and context-aware autonomous
driving systems.

2. Methods

This study aims to detect potentially dangerous situations that are apparent to humans
but challenging for conventional models. We implemented a dangerous scenario in CARLA,
an open-source 3D simulation platform. Specifically, we selected the viaduct area of
CARLA, where shadows and parked vehicles create visibility obstacles, as shown in
Figure 1.

BN L

_— =
Obstructions (Shadows)

Figure 1. Experimental scenario with potential risk.

In our scenario, a child unexpectedly crosses in front of a parked vehicle at 5 m/s,
requiring the autonomous vehicle to detect this risk from approximately 30 m away and
respond appropriately. Our framework in Figure 2 operates the ego-vehicle in autonomous
mode within CARLA and extracts key data: a front RGB image, four pieces of surrounding
object information (object ID, type, Euclidean distance, and time-to-collision), and five
driving parameters (speed, acceleration, throttle, steering, and brake). This information
is reformatted into natural language and input into GPT-4, which evaluates the traffic
situation and determines if a dangerous condition exists—responding with “YES” or “NO”,
along with its reasoning. Based on GPT-4’s judgment, vehicle control commands are issued,
and CARLA simulates the resulting traffic safety outcomes.

Create an ego-vehicle
Enable autonomous driving mode

Extract the identity of an Ego-vehicle é

Do monitoring and visualization Automatic integration

manual_control.p

Vehicle control commands

Provide answers ﬁ

Communicate the situation : :
Request a risk assessment Extract simulation data CARLA

GPT-4 Vision " mainpy | CarlaUE4.exe

Determine control based
on GPT’s answers

Figure 2. Modular roles of the proposed framework.
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3. Results

As a result of the provided information and the request that GPT determine the risk
situation, it was recommended that brakes be applied to the autonomous vehicle, as shown
in Table 1. To evaluate performance, we extracted the distance to the child pedestrian, TTC,
and vehicle acceleration at 0.1 s intervals. Figure 3 indicates that the LLM-based module
significantly improves traffic safety compared to the default module. With the default
module, the distance was reduced to 6.2 m at 1.7 s after control, whereas the LLM-based
module maintained a distance of 11.8 m at 1.3 s, about 5.6 m greater. Moreover, the LLM-
based module provided a more stable TTC, achieving 0.38 s at 1.2 s versus 0.04sat 1.7 s
with the default module. Additionally, the default module exhibited erratic acceleration
patterns, failing to recognize dangerous situations. These findings highlight the benefits of
integrating LLM with domain knowledge using TTC as a critical safety metric to enhance
autonomous driving performance. While CARLA-based simulations validate the approach,
future work must incorporate real-time capabilities. The proposed framework serves as
a foundation for building a learning dataset for further advancements in autonomous

perception technology.

Table 1. Results of GPT-4-based risk assessment.

GPT-4 Questions

GPT-4 Answers

The attached image is from the front camera of an
autonomous vehicle, namely ego-vehicle.

The following is the result of detecting the surrounding
objects of ego-vehicle. The unit of Distance is “m” and the
unit of TTC (Time to Collision) is “s”.
[Detected Objects]

Object ID: 27, Type: walker.pedestrian.0049, Distance:
19.19, TTC: 2.0083130971714924
The following parameters represent the driving status of
the Ego-vehicle.

[Ego-vehicle Information]

Speed: 9.69 m/s, Acceleration: (—2.40, —0.43, 0.00) m/ 2
Throttle: 0.00, Steering: —0.02, Brake: 0.15
Do not just consider numbers like the position of objects,
but pay attention to the behavior of the vehicle
or pedestrian in the image. In particular, be aware of
potentially dangerous situations, such as jaywalking
pedestrians. Even if the likelihood of a collision is low
right now, you never know what might happen. Be
prepared for the risk of a potential accident. Even a
pedestrian on a pedestrian road can distinguish potential
hazards from his gestures. Again, consider the
context of the image as a whole.

Given the three pieces of information above, does this
ego-vehicle need to maintain or start the brakes? Answer
YES or NO. When answering, answer yes or no first, and
then take a paragraph to explain your reasoning.

Be aware of visibility restrictions caused by parked cars.
Pedestrians, including children, may appear suddenly.
Detect the head, torso, feet, etc. of an obscured child
within a limited field of view. If you see children, they
might be playing and run into the driveway

Yes.

Given the information, the ego-vehicle needs to maintain
or, if necessary, apply more braking. The provided object
detection shows that there is a
pedestrian(walker.pedestrian.0049) at a distance of
19.19 m and with a Time to Collision (TTC) of
approximately 2 s. Considering the speed of the
ego-vehicle is 9.69 m/s, and the pedestrian is in close
proximity to the vehicle’s path, active braking is crucial to
avoid a potential collision. Furthermore, the ego-vehicle’s
current brake value is 0.15, and its acceleration is
negative, indicating that it is already
decelerating, which should be continued or increased
if needed, to assure the safety of the pedestrian and
comply with traffic safety regulations.

The image provided corroborates the need for caution.
The pedestrian is visible on the sidewalk, and there are
also parked cars that could obstruct the view of other
potential pedestrians, especially children, who may enter
the street unpredictably. Situational awareness is key in
such environments, and the autonomous vehicle’s
systems must ac-count for obscured areas and the
possibility of sudden pedestrian movements. The
vehicle’s de-cision algorithms should prioritize
pedestrian safety and prepare to stop if necessary,
considering the vehicle’s speed and the pedestrian’s
proximity to the potential path of the vehicle.
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Figure 3. The safety performance of the default and LLM-based modules.
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Abstract

As traffic accidents caused by black ice during the winter continue to occur, there is a
growing need for technologies that enable drivers to recognize and respond to black ice in
advance. In particular, to reduce major accidents and associated casualties, it is essential to
provide timely information and prevent incidents through accurate prediction. This paper
proposes an artificial intelligence (Al) technology capable of detecting and predicting black
ice using multimodal data. The study aims to enable a preemptive response in the field
of digital disaster safety and discusses the applicability and effectiveness of the proposed
approach in real-world road environments.

Keywords: expressway; black ice; artificial intelligent; prediction; multi-modal

1. Introduction

Black ice prediction technology typically relies on weather data. However, the com-
monly used data such as temperature, humidity, wind speed, rain, and snow is usually
collected from highways and is often far away from the Expressway section being analyzed.
Weather conditions can change rapidly in areas like shaded mountainous zones, and these
environmental variations can significantly degrade prediction accuracy. Therefore, it is
essential to obtain road-specific meteorological data and generate input data by calibrating
the collected weather information according to the topography and road environment of
the prediction location [1,2].

For early prediction, it is essential that artificial intelligence can recognize the initial
signs of black ice formation. However, relying solely on basic meteorological data as input
is insufficient for sensitively detecting the early changes on the road surface caused by
black ice. Therefore, an Al model based on multimodal data that integrates various active
data sources is required to improve both sensitivity and prediction accuracy [3,4].

