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Editorial 

Bayesian Inference and Maximum Entropy Methods 
in Science and Engineering—MaxEnt 2019 † 
Udo von Toussaint *,‡ and Roland Preuss 

Max-Planck-Institut for Plasmaphysics, D-85748 Garching, Germany; preuss@ipp.mpg.de 
* Correspondence: udo.v.toussaint@ipp.mpg.de; Tel.: +49-89-3299-1817
† Presented at the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in

Science and Engineering, Garching, Germany, 30 June–5 July 2019. 
‡ Chair of MaxEnt 2019. 

Published: 22 November 2019 

As key building blocks for modern data processing and analysis methods—ranging from AI, 
ML and UQ to model comparison, density estimation and parameter estimation—Bayesian inference 
and entropic concepts are in the center of this rapidly growing research area. Beyond the general 
interest in the underlying foundations of inference, the relevance of this subject is due to the 
demonstrated success of these concepts in areas like pattern recognition, optimization, experimental 
design or event prediction. Devoted to the development and application of new and innovative 
concepts the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in 
Science and Engineering took place in Garching near Munich, Germany, from June 30th to July 5th 
2019. The Max-Planck-Institute for Plasma Physics was hosting this conference for the fourth time 
after 1998, 2004 and 2012. About 60 participants from Europe and the US, but also from Brasil, South 
Africa, Australia, Russia and China, attended the conference and had intense discussions about the 
ongoing development. In this volume, 33 contributed papers are presented. 

The workshop invited contributions on all aspects of probabilistic inference, including novel 
techniques and applications, and work that sheds new light on the foundations of inference. The 
scientific topics of the conference have been: 

1. Inverse problems
2. Uncertainty quantification (UQ)
3. Gaussian process (GP) regression
4. Optimal experimental design
5. Data assimilation and Causal Inference
6. Data mining, ML algorithms
7. Numerical integration
8. Information geometry
9. Real world applications in various fields of science and engineering (e.g., earth science,

astrophysics, material and plasma science, imaging in geophysics and medicine, nondestructive
testing, density estimation, remote sensing)

The conference started on Sunday, June 30th with a tutorial by Romke Bontekoe titled “Bayes'
Theorem, a toolbox for data analysis”, followed on Monday, July 1st by a tutorial from Ariel Caticha 
about “Where do Hamiltonians come from”. After that a total of 39 talks were presented by 35 
participants till Friday, July 5th. In the poster session on Tuesday, July 2nd two poster prices were 
awarded to 

1st place: Martino Trassinelli, CNRS, Institute of NanoSciences, Sorbonne Univ., Paris, France, 
“Nested sampling for atomic physics data: the nested_fit program”. 
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2nd place: Scott Cameron, Stellenbosch University, South Africa, “A Sequential Marginal 
Likelihood Approximation Using Stochastic Gradients”. 

The follow-up conference MaxEnt2020 will take place in Graz in July 2020. It will be organized 
by Prof. Dr. Wolfgang von der Linden, Institute for Theoretical Physics, Technical University Graz, 
Austria, vonderlinden@tugraz.at. 

Acknowledgments: We thank all persons who contributed to the organization of the conference. Special thanks 
also to the E.T. Jaynes Foundation and the local institute IPP for financial and logistic support. 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 
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Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany; albert@alumni.tugraz.at
† Presented at the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in

Science and Engineering, Garching, Germany, 30 June–5 July 2019.
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Abstract: A method to reconstruct fields, source strengths and physical parameters based on Gaussian
process regression is presented for the case where data are known to fulfill a given linear differential
equation with localized sources. The approach is applicable to a wide range of data from physical
measurements and numerical simulations. It is based on the well-known invariance of the Gaussian
under linear operators, in particular differentiation. Instead of using a generic covariance function
to represent data from an unknown field, the space of possible covariance functions is restricted to
allow only Gaussian random fields that fulfill the homogeneous differential equation. The resulting
tailored kernel functions lead to more reliable regression compared to using a generic kernel and
makes some hyperparameters directly interpretable. For differential equations representing laws of
physics such a choice limits realizations of random fields to physically possible solutions. Source
terms are added by superposition and their strength estimated in a probabilistic fashion, together
with possibly unknown hyperparameters with physical meaning in the differential operator.

Keywords: gaussian process regression; field reconstruction; partial differential equations; meshless
methods

1. Introduction

The larger context of the present work is the goal to construct reduced complexity models as
emulators or surrogates that retain mathematical and physical properties of the underlying system.
Similar to usual numerical models, such methods aim to represent infinite systems by exploiting
finite information in some optimal sense. In the spirit of structure preserving numerics the aim here
is to move errors to the “right place”, in order to retain laws such as conservation of mass, energy
or momentum.

This article deals with Gaussian process (GP) regression on data with additional information
known in the form of linear, generally partial differential equations (PDEs). An illustrative application
is the reconstruction of an acoustic sound pressure field and its sources from discrete microphone
measurements. GPs, a special class of random fields, are used in a probabilistic rather than a stochastic
sense: approximate a fixed but unknown field from possibly noisy local measurements. Uncertainties
in this reconstruction are modeled by a normal distribution. For the limit of zero measured data a prior
has to be chosen whose realizations take values in the expected order of magnitude. An appropriate
choice of a covariance function or kernel guarantees that all fields drawn from the GP at any stage
fulfill the underlying PDE. This may require to give up stationarity of the process.

Techniques to fit GPs to data from PDEs has been known for some time, especially in the field of
geostatistics [1]. A general analysis including a number of important properties is given by [2]. In these
earlier works GPs are usually referred to as Kriging and stationary covariance functions/kernels as
covariograms. A number of more recent works from various fields [3–5] use the linear operator of the

Proceedings 2019, 33, 5; doi:10.3390/proceedings2019033005 www.mdpi.com/journal/proceedings3
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problem to obtain a new kernel function for the source field by applying it twice to a generic, usually
squared exponential, kernel. In contrast to the present approach, that method is suited best for source
fields that are non-vanishing across the whole domain. In terms of deterministic numerical methods
one could say that the approach correspond to meshless variants of the finite element method (FEM).
The approach in the present work instead represents a probabilistic variant of a procedure related
to the boundary element method (BEM), also known as the method of fundamental solutions (MFS) or
regularized BEM [6–8]. As in the BEM, the MFS also builds on fundamental solutions, but allows
to place sources outside the boundary rather than localizing them on a layer. Thus the MFS avoids
singularities in boundary integrals of the BEM while retaining a similar ratio of numerical effort and
accuracy for smooth solutions. To the author’s knowledge the probabilistic variant of the MFS via
GPs has first been introduced by [9] to solve the boundary value problem of the Laplace equation
and dubbed Bayesian boundary elements estimation method ((BE)2M). This work also provides a detailed
treatment of kernels for the 2D Laplace equation. A more extensive and general treatment of the
Bayesian context as well as kernels and their connection to fundamental solutions is available in [10]
under the term probabilistic meshless methods (PMM).

While Mendes et al. [9] is focused on boundary data of a single homogeneous equation, and
Cockayne et al. [10] provides a detailed mathematical foundation, the present work aims to explore
the topic further for application and extend the recent work in [11]. Starting from general notions
some regression techniques are introduced with emphasis on the role of localized sources. For this
purpose Poisson, Helmholtz and heat equation are considered and several kernels are derived and
tested. To fit a GP to a homogeneous (source-free) PDE, kernels are built via according fundamental
solutions. Possible singularities (sources) are moved outside the domain of interest. In particular,
boundary conditions on a finite domain can be either supplied or reconstructed in this fashion. In
addition contributions by internal sources are superimposed, using again fundamental solutions in
the free field. For that part boundary conditions of the actual problem are irrelevant. The specific
approach taken here is most efficient for source-free regions with possibly few localized sources that
are represented by monopoles or dipoles.

2. GP Regression for Data from Linear PDEs

Gaussian processes (GPs) are a useful tool to represent and update incomplete information
on scalar fields (The more general case of complex valued fields and vector fields is left open for
future investigations in this context.) u(x), i.e., a real number u depending on a (multi-dimensional)
independent variable x. A GP with mean m(x) and covariance function of kernel k(x, x′) is denoted as

u(x) ∼ G(m(x), k(x, x′)). (1)

The choice of an appropriate kernel k(x, x′) restricts realizations of (1) to respect regularity properties
of u(x) such as continuity or characteristic length scales. Often regularity of u does not appear
by chance, but rather reflects an underlying law. We are going to exploit such laws in the
construction and application of Gaussian processes describing u for the case described by linear
(partial) differential equations

L̂u(x) = q(x). (2)

Here L̂ is a linear differential operator, and q(x) is an inhomogeneous source term. In physical laws
dimensions of x usually consist of space and/or time. Physical scalar fields u include e.g. pressure p,
temperature T or the electrostatic potential φe. Corresponding laws under certain conditions include
Gauss’ law of electrostatics for φe with Laplacian L̂ = εΔ, frequency-domain acoustics for p with
Helmholtz operator L̂ = Δ− k 2

0 or thermodynamics for T with heat/diffusion operator L̂ = ∂
∂t − DΔ.

These operators contain free parameters, namely permeability ε, wavenumber k0, and diffusivity D,

4
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respectively. While ε may be absorbed inside q in a uniform material model of electrostatics, estimation
of parameters k0 or D is useful for material characterization.

For the representation of PDE solutions the weight-space view of Gaussian process regression is
useful. There the kernel k is represented via a tuple φ(x) = (φ1(x), φ2(x), . . . ) of basis functions φi(x)

that underlie a linear regression model

u(x) = φ(x)Tw = ∑
i

φi(x)wi. (3)

Bayesian inference starting from a Gaussian prior with covariance matrix Σp for weights w yields a
Mercer kernel

k(x, x′) ≡ φT(x)Σpφ(x′) = ∑
i,j

φi(x)Σ
ij
pφj(x

′). (4)

The existence of such a representation is guaranteed by Mercer’s theorem in the context of reproducing
kernel Hilbert spaces (RKHS) [8]. More generally one can also define kernels on an uncountably
infinite number of basis functions in analogy to (3) via

f (x) = φ̂[w(ζ)] = 〈φ(x, ζ), w(ζ)〉 =
∫

φ(x, ζ)w(ζ)dζ, (5)

where φ̂ is a linear operator acting on elements w(ζ) of an infinite-dimensional weight space
parametrized by an auxiliary index variable ζ, that may be multi-dimensional. We represent φ̂

via an inner product 〈φ(x, ζ), w(ζ)〉 in the respective function space given by an integral over ζ. The
infinite-dimensional analogue to the prior covariance matrix is a prior covariance operator Σ̂p that
defines the kernel as a bilinear form

k(x, x′) ≡ 〈
φ(x, ζ), Σ̂pφ(x′, ζ′)

〉 ≡ ∫
φ(x, ζ)Σp(ζ, ζ′)φ(x′, ζ′)dζ dζ′. (6)

Kernels of the form (6) are known as convolution kernels. Such a kernel is at least positive semidefinite,
and positive definiteness follows in the case of linearly independent basis functions φ(x, ζ) [8].

2.1. Construction of Kernels for PDEs

For treatment of PDEs possible choices of index variables in (4) or (6) include separation constants
of analytical solutions, or the frequency variable of an integral transform. In accordance with [10],
using basis functions that satisfy the underlying PDE, a probabilistic meshless method (PMM) is
constructed. In particular, if ζ parameterizes positions of sources, and φ(x, ζ) = G(x, ζ) in (6) is
chosen to be a fundamental solution/Green’s function G(x, ζ) of the PDE, one may call the resulting
scheme a probabilistic method of fundamental solutions (pMFS). In [10] sources are placed across the whole
computational domain, and the resulting kernel is called natural. Here we will instead place sources in
the exterior to fulfill the homogeneous interior problem, as in the classical MFS [6–8]. Technically, this
is also achieved by setting Σp(ζ, ζ′) = 0 for either ζ or ζ′ in the interior. For discrete sources localized ζ

= ζi one obtains again discrete basis functions φi(x) = G(x, ζi) for (4).

More generally, according to theorem 2 of [2], for linear PDE operators L̂ in (2) with q �= 0 we
require a Gaussian process of non-zero mean m(x) with

L̂m(x) = q(x), (7)

L̂k(x, x′) = 0. (8)

Here L̂ acts on the first argument of k(x, x′). Sources affect only the mean m(x) of the Gaussian process,
whereas the kernel k(x, x′) should be based on the homogeneous equation. This hints to the technique

5



Proceedings 2019, 33, 5

of [12] discussed in [13] chapter 2.7 to treat m(x) via a linear model added on top of a zero-mean
process for the homogeneous equation. In that case we consider is the superposition

u(x) = uh(x) + up(x), (9)

uh(x) ∼ G(0, k(x, x′)), (10)

up(x) = hT(x)b, (11)

b ∼ N (b0, B). (12)

where hT(x)b is a linear model for m(x) with Gaussian prior mean b0 and covariance B for the model
coefficients. The homogeneous part (10) corresponds to a random process uh(x) where a source-free k
is constructed according to (8). The inhomogeneous part (11) may be given by any particular solution

up(x) for arbitrary boundary conditions. Using the limit of a vague prior with b0= 0 and |B−1| → 0,
i.e., minimum information/infinite prior covariance [12,13], posteriors for mean ū and covariance
matrix cov(u, u) based on given training data y = u(X) + σn with measurement noise variance σn

2 are

ū(X�) = KT
� K−1

y (y− HTb̄) + HT
� b̄ = KT

� K−1
y y + RTb̄, (13)

cov(u(X�), u(X�)) = K�� − KT
� K−1

y K� + RT(HK−1
y HT)−1R. (14)

b̄

Here X = (x1, x2, . . . xN) contains the training points, X�= (x�1, x�2, . . . , x�N� ) the evaluation or test
points. Functions of X and X� are to be understood as vectors or matrices resulting from evaluation
at different positions, i.e., ū(X�) ≡ (ū(x�1), ū(x�2), . . . , ū(x�N� )) is a tuple of predicted expectation
values. The matrix K ≡ k(X, X) is the kernel covariance of the training data with entries Kij ≡ k(xi, xj)

and cov(u(X�), u(X�))ij ≡ cov(u(x�i), u(x�j)) are entries of the predicted covariance matrix for u
evaluated in the test points x�i. Furthermore Ky≡ k(X, X) + σn

2 I, K�≡ k(X, X�), K��≡ k(X�, X�), R ≡
H�− HKy

−1K��, and entries of H are Hij≡ hi(xj), H�ij≡ hi(x�j), and≡ (HKy
−1HT )−1HKy

−1y.

2.2. Linear Modeling of Sources

A linear model for m(x) fulfilling a PDE according to (8) follows directly from the source
representation. Consider sources to be modeled as a linear superposition over basis functions

q(x) = ∑
i

ϕi(x)qi (15)

with unknown source strength coefficients q = (qi). To model the mean instead of the source functions
themselves, one uses an according superposition

m(x) = ∑
i

up i(x)qi (16)

of particular solutions up i(x) from inhomogeneous equations

L̂up i(x) = ϕi(x). (17)

For the linear Model (9) this means that b = q and hi(x) = up i(x). Posterior mean of source strengths
and their uncertainty are

q̄ = (HK−1
y HT)−1HK−1

y y, (18)

cov(q, q) = (HK−1
y HT)−1. (19)

One can easily check that the predicted mean ū(x�) = ūh(x�) + ūp(x�) at a specific point x� in (13)
fulfills the linear differential Equation (2). In the homogeneous part ūh(x�) = k(x�, X) Ky

−1(y − HTq̄ )

sources are absent with L̂ūh(x�) = 0, with L̂ acting on x� here. The particular solution ūp(x�) =

6
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hT (x�) q̄ = ∑i up i(x�)q̄i adds source contributions qi ϕi(x
�) due to (17). For point monopole sources

ϕi(x) = δ(x − xq i) placed at at positions xq i, the particular solution up, i(x) equals the fundamental
solution G(x, xq i) evaluated for the respective source. In the absence of sources the part described in
this subsection isn’t modeled and (13) and (14) reduce to posteriors of a GP with prior mean m(x) = 0
where matrix R vanishes.

3. Application Cases

Here the general results described in the previous section are applied to specific equations.
Regression is performed based on values measured at a set of sampling points xi and may also include
optimization of hyperparameters β appearing as auxiliary variables inside the kernel k(x, x′; β). The
optimization step is usually performed in a maximum a posteriori (MAP) sense, choosing βMAP as
fixed rather than providing a joint probability distribution function including β as random variables.
We note that depending on the setting this choice may lead to underestimation of uncertainties in the
reconstruction of u, in particular for sparse, low-quality measurements.

3.1. Laplace’s Equation in Two Dimensions

First we explore construction of kernels in (10) for a purely homogeneous problem in a finite and
infinite dimensional index space, depending on the mode of separation. Consider Laplace’s equation

Δu(x) = 0. (20)

In contrast to the Helmholtz equation, Laplace’s equation has no scale, i.e., permits all length scales in
the solution. In the 2D case using polar coordinates the Laplacian becomes

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0. (21)

A well-known family of solutions for this problem based on the separation of variables is

u = r±me±imθ , (22)

leading to a family of solutions

rm cos(mθ), rm sin(mθ), r−m cos(mθ), r−m sin(mθ). (23)

Since our aim is to work in bounded regions we discard the solutions with negative exponent that
diverge at r = 0. Choosing a diagonal prior that weights sine and cosine terms equivalently [9] and
introducing a length scale s as a free parameter we obtain a kernel according to (4) with

k(x, x′; s) =
∞

∑
m=0

(
rr′
s2

)m
σ 2

m (cos(mθ) cos(mθ′) + sin(mθ) sin(mθ′)) =
∞

∑
m=0

(
rr′
s2

)m
σ 2

m cos
(
m(θ − θ′)

)
. (24)

A flat prior σ 2
m = 1 for all polar harmonics and a characteristic length scale s as a hyperparameter, yields

k(x, x′; s) =
1− rr′

s2 cos(θ − θ′)

1− 2 rr′
s2 cos(θ − θ′) + (rr′)2

s4

=
1− x·x′

s2

1− 2 x·x′
s2 + |x|2|x′ |2

s4

. (25)

This kernel is not stationary, but isotropic around a fixed coordinate origin. Introducing a mirror point x̄′with
polar angle θ̄′= θ′ and radius r̄′= s2/r′we notice that (25) can be written as

k(x, x′; s) =
|x̄′ |2 − x · x̄′
(x− x̄′)2 , (26)
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m

making a dipole singularity apparent at x = x̄′. In addition k is normalized to 1 at x = 0. Choosing s > R0
larger than the radius R0 of a circle centered in the origin and enclosing the computational domain, we have
r̄′ > s2/s = s > R0. Thus all mirror points and the according singularities are moved outside the domain.

Choosing a slowly decaying σ 2= 1/m, excluding m = 1 and adding a constant term yields a logarithmic
kernel instead [9] with

k(x, x′; s) = 1− 1
2

ln
(

1− 2
x · x′

s2 +
|x|2|x′ |2

s4

)
= 1− ln

( |x− x̄′ |
|x̄′ |

)
. (27)

Instead of a dipole singularity that expression features a monopole singularity at x − x̄′ that is avoided as
mentioned above.

Using instead Cartesian coordinates x, y to separate the Laplacian provides harmonic functions like

u = e±κxe±iκy. (28)

Here all solutions yield finite values at x = 0, so we don’t have to exclude any of them a priori. Introducing again
a diagonal covariance operator in (6) and taking the real part yields

k(x, x′) =
∫

ϕ(x, κ)σ 2(κ)ϕ(x′, κ)dκ = Re
∫ ∞

−∞
σ 2(κ)eκ(x±x′)eiκ(y±y′) dκ. (29)

Setting σ 2(κ) ≡ e−2κ2
and choosing a characteristic length scale s together with a possible rotation angle θ0 of the

coordinate frame yields the kernel

k(x, x′; s, θ0) =
1
2

Re exp

(
((x + x′)± i(y− y′)) 2ei2θ0 )

s2

)
. (30)

Other sign combinations do not yield a positive definite kernel – similar to the polar kernel (26) before we couldn’t
obtain an fully stationary expression that depends only on differences between coordinates of x and x′.

For demonstration purposes we consider an analytical solution to a boundary value problem of Laplace’s
equation on a square domain Ω with corners at (x, y) = (±1,±1). The reference solution is

uref(x, y) =
1
2

ey cos x + 2x cos(2y) (31)

and depicted in the upper left of Figure 1 together with the extension outside the boundaries. This figure also
shows results from a GP fitted based on data with artificial noise of σn = 0.1 measured at 8 points using kernel (26)
with s = 2. Inside Ω the solution is represented with errors below 5%. This is also reflected in the error predicted
by the posterior variance of the GP that remains small in the region enclosed by measurement points. The analogy
in classical analysis is the theorem that the solution of a homogeneous elliptic equation is fully determined by
boundary values.

In comparison, a reconstruction using a generic squared exponential kernel k ∝ exp((x− x′)2/(2s2)) yields a
result of similar approximation quality in Figure 2. The posterior covariance of that reconstruction is however
not able to capture the vanishing error inside the enclosed domain due to given boundary data. More severely, in
contrast to the previous case, the posterior mean ū doesn’t satisfy Laplace’s equation Δū = 0 exactly. This leads to a
violation of the classical result that (differences of) solutions of Laplace’s equation may not have extrema inside Ω,
showing up in the difference to the reconstruction in Figure 2. This kind of error is quantified by computation of
the reconstructed charge density q̄ = Δū. This is fine if data from Poisson’s equation Δu = q with distributed
charges should be fitted instead. However, to keep Δu = 0 exact in Ω, one requires more specialized kernels such
as (26).

8
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Figure 1. Analytical solution of Laplace equation (top left) and GP reconstruction with source-free
Mercer kernel (26) (top right) with absolute error (bottom left) and predicted 95% confidence interval
(bottom right). Sources lie outside the black square region and measurement positions are marked by
black dots.

Figure 2. GP reconstruction of case in Figure 1 with generic squared exponential kernel (top left)
with predicted 95% confidence interval (bottom left). Difference to reconstruction with source-free
kernel (26) (top right) and source density q̄ = Δū of prediction (bottom right).

3.2. Helmholtz Equation: Source and Wavenumber Reconstruction

To demonstrate the proposed method in full we now consider the Helmholtz equation with sources

Δu(x) + k 2
0 u(x) = q(x). (32)

9
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Stationary kernels based on Bessel functions for the homogeneous equation have been presented in [11]. These
functions provide smoothing regularization on the order of the wavelength λ0 = 2π/k0 and have been
demonstrated to produce excellent field reconstruction from point measurements. Here we consider the two-
dimensional case. The method of source strength reconstruction is improved compared to [11], as it constitutes
a linear problem according to (18) and (19). Non-linear optimization is instead applied to wavenumber k0 as a free
hyperparameter to be estimated during the GP regression.

The setup is the same as in [11]: a 2D cavity with various boundary conditions and two sound sources of
strengths 0.5 and 1, respectively. Results for sound pressure fulfilling (32) are normalized to have a maximum of
p/p0 = 1. Figure 3 shows reconstruction error in field reconstruction depending on the number of measurement
positions. Here noise of σn = 0.01 has been added to the samples. The obtained negative log-likelihood depending
on k0 permits an accurate reconstruction of this quantity that has the physical meaning of a wavenumber. A
generic squared exponential kernel k ∝ exp((x − x′)2/(2(π/k0)

2)) leads to results of similar quality and a slightly
less peaked spatial length scale hyperparameter without a direct physical interpretation.

Figure 3. Reconstruction error for Helmholtz equation with different sensor count (top, bottom left)
and reconstructed source strengths q with 95% confidence interval according to posterior (18) and (19).
Negative log likelihood (bottom right) with optimum at k0

ML = 9.19 for Bessel kernel [11] (solid line),
whereas the actual value (dotted line) is k0 = 9.16. The length scale of a squared exponential kernel
(dashed line) is less peaked.

3.3. Heat Equation

Consider the homogeneous heat/diffusion equation

∂u
∂t
− DΔu = 0. (33)

for (x, t) ∈ R× R+. Integrating the fundamental solution G = 1/
√

4π(t− τ) exp((x − ξ)2/(4(t − τ)) from
ξ = −∞ to ∞ at τ = 0, i.e., placing sources everywhere at a single point in time, leads to the kernel

kn(x− x′, t + t′; D) =
1√

4πD(t + t′)
e−

(x−x′ )2
4D(t+t′ ) . (34)
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In terms of x this is a stationary squared exponential kernel and the natural kernel over the domain x ∈ R. The
kernel broadens with increasing t and t′. Non-stationarity in time can also be considered natural to the heat
equation, since its solutions show a preferred time direction on each side of the singularity t = 0. The only
difference of (34) to the singular heat kernel is the positive sign between t and t′. If both of them are positive, k is
guaranteed to takes finite values.

As for the Laplace equation it is also convenient to define a spatially non-stationary kernel by cutting out a
finite source-free domain. Evaluating the integral over the fundamental solution in R\(a, b) without our domain
interval (a, b) we obtain

kn(x, t, x′, t′) = kn(x− x′, t + t′; D)

[
1− g(x, t, x′, t′; D, b)− g(x, t, x′, t′; D, a)

2

]
. (35)

where

g(x, t, x′, t′; D, s) ≡ erf
(
(s− x)/t + (s− x′)/t′

2
√

D
√

1/t + 1/t′

)
. (36)

Incorporating the prior knowledge that there are no domain sources could potentially improve the reconstruction.
Initial investigations on the initial-boundary value problem of the heat equation based on those kernels produce
stable results showing natural regularization within the limits of the strongly ill-posed setting. Reconstruction of
diffusivity D has proven to be a difficult task and requires further investigations.

4. Summary and Outlook

A framework for application of Gaussian process regression to data from an underlying partial differential
has been presented. The method is based on Mercer kernels constructed from fundamental solutions and produces
realizations that match the homogeneous problem exactly. Contributions from sources are superimposed via an
additional linear model. Several examples for suitable kernels have been given for Laplace’s equation, Helmholtz
equation and heat equation. Regression performance has been shown to yield results of similar or higher quality to
a squared exponential kernel in the considered application cases. Advantages of the specialized kernel approach
are the possibility to represent exact absence of sources as well as physical interpretability of hyperparameters.

In a next step reconstruction of vector fields via GPs could be formulated, taking laws such as Maxwell’s
equations or Hamilton’s equations of motion into account. A starting point could be squared exponential
kernels for divergence- and curl-free vector fields [14]. Such kernels have been used in [15] to perform statistical
reconstruction, and Cobb et al. [16] apply them to GPs for source identification in the Laplace/Poisson equation. In
order to model Hamiltonian dynamics in phase-space, vector-valued GPs could possibly be extended to represent
not only volume-preserving (divergence-free) maps but retain full symplectic properties, thereby conserving all
integrals of motion such as energy or momentum.

Acknowledgments: I would like to thank Dirk Nille, Roland Preuss and Udo von Toussaint for insightful
discussions. This study is a contribution to the Reduced Complexity Models grant number ZT-I-0010 funded by the
Helmholtz Association of German Research Centers.
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Abstract: What is the probability that ball lightning (BL) is a real phenomenon of nature? The answer
depends on your prior information. If you are one of those lucky men who had a close encounter with a
BL and escaped unscathed, your probability that it is real equals, of course, unity. On the other hand,
if you are a theoretical physicist deeply involved in the problem of controlled thermonuclear fusion,
your probability is likely to be zero. In this study, an attempt is being made to raise the likelihood of
reality of BL phenomenon for everyone, plasma physicists included. BL is conceived here as highly
structured formation of air, at roughly atmospheric pressure, with a set of nested sheaths, each of
which is a double electrical layer with voltage drop in the order of 100 kV.

Keywords: prior information; ball lightning; fireball; bead lightning; double electrical layer; dynamic
capacitor; controlled nuclear fusion

1. Introduction

Ball lightning, or fireball, is an atmospheric phenomenon in the form of a long-lived luminous
sphere. Floating slowly in the air, or hovering over the ground, BL is observed most frequently in close
proximity of a lightning strike during intense thunderstorm activity. There are numerous eyewitness
accounts from around the world that are quite consistent with each other. This fact alone is a strong
evidence for the reality of this phenomenon. Nevertheless, the reported characteristics and features
of BL appear not only contradictory, but seem to be at odds with the well-established laws of nature,
which makes it hard for some down-to-earth physicists to take the reality of this phenomenon seriously.
The most puzzling feature of BL is its longevity—it can last for seconds to minutes. At the same time,
it is the most obvious and undeniable attribute of BL. It was the longevity of BL that made the Nobel
Prize winning physicist Pyotr Kapitsa to draw the following conclusion [1]:

Since the energy stored in the cloud [of nuclear detonation] is proportional to the volume
d3, and the emission of the surface is ∼ d2, energy radiation from the ball will last for time
interval proportional to d, its linear size. The mushroom cloud of a nuclear explosion with a
diameter d of 150 m lasts for less than 10 s, so the energy of a ball with a diameter of 10 cm
shall be exhausted in less than 0.01 s. But in fact, as indicated in the literature, ball lightning
of this size most often lives for a few seconds, sometimes even a minute. Thus, if there are no
sources of energy in nature not yet known to us, due to the law of conservation of energy we
have to accept that energy is continuously supplied to ball lightning as long as it glows, and
we are forced to look for this source of energy outside the body of ball lightning.

Kapitsa suggested that the external source of energy for BL is a short-wave radio emission in the 35
to 70 cm range, and that the presence of ionized air facilitates the creation of radio waves, while the
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causative agent of these oscillations is the strike of a thunderbolt. However, despite numerous attempts,
no one ever succeeded in detecting the indicated radio emission.

If we are to assert that the energy of BL is self-contained, we are confronted with a baffling
feature of BL in the form of incredibly high density of energy content. Based on eyewitness reports,
the energy content of most fireballs must be in the order of 10 or 100 kJ. However, a few sightings were
reported in the literature which suggests that the energy of a fireball can be as high as 10 MJ or even
higher. The most widely known evidence for the possibility of extraordinary high density of energy
stockpiled in a BL is the publication in The Daily Mail on Nov 5, 1936 of a letter to the editor from one
Mr. W. Morris with a title A thunderstorm mystery [2]:

Sir, during a thunderstorm I saw a large, red hot ball come down from the sky. It struck our
house, cut the telephone wires, burnt the window frame, and then buried itself in a tub of
water which was underneath. The water boiled for some minutes afterwards, but when it
was cool enough for me to search I could find nothing in it...

Specific heat of water is about 4 200 J/kg·K, so, if water in the amount of 18 liters (four British gallons,
as indicated in the letter) was heated from, say, 20◦ C to the boiling point of 100◦ C, it follows that the
energy of the BL was over 6 MJ. To visualize the enormity of this energy for a small globular object of
10 cm in diameter, which is capable of hovering freely over the ground, suffice to note that it matches
the kinetic energy of a 5-ton truck dashing at 176 km/h! Just think of the destructive power of this
“bullet”. Is it possible to fit somehow that much energy in a luminous ball of air weighing less than one
gram? For instance, what temperature is required in order to dissociate all the N2 and O2 molecules in
one gram of air, then singly ionize all nitrogen and oxygen atoms, and, finally, bring the thermal energy
of the resulting plasma to 6 MJ? Simple calculations point to a temperature of nearly 4, 000, 000◦ K.
Yet, according to eyewitness reports, BL does not produce a marked sensation of heat at arm’s length
or even closer!

Kapitsa’s assertion about the source of BL energy being outside its body is based on the premise
that fireball is nothing but a fully ionized air, i.e., a regular plasma. So, it overlooks the idea that
the energy in question could be, quite simply, ordinary kinetic energy of ultrarelativistic electrons,
the motion of which is coordinated in some intricate way at the inception of a fireball. In other words,
perhaps BL is not your ordinary plasma, but rather a highly structured object comprised of both neutral
and charged particles. Nurbey Gulia, the inventor of the so-called superflywheel, disagrees with the
main thesis of Kapitsa that the source of energy in BL is to be sought outside its body. He gives a
number of compelling objections to the model in general, and then proceeds to suggest that BL is a
kind of plasma flywheel created by nature itself [3]. And that is precisely what we hope to demonstrate
on the following pages, concluding with a fairly detailed experimental schema for creating fireballs in
a lab to test the idea. But our “fire flywheel” will differ profoundly from its mechanical cousin.

2. In Search for a Mechanism of High Energy Accumulation in BL

Consider an annular glass tube of small cross-section. The tube is evacuated to a high vacuum,
and there is a free electron inside it that can slide along the tube with no friction. Suppose there is a
magnetic field, which is orthogonal to the plane of the ring and distributed uniformly through space.
Let the magnetic induction rise from zero to Ba = 1.5 T (magnetic field in the vicinity of lightning
discharge channel can reach this level). How much energy will our free electron acquire? Electron’s
motion is determined by the second law of motion and the law of electromagnetic induction:

eEvrtx =
d p
d t

, 2πREvrtx =
d(πR2B)

d t
,
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where e and p are electron’s charge and momentum, respectively, Evrtx is a vortex electric field, and R
is the radius of the ring. With the assumption that the electron was initially at rest, this yields

p =
eRB

2
. (1)

Now, recalling the relationship between the momentum and the energy of relativistic particles,
(m0c2)2 + (pc)2 = E2, for the kinetic energy of the electron at the height of its acceleration we have:

K = E−m0c2 = (
√

1 + α2 − 1)m0c2, where α ≡ eRBa

2m0c
. (2)

Substituting R = 0.05 m and Ba = 1.5 T into this equation, we get K = 10.7 MeV. That is, our
electron accumulates kinetic energy in the amount comparable to that of deuteron-triton fusion event,
17.6 MeV! This estimate is based on idealized and simplified schema, of c ourse. Nevertheless, the fact
that the vortex electric field, which is generated by a lightning discharge, is capable of accelerating
a nearby free electron to ultrarelativistic velocities gives us a real hope of understanding how a BL
accumulates enormous amount of energy at its inception. Indeed, all is left to do is to demonstrate that,
starting with a few random seed electrons, electromagnetic induction can cause an avalanche ionization
in the air and accelerate not one, but many electrons, forming in the process a stable configuration of
charge particles. This is easier said than done, but we shall give it a try.

The idea of vortex field as the mechanism behind charging BL with energy at its birth is not
entirely new . The betatron model has a serious difficulty though, which boils down to the following.
While the magnetic flux through a hypothetical vacuum ring is rising, the electron gains in speed and
energy, but when this flux inevitably subsides and vanishes, the electron’s speed shall fall back to its
original value. That is precisely why electrons must be moved out of the betatron’s vacuum chamber
as soon as the magnetic flux is peaked. But how does nature prevent electrons from losing all the
acquired energy when acceleration turns inevitably to deceleration? We won’t find an answer to this
question in for it is not even raised there. We’ll postpone this question for now and answer it later.

Let’s try to imagine in outline how fireballs are created in nature. Consider lightning discharge
channel as a long straight tube—horizontal when lightning bolt strikes between the clouds, or vertical
when lightning hits the ground. It takes only a few microseconds for the discharge current to reach its
peak value ∼ 100 kA. Rapidly rising electric current generates a rapidly rising magnetic flux around
the streamline. Let the diameter of the discharge channel be d = 5 cm, while the amplitude of the
current Ia = 200 kA. Magnetic induction around the discharge channel has its peak value at the surface
of the channel,

Ba =
μ0 Ia

πd
=

4π10−7 · 2 · 105

0.05π
= 1.6 T.

Consider now a thick toroid, which is tightly embracing the discharge channel. Magnetic field
line at any point inside the toroid is perpendicular then to the toroid’s cross-section at that point, so we
have an intense magnetic flux along the toroid’s central line. Suppose a free electron has appeared on
the surface of our toroid, and let its frictionless motion be restricted to that surface. Assuming that it
was initially at rest, the electron will be spun by a vortex electric field along the perimeter of toroid’s
cross-section. Assume now that we have not just one, but many such electrons. Then, neglecting the
interaction of electrons with each other, each electron will be spun along a poloidal circle, and we’ll
get a BL in the shape of a... doughnut. We’ve been looking for a fireball, but have found a firebagel
instead—what a bad luck!

But have we? Even if we get a bagel-shaped glowing object, being highly unstable, it will quickly
disintegrate into a few pieces. But why wouldn’t it be stable? After all, we know that skillful smokers
can easily launch stable rings of smoke into the air, and the rings created by dolphins in the water are so
stable that one can play with them as with elastic balls. Why then the ring of electrons rotating rapidly
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along the poloidal tracks on the bagel’s surface is lacking topological stability? Well, because the
forces that act between these charge particles are quite different—in both nature and scale—from the
forces acting between electrically neutral molecules that make up rings created in the water or in the
air. Indeed, parallel currents attract each other while anti-parallel currents repel. So, each individual
poloidal turn of current tends to expand in the radial direction while the adjacent turns of current
attract each other. Such a configuration is, obviously, highly unstable and the slightest violation of
symmetry will lead to local constrictions in the bagel, splitting it into several pieces. Perhaps this is
how the bead lightning is formed—a phenomenon of nature which is even more rare than BL.

At this stage of idealization, where we have extended the freedom of motion of charge particles
to the surface of a torus, we are moving away from the betatron model. Electron flux in the betatron is
highly rarefied, so ignoring the interaction between the individual charges while deriving the condition
of keeping each electron in a fixed circular orbit—the so called Widerøe’s condition—is quite justified.
But the density of charges that is required to form BL is so high that the interaction between the charges
cannot be ignored: electric and magnetic forces, as well as direct collisions of charge particles, will alter
the trajectory of each particle in unpredictable way. Consequently, each electron is losing its circular
orbit and engaging in a complicated pattern of motion, in both poloidal and toroidal directions. That’s
why the energy, which the electrons gain at the stage of acceleration by the vortex field, cannot be taken
away entirely from them when the field changes its direction and deceleration sets in. Indeed, part of
the kinetic energy of accelerated electron has already been passed to the toroidal component of its
velocity, and this part cannot be taken away from it while decelerating in the poloidal direction.

3. Field Emission and Balance of Forces

Imagine a smooth ball made of highly conductive material—copper, for example—in the air.
How many excess electrons can hold this ball? It can be charged until the field strength on the surface
of the ball has reached the threshold value of 30 kV/cm, at which point air breakdown is triggered.
If the ball is in a vacuum, there is no medium for the electrical breakdown to take place in. Nevertheless,
the force of electrostatic repulsion of excess electrons, crowded in a thin surface layer on the ball, will
become unbearable at some point, and they’ll start leaving the ball in a hurry. This phenomenon is
called field emission. In close to ideal vacuum conditions, field emission won’t commence until the field
strength on the smooth surface of the ball rises to ∼ 109 V/m.

How thin is the thin surface layer, where excess electrons keep crowding until they decide that this
injustice can no longer be tolerated? And why do they show such longanimity in the first place—why
don’t they simply run away as soon as we start charging our ball? After all, it seems there are no forces
opposing the electrostatic repulsion of excess electrons cramped on the surface of the ball. And, yes,
they have gathered there precisely because there are no forces inside the ball to counter their mutual
dislike for each other. But as soon as the electrons reach the surface, they—for some mysterious
reason—wilt as if an invisible, but very powerful barrier had sprung in front of them. Perhaps these
questions may sound childish to some. But a child may ask such a simple question that no adult can
answer sensibly. And how do adults answer these childish questions? They say that field emission is
a quantum-mechanical effect, refer the inquiring child to the Fowler-Nordheim equation, solving of
which—they add—is a highly complicated task. This “explanation” is not particularly illuminating
and, frankly, hardly it can convince an electrical engineer or your ordinary physicist.

The retention of free charges on the surface of a conducting body cannot be explained if
one assumes that charge carriers are really at rest on the surface of electrified body. In fact,
these carriers—electrons in our case—are surely not at rest; they zip around at an average speed
of
√

3kT/me, which is a whopping 100 km/s at room temperature! And when one of the electrons tries
to escape from the crowded company of his brothers, it provokes an instantaneous rearrangement of
its neighbors, which is equivalent to the appearance of a virtual mirror charge, resulting in immediate
suppression of the attempt to escape. That is, the origin of forces, which hold excess electrons on the
surface of a conductor, is of purely dynamic nature. The mirror-charge mechanism is, in my opinion,
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the clearest and most convincing explanation for the obstacle that prevents electrons from leaving a
negatively charged conducting body. Anyhow, the fact remains whether we can explain it or not: an
enormous amount of excess charge can stay on the surface of a conductor in electrically equilibrium
state, i.e., the carriers of these charges can neither penetrate into the conductor nor escape from it.
As the result of this, we get an electrostatic charge distribution on the surface of the conductor, and this
is the most important thing for us in the whole story.

Suppose we charge our copper ball positively now, i.e., we take electrons from it instead of
adding. Then we won’t get electron emission, of course, but when a certain level of field strength is
reached, the emission of positive ions commence. This level is of the same order as for the electron
field emission, i.e., 109 V/m. Imagine now that we launch an electron into a circular orbit around the
copper ball charged positively to the limit. How much energy this “sputnik” must have in order to
stay in the orbit? Let Es stand for the electric field strength on the surface of the ball. Then electron’s
motion in the orbit is described by the following equation

eEs =
K
R

(
1 +

√
1− v2

c2

)
, i.e. K =

eEsR
μ

, (3)

where K and v are electron’s kinetic energy and its velocity, respectively; μ ≡ 1 +
√

1− v2

c2 is a factor
that varies in narrow limits (1 < μ < 2).

Let Es = 109 V/m, then the energy required for the electron to stay in a circular orbit of radius
5 cm is about 50 MeV. The orbiting electron is losing energy to synchrotron radiation. How long will it
take for our electron to lose 90% of its initial energy, i.e., for its energy to fall from 50 MeV to 5 MeV?
The intensity of synchrotron radiation for ultrarelativistic electrons (γ≡ E/m0c2 1) is given by [5]:

W =
ce2γ4

6πε0R2 . (4)

So, the time interval, which takes γ to fall from γ1 to γ2, is

τ = −
∫ γ2

γ1

dE
W

=
2πε0R2m0c

e2

(
1

γ3
2
− 1

γ3
1

)
. (5)

Recalling that electron’s rest energy is 0.51 MeV, and substituting γ1 = 100, γ2 = 10, R = 0.05 m
into this equation, we get τ = 50 s, which is of the right order for the lifespan of fireballs.

To accelerate an electron to 50 MeV via the mechanism of electromagnetic induction in one shot,
so to speak, the required change of magnetic flux is so large that it is apparently beyond the ability of
the most powerful lightning bolt. However, it should be remembered that the lightning discharge takes
place in several steps of rapid succession. There are several direct and return strikes along the path laid
by the leader, and each of these surges of current can charge BL with energy. We have estimated earlier
that a one-time surge of magnetic induction from zero to a peak value of 1.5 T can spin up electron to
10.7 MeV. So, due to cumulative effect of direct and reverse strikes of lightning, the vortex field can
accelerate electrons up to 50 MeV. From the moment of fireball’s inception to the point when it catches
casual observer’s attention, at least a few seconds shall pass. So, it is highly unlikely that the energy of
the fastest electrons in any BL to exceed a few dozen MeV. Indeed, even if we assume that an electron
with a next to impossible value of 300 MeV (betatron limit) is present in a BL at its inception, it would
take only a fraction of a second for its energy to fall to 50 MeV due to synchrotron radiation.

Imagine now that we have launched not one, but a whole lot of electrons along various geodesic
lines, which are distributed uniformly all over our copper ball. Assume that this cloud of electrons is
confined to a spherical shell of thickness h. Due to shielding of positively charged “core” by negative
electron cloud, the energy of each electron is determined then by its position in the cloud—the lower
the electron orbit the higher its energy. As you have probably guessed by now, huge amounts of
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energy can be accumulated in systems like this. Moreover, in terms of force balance, this system
forms a completely legitimate and stable configuration. Note also that, in addition to the net kinetic
energy of electrons, a certain amount of electrostatic energy is accumulated in this dynamic capacitor.
Let’s see which component—the net kinetic energy of electrons or the electrostatic energy of the
capacitor—makes greater contribution to the stockpile of energy accumulated in this system.

Suppose a ball, with a uniform distribution of positive charges, σ, on its surface, is surrounded
by a cloud of electrons orbiting the ball. Let the orbits of electrons lie within a thin shell of thickness
h � R, directly above the surface of the ball, and let, finally, the density of electron distribution be a
function of the height of the orbit only: n = n(x). The system as a whole might be electrically neutral,
or it may have an excess positive charge. Consider the neutral case,

∫ h

0
en(x)d x = σ. (6)

Due to the assumed symmetry, magnetic forces cancel out. Then, neglecting at this point the
possible collisions of electrons, the motion of each electron is determined by play of two opposing
forces—the centripetal force of electrostatic attraction to the positive ball and the centrifugal force
of inertia:

e
ε0

(
σ−

∫ x

0
en(x)d x

)
=

μK(x)
R

, (7)

where K(x) is electron’s kinetic energy in the orbit of hight x; μ is a function of electron’s speed that
varies, as noted above, in narrow limits. Therefore, when calculating the net kinetic energy KΣ of
electrons, μ can be treated as a constant with some effective value, 1 < μe f f < 2:

KΣ = 4πR2
∫ h

0
n(x)K(x)d x =

4πR3

μe f f ε0

[∫ h

0

(
σ−

∫ x

0
en(x)d x

)
en(x)d x

]
=

2πR3σ2

μe f f ε0
.

We have obtained an interesting result: with a fixed R, the total kinetic energy of electrons depends
only on the integral of the density function n(x), i.e. the details of this function, which are not known,
do not matter. Since the field strength on the surface of the ball Es = σ/ε0, we may right this result as:

KΣ =
2πε0R3E2

s
μe f f

. (8)

Let Es = 5× 109 V/m, then for a ball of radius R = 0.05 m we get KΣ ≈ 0.6 MJ. The exact value
of electrostatic energy, Ec, of this system depends, of course, on the details of the density function n(x);
regardless, it makes only a small fraction of the energy stored in the system:

Ec < 4πR2h(ε0E2
s /2) = μe f f KΣ(h/R)� KΣ. (9)

Imagine now that our positively charged copper ball, with a cloud of electrons rapidly revolving
around it, is placed inside a copper spherical shell of thickness 1 mm or less. This copper shell won’t
“feel” the presence of electrically neutral copper ball inside it. So, we can repeat our trick and build
another double layer on the outer surface of this shell. Building up this “matreshka doll” by adding
more and more copper shells to it, we can get a compact and highly dense energy storage system with
a capacity in the order of 10 MJ or even higher.

But what is the relevance of this all to the phenomenon of BL? We have demonstrated the
feasibility of large-orange-size material object with seemingly fantastic properties that some fireballs
have according to eyewitness accounts: long life, incredibly high energy content, and low temperature.
True, our “object” is heavier than air, thus it cannot hover over the ground like a fireball. To turn our
copper-electronic battery into a real fireball, we need to show that a similar structure can be created
from... a thin air, literally. In the design of our energy capsule above, a double electrical layer was the
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key element, which we have imagined rather than built in practice, while double layer sheath is a real
attribute of plasma. Moreover, this attribute is created naturally by plasma itself as a way of protection
from the environment. So, the transition from an imaginary double layer on the surface of a copper
ball to a natural double layer in the air shall not come as a miracle to us.

With the transition from a copper ball to a ball of air, we no longer have free electrons and lose the
conductivity associated with them, so it seems that the entire construct is collapsing. However, in the
air—especially, in thunderstorm conditions—a small count of free electrons is always present. We have
seen earlier that, with each strike of a thunderbolt, a rapidly rising flux of magnetic induction
takes place around the discharge channel, thereby creating an intense vortex field. Seed electrons,
which happen to be in the area of this strong field, get accelerated to energies that might be high enough
to cause an avalanche ionization. At the same time, electrons—in virtue of their greater mobility—gain
quickly in tangential velocity, with a tendency to scatter in radial directions due to the combined
action of centrifugal force of inertia and the Lorentz force, thus leaving behind the heavy and sluggish
positive ions and creating a gap in the air in the form of a thin sheath. This peculiar rupture in the
air is a relativistic double layer, with an almost perfect vacuum and high intensity electrostatic field
between the oppositely charged layers. It is precisely this electrostatic field that prevents electrons
from scattering and confines them to the double layer sheath. This mechanism will, most likely, lead to
stratification, i.e. to formation not just one, but a set of nested sheaths.

The occasional collisions of electrons in the sheaths will result in continuous ejection of highly
energetic electrons from the fireball at various angles. These eruptions may manifest themselves as tiny
crackling flashes of electric discharge all over the surface of BL, which can account for the “boiling”
(“hairy”) appearance of fireball in eyewitness reports. Besides, the electron ejections result in fireball
becoming periodically net positive then neutral by attracting electrons back from the surrounding
air, which is quite consistent with the erratic and highly unpredictable motion of the fireball due to
electromagnetic interaction with the earth at large and metal objects in particular.

4. Schema for Creating BL in a Modestly Equipped Laboratory

The above ideas of the mechanism of BL formation suggest a schema for generating fireballs in a
lab. Basically, it is as follows. In a small volume of air, create a powerful flux of magnetic induction,
which peaks in a matter of a few dozen microseconds. To implement it successfully, the schema must
be fleshed out, of course, with a multitude of important details.

First and foremost, experiments shall be conducted in a vessel with an air rarefied to about 1 mbar.
An avalanche ionization, which—according to our model—is a requisite for creating a fireball, is much
easier to trigger in a rarefied air. If we succeed in creating relativistic double layers in a rarefied air,
pressure in the vessel can be raised back to atmospheric by leaking air slowly into it.

The next detail is concerned with the shape of the vessel. A hollow torus with external and
internal diameters of 25 and 5 cm, respectively, might be the right choice. By passing a powerful pulse
of current through a toroidal coil with a few turns of a thick rod, tightly embracing the torus, one can
hope to get a few fireballs at once. To keep the coil inductance low, the number of turns of the coil
shall be restricted to six. The vessel is to be made of a transparent dielectric, so one can observe what is
happening inside it. An alternative choice for the vessel is a spherical glass bulb, 10 cm in diameter.

Now on the details of pulse discharge, which is to simulate the lightning bolt. This can be
achieved with special, heavy duty pulse capacitors of small inductance equipped with a remotely
controlled spark gap. If the vessel of choice is a spherical bulb, we need two capacitors to be discharged
synchronously via two horseshoe-like copper bars. The diameter of the horseshoe must be slightly
less than the diameter of the bulb. The horseshoe bars shall be located in two vertical planes, parallel
to each other, on opposite sides of the bulb in a symmetrical configuration, so that the centers of the
horseshoes and the center of the spherical bulb lie on the same horizontal line, while the distance
between the centers of the horseshoes is slightly larger than the diameter of the bulb.
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The vortex electric field, generated by discharging pulse capacitors, shall be powerful enough to
trigger avalanche ionization of the rarefied air inside the bulb. It is important to note here that artificially
generated seed electrons might be required to facilitate the launch of the avalanche. Geometrical
parameters of the configuration shall be adjusted in such a way that the radial component of the net
force (i.e. centrifugal force plus Lorentz force), experienced by free electrons at the stage of current
rise, is directed from the center of the bulb, and not to its center. This last condition is of paramount
importance: it is this condition that makes creating a set of nested ruptures in the air possible, thereby
forming relativistic double layer sheaths and restricting the motion of accelerated electrons in the
confines of these sheaths.

5. Microwave Oven and Synchrotron Radiation of BL

Now we turn to another puzzling feature of BL, namely, the ability to melt or evaporate certain
metal objects—gold jewelry, in particular—on its path. According to our model, BL is accompanied by
a synchrotron radiation. What’s the frequency range of this radiation? Synchrotron radiation is peaked
on the frequency, which is associated with the cyclotron frequency, i.e. with ν0= c/πD, as [5]

νmax =
3γ3ν0

2
, where γ ≡ E

m0c2 . (10)

As we have noted earlier, by the time fireball gets to casual observer’s line of sight, its
ultrarelativistic electrons lose part of the energy to synchrotron radiation, retaining at best a few dozen
MeV per electron. Let γ vary in the range 1–100, i.e., the energy of electrons in the double layer sheath
is in the 0.5–50 MeV range. Then, for a typical fireball of 10 cm in diameter, νmax = 1.43(109 − 1015) Hz.
In other words, synchrotron radiation of BL is roughly in microwave to UV range. So, the assumption
that BL is a source of X-rays, which is occasionally made in the literature, is most likely not correct.

Electromagnetic radiation in the microwave oven is of frequency 2.45 GHz and power around
1000 watts. These parameters correspond to that of synchrotron radiation from a fireball of small
energy. This invites a curious question. What will happen if we put a metal object in a microwave
oven? If BL emits electromagnetic radiation in the microwave range that is powerful enough to melt or
evaporate parts of metal objects in an instant, then microwave oven should be able to do the same.
With that thought in mind, I took three sewing needles 75 to 80 mm long each and attached them
to a cardboard so that a triangle with small gaps at all three vertices is formed. I put all that on the
rotating table of the microwave oven in my kitchen and turned it on for 10 s. Around the 7th second, a
huge flame flared up and the cardboard caught fire. I turned off the oven as quickly as I could. The
result of this experiment was that the sharp tip of one of the needles melted and turned into a ball in a
fraction of a second. Thus, it seems that our understanding of the nature of BL can also account for the
mysterious ability of fireballs to melt or evaporate parts of metal objects in a blink of an eye.

6. Controlled Nuclear Fusion and BL

Provided that we succeed in creating a fireball in a rarefied air inside a glass bulb of 10 cm in diameter,
as described above, there is no reason why it cannot be done in a glass sphere of much larger diameter
that is filled with heavy hydrogen gas 2H2 at atmospheric pressure or even higher. Then, the positive
layer of each double layer sheath would be comprised of deuterium nuclei. We have seen above that
ultrarelativistic electrons are the main carriers of energy in BL. Deuterium nuclei, which form the inner
positive layers of the sheaths in this case, will also be accelerated by the vortex field, but to considerably
lesser degree compared to the electrons, so, in percentage terms, they do not contribute much to the net
energy of BL. However, there is a point of larger importance to be made here.

The charge particles, which make up the sheaths, move so fast that the sheaths are perceived as
virtual walls: most of the molecules of heavy hydrogen are reflected by the sliding blows of sheath
particles, while some of the molecules will penetrate into the “wall” and become targets for direct
collisions with the highly energetic deuterons. Figuratively speaking, the two layers of each sheath
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act as millstones, which grind all the “grains” that end up between them. Now the question is: do
the deuterons have enough energy to fuse with the nuclei of atoms of heavy hydrogen molecules that
leak into the “wall” and become collision targets? To estimate the energy of deuterons in the sheath,
substitute doubled proton mass for the electron mass in formula (2), which we have derived earlier for
the energy of electrons accelerated by the vortex field. Let R = 0.35 m, Ba = 1.0 T, then deuterons get
accelerated to 0.73 MeV, while electrons—to 52 MeV.

These estimates are quite encouraging. Firstly, note that electrons stay well below the 100 MeV
threshold, above which the losses to synchrotron radiation become unacceptably large. Secondly,
the cross section for the two-channel fusion reaction, 2H + 2H –> 3He + n; 2H + 2H –> 3H + p,
with the energy of striking deuterons at 0.7 MeV is about 0.08 barn, i.e. 80% of its maximum possible
value of 0.1 barn. Therefore, if the density of the “target” (which, obviously, grows proportionally with
the density of the hydrogen gas, in which the double layer sheaths are immersed) is high enough, an
intense fusion reaction is to be expected. In other words, we might have a nuclear fusion reactor here,
which operates on principles that are quite different from those of the thermonuclear fusion reactor.

Is it feasible to control the process of nuclear fusion, which takes place in this reactor, and can it
be an efficient source of energy? Time will tell.

7. Discussion

Aside from exotic forms of matter (Bose-Einstein condensate, antimatter, etc.), contemporary
physics deals with four states of matter only: solid, liquid, gas, and plasma. If we take on faith the
characteristic features of BL and the pattern of its motion according to eyewitness reports, the problem
with BL is that identifying its substance with any of these four states of matter leads inexorably to
violation of one or the other law of physics. This explains why the range of hypothesis underlying
speculative models of this phenomenon (the number of which is, probably, way over one hundred by
now) is extremely wide, starting from the assumption of optical illusion and all the way to suggestions
that fireball is kind of a black hole.

In this study we have shown that the most inscrutable features of BL—including long life,
incredibly high density of energy content, low temperature, and the ability to melt or evaporate metal
objects—can be accounted for without violating any laws of nature, provided that the substance of BL
is not merely a homogeneous, fully ionized gas, but rather an intricate structure comprised of ordinary
air plus a number of nested sheaths, each of which is a double electrical layer with voltage drop in
the order of 100 kV. The findings indicate that BL is a real phenomenon of nature beyond reasonable
doubt, and solving this riddle is likely to have implications, the importance of which can hardly be
overestimated. In particular, the possibility of fundamentally new way of looking at the problem of
controlled nuclear fusion is noted.

The working hypotheses for the mechanism of BL formation is electromagnetic induction in the
wake of a powerful thunderbolt discharge. The future research shall be concentrated on attempts to
produce BL in a lab. A fairly detailed experimental schema for carrying out this task in a modestly
equipped laboratory has been outlined.
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Abstract: Existing algorithms like nested sampling and annealed importance sampling are able
to produce accurate estimates of the marginal likelihood of a model, but tend to scale poorly to
large data sets. This is because these algorithms need to recalculate the log-likelihood for each
iteration by summing over the whole data set. Efficient scaling to large data sets requires that
algorithms only visit small subsets (mini-batches) of data on each iteration. To this end, we estimate
the marginal likelihood via a sequential decomposition into a product of predictive distributions
p(yn|y<n). Predictive distributions can be approximated efficiently through Bayesian updating
using stochastic gradient Hamiltonian Monte Carlo, which approximates likelihood gradients using
mini-batches. Since each data point typically contains little information compared to the whole data
set, the convergence to each successive posterior only requires a short burn-in phase. This approach
can be viewed as a special case of sequential Monte Carlo (SMC) with a single particle, but differs
from typical SMC methods in that it uses stochastic gradients. We illustrate how this approach scales
favourably to large data sets with some simple models.

Keywords: marginal likelihood; Monte Carlo; stochastic gradients

1. Introduction

Marginal likelihood (ML), sometimes call evidence, is a quantitative measure of how well a model
can describe a particular data set; it is the probability that the data set occurred within that model.
Consider a Bayesian model with parameters θ for a data set D = {yn}N

n=1. The ML is the integral

Z := p(D) =
∫

p(D|θ)p(θ) dθ,

where p(D|θ) is the likelihood and p(θ) is the prior. In this paper we consider the case where the data
are conditionally independent given the parameters

p(D|θ) = ∏
n

p(yn|θ), (1)

as is common in many parametric models. The posterior distribution over a set of models is
proportional to their ML and so approximations to it are sometimes used for model comparison,
and weighted model averaging [1] (chapter 12). This integral is typically analytically intractable
for any but the simplest models, so one must resort to numerical approximation methods. Nested
sampling (NS) [2] and annealed importance sampling (AIS) [3] are two algorithms able to produce
accurate estimates of the ML. NS accomplishes this by sampling from the prior under constraints of
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increasing likelihood, and AIS by sampling from a temperature annealed distribution ∝ p(D|θ)β p(θ)
and averaging over samples with appropriately calculated importance weights. Although NS and
AIS produce accurate estimates of the ML, they tend to scale poorly to large data sets due the fact
that they need to repeatedly calculate the likelihood function: for NS this is to ensure staying within
the constrained likelihood contour; for AIS the likelihood must be calculated both to sample from
the annealed distributions using some Markov chain Monte Carlo (MCMC) method, as well as to
calculate the importance weights. Calculation of the likelihood is computationally expensive on large
data sets. To combat this problem, various optimization and sampling algorithms rather make use of
stochastic approximations of the likelihood by sub-sampling the data set into mini-batches B ⊆ D [4].
The stochastic log-likelihood approximation is

log p(D|θ) ≈ |D|
|B| ∑

y∈B
log p(y|θ),

with each iteration of these algorithms generally using a different mini-batch. Unfortunately NS
and AIS cannot trivially use mini-batching to improve scalability. Using stochastic likelihood
approximations changes the statistics of the likelihood contours in NS, allowing particles to occasionally
move to lower likelihood instead of higher, violating the basic assumptions of the algorithm. AIS
could benefit from using stochastic likelihood gradients during the MCMC steps, but it is not obvious
how one would calculate the importance weights in this setting. This work presents an approach for
large-scale ML approximations using mini-batches. This is done using a sequential decomposition
of the ML into predictive distributions, which can each be approximated using stochastic gradient
MCMC methods. The particles sampled from each previous posterior distribution can be reused for
efficiency since they will typically be close to the next posterior. This can be viewed as a special case of
sequential Monte Carlo with Bayesian updating [5].

We illustrate our approach by calculating ML estimates on three simple models. For these models,
we obtain roughly an order of magnitude speedup over nested sampling on data sets with one million
observations with negligible loss in accuracy.

2. Sequential Marginal Likelihood Estimation

The ML can be decomposed, through the product rule, into a product of predictive distributions
of the following form

Z = ∏
n

p(yn|y<n),

where, from Equation (1),

p(yn|y<n) =
∫

p(yn|θ)p(θ|y<n) dθ. (2)

Assuming one is able to produce accurate estimates p̂(yn|y<n) of the predictive probabilities,
the log-ML can be approximated by

log Ẑ = ∑
n

log p̂(yn|y<n). (3)

In this way the difficult problem of estimating an integral of an extremely peaked function, p(D|θ),
reduces to the easier problem of estimating many integrals of smoother functions p(yn|θ). Note that
this approach can more generally be applied using any other sequential decomposition of the data set.
We only present derivations using the approach above for notational clarity but we decompose the
data into varying-sized chunks of observations during our experiments as discussed in Section 4.

Typical sequential Monte Carlo (SMC) methods use a similar approach, and calculate predictive
estimates using a combination of importance resampling and MCMC mutation steps [5]. Generic
examples of such algorithms are the bootstrap particle filter [6], which is often used for posterior

24



Proceedings 2019, 33, 18

inference in hidden Markov models and other latent variable sequence models [5], and the “left-to-right”
algorithm which is used in [7] to evaluate topic models.

The computational efficiency of using this approach depends on the method of approximating
Equation (2). One such estimator is

p̂(yn|y<n) =
1
M

M

∑
i=1

p(yn|θi), (4)

where each θi is drawn from the posterior distribution p(θ|y<n) using MCMC methods. Again, one
might use a chunk of observations for this predictive estimate rather than just one. As described
in [8], estimators of this form tend to underestimate the ML, but still converge to the exact ML
in the limit M → ∞. Since samples from the previous posterior, p(θ|y<n−1), would generally be
available at each step, we expect only a small number of steps will be needed to accurately sample
from the next posterior distribution, p(θ|y<n). Metropolis-Hastings based MCMC algorithms would
have to iterate over the previous n− 1 data points in order to calculate the acceptance probability
for each Markov transition, and so using them to estimate logZ in this sequential manner would
scale at least quadratically in N. The key computational improvement in our approach is instead
using stochastic gradient based MCMC algorithms such as stochastic gradient Hamiltonian Monte
Carlo [9]. SGHMC utilizes mini-batching, allowing one to efficiently draw samples from the posterior
distribution p(θ|y<n) even when n is large. We now describe how one can use SGHMC to sample
from posterior distributions.

3. Stochastic Gradient Hamiltonian Monte Carlo

SGHMC [9] simulates a Brownian particle in a potential, by numerically integrating the
Langevin equation

dθ = v dt
dv = −∇U(θ)dt− γvdt +

√
2γdW,

where U(θ) is the potential energy, γ is the friction coefficient and W is the standard Wiener process [10].
That is, each increment ΔW is independently normally distributed with mean zero and variance Δt. It
can be shown through the use of a Fokker-Planck equation [11], that the above dynamics converge to
the stationary distribution

p(θ, v) ∝ exp
(
−U(θ)− v2

2

)
.

We can use this to sample from the full data posterior by using a potential energy equal to
the negative log-joint U(θ) := − log p(D, θ). The numeric integration is typically discretized [9,12]
as follows

Δθ = v

Δv = −η∇Û(θ)− αv + ε
√

2(α− β̂)η,
(5)

where η is called the learning rate, 1− α is the momentum decay, ε is a standard Gaussian random
vector, β̂ is an optional parameter to offset the variance of the stochastic gradient term and

Û(θ) = −|D||B| ∑
y∈B

log p(y|θ)− log p(θ)

is an unbiased estimate of U(θ). A new mini-batch B is sampled for each iteration of Equation (5).
Since U(θ) grows with the size of the data set, a small learning rate η ∼ O( 1

|D| ) is required to minimize

the discretization error. The variance of the stochastic gradient term is proportional to η2 while the
variance of the injected noise is proportional to η, so in the limit η → 0, stochasticity in the gradient
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estimates becomes negligible and the correct continuum dynamics are recovered, even if one ignores
the errors from the stochastic gradient noise and β̂ = 0 is used. We refer the reader to [9,13,14] for an
in-depth analysis of the algorithm parameters.

For the purposes of Bayesian updating, we use SGHMC to sample from the nth posterior
distribution, p(θ|y≤n), using the stochastic potential energy

Ûn(θ) = −n− 1
|B| ∑

y∈B
log p(y|θ)− log p(yn|θ)− log p(θ),

where the mini-batch is drawn i.i.d. with replacement from the set of all previous data points
i.e., B ⊂ {yk|k < n}. The extra term here is to ensure that the previously unseen data point is always
taken into account. If the extra term was not included, there would be some chance that the new
data point does not get taken into account during the SGHMC steps. With this potential energy
SGHMC still converges to the required posterior distribution, since it is still an unbiased estimator of
the negative log-joint.

4. Experiments

We use mini-batches of size 500, with the following SGHMC parameters: η = 0.1/n, α = 0.2
and β̂ = 0. Predictive distributions are approximated using M = 10 samples and 20 burn-in steps
for each new posterior. As mentioned in Section 2, rather than Bayesian updating by adding a single
observation at a time, we add chunks of data at a time. In the following experiments we use chunks of
20 data points when n ≤ 80, chunks of size

⌊ n
4
⌋

when 80 < n < 2000, and chunks of size 500 thereafter.
Our motivation for this is because we expect that smaller chunk sizes will give a lower variance in the
estimator Equation (4) when n is small and so the posterior is less peaked, but for large n using larger
chunk sizes is more efficient.

We use NS as our reference standard of accuracy. We implement NS with 20 SGHMC steps to
sample from the constrained prior. For SGHMC used with NS we used parameters η = 10−3, α = 0.1
and β̂ = 0 because there is no gradient noise when sampling from the prior. Results reported are for
two particles; more behave similarly but are slower. We allow NS to run until the additive terms are
less than 1% of the current Ẑ estimate. This is a popular stopping criterion and is also used in [8].
For more information on the constrained sampler and NS see Appendix A. Our experiments were run
on a laptop with an Intel i7 CPU. For fair comparison, all code is single threaded. Multithreading gives
a considerable speedup when calculating the likelihood on large data sets but can introduce subtle
complexities that are difficult to control for in tests of runtime performance.

We evaluate our approach on the following three models using simulated data sets:

4.1. Linear Regression

The data set consists of pairs (x, y) related by

y = wTx + b + ε,

where ε is zero mean Gaussian distributed with known variance σ2. We do not assume any distribution
over x as it always appears on the right hand side of the conditional.

p(y|x, w, b) =
1√

2πσ2
exp

(
− (y−wTx− b)2

2σ2

)
Parameters are w and b, with standard Gaussian priors. ML can be calculated analytically for this
model. We used 5 dimensional vectors x; this model has 6 parameters.
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4.2. Logistic Regression

The data set consists of pairs (x, y), where x is an observation vector which is assigned a class
label y ∈ {1, . . . , K}. The labels have a discrete distribution with probabilities given by

p(y|x, θ) =
exp(wT

y x + by)

∑k exp(wT
k x + bk)

.

Parameters are θ = (w1:K, b1:K), with standard Gaussian priors. Again we do not assume any
distribution over x as it always appears on the right hand side of the conditional. We used 10
dimensional vectors x with 4 classes; this model has 44 parameters.

4.3. Gaussian Mixture Model

The data are modeled by a mixture of multivariate Gaussian distributions with diagonal
covariance matrices. Mixture weights, means and variances are treated as parameters. This type
of model is often treated as a latent variable model, where the mixture component assignments of each
data point are the latent variables. Here we marginalize out the latent variables to obtain the following
conditional distribution:

p(y|θ) =
K

∑
k=1

βk

d

∏
j=1

1√
2πσ2

k,j

exp

(
− (yj − μk,j)

2

2σ2
k,j

)
,

θ = (β1:K, μ1:K,1:d, σ2
1:K,1:d).

Mixture weights β1:K are modeled by a Dirichlet prior with α = 1; means μk,j are modeled by
Gaussian priors, centered around zero and with variance 4σ2

k,j; variances σ2
k,j are modeled by inverse

gamma priors with shape and scale parameters equal to 1. We used 5 Gaussian components and
observations were 2 dimensional; this model has 25 parameters with 24 degrees of freedom.

5. Results and Discussion

The log-ML typically grows linearly in the number of data points. For this reason, it is natural
to measure errors in logZ

N rather than logZ . In [8], the authors suggest that errors in logZ
N of 0.1

are acceptable. For each model, we measured the runtime performance of nested sampling and our
sequential estimator for various data set sizes up to one million data points. Due to computational
constraints we run NS only for data set sizes at logarithmically increasing intervals, while the sequential
sampler naturally produces many more intermediate results in a single run. In some of the figures
below, the sequential sampler initially underestimates the log-ML. We believe this is due to higher
variance of Equation (4) when n is small, and so we also give a hybrid result which replaces the initial
terms in Equation (3) with a NS estimate of the ML for the first 100 data points.

5.1. Linear Regression

For the linear regression model, the exact ML is available analytically and is shown in Figure 1a
for comparison. Both algorithms are able to produce accurate results for this model for all data set sizes.
The final error of the sequential sampler on one million data points is only about 10−4N (roughly 0.01%).
For this model, our method was faster than NS by about a factor of 3 on one million observations.

5.2. Logistic Regression

For the largest data set, NS and our sequential sampler produced estimates which differed by
3× 10−4N (roughly 0.7%), which is negligible. Our sequential sampler was almost a factor 17 faster
than the nested sampler on one million observations for this model.
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(a) (b)

Figure 1. Linear regression model. (a) shows the accuracy of the sequential ML estimator compared to
nested sampling and the exact ML and (b) shows the run time of both methods.

5.3. Gaussian Mixture Model

The posterior distribution for this model is multimodal. Some modes are due to permutation
symmetries; these modes do not have to be explored since each one contains the same information.
There are also some local modes which do not necessarily capture meaningful information about the
data; for example, fitting a single Gaussian to the whole data set may be a poor local optimum of
the likelihood function. If an MCMC walker finds one of these modes it can get trapped. However,
we find that by Bayesian updating, the MCMC walkers tend to leave the poor local modes early on,
before they become extremely peaked. This is similar to how annealing can help prevent MCMC
and optimization algorithms from getting trapped in poor local optima. The estimates produced
by NS and our sequential sampler differed on the largest data set by 2× 10−3N (roughly 0.06%).
For this model our sequential sampler was about a factor 11 faster than the nested sampler on one
million observations.

In all the experiments our sequential sampler seems to converge to the same result as NS within a
negligible error for large n. The initial disagreement between NS and our sequential sampler on the
first few thousand data points, seen in Figures 2a and 3a, seems as if it can be attributed to the initial
terms in Equation (3), since the proposed hybrid approach, replacing early terms in the sequential
sampler by estimates based on NS, matches NS closely for all data set sizes.

(a) (b)

Figure 2. Logistic regression model. (a) shows the sequential ML estimator compared to nested
sampling and (b) shows the run time of both methods.
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(a) (b)

Figure 3. Gaussian mixture model. (a) shows the sequential ML estimator compared to nested sampling
and (b) shows the run time of both methods.

6. Materials and Methods

Code for this work was implemented using pytorch [15]. The code for our experiments is available
at https://gitlab.com/pleased/sequential-evidence.

7. Conclusions

We found that our sequential sampler using stochastic gradients was able to produce accurate ML
estimates with a speedup over NS. Furthermore, since the marginal cost of updating the ML estimates
when new data arrives does not depend on the number of previous data points, this approach may
be effective for weighted model averaging in a setting where one periodically gets access to new
data, such as in streaming applications. Potential future work may involve a more in-depth analysis
of the algorithm parameters, for example automatic tuning of the number of samples, M, used for
approximating predictive probabilities. One can imagine further exploring the effects of stochastic
gradients for ML calculation in the full SMC setting, including latent variable models and resampling
steps, with more general stochastic gradient MCMC algorithms such as those in [13].
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Appendix A

Nested sampling requires one to sample from the prior under increasing likelihood constraints.
Sampling under constraints is, in general, a difficult problem. This sampling can be accomplished by
repeatedly sampling from the prior until the constraint is satisfied. This method of rejection sampling
scales extremely poorly with both the size of the data set and the dimension of the parameter space,
and is not feasible on any but the smallest problems. However NS using this rejection sampling
method is a theoretically perfect implementation of NS, as it satisfies the assumptions of perfect i.i.d.
sampling upon which NS is based. Further more it is extremely easy to implement correctly and so is a
useful tool for testing the correctness of other NS implementation.

Our implementation of NS is based on SGHMC, simply because the code for SGHMC was already
written. In order to sample under constraints we use a similar strategy to Galilean Monte Carlo as
described in [16], where the particle reflects off of the boundary of the likelihood contour by updating
the momentum as follows:

Δv = −2n(v · n).
Here n is a unit vector parallel to the likelihood gradient ∇θp(D|θ). While it is not the focus of our
paper, we note that we have not previously encountered the idea of applying SGHMC to sampling
under constraints; our implementation allows a fairly direct approach to implementing NS in a variety
of contexts, and the technique may also potentially be of value in other constrained sampling contexts.

We found that, due to discretization error, the constrained sampler tends to undersample slightly
at the boundaries of the constrained region; however the undersampled volume is of the order of the
learning rate η and so can be neglected if a small enough learning rate is used.

We tested the correctness of our constrained sampler against NS with rejection sampling for
up to 250 observations. We found that the slight undersampling at the constraint boundaries tends
to make the NS estimate slightly higher that that of the rejection sampler—see Figure A1—but the
difference was within the acceptable range of 0.1N, and appears to be decreasing with the number
of observations.

Figure A1. Comparison of NS with SGHMC to NS with rejection sampling for a 1-dimensional
Gaussian mixture model with 9 parameters (8 degrees of freedom). The size of the shaded band is
±0.1N around the rejection sampling implementation.
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Abstract: Entropic Dynamics is a framework for deriving the laws of physics from entropic inference.
In an (ED) of particles, the central assumption is that particles have definite yet unknown positions.
By appealing to certain symmetries, one can derive a quantum mechanics of scalar particles and
particles with spin, in which the trajectories of the particles are given by a stochastic equation. This is
much like Nelson’s stochastic mechanics which also assumes a fluctuating particle as the basis of the
microstates. The uniqueness of ED as an entropic inference of particles allows one to continuously
transition between fluctuating particles and the smooth trajectories assumed in Bohmian mechanics.
In this work we explore the consequences of the ED framework by studying the trajectories of
particles in the continuum between stochastic and Bohmian limits in the context of a few physical
examples, which include the double slit and Stern-Gerlach experiments.

