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Abstract: With the growing prominence of UAV-based low-altitude remote sensing in agriculture, the
acquisition and processing of high-quality UAV remote sensing images is paramount. The purpose of
this study is to investigate the impact of various parameter settings on image quality and optimize
these parameters for UAV operations to enhance efficiency and image quality. The study examined
the effects of three parameter settings (exposure time, flight altitudes and forward overlap (OF)) on
image quality and assessed images obtained under various conditions using signal-to-noise ratio
(SNR) and BRISQUE algorithms. The results indicate that the setting of exposure time during UAV
image acquisition directly affects image quality, with shorter exposure times resulting in lower SNR.
The optimal exposure times for the RGB and MS cameras have been determined as 0.8 ms to 1.1 ms
and 4 ms to 16 ms, respectively. Additionally, the best image quality is observed at flight altitudes
between 15 and 35 m. The setting of UAV OF complements exposure time and flight altitude; to
ensure the completeness of image acquisition, it is suggested that the flight OF is set to approximately
75% at a flight altitude of 25 m. Finally, the proposed image redundancy removal method has been
demonstrated as a feasible approach for reducing image mosaicking time (by 84%) and enhancing
the quality of stitched images (by 14%). This research has the potential to reduce flight costs, improve
image quality, and significantly enhance agricultural production efficiency.

Keywords: remote sensing; UAV; multispectral image; flight optimization; rice

1. Introduction

With its ability to provide a high and wide monitoring range in real time that causes
minimal crop damage [1], unmanned aerial vehicle (UAV) remote sensing technology has
been extensively used in crop phenotype monitoring [2–6]. Currently, the combined crop
information acquisition method using multiple imaging sensors is gradually gaining more
attention from researchers [7]. However, as the variety of imaging sensors carried by UAVs
continues to increase, with each sensor having a different resolution and field of view,
setting flight parameters is becoming a challenge.

The operational workflow of UAVs is delineated in Figure 1. Initially, flight mission
planning is conducted based on the dimensions of the experimental area, entailing the
determination of crucial parameters such as flight altitude (H), flight speed (V), camera
exposure time (ET), and image overlap [8]. Subsequently, multiple images are captured, and
through the utilization of image stitching techniques, a comprehensive orthomosaic image
(ortho-image) of the experimental area is generated [9]. Finally, a complete operational
prescription map is generated for subsequent analysis and processing [10]. However, in this
process, the configuration of flight parameters predominantly relies on empirical rules. The
setting of flight altitude is generally manually determined to ensure flight safety, obstacle-
free operation, and minimal disturbance to crops from UAV-generated wind. Camera
exposure time is usually randomly set to avoid the overexposure or underexposure of
images. Similarly, the setting of image overlap can be used for successful image stitching.

Drones 2024, 8, 143. https://doi.org/10.3390/drones8040143 https://www.mdpi.com/journal/drones1



Drones 2024, 8, 143

Notably, a higher overlap setting necessitates a shorter shot interval for the camera under
fixed flight speed and altitude conditions, resulting in an increased number of images
captured in a specific target area to complete the image stitching. However, this implies
a lengthier image mosaicking process, requiring a processor with higher computational
performance or a longer processing time, substantially elevating time and labor costs.
Meanwhile, the quality of the ortho-image obtained by image stitching technology directly
determines the amount of crop information, which is also affected by the environment
(illumination change) and the parameter setting of spectral imaging equipment (aperture,
focal length, exposure time, etc.). Parameter selection through empirical methods frequently
falls short in optimizing sensor utilization efficiency, leading to escalated experimental
costs, resource consumption, and an inability to guarantee the quality and integrity of the
acquired images.

Figure 1. Flow chart from image acquisition to data analysis based on UAV.

Several researchers have acknowledged the significance of establishing UAV flight
parameters and have explored the impact of these parameters on operational efficacy. Tor-
res et al. [11] employed a UAV remote sensing platform to capture RGB color images and
multispectral images at various flight altitudes, investigating the differentiation effects of
vegetation indices on bare soil, crops, and weeds. Their findings revealed that NDVI could
reliably distinguish between vegetation and bare soil; however, its ability to differentiate
between weeds and crops was influenced by flight altitude, resulting in a higher misjudg-
ment rate. In a similar vein, Faiçal et al. [12] integrated ground sensors with UAV spraying,
dynamically adjusting flight parameters based on measured environmental parameters
to achieve more uniform pesticide spraying. Song et al. [13] optimized the distribution
of fertilizer particle deposition under different flight altitudes and speeds of multi-rotor
UAVs during fertilization, ensuring a reasonable and effective deposition amount during
actual fertilization processes. Furthermore, Gu et al. [14] explored the influence of different
flight parameters on point cloud data quality, revealing a positive correlation between
the root mean square error of the airborne lidar flight trajectory and flight altitude and
speed. Lastly, Hu et al. [15] investigated the impact of different flight speeds and altitudes
of plant protection UAVs on the distribution of fog droplets for pollinating oil tea and its
fruit setting rate. He et al. [16] explored the variation of visible and multispectral-based
vegetation indices in UAV imagery at different flight altitudes and the impact on estimating
vegetation cover. These studies collectively emphasize the intricate relationship between
flight parameters and the operational outcomes of UAV-based applications. However,
the bulk of research on flight parameters has predominantly concentrated on facets such
as pesticide spraying and fertilization in agricultural UAVs. Conversely, there has been
comparatively limited explorations of the influence of parameter settings during the crop
image capture process using UAVs, despite the pivotal role that these settings play in the
precise acquisition and monitoring of crop information. Consequently, it is imperative to
systematically investigate UAV flight parameters to ensure the acquisition of high-quality
crop images, a critical prerequisite for gathering agricultural information in the context of
smart farming.
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The main contributions of this study include the following: (1) discussing the influence
of different exposure times of cameras on the quality of crop images; (2) investigating the
impact of different flight altitudes of UAVs on the quality of crop images; (3) exploring
the effect of UAV flights with different overlap rates on the quality of ortho-images; and
(4) proposing a method to improve the efficiency of image mosaicking and the quality of
ortho-images to reduce flight costs.

2. Materials and Methods

2.1. Image Acquisition

This study employs a combined approach of outdoor and indoor experiments to
investigate the impact of varying flight parameters on image quality. The outdoor ex-
periments were conducted in 2019 in Anhua Town, Zhuji City, Zhejiang Province, China
(29◦31′5.35′′ N, 120◦6′6.12′′ E). The experimental area consisted of 100 plots, each measuring
9 × 5 m2, with a 1 m protection lane surrounding the plots. To acquire images of the rice
crops, an octo-rotor UAV equipped with red–green–blue (RGB) and multispectral (MS)
cameras was used. The UAV had a diameter of 1.1 m, a height of 0.35 m, and a maximum
payload of 8 kg. The RGB camera used was the Sony A6000 micro single camera (Sony,
Dugang District, Tokyo, Japan) equipped with a 16 mm fixed focus lens, and a resolution
of 6000 pixels × 4000 pixels. The field of view of the lens is 83 degrees. The MS camera
used was the MQ022MG-CM by XIMEA (Munster, Germany), equipped with a 16 mm
fixed focus lens and a resolution of 409 pixels × 216 pixels. The field of view of the lens is
43.6 degrees. Throughout all experiments, manual exposure was employed, maintaining a
consistent flight speed of 2.5 m/s, while setting the aperture of both cameras to 2.8. Further
parameters regarding the RGB and MS cameras are detailed in Table 1.

Table 1. Parameters of RGB and MS cameras.

Camera Name Parameter

RGB

Weight 358 g

Sensor size 23.4 mm × 15.6 mm

Resolution 6000 pixels × 4000 pixels

Focus lens 16 mm/fixed

Field of view 83

MS

Weight 123 g

Sensor size 11.27 mm × 6 mm

Resolution 409 pixels × 216 pixels

Focus lens 16 mm/fixed

Field of view 43.6

Bands 600–1000 nm
Note: The field of view is calculated diagonally.

Images were acquired under cloudless and windless weather conditions. The flight
altitude varied between 15 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m, 100 m and 150 m,
corresponding to ground sampling distances (GSDs) of 0.37 cm, 0.61 cm, 0.73 cm, 0.85 cm,
0.98 cm, 1.01 cm, 1.22 cm, 1.34 cm, 2.44 cm, and 3.65 cm for RGB cameras, respectively.
Additionally, the GSDs of MS cameras were 2.58 cm, 4.29 cm, 5.16 cm, 6.02 cm, 6.88 cm,
7.74 cm, 8.59 cm, 9.46 cm, 17.18 cm, and 25.76 cm, respectively. Five images were taken
at each flight altitude in the hovering state of the UAV. The same region of interest (ROI)
was selected using MATLAB (2018a, 9.4.0.813654, MathWorks, Natick, Boulder, CO, USA)
software and evaluated to represent the level of image quality at that altitude.

For a fixed altitude of 25 m, different combinations of exposure time and image overlap
settings were explored. The flight speed of UAV is fixed at 2.5 m/s. The apertures of both

3
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cameras were set at 2.8. The exposure time of the RGB camera was set at two gradients:
1.25 ms and 1 ms. For the MS camera, exposure times were set at five gradients: 5, 6, 7, 16,
and 20 ms. Due to the disparate field of view of the two cameras, the flight overlap was set
based on the camera with the smaller field of view (MS). The designed gradients for the
forward overlap were 65%, 75%, and 80%, while for the side overlap, three gradients of 55%,
60%, and 65% were employed. The specific experimental design of the flight parameter
combinations is outlined in Table 2.

Table 2. Summary of flight campaigns and parameter settings at a flight altitude of 25 m.

Camera Experiments
Exposure
Time (ms)

Forward
Overlap (%)

Side
Overlap (%)

Number
of Images

RGB

Exp. 1 1 65 55 221

Exp. 2 1 80 65 577

Exp. 3 1 75 60 387

Exp. 4 1.25 75 60 388

MS

Exp. 5 5 75 60 387

Exp. 6 6 65 55 211

Exp. 7 7 80 65 577

Exp. 8 16 75 60 387

Exp. 9 20 75 60 388

The MS images from the same flight mission were radiometrically calibrated and then
stitched together to produce orthomosaic images using Agisoft Photoscan (Version 1.2.5,
Agisoft LLC, St. Petersburg, Russia) software. This process involved the input of images
and geographic coordinates, image alignment, mesh generation, texture generation, DEM
creation and orthomosaic image generation. Geographic coordinates were acquired using
GPS through a trigger signal on the UAV synchronized with the image. The mesh was
computed based on the sparse point cloud due to the flat terrain. As the field of view
of the RGB lens is greater than that of the MS, the acquired wide-angle images (RGB)
were initially proportionally cropped to match the field of view of the MS images using
MATLAB. Subsequently, these processed images were input into Agisoft Photoscan to
obtain ortho-images following the same procedure. The MS and RGB ortho-images of the
rice crops in the experimental field at a flight altitude of 25 m are shown in Figure 2.

Figure 2. Ortho-images of multispectral camera (a) and RGB camera (b) at a flight altitude of 25 m.

4



Drones 2024, 8, 143

To mitigate additional influences on image quality due to environmental factors
such as surrounding wind speed and lighting changes during UAV flights, exposure time
experiments were also conducted indoors. Using the same sensors as the UAV, the focal
length and altitude were fixed to capture standardized reflectance gradient boards (with
reflectance values of 12%, 25%, 50%, and 99%). For the RGB camera, exposure times were
set at 24 gradients in a darkroom environment, ranging from 0.25 to 100 ms, corresponding
to shutter speeds of 1/4000 to 1/10 s. The MS camera was set at 18 exposure time gradients
ranging from 0.25 to 110 ms. It is worth noting that the aperture of both cameras remained
constant during all experiments, both at 2.8.

2.2. Overlap Calculation

During the UAV flight, the overlap between two adjacent images on the same flight
strip is referred to as forward overlap (OF), while the overlap between two pictures on
adjacent strips is known as side overlap (OS). There are generally two methods for calculat-
ing the degree of overlap. One is to represent the degree of OF and OS according to the
length ratio of overlapping areas in different directions (Equations (1) and (2)). One is to
represent the degree of image overlap according to the percentage of overlapping regions
in the captured image area (Equations (3) and (4)). In this paper, Equation (3) is used as the
standard of image overlap degree. Typically, an OF from 60% to 80% is required, with a
minimum of 53%, while the OS should be at least 8%, with an optimal range from 15% to
60%. However, there is no consensus on how to select the overlap degree to obtain higher
quality images. Figure 3 shows the schematic diagram of the overlap calculations method.

Figure 3. Diagram of the degree of image forward overlap (a) and side overlap (b).

Based on the definition of overlap, OF and OS can be described as Equations (1) and (2).
The formula for calculating the degree of image overlap based on the overlap area is shown
in Equation (3).

OF =
Fox

Ix
× 100% (1)

OS =
Soy

Iy
× 100% (2)

OF =
Fox × Foy

Ix × Iy
× 100% (3)

OS =
Sox × Soy

Ix × Iy
× 100% (4)

where Fox and Foy represent the size of the overlap area in the flight direction. Sox and Soy
represent the overlap of two pictures on two flight strips, and Ix and Iy indicates the size of
the UAV image.

5
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2.3. Image Evaluation
2.3.1. Conventional Image Quality Evaluation

Signal-to-noise ratio (SNR) is a commonly used metric to evaluate the noise level in an
image. It measures the ratio of the signal strength to the noise level in the image. Higher
SNR values indicate less noise and better image quality. This indicator is used to assess
image quality when the exposure time is different and other conditions remain unchanged.

SNR = 10Lg
Ps

Pn
, (5)

where Ps is the power of the signal, Pn is the power of the noise, and Lg denotes the
logarithm of the base 10.

2.3.2. BRISQUE Algorithm

As remote sensing images lack original images for reference, a no-reference image
quality assessment algorithm (NR-IQA) is selected to evaluate the quality of the obtained
remote sensing images. Among the existing NR-IQA models for natural images, the
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [10] is considered to
be one of the most advanced and optimal models. BRISQUE not only considers image
luminance [17], contrast [18], distortion [19], the complex statistic of an image [20], texture
statistic [21], and Natural Scene Statistics (NSS) [22], but also maintains a relatively low
computational complexity.

The algorithm can be summarized as follows. For a given (possibly distorted) image,
locally normalized luminances are first computed via local mean subtraction and divi-
sive normalization. Such an operation may be applied to a given intensity image I(i, j)
to produce:

I(i, j) =
I(i, j)− μ(i, j)

σ(i, j) + C
, (6)

where, i ∈ 1, 2, . . ., M, j ∈ 1, 2, . . ., N are spatial indices; M and N are the image height and
width, respectively; C = 1 is a constant that prevents instabilities from occurring when the
denominator tends to zero and

σ(i, j) =
√

∑ ∑ wk.l

(
Ik.l(i, j)− μ(i, j)2

)
, (7)

μ(i, j) = ∑ ∑ wk.l Ik.l , (8)

where w = { wk.l| k = −K, . . ., K, l = −L, . . ., L} is a 2D circularly symmetric Gaussian
weighting function sampled out to three standard deviations and rescaled to unit volume.
In our implementation, K = L = 3. Meanwhile, the pre-processing model (6) is developed
and refers to the transformed luminances I(i, j) as mean subtracted contrast normalized
(MSCN) coefficients. Then, an asymmetric generalized Gaussian distribution (AGGD) can
be used to effectively capture a broader spectrum of distorted image statistics. Addition-
ally, Pearson linear correlation coefficients (PLCC) of MSCN adjacent coefficients in four
directions of horizontal, vertical, main diagonal, and sub-diagonal are added to describe
the characteristics of the overall structural distortion of the image. Finally, a support vector
machine regression (SVM) [23] is used to learn from the feature space to quality scores, so
it is worth noting that the better the image quality, the lower the score.

However, the algorithm only evaluates the quality of RGB images and is not applicable
to MS images obtained using remote sensing. Notably, the research team adapted the
BRISQUE algorithm to MS images by changing the image input to single band input and
analyzing all bands to use the GGD fit of the MSCN coefficients. The average value of all
bands is used as the quality evaluation score of the MS images. The algorithm flow chart is
shown in Figure 4.
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Figure 4. Algorithm flow chart of the improved BRISQUE algorithm.

2.4. Methods for Removing Redundancy

The large amount of image data causes an increase in the time cost of the image
stitching process. To solve this problem, a redundancy removal approach is proposed to
streamline the UAV image data. The specific operation process of this method is shown
in Figure 5. Step 1: input the UAV images with their respective BRISQUE scores. Step 2:
Determine the redundancy interval, denoted as i, with a value range of integers greater
than or equal to 0. The criterion for selection is the removal of redundancy to enable
image mosaicking, as excessively low overlap between images can lead to mosaic failure.
Step 3: Retain the image with the lowest quality score within the range of (i + 1) and
remove the others. Then, proceed to the next redundancy interval. Step 4: repeat the above
steps until all input images have been filtered. Step 5: Output all retained high-quality
images. It is important to note that we need to perform image mosaicking on the retained
images to obtain the final ortho-image. If the mosaicking process encounters difficulties,
the redundancy interval should be reduced.
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Figure 5. Image selection method for removing redundancy.

3. Results and Discussion

3.1. Calculation of Actual Overlap

Due to the complexity of the external environment, this study used the area method to
calculate the actual overlap between two adjacent images, which is shown in Equation (3)
in order to ensure the accuracy. According to the calculation method of overlap in the
previous chapter, the data of all flights are analyzed. Taking the second experiment as
an example, the results are illustrated in Figure 6. It can be observed that the overlap
of the actual adjacent images acquired during the flight along the same strip fluctuates
around a set value, rather than remaining at a fixed value. This fluctuation occurs due
to the triggering signal method for UAV-controlled image capture being distance-based.
Additionally, the autonomously developed UAV utilizes GPS for positioning, which may
lead to positioning and drift errors during flight, resulting in this fluctuation phenomenon.

Figure 6. Forward overlap (OF) of all experiments.

8
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We also observed in Figure 6 that in Experiments 2 and 7, although the flight overlap
was set at 80%, some actual values were below 60%. This is due to the fact that, given the
determined UAV flight altitude and speed, increasing the image overlap requires shortening
the capture interval. However, the exposure time during camera capture and the image
storage time impose constraints on the capture interval. When the capture interval cannot
meet the image storage requirements, some images may be missed. Therefore, in the
scenario of a UAV flying at a speed of 2.5 m per second and at a flight altitude of 25 m, it
is recommended to set the OF to not exceed 75% to ensure data integrity. When a higher
flight speed is attainable, adjusting the flight altitude to maintain the capture interval in
accordance with image acquisition requirements is feasible. Alternatively, a lower altitude
can be employed in conjunction with reduced flight speed. Substituting the imaging sensor
with a faster storage speed can also fulfill the demand for increased image overlap.

3.2. UAV Image Quality Evaluation
3.2.1. Influence of Exposure Time on Image Quality Evaluation

The linearity of the ratio of DN to exposure time for the four reflectivity targets is
demonstrated in Figure 7. Notably, as the exposure time increases, the linearity of the
targets becomes more stable. This observation holds true even when keeping the light
intensity, camera height, and focal length constant.

Figure 7. Ratio of digital number (DN) to exposure time for four reflectivity targets with an RGB
camera (a) and MS camera (b).

Figure 8 depicts the SNR values obtained for different exposure times and three dif-
ferent types of reflection. It can be observed that the image SNR values increase as the
exposure time increases. However, the SNR values reach a plateau after a certain level due
to the saturation of image DNs. The maximum SNR levels for different channels are depen-
dent on the dark noise level of each channel. In practical scenarios, it is recommended to
select integration time settings that optimize image SNRs while avoiding image saturation.
For instance, in low irradiance conditions and low reflectivity land covers, the optimal
integration time coincides with the maximum integration time. On the other hand, for
high-reflectivity targets, exposure times with better linearity and lower sensitivity should
be chosen.

In the presence of constant light intensity, the relationship between the image quality
score and exposure time for both the RGB and MS cameras is illustrated in Figure 9.
Evidently, the image quality scores obtained by both cameras exhibit a trend of initially
decreasing and then increasing with longer exposure times. Notably, the RGB camera is
capable of achieving a higher image quality (QS < 10) between 0.8 ms and 5 ms, whereas
the MS images demonstrate this between 4 ms and 50 ms.

9
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Figure 8. Signal-to-noise ratio (SNR) for different exposure time settings and targets with an MS
camera: (a) 12% reflectivity, (b) 50% reflectivity, and (c) 99% reflectivity under constant illumination.
The x-axis represents the different channels, and the y-axis is the image SNR.

Figure 9. Relationship between quality score (QS) and exposure time with an RGB camera (a) and
MS camera (b).

In the outdoor environment, the BRISQUE algorithm is used to evaluate the image
quality of five different exposure time setting experiments of MS camera. The probability
analysis of five flights is shown in Figure 10. We can find that the probability distribution
of image quality is different under different exposure time settings. Overall, during a single
UAV flight experiment, fluctuations in external environmental conditions lead to variations
in the quality of image acquisition.

Figure 10. Probability analysis of quality evaluation distribution of five flights with an MS camera.

10
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3.2.2. Image Quality Evaluation of Single Experiment

In this paper, the improved BRISQUE algorithm is used to evaluate the image quality
of MS images and RGB images obtained using a UAV. The quality score is shown in
Figure 11. The lower the score that we calculated, the better the required image quality
since support vector machine regression is used in this algorithm. It can be seen from the
figure that the quality score of remote sensing images in the same experience is in the form
of a normal distribution. The position of the expected value depends on the matching
degree between the exposure time set by the experimenter at takeoff and the light intensity
at that time. In the process of UAV operation, due to the change in illumination intensity,
the image quality obtained in one experiment is not invariable. Therefore, we can try to
explore whether removing lower-quality remote sensing images can obtain higher-quality
mosaic images. The setting of high overlap makes it possible to reduce image redundancy.

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

Figure 11. Quality evaluation distribution of nine flight experiments (a–i) based on the BRISQUE
algorithm.

3.2.3. Image Quality Evaluation of Different Flight Altitude

The UAV flies at different altitudes to obtain five crop RGB and MS remote sensing
images. The obtained image quality is evaluated using the BRISQUE algorithm. The box
chart (Figure 12) shows the image quality scores at different altitudes (15 m, 25 m, 30 m,
35 m, 40 m, 45 m, 50 m, 100 m, 150 m). Comparing the average scores of different altitudes,
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we can find that the image quality scores of RGB images obtained between 15 m and 150 m
show a fluctuating increase, but there is a large difference at the same altitude. This is
because the factors affecting the image quality score at lower flight altitudes depend more
on the suitability between the variation in light intensity and the exposure time setting.

 
Figure 12. Quality evaluation of different flight altitudes based on BRISQUE algorithm with RGB
camera (a) and MS camera (b).

The MS image quality score exhibits a trend of decreasing and then increasing, with
an average optimal score achieved at a flight altitude of 30 m. In general, higher flight
altitudes lead to lower image quality. The higher image quality at 30 m may be attributed to
the camera acquiring more crop information under relatively stable external environmental
conditions, thereby improving the quality score to a certain extent. However, due to the
low resolution of the MS camera, exceeding a certain flight altitude results in a low ground
resolution that erases surface texture information, ultimately affecting the comprehensive
score. Therefore, when using the two cameras described in this paper to obtain remote
sensing images of crops, it is recommended to maintain a flight altitude between 15
and 35 m.

3.3. Image Mosaic and Redundancy Reduction

Initially, all images based on the same flight were input into the software to obtain an
orthomosaic image, and the time from the image input to final ortho-image was recorded. A
fixed redundancy interval was selected based on the OF, and the images were stitched again.
This process was repeated until stitching failed. The number of images and splicing time of
the last successful splicing were recorded as the final result of redundant processing. The
image quality of the acquired ortho-images was evaluated using the BRISQUE algorithm.

Figure 13 illustrates the variation in image overlap after three rounds of redundancy
removal in the second experiment, decreasing from the original 80% to fluctuate at around
45%. As the decrease in overlap makes image mosaicking challenging, the images after
three rounds of redundancy removal cannot be stitched to obtain ortho-images. Therefore,
the final retained high-quality images are those processed for redundancy twice. According
to the results, it is recommended that during the flight, the forward overlap factor should
reach at least 60% to ensure a proper image alignment. However, considering the inherent
errors associated with the use of consumer-grade small-format digital cameras (such as the
SONY camera we utilized) in small UAV photogrammetry, as well as the importance of
larger overlaps in mitigating variations due to slight topographic height differences and
enhancing the overall robustness of the image block adjustments, the setting of overlap
parameters can be increased as much as possible while ensuring complete image coverage.

Figure 14 illustrates changes in the number of images and mosaic image quality scores
before and after redundancy removal in all experiments. Additionally, Table 3 displays
the completion time of obtaining the mosaic image. The image mosaic efficiency and the
mosaic image quality of experiments were improved to varying degrees after reducing
redundancy, except in the case of Experiment 6. Fortunately, the maximum improvement in
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image stitching efficiency was 84% (Experiment 7), while the image quality score improved
by 7%. Meanwhile, Experiment 2, with the largest improvement in image quality scores
(13%), had a 30% reduction in completion time. The reason for the absence of redundancy
reduction in Experiment 6 was that the resolution of the MS camera is lower than that of
RGB, and there are fewer feature points in the process of image stitching, which makes
the stitching more difficult. In addition, the overlap is too low after redundancy reduction,
which leads to stitching failure. Therefore, it is not necessary to reduce the redundancy of
low-overlap MS images. The higher the overlap degree is set, the more images of the target
area are obtained, and the larger the amount of redundancy data. Therefore, for a large
number of images obtained using a high overlap, image redundancy reduction can not
only improve the efficiency of image mosaicking, but also improve the quality of image
stitching to a certain extent. Simultaneously, it is possible to appropriately increase the
fixed redundancy interval based on the overlap to enhance image processing efficiency.

Figure 13. Forward overlap (OF) of the second experiment after two redundancy removals.

(a) (b) 

Figure 14. The changes in the number of images (a) and quality evaluation of the mosaic image (b)
before and after the removal redundancy in each flight experiment.

Table 3. Quality evaluation of mosaic image before and after redundancy reduction.

Camera Experiments
Completion Time (h)

Before After Improved

RGB

Exp. 1 1.02 0.75 26%

Exp. 2 2.16 1.5 30%

Exp. 3 2.4 1.75 27%

Exp. 4 19.4 10 48%
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Table 3. Cont.

Camera Experiments
Completion Time (h)

Before After Improved

MS

Exp. 5 0.08 0.07 13%

Exp. 6 0.05 0.05 0

Exp. 7 0.5 0.08 84%

Exp. 8 0.09 0.08 11%

Exp. 9 0.09 0.08 11%

4. Discussion of Flight Strategy

When considering the utilization of UAVs for image acquisition, a comprehensive
assessment of various factors such as flight altitude, exposure time, flight speed, and flight
overlap is essential to obtain comprehensive crop information. It is important to note
that the configuration of these parameters directly impacts the quality and efficiency of
image acquisition, and their interrelationships play a crucial role in devising effective flight
strategies. In the realm of camera optics, to obtain clear images without causing motion
blur during the process of capturing dynamic images, the exposure time and flight speed
must satisfy the condition outlined in Equation (9). The calculation of GSD is directly
related to the flight altitude (Equation (10)). As a result, the interplay between flight
altitude, flight speed, and exposure time is elucidated through the relationships depicted
in Equation (9) and Equation (10). It is noteworthy that the configuration of flight speed
primarily influences the capture of clear images. When GSD remains constant, setting
the exposure time requires careful consideration of factors such as camera performance,
solar radiation intensity, and white balance, thereby adding complexity to the decision-
making process. These factors directly impact the imaging quality of the acquired images,
underscoring the importance of prioritizing exposure time requirements when formulating
flight strategies. In contrast, considerations for flight speed are relatively straightforward
once exposure time requirements are met. Consequently, this study focuses on exploring
methods for setting exposure time, while maintaining a consistent flight speed.

ET ×V ≤ GSD, (9)

GSD =
S× H

f
, (10)

where ET is exposure time, V is flight speed, GSD is ground sample distance, S is camera
single pixel size, H is flight altitude above ground, and f is focal length.

By utilizing this formula, the longest exposure times required during UAV-mounted
camera flights can be determined. Consequently, in this study, under the conditions of a
flight speed of 2.5 m/s and a flight altitude of 25 m, the respective maximum exposure
times for the RGB and MS cameras are within 1.1 ms and 16 ms. Figures 7–10 demonstrate
that exposure time directly influences image quality, with shorter exposure times resulting
in lower signal-to-noise ratios. The results indicate that maintaining the exposure time for
the RGB camera between 0.8 ms and 5 ms, as well as selecting an exposure time between
4 ms and 50 ms for the MS camera, contributes to achieving higher signal-to-noise ratios
and better image quality. Therefore, considering the aforementioned requirements, the
exposure time for the RGB camera should be set between 0.8 ms and 1.1 ms, and for the MS
camera, it should be set between 4 and 16 ms. Furthermore, adjustments to aperture and
ISO can maintain a consistent white balance in the images, even amidst changes in external
environmental conditions.
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The setting of the UAV’s flight forward overlap is closely related to the field of view of
the mounted camera, as expressed by Equation (5).

OF =
2× H × tan

(
θ
2

)
V

, (11)

where OF is forward overlap, H is flight altitude, V is flight speed, θ is field of view of lens
along the short frame side.

This indicates that the forward overlap is inversely proportional to the flight speed and
directly proportional to the flight height and the camera’s field of view, as demonstrated
by Equation (11). A higher OF can be achieved by reducing the flight speed, increasing
the flight altitude, or employing a camera with a larger field of view while maintaining a
consistent shooting interval. Figure 12 confirms that the appropriate GSD leads to a high
image quality, with an optimal image quality obtained within the flight altitude range of
15–35 m. Therefore, priority should be given to reducing the flight speed or adjusting the
camera’s field of view to enhance the overlap. Additionally, under constant flight altitude,
speed, and camera specifications, increasing the overlap can also be achieved by reducing
the photo capture interval. However, this method requires consideration of the camera’s
exposure time, as outlined in the aforementioned Equation (9).

In the post-data collection processing and analysis workflow, greater emphasis is
placed on the quality and efficiency of image stitching. Figure 11 demonstrates the uneven
quality of images captured during the same flight mission. Figure 14 illustrates that by
selecting high-quality images and reducing redundancy, not only can the efficiency of image
stitching be improved, but the stitching quality can also be enhanced. Therefore, during
UAV image acquisition, setting a higher overlap can contribute to obtaining higher-quality
stitched images, while ensuring exposure time.

Based on the above analysis, when using both RGB and MS cameras for crop image
acquisition in this study, it is recommended to maintain a flight altitude of between 15
and 35 m. Furthermore, it is recommended to set the exposure time for the RGB camera
between 0.8 ms and 1.1 ms, and for the MS camera within the range of 4–16 ms, when both
camera apertures are set to 2.8. This approach is more likely to yield higher-quality images.
Regarding the flight OF, a value of approximately 75% is suggested, as it adequately meets
the requirements for both flight altitude and exposure time. Certainly, it is possible to
increase the overlap while ensuring the complete acquisition of images.

In addition, UAV flight parameters should be varied accordingly for different ter-
rains [24]. This is because factors such as different terrain types, elevation, vegetation
density and reflective surfaces have a significant impact on the planning and execution of
UAV survey or mapping missions. For instance, areas with tall vegetation may introduce
shadows and varying light levels, mandating careful adjustments to exposure settings to
ensure optimal image quality. Similarly, snow-covered areas, water bodies, and urban envi-
ronments may require exposure adjustments to prevent over- or underexposure. Moreover,
higher elevations may demand adjustments to the flight altitude to maintain the desired
GSD and uphold image quality, while complex terrains, such as mountainous regions or
areas with significant elevation changes, may require a higher overlap between images to
capture comprehensive data effectively. Additionally, dense vegetation can obstruct the
view of the ground, potentially requiring a higher overlap to capture sufficient data for
accurate image stitching and subsequent analysis. Considering these aspects enhances the
robustness of the image acquisition strategy, ensuring that the set parameters align with the
specific characteristics of the UAV-mapped area and thereby contribute to the acquisition
of high-quality and comprehensive image data for subsequent analysis.

5. Conclusions

In this study, we achieved UAV flight parameter optimization and obtained high-
quality stitched images by investigating the effects of different exposure times, flight
altitudes, and OF settings on the image quality of rice phenology. We used an eight-
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rotor UAV flight platform equipped with two image acquisition sensors, including MS
and RGB cameras, to capture images of rice crops. The experimental design included a
combination of three different variables such as exposure time, flight altitude and overlap.
All experimental flights were conducted at the same speed. The SNR was used to evaluate
the noise level of the images, and an improved BRISQUE algorithm was proposed to assess
the quality of the MS and RGB remote sensing images. The results indicate that exposure
time directly influences the quality of low-altitude remote sensing images obtained by
UAVs, with shorter exposure times leading to lower signal-to-noise ratios. Additionally,
obtaining clear images during UAV motion requires specific conditions. Based on our study,
when both camera apertures are set to 2.8, the optimal exposure time for the RGB camera
should be between 0.8 ms and 1.1 ms, and for the MS camera, the exposure time should
range between 4 and 16 ms. Based on these experiments, it is recommended to capture
images at flight altitudes between 15 m and 35 m. Meanwhile, the OF setting of the UAV
needs to take into account the flight altitude and exposure time, and a high OF will lead to
image loss. Therefore, choosing the appropriate OF is crucial for image acquisition, and
the results of this study show that a flight OF of about 75% can satisfy the needs of image
acquisition. Finally, in the subsequent image processing stage, a method for removing
image redundancy proposed in this study can effectively improve the quality (13%) and
efficiency (84%) of image stitching, which provides an idea for the effective utilization of
data and reduction in time cost.

6. Patents
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Abstract: With the development of agricultural mechanization and information technology, automatic
navigation tractors are becoming a more common piece of farm equipment. The accuracy of automatic
navigation tractor path tracking has become critical for maximizing efficiency and crop yield. Aiming
at improving path tracking control accuracy and the real-time performance of the traditional model
predictive control (MPC) algorithm, the study proposed an adaptive time-domain parameter with
MPC in the path tracking control of the articulated steering tractor. Firstly, the kinematics model
of the articulated steering tractor was established, as well as the multi-body dynamics model by
RecurDyn. Secondly, the genetic algorithm was combined with MPC. The genetic algorithm was
used to calculate the optimal time domain parameters under real-time vehicle speed, vehicle posture
and road conditions, and the adaptive MPC was realized. Then, path tracking simulations were
conducted by combining RecurDyn and Simulink under different path types. Compared with the
traditional MPC algorithm under the three paths of U-shaped, figure-eight-shaped and complex
curves, the maximum lateral deviations of the modified MPC algorithm were reduced by 59.0%,
24.9% and 13.2%, respectively. At the same time, the average lateral deviation was reduced by 72%,
43.5% and 20.3%, respectively. Finally, the real path tracking tests of the articulated steering tractor
were performed. The test results indicated that under the three path tracking conditions of straight
line, front wheel steering and articulated steering, the maximum lateral deviation of the modified
MPC algorithm was reduced by 67.8%, 44.7% and 45.1% compared with the traditional MPC. The
simulation analysis and real tractor tests verified the proposed MPC algorithm, considering the
adaptive time-domain parameter has a smaller deviation and can quickly eliminate the deviation and
maintain tracking stability.

Keywords: articulated steering tractor; path tracking; genetic algorithm; adaptive MPC; algorithm
optimization

1. Introduction

The front and rear body of the articulated steering tractor can be relatively deflected,
resulting in an excellent passing ability, small turning radius and convenient operation,
which has been widely utilized in orchards and small-pitch farmland [1,2]. In recent years,
with the rapid development of satellite navigation, sensors and control technology, the
research on autonomous navigation agricultural equipment has also grown rapidly [3].
The automatic navigation control technology of agricultural machinery has become an
important factor in liberating productivity and realizing agricultural automation [4,5]. It
is of great significance to investigate the automatic navigation of the articulated steering
tractor for improving the orchard intellectualization and unmanned technology [6,7].

The path tracking control algorithm is the key to automatic navigation technology
of agricultural equipment [8]. With a complex structure and strong nonlinearity, the path
tracking control of articulated steering vehicles is more difficult than that of ordinary
vehicles. At present, the commonly used path tracking control algorithms include the pure
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tracking control algorithm, linear feedback control algorithm, Stanley control algorithm,
model predictive control (MPC) algorithm and so on [9,10]. The MPC algorithm has the
advantage of predicting future trajectories and handling multiple constraints, which has
been widely employed in path tracking control. In the application, there are three essential
steps in MPC, i.e., the model prediction, rolling optimization and feedback correction.
The most obvious advantage of MPC is that it can add multiple constraints in the control
process, since these constraints play an influential role in the planning and control of
vehicle motion [11–15]. MPC solves an optimal control problem (OCP) to get a sequence of
control commands over a finite receding horizon that optimizes a certain control metric
(objective); then, the first portion of the resulting sequence is applied to the system. The
main advantage of using MPC for path following in comparison with the non-predictive
controllers presented above is the ability of MPC to handle constrained and nonlinear
systems and it has been widely adopted in path tracking.

Beal et al. used the model prediction algorithm to design the path tracking controller.
The stability boundary was determined according to the maximum available tire force to
ensure the driving stability of the vehicle in the process of tracking the path [16]. Arun
et al. established a path tracking control model based on MPC and vehicle dynamics, and it
was implemented in a simulation with a car-sim model [17]. Zhang et al. applied the state
lattice method to the upper trajectory planning controller and designed an MPC controller
for path tracking based on the kinematic model [18]. Ji et al. used a 3D virtual dangerous
potential field and designed the path tracking controller using the multi-constrained MPC
method [19]. These studies that applied MPC have achieved excellent results; however,
these studies all applied MPC to road vehicles with a good working environment, and
the effect would be worse when they were applied to agricultural vehicles with a bad
working environment. Therefore, the improved application of the MPC control scheme
has also been favored by researchers. Considering the lateral and heading deviation to the
reference trajectory, Mata et al. presented a tube-based robust MPC approach [20]. Wei
et al. designed nonlinear MPC based on corridors to realize smooth and comfortable track
control [21]. Based on the steering geometric constraints, Liu proposed a path planning
algorithm based on local deviation correction, which contains a new following vehicle
distance solving algorithm to improve the accuracy of seismic vehicle path tracking [22–25].
Based on the MPC algorithm, Bai et al. proposed two optimization schemes to reduce the
number of control steps or reduce the control frequency. The results indicated that the
path control accuracy was higher by reducing the number of control steps. Meanwhile,
the control frequency was also reduced to meet the real-time requirements, while the
error was slightly larger than that of the reduced control step scheme [26]. Furthermore,
Meng et al. constructed the MPC controller based on preview distance. The simulation
tests proved the enhanced accuracy and stability of path tracking [27]. For path tracking
control of articulated vehicles, Li et al. designed an MPC controller based on the dynamic
model by considering the multi-point preview error of the path [28], which can effectively
improve the path tracking accuracy of articulated vehicles. Joseph et al. considered a model
predictive path following control (MPFC). The closed-loop asymptotic stability under MPFC
without terminal constraints or costs is rigorously proven and a stabilizing-horizon length
is calculated. The analysis is based on verifying the cost-controllability assumption by
deriving an upper bound of the MPFC value function with a finite prediction horizon [29].
Yue et al. proposed a model free predictive control (MFAPC) strategy using particle swarm
optimization (PSO) to overcome structural and unstructured uncertainties. The control
scheme of MFAPC is improved by integrating vehicle state parameters. The experimental
results show that the proposed scheme does not require an accurate mathematical model
and can quickly track the reference path [30]. Nevertheless, the real-time problem of time-
domain parameters in MPC was rarely considered in these research studies. The setting
of time-domain parameters is mostly fixed and not updated with the real-time status of
vehicles, which diminishes the path tracking accuracy and the applicability.
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In this paper, in order to improve the real-time performance of MPC, the study pro-
posed an adaptive time-domain parameter with MPC. We modified the MPC by combining
the genetic algorithm. The genetic algorithm was employed to calculate the optimal time-
domain parameters under real-time vehicle speed, vehicle attitude and road conditions.
The effectiveness and superiority of the new algorithm was verified through co-simulation
of path tracking and real tractor tests.

2. Materials and Methods

2.1. Kinematics Model of the Articulated Steering Tractor

In the study, the articulated steering tractor has two steering modes, i.e., front wheel
steering and articulated steering. When the steering terrain can satisfy the steering re-
quirements, then only front wheel steering is adopted. Conversely, the articulated steering
method is involved. In the following parts, the front wheel steering kinematic model and
the articulated steering kinematic model are constructed separately.

2.1.1. Front Wheel Steering Kinematic Model

It is assumed that the articulated steering tractor does not have lateral slip and roll,
as well as the interaction between the tires and the ground. The kinematic model of front
wheel steering of the articulated steering tractor can be simplified into a two-wheel vehicle
model with two degrees of freedom. The kinematic relationship of front wheel steering is
shown in Figure 1.

Figure 1. Front wheel steering kinematic relationship of the articulated steering tractor.

The rear axle center of the articulated steering tractor is depicted in coordinates (x, y).
The components of velocity v in the X and Y axes can be calculated as follows.

.
x = vcosψ (1)

.
y = vsinψ (2)

The change rate of the heading angle can be calculated by,

.
ψ =

vtanδ

l
(3)

The motion equation of the articulated steering tractor with the front wheel steering
mode is shown as follows. ⎡⎣ .

x
.
y
.
ψ

⎤⎦ = v

⎡⎣cosψ
sinψ
tan δ

l

⎤⎦ (4)
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where v is speed of rear wheel (m/s),
.
x is the component of v in the X-axis direction (m/s),

.
y is the component of v in the Y-axis direction (m/s), ψ is heading angle (◦),

.
ψ is rate of

change of heading angle (rad/s2), δ is front wheel turning angle (◦) and l is distance from
the center of the front wheel to the center of the rear wheel (m).

2.1.2. Kinematic Model of Articulated Steering

In the mode of articulated steering, the steering process of the tractor is to first turn the
front wheel angle to the limit in the shortest time, and then begin articulated steering. In
order to obtain the kinematic model of articulated steering, the following assumptions are
adopted: The articulated angle ϕ remains constant under small displacement. Moreover, it
is assumed that the track length does not change during the driving process. Furthermore,
there is no slip between the track and the track wheel. According to the structure of the
articulated steering tractor, the kinematic relationship of the articulated steering process is
constructed, as shown in Figure 2.

Figure 2. Articulated steering kinematic relationship of the articulated steering tractor.

The symbols in Figure 2 are listed as follows.
O1 is the center of the rear axle, O2 is the center of the front axle, O is the articulated

steering hinge point, L1 is the distance from the hinge point to the rear axle (m), L2 is the
distance from the hinge point to the front axle (m), δ1 is the maximum value of the front
wheel turning angle (◦), ϕ is the articulated steering angle (◦), θ1 is the azimuth angle of the
rear body (◦), θ2 is the azimuth angle of the front body (◦), v1 is the center speed of the rear
axle (m/s) and v2 is the center speed of the front axle (m/s).

The kinematic constraints of the articulated steering tractor can be expressed as,{ .
x1sinθ1 − .

y1cosθ1 = 0
.
x2sinθ2 − .

y2cosθ2 = 0
(5)

where
.
x1 is the component of v1 in the X-axis direction (m/s),

.
y1 is the component of v1 in

the Y-axis direction (m/s),
.
x2 is the component of v2 in the X-axis direction (m/s) and

.
y2 is

the component of v2 in the Y-axis direction (m/s).
The relationship between the rate of the articulated steering angle and the rate of front

and rear body azimuth is shown in the following equation.

.
ϕ =

.
θ1 −

.
θ2 (6)

21



Agriculture 2023, 13, 871

where
.
ϕ is rate of change of articulated steering angle (rad/s2),

.
θ1 is rate of change of the

rear body azimuth (rad/s2) and
.
θ2 is rate of change of the front body azimuth (rad/s2).