As shown in Figure 1, technologies related to black ice detection and prediction have
predominantly been developed and validated within simulated environments. Real-world
applications remain largely limited to basic field deployments, resulting in low reliability
of the derived outcomes. Consequently, the objective accuracy of these approaches remains
uncertain, underscoring the need for systematic demonstration and validation to improve
both technological maturity and predictive performance.

Eng. Proc. 2025,102,8 https://doi.org/10.3390/engproc2025102008
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Figure 1. Black ice detection and prediction concept.

This study focuses on the development of an artificial intelligence technology ca-
pable of detecting and predicting black ice at an early stage using multimodal data, as
well as the implementation and demonstration of a digital disaster safety platform for
preemptive response.

2. Research Trends Related to Black Ice

As illustrated in Figure 2, a machine learning model utilizing the random forest al-
gorithm was developed to estimate winter road surface conditions. This model leverages
data collected from roadside weather sensors and CCTV video imagery. Additionally,
a long short-term memory (LSTM)-based AI model was proposed to predict road sur-
face temperatures at various time intervals by utilizing the time-series characteristics of
meteorological data.

Nagaoka University & SnowTech Nigata Guelph University

Beiing Jiaotong University

A aé,&] i

A | | =2 ‘ ) o i el el
B Development of a Random Forest-based Winter Development of Houly Road Surface In order to predict road road temperature, the
Road Surface Condition Estimation Model using Temperature Prediction Model (1, 2, 4, and 6 Al model is developed by dividing static
Weather Conditions and CCTV Video Data hours ahead) Using LSTM-based Machine variables and measurement dynamic variables

Learning Mode| related to road shape.

Figure 2. Black ice prediction.

The imaging sensor WIDE SENSE enables the acquisition of short-wave infrared
(SWIR) spectral data, which can distinguish between ice and water layers on road surfaces,
thus allowing accurate and continuous monitoring of road conditions (Italy).

Grip is a system designed to detect black ice by analyzing information collected from
in-vehicle sensors and estimating the road surface friction coefficient in real time (Finland).

A prediction model for black ice occurrence on national expressways was developed by
collecting weather data and road location information. Additionally, a black ice prediction
model was developed by incorporating system dynamics concepts and utilizing black
ice-related data together with road GIS information.
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A road icing probability estimation model was developed by equipping regular patrol
vehicles with temperature sensors to measure both ambient air and road surface tempera-
tures, using the temperature difference as a key variable (KICT).

As illustrated in Figure 3, a system titled “Black Ice Detection Method and System
Using the Same” was developed to improve detection reliability by implementing dual-
sensor detection of black ice on road surfaces. This approach utilizes both LiDAR and
thermal imaging cameras to enhance the accuracy and robustness of black ice identification.
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Figure 3. Black ice detection.

A black ice detection technique utilizing non-contact GPS signal reflections was de-
veloped, along with ongoing research aimed at minimizing the effects of environmental
factors and signal noise.

Additionally, a black ice detection technology using beamforming array radar com-
bined with reflectors was developed to measure variations in the dielectric constant caused
by phase transitions between water and ice on road surfaces.

3. Contents of the Research

As shown in Figure 4, this research and development initiative aims to develop an
artificial intelligence (Al)-based system for the early detection and prediction of black ice
through the integration of multimodal data sources. These sources include meteorological
sensors, CCTV video feeds, vehicle-mounted sensor data, and geographic information
system (GIS) data. The fusion of these heterogeneous datasets facilitates more accurate and
timely assessment of road surface conditions conducive to black ice formation.

To overcome the limitations of existing black ice detection systems—which are often
confined to simulation environments or provide only generalized risk information—this
project aims to develop a real-time, field-deployable solution. By employing machine
learning techniques such as random forests, long short-term memory (LSTM) networks,
and system dynamics modeling, the project seeks to construct robust prediction models
that account for both temporal and spatial variability in weather and road conditions.

Furthermore, the project will implement a digital disaster safety platform designed to
facilitate proactive responses by delivering tailored alerts and risk assessments to both road
operators and drivers. This platform will support decision-making by providing real-time
road status updates and risk forecasts up to 60 min in advance.
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Figure 4. Black ice detection and prediction concept.

4. Test Bed Construction

Most technologies related to black ice detection have demonstrated accuracy only
under ideal or laboratory conditions, and their deployment in real-world road environ-
ments has typically been limited to basic applications without comprehensive validation
procedures.

Technologies that have not undergone proper field verification have reliability issues
and are often utilized merely as reference materials. Consequently, these technologies can-
not be effectively integrated into existing road operation platforms or utilized in practical
response processes.

As shown in Figure 5, an experimental scenario simulating realistic driving conditions
was constructed using test roads situated adjacent to operational expressways, such as
the Yeo-ju Test Road in Korea. The scenario incorporated application modules specifically
tailored to the varying pavement types present within the test area, thereby enhancing the
representativeness and applicability of the evaluation environment.

Figure 5. Yeo-ju Test Road (Korea Expressway).

A total of 32 weather-related parameters are received every minute, including wind
direction, wind speed, temperature, humidity, atmospheric pressure, rainfall detection,
rainfall correction, road condition, and road surface temperature.

5. Conclusions

To ensure practical applicability and reliability, the proposed technologies will be
tested and validated through field demonstrations in black ice-prone areas such as tunnel
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exits, shaded mountainous roads, curved sections, and intersections. The ultimate goal
of this project is to enhance road safety by minimizing black ice-related accidents and
enabling timely, data-driven interventions.

This research is expected to contribute to strengthening the competitiveness of
domestic winter road management technologies by developing early black ice predic-
tion techniques based on accurate detection within the target area and road surface
condition forecasting.

Based on the predicted risk level and evaluation of the black ice prediction model’s
performance over different time intervals, optimal information and countermeasures can be
proposed. This will support the development of Al-driven, decision-support technologies
led by road managers.
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Abstract

In outdoor environments, GNSS is commonly used for vehicle navigation and various
location-based ITS services. However, in GNSS shadow roads such as tunnels and under-
ground highways, it is challenging to provide these services. With the rapid expansion
of GNSS shadow roads, the need for radio positioning technology that can serve the role
of GNSS in these areas has become increasingly important to provide accurate vehicle
navigation and various location-based ITS services. This paper proposes a new GNSS
shadow road radio positioning technology using multidirectional BLE beacon signals. The
structure of a multidirectional BLE beacon that radiates different BLE beacon signals in two
or four directions is introduced, and explains the principle of differential RSSI technology
to determine the vehicle’s location using these signals. Additionally, the technology used
to determine the vehicle’s speed is described. A testbed was constructed to verify the
performance of the developed multidirectional BLE beacon-based radio navigation system.
The current status and future plans of the testbed installation are introduced, and the results
of position and speed experiments using the testbed for constant speed and deceleration
driving are presented.