1. Introduction

Entropic Dynamics (ED) [1] is a unique approach to foundational quantum mechanics with its
emphasis on entropic inference. It is argued, simply, that physics cannot be an exception to the rules
of inductive reasoning; physics is constrained to be consistent with the rules for inference. (ED) is
an exercise in deriving physical laws from inductive inference. The main assumption in (ED) is that
particles have definite yet unknown positions, and that these positions determine entirely the ontic
elements of the theory (One might argue for assuming that momentum, in place of position, is the
ontic quantity, however as we will see the momentum in (ED) is not necessarily defined, except for
certain classes of constraints. Momentum is also dependent on position, it is a coordinate in a derived
manifold from the manifold of positions and so is not as fundamental). All other observable quantities,
such as momentum, spin, electric charge, etc., are necessarily epistemic. This is a slight departure
from the Copenhagen interpretation, which claims that particles have no properties until they are
measured. Other foundational approaches, such as the Bohmian [2] (or causal interpretation) and
Nelson’s stochastic mechanics [3], also assume ontic positions for particles. These approaches however
also give onticity to the macroscopic variables, such as the wave function ψ(x), and the probability
distribution ρ(x) = |ψ(x)|2. In (ED) the macroscopic variables are also necessarily epistemic.

In the causal approach particles are assumed to follow smooth trajectories whose velocities are
determined by the probability flow [4]. In this way it is a deterministic theory with respect to particle
positions; given initial conditions the trajectory of the particle is known exactly. The uncertainty in
positions can therefore only be blamed on not knowing the initial conditions, or not knowing the
proper Hamiltonian. While entirely consistent with quantum mechanics, it is impossible to determine
whether the Bohmian interpretation is general enough with respect to particle trajectories, since we
cannot set up experiments in which the Hamiltonian is known exactly. Therefore, fluctuations can
always be blamed on a lack of this information and not, necessarily, on some sub-quantum effect that
(BM) has failed to include. Nelson’s stochastic mechanics (NSM) is more general in this regard, since it
begins with a stochastic equation for the motion of particles and proceeds to derive the dynamics of the
macroscopic variables from these assumptions. While in this way (NSM) is more general than (BM),
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it singles out a particular sub-quantum dynamics for particles which is a Brownian motion. Much like
the causal picture, (NSM) gives ontic privilege to the macroscopic variables which is part of the reason
for its downfall [5]. While (NSM) can obtain the Bohmian limit, simply by sending the fluctuations to
zero, they cannot necessarily motivate the generalized dynamics offered by (ED)

Entropic Dynamics allows for a more generalized sub-quantum dynamics which includes the
(NSM) and (BM) limits as special cases. Particle trajectories are derived from the principle of
maximum entropy by incorporating uncertainty in their motion for small steps Δt. Once we specify
the relevant constraints in the problem, we can find the transition probability for these small steps
P(x′|x). The Lagrange multipliers, or equivalently the constraints, provides a freedom to specify
the sub-quantum dynamics. The family of possible sub-quantum dynamics which reproduce the
Schrödinger equation is potentially infinite, however experiments may constrain these theories once a
proper understanding of quantum gravity is achieved.

2. Entropic Dynamics

In any application of entropic inference, we must supply three pieces of information. The first of
these is the subject matter, the microstates, which is discussed in the next section. We will then have to
supply a prior and any relevant constraints for the problem.

2.1. The Microstates

In general treatments of (ED) we consider the positions, x ∈ X, of N particles in configuration
space, X = X1 × · · · × XN which are definite yet unknown. Their unknown values are quantified by
a probability density ρ(x). We also make another assumption, that the particles follow continuous
trajectories; the particles move in short steps [1]. The inference framework allows us to find a large
change by iterating over many small steps, and thus we only need to find the transition probability for
a short step. The principle of maximum entropy tells us that such a probability should maximize the
relative entropy,

S[P, Q] = −
∫

dx′ P(x′|x) log
P(x′|x)
Q(x′|x) (1)

subject to constraints, however first we must specify the prior Q(x′|x).

2.2. The Prior

To incorporate our ignorance about the motion of the particles, we can choose a prior that includes
the symmetries in the problem. For N particles, such a prior is a Gaussian,

Q(x′|x) ∝ exp

[
−1

2 ∑
n

αnδabΔxa
nΔxb

n

]
(2)

where a = {1, 2, 3} are spatial coordinates, n = {1, . . . , N} denotes the nth particle and where αn is
some particle dependent constant for which we can take the limit αn → ∞ to impose short steps. Such a
prior quantifies the rotational symmetries present in the problem. In order to break the symmetry,
we impose a family of constraints.

2.3. The Constraints

Depending on the subject matter, we impose a family of different constraints that incorporate the
information that is relevant to the problem. There are two main classes of problems that we will discuss
here, although such a list is not exhaustive. The first concerns scalar particles, or particles without
spin, while the second concerns particles with spin, and hence the second kind requires additional
constraints. Special cases of either approach concern the study of a single particle [6], which we will
mainly focus on in this paper. The microstates for a single particle is simply three dimensional space,
X ⊂ R3.
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The Local U(1) Constraint-

The constraints for particles, whether of the scalar or spin variety, also incorporate symmetry
information (much like the prior). The main symmetry group for scalar particles is U(1), the unitary
group in infinite dimensions. This corresponds to a local gauge symmetry at each position x ∈ X and
is represented by the following constraint,

〈Δxa〉 [∂aφ(x)− βAa(x)] = κ(x) (3)

where φ(x) is a field that has the topological properties of an angle (Identifying φ(x) as an angle field
may seem strange, but there is a deeper reason for this. It will become clear once one introduces spin
into the picture [6], that angle fields are a natural set of constraints for describing rotations), �A is a
connection field that sets the zero of φ(x) at each x and κ(x) is some position dependent constant.
The factor β is identified with electric charge [7].

The SU(2) Constraint -

In order to capture the appropriate rotational properties of the system, we incorporate an
additional set of constraints on the motion of the particle (The results of this section are from joint work
with A. Caticha that will appear in [6]). A useful representation of rotations in R3 is a frame field�sk(x)
at each point in space, the dynamics of which will be coupled to the particle motion (The use of frame
fields for describing spin has been used throughout the literature [8–11]). Just like the fields φ(x) and
�A(x), the field�sk(x) is entirely epistemic; it is merely a convenient representation of our information
about the motion of the particle, there is no assumption that the field�sk(x) is “real”.

A frame �sk(x) at a point x ∈ X is a triad, �sk(x) = {�s1(x),�s2(x),�s3(x)}, whose individual
components span R3. Each frame at x ∈ X can be constructed by rotating the lab frame, which
we denote with the basis vectors�ek = {�e1,�e2,�e3}, through three Euler angles {χ(x), θ(x), ϕ(x)} which
depend on position. This is performed through the action of a rotor U(χ, θ, ϕ),

�sk(x) = U(x)�ekU†(x) = U(χ, θ, ϕ)�ekU†(χ, θ, ϕ) (4)

where
U(χ, θ, ϕ) = Uz(ϕ)Uy(θ)Uz(χ) = e−i�e3 ϕ/2e−i�e2θ/2e−i�e3χ/2 (5)

The frame is said to be oriented along the�s3 direction with constant magnitude; i.e.�s(x) = |�s|�s3(x)
and |�s(x)| = |�s| = const.. Since the frames can take arbitrary orientation at each x, we would like
to know how the frame changes its direction from x to x′. In the same way that the constraint (3)
involves the displacement being directed along the gradient of an angle, we incorporate the spin by
also coupling the displacement to the gradient of an angle ζ3(x)

〈Δxa〉∂aζ3 = 〈Δxa〉(�ωa ·�s3) = 〈Δxa〉(∂aχ + cos θ∂a ϕ) = κ′(x) (6)

which is a combination of gradients along the polar angle χ(x) and the precession angle ϕ(x) (While
the derivatives of the angles ζk(x) are well defined, their solutions are in general not integrable) given
in the frame velocity �ωa. Since the motion of the particle is being directed along the�s3 direction, there
is an arbitrariness in the setting of the zero angle of the χ(x). This suggests that the χ(x) in the spin
constraint (6) plays the same role of a gauge field as the constraint for scalar particles (3), and we will
see that it is only their joint dynamics that contributes to the evolution of the system. Thus in cases of a
single particle with spin, the constraints (3) and (6) can be combined into a single constraint which is
gauge invariant.
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2.4. The Transition Probability

Maximizing the relative entropy (1) subject to the constraints (3) and (6) leads to the transition
probability

P(x′|x) ∝ exp
[
−α

2
δabΔxaΔxb +

(
α′(∂aφ− βAa) + γ(�ωa ·�s3)

)
Δxa

]
(7)

with Lagrange multipliers α′ and γ. This distribution is Gaussian, and a generic displacement Δxa can
be written

Δxa = 〈Δxa〉+ Δωa (8)

where the expected displacement 〈Δxa〉 is given by

〈Δxa〉 = 1
α

δab (α′(∂bφ− βAb) + γ(�ωb ·�s3)
)

(9)

and the fluctuations obey

〈Δwa〉 = 0 and 〈ΔwaΔwb〉 = 1
α

δab (10)

The Lagrange multiplier α′ plays the role of controlling the relative strength of the fluctuations [12].
In the theory of spin the value of γ = 1/2, while β = e/c is proportional to the electric charge (The (ED)
framework offers a unique argument for the quantization of electric charge which is a consequence of
the circulation conditions of the spin frame�s(x) and the single-valuedness of the wave function [6,7]).
An important quantity is the ratio of the Lagrange multipliers,

α′

α
∝

γ

α
∝

h̄
m

Δt (11)

The form of the Lagrange multipliers determines a class of motions,

α′ = 1
η(Δt)n , γ = 1

ξ(Δt)n and

〈δabΔwaΔwb〉 = h̄
m η(Δt)n+1, |Δw| ∝

√
h̄
m η(Δt)(n+1)/2

(12)

for some integer n and constants η and ξ, which control the relative strength of the constraints to the
fluctuations. For n = 0, the particles follow Brownian trajectories, which in the limit of η → 0 and
ξ → 0 recovers the smooth Bohmian trajectories [12].

2.5. Entropic Time

At this point Entropic Dynamics describes a theory of particles which undergo a particular class
of motion depending on the choice of constraints (3) and (6). The next step is to define an entropic
time [13] by associating to the equation,

ρ(x′) =
∫

dx P(x′|x)ρ(x) (13)

a notion of duration, supplied by the fluctuations (Δt). The distribution ρ(x) becomes the distribution
ρ(x′), and the procedure in (13) has an implicit direction as demonstrated by Bayes’ rule (The update
provided by marginalizing over the transition probability P(x′|x) is not necessarily symmetric.
Updating in reverse is constrained by Bayes’ rule, P(x|x′) = P(x)P(x′|x)/P(x′)). Much in the way that
time is defined in classical mechanics by the free particle—the free particle moves equal distances in
equal time—entropic time is defined by the free quantum particle; the free quantum particle undergoes
equal fluctuations in equal entropic time.

It’s often easier to work with the differential form of the integral in Equation (13), which can be
found to be,

∂tρ = −∂a(vaρ) (14)
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where the current velocity va depends on the class of motion determined by the constraints and (η, n).
For Brownian trajectories, n = 0, the velocity is,

va =
h̄
m

δab
(

α′(∂bφ− βAb) + γ(�ωb ·�s3)− ∂b log ρ1/2
)

(15)

and Equation (14) is the Fokker-Plank equation, which includes the appearance of the osmotic term
log ρ1/2. For the smoother trajectories, n = 1, the osmotic term disappears and the velocity becomes
va = 〈Δxa〉/Δt. The Equation (14) is a diffusion equation which can be rewritten as a functional
derivative, ∂tρ = δH̃/δΦ for some functional H̃ which we eventually identify as a Hamiltonian.

From here the discussion extends to the symplectic and information geometry of the statistical
manifold Δ from which we can derive a Hamiltonian and Hamilton’s equations by identifying certain
symmetries [1]. These symmetries form the group Sp(2n) ∩O(2n) = U(n) which are the intersection
of the symplectic group and orthogonal group in (2n) dimensions, of which the constraints (3) and (6)
are a subset. The group U(n) also leads to another important consequence, the appearance of a
complex structure. The complex structure allows one to use complex coordinates, which we identify
as wave functions,

ψ± = ρ1/2
± eiΦ±/h̄ and ih̄ψ†± = ih̄ρ1/2

± e−iΦ±/h̄ (16)

where ρ± = (1/2)(ρ ± ρs) and Φ± = (Φ ± Φs). The conjugate momenta to ρ(x) ends up
being the phase [7], which for the Brownian case is Φ(x)/h̄ = γχ + α′φ − log ρ1/2, and where
ρs = ρ cos θ and Φs/h̄ = γϕ are conjugate variables incorporating the extra spin degrees of freedom.
The Hamiltonian is,

H̃[ψ±, ih̄ψ∗±] =
∫

dx

(
− h̄2

2m
ψ∗±(∂a − (i/2)Aa)

2ψ± + ψ∗±Vψ± + ψ∗±(Bx ∓ iBy)ψ∓ ± ψ∗±Bzψ±

)
(17)

and the associated Hamilton’s equation,

ih̄∂tψ± =
δH̃
δψ∗±

= − h̄2

2m
(∂a − (i/2))2ψ± + Vψ± + (Bx ∓ iBy)ψ∓ ± Bzψ± (18)

is the Schrödinger equation for the (±) components of the Pauli equation. In the limit that the variables
θ, ϕ are not dynamical, the Pauli equation reduces to the Schrödinger equation for a scalar particle.
While we will not go into further detail on these aspects of (ED), for a more detailed discussion see [1,6].

3. Entropic Trajectories

Entropic trajectories are a generalization of the trajectories assumed by (BM) and (NSM).
In Bohmian mechanics these trajectories are smooth, with well defined velocities, that are also
constrained to never cross. They are determined from the probability flow, which for scalar particles is
given by

d�xn

dt
= �vn, where �vn = i

h̄
2mn

(
�∇nψ

ψ
−

�∇nψ∗

ψ∗

)
(19)

where �xn is the position of the nth-particle. The Bohmian velocity �vn is equivalent to the drift velocity
�b in (ED). In (NSM) the equation of motion for the particles is given by the stochastic equation,

d�x = b(�x, t)dt + dw(t) (20)

The velocity from (19) is not defined in (20) in the standard limit calculus sense and hence one can
only evaluate finite differences. In Entropic Dynamics, it is the displacement (8) which determines the
motion of the particles. The displacement contains the fluctuation term, which is stochastic, hence the
limit in (19) is not always defined. While one can evaluate the limit using stochastic calculus, we will
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relegate that discussion to a future paper. For the collection of simulations in this paper, we will simply
use a unit fluctuation Δw̃ in place of the Wiener process Δw̄, which simulates a random walk on the
unit sphere. A finite time step is simulated by providing a duration Δt and some prescribed values of
n and η. The displacement for Brownian motion is then found from,

Δxa = baΔt +

√
h̄
m

η(Δt)1/2Δw̃a (21)

where ba is given from the Bohmian limit. In the examples below, Equation (21) is integrated using the
standard 4th-order Runge Kutta method.

3.1. The Double-Slit Experiment

The double slit experiment (DS) [14,15] is a special case where the wave function can be solved
exactly by assuming that each slit produces a Gaussian wave packet with a width equal to the width
of the slit, σ0, and that the total wave function is represented by a super-position of each packet,

ψi(x, y, t) =

(2πσ2)−1/4 exp
[
− (yi−d−h̄kyt/m)2

4σσ0
+ i

{(
ky(yi − d)− h̄k2

yt
2m

)
+

(
kxx− h̄k2

xt
2m

)}]
(22)

where h̄ky = mvy, ya = y, yb = −y, and 2d is the distance between the slits. The factor σ is σ =

σ0

(
1 + ih̄t

2mσ2
0

)
. Each wave function ψi(x, y, t), is found from integrating the Schrödinger equation for a

free particle, ih̄∂tψi = −(h̄2/2m)�∇2ψi with an initial Gaussian wave function. The total wavefunction
is the superposition, Ψ(x, y, t) = N [ψa(x, y, t) + ψb(x, y, t)].

Figure 1. Cont.
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Figure 1. Entorpic trajectories for the double slit experiment with n = 0 and η = 1, 0 for N = 200
particles. The black curve (Rho(y, t)) is the probability distribution determined from the wave function
at the detector screen, while the red curve (Ent. Traj.) is the interpolated distribution from the detector
statistics using a fitting polynomial of order 15 to show the shape of the distribution.

We simulated the trajectories of electrons, m = me, with an initial velocity in the x direction
of 2× 106 m/s and random initial positions along the y direction sampled according to the initial
Gaussian distribution with standard deviation equal to the slit width, σ0 = 10−6 m and with distance
between the slits d = 5σ0 = 5× 10−6 m. The initial velocity in the y direction is set to zero and the
distance to the screen is x f = 0.2 m. One can see that the value of η = 1 generates fluctuations which
give rise to similar statistics as the Bohmian limit (Figure 1).

3.2. The Stern-Gerlach Experiment

In a similar way to the Double-slit experiment (DS), we can solve the Pauli equation in the
case of the Stern-Gerlach experiment (SG) [16] by making a few approximating assumptions [17].
Following the arguments in [4,18,19], we assume that the Stern-Gerlach magnet produces a magnetic
field, �B = (B0 + zB′0)ẑ, within a region Δx and is assumed to be zero outside this region. Given an
initial particle velocity vx along the x direction, the particle remains in the magnetic field for a time
Δt = Δx/vx. After the particle leaves the magnetic field, the spinor wave function breaks up into two
packets which can be solved for all t (For detailed calculations see [15,17,20,21]) as,

Ψ(z, t + Δt) = (2πσ0)
−1/2

⎛⎜⎜⎝cos θ0
2 exp

[
− (z−Δz−ut)2

4σ2
0

+ i
h̄ (muz + h̄ϕ+)

]
sin θ0

2 exp
[
− (z+Δz+ut)2

4σ2
0

− i
h̄ (muz− h̄ϕ−)

]
⎞⎟⎟⎠ (23)
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where θ0 is the initial azimuthal angle for�s3 with respect to the z axis, u is the packet velocity in the z
direction, Δz = μBB′0(Δt)2/2m and ϕ± = ±ϕ0/2∓ μBB0Δt/h̄− μ2

B(B′0)2(Δt)3/6mh̄, where μB is the
Bohr magneton. The width σ0 of the initial packet is set to the (SG) device opening of σ0 = 10−4 m.

Figure 2. Entropic trajectories for the Stern-Gerlach experiment with n = 0 and η = 0, 105 for N = 100
particles.
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We simulated the trajectories of silver atoms with mass m ≈ 1.8e− 25 and an initial velocity along
the x direction of 500 m/s sampled according to the initial wave packet. The magnetic field parameters
are set to B0 = 5 T and B′0 = 103 T/m. Assuming the particle remains in the magnetic field for a time
Δt = 2× 10−5 s, the factors Δz = 10−5 m and u = 1 m/s.

Figure 3. Starting with the initial condition θ0 = π/2, we show the evolution of the direction of the
spin frame over x and t with respect to the xz-plane.

Unlike in the (DS) experiment, the fluctuations are suppressed in this example since the mass of
silver is so much larger than electrons, hence the need for η ∝ 105 before we start to see Brownian
motion (Figure 2).

As we’ve stated in the introduction and throughout, the spin is entirely epistemic and is not
assumed to be a property of the particle, but rather a property of its motion. Much like in [4], the
above example shows how the epistemic spin frame evolves over space and time (Figure 3). The
two-valuedness of spin measurements is not the same type of quantization that is attributed to the
particle, but rather just a consequence of measurement, as can be seen from the trajectories. By
measuring the particle up or down on the screen, we then assume that the spin must have been up or
down at the magnet. From fig. 3 however, the up and down trajectories are created by the (SG) magnet
and initially the spin is only up in the x direction.

4. Discussion

The (ED) formalism allows for generalized particle trajectories which are not a priori realizable in
other foundational approaches. This freedom is granted by (ED)’s foundation in entropic inference,
which requires us to supply information about the symmetries in the problem through constraints.
As we have seen, the Bohmian and Brownian limits are easily attainable, and both give consistent
results with respect to experiment. It still remains an open question as to what classes of sub-quantum
dynamics are allowable in quantum mechanics, and ultimately in quantum gravity. While at the
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moment we cannot answer the latter, we will address the former question in longer paper which will
extrapolate further on the discussion from section three.

Acknowledgments: We would like to thank A. Caticha, J. Ernst, S. Ipek, P. Pessoa and K. Vanslette for insightful
conversations.
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Abstract: In this paper we focus on the estimation of mutual information from finite samples
(X ×Y). The main concern with estimations of mutual information (MI) is their robustness under
the class of transformations for which it remains invariant: i.e., type I (coordinate transformations),
III (marginalizations) and special cases of type IV (embeddings, products). Estimators which fail to
meet these standards are not robust in their general applicability. Since most machine learning tasks
employ transformations which belong to the classes referenced in part I, the mutual information can
tell us which transformations are most optimal. There are several classes of estimation methods in
the literature, such as non-parametric estimators like the one developed by Kraskov et al., and its
improved versions. These estimators are extremely useful, since they rely only on the geometry of
the underlying sample, and circumvent estimating the probability distribution itself. We explore the
robustness of this family of estimators in the context of our design criteria.

Keywords: mutual information; non-parametric entropy estimation; dimension reduction; machine
learning

1. Introduction

Interpretting mutual information (MI) as a measure of correlation has gained considerable
attention over the past couple of decades for it’s application in both machine learning [1–4] and
in dimensionality reduction [5], although it has a rich history in Communication Theory, especially
in applications of Rate-Distortion theory [6] (While MI has been exploited in these examples, it has
only recently been derived from first principles [7]). MI has several useful properties, such as having a
lower bound of Imin = 0 for variables which are uncorrelated. Mostly we are interested in how the
MI changes whenever we pass one set of variables through a function, which according to the data
processing inequality can only ever destroy correlations and not increase them. Thus, the MI for any
set of variables X× Y is an upper bound for any transformation f (X)× g(Y). This feature makes MI a
good measure of performance for any machine learning (ML) task, which is why has gained so much
attention recently [1–4].

The main challenge with using MI in any inference task is computing it when one only has
a sample X × Y ⊂ X × Y. The MI one estimates from the sample is highly dependent on the
assumptions about the underlying joint distribution p(x, y); effectively, one estimates MI by estimating
the density p(x, y). The most popular method for estimating MI is by using the class of non-parametric
estimators built on the method derived by Kraskov et al. [8] (KSG). The KSG estimator uses local
geometric information about the sample to approximate the density p(xi, yi) at each point (xi, yi) and
then calculates a local estimate of MI from it. While this approach has been very successful, there
are some weaknesses which we will discuss in this paper. Specifically, the use of local geometric
information causes the estimator to not be coordinate invariant in general, which is a violation of the
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basic properties of MI. What’s worse, is it’s inability to see through useless information, i.e., noise.
This is also a consequence of using local information without regard to the overall global structure
of the space. When combined, these two problems cause unwanted behavior in even the simplest of
situations.

There have been some improvements to KSG [9] which we will discuss. Most often studies of
estimators are concerned with its effectiveness with small numbers of samples in large dimension, while
here we will be mostly concerned with its robustness under coordinate transformations, redundancy
and noise. We will define redundancy and noise more precisely in a later section, but one can also
check [7] for a more rigorous definition. As was shown in [1] KSG handles redundant information
well, which we will reiterate in a later section. It is KSG’s inability to handle noise that diminishes it’s
effectiveness in real data sets. In the next section we will briefly discuss the basic properties of MI, and
then discuss the ideas behind non-parametric entropy estimators. We will then examine the robustness
of KSG and it’s improvements in section IV. We end with a discussion.

2. Mutual Information

We will reiterate some the basic properties of mutual information. Consider two spaces
of propositions, X and Y, whose joint space is given by X × Y (The spaces X, Y can be either
discrete/categorical or continuous.). The global correlations present between the two spaces is
determined from the mutual information,

I[X; Y] =
∫

dxdy p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x, y) is the joint probability density and,

p(x) =
∫

dy p(x, y) =
∫

dy p(y)p(x|y) and p(y) =
∫

dx p(x, y) =
∫

dx p(x)p(y|x) (2)

are the marginals. The product marginal p(x)p(y) can be interpreted as an independent prior and
the MI gives a ranking of joint distributions p(x, y) according to their amount of correlation; joint
distributions with more correlation have higher values of MI. The MI is bounded from below by
Imin = 0 whenever the spaces X and Y are uncorrelated; i.e., p(x, y) = p(x)p(y), and is typically
unbounded from above (except in cases of discrete distributions).

One immediate consequence of the functional form of (1) is its invariance under coordinate
transformations. Since the probabilities,

p(x, y)dxdy = p(x′, y′)dx′dy′ (3)

are equivalent, then I[X; Y] = I[X′; Y′]. While this fact is somewhat trivial on its own, when combined
with other types of transformations it can be quite powerful. In this paper we will study three main
types of transformations, the first being coordinate transformations. The second kind of transformation
of interest is marginalization, and the third is products. Marginalization is simply the the projecting
out of some variables, which according to the design criteria of MI [7], can only ever decrease the
correlations present. On the other hand, products of spaces can increase correlations when the new
variables provide new information. The most trivial type of product is an embedding.

One advantage of MI is its invariance under the inclusion of redundant information. For example,
consider adding to the space X another space which is simply a function of X, i.e., X → X× f (X). The
joint probability distribution becomes,

p(x, f (x), y) = p(x, f (x))p(y|x, f (x)) = p(x)δ( f (x)− f )p(y|x) (4)
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and hence the MI is,

I[X× f (X); Y] =
∫

dxdyd f p(x)δ( f (x)− f )p(y|x) log
p(x)p(y|x)
p(x)p(y)

= I[X; Y] (5)

The map X → X× f (X) is an embedding of X into a higher dimensional space. Such a transformation
does not increase the intrinsic dimension of X. Machine learning algorithms exploit this type of
transformation in conjunction with coordinate transformations and marginalizations.

Much like in Equation (4), MI is also invariant under the addition of noise, which are defined as
variables, Z, that are uncorrelated to both X and Y,

p(x, z, y) = p(x, z)p(y|x, z) = p(x)p(z)p(y|x) = p(z)p(x, y) (6)

And like (5) the mutual information is invariant,

I[X× Z; Y] = I[X; Y× Z] =
∫

dxdydz p(z)p(x, y) log
p(x, y)

p(x)p(y)
= I[X; Y] (7)

Unlike with redundancy, noise variables necessarily increase the dimension of the underlying space.

3. Non-Parametric Estimation

Non parametric entropy estimators attempt to utilize the geometry of the underlying sample to
estimate the local density and hence the local entropy. A popular estimator is the one developed by
Kozachenko and Leonenko (KL) [10], which we will briefly motivate. Consider the task of estimating
the entropy of a sample X from an underlying space X. Our goal is to find an unbiased estimator of
the form Ĥ[X ] = N−1 ∑N

i=1 log p(xi), which converges to the true Shannon entropy as N → ∞ (We
highlight the word true here, since the underlying probability distribution is not known and hence
our estimation depends on our assumptions about its form.). To find an approximation of log p(xi),
consider the following probability distribution,

Pε(xi)dε =
(N1)!

1!(k− 1)!(N − k− 1)!
pk−1

i (1− pi)
N−k−1 dpi

dε
dε (8)

which is the probability that the kth-nearest neighbor of the point xi exists within the small spherical
shell of radius ε/2 and that there are k− 1 points at ri < ε/2 and N − k− 1 points at ri > ε/2 + dε.
This distribution is of course properly normalized, and upon evaluating the expected value of the
logarithm of pi, we find,

〈log pi〉 =
∫

dε Pε(xi) log pi = ψ(k)− ψ(N) (9)

where ψ(k) is the digamma function. From here one can determine an approximation for the logarithm
of the true distribution by assuming something about the local behavior of p(xi) with respect to the
probability mass pi. In the KL approximation (and as well in the KSG approximation), it is assumed
that the probability within the region defined by pi is uniform with respect to the true distribution at
the point xi,

pi ≈ cdεd p(xi) (10)

where d is the dimension of the space and cd is the volume of the unit d-ball (The form of cd depends
on the choice of metric for the space X. As we will see a useful choice for MI estimation is the L∞

norm.). Putting (10) into the unbiased estimator one arrives at,

Ĥ[X ] = ψ(N)− ψ(k) + log cd +
d
N

N

∑
i=1

log(εi) (11)
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3.1. The Vanilla KSG Estimator

The KSG estimator of the first kind is derived by taking the expression in (11) and applying it to
the decomposition,

Î[X ;Y ] = Ĥ[X ] + Ĥ[Y ]− Ĥ[X ,Y ] (12)

where Ĥ[X ,Y ] is the entropy over the joint distribution p(x, y). As has been shown and argued by
KSG, the approximation above is slightly naive since the local densities in the joint and marginal spaces
can be different, leading to errors in the terms involving log(εi) which don’t necessarily cancel. As a
neat trick, KSG suggests using the same density found in the joint space in the marginal spaces, so
that the factors (dx/N)∑N

i=1 log(εx
i ),(dy/N)∑N

i=1 log(εy
i ) and ((dx + dy)/N)∑N

i=1 log(εxy
i ) will cancel.

Choosing the same density for fixed k in the joint space causes the k values in the marginal spaces to
vary, and hence we arrive at the expression,

Î1[X ;Y ] = ψ(k) + ψ(N)− 〈ψ(nx + 1)〉 − 〈ψ(ny + 1)〉 (13)

where nx and ny are the number of points which land in the dx and dy balls of radius ε/2 in the
marginal spaces.

One unfortunate consequence of the KSG estimator of the first kind is its reliance on the L∞ norm
for finding neighbors. As has been pointed out by others[9], such a choice can lead to problems in
regions where the probability varies greatly, which can easily happen in spaces of large dimension.
Unless the density of samples increases exponentially with respect to the dimension of the space, the
errors in choosing L∞ will compound quickly.

3.2. The LNC Correction to KSG

As an attempted correction to KSG’s problem with using the L∞ box, S. Gao et al. proposed
the local non-uniform correction (LNC) technique. This technique adjusts the unbiased estimator for
MI by replacing the L∞ volume in the joint space with a volume computed from a PCA analysis.
The basic idea is the following. Consider a point xi whose kth-neighbor is xk. With the collection of
k + 1 points including xi, xk and all points closer than xk, construct the correlation matrix Cij and find
its eigenvectors. By then projecting each point along the maximal eigenvectors, we can find a PCA
bounding box, which is rotated and skewed with respect to the L∞ box. The assumption in this case is
that the rotated PCA box is a much better representation of the region of uniform probability around
xi. Once each volume is found, the MI is given by,

ÎLNC = ÎKSG − 1
N

N

∑
i=1

log
V̄i
Vi

(14)

where V̄i is the PCA volume and Vi is the L∞ volume. Such an estimator has shown to give vast
improvement to the naive KSG method, however current results are limited to two dimensional
problems. The reason for this is its inability to deal with redundant information. To see this, consider
a two-dimensional problem in which the variables X× Y have some non-trivial correlations. If we
add to X a redundant copy, X → X× f (X), then we expect the MI to be invariant. If one naively uses
the LNC method, one will find that the MI increases. This is because the volumes V̄i will most often
decrease when computed in the redundant scenario and hence the LNC correction term will most
often increase.

A possible fix to this problem is to not only correct the volume in the joint space, but to fix the
volumes in the marginal spaces as well, leading to the LNC correction of the second kind,

ÎLNC2 = ÎKSG − 1
N

N

∑
i=1

log
V̄xy

i

V̄x
i V̄y

i
(15)
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In investigating the efficacy of such a method, we discovered that it’s not very robust. This is mainly
due to the fact that like the original method in (14), (15) is not coordinate invariant in general, and
while the volume supplied by redundant variables can in principle be canceled in the denominator
of (15), the volumes themselves will be computed with respect to spaces of different dimension, and
will therefore not exactly cancel. The effect is to still increase MI under the influence of redundant
variables, which is undesirable since vanilla KSG is most successful in this domain. Thus while LNC
fixes one aspect of KSG, it reduces its efficacy in another aspect.

4. Robustness Tests of NP Estimators

We will access the robustness of the KSG estimator and its variants with respect to the
three types of transformations outlined in section two (coordinate transformations, redundancy
and noise). Most tests in this section will use a multivariate normal distribution, Nk =

((2π)k|Σ|)−1/2 exp
[
− 1

2 (x− μ)TΣ−1(x− μ)
]

where Σ is the covariance matrix. The mutual
information between two sets of variables Xn and Xm, where n + m = k, is given by,

INk [Xn; Xm] = −1
2

log
( |Σk|
|Σn||Σ|m|

)
(16)

where |Σk| is the determinant of the covariance matrix Σk. For computing the KSG estimate, we will
use a python package called (NPEET) [11] developed by G. ver Steeg et al. For the LNC correction we
use a similar package [9].

4.1. Coordinate Transformations

Since KSG uses the L∞ norm to define the region of uniform probability for the estimate of pi, this
automatically presents a problem with coordinate invariance. KSG will not even be invariant under
linear scalings of the data, let alone arbitrary coordinate transformations (This is likely the motivation
for KSG’s estimator of the second kind, which gave different weight to each of the variables, however
they were unable to derive a closed form expression.). Essentially, if one variable, say z, is scaled
by a large order of magnitude with respect to the other variables, then the side lengths of the L∞

box will get chosen to be the length of the kth nearest neighbor in the direction of z. While this will
not necessarily cause a problem with the values of 〈ψ(xz + 1)〉, it will cause the counts for the other
variables to be much larger than they necessarily should be. As an example, consider the following
bivariate normal case.

As one can see from the figure, scaling one variable of the bivariate normal by 105 renders the
KSG method useless. While one can always argue for a heuristic scaling method, any robust method
for computing MI should be invariant under arbitrary scalings. Below is the same experiment using
the LNC method.

While the LNC method corrects the behavior of the curve in the highly correlated region, it
still fails to capture the correct value overall due to KSG’s inability to handle arbitrary coordinate
transformations. The effects of arbitrary coordinate transformations are even worse in higher
dimensional situations. Consider the eight-dimensional multivariate Gaussian below.

As you can see, multiplying all the variables by a factor of 10 greatly reduces the accuracy of the
KSG algorithm. To see this effect happening more gradually, we focus on one particular value of the
correlation matrix (where all correlation coefficients are equal to 1/2) and dial up the transformation
on the four variables in one set. The results for 10,000 and 100,000 points are below.

As you can see, the KSG approximation begins to deteriorate very quickly under linear
transformations when the dimensionality is high. Increasing the number of points by a factor of
ten seems to do little to help this. While this is certainly a flaw in the method, it isn’t as dire as the
others we will explore in the next section. For now, one can adopt a strategy in which each variable is
scaled in a way that gives equal weight to each of them. Proposed methods for this were given in [1].
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4.2. Redundancy vs. Noise

Another simple test we can perform is to see how MI in high dimensional situations handles
redundant and noisy variables. Specifically, we will look at how the MI changes as we dial up the
noise present in redundant variables by randomizing their values with respect to the other variables.
As we saw in [1], KSG does quite well with redundant variables, however noisy variables still present
a problem.

We have studied the ability of vanilla KSG to calculate MI under the presence of redundant
variables in [1]. Here we will briefly discuss the highlights. We examined a binary decision problem in
which two distributions (signal and background) are separated by a certain amount with respect to
their means. We showed in [1] that the neural network transformation leaves the MI unchanged which
is expected according to its design criteria [7]. We tested this claim on a more general data set which
was generated as part of a machine learning analysis on a mock SUSY search [12]. The SUSY data set
contains eight low-level variables and ten high-level variables which are functions of the low-level
ones. From the tests in [1], we again see that KSG performs well under the addition of the high-level
variables when they are redundant.

However when the variables are shuffled so that they are independent of both X and Θ, i.e., when
they are noise, then KSG starts to deteriorate very quickly. We can see this effect in the case where
the MI is known exactly. Using the multi-variate Gaussian with eight variables from the previous
tests, we added three copies of the last variable on one side, essentially taking x4 ∈ X and creating
X′ = X ∪ x4 ∪ x4 ∪ x4. We then dialed up the randomness in the three variables to 100%. What
we mean here is that we rearranged the points in the set (x4 ∪ x4 ∪ x4) so that a particular value
xi ∈ (x4 ∪ x4 ∪ x4) �= f (X) and xi ∈ (x4 ∪ x4 ∪ x4) �= f (Y).

This shows that noisy variables cause the KSG estimate to go down as a function of their
uselessness. This problem compounds quickly when the number of useless variables increases,
making KSG’s ability to determine MI in high-dimensional cases problematic.

5. Discussion

We’ve shown in practical examples that KSG is not robust under coordinate transformations
(Figures 1–4) and noise (Figures 5 and 6). While the effect of including noise is not as drastic in cases
of simple distributions (Figure 3), it is must more dramatic in cases where the the distribution is not
simple (Figure 5).

Figure 1. Comparison of mutual information estimates KSG for a bivariate normal distribution before
(npeet_1) and after (npeet_2) a linear transformation of one variable by a factor of 105. The second plot
shows the difference between (npeet_1) and (npeet_2).
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Figure 2. Comparison of mutual information estimates LNC for a bivariate normal distribution before
(lnc_1) and after (lnc_2) a linear transformation of one variable by a factor of 105. The second plot
shows the difference between (lnc_1) and (lnc_2).

Figure 3. Comparison of mutual information estimates KSG for a multivariate normal distribution
with equal correlation coefficients ρij before (npeet_1) and after (npeet_2) a linear transformation of
one variable by a factor of 10. The second plot compares the KSG estimators after four variables are
multiplied by a factor of 10.

Figure 4. Comparison of true mutual information between the eight variables of a multivariate normal
distribution where all correlation coefficients are equal to 1/2 (black line) and the value estimated from
N = 10, 000 and N = 100, 000 samples before (npeet_1) and after (npeet_2) a linear transformation is
applied to one variable x → x′ = 10x.
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Figure 5. Comparison of MI values for increasing additions of discriminating variables for the SUSY
data set. The first eight variables are low-level and the last ten are functions of the first eight. The first
plot shows a comparison of (NN) performance when the last ten variables are redundant while the
second shows how KSG’s accuracy deteriorates when the high-level variables are shuffled.

Figure 6. Comparison of true mutual information between the eight variables of a multivariate normal
distribution where all correlation coefficients are equal to 1/2 (black line) and the value estimated
from N = 10, 000 samples before (npeet_1) and after (npeet_2) a randomization is applied to the set of
redundant variables.
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Abstract: The method of maximum entropy is used to model curved physical space in terms of
points defined with a finite resolution. Such a blurred space is automatically endowed with a metric
given by information geometry. The corresponding space-time is such that the geometry of any
embedded spacelike surface is given by its information geometry. The dynamics of blurred space, its
geometrodynamics, is constructed by requiring that as space undergoes the deformations associated
with evolution in local time, it sweeps a four-dimensional space-time. This reproduces Einstein’s
equations for vacuum gravity. We conclude with brief comments on some of the peculiar properties
of blurred space: There is a minimum length and blurred points have a finite volume. There is a
relativistic “blur dilation”. The volume of space is a measure of its entropy.

Keywords: information geometry; general relativity; geometrodynamics

1. Introduction

The problem of reconciling quantum theory (QT) and general relativity (GR) has most commonly
been addressed by preserving the framework of QT essentially unchanged while modifying the
structure and dynamics of space-time. This is not unreasonable. Einstein’s equation, Gμν = 8πG Tμν,
relates geometry on the left to matter on the right. Since our best theories for the matter right hand
side are QTs it is natural to try to construct a theory in which the geometrical left hand side is also of
quantum mechanical origin [1–3].

Further thought however shows that this move carries a considerable risk, particularly because
the old process of quantization involves ad hoc rules which, however successful in the past, have
led to conceptual difficulties that would immediately spread and also infect the gravitational field.
One example is the old quantum measurement problem and its closely related cousin the problem of
macroscopic superpositions. Do quantum superpositions of space-times even make sense? In what
direction would the future be? Another example is the cosmological constant problem. Does the zero
point energy of quantum fields gravitate? Why does it not give rise to unacceptably large space-time
curvatures? Considerations such as these suggest that the issue of whether and how to quantize gravity
hinges on a deeper understanding of the foundations of QT and also on a deeper understanding of
GR and of geometry itself—what, after all, is distance? Why are QT and GR framed in such different
languages? Recent developments indicate that they might be closer than previously thought—the link
is entropy. Indeed, in the entropic dynamics approach [4–6] QT is derived as an application of entropic
methods of inference [7] with a central role assigned to concepts of information geometry [8–16].
And, on the GR side, the link between gravity and entropy has been recognized from the early work
of Bekenstein and Hawking and further reaffirmed in more recent thermodynamic approaches to
GR [17–22].

In a previous paper [23] we used the method of maximum entropy to construct a model of
physical space in which points are blurred; they are defined with a finite resolution. Such a blurred
space is a statistical manifold and therefore it is automatically endowed with a Riemannian metric
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given by information geometry. Our goal here is to further close the gap between QT and GR by
formulating the corresponding Lorentzian geometry of space-time.

The extension from space to space-time is not just a simple matter of applying information
geometry to four dimensions rather than three. The problem is that information geometry leads to
metrics that are positive—statistical manifolds are inevitably Riemannian—which cannot reproduce the
light-cone structure of space-time. Some additional ingredient is needed. We do not model space-time
as a statistical manifold. Instead, space-time is modelled as a four-dimensional manifold such that the
geometry of all space-like embedded surfaces is given by information geometry. We find that in the
limit of a flat space-time our model coincides with a stochastic model of space-time proposed long ago
by Ingraham by following a very different line of argument [24].

Blurred space is a curious hybrid: some features are typical of discrete spaces while other features
are typical of continuous manifolds [25,26]. For example, there is a minimum length and blurred points
have a finite volume. The volume of a region of space is a measure of the number of blurred points
within it, and it is also a measure of its bulk entropy. Under Lorentz transformations the minimum
length suffers a dilation which is more analogous to the relativistic time dilation than to the familiar
length contraction.

The dynamics of blurred space, its geometrodynamics, is constructed by requiring that as
three-dimensional space undergoes the deformations associated with time evolution it sweeps a
four-dimensional space-time. As shown in a remarkable paper by Hojman, Kuchar̆, and Teitelboim [27]
in the context of the familiar sharp space-time this requirement is sufficient to determine the
dynamics. Exactly the same argument can be deployed here. The result is that in the absence of
matter the geometrodynamics of four-dimensional blurred space-time is given by Einstein’s equations.
The coupling of gravity to matter will not be addressed in this work.

2. The Information Geometry of Blurred Space

To set the stage we recall the model of blurred space as a smooth three-dimensional manifold X

the points of which are defined with a finite resolution [23]. It is noteworthy that, unlike the very rough
space-time foams expected in some models of quantum gravity, one expects blurred space to be very
smooth because irregularities at scales smaller than the local uncertainty are suppressed. Blurriness
is implemented as follows: when we say that a test particle is located at x ∈ X (with coordinates xa,
a = 1, 2, 3) it turns out that it is actually located at some unknown neighboring x′. The probability
that x′ lies within d3x′ is p(x′|x)d3x′. Since to each point x ∈ X one associates a distribution p(x′|x)
the space X is a statistical manifold automatically endowed with a metric. Indeed, when points are
blurred one cannot fully distinguish the point at x described by the distribution p(x′|x) from another
point at x + dx described by p(x′|x + dx). The quantitative measure of distinguishability [7,11] is the
information distance,

d�2 = gab (x)dxadxb , (1)

where the metric tensor gab—the information metric—is given by,

gab (x) =
∫

dx′ p(x′|x) ∂a log p(x′|x) ∂b log p(x′|x) . (2)

(We adopt the standard notation ∂a = ∂/∂xa and dx′ = d3x′.) Thus, in a blurred space distance
is distinguishability.

In Section 4 we will briefly address the physical/geometrical interpretation of d�. For now we
merely state [23] that d� measures the distance between two neighboring points in units of the local
uncertainty defined by the distribution p(x′|x), that is, information length is measured in units of the
local blur.

In order to completely define the information geometry of X which will allow us to introduce
notions of parallel transport, curvature, and so on, one must specify a connection or covariant derivative
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∇. The natural choice is the Levi-Civita connection, defined so that ∇agbc = 0. Indeed, as argued
in [28], the Levi-Civita connection is to be preferred because, unlike the other α-connections [11], it does
not require imposing any additional structure on the Hilbert space of functions (p)1/2.

The next step is to use the method of maximum entropy to assign the blur distribution p(x′|x).
The challenge is to identify the constraints that capture the physically relevant information. One
might be tempted to consider imposing constraints on the expected values of 〈x′a − xa〉 and 〈(x′a −
xa)(x′b− xb)〉 but this does not work because in a curved space neither of these constraints is covariant.
This technical difficulty is evaded by maximizing entropy on the flat space TP that is tangent to X at P
and then using the exponential map (see [23]) to “project” the distribution from the flat TP to the curved
space X. It is important to emphasize that the validity of this construction rests on the assumption that
the normal neighborhood of every point x—the region about x where the exponential map is 1-1—is
sufficiently large. The assumption is justified provided the scale of the blur is much smaller than the
scale over which curvature effects are appreciable.

Consider a point P ∈ X with generic coordinates xa and a positive definite tensor field γab(x).
The components of y ∈ TP are ya. The distribution p̂(y|P) on TP is assigned on the basis of information
about the expectation 〈ya〉P and the variance-covariance matrix 〈yayb〉P,

〈ya〉P = 0 and 〈yayb〉P = γab(P) . (3)

On X it is always possible to transform to new coordinates

xi = Xi(xa) , (4)

such that
γij(P) = δij and ∂kγij(P) = 0 , (5)

where i, j, . . . = 1, 2, 3. If γab were a metric tensor the new coordinates would be called Riemann
Normal Coordinates at P (RNCP). The new components of y are

yi = Xi
aya where Xi

a =
∂xi

∂xa , (6)

and the constraints (3) take the simpler form,

〈yi〉P = 0 and 〈yiyj〉P = δij . (7)

We can now maximize the entropy

S[ p̂, q] = −
∫

d3y p̂(y|P) log
p̂(y|P)
q̂(y)

(8)

relative to the measure q̂(y) subject to (7) and normalization. Since TP is flat we can take q̂(y) to be
constant and we may ignore it. The result in RNCP is

p̂(yi|P) = 1
(2π)3/2 exp

[
−1

2
δijyiyj

]
. (9)

Using the inverse of Equation (6) we can transform back to the original coordinates ya,

ya = Xa
i yi and γab = Xi

aXj
bδij . (10)
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The resulting distribution is also Gaussian,

p̂(ya|P) = (det γab)
1/2

(2π)3/2 exp
[
−1

2
γabyayb

]
, (11)

and the matrix γab of Lagrange multipliers turns out to be the inverse of the correlation matrix γab,
γabγbc = δc

a.
Next we use the exponential map to project yi coordinates on the flat TP to the RNCP coordinates

on the curved X,
x′i = xi(P) + yi . (12)

The corresponding distribution p(x′i|P) induced on X by p̂(yi|P) on TP is

p(x′i|P)d3x′ = p̂(yi|P)d3y , (13)

or

p(x′i|xi) =
1

(2π)3/2 exp
[
−1

2
δij(x′i − xi)(x′j − xj)

]
. (14)

Thus, in RNCP the distribution p(x′i|xi) retains the Gaussian form. We can now invert (4) and
transform back to the original generic frame of coordinates xa and define p(x′a|xa) by

p(x′a|xa)d3x′a = p(x′i|xi)d3x′i , (15)

which is an identity between scalars and holds in all coordinate systems. In the original xa coordinates
the distribution p(x′a|xa) will not, in general, be Gaussian,

p(x′a|xa) =
(det γab)

1/2

(2π)3/2 exp
[
−1

2
δij

(
Xi(x′a)− Xi(xa)

) (
Xj(x′a)− Xj(xa)

)]
. (16)

Finally we substitute (16) into (2) to calculate the information metric gab. (The integral is easily handled
in RNCP.) The result is deceptively simple,

gab = Xi
aXj

bδij = γab . (17)

The main result of [23] was to show that the metric gab of a blurred space is a statistical concept
that measures the “degree of distinguishability” between neighboring points. The metric is given
by the Lagrange multipliers γab associated to the covariance tensor γab that describes the blurriness
of space.

3. Space-Time and the Geometrodynamics of Pure Gravity

The constraint that determines the dynamics is the requirement that blurred space be a
three-dimensional spacelike “surface” embedded in four-dimensional space-time. As shown in [27]
the reason this condition is so constraining is that when evolving from an initial to a final surface
every intermediate surface must also be embeddable in the same space-time and, furthermore, the
sequence of intermediate surfaces—the path or foliation—is not unique. Such a “foliation invariance”,
which amounts to the local relativity of simultaneity, is a requirement of consistency: if there are
two alternative paths to evolve from an initial to a final state, then the two paths must lead to the
same result.

Space-time is foliated by a sequence of space-like surfaces {Σ}. Points on the surface Σ are
labeled by coordinates xa (a = 1, 2, 3) and space-time events are labeled by space-time coordinates
Xμ (μ = 0, 1, 2, 3). The embedding of Σ within space-time is defined by four functions Xμ = Xμ (x).
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An infinitesimal deformation of Σ to a neighboring Σ′ is specified by Xμ (x)→ Xμ (x) + δXμ (x). The
deformation vector δXμ(x) is decomposed into normal and tangential components,

δXμ = δX⊥nμ + δXaXμ
a , (18)

where nμ is the unit normal to the surface and the three vectors Xμ
a = ∂Xμ/∂xa are tangent to the

coordinate lines xa (nμnμ = −1, nμXμ
a = 0).

We assume a phase space endowed with a symplectic structure: the basic dynamical variables are
the surface metric gab(x) and its canonically conjugate momentum πab(x). This leads to a Hamiltonian
dynamics where the super-Hamiltonian H⊥(x)[g, π] and the super-momentum Ha(x)[g, π] generate
normal and tangential deformations respectively. In order for the dynamics to be consistent with the
kinematics of deformations the Poisson brackets of H⊥ and Ha must obey two sets of conditions [29,30].
First, they must close in the same way as the “group” of deformations, that is, they must provide a
representation of the “algebra” of deformations [31],

[H⊥(x), H⊥(x′)] =
(

gab(x)Hb(x) + gab(x′)Hb(x′)
)

∂axδ(x, x′) , (19)

[Ha(x), H⊥(x′)] = H⊥(x)∂axδ(x, x′) , (20)

[Ha(x), Hb(x′)] = Ha (x′)∂bδ(x, x′) + Hb(x)∂aδ(x, x′) . (21)

And second, the initial values of the variables gab and πab must be restricted to obey the weak
constraints

H⊥(x) ≈ 0 and Ha(x) ≈ 0 . (22)

A remarkable feature of the resulting dynamics is that once the constraints (22) are imposed on
one initial surface Σ they will be satisfied automatically on all subsequent surfaces. As shown in [27]
the generators that satisfy (19)–(21) are

Ha = −2∇bπb
a , (23)

H⊥ = 2κGabcdπabπcd − 1
2κ

g1/2(R− 2Λ) , (24)

Gabcd =
1
2

g−1/2 (gacgbd + gadgbc − gabgcd) , (25)

where κ and Λ are constants which, once the coupling to matter is introduced, can be related to
Newton’s constant G = c4κ/8π and to the cosmological constant Λ. Equations (22)–(25) are known to
be equivalent to Einstein’s equations in vacuum.

To summarize: (a) Space-time is constructed so that the geometry of any embedded spacelike
surface is given by information geometry. (b) The geometrodynamics of blurred space is given by
Einstein’s equations. These are the main conclusions of this paper.

4. Discussion

Dimensionless Distance?—As with any information geometry the distance d� given in
Equations (1) and (2) turns out to be dimensionless. The interpretation [23] is that an information
distance is measured distances in units of the local uncertainty—the blur. To make this explicit we
write the distribution (14) that describes a blurred point in RNCP in the form

p(x′i|xi) =
1

(2π�2
0)

3/2
exp

[
− 1

2�2
0

δij(x′i − xi)(x′j − xj)

]
, (26)

so that the information distance between two neighboring points is
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d�2 =
1
�2

0
δijdxidxj . (27)

Since the blur �0 is the only unit of length available to us (there are no external rulers) it follows that
�0 = 1 but it is nevertheless useful to write our equations showing �0 explicitly. In (26) the two points
x and x′ are meant to be simultaneous.

Minimum Length—To explore the geometry of blurred space it helps to distinguish the abstract
“mathematical” points that are sharply defined by the coordinates x from the more “physical” blurred
points. We shall call them c-points and b-points respectively. In RNCP the distance between two
c-points located at x and at x + Δx is given by (27). To find the corresponding distance Δλ between
two b-points located at x and at x + Δx we recall that when we say a test particle is at x it is actually
located at x′ = x + y so that

Δλ2 =
1
�2

0
δij(Δxi + Δyi)(Δxj + Δyj) . (28)

Taking the expectation over y with the probability (26)—use
〈
yi〉 = 0 and

〈
yiyj〉 = �2

0 δij—we find

〈Δλ2〉 = 1
�2

0
δij〈(Δxi + Δyi)(Δxj + Δyj)〉 = Δ�2 + 6 . (29)

We see that even as Δx → 0 and the two b-points coincide we still expect a minimum rms distance of√
6�0.

Blur Dilation—The size of the blur of space is a length but it does not behave as the length of a
rod. When referred to a moving frame it does not undergo a Lorentz contraction. It is more analogous
to time dilation: just as a clock marks time by ticking along the time axis, so are lengths measured
by ticking �0s along them. By the principle of relativity all inertial observers measure the same blur
in their own rest frames — the proper blur �0. Relative to another inertial frame the blur is dilated
to γ�0 where γ is the usual relativistic factor. This implies the proper blur �0 is indeed the minimum
attainable.

The Volume of a Blurred Point: Is Space Continuous or Discrete?—A b-point is smeared over
the whole of space but we can still define a useful measure of its volume by adding all volume elements
g1/2(x′)d3x′ weighed by the scalar density p(x′|x)/g1/2(x′). Therefore in �0 units a blurred point has
unit volume. This means that we can measure the volume of a finite region of space by counting the
number of b-points it contains. It also means that the number of distinguishable b-points within a
region of finite volume is finite which is a property one would normally associate to discrete spaces. In
this sense blurred space is both continuous and discrete. (See also [26].)

The Entropy of Space—The statistical state of blurred space is the joint distribution of all the yx

variables associated to every b-point x. We assume that the yx variables at different xs are independent,
and therefore their joint distribution is a product,

P̂[y] = ∏
x

p̂ (yx|x) . (30)

From (11) and (17) the distribution p̂ (ya
x|x) in the tangent space Tx is Gaussian,

p̂(yx|x) = (det gx)1/2

(2π)3/2 exp
[
−1

2
gab(x)ya

xyb
x

]
, (31)

which shows explicitly how the information metric gab determines the statistical state of space.
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Next we calculate the total entropy of space,

S[P̂, Q̂] = −
∫

Dy P̂[y] log
P̂[y]
Q̂[y]

def
= S[g] (32)

relative to the uniform distribution
Q̂[y|g] = ∏xg1/2(x), (33)

which is independent of y — a constant. Since the y’s in Equation (30) are independent variables the
entropy is additive, S[g] = ∑xS(x), and we only need to calculate the entropy S(x) associated to a
b-point at a generic location x,

S(x) = −
∫

d3y p̂(y|x) log
p̂(y|x)
g1/2(x)

=
3
2

log 2πe = s0. (34)

Thus, the entropy per b-point is a numerical constant s0 and the entropy of any region R of space,
SR[g], is just its volume,

SR[g] = ∑x∈RS(x) = s0

∫
R

d3x g1/2(x). (35)

Thus, the entropy of a region of space is proportional to the number of b-points within it and is
proportional to its volume.

Canonical Quantization of Gravity?—The picture of space as a smooth blurred statistical
manifold stands in sharp contrast to ideas inspired from various models of quantized gravity in
which the short distance structure of space is dominated by extreme fluctuations. From our perspective
it is not surprising that attempts to quantize gravity by imposing commutation relations on the metric
tensor gab have not been successful. The information geometry approach suggests a reason why:
quantizing the Lagrange multipliers gab = γab would be just as misguided as formulating a quantum
theory of fluids by imposing commutation relations on those Lagrange multipliers like temperature,
pressure, or chemical potential, that define the thermodynamic macrostate.

Physical Consequences of a Minimum Length?—A minimum length will eliminate the short
wavelength divergences in QFT. This in turn will most likely illuminate our understanding of the
cosmological constant and affect the scale dependence of running coupling constants. One also expects
that QFT effects that are mediated by short wavelength excitations should be suppressed. For example,
the lifetime of the proton ought to be longer than predicted by grand-unified theories formulated in
Minkowski space-time. The nonlocality implicit in a minimum length might lead to possible violations
of CPT symmetry with new insights into matter-antimatter asymmetry. Of particular interest would be
the early universe cosmology where inflation might amplify minimum-length effects possibly making
them observable.
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12. Čencov, N.N. Statistical Decision Rules and Optimal Inference; American Mathematical Soc.: Providence, RI,

USA, 1981; Volume 53.
13. Rodríguez, C.C. The metrics generated by the Kullback number. In Maximum Entropy and Bayesian Methods;

Skilling, J., Ed.; Kluwer: Dordrecht, The Netherlands, 1989.
14. Ay, N.; Jost, J.; Vân Lê, H.; Schwanchhöfer, L. Information Geometry; Springer: Berlin, Germany, 2017.
15. Weinhold, F. Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 1975, 63, 2479.
16. Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608.
17. Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333.
18. Hawking, S. Black Holes and Thermodynamics. Phys. Rev. D 1976, 13, 191.
19. Jacobson, T. Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260.
20. Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901.
21. Verlinde, E.P. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 2011, 29.
22. Jacobson, T. Entanglement equilibrium and the Einstein equation. Phys. Rev. Lett. 2016, 116, 201101.
23. Caticha, A. Geometry from Information Geometry. In Bayesian Inference and Maximum Entropy Methods in

Science and Engineering; Giffin, A., Knuth, K., Eds.; AIP American Institute of Physics: College Park, MD,
USA, 2016; Volume 1757, p. 030001, arXiv 2015, arXiv:1512.09076.

24. Ingraham, R.L. Stochastic Space-time. Nuovo Cimento 1964, 34, 182.
25. It is possible that there is some connection with ideas proposed by Kempf [26] expressed in the language of

spectral geometry. This is a topic for future research.
26. Kempf, A. Information-theoretic natural ultraviolet cutoff for spacetime. Phys. Rev. Lett. 2009, 103, 231301..
27. Hojman, S.A.; Kuchar̆, K.; Teitelboim, C. Geometrodynamics Regained. Ann. Phys. 1976, 96, 88.
28. Brodie, D.J.; Hughston, L.P. Statistical Geometry in Quantum Mechanics. Proc. R. Soc. Lond. Ser. A 1998, 454,

2445–2475.
29. Teitelboim, C. How Commutators of Constraints Reflect the Spacetime Structure. Ann. Phys. 1973, 79, 542.
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Abstract: We study the dynamics of information processing in the continuous depth limit of deep
feed-forward Neural Networks (NN) and find that it can be described in language similar to the
Renormalization Group (RG). The association of concepts to patterns by NN is analogous to the
identification of the few variables that characterize the thermodynamic state obtained by the RG
from microstates. We encode the information about the weights of a NN in a Maxent family of
distributions. The location hyper-parameters represent the weights estimates. Bayesian learning
of new examples determine new constraints on the generators of the family, yielding a new pdf
and in the ensuing entropic dynamics of learning, hyper-parameters change along the gradient
of the evidence. For a feed-forward architecture the evidence can be written recursively from the
evidence up to the previous layer convoluted with an aggregation kernel. The continuum limit leads
to a diffusion-like PDE analogous to Wilson’s RG but with an aggregation kernel that depends on
the the weights of the NN, different from those that integrate out ultraviolet degrees of freedom.
Approximations to the evidence can be obtained from solutions of the RG equation. Its derivatives
with respect to the hyper-parameters, generate examples of Entropic Dynamics in Neural Networks
Architectures (EDNNA) learning algorithms. For simple architectures, these algorithms can be shown
to yield optimal generalization in student- teacher scenarios.

Keywords: Neural Networks; Renormalization Group; Entropic Dynamics; learning algorithms

1. Introduction

Neural networks are information processing systems that learn from examples. Loosely inspired
in biological neural systems, they have been used for several types of problems such as classification,
regression, dimensional reduction and clustering [1]. Biological systems selection is based on a measure
of performance that combines not only accuracy but also ease of computation and implementation.
Predictions based on expectations over posterior Bayesian distributions may lead to saturating bounds
for optimal accuracy learning but will typically lack in ease of computation and speed in reaching
a result. Neural networks are parametric models and if we don’t address the determination of the
architecture, which we don’t in this paper, the problem of learning from examples is reduced to
obtaining fast estimates of the weights or parameters, avoiding the integration over large dimensional
spaces. The spectacular explosion of applications in several areas is witness to the fact that several
training methods and large data sets are available. Despite these victories, the mechanisms of
information dynamics processing remain obscure and despite several decades of theoretical analysis
using methods of Statistical Mechanics, much remains to be understood. Here we study on-line
learning in feed-forward architectures, where (input,output) examples are presented one at a time.
Theoretical analysis is easier than for batch or off-line learning where the cost function depends on
a large number of example pairs, however on-line accuracy performance remains high. This is in
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part due to the fact that since the cost function changes from example to example, the local minima
of the cost function that plague off-line learning are not so important. Local stationary points of the
learning dynamics are still a problem, but good performances are possible. An important problem to
be addressed is what cost function is the most appropriate. If an algorithm is going to be successful it
has to approach Bayesian estimates for the available information. But any Bayes algorithm leads to
high, even in the millions, dimensional integrals. Monte Carlo strategies cannot be used if simplicity is
a requirement. The strategy to determine optimized algorithms for on-line learning has been studied
in the past for restricted scenarios and architectures. We present a more general approach, with the
following strategy. We are in a situation of incomplete information, thus a probability distribution
represents, at a given point in the dynamics, what is known about the parameters. We have to commit
to a family of distributions and we choose a Maxent family. Location hyperparameters give the current
estimate of the weights. A new (input,output) example pair arrives and Bayes rule permits an update.
The choice of the likelihood is a reflection of what we know about the architecture of the NN. In general
it is not conjugated to the chosen family.

Still, the Bayes posterior, while not in the family, points to a unique member of the family, since it
imposes new constraints on the expected values of the generators.

The resulting learning algorithm is the entropic dynamics imposed by the arrival of information
in the examples that induces a change of the hyperparameters of the family. It turns out that changes
in the weights are in the direction of decreasing the model Bayesian evidence and it is a stochastic
gradient descent algorithm, where the cost function is the log evidence of the model.

The denominator of the Bayes update can be interpreted either as the evidence of the model or
alternatively as the predictive probability distribution of the output conditioned on the input and the
weights. Once it is written as the marginalization over the internal representation, i.e. the activation
values of the internal units, of the joint distribution of activities of the whole network, and under the
supposition that the information flows only from one layer to the next, a Markov chain structure follows.
Recursion relations of the partial evidence up to a given internal layer are obtained and in the continuous
depth limit (CDL) a Fokker-Planck parabolic partial differential equation is obtained. It generalizes
Wilson’s Renormalization Group [2] diffusion equation for general kernels. The usual, e.g., majority
rule that eliminates high frequency degrees of freedom are replaced by the weights of the NN. The RG
dynamics can be seen as a classifier of Statistical Mechanics microstates into thermodynamics states.
A NN extracts the relevant degrees of freedom that describe the macroscopic concept onto which an
input pattern is to be assigned. The first authors to relate the RG and NN were [3] and [4] generating a
large flow of ideas into the possible connections between these two areas [5–7].

2. Maxent Distributions and Bayesian Learning

Let fa(w), for a = 1, ...K, w ∈ IRN , be the generators of a family Q of distributions Q(w|λ).
If information about w is given in the form of constraints IEQ( fa) = Fa, for the set of numbers
{Fa}a=1,K, the Maxent distribution is

Q(w|λ) = 1
z

exp

(
−

K

∑
i=1

λa fa(w)

)
, (1)

where z ensures normalization. Then

∂ ln z
∂λa

= −Fa and
∂Q(w|λ)

∂λa
= (− fa + Fa)Q(w|λ). (2)

Now consider a system learning a map from inputs x to outputs y, and the model is a known function
which depends on a parameter array w: y = T(x; w). The aim of learning is to obtain the parameters
from the information in the learning set Dn = {(xi, yi)}i=1,n. We want to obtain a distribution for the
parameters and consider that up to n− 1 examples the information is coded in a member of the Q
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family: Q(w|λn−1) = Qn−1. Calling the likelihood of the problem Ln = P(yn|xn, w), the product rule
permits the Bayesian updating

Pn = P(w|Dn) =
Qn−1Ln

Zn
, (3)

where the partition function or the evidence is Z(yn|xn, λn−1) =
∫

Qn−1Lndw = P(yn|xnλn−1).
The Bayes posterior given by eq. 3 in general doesn’t belong to the Q family. We have to choose the
member of the family that is closest to the Bayes posterior. This is the Maxent posterior. The way to
proceed is based on the fact that a member of the Q family is determined solely by the values of the
constraints {Fa}. The Bayes posterior defines a set of values for the constraints {〈 fa〉}. It points in a
unique way to the Maxent posterior Qn within the family Q, obtained at the extreme of

S[Qn||Qn−1] = −
∫

Qn log
Qn

Qn−1
dw− Δλa (IEn( fa)− 〈 fa〉) , (4)

subject to the only possible constraints on its expected values IEn( fa) which are taken to be the Bayes
posterior expected values 〈 fa〉. Then for every generator

IEQn( fa) =
∫ Qn−1Ln

Zn
fa(w)dw = IEPn( fa) = Fn

a . (5)

Subtract from both sides Fn−1
a , and use equation 2, then

Fn
a − Fn−1

a = − ∂ln Z
∂λn−1

a
(6)

since the likelihood is independent of the Lagrange multiplier. This learning dynamics is deduced
from entropy maximization and thus will be called Entropic dynamics. Learning occurs along the
gradient of the log evidence. It will turn out that the sign is such that typically the evidence for the
new model is higher than before learning. These equations hold for any family, but it is interesting
to consider the case that will be most likely to be useful in practice, where the family is determined
by the functions f0 = 1, fi = wi and fij = wiwj , for i, j = 1, N. The constraints after n examples
are the normalization, IE(wi) = ŵni and IE(wiwj) = (Cn)ij + ŵniŵnj. The result is the gaussian family
Q ∝ exp(−λ0 −∑i λiwi −∑ij λijwiwj). The entropic dynamics update equations, driven by the arrival
of the nth example are

ŵn = ŵn−1 + Cn−1.∇ŵn−1 log Zn, (7)

Cn = Cn−1 + Cn−1.∇2
ŵn−1

log Zn.Cn−1. (8)

For a layered network, these are the equations associated to the update of the weights afferent to a
particular unit in layer d from unit i in layer d− 1 and of the component of the covariance matrix
describing the correlation between weights coming from units i and j. The update equations, induced
by a maximum entropy approximation to Bayesian learning is the learning algorithm of the neural
network which implements the map y = T(x; ŵ).

An approximation to this scheme was found for simple networks with no hidden units using a
variational procedure ([8]) and applied to several architectures [9–13]. Then Opper [14] showed the
Bayesian connection, explored elsewhere [15]. Recently it has been applied to societies of interacting
neural networks [16–19]. While [12] attacked the neural network with a hidden layer, the challenge
remains to study networks with deep architectures.
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3. Deep Multilayer Perceptron

In this section we show that the evidence for a multilayer feedforward neural network can be
written recursively as a map. Actually we will get two maps that are essentially the same. This type of
map is typical of Renormalization Group transformations and in a continuous limit representation of
the neural network as a field theory, we will show that the map leads to a partial differential equation
analogous to Wilson’s diffusion-like RG equation.

We fix our attention at the nth example, and hence don’t write temporal (lower) indices anymore.
A layer (upper) index now appears and xd is the internal representation at the the unit layer d.
Layers start with d = 0 and the depth of the network is D. Layer d weights are collectively
denoted wd and individually wd

ij is the weight connecting unit i at layer d − 1 to unit j at layer
d. The data pair used for the learning step are X0 and y. The distributions of the representation
at the input is δ(x0 − X0) and at the output δ(xD − y). The partition function Z(yn|xn, λn−1) in
Equation (3) is Z(XD|x0, λ) =

∫
Q(w|λ)Ldw, where Q(w|λ) is the prior joint distribution of the

weights over all the layers. We will eventually take this to be a product over layers, Q(w|λ) =

∏D−1
d=1 Q(wd|λd). which will permit a simpler analytical treatment, but it is not a necessity at this

moment. To obtain the likelihood we marginalize the joint distribution of the internal representations
P(xD, xD−1....x1|x0, w1, ...wD) over all internal representations at the hidden units doing the same trick
that leads to the Chapman-Kolmogorov equation

L = P(xD|x0 = X0, w1, ...wD) =
∫

P(xD, xD−1, ...x1|x0 = X0, w1, ...wD)
D−1

∏
d=1

dxd.

(9)

The evidence can be written as

ZD(xD|X0, λ) =
∫

QT(xD, xD−1....x1|x0 = X0, λ)
D−1

∏
d=1

dxd. (10)

where

QT(xD, xD−1....x1|x0 = X0, λ) =
∫

P(xD, xD−1....x1|x0 = X0, w1, ...wD)

×
D−1

∏
d=1

Q(wd|λd)dwd (11)

is the joint transition distribution. Define the partially integrated Zd for any d = 1....D

Zd(xD, xD−1, ....xd|x0, λ) =
∫

QT(xD, xD−1....x1|x0 = X0, λ)
d−1

∏
d′=1

dxd′ . (12)

It satisfies the recursion
Zd =

∫
Zd−1dxd−1. (13)

and the evidence is

ZD =
∫

Zd

D−1

∏
d′=d

dxd′ (14)

At this point this is analogous to a Statistical Mechanics (SM) or euclidean field theory (EFT) partition
function in which all field configurations with momentum components above a cutoff have been
integrated out. The equivalent of the effective action of the EFT, or the renormalized hamiltonian in
the SM is − log Zd.
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Now we get a similar map, where the renormalization group transformation of the internal
representations can be seen. Recall the likelihood in equation 9 and use the product rule

L = P(xD|x0, w1, ...wD) =
∫

P(xD|xD−1wD)P(xD−1....x1|x0, w1, ...wD)
D−1

∏
d=1

dxd

and finally

L = P(xD|x0, w1, ...wD) =
∫ D−1

∏
d=1

P(xd+1|xd, wd+1)dxd

Since the prior is also a product, then the partition function ZD = ZD(xD = y|x0 = X0, {λd}) is
given by

ZD =
∫ D

∏
d=1

Qd(w
d|λd)P(xd|xd−1, wd)

D

∏
d=1

dxd−1dwd (15)

We integrate over x0 and xD with the constraints that their distribution are deltas at the input X0 and
output y.

ZD =
D

∏
d=1

∫
dwd

[∫
dxd−1Qd(w

d|λd)P(xd|xd−1, wd)

]
Define the evidence up to a given layer ρ(xd), with initial condition ρ(x0) = δ(x0 − X0) and

the map

ρ(xd+1) =
∫

ρ(xd)P(xd+1|xdwd+1)Qd+1(w
d+1|λd+1)dxddwd+1 (16)

The last step for the map of a network of depth D is for xD = y leading to the evidence of the model
defined by the architecture of the network with weight and hyperparameters given by the set of λd:

ZD(y) = ρ(xD) =
∫

ρ(xD−1)P(xD|xD−1wD)QD(wD|λD)dxD−1dwD (17)

Define a layer to layer transition distribution

QT
d−1(xd|xd−1λd) =

∫
P(xd|xd−1, wd)Qd(w

d|λd)dwd (18)

(19)

then, we have a map that gives the evidence after d layers as an integral over internal representations at
layer d− 1 of the evidence at layer d− 1 with a kernel QT that implements an aggregation RG-like step:

ρ(xd) =
∫

dxd−1ρ(xd−1)QT
d−1(xd|xd−1, λd) (20)

We have obtained two RG-like maps, Equations (13) and (20). Zd depends on all internal representations
from layer d to D and on all the hyperparameters λ. The simpler ρd only depends on the internal
representation at layer d and on the hyperparameters of the previous layers. The map for Zd is simpler
and the map for ρd requires, at each step the input on the transition distribution QT(xd|xd−1, λd).
The transition distribution describes the renormalization group like transformation implemented by
the neural network that takes the internal representation at one layer to the next. It is simple to see that

Zd = ρ(xd)
D

∏
d′≥d

QT(xd′+1|xd′λd) (21)

65



Proceedings 2019, 33, 10

3.1. Generalized RG Differential Equation of a Neural Network in the Continuous Depth Limit

The layer index is obviously discrete, but we can take the continuous limit, where now layers are
represented by a time like τ variable. A discrete variable i still labels the units. The evidence at depth
τ is related to the evidence at depth τ0 by a generalization of Equation (20):

ρ(x, τ) =
∫

QT(x(τ)|x′(τ0), λ)ρ(x′, τ0)Dx′, (22)

where the integration measure Dx = ∏i dxi. The distribution QT(x(τ)|x′(τ0), λ) is the probability, that
a network with parameters λ, conditional on being in state x′ at τ0 has an internal representation x at
depth τ. It must satisfy the composition law

QT(x(τ + Δτ)|x′(τ0), λ) =
∫

QT(x(τ + Δτ)|z(τ), λ)QT(z(τ)|x′(τ0), λ)Dz

For a deterministic neural network, conditional on the weights w, the evolution of the internal
representation is given by the transfer function. To obtain a well behaved limit it is supposed to
vary slowly:

xi(τ + Δτ) = Ti(x(τ), w) = xi(τ) + Δτb̃i(x(τ), w), (23)

so that interpretation of b̃ is the gradient of the transfer function. The transition distribution is

QT(x|τ, x′, τ0, λ) =
∫

∏
τ′∈[τ0,τ]

δ
(
x(τ + Δτ)− T(x′(τ), w)

)
Q(w|λ, τ)dwτ′ , (24)

obtained by integrating over all configuration of the weights in the slice. We have chosen a Gaussian
family to represent the informational state of the network, which now takes the form of a product of
Gaussians for all τ slices:

Q(w|λ, τ) ∝ ∏
τ

exp−1
2
{Δw · C−1

τ · Δw}

where Δw = w − ŵτ and λ = {ŵτ , Cτ} for all values of τ, but only the hyperparameters of the
particular slice under consideration matters. To define the continuous limit we impose that the limits
below exit:

lim
Δτ↓0

1
Δτ

∫
QT(x|τ + Δτ, x′, τ, λ)(x− x′)Dx =

IEw[b̃(x(τ), w] = b(x′, τ, λ),

lim
Δτ↓0

1
Δτ

∫
QT(x|τ + Δτ, x′, τ, λ)(xi − x′i)(xj − x′j)Dx =

IEw[b̃i(x(τ), w)b̃j(x(τ), w)] = Bij(x′, τ, λ). (25)

At each layer the drift vector b(x′, τ, λ) is the expected value of the change in internal representation
and the diffusion matrix Bij(x′, τ, λ) to the expectation of quadratic change, which are related to the
expected values of the gradient and Hessian of the transfer function respectively. As usual, take the
time derivative of the expected value, with respect to QT(x|x′, λ) of a well behaved test function g(x).
Taylor expand g(x) around x′ and integrate by parts, use that g(x) is arbitrary and obtain that QT

satisfies a parabolic PDE and so does the evidence (see Equation (22))

∂ρ(x, τ)

∂τ
= − ∂

∂xi
(bi(x, τ, λ)ρ(x, τ)) +

1
2

∂2

∂xi∂xj
(Bij(x, τ, λ)ρ(x, τ)). (26)

The long time limit of Equation (26) is the predictive distribution ρ(y, τ = D) = P(y|x0, λ).
Equation (26) is a generalization of an analogous diffusion equation which appears in Wilson’s
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incomplete integration formulation of the renormalization group (e.g., [2]). It extends the type
of transformation by permitting that the transformations that leads from τ to τ + dτ are not a
simple spatial average, which would eliminate high spatial frequency components. Instead, the
transformations are mediated by the weights ŵ. It differs from the usual statistical mechanics or field
theories also in the following sense. In those approaches, the transformation ŵ is known and uniform
and the aim is to obtain the final ρD, which describes the infrared limit or the thermodynamics of the
theory. In supervised learning in neural networks, the starting point, defined by the input X0 and the
output Y are given. The problem is to find the correct set of weights ŵ that implements the correct
input-output association. There are two regimes for the neural network. In the learning phase the set
of examples is a set of microscopic-macroscopic variables that describe a task. The aim of learning
is to determine the appropriate generalized RG transformation that maps from the microscopic
description to the macroscopic. After learning, the network is used to find out, for the current
RG transformation, the unknown macroscopic generalized thermodynamics or infrared properties
associated to the microstate. The next step is to derive optimized learning algorithms, from the
solutions of Equation (26) and the EDNNA learning described by (7) and (8).
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Abstract: 3D X-ray Computed Tomography (CT) is used in medicine and non-destructive testing
(NDT) for industry to visualize the interior of a volume and control its healthiness. Compared to
analytical reconstruction methods, model-based iterative reconstruction (MBIR) methods obtain
high-quality reconstructions while reducing the dose. Nevertheless, usual Maximum-A-Posteriori
(MAP) estimation does not enable to quantify the uncertainties on the reconstruction, which can
be useful for the control performed afterwards. Herein, we propose to estimate these uncertainties
jointly with the reconstruction by computing Posterior Mean (PM) thanks to Variational Bayesian
Approach (VBA). We present our reconstruction algorithm using a Gauss-Markov-Potts prior model
on the volume to reconstruct. For PM calculation in VBA, the uncertainties on the reconstruction are
given by the variances of the posterior distribution of the volume. To estimate these variances in our
algorithm, we need to compute diagonal coefficients of the posterior covariance matrix. Since this
matrix is not available in 3D X-ray CT, we propose an efficient solution to tackle this difficulty, based
on the use of a matched pair of projector and backprojector. In our simulations using the Separable
Footprint (SF) pair, we compare our PM estimation with MAP estimation. Perspectives for this work
are applications to real data as improvement of our GPU implementation of SF pair.