Therefore, the relative velocity equations of the front and rear bodies can be shown as
follows. {

v1cosϕ = v2cosδ1 +
.
θ1L1sinϕ

v1sinϕ =
.
θ2L2 +

.
θ1L1cosϕ + v2sinδ1

(7)

The rate of the rear body azimuth is calculated by,

.
θ1 =

(sinϕ− tanδ1cosϕ)v1 +
.
ϕL2

L1(cosϕ + tanδ1sinϕ) + L2
(8)

In the proposed method, the variable is the rate of the articulated angle denoted by ω.
The articulated steering kinematic model can be expressed as Equation (9).

⎡⎢⎢⎣
.
x1.
y1.
θ1.
ϕ

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
cosθ1 0
sinθ1 0

(sinϕ−tanδ1cosϕ)
L1(cosϕ+tanδ1sinϕ)+L2

L2
L1(cosϕ+tanδ1sinϕ)+L2

0 1

⎤⎥⎥⎥⎥⎦
[

v1
ω

]
(9)

Based on the aforementioned analysis, the kinematic model of the articulated steering
tractor with the center of the rear axle as the control point is established.

2.2. Multi-Body Dynamics Model of the Articulated Steering Tractor

In order to verify the performance of the proposed adaptive MPC path tracking
controller, a multi-body dynamics model of the articulated steering tractor was established
in software RecurDyn, as shown in Figure 3. The model parameters are shown in Table 1.

Figure 3. The multi-body dynamics model of the articulated steering tractor, where 1 represents the track
system, 2 represents the articulated steering system and 3 represents the front wheel steering system.

Table 1. Model parameters of the articulated steering tractor.

Parameters Value Parameters Value

Overall vehicle mass (kg) 1992.2 Maximum climbing degree (◦) 30
Front body mass (kg) 632.8 Front wheel spacing (mm) 930
Rear body mass (kg) 1359.4 Rear wheel spacing (mm) 1080

Length (mm) 3100 Wheelbase (mm) 1850
Width (mm) 1230 Maximum articulated angle (◦) 34
Height (mm) 1640 Crawler grounding length (mm) 460

Minimum radius of front wheel steering (m) 4.0 Minimum radius of articulated steering (m) 2.2
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2.3. Parametric Adaptive Path Tracking Controller Design
2.3.1. MPC Path Tracking Algorithm Based on Kinematic Model

It can be seen from Equations (4) and (9) that when the front wheel steers, the ar-
ticulated steering tractor can be regarded as a control system with input u(v,δ) and state
quantity χ(x,y,ψ), while as a control system with input u(v,ω) and state quantity χ(x1, y1,
θ1, ϕ) at the time of articulated steering. The following is an analytical calculation of the
articulated steering process. The kinematic model of the articulated steering tractor is
presented in Equation (10) [31,32].

.
χ = f (χ, u) (10)

For a planned target path, each reference point satisfies the above equation. Using r to
represent the reference quantity, Equation (10) can be rewritten as,

.
χr = f (χr, ur) (11)

where χr = [χr yr θr ϕr], ur = [vr ωr].
After expanding Equation (10) with the Taylor series at the reference point and ignoring

the higher order terms, Equation (12) can be found.

.
χ = f (xr, ur) +

∂ f (χ, u)
∂χ

(χ− χr)+
∂ f (χ, u)

∂u
(u− ur) (12)

Equation (12) minus Equation (11) obtains the linear error model of the articulated
steering tractor.

.∼
χ =

.
χ− .

χr = A
∼
χ + B

∼
u (13)

where A = ∂ f (χ,u)
∂χ , B = ∂ f (χ,u)

∂u ,
∼
χ(k) = χ(k) − χr(k),

∼
u(k) = u(k) − ur(k),

∼
u(k) is the

control volume increment, k is the current sampling moment and k + 1 is the next sampling
moment.

At any reference point, Equation (14) can be obtained by linear discretization of
Equation (13).

.∼
χ =

∼
χ(k + 1)− ∼

χ(k)
T

= A
∼
χ + B

∼
u (14)

where T = the control period.
The discrete state space equations of the kinematic model of the articulated steering

tractor can be obtained after rectification.

∼
χ(k + 1) = (TA + E)

∼
χ(k) + TB

∼
u(k). (15)

Transform the above model to build a new state vector.

ξ(k|k) =
[ ∼

χ(k|k)
∼
u(k− 1|k)

]
(16)

Then the new state space expression can be obtained as follows.

ξ(k + 1|k) =
[∼

χ(k + 1|k)
∼
u(k|k)

]
=

[∼
A

∼
B

0 I1

]
ξ(k|k) +

[∼
B
I1

]
Δ
∼
u(k|k) = aξ(k|k)bΔ

∼
u(k|k) (17)

The output equation is by,

η(k|k) = [
I2 0

][ ∼
χ(k|k)

∼
u(k− 1|k)

]
= cξ(k|k) (18)
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where I1, I2 = unit matrices.
The output of the system in the predicted future time-domain Np can be predicted as

Equation (19).
Y(t) = Ψξ(k|k) + ΘΔU(k) (19)

where Y =

⎡⎢⎢⎢⎢⎢⎢⎣

η(k + 1|k)
η(k + 2|k)
· · ·

η(k + Nc|k)
· · ·

η
(
k + Np

∣∣k)

⎤⎥⎥⎥⎥⎥⎥⎦, Ψ =

⎡⎢⎢⎢⎢⎢⎢⎣

ca
ca2

· · ·
caNc

· · ·
caNp

⎤⎥⎥⎥⎥⎥⎥⎦,Θ =

⎡⎢⎢⎢⎣
cb 0 · · · 0
cab cb · · · 0

...
...

. . . 0
caNp−1b caNp−2b · · · caNp−NC b

⎤⎥⎥⎥⎦,

ΔU =

⎡⎢⎢⎢⎢⎢⎣
Δ
∼
u(k|k)

Δ
∼
u(k + 1|k)

Δ
∼
u(k + 2|k)
· · ·

Δ
∼
u(k + Nc − 1|k)

⎤⎥⎥⎥⎥⎥⎦, Np = predicted time-domain, Nc = control time-domain.

In order to ensure that the tractor can track the target trajectory rapidly and stably, the
increment of the articulated steering angle is used as the control quantity of the objective
function. Therefore, the optimized objective function of the path tracking model can be
drawn as follows [33,34].

J(ξ(k), u(k− 1), ΔU(k)) = min∑Np
i=1 Δη(k + i | k)2

Q + ∑Nc−1
i=1 Δu(k + i | k)2

R + ρε2 (20)

where Δη(k + i | k) = η(k + i | k)− ηr(k + i | k), Δη(k + i | k) = Difference between actual
output and reference output, I = 1,2, . . . , Np.

Furthermore, Q, R and ρ are the weight matrices and ε represents the relaxation factor.

2.3.2. Genetic Algorithm to Optimize Time-Domain Parameters

In Equation (20), the prediction time-domain Np determines the length of the rolling
optimization solution process. The control time-domain Nc affects the tractor’s tracking
performance as well as the control speed. Therefore, the values of Np and Nc make a
great impact on the path tracking performance of the unmanned tractors. However, the
time-domain parameters of the traditional MPC controller are fixed at different speeds and
different road conditions, which make it difficult to adapt to different road conditions. In
the study, in order to obtain the optimal time-domain parameters in real time, firstly the
whole path tracking process is segmented according to the system sampling frequency, and
then the MPC time-domain parameters within each sampling frequency are optimized by
genetic algorithm.

Furthermore, the optimization of the time-domain parameters is made by the genetic
algorithm. The genetic algorithm was introduced by Professor Holland in 1975 accord-
ing to the phenomena of reproduction, hybridization and mutation in nature [35]. The
genetic algorithm is a stochastic global search and optimization method that imitates
the mechanism of biological evolution [36,37]. By selecting high-quality individuals and
eliminating inferior individuals, the law of survival of the fittest in the natural world is
simulated. Reproduction, hybridization and mutation are carried out among the selected
high-quality individuals. Then, the individuals with better qualities that may be produced
and iterated repeatedly are selected to make the population better and better until the
expected fitness value is met. The genetic algorithm uses a probabilistic mechanism for
iteration with the purpose of avoiding traps in a local optimum. The genetic algorithm
is not constrained by the search space and has no continuous, derivable or single-peaked
requirements for the objective function. Therefore, genetic algorithms are suitable for solv-
ing multi-objective optimization problems while being scalable and convenient to combine
with other algorithms [38,39].
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The optimization principle of the time-domain parameters is shown in Figure 4. The
steps to optimize the time-domain parameters by the genetic algorithm are as follows.
Firstly, the population is initialized, in which each individual of the population will be
assigned a value and rounded according to the range of time-domain parameters. Secondly,
the adaptation degree of each individual is calculated by combining the information of
tractor speed and position through the adaptation degree function. Finally, the optimal
parameters are obtained when the termination condition is satisfied. If the termination
condition is not satisfied, then selection, crossover and mutation are performed to obtain a
new population and the fitness function value is calculated again.

Figure 4. Time-domain parameter optimization principle.

The fitness function of the genetic algorithm is presented as follows.

L =
1

J(ξ(k), u(k− 1), ΔU(k))
(21)

The population size is set as 200. Furthermore, the probabilities of crossover and
variation are set as 0.6 and 0.1 separately. Terminated evolutions are set at 20. To improve
the optimization efficiency, the prediction time-domain is taken in the range (0, 60), and the
control time-domain is taken in the range (0, 30). Finally, by optimizing the time-domain
parameters within each sampling frequency, the adaptive time-domain parameters of the
whole section of the path tracking can be realized.

3. Results and Discussion

3.1. Simulation Test
3.1.1. Construction of the Simulation System

To verify the performance of the proposed adaptive time-domain parametric model,
the co-simulation model of RecurDyn and Simulink is established, as shown in Figure 5.
The model can be divided into four parts, i.e., the tractor model to search for nearest target
point, the adaptive MPC controller, and the genetic algorithm module.
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Figure 5. Co-simulation model of RecurDyn and Matlab/Simulink.

The co-simulation principle is shown in Figure 6. The control performance of the
adaptive MPC algorithm on the straight driving, front wheel steering and articulated
steering process is verified through three paths of U-shaped, figure-eight-shaped and
complex curves. These three path conditions include all the conditions of the articulated
steering tractor in the actual working process of the orchard, i.e., the straight-line conditions,
the front wheel steering conditions and the articulated steering conditions. The system
sampling frequency is set to 0.5 s, and the tractor driving speed is set to 0.5 m/s.

Figure 6. Co-simulation principle of RecurDyn and Matlab/Simulink.

3.1.2. U-Shaped Curve Path Tracking Simulation

The comparison of the tracking performance of the adaptive MPC and the traditional
MPC on a U-shaped curve path is shown in Figure 7a. It can be seen that the tracking
path of the adaptive MPC is more stable and smoother, and the tracking effect is also
better. From Figure 7b,c, it can be seen that the maximum values of lateral deviation and
heading deviation occur at the articulation of straight and curved lines. Adaptive MPC
has a smaller maximum lateral deviation and maximum heading deviation than MPC. The
lateral deviation and heading deviation of adaptive MPC fluctuate greatly during turning,
which shows that adaptive MPC can quickly adjust the tractor to prevent the deviation
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from changing too much when there is a deviation. When there is a deviation in the whole
path tracking process, the adaptive MPC can adjust the deviation to zero more quickly.

(a) (b) 

 
(c) 

Figure 7. U-shaped curve simulation results. (a) Path tracking performance comparison, (b) lateral
deviation and (c) heading deviation.

The deviation statistics results are shown in Table 2. It can be seen that the maximum
value, average value and standard deviation of the lateral deviation of the adaptive MPC
are reduced by 59.0%, 72% and 39.7% compared with the traditional MPC. At the same
time, the maximum, average and standard deviations of the heading deviation decreased by
44.6%, 58.7% and 36.3%, respectively. The maximum values of lateral deviation and heading
deviation occur at the articulation of straight and curved lines. From the average value and
standard deviation, it can be seen that the accuracy and stability of adaptive MPC are better.
Adaptive MPC significantly reduces the maximum and average values of deviation.

Table 2. The deviation statistics results.

Category Category MPC Adaptive MPC

lateral deviation (cm)
Maximum 15.13 6.21
Average 7.53 2.10

SD 4.71 2.84

heading deviation (◦)
Maximum 14.45 8.00
Average 4.19 1.73

SD 3.14 2.00
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3.1.3. Figure-Eight-Shaped Curve Path Tracking Simulation

The comparisons of the tracking performance of the adaptive MPC and the traditional
MPC on a figure-eight-shaped curve are shown in Figure 8a. It can be seen that the adaptive
time-domain parameter MPC achieves a better tracking effect. From Figure 8b,c, it can be
distinguished that the deviation is large at the beginning of tracking and at the junction
of two circles. At this time, the adaptive MPC controller reduces the heading deviation
significantly. MPC only keeps the deviation stable and does not reduce the deviation when
there is a deviation. However, the adaptive MPC can quickly adjust the tractor to reduce
the deviation, which further proves the superiority and accuracy of the adaptive MPC.

(a) (b) 

( )

Figure 8. Figure-eight-shaped curve simulation results. (a) Path tracking performance comparison,
(b) lateral deviation and (c) heading deviation.

The deviation statistics results are shown in Table 3. It can be seen that the maximum
value, average value and standard deviation of the lateral deviation of the adaptive MPC
are reduced by 24.9%, 43.5% and 16.9% compared with the traditional MPC. The maximum,
average and standard deviation of heading deviation decreased by 11.9%, 74.9% and 25.0%,
respectively. Adaptive MPC significantly reduces the average values of lateral deviation
and heading deviation. From the maximum value and Figure 8, adaptive MPC can reduce
the maximum deviation more obviously when turning.
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Table 3. The deviation statistics results.

Category Category MPC Adaptive MPC

lateral deviation (cm)
Maximum 22.41 16.83
Average 21.31 12.05

SD 2.37 1.97

heading deviation (◦)
Maximum 4.54 4.00
Average 4.26 1.07

SD 0.60 0.45

3.1.4. Complex Curve Path Tracking Simulation

The comparison of the tracking performance of the adaptive MPC and the traditional
MPC on the complex curve path is shown in Figure 9a. It can be seen that the adaptive time-
domain parameter MPC controller has a better tracking effect. According to Figure 9b,c, it
can be seen that the maximum deviation occurs at the junction of the curve. The lateral
deviation and heading deviation of articulated steering are smaller than front wheel steering.
The lateral deviation and heading deviation of adaptive MPC fluctuate greatly, which
shows that adaptive MPC adjusts the vehicle more times. The adaptive MPC can reduce
the deviation more quickly and maintain stability when there is a deviation.

(a) 

  
(b) (c) 

Figure 9. Complex curve simulation results. (a) Path tracking performance comparison, (b) lateral
deviation and (c) heading deviation.
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The deviation statistics results are shown in Table 4. It can be seen that the maximum
value, average value and standard deviation of the lateral deviation of the adaptive MPC
are reduced by 13.2%, 20.3% and 19.2% compared with the traditional MPC. The maximum,
average and standard deviation of heading deviation decreased by 24.1%, 68.5% and
48.7%, respectively.

Table 4. The deviation statistics results.

Category Category MPC Adaptive MPC

lateral deviation (cm)
Maximum 22.34 19.38
Average 6.99 5.57

SD 5.37 4.34

heading deviation (◦)
Maximum 7.01 5.32
Average 1.97 0.62

SD 1.56 0.80

3.2. Test Verification

In order to further verify the effectiveness of the adaptive MPC controller, real tractor
path tracking tests were conducted in the study. By taking the articulated steering tractor
as the test platform, the test equipment consists of an industrial personal computer (IPC),
display screen, satellite positioning equipment, steering controller, angle sensor and so on.
The equipment utilized on the test platform are shown in Figure 10.

The path tracking test of the tractor was carried out in the standardized demonstration
orchard of Shijiazhuang Xinnong Machinery Co., Ltd. (Shijiazhuang, China). The test road
is well-maintained and flat, and the orchard has 10 rows of fruit trees, with a single row
being about 70 m long, the average height of the fruit trees being 2.5 m and the average
row spacing being 4 m. The position information and heading angle information obtained
during the test were saved in the IPC. Each experiment was carried out three times. The
data were exported for statistical processing after the test. The maximum, minimum,
average value and standard deviation of the lateral deviation and heading deviation were
obtained by data analysis software.

Figure 10. Test platform hardware arrangement of articulated steering tractor.
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The principle of path tracking control is shown in Figure 11. The program of path
tracking is written and compiled in the industrial control machine by Python. The position
and heading angle information are obtained in real time by satellite positioning equipment,
steering controller, angle sensor, etc. The front wheel and articulated angle are calculated
in the industrial control computer. The control information can be obtained through the
communication subprogram between the microcontroller controller and the industrial
control computer, so as to control each motor to control the angle in real time.

Figure 11. Test platform hardware arrangement.

Articulated steering tractors are mainly utilized in orchard environments. The driving
path in the orchard can be divided into straight-line operating sections and headland
turning sections. The effectiveness and accuracy of adaptive MPC in straight ahead, front
wheel steering and articulated steering conditions need to be tested and verified. Therefore,
the straight-line path, front wheel steering path and articulated steering path tracking tests
were conducted in the study. The tractor driving speed was set to 0.5 m/s.

3.2.1. Straight-Line Path

The straight-line path tracking test circumstances are shown in Figure 12a. Figure 12b
depicts the path tracking comparison between adaptive MPC and traditional MPC, wherein
it can be seen that the adaptive MPC has a better tracking effect. Figure 12c,d presents the
lateral and heading deviation comparisons. It can be seen that MPC will have a large lateral
deviation and heading deviation, and the adaptive MPC deviation fluctuation is smaller.
The adaptive MPC proposed in the study achieved significant reduction in the lateral and
heading deviations in straight-line path tracking compared with the traditional MPC.
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(a) 

 
(b) 

 
(c) (d) 

Figure 12. Straight-line path tracking test results. (a) Test site, (b) path tracking performance
comparison, (c) lateral deviation and (d) heading deviation.

Table 5 presents the deviation statistics results. It can be seen that the maximum value,
average value and standard deviation of the lateral deviation of the proposed adaptive MPC
are reduced by 67.8%, 65.3% and 68.8%, respectively. At the same time, in comparison with
the traditional MPC, the maximum, average and standard deviation of heading deviation
are also decreased by 26.8%, 28.1% and 35.7%, respectively. Adaptive MPC can significantly
improve lateral deviation.
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Table 5. The deviation statistics results.

Category Category MPC Adaptive MPC

lateral deviation (cm)
Maximum 9.39 3.02
Average 2.19 0.76

SD 2.21 0.69

heading deviation (◦)
Maximum 8.73 6.39
Average 1.85 1.33

SD 2.21 1.42

3.2.2. Front Wheel Steering Path

The front wheel steering path tracking tests were conducted to verify the control effect
of adaptive MPC. The front wheel steering path tracking test environment is shown in
Figure 13a. Figure 13b shows the comparisons of path tracking between adaptive MPC
and traditional MPC. It can be seen from Figure 13b that the adaptive MPC tracks better.
Figure 13c,d presents that the lateral deviation and heading deviation of the adaptive MPC
proposed in the study are significantly lower than those of the traditional MPC in the curve
paths. In the latter part of the path tracking, the heading angle fluctuates greatly, which
may be caused by the vibration of the tractor body. The tractor made a big deviation during
the two turns. However, the deviations produced by adaptive MPC are both smaller than
MPC. Adaptive MPC can adjust tractors more times, faster and better.

 
(a) 

 
(b) 

Figure 13. Cont.
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(c) (d) 

Figure 13. Front wheel steering path tracking test results. (a) Test site, (b) path tracking performance
comparison, (c) lateral deviation and (d) heading deviation.

Table 6 depicts the deviation statistics results. It can be seen that the maximum value,
average value and standard deviation of the lateral deviation of the adaptive MPC are
reduced by 44.7%, 57.4% and 53.2% compared with the traditional MPC. Furthermore, the
maximum, average and standard deviation of heading deviation are also decreased by
44.9%, 31.4% and 28.6%, respectively.

Table 6. The deviation statistics results.

Category Category MPC Adaptive MPC

lateral deviation (cm)
Maximum 22.00 12.17
Average 4.69 2.00

SD 5.38 2.52

heading deviation (◦)
Maximum 11.44 6.30
Average 2.74 1.88

SD 2.94 2.10

3.2.3. Articulated Steering Path

The articulated steering path tracking tests were conducted in an orchard to verify the
control effect of adaptive MPC. The articulated steering path tracking environment is shown
in Figure 14a. Figure 14b depicts the path tracking comparisons. From Figure 14b, it can
be seen that the adaptive MPC tracks better. Figure 14c,d indicates that the adaptive MPC
reduces the lateral deviation and heading deviation over the whole path compared with the
traditional MPC, in which a significant reduction can be easily distinguished. In the whole
path tracking process, the MPC deviation fluctuates greatly, and the adjustment speed is
slow. Furthermore, after adjusting the deviation, the adaptive MPC can keep the deviation
at a lower level. In the latter part of path tracking, the heading angle fluctuates greatly,
but the frequency of adaptive MPC adjustment is faster and the deviation is lower. The
test results further prove that traditional MPC has greater errors when used in agricultural
tractors, and it needs to be improved. The adaptive MPC proposed in this study improves
the path tracking accuracy when used in agricultural tractors.
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(a) 

 
(b) 

 

 

 

 
(c) (d) 

Figure 14. Articulated steering path tracking test results. (a) Test site, (b) path tracking performance
comparison, (c) lateral deviation and (d) heading deviation.
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Table 7 presents the specific results in path tracking of the articulated steering tractor.
It can be seen that compared with the traditional MPC, the maximum value, average value
and standard deviation of the lateral deviation of the adaptive MPC are reduced by 45.1%,
60.9% and 51.6%, respectively. The maximum, average and standard deviation of heading
deviation are decreased by 50.2%, 34.7% and 39.2%, respectively. The average and standard
deviation of lateral deviation are reduced more, which ensures the stability of tracking
deviation. The heading deviation is also greatly improved, which ensures that the car body
will not vibrate too violently.

Table 7. The deviation statistics results.

Category Category MPC Adaptive MPC

lateral deviation (cm)
Maximum 18.24 10.01
Average 5.45 2.22

SD 3.84 1.86

heading deviation (◦)
Maximum 13.07 6.51
Average 2.91 1.90

SD 2.60 1.58

4. Conclusions

In order to improve the real-time performance of MPC, the present study proposed
an adaptive time-domain parameter with traditional MPC in path tracking control of the
articulated steering tractor. The genetic algorithm was adopted to calculate the optimal
time-domain parameters under real-time tractor speed, tractor attitude and road conditions.

The conclusions are as follows.

• The kinematics model and multi-body dynamics model of the articulated steering
tractor were established. Then, the co-simulations by RecurDyn and Simulink were
conducted under a U-shaped, figure-eight-shaped and complex curves path. The
maximum lateral deviations of the adaptive MPC were reduced by 59.0%, 24.9% and
13.2%, respectively. At the same time, the average lateral deviations were reduced by
72%, 43.5% and 20.3% compared with the traditional MPC. The maximum heading
deviations of the adaptive MPC were reduced by 44.6%, 11.9% and 24.1%, respectively.
The average lateral deviations were reduced by 58.7%, 74.9% and 68.5%.

• Taking the articulated steering tractor as the test platform, the performance of adaptive
MPC was tested in real tractors through a straight-line path, front wheel steering
path and articulated steering path. The results indicated that the maximum lateral
deviations of the adaptive MPC were reduced by 67.8%, 44.7% and 45.1%, respectively.
Compared with the traditional MPC, the average lateral deviations of the adaptive
MPC were reduced by 65.3%, 57.4% and 60.9%, respectively. The maximum heading
deviations of the adaptive MPC were reduced by 26.8%, 44.9% and 50.2%, respectively.
The average lateral deviations were reduced by 28.1%, 31.4% and 34.7%.

• The results of simulations and real tractor tests show that the real-time and path
tracking performance of the proposed adaptive MPC is superior to the traditional MPC.
Adaptive MPC can adjust the tractor faster when deviations occur, and the adjustment
frequency of adaptive MPC is faster and the effect is better. The adaptive MPC can
effectively enhance the path tracking accuracy of the articulated steering tractor.
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Abstract: This paper presents an autonomous unmanned-aerial-vehicle (UAV) tracking system based
on an improved long and short-term memory (LSTM) Kalman filter (KF) model. The system can
estimate the three-dimensional (3D) attitude and precisely track the target object without manual
intervention. Specifically, the YOLOX algorithm is employed to track and recognize the target object,
which is then combined with the improved KF model for precise tracking and recognition. In the
LSTM-KF model, three different LSTM networks (f, Q, and R) are adopted to model a nonlinear trans-
fer function to enable the model to learn rich and dynamic Kalman components from the data. The
experimental results disclose that the improved LSTM-KF model exhibits higher recognition accuracy
than the standard LSTM and the independent KF model. It verifies the robustness, effectiveness, and
reliability of the autonomous UAV tracking system based on the improved LSTM-KF model in object
recognition and tracking and 3D attitude estimation.

Keywords: Procapra przewalskii protection; autonomous unmanned aerial vehicle; object tracking;
Kalman filter; long and short-term memory

1. Introduction

Procapra przewalskii is an endangered ungulate endemic to the Qinghai-Tibet Plateau.
Its type specimen was collected by Nikolai M. Przewalski in the Ordos Plateau of Inner
Mongolia in 1875 [1]. It is listed as a national key protected wild animal by the List of National
Key Protected Wild Animals issued in 1988. In 2001, it was listed as one of the 15 species in
urgent need of rescue in the National Wildlife Conservation and Nature Reserve Construction
Project Master Plan. In December 2002, the State Forestry Administration formulated the
Overall Plan of the National Proctor for the gazelle protection project. Meanwhile, it was
determined to be a critically endangered (CE) species by the Red List of the International
Union for Conservation of Nature (IUCN) in 1996 and 2003. Due to the recovery of local
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populations and the discovery of new populations, it was adjusted as endangered (EN)
from CE by the Red List of the IUCN, but it was still listed as CE in the assessment results
of the Red List of Biodiversity in China [2]. Perennial cold and oxygen deficiency in plateau
areas pose more difficulty in continuous artificial monitoring of animal behaviors.

As a non-contact data acquisition method, unmanned aerial vehicles (UAVs) exhibit
unique advantages in wildlife monitoring. Thanks to the significant progress in computer
vision technologies, autonomous UAVs equipped with edge reasoning units have been
applied in preliminary real-time monitoring [3,4]. UAVs are limited by size, weight, and
power (SWaP), and a single camera is usually equipped as the best sensor. However,
when the single-shot attitude estimation is applied to video data, it has to estimate the
extraordinary noise and confuse the visually similar but spatially different image features
if the time information is ignored. Therefore, a time filter is an effective way to increase the
accuracy of attitude estimation. The Kalman filter (KF) [5] is a very wide choice due to its
simplicity and versatility. In addition, the extended KF (EKF) [6] can address the nonlinear
systems of measurement and transition models.

However, these measurement and transition models cannot be specified a priori,
severely restricting the application of KFs. Therefore, they can try to directly learn the
motion models from training data with support vector machines [7] or with long and short-
term memory (LSTM) [8] to overcome the above limitations. It can release the modeler
from time-consuming selection and optimization of the KF by learning the motion models,
simultaneously enriching the underlying models. However, sufficient training data should
be ensured to cover all possible motion paths of the tracked object when learned motion
models are applied to enforce temporal consistency in pose estimation.

This work mainly contributes to an autonomous UAV target-tracking system based on
the improved LSTM-KF model. (1) A three-dimensional (3D) attitude tracking algorithm
integrating a learning-based real-time target detection algorithm with a UAV embedded
system based on target detection, stereo reconstruction technology, and the KF model, is
implemented in the low-cost UAV system to automatically identify, locate, and track the
Procapra przewalskii. (2) In the LSTM-KF model, the calculation formulas of the output
gate Qt of three different standard LSTM networks are modified by connecting them with
the input gate to solve overfitting during the training of many datasets about the Procapra
przewalskii video sequences. (3) During the training iteration of the LSTM-KF model, the
Adam optimizer is modified by extending the update rules based on the L2 norm in Adam
optimization to those based on the Lp norm. The improved model is able to accurately track
the behavioral attitudes of the LSTM-KF model to identify the original model and reduce
the modeler’s a priori burden to specify motion and noise models.

This paper is structured as follows. In the “Introduction” section, the background
and definitions of Procapra przewalskii, autonomous UAV object-tracking system, KF, and
LSTM model are introduced. In the “Related Works” section, the background of the CNN-
based animal-monitoring algorithm and the learning-based KF structure are described. The
“Materials and Methods” section describes the hardware system architecture used for UAV
object tracking, the study area and dataset, the definition and principles of animal 3D pose
estimation, the YOLOX model, and the structure of the improved LSTM-KF model. Next,
the experimental results are introduced and analyzed. The performances of the YOLOX
model at different resolutions are compared, and the tracking results and average errors of
the improved LSTM-KF model are verified. In addition, the tracking effects of Procapra
przewalskii based on simulation systems and actual flight scenarios are presented. In the
“Conclusions” section, the results and discussions are summarized, and future research
directions are prospected.

2. Related Works

2.1. Animal-Monitoring Algorithm Based on Convolutional Neural Network (CNN)

CNN-based methods that can achieve accurate result-oriented image feature extrac-
tion and representation have been increasingly accepted and applied in vision and image
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processing [9–11]. Meanwhile, they have exhibited extensive applications in animal identi-
fication without pre-specifying any features [12] but have limited usages in monitoring the
activities of farming animals [13]. The two-stream network proposed by [14] is one of the
tracking models to track moving objects. Multi-layers and the optical flow of convolutional
networks enable the capturing the frames of relevant information on an object and tracking
the object movement among various frames. Shortly after the proposal of two-stream net-
works, long-term recurrent convolutional networks (LRCNs) were developed. LRCNs [15]
generally comprise several CNNs, namely Inception modules, ResNet, VGG, and Xception,
enabling the extraction of spatial and temporal features.

LRCN was the most applied tracking model thanks to its reasonable architecture
in object tracking. Generic object tracking using regression network (GOTURN) [16] is
another lightweight network that achieves 100 frames per second (fps) for object track-
ing. GOTURN was initially trained with the generic-objects-filled datasets. The regions
of interest (ROIs) on the frames are undertaken as input data for the trained network,
providing the possibility of continuously predicting the location of the target. The Slow
Fast network [17], on the other hand, tracks objects using two streams of frames, namely
slow and high pathways. Many other algorithms can be introduced for animal monitoring,
including, but not limited to, simple online and real-time tracking (SORT), the Hungarian
algorithm (HA), the Munkres variant of the Hungarian assignment algorithm (MVHAA),
the spatial-aware temporal response filter (STRF), and the channel and spatial reliability
discriminative correlation filter (CSRDCF) [18–21].

These algorithms were utilized by object-detection models, such as Faster R-CNN,
FCN, SSD, VGG, and YOLO, to detect and track animals in images using their geometric
features in continuous frames [13]. To provide a reliable and efficient method to monitor
the behavioral activity in cows, [22] presented a tracking system embedded with ultra-
wideband technology. Similarly, [23] employed a computer vision module to analyze and
detect the positive and negative social interactions in feeding behavior among cows. The
system was implemented and tested on seven dairy cows in the feeding area, realized an
accuracy with a mean error of 0.39 m and standard deviation of 0.62 m, and achieved a
detection accuracy of social interactions of 93.2%. However, the real-time locating system
(RTLS) exhibits poor accuracy in identifying individual cows if they are in close body con-
tact.

The CNN-based algorithm presents limited applications in monitoring agricultural
animals because it does not pre-specify any features of any target. In this case, the YOLOX
model, a lightweight network with an anchorless frame at the head of the network, is
applied in this paper, which is equipped with several high-performance detectors and
a faster network convergence, so that animals with specified features can be monitored.
LRCN is the most widely used tracking model due to its reasonable structure in target
tracking. However, it fails to effectively monitor the pose behavior of animals and consider
the variations in measurement noise. Therefore, the LSTM-KF model with good robustness,
reliability, and validity in target tracking and 3D pose estimation is proposed in this paper,
which can alleviate the effect of measurement noise and modify the measurement results.

2.2. Learning-Based KF Architecture

In the current work, machine learning and KF models are combined for temporal
regularization. The approaches can be classified into those that learn the static parameters of
the KF and those that actively regress the parameters during filtering. The noise covariance
matrices (NCMs) were optimized statically by [24] to replace the manual fine-tuning of
noise parameters in a robotic navigation. Additionally, a coordinate ascent algorithm was
employed and each element of the NCM was optimized. However, this approach is only
applicable for noisy but time-invariant systems. As opposed to the dynamic model adopted
in this study, a change in measurement noise cannot be considered and will therefore lower
the accuracy in state estimates.
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Reference [8] learned the underlying state transition function that controlled the
dynamics of a hidden process state. However, only the state space equations of the KF are
used instead of the prediction and update scheme with good performance under linear
state transitions and additive Gaussian noise [6]. The neural network models that jointly
learn to propagate the state, incorporate the measurement updates, and react to control
inputs were trained. In addition, the covariances were designed as constants during the
entire estimation. This approach can estimate the state better than a distinct prediction and
update model, especially when large-scale training data are insufficient, as demonstrated
in the experiment section in the present study.

The dynamic regression of KF parameters was put forward by [7] who adopted
support vector regression (SVR) to estimate a linear state transition function, jointly with
which the predicted NCM was estimated. The SVR-based system can deal with time-variant
systems and outperforms manually tuned KF models in object tracking. As opposed to the
model adopted here, the measurement noise covariances (MNCs) are kept constant and the
transition function is modeled as a matrix multiplication. In this case, it can only estimate
the linear motion models, while the model employed in the present study can estimate the
nonlinear transition functions based on all previous state observations.

Reference [25] focused on integrating a one-shot estimation as a measurement into a
KF model, which required a prediction of the MNC. They demonstrated that the integrated
model exhibited superior performance by comparing it with two other models. In contrast,
the model designed in the present work undertakes the measurement updates as a black-
box system and automatically estimates the MNC, so that they can be combined with the
current one-shot estimators.

Previous work has extensively investigated the temporal regularization for bit-pose
estimation, and priority attention has been given to works that focus on implicit regular-
ization schemes and that explicitly use a learning-based KF structure to infer temporal
coherence. In contrast to other models, the proposed model introduces the LSTM-KF, which
mitigates the modeler-induced influence on specifying motion and noise models a priori,
while allowing rich models to learn from data that are extremely difficult to write down
explicitly. An extensive series of experiments reveals that the LSTM-KF outperforms both
the stand-alone KF and LSTM in terms of temporal regularization.

3. Materials and Methods

3.1. Overall Technical Architecture

The videos in the research area were acquired using Prometheus 230 intelligent UAVs
(Chengdu Bobei Technology Co., Ltd., Chengdu, China), as shown in Figure 1. An Intel
RealSense D435i stereo camera was selected for the system to acquire sensing and depth
data because its features include light weight, wide field of view (FoV), high depth accuracy,
and good stability. Furthermore, a powerful graphics processing unit (GPU) was employed
for the embedded systems, and the NVIDIA Jetson AGX Xavier embedded platform was
selected to process the deep-learning-based algorithms. A flight controller (Pixhawk 4
(PX4)) was deployed and communicated with the MAVROS package, which was connected
to the planner node.

As illustrated in Figure 2, the designed system consists of (1) a perception module,
(2) an object-tracking algorithm, (3) a UAV maneuver, and (4) a ground station visualization
module. In brief, the UAV system perceives the red-green-blue (RGB) images and the depth
data first, and the drone recognizes the Procapra przewalskii with YOLOX (a deep-learning-
based detector). Next, the 2D bounding boxes are fused with the depth measurement to
estimate the 3D pose of the Procapra przewalskii. Finally, the improved LSTM-KF model
proposed here is integrated to assist in predicting the motion of the Procapra przewalskii.
During this, the visualization user interface is included.
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Figure 1. Prototype of the proposed autonomous object-tracking system.

Figure 2. Software architecture of the system.

3.2. Dataset Establishment and Training

Precepting an object in a 3D world is essential for detecting and tracking an object.
A deep-learning-based detector is employed here to generate related 2D information and
perform 3D stereo reconstruction. This is very challenging because the object may move fast
(e.g., running), the training data are low, the detection accuracy is not high, and the position
of the object is changing continuously. As mentioned above, the YOLOX algorithm is
selected as the baseline model to more accurately detect and track the Procapra przewalskii.
Its structural framework is illustrated in Figure 3.

Figure 3. Structural framework of the YOLOX algorithm.
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By referring to YOLOV3 and Darknet53, the YOLOX model adopts the structural
architecture and spatial pyramid poling (SPP) layer of the latter. In addition, the model is
equipped with several high-performance detectors.

In August 2022, we went to the research area (Qinghai Lake) (Figure 4a) to acquire
the UAV data and verify the actual flight. There were 40 flights in five days, and each
flight lasted about half an hour. The average flight height was about 100 m, and the
aerial photography coverage area reached 9744 km2. Figure 4b shows the flight landing
sites. With the captured videos, an object-tracking database was established to identify the
moving Procapra przewalskii, match them in different frames, and track their motions.

Figure 4. Research area: (a) geographical location of Qinghai Lake; (b) distribution of UAV landing
sites in August.

A total of 6 video sequence databases, which were composed of 3 training databases
and 3 test databases, are marked. The data were divided into a training set, a test set,
and a verification set at a ratio of 3:2:1 (The Supplementary Data Set is available at link
https://pan.baidu.com/s/1vEYdFFTKUE9Z9cC67lCH_Q?pwd=56vx). There were three
major motions for Procapra przewalskii, which are standing, walking, and running, as
displayed in Figure 5a–c (male), Figure 5d–f (female) and Figure 5g–i (young). The database
was trained based on the YOLOX model by adjusting the weight ratio, confidence threshold,
intersection over union (IoU) threshold of nms, and activation function. In this way, a
stable and accurate model was obtained.

Figure 5. Different motions of male, female, and young Procapra przewalskii.
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3.3. 3D Pose Estimation

Herein, the predicted bounding box was saved as SROI, and the 3D pose of the object
was recovered and dynamically tracked by the object coordinates on the 2D frame based on
the depth information obtained from the stereo camera. In addition, an interior rectangle Si
was firstly generated by contracting SROI with a scaling factor θ, as computed in Equations
(1) and (2). In the equations below, Si is the predicted bounding box; θ refers to the scaling
factor to adjust the size of the bounding box; cx and cy are the coordinates of the bounding
box; and w and h represent the width and height of the bounding box, respectively.

SROI = [cx cy w h] (1)

Si = [cx cy θw θh] (2)

Si, as displayed in Figure 6b, serves as the ROI to obtain the depth information. The
unfilled pixels are filtered out from the depth image captured by the stereo camera, and the
remaining depth data in Si are averaged as S, which is assumed as the distance between
the observer and the target object.

Figure 6. (a) Bounding box coordinates; (b) ROI for depth.

Then, with the boundary box coordination, coordination transformation was per-
formed to obtain the relative attitude of the camera and the global attitude in the world
frame. Frame transformation was carried out according to Equations (3) and (4) below:

S[uv]T = K ·
[

XC
i

1

]
(3)

[
XW

i
1

]
= TW

B TB
C

[
XC

i
1

]
, TW

C TB
C ∈ SO(3) (4)

In the above equations, u and v are the pixel coordinates of St; K is the inherent matrix
of the local camera and XC

i is the object pose vector in camera frame; and XW
i refers to

the object pose vector in the world frame. Specifically, the transformation matrix can be
calculated using Equations (5) and (6).

TB
C =

⎡⎢⎢⎣
0 0 1 0
−1 0 0 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ (5)
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TW
B =

⎡⎢⎢⎣
r11 r12 r13 ox
r12 r22 r23 oy
r31 r32 r33 oz
0 0 0 1

⎤⎥⎥⎦ (6)

where ri j is an element in the observer pose rotation matrix; ox, oy, and oz denote the
position of the observer (UAV) relative to the world frame; and TB

C and TW
B are the pose

transformation matrices. Rotation of the coordinate system is usually represented by a
rotation matrix or a quaternion representation.

3.4. Tracking Based on the Improved LSTM-KF Model

In this study, the YOLOX algorithm is employed because it can balance speed and
accuracy. Dynamic states of the target Procapra przewalskii and the quadrotor reduce
the robustness of the pose estimation based on the descriptions in Section 3.3. The target
Procapra przewalskii could not always be captured in the FoV during a surveillance as false
positive or negative results may be found. In addition, partial or full occlusion might occur
but not often. To address the above issues, the KF model is utilized to enhance tracking,
but it requires the specification of a motion model and a measurement model in advance,
which increases the burden on the modeler.

3.4.1. Model Structure and Prediction Steps

As introduced above, an improved LSTM-KF model is proposed in the current study,
which is a time regularization model for attitude estimators. Its main idea is to use the
KFs without specifying a linear conversion function or fixed process and measuring the
covariance matrixes Q and R.

The network of the standard LSTM (Figure 7) exhibits memory units, forgetting gates
(ft), input gates (it), and output gates (Ot). Some information of cell state Ct−1 is retained
in the current cell state Ct, and the amount of retained information is determined by ft,
as given in Equation (7). Meanwhile, it and Ot can be calculated with Equations (8) and
(9), respectively.

ft = σ(Wf · [ht−1, xt] + b f ) (7)

it = σ(Wi · [ht−1, xt] + bi)
Ct = tanh(Wc · [ht−1, xt] + bc)

(8)

Ot = σ(Wo · [ht−1, xt−1] + bo)
ht = Ot · tanh(Ct)

(9)

Figure 7. Network structure of the standard LSTM.
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Here, Ot on the standard LSTM network is modified as follows:

Yt = VtCt +
t−1

∑
n=0

WntXn (10)

In Equation (10) above, {X0, X1, . . . , Xt−1} and {Yt, Yt+1, . . . , Yt+n} are the input and
output of the LSTM network, respectively; {W0(t), Wt, . . . , W(t−1)t} and {W0(t+1), Wt(t+1), . . .
W(t−1)(t+1)} represent the direct weights of the input and output, respectively; C refers to
the current state of the LSTM network; and V is the coefficient.

KF is an optimal state estimator under the assumptions of linear and Gaussian noise.
Specifically, if the state and the measurement state are expressed as yt and zt, respectively,
the hypothetical model here can be expressed in Equations (11) and (12).

yt = Ayt−1 + w, w → N(0, R) (11)

Zt = Hyt + v, v → N(0, R) (12)

Because the incoming measurements are noisy estimates of potential states and H = I in
Equation (11), Equations (11) and (12) can be modified to Equations (13) and (14), respectively,
which are the basic models of LSTM-KF. In the equations below, Zt denotes the model mea-
surement state; Wt is the weight at moment t; Qt and Rt are covariance matrices; and f is a
nonlinear transfer function.

yt = f (yt−1) + wt, wt → N(0, Qt) (13)

Zt = yt + vt, v → N(0, Rt) (14)

The prediction step can be defined by Equations (15) and (16).

ŷ′t = f (ŷt−1) (15)

P̂′ = FP̂t−1FT + Q̂t (16)

where f is modeled by an LSTM module, F is the Jacobian matrix of f relative to ŷt−1, and
Q̂t is the output of the second LSTM model. Thus, the updating steps are specified in
Equations (17)–(19).

Kt = P̂t
′(P̂t + R̂t)

−1 (17)

ŷt = ŷ′t + Kt(ẑt − ŷ′t) (18)

P̂t = (I − Kt)P̂t
, (19)

where R̂t is the output of the third LSTM module and ẑt refers to the observed measurement
at time t. Next, these LSTM modules are described in detail.