Keywords: multi-directional BLE beacon; tunnel positioning; GNSS shadow roads

1. Introduction

In outdoor environments, GNSS (Global Navigation Satellite System) is commonly
used to provide various location-based ITS (Intelligent Transportation System) services
such as vehicle navigation to guide driving routes to destinations, detection and warning
of unexpected situations ahead, and guidance at entry and exit points, as well as precise
navigation services for autonomous vehicles [1]. However, in GNSS shadow roads such
as tunnels and underground highways, it is difficult to provide these services due to
the inability to obtain accurate location information. Particularly in the case of GNSS
shadow roads, additional services such as location-based evacuation route guidance are of
significant importance due to the high fatality rate in the event of an accident on those roads.
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Moreover, with the rapid expansion of tunnel road construction and the construction plans
for underground highways in Korea, the need for radio positioning technology in GNSS
shadow roads has become increasingly important to provide accurate vehicle navigation
and various location-based ITS services.

WiFi, Cellular, BLE (Bluetooth Low Energy), and GNSS repeater technologies for
radio positioning in shadow roads do not meet the accuracy requirements for vehicle
navigation, and INSs (Inertial Navigation Systems) using an IMU (Inertial Measurement
Unit) or odometer have the problem of cumulative errors. Radio positioning systems using
GNSS pseudo-lite or special RF signals are difficult to use with smartphones or existing
navigation systems, making it challenging to expand positioning services [2].

To solve these issues, a new GNSS shadow road radio positioning technology named
CLOBER (Cross-shape LOcation BEacon Radio) using MD (multidirectional) BLE beacon
signals has been proposed [3,4]. By radiating BLE beacon channel signals with different IDs
in two or four directions, it can solve the problems of interference between beacon signals
and the channel model issues in RSS (relative signal strength) of existing BLE positioning
technologies. A positioning system using this BLE CLOBER has been developed and
commercialized as an indoor parking lot vehicle navigation and parking route guidance
system [5].

This paper proposes a technology to determine the position and speed of vehicles
moving at high speed in tunnels and underground highways using DRSS (differential
RSS) obtained by differencing signals radiated from MD BLE beacons. The developed BLE
CLOBER-based radio positioning technology provides an accuracy of 1-3 m comparable
to GNSS accuracy at both low and high speeds, and since it uses BLE signals, it can be
directly applied to smartphones and vehicle navigators, making it advantageous for service
expansion.

2. MD BLE Beacon-Based Radio Navigation
2.1. BLE CLOBER-Based Radio Navigation

In previous studies, positioning technologies using WiFi, Cellular, BLE, GNSS re-
peater, and GNSS pseudo-lite, as well as radio positioning using special RF signals such
as UWB (ultra-wideband), and indoor positioning using DR (dead reckoning) have been
proposed [2]. The positioning technology using WiFi and Cellular has low positioning
accuracy, and the BLE positioning technology is significantly affected by interference or
distance errors due to the channel environment of the propagation paths of multiple beacon
signals. GNSS repeater is affected by the location of the GNSS receiver installed outside,
and GNSS pseudo-lite has problems with multipath and difficulty in receiving signals on
smartphones, etc. UWB positioning has high positioning accuracy, but requires separate
terminals, and DR navigation technology has the problem of cumulative errors in IMU and
odometer sensors, causing continuous increases in position and direction errors.

To solve these problems, the BLE CLOBER positioning technology, which radiates BLE
beacon signals with different IDs in two or four directions using multidirectional antennas,
has been proposed [3,4]. Figure 1 shows the signal radiation pattern of the BLE CLOBER
equipped with two or four directional antennas. In the figure, each antenna radiates BLE
beacon signals with different IDs and radiates signals in a time-division scheme to minimize
interference. Since the signals reaching the vehicle from each antenna have very similar
propagation paths, it solves the channel environment problem that causes position errors
in existing BLE positioning.
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Figure 1. BLE CLOBER equipped with two or four directional antennas.

This paper proposes a technology to determine the position and speed of vehicles
moving at high speeds in tunnels and underground highways using DRSS (differential
RSSI) obtained by differentiating the RSS (Received Signal Strength) of signals radiated
from MD BLE beacons. A vehicle passing through BLE CLOBER equipped with two
directional antennas, as shown in Figure 1, has an RSS signal reception profile as shown
in Figure 2, and DRSS can be obtained by differencing these signals. Since the position
and antenna radiation direction of BLE CLOBER are known and stored in the navigation
map, the vehicle position can be estimated using DRSS. In addition, the vehicle speed can
be estimated using both the slope of the DRSS and the time taken to pass through two
adjacent BLE CLOBERs.

Ant. 1 Ant.2

cLosER™

RSSI
Differential

time

time

Figure 2. Received RSS profile from two-directional antennas (red from left direction and blue from
right) and their DRSS profile.

2.2. BLE CLOBER Testbed Construction Status and Future Plans

To verify the high-speed performance of the BLE CLOBER positioning technology,
outdoor experiments were conducted at the proving ground, and the position performance
of 1-3 m, depending on the speed, was confirmed compared to the RTK position. Based
on these experimental results, a testbed was constructed in the Gise tunnel located in the
Daegu Technopolis area to verify the feasibility of BLE CLOBER, as shown in Figure 3. Ten
BLE CLOBERs were installed at 30-m intervals, and a wired network was established for
beacon maintenance, monitoring, and remote control. Using the testbed, we plan to develop
position and speed estimation algorithms using BLE CLOBER in tunnel environments and
analyze their accuracy. Additionally, remote control technology for beacon monitoring
and maintenance will be developed. After verifying feasibility, we plan to expand the BLE
CLOBER testbed by more than 1 km by the end of 2025, as shown in Figure 4, and add
UWB positioning infrastructure to a 500-m section for precise performance analysis.
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Figure 3. Architecture of the BLE CLOBER testbed in the Gise Tunnel.
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Figure 4. Future plan for the BLE CLOBER testbed in the Gise Tunnel.

3. Experiment Results

Driving experiments were conducted using the BLE CLOBER testbed installed in
the Gise Tunnel. The driving experiments included constant speed tests and accelera-
tion/deceleration tests. The constant speed tests were performed in Cruise drive mode at
speeds of 40, 60, and 80 km/h to maintain a constant speed. Figure 5 shows the position
and speed profiles for the constant speed experiments. In the figure for speed profile, the
blue dots denote the speed computed from the slope of DRSS, and red dots are obtained
from pass time between two CLOBERS. As shown in the figure, the speed estimation
performance was excellent with an error within 5 km/h, and since it was a constant speed
operation, the position increased linearly.

Acceleration/deceleration tests were conducted to verify the ability to detect speed
changes. Figure 6 shows the position and speed profiles for the acceleration/deceleration
tests. It can be observed that the speed changes were detected promptly as the vehicle
passed through the CLOBER. With the future plan of expanding the testbed and the
establishment of UWB precision positioning infrastructure, it is expected that more accurate
positioning performance will be analyzed in the next studies.
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Figure 6. Position and speed profiles for acceleration/deceleration experiments. (a) Acceleration.
(b) Deceleration.