Keywords: Computed Tomography, Gauss-Markov-Potts, variational Bayesian approach, Separable
Footprint

1. Introduction

In 3D X-ray CT, MBIR methods enforce a prior model on the volume to image, so the reconstruction
quality is enhanced compared to filtered backprojection (FBP) methods [1], and the dose can be
reduced [2]. Smoothing and edge-preserving priors, such as total variation regularization [3,4],
Gauss-Markov-Potts prior model [5] or sparsity-inducing priors in a wavelet or learnt transform
domain [6–8], have provided promising results for the development of MBIR methods in medicine
and NDT for industry. Due to the high dimension and to the fact that the reconstruction problem
is ill-posed [9], exact estimation of the unknown volume is not available [10]. As a consequence,
uncertainties on the estimation are a desirable tool for the analysis of the reconstructed volume.

After the reconstruction has been performed, an iterative method to estimate the uncertainties is
proposed in [10]. Nevertheless, its high computational cost makes it only applicable to a few voxels
of interest [10]. Since MBIR methods mostly estimate the maximum of the posterior distribution of
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the unknowns (MAP), confidence regions can be computed following the reconstruction [11] but this
procedure is difficult to apply for discrete-continuous channels estimation, such as joint reconstruction
and segmentation [5]. For this reason, in this paper, we propose to compute Posterior Mean (PM)
rather than MAP. For PM estimator, the uncertainties on the reconstruction correspond to the variances.
Our algorithm estimates these variances jointly with the reconstruction based on variational Bayesian
approach (VBA) [12,13].

In the following, we first present our reconstruction algorithm based on VBA, applied with a
Gauss-Markov-Potts prior model on the volume to reconstruct [5]. To implement this algorithm,
the main difficulty is the computation of diagonal coefficients of the posterior covariance matrix,
which are linked to projection and backprojection operators (P/BP) : we solve this problem thanks
to the use of a matched pair which is here the Separable Footprint (SF) [14]. We present simulation
results and compare the obtained reconstruction with the one given by joint maximization a posteriori
(JMAP) [5,15]. To the best of our knowledge, this work is the first attempt to apply VBA to a very
general 3D inverse problem such as 3D X-ray CT.

2. Variational Bayesian Approach

We consider a cone-beam acquisition process : X-rays are sent from a source through the object to
control and hit a flat detector which measures the decrease of intensity they have undergone inside the
volume. Several perspectives of the volume are acquired by rotating the object around its vertical axis.
The M collected measurements g are called the projections and are connected to volume f , of size N,
by the linear forward model taking uncertainties into account [16]

g = Hf + ζ (1)

where H is called the projection operator. Its adjoint HT is the backprojection operator [14].
Since both the data and the volume are huge, matrix H , which is size M × N, is not storable in
memory. Consequently, successive projections and backprojections in MBIR methods are computed
on-the-fly [14,15]. Uncertainties ζ are zero-mean Gaussian [16]

p(ζi|ρζi ) = N (ζi|0, ρ−1
ζi

), ∀i ∈ {1, . . . , M} . (2)

Precisions ρζ = (ρζi )i are assigned Gamma conjugate prior [5] :

p(ρζi |αζ0 , βζ0) = G(ρζi |αζ0 , βζ0), ∀i. (3)

The prior model on the volume is a Gauss-Markov-Potts prior which consists in labelling each
voxel j according to its material zj = k ∈ {1, . . . , K}, where K is the number of materials. Then, the
distribution of value f j of voxel j depends on its material zj :

f j ∼ N (mk, ρ−1
k ) if zj = k, ∀j ∈ {1, . . . , N} . (4)

Means m = (mk)k and inverses ρ = (ρk)k of variances of the classes have to be estimated and are
assigned conjugate priors [5] : {

p(mk|m0, v0) = N (mk|m0, v0)

p(ρk|α0, β0) = G(ρk|α0, β0)
, ∀k. (5)

70



Proceedings 2019, 33, 4

A Potts model is assigned to labels z in order to favour compact regions in the volume [5] : denoting
by V(j) the neighbourhood of voxel j, we have, according to Hammersley-Clifford theorem [17],

p(z|α, γ0) ∝ exp

⎡⎣ N

∑
j=1

⎛⎝ K

∑
k=1

αkδ(zj − k) + γ0 ∑
i∈V(j)

δ(zj − zi)

⎞⎠⎤⎦ . (6)

From our prior modelM, the posterior distribution of unknowns ψ = (f , z, ρζ ,m, ρ) is given by
Bayes’ rule [5]

p(f , z, ρζ ,m, ρ|g;M) ∝ p(g|f , ρζ)p(f |z,m, ρ)p(z|α, γ0)p(ρζ |αζ0 , βζ0)p(m|m0, v0)p(ρ|α0, β0), (7)

where α = (αk)k. Based on this distribution, JMAP can be performed [5] but does not provide
uncertainties on the result. MCMC methods for joint computation of the means and the variances of
the posterior distribution are too computationally costly for 3D applications [5,18]. For this reason, we
apply VBA which consists in approximating the true posterior distribution p by a simpler distribution
q on which posterior means and variances can be easily estimated. Approximating distribution q
minimizes Kullback-Leibler (KL) divergence KL(q||p) on a chosen set of simple distributions [12]. The
choice we make for q is a factorizable approximation, which only preserves a dependence between
value f j of voxel j and its label [19] :

q(f , z, ρζ ,m, ρ) =
N

∏
j=1

q fj
( f j|zj)×

N

∏
j=1

qzj(zj)×
M

∏
i=1

qρζi
(ρζi )×

K

∏
k=1

qmk (mk)×
K

∏
k=1

qρk (ρk). (8)

Minimizing KL divergence with respect to each factor while fixing the others leads to [13,19]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q fj
( f j|zj = k) = N ( f j|m̃jk, ṽjk)

qzj(k) ∝ exp
[
α̃jk + γ0 ∑i∈V(j) qzi (k)

]
, ∀k

qρζi
(ρζi ) = G(ρζi |α̃ζ0i

, β̃ζ0i
)

qmk (mk) = N (mk|m̃0k , ṽ0k )

qρk (ρk) = G(ρk|α̃0k , β̃0k )

(9)

The VBA algorithm turns into the iterative updating of the parameters of these distributions with
respect to the others. The updating formulae and the order of their applications are given in [13]. In
particular, at iteration t, the variances of the approximating distribution for the volume are updated by

ṽ(t)jk =

⎛⎝ α̃
(t−1)
0k

β̃
(t−1)
0k

+
[
HTṼ −1

ζ H
]

jj

⎞⎠−1

(10)

where Ṽζ = diag
[
ṽζ

]
and ṽζi =

β̃
(t−1)
ζ0i

α̃
(t−1)
ζ0i

, ∀i [13]. Moreover, the updating formula for intensity parameter

of the approximating Gamma distribution for ρζi is [13]

β̃
(t)
ζ0i

= βζ0 +
1
2

(
(gi − [Hm̃]i)

2 +
[
HṼ HT

]
ii

)
(11)

where Ṽ = diag [v] and ⎧⎪⎨⎪⎩
m̃j = ∑K

k=1 m̃(t)
jk q(t)zj (k)

ṽj = ∑K
k=1

[
ṽ(t)jk +

(
m̃(t)

jk − m̃j

)2
]

q(t)zj (k)
. (12)
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To compute approximate posterior variances, formula (10) needs the computation of diagonal
coefficients of HTṼ −1

ζ H , while formula (11) needs diagonal coefficients of HṼ HT . Both of these
matrices imply projector and backprojector which are not in memory, contrary to 2D applications [19].
Therefore, in order to implement VBA for 3D X-ray CT, we need to find a way to compute diagonal
coefficients in formulae (10) and (11) efficiently. We propose a strategy which is detailed in the next
section.

3. Computation of diagonal coefficients

At one iteration of the algorithm, for any voxel j, diagonal coefficient used to compute vjk by (10) is

dvj =
[
HTṼ −1

ζ H
]

jj
= ‖He(j)‖2

Ṽζ
(13)

where e(j)
i = δ(j− i), ∀i. As dv = (dvj)j has the size of a volume, formula (13) implies to compute N

projections, which is very long, even if the projector implemented on GPU is very fast. We calculated
that, if we have to reconstruct a volume of size N = 2563 voxels from 64 projections of size 2562 pixels,
and if one projection takes only 10 milliseconds, computing all dialgonal coefficients dvj , ∀j, for only
one iteration of proposed VBA algorithm [13], would require more than 40 hours. Due to this huge
computational cost, we prefer to consider the algebraic formula :

dvj =
[
HTṼ −1

ζ H
]

jj
=

M

∑
i=1

H2
ij ṽ
−1
ζi

, ∀j. (14)

From this formula, diagonal coefficients dv appear to be similar to a backprojection of ṽ−1
ζ = (ṽ−1

ζi
)i,

except that coefficients Hij are replaced by their squares H2
ij, ∀i, j. Similarly, diagonal coefficients

dζi =
[
HṼ HT

]
ii
=

N

∑
j=1

H2
ij ṽj, ∀i, (15)

appear like a projection of volume ṽ, with H2
ij instead of Hij. Given formulae (14) and (15),

we implement a squared-projector H (2) such that H(2)
ij = H2

ij, ∀i, j, and a squared-backprojector (H(2))T .
Both are implemented exactly like the projector and the backprojector respectively. In order to ensure
the validity of formulae (14) and (15), and therefore the convergence of our algorithm, we use a
matched P/BP pair, which is here the Separable Footprint (SF) pair [14]. This pair is implemented on
GPU as described in [15]. The same implementation is used for H(2) and (H(2))T .

Thanks to these new operators, in one iteration of our algorithm, diagonal coefficients dvj , ∀j,
are simultaneously computed by applying (H (2))T , which is very fast because it takes exactly the
same time as a backprojection, instead of N projections. Similarly, diagonal coefficients dζi , ∀i,
are simultaneously computed by applying H(2), as fast as one projection, instead of M backprojections.

Figure 1 shows diagonal coefficients of HHT and HTH , computed by H (2) and (H (2))T

respectively. Diagonal coefficients of HHT have the size of projections and are shown as it in Figure 1,
while those of HTH are shown as a volume. We now apply our VBA algorithm to simulated data,
and compare the estimated PM with JMAP. JMAP algorithm is described in [5] and applied with SF
pair as we did in [15].
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(a) (b)
Figure 1. Diagonal coefficients of HTH (a) and HHT (b).

4. Results

The simulated phantom is of size 2563 voxels and contains K = 5 classes. It is shown in Figure 2.
We reconstruct this volume from 64 projections of size 2562 pixels, uniformly distributed over [0, 2π].
These projections are noisy with SNR equal to 20 db.

Parameters (αζ0 , βζ0 , α0, β0) are fixed near Jeffreys’ prior as in [13,19]. The strategies to fix other
parameters α, γ0, m0 and v0 are explained in [13]. The values of the parameters for VBA are given in
Table 1, excepted m0 and α which are fixed automatically as in [5]. For our comparison, the parameters
are the same for JMAP.

Table 1. Parameters for JMAP and VBA algorithms.

Parameters K γ0 v0 αζ0 βζ0 α0 β0

Values 5 6 1 10−4 10−2 10−6 10−2

The initialization of approximating distributions for VBA is described in [13]. This initialization
requires initial volume and segmentation, obtained as explained in [13]. The same initialization is used
for JMAP.

Figures 3 and 4 show the reconstructions obtained by JMAP and VBA respectively. They are
compared with total-variation (TV) regularization. For TV, the reconstruction, shown in Figure 5,
is obtained thanks to Primal-Dual Frank-Wolfe algorithm (PDFW) [20]. Thanks to the use of Gauss-
Markov-Potts prior model, JMAP and VBA reconstructions have compact and well-distinguishable
regions, while contours are slightly blurred for TV. VBA reconstruction has smoother contours than JMAP.

Figure 2. Original phantom.
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Figure 3. Reconstruction by JMAP.

Figure 4. Reconstruction by VBA.

Figure 5. Reconstruction by PDFW.

For each reconstruction, the L2-relative error with respect to the original phantom is shown
in Table 2. As we see in Figure 4, details are lost by VBA because of the factorized approximating
distribution. Consequently, VBA has the highest error, while it is roughly the same for PDFW and
JMAP. The variances of the posterior distribution of the volume estimated by VBA are shown in
Figure 6. Unsurprisingly, the highest variances are on the thinest part of the phantom which is the bone.
Nevertheless, the loss of details in the reconstruction is not highlighted by posterior variances. Indeed,
uncertainties are known to be under-estimated in VBA when considering divergence KL(q||p) [12].
The stop criterion for PDFW is given in [20] and is minimized, while those for JMAP and VBA are
maximized and given in [5,13] respectively. For each algorithm, the evolution of stop criterion is shown
in Figures 7–9 respectively. One iteration of JMAP contains 20 sub-iterations and few sub-iterations
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for segmentation step [5], while VBA and PDFW do not have sub-iterations [13,20]. Consequently,
in Table 2, the computation time of VBA is much less than the one of JMAP and quite similar to the
one of PDFW. Furthermore, during our experiments, we have noticed that, compared to JMAP, VBA
has a higher sensitivity to the choice of the parameters, as to the number of iterations. Indeed, for a too
large number of iterations of VBA, the reconstruction is over-regularized. This is a drawback of VBA
compared to JMAP.

Moreover, the memory cost of VBA is much higher than the one of JMAP and PDFW. This makes
VBA only applicable to small regions-of-interest (ROI), typically of size 2563. Based on a reconstruction
of high quality (for instance, obtained by JMAP [5]), the reconstruction of ROI can be performed
following the method of [21], as done for other MBIR methods [14]. This point will be covered in
future works.

Figure 6. Variances (log) obtained by VBA

Figure 7. Convergence of PDFW

Figure 8. Convergence of JMAP
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Figure 9. Convergence of VBA

Table 2. Comparaison of PDFW, JMAP and VBA algorithms.

Algorithm L2-Relative Error Computation Time

PDFW 6.0 % 126.3 s

JMAP 9.1 % 751.6 s

VBA 13.5 % 150.0 s

5. Conclusions and Perspectives

In this paper, we have presented an application for 3D X-ray CT of variational Bayesian approach
(VBA) with Gauss-Markov-Potts prior model. By computing posterior mean (PM) thanks to VBA,
we have been able to jointly perform the reconstruction and the estimation of the posterior variances,
which give the uncertainties on the reconstruction. To compute these variances, we have seen that
the huge dimension in 3D X-ray CT hinders to easily get diagonal coefficients, due to the fact that
projection and backprojection operators cannot be stored in memory. To tackle this problem, we have
taken benefit from the use of a matched pair of projector and backprojector, which was the Separable
Footprint (SF) one : based on this pair, we have implemented “squared” projector and backprojector
which have enabled us to compute diagonal coefficients on-the-fly. The GPU implementation for these
squared operators was the same we used for SF projector and backprojector.

Our tests on simulated data and comparison with joint maximization a posteriori (JMAP) have
shown that VBA obtains smoother contours than JMAP and converges faster. Although the memory
cost of VBA is higher than the one of JMAP, we have underlined that the algorithm can be applied to
estimate the uncertainties in a region-of-interest (ROI). Future works will focus on applications to real
and bigger data, as on optimization of GPU implementation of SF pair [15]. Other variational Bayesian
algorithms will also be worth to study in order to improve the estimation of uncertainties.

Funding: This research was funded by CIFRE Grant 2016/0188 from French Agence Nationale de la Recherche et
de la Technologie (ANRT).
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Abstract: The Bayesian approach Maximum a Posteriori (MAP) is discussed in the context of 
solving the image reconstruction problem in nuclear medicine: positron emission tomography 
(PET) and single photon emission computer tomography (SPECT). Two standard probabilistic 
forms, Gibbs and entropy prior probabilities, are analyzed. It is shown that both the entropy-based 
and Gibbs priors in their standard formulations result in global regularization when a single 
parameter controls the solution. Global regularization leads to over-smoothed images and loss of 
fine structures. Over-smoothing is undesirable, especially in oncology in diagnosis of cancer 
lesions of small size and low activity. To overcome the over-smoothing problem and to improve 
resolution of images, the new approach based on local statistical regularization is developed. 

Keywords: image reconstruction problem; Bayesian Maximum a Posteriori approach; entropy 
prior probability; global regularization; local statistical regularization; open systems 

1. Introduction

Emission tomography techniques, including (PET) and single photon emission computer 
tomography (SPECT), produce images which are used for clinical diagnosis. Image quality depends 
substantially on applied reconstruction methods. The deterministic filtered back projection (FBP) 
method was used for image reconstruction up to the 90-th. Later, statistical iterative methods based 
on the maximum likelihood principle, entered the nuclear medicine. Statistical algorithms, such as 
the Maximum Likelihood Expectation Maximization (MLEM) and its accelerated version - Ordered 
Subsets Expectation Maximization (OSEM)—take into account the stochastic properties of the 
observed data and provide more accurate images in comparison to FBP method. At the moment, 
OSEM is the standard algorithm in PET and SPECT systems all over the world. However, OSEM 
algorithm has fundamental limitations in solving reconstruction problems and unexpected artifacts 
may arise in the obtained images. These limitations are due to the fact that from the mathematical 
point of view, image reconstruction belongs to the class of ill-posed inverse problems and 
regularization is necessary for its correct solution. Regularization is the process of introducing an 
additional a priori assumption about the solution to obtain a well behaved inverse [1]. Initially, the 
regularization method was developed by using the deterministic form of prior information. 
However, the deterministic form of prior information has limitations with the drawback to lead to 
excessively over-smoothed solutions. The stochastic nature of the observed data requires the 
probabilistic approach for assigning prior information. V. Turchin suggested to use the Bayesian 
method of Maximum a Posteriori (MAP) for solving ill-posed problems with stochastic data, naming 
this approach ‘statistical regularization’ [2]. The statistical regularization method introduces the 
prior information in the form of a probability distribution. Two basic probabilistic forms of prior 
information, widely used in reconstruction tomography, are: Gibbs prior and entropy prior. Both 
deterministic and statistical regularization methods were developed as ‘global regularization’, in 
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which a single parameter controls the solution in the whole solution’s area. It was expected, that the 
regularized MAP algorithms should provide more accurate reconstruction of fine structures in 
comparison to the non-regularized OSEM. However, in [3], rather minor differences between the 
images obtained by the OSEM algorithm and MAP algorithm with Gibbs prior (MAP-Gibbs) were 
found. In [4], numerical simulations have shown that by using the entropy-based MAP algorithm 
(MAP-ENT), the reconstruction errors decrease monotonically with excellent stability, in contrary, 
the OSEM algorithm behavior was unstable. The OSEM reconstructed image was obtained by 
stopping the iteration process at the point of minimal error and similarly to the resulting MAP-ENT 
image. We assume that the cause of the minor difference between OSEM and MAP images is due to 
the global regularization method, applied in both MAP algorithms. Global regularization smoothes 
the solution too strong and therefore fine structures may be over-smoothed or lost. Local 
regularization is needed to improve image quality. The idea of local regularization for statistical 
MAP approach has not been considered in literature. 

The aim of this paper is the theoretical analysis of local regularization method in the frame of 
statistical Bayesian MAP approach. 

2. Methods

2.1. Bayesian Approach for Solving Tomographic Problems in Nuclear Medicine 

In SPECT and PET diagnostic procedures, a patient is administered a radiolabeled 
pharmaceutical which is distributed with the concentration n q  in various regions of the body ( q  
is the space coordinate). The function f q  describes the density of gamma photons produced 
through radioactive decay. It is assumed that f q  is a random value which follows the Poisson 

distribution with mean f  which is proportional to the radiopharmaceutical concentration n . The 
image reconstruction problem is presented as linear equation: 

Af g= (1) 

A  is a system matrix which describes data acquisition process and g  are registered 
stochastic data. Gamma photons are emitted by the radiopharmaceutical and are registered by 
gamma camera. Gamma camera rotates around the patient body and collects gamma photons from 
different angles. The registered raw data are called projection data. In myocardial perfusion SPECT 
imaging the data are obtained from 32 or 64 views. An example of clinical raw projection data is 
shown in Figure 1. The data of 3 from total 64 views are shown. 

Figure 1. Clinical SPECT projection data. The data are demonstrated for three selected views: 
anterior (a), left anterior oblique (b) and left lateral (c) projections. 

The data are obtained in Meshalkin National Medical Research Center (Novosibirsk) by using 
GE Infinia Hawkeye SPECT/CT system. 

The data are assumed to be distributed according to a Poisson law: 
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g
g gP g g e
g

−= (2) 

with mean g : 

g Af= (3)

The reconstruction problem (1) is formulated as a classical problem of mathematical statistics: 
what is the probability density P f g  for the solution f  with given data g ? By using the 

Bayesian Maximum a Posteriori (MAP) theorem, P f g  is determined as:  

P f P g AfP f g
P f P g Af df

= (4) 

where P f  is a prior probability density function and P g Af  is the likelihood distribution of 

the observed data. The most probable MAP estimation is obtained by maximizing P f g  in 
logarithmic form: 

ff P f P g Af= + (5) 

For applications in nuclear medicine, the likelihood distribution in logarithmic form is defined 
in accordance to (2): 

P g Af g Af Af g= − − (6)

2.2. Maximum-Likelihood-Based Image Reconstruction Method 

When a researcher does not have any prior information the simple way is to assume that all 
possibilities are equally probable and Bayesian estimation reduces to the Maximum Likelihood 
(ML) solution:

ff P g Af= (7) 

In practical PET and SPECT applications reconstruction problem is usually discretized. The 
reconstruction area is assumed to be divided into J  voxels in which the unknown source function 
f  is distributed with a discrete density jf . The projection data are presented in the discrete form 

as a system of the linear algebraic equations: 

i ij j
j

g A f= (8) 

where ig  are the measured data in the i -th detector cell, matrix ijA  is the system matrix 

describing the possibility that photon emitted in the j -th voxel will be detected in i -th ‘detector’. 
The ML method (7) provides the following solution: 

n
j i ijn

j nij i ij j
i j

f g A
f

A A f
+ = (4)

81



Proceedings 2019, 33, 1 

n
jf  is an estimation of jf  on the n -th iteration step. In clinical systems, the OSEM algorithm

is used. OSEM is a faster version of ML algorithm. OSEM is not a regularized algorithm, therefore, 
its behavior in iteration process is unstable and the resulted images are dominated by noisy artifacts. 
In the first iterations, the error of reconstruction decreases, then it reaches a minimum and begins to 
increase. At this point a reconstructed image begins to deteriorate. One may think that it is possible 
to obtain visually good OSEM images by stopping the iteration process at the iteration with minimal 
error. Nonetheless, image deterioration progresses more rapidly in the zones with lower count 
statistics. At stopping, a part of the image with low count statistics can become already noisy while 
another part of the image with high statistics did not reach its optimal resolution yet. This problem is 
especially important in oncology: a noise in the low count zones imitates virtual ‘hot spots’ or masks 
the true ‘hot spots’. Currently, stopping of OSEM algorithms is applied in standard SPECT 
myocardial perfusion imaging protocols. In some cases, the stopping rule may be the cause of 
artifacts on images. 

2.3. The Bayesian Image Reconstruction Method with Gibbs Prior 

In the literature devoted to medical emission tomography, Bayesian Maximum a Posteriori 
approach with Gibbs prior is most widely studied. This approach was justified theoretically in [5] 
and was first applied for SPECT by Geman and McClare in 1984 in [6]. Gibbs prior assumes the 
Markov Random Field (MRF) distribution for emitted photons. According to the 
Hammersly-Clifford theorem, the MRF has the distribution which is described by the Gibbs 
probability: 

P f U f
Z

β= − (5) 

where β  is an unknown parameter, U f  is the energy function. Energy function U f  is 
defined as a sum of potentials: 

j c j i
j c

U f V f f
∈

= −  (11) 

where c  denotes the set of all cliques type, cV  is a potential functions defined on pairwise cliques 
of neighboring voxels. The Bayesian MAP solution (MAP-Gibbs) of the reconstruction problem (1) 
is presented in this case as: 

c j if
i j c

f V f f g Af Af gβ
∈

= − − + − −  (12) 

Gibbs prior provides the reconstruction algorithm that specifies local spatial correlations in the 
source to be reconstructed. A wide range of potential functions cV  have been proposed in the 
literature. For example, edge-preserving Geman’s approximation of the function cV  is defined as 
follows: 

j i
c

j i

f f
V

f fδ
−

=
+ −

(13) 

δ is edge-preserving parameter. Unfortunately, the physical nature of cV  is not very clear.
Huge efforts are aimed at the development of this approach for PET and SPECT applications. 
However, there are unsolved problems that inhibit the implementation of these algorithms on 
commercial systems.  
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2.4. Bayesian Image Reconstruction Method with Entropy Prior 

Another form of prior, based on the entropy principle, was suggested by Jaynes [7–9]. 
Maximum-entropy (ME) approach has been successfully applied in the fields of X-ray-, radio- and 
gamma-astronomy, plasma tomography [10–14], but less in medicine tomography. Applied to 
radio-astronomical data, the maximum entropy algorithm reveals details not seen by conventional 
analysis, but which are known to exist. Applied to solve the problem of astronomical image 
restoring, the Maximum Entropy approach has demonstrated that resolved and unresolved sources 
can be restored with reliability. These results are of interest in the context of the similarity between 
astronomical images and ‘hot spots’ tumor images in nuclear oncology. In the absence of 
correlations the entropy-based method is superior to the Gibbs’ approach in ‘hot spots’ identifying.  

The ME approach goes back to the famous works by Boltzmann and can be formulated as 
follows: distributions of higher entropy have higher multiplicity and can be realized in more ways. 
In order to apply the entropy principle to the SPECT and PET imaging problems, the reconstruction 
area is properly discretized into J  boxes. An image is considered as a set of boxes in which a large 
number of emitting particles are placed. According to the combinatorial theorem, the number of 
different ways of filling the boxes is given by 

j
j

N
W

N
=

∏ (14) 

j  is a box index, jN  is the number of particles in the j-th box and N  is the total number of 

particles. One usually uses the Stirling approximation to find the entropy equation in the 
logarithmic form. The prior probability P f  of the unknown function is taken to be proportional 

to its multiplicity. The image (the number of emitted photons) jf  is assumed to be proportional to 

the density of the emitting particles and, therefore, one obtains 

J

j j
j

P f f fβ
=

= − (15) 

where β  is a constant associated with the relation between jN  and jf . Maximum a Posteriori 

estimation with entropy prior (MAP-ENT) is written in the discrete form as: 

j j i ij j ij j if
j i j j

f f f g A f A f gβ= − + − −  (16) 

Unlike Gibbs prior, Entropy form does not introduce correlations in the images, beyond those 
which are required by the data. It is necessary to make the following remark concerning the 
maximum entropy approach. There are two basic approaches using the entropy prior: the 
Maximum a Posteriori algorithm with entropy prior and the constrained Maximum Entropy 
algorithm. A difference between these approaches is as follows: in the MAP algorithm, the data 
enters as a part of quantity to be maximized, P f g . With the Maximum Entropy method, the 

data are added via Lagrange multipliers exterior to the entropy prior P f  to be maximized. The 
Maximum Entropy yields the smoothest solution among all solutions satisfying to given data. A 
degree of smoothness of the MAP solution is regulated by the regularization parameter. 

2.5. Bayesian Image Reconstruction Method Based on Open System Theory 

Gibbs and entropy forms of prior information result in global regularization method with a 
single regularization parameter. Global regularization produces too smoothed solution therefore 
fine structures may be lost on images. Local regularization is needed to improve image quality. The 
idea of local regularization for statistical MAP approach is considered in this Section. This idea is 
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based on the open systems theory. Open systems are the systems which can be exchanged with 
environment by energy, matter and information and, from this point of view, emitting objects are 
open systems. In SPECT and PET diagnostic procedures a radiopharmaceutical is injected into a 
patient body. Different organs have different metabolism rate for the injected radiopharmaceutical. 
In the same organ, healthy and ill tissues can also have different metabolism rate. Different 
radiopharmaceutical accumulation in the organs is associated with a different metabolic rate, which 
is considered here as a control parameter ‘ a ’. We consider the accumulative model that describes a 
final steady-state non-equilibrium spatial distribution of radiopharmaceutical in a patient body. 
Due to radioactive decay, radiopharmaceutical emits gamma photons, so a patient body can be 
considered as an emitting open system. We assume that processes of nuclear excitation and 
de-excitation occur at the same rate during all the time of patient examination procedure. So, the 
distribution of radiopharmaceutical particles in a patient body can be considered as a steady-state 
open system. The steady-state of the system is defined by a corresponding control parameter. Due 
to low radiopharmaceutical concentration we can consider an open system of N  non-interacting 
classical particles (ideal gas) in the volume V  with the energy E . In an equilibrium system, 
particles are uniformly distributed throughout the volume. Non-uniform spatial distribution of 
particles can occur in the non-equilibrium steady-state systems. Macroscopic states of an ideal gas 
can be described through the possible energy distribution of an individual particle. Following [15], 
in classical case the entropy can be written as:  

( ) ( ) dpdqS q p a n q p agn= − +
Δ

const  (17) 

q p  are spatial and pulse coordinates, πΔ = , g  is a weight factor associated with 
different nuclear states of particles. Assuming that energy (pulse) distributions are the same at each 
point in a discrete physical space, we obtain 

j j
j

S gn a n a const= − + (18) 

jn a  is radiopharmaceutical concentration in the j -th voxel of physical space. 

For simplicity, let us focus on one organ, for example, on a liver with the area of healthy tissue 
and some area of ill tissue. Suppose only two cases with the concentration of radiopharmaceutical 
particles in the liver n a  and n a . Calculation of entropy can be performed separately for each 
of these two areas in accordance with the Equation (18). However, definition of total entropy by 
using the usual Boltzmann formula is not possible because the mean energies of these two states are 
different. According to Klimontovich S-theorem [16], we can define the total entropy after 
renormalizing of energies: 

( )( ) ( )( )H n a H n a= (19) 

H is an Hamiltonian function. Integrating (17) by pulses p under condition (19) one obtains the 
renormalized entropy expressions for the healthy and ill liver areas. Taking into account that mean 
f  is proportional to the radiopharmaceutical concentration, we can write the total entropy as: 

( ) ( )
k

k j k j k
k j C

S f a f aβ
∈

= − (20) 

the index k defines the subsystems with different parameter a  (different radiopharmaceutical 
concentration). Maximum a Posteriori estimation with entropy prior based on open system theory 
(MAP-OPEN-ENT) is written in the discrete form as: 

( ) ( )max
k

k j k j k i ij j ij j jf
k j C i j j

f arg f a f a g A f A f gβ
∈

= − + − − (21)
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In solution of SPECT and PET reconstruction problems by using Bayesian approach, the 
expression (21) leads to local regularization with local regularization parameters kβ . 

3. Conclusions

The standard approach for solving the ill-posed inverse problem in image reconstruction is 
used in the form of ‘global regularization’, in which a single parameter controls the solution. 
However, in SPECT and PET imaging, global regularization leads to over-smoothed images and loss 
of fine structures. Over-smoothing is undesirable, especially in oncology in diagnosis of cancer 
tumors of small size and low activity. To overcome the over-smoothing problem and to improve 
resolution of images, the new approach based on local statistical regularization is developed in this 
work. The theoretical justification of the new method in which the value of the regularization 
parameter is defined on the base of open system entropy is performed. 
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Abstract: In this work, we propose an approach to better understand the effects of neuronal noise 
on neural communication systems. Here, we extend the fundamental Hodgkin-Huxley (HH) model 
by adding synaptic couplings to represent the statistical dependencies among different neurons 
under the effect of additional noise. We estimate directional information-theoretic quantities, such 
as the Transfer Entropy (TE), to infer the couplings between neurons under the effect of different 
noise levels. Based on our computational simulations, we demonstrate that these nonlinear systems 
can behave beyond our predictions and TE is an ideal tool to extract such dependencies from data. 

Keywords: transfer entropy; information theory; Hodgkin-Huxley model 

1. Introduction

Mathematical models and analysis have been a strong tool to answer many important questions 
in biology and the work of Hodgkin and Huxley on nerve conduction is one of the best examples of 
it [1]. In 1952, after many years of theoretical and experimental work of physiologists, a mathematical 
model was proposed by HH to explain the action potential generation of neurons using conductance 
models that are defined for different electrically excitable cells [2–4]. Despite the rapid growth in the 
number of analyses on the communication between neurons, the noise effect has generally been 
overlooked in the literature. Recently, neuronal noise effects have started to be incorporated into the 
models, due to a phenomenon, called “Stochastic Resonance” [5]. The communication between 
neurons is maintained by electrical signals, called ‘’Action Potentials (AP)”. If the action potentials, 
as a response to a stimulant, exceeds a certain threshold value, these signals are referred to as 
“Spikes”. The existence of a spike is determined by the value of a threshold value and additional 
noise component can easily increase or decrease the value of an AP versus the threshold, thus change 
the neural spike train code. Therefore, the noise is not merely a nuisance factor and it is capable of 
changing the meaning of the “neuronal code”. For this reason, to better understand how these 
changes can occur in a very complex system, such as our brain, we must first understand the 
underlying working principles of neuronal noise, which sets the framework of our investigations. 

Here, we utilize information theory to better understand the effects of neuronal noise on the 
overall communication. Therefore, we generalize the HH model in such a way that the noise can be 
added to the system beside the coupling among the neurons. In the literature, the effect of coupling 
among different neurons have been explored by using TE [6], however, to the best of our knowledge, 
the effects of noise on these interactions have not been fully considered yet. 

On the other hand, certain types of models have been suggested to include the noise in the HH 
model [7] without any coupling between the neurons. Here, we approach the complicated modeling 
problem by using a simplified version including two neurons, coupling between them, and 
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additional noise terms. We propose utilizing information theory to analyze the relationships in neural 
communication. 

In the literature, information-theoretic quantities, such as Entropy, Mutual Information (MI) and 
Transfer Entropy (TE) have been successfully utilized to analyze the statistical dependencies and 
relationships between random variables of highly complex systems [8]. Among these, MI is a 
symmetric quantity reporting the dependency between two variables, whereas TE, is an asymmetric 
quantity that can be used to infer the direction of the interaction (as affecting and affected variables) 
between them [9]. All the above quantities are calculated from observational data by inferring 
probability distributions. Despite the wide variety of different distribution estimation techniques, the 
whole procedure still suffers from adverse effects, such as the bias. Most common techniques in 
probability distribution estimation involve histograms [10], Parzen windows [11] and adaptive 
methods [12]. In the literature, histogram estimation is widely used due to its computational 
simplicity. To rely on estimations from data, reporting the statistical significance of each estimate [13] 
constitutes an important part of the methods. 

In this work, we propose utilizing TE to investigate the directional relationships between the 
coupled neurons of a HH model under noisy conditions. Therefore, we extend the traditional HH 
model and analyzed the effect of noise on the directional relationships between the coupled neurons. 
As our first approach to model noisy neuronal interaction, we demonstrate the effect under certain 
levels of noise power in the simulations. Based on these simulations, we observe that the original 
interactions are preserved despite many changes in the structure of the neuronal code structure. Our 
future work will be based on the generalization of this modeling to consider N neurons and the effect 
of noise on their interactions. 

2. Materials and Methods

2.1. The Hodgkin-Huxley Model 

In this study we use Hodgkin-Huxley model which mimics the spiking behavior of the neurons 
recorded from the squid giant axon. This is the first mathematical model describing the action 
potential generation and it is one of the major breakthroughs of computational neuroscience [1]. In 
1952 two physiologists Hodgkin and Huxley got the Nobel prize after this work and after their work 
Hodgkin-Huxley type models are defined for many different electrically excitable cells such as 
cardiomyocytes [2], pancreatic beta cells [3] and hormone secretion [4]. They observed that cell 
membranes behave much like electrical circuits. The basic circuit elements are the phospholipid 
bilayer of the cell, which behaves like a capacitor that accumulates ionic charge while the electrical 
potential across the membrane changes. Moreover, resistors in a circuit are analogue to the ionic 
permeabilities of the membrane and the electrochemical driving forces are analogous to batteries 
driving the ionic currents. Na+, K+, Ca2+ and Cl  ions are responsible for almost all the electrical actions 
in the body. Thus, the electrical behavior of cells is based upon the transfer and storage of ions and 
Hodgkin and Huxley observed that K+ and Na+ ions are mainly responsible for the HH system. 

Mathematical description of the Hodgkin-Huxley model starts with the membrane potential V 
based on the conservation of electric charge defined as follows 

(1) 

where  is the membrane capacitance,  is the applied current and  represents the sum of 
individual ionic currents and modeled according to Ohm’s Law: 

 (2) 

here ,  and  are conductances, , ,  are the reversal potentials associated with the 
currents. Hodgkin and Huxley observed that conductances are also voltage dependent. They realize 
that  depends on four activation gates and defined as  whereas  depends on three 
activation gates and one inactivation gate and modeled as . In the HH model, ionic 
currents are defined as: 
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(3) 

 (4) 

(5) 

with Na+ activation variable m and inactivation variable h, and K+ activation variable n. Here  
denotes maximal conductances. Activation and inactivation dynamics of the channels are changing 
according to the differential equations below. 

(6)

(7) 

(8) 

The steady state activation and inactivation functions together with time constants are defined 
as below and the transition rates  are given in Table 1. 

(9)

(10) 

Table 1. Transition rates and parameter values for the HH Model. 

Transition Rates (ms 1) 

  
  
  
  
  
  

Parameter Values 

  
  
  
  
  
  
 
 

2.2. Information Theoretic Quantities 

In information theory, Shannon entropy is defined to be the average uncertainty for finding the 
system at a particular state ‘x’ out of a possible set of states ‘X’, where p(x) denotes the probability of 
that state. Also, it is used to quantify the amount of information needed to describe a dataset. Shannon 
entropy is given by the following formula 

 (11) 

Mutual information (MI), is another fundamental information-theoretic quantity which is used 
to quantify the information shared between two datasets. Given two datasets denoted by X and Y, 
the MI can be written as follows: 
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(11) 

The MI is a symmetric quantity and it can be rewritten as a sum and difference of Shannon 
entropies by 

(12) 

where  is the joint Shannon entropy. If there is a directional dependency between the 
variables, such as a cause and effect relationship, a symmetric measure cannot unveil the dependency 
information from data. In the literature, TE was proposed to analyze the directional dependencies 
between two Markov processes. To quantify the directional effect of a variable X on Y, the TE is 
defined by the conditional distribution of Y depending on the past samples of both processes versus 
the conditional distribution of that variable depending only on its own past values [14]. Thus, the 
asymmetry of TE helps us detect two directions of information flow. The TE definition in both 
directions (between variables X and Y) are given by the following equations: 

(13) 

(14) 

where  and  are past states, and X and Y are kth and lth
order Markov processes, respectively, such that X depends on the k previous values and Y depends 
on the l previous values. In the literature, k and l are also known as the embedding dimensions. 

All the above quantities involve estimation of probability distributions from the observed data. 
Among many approaches in the literature, we utilize the histogram-based method to estimate the 
distributions on (14) and (15), due to its computational simplicity. In order to assess the statistical 
significance of the TE estimations, surrogate data testing is applied, and the p-values are reported. 

2.3. The Proposed Method 

In this paper we focus on the system of two coupled HH neurons with synaptic coupling from 
neuron 1 to neuron 2. Also, current noise is added with normal distribution for the action potential 
generation of the squid axons for this two-neuron network. It involves a fast sodium current , a 
delayed rectifying potassium current  and a leak current . The 
differential equations for the rate of change of voltage for these neurons are given as follows, 

 (15) 

, (16) 

where  is the membrane voltage for the 1st neuron and  is the membrane voltage for the 2nd 
neuron. Here,  shows the noise distribution defined by normal distribution with 0 mean and 

 standart deviation. Synapting coupling is defined simply  with voltage 
difference and synaptic coupling strength is . When k is between 0 and 0.25, spiking activity occurs 
with unique stable limit cycle solution. After k = 0.25 system turns back to stable steady state and 
spiking activity disappears. All other dynamics are same as described in Section 2.1. 

First, we propose using TE between , in the case of no noise in (16) and (17). Secondly, 
we include the noise components in (16) and (17) and utilize TE between , again. This 
comparison demonstrates the effects of noise on the information flow between the neurons. At a first 
glance on equations (16) and (17), we can conclude that the direction of the information flow under 
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noiseless case must be from . However, when the noise is added, it is tedius to reach the same 
conclusion, as the added noise is capable of adding additional spikes and destroying the available 
ones. The simulation results in the next section demonsrate these findings and provides promising 
results to generalize our model to more complex neuronal interactions under noise. 

The model is implemented in the XPPAUT software [15] using the Euler method (dt = 0.1 ms). 

3. Results

Information Flow Changes with Coupling Strength and Noise Level 

Here, we first studied a system of two globally coupled HH model through a synapse by varying 
the coupling strength k, without noise effect. Phase dynamics for our system for two different k 
coupling strengths are plotted in Figure 1. Here we define two different coupling patterns as shown 
below. In Figure 1a, neuron 2 fires once after neuron 1 fires twice which we call 2-to-1 coupling with 
k = 0.1. For a larger coupling coefficient (k = 0.2) neurons shows different synchronous firing pattern 
as in Figure 1b. This time, each firing of neuron 2 follows that of neuron 1 which we call 1-to-1 
coupling. 

(a) (b) 

Figure 1. Sample spike patterns for two different network configurations: (a) 2 to 1 coupling and (b) 
1 to 1 coupling. 

To better understand the effects of noise on our network,we use zero mean Gaussian distributed 
random variables with standard deviation of . When we incorporate this noise with different 
variances into our model as illustrated in (16) and (17), we observe a change in the synchronisation 
of the neurons. Additionally, the obvious patterns disappear totally for larger noise amounts as 
shown in Figure 2 for each coupled network. Noise can change the synchronization of neurons by 
inducing or deleting spikes in network. Since the noise plays an important role in changing the 
dynamics of the network, we need a mechanism to figure out this newly changed patterns under 
noise effect to explain the behavior of the neuronal network. Therefore, we utilize TE to extract this 
pattern using the observed voltage data. 
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Figure 2. Noise changes the synchronization of the network. 

To better understand the information flow between the neurons, we estimate TE between the 
action potentials of two neurons, as described in Section 2.2, using (16) and (17), with an increasing 
noise intensity. The results are plotted in Figure 3 for both 2-to-1 coupled system and 1-to-1 coupled 
system. As expected for the network without noise (  = 0), transfer entropy value is the highest for 
both systems. This verifies the changes caused in Neuron 2 by Neuron 1. 

To see the effects of noise, we explore the TE between the neurons with increasing  parameter. 
From Figure 3, we note that with the increasing noise intensity, the values of TE decrease. Although 
this can be expected, it is of utmost importance to emphasize the case when we do not have any noise. 
If we do not have noise component in the model, according to Figure 3 and Table 2, we notice that 
TE value is behaving in opposite way, i.e., the smaller TE, the higher coupling. Another interesting 
finding is the varying pattern in TE around low  values: The TE increases first and keeps decreasing 
later. This unexpected result shows that we cannot easily predict the direction of coupling without 
TE analysis, as the synaptic couplings are nonlinear in nature. 

Table 2. Transfer entropy values with different noise intensity as  is increasing. 

            
K = 0.1 0.0665 0.017 0.0168 0.0169 0.0129 0.0059 0.0039 0.0014 0.0013 0.000806 0.000512 
K = 0.2 0.0557 0.0264 0.0206 0.0261 0.0242 0.0165 0.0148 0.0095 0.0064 0.0054 0.0033 
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Figure 3. Transfer entropy results for 2-to-1 and 1-to-1 coupled HH network. 

4. Discussion and Conclusions

We study information flow for the coupled network of two neurons under two different 
coupling states and increasing noise levels, where the neuron models and the synaptic interactions 
are derived from Hodgkin-Huxley model. Here we propose our model in such a way that we can 
generate 2-to-1 coupling and 1-to-1 coupling between the neurons. In order to find these relationships 
from data we propose a TE based approach and analyze the effects of couplings under various noise 
intensities, successfully. These results help us better understand the interaction between the neurons 
in real biological systems. This work is of particular importance to explore larger networks with more 
complex noisy interactions. 
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Abstract: A stable and unique solution to the ill-posed inverse problem in radio synthesis
image analysis is sought employing Bayesian probability theory combined with a probabilistic
two-component mixture model. The solution of the ill-posed inverse problem is given by inferring
the values of model parameters defined to describe completely the physical system arised by the
data. The analysed data are calibrated visibilities, Fourier transformed from the (u, v) to image
planes. Adaptive splines are explored to model the cumbersome background model corrupted by
the largely varying dirty beam in the image plane. The de-convolution process of the dirty image
from the dirty beam is tackled in probability space. Probability maps in source detection at several
resolution values quantify the acquired knowledge on the celestial source distribution from a given
state of information. The information available are data constrains, prior knowledge and uncertain
information. The novel algorithm has the aim to provide an alternative imaging task for the use of
the Atacama Large Millimeter/Submillimeter Array (ALMA) in support of the widely used Common
Astronomy Software Applications (CASA) enhancing the capabilities in source detection.

Keywords: methods: data analysis; methods: statistical; techniques: image processing

1. Introduction

A software package investigates a method of Bayesian Reconstruction through Adaptive Image
Notion (BRAIN) [1] to support and enhance the interferometric (IF) imaging procedure. Extending the
works of [2,3], the software kit makes use of Gaussian statistics for a joint source detection and
background estimation through a probabilistic mixture model technique. The background is defined as
the small scale perturbance of the wanted signal, i.e., the celestial sources. As shown in [3], statistics is
rigorously applied throughout the algorithm, so pixels with low intensity can be handled optimally
and accurately, without binning and loss of resolution. Following the work of [2], a 2-D adaptive
kernel deconvolution method is employed to prevent spurious signal arising from the dirty beam.
Continuum, emission and absorption lines detection is foreseen to occur without an explicit subtraction,
but propagating the information acquired on the continuum for line detection.

The novel algorithm aims at improving the CASA [4,5] imaging and deconvolution methods
currently used, especially for the use of ALMA, but also applicable to next generation instruments
as ngVLA [6] and SKA [7]. The developing software is going to be as compatible with CASA as
possible by using CASA tasks, data formats, including python scripts. BRAIN has the aim to provide
an advancement in current issues as stopping thresholding, continuum subtraction, proper detection
of extended emission, separation of point-like sources from diffuse emissions, weak signal, mosaics.
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In the following sections, a brief description of the ALMA observatory, the acquired data and radio
synthesis imaging is provided. The most used software package for ALMA data analysis, i.e., CASA,
is introduced and the complex data transformation for the formation of interferometric images is
shown. Last, the technique under development is outlined in the main features as differing from [3].

2. ALMA

Located at 5000 m altitude on the Chajnantor plateau (Chile), ALMA is an aperture synthesis
telescope operating over a broad range of observing frequencies in the mm and submm regime of the
electromagnetic spectrum, covering most of the wavelength range from 3.6 to 0.32 mm (84–950 GHz).

ALMA is characterized by 66 high-precision antennas and a flexible design: Several pairs of
antennas (baselines) build a single filled-aperture telescope whose spatial resolution depends on
the used configuration and observing frequency. Two main antennas arrangements are identifiable:
the 12-m Array and the Atacama Compact Array (ACA). Firstly, with fifty relocatable antennas on
192 stations, the 12-m Array allows for baselines ranging from 15 m to 16 km. Secondly, ACA is
composed by twelve closely spaced 7-m antennas (7-m Array) and four 12-m antennas for single
dish observations, named Total Power (TP) Array. The 7-m and the TP arrays sample baselines in
the (9–30) m and (0–12) m ranges, respectively. The data re-combination from the 7-m and TP arrays
overcome the well-known “zero spacing” problem [8] being crucial during the observation of extended
sources. The final resolution reached by these arrays is given by the ratio between the observational
wavelength and the maximum baseline for a given configuration. Therefore, the 12-m Array is used
for sensitive and high resolution imaging, while ACA is preferable for wide-field imaging of extended
structures. The 12-m Array and ACA can reach a fine resolution up to 20 mas at 230 GHz with the
most extended configuration and 1.44 arcsec at 870 GHz, respectively: These numbers refer to the
point spread function (PSF) or Full Width at Half Maximum (FWHM) of the synthesized beam, which
is the inverse Fourier transform of a (weighted) (u, v) sampling distribution.

ALMA delivers continuum images and spectral line cubes with frequency characterizing the
third axis. The data cubes are provided with up to 7680 frequency channels, with the channel width
indicating the spectral resolution (from 3.8 kHz to 15.6 MHz).

2.1. ALMA Images

The sky brightness distribution, collected by each antenna, is correlated for given baselines.
The measurements obtained from the correlators in an array allow one to reconstruct the complex
visibility function of the celestial source. The Van Cittert–Zernike theorem [9] provides the Fourier
transform relation between the sky brightness distribution and the array response (or primary
beam) [10].

In simplified form, the complex visibility can be stated as follows:

V(u, v) =
∫∫

A(l, m) · I(l, m)e2πi(ul+vm)dldm ≈ Aeiφ. (1)

In aperture synthesis analysis, the goal is to solve Equation (1) for I(l, m) in the image plane
by measuring the complex-valued and calibrated V(u, v). The coordinates u, v, measured in units of
wavelength, characterize the spatial frequency domain. The (u, v) plane is effectively composed by the
projections of baselines onto a plane perpendicular to the source direction. The calibrated V(u, v) and
I(l, m) are given in units of flux density (1 Jy = 10−23 ergs cm−2 s−1 Hz−1) and of surface brightness
(Jy/beam area), respectively. The antenna reception pattern A(l, m) is relevant for the primary beam
correction. The amplitude (A) and the phase (φ) inform us about source brightness and position
relative to the phase center at spatial frequencies u and v.
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2.2. The Data

A direct application of the inverse Fourier transform of V(u, v) (Equation (1)) is desirable but
suitable only in case of a complete sampling of the spatial frequency domain B(u, v). For a given
configuration, the array provides a discrete number of baselines, being the number of baselines
provided by N · (N − 1)/2, where N is the number of antennas. The sampling of the (u, v) plane is
consequently limited. Hence, the measured complex visibility function is corrupted by the sampling
function: B(u, v) · V(u, v).

The sampling function B(u, v), composed by sinusoids of various amplitude and phase,
is characterized as an ensemble of delta functions accounting for Hermitian symmetry. The inverse
Fourier transform of this ensemble of visibilities provides the dirty image ID(l, m):

ID(l, m) = FT−1{B(u, v)V(u, v)}. (2)

Following the convolution theorem, Equation (2) can be written as follows:

ID(l, m) = b(l, m)× I(l, m)A(l, m). (3)

The dirty image is the convolution of the sky brightness modified by the antenna primary beam
A(l, m) with the dirty beam, given by b(l, m) = FT−1{B(u, v)} (FWHM). The true sky brightness
reconstruction I(l, m) depends on the image fidelity, since the coverage of the (u, v) plane is by
definition incomplete. For this reason the reconstruction of I(l, m) is challenging due to the artefacts
introduced by the dirty beam b(l, m), the sparsity in the data and the big data volume.

3. Common Astronomy Software Applications

CASA is a suite of tools allowing for calibration and image analyses for radio astronomy data [11].
It is especially designed for the investigation of data observed with ALMA and the VLA [12].

The calibration process determines the net complex correction factors to be applied to each
visibility. Corrections are applied to the data due to, e.g., temperature effects, atmospheric effects,
antenna gain-elevation dependencies. It includes solvers for basic gain (A,φ), bandpass, polarization
effects, antenna-based and baseline-based solutions. Between calibration and imaging procedures,
image formation follows in three steps: weighting, convolutional resampling, and a Fourier transform.
This is a general procedure employed by most systems over the last 30 years. In order to produce
images with improved thermal noise and to customize the resolution, the calibrated visibilities undergo
a variety of weighting schemes. The commonly used robust weighting [13] has the property to vary
smoothly from natural (provides equal weight to all samples) to uniform (gives equal weight to
each measured spatial frequency irrespective of sample density) based on the signal-to-noise ratio of
the measurements and a pre-defined noise threshold parameter. The robust weighting scheme has
the advantages to make the effective u-v coverage as smooth as possible while allowing for sparse
sampling, to modify the resolution and theoretical signal-to-noise of the image. Nonetheless, care
has to be taken on the choice of weigthing scheme due to sidelobes effects. The weighted visibilities
are resampled onto a regular uv-grid (convolutional resampling) employing a gridding convolution
function. A fast Fourier transform is applied on the resampled data and corrections are introduced to
transform the image into units of sky brightness. The resulting dirty image ID(l, m) is deconvolved
from the well-known dirty beam b(l, m). A model of the sky brightness distribution is obtained,
allowing for the creation of the dirty/residual image, as the result of a convolution of the true sky
brightness and the PSF of the instrument. The dirty image arises or from single pointing or from
mosaics. Last, CASA offers facilities for simulating observations.

3.1. Deconvolution

Most interferometric imaging in CASA is done using the tclean task. This task is composed by
several operating modes, allowing for the generation of images from visibilities and the reconstruction
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of a sky model. Continuum images and spectral line cubes are handled. Image reconstruction
occurs employing an outer loop of major cycles and an inner loop of minor cycles, following the
Cotton-Schwab CLEAN style [14]. The major cycle accounts for the transformation between data and
image domains. The minor cycle is designed to operate in the image domain. An iterative weighted χ2

minimization is implemented to solve for the measurement equations.
Several algorithms for image reconstruction (deconvolvers) in the minor cycle are available,

e.g., Hogbom [15], Clark [16], Multi-Scale [17], Multi-Term [18]. Each minor cycle algorithm can be
characterized by their own optimization scheme, framework and task interface with the pre-requisite
to produce a model image as output. BRAIN has the potentials to become a deconvolution algorithm
within the tclean task.

3.2. Simulated ALMA Data

The CASA simulator takes on input a sky model to create a customized ALMA interferometric or
total power observations, including multiple configurations of the 12-m array. The CASA simulator is
characterized by two main tasks: simobserve, simanalyze. The task simobserve is used to create a model
image (or component list), i.e., a representation of the simulated sky brightness distribution, and the
(u, v) data. The dirty image is created with the task simanalyze.

In Figure 1, 13 point-like and extended sources are simulated at 97 GHz in the 12-m array for an
integration time of 30 s and a total observing time of 1 h. The simulated sources are characterized by a
Gaussian flux distribution in the range 0.2–5.0 Jy. Low thermal noise is introduced. The image size is
composed by [1024, 1024] pixels, covering 10 arcsec on the side. These and more sofisticated simulated
data are planned to be used for the feasibility study.

Figure 1. Simulated ALMA interferometric data: (a) the simulated model image (2.435–10.685) × 10−5

[Jy/pixel], (b) the synthesized (dirty) beam (−0.02–0.04) [Brigthness pixel unit], (c) the simulated sky
(−0.25–3.76) × 10−3 [Jy/beam], (d) the dirty image (−0.05–0.08) [Jy/beam].

4. BRAIN

An ALMA dirty image (Equation (3)) is characterizable or by continuum or by line detection for
a given bandwidth. The detected celestial source intensities can be in absorption or emission with
negative or positive values, respectively. We assume that the data went through a robust calibration
process. Gaussian statistics describes the data distribution. Nonetheless, efforts are also sought to
account for glitches in the calibration process. For those cases, BRAIN is planned to implement an
improvement in the data modelling accounting for a Gaussian distribution with a longer tail. The data
set in image space is D = {dij} ∈ R in Jansky per pixel cell {i, j}. Following the work of [3], an
astronomical image consists of a composition of background and celestial signals. The background is

98



Proceedings 2019, 33, 21

defined as the small scale perturbance of the wanted celestial signal. Two complementary hypotheses
are introduced:

{
Bij : dij = bij + εij

Bij : dij = bij + sij + εij.
(4)

Hypothesis Bij specifies that the data dij consists only of background intensity bij spoiled with
noise εij, i.e., the (statistical) uncertainty associated with the measurement process. Hypothesis Bij

specifies the case where additional source intensity sij contributes to the background. Additional
assumptions are that negative and positive values for source and background amplitudes are allowed
and that the background in average is smoother than the source signal.

The background signal is propagated from the visibilities noise, taking into account that the
Fourier Transform is a linear combination of the visibilities with some rotation (phase factor) applied.
The noise on the visibilities is mainly introduced, e.g., by cosmic, sky and instrumental (due to receiver,
single baseline or antenna, total collecting area, autocorrelations) signals. It is expected that real and
imaginary part in the visibility noise is uncorrelated, with the phase factor not affecting the noise.
Moreover, the individual visibilities are combined at the phase center and weighted, gridding correction
and primary beam correction are increasing noise in the image. The noise in ALMA images is not
uniform, with the noise increasing towards the edge. Mosaics of images are particularly cumbersome.

The background amplitude is modelled with a thin-plate-spline, with the support points chosen
sparsely in order not to fit the sources [3]. The background model takes into account the dirty beam
information, in order to deconvolve the dirty beam from the dirty image. The spline model is under
further development to account for a more flexible design. The supporting points are analysed to
account for a dynamic setting, where the number and positions of the supporting points are chosen on
the basis of the data. This work follows [2] successfully developed in experimental spectra.

Estimates of the hypotheses Bij and Bij are the direct effort of this analysis. The likelihood
probability for the hypothesis Bij within Gaussian statistics is:

p(dij | Bij, bij) = (2πσ2
ij)
− 1

2 exp[−(dij − bij)
2/2σ2

ij]. (5)

For the alternative hypothesis, a similar equation is applied with included the signal contribution.
Similar to what was done in [2,3], the signal is considered as a nuisance parameter. Following the
Maximum Entropy distribution, a two-sided exponential function is chosen to describe the mean
source intensity in the field (λ+/− =< sij >):

p(sij|λ+, λ−) =
{

λ−1
+ exp(−sij/λ+), sij ≥ 0

λ−1− exp(+sij/λ−), sij < 0.
(6)

The parameters λ+ and λ− are positive values, allowing one to introduce two different scales
for the signal dependently on its sign. The likelihood for the hypothesis Bij is given following the
marginalization rule:

p(dij | Bij, bij, λ) =
∫ +∞

−∞
dsij p(dij|sij, Bij, bij)p(sij|λ+, λ−)

=
1

2|λ+|

{
1 + erf

[
λ+(dij − bij)− σ2

ij

|λ+|
√

2σ2
ij

]}
exp

[
λ+(dij − bij) + σ2

ij/2

λ2
+

]
+ (7)

+
1

2|λ−|

{
1 + erf

[−λ−(dij − bij)− σ2
ij

|λ−|
√

2σ2
ij

]}
exp

[−λ−(dij − bij) + σ2
ij/2

λ2−

]
.
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The data are modelled by a two-component mixture distribution in the parameter space within
the Bayesian framework. In this way, background and sources with their respective uncertainties are
jointly detected. The likelihood for the mixture model combines the probability distribution for the
two hypotheses, Bij and Bij:

p(D|b, s, λ) = ∏
ij

{
p(Bij) · p(dij|Bij, bij) + p(Bij) · p(dij|Bij, bij, λ+, λ−)

}
, (8)

where b = {bij}, s = {sij}, λ = {λ+/−} and {ij} corresponds to the pixels of the complete field.
The prior pdfs p(Bij) and p(Bij) for the two complementary hypotheses describe the prior knowledge
of having background only or additional signal contribution, respectively, in a pixel. These prior pdfs
are chosen to be constant, independent of i and j: p(Bij) = β and p(Bij) = 1− β. The likelihood
for the mixture model allows us to estimate the parameters entering the models from the data.
The ultimate goal is to detect sources independently to their shape and intensity and to provide a
robust uncertainty quantification. Therefore, Bayes’theorem is used to estimate the probability of the
hypothesis p(Bij | dij, bij, λ) for detecting celestial sources.

5. Concluding Remarks

The work is ongoing for this project. The novel technique, applied to ALMA interferometric data,
is designed to create probability maps of source detection, allowing for a joint estimate of background
and sources. A 2-D adaptive kernel deconvolution method will strengthen the deconvolution process
of the dirty beam from the dirty image, reducing contaminations. BRAIN has the aim to provide an
alternative technique in CASA image analysis. It is foreseen that a robust solution as model image is
produced. The next effort is applied on the simulated data. Nonetheless, due to the statistical approach
employed, BRAIN is also foreseen to be applied on data re-combination. In fact, advanced methods
employing Bayesian probability theory have the potentials to address at best the analysis of combined
short-spacing single-dish data with those from an interferometer, as provided by ALMA design.
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Abstract: We present a novel implementation of the adaptively annealed thermodynamic integration
technique using Hamiltonian Monte Carlo (HMC). Thermodynamic integration with importance
sampling and adaptive annealing is an especially useful method for estimating model evidence
for problems that use physics-based mathematical models. Because it is based on importance
sampling, this method requires an efficient way to refresh the ensemble of samples. Existing
successful implementations use binary slice sampling on the Hilbert curve to accomplish this task.
This implementation works well if the model has few parameters or if it can be broken into separate
parts with identical parameter priors that can be refreshed separately. However, for models that are
not separable and have many parameters, a different method for refreshing the samples is needed.
HMC, in the form of the MC-Stan package, is effective for jointly refreshing the ensemble under a
high-dimensional model. MC-Stan uses automatic differentiation to compute the gradients of the
likelihood that HMC requires in about the same amount of time as it computes the likelihood function
itself, easing the programming burden compared to implementations of HMC that require explicitly
specified gradient functions. We present a description of the overall TI-Stan procedure and results for
representative example problems.

Keywords: model comparison; MCMC; thermodynamic integration; HMC

1. Introduction

Thermodynamic integration (TI) is a numerical technique for evaluating model evidence integrals.
The technique was originally developed [2] to estimate the free energy of a fluid. Various improvements
and changes have been made over the decades, and the incarnation of the technique that our method
is based on is the adaptively-annealed, importance sampling-based method described by Goggans
and Chi [3]. Their implementation follows John Skilling’s BayeSys [4], and both make use of Binary
slice sampling (BSS) and the Hilbert curve to complete the implementation. This article proposes a
modification of this method that uses PyStan [5,6] and the No U Turn Sampler (NUTS) [7] instead
of BSS and the Hilbert curve. This article is an adaptation of portions of the first author’s doctoral
dissertation ([1] Chapter 3). A Python 3 implementation of this method by the authors can be found
on GitHub (https://github.com/rwhender/ti-stan) [8].

1.1. Motivation

The family of adaptively-annealed TI methods are important for solving model comparison
problems in engineering, where we frequently need to evaluate complex physics-based mathematical
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models. TI methods with fixed annealing schedules (e.g., [9,10]) are useful for solving more traditional
statistics problems, but tend to fail with the complex models that arise in engineering problems. TI
methods that use BSS on the Hilbert curve are useful for a large set of problems; however, these
methods see diminishing returns when the number of model parameters grows somewhat large (> 10
or so). These performance issues can be mitigated if the model equation can be decomposed into
additive components with identical form and equivalent joint priors on their parameters. However,
for problems with many model parameters and with model equations that cannot be decomposed, a
different class of methods is required.

1.2. Background

From Bayes’ theorem, for model vector M, data vector D, model parameter vector Θ, and prior
information I, the model evidence is

p(D|M, I) =
∫

p(D|Θ, M, I)p(Θ|M, I)dΘ. (1)

Here we introduce an inverse temperature parameter, β, that will control how much the likelihood
influences the evidence value,

p(D|M, β, I) =
∫

[p(D|Θ, M, I)]β p(Θ|M, I)dΘ. (2)

The full derivation is omitted here. The result is the thermodynamic integral form of the model
evidence,

log p(D|M, β, I) = −
∫ 1

0
〈EL(Θ)〉β dβ , (3)

where the energy term is defined as the negative log-likelihood:

EL(Θ) = − log p(D|Θ, M, I). (4)

The integral in (3) usually cannot be evaluated analytically. For problems with relatively simple
models, a fixed temperature ladder can be used, and Markov chain Monte Carlo (MCMC) can be
used to estimate the expected energy at each temperature. However, for the class of problems we
are concerned with, an approach in which the subsequent temperature is computed based on the
conditions observed in the current step is necessary. This process is known as adaptive annealing. The
general procedure as described by [3] is as follows:

1. Start at β = 0 where p(Θ|M, D, β, I) = p(Θ|M, I), and draw C samples from this distribution
(the prior).

2. Compute the Monte Carlo estimator for the expected energy at the current β,

〈EL(Θ)〉β ≈
1
N

C

∑
t=1

EL(Θt) , (5)

where Θt is the current position of the t-th Markov chain.
3. Increment β by Δβi, where

Δβi =
log

max wj
min wj

max EL(Θi)−min EL(Θi)
, (6)

j is the index on the chains, wj is the weight associated with chain j, and

wj = exp[−ΔβiEL(Θj)]. (7)
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4. Re-sample the population of samples using importance sampling.
5. Use MCMC to refresh the current population of samples. This yields a more accurate sampling of

the distribution at the current temperature. This step can be easily parallelized, as each sample’s
position can be shifted independently of the others.

6. Return to step 2 and continue until βi reaches 1.
7. Estimate (3) using quadrature and the expected energy estimates built up using (5).

In this procedure, steps 3 and 4 are closely connected. In order to refresh the sample population
most effectively, the importance sampling step should discard and replace at most 1 sample per
temperature. New temperatures are chosen in a way that encourages this behavior. The term log

max wj
min wj

is a method parameter that can be set to make the adaptive annealing process more or less aggressive.
Values of this parameter only slightly greater than one encourage a slow annealing, while higher
values encourage a faster process.

2. Materials and Methods

The main innovation of this article relates to the implementation of step 5. As of Summer 2018,
a survey of the available modern implementations of MCMC methods indicated that MC Stan (or
simply Stan) [5], was the gold standard for general purpose MCMC. Stan uses NUTS [7] as the
basis for its sampling functions. NUTS is based on Hamiltonian Monte Carlo (HMC) [11], which
uses the gradient of the log-likelihood function to more efficiently explore the posterior distribution.
NUTS improves upon HMC by automatically choosing optimal values for HMC’s tunable method
parameters. NUTS has been shown to sample complex distributions effectively. We sought to build an
improved thermodynamic integration implementation by using Stan instead of binary slice sampling
and leapfrog sampling to refresh the sample population at each temperature within TI. The result,
Thermodynamic integration with Stan (TI-Stan), is described in this section.

The TI-Stan algorithm is shown in Algorithm 1.
Our implementation is in Python, so we made use of the PyStan interface to Stan [6]. Stan defines

its own language for defining statistical models, which allows it to efficiently compute the derivatives
needed for HMC via automatic differentiation. For a particular problem, it is therefore necessary
to write a Stan file that contains the Stan-formatted specification of the model, in addition to the
pure-Python energy functions necessary for TI with BSS. Once one is familiar with the simple Stan
language, this additional programming cost becomes trivial compared to the time savings achieved by
using this method instead of BSS.

105



Proceedings 2019, 33, 9

Algorithm 1 Thermodynamic integration with Stan

1: procedure TI(P, S, C, W, data)
2: Inputs: P–Number of parameters, S–Number of Stan iterations per temperature, C–Number of

chains, W–Ratio to control adaptive annealing, data–Data
3: for m ← 1, C do
4: for j ← 1, P do
5: αm

j ← RAND(0, 1)
6: end for
7: E∗m ← ENERGY(αm, data)
8: end for
9: i ← 1

10: Compute 〈E∗〉i
11: β1 ← min{log(W)/[max(E∗)−min(E∗)], 1}
12: w ← exp(−β1E∗)
13: IMPORTANCESAMPLING(w, α, E∗, C)
14: while βi > 0 and βi < 1 do
15: for m ← 1, C do
16: STANSAMPLING(αm, E∗m, C, P, S, βi, data)
17: end for
18: i ← i + 1
19: Δβ ← log(W)/[max(E∗)−min(E∗)]
20: βi ← min(βi−1 + Δβ, 1)
21: if βi−1 + Δβ > 1 then
22: Δβ ← 1− βi−1
23: end if
24: w ← exp(−ΔβE∗)
25: IMPORTANCESAMPLING(w, α, E∗, C)
26: end while
27: Estimate (3) using trapezoid rule and {βi} and {〈E∗〉i}
28: end procedure

2.1. Tests

We use two test problems to demonstrate TI-Stan in practice. These test problems are
described below.

2.1.1. Twin Gaussian Shells

The first example is the twin Gaussian shell problem from [12]. In [12], the authors present results
for this problem in up to 30 dimensions. Handley, et al. [13] also use this problem in 100 dimensions
to test their algorithm. This problem presents a few interesting challenges. Because the likelihood
takes the form of a thin, curved density whose mass centers on a hyper-spherical shell, MCMC moves
are difficult to make efficiently. The bimodal distribution is also challenging to sample effectively.
Finally, the examples we explore are high-dimensional to the point that standard numerical integration
techniques would be useless.

The likelihood function in the twin Gaussian shells problem takes the form,

L(Θ) =
1√

2πw1
exp

[
− (|Θ− c1| − r1)

2

2w2
1

]
+

1√
2πw2

exp

[
− (|Θ− c2| − r2)

2

2w2
2

]
. (8)

Following [12], we set the parameters as follows: w1 = w2 = 0.1, r1 = r2 = 2, c1 = [−3.5, 0, · · · , 0]T ,
and c2 = [3.5, 0, · · · , 0]T . We use a uniform prior over the hypercube that spans [−6, 6] in each
dimension.
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2.1.2. Detection of Multiple Stationary Frequencies

For the second test, we estimate the number of stationary frequencies present in a signal. This
problem is similar to the problem of multiple stationary frequency estimation in [14, Chapter 6], with
the additional task of determining the number of stationary frequencies present. Differences among
log-evidence values for models containing either the most probable number of frequencies or more
tend to be small, meaning that a precise estimate of these log-evidence values is essential to the task of
determining the most probable model.

Each stationary frequency (j) in the model is determined by three parameters: the in-phase
amplitude (Aj), the quadrature amplitude (Bj), and the frequency ( f j). Given J stationary frequencies,
the model at time step ti takes the following form:

g [ti; Θ] =
J

∑
j=1

Aj cos
(
2π f jti

)
+ Bj sin

(
2π f jti

)
, (9)

where Θ is the parameter vector

Θ =
[
A1 B1 f1 · · · AJ BJ f J

]T .

For the purposes of this test the noise variance used to generate the simulated data is known, hence
we use a Gaussian likelihood function,

L(Θ) =
K

∏
i=1

exp

{
− [g (ti; Θ)− di]

2

2σ2

}
, (10)

for K simulated data di and noise variance σ2. The log-likelihood function is then

logL(Θ) = −
K

∑
i=1

[g (ti; Θ)− di]
2

2σ2 . (11)

Each model parameter is assigned a uniform prior distribution with limits as shown in Table 1.

Table 1. Prior bounds for multiple stationary frequency model parameters.

Lower Bound Upper Bound

Aj −2 2
Bj −2 2
f j 0 Hz 6.4 Hz

Our test signal is a sum of two sinusoidal components, and zero-mean Gaussian noise with
variance σ2 = 0.01. This signal is sampled at randomly-spaced instants of time, in order to demonstrate
that this time-domain method does not require uniform sampling to perform spectrum estimation.
Bretthorst [15] demonstrates that the Nyquist critical frequency in the case of nonuniform sampling is
1/2ΔT′, where ΔT′ is the dwell time. The dwell time is not defined for arbitrary-precision time values
as used in this example, so we must choose another limiting value. A more conservative limit is given
by 1/10ΔTavg, where ΔTavg is the average spacing between time steps, 1/64 s. This formulation yields
a prior maximum limit of 6.4 Hz, as shown in Table 1. The parameters used to generate the simulated
data are shown in Table 2.
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Table 2. Parameters used to generate simulated signal.

j Aj Bj fj (Hz)

1 1.0 0.0 3.1
2 1.0 0.0 5.9

3. Results

For these tests, performance is compared among the Thermodynamic integration with binary slice
sampling (TI-BSS) method and the TI-Stan method. The settings used for TI-BSS are shown in Table 3,
while the settings used for TI-Stan are shown in Table 4. For each example, the user-defined annealing
control constant W was set to both 1.5 and 2.0. For the box-plots in this section, the middle line
represents the median value, the box is bounded by the upper and lower quartiles, and the whiskers
extend to the range of the data that lies within 1.5 times the inter-quartile range. Any data points past
this threshold are plotted as circles.

Table 3. Parameters for TI-BSS examples.

Parameter Value Definition

S 200 Number of binary slice sampling steps
M 2 Number of combined binary slice sampling and leapfrog steps
C 256 Number of chains
B 32 Number of bits per parameter in SFC

Table 4. Parameters for TI-Stan examples.

Parameter Value Definition

S 200 Number of steps allowed in Stan
C 256 Number of chains

These results were generated on a Google Cloud instance with 32 virtual Intel Broadwell CPUs
and 28.8 GB of RAM.

First, we present results for the twin Gaussian shells distribution with 10 dimensions. A box-plot
summarizing the log-evidence estimates over 20 runs each for TI-Stan and Thermodynamic integration
with binary slice sampling and the Hilbert curve (TI-BSS-H) and for each value of W is shown in Figure
1a. A box-plot summarizing the run times over 20 runs each for the TI methods is shown in Figure 1b.