3.4.2. Architecture and Loss Function

In this paper, LSTMf, LSTMQ, and LSTMR are selected to represent the three LSTM
modules of f, Q̂t, and R̂t, respectively. LSTMf is composed of three stacked layers (1024
hidden cells in each) and three fully connected (FC) layers (with 1024, 1024, and 48 hidden
cells). Similarly, standard LSTM is built as LSTMf, but Ot of the LSTMf is modified to
connect to it. In addition, ReLU nonlinearity is introduced to all FC layer activations except
the last, and each LSTM layer is followed by a lost layer with a retention probability of 0.7.
LSTMQ and LSTMR follow with 256 hidden unit monolayer frameworks and 48 hidden
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units. Meanwhile, Ot connects with it to prevent the video time sequence of the agency and
the Procapra przewalskii training to avoid overfitting. Figure 8 shows each module of the
LSTM-KF model and Figure 9 displays an overview of the system.

Figure 8. Structure of the LSTM-KF model.

Figure 9. Overview of the LSTM-KF model: (a) a high-level depiction of the architecture which uses
three LSTM modules to predict the internals of the KF; (b) LSTM-KF unrolled over time, which can
be trained end to end with backpropagation.

At each t, taking ŷt−1 as an input, LSTMf generates the intermediate state ŷ′t without
depending on the current measurement; LSTMQ takes ŷ′t and Q̂t as the input and output,
respectively, and estimates the process covariance; and taking Zt and R̂t as an input and out-
put, respectively, LSTMR only estimates the measured covariance. Finally, ŷ′t and Zt, along
with the covariance estimates made here, are fed into a standard KF (Equations (16)–(19)),
ultimately yielding a new prediction ŷt. Moreover, Q and R are restricted to diagonal and
positive definite by indexing the output of the LSTMQ and LSTMR modules in this study.

Preliminarily, the standard Euclidean loss summation is applied throughout the entire
process, but the LSTMf module fails to learn reasonable mapping. Therefore, the loss
function is introduced with a term to enhance the gradient flow to the LSTMf module in
the current study. Equation (20) expresses the specific loss function.

L(θ) =
1
T

T

∑
t=1
||yt − ŷt(θ)||2 + λ||yt − ŷ′t(θ)||2 (20)

3.4.3. Optimization of Parameters

All parameters θ in the loss function are optimized to minimize the loss given by
Equation (20) regarding all free parameters in the model applied in this work, which is the
connection of the ownership weight matrix and bias from all three LSTM modules, which
are a combination of the LSTM layer and the linear layer (Figure 8).
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The LSTM-KF model can achieve end-to-end training, and the gradient can be obtained
through the time backpropagation algorithm [26]. All the computations and states in
the model are presented by a single data flow graph, so that communication between
the sub-computations can be displayed, which is conductive to the parallel execution of
independent computations to obtain the gradient as soon as possible.

In addition, the Adam-based optimizer [27] is introduced for training iteration to up-
date the gradient, ensuring high stability and high predictability of the model. Meanwhile,
the update rules are extended based on the L2 norm to those based on the Lp norm. A large
p results in numerical instability of these variants. However, in a special case of p→ ∞, the
algorithm is simple but stable, which can be calculated with Equation (21).

vt = β
p
2vt−1 + (1− β

p
2)|gt|p (21)

With the Lp norm, the step size at time t is supposed to be inversely proportional to
vt

1/p, and then Equation (21) can be modified to Equation (22).

vt = (1− β
p
2)

t

∑
i=1

β
p(t−i)
2 · |gi|p (22)

It should be noted that the attenuation term is equivalently parameterized here to
β

p
2 instead of β2. If p→ ∞ and vt = limp → ∞(vt)1/p are defined, Equations (23)–(26) can be

obtained. This corresponds to a very simple recursive equation (Equation (27)).

vt = limp→∞(vt)
1/p = limp→∞((1− β

p
2)

t

∑
i=1

β
p(t−i)
2 · |gi|p)

1/p

(23)

= limp→∞(1− β
p
2)

1/p
(

t

∑
i=1

β
p(t−i)
2 · |gi|p)

1/p

(24)

= limp→∞(
t

∑
i=1

(β
(t−i)
2 · |gi|p))

1/p

(25)

= max(βt−1
2 |g1|, βt−2

2 |g2|, . . . , β2|gt−1|, |gt|) (26)

vt = max(β2 · vt−1, |gt|) (27)

The initial value is v0 = 0. Note that conveniently, the initialization bias does not
necessarily need to be corrected. The improved Adam-based optimizer is simpler than the
original and is easier for gradient updating.

4. Result

The performance of the trained model was assessed on a Jetson AGX Xavier onboard
computer, where the coupled detection head of the original YOLO model was replaced
with the decoupled head, which greatly accelerated training convergence. As mentioned,
the robustness of the proposed model was observed on a streaming video with various
techniques for quantitative analysis Lastly, several intensive flight tests were performed on
a self-assembled quadrotor platform to evaluate the overall performance.

4.1. Detection Effect of the YOLOX Model

The YOLOX model outputs a predictive bounding box that classifies detected objects
and marks their locations, which plays a key role in subsequent pose estimation using
the UAV. The model training lasted for 1000 iterations, during which time the loss did
not degrade. Because the accuracy of the model is affected by different neural network
resolutions, the YOLOX model was trained with different resolutions (i.e., 416 × 416,
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512 × 512, 640 × 640) to evaluate the best performance. The four input resolutions are
compared in Table 1.

Table 1. Performances of YOLOv4-Tiny and YOLOX with respect to different resolutions.

Method Backbone Size
mAP@0.5

(AP50)
FPS

YOLOv4 CSPDarknet-53
416 × 416
512 × 512
640 × 640

83.19%
85.87%
88.67%

6.12
6.24
6.02

YOLOX Darknet-53 640 × 640 93.25% 13.56

Furthermore, the surveillance performed by UAVs was realized based on real-time
perception solutions, which focus more on object detection and tracking. In this case,
the detection speed and accuracy had to be balanced to ensure consistent detection and
tracking, in which delay can be neglected and accuracy is high enough. Thus, the YOLOX
and YOYLOv4 models of the same network resolution were compared to examine their
accuracy and speeds.

After training, the model performance in detecting target Procapra przewalskii on
real-time videos captured was evaluated on an Intel RealSense D435i stereo camera. The
trained model was proven to be robust under various environments and exhibits low false
positives and negatives. Procapra przewalskii tracking was then successively assessed after
assuring the validity of the model.

4.2. Tracking Performance on Target

In this study, the LSTM-KF model was employed to track and identify the behaviors
and gestures of the video sequence dataset of Procapra przewalskii. Six object-tracking
sequences were comprehensively generated from the Procapra przewalskii dataset, and
the 6-DOF ground realistic attitude was available. The LSTM-KF model was trained at
2× 10−5, decaying by 0.95 from the second period. Before training, gradients of 100 time
steps were propagated using a truncated backpropagation time.

However, for a single-layer LSTM with 16 hidden units, batch size is set to 2 and
the learning rate is designed as 5× 10−4. After the model is trained for 120 periods, the
gradient is propagated again for 10-time steps in the same way. It is the same case for the
standard LSTM method evaluated in this work.

The tracking algorithm can be evaluated by employing the successive frames of depth
frame sequence tracking through the 3D CAD model of 3D pose. Therefore, all the task
methods are compared here to obtain a target-tracking method which is superior to the
existing methods. Table 2 displays the results of tracking recognition under the scenario.

Table 2. Effects of temporal regularization on object-tracking estimations of Procapra przewalskii.
The errors in translation are denoted as [mm].

Male
Trans

Female
Trans

Young
Trans

Mean
Trans

D.J. Tan et al. 1.58 2.55 3.85 2.66
+Kalm an Vel.al 1.49 2.42 3.34 2.42
+Kalm an Acc. 1.49 2.41 3.32 2.41

+EMA 1.59 2.56 3.87 2.67
+Std. LSTM 40.98 45.98 50.15 45.7

LSTM-KF (ous) 0.58 0.67 1.22 0.82
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4.3. Verification of Field Tracking Flight

To integrate a perception to reaction and evaluate the surveillance system, four sites
(the red points in Figure 4b) were selected to verify the tracking effect of the UAV on
Procapra przewalskii. The parameter settings for the flight test are shown in Table 3.

Table 3. Defined parameters for flight test.

Parameters Value

θ 12 deg
Vθmax 45 deg/s
VZmax 2 m/s
VXmax 2 m/s
Rsafe 5 m
Rsur 30 m

Due to the complexity of the algorithm and the uncertainty of the research site, simula-
tion verification and parameter adjustment of the algorithm are necessary before actual flight.
Prometheus is an open-source autonomous drone software platform with seamless switch-
ing from simulation to real operation (https://wiki.amovlab.com/public/prometheus-wiki/
Prometheus-%E8%87%AA%E4%B8%BB%E6%97%A0%E4%BA%BA%E6%9C%BA%E5%BC%
80%E6%BA%90%E9%A1%B9%E7%9B%AE/Prometheus-%E8%87%AA%E4%B8%BB%E6%97%
A0%E4%BA%BA%E6%9C%BA%E5%BC%80%E6%BA%90%E9%A1%B9%E7%9B%AE.html, ac-
cessed on 12 August 2021), emergency safety protection mechanisms, interactive ground
stations, unified interfaces, and code specifications. Figure 10 shows the validation scenario
of the Prometheus simulation system, which simulated the LSTM-KF model proposed
in this paper to track Procapra przewalskii. The field verification results are displayed
in Figure 11.

Additionally, the estimated dynamic position is compared with the ground truth of the
tracked Procapra przewalskii. Figures 12 and 13 demonstrate that the system can basically
track the poses of Procapra przewalskii in 3D space. Regardless of jittering and occasional
drift, the Procapra przewalskii can be relocated accurately after several frames. In addition,
the figure shows that error is basically within 0.5 m in all axes of the world frame.

Figure 10. Verification scenario for the tracking algorithm of Procapra przewalskii based on the
Prometheus simulation system.
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Figure 11. First-person views of the UAV system during the Procapra przewalskii track (the yellow
and the red bounding boxes are the detected and predicted states of the object, respectively).

Figure 12. Comparison between the estimated position and ground truth of Procapra przewalskii.
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Figure 13. Error throughout the mission time.

In addition, the root-mean-square error (RMSE) and mean absolute error (MAE)
(defined in Equations (28) and (29), respectively) were calculated, as presented in Table 4.
Here, RMSE indicates the degree of prediction error generated by the model, and a large
error results in heavier weights. MAE reflects the error between the predicted and actual
values, and a smaller MAE corresponds to a better model performance. yi and ŷi in
Equations (28) and (29) are the true value and the predicted value, respectively.

RMSE =

√
1
n

n

∑
i=1

(yi − yi)
2 (28)

MAE =
1
n

n

∑
i=1
|yi − yi| (29)

Table 4. Calculated RSME and MAE for position estimation of the dynamic Procapra przewalskii.

Error Evaluation X(m) Y(m) Z(m)

RMSE
MSE

0.0477
0.0022

0.0478
0.0023

0.0221
0.0005

In addition, during monitoring, the distance between the UAV and the target Procapra
przewalskii constantly changed, so it is necessary to further analyze the accuracy at different
distances. As shown in Table 5, the performance of the proposed method remained basically
stable regardless of the distance between the UAV and the target Procapra przewalskii.

Table 5. Calculated RSME and MAE of position estimation of dynamic Procapra przewalskii with
different object distances.

Object Distance 10–30 30–50

Error Evaluation X(m) Y(m) Z(m) X(m) Y(m) Z(m)

RMSEMSE 0.0477
0.0022

0.0478
0.0023

0.0221
0.0005

0.0773
0.0059

0.0805
0.0648

0.0656
0.0431

5. Discussion

It should be highlighted that if the input resolution is too large, the best possible mAP
increases, but the training and detection speed are indeed negatively affected. Therefore,
the higher input resolution is not trained in this work, because the currently obtained
speed and accuracy at 640 × 640 are acceptable, and the mAP and the union threshold
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intersection are 88.67% and 0.50 (AP50), respectively. Unfortunately, the fps is not as fast as
the resolution of 512 × 512. Meanwhile, it was found that the mAP of the YOLOX model
was lower in contrast to the YOLOv4 model, but the fps was higher. In consideration of
the greater significance of fps in real-time predictions, the YOLOX model with a higher fps
was selected to balance the accuracy and speed.

Table 2 clearly displays that the motion models that do not investigate the training
data, i.e., Kalman Vel Kalman Acc and EMA, are not meaningfully improved for trans-
lational estimation and rotation. However, the improved LSTM-KF model proposed in
this paper performs better in predicting the target position (0.82 mm) with a mean error
of 61.26%, which is higher than the original estimate and better than the results in [28],
using the KF algorithm alone for target tracking, and exhibits a lower average error. In
addition, the LSTM-KF model greatly improves the original measurements with all actions
outperforming the standard LSTM by an average of 14% compared to the state-of-the-art
method. In contrast, the standard LSTM method estimates the position and rotation with
such a large error that they fail to meet the requirements.

As shown in Tables 3 and 4, the 3D object pose-estimation systems focused on by other
scholars [29,30] highlight the objects in static states, while the model applied in this paper
exhibited higher errors in estimating the dynamic position of Przewalski’s Tibetan antelope in
real time. However, it possesses better robustness and is also more accurate than the model
in [28] that uses the KF algorithm alone for 3D pose estimation of the target. In addition, it
mitigates the influence of the modeler on the a priori specified motion and noise models. The
model for 3D pose estimation of dynamic targets using an improved spatio-temporal context
algorithm in comparison to that in [31] exhibits higher accuracy, a fast network convergence,
and fewer impacts from measurement noise. Overall, the proposed LSTM-KF possesses a
better performance in pose estimation than the sole use of the KF algorithm and improved
spatio-temporal context algorithm. If the target animal, Przewalski’s Tibetan antelope, moves
suddenly, redundant overshot periods follow, slightly affecting the overall performance of the
model. Thus, it further proves that the proposed model can be better applied to autonomous
UAV monitoring systems in a real-time and manipulable manner.

6. Conclusions

In this paper, a deep-learning-based model was employed to build an autonomous
UAV tracking system to help monitor Procapra przewalskii. The LSTM-KF model is
proposed and applied to track the target, and the YOLOX model is employed to identify
the target. Meanwhile, they were combined to estimate the pose of the protozoa in 3D
images, thus improving the performance of object tracking. In addition, the three different
standard LSTM networks modeled in the LSTM-KF model are optimized by modifying
and connecting the computation of Qt. During the training iterations of the LSTM-KF
model, Adam as an optimizer is improved by extending the L2 criterion-based update rule
to an Lp criterion-based rule. The results show that the improved LSTM-KF model can
achieve the best result (0.82 mm) in predicting the target position with an average error of
61.26%, which is higher than the original estimate, significantly improving the accuracy of
the measurement results. In addition, the YOLOX model exhibits an mAP of 93.25% and
an FPS of 13.56 on images with 640 × 640 resolution, which are higher than those of the
YOLOv4 model. Overall, the proposed improved LSTM-KF model is robust, valid, and
reliable for animal tracking, recognition, and pose estimation.

However, this paper is subject to several shortcomings for Procapra przewalskii
tracking. For example, when UAVs are applied to track dense herds of Procapra przewalskii,
accuracy is decreased if Procapra przewalskii individuals occlude each other. Based on
this, we are trying to solve this problem in future research using algorithms based on depth
sorting. In addition, it is believed that a visual servo controller can be designed to control
the UAV to explore the environment or avoid obstacles using only one camera, ensuring
that the tracked object is always in the field of view of the camera.
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Abstract: Most mission planning algorithms solve multi-robot-multi-mission problems based on
mixed integer linear programming. In these algorithms, the rewards (or costs) of missions for
each robot are calculated according to the purpose of the user. Then, the (robot-mission) pair
that has maximum rewards (or minimum costs) is found in the rewards (or costs) table and the
mission is allocated to the robot. However, it is hard to design the reward for minimizing total
mission completion time because not only a robot, but also the whole robots’ mission plans must be
considered to achieve the purpose. In this paper, we propose centralized mission planning for multi-
robot-multi-mission problems, minimizing total mission completion time. First, mission planning for
single-robot-multi-mission problems is proposed because it is easy to solve. Then, this method is
applied for multi-robot-multi-mission problems, adding a mission-plan-adjustment step. To show the
excellent performance of the suggested algorithm in diverse situations, we demonstrate simulations
for 3 representative cases: a simple case, which is composed of 3 robots and 8 missions, a medium
case, which is composed of 4 robots and 30 missions, and a huge case, which is composed of 6 robots
and 50 missions. The total mission completion time of the proposed algorithm for each case is lower
than the results of the existing algorithm.

Keywords: mission planning; task allocation; task alignment; task planning; multi-robot systems;
automation; robot control

1. Introduction

As automation technology highly advances, concepts of swarming, Manned and
Unmanned Teaming (MUM-T), etc., occurred [1–9]. These concepts focused on overcoming
a variety of missions which are hard for single robot by using multiple robots [10–14].
For example, multiple robots can complete surveillance and reconnaissance missions of
a specific area within a short time, while a single robot takes much more time. If there
are multiple missions to solve, making a mission plan for each robot considering the
purpose of the user is important for efficiency. Although there are various purposes, such
as conducting important missions first, minimizing fuel consumption (or minimizing total
moving distances), etc., most users want to complete whole missions as soon as possible,
which means minimizing total mission completion time.

Mission planning technologies have been developed in various ways [15–33]. One
of the general mission planning methods is Consensus-based Bundle Algorithm (CBBA)
which is based on scores, i.e., rewards or costs of missions for each robot [25]. The CBBA
algorithm is separated into two steps: the bundle construction step and conflict resolution
step. In the bundle construction step, each robot calculates the sequence of missions based
on the scores under the assumption that the robot accomplishes all missions. The scoring
scheme is designed using the expected start/finish time of tasks, distances between robots
and missions, etc., based on the user’s purpose. In the conflict resolution step, each robot
decides which missions it will do based on scores calculated in the bundle construction step.
Usually, the robot who has the highest score will take the mission that has the maximum
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score. CBBA is a deterministic allocation algorithm, so results are always same if the inputs,
the information of the robots and missions, are same. In addition, the computation cost of
CBBA is much lower than for other heuristic algorithms.

The modified task allocation that can handle some constraints based on CBBA is
Coupled-Constraint CBBA (CCBBA) [26]. The missions that have a constraint relationship
are grouped as ‘Activity’ and each mission in the activity is set as ‘Element’. Such settings
enable easy judgement of whether a mission can be allocated to a robot or not. In addition,
it uses optimistic and pessimistic bidding strategies. Each robot bids to the missions based
on the strategy for obeying the constraints. However, there are some problems regarding
convergence and calculation time for mission planning. Hence, our previous work pro-
posed the Task Allocation and Alignment based on Constraint Table and Alignment Rules
(TACTAR), which is modified based on CBBA for centralized mission planning systems [33].
It handles some spatial and temporal constraints using a constraint table and four alignment
rules for mission planning. These methods commonly use only the robot’s own information
to score the missions, but the plans of all robots should be considered to minimize the total
task completion time. Hence, CBBA, CCBBA, and TACTAR cannot be used for mission
allocation, minimizing total mission completion time without any modification.

Qin et al. proposed path planning algorithms for multiple Unmanned Aerial Vehicles
(UAVs) to minimize mission completion time [24]. The problem in this paper is defined as
a collection of sparse multiple sensors. The sensor points which have distances less than
the communication distance of UAVs are grouped, and the center point of each group is
defined as hovering point. Then, an ant colony algorithm for solving Traveling Salesman
Problem (TSP) is used to visit whole hovering points by one UAV, and a cycle is made as
the result. The k-cycles algorithm is used for decomposing the cycle into the number of
UAVs. However, this algorithm is based on basic TSP, which means that UAVs must come
back to home, and the home positions for all UAVs must be the same. In addition, the ant
colony algorithm is used for solving TSP, so the calculation cost of the algorithm will be
fatal when the number of hovering points becomes larger.

Wang et al. also proposed path planning algorithms for multiple fixed-wing UAVs
for minimizing mission completion time [34]. The algorithm focused on the path planning
of fixed-wing UAVs for UAV-to-UAV (U2U) communication with the aim of minimum
information transmission time in the presence of ground transmitters. The constraints
contain the communication throughput requirement, interference from ground transmitters,
the speed and acceleration range of each UAV, and the minimum communication distance
of UAVs. However, they only consider only one mission: communicating two UAVs
with each other. Hence, the algorithm calculates the local path planning for each UAV to
minimize information transmission time, not the sequence of missions for each UAV.

In this paper, we propose a centralized mission planning algorithm for multi-robot-
multi-mission problems, minimizing total mission completion time. The proposed algo-
rithm is designed based on CBBA to overcome some limitations such as computation
time and necessity to set the same home for all robots in the above algorithms. First,
we introduced the algorithm for single-robot-multi-mission problems, minimizing total
mission completion time based on the method using the bundle construction step in CBBA.
It focused on how to decide the sequence of missions that the robot has to work on. Then,
the algorithm was expanded for multi-robot-multi-mission problems. To overcome limita-
tions of CBBA, CCBBA, and TACTAR, we proposed bundle adjustment, which adjusts the
mission plan only if the total mission completion time could be lower by the adjustment.
In order to apply the status of each robot in real time, the proposed algorithm should be
run iteratively. However, if the positions of robots are changed, the mission plan could fall
into another local optimal solution, so the mission plan could be changed frequently. To
prevent this phenomenon, the initial bundle construction, which is based on the arrival
times to missions for robots, is performed only at the first run, and the previous mission
plan is used from the second iteration instead of the initial bundle construction. Then, some
simulation results using the proposed algorithm will be provided.
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2. Preliminaries

The mission planning problem for minimizing total mission completion time is to find
a sequence of missions for each robot that has the minimum total mission completion time
as seen below:

Min
(
Max

(
te(j, pi)xij

))
(1)

subject to
Nr

∑
i=1

xij ≤ 1, ∀j ∈ J (2)

Nm

∑
j=1

xij ≤ Lm, ∀i ∈ I (3)

Nr

∑
i=1

Nm

∑
j=1

xij = Nmin (4)

xij ∈ {0, 1} (5)

where te(j, pi) is finish time of mission j if robot i conduct mission j along the path pi; xij
is the flag that is 1 if mission j is taken to robot i and 0, or otherwise, Nr and Nm are the
number of robots and missions, respectively, Lm is the maximum number of missions that
the robot can take, and Nmin is the minimum number between Nm and NrLm. I and J are
robot and task group, respectively, so the number of elements in I is Nr and the number
of elements in J is Nm. Note that one mission is taken to only one robot as described
in Equation (2).

The mission planning is composed of two parts: mission allocation and mission
alignment. The mission allocation is to decide which robot will take which mission. The
mission alignment is to calculate the start time and the finish time of each mission based
on the result of mission allocation. Some mission planning algorithms conduct mission
allocation at first for all missions; then, the mission alignment is performed once based
on the mission allocation result. The other mission planning algorithms conduct mission
allocation for one mission, and then the mission alignment is performed for one mission.
This procedure repeats for all missions. This sequence is used when the mission allocation
uses the start time or the finish time of each mission for the results of mission alignment.

3. Related Works

This section reviews the most common mission planning works related to the proposed
algorithm; one is CBBA and the other is TACTAR [25,33].

3.1. Consensus-Based Bundle Algorithm (CBBA)

CBBA is one of the mission planning algorithms for the multi-robot-multi-mission
problem. It is inspired by a decentralized auction process. CBBA is composed of two steps:
the bundle construction step and the conflict resolution phase. In bundle construction step,
robots make their mission lists, called a bundle, and decide their own sequence of missions
assuming that each robot takes all missions. For this step, each agent calculates the rewards
of the possible mission. The reward calculation scheme depends on the purpose of users.
The procedure of bundle construction is as in Algorithm 1.

In lines 1–4, the results of the previous iteration are copied into the results of the
current iteration. yi, zi, bi, and pi are winning bids (the highest rewards of each mission)
that robot i knows, winning robots (who take each mission) that robot i knows, the bundle
(which mission that robot to do) of robot i, and the sequence of the missions of the robot i,
respectively. Note that t is the number of iterations (maybe Lm or Nm times), not time. If
the number of bundles for robot i is lower than Lm, the rewards of missions that are not
included in the bundle is calculated. Spi

i means the total reward of robot i if it completes
along the sequence pi. pi(+)n{j} means adding mission j into the nth position of sequence
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pi, so the reward of the mission is the highest score difference Spi(+)n{j}
i − Spi

i when the
mission is added to the sequence. In line 7, the reward of the mission is compared to
the winning bid of the mission. hij is 1 if the reward is higher than the winning bid, and
0 otherwise. If the rewards of all possible missions are calculated, then the robot i chooses
the mission that has the highest rewards. Finally, the chosen mission is added to the results
of the current iteration.

Algorithm 1 CBBA Phase 1: Bundle construction

1: yi(t) = yi(t− 1)
2: zi(t) = zi(t− 1)
3: bi(t) = bi(t− 1)
4: pi(t) = pi(t− 1)
5: while |bi| < Lt, do

6: cij = maxn≤|pi |S
pi(+)n{j}
i − Spi

i , ∀j ∈ J \ bi

7: hij = II
(

cij > yij

)
, ∀j ∈ J

8: J Ji = argmaxjcij·hij

9: ni,J Ji = argmaxn Spi(+)n{J Ji}
i

10: bi = bi(+)end{J Ji}
11: pi = pi(+)ni,J Ji

{J Ji}
12: yi,J Ji (t) = ci,J Ji

13: zi,J Ji (t) = i
14: end while

The next step of CBBA is the conflict resolution step, which is making a decision on
who will take the mission by comparing the rewards of each robot. Basically, CBBA is for a
decentralized mission planning system, so two communicable robots decide the owner of
missions following the rules described in Table 1.

Table 1. Conflict resolution rules for mission j of robot i which communicates with robot k.

Robot k’s
(Sender) zkj Is

Robot k’s
(Sender) zkj Is

Receiver’s Action
(Default: Leave)

k

i update if (ykj > yij)
k update

m /∈ {i, k} update if (skm > sim) || (ykj > yij)
none update

i

i leave
k reset

m /∈ {i, k} reset if (skm > sim)
none leave

m /∈ {i, k}

i update if (skm > sim) & (ykj > yij)
k update if (skm > sim), reset else
m update if (skm > sim)

n /∈ {i, k, m}
update if (skm > sim) &

((skn > sin) || (ykj > yij))
reset if (skn > sin) & (sim > skm)

none update if (skm > sim)

none

i leave
k update

m /∈ {i, k} update if (skm > sim)
none leave

If CBBA is used in centralized mission planning, the conflict resolution step based
on the rules in Table 1 is replaced into the Sequential Greedy Algorithm (SGA). When the
bundle construction step is performed, the rewards of missions for each robot are calculated
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and the central computer makes a reward table based on the rewards of each robot. Then,
the SGA just finds the (robot-mission) pair that has the maximum reward and conducts
mission allocation and alignment.

3.2. Centralized Task Allocation and Alignment Based on Constraint Table and Alignment
Rules (TACTAR)

CBBA cannot solve the problem with several constraints. The constraints are separated
into two types: temporal and spatial constraints. The temporal constraints are constraints
about the start/finish time of missions. For instance, ‘mission A ends before mission B
starts’, ‘mission A starts simultaneously with mission B’, etc., are temporal constraints. The
spatial constraints are constraints about mission allocation. For example, ‘mission A is
local MUTEX with mission B’ means mission A cannot be allocated to the robot who takes
mission B and vice versa. TACTAR is a centralized mission planning algorithm that can
handle spatial and temporal constraints based on CBBA. Supported constraints in TACTAR
are depicted in Table 2.

Table 2. Supported type of constraints in TACTAR.

Name Description

Simultaneous Mission A and B must start at the same time
After Mission A must start after mission B’s finish time

Start During Mission A must start between mission B’s start time and finish time
End During Mission A must end between mission B’s start time and finish time

Local MUTEX Mission A and B are locally mutually exclusive
Global MUTEX Mission A and B are globally mutually exclusive

The purpose of TACTAR is to calculate the mission plan considering spatial and
temporal constraints quickly. TACTAR does not do as described in line 6 of Algorithm 1,
just calculate rewards of missions, assuming missions are performed right after the robot’s
last mission. The optimization performance may suffer slightly, but calculation speed is
boosted much faster than CBBA. In addition, some filtering process is added to TACTAR
before the beginning of the mission allocation and alignment to not violate constraints. In
the mission alignment of TACTAR, some delay or renewal of the mission time (arrival time
to mission area, start/finish time of mission) are performed based on constraint table and
alignment rules. Further details can be found in [33].

4. Mission Planning Scheme

In this section, we propose a centralized mission planning algorithm for minimizing
the total mission completion time. It is based on minimizing total mission completion time
for a single-robot-multi-mission problem, modified from the bundle construction in CBBA.
So, the algorithm for single-robot is introduced first, and it expands to the algorithm for the
multi-robot problems. Note that only mission alignment is needed in single-robot-single-
mission problems. In addition, note that this section is focused on the mission planning,
not path planning, for minimizing total mission completion time.

4.1. Single-Robot-Multi-Mission Problem

In Single-Robot-Multi-Mission (SRMM) problem, one robot has to conduct all missions,
so there is no need to select missions to conduct. All the mission planning has to achieve is
to decide the sequence of missions and to calculate start/finish time of each mission. To
find the optimal sequence of missions, we propose a process similar to line 6 of Algorithm 1
as described in Algorithm 2.
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Algorithm 2 Mission planning: SRMM

1: while |pi| < Lm, do

2: tij = minn≤|pi |t
e
i (pi(+)n{j}), ∀j ∈ J\pi

3: J Ji = argminj

(
tij

)
4: ni, J Ji = argminn

(
te
i (pi(+)n{J Ji})

)
5: pi = pi(+)ni, J Ji

{J Ji}
6: end while

In line 2, the total mission completion time is calculated when a mission is added to
nth space of sequence using the speed of the robot, the distances between the robot and
mission areas, and duration of missions. It repeats for all missions and lengths of sequence.
Then, it finds the (mission-space) pair that has the minimum total mission completion time.
Finally, the found mission is added to the found space of sequence. Lines 2–5 of Algorithm
2 repeat until all missions (or Lm missions) are allocated. After the final mission is allocated,
the start/finish times of each mission are calculated.

4.2. Multi-Robot-Multi-Mission Problem

Unlike the SRMM problems, each robot must select which missions it will perform
in Multi-Robot-Multi-Mission (MRMM) problems, considering the equipment status of
robots. For example, the robot that does not have camera cannot conduct surveillance and
reconnaissance missions. However, it is hard to conduct a mission allocation because not
only a robot but also the whole robots’ planning results must be considered to achieve total
mission completion time minimization. So, we propose initial bundle construction and
bundle adjustment methods as described in Algorithm 3.

Algorithm 3 Mission planning: MRMM

1: if first time
2: Construct initial bundle
3: else

4: bundle = result of adjustment
5: end if

6: Adjust bundle

If it is first time for the mission planning, initial bundle construction step runs. If
not, the result of the previous adjustment is copied into the bundle for preventing to fall
into local optimization solutions during mission planning iterations. Then, the bundle
adjustment for total mission completion time minimization is run.

In initial bundle construction, as described in Algorithm 4, each robot calculates the
expected finish time of missions based on the positions of the robot and missions, the speed
of the robot, and the duration of each mission for the robot. Then, the table of finish time of
missions for robots will be made. The (robot-mission) pair that has the minimum finish
time of the mission is found in the table. If the pair has an infinity finish time of mission
(initial value of the table), all possible missions are already added to the bundles, so it
breaks out of the iterations. If not, it checks the selected robot that can conduct the selected
mission. If the robot cannot conduct the mission, tisel jsel in the table is set to infinity (or
initial value) and another pair in the table is found. If the robot can conduct the mission,
the mission is added to the bundle of the robot. The column (or row) about the mission is
set to infinity (or initial value) in the table, and the procedure is repeated until all missions
are added to the bundle.

62



Appl. Sci. 2023, 13, 3737

Algorithm 4 Construct initial bundle

1: tij = dij/vi + durij, ∀i ∈ I, ∀j ∈ J
2: while 1
3: isel = argmini

(
tij

)
4: jsel = argminj

(
tisel j

)
5: if tisel jsel

= ∞
6: break

7: else

8: if isel cannot do jsel
9: tisel jsel

= ∞
10: else

11: biselect
= bisel (+)end{jsel}

12: tjsel
= ∞

13: end if

14: end if

15: end while

In the bundle adjustment, line 6 of Algorithm 3, the robot that has the maximum total
mission completion time is found. Then, one of the missions in the bundle of that robot
is moved to the bundles of the others who can conduct the mission. The total mission
completion time for each robot can be calculated based on the bundles following Algorithm
2, because fixing the bundles of each robot means MRMM problems are simplified into
SRMM problems for each robot. The (is, js) pair that has the minimum total mission
completion time is searched. If there are multiple (is, js) pairs that have the same minimum
total completion time, a (is, js) pair in which the larger value is the smallest among the
total mission completion time of imax and is is selected. Finally, the total mission completion
times for the results of previous and current iterations are compared. If the current one
is lower than the previous one, the current bundle and total mission completion time are
copied into the previous results. Then, it goes to line 4 of Algorithm 5 and the procedures are
repeated. If not, it means the previous results are the optimal mission plans for minimizing
the total mission completion time, so it outputs the previous results.

Algorithm 5 Adjust bundle

1: te
max,prev = max(te)

2: bprev = b
3: while 1
4: imax = argmaxi

(
te
i
)

5: for n = 1 : size
(
bimax

)
6: bimax = bimax ,prev
7: jsel(n) = bimax (n)
8: bimax = bimax (−)n
9: bi = bi(+)end{jsel(n)}, ∀i ∈ I\imax if i can do jsel(n)
10: calculate max

(
te

in
)

for b
11: end for
12: te

max = min
(
max

(
te

in
))

13: is = argmini
(
max

(
te

in
))

, ∀i ∈ I\imax
14: js = jsel(argminn

(
max

(
te

in
))

15: if multiple (is, js) that has same te
max

16: choose that has min
(

max
(

te
imax

, te
is

))
17: end if
18: if te

max,prev > te
max

19: te
max,prev = te

max
20: pprev = p
21: else
22: break
23: end if
24: end while

63



Appl. Sci. 2023, 13, 3737

5. Result and Discussion

In this section, some simulation results are shown to assess the algorithm that we
have proposed. We simulated three cases, a simple case, medium case, and huge case, to
prove the performance of proposed algorithm. The simple case is composed of 3 robots
and 8 missions, the medium case is composed of 4 robots and 30 missions, and the huge
case is composed of 6 robots and 50 missions. The speed of all robots and the duration of
all missions are equally set to 2 m/s and 5 s, respectively, to simplify the problem in the
simple case. In the medium and huge cases, the speed of each robot and the duration time
of each mission are set differently to represent the general situations. The detailed scenarios
of simulations are described in Table 3.

Table 3. The scenarios of simulations.

Contents
Specification

Simple Medium Huge

# of robots 3 4 6
# of missions 8 30 50

Pos. of robots [1, 0], [2, 0], [3, 0] [1, 0], [1, 1],
[3, 0], [3, 1]

[1, 0], [1, 1]
[2, 0], [2, 1]
[3, 0], [3, 1]

Pos. of missions

[−2, 3], [−4, 3]
[−4, 5.1], [−2, 5.2]

[7, 7], [9, 7]
[9, 9.1], [7, 9.2]

20·rand(30, 2)-10 20·rand(50, 2)-10

Spd. of robots 2 [m/s] for all 2.0 [m/s], 1.5 [m/s],
1.0 [m/s], 0.5 [m/s]

2.0 [m/s], 1.8 [m/s],
1.6 [m/s], 1.4 [m/s],
1.2 [m/s], 1.0 [m/s]

Dur. of missions 5 [s] for all 2.1:0.1:5 [s] 2.1:0.1:7 [s]

CBBA and TACTAR are used to show that the proposed algorithm is improved over
the existing algorithm. The total mission completion time and computational cost are set as
performance indicators. We used OpenMP parallel computing to run each algorithm, and
the computational cost of each algorithm is measured based on the result of the parallel
computation. The environment of simulations is described in Table 4.

Table 4. The environment of simulations.

Contents Specification

CPU Intel® CoreTM i5-10500 3.10 GHz
(6 cores, 12 threads)

GPU Intel® UHD Graphics 630
RAM 16 GB

Storage 256 GB SSD

Program Calculation Visual Studio Professional 2013 C++
Plotting MATLAB 2018b

5.1. The Simple Case

The results of the simple case are shown in Figures 1–3. Figure 1 depicts the results
of CBBA, Figure 2 depicts the results of TACTAR, and Figure 3 depicts the results of the
proposed algorithm. Panel (a) in Figures 1–3 shows the 2D situation map to easily check
the mission plan result of each algorithm. The ‘R’ and ‘M’ means robot and mission,
respectively. The following number means the index of robots and missions. The red lines
mean the sequence of missions for each robot. For example, R01 will conduct M01, M03,
and M07 sequentially, as seen in Figure 1a. As seen in Figures 1 and 2, the mission plan
result of CBBA is absolutely the same as with the result of TACTAR. However, the mission
plan result of the proposed algorithm is totally different to them. R01 and R03 will conduct
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(M01-M02-M03) and (M05-M06-M07), which are the closest missions to the R01 and R03,
respectively. R02 will conduct M04 and M08, which were the last missions for R01 and R03,
so the total mission completion time is minimized.

Panel (b) in Figures 1–3 shows a timetable of each algorithm to easily check the mission
completion time of each robot. The blue boxes mean the duration times of missions. The
‘R’, ‘M’, and the number after them have the same meanings as in the panel (a). In the
panel (b) of Figures 1 and 2, R01 will complete the last mission, M07, at 25.37 s. So, the total
mission completion times of CBBA and TACTAR are 25.37 s. In the panel (b) of Figure 3,
R03 will complete the last mission, M07, at 21.08 s, which is about 4.3 s lower than the
results of CBBA and TACTAR.

The calculation times of CBBA, TACTAR, and the proposed algorithm for the simple
case are 0.0055 s, 0.0068 s, and 0.0155 s, respectively. The computational cost of the
proposed algorithm is about 2~3 times larger than the others, but it is still fast enough to
run it in real-time.

 
(a) (b) 

Figure 1. The results for simple case using CBBA: (a) 2D situation map; (b) timetable.

 
(a) (b) 

Figure 2. The results for simple case using TACTAR: (a) 2D situation map; (b) timetable.
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(a) (b) 

Figure 3. The results for simple case using proposed algorithm: (a) 2D situation map; (b) timetable.

5.2. The Medium Case

The results of the medium case are shown in Figures 4–6. Figure 4 depicts the results
of CBBA, Figure 5 depicts the results of TACTAR, and Figure 6 depicts the results of the
proposed algorithm. Unlike the simple case, the mission plan result of CBBA is different
to the result of TACTAR, as seen in Figures 4 and 5. R01 will conduct M13 and go to M08
in Figure 4a, while it will conduct M13 and go to M02 in Figure 5a. In Figure 6a, R01 will
initially conduct the same mission as the result of CBBA, M13-M08-M10. However, R01
will conduct M01 after finishing M10 in Figure 6a, while it will conduct M26 in Figure 4a.
The mission plans of R02~04 calculated by the algorithms are very different.

Panel (b) in Figures 4–6 shows a timetable of each algorithm for the medium case. In
the panel (b) of Figure 4, R02 will complete the last mission, M24, at 67.30 s. In the panel
(b) of Figure 5, R01 will complete the last mission, M22, at 47.07 s, which is about 20.3 s
lower than the results of CBBA. In the panel (b) of Figure 6, R01 will complete the last
mission, M04, at 44.59 s, which is about 22.8 and 2.5 s lower than the results of CBBA and
TACTAR, respectively. The main reason is the bundle adjustment step in the proposed
algorithm. The number of missions each robot should conduct in Figure 4b are 11, 11, 5,
and 3. However, in the number of missions each robot should conduct in Figure 6b are 8, 6,
7, and 9. It means that the missions of the robots that need to conduct more missions are
distributed to the robots that have fewer missions by the bundle adjustment step.

The calculation times of CBBA, TACTAR, and the proposed algorithm for the simple
case are 0.0436 s, 0.0199 s, and 0.0342 s, respectively. Unlike the results for the simple case,
the proposed algorithm has a lower computational cost than CBBA for the medium case.
The computational cost is slightly increased, but it is still fast to run it in real-time.

5.3. The Huge Case

The results of the huge case are shown in Figures 7–9. Figure 7 depicts the results
of CBBA, Figure 8 depicts the results of TACTAR, and Figure 9 depicts the results of the
proposed algorithm. Like the medium case, the mission plan results of CBBA, TACTAC,
and the proposed algorithm are totally different from each other. R01 will conduct M46,
M27, M37, M12, M47, M20, M29, M01, M05, and M39 sequentially in Figure 7a. However,
it will conduct M07-M13-M09-M35-M19-M45-M38-M46 and M06-M12-M28-M05-M21-M20-
M01-M26-M29-M27 in Figures 8a and 9a, respectively.
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(a) (b) 

Figure 4. The results for medium case using CBBA: (a) 2D situation map; (b) timetable.

 

(a) (b) 

Figure 5. The results for medium case using TACTAR: (a) 2D situation map; (b) timetable.

Panel (b) in Figures 7–9 shows a timetable of each algorithm for the huge case. In the
panel (b) of Figure 7, R06 will complete the last mission, M22, at 63.83 s. In the panel (b)
of Figure 8, R05 will complete the last mission, M48, at 59.27 s, which is about 4.6 s lower
than the results of CBBA. In the panel (b) of Figure 9, R05 will complete the last mission,
M49, at 56.76 s, which is about 7.1 and 2.5 s lower than the results of CBBA and TACTAR,
respectively. The performance of the bundle adjustment step in the proposed algorithm can
also be seen in the huge case. However, unlike the medium case, the number of missions
each robot should conduct in Figures 7b and 9b are (10, 8, 8, 10, 7, 7) and (10, 10, 7, 7, 8,
8), respectively, which are similar to each other. It means that the bundle adjustment step
in the proposed algorithm considers not only the number of missions but also the total
mission time of each robot.
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(a) (b) 

Figure 6. The results for medium case using proposed algorithm: (a) 2D situation map; (b) timetable.

The calculation times of CBBA, TACTAR, and the proposed algorithm for the simple
case are 0.1815 s, 0.0754 s, and 0.1636 s, respectively. Like the results for medium, the
proposed algorithm has a lower computational cost than CBBA for the huge case. The
computational cost is highly increased compared to the simple case, but it is still fast to run
it in real-time.

 

(a) (b) 

Figure 7. The results for huge case using CBBA: (a) 2D situation map; (b) timetable.
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(a) (b) 

Figure 8. The results for huge case using TACTAR: (a) 2D situation map; (b) timetable.

 

(a) (b) 

Figure 9. The results for huge case using proposed algorithm: (a) 2D situation map; (b) timetable.
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6. Conclusions

In this paper, we suggested a centralized mission planning algorithm of single/multiple
robots for minimizing total mission completion time. First, we introduced the algorithm for
single-robot-multi-mission (SRMM) problems, minimizing total mission completion time
based on the bundle construction step in CBBA. In SRMM problems, which robot will take
the mission was already decided, so it focused on how to decide the sequence of missions
that the robot has to work on. Then, the algorithm was expanded for multi-robot-multi-
mission (MRMM) problems. Unlike SRMM problems, it had to decide which robot will
take the mission. However, it is hard to decide at once because the whole situation needs
to be considered to minimize the total mission completion time. So, the initial bundles
were constructed based on the expected finish time of each mission for robots and bundles
and were adjusted iteratively. Finally, we demonstrated simulation results comparing
them with CBBA and TACTAR, the existing mission planning algorithm, and the proposed
algorithm. To verify the performance of these algorithms for various situations, we selected
3 cases: the simple case, which was composed of 3 robots and 8 missions, the medium
case, which was composed of 4 robots and 30 missions, and the huge case, which was
composed of 6 robots and 50 missions. The results showed that the proposed algorithm
always outputs the mission plan that has the minimum total mission completion time. In
addition, the computational cost of the proposed algorithm is lower than CBBA, and larger
than TACTAR. However, the calculation time of our algorithm is fast enough to use in
real-time applications.