4. Conclusions

This paper proposes a technology to determine the position and speed of vehicles
moving at high speeds in tunnels and underground highways using DRSS (differential
RSSI) obtained by differencing signals radiated from multidirectional BLE beacons. To
verify the performance of the proposed technology, constant speed experiments and accel-
eration/deceleration driving experiments were conducted using the BLE CLOBER testbed.
The experimental results confirmed that the BLE CLOBER-based radio positioning technol-
ogy developed provides an accuracy of 1-3 m at both low and high speeds, and can quickly
detect speed changes. The proposed BLE CLOBER-based radio positioning technology can
provide position information compatible with outdoor GNSS accuracy and can be directly
applied to smartphones and vehicle navigators, allowing for rapid service expansion.
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Abstract

GPSs typically have an accuracy ranging from a few meters to several tens of meters.
However, when corrected using various methods, they can achieve an accuracy of several
tens of centimeters. In autonomous driving, a positioning accuracy of less than 50 cm
is required for lane-level positioning, route generation, and navigation. However, in
environments where GPS signals are blocked, such as tunnels and underground roads,
absolute positioning is impossible. Instead, relative positioning methods integrating IMU,
IVN, and cameras are used. These methods are influenced by numerous variables, however,
such as vehicle speed and road conditions, resulting in lower accuracy. In this study, we
conducted experiments on current vehicle navigation technologies using an autonomous
driving simulation vehicle in the Suri-Suam Tunnel of the Seoul Metropolitan Area 1st Ring
Expressway. To recognize objects (lane markings/2D/3D) for position correction inside
the tunnel, data on tunnel and underground road infrastructure in Seoul and Gyeonggi
Province was collected, processed, refined, and trained. Additionally, a Loosely Coupled-
based Kalman Filter was designed and applied for the fusion of GPSs, IMUs, and IVNs.
As a result, an error of 113.62 cm was observed in certain sections. This suggests that
while the technology is applicable for general vehicle lane-level navigation in ultra-long
tunnels spanning several kilometers for public service, it falls short of meeting the precision
required for autonomous driving systems, which demand lane-level accuracy. Therefore, it
was concluded that infrastructure-based absolute positioning technology is necessary to
enable precise navigation inside tunnels.

Keywords: K-underground expressway; autonomous driving; vehicle navigation; U-GPS;
BLE; UWB

1. Introduction

Performance experiments of navigation technology based on an autonomous driving
simulation vehicle were conducted in the Suri Tunnel (approximately 1.8 km) and the Suam
Tunnel (approximately 1.2 km) of the Seoul Metropolitan Area 1st Ring Expressway. The
test vehicle used was a EV6(KIA, Seoul, Republic of Korea) configured to enable a hybrid
navigation system that integrates GPS-based absolute positioning with relative positioning
using IMU (Inertial Measurement Unit), IVN (In-Vehicle Network), a camera, and LiDAR.
The detailed specifications of the system are shown in Figure 1 below.

Eng. Proc. 2025,102, 10 https://doi.org/10.3390/engproc2025102010
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Sensor Specification Quantity
GPS RTK: 0.015m + Ippm 1 EA
(Trimble) 50Hz Pos. Output
IMU Roll/Pitch: 0.03° 1o 1 EA
(OXTS) Heading : 0.1° 1o
100Hz Output
Camera Resolution : 4096 x 3000 | 4 EA
(FLIR)
LiDAR CH: 128 1 EA
(OUSTER) Range : 200m
VFOV : 45°
Object Detection 81.8 mAP/86.32 mAP 1 Set
(Static / Dynamic)
DAQ Intel Core 17-5700 1 EA
16GB RAM ..

Figure 1. System Configuration and Specification.

To enable object recognition inside tunnels, data collection, refinement, and prepro-

cessing were conducted for tunnels and underground roads in the Seoul and Gyeonggi

regions, covering a total length of approximately 30 km. For relative position correction, a

total of 18 types of tunnel interior objects were selected, including firefighting equipment

(3 types), alarm systems (11 types), and evacuation facilities (4 types).

For the implementation of Lane/Object (2D/3D) Detection [1-3], the following models
were used: YOLOP for Lane Detection, YOLOV9 for 2D Object Detection [2], and CasA for
3D Object Detection [1]. The objects and models used for training, as well as their results,

are shown in Figure 2 below.

Class Object Name

Installation Interval

Firefighting | Fire Extinguishing Device

Within 50m

Equipment Indoor Fire Hydrant System

Within 50m

25~50m

Alarm

Within 50m

Systems

Within 50m

Within 50m

Emergency Telephone

Within 250m

ccTv

Inside Tunnel: 200~400m
Outside Tunnel: Within 500m

Automatic Incident Detection System

Video-based  Detection:  Around
100m

Unexpected Situation Monitoring:
Reflecting Tunnel C}

Rebroadcasting System

Installed to enable listening within

Tunnel Entrance Information Display

Entry Restriction Signboard

Every 50m up to 200m before the
tunnel entrance

Tunnel Entry Restriction System

Lane Usage Control Signal

400 ~ 500m

Evacuation | Emergency Lighting

Facilities

Guide Lights (A, B)

every 50m

Refuge Facilities

Figure 2. Objects and Recognition Models/Results for Relative Position Correction in Tunnels.
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To integrate GPS, IMU, and IVN, a Loosely Coupled-based Kalman Filter was designed
and applied [4,5]. An error model was formulated and incorporated, considering factors

such as DR (Dead Reckoning) attitude angles, speedometer conversion coefficients, and

gyroscope bias. The detailed implementation is shown in Figure 3 below.
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Based on the configured system, an experiment was conducted by driving round-trip
from Anyang-Pyeongchon to Pangyo, passing through the Suam Tunnel and Suri Tunnel
in sequence (Figure 4). The driving conditions followed the expressway speed regulations
and were conducted on the fourth lane after 4:00 p.m. The driving results are presented in

Figure 5 below.

Figure 4. Driving Route.
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In this study, a positioning accuracy experiment was conducted on vehicle navigation
technology in ultra-long underground expressways using an autonomous driving simula-
tion vehicle. In occlusion sections where GPS signals are interrupted, inertial navigation
positioning was performed by fusing IMU/IVN, and vision-based navigation positioning
was conducted by integrating a camera/LiDAR. Due to challenging tunnel environments
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(e.g., signal obstruction by moving objects and multipath fading), fluctuations in absolute
positioning were observed in certain sections, resulting in a maximum error of 113.62
cm. While this level of accuracy is acceptable for non-research vehicles using commercial
navigation systems, it was deemed insufficient for application in autonomous driving
systems. Based on the experimental results, it was concluded that to achieve accurate posi-
tioning even in GPS-denied areas for both autonomous vehicles and non-research vehicles,
a continuous absolute positioning system integrating infrastructure-based technologies
such as virtual GPS signals, BLE (Bluetooth Low Energy), and UWB (Ultra-Wideband) is
required. Future research will focus on integrating these technologies with autonomous
driving systems and commercial navigation systems to develop a stable vehicle navigation
system in way tunnel environments.
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Abstract

This study explores the impact of driving behaviors, specifically cautious and aggressive,
on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs)
in traffic flow dynamics. It focuses on various metrics, including level of service (LOS),
average speed, traffic volume, queue delays, carbon emissions, and fuel consumption,
to assess their effects on overall performance. The findings reveal significant differences
between cautious and aggressive AVs, particularly at varying market penetration rates
(MPRs). Aggressive autonomous vehicles demonstrate greater traffic efficiency compared
to their cautious counterparts. They achieve higher levels of service, improving from poor
performance at low MPRs to significantly better performance at higher MPRs and in fully
autonomous scenarios. In contrast, cautious AVs often experience poor service ratings
at low MPRs, with an improvement in performance only at higher MPRs. Regarding
environmental performance, aggressive AVs outperform cautious ones in terms of reduced
emissions and fuel consumption. The emissions produced by aggressive AVs are signifi-
cantly lower than those from cautious AVs, and they further decrease as the MPRs increases.
Additionally, aggressive AVs show a considerable reduction in fuel usage compared to
cautious AVs. While cautious AVs improve slightly at higher MPRs, they continue to
generate higher emissions and consume more fuel than their aggressive counterparts. In
conclusion, aggressive AVs offer better traffic efficiency and environmental performance
than both cautious AVs. Their ability to improve road efficiency and reduce congestion
positions them as a valuable asset for sustainable transportation. Strategically incorporating
aggressive AVs into transportation systems could lead to significant advancements in traffic
management and environmental sustainability.