(a) (b)

Figure 1. Twin Gaussian shell test results. (a) Box-plot of log-evidence for the 10-D twin Gaussian shell
problem for TI-Stan and TI-BSS-H; (b) Box-plot of run time in seconds for the 10-D twin Gaussian shell
problem for TI-Stan and TI-BSS-H.
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Second, we present results for the detection of multiple stationary frequencies problem. Box-plots
of log-evidence values for a model assuming one, two, and three frequencies present are shown in
Figures 2a, 3a, and 4a. For the models with one and three frequencies present, results are shown
for TI-Stan, TI-BSS-H, and Thermodynamic integration with binary slice sampling and the Z-order
curve (TI-BSS-Z) [16]. For the model with two frequencies present (the model also used to generate
the test signal), results for TI-BSS-Z are not shown. For this model, TI-BSS-Z ended early here and did
not arrive at a reasonable result. Box-plots of the run time for models assuming one, two, and three
frequencies present are shown in Figures 2b, 3b, and 4b.

(a) (b)

Figure 2. MSF model with J = 1 results. (a) Box-plot of log-evidence for the one stationary frequency
model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W; (b) Box-plot of run time for the one
stationary frequency model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W.

(a) (b)

Figure 3. MSF model with J = 2 results. (a) Box-plot of log-evidence for the two stationary frequency
model for TI-Stan and TI-BSS-H, for two values of W; (b) Box-plot of run time for the two stationary
frequency model for TI-Stan and TI-BSS-H, for two values of W.
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(a) (b)

Figure 4. MSF model with J = 1 results. (a) Box-plot of log-evidence for the three stationary frequency
model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W; (b) Box-plot of run time for the three
stationary frequency model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W.

4. Discussion

Regarding the twin Gaussian shells test, the analytical log-evidence for this distribution [12]
is −14.59. None of the configurations tested actually reached that value (Figure 1a, but the runs
using W = 1.5 got closest, suggesting that a value of W closer to 1 would perhaps approach the
correct value more closely. Figure 1b shows that the run time drastically increases as W approaches
1. It also shows that TI-BSS-H takes about 6 times longer, on average, than TI-Stan to compute its
estimate of the log-evidence. According to Figure 1a, the two methods have comparable accuracy and
precision, so this difference in run time illustrates the difficulty the Hilbert curve-based method has
with distributions of high dimension.

Regarding the detection of multiple stationary frequencies test, there are no analytical log-evidence
values available. We argue that a method is successful if the model used to generate the data clearly
has the highest log-evidence, with a good margin between it and the log-evidence for the other models.
Figures 2a and 4a show some significant disagreement among the various methods for the “wrong”
models (those with one and three frequencies), but Figure 3a shows that the methods are in much
closer agreement for the two frequency model. For TI-Stan and TI-BSS-H and for both values of W,
the two frequency model is clearly the maximum-log-evidence choice. Even with the variations in the
runs, the results do not overlap at any point from model to model, and the closest model-to-model
margins are all greater than 2.3, which corresponds to an odds of 10.

In Figure 2b, TI-Stan has the greatest run time for both values of W, suggesting that its adaptive
sampling process had trouble efficiently sampling distributions based on this high-error model.
TI-BSS-H was much faster, and TI-BSS-Z was faster still. In Figure 3b, the run times of TI-Stan
and TI-BSS-H are comparable. This suggests that TI-Stan was able to more effectively sample the
distribution based on the lower-error model. Figure 4b shows a similar pattern in the run times
to Figure 2b. The fact that this model is able to fit the noise in the data (yielding especially sharp
distributions) and the fact that the distribution is increasingly multi-modal as the number of frequencies
increases may explain why TI-Stan took a long time to compute a result here.

These preliminary results indicate that TI-Stan is a promising method for computing model
evidence for problems with complex physics-based mathematical models. Results for further
problems, including the twin Gaussian shell problem with up to 100 dimensions, can be found
in ([1] Chapter 3). Future work could further evaluate this method’s usefulness by solving real complex
model comparison problems in engineering.
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Abbreviations

The following abbreviations are used in this manuscript:

TI Thermodynamic integration
BSS Binary slice sampling
TI-Stan Thermodynamic integration with Stan
TI-BSS Thermodynamic integration with binary slice sampling
TI-BSS-H Thermodynamic integration with binary slice sampling and the Hilbert curve
TI-BSS-Z Thermodynamic integration with binary slice sampling and the Z-order curve
HMC Hamiltonian Monte Carlo
NUTS No U Turn Sampler
MCMC Markov chain Monte Carlo
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Abstract: In these days of fast-paced business, accurate automatic color or pattern detection is a
necessity for carpet retailers. Many well-known color detection algorithms have many shortcomings.
Apart from the color itself, neighboring colors, style, and pattern also affects how humans perceive
color. Most if not all, color detection algorithms do not take this into account. Furthermore, the
algorithm needed should be invariant to changes in brightness, size, and contrast of the image. In a
previous experiment, the accuracy of the algorithm was half of the human counterpart. Therefore,
we propose a supervised approach to reduce detection errors. We used more than 37,000 images
from a retailer’s database as the learning set to train a Convolutional Neural Network (CNN, or
ConvNet) architecture.

Keywords: color detection; pattern detection; carpet images; convolutional neural network

1. Introduction

The wave of digitalization is taking over many business areas; carpet selling is no exception. With
its recent exponential growth, electronic carpet retailers are selling more carpets than ever. Like most
businesses, these retailers need to automate their process, which typically involves getting a container
of carpets, tagging them and adding them to an online catalog. While the first and the last phase
have already been automated, due to the lack of a common and extensive standard between major
carpet exporters from major hand-turfed carpet hubs like Iran, India, and Afghanistan, many retailers
have to employ carpet experts to generate the metadata visually. Current literature does not seem
to provide any acceptable computational model that requires a minimal change in the production
pipeline. We took e-Carpet Gallery (www.ecarpetgallery.com) (e-CG) work-flow as an example and
tried to automate its second step.
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E-CG’s work-flow consists of three steps. First, a container full of carpet arrives at the warehouse,
the employees unload the container, take pictures of the rugs and fill out the empty fields of features
of carpets for each carpet one by one then move them to storage. Due to the volume of operation,
employees have a limited time to tag the carpets. The repetitive nature of the task mixed with
its complexity makes either the process slow(multiple checks) or very error-prone. The markets
have started automating the more deterministic and less opinionated parts of the process like the
measurement of weight, width, length, and shape of carpets. However, there is no method to classify
nominal features like material and quality of the carpets. Accurate determination of qualitative or
hybrid features such as color, pattern, and style, are essential for shoppers but is very difficult. While
this process has matured over the years, its accuracy much to desire. In this work, we apply a few
selected image processing algorithms to e-CG’s database. This e-CG is a production-level database
with a reasonable error rate and contains fields like top-down image, pattern, and color (main color).
We focus on the automatic labeling of two qualitative features: color and pattern. Well-known and
intuitive color detection method such as the pixel count of clustered image’s pixels fail due to the
difference between a visual human color assessment of a carpet(or any other abstract image) and, e.g.,
counting the number of high-frequency pixels. This is due to the association between color and pattern
in a carpet. A reoccurring example is that the color of a carpet with a big red flower in its center is
usually red based on a human assessment, even when most of the carpet is a lighter color like beige.
To the authors’ knowledge, CNNs are not yet applied as a classification tool for patterns and colors of
carpets. However, CNN applies in color detection [1], for example, in the vehicle color recognition [2].
In the next section, we introduce two features of carpets and their levels (or labels). In Section 3, we
point out a few technical issues. We apply a few classification methods as well as CNN for pattern
and color.

2. Database and Features

E-CG has a database with more than one million carpet images. We only consider a sample
of 37,000 carpets from the last two years to speed up the classification process. We introduce three
features: color, pattern, and style via frequency bar charts. The level names of each feature are listed
alphabetically in the corresponding graph. Figure 1 shows color levels and a sample of images to
demonstrate color levels in a real database. One can find that the red color has a high-frequency level
and is one of the unbalancing element of the database. Levels’ frequency chart of patterns is plotted in
Figure 2. The number of pattern levels is fixed based on the dataset. Figure 3 illustrates sample image
patterns and their corresponding edges to clarify the different patterns.

Figure 1. Frequency bar chart of pattern levels. Level names are sorted alphabetically.
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Figure 2. (Top): Sample carpet with their pattern levels. (Bottom): Corresponding edges of top images.
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Figure 3. Pattern classification confusion matrix.

We consider a sample of recorded data that each feature level had at least 100 occurrences in
our selected time frame. While 100 may have arbitrarily selected, this ensures that we do not have
to deal with features and categories that do not often appear in production, thus reducing the model
complexity and the error rate introduced by using unbalanced data.

3. Classification

Before turning to the methodology of classification algorithms, we point out to essential
technical issue:

• Color accuracy has always been an issue for professional photographers, designers, and printers
to deal with it on a daily basis. The images we got were not very uniformly photographed.
They were not very uniformly lighted, with the top of the image being the brightest and bottom
being darkest.

• The size of carpets are very irregular; this makes the use of CNN rather hard because runner
carpets will end up with a lot of white space.
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3.1. Pattern

For pattern, we decided that it would be reasonable to start with CNN. Since we did not have
the computational power to train a CNN from scratch, we used the XCeption architecture [3], with
pre-trained weights on ImageNet, a model with a high top 1 accuracy on ImageNet, which seems
good at understanding patterns. XCeption architecture has fewer parameters and more accuracy with
respect to a few tested architectures. However, one may find a better CNN architecture with high-level
hardware. We removed the top layers and added two dense layers, one with twice as many nodes
as the number of patterns with an ELU (Exponential Linear Unit) activation and a softmax layer to
classify. We trained the network with an Adam optimizer [4], for 60 epoch with randomly rotated,
sheared, and flipped images. Due to the unbalancedness of the database, we decided to under-sample
everything. It’s worth noting that patterns that are similar or not well defined like “open field” and
“diamond” tend to get misclassified often by humans and machines.

In Figure 4, we report the percentage of classified test dataset that was 20% of database images;
this figure present pattern classification confusion matrix. The actual and predicted values are row
and column of the confusion matrix, respectively. We make a column-wise normalization for a better
interpretation. The last column shows the sum of misclassified that can be considered as a bias
indicator. One can observe that the diagonal of the matrix is bolded that shows the performance of the
proposed algorithm is more than 80%.

3.2. Color

We Used K-means clustering algorithm to find a value representing each image, then run a
classification algorithm, AdaBoost [5], on the result. This two-step classification method is used
to speed up AdaBoost algorithm. The accuracy was around 45%. Three contributing factors
where observed:

1. Colors are tightly stacked, and very similar colors like ivory and beige or dark copper and red
get misclassified often,

2. The image was not calibrated.
3. The majority does not always mean most dominant as having a small area of a dominant color

like red or black will result in a red or black carpet. Therefore, we decided to reuse the network
from Pattern Recognition.

With all of this in mind were-trained the CNN we used for pattern recognition and got a similar
result to the two steps classification. As we had expected, the network often confused similar colors
like the previous experiment. It’s possible that unless the pictures are very well calibrated nothing can
give an accurate result. The results were acceptable despite the low accuracy because color ranges are
not really well defined and the network mostly confused resemblant colors like beige and ivory.

The confusion matrix of CNN for color, similar to the pattern feature, is plotted in Figure 5. We can
observe that the performance is similar to the above two steps k-means-AdaBoost algorithm is less
than 50%.
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Figure 4. Frequency bar chart and a sample of color level labels. Label names are sorted alphabetically.
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Figure 5. Color classification confusion matrix.
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Abstract: In the Entropic Dynamics (ED) framework quantum theory is derived as an application of
entropic methods of inference. The physics is introduced through appropriate choices of variables and
of constraints that codify the relevant physical information. In previous work, a manifestly covariant
ED of quantum scalar fields in a fixed background spacetime was developed. Manifest relativistic
covariance was achieved by imposing constraints in the form of Poisson brackets and of intial
conditions to be satisfied by a set of local Hamiltonian generators. Our approach succeeded in
extending to the quantum domain the classical framework that originated with Dirac and was later
developed by Teitelboim and Kuchar. In the present work the ED of quantum fields is extended
further by allowing the geometry of spacetime to fully partake in the dynamics. The result is a
first-principles ED model that in one limit reproduces quantum mechanics and in another limit
reproduces classical general relativity. Our model shares some formal features with the so-called
“semi-classical” approach to gravity.

Keywords: quantum gravity; quantum field theory; entropy; geometry; Hamiltonian dynamics;
quantum foundations

1. Introduction

Efforts to develop a theory of quantum gravity (QG) have been dedicated, principally, to two
main candidates—string theory (ST) and loop quantum gravity (LQG). (For a review see e.g., [1])
But despite the general sentiment that these programs are markedly different, they share some
fundamental commonalities not usually discussed. Namely, these programs share a rather strict view
of QG in which gravitation is itself a quantum force, akin to the electroweak and strong forces of
the standard model; such approaches may aptly be referred to as quantized gravity theories. But QG,
broadly construed, is not simply a program of quantized gravity. Indeed, although interest in QG is
driven by a variety of reasons (see e.g., [2]), a very basic motivation is that of consistency: if matter,
which is well-described by quantum theory (QT), is a source of energy, momentum, and so on, and if
gravity couples to matter, then there must be some theory, or shared framework that brings the two
together. We conjecture that this common thread is, in fact, entropy.

We propose here a QG candidate formulated entirely within the Entropic Dynamics (ED)
framework. ED is a scheme for generating dynamical theories that are consistent with the entropic
and Bayesian rules for processing information (For a review of entropic and Bayesian methods,
see e.g., [3,4]). Among the successes of the ED framework are principled derivations of several aspects
of the quantum formalism (For a review of current work, see e.g., [5]) that are also sensitive to,
and indeed, help to clarify many conceptual issues that plague QT [6]. The standout feature of ED
that makes this possible is that a clear delineation is maintained between the ontological, or physical,
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aspects of the theory and those that are of epistemological significance. The distinction is important:
the ontic, or physical, variables are the subject of our inferences, and it is their values we wish to predict.
The ability to make such predictions, however, depends on the available information, which in ED is
codified in the constraints. In short, ED is a dynamics driven by constraints.

In previous work [7], ED was utilized to derive the standard quantum field theory on curved
space-time (QFTCS) by making a particular choice of constraints, appropriate for a scalar field χx

propagating on a fixed background space-time. One constraint involved the introduction of a drift
potential φ that guides the flow of the probability ρ, while another was the employment of a canonical
formalism, i.e., Hamiltonians, for driving their joint dynamics. But in the context of a manifestly
relativistic theory, further constraints are needed. In [7] these were supplied by the adoption of the
covariant canonical methods of Dirac, Hojman, Kuchař, and Teitelboim (DHKT). We briefly review their
work. Within the DHKT scheme, time evolution unfolds as an accumulation of local deformations in
three-dimensional space, constrained by the requirement that the evolution of three-dimensional space
be such that it sweeps a four-dimensional space-time. The criterion for accomplishing this, called path
independence by Kuchař and Teitelboim, results in an “algebra" to be satisfied by the generators of
deformations (The quotes in “algebra" are meant as a reminder that local deformations do not form
a true group; while two deformations can be composed to form another, the composition depends
on the original surface). An interesting aspect of the DHKT approach is that whether one deals with
an externally prescribed space-time, or whether the background geometry is itself truly dynamical,
the “algebra" to be satisfied remains the same [8] (see also [9]). The true distinction manifests in the
choice of variables to describe the evolving geometry.

Our goal here is to pursue an ED in which the background is itself a full partner in the dynamics.
But we also wish to proceed conservatively; our aim is not,after all, to simply discard information
which has already been proven valuable in ED. Thus we proceed in a minimalist fashion by taking the
constraints of [7] and altering them to account for the additional information; which amounts here
to a different choice of variables to describe the geometry. Following the seminal work of Hojman,
Kuchař, and Teitelboim in [10], we make a choice in which the metric of three-dimensional space is
itself a canonical variable. The ED that emerges from this choice bears great formal resemblance to
the so-called “semi-classical” Einstein equations, but the conceptual differences are enormous: (a) in
direct contradiction to the standard (Copenhagen) interpretation of QT, the scalar matter field is ontic
and thus has definite values at all times. (b) There are no quantum probabilities. The ED approach
is in strict adherence to the Bayesian and entropic principles of inference. (c) There are none of the
paradoxes associated to the quantum measurement problem—which is the main source of objection
to semi-classical gravity (see [11] and references therein). (d) Our geometrodynamics is not a forced
marriage between classical gravity and quantum field theory. It is a first principles framework that
not only derives the correct coupling of matter to gravity, but also reconstructs the theory of quantum
mechanics itself.

The paper is outlined as follows. In Section 2, we give a quick review of the ED of infinitesimal
steps, while we review some basic space-time kinematics in Section 3. In Section 4 we introduce
the notion of a relativistic notion of entropic time. Many of the new results are in Sections 5 and 6,
where we construct a geometrodynamics driven by entropic matter. We discuss our results in Section 7.

2. Reviewing the Entropic Dynamics of Infinitesimal Steps

We adopt the notations and conventions of [7] throughout. We study a single scalar field χ (x) ≡
χx whose values are posited to be definite, but unknown. An entire field configuration, denoted χ,
lives on a 3-dimensional curved space σ, the points of which are labeled by coordinates xi (i = 1, 2, 3).
The space σ is a three-dimensional curved space equipped with a metric gij that is currently fixed,
but that will later become dynamical. A single field configuration χ is a point in an ∞-dimensional
configuration space C. Our uncertainty in the values of the field is then given by a probability
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distribution ρ[χ] over C, so that the proper probability that the field attains a value χ̂ in an infinitesimal
region of C is Prob[χ < χ̂ < χ + δχ] = ρ[χ] Dχ, where Dχ is an integration measure over C.

Maximum Entropy—The goal is to predict the evolution of the scalar field χ. To this end we make
one major assumption: in ED, the fields follow continuous trajectories such that finite changes can be
analyzed as an accumulation of many infinitesimally small ones. Thus we are interested in obtaining
the probability P [χ′|χ] of a transition from an initial configuration χ to a neighboring χ′ = χ + Δχ.
This is accomplished via the Maximum Entropy (ME) method by maximizing the entropy functional,

S [P, Q] = −
∫

Dχ′P
[
χ′|χ] log

P [χ′|χ]
Q [χ′|χ] , (1)

relative to a prior Q [χ′|χ] and subject to appropriate constraints.
The prior Q [χ′|χ] that incorporates the information that the fields change by infinitesimally small

amounts, but which is otherwise maximally uninformative is a product of Gaussians (This prior can
itself be derived from the ME method, and in that case, the αx appear as Lagrange multipliers),

Q
[
χ′|χ] ∝ exp−1

2

∫
dx g1/2

x αx (Δχx)
2 (2)

where g1/2
x = det |gij|1/2 is a scalar density of weight one. (For notational simplicity we write dx′

instead of d3x′). Continuity is enforced in the limit that the scalar-valued parameters αx → ∞.
As argued in [7], a single additional constraint is required to develop a richer quantum dynamics
(Note that since χx and Δχx are scalars, in order that (3) be invariant under coordinate transformations
of the surface the derivative δ/δχx must transform as a scalar density),

〈Δφ〉 =
∫
C

Dχ′ P
[
χ′|χ] ∫ dx Δχx

δφ [χ]

δχx
= κ′, (3)

which involves the introduction of a “drift” potential φ[χ] whose complete justification is still a subject
of future investigation (There is strong reason to believe more compelling answers will come from the
ED of Fermions). Maximizing (1) subject to (3) and normalization, we obtain a Gaussian transition
probability distribution,

P
[
χ′|χ] = 1

Z [αx, gx]
exp−1

2

∫
dx g1/2

x αx

(
Δχx − 1

g1/2
x αx

δφ [χ]

δχx

)2

, (4)

where Z [αx, gx] is the normalization constant. The Gaussian form of (4) allows us to present a
generic change,

Δχx = 〈Δχx〉+ Δwx , (5)

as resulting from an expected drift 〈Δχx〉 plus fluctuations Δwx. While 〈Δwx〉 = 0, because the
distribution is Gaussian, the square fluctuations and expected short steps do not. That is,

〈ΔwxΔwx′ 〉 = 1

g1/2
x αx

δxx′ and 〈Δχx〉 = 1

g1/2
x αx

δφ [χ]

δχx
≡ Δχ̄x . (6)

Therefore, as in [7], the fluctuations dominate the trajectory leading to a Brownian motion.

3. Some Space-Time Kinematics

In geometrodynamics, the primary object of interest is the three-dimensional metric of space gij,
whose time evolution is required to sweep a four-dimensional space-time. Thus coordinates Xμ (μ, ν, ...
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= 0, 1, 2, 3) can still be assigned to space-time, even if its geometry a priori unknown. By construction,
space-time can be foliated by a sequence of space-like surfaces {σ}; that is, its topology is globally
hyperbolic. The embedding of a surface in space-time is defined by four embedding functions
Xμ = Xμ

(
xi).

An infinitesimal deformation of the surface σ to a neighboring surface σ′ is determined by the
deformation vector

δξμ = δξ⊥nμ + δξ iXμ
i , (7)

where nμ is the unit normal to the surface (nμnμ = −1, nμXμ
i = 0) and where Xμ

i (x) = ∂ixXμ(x) are
the space-time components of vectors tangent to the surface. The normal and tangential components
of δξμ, also known as the lapse and shift, are collectively denoted (δξ⊥, δξ i) = δξA and are given by

δξ⊥x = −nμxδξ
μ
x and δξ i

x = Xi
μxδξ

μ
x , (8)

where Xi
μx = gijgμνXν

jx.

4. Entropic Time

In ED, entropic time is introduced as a tool for keeping track of the accumulation of many short
steps. (For additional details on entropic time, see e.g., [3]). Here we introduce a manifestly covariant
notion of entropic time, along the lines of that in [7].

Ordered instants—Central to our formulation of entropic time is the notion of an instant of time.
In a properly relativistic theory in curved space-time, such a notion is provided by an arbitrary
space-like surface, denoted σ (see e.g., [9]). This allows us to define the epistemic state at the instant σ,
characterized by the probability ρσ[χ], the drift potential φσ[χ], etc.

Having established the notion of an instant, including a assignment of the instantaneous
probability ρσ[χ], our task turns to updating from one instant to the next. Such dynamical information
is encoded in the short-step transition probability from Equation (4), or better yet, the joint probability
P [χ′, χ] = P [χ′|χ] ρσ[χ]. A straightforward applications of the “sum rule” of probability theory
suggests that the probability at the next instant is given by

ρσ′ [χ
′] =

∫
Dχ P

[
χ′|χ] ρσ[χ] . (9)

This is the basic dynamical equation for the evolution of probability.

Duration—To complete our construction of time we must specify the duration between instants. In ED
time is defined so that motion looks simple. Since for short steps the dynamics is dominated by
fluctuations, Equation (6), the specification of the time interval is achieved through an appropriate
choice of the multipliers αx. Moreover, following [7], since we deal here with the duration between
curved spaces, this notion of separation should be local, and it is natural to define duration in terms of
the local proper time δ⊥x . More specifically, let

αx =
1

δξ⊥x
so that 〈ΔwxΔwx′ 〉 = δξ⊥x

g1/2
x

δxx′ . (10)

The local-time diffusion equations—The dynamics expressed in integral form by (9) and (10) can be
rewritten in differential form as an infinite set of local equations, one for each spatial point,

δρσ

δξ⊥x
= − g−1/2

x
δ

δχx

(
ρσ

δΦσ

δχx

)
with Φσ [χ] = φσ [χ]− log ρ1/2

σ [χ] . (11)
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As shown in [7], this set of equations describes the flow of the probability ρσ [χ] in the
configuration space C in response to the geometry and the functional Φσ[χ], which will eventually be
identified as the Hamilton-Jacobi functional, or the phase of the wave functional in the quantum theory.
Moreover, when a particular foliation is chosen, these equations collectively form a Fokker-Planck
equation, thus justifying the name, the Local-Time Fokker-Planck (LTFP) equations for Equation (11).

5. Geometrodynamics Driven by Entropic Matter

In an entropic dynamics, evolution is driven by information codified into constraints. An entropic
geometrodynamics, it follows, consists of dynamics driven by a specific choice of constraints,
which we discuss here. In [7], QFTCS was derived under the assumption that the background remains
fixed. But such assumptions, we know, should break down when one considers states describing
a non-negligible concentration of energy and momentum. Thus we must revise our constraints
appropriately. A natural way to proceed is thus to allow the geometry itself to take part in the
dynamical process: the geometry affects ρσ[χ] and φσ[χ], they then act back on the geometry, and so
forth. Our goal here is to make this interplay concrete.

Path independence—In a relativistic theory there are many ways to evolve from an initial instant
to a final one, and each way must agree. This is the basic insight by DHKT in their development of
manifestly covariant dynamical theories. The implementation of this idea, through the principle of
path independence, leads to a set of Poisson brackets (see e.g., [8])

{H⊥x, H⊥x′ } = (gij
x Hjx + gij

x′Hjx′)∂ixδ(x, x′) , (12)

{Hix, H⊥x′ } = H⊥x∂ixδ(x, x′) , (13){
Hix, Hjx′

}
= Hix′ ∂jxδ(x, x′) + Hjx ∂ixδ(x, x′) , (14)

supplemented by the constraints

H⊥x ≈ 0 and Hix ≈ 0 , (15)

where “≈” is understood as a weak equality [12]. (From a practical viewpoint, the Poisson bracket
relations are essentially constraints on the allowed functional form of the generators HAx for arbitrary
choices of the dynamical variables. On the other hand, the weak constraints HAx ≈ 0 are meant to
restrict the allowed choices of initial conditions for a given form of the generators HAx.)

The phase space—The Equations (12)–(15) of path independence are universal. That is, if the dynamics
is to be relativistic, these equations must hold. Whatever the choice of canonical variables, or whether
the background is fixed or dynamical, the same “algebra” must hold.

As one might expect, the ED formulated here with a dynamical background shares some
similarities with the theory developed in [7], in the context of a fixed background. Most obvious
is that the variables ρ and φ, or equivalently, ρ and Φ remain canonically conjugate, forming the
so-called ensemble phase space, or e-phase space for short. However a crucial difference emerges with
respect to the treatment of the geometry. Here, deviating from [7], we instead follow Hojman, Kuchař,
and Teitelboim (HKT) by describing the dynamics of the geometry by taking the metric gij(x) as a
central dynamical variable. Of course, for the scheme to be canonical, we must also introduce a set
of auxiliary variables πij, which must have the character of tensor densities. At this juncture the
sole interpretation of the πij are as the momenta conjugate to gij, defined by the canonical Poisson
bracket relations{

gij(x), gkl(x′)
}
=

{
πij(x), πkl(x′)

}
= 0 ,

{
gij(x), πkl(x′)

}
=

1
2

(
δk

i δl
j + δk

j δl
i

)
δ(x, x′) . (16)
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Here we have introduced the notion of a Poisson bracket, which is an anti-symmetric bi-linear
product that allows for the notion of an algebra. Written in local coordinates, the Poisson brackets take
the form

{F, G} =
∫

dx

(
δF

δgij(x)
δG

δπij(x)
− δG

δgij(x)
δF

δπij(x)

)
+

∫
Dχ

(
δ̃F

δ̃ρ[χ]

δ̃G
δ̃Φ[χ]

− δ̃G
δ̃ρ[χ]

δ̃F
δ̃Φ[χ]

)
, (17)

for arbitrary functionals F and G of the phase space variables (ρ, Φ; gij, πij).

The super-momentum—We now turn our attention to the local Hamiltonian generators HAx, and more
specifically, we look to provide explicit expressions for these generators in terms of the canonical
variables by solving the Poisson brackets Equations (12)–(14). We begin with the tangential generator
Hix, which generates changes in the canonical variables by dragging them parallel to the space σ.
As shown in [8,10], the tangential generator can be shown to split

HAx[ρ, Φ; gij, πij] = HG
Ax[gij, πij] + H̃Ax[ρ, Φ], (18)

into components we identify as an ensemble super-momentum H̃ix and a gravitational
super-momentum HG

ix. This then leads to Equation (14) similarly decomposing into ensemble
and gravitational pieces so that each can be solved independently of the other. The appropriate
super-momentum for the ensemble sector was given in [7], with the result that

H̃ix = −
∫

Dχρ[χ]
δΦ[χ]

δχx
∂ixχx , while HG

ix = −2∂j

(
π jk gik

)
+ π jk∂igjk (19)

is the gravitational contribution, determined by Hojman et al. in [10]. The so-called super-momentum
constraint from Equation (15) is then just

Hix = −2∂j

(
π jk gik

)
+ π jk∂igjk −

∫
Dχρ[χ]

δΦ[χ]

δχx
∂ixχx ≈ 0 . (20)

The super-Hamiltonian—As pertains to the super-Hamiltonian, a similar decomposition does not
occur. But following Teitelboim [8] let us suggestively rewrite H⊥x as

H⊥x = HG
⊥x[gij, πij] + H̃⊥x[ρ, Φ; gij, πij] .

Note we make no assumptions in writing H⊥x in this way, as this simply defines the contribution of
“matter”. The assumption comes, instead, the requirement that the ensemble super-Hamiltonian H̃⊥x
to be independent of the momentum variable πij (Although many interesting models remain after this
assumption, some models of physical interest are, indeed, excluded by this simplification. We leave it to
future work to relax this requirement). (This simplification is called the assumption of “non-derivative”
coupling, since it can be proven [8] that this implies H̃⊥x is just a local function (not functional) of gij,
not its derivatives). Another consequence of this assumption is that Equation (12)—the most difficult
Poisson bracket—decomposes completely into gravitational and matter sectors. Thus each can be
approached independently. That is, the gravitational side can proceed as if there were no sources,
while the matter side can proceed along lines similar to [7].

The solution to the gravitational piece, which is quite involved, was first given by HKT [10] and
takes the form (Note that the solution given in [10] relies on the assumption that geometrodynamics
is time-reversible. An alternative derivation in [9] obtains the same result without this assumption,
but uses a Lagrangian instead)

HG
⊥x = κ Gijklπ

ijπkl − g1/2

2κ
R , where Gijkl = g−1/2

(
gikgjl + gil gjk − gijgkl

)
(21)
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is the DeWitt super metric, R is the Ricci scalar for three-dimensional space, and κ is a constant
coefficient. (We have set the cosmological constant λ = 0). The determination of the ensemble
super-Hamiltonian is subject not only to satisfying the Poisson bracket Equation (12), but also to
the requirement that the evolution generated by H̃⊥x reproduces the LTFP Equation (11). In [7] it was
shown that an acceptable (but not exhaustive) family of ensemble super-Hamiltonians is given by

H̃⊥x[ρ, Φ] = H̃0
⊥x[ρ, Φ; gij] + Fx[ρ; gij] (22)

with

H̃0
⊥x[ρ, Φ] =

1
2

∫
Dχρ

(
1

g1/2
x

(
δΦ
δχx

)2
+ g1/2

x gij(x)∂ixχx∂jxχx

)
, (23)

where the functional Fx[ρ; gij] is restricted to the simple form

Fx[ρ; gij] =
∫

Dχ ρ

(
g1/2

x Vx(χx) +
β

g1/2
x

(
δ log ρ

δχx

)2
)

, (24)

where the potential Vx(χ) is a function only of the field and β is a coupling constant. For future
convenience we set to β = 1/8.

From Equations (21) and (22) the super-Hamiltonian constraint is then just

H⊥x = HG
⊥x + H̃⊥x ≈ 0 , (25)

where the gravitational and ensemble pieces are those given in Equations (21) and (22). Note that a
solution of this constraint requires fixing a set of variables in terms of another set—i.e., the gravitational
variables are not necessarily independent of the probability ρ and phase Φ!

6. The Dynamical Equations

In the previous section we have identified a representation of the relations Equations (12)–(15)
in terms of the canonical variables (ρ, Φ; gij, πij). The resulting evolution, generated by these HAx,
leads to a fully covariant geometrodynamics driven by entropic matter. But to do this, we first pick a
foliation of space-time with parameter t, specified by a particular choice of lapse and shift functions,
which are, respectively, given by

N(x, t) =
δξ⊥x
dt

and Ni(x, t) =
δξ i

x
dt

. (26)

The Schrödinger equation—We are interested in the dynamical evolution of the ensemble variables
ρ and Φ, however, this very same dynamics can be expressed equivalently by the introduction of
complex variables Ψt = ρ1/2

t eiΦt and Ψ∗t = ρ1/2
t e−iΦt (we use units in which h̄ = 1). The reason

these variable turn out to be useful, is that the dynamical equations turn out to take a familiar form.
In particular, we have

i∂tΨt[χ] = i
∫

dx
[
{Ψt[χ], H⊥x}N(x, t) + {Ψt[χ], Hix}Ni(x, t)

]
=

∫
dx

[
N(x, t)Ĥ⊥x + Ni(x, t)Ĥix

]
Ψt[χ] , (27)

where Ĥix and Ĥ⊥x are given by

Ĥix = i ∂iχx
δ

δχx
and Ĥ⊥x = − 1

2g1/2
δ2

δχ2
x
+

g1/2

2
gij∂iχx∂jχx + g1/2Vx(χx; gij) , (28)
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respectively. Notice that although Equation (27) is ostensibly a linear equation for the functional
Ψt, which may suggest calling this a “Schrödinger equation”, closer inspection reveals this to be
misleading. Indeed, owing to the constraint Equations (20) and (25), the metric gij that appears in this
equation itself depends on the variables Ψ and Ψ∗, leading instead to a non-linear equation!

Geometrodynamics—To complete the description of the dynamics we will determine the evolution
of the geometrical variables (gij, πij). Beginning with the metric, its time evolution, generated by the
super-Hamiltonians HAx given above, after a straightforward computation yields

∂tgij = 2N(x, t)g−1/2
x κ

(
2πij(x)− π(x)gij(x)

)
+∇i Nj(x, t) +∇jNi(x, t) , (29)

where ∇i is the metric compatible covariant derivative (Note that Equation (29) relates the conjugate
momentum πij to the extrinsic curvature of the surface Kij). The equation for the conjugate momentum
πij is more interesting

∂tπ
ij = −Ng1/2

2κ

(
Rij − 1

2
gijR

)
+

Nκ

g1/2 gij
(

πklπkl − 1
2

π2
)
− 4

Nκ

g1/2

(
πikπ

j
k −

1
2

ππij
)

+
g1/2

2κ

(
∇i∇jN − gij∇k∇k N

)
+∇k

(
πijNk

)
− πik∇k Nj − πkj∇k Ni − N

∂H̃⊥x
∂gij

, (30)

where we have introduced Rij, the Ricci tensor (We have used the fact that the non-derivative coupling
assumption implies that H̃⊥x is local in gij). Note that the evolution of πij is driven by ∂H̃⊥x/∂gij,
which is a functional of the epistemic state.

7. Conclusions and Discussion

The ED developed here has several interesting features. Although written in the relatively less
common language of geometrodynamics, the evolution Equations (29) and (30), together with the
constraints (20) and (25) are mathematically equivalent to the so-called “semi-classical” Einstein
equations (SCEE), which are typically written as [2]

Gμν = 8πκ
〈

T̂μν

〉
, (31)

where Gμν is the Einstein tensor and
〈 ˆTμν

〉
is the expected value of energy-momentum operator of a

quantum scalar field. Such a theory of gravity has long been seen as a desirable step intermediate to a
full theory of QG, in part because it contains well-established physics—QFTCS and classical general
relativity—in the limiting cases where they are valid. But there has been much debate (see e.g., [11]),
on the other hand, as to the status of semi-classical theories as true QG candidate; with many harboring
a negative view.

Here we do not propose a definitive rebuke of all these critics, but note that the ED formulation of
SCEE has certain features that allow it to evade the most cogent criticisms. For one, a problem that
is often raised against the SCEE is that it is proposed in a rather ad hoc manner, based on heuristic
arguments. But in ED these equations are derived on the basis of well-defined assumptions and
constraints. Period. Another argument commonly raised against the SCEE is that the left hand side,
featuring the gravitational field, is a real “physical” field, while the right hand side contains the
quantum state Ψ, which is epistemic. In the ED approach, however, the physical variables are the field
χx; the geometrical variables are more properly viewed as constraints. In other words, these variables
are not measured directly in an experiment, but rather, their values are inferred from an ensemble
of measurements, i.e., the geometry is epistemic! While this may seem a controversial viewpoint,
recent work [14] suggests that the geometry of space may, indeed, be of entropic origin as well.

Finally, the Schrödinger equation we obtain here is quite unorthodox. As mentioned above,
the dynamics of Ψ follows a non-linear equation. This non-linearity is not, however, an artifact of a
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bad approximation, but the prediction of a theory derived from first principles. This loss of linearity,
while highly problematic for many standard approaches to QT, follows naturally in ED. This begs the
question, is linearity just a misguided prejudice? Will the superposition principle become the first
casualty of quantum gravity?
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Abstract: Uncertainty Quantification (UQ) is highly requested in computational modeling and
simulation, especially in an industrial context. With the continuous evolution of modern complex
systems demands on quality and reliability of simulation models increase. A main challenge
is related to the fact that the considered computational models are rarely able to represent the
true physics perfectly and demonstrate a discrepancy compared to measurement data. Further,
an accurate knowledge of considered model parameters is usually not available. e.g., fluctuations
in manufacturing processes of hardware components or noise in sensors introduce uncertainties
which must be quantified in an appropriate way. Mathematically, such UQ tasks are posed as
inverse problems, requiring efficient methods to solve. This work investigates the influence of
model discrepancies onto the calibration of physical model parameters and further considers a
Bayesian inference framework including an attempt to correct for model discrepancy. A polynomial
expansion is used to approximate and learn model discrepancy. This work extends by discussion and
specification of a guideline on how to define the model discrepancy term complexity, based on the
available data. Application to an electric motor model with synthetic measurements illustrates the
importance and promising perspective of the method.

Keywords: inverse problem; calibration; bayesian inference; model discrepancy

1. Introduction

The increasing complexity of technical systems yields high demands on model quality and
numerical accuracy. Quantification of these models under uncertainty is desired to make statements
about reliability and accuracy. Consequently, there is a need for efficient solvers and new additional
Uncertainty Quantification (UQ) methods, which are able to cope with the soaring complexity of
models and that take into account all sources of uncertainty. Model calibration requires the solution
of an inverse problem with uncertainties, such as parametric, observation, structural model and
solution method uncertainty. Let G : X → Y , for X ⊆ Rd,Y ⊆ Rn, represent a simulation model
that maps some input x to an output y = G(x). An inverse problem is the task of finding an x ∈ X
for a given measurement y ∈ Rn such that y = G(x). Generally, this equality does not hold as the
measurements y are usually corrupted. Hence, one considers y = G(x) + η, where η ∈ Rn represents
the observation uncertainty due to measurement noise or other errors. Simply inverting G is not
possible as η is unknown and in general G−1 does not exist. A classical approach to solve this problem
is by minimizing the data misfit, i.e., minx∈X 1

2‖y − G(x)‖2
Y . However, this problem is typically
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ill-posed in the sense of Hadamard, i.e., multiple solutions might exist and stability might be a problem.
To obtain a well-posed problem regularization is necessary. One approach is Tikhonov regularization,
also known as ridge regression in statistics [1]. However, the particular choice of regularization is
somewhat arbitrary [2]. With the Bayesian approach one is interested in finding a probability measure
μy(x) onX with probability density π(x|y) that expresses how likely G(x) for a certain x ∈ X describes
y under consideration of noise. Then the problem is well-posed under slight assumptions and leads
to a natural way of regularization due to the definition of prior distributions π0(x) for unknown
parameters, see [1–3]. Generally, the posterior distribution π(x|y) is intractable and one can not sample
from it directly, hence approximative methods, such as filtering, variational and sampling methods,
are required [2,4,5]. Metropolis-Hastings Markov-Chain Monte-Carlo (MH-MCMC) sampling is used
in this work [4,6,7]. Note that methods to improve sampler efficiency [8–10] and surrogate modeling
of G, e.g. by Polynomial Chaos expansions [11,12] or GPs [13,14], could leverage overall simulation
time and speed up the inference, if required.

A difficulty in solving the inverse problem is to capture and separate all sources of uncertainty,
often called “identification problem”. A main challenge is related to the fact that the considered
computational models G are rarely able to represent the true physics perfectly and demonstrate a
discrepancy compared to measurement data. To be more specific the term model discrepancy in
this work denotes the difference between simulation model for the true physical parameters and the
true system, hence structural model uncertainty (e.g., lack of knowledge, missing physics), but also
implementation and numerical errors. However, this model discrepancy is usually unknown.

The Kennedy and O’Hagan (KO) framework [13] is one of the first attempts to model and
explicitly take account of all the uncertainty sources that arise in the calibration of computer models.
Model discrepancy is considered by an additional term and modeled by an Gaussian process (GP).
Following [13], Arendt et al. [15,16] suggest a modular Bayesian approach and discuss the identification
problem. Examples illustrate that sometimes this separation is possible under mild assumptions,
e.g., smoothness of the model discrepancy, but also that it is not possible in other cases. In the
companion work [16] they show an approach how to improve identifiability by using multiple
responses and representing correlation between responses. Another work using multiple responses
is [17]. Brynjarsdóttir and O’Hagan [18] state that with the KO framework in order to infer physical
parameters and model discrepancy simultaneously sufficient prior distributions for at least one of
those must be given. However, Tuo and Wu [19,20] showed that the choice of the model discrepancy
prior has a permanent influence onto the parameter posterior distribution even in the large data limit.
Plumlee [21] presented an approach to improve identifiability by defining a prior distribution of the
model discrepancy that is orthogonal to the gradient of the model. However, computational costs are
high. Nagel et al. [22] modeled the model discrepancy term by an polynomial expansion, assuming
smoothness for the true underlying model discrepancy.

Following all these works we consider a Bayesian model with a term for measurement noise
and a model discrepancy. We adapt the idea of representing model discrepancy by a polynomial
expansion [22]. The major contribution of this work is to provide answers on how to select a polynomial
degree by keeping the complexity of the model low while still providing high accuracy in discrepancy
modeling. This is shown in a practical guideline, which recommends how to select a sufficient
maximum polynomial degree of the truncated polynomial expansion, based on the available data
and the estimation of measurement noise. Furthermore, critical points conditioning the choice of the
model discrepancy term are discussed in detail. The framework is applied to the calibration of a direct
current (DC) electric motor model in a synthetic setting. i.e., synthetic measurements are created and a
modified electric motor model, containing an artificial model error are used to infer model parameters.
Due to the synthetic setup, available references allow a quantitative evaluation of the considered
methods performance and accuracy.
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This paper is structured in the following way: Section 2 formulates the considered example setup.
Section 3 specifies a Bayesian inference model, followed by a discussion of the model discrepancy term
complexity. Numerical results are presented in Section 4. This work concludes in Section 5.

2. Electric Motor Model

A DC electric motor is a rotating electrical machine converting electrical energy into mechanical
energy. Let I [A] denote the electric current and ω [rad/s] the angular velocity. For t > 0, the ODEs

Lİ(t) = −RI(t)− cmω(t) + U, (1)

Jω̇(t) = cg I(t)− dω(t) + TL, (2)

with initial conditions I(0) = 0, ω(0) = 0, describe the electro-mechanical behavior of a DC
electric motor [23]. The real valued parameters are: cable harness resistance R [Ω], motor constants
cm [Vs/rad], cg [Nm/A], voltage U [V], friction d [kg m/s], inductivity L [H], inertia J [kg m2] and
constant torque TL [Nm] required by the load. Here, only R is considered uncertain and all other
parameters are fixed to cm = 0.01, cg = 0.01, U = 24, d = 10−6, L = 10−4, J = 5× 10−5, TL = 0.

Let Î(ti) and ω̂(ti) denote numerical approximations of I and ω at equidistant time points
{ti}i=1,...,M ∈ D := [0, T] for M = 501 and T = 0.5[s]. For this work the explicit Runge-Kutta method
dopri5 (Dormand and Prince) is used, see [24]. For notational convenience we define

G(R) := [ Î(t1), . . . , Î(tM), ω̂(t1), . . . , ω̂(tM)] ∈ R
2M, (3)

depending only on R ∈ X . Synthetic measurements for a fixed reference value R0 = 0.1 are created
by y := G(R0) + ε, where ε := [εI , εω ] is a realization of N (0, Σ), with covariance Σ ∈ R2M×2M.
For independent and identically distributed (iid) measurement noise for current and angular velocity
at each time step let Σ := diag(σ2

I IM, σ2
ω IM), with σI,ω > 0. Figure 1 displays a measurement of I and

ω with σI,0 = 2, σω,0 = 10.
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Figure 1. Noisy synthetic measurements of electric current I(t) and angular velocity ω(t).

As the goal of this work is to learn about model discrepancy an artificial model error φ ∈ R

is introduced into Jω̇(t) = φcg I(t)− dω(t) + TL. Let Gφ(R) be the numerical approximation of the
model for a given φ and denote it as simulation model. Obviously, G = Gφ ⇐⇒ φ = 1. φ �= 1
can be interpreted as missing physics, i.e. by damping or amplifying a part of the equation, or as
a misspecified model. Define the discrepancy d(R) = [dI , dω ](R) := G(R0) − Gφ(R) ∈ R2M and
the noisy discrepancy dε(R) = [dε

I , dε
ω ](R) := y− Gφ(R) ∈ R2M. Denote for φ = 0.9 the reference

discrepancies by d0 := d(R0) and dε
0 := dε(R0).

3. Bayesian Inference Solution Process

Consider the inverse problem of finding an R ∈ X such that y = Gφ(R), where y ∈ R2M are noisy
measurements and Gφ is the simulation model containing an artificial model error φ. The goal here
is not just to infer an optimal R ∈ X , but also one that is as close as possible to the reference R0, i.e.,
the true physical value, which was used to create the measurements y. Following [22] we introduce
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two Bayesian models that differ in their complexity. The simpler model only considers measurement
noise, whereas the more complex model considers model discrepancy additionally.

3.1. Bayesian Model 1 (BM1): Measurement Noise

As the measurements y are noisy, additive noise ε = [εI , εω ] ∈ R2M is added to the simulation
model. Here, εI , εω are considered as zero mean GaussianN (0, σ2

I IM) andN (0, σ2
ω IM) with unknown

standard deviations σI , σω > 0, respectively. The Bayesian model 1 (BM1) is

y = Gφ(R) + ε(σI , σω). (4)

Hence, the likelihood is y|R, σI , σω ∼ N (Gφ(R), Σ(σI , σω)), with Σ(σI , σω) = diag(σ2
I IM, σ2

ω IM).
By expressing a-priori knowledge in terms of a prior probability density function π(R, σI , σω) =

π(R)π(σI)π(σω), Bayes’ formula yields for the posterior probability density π(R, σI , σω |y) ∼
π(y|R, σI , σω)π(R, σI , σω). The π(σI), π(σω) are defined as uninformative Inverse Gamma
distributions InvGamma(1, 1). This is a common choice for conjugate priors of scale parameters
in Bayesian statistics [4], in particular for a Gaussian likelihood with given mean.

3.2. Bayesian Model 2 (BM2): Measurement Noise and Model Discrepancy

BM2 extends BM1 by considering model discrepancy with an additive term δ = [δI , δω ] ∈ R2M,
additionally to iid measurement noise. Note that this is already the discretized version and δI =

[δI(t0), . . . , δI(tM)], δω = [δω(t1), . . . , δω(tM)] are vectors of the, yet to define, model discrepancy terms
δI , δω : D → R evaluated at ti, i = 1, . . . , M. Omitting the superscripts for a moment, we now assume
that δ ∈ L2(D). Let {pj}j∈N ⊆ L2(D) be a basis of functions pj : D → R dense in L2(D). Then δ can be
represented by the expansion δ(t) = ∑∞

j=0 aj pj(t). For practicability reasons the expansion is truncated
after a K ∈ N. Such an truncated expansion was also used in [22]. With this let, for the truncation
parameter K ∈ N, the truncated functional expansions

δK
I (t) =

K

∑
j=0

a(I)
j pj(t), δK

ω(t) =
K

∑
j=0

a(ω)
j qj(t), (5)

be approximative models for the model discrepancy terms δI , δω . The bases {pj}j=0,...,K and {qj}j=0,...,K
are not necessarily identical. Note that each expansion could be truncated with own truncation
parameters KI , Kω, but for notational convenience and due to later usage we stick to K = KI = Kω.
Let a = [a(I), a(ω)] = [a(I)

0 , . . . , a(I)
K , a(ω)

0 , . . . , a(ω)
K ] ∈ R2K+2 be the coefficient vector and δK

I (a) =

[δK
I (t0), . . . , δK

I (tM)], δK
ω(a) = [δK

ω(t1), . . . , δK
ω(tM)]. Hence δK(a) = [δK

I , δK
ω ](a) ∈ R2M denotes the

approximation of the true underlying model discrepancy δ.The Bayesian model 2 (BM2) is

y = Gφ(R) + δK(a) + ε(σI , σω). (6)

The number of unknown parameters is 3 + 2K + 2. With the additional unknown coefficients
a, the prior probability density function is defined as π(R, σI , σω, a) = π(R)π(σI)π(σω)π(a),
where π(a) = ∏K

j=0 π(a(I)
j )π(a(ω)

j ). The prior distributions for π(σI) and π(σω) are specified as

above. Now, with the likelihood y|R, σI , σω, a ∼ N (Gφ(R) + δK(a), Σ(σI , σω)), the posterior is given
by πK(R, σI , σω, a|y) ∼ π(y|R, σI , σω, a)π(R, σI , σω, a), where πK denotes the dependence on K.

Choosing basis functions and priors for the coefficients: If knowledge about the discrepancy is
available, this should be modeled accordingly by defining an appropriate prior distribution for δ, i.e.,
in the case of δK(a) appropriate choices for a, K and {pj}j=0,...,K ⊂ L2(D). However, in general this
knowledge is not available and some modeling assumptions need to be made. With the assumption
that δ is rather smooth, orthonormal polynomials pj : D → R with deg(pj) = j are a reasonable choice.
As [22], we also opt for Legendre polynomials that are orthogonal to a constant weight. In [22] they
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argue about the prior for the coefficients π(a(I)
j ), π(a(ω)

j ) and decide for zero mean Laplace distribution
Laplace(0, b) with the arbitrary choice of b = 10. It assigns the highest probability around zero and
decays exponentially towards the tails, see [25].

Choosing the truncation parameter K: With the choice of Legendre polynomials K corresponds to
the maximum polynomial degree. This K determines the complexity of the model discrepancy term
δK(a). Important factors in order to specify the model discrepancy term complexity are: accuracy,
computational costs, bias-variance tradeoff and non-identifiability. An optimal K should be large
enough such that δK(a) is accurate enough to approximate the underlying discrepancy correct,
but at the same time it should be as small as possible since a large K increases the number of
unknown parameters and consequently computational costs. Furthermore, a large K might yield
non-identifiability of all unknowns, as the prior of δK(a) gets non-informative. In [18] they state that
in order to infer model discrepancy and model parameters at the same time, at least for one of those an
informative prior must be given. The term bias-variance tradeoffdescribes the fact that with increasing
model complexity K the bias of an estimator decreases, but at the same time the variance increases
with the model complexity [26]. Consequently, the overall error as sum of squared bias and variance is
minimal for an optimal model complexity.

Taking all these factors into account the approach in this work on how to find an optimal
K is following: Start with an initial K = K0 ∈ N and increase K iteratively until the marginal
posterior distribution πK(σI , σω |y) of the noise standard deviations stabilizes. i.e., that some distance
D(πK(σI , σω |y), πK+L(σI , σω |y)) < tol for a given tolerance tol > 0 and L ∈ N. Then select the K
such that this condition holds. Why is this sufficient? If a model discrepancy is present in BM1,
then the noise term is the only instance to capture it. As the noise term is modeled with zero mean,
the standard deviation might be overestimated consequently. By adding the model discrepancy term
in BM2 captures a fraction of the model discrepancy. As a consequence, the noise term ε needs to
represent only the remaining discrepancy and is estimated by a smaller value. If the estimated standard
deviation of the noise does not change anymore (within the tolerance) from K to K + L for L ∈ N

the smallest sufficient K is found. For this K the model discrepancy term δK(a) should represent
the underlying model discrepancy best within its current specification and a separation of model
uncertainty and measurement uncertainty is achieved.

4. Numerical Results

The numerical results for BM1 and BM2 applied to the electric motor model are presented and
compared to the reference. The prior distribution for R is chosen as N (R0, 0.2R0). Variations of the
prior mean by +/−15% did not influence the upcoming results much, thus simply R0 was chosen as
mean. An MH-MCMC implementation of the Python package PyMC3 [7] is used to approximate the
posterior distribution probability density function. The marginal posterior moments are empirically
approximated using Monte Carlo integration with a certain number of the obtained MH-MCMC
samples. In order to compare and evaluate the solutions we define error measures.

Definition 1. Define the relative error for a parameter estimate x̂ as εrel(x) = |x̂− x0|/|x0|, where x0 is the
reference value. x̂ might be the empirical approximation of the marginal posterior mean E[x|y].

Definition 2. Let x with π(x|y) be an estimation for x0 ∈ R and given y. The mean square error (MSE) of x is
MSE(x) := E[(x− x0)

2|y] = Bias(x)2 + V[x|y], with Bias(x) = (E[x|y]− x0). The mean is with respect
to π(x|y). In case of πK(x|y) depending on K write MSEK(x) = EK[(x− x0)

2|y] = BiasK(x)2 + VK[x|y].

4.1. Results Bayesian Model 1

In Figure 2 the index BM1 denotes marginal posterior moments for parameters R, σI and σω

obtained with BM1 in comparison to the reference and BM2. With respect to a burn in phase, only the
last 700 samples of three independently sampled Markov chains, each of total length 1500, are used to
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obtain the results. The marginal posterior distribution for σω is close to the reference, but for R and
σI the marginal posteriors concentrate at values different to the references and do not even assign a
significant probability to the references. The marginal posterior mean values of R, σI and σω and their
respective relative error with respect to the reference are displayed in Table 1.

Figure 2. Results obtained with BM1 (noted by index BM1) and BM2 for K = 0, . . . , 20. Moments of the
marginal posterior distributions of R are displayed on the left and moments of σI , σω on the right.

Table 1. Marginal posterior mean and relative error of parameters R, σI and σω for BM1 and BM2 with
K = 9. The relative errors are with respect to the reference values R0 = 0.1, σI,0 = 2, and σω,0 = 10.

Marginal Posterior Mean Relative Error

R̂ σ̂I σ̂ω εrel(R̂) εrel(σ̂I) εrel(σ̂ω)

BM1 9.03 × 10−2 6.29 × 100 1.03 × 101 9.66 × 10−2 2.14 × 100 2.79 × 10−2

BM2 (K = 9) 9.92 × 10−2 2.02 × 100 9.95 × 100 8.48 × 10−3 1.03 × 10−2 4.89 × 10−3

The noisy discrepancy dε(R̂) for R̂ is displayed in Figure 3. (Remark: For simplicity the mean
E[dε(R)|y] = y− E[Gφ(R)|y] ≈ y− Gφ(E[R|y]) is approximated by assuming linearity for Gφ in a
neighborhood of R̂.) For ω this is basically the measurement noise, since E[dε

ω ] ≈ 0 and V[dε
ω ]

1/2 =

10.18 ≈ σω,0 ≈ σ̂ω. But for dε
I there is some discrepancy, at least in the first half of the time interval,

different to measurement noise. Calculating the empirical standard deviation for a fixed zero mean
σ†

I := 1
M−1 ∑M

i=1(d
ε
I (R̂)i)

2, where dε
I (R̂)i denotes the i-th component of dε

I (R̂), one obtains σ†
I =

6.23 ≈ σ̂I . The obtained value corresponds to the overestimated marginal posterior distribution of
σI that centers around a similar value, see Figure 2 and Table 1. Obviously, BM1 leads to biased and
overconfident parameter estimates.
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−30

−20
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−20
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20
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Figure 3. Remaining discrepancy dε(R̂) = [dε
I , dε

ω ](R̂) = y− Gφ(R̂), for R̂ obtained with BM1.

4.2. Results Bayesian Model 2

Figure 2 also displays moments of the marginal posterior distributions of R, σI and σω, obtained
via BM2 for K = 0, . . . , 20. For each K the last 0.4× 105 samples of three independently sampled
Markov chains of length 105 are used to approximate the moments. In contrast to BM1 a larger number
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of MH-MCMC samples is required for convergence, due to an increased number of unknowns in
BM2. For comparison, the index BM1 in the following figures denotes results without δ. Following the
guideline specified in Section 3 the marginal posterior distributions of the noise standard deviations of
σI and σω in Figure 2 are considered to pick an appropriate K. Both marginal posterior distributions
πK(σI |y) and πK(σω |y) stabilize for K ≥ 7 and are almost identical for K ≥ 9, considering mean and
standard deviation of the marginal posterior distribution. This indicates that K = 9 is a sufficient
polynomial degree and increasing K further does not improve the results with the current specification
of the model discrepancy term. Figure 4 displays for K = 9 the concentration of the posterior
distribution of δK(a) = [δK

I , δK
ω ](a) around the reference discrepancy d0.

Figure 4. Posterior moments of model discrepancy δK(a) = [δK
I , δK

ω ](a) for K = 9 in comparison to the
reference discrepancy d0 = [dI,0, dω,0].

The relative error nBiasK(δ
K∗ − d0,∗)/‖d0,∗‖ is 1.0 × 10−1 for I and 9.2 × 10−2 for ω. Also the

marginal posterior distribution of R concentrates close to the reference value and the relative error of
the posterior mean reduces around one order of magnitude compared to the result of BM1, see Table 1.
Also, both noise standard deviations concentrate around the reference and significantly improve in
relative errors compared to BM1. Overall, the posterior distribution of Gφ(R) + δK(a) + ε yields a
good approximation of the measurements y with only a small variance band. Figure 2 shows that for
K = 6, . . . , 19 the marginal posterior mean of R roughly stabilizes in some kind of a plateau close to
the reference R0, but the posterior standard deviation increases with K. For K = 0, . . . , 5 the model
discrepancy term δK(a) is not flexible enough to approximate the underlying discrepancy appropriate
enough. As a consequence, the standard deviations of the measurement noise are overestimated and
the estimation of the parameter R is still biased for those values of K.

Adding on this, Figure 5 displays BiasK, variance VK and MSEK of R. The MSE of R is minimal
around K = 7, 8, 9 and K = 15, indicating those values as an optimal model complexity and backing up
the decision of K = 9 as sufficient polynomial degree. Figure 5 largely corresponds to the bias-variance
tradeoff, since the variance increases with K and the bias decreases with K, at least until K = 15.
For K ≥ 15 the bias increases as non-identifiability occurs additionally. Especially for K = 20
overfitting and non-identifiability can be observed as the posterior distribution of R is spread out
and biased, see Figure 2. For complimentary numerical results (e.g., posterior moments of δK(a) for
K = 20) see the accompanying preprint of this work [27].

5. Conclusions

In this work a method to infer model parameters and model discrepancy is considered and applied
to synthetic measurement data of an electric motor. The suggested Bayesian model 2 (BM2) considers
measurement noise and model discrepancy, in order to separate these two sources of uncertainty
and improve physical parameter estimation. The model discrepancy term is modeled as a truncated
polynomial expansion δK(a) with unknown coefficients a and an maximum polynomial degree K.
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Figure 5. Bias-variance tradeoff: Bias BiasK(R), variance VK [R|y] and mean square error MSEK(R)
of R with respect to R0, depending on K, for K = 0, . . . , 20 from BM2. The index BM1 denotes the
previous results without δ, obtained via Bayesian model 1.

A discussion and a guideline on how to define appropriate model discrepancy term complexity, i.e.,
here the maximum polynomial degree K, based on the marginal posterior distribution of measurement
noise standard deviation is presented. The framework applied to the electric motor showed promising
perspectives by an improved estimation of the model parameters. Furthermore a good approximation
of the a-priori unknown model discrepancy is learned with BM2 for a sufficient maximum polynomial
degree K = 9. An appropriate choice of K is crucial. For K too small the accuracy of δK(a) is
not sufficient and estimation is just slightly improved. If K is too large the prior contains to less
information about the reference discrepancy and consequently the posterior distribution does not
converge anymore. Consequently, in order to identify both, the underlying parameter value and the
reference discrepancy of the test scenario, it is important to find an optimal K and with this formulate
at least for one of the unknowns a prior containing some information about the reference.

Next steps are to apply this approach to higher dimensional problems and further to real field
data to test its capabilities. Then, as real data implies a more complex simulator, surrogate modeling
will be mandatory to leverage computational expenses. Additionally, evidence approximation could
be an another criteria to select a Bayesian model, which will be considered in future work.
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Abstract: Fluorescently targeted proteins are widely used for studies of intracellular organelles
dynamic. Peripheral proteins are transiently associated with organelles and a significant fraction of
them are located at the cytosol. Image analysis of peripheral proteins poses a problem on properly
discriminating membrane-associated signal from the cytosolic one. In most cases, signals from
organelles are compact in comparison with diffuse signal from cytosol. Commonly used methods
for background estimation depend on the assumption that background and foreground signals are
separable by spatial frequency filters. However, large non-stained organelles (e.g., nuclei) result
in abrupt changes in the cytosol intensity and lead to errors in the background estimation. Such
mistakes result in artifacts in the reconstructed foreground signal. We developed a new algorithm
that estimates background intensity in fluorescence microscopy images and does not produce artifacts
on the borders of nuclei.

Keywords: Bayesian image analysis; fluorescence microscopy; background estimation

1. Introduction

The development of technologies for creating genetically encoded chimeric conjugates of proteins
of interest with fluorescent proteins opened a new era in study of intracellular processes by means of
quantitative fluorescence microscopy [1], and it is widely used in studies of spatio-temporal dynamics
of intracellular organelles in live and fixed cells [2–4]. Several approaches for the quantification
of cytosolic and membrane-bound proteins have been developed. However, most of them fail
when applied to cases where the existence of large non-stained organelles (e.g., nuclei) produce
sudden changes in the cytosol fluorescent intensity. Many peripheral membrane proteins dynamically
switch between cytosolic and membrane-bound state. Whereas, they generate compact fluorescent
images of intracellular organelles when they are in membrane-bound state, fuzzy fluorescent
background is generated when they are in cytosolic state. As an example of such peripheral
membrane proteins, we analyzed images of the small GTPase Rab5 conjugated with Green Fluorescent
Protein (GFP), which dynamics orchestrates intracellular endocytic transport [5]. Quantitative
analysis of endosome-associated proteins requires discrimination of fluorescent endosomes from
fluorescent cytosolic background (Figure 1a). The problem of discriminating high spatial frequency
(bright compact) structures, i.e., endosomes, from low-frequency (cytoplasmic) background has
been extensively studied and many solutions (using heuristic as well as Bayesian approaches) have
been developed. However, they mostly rely on the assumption that background corresponds to
low-frequency signal, which is not the case of peripheral proteins. Usually, images of peripheral
proteins (Figure 1a) show large dark areas with sharp boundaries, which are imprints of nuclei in the
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fluorescent cytoplasm. Multiple unlabeled organelles are observed as dark areas in the cytoplasm
with spatial frequencies similar to those of endosomes. This spatial frequency similarity is exemplified
by the intensity profile along yellow line on Figure 1a, which is presented on Figure 1b (black line).
In a recent study [6], the problem of non-smooth background was addressed for time series (live
cell imaging) by using conditional random fields to estimate the background as well as to segment
the motile organelles. However, this algorithm is not applicable for single images. Unfortunately,
state-of-the-arts algorithms for background estimation on single fluorescence microscopy images
[7–9] explicitly rely on the smoothness of background signal and in this respect are not better than
textbook "rolling ball" algorithm [10]. All of them produce artefacts (false-positive foreground rim) on
border of cell nucleus (see Figure 1b,c). In present work we proposed new algorithm (TBL) based on
probability distribution for two background levels: one in cytosol and another in possibly presented
"dark" nucleus, each background is smooth, but transition between them could be abrupt.

(a) (b)

(c)

Figure 1. (a) A431 cells with GFP-tagged Rab5a. The cytosol is labelled by soluble fraction of GFP-Rab5a.
Bright structures of different size and shape are endosomes, which are labelled by membrane-bound
GFP-Rab5a. Images were obtained by spinning disk microscope (Andor-Olympus-IX71 inverted stand
microscope; scan head CSU-X1 Yokogawa, objective Olympus UPlanSApo 63x 1.35oil, Optovar 1.6).
Letters N denote nuclei. Yellow line marks the intensity profile presented on panel b. (b) Intensity
profiles along the yellow line (Figure 1). Black curve is intensity of original image. Red, green, blue and
cyan curves are background estimation by “rolling ball” [10], Gaussian, median and FMOR [7] filters
respectively. (c) Difference between original intensities and estimated background. Green, blue and
red curves correspond to background estimation by Gaussian, median and FMOR filters respectively.
Filter window was 4μm for all filters.
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2. Two Background Level Estimation (TBL) Algorithm

2.1. Probabilistic Model of Intensity

Images of fluorescence microscopy are dominated by Poisson noise of photo-electron flux in
photomultiplier tube (PMT) or CMOS/CCD camera. Probability to detect n photo-electrons is P(n) =
λne−λ

Γ(n+1) . Assuming that intensity I linearly depends on number photo-electrons, we got I = α · n + I0,
where offset I0 can be as positive as negative, dependent on microscope settings. Therefore, variance
of intensity σ2 = α · I + ζ, where ζ = ε2 − α · I0 and ε2 is variance of zero-mean Gaussian noise of
electronic circuits.

First, we found parameters α and ζ for a single image as it was described in [11]. In most
practical cases ε2 is small, therefore we approximated I0 = − ζ

α and subtracted it form the image:

Ji = max
(

0, Ii +
ζ
α

)
. Second, we calculated estimation of variance σ2

i for each pixel. Third,
we approximated Poisson noise distribution by truncated Gaussian distribution (since it allows get
integrals analytically):

Therefore, probability of intensity in absence of foreground, given background intensity Bi,
was approximated as:

P (Ji|Bi, σi) =

√
2
π

e
− 1

2
(Ji−Bi)

2

σ2
i

σi

(
− 1√

2
Bi
σi

) , Bi ≥ 0

(1)

In presence of foreground signal Fi it was approximated as:

P (Ji, σi|Bi) =
∫ ∞

0

√
2
π

e
− 1

2
(Ji−Fi−Bi)

2

σ2
i

σier f c
(
− 1√

2
Bi
σi

)P (Fi) dFi, (2)

where P (Fi) is prior of foreground. By maximum entropy principle, we chose prior distribution
for foreground

P (Fi|μi) =
1
μ

e−
Fi
μ (3)

The parameter of the prior (mean expected amplitude of foregroundμ) was found outside of the
analyzed pixel (see Appendix A).

After substitution (3) to (2) we got :

P (Ji, σi|Bi) =
1
μ

e
− 1

2
(Ji−Bi)

2

σ2
i

Ψ
(

σi
μ − Ji−Bi

σi

) e
1
2

(
Bi
σ

)2

Ψ
(

σi
μ + Bi

σi

)
Ψ

(
− Bi

σi

)
Ψ

(
σi
μ + Bi

σi

)
+ Ψ

(
− Bi

σi

) , (4)

where Ψ (x) =
√

2
π

e−
1
2 x2

er f c
(

1√
2

x
)

2.2. Probabilistic Model of Two Background Levels

Assuming that background is slow varying signal, we approximate it by constant in the vicinity
of the pixel i. The vicinity window is defined by characteristic scale discriminating background and
foreground. We introduced latent variables zi,k, k = 1, 2, 3, 4 to define 4 possible states of pixel intensity:
background B1, background B2, background B1 with foreground and background B2 with foreground.
Then probability of intensities in the vicinity window Ω In the pixel having two background levels in
the vicinity window, the probability of intensities we got:
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P ({Ji, zi} |B1, B2, {σi}) =

= ∏
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where β0 is prior probability of presence of foreground in the pixel (see Appendix A). If B
σ > 1 , then

the expression can be simplified as:
P ({Ji, zi} |B1, B2, {σi}) =

= ∏
i∈Ω
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We used EM algorithm to maximize likelihood L (B1, B2| {Ji, zi} , {σi}) over backgroundsB1, B2.
Resulting backgrounds are presented on Figure 2a.

(a) (b)

(c)

Figure 2. (a) Original intensity (as on Figure 1) curve (black) and two estimated background levels (red
and green curves). (b) Original intensity curve (black) and background estimation by TBL (blue) curve.
(c) Difference between original intensities and TBL background.
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Then we calculated probability of presence of foreground in the pixel i (assuming B2 > B1without
loss of generality):

psignal
i =

⎧⎨⎩
pi,zi=4

pi,zi=4+pi,zi=3
, Ii > B2

pi,2
pi,zi=2+pi,zi=1

(7)
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Assuming that each pixel in the vicinity window exclusively belongs to only one background
level, we got probability of background levels: Assuming that each pixel in the vicinity window
exclusively belongs to only one background level, we got probability of background levels:

Pj,1 =
N

∑
i=1
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Finally consensus background intensity in the pixel of interest was calculated as weighted mean:

B =
B1P1 + B2P2

P1 + P2
(13)

The estimation of variance of background intensity:

σ2
b = VarB1

(
P1

P1 + P2

)2
+ VarB2

(
P2

P1 + P2

)2
+ (B1 − B2)

2 P1P2

(P1 + P2)
2

1
N

(14)

Final background was calculated by formula (14) (Figure 2b). Difference between original
intensities and estimated backgrounds has residual “nuclei border artifact” within estimated
uncertainty (Figure 2c).

Result of TBL algorithm is presented on Figure 3a,b.
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(a) (b)

Figure 3. (a) Original image. (b) Image after subtraction background by TBL.

3. Conclusions

We developed a new algorithm (TBL) to estimate cytoplasm fluorescence (background) in
conditions where high spatial frequency is present in both background and foreground signal.
TBL avoids artefacts that are characteristic for state-of-the-arts background subtraction algorithms in
presence inhomogeneous background with sharp transition between levels.
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Appendix A. Estimation Prior Parameters μ and β

It is reasonable to assume that most of pixels have only one background level in their close
vicinity. Fluorescence microscopy images of intracellular organelles have majority of pixels belonging
to background. Therefore, median filter, which is insensitive to outliers (foreground), could be used as
crude estimation of background. However, given that intensity is not normally distributed, median
is shifted relative to mode. In our cropped Gaussian approximation, the median Mi is solution of
equation:

er f
(

1√
2

Mi − Bi
σi

)
=

1
2

er f c
(

1√
2

Bi
σi

)
, Bi ≥ 0 (A1)

Therefore, we first calculated median {Mi} over vicinity window for image for image{Ji, σi},
where Ji denote intensity after offset subtraction Ji = Ii +

ζ
α , then calculated {Bi} by numerical solution

of equation A1 and, finally, constructed image
{

ui =
Ji−Bi

σi

}
, where in absence of foreground image

has intensity distribution

pb (u|b, μ, σ) =

√
2
π

e− 1
2 u2

er f c
(
− b√

2σ

) (A2)

In presence of foreground image has intensity distribution
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p f (u|μ, σ, b) =
σ
μ e−

σ
μ uer f c

(
1√
2

(
σ
μ − u

))
e

b
μ er f c

(
1√
2

(
σ
μ + b

σ

))
+ e−

1
2

(
σ
μ

)2

er f c
(
− b√

2σ

) (A3)

Therefore ratio fraction of pixels with intensity in the interval [t, ∞] to the number of pixels with
intensity in the interval [0, 1] for distribution (A2) is:

b =

∫ ∞
t pb (u|b, μ, σ) du∫ 1
0 pb (u|b, μ, σ) du

=
1− er f

(
t√
2

)
er f

(
1√
2

) (A4)

For distribution (A3) the ration is:

f =

∫ ∞
t p f (u|b, μ, σ) du∫ 1
0 p f (u|b, μ, σ) du

=
e−

σ
μ ter f c

(
1√
2

(
σ
μ − t
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+ e−

1
2

(
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μ

)2

er f c
(

t√
2

)
er f c

(
1√
2
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μ

)
− e−

σ
μ er f c

(
1√
2

(
σ
μ − 1

))
+ e− 1

2 η2 er f
(

1√
2

) (A5)

The integration f with Jeffreys prior 1
μ gives:

< f >= lim
A→∞

1
A

∫ A

0
f

1
μ

dμ ≈ 1.47− 0.009t (A6)

Then we calculated ratio R of number of pixels with intensities above u > t to number of pixels
with u ≤ 1 in the image:

R =
b(1+ < f >) + β(< f > −b)

1+ < f > −β(< f > −b)
(A7)

The ratio (A7) was calculated for set of thresholds t (t = 1, 2, 3). The resulting overdetermined
system was solved in least square sense w.r.t β, which is probability of presence foreground signal in
the pixel.

Expectations of mean value of pixels with intensities u > t are:

〈
mb,u>t

〉
=

∫ ∞
t upb (u|μ, B, σ) du∫ ∞
1 pb (u|μ, B, σ) du

=

√
2
π

e− 1
2 t2

er f c
(

t√
2

) (A8)
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Therefore expected mean value of pixels with intensities u > t is: 〈mu>t〉 = β
〈

m f ,u>t

〉
+

(1− β)
〈
mb,u>t

〉
.

We calculated experimental mean value M of pixels with intensities u > t for a set of thresholds t
(t = 1, 2, 3):

M = β
(η + t) e

1
2

(
σ
μ−t

)2− 1
2 t2

er f c
(

t√
2
(η − t)

)
+

√
2
π e− 1

2 t2
+ ηer f c
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2
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e

1
2 (η−t)2− 1

2 t2 er f c
(
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2
(η − t)

)
+ er f c

(
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2

) + (1− β)

√
2
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e− 1
2 t2

er f c
(

t√
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) (A10)

and solved the overdetermined system in least square sense w.r.t. η. Then parameter μ was estimated
as: μ = η · 〈σ〉
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Abstract: Many inference problems relate to a dynamical system, as represented by dx/dt = f (x),
where x ∈ Rn is the state vector and f is the (in general nonlinear) system function or model. Since
the time of Newton, researchers have pondered the problem of system identification: how should the
user accurately and efficiently identify the model f – including its functional family or parameter
values – from discrete time-series data? For linear models, many methods are available including
linear regression, the Kalman filter and autoregressive moving averages. For nonlinear models,
an assortment of machine learning tools have been developed in recent years, usually based on
neural network methods, or various classification or order reduction schemes. The first group,
while very useful, provide “black box" solutions which are not readily adaptable to new situations,
while the second group necessarily involve the sacrificing of resolution to achieve order reduction.
To address this problem, we propose the use of an inverse Bayesian method for system identification
from time-series data. For a system represented by a set of basis functions, this is shown to be
mathematically identical to Tikhonov regularization, albeit with a clear theoretical justification for
the residual and regularization terms, respectively as the negative logarithms of the likelihood and
prior functions. This insight justifies the choice of regularization method, and can also be extended to
access the full apparatus of the Bayesian inverse solution. Two Bayesian methods, based on the joint
maximum a posteriori (JMAP) and variational Bayesian approximation (VBA), are demonstrated for
the Lorenz equation system with added Gaussian noise, in comparison to the regularization method
of least squares regression with thresholding (the SINDy algorithm). The Bayesian methods are also
used to estimate the variances of the inferred parameters, thereby giving the estimated model error,
providing an important advantage of the Bayesian approach over traditional regularization methods.

Keywords: Bayesian inverse problem; dynamical systems; system identification; regularization;
sparsification

1. Introduction

Many problems of inference involve a dynamical system, as represented by:

d
dt

x(t) = f (x(t)), (1)

Proceedings 2019, 33, 33; doi:10.3390/proceedings33010033 www.mdpi.com/journal/proceedings149
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where x ∈ Rn is the observable state vector, a function of time t (and/or some other parameters), and
f ∈ Rn is the (in general nonlinear) system function or model. Given a set of discrete time series
data [x(t1), x(t2), x(t3), ...] from such a system, how should a user accurately and efficiently identify
the model f ? In dynamical systems theory, this is referred to as system identification, although for
many problems of known mathematical structure, it can be simplified into a problem of parameter
identification. The question then leads into deeper questions concerning the purpose of the prediction of
f , and whether it is desired to reproduce a time series exactly, or more simply to extract its important
mathematical and/or statistical properties.