One of the limitations in our algorithm is that it cannot handle constraints like TACTAR.
It is important because most users want to set constraints for various applications. The
constraints are separated into two types: the spatial ones and the temporal ones. The
spatial constraints are related to mission allocation. A typical spatial constraint is MUTual
Exclusive (MUTEX). The temporal constraints are related to the mission alignment, e.g.,
mission time. The typical spatial constraints are ‘Before’, ‘After’, ‘Simultaneous’, etc. The
modification of our algorithm to handle those constraints is the focus of our next work.
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Abstract: The bottleneck in plant breeding programs is to have cost-effective high-throughput pheno-
typing methodologies to efficiently describe the new lines and hybrids developed. In this paper, we
propose a fully automatic approach to overcome not only the individual maize extraction but also the
trait quantification challenge of structural components from unmanned aerial system (UAS) imagery.
The experimental setup was carried out at the Indiana Corn and Soybean Innovation Center at the
Agronomy Center for Research and Education (ACRE) in West Lafayette (IN, USA). On 27 July and
3 August 2021, two flights were performed over maize trials using a custom-designed UAS platform
with a Sony Alpha ILCE-7R photogrammetric sensor onboard. RGB images were processed using a
standard photogrammetric pipeline based on structure from motion (SfM) to obtain a final scaled 3D
point cloud of the study field. Individual plants were extracted by, first, semantically segmenting
the point cloud into ground and maize using 3D deep learning. Secondly, we employed a connected
component algorithm to the maize end-members. Finally, once individual plants were accurately
extracted, we robustly applied a Laplacian-based contraction skeleton algorithm to compute several
structural component traits from each plant. The results from phenotypic traits such as height and
number of leaves show a determination coefficient (R2) with on-field and digital measurements,
respectively, better than 90%. Our test trial reveals the viability of extracting several phenotypic traits
of individual maize using a skeletonization approach on the basis of a UAS imagery-based point
cloud. As a limitation of the methodology proposed, we highlight that the lack of plant occlusions
in the UAS images obtains a more complete point cloud of the plant, giving more accuracy in the
extracted traits.

Keywords: phenotyping; unmanned aerial vehicle (UAV); photogrammetry; skeleton; deep learning

1. Introduction

Nowadays, climate change and environmental degradation are increasing the risk
of fiber, fuel and food insecurity; cost-effective phenotyping methods are needed to meet
this challenge. Traits in plants serve as features that are able to highlight the associations
between genetic or physiological characteristics [1] and are imperative to plant breeding
programs, biomass and yield estimations [2,3] and growth simulations [4]. Recently, pheno-
typic data were manually measured in the field, which is time-consuming, labor intensive
and error-prone, not to mention destructive. The demand for precise agriculture and
the development of close-range remote sensing technology makes image-based methods
the solution to the phenotypic trait extraction challenge regarding plant physiology and
structure [2], yield-related traits [3], canopy over [5] or root architecture [6,7]. Another one
of the current challenges for plant phenotyping is to, accurately and with high-throughput,
extract the structural components, usually composed of the root, stem, leaf, flower, fruit
and seed [8]. Structural component traits are directly connected to functional phenomics,
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an emerging discipline leading to an increased understanding of plant functioning by
leveraging high-throughput phenotyping and data analytics [9].

Evaluating the information encoded in the shape of a plant is vital to understanding
the function of plant organs [10]. A powerful shape descriptor of plant networks is the
skeleton, easily computed from imaging data [11]. The skeleton opens a wide range of
possibilities for quantitative phenotyping at a plant level, including describing hierarchies
and branching plant networks. From the literature, there are several methods to extract
the curve-skeleton from a solid, usually classified into two key types: volumetric and
geometric [12]. This classification system relies on the solid’s representation, depending
on whether one is using an interior representation or a surface representation. Regarding
volumetric approaches, they normally use a volumetric discrete representation, either a
regularly partitioned voxelized representation or a discretized function demarcated in the
3D space. The potential loss of details within the solid and numerical instability due to
inappropriate discretization resolution are the general disadvantages of this method [13].
On the other hand, geometric approaches directly work on the meshes or point sets. The
most common used geometric methods are the Voronoi diagram [14] and medial axis [15].
Currently, Reeb graph-based methods have increased in popularity [16]. In addition,
there are another group of approaches based on 3D modeling: voxel approaches and
parametric surface methods. It is worth mentioning that voxel-based approaches are
limited in modelling irregular surfaces.

Recently, unmanned aerial systems (UAS) have positioned themselves as a basic tool
for high-throughput plant phenotyping in precision agriculture [3]. The latest advances
in technology and miniaturization of their components provides additional opportunities
for UAS data collection platforms. As high-resolution imaging sensors, light detection and
ranging (LiDAR) has the capacity to acquire 3D measurements of plants, even in the absence
of light [17,18]. This technology relies on the reflection of laser beams from the surfaces [19,20].
Currently, there are several studies using the terrestrial LiDAR to perform organ stratification
(even leaf labeling) and its angles from field maize [21–24]. However, the payload reducing
and cost increasing nature of LiDAR onboard UAS are the main disadvantages. On the other
hand, passive imaging technologies, such as visible cameras, are lighter and less expensive.
In addition, SfM (structure from motion), defined as a photogrammetric range imaging
technique, offers the opportunity to acquire point clouds on the basis of images taken from
various viewpoints [3]. Point clouds as three dimensional, and massive data can be used for
extracting complex structural information [25]. In addition, deep learning consists of methods
which can deal with object detection, classification and segmentation tasks [8], based on voxels,
octree, multi-surface, multi-view and directly on point clouds. The challenge of its high cost of
computing memory means these networks are mainly used in small data applications. There
are some approaches using UAS imagery-based point clouds to compute basic traits such as
plant height or the leaf area index in maize [26–28].

Still, methodologies to fully exploit the potential of UAS-collected data in agriculture
are urgently required. In this paper, we present a novel pipeline to automatically and
accurately characterize several structural component phenotypic traits in maize trails. To
the best of our knowledge, the skeletonization of maize from UAS imagery-based point
clouds has not been performed before. RGB images using UAS is the input of the proposed
workflow to acquire a georeferenced dense point cloud of the entire study field using SfM.
Topological and deep learning-based algorithms were combined to extract individual plants
from the point cloud. Once a surface reconstruction process from each individual plant
was achieved, the skeleton extraction algorithm was applied. Finally, we were easily able
to compute structural component traits highly demanded in phenotypic tasks, comparing
them with on-field and digital measurements. The paper is structured as follows: after
this brief introduction, the materials, including experimental setup, data acquisition and
proposed methodology are described in detail. Next, the experimental results are described,
validated and discussed. Finally, the more important conclusions reached with this study
are addressed, along with future perspectives.
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2. Materials and Methods

2.1. Experimental Setup and Data Acquisition

The research trial was located at the Indiana Corn and Soybean Innovation Center
Manager at the Agronomy Center for Research and Education (ACRE) in West Lafayette (IN,
USA) at Purdue University. Figure 1 illustrates the visualization of the workflow to follow.

Figure 1. Proposed workflow.

The dates of planting (DOP) were June 6 and 17, 2021. The trail was designed with an
arrangement of 18 ranges and 4 rows, planting at two different densities as Figure 2 shows:
approximately 14 (DOP June 17) and 18 seeds*row-1 (DOP June 6); 3 ranges and 4 rows the
first density and 15 ranges and 4 rows the second one. Four GCPs (ground control points)
were placed on the ground and measured using a GNSS device for georeferencing. The
material of these accuracy markers was highly reflected to be easily detected in the UAS
imagery dataset. The flights were carried out on 27 July (flight 1) and 3 August (flight 2),
2021 around noon solar time on sunny and no-cloud days. A Sony Alpha ILCE-7R RGB
camera with a Sony 35 mm lens was the photogrammetric sensor onboard a DJI Matrice
600 Pro (M600P) platform (Gryfn, West Lafayette, IN, USA). This platform is a rotocopter
UAS with onboard GPS, IMU and magnetometer and a maximum payload of 6 kg. The
photogrammetric flight configuration was set up with an along- and across-track overlap
of 88% and a flight altitude of 22 m. A total of 530 and 518 images from flights 1 and 2,
respectively, were captured with a dimension of 7952 × 5304 pixels, given the characteristic
of the photogrammetric sensor as pixel size of 4.52 μm, focal length of 35 mm and size of
35.9× 23.9 mm2. The sensor configuration was ISO (the International Organization of Standard-
ization) 200, an aperture with a F-stop of f/5.6 and a fixed exposure time of 1/1250 s.

Figure 2. Point cloud sample processed with the imagery dataset from two flights performed (27 July and
3 August 2021) at different densities: 14 seeds*row-1 (DOP June 17) (a) and 18 seeds*row-1 (DOP June 6) (b).
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As for ground measurements, stem count and plant height for the full experiment
were taken at the same date as the image acquisition from UAS. Notice that before the
second flight, 30% of the plants were pulled over in order to avoid occlusions from the
aerial images.

2.2. Imagery-Based Point Cloud

Pix4Dmapper software package (Pix4D SA, Lausanne, Switzerland) was used to
process aerial images, which includes camera calibration, image orientation and dense
point cloud extraction. In this way, the point cloud of the study field was obtained and
accurately georeferenced to the earth reference system World Geodetic System 84. However,
point clouds automatically generated by SfM techniques probably englobe outlier points.
To remove these points, a statistical outlier removal-based filter was applied. First, it
computes the mean distance of each point to its neighbors (considering k nearest neighbors
for each—k is the first parameter). Then, it rejects the points that are farther than the
mean distance plus a number of times the standard deviation (second parameter). In other
words, the process computes a threshold based on the Gaussian distribution of all pairwise
distances in the neighborhood defined by a specific number of points (mean distance) and
a number (k) to multiply the standard deviation (std. deviation), as Equation (1) shows.
Points within a distance larger than the threshold are classified as outliers and removed
from the point cloud [17].

threshold = μ+ k ∗ σ (1)

where μ is the mean distance, σ is the standard deviation, and k is a constant.
Figure 3 illustrates the low-cost photogrammetry result to 3D reconstruct a random

plant from UAS imagery and the outlier removal process defined before.

Figure 3. Photogrammetric 3D reconstruction of a random plant: 2D manual picture from the ground (a),
scaled 3D point cloud from UAS imagery (b), clean point cloud (outlier removal) (c).

2.3. Individual Maize Extraction

A 3D deep learning unified architecture named PointNet [29] was employed to au-
tomatically perform a semantic segmentation to extract the plants from the point cloud.
As the main advantage, PointNet directly runs on point clouds; that means the permuta-
tion invariance of points is not altered. Moreover, PointNet is highly robust, with little
perturbation of the input points and in dealing with outliers and missing data. PointNet
architecture works as follows: each point is represented by six values, its three coordinates
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(x, y, z) and its colors (R, G, B). The final fully connected layers of the network aggregate
these optimal values into the global descriptor for the extraction. It is easy to independently
apply rigid or affine transformations to each point due to the input format. Therefore, a
data-dependent spatial transformer network was added, which attempted to standardize
the data with the intention to further improve the results. In addition, we reduced over-
fitting using a data augmentation procedure that works by creating a new dataset using
label-preserving transformations [30]. The first stage in the data augmentation process
generates n translations in the training dataset defined by manually extracting individual
maize from the point cloud. The second stage proceeds to modify the RGB intensities. For
this purpose, principal component analysis was computed on the RGB value set for each
training point cloud. We added multiples of the found principal components m times, with
magnitudes proportional to the corresponding eigenvalues times a random variable drawn
from a Gaussian with μ (mean) of zero and σ (standard deviation) of 0.1. In that way, the
training set was increased by a factor of n*m. In terms of geometry and the intensity and
color of the illumination, the corn plant characteristics were mainly invariant.

Once the semantic segmentation of the plants was undertaken, we extracted individual
mazes by connected component labeling and setting up an octree level to define the
minimum gap between two components; this means the corresponding cell size of the 3D
grid for extraction [31]. This processing consists of an octree decomposition, followed by a
split-and-merge procedure. First, a decomposition of a point cloud into an octree based
on point density is performed. Then, the points are split within each voxel into spatially
connected components. Finally, a recursive merging of components across voxels is carried
out, based on a connectivity criterion until the root node is reached. As a visual example,
Figure 4 displays the outputs from the steps of our pipeline to extract individual maize
from the point cloud within a random plot.

Figure 4. Partial and global outputs of the plant extraction pipeline within a random plot: RGB-
based point cloud (a), height-based point cloud (b), vegetation-based semantic classification (c) and
individual maize extraction and labeling (d).

77



Drones 2023, 7, 108

2.4. Curve-Skeleton Extraction

Once the individual plants were extracted, the skeletonization process was applied
to each point cloud. The skeleton structure is basically able to abstract the model volume
and topological characteristics. In this case, a Laplacian-based contraction algorithm was
used [13], which worked directly on the point cloud and operated on every point [32].
Advantageously, no resampled volumetric representation was required. Moreover, it
was pose-insensitive and invariant to global rotation. We summarize the stages of the
skeletonization process as follows: first, the mesh is contracted into a zero-volume skeletal
shape, iteratively moving all the vertices along their curvature normal directions. After
each iteration, all the collapsed faces from the degenerated mesh are removed until no
triangles exist. During the contraction, the mesh connectivity is not altered, retaining all
the key features using sufficient skeletal nodes. Lastly, the skeleton’s geometric embedding
is refined, moving each node to the center of mass of its local mesh region [32,33]. After
these steps, we get the curve-skeleton of each individual maize.

2.5. Phenotypic Traits of Structural Components

The curve-skeleton is a structure that extracts the volume and topological characteristics of
each individual plant represented by a point cloud and 3D line. In that way, we can easily define
individual plant traits and different structural components of the plant: stem and leaves. As an
individual plant phenotypic trait, we extracted the total height (difference between zmaximum
and zminimum), crown diameter (difference between xmaximum and xminimum) and plant azimuth.
The azimuth angle is defined as the angle between the maximum eigenvector of the plant
skeleton and the north direction on the vertical projection plane. The origin of coordinate axes
was selected as the leftmost point of the plant skeleton, with a value between 0 and 180◦. The
stem was defined as the most vertical line. The leaves originate from stem bifurcations and
have a dead-end as a topological rule. In addition, leaves must have a minimum length to
be considered a proper leaf. The stem lodging was calculated by computing the orientation
between medium points from the beginning and end stretch (defined by a minimum distance)
of the stem skeleton; from each leaf, we mathematically computed the length based on the
length of the skeleton defined as leaf and the azimuth. The leaf azimuth is defined as the
angle between the maximum eigenvector of a leaf skeleton and the north direction on the
vertical projection plane. The origin of the coordinate axes was selected as the connection node
between the proper leaf and the stem. The value of leaf azimuth is between 0 and 360◦ [34].
Figure 5 shows how the traits were extracted from the skeleton.

Figure 5. Skeleton-based structural component phenotypic traits: visual definition of the traits (a)
and all the computed traits listed by type of the structural component (b).
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Furthermore, this skeletal structure drives the registration process in temporal series.
The registration process is critical to being able to automatically evaluate the growth of
each individual plant. To register a temporal series, principal component analysis (PCA)
was performed [35]. In general, the principal components are eigenvectors of the data’s
covariance matrix. More specifically, this statistical analysis uses the first and second
moments of the curve-skeleton, resulting in three orthogonal vectors grouped on its center
of gravity. The PCA summarizes the distribution of the lines along the three dimensions
and models the principal directions and magnitudes of the curve-skeleton distribution
around the center of gravity. Thereby, the registration of the temporal series was carried
out by overlapping the principal component axes. After the registration, we can robustly
monitor the growth as orientation and length variation.

2.6. Accuracy Assessment

The correlation between the plant height, stem count and number of leaves estimated
by the skeleton and the on-field measurements or digital leaf counts was verified to evaluate
the accuracy of the proposed methodology. Moreover, the rest of the skeleton algorithm-
derived phenotypic traits (length and angles) were compared with manual and digital
measurements from the point cloud of each individual plant. The leaf azimuth was manu-
ally measured by choosing the best suitable view direction which had the largest inclination.
The determination coefficient (R2), root mean square error (RMSE) and normalized root
means square error (nRMSE) were calculated. The R2 value was used to evaluate the coinci-
dence between the computed and the measured value. The RMSE was used to measure the
deviation between both values. The nRMSE represents the degree of difference between
these both values (nRMSE < 10% indicates no difference, 10% ≤ nRMSE < 20% denotes a
small difference, 20% ≤ nRMSE < 30% is moderate, and nRMSE ≤ 30% represents a large
difference) [36]. Among them, a larger R2 value indicates better data fit, and smaller RMSE
and nRMSE values indicate higher estimation accuracy [37]. The calculation formulas of
R2, RMSE and nRMSE are shown in the following Formulas (2)–(4):

R2 = 1−
∑n

i=1

(
xi

comp − xact

)2

∑n
i=1

(
xi

act − xact
)2 (2)

RMSE =

√√√√∑n
i=1

(
xi

comp − xi
act

)2

n
(3)

nRMSE =
RMSE

xact
(4)

where xi
act and xact represent the actual value and the average of them, respectively (on-field

measured in case of plant height and manually measured in the individual point cloud for
the length and angles), xi

comp represents the computed value of the trait, and n represents
the number of samples (leaf, stem or individual plant).

Furthermore, the mean bias error (MBE), the absolute mean bias error (AMBE), the
relative error (RE) and the absolute error (AE) were computed as follows (Equations (5)–(8)):

MBE =
∑n

i=1

(
xi

comp − xi
act

)
n

(5)

AMBE =
∑n

i=1

∣∣∣(xi
comp − xi

act

)∣∣∣
n

(6)

RE = 100 ∗
∑n

i=1
(xi

comp−xi
act)

xi
act

n
(7)
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AE = 100 ∗
∑n

i=1

∣∣∣(xi
pred−xi

act

)∣∣∣
xi

act

n
(8)

In addition, the Nash and Sutcliffe index, η is also computed (Equation (9)) and used
in modelling to characterize the error related to the spatial heterogeneity:

η = 1−
∑n

i=1

(
xi

pred − xi
act

)2

∑n
i=1

(
xi

pred − xact

)2 (9)

Some of these evaluation metrics have been extensively used to analysis the power of
regression models [38]. Smaller values of MBE, AMBE, RE and AE and larger values of η
(∞ < η ≤ 1) indicate better precision and accuracy of the prediction model.

3. Results

All the experimental results obtained below were run on a 3.6-GHz desktop computer
with an Intel CORE I7 CPU and 32-GB RAM. We started the image processing using a Pix4D
mapper software package (Pix4D SA, Lausanne, Switzerland) as a commercial solution for
SfM. RGB imagery and ground control points were measured with terrestrial GPS works as
inputs to finally reconstruct the study field into a scaled 3D point cloud. As an outcome,
two point clouds from flights on different dates (27 July, first flight, and 3 August 2021,
second flight) were computed and exactly georeferenced to EPSG 32616, WGS84 CRS. The
point cloud was formed using a total of 35,983,365 points for the first flight and 34,851,008
points for the second flight, with a spatial resolution better than >24,800 points/m2 in both
cases. These values are valid within the limits of the study field (14 × 100 m2). Due to
the automated and massive character of the photogrammetric processing, an uncertainty
quantity of outliers could be enclosed into these point clouds. A statistical analysis was
carried out by supposing a Gaussian distribution of neighbors’ distances to establish the
threshold and determine outliers. The procedure has already been executed by [39]. We
reached a spatial resolution better than 22,100 points/m2 for both flights once the outlier
detection approach was finished. A total of 257 plants for the first flight and 172 for the
second flight were counted in the field, and all the plants were correctly and accurately
extracted within the point clouds from both flights (30% of the plants were pulled over after
the first flight and before the second in order to avoid occlusions from the aerial image).
The average number of points per plant is 3968. Figure 6a represents the point clouds from
the two dates and the corresponding individual plant extraction in top view. In Figure 6b, a
zoomed window is shown with a 3D view. Figure 6c illustrates the growth of the individual
plants within this zoomed area between the two dates precisely quantified in meters. We
registered the point cloud of each individual plant from these two dates by computing
PCA from the skeleton and overlapping the principal component axes. In this particular
case, the maximum growth is 0.41 m. In addition, we can calculate the average maximum
growth per plant, which is 0.22 m, and we can point out that the growth is always bigger at
the upper part of the corn between these two dates.

Next, once the individual plants were extracted, the skeleton was computed from each
point cloud using a Laplacian-based contraction algorithm, as Section 2.4 explains. Figure 7
graphically shows, in 3D, the individual point cloud in black overlapping the skeleton in
red of the 16 plant cases: the maximum and minimum height, crown diameter, number
of points and grown increment from the two flights (27 July 2011 and 3 August 2011). It
is worth mentioning that the axes are in relative values. Below, Table 1 shows the plant
data location and traits from the plant samples: the number of points, UTM coordinate
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of the point cloud center, and dimension of the bounding box from each individual point
cloud, as well as traits computed by the individual point cloud skeletonization, such as the
number of leaves, plant height, crow diameter, plant azimuth, lodging calculated as stem
azimuth, stem height, mean leaf azimuth and mean leaf length.

Figure 6. Point clouds from the two dates and individual plant extraction in different colors sur-
rounded by a bounding box (a); zoomed window of a random area with a 3D view of the extracted
plants (b); plant growth within this zoomed area from the two dates quantified in meters (c).
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Figure 7. The 3D skeleton extraction in red overlapped the individual point cloud in black of 16 plant
samples: maximum and minimum height, crown diameter, number of points and grown increment
from the two flights (27 July 2011 and 3 August 2011).
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4. Discussion

In this section, the results are discussed and validated. The stem counts measured in
the field with GPS were exactly the same as the digitally taken stem counts for both flights:
257 plants for the first flight and 172 for the second one. The individual height of each plant
was also measured in the field using a tape with centimetric precision. Comparing this on
field-measurement with the digital height computed from the point cloud of each extracted
plant, an R2 of more than 0.99 was achieved. No outliers were detected in this regression,
guaranteeing accurate and precise height results. From Table 1, it is remarkable that the
plants with a greater number of leaves are the ones with the maximum plant height and a
greater number of points. It seems reasonable because when the point density is higher,
the plant has more detail to distinguish the leaves, and higher plants have more chance
to have leaves. On the other hand, the plants with less recognizable leaves coincide with
the minimum crown diameter plants. Another bit of information we can extract is that the
more vertical plants are the highest ones, while the more inclined plants (lodging) coincide
with the minimum crown diameter one. The following table, Table 2, illustrates statistics
values from the computed traits of all the individual plant point clouds from both flights
(27 July and 3 August 2011): mean, standard deviation (Std), median, normalized median
absolute deviation (NMAD) (Equation (10)) and square root of the biweight midvariance
(BwMv) (Equation (11)). It is worth mentioning that for the computation of the table, the
outliers were discarded according to the studentized residuals for a significance level of
0.05 with two-tail distribution.

NMAD = 1.4826 ·MAD (10)

BwMv =
n ∑n

i=1 ai(xi −m)2(1−U2
i
)4(

∑n
i=1 ai

(
1−U2

i
)(

1− 5U2
i
))2 (11)

ai = {1, i f |Ui| < 1 0, i f |Ui| ≥ 1 (12)

U =
xi −m
9MAD

(13)

being the median absolute deviation (MAD) and the median (m) of the absolute deviations
from the data’s median (mx).

Table 2. Statistics of the computed traits (mean, Std, median, NMAD and BwMv) and error metrics of
all plants from both flights at 95% confidence interval (MBE, AMBE, RMSE, NMAD, RE, AE and η).

#Leaf Height (cm) Crown Diam. (cm) Azimuth (º) Lodging (º) Hstem (cm) Mean LA (º) Mean LL (cm)

Mean 5.98 70.16 54.66 1.18 4.56 42.76 −4.94 19.19
Std 1.40 34.84 21.43 15.61 8.48 28.12 26.82 9.61

Median 7 79.81 54.91 1.71 4.66 51.57 3.54 20.55
NMAD 2.43 44.84 28.45 14.45 13.2 35.80 23.13 11.44
BwMv 0.25 82.66 31.43 12.22 4.82 53.80 24.65 6.22

R2 (%) 90.9 99.8 99.7 99.8 99.9 99.4 99.7 68.8
RMSE 0.661 1.769 1.137 8.456 4.650 2.341 11.054 8.231
nRMSE

(%) 10.5 2.5 2.0 6.1 4.9 5.2 6.1 32.7

MBE 0.063 −0.431 −0.150 −3.375 −2.125 −0.544 −3.563 −5.000
AMBE 0.438 1.244 0.888 6.000 3.875 1.906 10.063 5.613

RE 0.781 −0.026 −0.052 −0.429 −0.122 −0.333 −0.294 −2.780
AE 0.781 0.026 0.104 0.429 0.122 0.333 0.294 14.053
η 0.879 0.997 0.997 0.997 0.999 0.993 0.996 0.267

Analyzing the computed traits, the plant height and the stem height have more
dispersed values (in this position), as the larger values of NMAD and BwMv show. With
regard to errors, the determination coefficient is superior to 0.9 for all the traits, except for
the mean leaf length. The algorithm fails to recognize the short leaves, and it, therefore,
concludes that the mean of the computed leaf length is much larger. This is the same reason
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why the normalized root mean square error and the Nash and Sutcliffe index get the worst
score in this computed trait. The rest of the errors show no difference between the actual
and computed values at all.

5. Conclusions

As this study highlights, skeletons are powerful descriptors for analyzing plant net-
works by defining structural components and computing several phenotypic traits. More-
over, close-range platforms together with novel deep learning networks show a powerful
combination to extract individual maize plants. Therefore, the approach proposed here is
pretty rapid, accurate and cost-effective. It is worth mentioning that particular attention
has been paid to the spatial resolution and completeness of the computed point cloud to
effectively run our approach. These aspects are directly related to the plant spacing, which
could generate shadows and to the variables coming from the flight (overlap, altitude and
flight direction) to get a dense point cloud. In this study, the image acquisition strategy was
only from nadir. However, oblique images will improve the completeness of the plant point
cloud. Future analyses are needed to be able to apply our pipeline to different plant species
and phenotypic growth stages, as well as to investigate the influence of environmental
factors such as soil properties and light conditions. In addition, several platforms for
high-throughput phenotyping, even terrestrial platforms or LiDAR-collected point clouds,
are intended to be tested.
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Abstract: Calculating the complex 3D traits of trees such as branch structure using drones/unmanned
aerial vehicles (UAVs) with onboard RGB cameras is challenging because extracting branch skeletons
from such image-generated sparse point clouds remains difficult. This paper proposes a skeleton
extraction algorithm for the sparse point cloud generated by UAV RGB images with photogrammetry.
We conducted a comparison experiment by flying a UAV from two altitudes (50 m and 20 m) above a
university orchard with several fruit tree species and developed three metrics, namely the F1-score of
bifurcation point (FBP), the F1-score of end point (FEP), and the Hausdorff distance (HD) to evaluate
the performance of the proposed algorithm. The results show that the average values of FBP, FEP,
and HD for the point cloud of fruit tree branches collected at 50 m altitude were 64.15%, 69.94%, and
0.0699, respectively, and those at 20 m were 83.24%, 84.66%, and 0.0474, respectively. This paper
provides a branch skeleton extraction method for low-cost 3D digital management of orchards, which
can effectively extract the main skeleton from the sparse fruit tree branch point cloud, can assist in
analyzing the growth state of different types of fruit trees, and has certain practical application value
in the management of orchards.

Keywords: unmanned aerial vehicle; tree phenotyping; open software

1. Introduction

Point cloud data are commonly used to describe the 3D structure of objects and have
important applications in 3D reconstruction, engineering measurement, and morphological
analysis, among other applications. With the widespread use of agricultural automation
technology, the demands for point cloud analysis for high-throughput orchard phenotyping
and growth modeling, such as plant shape, canopy structure, organ morphology, and stress
response, are gradually increasing. Skeletonization is one of the essential steps in point
cloud analysis in which a three-dimensional skeleton of a tree point cloud is obtained. This
step makes it easier to calculate tree height, branch length, and angle, which comprise
useful information for precise fruit tree growth management.

In the existing research on tree skeleton extraction, algorithms usually consist of two
stages: firstly, skeleton points from the tree point cloud are extracted, and then skeleton
topology connections are formed from the skeleton points. The skeleton points extraction is
the fundamental step of the whole process. Current research approaches to skeleton point
extraction can be broadly divided into three categories:

Graph structure-based [1–4]: a graph structure is a discrete structure consisting of
vertices and edges connecting the vertices. The skeleton of a tree-like point cloud can be
regarded as a combination of vertices and edges in a graph structure. The point cloud is
converted into a graph structure, the shortest distance from the root node to each point in
the point cloud is calculated to determine the skeleton points, and adjacent skeleton points
are connected to form the branch skeleton. This method designs a skeleton point extraction
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algorithm for point clouds with a tree-like structure, which conforms to the structure of
tree branches and has a good skeleton extraction effect. However, this method needs to
calculate the shortest path on the finely constructed graph structure, which causes high
computational costs.

Generic point cloud skeleton extraction algorithms-based [5–14]: generic point cloud
skeleton extraction algorithms mainly include generalized rotationally symmetric axis
(ROSA), L1-median and Laplace-based contraction (LBC). Many researchers have used
this class of algorithms for tree branch skeleton extraction. Since these algorithms have no
specific requirements on the structure of point cloud objects, they are adapted to a wider
range of point cloud skeleton extraction tasks and can be easily used for skeleton extraction
of point clouds of many types of tree branches. However, such methods were not designed
for tree point clouds, such algorithms may extract structures such as annular or detached
skeletons from point clouds, but these structures do not exist in natural tree branches,
which may not guarantee the accuracy of tree skeleton extraction.

Other point cloud skeleton extraction algorithms [15,16]: other tree skeleton extraction
methods are based on nearest neighbor shrinkage or clustering to extract the skeleton, and
the skeleton points are obtained by the result of nearest neighbor shrinkage or clustering
and connected to form the dendritic skeleton, and this kind of methods get better skeleton
extraction results on the point cloud model with regular shape. However, these methods
require high quality of point clouds, and the algorithms are sensitive to parameters, which
need to be finely set to obtain better skeleton extraction results.

In general, point cloud acquisition for branch skeleton extraction uses laser scanning,
multi-view reconstruction, and virtual model construction. Tree point clouds acquired
using terrestrial laser scanning (TLS) or scanners have high accuracy [1–4,7–14], but this
approach is expensive for large scale data acquisition for scenarios such as orchards and is
not suitable for actual orchard production. Although the use of unmanned aerial vehicle
(UAV) laser scanning (ULS) to acquire point cloud has the advantages of large acquisition
range and high speed, the acquisition process is affected by airframe shaking, which makes
it difficult to align into higher quality point cloud, and if the same quality of point cloud
as TLS is to be acquired, the cost of the acquisition equipment will increase significantly.
Although the point cloud acquisition using photogrammetry [15,16] reduces the cost of
laser scanning, the spatial information of tree objects needs to be strictly calibrated when
acquiring tree point cloud, and the process requires a relatively stable data acquisition
environment, which limits its application in complex environmental scenarios such as
orchards. The construction of point cloud from virtual 3D models [14,17,18] is not affected
by the actual acquisition environment, but the virtual point cloud often does not represent
the real 3D spatial structure of a fruit tree. In recent years, with the development of
UAV aerial photography technology, the use of UAV equipped with RGB cameras to
generate point clouds has been widely used, which combines the advantages of ULS
while significantly reducing the equipment cost [19–21]. However, due to the limitation of
the resolution of RGB cameras, the point clouds collected by this method are sparse and
irregularly distributed in space, which makes fruit tree skeleton extraction challenging.
Therefore, an extraction algorithm for sparse RGB point cloud is needed to complete the
fruit tree skeleton extraction task.

Meanwhile, reasonable evaluation metrics are important for verifying the performance
of the tree point cloud skeleton extraction algorithms. In fruit tree growth management,
parameters such as tree height, branch length, and branch angle need to be accurately
calculated, and the fruit tree branch skeleton is an important basis for calculating these
parameters. Therefore, setting reasonable metrics to evaluate the performance of the
skeleton extraction algorithm is of great significance for the extension of the tree skeleton
extraction algorithm for use in scenarios such as orchards. In the evaluation work on tree
point cloud skeleton extraction, Bucksch et al. [4] graded the branches of tree branches by
length, counted the number of extracted tree branch skeletons and real branch skeletons
under different length gradations, and evaluated the effectiveness of the skeleton extraction
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algorithm by calculating the correlation coefficient R2 between the two. This approach
evaluates the performance of skeleton extraction only in terms of quantity, ignoring the
spatial information of branches. Li et al. [14] manually measured the real parameters of
tree branches and calculated the F1 value (F1-Score), correlation coefficient (R2), and root
mean square error (RMSE) between the extracted tree branch skeleton parameters and
the real measured parameters to evaluate the branch skeleton structure parameters for
accuracy. Fu et al. [18] proposed a quantitative evaluation of the skeleton extraction effect,
where the point cloud was generated from a virtual branch skeleton and the evaluation
of the skeleton extraction effect relied on the pre-existing virtual tree skeleton. However,
the tree branch skeleton is a combination of a series of spatial curves, and drawing the
curves in 3D space by hand is often inaccurate and subjective, which affects the reliability
of the evaluation results. Therefore, this evaluation method is not applicable to the skeleton
extraction evaluation task of a real tree point cloud. We observed that there is no unified
standard for the evaluation of skeleton extraction algorithms at this stage, and there is a
need for evaluation metrics to verify the performance of actual tree point cloud skeleton
extraction algorithms.

In summary, in this paper, we propose a branch skeleton extraction algorithm for UAV
and photogrammetry-generated sparse RGB fruit tree point cloud and suggest evaluation
metrics for tree branch point cloud to verify the performance of the algorithm proposed in
this paper. The overall aims of the research were as follows.

(1) To address the problem of low accuracy of existing algorithms in skeleton extraction
for sparse point cloud data. In this paper, a spatial density-based regional point
cloud aggregation algorithm is designed to aggregate sparse tree point cloud before
skeleton point extraction, and the aggregated point cloud can describe the 3D skeleton
morphology of branches, which can effectively improve the accuracy of subsequent
skeleton point extraction.

(2) To address the problem that the generic point cloud skeleton extraction algorithm is
prone to broken branches and self-loops when the skeleton topology is connected,
which leads to unrealistic tree point cloud skeleton extraction results. In this paper,
we propose a skeleton topology connection method with spherical shrinkage from
the outside to the root node, which can better adapt to the bifurcated tree structure,
effectively avoiding the appearance of non-tree branch structure, and can effectively
extract the initial skeleton of tree branches.

(3) To objectively evaluate the skeleton extraction algorithm and thus verify the per-
formance of the skeleton extraction algorithm on real tree branch point cloud. In
this paper, based on the consideration of the characteristics of tree branch structure
morphology, the metrics for evaluating the accuracy of skeleton morphology: FBP (F1-
score of bifurcation point), FEP (F1-score of end point) and the metric for evaluating
the accuracy of skeleton topology: HD (Hausdorff distance) were designed, which can
reasonably evaluate the skeleton extraction performance of the algorithm.

(4) To release an easy-to-use software application that helps the community to test the
proposed algorithm and use it for other related applications.

2. Materials and Methods

2.1. Data Acquisition

The data set used in this experiment were acquired by an onboard RGB camera
(1 inch CMOS, lens FOV 84 degrees, focus length 8.8 mm, Max image size 5472 × 3648
pixels) mounted on a low-cost industrial level UAV (DJI Phantom 4 RTK, DJI, Shenzhen,
China). The flight altitude was set to 50 m and 20 m, and both the front and side overlap
in between photos were set to 80%. Synthesis of RGB point cloud was performed using
DJI Terra. All the flights were conducted at an orchard of the Institute for Sustainable
Agro-ecosystem Services (ISAS), University of Tokyo Orchard (Tokyo, Japan) (35◦44′16.0′ ′
N, 139◦32′20.9′ ′ E) on the following dates: 13 January 2022, 14 February 2022, and 4 March
2022 (as shown in Figure 1a). There are multiple types of fruit trees growing in the orchard.
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In this paper, peach trees, persimmon trees, chestnut trees, and plum trees were selected as
experimental objects, and five fruit trees were randomly selected from each type of fruit
tree to tag and conduct comparative experiments (as shown in the white dashed box in
Figure 1b). More details of the orchard are provided in Table 1.

 

 

Figure 1. Data acquisition location and orchard point cloud. (a) Point cloud collection location
(35◦44′16.0′ ′ N, 139◦32′20.9′ ′ E). (b) DOM (Digital Orthophoto Map) generated from UAV images,
different color points in the map indicate the planting points of different species of fruit trees, and
white dashed boxes and symbols in the map indicate the fruit tree objects selected for the experiment.
(c) Three-dimensional view of the point cloud of the orchard. (d) Close-up view of the point cloud of
the branches of the fruit trees.

2.2. General Architecture of the Algorithm

This section describes the general architecture of the algorithm in this paper, and Figure 2
shows the structure of the algorithm. The algorithm consists of the following components.
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Table 1. Orchard point cloud containing tree species and number of individuals.

Tree Type Number of Individuals

Apple 17

Cherry 2

Chestnut 86

Citrus 25

Kiwifruit 15

Loquat 5

Peach 51

Persimmon 95

Plum 46

Figure 2. Functional structure of point cloud skeleton extraction algorithm for fruit tree branches.
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1. Point cloud pre-processing module: this module first denoises the original branch
point cloud data, and then aggregates the sparse branch point clouds using the
regional point cloud aggregation method proposed in this study, which can form a
dense point cloud that roughly describes the morphology of the branch skeleton and
prepares for the subsequent skeleton point extraction.

2. Skeleton point extraction module: this module is based on the octree algorithm to
spatially divide the clustered point cloud and extract the branch skeleton points in
the divided subspace.

3. Skeleton construction module: this module uses the spherical shrinkage based skele-
ton topology connection method proposed in this paper to form the thick skeleton of
the branch.

4. Branch skeleton morphology optimization module: this module fine-tunes the posi-
tioning of key points in the coarse skeleton first, and then smooths the branch coarse
skeleton to output the final fine skeleton.

2.3. Point Cloud Pre-Processing Module

To better extract the skeleton points from the original fruit tree branch point cloud,
this section first denoises the original branch point cloud and then aggregates the denoised
branch point cloud using a regional point cloud aggregation algorithm.

(1) Point cloud denoising processing
In this study, we used the density-based spatial clustering of applications with noise

(DBSCAN) algorithm [22] to remove the anomalous points in the original point cloud. The
clustering approach is used to remove not only the anomalous outliers generated during
the synthesis of point cloud data but also the anomalous point cloud patches (classes of
reduced samples within clusters) generated during the reconstruction of point cloud data.

(2) Branch point cloud density enhancement
The branch skeleton is a series of curve combinations describing the centers of fruit

tree branches, and the skeleton points are the spatial points constituting these curves [23].
These spatial points are the centers of branch point cloud in a certain segment. Determining
the centers of fruit tree branch point cloud in a certain segment of space is the focus of
skeleton point extraction. Since the branch point clouds generated by the RGB camera are
sparse and not uniform, extracting the skeleton points directly from the denoised point
cloud will produce the problem of inaccurate positioning.

If the tree point cloud branches can be aggregated to the centerline region of the branch
skeleton (as shown in Figure 3a) in some way to form a higher density point cloud that
can describe the 3D curve shape of the skeleton, and then the skeleton points are extracted
from it, this can effectively improve the accuracy of skeleton point extraction. Therefore, an
algorithm for regional point cloud aggregation is proposed in this paper.

(1) Let the denoised tree branch point cloud be Cs =
{

x1, x2 . . . xi . . . xn
∣∣ x ∈ R3}, and

set the regional aggregation radius r, as shown in Equation (1):

r = ∑n
i dist(xi, ki)

n
, i ∈ [1, n] (1)

where ki is the k nearest neighbor point of xi (k is determined according to the empirical
value of the preparatory experiment and adjusted according to different tree species).

(2) Traverse each point xi in the point cloud, set a search region of radius r around xi,
set the set of points contained in this search region as Oi =

{
x1, x2 . . . xj . . . xm

∣∣ x ∈ R3},
take the shape center ci of the point set Oi, as shown in Equation (2):

ci =
∑m

j xj

m
, j ∈ [1, m] (2)
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Figure 3. Schematic diagram of regional point cloud aggregation. (a) Branch point cloud aggregation
toward the skeleton centerline: the black point is the branch point cloud to be aggregated, the blue
dashed line is the assumed skeleton centerline, and the gray arrow is the direction of movement of
the point in the aggregation process. (b) Regional point cloud aggregation algorithm: red, orange,
and green dashed lines with different colors indicate the search area of xi, blue dot ci is the target
location of xi movement.

As the target location for xi to move, the new point cloud set Ca =
{

c1, c2 . . . cj . . . cn
∣∣ c ∈ R3}

obtained after the point cloud traversal is completed, and Figure 3b shows the process of
point cloud aggregation in the region.

(3) Keeping the search radius r constant, n iterations of step (2) are carried out to
finally obtain the aggregated branch point cloud Ct.

Figure 4 shows the process of branch point cloud aggregation after n iterations (n = 8).
With increasing n, the distribution of the fruit tree branch point cloud gradually aggregates
toward the center line of the skeleton, and since the number of points of the branch point
cloud does not change in the process, the density of the branch point cloud gradually
increases in the process of aggregation. After n iterations of iterative aggregation, the
spatial distribution of branch point cloud is dense and concentrated near the center line
of the branch skeleton, which can already show the three-dimensional morphology of the
fruit tree branch skeleton. Extracting the skeleton points subsequently on this basis can
effectively improve the accuracy of skeleton point positioning.

2.4. Skeleton Point Extraction Module

Skeleton point extraction involves finding spatial points that can describe the branch
skeleton from the branch trunk point cloud. Since the spatial distribution of the aggregated
fruit tree branch trunk point cloud can already describe the three-dimensional form of the
branch skeleton, the skeleton points can be considered as the concentrated expression of the
fruit tree branch trunk point cloud after aggregation in a subdivision space. Therefore, this
paper proposes a skeleton point extraction method based on subdivision space point cloud
shape center calculation, which first divides the aggregated fruit tree branch trunk point
cloud spatially, and then calculates the shape center of the point cloud in the subdivision
space as the skeleton point (as the previous preparation for the construction of 2.5 section
branch trunk skeleton). The specific implementation steps are as follows.
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Figure 4. Schematic diagram of point cloud iterative aggregation process: (a) Point cloud of fruit
tree branches after denoising. (b) Point cloud of fruit tree branches after three iterations of regional
point cloud aggregation. (c) Point cloud of fruit tree branches after five iterations of regional point
cloud aggregation. (d) Point cloud of fruit tree branches after eight iterations of regional point
cloud aggregation.

(1) The octree based spatial partitioning
The octree algorithm [24], as one of the commonly used data structures for 3D spatial

partitioning, can accelerate spatial queries and efficiently manage 3D space. In this paper,
we first use the spatial octree structure to subspace the aggregated fruit tree branch trunk
point cloud, as shown in Figure 5.

Si: smallest subspace divided using octree, Oi: geometric center of subspace, cij:
branch point cloud location in subspace, ki: skeleton points in subspace.