Keywords: autonomous vehicles; human driven vehicles; aggressive; cautious

1. Introduction

Human-driven cars add unpredictability, which may affect autonomous vehicle traffic
networks. For future urban planning and infrastructure development, understanding how
autonomous cars affect traffic dynamics, especially human-operated vehicles, is crucial [1-
4] Research has shown several outcomes throughout this transitional phase [5-7]. As
autonomous cars become more common, their predictive driving and sensor-driven naviga-
tion systems will improve traffic flow [8,9]. Simulations show that autonomous cars might

Eng. Proc. 2025,102,11 https://doi.org/10.3390/engproc2025102011
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minimize traffic congestion and conflicts by improving lane-keeping and deceleration
management [10,11]. However, low penetration rates cause many issues because tradi-
tional vehicles lack the predictability of autonomous vehicles, undermining the benefits of
automated vehicles in a fully automated setting [12-14].

In 2017, the European Union launched the CoEXist effort to prepare cities for the
coexistence of autonomous cars (AVs) and human-driven vehicles (HDVs) on the roads [15].
The effort aims to gather data on driver behavior and the impact of autonomous vehicles
on mixed traffic scenarios. Based on the insights from the CoEXist research, VISSIM version
2022 provided three driving logics for autonomous cars to replicate their behavior in a
simulated environment. There exist three categories of driving behaviors: cautious, normal,
and aggressive. Each one delineates a distinct sort of conduct in both the longitudinal and
lateral dimensions.

This research simulates many scenarios to examine the market penetration of au-
tonomous cars, highlighting traffic flow and demand in relation to human-operated ve-
hicles. This study used VISSIM version 2022, an intricate microscopic traffic simulation
software, to examine the impact of aggressive and cautious behaviors of self-driving cars
on traffic flow on Jakarta Harbour Tollroad. This study evaluates traffic volume, efficiency,
and accident reduction in mixed traffic conditions. The model of autonomous vehicles is
based on the CoExist Project, which is given by VISSIM version 2022. On the other hand,
the model of human-driven vehicles is based on the actual traffic circumstances that occur
on the Jakarta Harbor Toll road.

2. Literature Review

Multiple studies have forecasted the market penetration rates (MPR) of autonomous
vehicles (AVs). By 2045, studies project that the MPR of driverless cars would range from
24 to 87 percent. Despite the correlation between the intrinsic advantages of autonomous
cars and complete market saturation, achieving a market penetration of 100 percent remains
a significant challenge [15-17]. Throughout the transitional phase, autonomous vehicles
(AVs) will engage with human-driven vehicles (HDVs). Researchers anticipate that the
intricate environment generated by these vehicles, with differing levels of autonomy, would
affect driving behaviors within traffic dynamics. This study examines traffic dynamics,
human driver behavior, and the integration of autonomous cars based on the CoExist
Project, utilizing cautious and aggressive behaviors to understand the challenges and
consequences of integrating autonomous and human-driven vehicles. We will examine
human driving behaviors to guarantee safe and efficient vehicle operation on highways.
We adjust the forceful driving behaviors of both autonomous and human-operated cars to
correspond with their surroundings. Thereafter, we utilize VISSIM version 2022 to assess
the mobility, safety, and adoption rate of these vehicles.

3. Methodology
3.1. Research Area

This study examines the Harbour Tollroad in Jakarta, Indonesia. Pedicabs and mo-
torcyclists are barred from accessing the toll road, with only autonomous vehicles, cars,
Heavy Goods Vehicle (HGV) and buses authorised for entry. A single on-ramp and a single
off-ramp connect each road. Figure 1 visually illustrates the location of the research study.
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Figure 1. The research area relevant to this study.

3.2. Research Design Model Development

This research allows modifications based on the traffic conditions we assess. This
traffic composition study primarily examines autonomous vehicles (AVs) and human-
operated vehicles (HOVs). Utilizing parameter values from the CoEXist study, the AV
aggressive and cautious behavior classifications align with the fundamental principles of
VISSIM version 2022. One may choose from several situations and market penetration rates
(MPRs). The scholarly literature utilizes a similar concept by using maximum road capacity
to accurately represent probable peak traffic scenarios. The scenario approach juxtaposes
a dynamic examination of human-operated cars with analyses of both aggressive and
cautious autonomous vehicles. Each scenario will conduct three essential simulations,
specifically as follows:

1. Abaseline is established by this scenario, which simulates typical traffic in the absence
of autonomous vehicles. This scenario is referred to as human-driven vehicle traffic.

2. Market penetration rates (MPRs) for autonomous vehicles can range anywhere from
10% to 90% in increments of 10%, depending on the level of competition in the
environment. Mixed traffic environments are characterized by this.

3. Fully Autonomous Traffic: Autonomous vehicles constitute one hundred percent
of the traffic, exemplifying a potential future scenario in which they predominate
road usage.

The simulations generate various outputs regarding performance and traffic flow
efficiency. We use these outputs to analyze the procedure’s results. Figure 2 illustrates the
three fundamental stages previously mentioned, together with the processes associated
with each level.

Basic Planning Model
asie.: Sanningode Simulation Output and Result

- Vissim Model Comparison
- Road Geometric Data - Traffic Density, Congestion Level,
- Vehicle and Operational Data and Delay

Scenario model simulation
- Human-operated vehicular traffic

- Mixed Traffic Human Operated
Vehicles and AV, with MPR 10%-
90%

- Full Autonomous Vehicles

Figure 2. Three phases of analyzing dynamic mixed traffic comprising human-driven vehicles with
aggressive and cautious autonomous vehicles.

We identified the key input factors that significantly affect vehicle performance, includ-
ing their minimum and maximum values. Table 1 presents the findings. We established the
range values of the input variables using the minimum and maximum values derived from
prior studies.
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Table 1. Parameters for human driven vehicle behavior.