For linear models, many methods are available for identification of the dynamical system (1),
including linear regression, the Kalman filter and autoregressive moving averages. For nonlinear
models, an assortment of machine learning tools have been developed in recent years, usually based on
neural networks or evolutionary computational methods, or various classification or order reduction
schemes. The first group, while very useful, provide “black box" solutions which are not readily
adaptable to new situations, while the second group necessarily involve the sacrificing of resolution to
achieve order reduction.

Very recently, a number of researchers in dynamical and fluid flow systems have applied sparse
regression methods for system identification from time series data [e.g. 1–3]. The regression is used to
determine a matrix of coefficients which – when multiplied by a matrix of functional operations – can
be used to reproduce the time series. Such methods generally involve a regularization technique to
conduct the sparse regression. However, both the regularization term and its coefficient are usually
implemented in a heuristic or ad hoc manner, without much fundamental guidance on how they should
be selected for any particular dynamical system.

In this study, we present a Bayesian framework for the system identification (or parameter
identification) of a dynamical system using the Bayesian maximum a posteriori (MAP) estimate, which
is shown to be equivalent to a variant of Tikhonov regularization. This Bayesian reinterpretation
provides a rational justification for the choices of the residual and regularization terms, respectively as
the negative logarithms of the likelihood and prior functions. The Bayesian approach can be readily
extended to the full apparatus of the Bayesian inverse solution, for example to quantify the uncertainty
in the model parameters, or even to explore the functional form of the posterior. In this study, we
compare the prominent regularization method of least squares regression with thresholding (the
SINDy algorithm) to two Bayesian methods, by application to the Lorenz system with added Gaussian
noise. We demonstrate an advantage of the Bayesian methods, in their ability to calculate the variances
of the inferred parameters, thereby giving the estimated model errors.

2. Theoretical Foundations

In recent years, a number of researchers have implemented sparse regression methods for the
system identification of a variety of dynamical systems [e.g. 1–3]. The method proceeds from a
recorded time series, which for m time steps of an n-dimensional parameter x is assembled into the
m× n matrix:

X =

⎡⎢⎣ x (t1)
...

x (tm)

⎤⎥⎦ =

⎡⎢⎣ x1(t1) . . . xn(t1)
...

...
x1(tm) . . . xn(tm)

⎤⎥⎦ , (2)

and similarly for the time derivative:

Ẋ =

⎡⎢⎣ ẋ (t1)
...

ẋ (tm)

⎤⎥⎦ =

⎡⎢⎣ ẋ1(t1) . . . ẋn(t1)
...

...
ẋ1(tm) . . . ẋn(tm)

⎤⎥⎦ . (3)
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The user then chooses an alphabet of c functions, which are applied to X to populate a m× c matrix
library, for example of the form:

Θ(X) =
[
1 X X2 X3 . . . sin(X) cos(X) . . .

]
, (4)

in this case based on polynomial and trigonometric functions. The time series data for the dynamical
system (1) are then analyzed by the matrix product:

Ẋ = Θ(X)Ξ, (5)

in which Ξ is a c× n matrix of coefficients ξij ∈ R. The matrix Ξ is commonly computed by inversion
of (5) using sparse regression. This generally involves a minimization equation of the form:

Ξ̂ = arg min
Ξ

J(Ξ), (6)

where ˆ indicates an inferred value, based on an objective function consisting of residual and
regularization terms:

J(Ξ) = ||Ẋ −Θ(X)Ξ||αβ + λ||Ξ||αγ, (7)

where || · ||p is the p norm, λ ∈ R is the regularization coefficient and α, β, γ ∈ R are constants. For
dynamical system identification, (6)-(7) have been variously implemented with α ∈ {1, 2}, β = 2 and
γ ∈ {0, [1, 2]} [e.g. 2–6]. Instead of (7), to enforce a sparse solution, some authors have implemented
least squares regression with iterative thresholding, known as the sparse identification of nonlinear
dynamics (SINDy) method [1]:

J(Ξ) = ||Ẋ −Θ(X)Ξ||22 with |ξij| ≥ λ, ∀ξij ∈ Ξ. (8)

This has been shown to converge to (7) with α = β = 2 and γ = 0 [7]. Other authors have implemented
an objective function containing an information criterion, to preferentially select models with fewer
parameters [2]. The above methods have been shown to have strong connections to the mathematical
methods of singular value decomposition (SVD), dynamic mode decomposition (DMD) and Koopman
analysis using various Koopman operators [e.g. 8–10].

In the Bayesian approach to this problem [e.g. 11–13], it is recognized that instead of (5), the time
series decomposition should be written explicitly as:

Ẋ = Θ(X)Ξ + ε, (9)

where ε is a noise or error term, representing the uncertainty in the measurement data. The variables
Ẋ, X, Ξ and ε are considered to be probabilistic, each represented by a probability density function
(pdf) defined over their applicable domain. Instead of trying to invert (9), the Bayesian considers the
posterior probability of Ξ given the data, as given by Bayes’ rule:

p(Ξ|Ẋ) =
p(Ẋ|Ξ)p(Ξ)

p(Ẋ)
∝ p(Ẋ|Ξ)p(Ξ). (10)

The simplest Bayesian method is to consider the maximum a posteriori (MAP) estimate of Ξ, given by
maximization of (10):

Ξ̂ = arg max
Ξ

p(Ξ|Ẋ). (11)

For greater fidelity, it is convenient to consider the logarithmic maximum instead of (11), hence
from (10):

Ξ̂ = arg max
Ξ

[
ln p(Ξ|Ẋ)

]
= arg max

Ξ

[
ln p(Ẋ|Ξ) + ln p(Ξ)

]
. (12)
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If we now make the simple assumption of unbiased multivariate Gaussian noise with covariance
matrix Γ, we have:

p(ε|Ξ) = N (0, Γ) =
exp

(
− 1

2 εTΓ−1ε
)

√
(2π)n det Γ

, (13)

where det is the determinant. The numerator can be written as [13]

p(ε|Ξ) ∝ exp
(
−1

2
||ε||2

Γ−1

)
, (14)

where ||ε||2A = ε Aε is the norm defined by the A bilinear product. From (9), this gives the likelihood

p(Ẋ|Ξ) ∝ exp
(
−1

2
||Ẋ −Θ(X)Ξ||2

Γ−1

)
. (15)

If we also assign a multivariate Gaussian prior with covariance matrix Σ

p(Ξ) = N (0, Σ) ∝ exp
(
−1

2
||Ξ||2

Σ−1

)
, (16)

then the MAP estimator (12) becomes [13]:

Ξ̂ = arg max
Ξ

[
ln exp

(
−1

2
||Ẋ −Θ(X)Ξ||2

Γ−1

)
+ ln exp

(
−1

2
||Ξ||2

Σ−1

)]
= arg max

Ξ

[
−1

2
||Ẋ −Θ(X)Ξ||2

Γ−1 − 1
2
||Ξ||2

Σ−1

]
= arg min

Ξ

[
||Ẋ −Θ(X)Ξ||2

Γ−1 + ||Ξ||2Σ−1

]
.

(17)

We see that the Bayesian MAP provides a minimization formula based on an objective function, which
is remarkably similar to that used in the regularization method (6)-(7). Indeed, for isotropic variances
of the noise Γ = σ2

ε I and prior Σ = σ2
Ξ I, where I is the identity matrix, (17) reduces to the common

regularization formula (6)-(7) with α = β = γ = 2 and λ = σ2
ε /σ2

Ξ [11].
In Bayesian inference, any additional parameters can also be incorporated into the inferred

posterior pdf. In the present study, the covariance matrices Γ of the noise in (14) and Σ of the prior
in (16) are unknown. It is desirable to determine these directly from the Bayesian inversion process.
Using the above simple model of isotropic variances, the posterior can be written as:

p(Ξ, σ2
ε , σ2

Ξ|Ẋ) ∝ p(Ẋ|Ξ)p(Ξ|σ2
Ξ)p(σ2

ε)p(σ2
Ξ). (18)

In the Bayesian joint maximum a posteriori (JMAP) algorithm, (18) is maximized with respect to Ξ, σ2
ε

and σ2
Ξ, to give the estimated parameters Ξ̂, σ̂2

ε and σ̂2
Ξ. In the variational Bayesian approximation

(VBA), the posterior in (18) is approximated by q(Ξ, σ2
ε , σ2

Ξ) = q1(Ξ)q2(σ
2
ε)q3(σ

2
Ξ). The individual

MAP estimates of each parameter are then calculated iteratively, using a Kullback-Leibler divergence
K =

∫
q ln(q/p) dΞdσ2

ε dσ2
Ξ as the convergence criterion.

3. Application

To compare the traditional and Bayesian methods for dynamical system identification, a number
of time series of the Lorenz system were generated and analyzed by several regularization methods,
including SINDy, JMAP and VBA. The Lorenz system is described by the nonlinear equation [14]:

dx
dt

= f (x) = [σ(y− x), x(ρ− z)− y, xy− βz] , (19)
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with parameter values [σ, ρ, β] commonly assigned to [10, 8
3 , 28] to generate chaotic behavior with

a strange attractor. The analyses were conducted in Matlab 2018a on a MacBook Pro with 2.8 GHz
Intel Core i7, with numerical integration by the ode45 function, using a time step of 0.01 and total
time of 100. The calculated position data X were then augmented by additive random noise, drawn
from the standard normal distribution multiplied by a scaling parameter of 0.2. The regularization
processes were then executed using a modified version of the published SINDy code and other utility
functions [2], and modified forms of the JMAP and VBA functions implemented previously [11] with
parameters a0 = 108 and b0 = 10−8. For comparisons, the inferred parameters were then used to
recalculate the time series and derivatives by a further function call. In the Bayesian algorithms, the
estimated variances of the parameters and the prior were also calculated, assuming inverse gamma
distributions for the variance priors; for JMAP this has an analytical solution, while for VBA the
solution is found iteratively using a minimum Kullback-Leibler convergence criterion [11].

4. Results

The calculated noisy data for the Lorenz system are illustrated in Figure 1a,b, respectively for
the parameter values and their derivatives. The calculated regularization results are then presented
in Figures 2–4, respectively for the SINDy, JMAP and VBA methods. In each of these plots, the first
subplot illustrates the difference in each inferred parameter (i.e., ξij − ξ̂ij), while the second subplot
gives the inferred time series of the parameters X, showing the noisy time series x(t), the inferred
series x̂(t) and their differences.

As evident in these plots, the three methods were approximately as effective in selection of the
coefficients to recreate the Lorenz system. Of the other regularization methods published by [2], the
iterative hard thresholding least squares and orthogonal matching pursuit also performed well, while
the LASSO algorithm was unsuccessful for any system examined.

As noted, the two Bayesian methods also provided the variances of the predicted parameters,
shown in Figures 3a and 4a as error bars corresponding to the standard deviations. These
calculations indicate the inferred parameter errors to be larger than previously appreciated, for
example ±1.878× 10−10 in the coefficient of x in all three series predicted by both JMAP and VBA.
These values give a more realistic estimate of the inherent errors in the system identification method
than suggested by the SINDy regularization.
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Figure 1. Calculated noisy data for the Lorenz system: (a) parameters X, and (b) derivatives Ẋ.
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Figure 2. Output of SINDy regularization: (a) differences in predicted parameters ξij − ξ̂ij, and
(b) comparison of original and predicted time series X.
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Figure 3. Output of JMAP regularization: (a) differences in predicted parameters ξij − ξ̂ij (the error
bars indicate inferred standard deviations), and (b) comparison of original and predicted time series X
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Figure 4. Output of VBA regularization: (a) differences in predicted parameters ξij − ξ̂ij (the error bars
indicate inferred standard deviations), and (b) comparison of original and predicted time series X.

5. Conclusions

We examine the problem of system identification of a dynamical system, represented by a
nonlinear equation system dx/dt = f (x), from discrete time series data. For this, we present a
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Bayesian inference framework based on the Bayesian maximum a posteriori (MAP) estimate, which
for the assumption of Gaussian likelihood and prior functions, is shown to be equivalent to a variant
of Tikhonov regularization. This Bayesian reinterpretation provides a clear theoretical justification
for the choices of the residual and regularization terms, respectively as the negative logarithms of the
likelihood and prior functions. The Bayesian approach is readily extended to the full apparatus of the
Bayesian inverse solution, for example to quantify the uncertainty in the model parameters, or even to
explore the functional form of the posterior pdf.

In this study, we compare the regularization method of least squares regression with thresholding
(the SINDy algorithm) to two Bayesian methods JMAP and VBA, by application to the Lorenz system
with added Gaussian noise. The Bayesian methods are shown to perform almost as effectively as
SINDy for parameter estimation and reconstruction of the Lorenz time series. More importantly,
the Bayesian methods also provide the variances – hence the standard deviations – of the inferred
parameters, thereby giving a mathematical estimate of the system identification error. This is an
important advantage of the Bayesian approach over traditional regularization methods.
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Abstract: A number of Unidentified Aerial Phenomena (UAP) encountered by military, commercial,
and civilian aircraft have been reported to be structured craft that exhibit ‘impossible’ flight
characteristics. We consider the 2004 UAP encounters with the Nimitz Carrier Group off the coast
of California, and estimate lower bounds on the accelerations exhibited by the craft during the
observed maneuvers. Estimated accelerations range from 75 g to more than 5000 g with no observed
air disturbance, no sonic booms, and no evidence of excessive heat commensurate with even the
minimal estimated energies. In accordance with observations, the estimated parameters describing the
behavior of these craft are both anomalous and surprising. The extreme estimated flight characteristics
reveal that these observations are either fabricated or seriously in error, or that these craft exhibit
technology far more advanced than any known craft on Earth. In the case of the Nimitz encounters
the number and quality of witnesses, the variety of roles they played in the encounters, and the
equipment used to track and record the craft favor the latter hypothesis that these are technologically
advanced craft.

Keywords: UAP; UAV; UFO

1. Introduction

Unidentified Aerial Phenomena (UAPs) partially identified as being unknown anomalous aircraft,
referred to as Unidentified Anomalous Vehicles (UAVs) or Unidentified Flying Objects (UFOs), have
been observed globally for some time [1]. Such phenomena were studied officially by the United
States Air Force in a series of projects: Project Sign (1947), Project Grudge (1949) and Project Blue
Book (1952–1969) [2]. Other nations, such as Australia, Brazil, Canada, Chile [3], Denmark, France,
New Zealand, Russia (the former Soviet Union), Spain, Sweden, the United Kingdom, Uruguay, and
the Vatican have also conducted studies, or are currently studying, UAPs [4]. In December of 2017 it
was revealed that the United States government had been studying UAPs through at least one secret
program called the Anomalous Aerospace Threat Identification Program (AATIP) [5], and that there
have been times at which United States Naval pilots have had to deal with nearly daily encounters
with UAVs [6,7]. These unidentified craft typically exhibit anomalous flight characteristics, such as
traveling at extremely high speeds, changing direction or accelerating at extremely high rates, and
hovering motionless for long periods of time. Furthermore, these craft appear to violate the laws of
physics in that they do not have flight or control surfaces, any visible means of propulsion apparently
violating Newton’s Third Law, and can operate in multiple media, such as space (low Earth orbit), air,
and water without apparent hindrance, sonic booms, or heat dumps [4].
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The nature, origin, and purpose of these UAVs are unknown. It is also not known if they are
piloted, controlled remotely, or autonomous. If some of these UAVs are of extraterrestrial origin, then it
would be important to assess the potential threat they pose [4]. More interestingly, these UAVs have the
potential to provide new insights into aerospace engineering and other technologies [8]. The potential
of a serious threat as well as the promise of advancements in science and engineering, along with our
evolving expectations about extraterrestrial life are important reasons for scientists to seriously study
and understand these objects [9–13]. We carefully examine a series of encounters in 2004 by pilots
and radar operators of the Nimitz carrier group, and estimate lower bounds on their accelerations. We
demonstrate that the estimated accelerations are indeed extraordinary and surprising.

2. Nimitz Encounters (2004)

For a two week period in November of 2004, the U.S. Navy’s Carrier Strike Group Eleven (CSG-11),
which includes the USS Nimitz nuclear aircraft carrier and the Ticonderoga-class guided missile cruiser
USS Princeton, encountered as many as 100 UAVs. We estimated the accelerations of UAVs relying
on (1) radar information from USS Princeton former Senior Chief Operations Specialist Kevin Day;
(2) eyewitness information from CDR David Fravor, commanding officer of Strike Fighter Squadron 41
and the other jet’s weapons system operator, LCDR Jim Slaight; and (3) analyses of a segment of the
Defense Intelligence Agency-released Advanced Targeting Forward Looking Infrared (ATFLIR) video.
The following descriptions of the Nimitz encounters were summarized from the more detailed study
published by the Scientific Coalition for UAP Studies (SCU) [14].

2.1. Senior Chief Operations Specialist Kevin Day (RADAR)

An important role of the USS Princeton is to act as air defense protection for the strike group.
The Princeton was equipped with the SPY-1 radar system which provided situational awareness of
the surrounding airspace. The main incident occurred on 14 November 2004, but several days earlier,
radar operators on the USS Princeton were detecting UAVs appearing on radar at about 80,000+ feet
altitude to the north of CSG-11 in the vicinity of Santa Catalina and San Clemente Islands. Senior
Chief Kevin Day informed us that the Ballistic Missile Defense (BMD) radar systems had detected
the UAVs in low Earth orbit before they dropped down to 80,000 feet [15]. The UAVs would arrive
in groups of 10 to 20, subsequently drop down to 28,000 feet with a several hundred foot variation,
and track south at a speed of about 100 knots [15]. Periodically, the UAVs would drop from 28,000 feet
to sea level (approx. 50 feet), or under the surface, in 0.78 seconds. Without detailed radar data, it is
not possible to know the acceleration of the UAVs as a function of time as they descended to the sea
surface. However, one can estimate a lower bound on the acceleration by assuming that the UAVs
accelerated at a constant rate halfway and then decelerated at the same rate for the remaining distance
so that

1
2

d =
1
2

a
(

t
2

)2
. (1)

The data consisted of the change in altitude y± σy = 8530± 90 m (−28, 000 ft± 295 ft) and the
duration t′ ± σt = 0.78± 0.08 s, where the goal was to estimate the acceleration, a. The dominant
source of uncertainty in altitude was due to the observed variation in altitude among the observed
UAVs, which was on the order of 200 to 300 ft .

In the first analysis, we assigned a joint Gaussian likelihood, P(y, t|a, I) for the measured altitude
change and the duration of the maneuver. Since the altitude change and the duration are independently
measured, the joint likelihood is factored into the product of two likelihoods, and one can marginalize
over the duration of the maneuver to obtain a likelihood for the altitude y
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P(y | a, I) =
∫ ∞

−∞
dt P(y, t | a, σy, t′, σt, I) (2)

=
∫ ∞

−∞
dt P(y | a, t, σy, I)P(t | t′, σt, I), (3)

where the symbol I represents the fact that these probabilities are conditional on all prior information.
Assigning Gaussian likelihoods we have that
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The integrand is the exponential of a quartic polynomial in t, which was solved numerically. Assigning
a uniform prior probability for the acceleration over a wide range of possible accelerations results in a
posterior that is proportional to the likelihood (5) above resulting in a maximum likelihood analysis,
which gave an estimate of a = 5600 +2270

−1190 g, as illustrated in Figure 1A.
As a second analysis, we employed sampling for which the change in altitude and the elapsed

time were described by Gaussian distributions with y± σy = 8530± 90 m and t′ ± σt = 0.78± 0.08 s,
respectively. The most probable acceleration was 5370 +1430

−820 g while the mean acceleration was 5950 g
(Figure 1B).
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Figure 1. An analysis of Senior Chief Day’s radar observations. (A) The posterior probability indicates
the maximum likelihood estimate of the acceleration to be 5600 +2270

−1190 g. (B) The accelerations obtained

by sampling resulted in the most probable acceleration of 5370 +1430
−820 g (red lines) while the mean

acceleration is 5950 g (black dotted line).

With acceleration estimates in hand, we obtained a ballpark estimate of the power involved to
accelerate the UAV. Of course, this required an estimate of the mass of the UAV, which we did not have.
The UAV was estimated to be approximately the same size as an F/A-18 Super Hornet, which has a
weight of about 32, 000 lbs, corresponding to 14, 550 kg. Since we want a minimal power estimate, we
took the acceleration as 5370 g and assumed that the UAV had a mass of 1000 kg. The UAV would
have then reached a maximum speed of about 46, 000 mph during the descent, or 60 times the speed
of sound, at which point the required power peaked at a shocking 1100 GW, which exceeds the total
nuclear power production of the United States by more than a factor of ten. For comparison, the
largest nuclear power plant in the United States, the Palo Verde Nuclear Generating Station in Arizona,
provides about 3.3 GW of power for about four million people [16].
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2.2. Commander David Fravor (PILOT)

On Nov. 14, 2004, CSG-11 was preparing for training exercises. Two F/A-18F Super Hornets were
launched from the Nimitz for the air defense exercise to be conducted in an area 80–150 miles SSW of
San Diego. Both planes, with call signs “FastEagle01” and “FastEagle02”, had a pilot and a weapons
system operator (WSO) onboard. VFA-41 Squadron Commanding Officer David Fravor was piloting
FastEagle01 and LCDR Jim Slaight was the WSO of FastEagle02. CDR Fravor and his wingman were
headed for the Combat Air Patrol (CAP) point, which is given by predefined latitude, longitude and
altitude coordinates, where they would conduct the training exercises.

About a half-hour after take-off, Senior Chief Day operating the SPY-1 radar system on the
Princeton detected UAVs entering the training area. The training exercise was delayed and FastEagle01
and FastEagle02 were directed to intercept a UAV at a distance of 60 miles and an altitude of 20,000 feet.
As the F-18s approached merge plot, which is the point at which the radar could not differentiate the
positions of the F-18s and the UAV, Fravor and Slaight noticed a disturbed patch of water, where it
appeared as if there was a large object, possibly a downed aircraft, submerged 10 to 15 feet below the
surface. As they observed the disturbance from 20,000 ft, all four pilots spotted a white UAV, shaped
like a large cylindrical butane tank, or a Tic-Tac candy, moving erratically back and forth, almost like a
bouncing ping-pong ball making instantaneous changes in direction without changing speed. The
Tic-Tac UAV was estimated to be about the size of an F-18, about 40–50 feet in length and 10–15 feet
wide, but had no apparent flight surfaces or means of propulsion, and its movement had no apparent
effect on the ocean surface as one would expect from something like rotor wash from a helicopter.
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Figure 2. An analysis of CDR Fravor’s encounter based on a Truncated Gaussian distribution
(1/30◦ ± 1/60◦) of Fravor’s visual acuity and a Truncated Gaussian distribution (1± 1 s) of elapsed
time. A. Gaussian distribution of distances based on the visual acuity distribution. B. The distribution
of accelerations has a maximum at 150 +140

−80 g (red lines) and a mean of 550 g (black dotted line).

Fravor started a descent to investigate while his wingman kept high cover. As Fravor circled
and descended, the UAV appeared to take notice of him and rose to meet him. The F-18 and the UAV
circled one another. When Fravor reached the nine o’clock position, he performed a maneuver to close
the distance by cutting across the circle to the three o’clock position. As he did so, the Tic-Tac UAV
accelerated ([14], p.12) across Fravor’s nose heading south. Fravor said that the UAV was gone within
a second. As a comparison, Fravor noted that even a jet at Mach 3 takes 10 to 15 seconds to disappear
from sight ([14], p.11). LCDR Slaight described the UAV as accelerating as if it was “shot out of a rifle”
and that it was out of sight in a split second. ([14], p. 12).

The engagement lasted five minutes. With the Tic-Tac gone, the pilots turned their attention
toward the large object in the water, but the disturbance has disappeared. The two FastEagles returned
to the Nimitz, without sufficient fuel to attempt to pursue the Tic-Tac. On their way back, they received
a call from the Princeton that the Tic-Tac UAV was waiting precisely at their CAP point. Senior Chief
Day noted that this was surprising because those coordinates were predetermined and secret. Given
that the CAP point was approximately R = 60 mi away, the probability of selecting the CAP point out

160



Proceedings 2019, 33, 26

of all the locations within the 60 mile radius, to within a one mile resolution (slightly more than the
resolution of the radar system), is

P(x|I) = 1
πR2 =

1
11310

= 0.0088%, (6)

discounting the altitude. It appears that the Tic-Tac UAV intentionally went to that location, although
it is not clear how this would be possible.

To obtain a lower bound on the acceleration, we assume that the UAV exhibited constant
acceleration so that the distance traveled was given by

d =
1
2

at2 (7)

during the elapsed time. The length of the Tic-Tac UAV was estimated to be about 40 ft with a cross
sectional width of about w = 10 ft. Given that the acuity of human vision is about θ = 1/60◦ the UAV,
at its narrowest, would be out of sight at a maximum distance of

d =
w/2

tan(θ/2)
, (8)

which is d ≈ 6.5 mi. It is difficult to know what Fravor’s acuity was given the viewing conditions. For
this reason, we model the acuity conservatively as a truncated Gaussian distribution with a peak at
θ = 1/30◦ ± 1/60◦. The truncation at θ = 1/60◦ resulted in a discontinuity in the distribution of the
distances (Figure 2A), which peaks around 2.25 mi.

The elapsed time is modeled as a Gaussian distribution with a mean of 1± 1 s and truncated
for positive values of time. The resulting acceleration distribution was a skewed distribution of

accelerations (Figure 2B) with a most probable acceleration of 150
+140
−80

g, indicated in the figure by

the red vertical lines and a mean acceleration of about 550 g indicated by the black vertical dotted line.
Note that this is a lower bound, probably far below the observed acceleration if the UAV accelerated
briefly as if “shot out of a rifle” and then traveled at a constant speed.

2.3. ATFLIR Video

Upon returning to the Nimitz, CDR Fravor requested that a crew equipped with the ATFLIR pod
obtain videos of the Tic-Tac UAV. Two F/A-18Fs were launched under the guidance of an E-2 Hawkeye
airborne radar plane. The two planes separated in search of the UAV, with one plane heading south
toward the CAP point where the UAV was last seen on radar. That plane picked up a contact 33 miles
to the south on the Range While Search (RWS) scan. This Tic-Tac UAV was filmed using the ATFLIR
system, and the video was released to the public as the “Nimitz video” (Figure 3A).

We examined the last 32 frames of the Nimitz video in which the Tic-Tac UAV accelerated to
the left and the targeting system lost lock. The video frame rate was 29.97 frames/s. As the UAV
accelerates the image of the UAV becomes elongated and blurred. If the shutter speed was known, then
this information could be used to better estimate the speed of the craft. This could be accomplished
by treating the shutter speed as a model parameter, but such analysis is beyond the scope of this
project. Instead, we concentrated on tracking the position of the right edge of the UAV and using those
positions to estimate the kinematics. The left edge of the UAV was also estimated in the first frame to
provide some information about the range, zo, to the UAV given that that UAV was estimated to be
about 40 feet in length. However, since the orientation was not known, this is modeled as a uniformly
distributed unknown angular parameter φ ∈ {0, 3π/8}, which allowed one to at least put an upper
bound on the range zo.

To estimate the position of the right edge of the craft in each frame (Figure 3A), the row of pixels
for which the UAV has a maximum intensity was examined. The pixel intensities along that row at the
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right edge of the UAP were fit (maximum likelihood method with a Student-t likelihood) to half of
a Gaussian curve. The center position of the Gaussian plus the standard deviation was used as the
position of the right side of the UAV for that frame (Figure 3B).

Horizontal positions of the UAV are related to the pixel coordinates by noting that the entire field
of view (approximately FOVpix = 606 pixels) corresponds to an angular field of view of 0.7◦ in the
narrow (NAR) mode, which is indicated in the upper left hand corner of the video. At the range, zo, of
the UAV this results in the proportion

Xscale =
FOVpix/2

zo tan 0.7◦
2

(9)

where Xscale has units pixels
m when zo is in units of m. The ATFLIR has a zoom feature that can change

the field of view. In the Nimitz video frames analyzed, the zoom is first set to unity in the NAR mode
so that the angular field of view is 0.7◦. However, at frame 16, the zoom changes to two, so that the
angular field of view in the NAR mode changes to 0.35◦. This appears as a discontinuity in the data
(‘+’ symbols) illustrated in Figure 3C.
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Figure 3. (A) Frame 19 of the last 32 frames of the Nimitz ATFLIR video. The narrow horizontal and
vertical lines intersecting at the right edge of the UAP image indicate the position of the UAP. (B) The
pixel intensities along a row of the frame are plotted along with the best Gaussian curve fit. The
rightmost edge of the craft is defined as the center position of the Gaussian plus one standard deviation
(indicated by the vertical red line). (C) This is an illustration the data (+), the most probable kinematic
fit (solid curves) to the UAV positions in the Nimitz ATFLIR video, and the residuals (model minus
data) for the model described by (11). Details can be found in Table 1.

We analyzed four different kinematic models using nested sampling, and statistically tested
them by comparing the log Bayesian evidence. We used uniform prior probabilities for the kinematic
parameters as well as a Student-t likelihood function, which is robust to outliers, such as those due to
camera (airplane) motion. Model #1 considers constant acceleration to the left (-x direction). Model
#2 considers constant acceleration both to the left (-x direction) and toward or away from the camera
(z-direction). The forward model provides the position of the UAV as a function of time, where ti is the
time of the ith video frame:

Models #1 and #2

{
x(ti) = 1

2 axti
2 + xo

z(ti) = 1
2 azti

2 + zo
const. accel., (10)

for which ax ∈ [−200, 0] g, az ∈ [−100, 100] g, xo ∈ [−100, 100]px, zo ∈ [7.57, 75.75]mi, and Model #1
just considers the UAV’s acceleration in the x-direction (to the left) so that az

.
= 0.
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Models #3 and #4 describe the kinematics as constant acceleration followed by constant velocity
motion after Frame 15:

Models #3 and #4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x(ti) = 1

2 axti
2 + xo for ti < t16

x(ti) = 1
2 axt15

2 + axt15(ti − t15) + xo for ti ≥ t16

z(ti) = 1
2 azti

2 + zo for ti < t16

z(ti) = 1
2 azt15

2 + azt15(ti − t15) + zo for ti ≥ t16

(11)

for which ax ∈ [−200, 0] g, az ∈ [−100, 100] g, xo ∈ [−100, 100]px, zo ∈ [7.57, 75.75]mi, and Model #3
just considers the UAV’s acceleration in the x-direction (to the left) so that az

.
= 0.

The models were analyzed using a nested sampling algorithm [17,18], which allowed for the
estimation of the logarithm of the Bayesian evidence, logZ, as well as the logarithm of the likelihood,
logL, and mean estimates of the model parameters. The analysis was performed for N = 500 samples
and was run until the change in logZ from successive iterations was less than 10−5, ensuring a
reliable estimate of the log evidence. Tests were performed to ensure that the trial-to-trial variations in
parameter estimates were within the estimated uncertainties.

The results of the nested sampling analysis are listed in Table 1. The uncertainties in the logZ
estimates (not listed) were on the order of one or less. Model 4, which describes the motion of the UAV
as a constant acceleration to the left and away from the observer for the first 15 frames (approximately
0.53 s), is the most probable solution with acceleration components of ax = −35.64 ± 0.08 g and
az = 67.04± 0.18 g for a net acceleration of about 75.9± 0.2 g. The residuals indicate that a more
precise model would consist of multiple episodes of acceleration during the maneuver. This was
observed in SCU’s analysis [14] where the accelerations were estimated to vary from around 40 to 80 g.

Table 1. Kinematic Models for the Nimitz Video Given the log evidence (logZ), Model 4 (bold) is most
probable with a net acceleration of 75.9± 0.2 g.

Model logZ LogL ax( g) az( g) xo(m) zo(m)

Model 1 −253, 640 −253, 614 −71.1± 0.7 – −15.40± 0.04 119, 700± 1200
Model 2 −236, 950 −236, 287 7.564± 0.002 99.994± 0.005 −13.36± 0.04 12, 193± 1
Model 3 −53, 282 −53, 261 −40.2± 3.8 – −4.02± 0.05 49, 700± 4800
Model 4 −52, 084 −52, 031 −35.64± 0.08 67.04± 0.18 −3.89± 0.05 43, 870± 110

A more detailed analysis would involve modeling the motion of the UAV more precisely by
modeling the pixel intensities on the video frames themselves. By considering the shutter speed, the
blurring of the UAV image due to its motion would provide more information about its speed. In
addition, the “change points” at which the accelerations changed could be treated as model parameters
allowing for a more precise description of the UAV’s behavior.

3. Discussion

In this paper, we have worked under the assumption that these UAPs were physical craft as
described by the pilots. The fact that these UAPs exhibited astonishing flight characteristics leaves
one searching for other possible explanations. One very clever explanation suggested by one of the
reviewers was that these UAPs could have been generated by the intersection of two or more laser or
maser beams ionizing the air, which could create a visual image, an infrared image, as well as a radar
reflective region possibly explaining much of the observations.

While such an explanation could explain the visual, infrared and radar observations, it would not
be able to explain either the suborbital radar returns from the ballistic missile defense (BMD) radar
systems on the Princeton before the UAPs dropped to 80, 000 ft, or the sonar returns when the TicTac
UAPs went into the ocean [15], both of which are not as well substantiated or documented as the
other observations.
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More importantly, the distribution of the UAPs ranged from over 100 miles to the north over
Catalina Island to about 70 miles to the west. This would require an array of widely distributed and
coordinated lasers situated on multiple ships or aircraft. However, it is known that there were no other
ships or airplanes in the area. In addition, the fact that the UAP reacted to CDR Fravor’s maneuvers
would require that radar be used to track the F-18s so that the laser-produced imagery could react to
them. However, any such radar frequencies being used in the area would have been detected by the
Princeton, the E-2 Hawkeye, and the F-18s themselves.

If any such system were being secretly tested against CSG-11, one would expect it to mimic
real-life events, such as an enemy aircraft, drone, or missile launch. But the UAPs and their behavior
were nothing like this. Furthermore, such powerful lasers might endanger the planes or personnel
if anything went wrong in the testing, and the fact that the pilots were forced to take evasive
maneuvers [19] reveals that they were being put in harms way. One wouldn’t need to test a system in
this manner, and if such a test did take place it would very likely have been illegal. Furthermore, such
an explanation would have difficulty explaining the almost daily encounters experienced by pilots in
the Roosevelt Carrier Group both off the coast of Virginia and during military operations in the Persian
Gulf [6,7], or earlier encounters, such as that by Lt. Bethune in 1951, two years before the invention of
the maser and nine years before the invention of the laser, which was analyzed in the extended version
of this paper [20].

4. Conclusions

We have carefully considered a set of encounters between the Nimitz CSG-11 and UAPs of
unknown nature and origin. Much of the information available consisted of eyewitness descriptions
made by multiple trained witnesses observing in multiple modalities including visual contact from
pilots, radar, and infrared video. While fabrication and exaggeration cannot be ruled out, the fact that
multiple professional trained observers working in different modalities corroborate the reports greatly
minimizes such risks.

The analysis aimed to estimate lower bounds on the acceleration. This was found by assuming
that the UAVs accelerated a constant rate. We worked to obtain conservative estimates by assigning
liberal uncertainties. It was found that the minimum acceleration estimates, ranging from about 70 g
to well over 5000 g, far exceeded those expected for an aircraft (Table 2). For comparison, humans
can endure up to 45 g for 0.044 s with no injurious or debilitating effects, but this limit decreases with
increasing duration of exposure [21]. For durations more than 0.2 s the limit of tolerance decreases to
25 g and it decreases further still for longer durations [21].

Table 2. Summary of Estimated Accelerations ranging from about 75 g to over 5300 g. Detection
Modalities refer to Multiple Pilots Visual Contact (Vs), Radar (R), Infrared Video (IR).

Case Detection Modalities Kinematic Model Figure Min. Acceleration

Day R (1) Figure 1B 5370 +1430
−820 g

Fravor R,Vs (7) Figure 2C 150 +140
−80 g

ATFLIR R,Vs,IR (11) Figure 3C 75.9± 0.2 g

These considerations suggest that these UAVs may not have been piloted, but instead may have
been remote controlled or autonomous. However, it should be noted that even equipment can only
handle so much acceleration. For example, the Lockheed Martin F-35 Lightning II has maintained
structural integrity up to 13.5 g [22]. Missiles can handle much higher accelerations. The Crotale NG
VT1 missile has an airframe capable of withstanding 50 g and can maintain maneuverability up to
35 g [23]. However, these accelerations are still only about half of lowest accelerations that we have
estimated for these UAVs. The fact that these UAVs display no flight surfaces or apparent propulsion
mechanisms, and do not produce sonic booms or excessive heat that would be released given the
hundreds of GigaWatts of power that we expect should be involved, strongly suggests that these
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anomalous craft are taking advantage of technology, engineering, or physics that we are unfamiliar
with. For example, the Tic-Tac UAV dropping from 28, 000 ft to sea level in 0.78 s involved at least
4.3× 1011 J of energy (assuming a mass of 1000 kg), which is equivalent to about 100 tons of TNT, or
the yield of 200 Tomahawk cruise missiles, released in 3

4 of a second. One would have expected a
catastrophic effect on the surrounding environment. This does not rule out the possibility that these
UAVs have been developed by governments, organizations, or individuals on Earth, but it suggests
that these UAVs and the technologies they employ may be of extraterrestrial origin. That being said,
it should be strongly emphasized that proving that something is extraterrestrial would be extremely
difficult, even if one had a craft in hand.

The purpose of this paper is to focus on the flight kinematics of these UAVs with the aim of
building up a body of scientific evidence that will allow for a more precise understanding of their
nature and origin.

As such, it is difficult to draw any useful conclusions at this point. We have characterized the
accelerations of a number of UAVs and have demonstrated that if they are craft then they are indeed
anomalous, displaying technical capabilities far exceeding those of our fastest aircraft and spacecraft.
It is not clear that these objects are extraterrestrial in origin, but it is extremely difficult to imagine
that anyone on Earth with such technology would not put it to use. Moreover, observations of similar
UAPs go back to well before the era of flight [1]. Collectively, these observations strongly suggest that
these UAVs should be carefully studied by scientists [9–13].

Unfortunately, the attitude that the study of UAVs (UFOs) is “unscientific” pervades the scientific
community, including SETI (Search for Extraterrestrial Intelligence) [24], which is surprising, especially
since efforts are underway to search for extraterrestrial artifacts in the solar system [25–29], in particular,
on the Moon, Mars, asteroids [30], and at Earth-associated Lagrange points. Ironically, such attitudes
inhibit scientific study, perpetuating a state of ignorance about these phenomena that has persisted for
well over 70 years, and is now especially detrimental, since answers are presently needed [31–34].
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Abstract: In empirical science, random sampling is the golden standard to ensure unbiased, impartial,
or fair results, as it works as a technological barrier designed to prevent spurious communication
or illegitimate interference between parties in the application of interest. However, the chance of
at least one covariate showing a “significant difference” between two treatment groups increases
exponentially with the number of covariates. In 2012, Morgan and Rubin proposed a coherent
approach to solve this problem based on rerandomization in order to ensure that the final allocation
obtained is balanced, but with an exponential computation cost in the number of covariates.
Haphazard Intentional Sampling is a statistical technique that combines intentional sampling using
goal optimization techniques with random perturbations. On one hand, it has all the benefits of
standard randomization and, on the other hand, avoid exponentially large (and costly) sample sizes.
In this work, we compare the haphazard and rerandomization methods in a case study regarding the
re-engineering of the network of measurement stations for atmospheric pollutants. In comparison
with rerandomization, the haphazard method provided groups with a better balance and permutation
tests consistently more powerful.

Keywords: design of experiments; randomization; haphazard intentional sampling

1. Introduction

This paper addresses two related problems in the design of experiments: allocation and sampling.
The allocation problem can be illustrated with the classical example on clinical trials, see

Fossaluza et al. [1]: Consider a research laboratory which wants to assess the effectiveness of a new
drug for a particular disease. For this purpose, the laboratory may treat some patients with the
new drug and others with a placebo. The problem of allocation consists of determining, for each
patient in the trial, whether he/she will be treated with the new drug or the placebo. In order to
obtain meaningful conclusions, researchers often wish the allocation to be balanced, in the sense
that the distribution of some covariates (e.g., disease severity, gender, age, etc.) be the same among
both treatment groups. This requirement is specially important to avoid spurious outcomes, such as
different recovery rates due not to the effectiveness of each treatment, but to the imbalance in some of
the covariates; for example, groups with a high proportion of patients with a mild form of the disease
tend to have higher recovery rates than groups with a high proportion of patients with a severe form,
even in the absence of treatment effect.
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The sampling problem consists of drawing, from a (possibly large) set of sampling units or from
a population, a subset for which some outcome variables shall be monitored. It is expected that the
sample be a good representative of the whole original set, so that observations of outcomes in the sample
can be used to make inferences about the whole set. As outcome variables may be influenced by some
known covariates, a proxy to obtain such representative sampling is requiring that the distribution of
these covariates be the same in the sample and in the remaining of complete set. In many practical
applications, this problem may be considered analogous to the allocation problem, as it consists of
partitioning the complete set of units into two groups—one composed by the sample and other the
remaining (non monitored) units.

In both problems above, besides the requirement of obtaining well balanced groups, another
fundamental requirement is that the allocation procedure be free of human ad-hoc interferences.

The standard solution for both problems is randomization, the golden standard to ensure unbiased,
impartial, or fair results, see Pearl [2] and Stern [3]. Randomization works as a firewall, a technological
barrier designed to prevent spurious communication of vested interests or illegitimate interference
between parties in the application of interest, which may be a scientific experiment, a clinical trial, a
legal case, an auditing process, or many other practical applications.

However, a common issue in randomized experiments is avoiding random allocations yielding
groups that differ meaningfully with respect to relevant covariates. This is a critical issue, as the chance
of at least one covariate showing a “significant difference” between two or more treatment groups
increases exponentially with the number of covariates.

To overcome this issue, several authors suggest to repeat the randomization (i.e., to rerandomize)
when it creates groups that are notably unbalanced on important covariates, see Sprott and Farewell [4],
Rubin [5], Bruhn and McKenzie [6]. However, in the worst scenario, “ad hoc” rerandomization can
be used to completely circumvent the haphazard, unpredictable or aimless nature of randomization,
allowing a premeditated selection of a final outcome of choice, see Saa and Stern [7]. Another critique
about rerandomization is that forms of analysis utilizing Gaussian distribution theory are no longer
valid, as rerandomization changes the distribution of the test statistics, see Morgan and Rubin [8] and
references therein.

As a response to these problems, Morgan and Rubin [8,9] proposed a coherent rerandomization
approach in which the decision to rerandomize or not is based on a pre-specified criterion, e.g., a
balance threshold. The inferential analysis of experimental data is based on a randomization test. The
rerandomization procedure consists of the following steps:

1. Select units for the comparison of treatments, and collect covariate data on all units.
2. Define an explicit criterion for covariate balance.
3. Randomize the units to treatment groups.
4. Check covariate balance and return to Step 3 if the allocation is unacceptable according to the

criterion specified in Step 2; continue until the balance is acceptable.
5. Conduct the experiment using the final randomization obtained in Step 4.
6. Perform inference (using a randomization test that follows exactly Steps 2–4).

Such approach aims to ensure balanced allocations, avoid subjective rejection criteria and provide
sound inference procedures.

Despite the benefits of the above approach, it can be hard to use it in a way that yields a highly
balanced allocation at a low computational cost. For example, in a problem of allocation into two
groups, the probability that a simple random sampling generates an allocation that is significantly
unbalanced (at level α) for at least one out of d covariates is proportinal to 1− (1− α)d. As a result, the
expected number of rerandomizations that are required in order for the sample to be balanced in every
covariate grows exponentially with the number of covariates.

The Haphazard Intentional Sampling is a statistical technique developed with the specific purpose
of yielding sampling techniques that, on one hand, have all the benefits of standard randomization and,
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on the other hand, avoid exponentially large (and costly) sample sizes. This approach, proposed
by Lauretto et al. [10,11] and Fossaluza et al. [1], can be divided into a randomization and an
optimization step. The randomization step consists of creating new artificial covariates that are
distributed according to a standard multivariate normal. The optimization step consists of finding the
allocation that minimizes a linear combination of the imbalances in the original covariates and in the
artificial covariates.

In this article, we apply the Haphazard Intentional Sampling techniques to study how to rationally
re-engineer networks of measurement stations for atmospheric pollution and/or gas emissions. We
show how such re-engineering or re-design can substantially decrease the operation cost of monitoring
networks while providing, at the same time, support for arriving at conclusions or taking decisions
with the same statistical power as in conventional setups.

2. Haphazard Intentional Sampling

In this section, we present the formulation of Haphazard Sampling originally presented at
Lauretto et al. [11]. Let X denote the covariates of interest. X is a matrix in Rn×d, where n is the number
of sampling units to be allocated and d is the number of covariates of interest.

An allocation consists of assigning to each unit a group chosen from a set of possible groups, G.
We denote an allocation, w, by a 1× n vector in Gn.

For simplicity, we assume only two groups, that is, G = {0, 1}. We also assume that the number
of units assigned to each group is previously defined. That is, there exist integers n1 and n0 such that
n1 + n0 = n, 1 ·wt = n1 and 1 · (1−w)t = n0.

The goal of the allocation problem is to generate an allocation that, with high probability, is close
to the infimum of the imbalance between groups with respect to individual covariate values, measured
by a loss function, L(w, X).

An example of loss function is the Mahalanobis distance between the covariates of interest
in each group [8], defined as follows. Let A be an arbitrary matrix in Rn×m. Furthermore, define
A∗ := AL, where L is the Cholesky decomposition [12] of the inverse of covariance matrix of A; that is,
Cov(A)−1 = LtL. For an allocation w, let A∗1 and A∗0 denote the averages of each column of A∗ over
units allocated to, respectively, groups 1 and 0:

A∗1 :=
w

n1
A∗ and A∗0 :=

(1−w)

n0
A∗ . (1)

The Mahalanobis distance between the average of the column values of A in each group specified
by w is defined as:

M(w, A) := m−1‖A∗1 −A∗0‖2 . (2)

In this work, the haphazard allocation consists of finding the minimum of a noisy version of
the Mahalabonis loss function. Let Z be an artificially generated matrix in Rn×k, with elements
that are independent and identically distributed according to the standard normal distribution. For
a given tuning parameter, λ ∈ [0, 1], the haphazard allocation consists in solving the following
optimization problem:

minimize (1− λ) M(w, X) + λ M(w, Z)

subject to 1 ·wt = n1

1 · (1−w)t = n0

w ∈ {0, 1}n

(3)

The parameter λ controls the amount of perturbation that is added to the original Mahalanobis
loss function, M(w, X). If λ = 0, then w∗ is the deterministic minimizer of M(w, X). If λ = 1, then w∗

is the minimizer of the unrelated random loss, M(w, Z). By choosing an intermediate value of λ (as
discussed in Section 4), one can obtain w∗ to be a random allocation such that, with a high probability,
M(w∗, X) is close to the infimum loss.
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The formulation presented in Equation (3) is a Mixed-Integer Quadratic Programming Problem
(MIQP) [13] and can be solved by the use of standard optimization software. As a MIQP may be
computationally very expensive if n and d are large, a surrogate loss function that approximates
M(w, A) is a linear combination of the norms l1 and l∞ as follows [14]:

H(w, A) := m−1
(
‖A∗1 −A∗0‖1 +

√
m ‖A∗1 −A∗0‖∞

)
(4)

The minimization of this hybrid norm yields a Mixed-Integer Linear Programming Problem
(MILP), which is computationally much less expensive than a MIQP, see Murtagh [15], Wolsey and
Nemhauser [13]:

minimize (1− λ) H(w, X) + λ H(w, Z)

subject to 1 ·wt = n1

1 · (1−w)t = n0

w ∈ {0, 1}n

(5)

3. Case Study

CETESB—The Environmental Company of Sao Paulo State, maintains a network of atmospheric
monitoring stations, which provide hourly records of pollutant indicators and atmospheric parameters
(Raw data are freely available at http://qualar.cetesb.sp.gov.br/qualar/home.do). The problem here
addressed is to select 25 of 54 candidate stations to install additional pollutant sensors which, due to
their costs, could not be installed in all monitoring stations.

Eight parameters were considered to compute (and control) the Mahalanobis distance between
groups: Particulate matter 10 micrometers (PM10), Nitrogen monoxide (NO), Nitrogen dioxide (NO2),
Nitrogen oxides (NOx), Ozon (O3), Air temperature (Temp), Relative humidity (RH) and wind speed
(WS). An R routine was adapted from Amorim [16] to collect data from CETESB web site and build
a dataset with one-year observations (August 2017–July 2018). Data was summarized by taking the
medians of observations separately for rainy (october–march) and dry (april–september) seasons.
Station coordinates (latitude and longitude) were also considered, to induce a suitable geographic
representativeness in the selected subsample. Thus, our matrix data X has a total of 18 covariates—8
atmospheric summaries for each rain/dry season plus station coordinates.

In our empirical study, we explore the trade-off between randomization and optimization by
using well calibrated values for the parameter λ, as defined in the next equation. The transformation
between parameters λ and λ∗ is devised to equilibrate the weights given to the terms of Equations (3)
and (5) corresponding to the covariates of interest and artificial, which have distinct dimensions, d
and k.

λ = λ∗ / [λ∗(1− k/d) + k/d] , where λ∗ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. (6)

For each value of λ∗, the haphazard allocation method was repeated 500 times (each time with a
fresh random matrix of artificial covariates, Z) with a fixed processing time t = 120 s.

For comparison, we drew 500 allocations using the rerandomization method proposed by Morgan
and Rubin [8], which in its original version consists of repeatedly drawing random allocations until
M(w, X) is below a given threshold a. Here we use a slightly modified fixed-time version of this method,
that chooses the allocation which yields the lowest value for M(w, X) with a given processing time
budget t = 120 s.

Finally, as a benchmark, we also drew 500 allocations using the standard (pure) randomization.
Computational tests were conducted on a desktop computer with a processor Intel I7-4930K

(3.4 Ghz, 6 cores, 2 threads/core), Motherboard ASUS P9X79 LE, 24Gb RAM DDR3 and Linux Ubuntu
Desktop v.18.04. The MILP problems were solved using Gurobi v.6.5.2 [17], a high performance solver
that allows us to easily control all parameters of interest. Each allocation problem—among the batch
of 500 allocations per allocation method, time budget and λ value—was distributed to one of the 12
logical cores available. The computational routines were implemented in the R environment [18].

172



Proceedings 2019, 33, 12

4. Results

4.1. Balance and Decoupling

Two performance criteria are analysed for each method:

1. The balance criterion, measured by the Mahalanobis distance between the covariates of interest,
M(w∗, X). We computed the median and 95th percentile of M(w∗, X) over the 500 allocations
yielded by each method.

2. The decoupling criterion, which concerns the absence of a systematic bias in allocating each
pair of sampling units to the same group (positive association) or to different groups (negative
association). For this purpose, we use the Yule’s coefficient of colligation [19]: for each pair of units
(i, j) ∈ {1, 2, . . . , n}2, i < j, and for each pair of groups (r, s) ∈ {0, 1}2, let zrs(i, j) denote the
number of times among the 500 allocations such that the units i and j are assigned, respectively,
to groups r and s. The Yule coefficient for the pair (i, j) is computed as

Y(i, j) =
√

z00(i, j)z11(i, j)−√
z01(i, j)z10(i, j)√

z00(i, j)z11(i, j) +
√

z01(i, j)z10(i, j)
. (7)

This coefficient ranges in the interval [−1, 1] and measures how often the units (i, j) are allocated to
the same or to different groups. It equals zero when the numbers of agreements (allocations to the
same group) and disagreements (allocations to different groups) are equal; and is maximum (−1
or +1) in the presence of total negative (complete disagreement) or positive (complete agreement)
association.
The closer the Y(i, j) to +1 or −1, the lower the decoupling provided by the allocation method
with respect to (i, j). So, for comparison purposes, we computed, for each method, the median
and 95th percentile of |Y(i, j)| among all pairs (i, j).

Table 1 shows the median and 95th percentile for the Mahalanobis distances and absolute
Yule coefficients for each method. As expected, the pure randomization method yields the highest
Mahalanobis distances, as it does not take into account the balance between groups. For the haphazard
method, the lower the λ∗ (and therefore, the lower the random component weight), the lower the
Mahalanobis distance. It can be noticed that, for all values of λ∗ considered, the haphazard method
yielded the lowest values for median and 95th percentile (outperforming the rerandomization method
by a factor between 2 and 3). That means that the risk of getting a very bad allocation with the
haphazard method is much smaller than using the rerandomization or pure randomization methods.
Regarding the Yule coefficient, the pure randomization method is the benchmark for this parameter, as
it naturally precludes any systematic association between individual allocations. For the haphazard
allocation method, the Yule coefficient decreases as λ∗ increases.

The choice of the most suitable value of λ∗ among the candidate values in Table 1 is based on
a graphical analysis, shown in Figure 1, in which we compare the variation rates of Mahalanobis
distances and Yule coefficients with respect to λ∗. It can be noticed that, whereas the Mahalanobis
distance increases almost linearly with λ∗ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}, the Yule coefficient decreases
initially very fast for λ∗ ≤ 0.2 but afterward gets less sensitive with respect to λ∗. This suggests that,
for our case study, λ∗ = 0.2 is the most suitable choice, as values downward this point yield slightly
lower Mahalanobis distances, but much higher Yule coefficients; conversely, values upward this point
yield only slightly lower Yule coefficients, but considerably higher Mahalanobis distances.

In comparison with rerandomization, haphazard method set with λ∗ = 0.2 yielded a 95th
percentile for the Mahalanobis distances 140% better (0.20 vs. 0.48), with a 95th percentile for the Yule
coefficient which is 73% higher (0.45 vs. 0.26).
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Table 1. Mahalobis distances and absolute Yule coefficients yielded by the haphazard allocation,
rerandomization and pure randomization methods (500 allocations for each method).

Method
Mahalanobis Distance Yule Coefficient (Absolute Value)

Median 95th perc. Median 95th perc.

Haphazard (λ∗ = 0.05) 0.15 0.17 0.26 0.71
Haphazard (λ∗ = 0.10) 0.16 0.18 0.16 0.51
Haphazard (λ∗ = 0.20) 0.18 0.20 0.12 0.45
Haphazard (λ∗ = 0.30) 0.18 0.21 0.12 0.44
Haphazard (λ∗ = 0.40) 0.20 0.22 0.11 0.43

Rerandomization 0.44 0.48 0.07 0.26
Pure random 1.15 1.40 0.03 0.07

Figure 1. Mahalanobis distances and absolute Yule coefficients yielded by the haphazard allocation
method with λ∗ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}.

Figure 2 illustrates the empirical distributions for the standardized difference in means for each
covariate, each based on 500 simulated allocations per method. Each horizontal box plot represents,
for each method and each covariate j, the empirical distribution of the statistics (X1

,j − X
0
,j)/sj, where

X
1
,j and X

0
,j denote the averages of the j-th column of X over units allocated to, respectively, groups

1 and 0 (see Equation (1)); and sj is the reference scale given by the standard deviation of X
1
,j − X

0
,j

computed over 500 simple random allocations. It can be easily seen that differences are remarkably
smaller in haphazard allocations than in rerandomization method that, in turn, are remarkably smaller
than using pure randomization.

Figure 2. Difference between groups 0 and 1 with respect to average of standardized covariate values
for each type of allocation (Adapted from Morgan and Rubin [9]).
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4.2. Inference Power

The above measures can also be seen as a proxy for optimizing other statistical properties. For
instance, one might be interested in testing the existence of a causal effect of the group assignment on
a given response variable Y.

Consider that, for each r ∈ {0, 1}, define μr to be a 1× n vector where μr
i is the expected outcome

for unit i under treatment assign r, i.e., μr
i = E(Yi|wi = r). Define τ to be the true average treatment

effect in the sample,

τ =
1 · (μ1)t

n
− 1 · (μ0)t

n
. (8)

Denoting by w the allocation and by y the vector of observations for Y after units have received the
corresponding treatments, τ can be estimated by:

τ̂w,y =
w · yt

n1
− (1−w) · yt

n0
. (9)

Suppose the problem of interest is testing the hypothesis that treatment effect is null, that is,
H0 : τ = 0.

A randomization test consists in simulating a reference distribution for τ̂ under the hypothesis
H0, and then estimating the probability of getting an estimate more extreme than the observed value
of τ̂w,y. Considering a two-tailed test, a significance level α and the allocation methodM(X) used to
conduct the experiment, the randomization test follows the following steps:

1. Generate B allocations w(1), w(2), . . . , w(B) using methodM(X), constrained to 1 · (w(b))t = n1

and 1 · (1−w(b))t = n0.
2. For each generated allocation w(b), compute the corresponding τ̂w(b) ,y according to Equation (9).

3. Estimate the p value by

p ∼=
∑B

b=1 I(|τ̂w(b) ,y| ≥ |τ̂w,y|)
B

, (10)

where I(·) is the indicator function.
4. H0 is rejected if p ≤ α.

We performed a numerical experiment to assess the test power (i.e., the probability of rejecting H0

when it is false) in the allocations obtained by each allocation method in this study. For this purpose, for
each methodM(X) and for each τ ∈ {0, 0.1, 0.2, . . . , 2}, we repeated 500 times the following procedure:

1. Generate an allocation w using the methodM(X).
2. Simulate a response vector y in the following way:

For i ∈ {1, . . . , n}:

• Draw a random number μ0
i ∼ N(θ, 1), where θ = ∑j (Xi,j − X,j)

/
sd(X,j) and j indexes the

columns of X;
• If wi = 0, then set yi = μ0

i ; otherwise, set yi = μ0
i + τ.

3. Apply the randomization test described above on w, y to test H0 : τ = 0, with a significance level
α = 0.05 and B = 500 allocations.

For each value of τ, the test power is estimated by the proportion of times the hypothesis H0 has
been rejected over the 500 repetitions of the procedure above. It is expected that this probability equals
to α for τ = 0, and approaches 1 as τ increases.

Figure 3 illustrates the difference of power in the allocations obtained by the haphazard (λ∗ = 0.2),
fixed-time rerandomization and pure randomization methods for the hypothesis H0 : τ = 0. The tests
obtained using the haphazard allocations are consistently more powerful over τ than the ones obtained
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using the rerandomization allocations. Indeed, for τ ∈ [0.3, 1.2], the power yielded by haphazard
allocations is more than twice the power yielded by rerandomized allocations, with a maximum factor
of 3.9 for τ = 0.5.

Figure 3. Power curves for each allocation method for testing the absence of treatment effect, H0 : τ = 0.

5. Conclusions

Results presented in this paper indicate that the haphazard intentional allocation method is a
promising tool for design of experiments. In the numerical experiment conducted, the haphazard
allocation method outperformed the alternative fixed-time rerandomization method by a factor 2.4
concerning the loss function of imbalance between the allocated groups. Besides, permutation
tests using haphazard allocations are consistently more powerful than those obtained using the
rerandomization allocations.

Future works shall explore the use of the Haphazard Intentional Allocation method and the
Rerandomization method in applied problems in the fields of environmental monitoring, clinical trials,
jurimetrics and audit procedures. We shall also explore the use of alternative surrogate Loss functions
for balance performance, such as CVaR norms, Deltoidal norms and Block norms, see Pavlikov and
Uryasev [20], Gotoh and Uryasev [21], Ward and Wendell [22].
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Abstract: Many environmental and genetic conditions may modify jaws growth. In orthodontics, the
right treatment timing is crucial. This timing is a function of the Cervical Vertebra Maturation (CVM)
degree. Thus, determining the CVM is important. In orthodontics, the lateral X-ray radiography is
used to determine it. Many classical methods need knowledge and time to look and identify some
features to do it. Nowadays, Machine Learning (ML) and Artificial Intelligent (AI) tools are used
for many medical and biological image processing, clustering and classification. This paper reports
on the development of a Deep Learning (DL) method to determine directly from the images the
degree of maturation of CVM classified in six degrees. Using 300 such images for training and 200 for
evaluating and 100 for testing, we could obtain a 90% accuracy. The proposed model and method are
validated by cross validation. The implemented software is ready for use by orthodontists.

Keywords: classification; orthodontics; Cervical Vertebra Maturation; Machin Learning; Artificial
Intelligence; Deep Learning

1. Introduction

1.1. Importance of the Work and Its Interest for Orthodontics Community

Specialists in orthodontics are responsible for the treatment of dentofacial dysmorphisms,
from different functional, genetical and morphological aetiologias. As a child or teenager is still
growing, orthodontic treatment consists in a combination of orthodontics (about tooth position) and
dentofacial orthopedics (about the guidance and stimulation of facial, maxilla and mandible growth in
the three dimensions).

Many environmental and genetic conditions may induce upper or lower jaws lacks of growth.
Classically, to handle a treatment properly, every etiological condition that can be modified or corrected,
must be identified (diagnosis), normalized (treatment), and stabilized (retention). Specialists have to
carefully examine and precisely analyze, all the medical, functional, clinical and radiographic data,
in order to identify normal versus pathological conditions about tooth position, form or size, about
lip, chin, cheeks, tongue and breathing functions, and about facial and jaws position and growing
patterns. Adolescent orthodontic treatment also depends on proper management of jaws and facial
growth, to allow a balanced jaws position, maximize the airway and improve the facial appearance [1].
Treatment planning in orthodontics depends on a systematic diagnosis and prognosis

Contemporary theories about craniofacial growth admit that the phenotype of the craniofacial
complex is a result of a combination of genetic, epigenetic and environmental factors. The skeletal
tissue of maxillomandibular complex is growing due to sutures and osteogenic cartilages proliferation
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depending on genetic, intrinsic and extrinsic environment. So facial growth can also be modified
in amount and direction by extrinsic factors, including orthopedic and functional treatment. Thus,
quantify facial and, in particular, mandibular growth remaining, influences diagnosis, prognosis,
treatment goals and planning. Indeed, apart choosing the good appliance needed to change the rate
and direction of jaw growth, the right treatment timing is crucial. If high growth rate is about to
occur, orthopedic treatment may permit to correct jaws unbalanced, otherwise surgical correction of
the jaws shift will be considered. The success of a dentofacial orthopedic treatment is linked to the
determination of the best interventional frame (periods of accelerated or intense growth) to maximize
the chances to reach skeletal goals, with adapted methods and devices, in an optimized duration.

The most common dentofacial dysmorphism, is the skeletal class II, corresponding to a short
mandible. Study of normal mandibular growth and remodeling, has shown different ways of bone
formation, that can be stimulated by functional and orthopedics treatments, in particular condylar
growth responsible of 80% of the mandible growth. Numerous radiographic investigations have
established that condylar/mandibular growth follows similar growth curve than statural growth [2].
This growth pattern is characterized by variations of growth rate in 4 stages: first a decrease of growth
velocity from birth to 6 years old, then minor midgrowth spurt around 6 to 8 years, followed by a
prepubertal plateau with decelerated growth rate, and finally the facial growth curve describe a peak
of growth velocity corresponding at the pubertal growth spurt, which coincides, precedes or follows
from 6 to 12 months the statural growth peak (controversial) [3]. This spurt occurs approximately two
years earlier in girls than in boys [4].

To estimate mandibular growth potential left, the patient must be localized on is growth curve,
and many biologic indicators have been proposed: increase in body height, menarche, breast and voice
changes, dental development and eruption, middle phalanx maturation of the third finger, maturation
of the hand and wrist, and cervical vertebral maturation [3,5–8].

1.2. The Classical Radiographic Manual Methods

1.2.1. Hand-Wrist Radiograph Method HWM

The comparison method describes in the Atlas of Greulich et Pyle in 1959 or the Fishman’s method
in 1982, permit to identify specific ossification stages occurring before, during, or after mandibular
growth peak, on left hand and wrist radiographs [9,10]. The hand wrist radiographs have been used
as a gold standard in the assessment of skeletal maturation for many decades, but presented several
issues as: the additional X-ray exposure, the time spending and experience required (even if a digital
software is now available [11]), and a sexual dimorphism and ethnic polymorphism in morphological
modifications [12,13].

1.2.2. Vertebrae Maturation CVM

First who proposed to predict skeletal age and growth potential by cervical vertebrae maturation
(CVM) method is LAMPARSKI in 1972. Cervical vertebrae are available on the lateral cephalometric
radiographs, prescribed routinely by orthodontists for each patient diagnosis and treatment
planning [14]. He has used measurements of mandibular length on several annual lateral cephalograms
to describe individual mandibular growth curve, and correlated it with morphological description
of vertebrae morphology at each stage. This method were modified several times first by Hassel and
Farman (1995) [15], then twice by Baccetti et al. (2002 and 2005) for a more accurate assessment of
cervical maturation, by 6 stages identified by morphological changes in the C2,C3,C4 vertebral bodies
on a single lateral cephalogram, independently of patient gender [16].

This last version is the most used nowadays to detect the mandibular growth spurt, as it shows
the best results in clinical applicability [17].

As every single bones of the human body, vertebrae growth and present maturational changes
from birth to full maturity. Cervical vertebrae are the first seven pieces of the spinal column. Vertebral
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growth in the cartilaginous layer of the superior and inferior surfaces of each vertebrae, involves
changes in size of vertebral bodies and shape of upper and lower borders of C2,C3,C4 vertebrae.
These changes have been described into 6 stages, correlating with morphological modifications of
the vertebral shapes and estimated time lapse from the mandibular growth peak. Both visual and
cephalometric appraisals of morphological changes have been proposed.

Visual analysis [1]:

• Cervical stage 1 (CS1) = 2 years before mandibular growth peak:
Lower borders of C2 to C4 vertebrae are flat. C3 and C4 superior borders are tapered from
posterior to anterior.

• Cervical stage 2 (CS2) = 1 year before mandibular growth peak:
Lower border of C2 presents a concavity. Bodies of C3 and C4 are the same.

• Cervical stage 3 (CS3) = during the year of the mandibular growth peak:
Lower borders of C2 and C3 present concavities. Vertebrae are growing so C3 and C4 may be
either trapezoid or rectangular shape, as superior borders are less and less tapered.

• Cervical stage 4 (CS4) = 1 or 2 years after mandibular growth peak:
Lower borders of C2, C3 and C4 present concavities. Both C3 and C4 bodies are rectangular with
horizontal superior borders longer than higher.

• Cervical stage 5 (CS5) = 1 year after the end of mandibular growth peak:
Still concavities of lower borders of C2, C3 and C4. At least one of C3 or C4 bodies are squared
and spaces between bodies are reduced.

• Cervical stage 6 (CS6) = 2 years after the end of mandibular growth peak:
The concavities of lower borders of C2 to C4 have deepened. C3 and C4 bodies are both square or
rectangular vertical in shape (bodies higher than wide).

1.2.3. Cephalometric appraisals:

Using the landmarks illustrated on Figure 1 (right), cephalometric analysis consists in the
measurement of:

• The concavity depth of the lower vertebral border (estimated by the distance of the middle point
(Cm) from the line connecting posterior to anterior points (Clp-Cla))

• The tapering of upper border of vertebral C3 and C4 bodies (estimated by the ratio between
posterior and anterior bodies heights (Cup-Clp)/(Cua-Cla))

• The lengthening of vertebral bodies (estimated by the ratio between the bases length and anterior
bodies borders height ( Clp-Cla)/Cua-Cla)

Many researchers found this method as valid and reliable as hand and wrist Xray [14]. The cervical
vertebrae maturation stages have been demonstrated as a clinically useful maturation indicators for
evaluation of pubertal growth height and mandibular velocities [18–20], by correlation between
chronological age and cervical vertebrae maturation, between hand-wrist and cervical-vertebrae
maturation [16,21–23].

Some studies underlined the need for association with other clinical assessments [24] in clinical
practice, and a good reliability in differentiating pre and post mandibular growth spurt periods [25].
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Figure 1. (Left) CVM radiological and morphological stages superposed with Björk growth curve [16],
(Right) Cephalometric landmarks for CVM stages determination [1].

1.3. The Difficulties of the Labeling Task

Specific training is provided to assess CVM stages reliably, and repeatably at a satisfactory
level [26,27]. Gabriel et al. minimized the risk of bias (radiographs without tracings, standardized
training to private practice orthodontists...) and observed a moderate intra and inter-observer
agreement (30 to 62% of cases). These results confirm the expertise required to proper determination
of CVM stage, and may be explained by the use of a qualitative method of assessment, and the lack in
detecting exceptional cases (individual variations in size and morphology, outside the norms defined
by the method). Moreover, for orthodontists, the cervical vertebrae area on the lateral cephalograms is
outside their expertise visual field. They have poor general knowledge and experience about vertebrae
observation, as they focus on maxillomandibular bones and teeth at first glance. This would have been
a difficulty in the labeling task of our radiographs. All lateral radiographs have been labeled by a
radiologic technician, specialized in cephalometric tracing and over trained in CVM stages agreement
(3 years full time), using a standardized morphologic and cephalometric protocol. Intra observer
reproducibility must be estimated in further study.

1.4. The Need for Automatization and the Help Which It Brings

Estimation of CVM stage represents only one single element influencing the patient orthodontic
treatment. The practitioner must master the entire clinical, functional, biomechanical and cephalometric
data analysis in order to define proper diagnosis and treatment goals and planning. Even in being
specialists, orthodontists require a very broad range of skills and a great deal of time for each patient
complete diagnosis. Considering that reproducibility of classifying CVM stages is superior at 98% by
trained examiners [1], automatization by expert eyes will provide time saving, efficiency, accuracy,
repeatability in treatment planning and patient care.

Few studies have presented software programs for cephalometric determination of C2, C3 and C4
vertebrae proportions according reference points marked manually on the image, and automatically
calculates the skeletal maturation stage. This computer-assisted analysis still depends on operator
experience [28]. Padalino et al run a study comparing manual analysis of CVM stages and the analysis
performed by a dedicated software. It has shown a concordance of 94% between the two methods but
hand-tracing analysis was quicker of 28 seconds on average [29].

Deep learning conventional neural networks have already been used to diagnose metabolic
disorders in pediatric endocrinology, in order to assess skeletal bone age on left hand-wrist radiographs.
Deep learning approach proposes better accuracy than conventional methods in processing the image
in less than 1 s. Our study aims to develop a fully automated deep learning assessment of CVM stages
on lateral cephalograms in orthodontics.
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2. Preprocessing of the Data

For this classification task, we had an image data base of 2000 X-ray radiographic images. Each
image has a size of 2012× 2012. These images are extracted from the patients files and are anonymized.

A selection of 600 images are studied and labelized by the experts in six classes (CVS1, ..., CVS6).
These labelized data are divided in three sets of Training, Validation and Testing. We did different
division of the data: First, we had started by 300, 200 and 100, respectively for Training, Validation and
Testing. Then, we decided to divide them to 200, 200 and 200 and used Cross Validation technique by
permutation of these sets.

Also, as these images are from the whole head, only a specific part of the image is usefull for
this classification, we performed different preprocessing before feeding then to the DL input. In a
preprocessing step, each original image is first cropped to the interesting part (Test1: size 488 × 488),
then resized to (Test2: 244 × 244) or (Test3: 64 × 64) and after resizing to 244 × 244, they are Sobel
filtered to enhance the contours of the image (Test 4). Figure 2 shows an example of these inputs.

Figure 2. Originals and different preprocessing before training: (a) Originals (2012 × 2020), (b) test0:
cropped images (488 × 488), (c) test1: cropped and sobel edge detector filter (488 × 488), (d) test2:
cropped and resized (244 × 244), (e) test3: cropped, resized and sobel edge detector filter (244 × 244),
(f) test4: cropped and resized (64 × 64).
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3. Structure of the Deep Learning Network

In a preliminary study, we used different Deep Learning network structures for this classification
task and finally we selected a Deep Learning structure (like resnet) which is adapted for our task.

We considered different classical networks:

• Resnet:
Resnet was introduced in the paper “Deep Residual Learning for Image Recognition
<https://arxiv.org/abs/1512.03385>”. There are several variants with different output sizes,
including Resnet18, Resnet34, Resnet50, Resnet101, and Resnet152, all of which are available from
torchvision models. As our dataset is small, we used Resnet18 that we adapted in our case for
6 classes.

• Alexnet:
Alexnet was introduced in the paper “ImageNet Classification with Deep Convolutional Neural
Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf>” and was the first very successful CNN on the ImageNet dataset.

• VGG:
VGG was introduced in the paper “Very Deep Convolutional Networks for Large-Scale Image
Recognition <https://arxiv.org/pdf/1409.1556.pdf>”. Torchvision offers eight versions of VGG
with various lengths and some that have batch normalizations layers.

• Squeezenet:
The Squeeznet architecture is described in the paper “SqueezeNet: AlexNet-level accuracy with
50× fewer parameters and <0.5 MB model size, <https://arxiv.org/abs/1602.07360>”. It uses a
different output structure than the other models mentioned here. Torchvision has two versions of
Squeezenet. We used version 1.0.

• Densenet:
Densenet was introduced in the paper “Densely Connected Convolutional Networks”,
<https://arxiv.org/abs/1608.06993>. Torchvision has four variants of Densenet. Here we used
Densenet-121 and modified the output layer, which is a linear layer with 1024 input features,
for our case.

• Inception v3:
Inception v3 was first described in “Rethinking the Inception Architecture for Computer Vision”,
<https://arxiv.org/pdf/1512.00567v1.pdf>. This network is unique because it has two output
layers when training. The second output is known as an auxiliary output and is contained in the
AuxLogits part of the network. The primary output is a linear layer at the end of the network.
Note, when testing we only consider the primary output.

As it can be seen from on Figure 3, the structure of Deep Learning model is composed of an input
convolutional layer and three or four other convolutional nets (CNN) layers and a fully connected of
(32 × 32) to 6 classes. Each of the three CNNs is followed by a normalization, pooling and dropout
layers with different dropout coefficients.

The models are trained with different partitions of the images in Training, Validation and Testing
sets. The following figure shows 300 images which have been prepared for the training, then validated
on 200 images and saved to be used for testing step. A set of 120 images are used for testing step and
the average score was 80 percent.
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Figure 3. The structure of the proposed Deep Learning network.

4. Tools and Implementation

In this work, we used the following tools:

• SciKit-Learn: Data shuffling, Kmeans and Gaussian Mixture clustering, Principal Component
Analysis and performance metrics.

• Keras wth tensorflow backend: VGG16, VGG19 and ResNet50 convolution network models with
ImageNet weights

5. Prediction Results

With implemented DL structure, we used 300 images for the training step, 200 images for the
validation step and finally 150 images for the testing step. We had to fix a great number of parameters
such as dropout rates, optimization algorithms, regularization parameters, etc.

The following Figure 4 shows the evolution of the Loss function and the accuracy as a function of
the epoch numbers for one of these different tests.
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Figure 4. Loss function and the accuracy as a function of the epoch numbers.