(2) Calculation of skeleton points in subspace
The skeleton point of the branch can be regarded as the center of the point cloud

geometry of the branch in a certain region. Considering that the center point Oi of the
subspace may have a large offset compared with the distribution of the point cloud in the
space, it could not represent the distribution of the point cloud in the subspace. Therefore, to
better reflect the representativeness of the skeleton point to the point cloud in the subspace,
this paper adopts the shape center of the point cloud in the subspace as the skeleton point
ki, which is defined as shown in Equation (3):

ki =
∑n

j cij

n
, j ∈ [1, n] (3)

where ki denotes the skeleton points calculated in each subspace, n is the number of point
clouds contained in each subspace, and cij is the location of the branch point cloud in
each subspace.
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Figure 5. Partitioning of the aggregated branch and stem point cloud using spatial octree.

Calculating the point cloud shape centers as skeleton points in the subspace of the
octree subdivision can ensure that the spatial distribution of its skeleton points can better
reflect the fruit tree branch trunk morphology, which is ready for the skeleton construction
in Section 2.5. Figure 6a shows the effect of spatial partitioning of the aggregated whole
branch trunk point cloud using the octree algorithm; Figure 6b shows the extracted fruit
tree branch trunk skeleton points, and the extracted skeleton point distribution can still
better reflect the fruit tree skeleton morphology.
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Figure 6. Schematic diagram of extraction of skeleton points from a spatial octree. (a) Spatial octree
partitioning of the point cloud. The black grid in the figure indicates the subspace where the branch
point cloud is located. (b) Skeleton points extracted using the spatial octree.

2.5. Skeleton Building Module

After extracting the skeleton points of fruit tree branches, the skeleton points need to
be topologically connected to form the tree branch skeleton. In previous work, the skeleton
of the tree point cloud was usually obtained based on the nearest neighbor or bottom-up
topology connection [25], and the number of sub-branches at the bifurcation was not well
determined in the case of uneven distribution of skeleton points due to the need to set
a reasonable number of nearest neighbor skeleton points, which affects the correctness
of the extracted skeleton topology. Since the point cloud data in this paper are obtained
from the reconstruction of RGB images collected by an overhead UAV, the point cloud
data are sparse and contain less details of branches, which mainly reflect the main branch
structure of the fruit trees (e.g., main branches, submain branches, etc.). Therefore, to
quickly construct the skeleton topology of the main branches of fruit trees, we designed
a spherical shrinkage skeleton topology connection method from the outside to the root
node, which can effectively adapt to the bifurcated structure of fruit tree branches, and
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can extract the key points (end points, bifurcation points) and skeleton segments (end
point-bifurcation point, bifurcation point-bifurcation point) of the skeleton while obtaining
the main skeleton of fruit tree branches.

Figure 7 shows the spherical contraction topology connection process of the local
branch skeleton, and the specific process of the algorithm is as follows.

Figure 7. Schematic diagram of spherical contraction for skeleton topology connection. (a) Schematic
diagram of the local skeleton of fruit tree branches. (b) Schematic diagram of spherical contraction
for topological connection of local skeleton. Red dots are branch end points, green dots are branch
bifurcation points, gray arc-shaped dashed lines indicate the spherical shells where the skeleton
points are located, and different colored connecting segments indicate each skeleton segment. p1–p11

are the skeleton points on each skeleton segment.

(1) Firstly, starting from the farthest skeleton point p1, make a ball with the radius of
this point and the root node, connect this point with the nearest skeleton point p3
which is located inside the sphere shell. Following this, select the next far point p2 as
the starting point, make a ball with the radius of this point and the root node, select
the nearest skeleton point p5 which is located inside the sphere shell to connect, and
iterate the above process to traverse all skeleton points.

(2) After all skeleton points are traversed, the div of each skeleton point is calculated
(div: the number of connections between a skeleton point and other skeleton points
around it. In this paper, we define div = 1 for end points, div = 2 for ordinary branch
skeleton points, and div >= 3 for bifurcation points) to extract the end points and
bifurcation points in the skeleton points, and calculate each skeleton segment of the
branch according to the connection status between the skeleton points.
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(3) Due to the possible redundancy of the extracted skeleton points, there may be shorter
burr branches (skeleton segments containing fewer skeleton points) in the topologi-
cally connected skeleton. Set the threshold value l. If the skeleton segment contains
skeleton points greater than l, the skeleton segment is retained, otherwise the skeleton
segment is removed.

After the skeleton topology connection, the algorithm obtains the endpoints, bifur-
cation points, and the set of skeleton segments of the fruit tree branches along with the
whole skeleton. Figure 8 shows the coarse skeleton of a tree formed after the spherical
shrinkage topology connection, where red dots indicate the fruit tree branch skeleton end
points, green dots indicate the fruit tree branch skeleton bifurcation points, and differ-
ent color connection segments in the figure represent different segments of the fruit tree
branch skeleton.

Figure 8. The coarse skeleton formed after topological connection.

Red dots indicate fruit tree branch skeleton endpoints, green dots indicate fruit tree
branch skeleton bifurcation points, and the connected segments of different colors in the
figure represent different segments of the fruit tree branch skeleton.

2.6. Skeleton Morphology Optimization Module

In 3D space, the real tree branch skeleton can be considered as a combination of multi-
ple smooth spatial curves, and the two endpoints of the curves are always at the endpoints
and bifurcation points of the branch skeleton. Therefore, the positions of the skeleton end-
points and bifurcation points need to be kept from moving during the smoothing process
of the skeleton. However, the algorithms commonly used for skeleton smoothing (e.g.,
polynomial smoothing, B spline fitting smoothing, etc.) are not adapted to the prerequisite
of fixed skeleton curve endpoints and bifurcation points. Therefore, to solve this problem,
the spatial Bezier curve [26] is chosen in this paper to perform spatial curve smoothing on
the extracted skeleton. To ensure the correctness of the optimized skeleton morphology, the
key points in the thick skeleton of the branches were first fine-tuned in this paper before
the pre-processing of the skeleton smoothing using Bezier curves (see Appendix A: branch
skeleton key point adjustment strategy).
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In the extracted fruit tree branch skeleton, let a skeleton segment be BH = [P0, P1, P2, . . . , Pn],
(n is the number of skeleton points contained in the skeleton segment), where P0 is the end point (or
bifurcation point) of the skeleton segment, Pn is the bifurcation point of the skeleton segment,
and P0 and Pn are used as the starting point and end points, and P1, P2, . . . , Pn−1 as the
control points of the Bezier curve, and the smoothing of this skeleton segment using an
m(m = n− 1) order spatial Bezier curve, the smoothed curve B(t) of this skeleton segment
can be obtained, and the definition of B(t) is shown in Equation (4):

B(t) =
m

∑
i=0

Ci
m(1− t)m−itiPi , t ∈ [0, 1] (4)

In the equation:

Ci
m =

m!
i! ∗ (m− i)!

As shown in Figure 9b, after the smoothing process of the spatial Bezier curve, the
segments of the skeleton are smoother and more natural, which can better reflect the
three-dimensional spatial shape of the real fruit tree branches.

Figure 9. Comparison of branch skeleton before and after smoothing. (a) Effect of fruit tree branch
skeleton before smoothing. (b) Effect of fruit tree branch skeleton after smoothing.
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3. Results

In this section, the proposed tree point cloud skeleton extraction algorithm is evaluated.
First, evaluation metrics are designed to verify the effectiveness of the tree point cloud
skeleton extraction algorithm, and based on the evaluation metrics, the proposed algorithm
in this paper is compared with the L1-medial and the Laplacian based contraction (LBC)
algorithm [6,11] for experiments. Section 3.1 introduces the metrics proposed in this paper
to evaluate the effectiveness of skeleton extraction, F1-score of bifurcation Point (FBP),
F1-score of end Point (FEP), and Hausdorff distance (HD). In Section 3.2, the environment
of the comparison experiments and the specific comparison experimental data and results
are presented in this paper.

3.1. Evaluation Metrics

We propose FBP and FEP to evaluate the accuracy of skeleton topological connection
and HD to evaluate the accuracy of skeleton morphology. Note that the generated branch
point cloud and its extracted skeleton of different tree species are normalized in the spatial
range prior to evaluation by Equation (5):

Pnormalization =

(
x− xmin

xmax − xmin
,

y− ymin
ymax − ymin

,
z− zmin

zmax − zmin

)
(5)

where [xmin, xmax, ymin, ymax, zmin, zmax] indicates the spatial range of the real fruit tree
point cloud.

The original fruit tree branch point cloud and the extracted branch skeleton are
transformed into the normalized 3D space, and the evaluation of skeleton extraction in this
paper is carried out in the normalized 3D space.

3.1.1. Skeleton Topology Accuracy Metrics FBP and FEP

Branching angles are usually obtained by calculating the angles between branch
bifurcation points and endpoints, while the accuracy of bifurcation point and endpoint
positioning affects the topological accuracy of the fruit tree branch skeleton. Therefore, a
reasonable evaluation of the accuracy of bifurcation point and endpoint positioning is an
important part of the skeleton evaluation work. Since it is simpler to obtain the bifurcation
points and endpoints of branches from real branch point cloud and is not easily influenced
by subjective judgment, the spatial coordinates of these points in real branch point cloud
obtained by manual labeling are used as real values to evaluate the positioning effect of the
points of the skeleton extracted by the algorithm.

In this study, FBP is used to evaluate the extraction effect of bifurcation points of the
skeleton, and the definition of FBP is shown in Equation (6):

FBP =
2 ∗ PBP ∗ RBP

PBP + RBP
(6)

In the equation:

PBP(Precision o f Bi f urcation Point) =
BP
BN

RBP(Recall o f Bi f urcation Point) =
BP
BT

where BP is the number of accurately located skeleton bifurcation points extracted by the
algorithm (set the Euclidean distance d between the skeleton bifurcation points extracted
by the algorithm and their nearest true skeleton bifurcation points, and if d is less than the
set threshold t, the skeleton bifurcation points are considered to be accurately located), BN
is the total number of skeleton bifurcation points extracted by the algorithm, and BT is the
total number of true branch skeleton bifurcation points.
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Similarly, FEP is set in this paper to evaluate the extraction effect of skeleton end
points. FEP is defined as shown in Equation (7):

FEP =
2 ∗ PEP ∗ REP

PEP + REP
(7)

In the equation:

PEP(Precision o f End Point) =
EP
EN

REP(Recall o f End Point) =
EP
ET

where EP is the number of accurately located skeleton endpoints extracted by the algorithm
(set the Euclidean distance d between the skeleton endpoints extracted by the algorithm
and their nearest real skeleton endpoints, and if d is less than the set threshold t, the
skeleton endpoints are considered to be accurately located), EN is the total number of
skeleton endpoints extracted by the algorithm, and ET is the total number of real branch
skeleton endpoints.

3.1.2. Skeleton Morphological Accuracy Metric HD

To evaluate the accuracy of the skeleton morphology extracted by the algorithm, it
is necessary to evaluate the degree of fit between the extracted skeleton and the real fruit
tree. However, it is difficult and subjective to annotate the 3D skeleton from the real
fruit tree branch point cloud, which will affect the accuracy of the skeleton morphology
evaluation results. Therefore, in this paper, we generated a point cloud around the extracted
skeleton and measured the morphological accuracy of the extracted skeleton by comparing
the similarity between the generated fruit tree branch point cloud and the real fruit tree
branch point cloud. The HD is a measure to describe the degree of similarity between two
point sets [27], and the smaller the HD, the greater is the degree of similarity between the
two point sets; therefore, it can be used to measure the degree of similarity between two
point clouds.

To evaluate the morphological accuracy of the fruit tree branch skeleton, we set the
real branch point cloud after denoising as Cs, generated the point cloud Cg around the fruit
tree branch skeleton by random sampling, and calculated the average of HD between Cs
and Cg for n times (n = 10 in this paper) as the final HD between Cs and Cg, which can
reduce the error caused by a single calculation. The HD between Cs and Cg: H(Cs, Cg) is
calculated as shown in Equation (8):

H
(
Cs, Cg

)
=

∑n
i max

[
h
(
Cs, Cg

)
, h

(
Cg, Cs

)]
n

(8)

In the equation:
h
(
Cs, Cg

)
= max

Pi∈Cs
min
Pj∈Cg

‖Pi − Pj‖

h
(
Cg, Cs

)
= max

Pj∈Cg
min
Pi∈Cs

‖Pj − Pi‖

Figure 10 shows the generated point cloud Cg around the extracted skeleton and the
overlap effect with the real point cloud Cs.

3.2. Comparison Experiments

In this section, based on the evaluation metrics proposed in Section 3.1, the algorithm
proposed in this paper is compared with the L1-medial and the LBC. Section 3.2.1 intro-
duces the comparison experiment environment; Section 3.2.2 introduces the comparison
experiment data and results, and the analysis and discussion of the results.
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Figure 10. Point cloud generation effect diagram (take a peach tree as an example). (a) Generated
point cloud around the fruit tree branch skeleton. (b) Overlap effect of generated point cloud and
original point cloud. The blue curve is the fruit tree branch skeleton, the black point is the original
branch point cloud Cs, and the red point is the generated branch point cloud Cg.
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3.2.1. Experimental Environment

The algorithms used for the experiments in this paper are performed on the same
computer, which is configured with an AMD Ryzen 7 4800U processor with 1.80 GHz and
16 GB running memory, and the experimental environment is a Windows 10 operating
system. This algorithm was run using python 3.7, and the GUI was developed using C++
and the Qt framework.

3.2.2. Comparison Experiments

Currently, the L1-medial and the LBC algorithm, as the most commonly used algo-
rithms in point cloud skeleton extraction work, have been largely applied in fruit tree
skeleton extraction tasks [7–14]. Further, the existing tree point cloud skeleton extraction
work is also usually carried out based on these two algorithms. In this section, on the point
cloud of fruit tree branches generated by UAV images at 50 m and 20 m, the point cloud
skeleton extraction algorithm of fruit tree branches proposed in this paper is compared
with L1-medial and LBC, and the specific comparison experiments and experimental results
are shown in Appendix B Exhibit 2-1.

(1) 50 m altitude comparison experiment
In this study, we first conducted comparative experiments on the point cloud of fruit

tree branches collected by UAV at a 50 m altitude to qualitatively evaluate the skeleton
extraction effect of fruit tree branches, and quantitatively evaluate the three algorithms in
terms of skeleton connection accuracy and skeleton morphology accuracy by combining
three metrics, FEP, FBP, and HD.

Figure 11 shows the visualization of the fruit tree branch skeleton extracted by the
three algorithms on the point cloud of fruit trees collected at a 50 m altitude (one tree of
each fruit tree is selected for display).

From the results of the skeleton extraction in the figure, although the L1-medial and the
LBC extracted the skeleton of the fruit tree branches, the skeleton has different degrees of
defects (as shown by the orange dashed circles in Figure 11. Using the L1-medial algorithm,
when processing the sparser RGB point cloud, the skeleton of some branches could not be
connected well. Due to the irregular distribution of the point cloud generated by the RGB
images, the LBC extracts a ring-like structure in the branch skeleton of fruit trees, which
does not exist in real trees, and affects the realism of the algorithm skeleton extraction effect.
In contrast, the proposed algorithm extracts a more complete branch skeleton and correct
topological connections, and the final extracted branch skeleton has a smoother and more
natural shape due to the smoothing process of the branch skeleton in the algorithm.

From the average values of the metrics in Table 2, the point cloud skeleton extraction
algorithm proposed in this paper has higher FBP and FEP than the other two algorithms,
reaching 64.15% and 69.94% for the four fruit trees, respectively. Meanwhile, the HD of
the extracted skeleton by the algorithm was 0.0699, which is also smaller than those of the
other two compared algorithms. Furthermore, from Tables in the Appendix section, the
algorithm proposed in this paper performed the best among 47 metrics out of the total
60 metrics for 20 fruit trees. The experimental results show that the algorithm is more
accurate in locating the bifurcation points and end points of the skeleton on the point cloud
of fruit tree branches collected at a 50 m altitude, and the point cloud generated from the
skeleton extracted by the algorithm has higher similarity with the real fruit tree branch
point cloud. This suggests that the skeleton of fruit tree branches extracted by the proposed
algorithm has better skeleton topology and morphological accuracy, and better reflects the
real morphology of fruit tree branches.
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Figure 11. The visualization of the fruit tree branch skeleton extracted by the three algorithms on
the point cloud of fruit trees collected at a 50 m altitude. The black points are the original fruit tree
branch point cloud, the blue curve is the skeleton extracted by the algorithm, the green points are the
bifurcation points of the fruit tree branch skeleton, and the red points are the end points of the fruit
tree branch skeleton.

To verify the stability of the skeleton extraction algorithm under different acquisition
times, acquisition light conditions, and other environments, we collected point clouds of
fruit tree branches at a 50 m altitude on 13 January, 24 February, and 4 March 2022, and
conducted comparative experiments, and the specific experimental results are shown in the
Appendix section following the paper (Appendix C Exhibit 3-1, Exhibit 3-2, Exhibit 3-3).
Appendix C Exhibit 3-4 in the Appendix of the paper show the standard deviations of the
different algorithms for each metric of the fruit trees in the three comparative experiments
mentioned above. Based on the information presented in Appendix C Exhibit 3-4, we can
see that the algorithm of this paper has a smaller standard deviation in the experimental
metrics compared with the L1-medial and the LBC. This indicates that the data fluctuation
of the three 50 m altitude comparison experiments of this paper’s algorithm is lower.
Therefore, the algorithm proposed in this paper can maintain a good skeleton extraction
effect under different fruit tree branch point cloud acquisition environments.
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Table 2. The average values and variation of metrics for the skeleton extraction results of the three
algorithms on the branch point clouds of the four types of fruit trees generated from images collected
at a 50 m and 20 m altitude (t = 0.03).

50 m 20 m Variation

Tree_Species_Number Metric L1-Medial LBC Proposed L1-Medial LBC Proposed L1-Medial LBC Proposed

Average_Peach

FBP 70.76% 57.60% 83.60% 60.26% 70.41% 86.30% −10.50% 13.81% 2.71%

FEP 73.63% 75.02% 83.64% 64.50% 65.41% 83.35% −9.13% −9.61% −0.29%

HD 0.0647 0.0574 0.0433 0.0762 0.0698 0.0546 0.0115 0.0124 0.0113

Average_Persimmon

FBP 58.04% 58.13% 74.76% 68.80% 70.82% 84.77% 10.76% 13.69% 10.01%

FEP 61.60% 67.36% 85.45% 70.71% 61.49% 90.04% 9.11% −5.87% 4.59%

HD 0.0878 0.063 0.0582 0.0996 0.0688 0.0527 0.0118 0.0058 −0.0055

Average_Chestnuts

FBP 33.74% 30.35% 45.92% 59.05% 56.01% 79.93% 25.31% 26.66% 34.01%

FEP 42.48% 33.40% 48.54% 55.51% 44.86% 83.64% 13.03% 11.46% 35.10%

HD 0.1094 0.1032 0.0909 0.0708 0.06 0.0393 −0.0386 −0.0432 −0.0516

Average_Plum

FBP 40.72% 32.43% 52.31% 65.38% 63.26% 81.98% 24.66% 31.83% 29.67%

FEP 60.20% 36.41% 62.12% 77.85% 52.79% 81.59% 17.65% 16.38% 19.46%

HD 0.1184 0.1068 0.0871 0.097 0.0736 0.0432 −0.0215 −0.0332 −0.0439

Average_Total

FBP 50.82% 44.63% 64.15% 63.37% 61.13% 83.24% 12.56% 21.50% 19.10%

FEP 59.48% 53.05% 69.94% 67.14% 56.14% 84.66% 7.67% 3.09% 14.72%

HD 0.0951 0.0826 0.0699 0.0859 0.0681 0.0474 −0.0092 −0.0146 −0.0224

In summary, combining the effect of fruit tree skeleton extraction and experimental
evaluation metrics, it can be seen that in the comparison experiments of RGB point cloud
generated from images collected at a 50 m altitude, compared with the other two algorithms,
the skeleton of fruit tree branches extracted by the algorithm in this paper has a more
realistic 3D structure and has a better performance of evaluation metrics on most of the
fruit trees. Further, the proposed algorithm can more effectively and stably extract the
point cloud of fruit tree branches from the point cloud of fruit tree branches, and ensure
realism of the skeleton. However, we also observed that the experimental metrics of all
three algorithms on chestnut and plum trees are poor compared to the results on peach
and persimmon trees. To verify the effectiveness of our algorithm on the point cloud of
chestnut and plum trees with higher quality of point cloud, we also reduced the altitude of
image acquisition to 20 m to generate a higher quality RGB point cloud.

(2) 20 m altitude comparison experiment
Figure 12 shows the visualization of the fruit tree branch skeleton extracted by the

three algorithms on the point cloud of fruit trees collected at 20 m altitude (one tree of each
fruit tree is selected for display).

The black points are the original fruit tree branch point cloud, the blue curve is the
skeleton extracted by the algorithm, the green points are the bifurcation points of the fruit
tree branch skeleton, and the red points are the end points of the fruit tree branch skeleton

As shown in the figure, compared with the point cloud of fruit tree branches collected
at 50 m, the point cloud collected by the UAV at a flight altitude of 20 m is of higher quality,
presenting a larger number of fruit tree branches and a more complex branching structure
of fruit trees. The effect of skeleton extraction shows that although the skeletons extracted
by the L1-medial and LBC can show the morphology of fruit tree branches, there are still
different degrees of broken branches and self-loops (as shown by the orange dashed circles
in Figure 12); especially in the peach and persimmon trees with more complex branch
structures, the two algorithms show more skeleton topology connection errors, which
affect the authenticity of the extracted fruit tree branch skeleton. Compared with the two
comparative algorithms, the proposed algorithm extracted more complete branch skeletons
and accurate topological connections in terms of the point cloud of fruit tree images
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captured at an altitude of 20 m with more complex structures, although the proposed
algorithm also showed local skeleton linkage errors (as shown in the gray dashed circles
in Figure 12).

Figure 12. The visualization of the fruit tree branch skeleton extracted by the three algorithms on the
point cloud of fruit trees collected at 20 m altitude.

Based on information provided in Table 2, in the comparison experiments on four
fruit trees at 20 m altitude, the average value of FBP for the proposed algorithm is 83.24%,
which is 19.87% higher than that of L1-medial and 17.11% higher than that of LBC; the
average value of FEP is 84.66%, which is 17.52% higher than that of L1-medial and 28.52%
higher than that of LBC; the average value of HD is 0.0474, which is 0.0385 lower than
that of L1-medial algorithm and 0.0207 lower than that of LBC, which shows that the
proposed model achieved the best values in all three metrics. Based on the information
presented in Appendix C Exhibit 3-5 in the Appendix text, the algorithm proposed in this
paper performs best in 52 metrics among 60 metrics for 20 fruit trees. It can be seen that
in the point cloud of fruit tree branches collected at a 20 m altitude, the skeleton of fruit
tree branches extracted by the algorithm proposed in this paper can still maintain better
topology and morphological accuracy compared with the L1-medial and LBC. In other
words, the skeleton extracted by the proposed algorithm is more realistic in the point cloud
of fruit tree branches collected at a 20 m altitude.
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(3) Analysis of experimental results at different altitudes
Figure 13 shows the average values of the experiment metrics on all fruit tree branch

point clouds generated from images collected at both altitudes, and Table 2 shows the
amount of variation in the average values of the metrics for the three algorithms on the
four types of fruit trees at both altitudes.

  

 

 

Figure 13. The average values of metrics for the three algorithms on all fruit trees. (a) Average FBP
(F1-score of bifurcation point) for the different algorithms at 50 m and 20 m. (b) Average FEP (F1-score
of end point) for the different algorithms at 50 m and 20 m. (c) Average HD (Hausdorff distance) for
the different algorithms at 50 m and 20 m.

As shown in Figure 13, with a decrease in the fruit tree point cloud collection altitude,
the average values of FBP and FEP of the three skeleton extraction algorithms on the four
fruit trees showed an increasing trend, and the average values of HD showed a decreasing
trend, which showed that the quality of the collected fruit tree branch point cloud was
improved with a reduction in the data collection altitude.

From the column of the amount of variation in Table 2, chestnut and plum trees
whose metrics performed poorly in the comparison experiment at a 50 m altitude, showed
significant improvement in the skeleton extraction results in the comparison experiment
with images taken at a 20 m altitude. For chestnut and plum trees with sparse branches, the
improvement of fruit tree branch point cloud quality can effectively improve the accuracy
of the algorithm in extracting skeleton topology and morphology. The proposed algorithm
improved the average values of FBP, FEP, and HD metrics by 34.01%, 35.10%, and 0.0516,
respectively, for the five chestnut trees, and improved the average value by 29.67%, 19.46%,
and 0.0439, respectively, for the five plum trees. This indicates that the proposed algorithm
can improve the skeleton extraction effect to a greater extent with improvement in the
quality of fruit tree branch point cloud.
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We also noted that the experimental metrics of peach and persimmon trees in the com-
parison experiment at a 20 m altitude did not improve significantly with the improvement
of point cloud quality compared with those of chestnut and plum trees, but deteriorated in
some metrics (e.g., the average values of FEP and HD experimental metrics of peach trees).
The reason for this is that although the fruit tree branch point clouds collected by lowering
the UAV flight altitude to 20 m are of higher quality, the fruit tree branch point cloud of
peach and persimmon trees also present a more complex structure, and the fine branches of
the fruit tree are more distinct (as shown in Figure 14). These fine branches can easily be
ignored in the process of skeleton extraction, which makes the fruit tree branch skeleton
extraction more difficult.

Figure 14. Point cloud of branches of the same fruit tree collected at different altitudes. (Tree_Peach_02
is shown as an example). (a) Point cloud of branches collected at 50 m altitude. (b) Point cloud of
branches collected at 20 m altitude.

From Table 2, although the average value of FEP decreased by 0.29% and the average
value of HD increased by 0.0113 for peach trees for the proposed algorithm, the metrics
deteriorated less compared to that in the L1-medial and LBC algorithms. The L1-medial
algorithm reduced the FBP metric of peach tree by 10.50%, the LBC reduced the FEP metric
of persimmon tree by 5.87%, and both algorithms increased the HD metric of persimmon
tree by 0.0118 and 0.0058, respectively, which shows that the proposed algorithm can
still maintain a better performance in the complex fruit tree branch point cloud skeleton
extraction task compared with the two other algorithms.

4. Discussion and Conclusions

In this paper, a branch skeleton extraction algorithm is proposed for the sparse RGB
fruit tree point cloud collected by UAV, which can effectively extract the skeleton from
the sparse fruit tree branch point cloud, approximate the 3D structure of the original fruit
tree, and more realistically reflect the branch morphology of the fruit tree. The algorithm
proposed is based on point clouds generated from images captured by UAV RGB cameras.
Compared with the method of extracting skeleton points using point cloud data collected by
devices such as LiDAR [7,8,12–14], the algorithm proposed can effectively reduce the cost
of point cloud data collection while maintaining the accuracy of skeleton point extraction,
such as evaluate the growth of orchard trees by analyzing the tree morphometry using
UAVs [28,29].

Combining the comparison experiments at 50 m and 20 m altitudes, it can be found
that the algorithm proposed in this paper has better performance in terms of FBP, FEP
and HD metrics compared with L1-medial and LBC. At the same time, the results of
comparison experiments at different altitudes show that for fruit trees with sparse branch
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structure (e.g., chestnut and plum trees), the reduction in UAV flight altitude can improve
the quality of the collected fruit tree branch point cloud and improve the skeleton extraction
effect of the algorithm. However, for the more complex branch structure (e.g., peach and
persimmon trees), with a reduction in flight altitude, the UAV can collect a more complex
fruit tree branch point cloud structure, which brings challenges to the skeleton extraction
of the algorithm. Therefore, when a more complex fruit tree branch structure is dealt
with, whether the skeleton can be effectively extracted from the branch point cloud is an
important basis to test the adaptability of the fruit tree point cloud skeleton extraction
algorithm. Compared with the L1-medial and LBC, the algorithm proposed in this paper
can still maintain good experimental results on more complex fruit tree branch point cloud,
indicating that the algorithm proposed in this paper can also adapt to the extraction task of
the skeleton of more complex fruit tree branch point cloud (Figure 15).

 
Figure 15. The effect of the algorithm in extracting the branch skeleton of fruit trees in an orchard
plot (the different color curves in the figure indicate the branch skeleton of each fruit tree).

As a conclusion, after the experiments and discussions in this paper, the proposed
method can effectively extract the skeleton from the point cloud of fruit tree branches
measured by UAV photogrammetry. It is undeniable that extracting the skeleton from a
complex tree branch point cloud is still a challenging task. Unlike conventional objects
with clear 3D structures, tree branches have open surfaces and complex branches, and the
collected point cloud often fails to clearly represent the tree branch morphology, causing
greater difficulties in the subsequent branch skeleton extraction. Therefore, the algorithm
proposed in this paper still has areas for improvement:

First, based on the experimental results, it can be found that the algorithm in this
paper shows advantages in fruit tree branch point cloud skeleton extraction. However,
there are still some problems, such as poor performance in FEP and FBP metrics of some
fruit trees in the comparison experiments. The reason for this is that the algorithm in this
paper aggregates the fruit tree branch point cloud, and the skeleton point extraction and
subsequent skeleton topology connection are performed on the aggregated point cloud,
and the deviation of skeleton key point positioning occurs. In future work, optimizing
the positioning of skeleton end points by using the search method with direction and
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the positioning of skeleton bifurcation points by using the local density judgment can
be considered.

Second, at this stage, the parameters need to be set manually during skeleton extraction.
For example, the number of points and iterations of regional point cloud aggregation will
affect the point cloud aggregation and the recurrence depth of spatial octree, and subspace
point threshold will affect the extracted skeleton points, among other such issues. The
parameters during skeleton extraction need to be adjusted according to the type and height
of fruit trees and other attributes, which may require some experience. It is possible to
conduct several experiments on branch point clouds of different tree species to acquire
empirical values to apply to the needs of different types of fruit trees, and also to try to
project reasonable parameter thresholds based on the projected area and space size of fruit
trees in the vertical direction.

In the actual work of fruit tree morphological analysis, the extracted fruit tree skeleton
can be used to calculate parameters such as branch length and branch angle (e.g., the
angle between main and secondary branches, and other parameters, as shown in Figure 16)
to achieve the task of automated fruit tree morphological analysis. On the basis of the
extracted fruit tree branch skeleton, phenotypic information of fruit tree canopy can be
calculated, which can be used in practical applications for tasks such as orchard canopy
cover, biomass density and carbon sequestration estimation [30–32]. In addition, the real
3D tree branch skeleton is the basis for modeling scenes of orchards and woodlands, and
the algorithm proposed in this paper can extract a realistic fruit tree branch skeleton, and
the reconstructed tree model on this basis can better restore the real 3D morphology of fruit
trees. Therefore, the virtual 3D model of fruit trees can be formed based on the extracted
skeleton by regularized programming and mapping in future work (as shown in Figure 17)
to meet the demand for 3D visualization display of orchards and other scenes [33–36].

 

Figure 16. Automated calculation of fruit tree branch angles using the skeleton extraction software in
this paper.
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Figure 17. Fruit tree branch reconstruction based on the skeleton extracted by the algorithm in this
paper (persimmon tree is shown as an example). (a) Original fruit tree branch point cloud. (b) Fruit
tree branch skeleton extracted by this algorithm.
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Appendix A Branch and Trunk Skeleton Key Point Adjustment Strategy

Skeleton bifurcation point adjustment: as the point cloud at the bifurcation point of
the fruit tree branches is dense, the extracted skeleton bifurcation points may deviate from
the bifurcation center of the branch point cloud. As the subsequent optimization of the
skeleton morphology needs to be based on the skeleton to accurately locate the bifurcation
points of the skeleton and to better assist this process, the bifurcation points of the skeleton
need to be adjusted toward the bifurcation center of the branch point cloud by moving
the bifurcation points as far as possible toward the parent branch. Since the positioning
of the bifurcation points of the skeleton in 3D space cannot be adjusted by simply fitting
straight lines of the skeleton segments to find the intersection points (the intersection points
of multiple non-coplanar lines cannot be determined in 3D space). Therefore, the following
skeleton bifurcation point adjustment strategy is designed in this paper.

As shown in Figure A1, let the initial extracted coarse skeleton bifurcation point be
bp, the sub-branch skeleton points neighboring bp be sp_1, sp_2, and the parent branch
skeleton point be sp_ f , let the line between sp_1 and sp_ f be L1, the line between sp_2 and
sp_ f be L2, and the line between bp and sp_ f be L f . Calculate the projection points f1 and
f2 of bp on L1 and L2, and then calculate the midpoints of the projection points f1 and f2
on L f as the new skeleton bifurcation points bp′, and update the skeleton segments where
they are located, and the adjusted skeleton bifurcation points are more reasonably located.
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Figure A1. Schematic diagram of skeleton bifurcation point adjustment. (a) Positioning of skeleton
bifurcation points before adjustment. (b) Positioning of skeleton bifurcation points after adjustment.

Skeleton end point adjustment: since the skeleton point extraction operation is built
on top of the aggregated fruit tree branch point cloud, the extracted skeleton endpoints will
naturally move towards the inside of the branch and cannot be positioned to the end of the
fruit tree branch. To locate the skeleton endpoints accurately, it is necessary to extend the
skeleton as far as possible to the endpoints of the fruit tree branch point cloud in the vicinity
of the extracted skeleton endpoints. For this purpose, the following skeleton endpoint
adjustment strategy is designed in this paper.

As shown in Figure A2, a spherical region with radius r (empirical value) is set at the
end point ep as the center of the sphere OE, and the point set CE in which the point cloud
C is in this region after the denoising is searched. The line where the skeleton point sp
connected with the end point ep is taken as the normal l, the plane α perpendicular to l and
containing the end point ep is calculated, the plane α is used to partition CE, the set AE of
points in CE that are on the opposite side from sp are separated and the point in AE which
is farthest from ep as the adjusted skeleton endpoint ep′ is selected, and ep is connected
with ep′, as the extension of this skeleton segment.

Figure A2. Schematic diagram of skeleton endpoint adjustment. (a) Skeleton endpoint positioning
before adjustment. (b) Skeleton endpoint positioning after adjustment.

Appendix B Overview of Experimental Results

Exhibit 2-1. Comparison experimental contents of fruit tree branch point cloud skele-
ton extraction.
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Comparison Experiments Experimental Content Figures and Tables

(1) 50 m altitude comparison experiment

(1-1) Visual analysis of skeleton extraction effect at 50 m altitude Figure 11

(1-2) Metric analysis of skeleton extraction effect at 50 m altitude
Table 2

Exhibit 1-1

(1-3) Algorithm stability analysis (analysis of three 50 m altitude
experimental metrics)

Appendix B Exhibit 3-1,
3-2, 3-3 Appendix B

Exhibit 3-4

(2) 20 m altitude comparison experiment

(2-1) Visual analysis of skeleton extraction effect at 20 m altitude Figure 12

(2-2) Metric analysis of skeleton extraction effect at 20 m altitude
Table 2

Exhibit 3-1

(3) Analysis of experimental results at
different altitudes

Analysis of the change of metrics from 50 m to 20 m experimental results
Table 2

Figure 13
Figure 14

Appendix C The Detailed Comparative Experimental Results of This Article

The arrows in the metrics column in the attached table represent the experimental
metrics for which the algorithms in this paper performed poorly, and the bold font in
each metric represents the value of the metric corresponding to the best algorithm under
that metric.

Exhibit 3-1: comparison experimental results of branch point cloud skeleton extraction
for fruit trees collected at 50 m altitude (1).

(Comparison experiment time: 13 January 2022.)

Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Peach_01

FBP 66.67% 58.82% 85.71%

FEP 42.11% 72.73% 82.35%

HD 0.0790 0.0756 0.0631

Tree_Peach_02

FBP 81.82% 76.00% 85.71%

FEP 87.50% 81.25% 89.66%

HD 0.0897 0.0399 0.0353

Tree_Peach_03

FBP 66.67% 47.62% 76.19%

FEP 86.96% 51.67% 69.57% ↓
HD 0.0495 0.0584 0.0432

Tree_Peach_04

FBP 72.00% 50.00% 81.48%

FEP 82.35% 78.57% 89.66%

HD 0.0502 0.0734 0.0394

Tree_Peach_05

FBP 66.67% 55.56% 88.89%

FEP 69.23% 90.91% 86.96% ↓
HD 0.0410 0.0398 0.0354

Average_Peach

FBP 70.76% 57.60% 83.60%

FEP 73.63% 75.02% 83.64%

HD 0.0647 0.0574 0.0433

Tree_Persimmon_01

FBP 42.86% 62.50% 80.00%

FEP 81.82% 92.31% 86.49% ↓
HD 0.1043 0.0479 0.0412

Tree_Persimmon_02

FBP 58.52% 55.17% 68.97%

FEP 62.50% 66.67% 87.50%

HD 0.0851 0.0772 0.0750
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Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Persimmon_03

FBP 58.82% 66.67% 85.71%

FEP 53.33% 86.96% 86.96%

HD 0.0963 0.0535 0.0461

Tree_Persimmon_04

FBP 80.00% 70.59% 78.26% ↓
FEP 34.48% 55.17% 77.42%

HD 0.0809 0.0709 0.0739 ↑

Tree_Persimmon_05

FBP 50.00% 35.71% 60.87%

FEP 75.86% 35.71% 88.89%

HD 0.0725 0.0658 0.0547

Average_Persimmon

FBP 58.04% 58.13% 74.76%

FEP 61.60% 67.36% 85.45%

HD 0.0878 0.0630 0.0582

Tree_Chestnuts_01

FBP 23.16% 31.58% 46.15%

FEP 40.00% 22.22% 47.06%

HD 0.0909 0.1132 0.0647

Tree_Chestnuts_02

FBP 22.22% 12.50% 33.33%

FEP 47.06% 38.10% 40.67% ↓
HD 0.1582 0.1743 0.1406

Tree_Chestnuts_03

FBP 33.33% 55.17% 55.17%

FEP 34.48% 47.62% 58.82%

HD 0.0591 0.0605 0.0807 ↑

Tree_Chestnuts_04

FBP 40.00% 12.50% 22.22% ↓
FEP 53.33% 19.05% 46.15%

HD 0.1325 0.0953 0.1023 ↑

Tree_Chestnuts_05

FBP 50.00% 40.00% 72.73%

FEP 37.50% 40.00% 50.00%

HD 0.1250 0.0728 0.0662

Average_Chestnuts

FBP 33.74% 30.35% 45.92%

FEP 42.48% 33.40% 48.54%

HD 0.1094 0.1032 0.0909

Tree_Plum_01

FBP 36.36% 28.57% 42.86%

FEP 70.59% 52.17% 58.82% ↓
HD 0.0845 0.1023 0.0818

Tree_Plum_02

FBP 22.22% 54.55% 61.54%

FEP 66.67% 26.67% 66.67%

HD 0.1365 0.1036 0.0770

Tree_Plum_03

FBP 60.00% 26.67% 57.14% ↓
FEP 30.77% 11.11% 56.92%

HD 0.1611 0.0773 0.0993 ↑

Tree_Plum_04

FBP 25.00% 9.52% 40.00%

FEP 71.43% 50.00% 66.67% ↓
HD 0.1154 0.1147 0.0683

Tree_Plum_05

FBP 60.00% 42.86% 60.00%

FEP 61.54% 42.11% 61.54%

HD 0.129 0.136 0.109
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Tree_Species_Number Metric L1-Medial LBC Proposed

Average_Plum

FBP 40.72% 32.43% 52.31%

FEP 60.20% 36.41% 62.12%

HD 0.1184 0.1068 0.0871

Average_Total

FBP 50.82% 44.63% 64.15%

FEP 59.48% 53.05% 69.94%

HD 0.0951 0.0826 0.0699

Exhibit 3-2: comparison experimental results of branch point cloud skeleton extraction
for fruit trees collected at 50 m altitude (2).

(Comparison experiment time: 14 February 2022).

Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Peach_01

FBP 61.54% 58.82% 85.71%

FEP 66.67% 72.73% 82.35%

HD 0.0781 0.0716 0.0628

Tree_Peach_02

FBP 66.67% 76.00% 85.71%

FEP 85.71% 81.25% 89.66%

HD 0.0927 0.0417 0.0367

Tree_Peach_03

FBP 63.16% 42.11% 72.73%

FEP 83.33% 51.67% 66.67% ↓
HD 0.0483 0.0563 0.0453

Tree_Peach_04

FBP 72.00% 59.26% 88.89%

FEP 80.00% 81.48% 89.66%

HD 0.0579 0.0397 0.0359

Tree_Peach_05

FBP 66.67% 52.63% 88.89%

FEP 76.92% 90.91% 86.96% ↓
HD 0.0635 0.0372 0.0332

Average_Peach

FBP 66.01% 57.76% 84.39%

FEP 78.53% 75.61% 83.06%

HD 0.0698 0.0493 0.0428

Tree_Persimmon_01

FBP 60.00% 52.94% 80.00%

FEP 95.00% 91.89% 89.47% ↓
HD 0.1129 0.0547 0.0450

Tree_Persimmon_02

FBP 60.00% 46.67% 69.57%

FEP 68.57% 73.33% 76.47%

HD 0.0805 0.0798 0.0703

Tree_Persimmon_03

FBP 53.33% 72.73% 66.67%

FEP 54.55% 86.96% 86.96%

HD 0.1277 0.0706 0.0504

Tree_Persimmon_04

FBP 78.79% 75.86% 75.86% ↓
FEP 66.67% 66.67% 90.91%

HD 0.0784 0.0689 0.0694 ↑

Tree_Persimmon_05

FBP 70.00% 34.48% 60.87%

FEP 81.48% 35.71% 88.89%

HD 0.0710 0.0646 0.0503
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Tree_Species_Number Metric L1-Medial LBC Proposed

Average_Persimmon

FBP 64.42% 56.54% 70.59%

FEP 73.25% 70.91% 86.54%

HD 0.0972 0.0677 0.0571

Tree_Chestnuts_01

FBP 23.16% 31.58% 46.15%

FEP 40.00% 22.22% 47.06%

HD 0.1017 0.1078 0.0650

Tree_Chestnuts_02

FBP 22.22% 11.77% 33.33%

FEP 47.06% 42.11% 40.67% ↓
HD 0.1563 0.1708 0.1418

Tree_Chestnuts_03

FBP 33.33% 55.17% 55.17%

FEP 34.48% 47.62% 58.82%

HD 0.0573 0.0619 0.0791 ↑

Tree_Chestnuts_04

FBP 40.00% 10.53% 22.22% ↓
FEP 53.33% 17.39% 46.15%

HD 0.1265 0.0922 0.1086 ↑

Tree_Chestnuts_05

FBP 50.00% 41.67% 50.00%

FEP 37.50% 40.00% 50.00%

HD 0.1293 0.0747 0.0658

Average_Chestnuts

FBP 33.74% 30.14% 41.38%

FEP 42.48% 33.87% 48.54%

HD 0.1121 0.1015 0.0921

Tree_Plum_01

FBP 36.36% 28.57% 42.86%

FEP 70.59% 52.17% 58.82% ↓
HD 0.0864 0.0865 0.0793

Tree_Plum_02

FBP 22.22% 50.00% 76.92%

FEP 70.59% 37.50% 66.67%

HD 0.1018 0.0987 0.0750

Tree_Plum_03

FBP 60.00% 37.50% 57.14% ↓
FEP 30.77% 11.11% 56.92%

HD 0.1736 0.0801 0.0984 ↑

Tree_Plum_04

FBP 25.00% 9.52% 36.36%

FEP 71.43% 50.00% 66.67% ↓
HD 0.1113 0.1320 0.0656

Tree_Plum_05

FBP 60.00% 42.86% 60.00%

FEP 66.67% 42.11% 72.34%

HD 0.1701 0.1382 0.1186

Average_Plum

FBP 40.72% 33.69% 54.66%

FEP 62.01% 38.58% 64.28%

HD 0.1216 0.1071 0.0874

Average_Total

FBP 51.22% 44.53% 62.75%

FEP 64.07% 54.74% 70.61%

HD 0.1002 0.0814 0.0698

Exhibit 3-3: comparison experimental results of branch point cloud skeleton extraction
for fruit trees collected at 50 m altitude (3).