Parameters Park et al. [18] He [19] Shin et al. [12] Current Research

Following model

Look-ahead distance 200~300 72~108 - 60~100
Look-back distance 200~300 72~108 - 60~100

Interaction of objects 1~5 - - 2

Interaction of vehicles - - - 1

Car following model

CCO, Distance to standstill (m) 1.0~2.0 0.0~20.0 0.0~3.0 5.00
CC1, Time for headway (s) 0.5~3.0 0.0~5.0 0.0~5.0 5.00
(2, Distance maintained 0.0~15.0 0.0~10.0 0.0~40.0 40.0

between vehicles (m)
CC3, Criteria for entry into the —30.0~0.0 -20.0~0.0 } ~30.0
subsequent (s)
CC4, Negative subsequent
threshold (m/s) —1.0~0.0 —5.0~0.0 - -1.0
CC5, Positive subsequent
threshold (m/s) 0.0~1.0 0.1~5.0 - 5.0
CCé, Distance-dependent
oscillation (1/(m/s)) 0.0~20.0 0.1~20.0 - 20.0
CcC7, Acceleratlc;n oscillation 0.0~1.0 —1.0~1.0 . 1.0
(m/s”)
CC8, Static acceleration (m/s?) 1.0~8.0 0.0~8.0 - 8.0
CC9, 80 km/h acceleration (m/s?) 0.5~3.0 0.0~8.0 - 8.0
Model of lane change
Maximum deceleration —5.0~—1.0 —5.0~0.0 -5.0 —5.0~—1.0
—1m/s? per distance 100 100 100 100
Deceleration accepted (m/ s2) —-3.0~0.2 - —-3.0
Waiting period prior to diffusion - - - 60.00
Minimum front/rear clearance (m) 0.1~0.9 - 0.50
Factor of safety distance decrease - 0.0~1.0 0.0~1.0
Cooperative braking maximum 5.0~—1.0 _5.0~00 _50

deceleration (m/s?)

4. Result and Discussion

4.1. Comparison of Dynamic Traffic Flow Between Human-Driven Vehicles and
Autonomous Vehicles

A comprehensive comparison assesses the dynamic traffic flow characteristics of
human-driven vehicles (FHDVs) and autonomous vehicles (AVs) under both cautious and
aggressive behaviors. The metrics evaluated encompass level of service (LOS), mean speed,
mean queue delay, mean queue length, mean emissions, and mean fuel consumption.

4.2. Level of Service (LOS)

Level of service (LOS) serves as a critical metric for assessing traffic flow efficiency;,
quantifying the extent of congestion on roadways. Aggressive autonomous vehicles (AVs)
markedly improve the level of service (LOS) performance in comparison to cautious
AVs and human-driven vehicles (FHDVs). At lower market penetration rates (MPRs),
aggressive autonomous vehicles exhibit level of service E or 5, which indicates moderate to
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heavy congestion. As the MPRs increases, aggressive AVs show significant enhancement,
achieving LOS C or 3 at an MPR of 90%, indicating decreased congestion and improved
traffic flow.

Cautious AVs exhibit suboptimal performance at low MPRs, frequently resulting in
LOS F or 6, indicative of significant congestion. The suboptimal performance is linked to
conservative driving behaviors, including larger vehicle gaps and a cautious approach to
acceleration. At elevated MPR, cautious AVs demonstrate improvement, achieving LOS C
or 3 at an MPR of 90%; however, their performance remains markedly inferior to that of
aggressive AVs. The findings highlight the advantages of aggressive autonomous vehicles
in enhancing road capacity and minimizing delays, positioning them as essential elements
of effective future traffic systems. Figures 3 and 4 illustrate the comparative results of LOS
for cautious and aggressive AV behaviors.
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Figure 3. Graph comparing level of service cautious and aggressive autonomous vehicles.
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4.3. Average Speed

Average speed serves as a critical measure of the efficiency of traffic flow. Aggressive
autonomous vehicles consistently demonstrate superior average speeds compared to both
cautious autonomous vehicles. At an MPR of 10%, the average speed of aggressive AVs
is 37 km/h, which increases consistently with rising MPRs. In scenarios involving fully
autonomous vehicles (FAVs), aggressive autonomous vehicles (AVs) attain a maximum
average speed of 67 km/h indicating a significant enhancement as the share of autonomous
vehicles in traffic rises.
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Cautious autonomous vehicles exhibit reduced speeds in comparison to aggressive
autonomous vehicles. At an MPR of 20%, the average speed decreases to 32 km/h, which
is slower than that of FHDVs. With an increase in the MPR, cautious autonomous vehicles
demonstrate a degree of improvement, achieving speeds of 63 km/h in fully autonomous
conditions. The cautious characteristics of these AVs, including slower acceleration, in-
creased headways, and a hesitance to change lanes aggressively, constrain their speed.
The reduced performance significantly impacts their overall traffic efficiency. The results
show that aggressive autonomous vehicles, by staying at high speeds, improve traffic flow
and shorten travel times, while cautious autonomous vehicles make traffic less efficient.
Figures 5 and 6 illustrate the results of comparing average speeds between cautious and
aggressive AV behaviors.
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Figure 5. Graph showing comparison of average speeds between cautious and aggressive AV.
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4.4. Maximum Volume

Maximum volume is a crucial performance metric indicating the road’s capacity to
accommodate traffic. Aggressive autonomous vehicles demonstrate superior performance
in managing elevated traffic volumes relative to both cautious autonomous vehicles and
fully human-driven vehicles. The maximum volume for FHDVs is 1231 vehicles per hour.
Aggressive AVs exhibit a significant increase in maximum volume, achieving 6187 vehicles
per hour in fully autonomous scenarios. While this is happening, cautious autonomous
vehicles are experiencing an increase in MPR, but their performance is still lower than
that of aggressive autonomous vehicles. At a market penetration rate of 20%, the max-
imum volume is 1586 vehicles per hour, which increases to 4329 vehicles per hour in
fully autonomous scenarios. Cautious autonomous vehicles have increased headway and
decreased movement due to cautious driving behaviours. The comparison of aggressive
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and cautious autonomous vehicles highlights the significance of driving behavior in opti-
mizing traffic volume and road capacity utilization. Aggressive AVs demonstrate enhanced
effectiveness in optimizing road usage, mitigating congestion, and improving overall traffic
efficiency. Figures 7 and 8 illustrate the comparative results of maximum- capacity traffic
volumes for cautious and aggressive AV behaviors.
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Figure 7. Graph comparing maximum-capacity traffic volumes for cautious and aggressive behaviors.
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4.5. Queue Delay and Queue Length

Queue delay and queue length serve as critical metrics for assessing congestion.
Aggressive AVs markedly decrease both metrics. At FHDV levels, the mean queue delay
is 40 s, reducing to 14 s at an MPR of 90%. The queue length decreases from 26 vehicles
to 19 vehicles. The enhancements are linked to the capacity of aggressive autonomous
vehicles to navigate intersections effectively and mitigate bottlenecks, facilitated by their
dynamic driving behaviors and quicker response times.