Here, we show the prediction results obtained with different preprocessing of the data, both
during the training and the testing

CVS1/ 0.83, CVS2/ 0.85, CVS3/ 0.72, CVS4/ 0.72, CVS5/ 0.79, CVS6/ 0.82

6. Conclusions

In this work, we developed and presented a specifically designed classification method for
classifying the lateral radiographs of a great number of patients with the objective of determining the
cervical vertebra maturation degree of bones, which is an important parameter for the orthodontists.
The proposed Deep Learning classification method is particularly adapted for this task. In a first step,
we used 300 labeled images for training, 200 for validation and hyper parameter tuning and finally
100 for testing. Even if during the training and validation, we could obtain accuracies more than 95%,
the accuracy for the testing images did not exceeded 85%. We think that with a greater number of
training and validation images, this can be improved. Our plan is to use about 1000 images for training
and 1000 for testing in near future.
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Abstract: Signale and image processing has always been the main tools in many area and in particular
in Medical and Biomedical applications. Nowadays, there are great number of toolboxes, general
purpose and very specialized, in which classical techniques are implemented and can be used: all
the transformation based methods (Fourier, Wavelets, ...) as well as model based and iterative
regularization methods. Statistical methods have also shown their success in some area when
parametric models are available. Bayesian inference based methods had great success, in particular,
when the data are noisy, uncertain, incomplete (missing values) or with outliers and where there is a
need to quantify uncertainties. In some applications, nowadays, we have more and more data. To use
these “Big Data” to extract more knowledge, the Machine Learning and Artificial Intelligence tools
have shown success and became mandatory. However, even if in many domains of Machine Learning
such as classification and clustering these methods have shown success, their use in real scientific
problems are limited. The main reasons are twofold: First, the users of these tools cannot explain
the reasons when the are successful and when they are not. The second is that, in general, these
tools can not quantify the remaining uncertainties. Model based and Bayesian inference approach
have been very successful in linear inverse problems. However, adjusting the hyper parameters is
complex and the cost of the computation is high. The Convolutional Neural Networks (CNN) and
Deep Learning (DL) tools can be useful for pushing farther these limits. At the other side, the Model
based methods can be helpful for the selection of the structure of CNN and DL which are crucial
in ML success. In this work, I first provide an overview and then a survey of the aforementioned
methods and explore the possible interactions between them.

Keywords: signal and image processing; transform based; model based; regularization; Bayesian
inference; Gauss-Markov-Potts; variational Bayesian approach; Machine Learning; Artificial Intelligence

1. Introduction

Nowadays, there are great number of general purpose and very specialized toolboxes, in which,
classical and advanced techniques of signal and image processing methods are implemented and
can be used. Between them, we can mention all the transformation based methods (Fourier, Hilbert,
Wavelets, Radon, Abel, ... and much more) as well as all the Model Based and iterative regularization
methods. Statistical methods have also shown their success in some areas when parametric models
are available.

Bayesian inference based methods had great success, in particular, when the data are noisy, uncertain,
some missing and some outliers and where there is a need to account and to quantify uncertainties.
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Nowadays, we have more and more data. To use these “Big Data” to extract more knowledge,
the Machine Learning and Artificial Intelligence tools have shown success and became mandatory.
However, even if in many domains of Machine Learning such as classification and clustering these
methods have shown success, their use in real scientific problems are limited. The main reasons are
twofold: First, the users of these tools can not explain the reasons when they are successful and when
they are not. The second is that, in general, these tools can not quantify the remaining uncertainties.

Model based and Bayesian inference approach have been very successful in linear inverse
problems. However, adjusting the hyper parameters is complex and the cost of the computation
is high. The Convolutional Neural Networks (CNN) and Deep Learning (DL) tools can be useful for
pushing farther these limits. At the other side, the Model based methods can be helpful for the selection
of the structure of CNN and DL which are crucial in ML success. In this work, first I give an overview
and a survey of the aforementioned methods and explore the possible interactions between them.

The rest of the paper is organized as follows: First a classification of signal and image processing
methods is proposed. Then, very briefly, the Machine Learning tools are introduced. Then, through
the problem of Imaging inside the body, we see the different steps from acquisition of the data,
reconstruction, post-processing such as segmentation and finally the decision and conclusion of the
user are presented. After mentioning some successful case studies in which the ML tools have been
successful, we arrive at the main part of this paper: Looking for the possible interactions between
Model based and Machine Learning tools. Finally, we mention the Open problems and challenges in
both classical, model based and the ML tool.

2. Classification of Signal and Image Processing Methods

Signal and image processing methods can be classified in the following categories:

• Transform based methods
• Model based and inverse problem approach
• Regularisation methods
• Bayesian inference methods

In the first category, the main idea is to use different ways the signal and images can be represented
in time, frequency, space, spacial frequency, time-frequency, wavelets, etc.

3. Transform Domain Methods

Figure 1 shows the main idea behind the transform based methods. Mainly, first a linear transform
(Fourier, Wavelet, Radon, etc.) is applied to the signal or the image, then some thresholding or
windowing is applied in this transform domain and finally an inverse transform is applied to obtain
the result. Appropriate choices of the transform and the threshold or the widow size and shape are
important for the success of such methods [1,2].

g(t) −→ W −→ T −→ W−1 −→ f (t)

g(x, y) −→ W −→ T −→ W−1 −→ f (x, y)

Figure 1. Transform methods.
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4. Model Based and Inverse Problem Approach

The model based methods are related to the notions of forward model and inverse problems
approach. Figure 2 shows the main idea:

Physical Model
of some

brain characteristic
f

=⇒
g = H( f )

Prediction of
EEG-MEG

measurement
g

Forward problem

Image of
some brain

characteristic
f

⇐=
f = H†g

EEG-MEG
measurement

g

Inverse problem

Figure 2. Model based methods.

Given the forward modelH and the sources f , the prediction of the data g can be done, either in
a deterministic way: g = H( f ) or via a probabilistic model: p(g| f ,H).

In the same way, given the forward model H and the data g, the estimation of the unknown
sources f can be done either via a deterministic method or probabilistic one. One of the deterministic
method is the Generalized inversion: f = H†(g). A more general method is the regularization:
f̂ = arg min f {J( f )} with J( f ) = ‖g −H( f )‖2 + λR( f ) [3].

As we will see later, the only probabilistic method which can be efficiently use for the inverse
problems is the Bayesian approach.

5. Regularization Methods

Let consider the linear inverse problem:

g = H f + ε, (1)

Then the basic idea in regularization is to define a regularization criterion:

J( f ) =
1
2
‖g − H f‖2

2 + λR( f ) (2)

and optimize it to obtain the solution [4]. The first main issue in such regularization method is the
choice of the regularizer. The most common examples are:

R( f ) =

{
‖ f‖2

2, ‖ f‖β
β, ‖D f‖2

2, ‖D f‖β
β, ∑

j
φ([D f ]j)

}
, 1 ≤ β ≤ 2 (3)

The second main issue in regularization is the the choice of appropriate optimization algorithm.
Mainly, depending on the type of the criterion, we have:

• R( f ) quadratic: Gradient based, Conjugate Gradient algorithms are appropriate.
• R( f ) non quadratic, but convex and differentiable: Here too the Gradient based and Conjugate

Gradient (CG) methods can be used, but there are also great number of convex criterion
optimization algorithms.

• R( f ) convex but non-differentiable: Here, the notion of sub-gradient is used.

Specific cases are:
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• L2 or quadratic: J( f ) = 1
2‖g − H f‖2

2 + λ‖D f‖2
2.

In this case we have an analytic solution: f̂ = (H ′H + λD′D)−1H ′g. However, in practice
this analytic solution is not usable in high dimensional problems. In general, as the gradient
∇J( f ) = −H ′(g − H f ) + 2λD′D f can be evaluated analytically, gradient based algorithms
are used.

• L1 (TV): convex but not differentiable at zero: J( f ) = 1
2‖g − H f‖2

2 + λ‖D f‖1.

The algorithms in this case use the notions of Fenchel conjugate, Dual problem, sub gradient,
proximal operator, ...

• Variable splitting and Augmented Lagrangian

( f , ẑ) = arg min
f ,z

{
1
2
‖g − H f‖2

2 + λ‖z‖1 + q‖z‖2
2

}
s.t. z = D f (4)

A great number of optimization algorithms have been proposed: ADMM, ISTA, FISTA, etc. [5–7].

Main limitations of deterministic regularization methods are:

• Limited choice of the regularization term. Mainly, we have: a) Smoothness (Tikhonov), b) Sparsity,
Piecewise continuous (Total Variation).

• Determination of the regularization parameter. Even if there are some classical methods such as
L-Curve and Cross validation, there are still controversial discussions about this.

• Quantification of the uncertainties: This is the main limitation of the deterministic methods,
in particular in medical and biological applications where this point is important.

The best possible solution to push further all these limits is the Bayesian approach which has:
(a) Many possibilities to choose prior models, (b) possibility of the estimation of the hyper-parameters,
and most important (c) accounting for the uncertainties.

6. Bayesian Inference Methods

The simple case of the Bayes rule is:

p( f |g,M) =
p(g| f ,M) p( f |M)

p(g|M)
where p(g|M) =

∫∫
p(g| f ,M) p( f |M)d f (5)

When there are some hyper parameters which have also to be estimated, we have:

p( f , θ|g,M) =
p(g| f ,θ,M) p( f |θ,M) p(θ|M)

p(g|M)
where p(g|M) =

∫∫
p(g| f , θ,M) p( f |θ,M)dθ d f (6)

From that joint posterior distribution, we may also obtain the marginals:

p( f |g,M) =
∫∫

p( f , θ|g,M)d f and p(θ|g,M) =
∫∫

p( f , θ|g,M)d f (7)

To be more specific, let consider the case of linear inverse problems g = H f + ε,. Then, assuming
Gaussian noise, we have:

p(g| f ) = N (g|H f , vε I) ∝ exp
[−1

2vε
‖g − H f‖2

2

]
(8)

Assuming a Gaussian prior:

p( f ) ∝ exp

[
−1
2v f

‖ f‖2
2

]
or exp

[
−1
2v f

‖D f‖2
2

]
, (9)
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Then, we see that the posterior is also Gaussian and the MAP and Posterior Mean (PM) estimates
become the same and can be computed as the minimizer of : J( f ) = ‖g − H f‖2

2 + λR( f ):

p( f |g) ∝ exp
[−1

2vε
J( f )

]
→ f̂ MAP = arg max

f
{p( f |g)} = arg min

f
{J( f )} (10)

In summary, we have:

{
p(g| f ) = N (g|H f , vε I)
p( f ) = N ( f |0, v f I)

→

⎧⎪⎨⎪⎩
p( f |g) = N ( f | f̂ , Σ̂)

f̂ = [H ′H + λI]−1H ′g
Σ̂ = vε[H ′H + λI]−1, λ = vε

v f

(11)

For the case where the hyper parameters vε and v f are unknown (Unsupervised case), we can
derive the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(g| f , vε) = N (g|H f , vε I)
p( f |v f ) = N ( f |0, v f I)
p(vε) = IG(v f |αε0 , βε0)

p(v f ) = IG(v f |α f0 , β f0)

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p( f |g, vε, v f ) = N ( f | f̂ , Σ̂)

f̂ = [H ′H + λ̂I]−1H ′g
Σ̂ = v̂ε[H ′H + λ̂I]−1, λ̂ = v̂ε

v̂ f

p(vε|g, f ) = IG(vε|α̃ε, β̃ε)

p(v f |g, f ) = IG(v f |α̃ f , β̃ f )

α̃ε, β̃ε, α̃ f , β̃ f

(12)

where the expressions for α̃ε, β̃ε, α̃ f , β̃ f can be found in [8].
The joint posterior can be written as:

p( f , vε, vξ |g) ∝ exp
[−J( f , vε, vξ)

]
(13)

From this expression, we have different expansion possibilities:

• JMAP: Alternate optimization with respect to f , vε, v f :

J( f , vε, v f ) =
1

2vε
‖g − H f‖2

2 +
1

2v f
‖ f‖2

2 + (αε0 + 1) ln vε +
βε0

vε
+ (α f0 + 1) ln v f +

β f0

v f
(14)

• Gibbs sampling MCMC:

f ∼ p( f , vε, v f |g)→ vε ∼ p(vε|g, f )→ v f ∼ p(v f |g, f ) (15)

• Variational Bayesian Approximation: Approximate p( f , vε, v f |g) by a separable one q( f , vε, v f ) =

q1( f )q2(vε)q3(v f ) minimizing KL(q|p) [8].

7. Imaging inside the Body: From Acquisition to Decision

To introduce the link between the different model based methods and the Machine Learning tools,
let consider the case of medical imaging, from the acquisition to the decision steps:

• Data acquisition:
Object f → Scanner → Data g

• Reconstruction:
Data g → Reconstruction → Image f̂

• Post Processing (Segmentation):

Image f̂ → Segmentation → ẑ
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• Understanding and Decision:

Image f̂
Segmentation ẑ

→ Interpretation
Decision

→ Tumor or
Not Tumor

The questions now are: Can we join any of these steps? Can we go directly from the image to the
decision? For the first one, the Bayesian approach can provide a solution:

Data g → Reconstruction
Segmentation

→ Reconstruction f̂
→ Segmentation ẑ

The main tool here is to introduce a hidden variable which can represent the segmentation.
A solution is to introduce a classification hidden variable z with zj = {1, 2, · · · , K}. Then in Figure 3,
we have in summary:

Real word
f , z

p( f |z) p(z) p(g| f )
Hierarchical Prior Likelihood

=⇒
Measurement

g

Estimation
f̂ , ẑ

⇐=
p( f , z|g)

Joint Posterior

Data
g

p( f , z|g) ∝ p(g| f , z) p( f |z) p(z) ∝ p(g| f ) p( f |z) p(z)

Figure 3. Bayesian approach for joint reconstruction and segmentation.

A few comments for these relations:

• p(g| f , z) does not depend on z, so it can be written as p(g| f ).
• We may choose a Markovian Potts model for p(z) to obtain more compact homogeneous

regions [8,9].
• If we choose for p( f |z) a Gaussian law, then p( f , z|g) becomes a Gauss-Markov-Potts model [8].
• We can use the joint posterior p( f , z|g) to infer on ( f , z): We may just do JMAP: ( f̂ , ẑ) =

arg max {p( f , z|g)} or trying to access to the expected posterior values by using the Variational
Bayesian Approximation (VBA) techniques [8,10–13].

This scheme can be extended to consider the estimation of the hyper parameters too. Figure 4
shows this.

Real word
f , z, θ

p( f |θ2, z) p(z|θ3) p(g| f , θ1)
Hierarchical Prior Likelihood

=⇒
Measurement

g

Estimation
f̂ , ẑ, θ

⇐=
p( f , z, θ|g)

Joint Posterior

Data
g

p( f , z, θ|g) ∝ p(g| f , θ1) p( f |z, θ2) p(z|θ3)

Figure 4. Advanced Bayesian approach for joint reconstruction and segmentation.

Again, here, we can use the joint posterior p( f , z, θ|g) to infer on all the unknowns [12].

8. Advantages of the Bayesian Framework

• Large flexibility of Prior models prior

– Smoothness (Gaussian, Gauss-Markov)

194



Proceedings 2019, 33, 16

– Direct Sparsity (Double Exp, Heavy-tailed distributions)
– Sparsity in the Transform domain (Double Exp, Heavy-tailed distributions on the WT coefficients)
– Piecewise continuous (DE or Student-t on the gradient)
– Objects composed of only a few materials (Gauss-Markov-Potts), ...

• Possibility of estimating hyper-parameters via JMAP or VBA
• Natural ways to take account for uncertainties and quantify the remaining uncertainties.

9. Imaging inside the Body for Tumor Detection

• Reconstruction and Segmentation

Data g → Reconstruction → Image f̂ → Segmentation → ẑ

• Understanding and Decision

Image f̂
Segmentation ẑ

→ Interpretation
Decision

→ Tumor or
Not Tumor

• Can we do all together in a more easily way?
• Machine Learning and Artificial Intelligence tools may propose solutions

Data g → Machine Learning and
Artificial Intelligence

→ Tumor or
Not Tumor

• Learning from a great number of data

From here, we may just do JMAP: ( f̂ , ẑ, θ̂) = arg max {p( f , z, θ|g)}, or better, use the Variational
Bayesian Approximation (VBA) to do inference.

10. Machine Learning Basic Idea

The main idea in Machine Learning is to learn from a great number of data: (gi, di), i = 1, · · ·N:

Data
(gi, di)

N
i=1

→ Machine Learning and
Artificial Intelligence

→ Tumor or
Not Tumor

Between the basic tasks we can mention: (a) Classification (Tumor/Not Tumor), (b) Regression
(Continuos parameter estimation) and (c) Clustering when the data have not yet labels.

Between the existing ML tools we may mention: Support Vector Machines (SVM), Decision-Tree
learning (DT), Artificial Neural Networks (ANN), Bayesian Networks (BN), HMM and Random Forest
(RF), Mixture Models (GMM, SMM, ...), KNN, Kmeans,...

The frontiers between Image processing, Computer vision, Machine Learning & Artificial
intelligence are not very precise as it is shown in Figure 5.
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Image Processing

Computer Vision

Machine Learning

Artificial Intelligence

Acquisition, Representation,
Compression, Transmission
Enhancement, Restoration
Segmentation
Edge/Feature extraction
Pattern matching
Objects detection
Understanding,
Recognition, 3D

Figure 5. Frontiers between Image processing (IP), Computer vision (CV), Machine Learning (ML) and
Artificial intelligence (AI).

Between the Machine learning tools, we may mention Neural Networks (NN), Artificial NN
(ANN), Convolutional NN (CNN), Recurrent NN (RNN), Deep Learning (DL). This last one had shown
great success in Speech Recognition, Computer Vision and specifically in Segmentation, Classification
and Clustering and in Multi-modality and cross-domain information fusion [14–17]. However, there
are still many limitations: Lack of interpretability, reliability and uncertainty and No reasoning and
explaining capabilities [18]. To overcome, there still much to do with the Fundamentals.

11. Interaction between Model Based and Machine Learning Tools

To show the possibilities of the interaction between classical and machine learning, let consider a
few examples. The first one is the case of linear inverse problems and quadratic regularization or the
Bayesian with Gaussian priors. The solution has an analytic expression:

g = H f + ε → f̂ = (HHt + λDDt)−1Htg = BHtg

which can be presented schematically as

g → Ht → B → f̂ or directly g → CNN or DL → f̂

As we can see, this induces directly a linear NN structure. In particular, if H represents a
convolution operator, then Ht and HtH are too and probably the operator B can also be well
approximated by a convolution and the whole inversion can be modelled by a CNN [19].

The second example is the denoising g = f + ε with L1 regularizer, or equivalently, the MAP
estimator with a double exponential prior, where the solution can be obtained by a convolution
followed by a thresholding [20,21].

g = f + ε → f̂ =
1
λ

Htg followed by Thresholding

g → Ht → Thresholding → f̂ or directly g → CNN or DL → f̂

The third example is the Joint Reconstruction and Segmentation that was presented in previous
sections. If we present the different steps of reconstruction, segmentation and parameter estimation,
we can also compare it with some kind of NN (combination of CNN, RNN and GAN) [22,23].

g → Reconstruction → f̂ → Segmentation → ẑ → Parameter
estimation

→ θ̂

12. Conclusions and Challenges

Signal and image processing, imaging systems and computer vision have made great progress in
the last forty years. The first category of the methods was based on linear transformation followed by
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a thresholding or windowing and coming back. The second generation was model based: forward
modeling and inverse problems approach. The main successful approach was based on regularization
methods using a combined criterion. The third generation was model based but probabilistic and using
the Bayes rule, the so called Bayesian approach. Nowadays, Machine Learning (ML), Neural Networks
(NN), Convolutional NN (CNN), Deep Learning (DL) and Artificial Intelligence (AI) methods have
obtained great success in classification, clustering, object detection, speech and face recognition, etc.
But, they need great number of training data and lack still explanation and they may fail very easily.
For signal and image processing or inverse problems, they need still progress. This progress is coming
via their interaction with the model based methods. In fact, the successful of CNN and DL methods
greatly depends on the appropriate choice of the network structure. This choice can be guided by
the model based methods. For inverse problems, when the forward models are not available or too
complex, NN and DL may be helpfull. However, we may still need to choose the structure of the NN
via approximate forward model and approximate Bayesian inversion.
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Abstract: The key input quantity to climate modelling and weather forecasts is the solar beam
irradiance, i.e., the primary amount of energy provided by the sun. Despite its importance the absolute
accuracy of the measurements are limited—which not only affects the modelling but also ground
truth tests of satellite observations. Here we focus on the problem of improving instrument calibration
based on dedicated measurements. A Bayesian approach reveals that the standard approach results
in inferior results. An alternative approach method based on monomial based selection of regression
functions, combined with model selection is shown to yield superior estimations for a wide range
of conditions. The approach is illustrated on selected data and possible further enhancements
are outlined.

Keywords: broadband; irradiance; reference; solar radiation; climate modelling; pyrheliometer;
Bayesian model comparison; evidence

1. Introduction

Broadband visible (0.295–3.5 microns) solar beam irradiance is measured using pyrheliometers.
A concise history of solar beam irradiance measurements, beginning in the nineteenth century,
is summarized in [1]. A pyrheliometer produces millivolt level output generated by a thermopile
whose hot junctions are in contact with a black detector surface heated by incoming solar irradiance.
The detector is situated behind a standardized view limiting aperture system with FOV (field of view)
of five degrees. Thermopile voltage outputs must then be transformed into irradiance units of watts
per square meter and this process requires a reference scale in irradiance units as well as a method
to transform a raw voltage signal into an irradiance value from the reference scale. A history of
radiometric reference scales in use during the twentieth century is discussed in [1–4]. The accuracy
and precision of a radiometric reference scale transfer to operationally deployable pyrheliometers in
use at the WMO regional level is the subject of this paper.

1.1. Current Practice

The World Meteorological Organization (WMO), since 1977, has sanctioned a reference scale
for solar beam irradiance: the World Radiometric Reference (WRR) [5,6]. The WRR is maintained at
the PMOD/WRC, (Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center),
located in Davos, Switzerland. At PMOD/WRC, a WSG (World Standard Group) of cavity radiometers
calibrated by electrical substitution methods is used to create the WRR. At PMOD/WRC, the WSG has
been in sustained use since the 1970s, and the WRR is defined as a weighted average of readings from
the WSG [7].
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Cavity type pyrheliometers are used as primary references for the WSG and in WMO regions.
They are not used for operational monitoring sites due to their relatively high cost. Additionally,
they are operated without a window to eliminate transmission and spectral effects on incoming solar
irradiance so are vulnerable to ingestion of dust, rain, snow, insects etc. A standard field of view
(FOV), 5 degrees, admits solar beam irradiance which enters a cavity shaped detector through a
precision aperture whose area has been measured. The irradiance heats a detector surface in contact
with a thermopile and an output signal on the order of millivolts is generated and recorded by an
automated data acquisition system or by personnel manually recording readings from a voltmeter
display. After a sequence of readings due to solar irradiance heating the detector, the cavity is blocked
with a shutter mechanism and the detector is electrically heated to an output equivalent to the solar
irradiance heating. The heater power is computed and the precision aperture allows the conversion
into engineering units of watts per unit area. The cavity type radiometers are self calibrating, based on
the ability of control circuitry to measure fundamental quantities: volts, ohms and amperes. The year
over year sustained precision of ratios between cavity radiometers calibrated by electrical substitution
is a reassuring achievement in accurate measurement of solar irradiance over the past forty years of
the WRR.

The WSG at PMOD is routinely used to collect solar direct beam irradiance data throughout
the year to ensure continuity of its group precision. At five year intervals, reference pyrheliometers
and personnel from the seven worldwide WMO regions are invited to Davos Switzerland for an
International Pyrheliometer Comparison (IPC). IPC-I, IPC-II and IPC-III were conducted in 1959,
1964 and 1970 respectively, and every five years since. The most recent, IPC-XII, was conducted
in 2015, from 28 September to 16 October, and pyrheliometers from 15 Regional and 15 National
Radiation Centers as well as 25 manufacturers and other institutions participated in the comparison
and were represented by 111 individuals from 33 countries who operated 134 pyrheliometers of various
configurations, design and manufacture [7].

During an IPC, clear sky periods occurring at Davos enable simultaneous measurements of
solar beam irradiance by the WSG and each participating pyrheliometer, and a sufficient number
of measurements are acquired for statistical analysis of the ratios of participating pyrheliometer
irradiances to the WSG irradiances. A protocol for accepting or rejecting data points is adhered to [7] .
After analysis, PMOD/WRC assigns a WRR factor to each pyrheliometer, which is its average ratio to
the WRR during the IPC. Results for all pyrheliometers are summarized and published in a WMO
publication [7]. In principle, this enables each IPC pyrheliometer to recreate the WRR as needed for
reference scale transfer at the regional level. Self calibrating cavity type pyrheliometers are used as
primary references for the WSG and in WMO regions. The righthand panel of Figure 1 illustrates
precision achievable for a group of three participating cavity radiometers from the North American
Region (WMO Region IV) in IPC-XII.

During IPC-XII , the self calibrating cavity type pyrheliometers exhibited standard deviations of
their ratios to the WRR on the order of hundreds of parts per million, or less that 0.1 percent, as the
three North American cavities show in Figure 1.
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Figure 1. Left panel [8] shows efforts to establish a radiometric scale during the 20th century.
The shaded band marks the adoption of the WRR. Relative relationships of the scales with respect to
the current WRR are shown. Right panel illustrates the results for three cavities from WMO Region
IV (North American Region) which participated in IPC-XII in 2015. Box plot data: box midlines are
medians, box lower and upper boundaries are at the 25th and 75th percentiles and the box whisker
caps are at the 2nd and 98th percentiles. Shaded bands in both panels denote the accepted uncertainty
in the WRR. The scale in righthand panel is expanded by a factor of 12 with respect to panel on left.

1.2. Implementing the WRR Within WMO Regions

Throughout the seven WMO world regions, routine solar beam measurements are typically made
using pyrheliometers that must be able to withstand exposure to extreme environments in which they
may be used. The environments range from the South Pole in Antarctica to mid latitude sites, maritime
South Pacific locations, equatorial continental sites, high mountain sites (e.g., Mauna Loa Observatory
in Hawaii) and the Arctic. This requires a windowed hermetically sealed housing with the same field
of view as a cavity but without the ability of self calibration. Detectors are thermopile based as in
cavity type pyrheliometers but are not capable of self calibration and these pyrheliometers will be
referred to as working class pyrheliometers and are mounted on solar tracking devices which maintain
continuous alignment to the sun. An additional requirement is they must be economically feasible
for purchase by a global community of users in need of reliable and accurate measurements of solar
irradiance as well as being able to withstand exposure to weather and climate extremes.

A standard field of view, depending on vintage and manufacturer of the instrument, admits solar
beam irradiance which heats a detector surface in contact with thermopile and an output signal on the
order of millivolts is generated and recorded by a data acquisition system. Conversion of the original
millivolt level signals from a working class pyrheliometer into engineering units of watts per square
meter requires that it be calibrated against a radiometric reference scale traceable to the WRR.

However, currently achievable precision demonstrated at recent IPCs through ratioing self
calibrating cavities to a WSG/WRR is not realized for working class pyrheliometers. A group of
three working class pyrheliometers from WMO Region VI were participants in IPC-XII. Figure 2 below
illustrates precision achievable for a group of three participating cavity radiometers from the North
American Region (WMO Region IV) in IPC-XII, and three working class pyrheliometers from a North
American Region manufacturer currently used in European Region VI. The degradation of precision
is considerable. The purpose of this paper is to present results of an alternative method to calibrate
working class pyrheliometers. The goal is to achieve a reduction in the uncertainty of an assigned
irradiance from the WRR scale to an individual working class pyrheliometer output voltage.
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Figure 2. Box and whisker plots from IPC-XII Results for three North American Region cavity type
pyrheliometers and a group of three working class pyrheliometers typically used at monitoring sites
in WMO regions. Whisker caps are at 2nd and 98th percentiles. Box boundaries at 25th and 75th
percentiles and median. Shaded band is stated uncertainty of the WRR. Precision losses in WRR ratios
can range from factors of ten up to forty [7].

2. The Physical Model

2.1. Regional Calibration Procedure

Solar radiometry metrology has advanced considerably since 1970. Discussions of metrology
of solar radiometry can be found in [9–17]. The advances in metrology of solar radiometry have
been driven by the requirements of more accurate determination of the TSI, (total solar irradiance)
measured by orbiting satellites equipped with self calibrating cavity radiometers. Ground based
measurements have benefitted from these advances, and in particular, the cavity radiometers calibrated
by electrical substitution.

IPC participants with self calibrating cavity radiometers are in position to reproduce the precision
achievable at an IPC. For example, in Region IV (North America, Central America and the Caribbean),
an annual ad hoc pyrheliometer comparison is conducted at NREL (National Renewable Energy
Laboratory) in Golden Colorado. These NPC (NREL Pyrheliometer Comparison) events are conducted
every fall during non-IPC years. A surrogate WSG, based on a group of participating cavities from the
most recent IPC, is used to create a reference irradiance scale. NPC participants unable to attend a
recent IPC, can compare their cavities to this surrogate WSG and realize a precision of ratios comparable
to those achievable at an IPC. Figure 3 illustrates the precision of the same cavities displayed in Figure 2,
but for their results from an NPC conducted in 2018 at NREL [18], three years after their most recent
participation in IPC-XII. Cavities that participate in an NPC but not the most recent IPC are able to
create their own surrogate WRR and establish traceability to the WSG/WRR in Davos.

Figure 3. Results for three North American Region cavity type pyrheliometers. Darker shaded box plot
data: IPC-XII 2015. Lighter shaded box plot data: NPC-2018. The shaded band across the graph is the
historical assigned uncertainty of the WRR. Box and whisker information is the same as in Figures 1
and 2.

A working class pyrheliometer at the regional level is usually calibrated by operating it side by
side with a reference cavity traceable to the most recent IPC or NPC and calibrations can be performed
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on an as needed basis. Typically, a group of working class pyrheliometers are calibrated together using
a WRR or NPC traceable cavity. A protocol similar to an IPC is used for collecting measurements
of direct beam solar irradiance from the reference cavity and output voltages. Data are collected at
chosen time intervals and the voltage readings from a pyrheliometer under test are ratioed to the
concurrent reference cavity irradiance values. Unlike an IPC or NPC, the pyrheliometers under test
are not self-calibrating. The ratios formed by dividing readings from the pyrheliometers under test by
the irradiances measured with the cavity have units of microvolts per watt per square meter and are
referred to as responsivities. These ratios are collected over time periods that can vary from hours to
days and weeks, depending on frequency of clear sky conditions during the calibration period and the
judgment of personnel performing the calibration. Orthodox statistical techniques are used to process
the set of ratios from individual pyrheliometers and one ratio value is generated and assigned as its
responsivity. The assigned ratio is the chosen model for transforming voltage readings from a working
class pyrheliometer into irradiance values traceable to the surrogate WRR generated by the reference
cavity. In various forms, depending on the history of pyrheliometer design, this has been the model
for assigning a reference scale irradiance to a given output from a working class pyrheliometer and
has been used for the past century. In contrast, a typical IPC lasts for three weeks and usually clear sky
periods occur such that enough readings are recorded to confidently produce WRR correction factors
for all participating instruments. Protocols for IPC comparisons impose strict constraints on when data
is officially recorded for determination of WRR factors but the IPCs are only scheduled every five years.
At the regional level, working class pyrheliometers are utilized in long term monitoring networks,
renewable energy applications, efficiency monitoring of solar power generation sites, commercial
calibration services and research institutions. These pyrheliometers may also be installed at remote
field sites and operate unattended and continuously for months and years. Periodically they require
recalibration and are replaced by a more recently calibrated unit. This is the reality of establishing and
maintaining long term monitoring networks for measurement of solar radiation.

2.2. Standard Calibration Procedure

As outlined before the standard calibration procedure consists of assigning the responsivity
(i.e., the conversion factor from the measured voltage v to the irradiance P). As shown in Figure 4 the
assumption of a linear relation P = αv holds to a large extent.
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Figure 4. Results for three working class pyrheliometers used to collect clear sky solar irradiance data
from 16 May 2013 to 12 August 2013. Sampling rate was 1 hertz and data were processed into one
minute averages. A total of 14914 data points are included in the data set. The solid lines are given by
linear regression of P = αi × v to the measured data for each of the three devices.

However, closer inspection of the residuals (c.f. Figure 5 )reveals some remaining structure, thus
indicating that the difference between data and model is not purely stochastic.
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Figure 5. Panel (a) displays the difference between the data and the linear model for one of the data
sets displayed in Figure 4. Panel (b) provides the residuum if instead of a model linear in the measured
voltage a quadratic relationship is being assumed. The overall magnitude of the residuum in panel
(b) is visibly smaller compared with panel (a). However, if the residuum is plotted as function of the
device temperature (panel (c)) again a non-stochastic behavior is evident. Instead, panel (d) displays
a bivariate regression function i.e., a sum of a quadratic function of the voltage v1 and a quadratic
function of the temperature T appears to capture the data reasonably well. The resulting residuum
shows no clear non-stochastic behavior.

In the panels of Figure 5 different residuals are displayed. Panel (a) displays the difference
between the data and the linear model for one of the data sets displayed in Figure 4. Panel (b)
provides the residuum if instead of a model linear in the measured voltage a quadratic relationship
is being assumed. The overall magnitude of the residuum in panel b is visibly smaller compared
with panel a. However, if the residuum is plotted as function of the device temperature (panel (c))
again a non-stochastic behavior is evident. Instead, a bivariate regression function i.e., a sum of a
quadratic function of the voltage and a quadratic function of the temperature appears to capture the
data reasonably well: the resulting residuum shows no clear systematic. But of course this may not
be the optimal regression function. In any case the results so far indicate that the evaluation of the
pyrheliometers may benefit from a multivariate regression approach, considering also other factors
besides the measured voltage. Based on the design of the devices at least two additional parameters
could be of importance besides the voltage v: the temperature T , potentially affecting the electronics
or the device geometry (by thermal expansion), thermopile temperature dependence and the cosine of
the solar zenith angle c.

2.3. Multivariate Linear Regression

The preceding discussion results in three likely parameters for the model: f = f (T, c, v).
However, the functional form of f is unknown. Based on the experience of the change of the
residuals using low order polynomials it appears reasonable to express the model function as a
sum of multivariate monomials

f (Ti, ci, vi) =
E

∑
k=1

xikak =
E

∑
k=1

Tlk
i cmk

i vqk
i · ak, (1)
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where E is the expansion order of the model. As basis sets we consider the set of all monomials in
these variables up to a total degree (the sum of all three exponents lk + mk + qk) of 3, corresponding
to 20 different basis functions, for example monomials like T2c0v0, T1c1v1 or T1c0v2. Depending on
the expansion order out of these 20 basis functions E are chosen and used for a multivariate linear
regression to the data. This yields for a given expansion order (20

E ) possible models. Since a priori we
neither know the most adequate expansion order E nor the best set of monomials for a given expansion
order we compute the model evidence in the MAP approximation for all possible combinations up
to E = 10, resulting in the comparison of more than 106 different models. Our approach employs
standard Bayesian model comparison as outlined e.g., in [19]. For the large number of models it is only
possible because most of the necessary numerics to compute the evidence can be done analytically,
as is shown next.

If we assume that 〈εi〉 = 0 and 〈ε2
i 〉 = σ2

i and negligible uncertainty in the voltage measurement
the data y are given by

yi = f (Ti, ci, vi) + εi , (2)

and the likelihood for N independent measurements becomes

p(y|x, a, σ, E, I) = (2π)− N
2

∏i σi
exp

{
− 1

2

N

∑
i=1

(
yi −∑E

k=1 xik ak
)2

σ2
i

}

=
(2π)− N

2

∏i σi
exp

{
− 1

2
φ

}
. (3)

The notation simplifies if we introduce the vectors y and a and the matrices X = {xik} and S−2 =

diag(σ−2
i ) in the argument φ of the exponential. Then

φ = (y− Xa)TS−2(y− Xa) .

It is convenient to introduce new variables y′ = S−1y and X′ = S−1X in the exponent, resulting in

φ = (y′ − X′a)T(y′ − X′a) = y′ 2 − 2aTX′Ty′ + aTX′TX′a , (4)

The maximum of the likelihood is achieved for

0 = ∇ φ = −2X′Ty′ + 2X′TX′a ,

⇒ (X′TX′) aML = X′Ty′ .

In the following, we assume that the inverse of the matrix X′TX′ exists. A necessary condition is N ≥ E,
i.e., we have at least as many measurements as there are parameters. If the inverse matrix exists then

aML = (X′TX′)−1X′Ty′ .

Since φ is quadratic in a we can rewrite φ in Equation (4) as a complete square in a plus a residue

φ = R + (a− a0)
TQ(a− a0) . (5)

This form is achieved via a Taylor expansion about a = aML. The second derivatives (Hessian) provide

Q =
1
2
∇∇T φ(a)

∣∣∣∣
aML

= X′TX′ . (6)

The matrix on the right-hand-side also shows up in the maximum likelihood solution

aML = Q−1X′Ty′ . (7)
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The residue R in Equation (5) is the constant R = φ(aML) of the Taylor expansion, that can be
transformed into

R = y′T
(

11− X′Q−1X′T
)

y′ . (8)

This general result can be cast in an advantageous form employing singular value decomposition [20]
of the matrix X′:

X′ = UDVT . (9)

The sizes of the matrices U, D, and V are (N × E), (E× E), and (E× E) respectively. The transposed
matrix X′T is simply

X′T = VDUT (10)

and the product X′TX′ becomes, using the unitarity of U

Q = X′TX′ = VDUTUDVT = VD2VT (11)

The last equation is also known as the spectral decomposition of the real symmetric matrix X′TX′. We
assume that the singular values are strictly positive, in order that the inverse of Q exists. The virtue of
the spectral decomposition is that it yields immediately the inverse Q−1 as

Q−1 = VD−2VT . (12)

It is easily verified that the matrix product of Equations (11),12 yields the identity matrix 11, which is a
consequence of the left unitarity of U. The maximum likelihood estimate aML is given by

aML = Q−1X′Ty′ = VD−2VTVDUTy′ = VD−1UTy′ = ∑
i

(
uT

i y′

λi

)
vi , (13)

where ui (vi) are the column vectors of U (V). The maximum likelihood estimate aML is thereby
expanded in the basis {vi} with expansion coefficients (uT

i y′/λi).
We now turn to the Bayesian estimation of a [19]. The full information on the parameters a is

contained in the posterior distribution

p(a|y, X, σ, E, I) = 1
Z

p(a|E, I) p(y|X, a, σ, E, I) , (14)

from which we can determine for example the maximum posteriori (MAP) solution via

p(a|E, I) ∇a p(y|X, a, σ, E, I) + p(y|X, a, σ, E, I)∇a p(a|E, I) = 0 .

For a sufficient number of well determined data the likelihood is strongly peaked around its maximum
aML, while the prior will be comparatively flat, in particular if it is chosen uninformative. A reliable
approximate solution will then be obtained from

p(a|E, I) ∇p(y|X, a, σ, E, I) = 0 , (15)

which is the maximum likelihood estimate. Similar arguments hold for posterior expectation values of
any function f (a)

〈 f (a)〉 = 1
Z

∫
dEa f (a) p(a|E, I) p(y|X, a, σ, E, I) ,

Z =
∫

dEa p(a|E, I) p(y|X, a, σ, E, I) .
(16)
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For general p(a|E, I) the integrals can only be performed numerically. Using the fact that the likelihood
is generally precisely localized compared to the diffuse prior. This suggests, that we replace the prior
p(a|E, I) by p(aML|E, I) and take it out of the integrals

〈 f (a)〉 ≈ p(aML|E, I)
Z

∫
dEa f (a) p(y|X, a, σ, E, I) , (17)

Z ≈ p(aML|E, I)
∫

dEa p(y|X, a, σ, E, I) . (18)

Now, since p(y|X, a, σ, E, I) is a multivariate Gaussian in a the expectation value
(

f (a) = ai
)

and the
covariance

(
f (a) = cov(ai, aj)

)
can easily be determined

〈a〉 = aML (19)

cov(ai, aj) = Q−1
ji (20)

We have derived a reasonable approximation for the normalization Z, also called the »prior predictive
value« or the »evidence«. Z represents the probability for the data, given the assumed model.
The question at hand in the present problem is of course whether the data require really a high
expansion order E or are they also satisfactorily explained by some lower order E′ < E. For these
problems the full expression for Z is required including the prior factor. The remaining Gaussian
integral in Equation (18) can be performed easily resulting in

Z ≈ p(aML|E, I) (2π)
E−N

2

N
∏
i

σi

|Q|−1/2exp
{
− 1

2
y′T(11− X′Q−1X′T

)
y′
}

.

The singular value decomposition of the argument of the exponential yields

11− X′Q−1X′T = 11−UDVTVD−2VTVDUT = 11−UUT = 11−
E

∑
i=1

U iUT
i

and the evidence finally reads

p(y|X, σ, E, I) ≈ p(aML|E, I) (2π)
E−N

2

E
∏
k

λk
N
∏
i

σi

exp
{
− 1

2
y′T

(
11−

E

∑
i=1

U iUT
i

)
y′
}

. (21)

The exponent in Equation (21) represents that part in the data that is due to noise or a different model.
It remains to assign a prior distribution to the linear parameters a of the model. For simplicity

we assign a normalized uniform prior for all components p (ai) = 1/400 in the range [−200, 200] and
p (ai) = 0 outside. Thus each additional parameter reduces the log-evidence by log(400) ! 6. More
refined prior distributions based on Maximum Entropy concepts are possible [19] but have not been
considered in this work. The standard deviation of the power measurements was assumed to be
σ = 1 W

m2 throughout—this is presumably too low but we did not want to mask systematic trends by
assuming a too large noise level.

3. Results

The key results of this massive model comparison scanning over the expansion order and
searching the best monomial combination for each expansion are displayed in Figure 6. The model
evidence indicates that the data mandate an expansion order of around 8. Here also the improvement
of the misfit with increasing number of parameters levels off. Inspection of the selected terms reveals
that consistently - besides the powers of the measured voltage mixed terms of the form Tkvq and clvq
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were present in the best regression model. It is noteworthy that the key monomials
(
v, v3, cv, Tcv, T2c

)
were the same for all three investigated devices. The increased order of the regression function reduced
the deviation between the data and the model by more than 20% without any indications of overfitting.
For expansion orders above 10 the condition number of the design matrix exceeded 105, indicating
that the available basis set becomes increasingly colinear and the fit less reliable. Therefore results
obtained with E > 10 were not considered further.
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Figure 6. Misfit and evidence as function of the number of parameters. For each number of parameters
the corresponding best fit is provided. On the left hand ordinate the misfit (χ2-value) between data
and model is given. On the ordinate on the right hand side the logarithm of the model evidence is
given. Higher values indicate a more probable model. As can be clearly seen from both misfit and
model evidence the commonly used 1 parameter regression is inadequate. The evidence obtains nearly
identical peak value maxima for 7 and 9 parameters where also the improvement for the χ2-values
levels off.

Based on these results the calibration of pyrheliometer should take into account the temperature
and the angle of irradiance as well instead of relying on a single calibration factor. This can significantly
improve the accuracy. This is illustrated in Figure 7. A data set was collected using a group of three
working class pyrheliometers in use for decades at a WMO Region IV RRC (Regional Radiation Center)
located at the NOAA/Earth Systems Research Laboratory in Boulder, Colorado. One minute averages
of data sampled at one hertz over the time period from 16 May–12 August, 2013 were used to create a
data set for analysis. Clear sky periods were chosen and no lower limits were imposed on irradiance
values (An IPC only uses irradiance values above 700 watts/sq.m). All solar zenith angles were used
for the analysis subject to a constraint that the skies were categorized as clear. A total of 14914 one
minute averages were used in the analysis. The darker shaded box and whisker plots summarize
residuals after subtracting the pyrheliometer irradiances computed using its assigned responsivity
value from the surrogate WRR reference. The lighter shaded box plots summarize the residuals
after fitting the three parameter linear model using 8 monomials. There is measurable reduction in
the uncertainty.
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Figure 7. Results for three working class pyrheliometers used to collect clear sky solar irradiance data
from 16 May 2013 to 12 August 2013. Sampling rate was 1 hertz and data were processed into one
minute averages. A total of 14914 data points are included in the data set. Solar zenith angle range:
16–84 degrees Irradiance range: 375–1050 watts per square meter. Darker shaded boxes are residual
summaries of ratio responsivity scaling. The lighter shaded boxes are residual summaries of a linear
model scaling of pyrheliometer outputs. Box and whisker information is the same as in Figures 1–3.

4. Conclusion and Outlook

The precise estimation of solar irradiation is a key factor for climate modelling. The measurements
are challenging due to a wide variety of measurement conditions, the need for stability on an absolute
scale and the high precision requirements. The present results - based on an exhaustive Bayesian
model comparison on more than 106 different models- indicate that with relatively minor changes
to the calibration protocol the achievable measurement accuracy can be significantly increased. It is
highly beneficial to consider also the temperature and the angle of incidence for the calibration of the
devices, improving the accuracy by more than 20% on the devices. Some further improvements appear
possible: The data were analyzed as provided without any preprocessing. The residuals, however,
display the presence of a small fraction of outliers which are not in agreement with the Gaussian
likelihood used for the analysis. This may distort the estimate of the best fit parameters. Thus the
application of a robust estimation method may improve the accuracy of the measurements even further.
It could also be of interest to check if additional factors (besides temperature and angle) affect the
device performance. And finally it may also be worthwhile - besides a self-consistent estimation of
σ - to validate the estimated evidence values for the selected best fit models using thermodynamic
integration or nested sampling as function of expansion order to check for a potential bias in the MAP
based estimation of the evidence.
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Abstract: An analysis tool using Adaptive Kernel to solve an ill-posed inverse problem for a 2D
model space is introduced. It is applicable for linear and non-linear forward models, for example in
tomography and image reconstruction. While an optimisation based on a Gaussian Approximation is
possible, it becomes intractable for more than some hundred kernel functions. This is because the
determinant of the Hessian of the system has be evaluated. The SVD typically used for 1D problems
fails with increasing problem size. Alternatively Stochastic Trace Estimation can be used, giving
a reasonable approximation. An alternative to searching for the MAP solution is to integrate using
Marcov Chain Monte Carlo without the need to determine the determinant of the Hessian. This also
allows to treat problems where a linear approximation is not justified.

Keywords: inverse problem; regularisation; Adaptive Kernel

1. Introduction

An Adaptive Kernel model formulated in 2D is introduced, with the application of analysing data
from an infrared camera system in order to determine surface heat loads. A key ingredient to solve
this problem efficiently is the use of automatic differentiation (AD). The fast availability of gradients
increases the efficiency and reliability of the optimisation significantly. However, the combination of
matrix operations and AD results in a poor scaling of the demanded memory for increasing system
size. In extending the model from 1D to 2D, this is the mayor obstacle. Stochastic Trace Estimation
as alternative way to deal with large matrices is investigated and together with the SVD compared
against results obtained by Marcov Chain Monte Carlo.

The forward model is based on a non-linear heat diffusion solver and the measurement system
in form of Planck’s Law. The classic version of the numerical tool THEODOR—a solver for the heat
diffusion equation—used at ASDEX Upgrade and other machines solves the heat diffusion equation in
two dimensions—1D surface and into the depth, further more referred to as 1D. Numerical tools for the
general 2D case—2D surface plus depth—exist, e.g. [1], but are only used for deterministic calculations.
A former contribution [2] introduced a Bayesian approach with THEODOR as forward model, called
Bayesian THEODOR (BayTH). Its capabilities were extended from 1D to 2D data. This includes the
forward model based on THEODOR and the Aadaptive Kernel (AK) model. The latter is used to
describe our quantity of interest, the heat flux impinging on the surface.

The shape and temporal evolution of the heat flux pattern of a magnetically confined plasma
onto the first wall is of great interest for fusion research. Heat flux densities of several MW/m2 poses
a threat to the exposed material [3,4]. The heat flux distribution is a footprint of the transport in
the plasma edge [5,6]. Understanding the transport in the plasma edge is important to predict the
behaviour of larger devices, aiming for a future fusion power plant. No direct measurement of the heat
flux in the plasma is available. A method with sufficient spatial and temporal resolution to analyse
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many effects is to measure the thermal response of the target material, where the plasma deposits
thermal energy. The impinging heat raises the temperature of the material, which itself transports the
heat via conduction into the bulk. From the measured temporal evolution of the surface temperature,
the heat flux into the material is deduced.

2. Forward Model

2.1. Heat Diffusion

The forward model for the heat transport in the target material is based on the THEODOR code,
as described in [7]. Figure 1 shows an example: a rectangular cross section through the material,
the colour-coding represents the temperature distribution in the tile.

The heat transport in the divertor target is described by heat diffusion, with a non-linear diffusion
coefficient κ with respect to the temperature.

∂T
∂t

ρcp = ∇ · (κ(T)∇T) . (1)

Here ρ and cp are the mass density and specific heat capacity of the material. The temperature T
is furthermore substituted by the heat potential κ

u(κ) =
T∫

0

κ(T′)dT′ (2)

leading to the semi-linear differential equation

∂u
∂t

=
1

ρcp
χ(u)Δu . (3)

With the diffusivity χ beeing related to the conductivity κ via

χ =
κ

ρcp
. (4)

This system is solved using the finite difference implicit Euler scheme with operator splitting.
The spatial derivative is split into three parts: two along the surface—Δx and Δz—and a part into the
depth of the tile Δy. This leads to three tridiagonal systems, which are solved successively using the
Thomas Algorithm [8].

Figure 1. Sketch of the cross section of the target material with the temperature encoded in the colour.
From measured surface temperatures the spatially resolved heat flux density q(s) impinging onto the
surface has to be deduced. The lateral boundary conditions allow no heat transport while the back side
is in contact with a coolant.
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2.2. Measurement System—Infrared Thermography

The second part of the forward calculation connects the behaviour of the target with the
measurement system. Infrared (IR) thermography is based on Planck’s Law, describing radiation
emitted from surfaces with finite temperature. emitted from the surface of materials with finite
temperature. Knowing material parameters like the emissivity allows to deduce the surface
temperature from measuring the emitted photon flux and vice versa [2]. The modelled surface
temperature translates into the photon rate emitted by the surface. For given integration times
of the sensor, the photon rate observed through the aperture is translated into the counted
photons. For systems where electronic noise can be neglected, the uncertainty of the signal is
dominated by the photon statistics. The signal to compare to are counts, integers obtained by
an analog-to-digital-converter, which are typically a fraction of the observed photons.

Figure 2 shows an image of the IR camera in ASDEX Upgrade (AUG) for the upper divertor
during a discharge. The corners of the tile are clearly warmer than most of the exposed tile surface.
This highlights the need of a 2D evaluation.

Figure 2. IR camera image in AUG during discharge 34549 on the upper divertor. The signal at the
edges differs from the bulk and even neighbouring tiles show different responses. The toroidal symmetry
approximation breaks.

3. Heatflux Model: Adaptive Kernel

To describe the surface heat flux distribution a multi-resolution model is used. A detailed
description for the 1D variant can be found in [2,9]. Another approach is introduced in [10], including
an iterative method to reduce the number of kernels—respective pixon in the reference.

The noise level for our application is expected to vary in time and space, as the amount of
emitted radiation depends on the temperature of the surface area, which can be strongly peaked.
Instead of using a global regularisation term, the Aadaptive Kernel approach allows a self consistent
determination of the best resolution.

For an inverse problem with measured data �d and linear model A—for this application a discrete
formulation of equation (3)—we want to deduce our quantity of interest �u from

�d = A · �u +�ε . (5)

Here�ε is the noise or uncertainty of the measurement—e.g., zero mean normal distributed. For the
forward modelling we describe our quantity of interest �u with Aadaptive Kernel. They are expressed
in terms of another linear system

�u = B ·�h (6)

with a hidden image�h and a smoothing matrix B depending on another set of parameters, the kernel
widths�b. In total we find the model prediction for the likelihood

�m = AB ·�h (7)

where�h can have an arbitrary resolution and the regularisation B is part of the inference.
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Expanding its logarithm to second order around the best kernel weights�h� leads to

P(b|d) ≈ P(b) P(d|b,�h�)P(�h�)det−1/2(H) (11)

with H the hessian of log (P(d|h, b) · P(h)). For a linear operator A the result is

�d = A · B�h� (12)

H is expressed as

H = BTATdiag(1/�σ2)AB + diag

(
α

�h�

)
. (13)

Here diag(1/�σ2) is a diagonal matrix containing the inverse of the—uncorrelated—data
uncertainties �σ. The term diag

(
α
�h�

)
is the contribution from the entropic prior on �h. Expressing

the determinant with the product of the eigenvalues of this matrix, the model weight enters the log
probability via the sum of the logarithm of its eigenvalues:

log
(

det
(

BTATdiag(1/�σ2)AB + diag

(
α

�h�

)))
=

N

∑
i

log λi (14)

A straight forward approximation for the logdet of H is to evaluate the pseudo-determinants,
formed from the singular values. For large systems and the use of an automatic differentiation library
the SVD leads to before mentioned problems.

When using MCMC—or similar integration techniques—no explicit model selection is necessary.
When a flat model is able to describe the data, neighbouring amplitudes become stronger
anti-correlated for larger kernel widths, increasing the prior volume in the high-likelihood region.
Hence, large kernel widths are favoured when compatible with the data. For ∼100 kernels
an optimisation routine searching for the MAP solution is faster, in which case the weight for the
anti-correlated amplitudes for a set of kernel widths has to be taken into account.

4. Exploring the Parameter Space

For optimisation the routine e04wdc from NAG [12] is used, facilitating gradient information for
the cost function. The C++ code uses the adept [13] library to efficiently determine the gradient vector
of the posterior with respect to all input parameters.

4.1. Automatic Differentiation

Optimisation algorithms generally benefit from gradient information of the cost function. Straight
forward is the use of finite difference FD, where usually one or two additional function calls are made
with perturbed input parameters to estimate the gradient.

An alternative is given by automatic differentiation (AD), also known as algorithmic
differentiation. An overview of libraries for various languages can be found on http://www.autodiff.org/.
Here, the gradient is internally calculated via the exact differential based on algebraic equations in
the algorithm.

When the functions involved map from a N dimensional space to a scalar—like the posterior—a
single backward propagation—called inverse-mode differentiation—is enough to obtain the full
Jacobian vector. This takes about 3–10 times the computation time compared to a simple function call.
This becomes beneficial for functions depending on several—say more than 5—parameters with the
additional benefit of more precise differentials. Also, no finite step width like for FD has to be chosen
to find an optimum between numerical cutoff and approximation of the slope.

A drawback is the increased memory consumption, as most libraries create what is called a tape
to store the path from input variables to cost function. This allows to calculate the contribution of
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each expression to the overall gradient as well as to use conditionals. As the problem size increases,
the matrices and number of operations increase, affecting the size of the tape.

Using stochastic algorithms instead of the SVD to obtain the logdet—described in more details in
Section 5—scales less strong in computation time as well as in memory consumption with the problem
size, which allows to use the AD implementation for larger problems.

4.2. Computation Time

For the shown example with 1200 parameters the number of function calls from a standard
parameter distribution—constant values for hidden image and kernel widths, initial likelihood about
3.4× 104 for 400 data points—is on the order of some thousand. On the shown example, the bottle
neck is the evaluation of the log determinant, independent of the method used—with some seconds for
the full evaluation. The solving time is therefore on the order of 5 min to 60 min per frame. For similar
consecutive frames, where the last parameter set is a good starting point for the optimisation, this can
drop to about 1 min.

An alternative is to use Marcov Chain Monte Carlo MCMC to explore the parameter space.
This circumvents the calculation of the logdet all together. The run-time of the forward model for
a reasonable system size is on the order of 1 s—without the need to compute the kernel matrix explicitly
and taking the system response into account. However, for 20× 20 kernels we already have to deal with
1200 parameter. Using 1000 sweeps—each representing a sequential scan through the parameters—and
10 bins leads to about 103 × 103 × 10 = 107 function evaluations. Assuming a run-time of 1 s per call,
this sums up to 116 days of computation. For the shown example, the forward model evaluation took
about 2.5 ms, which corresponds to about 7 h.

On this scale, minimisation seems to be the only feasible way, although the logdet determination
becomes cumbersome. Alternatively Hamiltonian Monte Carlo can make use of the gradient
information, which speeds up the process significantly. However, the comparison presented is based
on results from classic MCMC.

5. Comparison of SVD, STE and MCMC in Regard to Model Selection

In this section, the model selection described in Section 3.1 is discussed for large problems.
Large in this sense means ≥ 1000 parameter, which is expected for our 2D Data.

Figure 4a shows the reference heat flux density for the further comparison with 20× 20 pixels,
on which a dense set of kernels—one for every pixel—will be applied. Starting with a tile at equilibrium
at 80 ◦C, the resulting synthetic data after 50 ms is shown in Figure 4b.

(a) Reference Heat Flux Pattern (b) Synthetic Measurement

Figure 4. (a) Reference heat flux pattern. Peak: along x-axis a Cauchy distribution with width of 5 pixel,
along y-axis a gaussian with width of 6 pixel. Peak set to 1 MW m−2. Bottom right corner overwritten
with a plateau of 0.5 MW m−2. (b) Resulting IR data—in counts—after 50 ms exposure to the heat flux
pattern shown in (a).
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5.1. MCMC

Classic Metropolis Hastings Monte Carlo serves as reference for the distributions of the amplitudes
and kernel widths. For 1200 parameters the integration is still feasible, see Section 4.2. Figure 5a shows
the reconstructed heat flux pattern—top left—the spatial amplitude distribution—top right—and in
the bottom the distributions for the kernel width along the horizontal axis—σx and the vertical axis σy.
At the edges of the step function the Aadaptive Kernel width represent the sharp transition.

5.2. SVD

Instead of determining the eigenvalues of Equation (14), the singular values composition is used,
which is available as robust algorithm. Run time scales typically with O(n3), which is feasible for
small systems of around 100 kernels—resulting in a 100× 100 matrix—with calculation times on the
millisecond scale. For the shown test system with 20× 20 kernels, the SVD for the 400× 400 matrix
takes about 100 ms. The distribution of the kernel width is sharper at the edges of the step in the
bottom right than for the MC result. As the kernel width acts as regularisation and the resulting heat
flux pattern is virtually identical, the logdet evaluation is justified. Especially given the speedup from
about 10 hours to about 10 min per frame.

Total memory including adjoints: 5.0 GB and time per function call including gradient evaluation
is 1600 ms to 2000 ms. Without the gradient information, the values are 70 MB and 100 ms.

By increasing the image resolution by a factor of 2—leading to 40× 40 pixels and kernels—the
computation time without gradients increases to 13 s and the overall memory demand is 730 MB.
With gradients, the memory demand exceeds 120 GB, which is the upper limit on the used
computer system.

5.3. Stochastic Trace Estimation—STE

For larger matrices, the SVD becomes too expensive in terms of time and memory consumption.
An alternative is to sample the matrix with test-vectors, in order to estimate the result of a function—like
the logarithm—applied the eigenvalues of the matrix. This is known as Stochastic Trace Estimation
STE. This is based on moments gained by matrix-vector multiplications, see e.g., [14,15]. The resulting
distributions are shown in Figure 5c, which come close to the results of the SVD. The downside is, that
the number of test-vectors and the order of the expansion has to be set a-priori for the optimisation
procedure. For the shown example the expansion order is 10 and 50 test-vectors have been used.

Using adjoints the total memory demand is 4.7 GB and time per function call is 2000 ms. Without
the gradient information, the values are 70 MB and 100 ms. The computation time and memory demand
scale linear with both, the number of test-vectors and expansion order.

Even for larger matrices, the memory demand and computation time can be controlled by the
order of expansion and test vectors used. Used on a case with 40× 40 pixels and kernels—overall 4801
parameters—the time raises to 10 s and the memory to 730 MB without gradients. Including gradients,
the computation time increases to 20 s for 10 vectors and expansion order 10, the memory demand is
about 200 MB per test vector and expansion order. Intermittent evaluation of the gradients is possible
to free the memory, as the results are independent. For 20 vectors and 10 orders, the memory demand
is just above 100 GB.
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(a) Result using MCMC

(b) Result using SVD

(c) Result using STE

Figure 5. Comparison between the three approaches. Structure of subplots: top left—Heat Flux Pattern.
Top right—amplitudes of each kernel. Bottom left—kernel width along x-axis. Bottom right—kernel
width along y-axis.
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5.3.1. Remark 1

For large matrices, the matrix matrix product BTB turns out to be memory consuming in the
adjoint formulation. More memory-efficient implementations become necessary for increasing matrix
sizes beyond 1000× 1000—here about 20 GB are reserved for the matrix multiplication.

In addition to the SVD and STE, a conjugate gradient method was tested as well. However, due to
the iterative nature the determination of the gradients mostly fails. In addition, although the precision
of the result can be controlled, jumps in the logdet for slight changes to the kernel matrix prohibit
the use in an optimisation routine. This limits the alternatives to the SVD for large matrices—to the
authors knowledge—to the STE approach.

5.3.2. Remark 2

For the IR system it seems natural to place a kernel for every pixel. This however is probably not
needed for most cases, especially when the profile has some known decay lengths. An example is the
heat flux which may vary fast—on a few pixels basis—along the poloidal orientation, but slow along
the toroidal orientation. For application to large data sets the number of kernels needed should be
investigated beforehand to reduce the problem size.

6. Conclusions

A 2D formulation of the Adaptive Kernel model is introduced, including the means of using it in
combination with an optimisation routine respecting the model selection via logdet. As the use of the
SVD is limited in regard of the system size, the Stochastic Trace Estimation is suggested as alternative
and shows comparable results.

Treating 2D distributions with the Aadaptive Kernel model is viable with modern techniques and
computation power. While long time series of time dependent data stay challenging to analyse, single
images or short sequences can be treated with this probabilistic framework. Key-ingredient in this
presentation is gradient information, to navigate efficiently in high-dimensional spaces.

Integration with Monte Carlo Methods is generally possible, with the benefit not to have to
calculate the determinant. However, for many parameters and a non-trivial forward model—with
respect to the computation time—this analysis can be infeasibly slow. For smaller test cases it is the
method of choice, to check the results of the logdet evaluation, which includes some approximations.
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Abstract: Within a Bayesian framework we propose a non-intrusive reduced-order spectral
approach (polynomial chaos expansion) to assess the uncertainty of ion-solid interaction simulations.
The method not only reduces the number of function evaluations but provides simultaneously
a quantitative measure for which combinations of inputs have the most important impact on the result.
It is applied to the ion-solid simulation program SDTrimSP with several uncertain and Gaussian
distributed input parameters, i.e., angle α, projectile energy E0 and surface binding energy Esb.
In combination with recently acquired experimental data the otherwise hardly accessible model
parameter Esb can now be estimated.

Keywords: uncertainty quantification; non-intrusive; spectral expansion; plasma-wall interactions;
Bayesian analysis

1. Introduction

Plasma-wall interactions are of crucial importance in the design of future fusion reactors, since
they determine the replacement cycle for the plasma exposed components of the wall. In order to
estimate the life-time of those wall components atomistic simulations are essential. Almost all computer
codes for the simulation of ion-solid interactions [1] rely on a large number of input parameters, e.g.,
surface binding energies, composition, energy distribution etc. However, many of these parameters are
uncertain and a proper comparison with experimental data or other models requires the quantification
of the uncertainty of the result. Unfortunately, the computational demand of single simulation runs
often severely restricts the quantification of output uncertainties by full-grid or simple sampling (e.g.,
Monte Carlo sampling) based approaches due to the curse of dimensionality for more than a very
limited number of uncertain input parameters. Therefore, to reduce the computational effort we
propose a non-intrusive reduced-order model approach (polynomial chaos expansion), which not only
reduces the number of function evaluations but provides simultaneously a quantitative measure of
which combinations of inputs have the most important impact on the result, i.e., it yields a sensitivity
analysis and the associated Sobol coefficients.

2. Bayesian Uncertainty Quantification

Based on the Bayesian framework we employ a spectral expansion to quantify the propagation
of uncertainty through the model. First introduced by Wiener [2] in the context of Hermite basis
functions it was termed ‘polynomial chaos expansion’ at his time. Nowadays the notion of ‘chaos’ has
shifted and the use of the term ‘spectral expansion’ is more appropriate. Once successfully achieved,
the spectral representation is capable of quantifying the uncertainty for any point in model space or to
serve as a surrogate model.

Proceedings 2019, 33, 27; doi:10.3390/proceedings33010027 www.mdpi.com/journal/proceedings221
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Since we calculate the sought-for spectral coefficients from a discrete set of collocation points
in the space of the random variable, our approach is non-intrusive, but approximate. The emerging
integrals in the calculation of the coefficients are evaluated by Gaussian quadrature which identifies
the collocation points with those of the quadrature. Moreover, we assume mutually independent
normally distributed random variables. The adjunctive set of orthonormal basis functions in such
a case are Hermite polynomials.

To quantify the uncertainty of we seek the appropriate function g(ξ), such that R will have the
required distribution of the model response, R = g(ξ). As for all random variables with finite variance
it is possible to find an infinite expansion

g(ξ) =
∞

∑
k=0

akψk(ξ) ≈
P

∑
k=0

akψk(ξ) , (1)

which we limit to polynomial order P since the contributions of higher orders become numerically
insignificant. The coefficients are given by

ak =
〈g(ξ), ψk(ξ)〉
〈ψk(ξ), ψk(ξ)〉 , with 〈g(ξ), ψ(ξ)〉 =

∫
g(ξ)ψ(ξ)p(ξ)dξ . (2)

We assume Gaussian character for the random variable, so the density p(ξ) is distributed according to
the normal (probability) distribution

p(ξ) =
1√
2π

exp
{
− ξ2

2

}
. (3)

The adjunctive set of orthonormal basis functions is given by the so-called probabilist Hermite functions,
which read up to fourth order

ψ0(ξ) = 1, ψ1(ξ) = ξ, ψ2(ξ) = ξ2 − 1, ψ3(ξ) = ξ3 − 3ξ, ψ4(ξ) = ξ4 − 6ξ2 + 3. (4)

It turns out that for the model simulations under consideration this polynomial order is sufficient
since contributions from higher orders become numerically insignificant for the result. With these
definitions the normalization constants in Equation (2) are readily

〈ψk, ψk〉 =
∫

ψk(ξ)ψk(ξ)p(ξ)dξ = k! . (5)

Due to the Gaussian nature of the probability function omnipresent in the integrals above, it is beneficial
to use Gauss-Hermite quadrature for the evaluation

〈g(ξ), ψ(ξ)〉 G.H.
=

L

∑
l=0

g(ξl)ψ(ξl)wl , (6)

where the weights wl and the abscissas ξl are for instance provided by Numerical Recipes [3].
Eventually, by exploiting the properties of the orthogonal Hermite polynomials the expectation
value of the model outcome and its variance can be assigned to the spectral coefficients in Equation (2)

〈R〉 = a0 , var(R) = 〈R2〉 − 〈R〉2 =
P

∑
k=1

a2
kk! . (7)

In order to provide a measure for the influence of the uncertainty of input variables on the above
variance we employ Sobol coefficients [4]. They are defined by
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Si =
Di

var(R)
, Sij =

Dij

var(R)
, ... , (8)

where the evaluation of the integrals

Di =
∫

g2
i (ξi)dξi ,

Dij =
∫ ∫

g2
ij(ξi, ξ j)dξidξ j ,

... , (9)

results in combinations of the coefficients of Equation (2) (the index of the function gindex(...) relates to
the specific variable(s) ξindex which are omitted in the integral gindex =

∫
...
∫

g(�ξ)dξ{index}). The higher
the value of a Sobol coefficient with respect to the others is, the more it is advantageous to reduce the
uncertainty of its associated variable in order reduce the uncertainty of the quantity of interest.

3. Ion-Solid Interaction Program SDTrimSP

SDTrimSP [5,6] is a parallelized Monte-Carlo code which simulates transport of energetic
particles through a target by employing sequentially two-body collision approximation to compute
collision-cascades in three dimensions. This approximation has been shown to be valid (i.e., the
stochastic fluctuations of the collision processes exceed the approximation error) for impact energies
larger than about 50 eV [7]. Versions of the SDTrimSP-code differ in the description of the target
composition, e.g., as one-dimensional (c(x) [6]), two-dimensional (c(x,y) [8]) or three-dimensional
(c(x,y,z) [9]). Common to all versions (and key to the high code efficiency) is the assumption of
amorphous targets, which circumvents the storage of sample atom coordinates. The simulations were
performed with standard settings, i.e., considering a static one-dimensional target (the concentral
profile c(x) was kept constant) and the scattering integral was computed using the Gauss-Mehler
quadrature scheme with eight pivots. The varied parameters were the projectile energy and the impact
angle (with zero degrees corresponding to a perpendicular impact, parallel to the surface normal).

4. Results and Discussion

The above program is applied to simulate ion-solid interactions for the case of incident deuterium
ions with an energy of E0 = 200 eV at an impact angle of α = 45 degrees to a surface consisting of
iron with a commonly used surface binding energy of ESB = 4.28 eV. We assume the parameters to be
normally distributed within a standard deviation of roughly 10%, i.e., σE0 = 20 eV, σESB = 0.4 degrees
and σα = 4 eV.

First, in order to have a calibration standard to compare with we employ random sampling of the
model response. For each realization of the random variable {ξ1, ..., ξN} there exists a model response
Ri = R(ξi) constituting the sample solution set {R1, ..., RN} from which moments can be computed.
The expected mean is and its variance read

〈R〉 = 1
N

N

∑
i=1

R(ξi) , with var(R) = 〈R2〉 − 〈R〉2 . (10)

In Figure 1 the results of 203 = 8000 samples are shown for the above parameter settings. The mean
value for the sputter yield is YMC = 0.052 with a standard deviation of σMC = 0.013. Even more,
the full uncertainty distribution may be established with help of a histogram if the sample solution
set is sufficiently large (N >∼ 1000). But, although this procedure is straightforward and automatically
contains the full model answer with all correlations, it has the vital drawback of a comparatively low
convergence rate. If the computation time of a single model output is not in the order of seconds
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or becomes more sophisticated with a higher number of variables (curse of dimension), the mere
accumulation of sample point densities to infer the complete distribution is futile. Much more
promising in this respect is the spectral approach of Section 2 which results will be discussed next.
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Figure 1. Sputter yield for deuterium on iron from SDTrimSP-simulations with energy, angle and
surface binding energy distribution for 203 samples. The respective input variables are E0 =

200 ± 20 eV, ESB = 4.28 ± 0.4 eV and an incident angle o f 45 ± 4 degrees, The resulting sputter
yield is plotted with a color scheme ranging from dark blue at zero up to light yellow at 0.09 sputtered
atoms per incoming ion. The mean value of the sputter yield is YMC = 0.052 with a standard deviation
of σMC = 0.013.

Extending the formulas of Section 2 to three random variables �ξ = (ξ1, ξ2, ξ3) with Ê0 = E0 +

ξ1σE0 , ÊSB = ESB + ξ2σESB and α̂ = α + ξ3σα, the summation of the terms in Equation (6) runs over
three indices l1, l2 and l3 with an upper boundary of P + 1 = 5 in the present setup of fourth order
polynomials (for numerical accuracy of the Gaussian quadrature it is expedient to be one order higher
than the polynomial order of the spectral expansion). This results in a total of 216 terms (three nested
summations, each running from li = 0 to 5 with i = 1, 2, 3) over the collocation points composed of 6
Gaussian quadrature abscissas assigned to ξli and 6 weights wli . The value for the function g(ξl1 , ξl2 , ξl3)

is obtained from a SDTrimSP run, which takes roughly 3 min on a modern CPU. However, the complete
run for the 216 terms can be speeded up enormously since the calculations are independent and can
be done in parallel. Once calculated, the 35 coefficients of Equation (6) establish a fast surrogate
model, which is simply the evaluation of a polynomial. This is shown in Figure 2 as the red mesh.
The respective sputter yield, for which the uncertainty quantification was performed, is depicted in
the center as the green sphere with YUQ = 0.050 at/ion and its standard deviation of σUQ = 0.011
as the green perpendicular line. The comparison with the result of the sampling approach above
(YMC = 0.052± 0.013) shows excellent agreement.

Without the need to do any further simulations, various quantities may be inferred from the
coefficients, e.g., the variance as in Equation (2), or the Sobol coefficients, which allow to investigate
the sensitivity of the result on the uncertainty of the input variables. For the above variables E0, α and
ESB we get a relationship of 10:20:70 in the Sobol coefficients (only first order is numerically significant)
for {E0, α, ESB}, indicating that the improvement of the knowledge of ESB is most rewarding if one
wants to reduce the uncertainty of the sputter yield.

Following this trail, we performed a series of experimental measurements of the sputter yield for
different impact angles with α = 0, 45, 60 and 75 degrees at E0 = 2 keV. Then we applied the uncertainty
quantification method discussed above in order to provide quantitative estimates of the sputter yields
at a variety of settings for the surface binding energy ESB. It turned out that the most probable value
for the surface binding energy is Enew

SB = 4.8± 0.4 eV, one and a half standard deviations larger than
the value commonly used up to now [1], i.e., Eold

SB = 4.2± 0.4 eV. With the revised setting of ESB we
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compared (see Figure 3) simulations of the sputter yield for different incident energies of deuterium
with results from Rutherford backscattering (RBS) and weight loss (WL) experiments and got an
improved agreement (except for E0 = 1 keV). With these results the Bayes factor rules out another
competitor to SDTrimSP (i.e., Monte Carlo decision for the occurrences of collisions of incident ions
with atoms in the target) being the SRIM-model, which employs a quantum mechanical treatment of
ion-atom collisions and seems not to comprise all important effects present..

Figure 2. Sputter yield reproduced by the surrogate model from the uncertainty quantification of
SDTrimSP calculations for E0 = 200 eV, ESB = 4.28 eV and an incident angle of 45 degrees. The filled
circle in dark green shows a yield of 0.050 for these settings with a standard deviation of 0.011 (light
green line). For reason of portrayal the surrogate model (red mesh) was varied in two dimensions only
for E0 and α, while ESB was kept fixed at 4.28 eV. In addition, the blue plus signs show the scatter data
from the sampling approach already shown in Figure 1.

100 1000
0.001

0.01

0.1

Exp. data (WL)
SDTrimSP (E
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=4.2eV

SRIM−2008
SDTrimSP (Esb=4.8eV)
Exp. data (RBS)

Figure 3. Comparison of the sputter yield for the previously set surface binding energy ESB =

4.2± 0.4 eV (red squares) and the newly acquired setting of energy ESB = 4.8± 0.4 eV (green squares)
with data from experiments done in a Rutherford backscattering setup (RBS, filled circles) and a weight
loss setup (WL, open circles). A further model, SRIM (blue squares), can almost certainly be ruled out.
All lines shown are guide to the eye.
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5. Summary and Conclusions

The non-intrusive polynomial chaos expansion for quantifying the propagation of uncertainty
through the model has been proven to be a valuable tool in describing the reliability of a model outcome.
The experience with the employed algorithm revealed that the spectral expansion with moderate
settings of employing only up to 4th order polynomials and six Gaussian quadrature abscissa, which
requires less than 1000 simulation runs, is well suited for the determination of a medium number of
uncertain parameters. We applied the method to SDTrimSP simulations in determining the sputtering
yield and its standard deviation for the example of incident deuterium ions on an iron target. Residing
on both quantities we could rule out the existing parameter setting for the surface binding energy and
assigned a new much more accurate one. With this newly set input parameter it was possible to get
a better agreement with available experimental data and eventually put us in the position to rule out
another physical model.

Author Contributions: R.A. performed the experiments and provided the data; R.P. and U.v.T. analyzed the data,
contributed analysis tools and wrote the paper.
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Abstract: Aortic dissection is a cardiovascular disease with a disconcertingly high mortality. When it
comes to diagnosis, medical imaging techniques such as Computed Tomography, Magnetic Resonance
Tomography or Ultrasound certainly do the job, but also have their shortcomings. Impedance
cardiography is a standard method to monitor a patients heart function and circulatory system
by injecting electric currents and measuring voltage drops between electrode pairs attached to the
human body. If such measurements distinguished healthy from dissected aortas, one could improve
clinical procedures. Experiments are quite difficult, and thus we investigate the feasibility with finite
element simulations beforehand. In these simulations, we find uncertain input parameters, e.g., the
electrical conductivity of blood. Inference on the state of the aorta from impedance measurements
defines an inverse problem in which forward uncertainty propagation through the simulation with
vanilla Monte Carlo demands a prohibitively large computational effort. To overcome this limitation,
we combine two simulations: one simulation with a high fidelity and another simulation with a
low fidelity, and low and high computational costs accordingly. We use the inexpensive low-fidelity
simulation to learn about the expensive high-fidelity simulation. It all boils down to a regression
problem—and reduces total computational cost after all.