(Comparison experiment time: 4 March 2022).
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Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Peach_01

FBP 76.92% 58.82% 85.71%

FEP 66.67% 63.64% 82.35%

HD 0.0786 0.0692 0.0651

Tree_Peach_02

FBP 83.33% 76.00% 88.00%

FEP 85.71% 81.25% 89.66%

HD 0.0880 0.0407 0.0390

Tree_Peach_03

FBP 63.16% 38.10% 76.19%

FEP 76.92% 51.67% 69.57% ↓
HD 0.0490 0.0521 0.0456

Tree_Peach_04

FBP 69.57% 46.15% 81.48%

FEP 78.57% 85.71% 89.66%

HD 0.0557 0.0650 0.0343

Tree_Peach_05

FBP 80.00% 44.44% 88.89%

FEP 80.00% 90.91% 86.96% ↓
HD 0.0512 0.0392 0.0333

Average_Peach

FBP 74.60% 52.70% 84.05%

FEP 77.58% 74.64% 83.64%

HD 0.0669 0.0532 0.0435

Tree_Persimmon_01

FBP 53.85% 56.25% 80.00%

FEP 81.82% 91.89% 89.47% ↓
HD 0.0505 0.0533 0.0489

Tree_Persimmon_02

FBP 60.00% 57.14% 69.57%

FEP 62.07% 75.00% 76.47%

HD 0.0817 0.0797 0.0723

Tree_Persimmon_03

FBP 57.14% 66.67% 66.67%

FEP 60.87% 86.96% 86.96%

HD 0.1213 0.0739 0.0557

Tree_Persimmon_04

FBP 78.79% 68.97% 75.86% ↓
FEP 90.91% 60.00% 90.91%

HD 0.0977 0.0681 0.0685 ↑

Tree_Persimmon_05

FBP 55.56% 31.25% 60.87%

FEP 62.86% 35.71% 88.89%

HD 0.0800 0.0688 0.0422

Average_Persimmon

FBP 61.07% 56.06% 70.59%

FEP 0.7170 0.6991 0.8654

HD 0.0862 0.0687 0.0575

Tree_Chestnuts_01

FBP 16.67% 40.00% 42.86%

FEP 33.33% 21.05% 66.67%

HD 0.0921 0.0904 0.0625

Tree_Chestnuts_02

FBP 22.22% 11.77% 33.33%

FEP 47.06% 40.00% 40.67% ↓
HD 0.1513 0.1542 0.1458

Tree_Chestnuts_03

FBP 33.33% 55.17% 55.17%

FEP 34.48% 47.62% 58.82%

HD 0.0656 0.0685 0.0776 ↑
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Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Chestnuts_04

FBP 40.00% 9.52% 22.22% ↓
FEP 53.33% 17.39% 46.15%

HD 0.1189 0.0790 0.0977 ↑

Tree_Chestnuts_05

FBP 66.67% 41.67% 66.67%

FEP 50.00% 42.86% 50.00%

HD 0.1036 0.0870 0.0669

Average_Chestnuts

FBP 35.78% 31.63% 44.05%

FEP 43.64% 33.78% 52.46%

HD 0.1039 0.0958 0.0901

Tree_Plum_01

FBP 36.36% 26.09% 42.86%

FEP 68.52% 50.00% 58.82% ↓
HD 0.0867 0.0973 0.0810

Tree_Plum_02

FBP 22.22% 50.00% 76.92%

FEP 66.67% 25.00% 72.34%

HD 0.1060 0.1252 0.0609

Tree_Plum_03

FBP 60.00% 31.53% 57.14% ↓
FEP 30.77% 11.11% 47.09%

HD 0.1412 0.0793 0.0870 ↑

Tree_Plum_04

FBP 25.00% 9.52% 36.36%

FEP 71.43% 50.00% 66.67% ↓
HD 0.1341 0.1242 0.0976

Tree_Plum_05

FBP 44.44% 28.57% 57.14%

FEP 66.67% 42.11% 66.67%

HD 0.1794 0.1518 0.1018

Average_Plum

FBP 37.61% 29.14% 54.09%

FEP 60.81% 35.64% 62.32%

HD 0.1295 0.1155 0.0857

Average_Total

FBP 52.26% 42.38% 63.20%

FEP 63.43% 53.49% 71.24%

HD 0.0966 0.0833 0.0692

Exhibit 3-4: standard deviation of the comparison experimental results of branch point
cloud skeleton extraction for fruit trees collected at 50 m altitude.

(Comparison experiment time: 4 March 2022).

Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Peach_01

FBP 0.0783 0.0000 0.0000

FEP 0.1418 0.0525 0.0000

HD 0.0004 0.0032 0.0013

Tree_Peach_02

FBP 0.0922 0.0000 0.0132

FEP 0.0103 0.0000 0.0000

HD 0.0024 0.0009 0.0019

Tree_Peach_03

FBP 0.0203 0.0478 0.0200

FEP 0.0508 0.0000 0.0167

HD 0.0006 0.0032 0.0013
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Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Peach_04

FBP 0.0141 0.0674 0.0428

FEP 0.0191 0.0359 0.0000

HD 0.0040 0.0175 0.0026

Tree_Peach_05

FBP 0.0770 0.0576 0.0000

FEP 0.0555 0.0000 0.0000

HD 0.0112 0.0014 0.0012

Average_Peach

FBP 0.0430 0.0288 0.0040

FEP 0.0260 0.0049 0.0033

HD 0.0025 0.0041 0.0004

Tree_Persimmon_01

FBP 0.0868 0.0485 0.0000

FEP 0.0761 0.0024 0.0173

HD 0.0338 0.0036 0.0039

Tree_Persimmon_02

FBP 0.0085 0.0557 0.0035

FEP 0.0364 0.0441 0.0637

HD 0.0024 0.0015 0.0024

Tree_Persimmon_03

FBP 0.0281 0.0350 0.1100

FEP 0.0405 0.0000 0.0000

HD 0.0166 0.0110 0.0048

Tree_Persimmon_04

FBP 0.0070 0.0361 0.0139

FEP 0.2831 0.0577 0.0779

HD 0.0105 0.0015 0.0029

Tree_Persimmon_05

FBP 0.1032 0.0231 0.0000

FEP 0.0955 0.0000 0.0000

HD 0.0048 0.0022 0.0063

Average_Persimmon

FBP 0.0319 0.0109 0.0241

FEP 0.0633 0.0183 0.0063

HD 0.0059 0.0030 0.0006

Tree_Chestnuts_01

FBP 0.0375 0.0486 0.0190

FEP 0.0385 0.0067 0.1132

HD 0.0059 0.0119 0.0014

Tree_Chestnuts_02

FBP 0.0000 0.0042 0.0000

FEP 0.0000 0.0201 0.0000

HD 0.0035 0.0108 0.0027

Tree_Chestnuts_03

FBP 0.0000 0.0000 0.0000

FEP 0.0000 0.0000 0.0000

HD 0.0044 0.0043 0.0015

Tree_Chestnuts_04

FBP 0.0000 0.0151 0.0000

FEP 0.0000 0.0096 0.0000

HD 0.0068 0.0087 0.0055

Tree_Chestnuts_05

FBP 0.0962 0.0096 0.1177

FEP 0.0722 0.0165 0.0000

HD 0.0138 0.0077 0.0005

Average_Chestnuts

FBP 0.0118 0.0080 0.0228

FEP 0.0067 0.0025 0.0226

HD 0.0042 0.0039 0.0010
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Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Plum_01

FBP 0.0000 0.0143 0.0000

FEP 0.0119 0.0126 0.0000

HD 0.0012 0.0081 0.0013

Tree_Plum_02

FBP 0.0000 0.0262 0.0888

FEP 0.0226 0.0679 0.0328

HD 0.0189 0.0141 0.0088

Tree_Plum_03

FBP 0.0000 0.0543 0.0000

FEP 0.0000 0.0000 0.0568

HD 0.0163 0.0015 0.0068

Tree_Plum_04

FBP 0.0000 0.0000 0.0210

FEP 0.0000 0.0000 0.0000

HD 0.0122 0.0086 0.0178

Tree_Plum_05

FBP 0.0898 0.0825 0.0165

FEP 0.0296 0.0000 0.0540

HD 0.0270 0.0086 0.0084

Average_Plum

FBP 0.0180 0.0235 0.0123

FEP 0.0092 0.0152 0.0120

HD 0.0057 0.0050 0.0009

Average_Total

FBP 0.0075 0.0127 0.0071

FEP 0.0249 0.0088 0.0065

HD 0.0026 0.0010 0.0004

Exhibit 3-5: comparison experimental results of branch point cloud skeleton extraction
for fruit trees collected at 20 m altitude.

(Comparison experiment time: 4 March 2022).

Tree_Species_NumberMetric L1-Medial LBC Proposed

Tree_Peach_01

FBP 55.56% 59.38% 82.35%

FEP 62.30% 62.30% 81.69%

HD 0.0741 0.0751 0.0651

Tree_Peach_02

FBP 65.71% 73.56% 81.25%

FEP 63.93% 65.00% 79.25%

HD 0.1025 0.0862 0.1002 ↑

Tree_Peach_03

FBP 60.61% 72.73% 83.72%

FEP 71.11% 71.80% 71.11% ↓
HD 0.0503 0.0557 0.0387

Tree_Peach_04

FBP 51.52% 70.73% 92.31%

FEP 61.54% 62.34% 89.58%

HD 0.0909 0.0547 0.0339

Tree_Peach_05

FBP 67.93% 80.65% 91.89%

FEP 63.64% 65.63% 95.12%

HD 0.0656 0.0775 0.0350
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Tree_Species_Number Metric L1-Medial LBC Proposed

Average_Peach

FBP 60.26% 71.41% 86.30%

FEP 64.50% 65.41% 83.35%

HD 0.0762 0.0698 0.0546

Tree_Persimmon_01

FBP 75.00% 83.08% 82.35%

FEP 75.00% 68.85% 88.57%

HD 0.0855 0.0612 0.0675 ↑

Tree_Persimmon_02

FBP 61.22% 70.18% 87.50%

FEP 55.74% 59.26% 89.55%

HD 0.1263 0.0713 0.0589

Tree_Persimmon_03

FBP 80.00% 65.39% 79.25% ↓
FEP 81.36% 46.81% 93.55%

HD 0.0860 0.0713 0.0424

Tree_Persimmon_04

FBP 63.16% 60.47% 80.77%

FEP 83.64% 47.83% 89.66%

HD 0.0937 0.0836 0.0394

Tree_Persimmon_05

FBP 64.62% 80.00% 93.98%

FEP 57.83% 84.71% 88.89%

HD 0.1205 0.0567 0.0554

Average_Persimmon

FBP 68.80% 71.82% 84.77%

FEP 70.71% 61.49% 90.04%

HD 0.0996 0.0688 0.0527

Tree_Chestnuts_01

FBP 28.57% 66.67% 60.00% ↓
FEP 38.46% 31.58% 69.57%

HD 0.0659 0.0686 0.0532

Tree_Chestnuts_02

FBP 66.67% 62.50% 66.67%

FEP 34.78% 57.14% 81.67%

HD 0.1004 0.0701 0.0321

Tree_Chestnuts_03

FBP 53.33% 70.59% 84.12%

FEP 66.67% 42.11% 91.74%

HD 0.0554 0.0532 0.0336

Tree_Chestnuts_04

FBP 66.67% 50.00% 94.74%

FEP 47.62% 43.48% 85.24%

HD 0.0967 0.0560 0.0291

Tree_Chestnuts_05

FBP 80.00% 35.29% 94.12%

FEP 90.00% 50.00% 90.00%

HD 0.0405 0.0521 0.0483 ↑

Average_Chestnuts

FBP 59.05% 57.01% 79.93%

FEP 55.51% 44.86% 83.64%

HD 0.0708 0.0600 0.0393

Tree_Plum_01

FBP 66.67% 32.00% 69.57%

FEP 92.31% 57.14% 88.89% ↓
HD 0.1284 0.0604 0.0575

Tree_Plum_02

FBP 57.14% 71.43% 82.35%

FEP 75.00% 53.33% 77.78%

HD 0.0415 0.0544 0.0285
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Tree_Species_Number Metric L1-Medial LBC Proposed

Tree_Plum_03

FBP 58.82% 84.21% 72.73% ↓
FEP 75.00% 60.00% 75.00%

HD 0.1100 0.1007 0.0441

Tree_Plum_04

FBP 70.59% 73.68% 95.24%

FEP 70.00% 50.00% 78.26%

HD 0.1113 0.0630 0.0407

Tree_Plum_05

FBP 73.68% 60.00% 90.00%

FEP 76.92% 43.48% 88.00%

HD 0.0621 0.0893 0.0454

Average_Plum

FBP 65.38% 64.26% 81.98%

FEP 77.85% 52.79% 81.59%

HD 0.0970 0.0736 0.0432

Average_Total

FBP 63.37% 66.13% 83.24%

FEP 67.14% 56.14% 84.66%

HD 0.0859 0.0681 0.0474
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Abstract: With the continuous development of UAV technology and swarm intelligence technology,
the UAV formation cooperative mission has attracted wide attention because of its remarkable
function and flexibility to complete complex and changeable tasks, such as search and rescue,
resource exploration, reconnaissance and surveillance. The collaborative trajectory planning of UAV
formation is a key part of the task execution. This paper attempts to provide a comprehensive
review of UAV formation trajectory planning algorithms. Firstly, from the perspective of global
planning and local planning, a simple framework of the UAV formation trajectory planning algorithm
is proposed, which is the basis of comprehensive classification of different types of algorithms.
According to the proposed framework, a classification method of existing UAV formation trajectory
planning algorithms is proposed, and then, different types of algorithms are described and analyzed
statistically. Finally, the challenges and future research directions of the UAV formation trajectory
planning algorithm are summarized and prospected according to the actual requirements. It provides
reference information for researchers and workers engaged in the formation flight of UAVs.

Keywords: heuristic algorithm; machine learning; multi-UAV formation; trajectory planning

1. Introduction

Since its outstanding performance in the Gulf War in 1991, drones have made good
achievements in the Afghanistan War, the Iraq War, the fight against the Islamic State
(ISIS) terrorist group, the “Neptune Spear” decapitation operation in 2011, and the Russia–
Ukraine conflict in 2022. Their success has caused countries around the world to invest a
large amount of manpower and financial resources in the research of UAV [1], as shown in
Figure 1. After decades of development, UAVs have not only been applied in the military
fields of reconnaissance, surveillance, communication relay, electronic countermeasures,
combat assessment, harassment, decoy, anti-submarine, target attack, etc. At the same
time, they have been widely used in agriculture [2], energy [3], civil [4] and other very
important fields. However, there are some problems with a single drone performing its
mission. For example, when a single UAV performs a reconnaissance mission, it may be
limited by the observation angle and cannot observe the target area from multiple different
orientations [5]; when faced with a large-scale search task, a single UAV cannot effectively
cover the entire reconnaissance area [6]; during the attack, the combat range, killing radius,
destruction capability and attack accuracy are limited, thus affecting the success rate of
the entire combat mission [7]; if a single drone fails in the middle of a mission, it must
immediately interrupt the mission and return, but in a war, it may delay the aircraft and
destroy the entire operation plan. In order to improve combat effectiveness and make up
for the deficiency of a single UAV, a multi-UAV cooperative formation (cluster) combat task
is proposed. It refers to the formation, maintenance or reconstruction of a certain geometric
formation during the execution of a task by multiple UAVs to adapt to the battlefield
situation and task requirements.
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(a) (b) 

Figure 1. Statistics and forecast of global UAV market size from 2015 to 2024 (data source: Drone
II): (a) Global UAV market 2015–2024 (blue column: global UAV investment; yellow line: upward
trend); (b) Global UAV segment market share (blue column: proportion of consumer drones; yellow
column: proportion of industrial drones).

Unmanned aerial vehicle formation has incomparable advantages over a single un-
manned aerial vehicle. When UAV formation is not possible in extreme weather, main-
taining different formations can improve the aerodynamic efficiency of UAVs to varying
degrees, thus reducing the overall flight resistance and saving fuel [8]; it can realize the
all-round reconnaissance or observation of the target, such as the enemy target monitoring
and reconnaissance, resource exploration and so on, and it can greatly improve the scope of
target monitoring; 0069t can also realize simultaneous strikes on multiple mission targets,
disrupt the enemy’s combat command system, improve the lethality and hit rate of targets,
and improve combat effectiveness, as shown in Figure 2. In the process of use, UAVs are
equipped with intelligent devices, which can simulate the transport environment in real
time, determine their own position, control their flight status, select effective trajectory
points, and calculate safe trajectory. These are important guarantees for UAVs formation to
reach the target point from the take-off point as well as important prerequisites for a UAV
formation to complete tasks. Therefore, it is important to select a suitable algorithm for
UAV formation trajectory planning.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Unmanned aerial vehicles fly in formation to perform tasks. (a) UAV formation flight;
(b) UAV formation electronic warfare; (c) Unmanned aerial vehicle (UAV) formation performs
mission; (d) UAV formation communication relay; (e) UAV formation strikes target; (f) UAV formation
reconnaissance.

The purpose of trajectory planning of UAV formation is based on the specific tasks,
terrain, weather and other environmental factors of each UAV as well as its own flight
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performance. Under the premise of satisfying multiple constraints, the specified perfor-
mance index can be optimized or better so that all UAVs in the formation can safely reach
the target from the starting point. The trajectory planning of UAV formation is a complex
multi-objective optimization and decision problem under multiple constraints. With the in-
creasing number of UAVs, the analytic space of the problem will increase exponentially. In
the study of UAV trajectory planning, the algorithm is the soul of UAV trajectory planning,
which is directly related to the efficiency and results of trajectory planning. Compared with
single UAV trajectory planning, the complexity of UAV formation trajectory planning is
mainly reflected as follows:

(1) In many cases, the scope of planning space is large and complex: for example, there are
various spatial obstacles and dynamic threats in the modern battlefield environment;

(2) There are many constraints. Not only should the planned flyable trajectory conform to
the actual dynamics and kinematic characteristics of the UAV, but also the coordination
between time and space and the concealment of the trajectory should be considered;

(3) Multi-UAV trajectory planning can adapt to battlefield dynamic changes and adjust
trajectories online in real time.

For the trajectory planning of UAV formation, many papers have proposed solutions
from different perspectives, but there are still many unsolved problems and many limita-
tions, resulting in numerous and complex papers without a comprehensive and systematic
classification, which is not conducive to research and reading.

The reference [9] classifies and statistically analyzes the cooperative flight path plan-
ning of various UAV formations from the three elements of a UAV system (mission, UAV
crew and environment) and the three elements of UAV formation cooperative flight path
planning (UAV flight path, target and constraint), but it does not discuss the flight path
planning algorithm of UAV formation.

Stochastic Heuristic Algorithms (SHA) are reviewed in reference [10], and the charac-
teristics, improvements, applications, advantages and disadvantages of some of them are
discussed, but non-SHA algorithms in UAV formation flight paths are not discussed.

The reference [11] divides the flight path planning algorithms of UAV formation into
five categories, including optimal algorithm, graph theoretics-based planning method,
heuristic information-based planning algorithm, swarm intelligence algorithm and neural
network algorithm. Then, a simple description is given to these categories, but no specific
algorithms are discussed.

Reference [12] reviews swarm intelligence algorithms from four aspects, such as
collision avoidance processing, task allocation, track planning and formation recombination,
and it discusses classical algorithms among them. However, it does not discuss non-swarm
intelligence algorithms, which has certain limitations.

Compared with many studies in the literature on UAV formation trajectory plan-
ning [9–12], the contributions of this paper are as follows.

In this review, the UAV formation trajectory planning algorithms used in recent
decades are classified in detail, and the basic principles of these algorithms are described
and compared so as to find out the shortcomings of UAV formation trajectory planning
algorithms. The challenges and future research directions of the algorithm are summarized
and prospected, which provides reference information for researchers and workers engaged
in the formation flight of UAVs.

This paper can be divided into the following parts: Firstly, a simple classification
framework of the UAV formation trajectory planning algorithm is introduced in Section 2.
Then, the global trajectory planning algorithms are summarized in time order in Sections 3
and 4. Among them, Section 3 summarizes the traditional algorithm and Section 4 summa-
rizes the intelligent algorithm. Section 5 summarizes the local trajectory planning algorithm.
Section 6 summarizes the challenges the algorithm faces. Section 7 summarizes the focus
and direction of future research. Section 8 summarizes the full text.
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2. Classification Framework of UAV Formation Trajectory Planning Algorithm

This paper provides a classification framework of the UAV formation trajectory plan-
ning algorithm, which includes two elements: global planning and local planning.

The global trajectory planning algorithm belongs to the static programming algorithm,
which carries out trajectory planning based on existing map information and seeks an
optimal trajectory from the starting point to the target point. In this paper, global trajectory
planning algorithms are divided into traditional algorithms and intelligent algorithms
according to whether they are inspired by natural organisms; the intelligent algorithms are
divided into machine learning algorithms and heuristic algorithms according to whether
they imitate human behavior or other animal behavior. The global trajectory planning
algorithm framework is shown in Figure 3.

 

Figure 3. Framework diagram of global trajectory planning algorithm.

The local trajectory planning algorithm belongs to the dynamic trajectory planning
algorithm, which means that the pilot aircraft collects the current position information and
local obstacle information in real time according to the UAV sensor in the formation and
then obtains the optimal trajectory between the starting point and the ending point. The
local trajectory planning algorithm framework is shown in Figure 4.

 

Figure 4. Frame diagram of local trajectory planning algorithm.

3. Traditional Algorithm

Traditional methods must build the map environment for the target before perform-
ing trajectory planning. Firstly, the map environment was discretized into graphs, and
feasible trajectories were generated by the search algorithm to complete the global tra-
jectory planning of UAV formation. The existing algorithms are the Dijkstra algorithm,
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Dubins Curve, Floyd algorithm, Voronoi graph method, Probabilistic Roadmaps (PRM),
and Rapidly-Exploring Random Tree (RRT).

3.1. Dijkstra Algorithm

The Dijkstra algorithm is the classical shortest trajectory method in the geometric graph
method, in which the vertex represents trajectory points, the edge represents a feasible
trajectory, the line between nodes is called an edge, and each edge has a corresponding
weight, which is the distance or cost of the journey; it is suitable for two-dimensional
static obstacle avoidance scenes with a non-negative side weight. The key to using this
algorithm is to select effective trajectory points, shorten the planning time, expand from
the starting point, find the shortest trajectory for a node in each step, select the node with
the smallest distance from the node that has never been visited to register, then traverse the
adjacent nodes of the node after the node is included, and then update the distance. The
cost diagram of a Dijkstra algorithm is shown in Figure 5.

Figure 5. A cost diagram of a Dijkstra algorithm (A–G: nodes; lines: trajectories; numbers: the
distance between vertices).

Aiming at the uncertain region search problem, Sujit and Ghose [13] proposed a search
algorithm based on the K-shortest trajectory algorithm for UAV to search targets in an
unknown environment. It satisfies the requirements of endurance time of each UAV and
the location of the base station of UAV operation, and it enables each UAV to search in the
area of maximum uncertainty so as to maximize the search benefit.

In order to meet the needs of searching an unknown environment and tracking moving
targets in a balanced way, Tin [14] improved on Dijkstra’s algorithm and proposed a robust
shortest algorithm (ARSP) to deal with arc uncertainty. The influence of information
uncertainty and environmental change on the trajectory planning algorithm is overcome,
and the trajectory is quickly replanned at the same time.

Ueno and Kwon [15] applied the Dijkstra algorithm to the minimum time reconstruc-
tion of UAV formation in order to meet the requirements of optimality and short computing
time, and the trajectory generated within the shortest time is close to the optimal trajectory.

Aggarwal et al. [16] proposed an approximate trajectory generation method to generate
an approximate trajectory length under the condition of meeting the safety constraints of a
UAV. This method is based on the total cost of the Lagrange relaxation (LARAC) algorithm,
and it iteratively uses the Dijkstra algorithm (iDijkstra) to modify the edge cost, which
solves the safety constraints and flight energy consumption of UAV caused by extreme
high temperature.

3.2. Dubins Curve

The Dubins curve is the shortest locus connecting two two-dimensional planes (i.e., the
X-Y plane) under the condition that the curvature constraint is satisfied and the tangent
directions of the specified beginning and end are satisfied. In 1957, Lester Eli Dubins
proved that any locus can consist of a maximum curvature arc or straight segment (the
locus between two points must exist). In other words, the shortest path connecting two
points will be constituted by the circular arc of the maximum curvature and the straight
line segment. The Dubins of any starting point to the end point are composed of not more
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than three original motions, and the sequence constituted by the three original motions
is called a kind of trajectory. As two continuous and identical primordial motions can be
combined into one primordial motion, Dubins proved that the optimal trajectory can only
be one of the following six combinations: namely, RSR, LSL, RSL, LSR, RLR, LRL. The first
four are collectively called a CSC trajectory, and the last two are collectively called a CCC
trajectory, where the primordial motion R represents right turn, S stands for straight and L
stands for left. Figure 6 is the trajectory diagram of one Dubins curve LRL.

Figure 6. An LRL trajectory diagram of Dubins curve (black circle: circle curvature; yellow lines: the
connecting line between the centers of trajectories; blue line: initial flight direction; green line: final
flight direction; pt1–pt2: intersection point between curvatures; C1–C3: curvature name).

D’Amato, Mattei, and Notaro [17] modeled the UAV as a Dubins vehicle, using a
method based on the Reduced Visibility Graph (RVG), connecting selected nodes by arcs
and segments, and adding the Rendez-Vous Waypoints (RVWs). It was based on the leader–
follower Stackelberg model’s two-layer game theory method to optimize the location of
the trajectory point and the trajectory of the UAV as much as possible in order to find the
optimal trajectory while maintaining the shape of the formation in many places.

3.3. Floyd Algorithm

The Floyd algorithm, also known as the interpolation method, is a relatively classic
algorithm for solving graph theory problems. It is an algorithm to solve the shortest trajec-
tory between vertices in a given weighted graph, and it can correctly handle the shortest
trajectory problem of directed graphs. At the same time, it is a dynamic programming
algorithm, and the connection weight between nodes can be positive or negative; similar
to Dijkstra’s algorithm, but different from it is that Floyd’s algorithm is used to find the
distance between any two points, which is the shortest path of multiple sources, and it can
be calculated with negative weights, while Dijkstra’s algorithm is used to find the shortest
route from one vertex to all other vertices, is the single-source shortest path, and negative
weight circuits cannot be calculated.

Faced with the problem of multi-UAV cooperative patrol trajectory planning under
constraints such as time windows, mandatory patrol nodes, UAV flight time and imaging
sensors, Yang et al. [18] proposed a new cooperative patrol trajectory planning method,
using the Floyd algorithm to generate the initial trajectory, and then used the improved
forward insertion heuristic algorithm (PFIH) to obtain the optimal trajectory.

Zhou and Nie [19] proposed a graph-based trajectory planning method for multi-UAV
systems, using the Floyd algorithm to update the adjacent cost matrix and trajectory matrix,
and solved the problem of UAV formation trajectory planning.

3.4. Fast Marching Method

The fast marching method (FM) is an efficient numerical algorithm for solving the
optical path function equation (Eikonal equation), and the optical path function equation is
as follows:

|∇T(x, y)|V(x, y) = 1 (1)
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where (x, y) is the coordinate of the calculation point in the pose space, T(x, y) is the time
when the interface function arrives at the calculation point, V(x, y) is the propagation
velocity set by the interface function, and it is a fixed value in trajectory planning. The
optical path function solution model is shown in Figure 7.

Figure 7. Optical path function solution model diagram (Δx and Δy: spacing in x and y directions on
discrete space).

The fast marching method first establishes a rasterized space for storing time values,
and then, the time cost will be converted into the distance cost during planning. Then,
we set reachable points and unreachable points and complete the minimum value search
operation by continuously updating the distance cost to obtain the distance matrix. We
use it to construct the potential field and then use the gradient descent method to iterate
continuously from the starting point along the direction of the fastest gradient descent in
the generated potential field, obtaining a smooth trajectory without collision.

Aiming at the problem that the trajectory obtained by the traditional FM algorithm in
the 3D environment will be too close to obstacles and the trajectory is not smooth enough,
López et al. [20,21] proposed a fast marching square algorithm (FM2), which improves the
FM algorithm by changing the propagation speed in space so that the wave will tend to
follow the track travel.

3.5. Voronoi Diagram Method

The Voronoi graph method (also known as Dirichlet tessellation) is a space segmenta-
tion algorithm proposed by Russian mathematician Georgy Voronoy. It divides the space
into many sub-regions through a series of seed nodes (Seed Points), each sub-region is
called a Cell, and the distance between all points in each Cell and the Seed Points in the
current Cell is less than Distance to all other Seed Points. According to the distribution of
obstacles, the Voronoi diagram squares the free space between the edges of the obstacles,
and at the same time, it draws the vertical line of adjacent obstacles to form a polygon
around the obstacles so that each side is equidistant from the surrounding obstacles. Then,
the origin and destination nodes can be connected into the graph by constructing trajec-
tories from the nodes to the edges closest to each node. Figure 8 is a Voronoi trajectory
diagram.

 

Figure 8. A Voronoi diagram method of trajectory diagram (blue area: obstacles; yellow lines: feasible trajectories).
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Unavoidable accidents or environmental interference problems will inevitably occur
when UAV formations perform multi-mission planning and collaborative trajectory plan-
ning. In order to cope with this situation, Meng et al. [22] proposed an algorithm to deal
with multi-UAV multi-task trajectory re-planning in an unexpected event environment.
Each UAV uses a Voronoi diagram to plan its own initial, optimal or sub-optimal trajectory;
then, it replans its trajectory according to the new multi-task requirements corresponding
to some unexpected events.

To solve the coverage problem with average Voronoi partitions, Chen et al. [23]
proposed a distributed coverage algorithm to cover the convex area of the average Voronoi
partition of the UAV formation. By exchanging local information with neighbors, the
Voronoi partition is continuously iteratively updated, and the UAV direction of movement
is calculated. The algorithm can theoretically make the area difference infinitely small so as
to achieve the actual average area coverage.

Chen et al. [24] proposed a method based on consistency theory, using the Voronoi
diagram method to create a threat domain, and designing a cost function for trajectory
planning of multiple UAVs, so that multiple UAVs can take off at the same time and reach
the specified target Point, solving the problem of UAV formation attacking multiple targets
in a static threat environment.

Hu et al. [25] proposed a distributed formation control and collision avoidance method
based on the Voronoi partition and traditional artificial potential field, using the Voronoi
partition theory to divide the entire space into non-overlapping regions, and further pro-
posed the target switching scheme; this method solves the problem of local optimum when
an artificial potential field is used as motion control law.

3.6. Probabilistic Roadmap Algorithm

The Probabilistic Roadmap Algorithm (PRM) is a method based on graph search,
which converts continuous space into discrete space. Trajectory planning is mainly divided
into two stages. In the offline learning stage, a large number of robot pose points are
randomly sampled; then, neighbor nodes are searched and connections are established
to construct a landmark map. In the online query phase, a feasible trajectory is searched
from the landmark map using a heuristic search algorithm based on the starting point,
target point and landmark map information. Figure 9 is a trajectory diagram of a roadmap
algorithm.

Figure 9. A PRM trajectory map (color areas: obstacles; black lines: feasible trajectories; red line:
optimal trajectory).

Madridano et al. [26] proposed a multi-trajectory PRM-based planning method by
establishing a parameter to define three different modes, so that different UAVs in the UAV
formation can achieve different mission goals.

3.7. Rapidly Exploring Random Trees

Rapidly exploring Random Trees (RRT) is a single query random search algorithm
based on sampling. Its basic idea is to randomly sample in the state space, use the graph
structure or tree structure extension to build a feasible trajectory set, and then find a
complete feasible trajectory from the trajectory set. The RRT algorithm takes the starting
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point in the state space as the root node and then generates a random extended tree by
gradually increasing the leaf nodes at random. If the newly generated node conflicts with
the obstacle area during the generation process, the node is discarded and reselected. When
the target point is included in the leaf node of the random tree, the expansion of the random
tree stops, and an obstacle avoidance route from the starting point to the target point can
be obtained. A fast random search tree locus is shown in Figure 10.

Figure 10. A RRT trajectory diagram (black areas: obstacles; pink lines: feasible trajectories; blue line:
optimal trajectory; green: starting point; red: end point).

Aiming at the trajectory planning problem of UAV formation with static, ejection and
dynamic obstacles, Kothar et al. [27] proposed a trajectory planning algorithm based on
fast search random tree (RRTs) and introduced an anytime algorithm and guidance law
based on tracking and line of sight into the algorithm to generate low-cost UAV formation
trajectories under kinematic constraints in real time.

Zu et al. [28] proposed an improved Rapid Exploration Random Trees (RRTs) UAV
formation collaborative trajectory planning algorithm, using a trajectory pruning method
to delete redundant nodes on the trajectory. The UAV uses a trajectory planner, which
enables the UAV to share information within the communication range.

When UAV formation faces sudden threat trajectory replanning, the classical RRT
algorithm has some problems such as low efficiency, large storage space and slow conver-
gence. Huang and Sun [29] proposed a bidirectional fast search random tree algorithm
based on greedy strategy, improved the expansion mode of algorithm nodes, and adopted
an adaptive step size rolling detection method to improve the sensitivity of UAV formation
to sudden threats.

In addition, the traditional RRT algorithm also has the problem that it cannot adapt
to the possible changes in the high-order dynamic characteristics of the autonomous
movement of the UAV and the mission process during trajectory planning. In response
to this problem, Shi et al. [30] proposed a trajectory generation algorithm based on the
integration of the RRT algorithm and the minimum capture algorithm, using the RRT
algorithm to generate the initial trajectory, and then using the minimum capture algorithm
to smooth the initial trajectory, and using the concept of flight corridors to limit the flight
trajectory of drones.

Table 1 summarizes the contents of our survey on traditional trajectory planning
algorithms.

Table 1. Content of traditional trajectory planning algorithm in our survey.

Reference Challenge Optimization Criteria Method Dimension

P. Sujit and D. Ghose [13] Environment Trajectory of deviation KSP 2D
C. Tin [14] Information, Environment ARSP Dijkstra 2D

S. Ueno and S. J. Kwon [15] Time, Optimality Optimal control Dijkstra 2D
R. Aggarwal et al. [16] Security LARAC Dijkstra 2D

E. D’Amato, M. Mattei, and I. Notaro [17] Environment RVG, Bi-level optimization Dubins 3D
J. Yang et al. [18] Resources PFIH Floyd 2D

F. Zhou and H. Nie [19] Environment Shortest path Floyd 2D
B. López et al. [20,21] Trajectory Lead–Follow, Multiple applications FM 3D
B.-b. Meng et al. [22] Environment Task allocation Voronoi + Dijkstra 2D
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Table 1. Cont.

Reference Challenge Optimization Criteria Method Dimension

S. Chen et al. [23] coverage problem Distributed coverage Voronoi 2D

X. Chen et al. [24] Environment,
Multiple objectives Consistency theory Voronoi 2D

J. Hu et al. [25] UAV clustering Target switching Voronoi + APF 3D
Á. Madridano et al. [26] Trajectory Multiple trajectories PRM 2D/3D

M. Kothari et al. [27] Environment Anytime, Guide rate RRT 2D
W. Zu et al. [28] Environment pruning RRT 2D

J. Huang and W. Sun [29] Environment Greedy strategy, Adaptive step size RRT 3D
B. Shi et al. [30] Environment Minimum snap, Flight corridor RRT 2D

4. Intelligent Algorithm

The intelligent algorithm is based on the principle of bionics computing, simulating
the process of group biological behaviors to collaboratively search for the optimal solution
in the space; for high-latitude, nonlinear, multi-constrained optimization problems, it can
often converge to the optimal value in UAV formation trajectory planning at the same
time, and it also solves the problem of UAV formation obstacle avoidance. In this paper,
intelligent algorithms are divided into two types: heuristic algorithms and machine learning
algorithms.

4.1. Heuristic Algorithm

Most heuristic algorithms are optimization algorithms that search approximate optimal
solutions based on empirical rules under acceptable computational costs to find solutions
to problems. It is not a systematic search for answers, but the use of previous experience to
select effective methods, and it cannot guarantee the speed of solutions and optimization
degree of feasible solutions [31]. At present, the heuristic algorithms are mainly natural
body-like algorithms. The heuristic algorithms used for UAV formation trajectory planning
include the Simulated Annealing Algorithm (SA), A* Algorithm, Evolutionary Algorithm
(EA), Particle Swarm Optimization (PSO), Pigeon-Inspired Optimization (PIO), Fruit Fly
Optimization Algorithm (FOA), Artificial Bee Colony (ABC), Salp Swarm Algorithm (SSA),
Ant Colony Optimization algorithm (ACO), Gray Wolf Optimization algorithm (GWO),
Harmony Search algorithm (HS), etc.

4.1.1. Simulated Annealing Algorithm

The Simulated Annealing Algorithm (SA) is derived from the annealing of solid
matter in physics. Usually, when a solid material is annealed, it is heated to allow its
particles to move freely, and then, the particle system descends slowly enough to slow
down sufficiently. The system is approximately at a thermodynamic equilibrium point,
and finally, the particle system will reach its lowest energy state, the ground state, which
corresponds to the global minimum of the energy function. The objective function of the
optimization problem is equivalent to the energy, and the optimal solution is equivalent to
the lowest energy state. The simulated annealing algorithm changes randomly from one
state to another state at a given temperature and uses the random acceptance criterion to
judge. When the temperature slowly drops to a very low value, it remains at the optimal
solution with a probability of 1. When the UAV formation is performing trajectory planning,
we first define a solution space, arrange the fixed starting point to the end point by unit,
use the Monte Carlo method as the initial solution, and iterate to create a new solution
for the next trajectory point program. The exchange order of the two trajectory points in
the obtained solution will generate a new solution. Then, we set the target function of
the trajectory length of the UAV and use the simulated annealing criterion to test the cost
function according to the data of the distance matrix. We use the difference between the cost
functions to determine whether to accept the new trajectory planning and set the cooling
process control parameters, initial temperature, cooling coefficient, end temperature, and
current temperature iteration number. When the temperature drops to the end temperature,
the algorithm stops, reaches the minimum temperature, and outputs the formation. The
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optimal trajectory of the UAV using a simulated annealing algorithm trajectory is shown in
Figure 11.

Figure 11. Trajectory diagram of a simulated annealing algorithm (dots: nodes; lines: trajectories;
numbers: the distance between vertices).

Turker et al. [32] proposed an alternative method to effectively calculate the cost-
fair flight path of a single-station multi-UAV system, using a data parallel computing
mechanism to improve the simulated annealing algorithm, and solve the problem of the
UAV formation trajectory planning calculation time index problem of growth.

Yue and Zhang [33] proposed a method of UAV formation trajectory planning based
on the K-means algorithm and Simulated Annealing (SA) algorithm, using decomposition
technology to reasonably decompose the effective area into multiple sub-target points.
They use the K-means algorithm to cluster the UAV cruise target points and then use
the Simulated Annealing (SA) algorithm for similar sub-target trajectory planning, which
solves the problem of UAV cruise distance and scheduling under complex constraints and
leads to improved coverage of drones in the sub-target area of the cruise effective area.

4.1.2. A* Algorithm

The A* algorithm is a graph search algorithm that introduces heuristic information
factors into the target information of the problem to be solved, making the search direction
more accurate and reducing the convergence time. The basic idea of this algorithm for
UAV formation trajectory planning is as follows: firstly, the flight space is rasterized and
decomposed into some units with regular shapes, and it is judged whether these units
are covered by obstacles or intersected with obstacles. Then, find the unit containing the
starting point and the target point and use the A* algorithm to find a series of connected
units to connect the starting unit and the target unit. The search process of the A* algorithm
is based on the value of the heuristic function in the direction of the lower cost; that is, for
the node n, the algorithm uses the cost function to evaluate its surrounding nodes and
selects the point with the smallest estimated value as the next node. The expression of the
cost function is:

f (n) = g(n) + h(n) (2)

where h(n) is the heuristic function; g(n) represents the prediction cost function from
the current node position to the target point and represents the trajectory cost from the
starting point to the current node n; and f(n) is the estimated value, which is obtained by
adding h(n) and g(n). In the grid graph, the heuristic function is usually expressed by the
distance between two points. The calculation process of algorithm A* is a step-by-step
search process, continuously extending to the direction of the minimum estimated value
trajectory, calculating the optimal solution and outputting the optimal trajectory. Figure 12
is a trajectory diagram of an A* algorithm.

The traditional A* algorithm convergence speed is slow, and the trajectory may not be
optimal. Hu et al. [34] proposed a distributed velocity perception and trajectory planning
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algorithm, which introduced a velocity perception strategy and collision prediction into
the A* algorithm and carried out trajectory planning of UAV formation.

 
Figure 12. Trajectory diagram of A* algorithm (dots: nodes; lines: trajectories; black areas: obstacles;
green dotted line: optimized trajectory).

Su et al. [35] proposed a cooperative search A* algorithm, which introduced cooper-
ation strategies, cooperation constraints and cooperation costs into the constraint model,
and they solved the problem of multi-aircraft formation trajectory planning with complex
space–time constraints.

Zhang et al. [36] proposed a collaborative tactical planning method of UAV formation
based on hierarchical structure, which introduced a hierarchical structure into UAV forma-
tion collaborative combat and solved the autonomous control problem of UAV formation
in modern air combat.

Haghighi et al. [37] proposed a method based on the cell revisit time value and other
effective cost functions such as height, minimum distance, collision avoidance and turning
cost to realize multi-objective collaborative trajectory planning of multiple UAVs. A modifi-
cation of the A* algorithm (MA*) was made to define a new criterion for individual revisit
time unit values and extend it to the entire 3D mountain environment area, introducing re-
visit time and application-specific settings to reduce the computational complexity degree,
which solves the problems of the traditional A* algorithm, such as high computational
complexity, small number of extension units and low ratio of coverage.

Nagasawa et al. [38] proposed a multi-UAV trajectory planning method in the case of
three-dimensional building damage investigation or disaster, which combined the fuzzy
c-means method of assigning positioning points to UAVs and the A* algorithm to calculate
the access sequence of each UAV camera positioning point so as to obtain the feasible
trajectory of multiple UAVs, which solves the problem of multi-UAV coverage trajectory
planning for the 3D reconstruction of damaged buildings after disasters.

Luo et al. [39] proposed a convergent method to ensure autonomous non-collision
trajectory planning of UAVs in the presence of static obstacles and dynamic threats. They
extended the jump point search algorithm (JPS), parent node transfer law, seventh-order
polynomial interpolation method of minimum capture, virtual gravity field and improved
artificial potential field (APF) algorithm to a three-dimensional UAV. Based on a static
environment, a collision-free trajectory is generated, which solves the trajectory planning
problem of UAV formation flying at low altitude in urban and mountainous areas.

Table 2 summarizes the contents of our review about the simulated annealing algo-
rithm and the A* algorithm.

4.1.3. Evolutionary Algorithm

The Evolutionary Algorithm (EA) is a stochastic optimization search algorithm summed
up on the basis of biological evolution in nature. The most widely used algorithm is the
Genetic Algorithm (GA). Its main idea is to rasterize the flight space first, find the area
covered by obstacles or conflict with obstacles, and then randomly generate starting points
in the map. To ensure the collision-free trajectory to the target point, in the trajectory
planning process, each collision-free trajectory from the starting point to the goal point is
represented as an individual, and each individual has a chromosome, so each collision-free
trajectory can also become a chromosome. Each segment in the trajectory is represented
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as a gene. The collection of all individuals, that is, all generated collision-free trajectories
from the starting point to the target point, are called the population. We design the
corresponding fitness function to screen out the required individuals from the population.
Individuals with high fitness are elite individuals; through the cross-mutation operation
between elite individuals, better elite individuals are continuously screened until the
termination conditions are met, and finally, what remains is the required obstacle avoidance
route. Figure 13 is a diagram of a cross-mutation operation and a trajectory diagram of an
Evolutionary Algorithm (EA).