Cautious AVs demonstrate increased delays and extended queues, especially at lower
MPR. At a market penetration rate of 20%, the average queue delay reaches a maximum of
78 s, while queue lengths attain 60 vehicles. Cautious autonomous vehicles demonstrate
enhanced performance with rising MPR; however, they remain inferior to aggressive au-
tonomous vehicles. At a maximum permissible rate of 90%, the average delay decreases to
24 s, and the queue length diminishes to 38 vehicles. The cautious behavior of autonomous
vehicles, marked by yielding, increased spacing between vehicles, and conservative ac-
celeration, results in elevated delays. This underscores the necessity of implementing
more assertive AV strategies to mitigate congestion and enhance traffic flow. Figures 9-11
illustrate the comparative results of queue length and delay for cautious and aggressive
AV behaviors.
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4.6. Carbon Emissions

Emissions serve as a vital environmental indicator that signifies the sustainability
of transportation systems. Aggressive autonomous vehicles demonstrate substantial en-
hancements in emission reduction. Emissions for FHDVs begin at 4286 g CO, and decrease
to 1800 g CO;, at an MPR of 90%. The reduction is mainly attributed to improved traffic
flow, decreased idling times, and increased average speeds, which are indicative of ag-
gressive driving behaviors. The dynamic approach of aggressive autonomous vehicles
contributes to reduced fuel consumption and enhanced environmental efficiency. Cautious
autonomous vehicles exhibit increased emissions at reduced market penetration rates. At a
marginal abatement cost of 20%, emissions reach a maximum of 6809 g of CO,. As the MPR
increases, emissions decline, ultimately reaching 2613 g CO, at an MPR of 90%. As the
proportion of autonomous vehicles increases, emissions tend to improve; however, cautious
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autonomous vehicles still result in higher emissions than their aggressive counterparts. The
comparison indicates that aggressive AVs exhibit a distinct advantage regarding environ-
mental sustainability, leading to diminished carbon footprints and enhanced fuel efficiency.
Figures 12 and 13 illustrate the comparative results of carbon emissions for cautious and
aggressive AV behaviors.
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Figure 12. Graph comparing carbon emissions of cautious and aggressive autonomous vehicles.
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4.7. Fuel Consumption

Fuel consumption, strongly linked to emissions, demonstrates a notable reduction in
aggressive autonomous vehicles. As depicted in Figures 14 and 15, under the full human-
driven vehicles (FHDVs) condition, the fuel consumption of cautious autonomous vehicles
is approximately 64 liquid gallons, which is only slightly higher than that of aggressive
autonomous vehicles at 61 liquid gallons. However, upon achieving a market penetra-
tion rate of fully autonomous vehicles, aggressive autonomous vehicles exhibit a lower
consumption rate of 38 liquid gallons compared to cautious autonomous vehicles. This
reduction is attributable to a more gradual acceleration pattern, lower idling duration, and
enhanced traffic flow efficiency. The assertive driving style of aggressive autonomous vehi-
cles enhances fuel economy, thereby minimizing fuel waste. The elevated fuel consumption
of cautious autonomous vehicles is due to frequent stops, reduced acceleration rates, and
suboptimal lane management. The comparison highlights that aggressive AVs exhibit
greater fuel efficiency, especially at elevated MPR, thereby serving as a crucial element
of sustainable transportation systems. Figures 14 and 15 illustrate the comparative fuel
consumption results for cautious and aggressive AV behaviors.
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5. Conclusions

This study highlights the transformative potential of autonomous vehicles (AVs) in
optimizing traffic flow and reducing environmental impacts. Aggressive AVs consistently
outperform cautious AVs across key metrics such as level of service (LOS), average speed,
traffic volume, queue delays, emissions, and fuel consumption. Their ability to maintain
smaller headways and manage traffic dynamically results in reduced congestion and
improved roadway efficiency, particularly at higher market penetration rates (MPRs).
Cautious AVs, while improving traffic safety, exhibit limitations in efficiency at lower MPR
due to conservative driving behaviors. These vehicles struggle with higher queue delays,
longer queue lengths, and increased emissions, especially in mixed traffic conditions.
However, their performance improves significantly as the MPR increases, demonstrating
their optional behaviour to implementation of autonomous vehicles. This comparative
analysis highlights that aggressive driving behaviors surpass cautious ones in achieving
optimal traffic flow.

In conclusion, the adoption of aggressive AVs offers significant advantages in improv-
ing traffic systems and reducing environmental impacts. However, the transition to fully
autonomous systems requires strategic planning, particularly in mixed traffic scenarios
with varying MPR. Policymakers, engineers, and urban planners must collaborate to ensure
the successful integration of AVs into existing traffic systems, leveraging their strengths to
create sustainable, efficient, and safe transportation networks.
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Abstract

Transit systems play a vital role in urban mobility, yet predicting individual travel be-
havior within these systems remains a complex challenge. Traditional machine learning
approaches struggle with transit trip data because each trip may consist of a variable
number of transit legs, leading to missing data and inconsistencies when using fixed-length
tabular representations. To address this issue, we propose a transformer-based dynamic-
sequence approach that models transit trips as variable-length sequences, allowing for
flexible representation while leveraging the power of attention mechanisms. Our method-
ology constructs trip sequences by encoding each transit leg as a token, incorporating
travel time, mode of transport, and a 2D positional encoding based on grid-based spatial
coordinates. By dynamically skipping missing legs instead of imputing artificial values, our
approach maintains data integrity and prevents bias. The transformer model then processes
these sequences using self-attention, effectively capturing relationships across different trip
segments and spatial patterns. To evaluate the effectiveness of our approach, we train the
model on a dataset of urban transit trips and predict first-mile and last-mile travel times.
We assess performance using Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE). Experimental results demonstrate that our dynamic-sequence method yields up to
a 30.96% improvement in accuracy compared to non-dynamic methods while preserving
the underlying structure of transit trips. This study contributes to intelligent transportation
systems by presenting a robust, adaptable framework for modeling real-world transit data.
Our findings highlight the advantages of self-attention-based architectures for handling
irregular trip structures, offering a novel perspective on a data-driven understanding of
individual travel behavior.

Keywords: travel behavior prediction; variable-length sequences; data-driven mobility
analysis; first-mile and last-mile travel

1. Introduction

Public transit systems play a critical role in sustaining the mobility of densely popu-
lated cities. However, accurately predicting travel behavior surrounding the use of public
transit remains a challenge due to the inherent variability in trip structures. As illustrated
in Figure 1, each individual trip may consist of a variable number of transit legs, which
leads to missing data and inconsistencies when using fixed-length tabular representations.
Traditional machine learning approaches struggle with such variability in sequential travel
data, often requiring extensive preprocessing and imputation to accommodate incomplete
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records. For example, methods such as ARIMA [1], Kalman filters [2], and even more recent
techniques like random forest [3] generally assume fixed-length inputs and are thus not
well-equipped to handle the irregularities inherent in transit data.

Name Legl Leg2 Leg3 Leg4 Leg5

User 1 | Bus Bus Bus N/A N/A
Tabular Data

User2 | Subway Bike N/A N/A N/A Difficult to Apply Machine
Learning Algorithms

User3 | Subway Bus Bus Bus N/A

User4 | Train N/A N/A N/A N/A

User1 | Bus Bus Bus

User2 | Subway Bike Dynamic Sequence Data
Can be Utilized by

User3 | Subway Bus Bus Bus Transformer Architecture

User4 | Train

Figure 1. Comparison of tabular and dynamic-sequence travel data.