Keywords: bayesian probability theory; uncertainty quantification; impedance cardiography;
aortic dissection

1. Introduction

The largest blood vessel in the human body is the aorta. The wall of the aorta is made of aortic
tissue, a layered composition of muscle cells, collagen, elastin fibres, etc. In Aortic Dissection (AD),
a tear in the innermost layer of the aortic wall permits blood to flow in between the layers, effectively
forcing apart the layers and deforming the geometry of the aorta. Obviously, AD affects blood
circulation unfavourably ([1] p. 459). This pathology is illustrated in Figure 1.

Proceedings 2019, 33, 24; doi:10.3390/proceedings33010024 www.mdpi.com/journal/proceedings227
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Figure 1. Illustration of a dissected aorta. Left: The whole organ. Right: Close-up to the entry tear [2].
Blood pushes from the anatomically correct cavity (medical parlance: true lumen) through a tear into
the aortic wall. The tear grows and builds another cavity (medical parlance: false lumen), affecting
blood circulation unfavourably.

The condition AD is often acute and requires immediate treatment, but diagnosis is difficult.
Physicians use a variety of imaging techniques to diagnose AD, among which are Magnetic Resonance
Tomography (MRT), Computed Tomography (CT) and Echocardiography, the latter of which is based
on an ultrasound device [3]. Ultrasound devices are comparably cheap, fast and easy to handle. But if
wave propagation is obfuscated by, e.g., the rib cage, the technique is not applicable. CT and MRT do
not have this limitation due to full radiation penetration of the body, but show a number of drawbacks:
long measurement times, radiation exposure, high costs, require specialized personnel (radiologists)
and most importantly, MRT/CT is not available on a whim. A fast response, and a fast diagnosis,
hence, is key to the treatment of AD patients. In this work, we analyse the proposal of [4] to use
impedance cardiography (ICG) [5] for AD diagnosis. In ICG, one places a pair of electrodes on the
thorax (upper body), injects a defined low-amplitude, alternating electric current into the body and
measures the voltage drop. The generic experimental setup is illustrated in Figure 2. The specific al
resistance (impedance) of blood is much lower than that of muscle, fat or bone [6]. Electric current
seeks the path of least resistance, and thus the current propagates through the aorta rather than
through, e.g., the spine. If blood is redistributed within the body due to AD, the path of least resistance
is expected to change, and so the overall resistance of the body. ICG is bad to distinguish between
different types of blood redistribution, e.g., AD or lung edema [7]. Still, ICG yields yet another clue
in a physician’s diagnostic procedure. ICG is fast, cheap, available on a whim and does not require
specialized personnel. A new medical detection device based on ICG would thus close a gap left open
by existing procedures.

Figure 2. Left: Experimental setup of ICG. Right: Generic ICG signal.

To develop such a device, it is necessary to perform experiments which are extraordinarily
difficult, both technically as well as ethically. One would need ICG measurements as well as high
quality tomography data stemming from the same person, before and after AD happened. That kind of
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data is not available, and we resort to Finite Element (FE) simulations [8] instead. In these simulations,
we find a number of input parameters which are well-defined, but usually neither known precisely nor
accessible in the clinical setting. For example, a patient’s blood conductivity varies from day to day.
The input parameters are thus afflicted with uncertainty, and this uncertainty propagates through the
simulation to the output, which here is the measured impedance. If we wanted a meaningful statement
on the condition of the aorta, we therefore need to quantify the uncertainty in the measurement. It is
an inverse problem, which involves the forward Uncertainty Quantification (UQ) first. UQ has become
a term on its own in the engineering community. A rather chunky, but quite comprehensive collection
of reviews on the various aspects of UQ can be found in Reference [9]. A Bayesian perspective is
discussed in [10–12].

UQ usually requires quite some computational effort, depending on the number of uncertain
parameters and the computational cost of a single simulation itself. If this computational effort is
prohibitively large, one may use a surrogate model. The two most widely used surrogate models are
Polynomial Chaos Expansion (PCE) [13–16] and Gaussian Process Regression (GPR) [17,18]. PCE is
particularly widely spread within then engineering community, while GPR has had its renaissance
recently within the machine learning community [19,20].

This work is inspired by the article of Kennedy and O’Hagan in 2000 [21]. They performed
UQ by making use of a computer simulation with different levels of ‘sophistication’ or ‘fidelity’.
In other words, a cheap simplified simulation serves as a surrogate. Koutsourelakis follows this idea
later on [22]. While UQ in general has arrived fully in the Biomedical Engineering community [23],
the Bayesian approach has not. Biehler et al. [24] were, to the best knowledge of the authors, the first
to apply a Bayesian Multi-Fidelity Scheme in the context of computational Bio-mechanics .

In Section 2 we build a physical model of an impedance cardiography measurement applied to
the described physiological system. In Section 3, we develop a Bayesian Multi-Fidelity scheme, which
is then used for Uncertainty Quantification of the physical model. The results, i.e., the uncertainty
bands of the ICG signal, are presented and discussed in Section 4. We draw our conclusions and
suggest possible future improvements in Section 5.

2. The Physical Model

We start from the Maxwell’s equations and recognize that one cardiac cycle, i.e., the time span
between two heart beats, is on the order of one second, and the frequency of the injected current is on
the order of a hundred kilo-Hertz. Thus we can assume the electric field to be quasi-static [4], and the
Maxwell equations boil down to Laplace’s equation (in complex notation),

∇
(
(σ + iωε)∇V

)
= 0 , (1)

with electric potential V, electrical conductivity σ, angular frequency ω, permittivity ε and imaginary
unit i. Equation (1) is then to be solved on the geometry as depicted in Figure 3 and described as follows.
The thorax (upper body) is modelled by an elliptic cylinder with a spatially homogeneous conductivity
and permittivity. The aorta is an up-side-down umbrella stick. We consider the whole organ to be
filled with blood and neglect the vessel walls. In clinical parlance, the blood-filled cavity caused
by the aortic dissection is called “false lumen”, while the anatomically correct cavity is called “true
lumen”. The true lumen is modelled as a circular cylinder, and the false lumen is a holed out circular
cylinder attached to the true lumen. The dynamics are modelled via a time-dependent true and false
lumen radius, which arises from pressure waves in a pulsatile flow. Further, the blood conductivity
depends on the blood flow velocity, and is thus time-dependent in the true lumen, but constant in
the false lumen due to a negligible flow velocity [4,25]. The boundary conditions are specified by
the body surface and two source electrodes. The two source electrodes are modelled by two patches
(top and bottom) on the left-hand side of the patient. For the top patch, the injection current is held
constant at 4 mA and a frequency of 100 kHz via a constant surface integral of the current density.
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The bottom patch is defined as ground, i.e., a constant voltage Vbottom = 0 V. Considering the relatively
low conductivity of air, we assume the rest of the body surface to be perfectly insulating. Equation (1)
is then discretized in space and solved with the Finite Elements method [8]. The quality and fidelity
of the space discretization, colloquially termed as “the mesh”, is crucial to the quality of the solution,
but also to the amount of computational effort. We use a rather coarse mesh of low fidelity, and a
rather detailed mesh of high fidelity, with two examples illustrated in Figure 4.

We distinguish observable and unobservable (uncertain) parameters (also termed hidden or latent
variables). An obvious observable parameter is time t. From the plethora of unobservable parameters,
we choose the false lumen radius, r f l , and perform a number of simulations with sensible values within
the physiological and physical range, i.e., 5.0–25.0 mm with a step size of 1.0 mm. The physical lower
boundary would be 0 mm, yet below 5 mm meshing problems occur in the LoFi model, i.e., badly
shaped elements become frequent, geometry is approximated badly and thus space discretization
fails. This is not surprising, since the LoFi model’s size of finite elements is on the order of 5.0 mm,
and therefore cannot exhibit features of more detail. For any simulation, the voltage drop between any
two points can now be measured. In the clinical setting, there would be a number of probe electrodes
attached to the patient’s chest, back, neck and/or limbs, and voltage drops measured between the
many pairs of probe electrodes. Here, we limit ourselves to just one pair of probe electrodes, with one
probe electrode right beneath the upper injection electrode, and one probe electrode right above the
lower injection electrode. The positions of the probe electrodes, relative to the injection electrodes, are
indicated in Figure 3 by Vtop and Vbottom.

We used the Comsol Multiphysics software to perform the modelling [26].

Figure 3. Left: CAD Model of Thorax with dissected Aorta. Right: Ground view on True Lumen and
False Lumen [4].

Figure 4. Left: Low fidelity mesh, geometry represented by ~10,000 tetrahedral elements. Right: High
fidelity mesh, geometry represented by ~300,000 tetrahedral elements.

3. Bayesian Multi-Fidelity Scheme

Having computed all the HiFi impedance times series (red) in Figure 5, the uncertainty
quantification is pretty much done already. The uncertainty bands of the Brute Force HiFi data
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in Figure 6 (blue) are inferred from a Gaussian Process model with a squared exponential kernel.
In the following paragraphs we will instead use the LoFi impedance time series (black) and only a few
of the data points of the HiFi impedance time series (red). In other words; in order to compute the
uncertainty bands, instead of doing all the HiFi simulations, we rather do all the LoFi simulations and
only a few HiFi simulations.

Figure 5. Data. Negative real part of the impedance measured with the probe electrodes indicated in
Figure 3 (left). Simulations were done for one cardiac cycle with a time step of 50 ms and with 25 values
of the false lumen radius (5 mm–25 mm) with the HiFi model (red) and the LoFi model (black).

We distinguish the observable physical parameter time, t, from unobservable (uncertain)
physical parameters ξ. We consider two disjoint data sets, D1 and D2. D1 is a large set of input

parameters, �ξ1 = {ξ
(i)
1 }

Nξ,1
i=1 , �t1 = {t(k)1 }Nt,1

k=1, and corresponding (noisy) outputs of the LoFi model,
�VL,1 = {V(i,k)

L,1 }
Nξ,1,Nt,1
i,k=1 , where each individual output V(i,k)

L,1 is the voltage drop with parameter

ξ
(i)
1 at time instance t(k)1 . �t1 covers the time series of one whole cardiac cycle. This means D1 =

{�t1,�ξ1, �VL,1} = {(t(k)1 , ξ
(i)
1 , V(i,k)

L,1 )}Nξ,1,Nt,1
i,k=1 . In principle, the solver is deterministic, yet the solution

depends on the mesh. Since the false lumen radius is treated as a random variable, the geometry
is random as well, and each mesh a specific realization of it. We then choose a small subset of the
outputs of D1 with size Nξ,2, and Nt,2 respectively, for which we additionally compute the (noisy)
HiFi solution. This subset is chosen such that the support of �VL,1 is appropriately covered. Given

input parameters �ξ2 = {ξ
(i)
2 }

Nξ,2
i=1 , �t2 = {t(k)2 }Nt,2

k=1, the corresponding output of the HiFi model is
�VH,2 = {V(j,m)

H,2 }Nξ,2,Nt,2
j,m=1 . We gather these tuples of LoFi-output and corresponding HiFi-output in data

set D2 = {�t2,�ξ2, �VL,2, �VH,2} = {(t(m)
2 , ξ

(j)
2 , V(j,m)

L,2 , V(j,m)
H,2 )}Nξ,2,Nt,2

j,m=1 . In other words, D2 shall be a small
subset of D1 which “in hindsight” is augmented with the corresponding HiFi data.

We acknowledge that time t is observable in our experiment, but the latent variables ξ are not.
Let V∗H and V∗L be the true values of high fidelity and low fidelity model respectively, corresponding to
given input parameters (latent variables) ξ and a time instance t. Note the distinction of the true values
V∗H and V∗L from the noisy observations in D1 and D2. Let C be the conditional complex. We want to
compute the uncertainty bands of the ICG signal in Figure 5, meaning the posterior pdf of V∗H given t,
and introduce V∗L via marginalisation

p(V∗H | t, D1, D2, C) =
∫

p(V∗H | V∗L , t,��D1, D2, C) p(V∗L | t, D1,��D2, C) dV∗L , (2)
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where we constructed the data sets such that we can partially cross them out here. For the sake of
easier notation, we will omit the conditional complex C from here on. Let us first discuss the first term
in the integral. It implies a one-dimensional regression problem V∗L "→ V∗H . This is convenient since the
original problem, ξ "→ V∗H , is usually multi-dimensional, and will come in handy once we scale up
the number of uncertain parameters. We need to choose a regression function f , acknowledge noise
induced by the discretization error with σ, and marginalize f ’s hyperparameters θ, i.e.,

p(V∗H | V∗L , t, D2, f , σ) =
∫

p(V∗H | V∗L , t,��D2, f , σ, θ) p(θ |��V∗L , t, D2, f , σ)dθ (3)

Note that f is actually included in the conditional complex C, but explicitly written out here.
In Equation (3), we find a belated, formal justification for replacing the original regression problem
ξ "→ V∗H . In the conditional pdf in Equation (3), C implies that the knowledge of f , θ, and V∗L already
determines V∗H apart from noise σ, and thus D2 is superfluous.

By looking at the data, we recognize that a linear regression function f will capture the salient
features, and is hence sufficient for all time instances. Thus the prior reads

p(θ | f ) = p(a, b | f , a0, b0) = a0(1 + a)−3/2 Θ(| b |≤ b0) , (4)

with inclination a, constant offset b and Θ being the Heaviside function. We find no apparent outliers
in the data, and the likelihood shall be Gaussian with constant noise level, which was estimated from
the data to σ = 0.01.

The second term in Equation (2) is approximated by weighted samples (D1), and the integral boils
down to a discreet sum over these.

4. Results & Discussion

An example of the intermediate result of Equation (3) is shown in Figure 7. We see the predictive
probability of the HiFi impedance given the LoFi impedance for the time instance at peak systole
(t = 200 ms). Naturally, linear regression requires at least two training data points, which was deemed
good enough in this experiment. In Figure 6, one can see the final result in comparison to the reference
solution, i.e., with all the HiFi simulations. Expectations as well as uncertainties (2σ) match the
reference solution quite well in the time range of 0–500 ms (systolic part), while the uncertainties in
the time range 500–1000 ms (diastolic part) are a bit larger. This is reasonable, since the discretisation
error in this regime is notably higher, which is obvious from the data, Figure 5. Since changes to
the impedance due to aortic dissection are particularly expected to arise in the systolic part, we find
the result satisfying nevertheless. The computational effort is documented in Table 1. The Bayesian
Multi-fidelity scheme reduces the computational effort roughly by a factor of 3.5. This might seem
disappointing at first, but is actually quite close to the theoretical limit of a factor of 4, which is
determined by the ratio of computational effort of one LoFi simulation over one HiFi simulation, and
specific for any experiment thus. Specifically, the HiFi computational effort is defined by the user’s
desired fidelity, e.g., mesh convergence, while the LoFi computational effort is determined by the HiFi
model’s cheapest simplification which still shows statistical correlation with the HiFi model.
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Figure 6. Resulting expectations and uncertainty bands (2σ) for the HiFi impedances. Red (Bayes) and
Blue (brute force).

Figure 7. Linear regression at peak systole (t = 200 ms). Predictive probability of HiFi impedances
given the LoFi impedances, trained with two data points corresponding to the minimum and maximum
used false lumen radius.

Table 1. Comparison of computational resources. Each experiment was performed on 20 cores in
parallel (with trivial parallelization) on Xeon E5-2640 with 8GB RAM/CPU. Degrees of freedom vary
from time instance to time instance since the aortic radius is a function of time. In Figure 6, we compare
the Brute Force HiFi results (blue) with the Bayesian HiFi results (red). The LoFi results are a mere
means to compute the Bayesian HiFi results and thus not shown, yet their computational effort is
documented since needed to quantify the reduction of the computational effort.

Model Degrees of Freedom Samples CPU Time [s] Wall Clock Time [s]

LoFi 9000–15,000 25 39,500 1975
Brute Force HiFi 100,000–550,000 25 192,480 9624

Bayesian HiFi 25 LoFi, 2 HiFi 54955 2748
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5. Conclusions & Outlook

We have set up a framework to systematically study the uncertainties of theoretical impedance
cardiography signals associated with aortic dissection. Since the computational effort is about to
skyrocket soon, we employed a Bayesian multi-fidelity scheme rather than using brute force. We did
first experiments as a proof of principle, and computed the uncertainty bands of the simulation
given an unknown false lumen radius. We achieved a solution quantitatively comparable to the
reference solution, while reducing computational effort by roughly a factor of 3.5, which is close to the
theoretical limit of 4. With increasing computational effort per simulation, we expect the reduction
factor to increase.

The physical model will be improved by adding organs (e.g., lungs, heart) to the model one by
one, and dispersion effects investigated by varying the injection current frequency (i.e., the boundary
conditions). In terms of data analysis, the next step is to make further use of the pronounced structure
of the signal, and sparsify simulation runs of the HiFi model in the time domain. This could be done
by, e.g., interpreting each time series as a sample drawn from a Gaussian Process. i.e., we impose a
GP prior onto the signal. Ultimately, we want to answer the inverse problem, “Is the aorta healthy or
dissected?”, and thus need to compute the evidences. We strongly believe that this question can only
be answered unambiguously by considering the signals of multiple electrodes at different positions on
the human body at once.
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Abstract: Classification and clustering problems are closely connected with pattern recognition
where many general algorithms have been developed and used in various fields. Depending
on the complexity of patterns in data, classification and clustering procedures should take into
consideration both continuous and categorical data which can be partially missing and erroneous
due to mismeasurements and human errors. However, most algorithms cannot handle missing data
and imputation methods are required to generate data to use them. Hence, the main objective of this
work is to define a classification and clustering framework that handles both outliers and missing
values. Here, an approach based on mixture models is preferred since mixture models provide
a mathematically based, flexible and meaningful framework for the wide variety of classification
and clustering requirements. More precisely, a scale mixture of Normal distributions is updated to
handle outliers and missing data issues for any types of data. Then a variational Bayesian inference
is used to find approximate posterior distributions of parameters and to provide a lower bound
on the model log evidence used as a criterion for selecting the number of clusters. Eventually,
experiments are carried out to exhibit the effectiveness of the proposed model through an application
in Electronic Warfare.

Keywords: classification; clustering; mixture models; bayesian framework; outliers; missing data

1. Introduction

Classification and clustering problems are closely connected with pattern recognition [1] where
many general algorithms [2–4] have been developed and used in various fields [5,6]. Depending
on the complexity of patterns in data, classification and clustering procedures should take into
consideration both continuous and categorical data which can be partially missing and erroneous
due to mismeasurements and human errors. However, most algorithms cannot handle missing data
and imputation methods [7] are required to generate data to use them. Hence, the main objective
of this work is to define a classification and clustering framework that handles both outliers and
missing values. Here, an approach based on mixture models is preferred since mixture models provide
a mathematically based, flexible and meaningful framework for the wide variety of classification
and clustering requirements [8]. Two families of models emerge from finite mixture models fitting
mixed-type data:

• The location mixture model [9] that assumes that continuous variables follow a multivariate
Gaussian distribution conditionally on both component and categorical variables.
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• The underlying variables mixture model [10] that assumes that each discrete variable arises from
a latent continuous variable and that all continuous variables follow a Gaussian mixture model.

In this work, the location mixture model approach is retained since it better models relations
between continuous and categorical features when data patterns are mostly designed by first choosing
patterns of categorical features to achieve a specific goal and then choosing continuous features that
meet constraints related to the chosen patterns and the problem environment. Indeed regarding
clustering approach, each cluster groups observations that share same combinations of categorical
features where continuous features belong to a peculiar subset. Hence, the location mixture model
naturally responds to that dependence structure by assuming that continuous variables are normally
distributed conditionally to categorical variables. More precisely, a scale mixture of conditional
Gaussian distributions [11] is updated to handle outliers and missing data issues for any types of
data. Then a variational Bayesian inference [12] is used to find approximate posterior distributions of
parameters and to provide a lower bound on the model log evidence used as a criterion for selecting
the number of clusters. An application of the resulting model in Electronic Warfare [13] is proposed
to perform Source Emission Identification which is a supreme asset for decision making in military
tactical situations. By providing information about the presence of threats, classification and clustering
of radar emitters have a significant role ensuring that countermeasures against enemies are well-chosen
and enabling detection of unknown radar signals to update databases. As a pulse-to-pulse modulation
pattern [14], a radar signal pattern is decomposed into a relevant arrangement of sequences of pulses
where each pulse is defined by continuous features and each sequence is characterized by categorical
features. However, a radar signal is often partially observed due to the presence of many radar emitters
in the electromagnetic environment causing mismeasurements and measurement errors. Therefore the
proposed model is suitable for radar emitter classification and clustering. The outline of the paper is as
follows. Assumptions on mixed-type data are presented in Section 2. Then, the proposed model and
inference procedure are introduced in Section 3. Finally, evaluation of the model is proposed through
different experiments on radar emitter datasets in Section 4.

2. Mixed-Type Data

In this section, a joint distribution for mixed data is introduced to model the dependence structure
between continuous and categorical data. Then, outliers and missing values are tackled by taking
advantage of the joint distribution.

2.1. Assumptions on Mixed-Type Data

Data x consist of J observations (xj)
J
j=1 gathering continuous features xq = (xqj)

J
j=1 and

categorical features xc = (xcj)
J
j=1. Let xj = (xqj, xcj) the jth observation vector of mixed variables

where

• xqj ∈ Rd is a vector of d continuous variables,

• xcj =
(

x0
cj, . . . , xq−1

cj

)
∈ Cq is a vector of q categorical variables where Cq = C0 × . . .× Cq−1 is the

tensor gathering each space Ci =
{

mi
1, . . . , mi

|Ci |
}

of events that xi
cj can take ∀i ∈ {0, . . . , q− 1}.

2.2. Distribution of Mixed-Type Data

Considering that the retained approach focuses on conditioning continuous data xq = (xqj)
J
j=1

according to categorical data xc = (xcj)
J
j=1, the following joint distribution is introduced

∀j ∈ {1, . . . , J}, p(xqj, xcj) = ∏
c∈Cq

(
πcN

(
xqj|μc, Σ

))δc
xcj (1)
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where continuous variables xqj are normally distributed according to categorical variables xcj with
means (μc)c∈Cq and variance Σ. As for categorical variables xcj, they are jointly distributed according
to a multivariate categorical distribution MC(xcj|π) parametrized by weights π = (πc)c∈Cq and
defined by

MC(xcj|π) = ∏
c∈Cq

π
δc

xcj
c (2)

where ∀c = (c0, . . . , cq−1) ∈ Cq = C0 × . . .× Cq−1 :

∑
c∈Cq

πc = 1 and δc
xcj

=

⎧⎨⎩1 if x0
cj = c0, . . . , xq−1

cj = cq−1

0 otherwise
.

This multivariate categorical distribution is proposed to tackle issues related to missing data by
modelling a dependence structure for xcj that enables inference on missing categorical features.

2.3. Outlier Handling

Outliers are only considered for continuous data xq = (xqj)
J
j=1 since only reliable categorical

variables are assumed to be filled in databases and unreliable ones are processed as missing data.
Then, continuous outliers are handled by introducing scale latent variables u = (uj)

J
j=1 conditionally

to categorical data xc due to the dependence structure established in (1) such that

∀j ∈ {1, . . . , J}, xqj|uj, xcj ∼ ∏
c∈Cq

N
(

xqj|μc, u−1
j Σ

)δc
xcj and uj|xcj ∼ ∏

c∈Cq

G (
uj|αc, βc

)δc
xcj ,

where each uj follows conditionally to categorical data xcj a Gamma distribution with rate and shape
parameters (αc, βc) ∈ R∗+ ×R∗+.

2.4. Missing Data Handling

Both continuous and categorical data (xqj, xcj)
J
j=1 can be partially observed. Hence (xqj, xcj)

J
j=1

are decomposed into observed features (xobs
qj , xobs

cj )J
j=1 and missing features (xmiss

qj , xmiss
cj )J

j=1 such that

∀j ∈ {1, . . . , J},

xqj =

(
xmiss

qj
xobs

qj

)
with (xmiss

qj , xobs
qj ) ∈ R

dmiss
j ×R

dobs
j and dmiss

j + dobs
j = d ,

xcj =

(
xmiss

cj
xobs

cj

)
with (xmiss

cj , xobs
cj ) ∈ Cqmiss

j
× Cqobs

j
and qmiss

j + qobs
j = q .

where (R
dmiss

j , Cqmiss
j

) and (R
dobs

j , Cqobs
j
), are disjoint subsets of (Rd, Cq) embedding missing features

(xmiss
qj , xmiss

cj ) and observed features (xobs
qj , xobs

cj ). Missing continuous data xmiss
q = (xmiss

qj )J
j=1 are

handled by taking advantage of properties of the multivariate normal distribution to obtain a
distribution for missing values. Due to the dependence structure established in (1), missing continuous
data xmiss

q = (xmiss
qj )J

j=1 are distributed conditionally to observed continuous data xobs
q = (xobs

qj )J
j=1 and

categorical data xc as follows

∀j ∈ {1, . . . , J}, xmiss
qj |xobs

qj , xcj ∼ ∏
c∈C
N

(
xmiss

qj |μxmiss
q

jc , Σxmiss
q

)δc
xcj

, xobs
qj |xobs

qj , xcj ∼ ∏
c∈C
N

(
xobs

qj |μ
xobs

q

jc , Σxobs
q

)δc
xcj

,
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where ∀j ∈ {1, . . . , J}, ∀c ∈ Cq :

μ
xmiss

q
jc = μmiss

c + ΣcovΣobs−1
(

xobs
qj − μobs

c

)
, μ

xobs
q

jc = μobs
c ,

Σxmiss
q = Σmiss − ΣcovΣobs−1

Σcov’ and Σxobs
q =

(
Σobs−1

+ 2× Σobs−1
Σcov’

(
Σxmiss

q
)−1

ΣcovΣobs−1
)−1

.

Noting that the dependence structure between categorical features is modeled through Kronecker
symbols (δc

xcj
)c∈Cq , this dependence structure can be exploited to handle missing features such that the

missing features xmiss
cj follow a multivariate categorical distribution conditionally to observed features

xobs
cj given by

p(xmiss
cj = cmiss|xobs

cj = cobs) =
πcmiss,cobs

∑
cmiss∈Cqmiss

j

πcmiss,cobs

where πcmiss,cobs is the joint probability πc defined in (2) for c = (cmiss, cobs) ∈ Cqmiss
j
× Cqobs

j
.

3. Model and Inference

In this section, the proposed model is briefly presented as a hierarchical latent variable model
handling missing values and outliers. Then, the inference procedure is developed through a variational
Bayesian approximation. At last, classification and clustering algorithms are introduced by using the
proposed model.

3.1. Model

According to a dataset xobs of i.i.d observations, independent latent variables h = (xmiss, u, z),
parameters Θ = (a, π, α, β, μ, Σ) of the K clusters and assumptions on mixed data defined in Section 2.1,
the complete likelihood of the proposed mixture model can be expressed as

p(xobs, h|Θ, K) =
J

∏
j=1

K

∏
k=1

⎛⎝ak ∏
c∈Cq

(
πkcN

((
xmiss

qj
xobs

qj

)
|μkc, u−1

j Σk

)
G(uj|αkc, βkc)

)δc(
xmiss

cj ,xobs
cj

)⎞⎠δk
zj

where

• xobs = (xobs
qj , xobs

cj )J
j=1 are the observed features,

• xmiss = (xmiss
qj , xmiss

cj )J
j=1 are the latent variables modelling the missing features,

• z = (zj)
J
j=1 the independent labels for continuous and categorical observations x = (xqj, xcj)

J
j=1

• u = (uj)
J
j=1 the scale latent variables handling outliers for quantitative data xq and

distributed according to a Gamma distribution with shape and rate parameters (α, β) =

(αkc, βkc)(k,c)∈{1,...,K}×Cq ,
• a = (ak)

K
k=1 are the weights related to component distributions,

• (μ, Σ) = ((μkc)c∈Cq , Σk)
K
k=1 the mean and the variance parameters of quantitative data xq for each

cluster,
• π = (πk)

K
k=1 the weights of the multivariate Categorical distribution of categorical data xc for

each cluster.
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Eventually, the Bayesian framework imposes to specify a prior distribution p(Θ|K) for Θ which
is chosen as

p(Θ|K) = p(a|K)p(π|K)p(α, β|K)p(μ, Σ|K)

= D(a|κ0)
K

∏
k=1
D(πk|π0) ∏

c∈Cq

p(αkc, βkc|p0, q0, s0, r0)N
(

μkc|μ0kc
, η−1

0kc
Σk

)
IW (Σk|γ0, Σ0)

where D(·|·) and IW(·|·) denote the Dirichlet and Inverse-Wishart distributions and p(·, ·|p, q, s, r) is
a particular distribution designed to avoid a non-closed-form posterior distribution for (α, β) such
that ∀(α, β) ∈ R∗+ ×R∗+, p(α, β|p, q, s, r) ∝ pα−1e−qββsαΓ(α)−r.

3.2. Variational Bayesian Inference

The intractable posterior distribution P = p(h, Θ|xobs, K) is approximated by a tractable one Q =

q(h, Θ|K) whose parameters are chosen via a variational principle to minimize the Kullback-Leibler
(KL) divergence

KL [Q||P] =
∫

q(h, Θ|K) log
(

q(h, Θ|K)
p(h, Θ|xobs, K)

)
∂h∂Θ = log p(xobs|K)−L(q|K)

with L(q|K) a lower bound for the log evidence log p(xobs|K) given by

L(q|K) = Eh,Θ

[
log p(xobs, h, Θ|K)

]
−Eh,Θ [log q(h, Θ|K)] , (3)

where Eh,Θ[·] denotes the expectation with respect to q(h, Θ|K). Then, minimizing the KL divergence is
equivalent to maximizing L(q|K). Assuming that q(h, Θ|K) can be factorized over the latent variables
h and the parameters Θ, a free-form maximization with respect to q(h|K) and q(Θ|K) leads to the
following update rules :

VBE-step : q(h|K) ∝ exp
(
EΘ

[
log p(xobs, h|Θ, K)

])
,

VBM-step : q(Θ|K) ∝ exp
(
Eh

[
log p(xobs, h, Θ|K)

])
.

Thereafter, the algorithm iteratively updates the variational posteriors by increasing the bound
L(q|K). Even if latent variables h and parameters Θ are assumed to be independent a posteriori, their
conditional structures are preserved as follows

q(h|K) = q(xmiss
q |u, xmiss

c , z, K)q(u|xmiss
c , z, K)q(xmiss

c |z, K)q(z|K) ,

q(Θ|K) = q(a|K)q(π|K)q(α, β|K)q(μ, Σ|K) .

Eventually, the following conjugate variational posterior distributions are obtained according to
the previous assumptions

q(h|K) =
J

∏
j=1

K

∏
k=1

⎛⎜⎜⎝r̃jk ∏
cmiss∈Cqmiss

j

⎛⎜⎝r̃xmiss
c

jkcmiss ∏
cobs∈Cqobs

j

(
N

(
xmiss

qj |μ̃xmiss
q

jkc , u−1
j Σ̃

xmiss
q

k

)
G
(

uj|α̃jkc, β̃ jkc

))δ
cobs
xobs

cj

⎞⎟⎠
δ

cmiss
xmiss

cj

⎞⎟⎟⎠
δk

zj

,

q(Θ|K) = D(a|κ̃)
K

∏
k=1
D(π|π̃k) ∏

c∈Cq

p(αkc, βkc| p̃k, q̃k, s̃k, r̃k)N
(

μkc|μ̃kc, η̃−1
kc Σk

)
IW(Σk|γ̃k, Σ̃k) .

Their respective parameters are estimated during the VBE and VBM-steps by developing
expectations EΘ

[
log p(xobs, h|Θ, K)

]
and Eh

[
log p(xobs, h, Θ|K)].
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3.3. Classification and Clustering

According to the degree of supervision, three problems can be distinguished: supervised
classification, semi-supervised classification and unsupervised classification known as clustering.
The supervised classification problem is decomposed into a training step and a prediction step.
The training step consists in estimating parameters Θ given the number of classes K and a set of
training data x with known labels z. Then, the prediction step results in associating label z∗ of a new
sample x∗ to its class k∗ chosen as the Maximum A Posteriori (MAP) solution

k∗ = arg
K

max
k=1

q(z∗ = k|K)

given the previous estimated parameters Θ. In the semi-supervised classification, only the number of
classes K is known and both labels z of the dataset x and parameters Θ have to be determined. As for
the prediction step, the MAP criterion is retained for affecting observations to classes such that

k∗ = arg
K

max
k=1

q(z = k|K) .

Given a set of data x, the clustering problem aims to determine the number of clusters K̃, labels
z of data and parameters Θ. Selecting the appropriate K̃ seems like a model selection issue and is
usually based on a maximized likelihood criterion given by

K̃ = arg max
K

log p(x|K) = arg max
K

log
∫

p(x, Θ|K)dΘ . (4)

Unfortunately, log p(x|K) is intractable and the lower bound in (3) is preferred to penalized
likelihood criteria [8,15,16] since it does not depend on asymptotical assumptions and does not
require Maximum Likelihood estimates. Then according to an a priori range of numbers of clusters
{Kmin, . . . , Kmax}, the semi-supervised classification is performed for each K ∈ {Kmin, . . . , Kmax} and
both zK and ΘK are estimated. Finally, the number of classes K̃ in (4) is chosen as the maximizer of the
lower bound L(q|K) :

K̃ = arg max
K

L(q|K) . (5)

After determining K̃, only zK̃ and ΘK̃ are kept as estimated labels and parameters.

4. Application

In this section, the proposed method is performed on a radar emitter dataset. For comparison,
a standard neural network (NN), the k-nearest neighbours (KNN) algorithm, Random Forests (RdF)
the k-means algorithm are also evaluated. Two experiments are carried out to evaluate classification
and clustering performance with respect to a range of percentages of missing values.

4.1. Data

Realistic data are generated from an operational database gathering 55 radar emitters presenting
various patterns. Each pattern consists of a sequence of pulses which are defined by a triplet of
continuous features (pulse features) and a quartet of categorical features (pulse modulations) listed
among 42 combinations of the categorical features. For each radar emitter, 100 observations (xj)

100
j=1 are

simulated from its pattern of pulses such that an observation xj = (xqj, xcj) is made up of continuous
features xqj and categorical features xcj related to one of the pulses. Extra missing values are added to
evaluate limits of the proposed approach by randomly deleting coordinates of (xqj)

100
j=1 and (xcj)

100
j=1

for each of the 55 radar emitters. Therefore, imputation methods [17] are used to handle missing
data for comparison algorithms. As for continuous missing data, they are handled through the Mean
and k-nearest neighbours imputation methods whereas missing categorical data are handled through
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the k-nearest neighbours and mode imputation methods. These imputation methods are compared
with the proposed approach where missing continuous data are reconstructed through the variational
posterior marginal mean of missing continuous data given by ∀j ∈ {1, . . . , J},

x̃miss
qj = Exmiss

qj

[∫
q(xmiss

qj , uj, xcjzj)∂uj∂xcj∂zj

]
=

K

∑
k=1

r̃jk ∑
cobs∈C

qobs
j

δcobs

xobs
cj

∑
cmiss∈Cqmiss

j

r̃xmiss
c

jkcmiss μ̃
xmiss

q

jkcobscmiss (6)

and missing categorical data are reconstructed through the variational posterior marginal mode of
missing categorical data given by ∀j ∈ {1, . . . , J},

x̃miss
cj = arg max

cmiss∈Cqmiss
j

∫
q(xmiss

cj , zj)dzj = arg max
cmiss∈Cqmiss

j

K

∑
k=1

r̃jkr̃xmiss
c

jkcmiss . (7)

4.2. Classification Experiment

The classification experiment evaluates the ability of each algorithm to assign unlabeled data to
one of the K classes trained by a set of labeled data. Since comparison algorithms do not handle datasets
including missing values, a complete dataset is used to enable their training. During the prediction
step, incomplete observations are completed thanks to the mean and KNN imputation methods and
the posterior reconstructions defined in (6) and (7). For the classification experiment, results are shown
in Figure 1. Without missing data, both algorithms cannot perfectly classify the 55 radar emitters for
the 2 datasets. Indeed, both algorithms reach accuracies of 90% for the continuous dataset and 98% for
the mixed dataset. These performance can be explained by the non total separability of continuous
and categorical datasets since the 55 emitters share 42 combinations of categorical features and some
intervals of continuous features. Nonetheless when mixed data are taken into consideration, the dataset
becomes more separable leading to higher performance of both algorithms. When the proportion of
missing values increases, the proposed model outperforms comparisons algorithms for each dataset.
It achieves accuracies of 80% and 95% for 90% of deleted continuous and mixed values whereas
accuracies of comparison algorithms are lower than 65% and 75% with missing data imputation from
standard methods. These higher performance of the proposed model reveal that the proposed method
embeds a more efficient inference method than other imputation methods. That result is confirmed
on Figure 1 when comparison algorithms are applied on data reconstructed by the proposed model.
Indeed when the proposed inference is chosen, comparison algorithms share the same performance
than the proposed model and manage to handle missing data even for 90% of deleted values.

Then, effectiveness of the proposed model can be explained by the fact that missing data
imputation methods can create outliers that deteriorate performance of classification algorithms
whereas the inference on missing data and labels prediction are jointly estimated in the proposed
model. Indeed, embedding the inference procedure into the model framework allows properties of
the model, such as outliers handling, to counterbalance drawbacks of imputation methods such as
outlier creation.
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Figure 1. Classification performance are presented for the proposed model (PM) in blue, the NN in red,
the RnF in green and the KNN in cyan. For each figure, solid lines represent accuracies with a posteriori
reconstructed missing data, doted dashed lines stand for accuracies with mean/mode imputation
whereas dashed lines show accuracies with KNN imputation for the comparison algorithms.

4.3. Clustering Experiment

The clustering experiment tests the ability of each algorithm to find the true number of clusters
K̃ among {35, . . . , 85}. The lower bound (3) and the average Silhouette score [18] are criteria used to
select the optimal number of clusters for the proposed model and the k-means algorithm. Results of
the clustering experiment are visible on Figure 2 which presents numbers of clusters selected by the
lower bound and average Silhouette scores for the proposed model and k-means algorithm according
to different proportions of missing values and imputation methods. Without missing data, the correct
number of clusters (K = 55) is selected by the two criteria for the k-means algorithm and the proposed
model when continuous and mixed data are clustered. In presence of missing values, the average
Silhouette score mainly selects K = 65 when the k-means algorithm is run on the 2 datasets completed
by standard imputation methods. When, the k-means algorithm performs clustering on the posterior
reconstructions, the average Silhouette score correctly selects K = 55 until 60% of missing values for
continuous data and 40% of missing values for mixed data. Eventually when the proposed model
does clustering, the two criteria select the correct number of clusters K = 55 until 70% of missing
values for continuous and mixed data. These results show two main advantages of the proposed
model. As previously, the proposed model provides a more robust inference on missing data since the
average Silhouette score chooses more representative number of clusters when the k-means algorithm
is run on the posterior reconstructions than on data completed by standard imputation methods.
Furthermore, since the lower bound criterion also selects the correct number of clusters as the average
Silhouette score, it can be used as a valid criterion for selecting the optimal number of clusters and does
not require extra computational costs as the Silhouette score since it is computed during the model
parameter estimation. Finally, the proposed approach provides a more robust inference on missing
data and a criterion for selecting the optimal number of clusters without extra computations.
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Figure 2. Estimation of the number of clusters using the lower bound (LB) and the silhouette score (S)
for the proposed model and only the silhouette score (S) for the k-means algorithm.

5. Conclusions

In this paper, a mixture model handling both continuous data and categorical data is developed.
More precisely, an approach based on the conditional Gaussian mixture model is investigated
by establishing conditional relations between continuous and categorical data. Benefiting from a
dependence structure designed for mixed-type data, the proposed model shows its efficiency for
inferring on missing data, performing classification and clustering tasks and selecting the correct
number of clusters. Since the posterior distribution is intractable, model learning is processed through
a variational Bayesian approximation where variational posterior distributions are proposed for
continuous and categorical missing data. Experiments point out that the proposed approach can
handle mixed-type data even in presence of missing values and can outperform standard algorithms
in classification and clustering tasks. Indeed the main advantage of our approach is that it enables
the counterbalance of imputation methods drawbacks by embedding the inference procedure into the
model framework.
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Abstract: Randomization is an integral part of well-designed statistical trials, and is also a required
procedure in legal systems. Implementation of honest, unbiased, understandable, secure, traceable,
auditable and collusion resistant randomization procedures is a mater of great legal, social and
political importance. Given the juridical and social importance of randomization, it is important to
develop procedures in full compliance with the following desiderata: (a) Statistical soundness and
computational efficiency; (b) Procedural, cryptographical and computational security; (c) Complete
auditability and traceability; (d) Any attempt by participating parties or coalitions to spuriously
influence the procedure should be either unsuccessful or be detected; (e) Open-source programming;
(f) Multiple hardware platform and operating system implementation; (g) User friendliness and
transparency; (h) Flexibility and adaptability for the needs and requirements of multiple application
areas (like, for example, clinical trials, selection of jury or judges in legal proceedings, and draft
lotteries). This paper presents a simple and easy to implement randomization protocol that assures,
in a formal mathematical setting, full compliance to the aforementioned desiderata for randomization
procedures.

Keywords: blockchain entropy; statistical randomization; judicial sortition

Meos tam suspicione quam crimine judico carere oportere.
My people should be free from either crime or suspicion.

Julius Caesar (62BC), in Suetonius (119CE, Sec.I.74.2).

1. Introduction: Bad and Good Practices in Randomization

Randomization is a technique used in the design of statistical experiments: in a clinical trial,
for example, patients are randomly assigned to distinct groups receiving different treatments with the
goal of studding and contrasting their effects. Randomization is nowadays considered a golden
standard in statistical practice; its motivation is to prevent systematic biases (like an unfair or
tendentious assignment process) that could distort (unintentionally or purposely) the conclusions
of the study. For further comments on randomization see [1–3], for Bayesian perspectives see [4,5].
In the legal context, randomization (also known as sortition or allotment) is routinely used for the
selection of jurors or judges assigned to a given judicial case; see [6]. For these applications, our initial
quotation, from the Roman emperor Julius Caesar, suggests the highest standards of technical quality,
and auditability, see [7].

Rerandomization is the practice of rejecting and discarding (for whatever reason) a given
randomized outcome, that is subsequently replaced by a new randomization. Repeated
rerandomization can be used to completely circumvent the haphazard, unpredictable or aimless
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nature of randomization, allowing a premeditated selection of a final outcome of choice. There are
advanced statistical techniques capable of blending the best characteristics of random and intentional
sampling, see for example [8–12]. Nevertheless, rerandomization is often naively used, or abused,
with the excuse of (subjectively) “avoiding outcomes that do not look random enough”, see for
example [13,14]. In the legal context, spurious manipulations of the randomization process are often
linked to fraud, corruption and similar maladies, see [6] and references therein.

In order to comply with the best practices for randomization processes, the authors of [6]
recommend the use of computer software having a long list of characteristics, for example, being
efficient and fully auditable, well-defined and understandable, sound and flexible, secure and
transparent. Such requirements are expressed by the following (revised) desiderata for randomization
procedures:

Given the juridical and social importance of the themata under scrutiny, we believe that it is
important to develop randomization procedures in full compliance with the following desiderata:
(a) Statistical soundness and computational efficiency, see [15–18]; (b) Procedural, cryptographical
and computational security, see [19–22]; (c) Complete auditability and traceability, see [23–25];
(d) Any attempt by participating parties or coalitions to spuriously influence the procedure should be
either unsuccessful or be detected, see [26–28]; (e) Open-source programming; (f) Multiple hardware
platform and operating system implementation; (g) User friendliness and transparency, see [29,30];
(h) Flexibility and adaptability for the needs and requirements of multiple application areas (like,
for example, clinical trials, selection of jury or judges in legal proceedings, and draft lotteries),
see [6].

Such requirements conflate several complementary characteristics that may seem, at first glance,
incompatible. For example, strong security is often (but wrongly) associated with excessive secrecy,
a doctrine known as “security by obscurity”, computer routines may be efficient but are often tough as
hard to audit, and mathematically well-defined algorithms may be perceived as hard to understand.
The bibliographical references given in the formerly stated desiderata for randomization procedures
already hint at technologies that can be used to achieve a fully compliant randomization procedure,
most preeminently, the blockchain. This is the key technology supporting modern public ledgers,
cryptocurencies, and a host of related applications.

A technical challenge for the application under scrutiny is the generation of pseudo-random
number sequences that reconcile complementary properties related to computational efficiency,
statistical soundness, and cryptographic security. In this respect, the excellent statistical and
computational characteristics of linear recurrence pseudo-random number generators (or their modern
descendants and relatives), like [16], can be reconciled with the needs concerning unpredictability
and cryptographic security by appropriate starts and restarts of the linear recurrence generator. A
sequence start for a linear recurrence generator is defined by a seed specified by a vector of (typically
1 to 64) integers, while a restart is defined by a jump-ahead or skip-ahead specified by a single integer
(kept small relative to the generator’s full period), see [22].

Unpredictable and cryptographically secure seeds and jump-aheads can be provided by high
entropy bit streams extracted from blockchain transactions, an idea that has already been explored in
the works of [31–34].

The next section develops a possible implementation of a fully compliant core randomization
protocol based on blockchain technology, and also makes a simple prototype available for study and
further research. Moreover, in order to make it simple and easy to use, we develop the prototype
on top of a readily available crypto-currency platform. We use Bitcoin for this example, but other
alternatives like Ethereum or other cryptocurrencies whose miners work under the same incentives
model can be used with minor adaptations.
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2. Results: Core Randomization Protocol in Blockchain

We intend to establish a protocol able to deliver on demand pseudo random numbers, from an
auditable and immutable ledger. The procedure will start as follows: the user (the part that wants to
receive a random number) shall send a Bitcoin transaction with a register of its purpose embedded in
it. (One way to embed a message in a transaction is using the OP_RETURN script, which allows to
store up to 40 bytes in a transaction.) The recipient of this transaction may be a proxy representing a
competent authority, a pertinent regulatory agency, an agreed custodian, etc. When this transaction is
first attached to the blockchain, we concatenate the transaction ID (a 32 bytes, hexadecimal number)
and the block header (a 80 bytes, hexadecimal number). In case someone tries to generate more
than one transaction for a same purpose, just take the one that was attached first. The resulting 112
bytes hexadecimal number will be the input for some known Verifiable Delay Function (VDF), that
should be calibrated accordingly to the purpose of the random number. For instance, a less critical
purpose should have a VDF that delays the result in just a few seconds, or even skip completely the
VDF step. A critical purpose, with significant interests involved, should have a more complex VDF,
with a delay of minutes or even hours. The final result, after the VDF, will be the source for our seeds
and jump-aheads.

With the aid of this protocol, one is able to find a different pseudo-random number for each user
that demands it. Note that the user does not have any incentive to try to modify its transaction ID,
because he does not have any control of the block header. We assume that the user and the miner
are not the same person, so a miner will only be interested in trying to control his block header if he
is paid to do so. Since the last stage of our protocol involves the calculation of a VDF, it will take a
certain amount of time to the miner to decide if the the block he has found will be of interest of the
user. Thus, he might even lose his block, if some other miner broadcasts a block of his own before he
finishes calculating the VDF.

In the following subsection, the miner’s payoff and the necessary delay T for the Verifiable Delay
Functions will be explicitly calculated.

2.0.1. Preventing Collusion for Spurious Manipulation

Suppose a malicious user tries to bribe a miner that controls a fraction p of the network’s
computational power. A prize P = nB, where B is the Bitcoin block reward, will be paid to the
miner if he successfully mines what we call a “desirable block”: a block that will deliver a random
number in a set A, chosen by the malicious user. Let also λ be the average rate of incoming blocks and
q the probability of a randomly generated number being an element of A, i.e., the measure of the set of
desirable results for the malicious user. Finally, let T be the expected amount of time needed for the
VDF calculations. The moment a miner finds a block that can be accepted by the network, he faces the
decision of broadcasting it before checking the VDF, or calculating the VDF before broadcasting. If he
decides to check the VDF before broadcasting, he might start another attempt to find a block rightaway.

First, we calculate the expected absolute payoff for the first and second options, called E1 and E2,
respectively. E1 will be larger than B, since the miner might issue a desirable block by chance:

E1 = B + qP = B(1 + nq) (1)
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On the other hand, if the miner chooses to calculate the VDF, he will receive the block reward and
the prize P, but with a probability given by

E2 =(B + P)qP{no other node finding a block before t = T} (2)

+ (B + P)(1− q)P{successfully mining a desirable block in another attempt}
=B(1 + n)q exp(−(1− p)λT)

+ B(1 + n)(1− q)
∞

∑
i=1

P{successfully mining a desirable block after i attempts}

The probabilities inside the summation, in the last equation, can be calculated as the product of
the probability of finding a desirable block after i attempts (that will be a geometric distribution with
probability of success q) and the probability of finding and checking i blocks before the rest of the
network mines one.

Considering

P{attacker finding and analyzing i blocks before another node mining one}

=
∫ ∞

t=0
pλ exp(−pλt)

(pλt)i−1

(i− 1)!
exp(−(1− p)λ(t + T))dt

=
(pλ)i exp(−(1− p)λT)

(i− 1)!

∫ ∞

t=0
exp(−λt)ti−1

=
(pλ)n exp(−(1− p)λT)

(i− 1)!
λ−i(i− 1)!

= pi exp(−(1− p)λT)

it follows that

E2 =B(1 + n)

[
q exp(−(1− p)λT) + (1− q)

∞

∑
i=1

q(1− q)i−1 pi exp(−(1− p)λT)

]

=B(1 + n) exp(−(1− p)λT)
(

q +
(1− q)pq
1− p + pq

)
(3)

Finally, in order to make accepting the bribe not lucrative, we must have E1 > E2, i.e.:

λT >
1

1− p
log

(
1 + n
1 + nq

q
1− p + pq

)
(4)

Since for every n > 0 we have 1+n
1+nq < 1

q , if we choose λT∗ = 1
1−p log

(
1
q

q
1−p+pq

)
, we guarantee

that the attack will not be lucrative for any bribe P = nB. Also, since it can be assumed that p < 1/2,
a value λT∗ = 2 log

(
2

1+q

)
< 2 log(2) will be high enough to prevent an attack for any bribe and any

acceptable value of p.

3. Conclusions and Final Remarks

We formalized a simple and effective protocol to generate on demand pseudo random numbers,
in a fully auditable way. We have demonstrated that none of the involved parts has enough financial
incentives to try to affect the random number outcome: the part that issues the transaction lacks this
power, since it does not have any control on the block header; and the miners do not have enough
financial incentives to collude with an attacker, provided a suitable Verifiable Delay Function is applied.

The essentially decentralized, yet completely traceable and auditable nature of the protocol
presented in this article, makes the resulting randomization process eminently reliable without recourse
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of blind trust in any central authority. The authors believe the adoption of such a protocol by the the
Brazilian Supreme Court (STF), as recommended in [6], would significantly increase public confidence
in the judicial system and be a contributing factor for political and social stability. A simple prototype
of the randomization tool described in this article is available in the supplementary materials; it is not
intended to be used in a full-fledged application, but only to provide a working example of the key
procedures.

Supplementary Materials: A simple prototype of the randomization tool described in this article is available
online at https://github.com/oliviasaa/random_generator/blob/master/random_generator.py.
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Abstract: Galilean Monte Carlo (GMC) allows exploration in a big space along systematic trajectories,
thus evading the square-root inefficiency of independent steps. Galilean Monte Carlo has greater
generality and power than its historical precursor Hamiltonian Monte Carlo because it discards
second-order propagation under forces in favour of elementary force-free motion. Nested sampling
(for which GMC was originally designed) has similar dominance over simulated annealing, which
loses power by imposing an unnecessary thermal blurring over energy.
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1. Introduction

Question: How does a mathematician find a needle in a haystack?
Answer: Keep halving the haystack and discarding the “wrong” half.

This trick relies on having a test for whether the needle is or is not in the chosen half. With that
test in hand, the mathematician expects to find the needle in log2 N steps instead of the O( 1

2 N) trials
of direct point-by-point search.

The programmer is faced with a similar problem when trying to locate a small target in a large
space. We do not generally have volume-wide global tests available to us, being instead restricted to
point-wise evaluations of some quality function Q(x) at selected locations x. A successful algorithm
should have two parts.

One part uses quality differences to drive successive trial locations towards better (larger) quality
values. This iteration reduces the available possibilities by progressively eliminating bad (low quality)
locations. Nested sampling [1] accomplishes this without needing to interpret Q as energy or anything
else. By relying only on comparisons (> or = or <) it’s invariant to any monotonic regrade, thereby
preserving generality. Its historical precursor was simulated annealing [2], in which log Q was
restrictively interpreted as energy in a thermal equilibrium.

The other part of a successful algorithm concerns how to move location without decreasing the
quality attained so far. Here, it will often be more efficient to move systematically for several steps in a
chosen direction, rather than diffuse slowly around with randomly directed individual steps. After n
steps, the aim is to have moved Δx ∝ n, not just

√
n. Galilean Monte Carlo (GMC) accomplishes this

with steady (“Galilean”) motion controlled by quality value. Its historical precursor was Hamiltonian
Monte Carlo (HMC) [3], in which motion was controlled by “Hamiltonian” forces restrictively defined
by a quality gradient which sometimes doesn’t exist.

In both parts, nested sampling compression and GMC exploration, generality and power are retained
by avoiding presentation in terms of physics. After all, elementary ideas underlie our understanding
of physics, not the other way round, and discarding what isn’t needed ought to be helpful.
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2. Compression by Nested Sampling

Question: How does a programmer find a small target in a big space?
Answer: . . . . . .

There may be very many (N) possible “locations” x to choose from. For clarity, assume these have
equal status a priori—there is no loss of generality because unequal status can always be modelled
by retreating to an appropriate substratum of equivalent points. For the avoidance of doubt, we are
investigating practical computation so N is finite, though with no specific limit.

As the first step, the programmer with no initial guidance available can at best select a random
location x1 for the first evaluation Q1 = Q(x1). The task of locating larger values of Q carries no
assumption of geometry or even topology. Locations could be shuffled arbitrarily and the task would
remain just the same. Accordingly, we are allowed to shuffle the locations into decreasing Q-order
without changing the task (Figure 1). If ordering is ambiguous because different locations have equal
quality, the ambiguity can be resolved by assigning each location its own (random) key-value to break
the degeneracy.

••••••••••••••••••••••••••••••••

••••••••••••••••
••

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

Figure 1. N locations (left) ordered (right) by quality Q.

Being chosen at random, x1’s shuffled rank Nu1 marks an equally random fraction of the
ordered N locations. Our knowledge of u1 is uniform: u1 ∼ Uniform(0, 1). We can encode this
knowledge as one or (better) more samples that simulate what the position might actually have been.
If the programmer deems a single simulation too crude and many too bothersome, the mean and
standard deviation

log u1 = −1± 1 (1)

often suffice.
The next step is to discard the “wrong” points with Q < Q1 and select a second location x2

randomly from the surviving Nu1 possibilities. Being similarly random, x2’s rank Nu1u2 marks a
random fraction of those Nu1, with u2 ∼ Uniform(0, 1) (Figure 2).

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

•
•

••••••••••• • • • • • • • • • • • • • • • • • • • • •

••••••••••••••••
••

11 2

•
•

Figure 2. Selection of second location B after discarding domain outside A.

And so on. After k steps of increasing quality Q1 < Q2 < · · · < Qk, the net compression ratio
Xk = u1u2 . . . uk can be simulated as several samples from

Xk ∼ Uniform(0, 1) . Uniform(0, 1) . . . . . Uniform(0, 1)︸ ︷︷ ︸
k

(2)
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to get results fully faithful to our knowledge or simply abbreviated as mean and standard deviation

log Xk = (−1± 1) + (−1± 1) + . . . (−1± 1)︸ ︷︷ ︸
k

= −k±√k (3)

Compression proceeds exponentially until the user decides that Q has been adequately maximised.
At that stage, the evaluated sequence Q1 < Q2 < · · · < Qk of qualities Q has been paired with the
corresponding sequence X1 > X2 > . . . Xk of compressions X (Figure 3), either severally simulated or
abbreviated in mean.

1

2
34

Figure 3. Nested sampling produces the relationship Q(X).

Q can then be integrated as

Z =
∫

Q(x) dx =
∫ 1

0
Q(X) dX ≈

k

∑
i=1

wi , wi = Qi ΔXi (4)

so that quantification is available for Bayesian or other purposes. Any function of Q can be integrated
too from the same run, changing Qi to some related Q′i while leaving the Xi fixed. And the statistical
uncertainty in any integral Z is trivially acquired from the repeated simulations (2) of what the
compressions X might have been according to their known distributions.

That’s nested sampling. It requires two user procedures additional to the Q(x) function. The
first is to sample an initially random location to start the procedure. The second—which we next
address—is to move to a new random location obeying a lower bound on Q. Note that there is
no modulation within a constrained domain. Locations are either acceptable, Q(x) ≥ Q∗, or not,
Q(x) < Q∗.

3. Exploration by Galilean Monte Carlo

The obvious beginners’ MCMC procedure for moving from one acceptable location to another,
while obeying detailed balance but not moving so far that Q always disobeys the lower bound Q∗, is:

Start at x with acceptable quality Q(x) ≥ Q∗
Repeat for length of trajectory

Set v = isotropically random velocity
x′ = x + v = trial location

if( Q(x) ≥ Q∗ ) accept new x = x′
else reject x′ by keeping x

(5)

However, randomising v every step is diffusive and slow, with net distance travelled increasing only
as the square root of the number of steps.

All locations within the constrained domain are equally acceptable, so the program might better
try to proceed in a straight line, changing velocity only when necessary in an attempt to reflect
specularly off the boundary (Figure 4, left). The user is asked to ensure that the imposed geometry
makes sense in the context of the particular application, otherwise there will be no advantage.
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•
•
• • • • • • ••••••••••

Figure 4. The motivation behind Galilean Monte Carlo (GMC).

With finite step lengths, it’s not generally possible to hit the boundary exactly whilst
simultaneously being sure that it had not already been encountered earlier, so the ideal path is
impractical. Instead, we take a current location x and suppose that a corresponding unit vector n can
be defined there as a proxy for where the surface normal would be if that surface was close at hand
(Figure 4, right). Again, it is the user’s responsibility to ensure that n makes sense in the context of the
particular application: exploration procedures cannot anticipate the quirks of individual applications.

Reflection from a plane orthogonal to n (drawn horizontally in Figure 5) modifies an incoming
velocity v (in northward direction from the South) to v′ = v − 2n(nTv). Depending on the
circumstances, the incoming particle may proceed straight on to the North (+v), or be reflected
to the East (+v′), or back-reflected to the West (−v′), or reversed back to the South (−v).
Mistakenly, the author’s earlier introduction of GMC in 2011 [4] reduced the possibilities by eliminating West,
but at the cost of allowing the particle to escape the constraint temporarily, which damaged the performance and
cancelled its potential superiority.

If the potential destination North is acceptable (bottom left in Figure 5), the particle should move
there and not change its direction (so n need not be computed). Otherwise, the particle needs to change
its direction but not its position.

x

v′ x

−v

x
−v′

x

v

Figure 5. North – East – West – South, the four Galilean outcomes.

For a North-South oriented velocity to divert into East-West, either East or West must be acceptable,
but not both because East-West particles would then pass straight through without interacting with
North-South, so the proposed diversion would break detailed balance. Likewise, for an East-West
velocity to divert North-South, either North or South must be acceptable but not both. These conditions
yield the following procedure:
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Start at x with acceptable quality Q(x) ≥ Q∗
Set v = isotropically random velocity
Repeat for length of trajectory

Set N = “Q(x + v) ≥ Q∗”
if( N ) exit with x = x + v [go North]
Set v′ = Rv = reflection velocity
Set E = “Q(x + v′) ≥ Q∗”, W = “Q(x− v′) ≥ Q∗”, S = “Q(x− v) ≥ Q∗”
if( S & (E but not W) ) exit with v = v′ [aim East]
if( S & (W but not E) ) exit with v = −v′ [aim West]

otherwise exit with v = −v [aim South]

(6)

Any self-inverse reflection operator R will do, though the reflection idea suggests R = I− 2n nT .
That’s Galilean Monte Carlo. The trajectory is explored uniformly, with each step yielding an

acceptable (though correlated) sample.

4. Compression and Exploration

GMC was originally designed for nested-sampling compression, from which probability
distributions can be built up after a run by identifying quality as likelihood L in the weighted
sequence (4) of successively compressed locations. However, GMC can also be used when exploring a
weighted distribution directly.

For compression (standard nested sampling, Figure 6, left), only the domain size X is iterated,
albeit under likelihood control.

Compression:

Enter with X and L
Set constraint L∗ = L defining X∗
Sample within L∗ to get X′ = uX∗

Exit with X′ and L′
(7)

For exploration (standard reversible MCMC, Figure 6, right), the likelihood is relaxed as well through a
preliminary random number u′ ∼ Uniform(0, 1).

Exploration:

Enter with X and L
Set constraint L∗ = u′L defining X∗
Sample within L∗ to get X′ = uX∗

Exit with X′ and L′
(8)

This is equivalent to standard Metropolis balancing “Accept x′ if L(x′) ≥ u′L(x)”, the only difference
being that the lower bound u′L is set beforehand instead of checked afterwards.

′′

∗

∗ ( )( )

Figure 6. GMC for compression (left) and exploration (right).

257



Proceedings 2019, 33, 19

5. Exploration by Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [3] uses a physical analogy with kinetic theory of gases in which
a thermal distribution of moving particles, whose position/velocity probability distribution factorises
into space and velocity parts

Pr(x, v) ∝ e−E(x,v) , E(x, v) = V(x) + T(v) (9)

with potential energy V defining the spatial target distribution Pr(x) ∝ e−V(x) and kinetic energy
T = 1

2 |v|2 distributed as the Boltzmann thermal equilibrium Pr(v) ∝ e−T(v).
The usual dynamics (Figure 7)

dx

dt
= v ,

dv

dt
= −∇V(x) (10)

relaxes an initial setting towards the joint equilibrium (9) under occasional collisions which reset v

according to Pr(v), leaving x as a sample from the target Pr(x).
Between collisions, the force field is necessarily digitised into impulses at discrete time intervals

δt, so the computation obeys
δx = v δt , δv = −∇V(x) δt (11)

To make the trajectory reversible and increase the accuracy order, the impulses are halved at the start x

and end x′, but even this does not ensure full accuracy because the dynamics has been approximated
(Figure 8).

= ×
g = −∇

Figure 7. The Hamiltonian Monte Carlo idea.

∇ (x1)

∇ (x2) ∇ (x3)

1
2∇ (x4)

1
2∇ (x0)

v′

v

x = x0

x4 = x′

x3

x2

x1

Figure 8. Hamiltonian Monte Carlo path approximates the ideal continuous path.

To correct this, the destination x′, whose total energy E′ = V′ + T′ ought to agree with the initial
E = V + T, is subjected to the usual Metropolis balancing.

Accept x′ iff e−E′ ≥ e−E . Uniform(0, 1). (12)
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In practice, the correction is often ignored because the (reversible) algorithm explores “level sets”
whose contours are often an adequately good approximation to the true Hamiltonian provided the
fixed timestep is not too large.

That’s Hamiltonian Monte Carlo. The trajectory is explored non-uniformly, with successive
steps being closer at altitude where the particles are moving slower, so that sampling is closer where
the density is smaller—a mismatch which needs to be overcome by the equilibrating collisions.
And, of course, HMC requires the potential V(x) (a.k.a. log-likelihood) to be differentiable and
generally smooth.

6. Compression versus Simulated Annealing

Simulated annealing uses a physical analogy to thermal equilibrium to compress from a prior
probability distribution to a posterior. As in HMC, though without the complication of kinetic energy,
the likelihood (or quality) is identified as the exponential L = e−E of an energy. In annealing, the
energy is scaled by a parameter β so that the quality becomes Q = Lβ = e−βE of this scaled energy,
with β used to connect posterior (where β = 1) with prior (where β = 0).

This “simulates” thermal equilibrium at coolness (inverse temperature) β, and “annealing” refers
to sufficiently gradual cooling from prior to posterior that equilibrium is locally preserved. A few
lines of algebra, familiar in statistical mechanics, show that the evidence (or partition function) can be
accumulated from successive thermal equilibria as

log Z =
∫ 1

0
〈log L〉β dβ (13)

where 〈log L〉β is the average log-likelihood as determined by sampling the equilibrium appropriate to
coolness β. Equilibrium is defined by weights Lβ and can be explored either by GMC or (traditionally)
by HMC. There is seldom any attempt to evaluate the statistical uncertainty in log Z, the necessary
fluctuations being poorly defined in the simulations.

At coolness β, the equilibrium distribution of locations x, initially uniform over the prior, is
modulated by Lβ so that the samples have probability distribution Pr(x) ∝ L(x)β which corresponds to

Pr(X) ∝ L(X)β (14)

in terms of compression. Consequently, samples cluster around the maximum of β log L+ log X, where
the log L(log X) curve has slope −1/β (Figure 9, left). Clearly this only works properly if log L(log X)

is concave (�). Any zone of convexity (�) is unstable, with samples heading toward either larger L at
little cost to X or toward larger X at little cost to L. A simulated-annealing program cannot enter a
convex region, and the steady cooling assumed in (13) cannot occur.

××
◦

◦

−

−
�

Figure 9. Simulated annealing without (left) and with (right) phase change.

In the physics analogy, this behaviour is a phase change and can be exemplified by the transition
from steam to water at 100 ◦C (Figure 9, right). Because of the different volumes (exponentially different
in large problems), a simulated-annealing program will be unable to place the two phases in algorithmic
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contact, so will be unable to model the latent heat of the transition. Correspondingly, computation of
evidence Z will fail. Yet our world is full of interesting phase changes, and a method that cannot cope with
them cannot be recommended for general use.

Nested sampling, on the other hand, compresses steadily with respect to the abscissa log X
regardless of the (monotonic) behaviour of log L, so is impervious to this sort of phase change.
Contrariwise, simulated annealing cools through the slope, which need not change monotonically.
By using thermal equilibria which average over e−βE, simulated annealing views the system through
the lens of a Laplace transform, which is notorious for its ill-conditioning. Far better to deal with the
direct situation.

7. Conclusions

The author suggests that, just as nested sampling dominates simulated annealing, . . .

Nested sampling Simulated Annealing

Steady compression Arbitrary cooling schedule for β

Invariant to relabelling Q Q has fixed form Lβ

Can deal with phase changes Cannot deal with phase changes

Evidence Z =
∫

L dX with uncertainty Evidence Z = exp
∫ 1

0 〈log L〉β dβ

. . . so does Galilean Monte Carlo dominate Hamiltonian.

Galilean Monte Carlo Hamiltonian Monte Carlo

No rejection Trajectories can be rejected

Any metric is OK Riemannian metric required

Invariant to relabelling Q Trajectory explores nonuniformly

Quality function Q(x) is arbitrary Quality Q(x) must be differentiable

Step functions OK (nested sampling) Can not use step functions

Can sample any probability distribution Probability distribution must be smooth

Needs 2 work vectors Needs 3 work vectors

In each case, reverting to elementary principles by discarding physical analogies enhances generality
and power.
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1. Introduction

Information Geometry [1] assigns a geometrical relationship between probability distributions,
using the local curvature (Hessian) of the Kullback-Leibler formula

H(p; q) = ∑
i

p(i) log
p(i)
q(i)

(1)

as the covariant geometrical metric tensor [2,3] between q and p. On a n-dimensional manifold p(θ)

specified by parameters θ1, . . . , θn, this n×n Riemannian metric g is

gjk(θ) = ∑
i

p(i | θ)
∂ log p(i | θ)

∂θ j
∂ log p(i | θ)

∂θk

(
or

∫
dt p(t | θ) . . . in continuum form

)
(2)

Geodesic lengths � and invariant volumes V follow from (d�)2 = ∑ gjkdθ jdθk and dV =
√

det g dnθ.
Necessarily, lengths are symmetric �(p, q) = �(q, p) between source and destination, so cannot

be isomorphic to H which is from-to asymmetric. Yet (1) is the only connection which preserves
independence of separate distributions, H(x×p ; y×q) = H(x; y) + H(p; q). Specifically, when H is
used to assign an optimal p (meaning minimally distorted from q) under constraints, that “maximum
entropy” selection also depends on separate optimisation x-from-y unless H has the form (1) [4,5].

It follows that any imposed geometrical connection must introduce interference between
supposedly separate distributions. That behaviour is incompatible with the practice of scientific
inference, and is confirmed by a counter-example.

2. Counter-Example

Consider the 2-parameter family of probability distributions [6]

pvw(t (mod 1)) =

⎧⎪⎪⎨⎪⎪⎩
f
( t− v

w

)
for v < t < v + w,

f
(1 + v− t

1− w

)
for v + w < t < v + 1,

(3)

Parameters v (location) and w (width) lie between 0 and 1. The function f (Figure 1) is monotonically
increasing so that it rises from f (0) at t = v to f (1) at t = v+w (mod 1) before falling back to f (0) at
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t = v+1 (mod 1). It is positive and normalised to
∫ 1

0 f (u)du = 1 so that the pvw(·)’s can be probability
distributions on the interval (0,1) — which could model growth and decay in a periodic system.

+

( )

( )

Figure 1. Does v affect w?

2.1. Two Parameters v and w

The 2× 2 information-geometry metric evaluates to[
gvv gvw

gwv gww

]
=

1
w(1−w)

∫ 1

0

[
1 u
u u2

]
f ′(u)2

f (u)
du =

[
A B
B C

]
/ w(1−w) (4)

where A, B, C are constants. The table shows their values for two example functions. The first is easy
to integrate while the second has vanishing slope f ′(0) = f ′(1) = 0 at the joins (as in Figure 1).

f (u) eu/(e− 1) (8 + 6u2 − 4u3)/9

A e−1 = 1.71828 11
6 log 2 + 5

6 log 5−√15(arctan 5√
15 − arctan 1√

15 ) = 0.05945

B 1 = 1.00000 89
12 log 2− 25

12 log 5−
√

15
6 (arctan 5√

15 − arctan 1√
15 )− 4

3 = 0.02909

C e−2 = 0.71828 251
24 log 2 + 5

24 log 5 + 13
√

15
12 (arctan 5√

15 − arctan 1√
15 )− 31

3 = 0.01636

The invariant volume element follows as

dV =
√

det g dv dw =

√
AC− B2

w(1− w)
dv dw (5)

where, by construction, AC− B2 > 0. The total invariant volume is infinite.

V =
∫ 1

0
dv

∫ 1

0
dw

√
det g = ∞ (6)

2.2. One Parameter w

If v had been fixed, p would have been confined to a submanifold pw(·) parameterised by w
alone. The information-geometry metric reduces to

gww =
1

w(1−w)

∫ 1

0
u2 f ′(u)2

f (u)
du =

C
w(1−w)

(7)

The invariant volume element follows as

dV =
√

gww dw =

(
C

w(1− w)

)1/2
dw (8)
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where, by construction, C > 0. The total invariant volume is finite.

V =
∫ 1

0

√
gww dw = πC1/2 (9)

2.3. Comparison of One and Two Parameters

Both shape ((5) versus (8)) and integral ((6) versus (9)) over w differ qualitatively according to
whether or not v is held fixed.

Treatment of v influences invariant volumes over w [Geometry]

That is a mathematical fact of information geometry.

2.4. Science

For scientific application, (3) defines a wraparound translation-invariant model in which v does
not affect w.

Treatment of v should not influence inference about w [Science]

That is a science requirement. Any observational consequence of information-geometry’s invariant
volumes would be rejected by the informed scientist. If there were such consequence, then observation
of width w could be used to infer something about location v, contrary to the intention of the
formulation.

3. Conclusions

Information geometry is not science. It denies the independence of separate parameters even
though such independence is a fundamental requirement of scientific inquiry. The assumption of
a geometrical connection between distributions is unnecessary for science and it fails under test.

Information geometry is a self-consistent mathematical structure which (like any other piece of
mathematics) may find specialised application within science, but is not fundamental to it. The only
fundamental connection is the Kullback-Leibler, which is from-to asymmetric hence not geometric.

Funding: This research received no external funding.

Acknowledgments: This investigation has been refined by many conversations, in particular with Ariel Caticha.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Amari, S. Differential-geometrical methods in statistics. In Lecture Notes in Statistics; Springer-Verlag: Berlin,
Germany, 1985.

2. Fisher, R. A. Theory of statistical estimation Proc. Camb. Philos. Soc. 1925, 122, 700–725.
3. Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta

Math. Soc. 1945, 37, 81–89.
4. Shannon, C.F. A Mathematical theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656.
5. Knuth, K.H.; Skilling, J. Foundations of Inference. Axioms 2012, 1, 38–73.
6. Skilling, J. Critique of Information Geometry. AIP Conf. Proc. 2013, 1636, 24–29.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

263





proceedings

Proceedings

Using Entropy to Forecast Bitcoin’s Daily Conditional
Value at Risk †

Hellinton H. Takada 1,*, Sylvio X. Azevedo 2, Julio M. Stern 2 and Celma O. Ribeiro 1

1 Polytechnic School, University of São Paulo, São Paulo 05508-010, Brazil; celma@usp.br
2 Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-090, Brazil;

sylvioazevedo@gmail.com (S.X.A.); jstern@ime.usp.br (J.M.S.)
* Correspondence: hellinton@gmail.com
† Presented at the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in

Science and Engineering, Garching, Germany, 30 June–5 July 2019.

Published: 21 November 2019

Abstract: Conditional value at risk (CVaR), or expected shortfall, is a risk measure for investments
according to Rockafellar and Uryasev. Yamai and Yoshiba define CVaR as the conditional expectation
of loss given that the loss is beyond the value at risk (VaR) level. The VaR is a risk measure
that represents how much an investment might lose during usual market conditions with a given
probability in a time interval. In particular, Rockafellar and Uryasev show that CVaR is superior to
VaR in applications related to investment portfolio optimization. On the other hand, the Shannon
entropy has been used as an uncertainty measure in investments and, in particular, to forecast
the Bitcoin’s daily VaR. In this paper, we estimate the entropy of intraday distribution of Bitcoin’s
logreturns through the symbolic time series analysis (STSA) and we forecast Bitcoin’s daily CVaR
using the estimated entropy. We find that the entropy is positively correlated to the likelihood of
extreme values of Bitcoin’s daily logreturns using a logistic regression model based on CVaR and the
use of entropy to forecast the Bitcoin’s daily CVaR of the next day performs better than the naive use
of the historical CVaR.

Keywords: entropy; conditional value at risk; cryptocurrency

1. Introduction

In finance, risk management is the activity of identifying, analyzing, estimating and controlling the
risk of losing money. For our purposes, risk management is a procedure for shaping a loss distribution
of an investment. The value at risk (VaR) is the most popular risk measure and it represents how much
an investment might lose during usual market conditions with a given probability in a time interval.
In other words, VaR is a percentile of a loss distribution. Another very popular risk measure is the
conditional value at risk (CVaR), or the expected shortfall. CVaR is a risk measure for investments
reintroduced in the literature by Rockafellar and Uryasev [1], for a former reference see Love et al.
[2]. According to Sarykalin et al. [3], it approximately (or exactly, under certain conditions) equals the
average of some percentage of the worst-case loss scenarios.