Table 2. Summary of simulated annealing algorithm and A* algorithm in our review.

Reference Challenge Optimization Criteria Method Dimension

T. Turker et al. [32] Trajectory Parallel computing SA 2D
X. Yue and W. Zhang [33] coverage problem K-means SA 2D

Y. Hu et al. [34] Trajectory Speed perception, collision prediction A* 3D
H. Su et al. [35] UAV clustering Constraint model A* 2D

Z. Zhang et al. [36] UAV clustering Hierarchy A* 3D

H. Haghighi et al. [37] Trajectory and
Multiple objectives Revisit Time A* 3D

R. Nagasawa et al. [38] Environment Fuzzy c-means method A* 3D

Y. Luo et al. [39] Environment parent node, seventh-order
polynomial interpolation JPS + APF 3D

 
 

(a) (b) 

Figure 13. A cross-variation operation diagram and EA trajectory diagram. (a) A cross-mutation
operation diagram; (b) An Evolutionary Algorithm (EA) trajectory diagram (red circles: obstacles;
blue line: optimal trajectory).

Tian et al. [40] proposed an algorithm based on model predictive control (MPC) and
the Genetic Algorithm (GA) for multiple UAVs to search for unknown areas cooperatively,
combining the flexibility of the Genetic Algorithm and the predictive ability of MPC. The
combination avoids the problem where the search process enters into local optimality.

Shen et al. [41] proposed a method based on Genetic Algorithm (GA) to solve the
multi-UAV cooperative reconnaissance mission planning problem, introduced integer
string chromosome representation and designed a new subsequence crossover algorithm to
meet the requirements of reconnaissance resolution. They also inserted mutation operators
forward to increase the population diversity, which solves the problems of reconnaissance
resolution and the time window when UAV formations perform reconnaissance missions.

Nikolos et al. [42] proposed a trajectory planner suitable for a group of cooperative
UAVs to avoid collisions with environmental obstacles, combining b-spline curves, potential
fields, and differential evolution (DE) to generate smooth the trajectory curve of the UAV
formation, which solves the trajectory planning problem of the UAV formation in a known
or unknown static environment.
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Lamont et al. [43] proposed a multi-objective evolutionary algorithm (MOEA) for tra-
jectory planning that introduces a Genetic Vector Router (GVR) while combining trajectory
tracking capabilities with existing swarm behavior to measure the impact of these capabili-
ties on the impact of swarm characteristics. By using “immigrant” population members to
increase the search space and generate trajectories that meet mission requirements, they
solved the problem of UAV formations exploring the terrain of larger areas and threatening
regional trajectory planning.

Eun and Bang [44] developed an efficient strategy for the assignment and trajectory
planning of homogeneous UAVs, combining Voronoi diagrams and Genetic Algorithms
(GAs) to generate efficient flyable trajectories in network shapes, solving the problem of
task assignment, and trajectory planning in the presence of time constraints is addressed.

Pehlivanoglu and Volkan [45] proposed a new multi-frequency Vibration Genetic
Algorithm (mVGA), which constructed a Voronoi diagram using height filtering and fuzzy
c-means clustering methods. They generated some initial individuals based on Voronoi
vertices to improve the initial population, thereby generating efficient and fast flyable
trajectories and solving the local optimization problem in a relatively short optimization
period.

Sahingoz [46] proposed a flight-able trajectory planning method for multi-UAV sys-
tems, which combines the Genetic Algorithm (GA) and Bezier curves to generate an efficient
and feasible trajectory of the UAV formation, solving the problem in which the curve is not
smooth when using the traditional Genetic Algorithm (GA) for trajectory planning.

Zhang and Duan [47] proposed an improved constrained Differential Evolution (DE)
algorithm, which combines the global search capability of the Differential Evolution (DE)
algorithm and the constraint processing technology of level comparison, and they designed
a level update strategy that solves the trajectory planning problem of formations under
multiple constraints in real scenes.

Cekmez et al. [48] used a parallel Genetic Algorithm on the CUDA architecture to
plan feasible trajectories for multiple UAVs; the algorithm first used a clustering method
to find a subset of control points and then parallelized it on the programming computing
platform. The Genetic Algorithm is used to solve each cluster and generate the feasible
trajectory of the UAV formation, which solves the problem of long calculation time of the
serial algorithm.

Sørli et al. [49] proposed a co-evolutionary multi-UAV cooperative trajectory planning
method, which applied the co-evolutionary Genetic Algorithm to trajectory planning, and
they considered the sensors carried by each UAV in the formation quantity and location
effects, real-time or near-real-time trajectory planning for each UAV, solving the problem of
trajectory planning for UAV formations in dynamic environments.

Chen et al. [50] proposed a parallel optimization method, which uses real coding
methods and effective selection operations, crossover operations, and mutation operations
to improve the Genetic Algorithm (GA), and at the same time, the Particle Swarm Optimiza-
tion algorithm (the combination of PSO) and Ant Colony Optimization algorithm (ACO)
makes the ants in the PSO-ACO system have particle characteristics. Then, it uses the two
algorithms to generate formation trajectories simultaneously, which solves the weak global
search ability of the Genetic Algorithm (GA) and the Ant Colony Optimization algorithm
(ACO) premature maturation problem.

Binol et al. [51] proposed an improved evolution method of Genetic Algorithm (GA)
and Harmony Search (HS); the improved search method utilizes various evolution oper-
ators with the same properties at the starting position to determine the overall shortest
trajectories, which solves the problem of trajectory planning for drone formations when
collecting data from multiple roadside units (RSUs).

Harounabadi et al. [52] proposed a Genetic Algorithm for the trajectory planning
of multiple UAVs in message ferry networks. The Genetic Algorithm is used to create
node clusters, and then, node scheduling in each cluster is defined according to the traffic
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between nodes and the message load in nodes. The problem of the average message passing
delay of traditional mTSP schemes is solved.

Cao et al. [53] established a global optimization model that takes into account UAVs
with various sensors located in different bases and multiple constraints, converts the time
into an easily measurable way, and then uses the Genetic Algorithm analysis to solve the
optimal detection track problem in the case of a multi-base.

Ma et al. [54] proposed a coordination optimization algorithm combining the Genetic
Algorithm and clustering algorithm, using the task time constraint method to determine
the number of UAVs required. They find the optimal trajectory for each UAV, solving the
problem of multi-task assignment and trajectory planning of multiple UAVs.

Li et al. [55] proposed an improved trajectory planning algorithm based on GA. On
the basis of a Genetic Algorithm, the optimal trajectory is obtained by the K-means target
clustering algorithm and multi-chromosomal Genetic Algorithm, which solves the trajectory
planning problem of multi-UAV maritime target search.

Xiong et al. [56] proposed a trajectory planning algorithm based on Genetic Algorithm
with adaptive interference operators. The algorithm can realize the multi-directional attack
target by setting intermediate points around the target point. A reasonable fitness function
is designed by using the regionalization method, and the adaptive disturbance operator is
added to plan the trajectory of each UAV, which solves the trajectory planning problem of
multiple UAVs attacking targets in a complex combat environment.

Li et al. [57] proposed an optimized Genetic Algorithm method, which applied the
augmented stochastic framework to evaluate the task completion probability (PoC) of
the strategy in a three-dimensional grid environment, and then, they used the Genetic
Algorithm optimization method to find feasible trajectories that maximize PoC, addressing
the Reliability-Aware Multi-Agent Coverage Trajectory Planning (RA-MCTP) problem.

Li et al. [58] proposed a gray Genetic Algorithm, which iteratively uses the Genetic
Algorithm to continuously find the agent trajectory that maximizes the PoC and solves the
reliability-aware multi-agent coverage trajectory planning in continuous time (RA- MCTP)
problem.

Zhang et al. [59] proposed a collaborative trajectory planning model, introduced
decision variables into the trajectory cost model, and then improved the Genetic Algorithm
to generate a formation flight trajectory, which solved the problems of short effective flight
time and low mission success rate when multiple UAVs were threatened.

Asim et al. [60] proposed a variable population size genetic trajectory planning al-
gorithm (GTPA-VP), which improves the Genetic Algorithm through three operators of
insertion, replacement and deletion, and updates the stop point adaptively. Using the
number and location, on this basis, a multi-color Genetic Algorithm is used to find the
association between UAVs and stopping points, the optimal number of UAVs and the
optimal order of UAV stopping points. Finally, a Genetic Algorithm is used to construct the
flight trajectory of all drones, solving the problem of high energy consumption of drones
hovering and flying in IoT services.

Yan et al. [61] proposed an improved Particle Swarm Optimization and Genetic Algo-
rithm (GA-PSO), which introduced partial matching crossover and secondary transposition
mutation to the traditional Particle Swarm Optimization (PSO) algorithm and solved the
intelligent marine task assignment problem and trajectory planning problem for multiple
UAVs.

Wang et al. [62] proposed a trajectory planning method based on the Genetic Algorithm
(GA). Through the task analysis of the decision-making part and trajectory planning part, a
Genetic Algorithm is used to initialize the trajectory; the fitness value calculation, selection,
crossover, mutation and other operations are optimized to obtain the optimal search
trajectory, which solves the trajectory planning problem of multiple UAV collaborative
search tasks.

Table 3 summarizes the content of evolutionary algorithms in our review.
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Table 3. Summary of evolutionary algorithms in our review.

Reference Challenge Optimization Criteria Method Dimension

J. Tian et al. [40] Environment Region division MPC + GA 2D
L. Shen et al. [41] UAV clustering Subsequence crossover, Forward insertion mutation GA 2D

I. Nikolos et al. [42] Environment B-Spline, DE DE 3D
G. B. Lamont et al. [43] Environment GVR, Parallel computing MOEAs 3D
Y. Eun and H. Bang [44] Trajectory Task allocation Voronoi + GA 2D

Pehlivanoglu and Y. Volkan [45] Trajectory Height filtration, Fuzzy c-mean Voronoi + GA 3D
O. K. Sahingoz [46] Trajectory Curves GA 2D

X. Zhang and H. Duan [47] Environment Level update DE 3D
U. Cekmez et al. [48] Time, Trajectory Cluster and parallel computing GA 2D
J.-V. Sørli et al. [49] Environment, UAV Coevolution GA 2D

J. Chen et al. [50] Trajectory Parallel optimization GA + PSO
+ACO 2D

H. Binol et al. [51] Trajectory, Multiple objectives Evolutionary operator GA + HS 2D
M. Harounabadi et al. [52] Time Node scheduling GA 2D

Y. Cao et al. [53] Trajectory, Multiple objectives Time conversion GA 2D
Y. Ma et al. [54] Trajectory, coverage problem Clustering, Task time GA 2D
L. Li et al. [55] Trajectory, coverage problem K-means, Multiple chromosome GA 2D

C. Xiong et al. [56] Trajectory Adaptive interference operator, Regionalization GA 3D
M. Li et al. [57] coverage problem Augmented random frame GA 3D
M. Li et al. [58] Time, coverage problem Iterative use GA 3D

J. Zhang et al. [59] Environment Decision variable, Adaptive GA 2D
M. Asim et al. [60] Environment, UAV Variable population GTPA-VP 2D

M. Yan et al. [61] Trajectory, Multiple objectives Partially matched crossover, Secondary
transposition mutations GA + PSO 2D

S. Wang et al. [62] Multiple objectives, UAV
clustering Task analysis GA 2D

4.1.4. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an adaptive stochastic optimization algorithm
with a population search strategy developed by simulating the foraging behavior of birds,
which is used to solve various problems in engineering and science. Particle Swarm
Optimization initializes the trajectory planning problem into a group of random particles
and then iterates to find the optimal solution. In each iteration, particles update their
position and velocity by tracking individual and global extreme values, and then, they use
the search space to complete the optimal trajectory planning. Figure 14 shows a particle
motion diagram.

Figure 14. A particle motion diagram.

Sujit et al. [63] proposed a random time algorithm based on the Particle Swarm
Optimization algorithm. Tracking guidance law and line of sight guidance law are used
to track the trajectory generated by the Particle Swarm Optimization algorithm at any
time, which solves the problem of using a pop-up window when multiple UAV tracks may
collide and trajectory planning when there are moving obstacles.

Wang et al. [64] proposed a collaborative trajectory planning method for multiple UAVs
based on the Particle Swarm Optimization (PSO) algorithm, analyzed the main influencing
factors of the cost function after modeling, and carried out collaborative dynamic analysis
of multiple UAVs, including static three-dimensional trajectory planning, which solves
the problems of unsatisfactory trajectory and poor real-time performance in multi-UAV
collaborative trajectory planning.
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Alejo et al. [65] proposed a system for automatically planning collision-free four-
dimensional trajectories; the system is based on the Particle Swarm Optimization (PSO)
algorithm of axis-aligned minimum bounding boxes and stochastic global optimization
techniques, and it uses a strategy to quickly calculate the initial point, solving the problems
of high computational overhead and slow convergence in evolutionary algorithms.

Liu et al. [66] proposed a cooperative competitive Particle Swarm Optimization (PSO)
algorithm, which uses two-stage optimization to reduce the dimensionality of the problem
and generates the optimal collaborative trajectory for multiple UAVs in three-dimensional
space, solving the trajectory planning problem for UAV formation in cooperative and
competitive situations.

Zhang et al. [67] designed an improved PSO algorithm (IPSO), which used a binary
value coding matrix and adaptive inertial weight adjustment strategy to generate a feasi-
ble trajectory for multiple UAVs, solving the decision-making problem of a multi-UAVs
cooperative reconnaissance mission.

In this paper, Li et al. [68] proposed a new trajectory planning method for multiple
UAVs by introducing a variable neighborhood drop (VND)-enhanced genetic Particle
Swarm Optimization algorithm to optimize flight trajectory with minimum span and solve
the problem of limited flight endurance of UAVs in agricultural applications.

Hoang et al. [69] proposed an angle-encoded Particle Swarm Optimization method,
which realized the communication between UAVs through the Internet of Things board,
minimized the cost function of multiple constraints including the shortest trajectory and
the safe operation of UAVs, and found a feasible and frictionless trajectory for the whole
formation. The trajectory planning problem of UAV formation in building infrastructure
inspection is solved.

Chen et al. [70] proposed a trajectory planning method based on Dubins trajectory
and the Particle Swarm Optimization (PSO) algorithm, using Dubins trajectory to reduce
the dimensionality of the aircraft kinematics model. Then, using the Particle Swarm
Optimization algorithm to optimize the trajectory after the formation reconstruction, it
solves the trajectory planning problem when the task adjustment or the environment
changes in the UAV formation.

Patley et al. [71] proposed an improved Particle Swarm Optimization method (ODPSO)
based on orthogonal design and formulated a point sequence strategy to redefine the
objective function. They searched for each the three-dimensional trajectory points within
the time step, used the relative particle directivity to improve the search accuracy, and
solved the trajectory planning problem of the UAV formation under the conditions of
threats and terrain constraints.

Shao et al. [72] proposed a 3D trajectory planning algorithm for UAV formation
based on Comprehensive Improved Particle Swarm Optimization (CIPSO). This method
uses chaos-based logical mapping to improve the initial distribution of particles, designs
commonly used constant acceleration coefficients and maximum speeds to adapt to linear
change coefficients, and uses a mutation strategy in which the desired particles replace
undesired particles, solving the terrain and threat constraints problems of UAV formation
trajectory planning under the condition.

Yang et al. [73] proposed a 4D coordinated trajectory planning algorithm for multiple
UAVs, which constructed the solution boundary of the search space and the distance to the
destination based on the properties of all threats, and then designed a spatial refinement
voting mechanism that solves the problems of local optimum and slow convergence of the
standard Particle Swarm Optimization algorithm.

Shao et al. [74] proposed a Distributed Cooperative Particle Swarm Optimization
(DCPSO) algorithm with an elite-preserving strategy, which parameterizes the trajectory
using a Pythagorean Heatmap (PH) curve. Then, evolutionary theory is used to improve
the Particle Swarm Optimization algorithm to generate a flyable and safe trajectory for each
UAV, which solves the kinematic constraint problem of multi-UAV trajectory planning.
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Liu and Lu [75] proposed an algorithm based on Dubins trajectory and Coevolutionary
Particle Swarm Optimization (CCPSO). This algorithm determines the initial reference
trajectory by the Dubins trajectory and then converts the time co-constraint into an equal
trajectory length, and the trajectory parameters are optimized by CCPSO, which solves the
problem of multi-UAV collaborative trajectory planning.

He et al. [76] proposed a new hybrid Particle Swarm Optimization and improved
symbiotic search algorithm (HIPSO-MSOS), which introduces a time-stamp segmentation
(TSS) model and a multi-objective optimization function to simplify the cost. Using HIPSO-
MSOS to generate feasible trajectories and then smoothing trajectories by cubic b-spline
curves, the problem of coordinated trajectory planning for multiple UAVs in complex 3D
environments is solved.

Ahmed et al. [77] proposed a trajectory planner based on the Particle Swarm Optimiza-
tion (PSO) algorithm, which uses distributed full coverage and dynamic fitness function to
generate the optimal trajectory and solves the problem of trajectory planning for multiple
UAVs.

Mobarez et al. [78] proposed an improved Particle Swarm Optimization method,
improved the optimization problem by using evolutionary computing technology, added
parallel recombination into trajectory planning, and solved the problems of long processing
time and non-optimal trajectory in the dynamic trajectory planning of UAV formation.

Xiao et al. [79] proposed a Heterogeneous Adaptive Comprehensive Learning Dy-
namic Multi-population Particle Swarm Optimization algorithm (HACLDMS-PSO), which
incorporated a population dynamic adjustment strategy, disturbance mechanism and adap-
tive learning probability mechanism into the Particle Swarm Optimization algorithm, which
better solved the NP-hard problem in multi-UAV trajectory planning.

Meng-yun et al. [80] proposed a tracking planning method based on multi-strategy im-
proved symbiosis search (MSISOS); this method uses an adaptive strategy and interference
strategy to assist the search trajectory and coordinates space–time through UAV informa-
tion interaction layer constraints. Then, a distributed method is designed for formation
trajectory planning, which solves the problems of poor accuracy and slow convergence in
multi-UAV trajectory planning in complex battlefield environments.

Chung et al. [81] proposed a trajectory planning algorithm that combines gradient
descent-based trajectory planning (GBPP) and Particle Swarm Optimization. The initial
trajectory of the algorithm is defined as the input of GBPP, and the hierarchical concept
is added to the Particle Swarm Optimization algorithm (HPSO) to generate a feasible
trajectory, which solves the problem of long calculation time of the Genetic Algorithm and
Particle Swarm Optimization algorithm.

Lu et al. [82] proposed a distributed hybrid Particle Swarm Optimization and differen-
tial evolution (DE) technique; this technique adds the nonlinear time-varying method to
the Particle Swarm Optimization algorithm (NTVPSO) and adds the adaptive mechanism
to the differential evolution (DE) evolution (ADE). Finally, it adopts the distributed method,
uses NTVPSO-ADE to realize the collaborative trajectory planning of multiple UAVs, and
solves the problem of difficult model establishment and large amount of calculation in
formation trajectory planning.

Table 4 summarizes the content of PSO algorithms in our review.

4.1.5. Pigeon-Inspired Optimization

The Pigeon-Inspired Optimization algorithm (PIO) is a swarm intelligent optimization
algorithm designed to simulate pigeon homing behavior. First of all, three kinds of pigeon
swarm optimization models were proposed: the map model based on the geomagnetic
field, the pointer operator model based on the sun and the landmark operator model based
on the landmark operator model. Secondly, a general direction was identified through the
map and pointer operator, and then, the landmark operator was used to correct the current
direction until the best track was found. Figure 15 shows a PIO map and compass operator
model and a pigeon flock optimization (PIO) track chart.
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Table 4. A summary of Particle Swarm Optimization in our review.

Reference Challenge Optimization Criteria Method Dimension

P. Sujit et al. [63] Trajectory, Environment Tracking, Line of sight guidance law PSO 3D
G. Wang et al. [64] Trajectory, Environment Cost analysis PSO 3D

D. Alejo et al. [65] Time Minimum boundary, Random optimization,
One-time strategy PSO 4D

J. Liu et al. [66] UAV clustering Two-stage optimization PSO 3D

Y.-Z. Zhang et al. [67] UAV clustering,
Multiple objectives Binary value coding matrices, Adaptive inertia weights IPSO 2D

X. Li et al. [68] Trajectory, UAV VND GPSO 2D
V. Hoang et al. [69] Environment, coverage problem Minimizing cost function θ-PSO 3D

Q.-y. Chen et al. [70] Environment Reduction in dimension Dubins + PSO 2D

A. Patley et al. [71] Environment Point sequence strategy, Inclined plane, Relative
particle directivity ODPSO 2D/3D

S. Shao et al. [72] Environment Logical mapping, Adaptive linear change CIPSO 3D
L. Yang et al. [73] Trajectory Spatial refinement voting mechanism PSO 4D
Z. Shao et al. [74] Environment, UAV Pythagorean heat map, Coevolution DCPSO 3D

Y. Liu and H. Lu [75] UAV clustering Constraint conversion Dubins +
CCPSO 2D

W. He et al. [76] Environment, UAV clustering TSS, Multiple objective optimization HIPSO-MSOS 3D
N. Ahmed et al. [77] UAV clustering Distributed full coverage, dynamic fitness PSO 3D
E. Mobarez et al. [78] Time, Trajectory Evolutionary computation, Parallel recombination PSO 3D

J. Xiao et al. [79] Trajectory Adaptive, interference, Interactive coordination MSISOS 3D
W. Chung et al. [81] Trajectory GBPP, layered HPSO 3D

L. Lu et al. [82] Trajectory Nonlinear time variation, adaptive, Distributed NTVPSO-ADE 3D

  
(a) (b) 

Figure 15. A PIO map and compass operator model and PIO trajectory map. (a) A PIO map compass
operator model (arrows: the direction of attraction); (b) A Pigeon-Inspired Optimization (PIO)
trajectory diagram (diamonds: starting points; Pentagrams: the end points; black areas: obstacles).

Luo et al. [83] proposed a co-evolutionary Pigeon-Inspired Optimization (CPIO) algo-
rithm based on a cooperation–competition mechanism. The search and track (ST) method
is introduced to obtain the lowest-cost trajectory, and the dynamic two-stage closed search
(DTCSCS) problem of UAV formation under range constraints (RC) and orientation con-
straints (OC) is solved.

Ruan and Duan [84] proposed a multi-objective social learning pigeon-inspired opti-
mization algorithm (MSLPIO), which uses iterative learning to update waypoint positions,
adding social learning factors and dimension-related parameter setting methods, which
solves the problem of weak convergence of a traditional Genetic Algorithm.

Duan et al. [85] proposed a dynamic discrete Pigeon-Inspired Optimization algorithm
based on hybrid architecture (D2PIO), constructed and updated the probability mapping
by using Bayesian formula, adopted the response threshold S-type function model (RTSM)
for target allocation during attack execution, and finally used B-spline curve to generate
feasible trajectory. The problem of search–attack task planning for multiple UAVs is solved.

Wang et al. [86] proposed a multi-UAV collaborative trajectory planning method based
on the Cauchy mutant pigeon intelligent optimization algorithm (ECM-PIO); the algorithm
uses the Cauchy mutation operator for optimization, expanding the search range and
reducing the risk of falling into local optimization, which solves the shortcomings of the
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traditional pigeon swarm algorithm optimization process that has optimization bias and is
easy to fall into local optimization.

Yu et al. [87] proposed a mutational pigeon swarm optimization algorithm (MGLPIO)
based on swarm learning strategy, which introduces the swarm learning strategy, triple
mutation strategy, timestamp segmentation mechanism and coordination cost function
into the swarm optimization algorithm (PIO). They used it to solve the optimal trajectory,
which solves the problems of low population diversity, weak global search ability and weak
convergence of traditional PIO.

Lu et al. [88] proposed an improved Pigeon-Inspired Optimization algorithm (IPIO)
based on natural selection and Gauss–Cauchy mutation, established an environment-aware
map, and designed an integer encoding method. A discrete compass operator, discrete
landmark operators, Gaussian mutation and Cauchy mutation operators are introduced to
break away from local optimum. Finally, natural selection is used to accelerate convergence,
which solves the problem of collaborative dynamic target search and area coverage of UAV
formations in uncertain environments.

Zheng et al. [89] proposed a collaborative search decision-making method based on
improved Pigeon-Inspired Optimization, which established a target probability information
graph model with a normal distribution, an information graph of the search environment
determinism, and a digital information graph. By adding the speed update and correction
mechanism and the elite generation mechanism, they improve the traditional Pigeon-
Inspired Optimization algorithm. Finally, the improved classification optimization method
is used to determine the optimal search flight trajectory of the UAV, which solves the
problem of multi-UAV cooperative moving target search.

Luo et al. [90] proposed a closed-loop trajectory planning method based on cooper-
ative Pigeon-Inspired Optimization (CPIO) and artificial potential field (APF). Firstly, a
probabilistic graphical model was established, and then, a rolling prediction strategy and
CPIO were applied to generate multiple man–machine collaborative target search trajecto-
ries, while using Bayesian theorem to update the search probability map, and finally using
the APF method to generate return trajectories for each UAV, which solves the multi-UAV
cooperative target search problem.

4.1.6. Fruit Fly Optimization Algorithm

The Fruit Fly Optimization Algorithm (FOA) is a new method for deriving global
optimization based on the foraging behavior of Drosophila, which uses Drosophila to be
superior to other species in sensory perception, especially in the sense of smell and vision.
First, fruit flies use their sense of smell to collect the smell in the air. Then, they fly to the
vicinity of the food location, where they use vision to find the location where the food and
companions gather and fly in that direction, so as to realize the group iterative search of the
solution space and complete the multi-UAV trajectory planning. Figure 16 is an FOA iterative
evolution search diagram and a Fruit Fly Optimization Algorithm (FOA) trajectory diagram.

 

(a) (b) 

Figure 16. An iterative evolution search diagram and FOA trajectory diagram. (a) An iterative
evolution search diagram; (b) An FOA trajectory diagram (circles: nodes; lines: trajectory; numbers:
the distance between vertices).
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Shi et al. [91] proposed the multi-swarm Fruit Fly Optimization Algorithm (MSFOA),
which divides the entire fruit fly group into multiple multi-task sub-swarms and introduces
offspring competition strategies. They propose a collision detection method to solve
the problem of slow global convergence, and local optimum of the traditional Fruit Fly
Optimization Algorithm is solved.

Li et al. [92] proposed an optimized Fruit Fly Optimization Algorithm (ORPFOA) to
determine the optimal number and priority of UAVs while using a change task assignment
algorithm combined with reference points and distance–cost matrices. Trajectory planning
solves the problem of multi-UAV trajectory planning in a three-dimensional complex
environment with online changing tasks.

Mao et al. [93] proposed an improved Fruit Fly Optimization Algorithm (NIFOA)
based on Time Stamp Segmentation (TSS). The TSS model was introduced to solve the
spatio-temporal coupling problem between multiple UAVs, and the multi-objective problem
is transformed into a multi-constraint problem. Finally, the greedy strategy, the restart
strategy and the evolutionary strategy of the optimal population are added to complete the
multi-UAV trajectory planning, which solves the space–time coupling problem between
multi-UAVs and the convergence speed of the traditional Fruit Fly Optimization Algorithm
problems with slowness and local optima.

4.1.7. Artificial Bee Colony

The Artificial Bee Colony algorithm (ABC) is an optimization method to imitate the
intelligent foraging behavior of bees. The process of the algorithm follows: First, assign a
hired bee to the initial honey source and search according to certain rules to generate a new
honey source. Then, use the greedy selection method to retain the honey source with high
fitness and calculate the probability that the honey source found by the hired bee will be
followed. Last, follow the peak using the same method as the hired bee. If the nectar source
satisfies the condition of being abandoned, the corresponding hired bee becomes a scout
bee and randomly searches in the search space to generate a new nectar source, obtaining
the global optimal trajectory through the local optimization behavior of each individual
artificial bee. Figure 17 is a trajectory diagram of the Artificial Bee Colony algorithm (ABC).

Figure 17. A kind of ABC trajectory diagram (Black areas: obstacles; blue line: optimal trajectory).

Tian et al. [94] proposed an improved Artificial Bee Colony (IABC) algorithm, which
optimizes the trajectory points only according to the cost value of the trajectory and solves
the problem of long convergence time of the traditional Artificial Bee Colony algorithm.

Bai et al. [95] proposed a hybrid algorithm based on Artificial Bee Colony algorithm
(ABC) and A*. The algorithm uses the ABC algorithm to complete the preliminary planning,
then uses the A* algorithm to plan the specific trajectory points, and finally combines the
adaptive time coordination method to obtain the optimal trajectory, which solves the
problem of three-dimensional multi-UAV trajectory planning.
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Liu et al. [96] proposed a multi-UAV task assignment and trajectory planning method
for disaster medical rescue. The algorithm uses the fitness function considering the current
number of iterations and the maximum number of iterations and an Adaptive Genetic
Algorithm (AGA) for task allocation; then, a balanced search strategy is added to improve
the Artificial Bee Colony algorithm (IABC), and trajectory planning solves the problem of
poor convergence efficiency and calculation effect of the traditional Artificial Bee Colony
algorithm.

Table 5 summarizes the content of the Pigeon-Inspired Optimization algorithm, Fruit
Fly Optimization algorithm and Artificial Bee Colony algorithm in our review.

Table 5. Summarizes the content of our review on PIO, FOA, and ABC.

Reference Challenge Optimization Criteria Method Dimension

D. Luo et al. [83] DTSCS ST CPIO 2D
W.-y. Ruan and H.-b. Duan [84] Trajectory Iterative learning, social learning factor MSLPIO 2D

H. Duan et al. [85] UAV clustering Bayes’ formula, RTSM, B-spline curve D2PIO 3D
B. Wang et al. [86] Trajectory Cauchy mutation operator ECM-PIO 3D

Y. Yu et al. [87] Trajectory triple mutation, timestamp segmentation,
coordination costs MGLPIO 3D

J. Lu et al. [88] UAV clustering, coverage problem Environment awareness, integer coding, discrete
operators, mutation operators, natural selection IPIO 2D

W. Zheng et al. [89] UAV clustering Probability graph model, pheromone graph, speed
update, correction, elite generation PIO 2D

D. Luo et al. [90] UAV clustering Probability graph model, rolling prediction,
Bayes’ theorem CPIO + APF 2D

K. Shi et al. [91] Trajectory Offspring competition, collision detection MSFOA 2D/3D
K. Li et al. [92] Environment Mission change and distance cost ORPFOA 3D

Y. Mao et al. [93] Trajectory TSS, greedy strategy, restart strategy and
evolution strategy NIFOA 3D

G. Tian et al. [94] Time Trajectory cost IABC 2D
X. Bai et al. [95] UAV clustering Adaptive time coordination ABC + A* 3D
H. Liu et al. [96] Trajectory Fitness function, balanced search AGA + IABC 2D

4.1.8. Salp Swarm Algorithm

The Salp Swarm Algorithm (SSA) is a new method to deduce and seek global opti-
mization based on the swarming behavior of salps when navigating and foraging in the
ocean. The SSA algorithm acts as an approximate global optimum by initializing a number
of salps at random locations. Then, it calculates the fitness of each salp, finds the salp with
the best fitness, assigns the position of the best salp to a variable as the source food to be
chased by the salp chain, and uses the formula to update the fitness coefficient. For each
dimension, the positions of the leading jumping body and the following jumping body are
updated iteratively, and the search space determines the global optimal trajectory. Figure 18
is a Salp Swarm Algorithm (SSA) trajectory diagram.

 

Figure 18. A SSA trajectory diagram (circles: obstacles).

146



Drones 2023, 7, 62

Dewangan and Saxena [97] proposed a new Salp group algorithm (SSA), which uses
multiple random operators to solve the problems of slow convergence and poor real-time
performance of other heuristic algorithms in multi-UAV trajectory planning.

4.1.9. Ant Colony Optimization Algorithm

Ant Colony Optimization (ACO) is a heuristic global optimization algorithm derived
from the trajectory behavior of ants in the process of searching for food. The ant colony
algorithm uses the trajectories of ants to represent the feasible solution of the problem to
be optimized. All trajectories of the entire ant colony constitute the solution space of the
problem to be optimized, and ants with shorter trajectories release more pheromones. The
concentration of pheromone accumulated on the shorter trajectory gradually increases, and
the number of ants choosing this trajectory increases; eventually, all the ants will concentrate
on the best trajectory under the action of positive feedback, and the corresponding trajectory
is the optimal solution to the problem. Figure 19 is a trajectory diagram of an Ant Colony
Optimization algorithm (ACO).

 

Figure 19. An ACO trajectory diagram (“cell” is the map block after rasterizing the map, “number”
is the number of the map block, and the black part represents obstacles.).

Cekmez et al. [98] proposed a parallel Ant Colony Optimization algorithm (ACO) to
calculate the trajectory of a UAV. This algorithm implements ACO on CUDA architecture,
which gives full play to the parallel characteristics of ACO on GPU and solves the problem
of slow convergence of a traditional ant colony algorithm.

Qiannan et al. [99] proposed an intelligent method based on the improved Ant Colony
Optimization (ACO) algorithm, which cuts the trajectory generated by ACO and solves the
problem that the trajectory of the traditional ACO algorithm may not be optimal.

Huang et al. [100] proposed a coordinated trajectory planning method for multiple
UAVs based on K-degree smoothing. In this method, a Voronoi diagram is used to redefine
the edge cost, and the redefined heuristic information function and pheromone updating
method are used to change the Ant Colony Optimization algorithm. Finally, the K-degree
smoothing method is used to smooth the trajectory, which solves the problem of strong
coordination and weak coordination in the collaborative trajectory planning of multi-UAVs.

Li [101] proposed a multi-UAV multi-communication target and message priority UAV
cooperative communication trajectory method. This method combines a delay tolerant
network (DTN), light grid and ant colony algorithm. The trajectory planning is carried out
to solve the contradiction between the intermittent link of the underlying communication
of multi-UAVs and the continuous demand of the upper-level communication in a highly
hostile battlefield.

Perez-Carabaza et al. [102] proposed a new method based on the improvement of Ant
Colony Optimization (ACO), which added a new minimum time search (MTS) heuristic
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function to ACO to solve the traditional ACO problem of slow algorithm convergence and
low initial trajectory quality.

Zhen et al. [103] proposed a multi-UAV cooperative search attack method (ISOA)
based on an intelligent self-organizing algorithm, using a new state transition rule and a
distributed method to improve the Ant Colony Optimization algorithm. Then, using the
Dubins curve to smoothly connect the trajectory points generated by ACO, the trajectory
planning problem of multiple UAVs under the constraints of maneuverability, collision
avoidance and maximum range is solved.

Cekmez et al. [104] proposed an enhanced Ant Colony Optimization (ACO) algorithm,
which performs multi-core computing on the parallel computing platform CUDA to solve
the trajectory planning problem of multiple UAVs in complex environments.

Lin et al. [105] proposed a multi-objective optimization model of coverage and task
time and introduced the similarity measure in an immune optimization algorithm into the
Ant Colony Optimization algorithm to solve the problem that the traditional Ant Colony
Optimization algorithm is insufficient in track repeatability.

Liu et al. [106] proposed an improved Ant Colony Optimization algorithm, which
introduced the location allocation method and the new node selection strategy into the
Ant Colony Optimization algorithm and solved the problem of slow trajectory planning
optimization speed of the Ant Colony Optimization algorithm in formation transformation.

Ali et al. [107] proposed a hybrid meta-heuristic algorithm, which combined maximum–
minimum Ant Colony Optimization and differential evolution to solve the problem of slow
global convergence of traditional Ant Colony Optimization algorithms and maximum–
minimum Ant Colony Optimization algorithms.

Xia et al. [108] proposed a system framework for multi-UAV collaborative task as-
signment and tracking planning. The framework uses a Particle Swarm Optimization
algorithm based on a guidance mechanism to solve the combinatorial optimization model.
Then, adaptive parameter adjustment, encounter point prediction, bidirectional search and
online replanning are introduced into the Ant Colony Optimization algorithm for trajectory
planning (SAP-ACO), which solves the cooperative task assignment and tracking planning
problems of UAV formations facing moving targets.

Ali et al. [109] proposed a bionic optimization algorithm, which combines the maximum–
minimum Ant Colony Optimization (MMACO) and the Cauchy mutant (CM) operator,
and they use the CM operator to enhance the MMACO algorithm to solve the problems of
slow convergence and possible local optimum in traditional ACO and MMACO.

Wei and Xu [110] proposed a distributed trajectory planning algorithm based on dual
decomposition of UAV communication chains. This algorithm improves the traditional Ant
Colony Optimization algorithm (ACO) from the aspects of trajectory selection, pheromone
update, rollback strategy, etc., and solves the problems of poor efficiency, adaptability and
robustness of the ACO algorithm.

Li et al. [111] proposed an asynchronous Ant Colony Optimization (AACO) algorithm.
The visibility matrix and test track coverage matrix are added into the ACO algorithm. The
search order of the population track primitive is changed from the current fitness value
and the previous fitness value to the current fitness value. Finally, the incentive value
is introduced to avoid track repetition, which solves the problem of optimal trajectory
planning for multiple UAVs in three-dimensional space.

Majeed and Hwang [112] proposed a multi-objective coverage flight trajectory plan-
ning algorithm, which added the fitting sensor footprint scanning (SFS) and sparse trajec-
tory point graph (SWG) to the Ant Colony Optimization (ACO) algorithm. Traversing the
area of interest (AOI) solves the problem of high cost of multi-UAV coverage trajectory
planning in urban environments.

4.1.10. Gray Wolf Optimization Algorithm

The Gray Wolf Optimization algorithm (GWO) is a new swarm intelligence opti-
mization algorithm inspired by the predation behavior of gray wolves. The Gray Wolf
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Optimization algorithm divides gray wolf individual fitness into four different levels:
optimal solution, suboptimal solution, third solution and candidate solution according to
the calculated fitness; the individuals with the top three fitness guide other wolves towards
the goal Iterative search, while continuously updating the solution level and position, until
the best trajectory to the target point is found. Figure 20 contains a Gray Wolf Optimiza-
tion algorithm position update model and a Gray Wolf Optimization algorithm (GWO)
trajectory diagram.

 

 

(a) (b) 

Figure 20. A position update model and GWO trajectory map. (a) A location updating model of the
Gray Wolf Optimization algorithm; (b) Trajectory diagram of a Gray Wolf Optimization algorithm
(black areas: obstacles; blue line: optimal trajectory).

Radmanesh et al. [113] proposed a Bayesian algorithm based on Gray Wolf Optimiza-
tion, which added dynamic Bayes and range-based value function (DBVF) into GWO to
solve the trajectory planning and collision avoidance problems of multiple UAVs with fixed
and moving obstacles in uncertain environments.

Dewangan et al. [114] proposed a multi-UAV trajectory planning method based on the
Gray Wolf Optimization algorithm (GWO) to solve the problems of slow convergence, high
trajectory calculation cost and local optimization of other meta-heuristic and deterministic
algorithms in multi-UAV trajectory planning.

Xu et al. [115] proposed an improved Gray Wolf Optimization algorithm (GWO), which
improved the population initialization, attenuation factor updating and single position
updating of the Gray Wolf Optimization algorithm and solved the NP-hard problem of
multi-UAV collaborative trajectory planning.

Yang et al. [116] proposed a trajectory planning method based on multi-population
chaotic Gray Wolf Optimization (MP-CGWO). The multi-population concept and chaotic
search strategy are added into the Gray Wolf Optimization algorithm (GWO), which solves
the problem that the traditional GWO algorithm is easy to fall into local optimization.

Huang et al. [117] proposed a hybrid discrete intelligence algorithm (HDGWO) based
on gray wolf optimizer. The algorithm uses the discrete gray wolf update operator and
uses integer coding and a greedy algorithm to transform between the gray wolf space and
the discrete problem space. Then, it adds the center position operation and the stagnation
compensation gray wolf update operation, and finally, it adds an azimuth to improve the
gray wolf algorithm, which solves the GWO problems of poor global convergence ability
and local search ability.

Jiaqi et al. [118] proposed an adaptive multi-UAV trajectory planning method to im-
prove the Gray Wolf Optimization algorithm (AP-GWO). This method adds the spiral
update position and self-adaptive adjustment mechanism to the Gray Wolf Optimiza-
tion algorithm, which solves the problems of relatively long convergence time, relatively
unsmooth trajectory and possibly not optimal trajectory of the traditional GWO algorithm.
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4.1.11. Harmony Search Algorithm

Harmony Search (HS) is a music-based heuristic optimization algorithm. The Har-
mony Search algorithm mimics the process of musical improvisation, in which musicians
continually adjust the pitch of their instruments to achieve better harmony. The search
process of the global trajectory planning problem is similar to the music improvisation
process; that is, each decision variable constantly updates its own value during the search
process so as to converge to the global optimum and obtain the optimal trajectory. Figure 21
is a Harmony Search algorithm (HS) trajectory diagram quoted from reference [119].

Figure 21. A kind of HS trajectory diagram (colored areas: obstacles).

Wu et al. [119] proposed an improved Harmony Search algorithm (MHS), which intro-
duced an intersection mutation operator and Pythagorean heat map curve (PH) to improve
the HS algorithm and solved the traditional HS problem of slow algorithm convergence.

Table 6 summarizes the contents of the Salp Swarm Algorithm, Ant Colony Optimiza-
tion algorithm, Gray Wolf Optimization algorithm and Harmony Search algorithm in our
review.

Table 6. Summary of the contents of SSA, ACO, GWO and HS in the review.

Reference Challenge Optimization Criteria Method Dimension

R. K. Dewangan and P. Saxena [97] Time, Trajectory Random operator SSA 3D
U. Cekmez et al. [98] Time Parallel computing ACO 2D
Z. Qiannan et al. [99] Trajectory Trajectory cutting IACO 2D
L. Huang et al. [100] UAV clustering Redefine, k degree smoothing Voronoi + ACO 2D

Z. Li [101] Communication, UAV clustering DTN, Light lattice diagram ACO 2D
S. Perez-Carabaza et al. [102] Time, Trajectory MTS ACO 3D

Z. Zhen et al. [103] UAV, Trajectory State transitions, Distributed ISOA 2D
U. Cekmez et al. [104] Environment Parallel computing ACO 3D

W. Lin et al. [105] Trajectory Similarity measure ACO 2D
G. Liu et al. [106] Time, UAV clustering Location allocation, Node selection ACO 2D

Z. A. Ali et al. [107] Time, Environment Mixed inspiration MMACO + DE 3D

C. Xia et al. [108] UAV clustering,
Multiple objectives Guidance mechanism, Adaptive, Bidirectional search BSAPACO 2D

Z. A. Ali et al. [109] Time, Trajectory CM MMACO 3D
X. Wei and J. Xu [110] Time, Trajectory Pheromone update and rollback policies ACO 2D

H. Li et al. [111] Trajectory Visibility matrix, Coverage matrix, Fitness, Reward AACO 3D
A. Majeed and S. O. Hwang [112] Environment, Cost SFS, SWG ACO 3D

R. K. Dewangan et al. [113] Environment DBVF GWO 2D
R. K. Dewangan et al. [114] Trajectory Mapping GWO 3D

C. Xu et al. [115] Trajectory Initialization, Attenuation factor, Position update IGWO 3D
L. Yang et al. [116] Trajectory Multi-population, Chaotic search MP-CGWO 3D

G. Huang et al. [117] Trajectory Update operators, Greedy algorithms,
Stagnation compensation HDGWO 2D

S. Jiaqi et al. [118] Trajectory Spiral update position, Adaptive adjustment AP-GWO 3D
J. Wu et al. [119] Time Intersecting mutation operator, PH MHS 3D

4.2. Machine Learning Algorithm

The machine learning algorithm mainly simulates or realizes human learning behavior,
transforms the UAV formation trajectory planning problem into a decision-making problem,
and formulates optimal or near-optimal search strategies through continuous learning
and interaction in complex environments. With the rapid development of multi-agent
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algorithms, machine learning algorithms have gradually begun to be applied in UAV
formation trajectory planning. The machine learning algorithms currently used for UAV
formation trajectory planning include the neural network (NN) algorithm, reinforcement
learning (RL) algorithm and deep reinforcement learning (DRL) algorithm.