To address these challenges, we propose a transformer-based dynamic-sequence
approach that models transit trips as variable-length sequences. By leveraging the power
of attention mechanisms, transformer models enable the flexible representation of each
trip, preserving both spatial and temporal context [4]. In our framework, each transit
leg is encoded as a token that integrates travel time, a mapped mode indicator, and a 2D
positional encoding derived from grid-based spatial coordinates. This novel tokenization
not only mitigates the issues arising from missing or incomplete data but also enables the
model to capture long-range dependencies across different segments of a trip.

In summary, this paper aimed to demonstrate our findings in the following areas:

e  Dynamic-Sequence Modeling: We develop a transformer-based model that effectively
handles variable-length transit trip data.

e Travel Data Tokenization: We introduce a tokenization method that integrates travel
time, mode information, and grid-based positional encoding, capturing complex
spatiotemporal patterns inherent in travel data.

e Independent Regression Pipelines: We independently predict first-mile and last-mile
travel times, evaluated with Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), demonstrating superior performance compared to traditional approaches.

The next section describes the dataset characteristics and the preprocessing techniques
used to handle variable-length sequences and missing data. Following that, we explain our
methodology, including the token generation process, transformer model architecture, and
training procedures. Finally, the Results and Implications section presents our findings and
discusses their significance for modern travel data analysis.

2. Data

First- and last-mile travel data can be considered microscopic, as they record indi-
vidual movements. Thus, the collection of such data must adhere to stringent privacy
regulations. For this research, 2021 Individual Travel Survey Data provided by the Ko-
rea Transport Database [5] was utilized. This dataset contained encrypted survey data
for over 350,000 individual single-purpose travel records. Data such as travel purpose,
travel modes, and origin-destination (OD) coordinates for each transit leg were recorded.
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Among this data, only travel records that had their OD coordinates in Seoul, South Korea,
were considered.

Detailed spatial data such as OD coordinates were aggregated to satisfy privacy
requirements and enable standardized positional encoding for model implementation.
Using administrative boundary data from Statistics Korea [6], we divided the study area
into a 13 x 11 grid of 3 km x 3 km cells. Figure 2 shows this spatial aggregation scheme:
each cell is assigned a positional label from (1,1) to (13,11), for a total of 143 cells.
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Figure 2. Spatial aggregation of data into 3 km x 3 km cells.

The data was then split into three separate tables:

e  First-mile (FM) data: data regarding the first transit leg before public transit use.
e  Public Transit (PT) data: data recording one or more consecutive public transit uses.
e Last-mile (LM) data: data relevant to the final transit leg after public transit use.

Specifically, PT data was processed to reveal detailed spatiotemporal characteristics
regarding each transit leg, and the target for prediction was set as FM and LM travel time
data. The methodology used will be illustrated in the following section.

3. Methodology

Our approach to predicting first-mile and last-mile travel times from public transit
data is based on a transformer architecture specifically designed to handle the inherent
variability in transit trip records. The methodology is organized into three key components:
dynamic-sequence generation through tokenization and positional encoding, a transformer
model architecture for regression, and a comprehensive training and evaluation procedure.

In the tokenization process, each trip is converted into a sequence of tokens, with
each token representing critical information from one leg of the journey. Each token is
constructed by combining three elements: the travel time, the travel mode, and a positional
encoding generated using sinusoidal functions. This design, illustrated in Figure 3, ensures
that the model captures both the temporal and spatial aspects of each transit leg.
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Figure 3. Tokenization of public transit data.

Because transit data often suffers from missing spatiotemporal information [7], our
method also incorporates special tokens. Start tokens are generated from the starting grid
coordinates of the first public transit leg, while end tokens are generated from the ending
grid coordinates of the last leg. When grid data is missing, default values are used to
preserve the dynamic-sequence format. This comprehensive tokenization strategy allows
the transformer architecture to leverage all available information for data-driven prediction.

Transformer-based regressors leverage the power of self-attention to capture long-
range dependencies and complex interactions within data [8]. In our case, the transformer
model is built upon a stack of transformer encoder layers, each of which integrates a
multi-head self-attention mechanism with a position-wise feed-forward network. Residual
connections and layer normalization are used throughout to ensure stable gradients and
robust learning.

Moreover, as our input sequences are of variable length, we introduce a masked mean
pooling operation following previous literature [9]. This mechanism computes the average
representation over only the valid, non-padded tokens, resulting in a fixed-dimensional
vector that encapsulates the entire trip.

This pooled vector is then passed through a regression head, which consists of one or
more dense layers with non-linear activations and dropout for regularization. The final
output layer produces a single continuous value corresponding to the predicted travel time,
whether for the first-mile or last-mile segment. The modular nature of this design allows us
to train independent models for both first- and last-mile predictions, ensuring each model
is finely tuned to its specific target.

4. Results and Implications

ARIMA was employed as a benchmark to evaluate our model because it represents
a well-established, classical statistical approach for time series forecasting. Although
ARIMA models are traditionally limited to univariate predictions and require extensive
preprocessing to handle non-stationary data, they have long served as a baseline in many
forecasting studies. By comparing our transformer-based predictions with those of an
ARIMA model, we can objectively assess the improvements offered by our advanced, deep
learning approach in capturing complex spatiotemporal patterns inherent in transit data.

As can be seen in Table 1, transformer-based models outperformed their ARIMA
counterparts for both first-mile and last-mile travel time predictions. Specifically, the
transformer model for first-mile travel time (T_FMTT) achieved an MAE of 3.2888 min and
an RMSE of 5.1985, while the best performing ARIMA model found through a grid search
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References

for the first-mile travel time (A_FMTT) recorded higher errors, with an MAE of 4.1599 min
and an RMSE of 7.5323. Similarly, for the last-mile travel time prediction, the transformer
model (T_LMTT) yielded an MAE of 4.9373 min and an RMSE of 8.1168, compared to
the best performing ARIMA model (A_LMTT), which had an MAE of 7.1521 min and
an RMSE of 10.4880. These results show that the transformer model improved MAE by
approximately 20.94% for the first-mile travel time prediction and approximately 30.96%
for the last-mile travel time prediction, suggesting that the transformer-based approach
is more effective at capturing the underlying spatiotemporal dynamics in the transit data,
leading to more accurate predictions.

Table 1. First- and last-mile prediction results.

T_FMTT T_LMTT A_FMTT A_LMTT
MAE 3.2888 4.9373 4.1599 7.1521
RMSE 5.1985 8.1168 7.5323 10.4880

The implications of our findings are significant for public transit systems. Enhanced
prediction accuracy enables more precise scheduling, reduces passenger waiting times,
and improves resource allocation, all of which contribute to greater operational efficiency.
Transit agencies can leverage these insights to develop more resilient and adaptive service
plans, ultimately increasing passenger satisfaction and fostering more effective urban
mobility management. Furthermore, well-trained models capable of accurately forecasting
individual travel characteristics pave the way for integrating these predictions with larger
datasets. For example, data fusion techniques [10] could be utilized to generate more
granular and detailed travel information at a larger scale than was previously available.
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