Relative to the definitions, there is a near correspondence between VaR and CVaR. For instance,
Yamai and Yoshiba [4] defined CVaR as the conditional expectation of loss given that the loss is beyond
the VaR level. Consequently, considering the same confidence level, VaR is a lower bound for CVaR.
In particular, Rockafellar and Uryasev [1,5] showed that CVaR is superior to VaR in applications
related to investment portfolio optimization. In practice, the choice between VaR and CVaR rests on
the differences in mathematical properties, stability of statistical estimation, simplicity of optimization
procedures, acceptance by regulators, and so on [3]. For instance, in terms of mathematical properties,
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the CVaR of a portfolio is a continuous and convex function with respect to positions in instruments,
whereas the VaR may be even a discontinuous function.

The volatility is the standard deviation of the distribution of logreturns and a very simple and
earlier measure of financial risk. The corresponding variance is a natural measure of the statistical
uncertainty but it just captures a small portion of the informational content of the distribution of the
logreturns. On the other hand, the entropy is a more general measure of uncertainty than the variance
because it may be related to higher-order moments of a distribution [6–8]. According to Dionisio et
al. [8], the variance measures the concentration around the mean while the entropy measures the
dispersion of the density irrespective of the location of the concentration. Finally, for Pele et al. [9], the
entropy of a distribution function is strongly related to its tails and this feature is more important for
distributions with heavy tails or with an infinite second-order moment for which the variance does not
make sense.

In the literature, there are empirical papers showing that entropy has good predictive power for
risk. For instance, Billio et al. [10] showed that entropy has the ability to forecast and predict banking
crises using directly the entropy of systemic risk measures. In addition, Pele et al. [9] showed that
entropy of the intraday distribution of logreturns is a strong predictor of daily VaR, performing better
than the classical GARCH models, for a time series of EUR/JPY exchange rates. Similarly, Pele and
Mazurencu-Marinescu-Pele [11], instead of using the entropy of the intraday distribution of logreturns,
defined the entropy using symbolic time series analysis (STSA) showing that their entropy is a strong
predictor of daily VaR, performing better than the classical GARCH models, using high-frequency
data for Bitcoin.

There is a recent interest in the statistical properties and risk behavior of cryptocurrencies [12–14]
and, in particular, Bitcoin [15]. Consequently, in this paper, we estimate the entropy of the symbolic
intraday distribution of Bitcoin’s logreturns through the STSA [11] and we model and forecast the
Bitcoin’s daily CVaR using the estimated entropy. The main contribution of this paper is the extension
of the study performed by Pele and Mazurencu-Marinescu-Pele [11] to include the CVaR. The rest of
the paper is organized as follows: in Section 2, we present the details of the methodology; in Section 3,
we present our empirical study describing the dataset, the results and the corresponding comments;
finally, in Section 4, we conclude the paper.

2. Methodology

In this section, we review the methodology to estimate the entropy of the symbolic intraday
distribution of logreturns through the STSA, a logistic model connecting the daily VaR and the entropy,
and a forecasting model for the daily VaR using the entropy based on a quantile regression published
by Pele and Mazurencu-Marinescu-Pele [11]. In addition, we introduce the two main contributions of
this paper: a logistic model connecting the daily CVaR and the entropy, and a forecasting model for
the daily CVaR using the entropy based on a modified quantile regression model. It is also important
to mention that the Bitcoin exchange rate is hereinafter referred to as Bitcoin price.

2.1. Entropy of Symbolic Intraday Logreturns

In the intraday context, it is usual to consider a set of days d ∈ {1, . . . , D} and each day equally
partitioned in M time bins. Consequently, for a day d and a time bin m ∈ {1, . . . , M}, we associate a
price Pd,m and a logprice pd,m = ln Pd,m. Then, the intraday logreturn of an asset is defined as follows:

rd,m = pd,m − pd,m−1; d = 1, . . . , D; m = 2, . . . M. (1)

For the empirical study of this paper, it is possible to define rd,1 = pd,1 − pd−1,M; d = 2, . . . , D
because the Bitcoin is continuously traded. However, it is important to point that for other kind of
assets, it would be better to ignore the logreturn rd,1. In addition, r1,1 is not defined.
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The intraday logreturns is usually very noisy. The idea behind the STSA technique [16] to produce
low-resolution data from high-resolution data. In particular, STSA is a transformation of a real number
sequence to a binary sequence. In our case, the STSA transformation is applied to the intraday logreturn
to obtain the symbolic intraday logreturn. The symbolic intraday logreturn is defined as follows:

sd,m =

{
1, rd,m ≤ 0
0, rd,m > 0

. (2)

Basically, the symbolic intraday logreturn is a binary sequence of 0s representing increasing prices
and 1s representing decreasing prices.

Based on the Shannon entropy definition [17], the entropy of the symbolic intraday logreturns is
defined as follows:

hd = −πd log2 πd − (1− πd) log2 (1− πd) , (3)

where πd = Pr (sd,m = 1) and 1− πd = Pr (sd,m = 0). It is possible to notice that the entropy of the
symbolic intraday logreturns is a daily entropy. In addition, we estimate πd, d = 2, . . . , D using the
sample frequency ∑M

m=1 sd,m/M, d = 2, . . . , D and π1 using the sample frequency ∑M
m=2 s1,m/ (M− 1).

2.2. Entropy and Daily VaR and CVaR

Intuitively, the entropy of the symbolic intraday logreturns is higher at the presence of higher
uncertainty in the returns and lower at the presence of lower uncertainty in the returns. Consequently,
the likelihood of extreme negative daily logreturns is explained by higher values of entropy. In
[11], it was verified that the entropy is positively correlated to the likelihood of extreme negative
daily logreturns and the relation between VaR and entropy was modeled using the following logistic
regression model:

Pr (yd = 1) =
eb0+b1hd

1 + eb0+b1hd
, (4)

where b0 and b1 are constants to be estimated;

yd =

{
1, rd ≤ −VaRα

0, rd > −VaRα
, d = 2, . . . , D (5)

are the indicators of the lower tails of the daily logreturns; rd = ln Pd − ln Pd−1, d = 2, . . . , D are the
daily logreturns; Pd is the closing price of day d; and VaRα is the daily value at risk at the significance
level α ∈ ]0, 1[ defined by

Pr (rd ≤ −VaRα) = α (6)

or, alternatively,
VaRα = − inf {z|F(z) ≥ α} , (7)

where F (·) is the cumulative distribution function of the daily logreturns.
In this paper, the hypothesis is also that the entropy is positively correlated to the likelihood of

extreme negative daily logreturns and we model the relation between CVaR and entropy using the
following logistic regression model:

Pr (ud = 1) =
ec0+c1hd

1 + ec0+c1hd
, (8)

where c0 and c1 are constants to be estimated;

ud =

{
1, rd ≤ −CVaRα

0, rd > −CVaRα
, d = 2, . . . , D (9)
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are the indicators of the lower tails of the daily logreturns; and CVaRα is the daily conditional value at
risk at the significance level α ∈ ]0, 1[ defined by

CVaRα = − 1
α

∫ −VaRα

−∞
z f (z) dz, (10)

where f (·) is the continuous probability density function of the daily logreturns.

2.3. Forecasting Model for Daily VaR and CVaR

Pele et al. 2017 and Pele et al. 2019 [9,11] considered a quantile regression model to forecast the
daily VaR using the entropy as the explanatory variable. The forecasting model for the daily VaRα at
day k + w + 1 using the entropy of the day k + w is given by:

ˆVaRα,k+w+1 = −b̂k
0 − b̂k

1hk+w, (11)

where b̂k
0 and b̂k

1 are estimated using a quantile regression model between the dependent variable rd
and the independent variable hd−1 for d ∈ Ww (k);

Ww (k) =

{
{2, . . . , w} , k = 0
{k + 1, . . . , k + w} , k = 1, 2, . . .

. (12)

Based on Koenker and Bassett [18], we consider the following optimization problem for the
quantile regression estimation:{

b̂k
0, b̂k

1

}
= arg min ∑

d∈Ww(k)
ρα

(
rd − bk

0 − bk
1hd−1

)
, (13)

where
ρα (z) = z

(
α− I#<0 (z)

)
(14)

is the asymmetric absolute loss function and

IA (z) =

{
1, z ∈ A
0, z �∈ A . (15)

is the indicator function.
Our forecasting model for the daily CVaRα at day k + w + 1 using the entropy of the day k + w is

given by:
ˆCVaRα,k+w+1 = −ĉk

0 − ĉk
1hk+w, (16)

where ĉk
0 and ĉk

1 are estimated using a quantile regression model between the dependent variable rd
and the independent variable hd−1 for d ∈ Ww (k). We consider the following optimization problem
for the quantile regression estimation:{

ĉk
0, ĉk

1

}
= arg min ∑

d∈Wk

ρα�

(
rd − ck

0 − ck
1hd−1

)
, (17)

where

α� = F̂w,k

(
− 1

α

∫ inf{x|F̂w,k(x)≥α}
−∞

z f̂w,k (z) dz

)
(18)

is the significance level, F̂w,k (·) is the empirical cumulative distribution function of the logreturns
estimated using the time windowWw (k) and f̂w,k (·) is the empirical density function of the logreturns
estimated using the time windowWw (k).
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3. Empirical Study

3.1. Bitcoin

There are several time series prices for Bitcoin depeding on the digital currency exchange and
the currency used in the trading process. In order to compare our results to that obtained by Pele and
Mazurencu-Marinescu-Pele [11], we adopt the BTC/USD exchange rate from Gemini Trust Company,
LLC (Gemini). Gemini is a digital currency exchange and custodian that allows customers to buy, sell,
and store digital assets. In particular, we consider the intraday closing prices of the minute-by-minute
time bins and the time period from 8 October 2015 until 29 May 2019. According to Feng et al. [19]
apud Pele and Mazurencu-Marinescu-Pele [11], the market capitalization, the daily transaction volume
and the liquididy of Bitcoin before 2015 was not good.

For illustration purposes, in Figure 1, we present the Bitcoin’s daily closing prices; in Figure
2, we present the Bitcoin’s daily close-to-close logreturns; and, finally, in Figure 3, we present the
empirical probability density and cumulative distribution functions of the Bitcoin’s daily close-to-close
logreturns. It is possible to notice the huge increase in the Bitcoin’s prices until the end of 2017, the
high volatility of the Bitcoin’s logreturns and the change over time of the volatility pattern. In addition,
it is also possible to notice the existence of extreme values in the distribution of Bitcoin’s logreturns.
In the following sections, we present the entropy of the symbolic intraday distribution of Bitcoin’s
logreturns, the logistic model connecting the daily CVaR and the entropy, and a forecasting model for
the daily CVaR using the entropy based on a modified quantile regression model.

Figure 1. Bitcoin’s daily closing prices and entropies.

Figure 2. Bitcoin’s daily close-to-close logreturns and entropies.
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Figure 3. The empirical probability density function and the empirical cumulative distribution
distribution function of the Bitcoin’s daily close-to-close logreturns.

3.2. Entropy and Daily CVaR

In Figures 1 and 2, we also present the entropy of the symbolic intraday distribution of Bitcoin’s
logreturns. As it was mentioned in Section 2, the entropy of the symbolic intraday logreturns is higher
at the presence of higher uncertainty in the returns and lower at the presence of lower uncertainty in
the returns. In [9,11], they have tested the hypothesis that the daily logprice of Bitcoin is positively
correlated to the entropy of the symbolic intraday distribution of Bitcoin’s logreturns. However,
we state that the logprice time series because of its level, non-stationarity and trend cause possible
problems to the hypothesis verification. Consequently, we test the following model:

|rd| = a0 + a1hd + εd, (19)

where εd is the error term. Our hypothesis about Equation (19) is that the absolute value of daily
logreturn of Bitcoin is positively correlated to the entropy of the symbolic intraday distribution of
Bitcoin’s logreturns. The estimation results of Equation (19) are shown in Table 1. It is possible to notice
that the estimated coefficient a1 of the entropy is positive and significant supporting our hypothesis.

Table 1. Estimation results of Equation (19).

Parameter Estimation p-Value Standard Error

a0 0.006 0.000 0.005
a1 0.032 0.000 0.008
R2 0.132

In this paper, we propose the study of the relation between entropy of the symbolic intraday
distribution of Bitcoin’s logreturns and the likelihood of extreme negative daily logreturns represented
by the daily CVaR using Equation (8). The estimation results are shown in Tables 2 and 3 for α = 1%
and α = 5%, respectively. It is possible to notice that the estimated coefficients c1 of the entropy
for both α = 1% and α = 5% are positive and significant supporting the hypothesis that entropy is
positively correlated to the likelihood of extreme values of daily logreturns.

Table 2. Estimation results of Equation (8) for α = 1%.

Parameter Estimation p-Value Standard Error

c0 −9.133 0.002 1.316
c1 8.253 0.001 3.488
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Table 3. Estimation results of Equation (8) for α = 5%.

Parameter Estimation p-Value Standard Error

c0 −6.961 0.001 0.592
c1 7.800 0.001 1.605

3.3. Forecasting Daily CVaR

Let ˆCVaRα,Ww(k) be the historical daily CVaR at the significance level α calculated in the time
window Ww (k) . The forecasting model for the daily CVaRα at day k + w + 1 using ˆCVaRα,Ww(k) is
given by:

ˆCVaRα,k+w+1 = ˆCVaRα,Ww(k). (20)

In order to study the forecasting performance of the daily CVaRα, we estimate
Equations (16) and (20) using a rolling window approach with a window length w = 250 trading
days. For comparison purposes, in Tables 4 and 5, we present a backtest of models (16) and (20)
for significance levels α = 1% and 5%, respectively. The performance of the models is compared
with the historical daily CVaR at the significance level α calculated in the time window Ww (k + 1).
In particular, we consider the mean absolute error (MAE) and the root mean squared error (RMSE)
between ˆCVaRα,k+w+1 and ˆCVaRα,Ww(k+1). As it is possible to notice from our empirical results using
Bitcoin, the use of entropy in the forecasting of the daily CVaR of the next day seems to be better than
the naive use of the historical CVaR.

Table 4. Backtest results of daily CVaR at the significance level α = 1%.

Model MAE RMSE

Forecasting using entropy 5.26 × 10−5 7.28 × 10−4

Forecasting using historical CVaR 3.56 × 10−4 4.52 × 10−3

Table 5. Backtest results of daily CVaR at the significance level α = 5%.

Model MAE RMSE

Forecasting using entropy 1.04 × 10−4 5.42 × 10−4

Forecasting using historical CVaR 3.16 × 10−4 1.51 × 10−3

4. Conclusions

In this paper, we have two main contributions: a logistic model connecting the daily CVaR and the
entropy, and a forecasting model for the daily CVaR using the entropy based on a modified quantile
regression model. Basically, we extend the study performed by Pele and Mazurencu-Marinescu-Pele
[11] to include the CVaR. In [9,11], they have tested the hypothesis that the daily logprice of Bitcoin
is positively correlated to the entropy of the symbolic intraday distribution of Bitcoin’s logreturns.
However, since the logprice time series is in level and presents a non-stationarity behavior and a trend,
the verification of their hypothesis becomes infeasible. Consequently, the hypothesis we verify is that
the absolute value of daily logreturn of Bitcoin is positively correlated to the entropy. In addition, we
also verify that entropy is positively correlated to the likelihood of extreme values of Bitcoin’s daily
logreturns using a logistic regression model based on CVaR and the use of entropy to forecast the
Bitcoin’s daily CVaR of the next day performs better than the naive use of the historical CVaR.
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Abstract: We present here Nested_fit, a Bayesian data analysis code developed for investigations
of atomic spectra and other physical data. It is based on the nested sampling algorithm with the
implementation of an upgraded lawn mower robot method for finding new live points. For a given
data set and a chosen model, the program provides the Bayesian evidence, for the comparison of
different hypotheses/models, and the different parameter probability distributions. A large database
of spectral profiles is already available (Gaussian, Lorentz, Voigt, Log-normal, etc.) and additional
ones can easily added. It is written in Fortran, for an optimized parallel computation, and it is
accompanied by a Python library for the results visualization.

Keywords: nested sampling; bayesian evidence; model comparison; atomic spectra

1. Introduction

Nested_fit is a general purpose parallelized data analysis code for the evaluation of Bayesian
evidence and parameter probability distributions for given data sets and modeling function.
The computation of the Bayesian evidence is based on the nested sampling algorithm [1–3], for the
integration of the likelihood function over the parameter space. This integration is obtained reducing
the J-dimensional volume (where J is the number of parameters) in a one-dimensional integral by a
clever exploration of the parameter space. In Nested_fit, this exploration is obtained with a search
algorithm for new parameter values called lawn mower robot, which has been initially developed by
L. Simons [4] and modified here for a better exploration of multimodal problems.

Nested_fit has been developed over the past years to analyze several sets of experimental data
from, mainly, atomic physics experiments. For this reason, it has some special feature well adapted
to the analysis of atomic spectra as specific line profiles, possibility to study correlated spectra at the
same time, eg. background and signal-plus-background spectra, and with a likelihood function built
considering a Poisson statistics per each channel, well adapted to low-statistics data.

In the next section we will describe the general structure and feautres of Nested_fit. In Section 3
we shortly introduce the basic concepts of Bayesian model comparison and the nested sampling method.
The specific algorithm for the parameter space exploration for the nested sampling is presented in
details in Section 4. An example of application of Nested_fit is presented in Section 5 for the analysis
of single two-body electron capture ion decay. A conclusive section will end the article, where recent
application of Nested_fit to different atomic physics analysis are mentioned.

2. General Structure of the Program

The general structure of the program is represented in Figure 1. The main input files are two:
the file nf_input.dat, where all computation input parameters are included, and the data file, which
name is indicated in the parameter input file. The function name in the input file indicates the model
to be used for the calculation of the likelihood function. Several functions are already defined in
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the function library for modelling spectral lines: Gaussian, Log-normal, Lorentzian, Voigt (Gaussian
and Lorentzian convolution), Gaussian convoluted with an exponential (for asymmetric peaks), etc.
Additional functions can be easily defined by the users in the dedicated routine (USERFNC). Differently
from the version presented in Ref. [5] (V. 0.7), in the new version discussed here (V. 2.2) non-analytical
or simulated profile models can be implemented. In this case, one or more additional files have to be
provided by the users. These external data, which can have some noise like the case of simulated data,
are interpolated by B-splines using FITPACK routines [6]. The B-spline parameters are stored and
used as profile/model with the total amplitude and a possible offset as free parameters. An additional
feature of this new program version, is the possibility to analyze data with error bars. This option has
to be indicated in the input file.

2.2              # Program version
he-histo.dat # Name of data file
n               # Error bars present or not
2000             # Number of live points
1.00E-05         # Evidence final accuracy
0.1 20           # Fraction and n. of jumps
16 100000        # N. of tries, max n. of steps
DOUBLE_GAUSS_BG  # Name of function
L                # Additional_data: left/right (l/r)
500 20           # Additional data: for convolution 
250 650          # xmin, xmax
6                # n. of parameters
# npar name    value step min max  fixed
1       'bg’    0.11  -1   0 0.3  0
2 'x01’   454.6 -1   300 600  0
3       'x02’   454.6 -1   300 600  0
4       'amp1’  300   -1   0 500  0
5       'amp2’  300   -1   0 500  0
6       'sigma’ 20    -1   10 30   0
n                # Set of data yes or no

Figure 1. Scheme of the Nested_fit program.

Several data sets can be analyzed at the same time by selecting the option “set of data: YES”. This
is particularly important for the correct study of physically correlated spectra at the same time, e.g.,
background and signal-plus-background spectra. This is done using a global user-defined function
with common parameters of specific models for each spectrum. In the case of multiple data files, the
program read an additional input parameter file nf_input_set.dat for the additional datafile names
to analyze and data ranges to consider.

The exploration of the parameter space and the corresponding evaluation of the likelihood
function is done implementing the nested sampling algorithm [1–3]. If the data are in the format
(channel, counts), a Poisson distribution for each channel is assumed for the likelihood function. If the
data has error bars (channel, y, δy), a Gaussian distribution is assumed (new feature in V. 2.2).

The main analysis results are summarized in the output file nf_output_res.dat . Here the details
of the computation (n. of live points, n. of trials, n. of total iteration) can be found as well as the final
evidence value and its uncertainty E± δE, the parameter values â corresponding to the maximum of
the likelihood function, the mean, the median, the standard deviation and the confidence intervals
(68%, 95% and 99%) of the posterior probability distribution of each parameter. The information gain
H and the Bayesian complexity C are also provided in the output.

Data for plots and for further analyses are provided in the files nf_output_data_*.dat. These
files contain the original input data together with the model function values corresponding to the
parameters with the highest likelihood function value (nf_output_data_max.dat) or the parameter
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mean value (nf_output_data_mean.dat) or median value (nf_output_data_median.dat) with the
corresponding residuals and error bars. Additional nf_output_fit_*.dat files contain a model
evaluation with higher density than the original data for graphical presentation purpose.

The step-by-step details of the nested sampling exploration are provided in the file
nf_output_points.dat that contains the live points used during the parameter space exploration,
their associated likelihood values and posterior probabilities. From this file, the different parameter
probability distributions and joint probabilities can be built from the marginalization of the unretained
parameters. For this purpose, a special dedicated Phython library Nested_res has been developed.
Additional informations can be found in Ref. [5].

3. Implementation of the Nested Sampling for the Evidence Calculation

For a given data set(s) {xi, yi} and model(s)M, the Bayesian evidence P({xi, yi}|M, I) is extracted
for the evaluation of the probability to the different models them-selves:

P(M|{xi, yi}, I) ∝ P({xi, yi}|M, I)× P(M|I), (1)

where P(M|I) is the prior probability of each model (assumed constant if not specific preferences for
the model is present) and I indicates the background information. The Bayesian evidence is the integral
value of the likelihood function over the entire parameter space defined by the priors P(a|M, I):

E(M) ≡ P({xi, yi}|M, I) =
∫

P({xi, yi}|a,M, I)P(a|M, I)dJ a =
∫

LM(a)P(a|M, I)dJ a, (2)

where J is the number of the parameters of the considered model, and where we explicitly show the
dependency of likelihood function LM(a) on the modelM.

The calculation of the Bayesian evidence is made with the nested sampling, similarly to
other available codes [2,7–10]. Nested sampling allows for reducing the above integral in the
one-dimensional integral

E(M) =
∫ 1

0
L(X)dX, (3)

where X is defined by the relation

X(L) =
∫

L(a)>L
P(a|I)dJ a. (4)

Equation (3) can be numerically calculated using the rectangle integration method subdividing the
[0, 1] interval in M + 1 segments with an ensemble {Xm} of M ordered points 0 < XM < ... < X2 <

X1 < X0 = 1. We have then
E(M) ≈ ∑

m
LmΔXm, (5)

where Lm = L(Xm) and ΔXm = Xm − Xm+1. The evaluation of Lm is obtained by the exploration of
the likelihood function with a Monte Carlo sampling via a subsequence of steps. For this, we use a
collection of K parameter values {ak} that we call live points. More details on the nested sampling
algorithm and its implementation can be found in Refs. [1–3,7–10]. The specific implementation of
nested sampling in Nested_fit is presented in details in Ref. [5].

The bottleneck of the nested sampling algorithm is the search of new points within the
J-dimensional volume defined by L > Lm. Different methods are commonly employed to accomplish
this difficult task. One efficient method is the ellipsoidal nested sampling [7]. It is based on the
approximation of the iso-likelihood contour defined by L = Lm by a J-dimensional ellipsoid calculated
from the covariance matrix of the live points. The new point is then selected within the ellipsoidal
volume (with an enlargement factor selected by the user). This method, well adapted for unimodal
posterior distribution has also been extended to multimodal problems [8,9], i.e., with the presence
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of distinguished regions of the parameter space with high values of the likelihood function. Other
search algorithms are based on Markov chain Monte Carlo (MCMC) methods [10] and the recent
Galilean Monte Carlo [11,12], particularly adapted to explore the regions close to the boundary of VL>Lm

volumes. Nested_fit program is based on an improved version of the lawn mower robot method,
originally developed by L. Simons [4] and presented in details in the next section.

4. The Lawn Mower Robot Search Algorithm

A schematic view of the improved lawn mower robot algorithm is represented in Figure 2. To cancel
the correlation between the starting point and the final point, a series of N jumps are made in this
volume. The different stages of the algorithm are

1. Choose randomly a starting point an=0 = a0 from the available live points {am,k} as starting
point of the Markov chain where n is the number of the jump. The number of tries nt (see below)
is set to zero.

2. From the values an−1, find a new parameter sets an where each jth parameter is calculated
by (an)j = (an−1)j + f rjσj, where σj is the standard deviation of the live points of the nested
sampling computation step relative to the jth parameter, rj ∈ [−1, 1] is a sorted random number
and f is a factor defined by the user.

(a) If L(an) > Lm and n < N, go to the beginning of step 2 with an increment of the jump
number n = n + 1.

(b) If L(an) > Lm and n = N, an=N is new live point to be included in the new set {am+1,k}.
(c) If L(an) < Lm and n < N and the number of tries nt is less than the maximum allowed

number Nt, go back to beginning of step 2 with an increment of the number of tries
nt = nt + 1.

(d) If L(an) < Lm and n < N and nt = Nt a new parameter set a0 has to be selected. Instead
than choosing one of the existing live points, a0 is built from distinct jth components from
different live points: (a0)j = (am,k)j where k is randomly chosen between 1 and K for each
j. Then an=0 = a0 and go to the beginning of step 2.

Step 2c, the main improvement of the original lawn mower robot algorithm, makes the algorithm
well adapted to problems with multimodal parameter distributions allowing easy jump between
high-likelihood regions. The value of Nt is fixed in the code (Nt = 10,000 in the present version).
The other parameters can be provided by the input file.

L(an) < 

a0

an-1

an

a1

Figure 2. Scheme of lawn mower robot algorithm.

5. An Application to Low-Statistics Data

To show the capabilities of Nested_fit, we present in this section its implementation on a
particular critical case corresponding to a debated experiment. In 2008 it was observed an unexpected
modulation in the two-body electron capture decay of single H-like 142

61 Pm ions to the stable 142
60 Nd

bare nucleus, with a monochromatic electron-neutrino emission [13]. The same modulation frequency,
but with much smaller amplitude, was found in 2010 data [14] but not in the latest campaign in
2014 [15] where much more events have been recorded.
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The unstable ions are produced by collision with a solid target and then injected in a storage
ring where they are cooled down. In the storage ring, the decay time of single ions is measured from
changes of the Schottky noise frequency induced by the ion revolution. The H-like 142

61 Pm ion and 142
60 Nd

bare nucleus masses correspond in fact to different revolution frequencies. From the accumulated data
of single decay events, the decay probability per unit of time can be measured. An example of the data
collected in 2010 is presented in Figure 3 (up).

The observed modulation of the expected exponential decay has not yet a clear explanation.
A possible connection with neutrino masses differences is speculated in the literature. The determination
of the presence or not of a modulation is a perfect case for implementing Bayesian model comparison
with Nested_fit.

Figure 3. Top: Data relative to the single decay of H-like 142
61 Pm to 142

60 Nd bare nucleus obtained with
a binning of 0.08 s. The profile curves relative to pure exponential and exponential with modulation
models are also represented. Bottom: 2D histogram of the joint probability of the amplitude a and
pulsation ω of the model with modulation. Red, yellow and green colors represent approximatively
the regions corresponding to 68%, 95% and 66% confidence intervals. Both figures are obtained by
Python nested_res.py library that accompany Nested_fit program.

When a possible modulation of the exponential decay is assumed, the likelihood function
corresponding to 2010 data presents several maxima. This reflect the periodicity nature of the
considered function, which can manifest itself via different harmonics, and the low number of available
counts per channel. The difficulties to deal with these multiple likelihood maxima pushed in fact the
creation of the improved lawn mower robot algorithm.

In Figure 3 (top) we present the collected data together with the exponential and modulated
exponential functions corresponding to the most probable parameter set. The output result from
Nested_fit are presented in Table 1 where model 1 and 2 represent the absence of presence of
modulation. For each model, values of the evidence, Bayesian complexity and extracted information
are provided, as well as model probabilities. The uncertainty of the probabilities is related to the
uncertainty of the evidence. As example of probability distribution, we present in Figure 3 (bottom) the
joint probability of the amplitude a and pulsation ω of the modulation in model 2. The 2D histogram
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(obtained with Python nested_res.py library that accompany Nested_fit program) is constructed by
marginalization on the other parameters. As it can be seen, different maxima are visible, which make
difficult the convergence of the nested sampling method. The improved lawn mower robot algorithm
can deal with this kind of situation, even if the computation time is sometime long (several days in a
single CPU).

Table 1. Summary of the results provided from Nested_fit for the two considered models.
The parameter values are given in terms of most probable value and 95% confidential interval (CI).

Model 1 Model 2

Function y = N0e−t/τ y = N0e−t/τ [1 + a sin(ωt + φ)]

loge(Evidence) −1594.11± 0.30 −1594.60± 0.36
Probability 34.2–41.9% 58.1–68.8%
Complexity 2.05 15.19
Extracted information [nat] 4.76 6.32
ω (CI 95%) [rad s−1] – 0.89(0.17− 6.86)
a (CI 95%) – 9.2× 10−2(2.2× 10−4 − 7.2× 10−2)
φ (CI 95%) [rad] – 3.84(0.18− 6.14)

As it can be observed, the assigned probability to each model are similar and the confidential
intervals for the parameter relative to the modulation model are very large. These two aspects reflect
the difficulty to treat this problem where the acquired data are not sufficient to provide a marked
preference for one model with or without modulation (see Ref. [15] for a more extended discussion).
Even if apparently unsatisfying, this result avoid however possible over-interpretation of the data
commonly encountered when classical methods are employed, as recently discussed in Ref. [16] in the
context of nuclear physics.

6. Conclusions

We presented here the program Nested_fit, a general purpose parallelized data analysis code for
the evaluation of Bayesian evidence and other statistically relevant outputs. It uses the nested sampling
method with the implementation of the improved lawn mower robot algorithm for the evaluation
of the Bayesian evidence. Nested_fit has been developed over the past years for the analysis of
several sets of atomic experimental data that strongly contribute to the code evolution. We would like
to mention in particular the analysis of low-statistics X-ray spectra of He-like uranium [5,17], X-ray
spectra of pionic atoms [18,19], electron photoemission spectra from nano-particles [20,21], single-ion
decay spectra [15] and response function of crystal X-ray spectrometers (in progress).

Compared to the version reported in Ref. [5], the presented version (V. 2.2) shows additional
important features: i) the possibility to interpolate and use computed or simulated external profiles
and ii) the implementation of Gaussian likelihood function for data with error bars.

Future developments of Nested_fit will be focussed on the implementation of new exploration
methods for the live point evolution of the nested sampling [8,9,11,12]. More precisely, the main goal
is the improvement the efficiency for the exploration of the parameter space where the likelihood
function presents several local maxima.
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Abstract: Formants are characteristic frequency components in human speech that are caused by
resonances in the vocal tract during speech production. They are of primary concern in acoustic
phonetics and speech recognition. Despite this, making accurate measurements of the formants, which
we dub “the formant measurement problem” for convenience, is as yet not considered to be fully
resolved. One particular shortcoming is the lack of error bars on the formant frequencies’ estimates.
As a first step towards remedying this, we propose a new approach for the formant measuring
problem in the particular case of steady-state vowels—a case which occurs quite abundantly in
natural speech. The approach is to look at the formant measuring problem from the viewpoint of
Bayesian spectrum analysis. We develop a pitch-synchronous linear model for steady-state vowels
and apply it to the open-mid front unrounded vowel [E] observed in a real speech utterance.

Keywords: Bayesian inference; general linear model; steady-state; vowel; formant; acoustic phonetics

1. Introduction

Formants are characteristic frequency components in human speech that are caused by resonances
in the vocal tract (VT) during speech production and occur both in vowels and consonants. Fant
(1960) [1] systematized the then relatively young science of acoustic phonetics with his acoustic theory
of speech production, often called the source-filter model, which has since become the dominant
paradigm. At that time, the source-filter model, which is formulated in the language of linear
time-invariant system theory, justified the practice of deriving formants from power spectra as
prominent local maxima in the power spectral envelope of appropriately windowed and processed
speech signals. From this point of view each formant is characterized by three parameters describing
the local maximum associated with it: the maximum’s center frequency (called the formant frequency),
its bandwidth and its peak amplitude.

The concept of a formant is fundamental to phonetics and automated speech processing.
For example, formants are considered to be primary features for distinguishing vowel classes, speech
perception and for inferring speaker identity, sex and age. Despite this fundamental status—and
despite a long history of work on vowel formants starting out with [2]—the issue of making accurate
measurements of the formant parameters, which we dub “the formant measurement problem” for
convenience, is as yet not considered to be fully resolved (e.g., [3–5]). Accordingly, a large amount of
formant measurement methods exist in the literature, of which most rely on linear predictive (LPC)
analysis. The fundamental cause underlying the formant measurement problem is that most of these
methods yield formant frequency estimates (the main quantity of interest) that are sensitive to various
user-made choices, such as the form and length of the tapering window form or the number of poles
in LPC analysis (e.g., [6,7]). In other words, measuring formants currently requires rather careful
fine-tuning while speech is notorious for its variability [8]. In addition, there currently seems to be no
way to put error bars on the formant frequency, bandwidth and amplitude measurements.
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In this paper an attempt is made to tackle the formant measuring problem for an important special
case, i.e., steady-state vowels (SSVs). The usual definition of the SSV is the steady-state portion of a
vowel, i.e., the time interval in which the VT configuration can be taken to be approximately fixed on
the time scale of the pitch period, which is on the order of 5 ms. The fixed VT implies that the SSV
is characterized by formants with unchanging frequency and bandwidth through time. In contrast,
the SSV model in this paper allows the formant amplitudes and pitch periods to change over time,
but this change is expected to be small due to the steady state. As such, SSVs can be recognized in
natural speech as a semi-periodic string of typically about 3 to 5 pitch periods [9].

By modeling SSVs in the time domain with a pitch-synchronous linear model, it becomes possible
to apply the machinery of Bayesian spectrum analysis [10,11] to the formant measuring problem.
Our approach shows several promises:

• Ability to derive error bars on the formant frequencies, bandwidths and peak amplitudes.
• Elimination of windowing and averaging procedures. A typical method to measure formants in a

SSV is to slide over the signal with a tapering window, estimate the formant frequency, bandwidth
and peak amplitude in each window, and then to average these estimates over the windows [9].
In our approach, the pitch-synchronous nature of the model eliminates any windowing procedure
(and thus various user-made choices) by making use of the pitch period as a natural time scale [12].
In addition, the formant frequencies and bandwidths are estimated simultaneously in each period,
which can be understood as a generalized averaging operation over pitch periods ([11] Section 7.5).

• “Automatic” model order determination. This is done by inferring the most probable model order
given the SSV (and the model). This can be contrasted with traditional LPC analysis, where the
number of poles must be decided by the user on the basis of several well-established guidelines,
but where the final judgment ultimately remains qualitative. However, in the current approach,
the proposed model (including the prior pdfs) is still too simple to guarantee satisfactory model
order determination in all cases.

Compared to standard LPC analysis, there are three main disadvantages of our approach:

• Limited applicability: we only model SSVs, though possible extensions are discussed in the
conclusion of the paper.

• For our approach it is necessary to determine the pitch periods in advance. There are several
algorithms available (e.g., waveform matching [13] or ML estimation [14]) for this task, but ideally
this should be a part of the SSV model itself.

• Though the inference algorithm described below is efficient and relatively fast compared to typical
problems in numerical Bayesian inference, it is still much slower than LPC analysis. For example,
all calculations for the SSV [E] discussed below took about half a minute.

2. SSV Model

The model of a SSV proposed here is inspired by Ladefoged [15]’s picture of speech; that is, the
pulses in the speech waveforms coincide with glottal closing instants (GCIs). The GCIs causing the
pulses in the speech waveforms is illustrated by the electroglottograph (EGG)—see Figure 1.
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Figure 1. (After [16]; reproduced with kind permission.) The EGG signal is the electrical conductance
between two electrodes placed on the neck. When the glottis is closed, the measured conductance is
high, and vice versa. The EGG signal is displayed in the bottom panel. In the top panel the synchronized
speech waveform is plotted and three individual pitch periods are shown. From comparing the top
and bottom panel, it is evident that the pulses in the speech waveform occur when the EGG signal rises
sharply; i.e., when the glottis closes. Additionally, there are two phases (closed-open) within each pitch
period in which the damping of the speech waveform seemingly changes; this is primarily due to the
glottal waveform which becomes prominent at the end of the pitch periods as the glottis is reaching its
maximum aperture. The blue baseline drawn in the top panel by simple visual inspection is related to
the time derivative of the glottal flow (dGF). A second and smaller effect causing the pitch periods to
exhibit two phases is the extra coupling to the subglottal cavities (such as the lungs) of the acoustic
waves in the VT when the glottis opens; this causes these waves to decay faster.

2.1. Individual Pitch Periods

According to Ladefoged, in each pitch period of length T these pulses excite the VT such that the
resulting speech waveform consists of a superposition of Q decaying resonances

Q

∑
j=1
{Bj cos(ωjt) + Cj sin(ωjt)} exp(−αjt). (0 ≤ t < T) (1)

This is a model of the formants in the time domain where Q is the number of formants (i.e., damped
sinusoids), Bj and Cj are the amplitudes, and ωj and αj are the frequency [rad Hz] and the decay
constant [Hz] of formant j, respectively. Thus if we take Q = 2, we model the first two formants of a
pitch period which are denoted as F1 and F2. The frequency of F1 is ω1 and its decay constant is α1,
and similarly for F2.

Ladefoged’s model has considerable merit [12,15], but it does not incorporate the effects of the
glottal flow derivative (dGF) during the open phase of the pitch period. During this phase, the glottal
flow weakly excites the VT which can be roughly approximated with a simple differentiation ([17] p. 3).
For this reason, we consider the dGF instead of the glottal flow itself. In Figure 1 the baselines marked
in blue roughly indicate the dGF trends, which are clearly not negligible in the open phase of the pitch
period as they become the dominant effect in that phase. There are indications that this a general
effect [12,17]. As the dGF can be taken to vary relatively slowly, we propose to model it by a polynomial
of order P− 1. Thus the model function for one pitch period of length T is

f (t; P, Q, Ak, Bj, Cj, Ω) = ∑P
k=1 AkLk−1(t) + ∑Q

j=1{Bj cos(ωjt) + Cj sin(ωjt)} exp(−αjt), (0 ≤ t < T) (2)

where the Lk−1(t) are the numerically convenient Legendre polynomials and the Ak are their
amplitudes and Ω ≡ (ω1 · · ·ωQ, α1 · · · αQ).
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With the above model for individual pitch periods we can use Bayesian spectrum analysis to
obtain the posterior distribution of the Ω, which are the parameters of interest as they describe the Q
formants. Suppose the SSV consists of n predetermined pitch periods such that the SSV is defined by
the string {D1D2 · · ·Di · · ·Dn}, i.e.,

Di = {di[t]} (t = 0, 1, 2, · · · , Ni − 1) (3)

is the waveform of the ith pitch period which consists of Ni samples. Then we assume that

di[t] = f (t; P, Q, Ak, Bj, Cj, Ω) + ei[t] (t = 0, 1, 2, · · · , Ni − 1), (4)

where ei[t] ∼ N(0, σ2), i.e., the pdf for the errors is white noise with constant power. An example of a
fit of the model function f (t) in Equation (4) to one pitch period i is shown in Figure 2.
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Figure 2. One pitch period extracted from a SSV /E/ plotted as samples (the dots) together with the
model function fit f (t; P, Q, Âk, B̂j, Ĉj, Ω̂) (smooth line).

Since the model function f (t; P, Q, Ωi) is a linear combination of basis functions (which depend
on Ω), this model is an instance of the well-known general linear model [18]. It is possible to
marginalize over the amplitudes Ak, Bj, Cj together with the noise level σ: assuming uniform priors,
we arrive at the typical Student-t distribution (written in non-standard form) ([11] p. 35)

p(Ω|P, Q, Di, I) ∝
[
1− mh2

i (Ω)

Nid2
i

]m−Ni
2 . (pitch period) (5)

Here m = P + 2Q is the number of basis functions, d2
i = (1/Ni)∑Ni−1

t=0 di[t]2 and h2
i (Ω) is the

sufficient statistic for the problem, obtained in the standard way [19] from the projections of the
data di[t] on the orthogonalized basis functions which are linear combinations of the basisfunctions
{Lk−1(t), cos(ωjt) exp(−αjt), sin(ωjt) exp(−αjt)} appearing in Equation (2). The sufficient statistic

h2
i (Ω) can be seen as a generalization of the Schuster periodogram [10], to which it reduces in the case

that P = 0 and αj = 0 (1 ≤ j ≤ Q) and the frequencies ωj are well separated (i.e., |ωj −ωk|  2π/Ni
for 1 ≤ j < k ≤ Q).

2.2. Multiple Pitch Periods: SSV

We model an SSV as a string of independent pitch periods that share the same formants
(see Figure 3); that is, the formant frequencies and decay constants Ω = (ω1 · · ·ωQ, α1 · · · αQ), as well
as the noise power σ2 are kept fixed across the pitch periods, as well as the order parameters P and Q.

284



Proceedings 2019, 33, 29

0 10 20 30 40 50

time (msec)

a
m

p
lit

u
d

e

Figure 3. A model of the SSV (in this case an /E/, which is also used in the next section) consists of
several model functions f (t; P, Q, Ai,k, Bi,j, Ci,j, Ω) strung together, as shown in this plot by giving each
such model function its own color. The model functions are fitted to the individual pitch periods but
are “frustrated” by their having to share the formant frequencies and decay constants Ω.

The other parameters are again marginalized over, once again assuming uniform priors, and we
arrive at the simplest generalization of Equation (5):

p(Ω|P, Q, D1 · · ·Dn, I) ∝
n

∏
i=1

p(Ω|P, Q, Di, I). (SSV) (6)

The assumption of independent pitch periods—while knowing that these are in fact perfectly
correlated, being almost periodical—has an important effect on the error bars of the final estimates Ω̂
which is comparable to using uninformative priors; the effect is to make the error bars conservative,
because the uncertainties in the amplitudes etc. transfer to the posterior marginal error bars on the
frequencies and decay constants in Ω̂. Any correlation put into the model can only decrease this
uncertainty, and thus decrease the magnitude of the error bars [11]. Bretthorst has shown this explicitly
for the case of correlated errors ei[t] which in our story would apply to adjacent pitch periods [20]. Since
the frequency estimates are already sharp (see the next section for an example) from the viewpoint
of what one is used to in acoustic phonetics [3], this issue (i.e., overly conservative error bars for the
frequency estimates) seems perfectly acceptable as it buys us very convenient analytical expressions for
the posterior p(Ω|P, Q, D1 · · ·Dn, I). However, the error bars on the decay rates and the amplitudes
are quite broad, and improving the accuracy of their estimates is desirable in certain applications.

2.3. Estimation

We perform a Gaussian approximation at the maximum a posteriori point Ω̂, which is found by
optimizing Equation (6) with the Levenberg-Marquardt algorithm [21]. This approximation lets us
estimate the posterior covariances (of which the diagonal gives the desired error bars) and lets us
crudely estimate the posterior probability of the polynomial order and number of formants (P, Q).
“Crudely” because our priors are uninformative, so we can hardly expect model comparison as
guided by p(P, Q|D1 · · ·Dn, I) to give satisfactory results (relative to all the things we know about the
data—correlations, acceptable physical forms, etc.—but did not tell probability theory).

3. Application on a Steady-State Portion of [E]

We apply the model to a steady-state portion of the vowel [E] (the second ‘e’ in “etcetera”)
consisting of n = 6 pitch periods shown in Figure 4.

Before applying the model, the order parameters P and Q must be chosen. For simplicity we set
Q = 3, i.e., we are interested in the first three formants, which is a typical case. Figure 5 shows the
posterior p(P|Q = 3, D1 · · ·D6, I), where now the former parameters of interest Ω have been integrated
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out using the Gaussian approximation. The preferred value of P is clearly P = 4. Unfortunately,
the choice (P = 4, Q = 3) yields unphysical results as the inferred sinusoids are not damped but
actually grow considerably during the pitch periods. The same goes for P = 3. These unphysical
results can arise because we did not restrict αj > 0 in the parameter space. The choices P = 5, 6, 7, 8 do
yield physical results, and the estimates for the Q = 3 formants depend only slightly on the actual
value of P in this range (remember that P− 1 is the order of the Legendre polynomial describing the
slowly varying baseline).
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Figure 4. Steady-state portion of [E] consisting of six pitch periods. Extracted from the CMU ARCTIC
database [22], speaker BDL, sentence a0001.wav, from 2.847 to 2.898 sec at 16 kHz (no downsampling
was done).
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Figure 5. The posterior probability p(P|Q = 3, D1 · · ·D6, I) for the SSV /E/.

Finally, Figure 6 shows the results for (P = 6, Q = 3). Despite the fact that we can estimate the
formant frequencies, bandwidths and peak amplitudes, we only compare the formant frequencies to a
standard LPC analysis. The reason is that the comparison of the bandwidths and peak amplitudes
between our model and the LPC model is not well defined, as on the one hand the LPC bandwidths
depend on the size of the LPC window used; and on the other hand the formant amplitudes are
allowed to vary between pitch periods in our model. The actual formant frequency estimates are
(at two standard deviations):

• (F1)est = 658 ± 2 Hz at −2.0 ± 0.1 dB/ms
• (F2)est = 1463 ± 10 Hz at −2.9 ± 0.5 dB/ms
• (F3)est = 2660 ± 10 Hz at −3.0 ± 0.7 dB/ms

The formant frequency estimates calculated with LPC on the entire steady-state portion is:
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• (F1)LPC = 670 Hz
• (F2)LPC = 1491 Hz
• (F3)LPC = 2771 Hz

We calculated these with Praat [23], a popular tool in acoustic phonetics. The discrepancies might
seem large (on the order of 50 Hz) but this is actually quite acceptable in acoustic phonetics. While
much more work is needed to understand the discrepancy, the basic reason is quite clear: LPC analysis
can be interpreted as an all-pole expansion of the spectrum of a (windowed) segment of speech to
estimate the formants in that window. But Jaynes [10] and Bretthorst [11] showed clearly that the
spectrum is only an optimal estimator for frequency content (more precisely: spectral lines) if six
conditions are met ([11] p. 20), of which two are very clearly violated in the estimation of formant
frequencies in SVVs. The two conditions state that the data must not contain a constant component
and that there is no evidence of a low frequency. But these conditions do not hold because of the
slowly varying dGF components, perhaps to the point that the spectrum is not just a suboptimal
estimator, but a potentially misleading one. This misleading nature (i.e., local maxima in spectra do
not designate actual harmonic content) has been shown for economical data [24], where data often
need to be “detrended”, which is exactly what we do here.
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Figure 6. Cont.
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Figure 6. Application of the model(P = 6, Q = 3) to a SSV /E/ in order to estimate the frequency
and decay constants of F1, F2, F3. (a) Fit to the data shown in Figure 4. (b) We can estimate the dGF
waveform via the amplitudes Âk, and integrating this estimate yields the glottal flow (GF) waveform.
As an independent qualitative check, in this subplot the GF is compared to a GF obtained via inverse
filtering [25]. (c) The estimated GF waveform (the same as in plot (c)) is now compared to the EGG
signal which was simultaneously recorded with the /E/ waveform [22]. A high value of the EGG
means that the glottis is closed, so the GF must be small. A low value of the EGG means that the glottis
is open, and the GF should be big (as air from the lungs can escape outward). This anticorrelation is
perfectly observed.

4. Conclusions

Though we have shown that this approach holds some promises, a lot more work is needed
before anything definitive can be asserted; in particular work is underway in which the method
will be systematically compared to a “ground truth“ to test its validity using a speech production
simulation with known glottal flow and formants. In addition, the model would benefit greatly from
making the estimation of the pitch periods part of the inference, rather than requiring it as a given;
using more informative priors is also expected to improve the model order inference (e.g., it is known
that there are typically about three resonances of significance, for a human vocal tract, below about
3500 Hz ([26] p. 20)). Finally, for shorter pitch periods (i.e., higher fundamental frequency of speech)
the model is expected to deteriorate, as we do not allow the damped sines to “leak“ into the next pitch
period. Thus a more elaborate model would have to include nearest-neighbor interactions between
adjacent pitch periods.

Applications of high-accuracy formant measurements equipped with error bars should be
plentiful, but two examples worthwhile are forensic speaker identification (e.g., [27]) and medical
diagnosis (e.g., [28]). Remarkably, the field of forensic phonetics seems to have adopted a Bayesian
methodology [29,30], so perhaps in the future this model could deliver quantities directly for use in
their likelihood ratios [6].

4.1. Possible Extensions

This approach can be extended to non-stationary vowels (i.e., non-SSVs) by explicitly modeling the
formant tracks (e.g., by parametrization or by a free-form model [31]); one would then get error-bars
on the tracks. The pitch period model (Equation (5)) might be extendable to a restricted class of
consonants called plosives (such as [k]), insofar the plosive mechanism is qualitatively similar to the
glottal closure [32].
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Abstract: The spin echo experiment is an important tool in magnetic resonance for exploring the
coupling of spin systems to their local environment. The strong couplings in a typical Electron Spin
Resonance (ESR) experiment lead to rapid relaxation effects that puts significant technical constraints
on the kinds of time domain experiments that one can perform in ESR. Recent developments in
high frequency ESR hardware have opened up new possibilities for utilizing phase-modulated or
composite phase slice (CPS) pulses at 95 GHz and higher. In particular, we report preliminary results
at 95 GHz on experiments performed with CPS pulses in studies of rapidly relaxing fluid state systems.
In contemporary ESR, this has important consequences for the design of pulse sequences where,
due to finite excitation bandwidths, contributions from the Hamiltonian dynamics and relaxation
processes must be considered together in order to achieve a quantitative treatment of the effects of
selective, finite bandwidth pulses on the spin system under study. The approach reported on here is
generic and may be expected to be of use for solid state and fluid systems. In particular we indicate
how our approach may be extended to higher frequencies, e.g., 240 GHz.

Keywords: Magnetic Resonance; entropy; optimization; nested sampling

1. Introduction

ESR is a powerful analytical tool for studying structure and dynamics in a broad range of solid,
and fluid systems. ESR studies are sensitive to processes on nanosecond to microsecond time scales
and complement the range of time scales that are accessible to other magnetic resonance techniques,
such as Nuclear Magnetic Resonance (NMR). In the hands of NMR spectroscopists, time domain,
or pulse techniques, have proven to be highly useful and flexible for the study of specific interactions
that are not readily resolved by frequency domain, or continuous wave, techniques. The development
of CPS pulse techniques in NMR, which address the limitations of real, non-ideal pulses, benefitted
from the ready availability of suitable radio frequency amplifiers, phase modulators, and receiver
technology. Equivalents suitable for ESR rely on the more complex microwave or even millimeter wave
technology, due to the faster time scales and excitation frequencies relevant for ESR vis-à-vis NMR.
In the ESR case, the bandwidth of a typical ESR spectrum and the limited power output, relatively
speaking, has limited the adoption of CPS techniques. Recent advances in millimeter wave technology
have called for a reassessment of this conventional wisdom, and we report on intial successes in
applying CPS pulse technology at 95 GHz. The behavior of spin systems and their response to coherent
perturbations may be quantified by the von Neumann entropy. Space limitations prevent anything
more than a cursory discussion of this important concept. In order to develop CPS pulse sequences,
extensive computations are necessary to model CPS pulse parameters, and early work used drastic
approximations in order to explore a reasonable range of CPS pulse parameter space. With the advent
of cheap, fast computing, these limitations are not so stringent as before, and our initial success
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provides the impetus for developing more computationally intensive parameter optimization methods
for higher frequency ESR pulse work, where spectral extent and relaxation effects are expected to
play an even more significant role. This contribution presents theoretical and experimental results
that point the way to significant future applications. In section 2 we discuss the necessary theoretical
background for understanding the spin evolution equation of motion and its solution in practical
cases. We have tried to indicate where approximations are made and their expected domain of validity.
Preliminary results demonstrating the utility of the theoretical formalism and its application to CPS
pulse specification is given in Section 3. We put these results in broader context and indicate directions
for future work in Section 4.

2. Spin Evolution

The Stochastic Liouville Equation (SLE) is an important tool for studying the response of a spin
system to external magnetic perturbations. The SLE achieves this by quantifying the properties of the
spin system via the density matrix formalism and modeling external perturbations by incorporating
their effects in an equation of motion for the density matrix. The resulting equation of motion consists
of two parts which may be interpreted in terms of classical analogues. The conservative, Hamiltonian
dynamics may be understood in terms of a classical dipole model, where the response is governed
by a torque equation. Couplings of the spin system to its surroundings are governed by dissipative
processes that may be thought of as frictional torques. These considerations may be quantified
as follows

∂

∂t
ρ(t) = i

i
h̄
[H(t), ρ(t)]− Γ(ρ(t)− ρ0). (1)

In Equation (1), the density matrix ρ(t) is perturbed from its equilibrium value ρ0 by a
time-dependent Hamiltonian H(t) which describes the conservative dynamics. The dissipative
contributions to the dynamics modeling the recovery of the spin system to equilibrium are quantified
by the relaxation operator Γ. As it stands, Equation (1) is very general. For the purposes of this
contribution, we will apply it to a system of weakly interacting spin 1/2 magnetic dipoles perturbed
by a time-dependent Zeeman interaction. The expectation value of the spin angular momentum is
computed via the defining relation

〈S(t)〉 = Tr{ρ(t)S} (2)

The expectation value of the spin computed from Equation (2) may be related to the observed
magnetic dipole by identifying

μ(t) = γ〈S(t)〉. (3)

The constant of proportionality is the gyromagnetic ratio which is proportional to 1/m where m
is the mass of the relevant spin bearing charge. In ESR this is usually an unpaired electron which may
arise from a crystalline defect, or be introduced via chemical means into a molecular system of interest.
From a practical perspective, electron magnetic moments are typically on the order of 1000 times larger
than nuclear magnetic moments due to the 1/m factor, and this has important consequences for the
technology used for perturbing the ESR spin system and monitoring its recovery to equilibrium.

The Zeeman interaction of a magnetic dipole μ in an applied time-dependent magnetic field H is
quantified by the following Hamiltonian

H(t) = −γS ·H(t). (4)

Equation (4) is the quantum mechanical generalization of the potential energy of a classical dipole
in an applied magnetic field. Note that the density matrix for a system of spin 1/2 dipoles may be
expanded in a set of spin 1/2 angular momentum operators. The commutator term in Equation (1)
will then depend on commutators of the form

[Sq, Sr] = iεqrsSs. (5)
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In Equation (5), εqrs is antisymmetric in all of its indices. Classically this corresponds to a
cross-product and motivates the identification of the commutator term as a torque term in Equation (1).
Note that we are using a Cartesian representation of the spin operators {Sx, Sy, Sz} here.

For the purposes of this report, we will assume a very simple form for the relaxation operator and
introduce two phenomenological relaxation times. The recovery of the spin system to equilibrium will
be quantified by the spin-lattice relaxation time T1. The T1-dependent terms govern the dissipative
response of the longitudinal component of the magnetization, or expectation value of Sz. In general
one neither expects nor observes that the transverse components of the magnetization, or expectation
values of Sx and Sy, respond on the T1 time scale. In fact, the transverse relaxation time T2 generally
satisfies the inequality T2 � T1. It is useful to note that one may construct more complicated relaxation
operators in order to model dissipative processes, such as rotational diffusion, but that is beyond the
scope of the work reported on here.

Upon computing the expectation value of the magnetization in a time-dependent field, and
ignoring relaxation for the moment, the SLE becomes a torque equation for the magnetization of the
spin system which can be written in the following form

d
dt

μ(t) = μ(t)× γH(t). (6)

Equation (6) describes the conservative Hamiltonian dynamics. When the dissipative terms are
included, we also need to compute the expectation value of the equilibrium magnetization γTr{ρ0S} ≡
μ0ẑ. When the relaxation terms are included, the equation of motion for the magnetization assumes
the following matrix form

∂

∂t

⎡⎢⎣ μx(t)
μy(t)
μz(t)

⎤⎥⎦ =

⎡⎢⎣ −1/T2 γHz(t) −γHy(t)
−γHz(t) −1/T2 γHx(t)
γHy(t) γHx(t) −1/T1

⎤⎥⎦
⎡⎢⎣ μx(t)

μy(t)
μz(t)

⎤⎥⎦+

⎡⎢⎣ 0
0

μ0/T1

⎤⎥⎦ . (7)

These are the Bloch equations, derived from the SLE, Equation (1). Note that Equation (7) is
a special case of Equation (1). Equation (1) is more general than Equation (7), but Equation (7) has
sufficient generality for the work reported on here. Note that Equation (7) is a set of coupled, linear,
inhomogeneous first order differential equations. In order to cast this set of equations into a more
tractable form, it is useful to specialize the form of the time-varying magnetic field and introduce some
commonly applied approximations valid when the z component of the applied magnetic field is taken
to be static and much larger in magnitude than any of the other components.

2.1. Rotating Wave Approximation

A common experimental situation is to suppose that a static field is applied along the laboratory
z axis and a linearly polarized magnetic field is applied along the laboratory x axis. It is convenient to
resolve the linearly polarized perturbing field into counter-rotating circularly polarized components.
When this is done, the applied field is

H = (H1 cos ωtx̂ + H1 sin ωtŷ, H1 cos ωtx̂− H1 sin ωtŷ, H0ẑ) (8)

When H0 is large compared to H1, it is standard practice to drop the counterrotating component
of the applied magnetic field and perform a coordinate transformation that renders both the circularly
polarized applied field and the static applied field constant. This is the content of the rotating wave
approximation (RWA) and the transformation to the rotating frame. A good discussion of these points
may be found in Allen and Eberly [1]. When these transformations are made, Equation (7) takes the
following matrix form
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d
dt

⎡⎢⎣ μx

μy

μz

⎤⎥⎦ =

⎡⎢⎣ −1/T2 −Δ 0
Δ −1/T2 ω1

0 −ω1 −1/T1

⎤⎥⎦
⎡⎢⎣ μx

μy

μz

⎤⎥⎦+

⎡⎢⎣ 0
0

μ0/T1

⎤⎥⎦ . (9)

In Equation (9), Δ is the detuning from resonance defined by the frequency of the perturbing field
and the static field Δ = ω− γH0. In addition ω1 = γH1. Equation (9) may be solved for constant fields,
which we have achieved by exploiting the RWA and transforming to the rotating frame, by Laplace
transform techniques[2]. The solution of this coupled set of equations when relaxation effects can be
ignored is known as the Rabi Solution [3].

2.2. Quantum Mechanics of Two Level Systems

In this work, we will exploit the close relationship between the SLE, Equation (1) and the Bloch
Equations, Equation (7). For the present purpose, note that for a two-level system the quantum
mechanical spin operators, as well as the density matrix ρ may be represented as 2× 2 matrices.
The density matrix is a Hermitian operator and satisfies the constraint that Tr{ρ} = 1, so that not
all elements of ρ are independent. For a 2× 2 density matrix, there are in fact three independent
parameters, which may be identified with the expectation values of the components of the magnetic
dipole moments in the magnetic resonance problem. For more details on the density matrix formalism,
Slichter [4] is a good reference. As the components of the magnetization vector are sufficient to specify
completely the density matrix for a two-level, or spin 1/2, system, one may think of the transformation
that diagonalizes the density matrix as a series of rotations. A useful procedure in practice is to
perform a rotation about the ẑ direction that rotates the expectation values of Sx and Sy into the x− z
plane, and then perform a rotation about the ŷ axis to transform the expectation value of S to the
ẑ axis. This diagonalization process is equivalent to finding the eigenvalues of the density matrix.
Once the eigenvalues of the density matrix are known, one may compute matrix-valued functions in a
straight-forward fashion, using, e.g., Sylvester’s Theorem. A good discussion of this point is given by
Merzbacher [5]. In particular, one quantity of interest is the von Neumann entropy

S = −Tr{ρ ln(ρ)} (10)

Equation (10) is the extension of the Shannon entropy to a more general quantum mechanical
setting. It is a useful tool for examining the response of spin systems to various manipulations by
pulsed fields. For the present purpose, it is useful to note that the trace in Equation (10) is invariant
under the matrix diagonalization process, and so the eigenvalues of the density matrix are particuarly
useful here. For a two-level system, in fact,

S = − (1 + λ)

2
ln

(1 + λ)

2
− (1− λ)

2
ln

(1− λ)

2
(11)

Here λ is twice the expectation value of S for a spin 1/2 system. Note that the von Neumann
entropy is symmetric under the transformation λ → −λ. This symmetry gives rise to an apparent
paradox in so-called inversion recovery experiments, but space constraints preclude further discussion.

2.3. Pulses and Magnetic Resonance

Many contemporary ESR experiments are performed using pulse techniques for which the density
operator formalism developed above is highly useful. In general, one applies a strong time-varying
pulse in the lab frame to perturb the magnetization from equilibrium and then monitors the subsequent
time development of the magnetization to study details of structure and dynamics in the relevant spin
system. Notice that the formalism that we developed above is most readily used when the applied
fields are static, but recall that we have already made such a transformation by using the RWA and
changing coordinate systems to the rotating frame. In addition, the foramlism developed above is
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also applicable to applied fields that are piece-wise continuous, that is, the fields in the rotating frame
may be treated as constant including step discontinuities. This is an example of the flexibility of the
formalism in practical applications. Consider a situation where there is a slight detuning from exact
resonance, Δ �= 0 in Equation (9). Suppose further, that at time t = 0 the magnetic dipole is aligned
with the applied static field and has equilibrium magnetization μ = (0, 0, μ0). Now suppose that the
co-rotating component of the perturbing field acts for a time tπ/2 so that ω1tπ/2 = π/2. As we shall
see, this corresponds to rotating the equilibrium magnetization by π/2 degrees in the y− z plane.
At time tπ/2, the perturbing field is turned off, and the spins are allowed to precess freely. In order to
quantify this behavior, it is useful to have an explicit expression for the Rabi solution for piecewise
continuous fields.

The Rabi solution is an analytic solution that accounts for detunings from resonance and strong
pulses in the rotating frame but does not account for relaxation effects during the pulse. For sufficiently
strong pulses this would not be a serious limitation, but ESR applications typically require a more
complete treatment. With these limitations in mind, the Rabi solution for a finite detuning and strong
constant field along the rotating frame x axis may be written in the following form

⎡⎢⎣ μx(t)
μy(t)
μz(t)

⎤⎥⎦ =

⎡⎢⎣ cos2 χ + sin2 χ cos Ωt − sin χ sin Ωt − cos χ sin χ(1− cos Ωt)
sin χ sin Ωt cos Ωt cos χ sin Ωt

− cos χ sin χ(1− cos Ωt) − cos χ sin Ωt sin2 χ + cos2 χ cos Ωt

⎤⎥⎦
⎡⎢⎣ μx(0)

μy(0)
μz(0)

⎤⎥⎦ (12)

In Equation (12) the following quantities are defined: tan χ = Δ/ω1, Ω2 = Δ2 + ω2
1. For strong

pulses and detunings that are not too large, one may make the useful approximations: Ω ≈ ω1,
cos χ ≈ 1, sin χ ≈ Δ/ω1 � 1. These approximations allow us to develop a useful approximate matrix
equation valid to order Δ/ω1 � 1. Under the condition that ω1tπ/2 = π/2, Equation (12) becomes⎡⎢⎣ μx(tπ/2)

μy(tπ/2)

μz(tπ/2)

⎤⎥⎦ =

⎡⎢⎣ 1 −Δ/ω1 −Δ/ω1

Δ/ω1 0 1
−Δ/ω1 −1 0

⎤⎥⎦
⎡⎢⎣ μx(0)

μy(0)
μz(0)

⎤⎥⎦ (13)

For the case of exact resonance Δ = 0, it is easy to see that if μ(0) = (0, 0, μ0) then μ(tπ/2) =

(0, μ0, 0), corresponding to a rotation of the magnetization by π/2 around the x̂ axis.
In the absence of relaxation terms, or for times short enough that no significant relaxation has

occured, it is also useful to develop the Rabi solution for free precession, that is, for the case ω1 = 0.
A straightforward computation shows that for the case Δ �= 0,⎡⎢⎣ μx(t)

μy(t)
μz(t)

⎤⎥⎦ =

⎡⎢⎣ cos Δt − sin Δt 0
sin Δt cos Δt 0

0 0 1

⎤⎥⎦
⎡⎢⎣ μx(0)

μy(0)
μz(0)

⎤⎥⎦ (14)

Note that in the absence of equilibrium inducing relaxation terms, μz(t) is a constant of the
motion under free precession. Thus, Equation (14) describes free precession in the plane transverse to
ẑ. We may compute the precession of the transverse magnetization for a time τ after a π/2 pulse by
inserting the solution vector, the left hand side of Equation (13), into the right hand side of Equation (14).
A straightforward calculation yields the following result μ(τ) = μ0(− sin(Δ(τ + 1/ω1)), cos(Δ(τ +

1/ω1)), 0). One may also compute the effect of a subsequent π pulse followed by a period of free
precession of duration τ′. The result of the calculation to order Δ/ω1 is as follows⎡⎢⎣ μx(τ′)

μy(τ′)
μz(τ′)

⎤⎥⎦ = μ0

⎡⎢⎣ sin(Δ(τ + 1/ω1 − τ′))
− cos(Δ(τ + 1/ω1 − τ′))

2(Δ/ω1) sin(Δ(τ + 1/ω1))

⎤⎥⎦ (15)
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Note that if τ′ = τ + 1/ω1 then the transverse spin response is independent of the detuning, and
we say that the magnetization has been refocused along the −ŷ axis. The significance of this result
for practical magnetic resonance spectroscopy is hard to overstate. In general, the detuning can arise
from a homogeneous process which affects all spins equally, or an inhomogeneous process which has
different effects on different spin cohorts. For many practical applications in magnetic resonance one
may tune a spectrometer so that the spectral response is centered on a symmetric, inhomogeneous
distribution of detunings caused by magnetic inhomogeneities. The total response of the system
must be integrated over this inhomogeneous distribution which acts as a source of broadening that
reduces the observable magnetization. When the detunings are all refocused in the x − y planse
as in Equation (15), however, the transverse spin response becomes independent of the detuning
and one observes the total transverse magnetization of the resonance-active spins. Note further that
during a period of free precession in the absence of relaxation effects the magnetization is a vector of
constant magnitude and thus the eigenvalues of the density matrix are also constant. Thus during free
precession in the absence of relaxation, the dynamics is conservative, and no change in entropy occurs.

2.4. Practical Considerations in ESR

In ESR, the relevant timescales for relaxation processes can be on the order of nanoseconds, and
the spectral extent in frequency units can be much larger than ω1. When this is so, numerical solution of
Equation (7) or its density matrix equivalent Equation (1) are needed to make quantitative predictions
of the response of the spin system. With a view towards establishing a formalism that may be extended
to more complex systems, we return to the density matrix formalism and develop a formalism based
on irreducible spherical tensor operators and treat the matrix elements of ρ as elements of a column
vector in the space of transitions, the so-called Liouville space. We may make the RWA as before
and achieve an equivalent of the rotating coordinate frame by performing a Floquet analysis of the
time-dependent matrix elements of the density matrix. In practice, it is found that the deviation of the
density matrix from its equilibrium value is the relevant quantity. When these transformations are
carried out, it is found that the matrix representation of Equation (1) takes the following form,

∂

∂t

⎡⎢⎣ C1(t)/
√

2
C0(t)/2

C−1(t)/
√

2

⎤⎥⎦ =

⎡⎢⎣ −iΔ− 1/T2 −i
√

2deiφ 0
−i
√

2de−iφ −1/T1 i
√

2de−iφ

0 i
√

2de−iφ iΔ− 1/T2

⎤⎥⎦
⎡⎢⎣ C1(t)/

√
2

C0(t)/2
C−1(t)/

√
2

⎤⎥⎦+ i
qd√

2

⎡⎢⎣ eiφ

0
−e−φ

⎤⎥⎦ . (16)

Equation (16) has been specialized to the case of an ensemble of spin 1/2 dipoles, but it is in a form
that may be generalized along the lines discussed in Stillman and Schwartz [2]. The new notational
features include d ≡ ω1/2 the transition moment, and q the normalization of the equilibrium density
matrix. In addition, the phase factors φ ∈ {0, π/2, π, 3π/2} allow for more general perturbing
fields corresponding to excitations along the ±x or ±y axes in the rotating frame. As Equation (16)
incorporates detunings and relaxation times of arbitrary magnitude, it is the appropriate generalization
of the approximate results discussed in Section 2.3. In order to make the connection to quantities
observed in the laboratory, we note that C1(t) is the expectation value of the operator Sx + iSy ≡ S+.
Note that if φ ∈ {0, π} the matrix appearing in Equation (16) is complex symmetric. In practical
applications, it is found that these values of φ are the relevant ones [6]. When the matrix representation
of Equation (16) is complex symmetric, efficient methods of solution exist, particularly when the
spin system is more complex than the simple case treated here [7]. For the purposes of this work,
we retain the general form of Equation (16) in order to treat arbitrary pulse phases in the rotating frame.
When the perturbing field characterized by d is piecewise continuous, one may solve Equation (16) in
each domain where d is constant (in the rotating frame) and use continuity arguments to propagate
the solution to the next region of continuous d. As noted by Stillman and Schwartz [2], the matrix
representation of Equation (16) takes the following form
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ċ = Ac + q. (17)

The Laplace transform solution of Equation (17) in each region of constant d may be shown to
be [2]

c(t) = exp(At)c(0)−A−1[1− exp(At)]q (18)

In those regions where d = 0 the spins evolve under free precession and the solution of
Equation (18) reduces to the case covered in Section 2.3 if relaxation effects can be ignored. Note that
the solution of Equation (18) requires a matrix inversion and the computation of a matrix exponential
in general. This is typically a computational resource intensive calculation. For the simple case treated
here, closed form expressions may be computed for A−1 and exp(At). An explicit form for the matrix
inverse may be given as follows

A−1 =
1
Δ

⎡⎢⎣ (iΔ− 1/T2)/T1 − 2d2 −i
√

2deiφ(iΔ− 1/T2) −2d2eiφ

−i
√

2de−iφ(iΔ− 1/T2) −(1/T1)
2 − (Δ)2 i

√
2deiφ(−iΔ− 1/T2)

−2d2e−2iφ i
√

2de−iφ(−iΔ− 1/T2) (−iΔ− 1/T2)/T1 − 2d2

⎤⎥⎦ . (19)

Note that if φ ∈ {0, π} then A−1 is complex symmetric, as is A. The quantity Δ = ((Δ)2 +

(1/T2)
2)/T1 + 4d2/T2. This determinant is also relevant for finding the eigenvalues of A. Once the

eigenvalues of A are available, the methods given in Apostol [8] or Merzbacher [5] may be used to
compute exp(At). For this simple problem, the eigenvalues of A may be found using the methods of
Nickalls [9]. Python scripts based on these considerations were developed in the Earle laboratory and
are available on request.

3. Results

In order to accommodate the significant detunings that can occur for ESR experiments, it is
possible to use CPS pulses first developed in NMR [10] to achieve an optimum response of the spin
system. The first application of CPS pulses to ESR was reported by Crepeau, et al. [6]. They developed a
multiparameter search algorithm over the microwave phase φ and pulse slice duration to determine the
optimum pulse parameters with desired spin system response. Their numerical simulations accounted
for the distorting effects of detuning and a resonant structure with a finite excitation bandwidth but
did not account for relaxation effects. Under these conditions, they were able to determine CPS pulse
parameters that: minimized the amount of z magnetization following a π/2 pulse; optimized the
amount of y magnetization after a π/2 pulse; and optimized the amount of z magnetization after a π

pulse. This work was carried out at X-band, corresponding to a microwave frequency of 9.25 GHz.
Advances in millimeter wave technology have allowed these experiments to be revisited at higher

frequencies. An ESR pulse spectrometer at 95 GHz [11] was recently retrofitted with a phase-agile
front end and improved sensitivity. These upgrades motivated a reexamination of CPS pulses for high
field work. As a starting point, the parameters determined empirically by Crepeau, et al. [6] were
scaled to the larger ω1 available at 95 GHz.

Initial studies of CPS pulses following hardware and software upgrades to the ACERT 95 GHz
high-power/cw spectrometer Figure 1 (right panel) were conducted culminating in the succesful
demonstration of a CPS π/2 pulse at 95 GHz as shown in Figure 1 (left panel). Additional studies
were performed to evaluate the performance of an arbitrary waveform generator (AWG) (WavePond
DAx22000), in conjunction with the rebuilt transceiver (ELVA-1 MKII) analog/vector modulator and
receiver sections. For these studies, a high power Extended Interaction Klystron (EIK) with a nominal
output of 1 kW was deployed in the spectrometer TX arm as required for high power evaluation.
In order to monitor the power returning to the receiver in the RX arm, a corner reflector was used at
reference plane ’W’ as a proxy for the Fabry-P??rot resonator assembly typically used in a 95 GHz ESR
experiment. The tests verify the performance of a CPS sequence of successive phases and timings from
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an early CPS paper [6] that demonstrates the enhancement potential of the spectrometer’s AWG pulse
capability.

Figure 1. Left Panel: Comparison of a CPS π/2 pulse response (red trace) to a standard full excitation
hard pulse (blue trace). The three line spectrum is of a nitroxide spin label in the motional narrowing
regime where the Zeeman interaction is split by a further hyperfine interaction with an I = 1 Nitrogen
nucleus. In this range of motion, the three hyperfine lines are only weakly coupled and evolve
approximately independently. Thus their contributions to the spectrum may be simply summed. Right

Panel: A schematic of the spectrometer used for these experiments. A Fabry-Pérot resonant structure
(not shown) is coupled to reference plane ’W’ to perform ESR experiments.

4. Discussion

Figure 1 shows the results of a scaled emulation of an effective π/2 composite-phase sequence
described by Crepeau, et al. [6]. The sequence reported on here consists of the sequence 9 ns/φ = 0,
5 ns/φ = π, 4 ns/φ = 0, 3 ns/φ = π, for a total composite pulse length of 21 ns. Reproduction of this
composite pulse is of reasonably high fidelity, with the exception of some observed interference due to
multiple reflections that contaminate the final (3 ns) slice. With the ω1 enhancing Fabry-Pérot resonator
assembly coupled to reference plane ’W’ shown in the right panel of Figure 1, it was determined that
the CPS pulse at an output power level approximately 50% of Po,max produced spectral coverage
(red trace) and an effective ω1 value virtually indistinguishable from a 5 ns EIK Po,max hard pulse
(blue trace). This result clearly demonstrates that a CPS pulse can successfully emulate a hard pulse
of significantly shorter duration and higher peak power. Work is currently under way to extend this
preliminary result to CPS π pulses and thus spin echo pulse sequences. Further applications to pulse
spectroscopy at higher frequencies, e.g., 240 GHz are also under way. In order to determine suitable
CPS pulse characteristics at 240 GHz, we are revisiting the parameter optimization problem discussed
in Section 3. This is especially timely as significant advances in computational hardware since the
original studies of Crepeau, et al. [6] have allowed more computationally intensive search algorithms
to be usefully employed. Work is under way to extend the Laplace transform techniques reported on
in this work to the CPS pulse optimization problem. For this purpose, we are developing a nested
sampling approach to determine the CPS parameters that optimize the relevant cost functions for
π/2 and π pulses. Extensions of the methods covered here to longer pulse sequences involving three
optimally phased pulses for exploring multidimensional pulse ESR spectroscopy are also under way.
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