4.2.1. Neural Network

The neural network (NN) algorithm is based on the information obtained by each UAV
sensor, and it quickly obtains the actions that the UAV should take. The neural network
has a nonlinear complex network structure composed of a large number of nonlinear unit
connections. By simulating the control and feedback functions of the human brain function,
a nonlinear mapping system is formed to obtain the mapping relationship between the
state space and the action space; then, it completes the UAV formation trajectory planning
through its own powerful learning ability and rapid planning ability. Figure 22 is a neural
network model.

Figure 22. A neural network model (connection: different combinations).

Xia and Yudi [120] designed a fast trajectory planning method using an improved
neural network algorithm. This method combined a dynamic adjustable step size with a
neural network and added adaptive learning factors for trajectory planning, which solved
the problem that the trajectory of a traditional neural network algorithm may not be optimal
in the presence of threats.

Sanna et al. [121] proposed a method to cover the trajectory planning problem of UAVs
driven by artificial intelligence, which combined a distributed artificial neural network
(ANN) and A* algorithm to solve the problems of inadequate grid resolution and low
trajectory efficiency of traditional methods.

4.2.2. Reinforce Learning

The reinforcement learning (RL) algorithm is a new learning method which com-
bines dynamic programming with supervised learning. The reinforcement learning algo-
rithm keeps learning in the interaction with the environment, implements the “reward–
punishment” mechanism, maximizes the reward index through the feedback evalua-
tion, and realizes the optimal decision output in the UAV formation trajectory planning.
Figure 23 shows a reinforcement learning (RL) model.

Figure 23. A reinforcement learning model.
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Luo et al. [122] proposed a strategy-based Deep-Sarsa algorithm, which combined
traditional Sarsa and neural network to find the optimal trajectory of UAV formation and
improved the poor trajectory planning ability of heuristic algorithm in dynamic environ-
ment.

Qie et al. [123] proposed a multi-agent reinforcement learning algorithm. The algo-
rithm combines the Multi-Agent Deep Deterministic Policy Gradient Algorithm (MADDPG)
and the Simultaneous Target Assignment and Trajectory Planning (STATP) method to solve
the Multi-Agent Deep Deterministic Policy Gradient (MUTAPP) problem in dynamic
environments.

Zhao et al. [124] proposed a q-learning based decentralized multi-UAV cooperative
reinforcement learning algorithm (DMUCRL). The algorithm enables UAVs to indepen-
dently choose their cruising strategy and charging scheduling and at the same time share
the learning results in the communication network according to the specified time, which
solves the problem of efficient content coverage for multi-UAV trajectory planning.

Wang et al. [125] proposed a collaborative trajectory planning method for multiple
UAVs based on attentional reinforcement learning. This method uses a neural network
with an attention mechanism to generate a UAV cooperative reconnaissance strategy (AM)
and uses a reinforcement algorithm to test a large amount of simulation data and optimize
the attention network. It solves the problem in which it is difficult for traditional heuristic
algorithms to extract empirical models from large sample terrain data in time.

Liu et al. [126] proposed a trajectory planning method based on the fusion of the
Sparse Search Algorithm (SSA) and Biologically Inspired Neural Network (BINN). The
algorithm uses SSA to find the node with the lowest comprehensive cost and then uses
the b-spline curve to fit it; then, it uses the improved BINN method to replan the local
trajectory, which solves the problem where the trajectory planning stability of the heuristic
algorithm is poor in a dynamic environment, or the trajectory is probably not the optimal
question.

4.2.3. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) algorithms combine reinforcement learning with
deep learning. The optimization goal is obtained through reinforcement learning and
environment exploration, the system operation mechanism is obtained by using deep
learning, and the specific state characteristics and problem solving are obtained at the
same time. Relying on the perception ability of deep learning, this method uses a certain
strategy to map the current state into corresponding actions; even for high-dimensional raw
data input, through continuous iterative learning, the optimal strategy for UAV formation
trajectory planning can finally be obtained. Figure 24 is a deep reinforcement learning
(DRL) model.

Wang et al. [127] proposed a trajectory control algorithm based on multi-agent Deep
Reinforcement Learning, using multi-agent deep deterministic policy gradient (MADDPG)
and a low-complexity method to optimize the UAV trajectory, which solves the problem
that traditional dynamic algorithms include both integer variables and continuous variables
in Mobile Edge Computing (MEC).

Zhang et al. [128] proposed a constrained deep Q-network (cDQN) algorithm. The
algorithm formulates the three-dimensional dynamic motion problem of the UAV under
the coverage constraint as a constrained Markov decision process (CMDP). Then, it uses
prior information to eliminate invalid actions in the deep Q network (DQN) to maximize
the unmanned and real-time downlink connection capability between drones, solving the
problem of low capacity of the drone formation communication system under coverage
constraints.

Bayerlein et al. [129] proposed a dual-deep Q-network (DDQN) based on a multi-
agent reinforcement learning (MARL) approach, which transformed the trajectory planning
problem into a decentralized partially observable Markov decision process (Dec-POMDP)
and then solved it by the Deep Reinforcement Learning method optimizing Dec-POMDP
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to obtain the optimal trajectory, which solves the problem where the UAV formation is
difficult to collect data in distributed IoT devices.

 

Figure 24. A Deep Reinforcement Learning Model.

Tianle et al. [130] proposed a multi-UAV trajectory planning method based on Deep
Reinforcement Learning. This method uses the improved attention dynamic clustering
algorithm to optimize the trajectory planning network model and then combines the Particle
Swarm Optimization algorithm (PSO) and the Deep Reinforcement Learning (IA-DRL)
algorithm to perform trajectory planning, which solves the slow convergence speed of
traditional neural network algorithms.

Table 7 summarizes what we surveyed about machine learning algorithms.

Table 7. A summary of the content of the survey about machine learning algorithms.

Reference Challenge Optimization Criteria Method Dimension

C. Xia and A. Yudi [120] Trajectory Dynamic step size, Adaptive learning NN 3D
G. Sanna et al. [121] Trajectory Supervised learning ANN + A* 2D
W. Luo et al. [122] Environment Multi-agent Deep-Sarsa 3D
H. Qie et al. [123] Environment STATP MADDPG 2D

C. Zhao et al. [124] coverage problem Adaptive, Information sharing DMUCRL 2D
T. Wang et al. [125] Environment Attention network AM 2D
Q. Liu et al. [126] Environment, Trajectory SSA, B-spline curve BINN 3D

L. Wang et al. [127] MEC Low complexity MADDPG 2D
W. Zhang et al. [128] Communication CMDP cDQN 3D

H. Bayerlein et al. [129] Collect Data Dec-POMDP DDQN 2D
S. Tianle et al. [130] Time Note dynamic clustering PSO + IA-DRL 2D

5. Local Trajectory Planning Algorithm

The local trajectory planning algorithm belongs to the dynamic programming algo-
rithm. According to the UAV sensors in the UAV formation, the current location information
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and local obstacle information are collected in real time so as to dynamically plan the opti-
mal trajectory from the starting point to the target point. The algorithms for UAV formation
local trajectory planning usually include the artificial potential field method (APF), dy-
namic window approach (DWA), mathematical optimization algorithm (MOA), and Model
Predictive Control (MPC).

5.1. Artificial Potential Field

The artificial potential field method (APF) was first proposed by Khatib as a virtual
force method. The artificial potential field method assumes that each UAV is moving
in an artificial potential field. For UAVs, the target point generates an attractive field,
and obstacles generate a repulsive force field; under the action of the gravitational field
and the repulsive field, the UAV generates a feasible trajectory along the direction of the
potential field. In general, in order to simplify the calculation, by calculating the negative
gradient of the gravitational potential function and the repulsive potential function, the
gravitational and repulsive forces on the UAV in the potential field can be obtained, and
then the resultant force on the UAV can be obtained. Then, calculating according to the
resultant force, each UAV makes the control amount required for attitude adjustment so as
to guide the UAV formation to avoid obstacles and complete trajectory planning. Figure 25
is a schematic diagram of artificial potential field forces.

 

Figure 25. Schematic diagram of artificial potential field.

Rasche et al. [131] proposed a trajectory planning method in a 3D environment. This
method adds a multi-UAV distributed work and inter-machine communication to the
artificial potential field method (APF) and solves the problem of multi-UAV coordination
and task assignment when exploring disaster areas.

Li et al. [132] proposed a trajectory planning method combining the artificial potential
field method (APF) and Dubins curve. This method introduces the virtual leader UAV
into the UAV formation and uses the Dubins curve to plan its trajectory. Then, it uses the
APF to plan the trajectory of the wingman and finally completes the trajectory planning of
the UAV formation by constraining the flight trajectory of the virtual leader. It solves the
problem where the lead aircraft may have out-of-control failure and the UAV is restricted
by the turning radius.

Tang et al. [133] proposed an optimized artificial potential field algorithm. This method
simulates other UAVs as dynamic obstacles and at the same time introduces the climbing
strategy and dynamic step adjustment method into APF, which solves the problems of inter-
machine collision and excessive flight step length in traditional APF under the complex
space conditions of multiple UAVs.

Chen et al. [134] proposed an improved artificial potential field method (IAPF). This
method introduces the judging mechanism of local minimum points and the jump-out
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mechanism of 90◦ movement along the target direction into APF; it solves the problems of
unreachable targets near obstacles, local minimum points and UAV track oscillations in
traditional APF.

Sun et al. [135] proposed a trajectory planning algorithm for dense UAV formations
based on an artificial potential field (APF). The algorithm improves the APF by improving
the repulsive force model, adding the target exchange algorithm and adding constraints,
and it solves the problems of traditional APF trajectory oscillation, unreachable targets and
local minimum points.

Dongcheng and Jiyang [136] proposed a multi-UAV trajectory planning method based
on the improved artificial potential field method (IAPF). This method introduces an im-
proved distance factor potential field function and dynamic step size adjustment method
into APF, and at the same time, it considers the influence of the force between UAVs; it
solves the problem where the traditional APF target cannot be reached: it is easy to fall into
a local minimum, and the trajectory shakes the problem.

Wang et al. [137] proposed a collaborative formation distributed trajectory planning
method based on the improved artificial potential field (IAPF) and consensus theory. This
method introduces the dynamic model and communication network topology, coordination
gain factor, repulsion force and planning angle influence factor into APF. Then, the position
and velocity variables in the consensus protocol are improved to solve the problem of UAV
formation in 3D obstacle environment trajectory planning and position–velocity consistency
problems.

Dai et al. [138] proposed a consensus algorithm for distributed cooperative formation
trajectory planning. The algorithm introduces the potential field function including distance
items and communication effects into APF (IAPF) and then combines the second-order
system dynamic model, consistency theory and IAPF for UAV formation collaborative
trajectory planning. This solves the problems that traditional APF encounters in UAV
including poor convergence problems related to consistency, relative distance and velocity
in formation cooperative trajectory planning.

Li et al. [139] proposed a new trajectory planning method using the improved artificial
potential field algorithm (IAPF). This method increases the repulsive force between UAVs
and defines the front center of mass of the cluster as another source of gravity, which solves
the problem where the traditional APF target is unreachable and easily falls into a local
minimum.

Wei et al. [140] proposed a UAV time-varying formation trajectory planning method
with an interactive topology. This method introduces the improved potential field into APF
(IAPF) and then combines distributed time-varying formation control, IAPF and model
predictive control (MPC) for UAV formation trajectory planning. It solved the problem
where the UAV formation has poor ability to deal with complex environments during
flight.

Wang et al. [141] introduced a multi-UAV trajectory planning method based on an
adaptive extended potential field. In this method, the gravitational influence factor and
the repulsive force influence factor are introduced into the layered potential field function,
and the auxiliary force is added to improve the APF. It solves the problems related to the
slow convergence speed of a layered potential field algorithm and unreachable target of a
traditional APF, easily falling into local minimum, inability to avoid obstacles and lack of a
trajectory optimization strategy.

Pan et al. [142] proposed a trajectory planning method based on artificial potential
functions (IAPF) for multi-UAV systems. This method introduces the improved artificial
potential function (IAPF) of the rotating potential field and at the same time adds the
leader–follower UAV model for UAV formation trajectory planning. It solves the problems
of poor stability, local minimum and oscillation in the traditional APF system.

Table 8 summarizes the contents of our survey regarding artificial potential field
methods.
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Table 8. Summary of the methods of artificial potential field in the survey.

Reference Challenge Optimization Criteria Method Dimension

C. Rasche et al. [131] UAV clustering Distributed, UAV communication APF 3D
X. Li et al. [132] UAV Constrain virtual leads APF + Dubins 2D

J. Tang et al. [133] UAV clustering, Trajectory Climb strategy, Dynamic step size APF 3D
H. Chen et al. [134] Trajectory Judging mechanism, 90◦ jump mechanism IAPF 3D
H. Sun et al. [135] Trajectory Improve the model, Target exchange, Add constraints APF 3D

L. Dongcheng and D. Jiyang [136] Trajectory, UAV clustering Improved function, Dynamic step size IAPF 3D

N. Wang et al. [137] Environment, UAV clustering Communication topology, Coordination gain,
Impact factor IAPF 3D

J. Dai et al. [138] Trajectory, UAV clustering Second-order model, Consistency theory IAPF 3D
R. Li et al. [139] Trajectory Increase the repulsive force, Gravity source IAPF 2D

B. Wei et al. [140] Environment Distributed time variation IAPF + MPC 2D
N. Wang et al. [142] Trajectory Impact factor, Auxiliary force IAPF 3D

Z. Pan et al. [141] Trajectory Rotational potential field, Leader–Follow IAPF 3D

5.2. Dynamic Window Approach

The dynamic window method (DWA) is a classic UAV local trajectory planning algo-
rithm. It determines a sampling velocity space that satisfies the hardware constraints of the
UAV in the velocity space according to the current position state and velocity state of the
mobile UAV and transforms the local trajectory planning problem into a motion constraint
problem in space. Then, it calculates the UAV trajectory of the drone moving for a certain
period of time under these speed conditions and evaluates the trajectory through the eval-
uation function. It selects the trajectory with the best evaluation and the corresponding
speed as the movement speed of the UAV; finally, through the motion constraints, it selects
the locally optimal trajectory and so on until the UAV reaches the target point. Figure 26 is
a schematic diagram of the DWA velocity vector space.

Figure 26. DWA velocity vector space diagram.

Zhang et al. [143] proposed a multi-UAV consistent formation trajectory planning
algorithm based on an improved dynamic window method (DWA). The algorithm intro-
duces a new rotation cost evaluation function, A* algorithm and azimuth-related variable
weight factors to improve DWA and finally adds a leader–following UAV model for UAV
formation trajectory planning. It solves the problems of frequent large-angle rotation and
low search efficiency in the traditional DWA algorithm.

5.3. Mathematical Optimization Algorithm

The mathematical optimization algorithm (MOA) is based on the established UAV
trajectory planning model, using nonlinear optimization, mixed integer linear program-
ming (MILP), mixed integer nonlinear programming (MINLP) and dynamic programming
(DP) to solve the optimal control problem into an easily solvable model to generate feasible
trajectories for formation UAVs. Figure 27 is a mathematical optimization algorithm (MOA)
model.

Bellingham et al. [144] proposed CPLEX, which is a collaborative trajectory planning
method for UAV formation. This method combines the failure probability of each UAV
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with the selected task and puts forward a new formula to solve the problem of mission
failure caused by UAV loss in UAV formation trajectory planning.

Figure 27. A mathematical optimization algorithm model.

Maza and Ollero [145] proposed a method based on polygonal area decomposition
and efficient coverage (PADEC). This method introduces the concepts of regional division
and computational scanning into the UAV formation coverage trajectory planning and
solves the problem of multi-UAV cooperative search.

Dehghan et al. [146] proposed a trajectory planning method based on multi-UAV
for RF source localization. The method combines the differential received signal strength
indicator (DRSSI) method, the extended Kalman filter (EKF) and the Cramer–Rao lower
bound (CRLB) objective function; finally, using the local value of the CRLB in the current
waypoint and the next possible waypoint to determine the optimal trajectory, it solves the
problem of slow convergence of the heuristic algorithm.

Wang et al. [147] proposed a decoupled sequence convex programming (SCP) collabo-
rative trajectory planning method for UAV formations. This method represents the UAV
formation trajectory planning problem as a non-convex optimal control problem; then,
it uses the decoupled sequence convex programming (SCP) method to parameterize the
problem into a non-convex programming sub-problem and solves it in parallel to obtain the
UAV best trajectory for formation coordination tasks. The problem of insufficient efficiency
of the sequence quadratic programming algorithm (SQP) in UAV formation cooperative
trajectory planning is solved.

Causa et al. [148] proposed an algorithm for multi-UAV trajectory planning under het-
erogeneous Global Navigation Satellite System (GNSS) coverage. The algorithm conceives
the multi-UAV formation as a reconfigurable distributed system and then introduces meth-
ods such as edge definition and cost evaluation, custom target assignment, UAV timing and
polynomial trajectory (PT) for formation trajectory planning. It solves the problem of low
efficiency of UAV formation trajectory planning task assignment in a three-dimensional
heterogeneous environment.

Pengfei et al. [149] proposed an optimal trajectory planning method for multiple UAVs
based on the pseudospectral method. This method uses the pseudospectral method to
transform the optimal control problem with complex constraints into a nonlinear program-
ming problem; at the same time, it uses the distributed solution and the Nash optimal
coordination strategy to solve the multi-UAV trajectory planning problem under complex
and multi-constrained conditions.

Li et al. [150] proposed a trajectory planning method for multi-UAV scan coverage
with minimum time maximum coverage. This method introduces a Weighted Target
Scan Coverage (WTSC) algorithm for greedy target assignment, which solves the problem
of insufficient task time and coverage performance of two algorithms, CycleSplit and
G-MSCR [151].

Xia et al. [152] proposed a gradient-based sequential minimum optimization (GB-SMO)
algorithm, which uses time segmentation instead of traditional waypoint segmentation to
establish a trajectory optimization model and introduces virtual line segments to adapt to
the trajectory length. Constraints are converted into cost functions and then minimized
using GBSMO, which solves the problem of insufficient computational performance of
commonly used trajectory planning algorithms considering constraints.
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Wang et al. [153] proposed a real-time trajectory planning method for UAV formation
transformation based on safe flight corridors, introducing safe flight corridors to avoid
UAV collisions, while considering time and space efficiency models. They addressed an
issue where drones could collide when performing a formation change.

Cho et al. [154] proposed a multi-UAV search trajectory planning method covering
nodes in the shortest time. The method introduces a mixed integer linear programming
(MILP) model of hexagonal grid decomposition and at the same time uses the optimization
time as a search function to obtain the trajectory of the formation UAVs in iterations. The
trajectory planning problem of UAV formation searching for catastrophic marine accidents
is solved.

Sun et al. [155] proposed a 4D trajectory planning method with temporal and spatial
constraints. This method transforms the arrival time into state adaptation and at the same
time transforms the collaborative penetration trajectory planning into a single-objective
optimization problem. Then, it uses the multi-leader search distribution estimation algo-
rithm (MLSEDA) to solve the problem, which solves the trajectory planning problem of
UAV cooperative penetration.

Cheng et al. [156] proposed a decentralized multi-UAV trajectory planning method for
obstacle environments. In this method, the UAV rendezvous trajectory planning problem
under constraints is modeled as a non-convex optimal control problem, and then, the
consensus protocol and sequential convex programming two-layer collaborative framework
are used to solve the UAV formation trajectory. It solves the problems of low calculation
efficiency and poor adaptive ability of the traditional UAV formation trajectory planning
method.

Yanmaz [157] proposed a hybrid planner that uses joint optimization methods, de-
coupling optimization methods, and hybrid methods to calculate UAV formations. They
generated feasible trajectories under two different requirements of time constraints and
connectivity, solving the problem where the connection parameters are difficult to trade off
and the resource utilization rate is low in the formation task.

Table 9 summarizes the contents of our survey about the dynamic window method
and mathematical optimization algorithm.

Table 9. Summary of dynamic windowing methods and mathematical optimization algorithms in
our survey.

Reference Challenge Optimization Criteria Method Dimension

S. Zhang et al. [143] Trajectory, Time New cost function, Variable weight factor, Lead–follow A* + DWA 2D
J. S. Bellingham et al. [144] UAV Failure probability, Task selection CPLEX 2D
I. Maza and A. Ollero [145] UAV clustering Area divided and conquer, Computational scan PADEC 2D

S. M. M. Dehghan et al. [146] Trajectory EKF, CRLB DRSSI 2D
Z. Wang et al. [147] Trajectory Non-convex optimal, Parallel solution SCP 2D

F. Causa et al. [148] Environment GNSS, Custom target allocation Multiple step
path 3D

J. Pengfei et al. [149] UAV, Environment Distributed solutions and Nash optimal coordination Pseudo-spectral
Method 3D

J. Li et al. [150] Trajectory Greedy goal assignment WTSC 2D
Q. Xia et al. [152] Computing performance Time division, Constraint transformation GB-SMO 3D

G. Wang et al. [153] Environment, UAV clustering Efficiency model Safe flight
corridor 2D

S.-W. Cho et al. [154] Environment Hexagonal grid decomposition MILP 2D
P. Sun et al. [155] Environment, Time State adaptation, Single objective optimization MLSEDA 4D

Z. Cheng et al. [156] Trajectory Consensus protocol, Sequential convex programming Non-convex
optimal control 3D

E. Yanmaz [157] Resource utilization Joint optimization, Decoupling optimization,
Hybrid method Hybrid planner 2D

5.4. Model Predictive Control

Model Predictive Control (MPC) is a typical online planning method with planning
and execution at the same time. In other words, it is a rolling time window approach. In the
local planning process, the algorithm first updates the environmental information in the
current trajectory search domain and predicts the information change trend in the trajectory
search domain on this basis. Then, it searches out the local reference trajectory according
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to the motion model of the UAV and executes. In the process, the trajectory is corrected
according to the motion constraints and control errors of the UAV so as to make full use
of real-time feedback information to gradually generate a global trajectory. Figure 28 is a
schematic diagram of MPC.

 

Figure 28. Schematic diagram of Model Predictive Control.

Oh et al. [158] proposed a decentralized nonlinear model predictive control trajectory
planning strategy (DNMPC), which introduces filtering technology and decentralized
optimization into MPC to realize UAV formation for trajectory planning in relay communi-
cation to solve the problem of poor connectivity of the wireless network between the fleet
of naval ships.

Cui et al. [159] proposed a multi-object tracking algorithm based on task assignment
consensus. It uses the dynamic task allocation model to update the tracking tasks and
uses the intermittent asynchronous communication principle to realize the sharing of local
observation information. At the same time, it uses the MPC algorithm to complete the
tracking trajectory planning and solved the problem of UAV formation tracking multiple
moving targets within a limited communication range.

Wu et al. [160] proposed a UAV trajectory planning model (Poc-KF) based on collision
probability and Kalman filter. The model uses the collision probability algorithm and
the Kalman filter algorithm for UAV collision probability calculation and formation state
estimation, and it calculates feasible trajectories for UAV formation in real time. It also
addressed possible trajectory conflicts in high-density drone formations.

Wu et al. [161] proposed a behavior tree (BT) model. The specific operation is to
combine the model prediction with the decision tree to obtain the behavior tree (BT). Then,
they add the virtual target-based tracking (VTB-T) method and use the behavior tree (BT)
organization trajectory planning method to construct a feasible trajectory for the UAV. The
problem of multi-UAV trajectory planning in the target tracking scenario is solved.

Wang et al. [162] proposed a new trajectory planning algorithm for model predictive
control (NMPC). They introduced a virtual target to move along the patrol trajectory at a
predetermined speed and designed a decentralized estimator for each UAV to estimate the
state of the virtual target. Then, they used a new model prediction algorithm to calculate a
feasible trajectory for the formation of UAVs, which addresses the problem of formation
reconstruction and trajectory planning in multi-UAV aerial patrol missions.

Chen and Liu [163] proposed a model for predicting flushing force under drones
(PMDFF). It regards each UAV as a virtual structure to form a cylindrical UAV model and
then uses the cluster and Optimal Interactive Collision Avoidance (ORCA) algorithm to
solve the collision-free trajectory. They addressed an issue where downwash effects have
an impact on neighboring drones in UAV formation trajectory planning.
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Table 10 summarizes the contents of our survey on model predictive control algo-
rithms.

Table 10. Summary of MPC algorithms in our survey.

Reference Challenge Optimization Criteria Method Dimension

H. Oh et al. [158] Communication Filtering technology, Dispersion optimization DNMPC 2D

Y. Cui et al. [159] Communication,
Multiple objectives

Dynamic update, Intermittent
asynchronous communication MPC 2D

Z. Wu et al. [160] UAV clustering Probability calculation, KF Poc-KF 2D
W. Wu et al. [161] Environment VTB-T BT 3D

Y. Wang et al. [162] UAV clustering, Trajectory Virtual target, Decentralized estimates NMPC 3D
C.-C. Chen and H. H.

Liu [163] UAV clustering Virtual structure, ORCA PMDFF 3D

6. Problems of UAV Formation Trajectory Planning Algorithm

With the advancement of low-airspace reforms and the innovation of artificial intelli-
gence and information technology [164], new theories and new achievements related to
swarm intelligence continue to emerge, and the improvement of UAV formation trajectory
planning algorithms is facing many challenges.

6.1. Physical Constraints of UAV Formation

In the process of trajectory planning, the UAV in the formation is usually simplified into
three degrees of freedom particles, ignoring its own constraints such as minimum turning
radius, rolling angle and other restrictions on the running state. As a result, the current
trajectory planning algorithm is difficult to adapt to the UAV with high maneuverability,
there are errors between the release route and the planned route when the actual formation
UAV performs the task, and the execution effect will also be affected.

6.2. Performance Problems of UAV Formation Carrying Equipment

In the UAV formation trajectory planning algorithm, the performance of the UAV
itself is not considered enough. An insufficient consideration of problems such as fuel con-
sumption, load, and onboard sensor errors in practice makes it difficult to accurately detect
complex environments, and the trajectory planning that can be achieved by simulation
cannot be realized or has poor robustness in the actual environment.

6.3. Complex Environment Modeling Problem

Most of the current formation trajectory planning algorithms are hypothetical ideal
obstacles, but the actual operating environment of UAVs is complex and diverse, especially
the detection and description of scenes such as complex concave obstacle environments
and dense dynamic obstacles, which need further exploration.

6.4. Algorithm Real-Time Problems

Realistic environmental information is usually time-varying. Regarding UAV forma-
tion trajectory planning in an unknown environment, the success rate of trajectory planning
strategies used by traditional algorithms and local trajectory planning algorithms in the face
of emergencies and dynamic environments is low; in addition, the amount of calculation
is large, and the trajectory is not optimal. It is difficult for drones to complete real-time
trajectory updates.

6.5. Adaptability of UAV Formation Route Planning Algorithm

When performing formation trajectory planning in a complex dynamic environment,
there is a lot of information exchange between UAVs, which leads to an increase in the
amount of calculations, and intelligent algorithms are prone to fall into problems such as
local optima that exist in themselves.

160



Drones 2023, 7, 62

6.6. UAV Formation Communication Problem

With the development of science and technology, the application scenarios of drones
in the future will become more and more complex. In certain scenarios, there will be
communication interference problems, which will cause the UAV to fail to work normally
and even cause irreversible damage.

7. Future Research Focus and Direction

7.1. Improved Model

Constraints such as six degrees of freedom, minimum turning radius, roll angle, and
the onboard sensor error of each UAV are added to the modeling to enhance the robustness
of actual control. For complex environment modeling, the influence of multiple factors in
the complex environment on the effect of trajectory planning must be considered; reliable
and accurate data must be obtained through specific measurements or the use of accurate
3D maps, and at the same time, the data must be used to verify the model to make the
simulation closer to reality. It can also be better applied to the actual platform in the future.

7.2. Real time Planning

In the face of increasingly complex environments and tasks, in order to meet the
requirements of fast optimal solution, computational complexity, convergence speed and
rationality, the computational memory is allocated reasonably. Executing trajectory plan-
ning algorithms to generate efficient trajectories in the case of limited computing power of
UAVs is of great significance for UAV formations to complete tasks in complex environ-
ments.

7.3. Fusion Algorithm

It is an important current research trend to integrate different types of trajectory
planning algorithms to make up for the defects and deficiencies of existing single methods.

For example, the local trajectory planning method can be combined with artificial
intelligence technology represented by machine learning to complement each other. On the
one hand, it can solve the problem of easy falling into local optimum in the local trajectory
planning method, and on the other hand, it can also make up for the poor real-time
performance of the machine learning-based track planning algorithm to a certain extent. It
is also possible to combine the characteristics of heuristic algorithms and machine learning
algorithms that are easy to integrate with each other to help analyze the performance
of the algorithm and expand the application range of the algorithm. At the same time,
experiments show that the hybrid algorithm has better adaptability.

7.4. New Algorithm

At present, the existing UAV formation trajectory planning algorithms have more or
less defects. Therefore, developing an algorithm that reduces computational requirements,
saves time, allows real-time planning, and is more efficient in terms of energy is also a
direction worth exploring.

7.5. Fault Tolerance Mechanism

Since the maneuvering area of each UAV is very small, once a collision occurs, it will
affect the adjacent UAVs, and a chain effect will be generated between the UAV clusters,
which will cause the mission to fail. Therefore, the fault-tolerant redundancy mechanism
is an important link to ensure the safe operation of the UAV system. At present, there is
no fault-tolerant mechanism design for the core and weak links of the trajectory planning
algorithm so as to improve the fault-tolerant ability of unmanned formation flight. In future
research, we should focus on the design of the fault-tolerant mechanism when the function
of the UAV fails to avoid uncontrollable events.
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7.6. Hybrid Frame

It is unrealistic to use a centralized framework to solve problems in the process of
carrying out missions in large-scale UAV formations. Therefore, a hybrid framework
should be adopted; how to design an appropriate conflict resolution mechanism and how
to effectively combine UAV formation trajectory planning with collaborative control to
generate feasible flight trajectories are topics worthy of further study.

7.7. Behavior Decision

Recently, UAV swarm-to-swarm dynamic confrontation has become a hot research
direction. At the same time, the autonomous decision-making behavior of UAV formations
such as autonomous reconnaissance and detection, autonomous target recognition, and
autonomous task coordination in complex terrain such as cities and mountainous areas
can effectively reduce the loss of manpower and material resources. How to plan and
generate the optimal trajectory of UAV formation from the perspective of game theory is
undoubtedly a problem worthy of further exploration.

7.8. Allocation of Resources

In the future, drone formations will be widely used in battlefields and anti-terrorism
operations. The environment in which UAVs perform these tasks may become very com-
plex, resulting in increased mission difficulty, and the environment may provide extremely
strong support for UAV formations, such as satellite links and energy supplies for contin-
uous flight. How to reasonably allocate available resources to each UAV during mission
execution is also a challenging problem.

7.9. Communication Networking

The confrontation between UAVs has become more and more information-based.
When the UAV formation is performing tasks, it is necessary to ensure that the UAVs can
communicate and share information normally and at the same time deal with external
communication interference. Although some scholars have noticed related problems, the
problem of how to solve communication interference in UAV formation trajectory planning
is still a difficult problem.

8. Conclusions

From the perspective of the two key elements of global planning and local plan-
ning, this paper proposes a framework for UAV formation trajectory planning algorithms,
comprehensively classifies different types of algorithms, and describes different types of
algorithms and their variants in a unified way. Then, a review and statistical analysis were
carried out on the basis of classification. We found the shortcomings in the UAV formation
trajectory planning algorithm methods and put forward the focus and direction of future
research. This paper provides reference information for the next step of research work for
researchers and workers engaged in UAV formation flight-related work. We believe that
with the innovation of various theories and the iterative development of technologies, the
UAV formation trajectory planning algorithm will enter a new era.
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Abstract: There are multiple participants, such as farmers, wholesalers, retailers, financial institutions,
etc., involved in the modern food production process. All of these participants and stakeholders have
a shared goal, which is to gather information on the food production process so that they can make
appropriate decisions to increase productivity and reduce risks. However, real-time data collection
and analysis continue to be difficult tasks, particularly in developing nations, where agriculture is
the primary source of income for the majority of the population. In this paper, we present a smart
decision-support system for pig farming. Specifically, we first adopt rail-based unmanned vehicles to
capture pigsty images. We then conduct image stitching to avoid double-counting pigs so that we
can use image segmentation method to give precise masks for each pig. Based on the segmentation
masks, the pig weights can be estimated, and data can be integrated in our developed mobile app.
The proposed system enables the above participants and stakeholders to have real-time data and
intelligent analysis reports to help their decision-making.

Keywords: smart agriculture; pig farming

1. Introduction

Substantial risk and uncertainty exist in the agricultural production process and the
associated supply chain [1]. For instance, unpredictable virus spread may seriously harm
pig growth conditions, resulting in large-scale pig illness. The financial wellbeing of the
farmer, credit provider, and insurer may incur damages from these operational risks [2].

To make informed decisions, a smooth flow of modern agriculture information is
necessary [3], which requires the collaboration of multiple participants and stakeholders.
This consists of a number of stakeholders, including farmers, who serve as the industry’s
primary producers; distributors and merchants that store, package, transport, and distribute
the harvest to consumers; financial institutions that provide insurance and oversee capital
allocation; and regulatory agencies responsible for ensuring food safety, environmental
sustainability, and financial stability. Participation in and monitoring of the production
process is of interest to each stakeholder. For instance, a farmer may track the pig weights
to be aware of their growth conditions; banks may use the data to identify nonperforming
loans; and regulatory agencies may adopt the data to evaluate environmental impacts.
However, it would be costly if we used traditional methods to collect and distribute such
real-time agriculture information.

Making decisions from out-of-date information may have negative effects [4]. The
recent epidemic of African swine disease in China is a case in point. The reliance on manual
data collection and reporting, which was inefficient and prone to human mistake (whether
deliberate or not), caused slow government responses and the virus to spread quickly
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throughout China in just eight months [5]. Dr. Defa Li, Fellow of the Chinese Academy
of Engineering, put the estimated economic cost of the pandemic at 1 trillion Yuan [6].
Moreover, insurance companies also incurred significant losses due to the pandemic [7].

Through the use of Artificial Intelligence (AI) [8], Internet-of-Things (IoT) technolo-
gies [9,10], and big data analysis [11], the next wave of the agricultural revolution promises
to reduce the aforementioned operational risks and promote the flow of information [12,13].
However, the introduction of such technologies in developing nations in Southeast Asia
and elsewhere faces a number of particular difficulties, including the predominance of
small and medium-sized farms, unusual farm conditions, inadequate capital support, and
a lack of skilled management. The current situation of a few farms in Guangdong, China,
is shown in Figure 1. We caution the reader that these are small farms and that the farmers
are using low-cost designs. While industrialized economies have had the most success with
smart farming and IoT in agriculture, the problems in developing nations have received
less attention.

Figure 1. Farms in Guangdong, China. (1) depicts an aerial view of depicts farms with erratic shapes
that rely on natural irrigation and simple plastic mulch (instead of more expensive greenhouses).
(2) shows a pig farm run by a family with a great number of pigs, which is enclosed by basic fences.
One of our co-authors took these pictures while on a field trip.

In this paper, we propose a smart pig farming support system. The platform collects
data on agricultural productivity using cutting-edge sensors, analyzes the data automati-
cally and interactively, and helps different stakeholders to make well-informed decisions.
To address the specific challenges in developing countries, we propose to use unmanned
vehicles with sensors to monitor the growth conditions of pigs in a pig farm. Specifically,
the unmanned vehicles can be installed at the top of pigsties with fixed rails, and pig images
can be taken. The captured images are further processed and analyzed with machine learn-
ing techniques, where we attempt to do image stitching, pig instance segmentation and
weight estimation. Since the data can be captured and analyzed in an automatic fashion,
we are able to monitor livestock farming in real time.

Our contributions can be summarized as follows:

• We propose to use unmanned vehicles based on fixed rails to capture pigsty images,
which are low-cost and easy to maintain.

• We propose to apply state-of-the-art AI techniques to conduct data analysis, including
image stitching, pig segmentation and weight estimation.

• We propose to develop an app for data fusion, which integrates the collected and
analyzed information for stakeholders’ visualization.

In the following sections, we first review the related works (Section 2), including image
stitching, pig segmentation, and pig weight estimation methods. Then, in Section 3, we
describe each of our proposed smart pig farming system components. We further give
experimental results in Section 4.
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2. Related Work

2.1. Image Stitching

Image stitching is defined as combining two or more images of the same scene into
one full image, which can be called a panoramic image [14]. Due to the advantage of
being robust against scene movement and fast processing, many existing works [15,16]
adopt feature-based techniques. This method aims to use properly designed features, such
as SIFT [17], to get the input image relationships, which are further used to uncover the
overlapping areas between input images.

The idea of the feature-based image stitching method is to build the correspondence for
points, lines, edges, etc. In order to produce robust stitching results, it is of great significance
to adopt scale-invariant and translation-invariant detectors. There are many prevailing
feature detectors [18], including SIFT [17], ORB [19], KAZE [20], and AKAZE [21]. To
be specific, SIFT [17] is designed based on the Difference-of-Gaussians (DoG) operator,
which is invariant to image rotations and scales robustly. Alcantarilla et al. [20] exploit
non-linear scale space through non-linear diffusion filtering and propose the KAZE features,
which reduce image noise. AKAZE [21] is an improved version of KAZE. Since it uses the
modified local difference binary (MLDB) algorithm, AKAZE is a computationally efficient
framework. In this paper, we empirically use SIFT as our image stitching approach, since it
gives better results than other approach.

2.2. Segmentation Techniques for Pig Images

Semantic image segmentation [22] is a classical computer vision task that aims to clas-
sify each of the image pixels into an instance. With the development of deep learning [23],
prevailing segmentation models, such as Faster R-CNN [24] and single-shot detection
(SSD) [25], perform well on various kinds of datasets. Specifically, DeepLabV3+ [26] im-
proves upon previous work [27] with several improvements, such as adding a simple and
effective decoder module to refine the segmentation results. It is proposed to perform
multi-class semantic segmentation. Later on, several research works, such as ViTDet [28]
and MViTv2 [29], propose to adopt the transformer as segmentation model backbones.
MViTv2 [29] is able to perform both image classification and object detection tasks. The
aforementioned methods mainly validate their efficacy on the COCO dataset [30].

Pig segmentation is under the umbrella of the general image segmentation task,
allowing us to produce the fine-grained shapes and locations of all pigs in given images.
The segmented results interpret the complex scene information and give intelligent analysis
for the given images. Since the produced results can assist both pig body part identification
and behavior recognition tasks [31], many research works [32–34] focus on tackling the
pig segmentation problem. To be specific, Seo et al. [32] adopt You Only Look Once
(YOLO) [35] to separate touching-pigs in real-time. Shao et al. [33] use the segmentation
techniques to predict the posture changes of pigs. In this paper, we adopt the pretrained
Mask R-CNN [36] model, which is developed on top of Faster R-CNN [24]. We further use
our annotated pig images captured in local farms to fine-tune the pretrained model, such
that the fine-tuned model is able to give precise masks for pigs.

2.3. Pig Weight Estimation

Weight is an important index in pig rearing [37] and has an effect on managing various
stages of the supply chain [38,39]. In terms of the farm scale, one can evaluate a pig’s daily
gain and nutritional status through pig weights [40]. Specifically, with real-time pig weight
data, farmers can raise pigs in good or bad nutrient status separately to meet the uniform
marketing weight standard [37], which brings convenience to the pig farming process.
Traditional pig weight measurement requires direct contact with pigs, which is limited by
its low efficiency [37]. The non-contact measurement of pig weight is challenging and has
drawn much attention.

Some research works [41] adopt additional facilities other than cameras for more weight-
related information capture. To be specific, Shi et al. [41] propose to utilize a binocular stereo
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vision system to analyze and estimate pig body size and weight. Pezzuolo et al. [42] adopt a
Microsoft Kinect v1 depth camera to get the pig body dimensions. However, these methods
require high-cost implementations and thus are not applicable to our focus scenarios, which
are the rural areas of developing countries. Therefore, we refer to the method proposed
by [37], where we estimate pig weights based on pig sizes.

2.4. Summary

In Table 1, we present the comparison between our proposed method and other
methods, where we show our strengths and weaknesses. Specifically, our adopted image
stitching and image segmentation methods have good performance on the unmanned
vehicle captured pig images, where we produce dense detected keypoints to conduct image
stitching and achieve high average precision for pig instance segmentation. However, our
processing time is relatively longer than other methods. This is acceptable since we do
not require instant feedback on the detected results. After we obtain the captured images
from our unmanned vehicles, we process these images at our local machines. In terms
of the weight estimation component, we utilize a monocular camera, which may yield
inferior performance to the depth camera, but it is low-cost and gives low tolerance on the
test samples.

Table 1. Comparison between our proposed method and other methods, where we list our strengths
and weaknesses.

Component Strength Weakness

Image stitching Our detected keypoints are dense and Our processing time is longer than other
scattered generally all over the images. methods, because of the descriptor size.

Image segmentation Our average precision is better Our processing time is longer than other
than other methods. methods, because of the backbone complexity.

Weight estimation Only monocular camera is required, Our estimation accuracy is lower
which is low-cost. than methods using more sensors.

3. Methodology

Specifically, our proposed smart pig farming support platform is intended to standard-
ize agricultural procedures, boost farm output, improve pest and disease management,
and lessen operational risks in agriculture. This platform enables us to conduct production
optimization based on subject-matter expertise and sensor data. Governments, financial
institutions, and regulators can also identify potential operational and financial risks and
get ready for them. The proposed system primarily supports livestock pig farming. Pig
farms can identify pig positions and pig weights and monitor their weight in real time.

We show the proposed smart pig farming support system architecture in Figure 2,
which includes three main components. Firstly, we use unmanned vehicles equipped
with on-site sensors to collect data at the farm. Secondly, the data are then processed
utilizing inexpensive edge computing nodes that do not have issues with sporadic Internet
connections. Thirdly, the data are analyzed, the findings are summarized, and they are
made accessible on an open platform that supports an ecosystem. The ecosystem supports
a number of business and agricultural activities as well as various operations. We present
the details of our system components below.
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Capture real-time 
images with rail-based 
unmanned vehicles

Image stitching, Pig 
segmentation, and 
Weight estimation

In-app digital 
management

Figure 2. The architecture of our proposed smart pig farming support systems. From left to right,
we show the images of on-site installation, the segmentation results on stitched images, and the
screenshot of our developed app for smart monitoring.

3.1. Data Collection with Unmanned Vehicles

We use rail-based unmanned vehicles that are equipped with surveillance cameras to
monitor the livestock pigs. To be specific, the vehicles are installed on the top of pig farms,
and the rails are designed to be vertical to the pigsty, where the demonstrations are given in
Figure 2. The unmanned vehicles move from one end to another end and take consecutive
images simultaneously. We show the consecutive raw images taken by our rail-based
unmanned vehicles in Figure 3. They are running at regular intervals automatically so that
the pig growth conditions can be monitored in real time.

Figure 3. The consecutive raw images taken by our rail-based unmanned vehicles. Based on the
collected data, we conduct image stitching, pig segmentation, and weight estimation.

Since we need to train a new pig segmentation model, we hire annotators to perform
semantic polygon mask labeling for pig images. In total, we have 636 and 54 images for
training and validation, respectively. Moreover, we also collect real pig weight data to
estimate the pig weights. Due to our limited on-site manpower and the number of pigs,
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we collected 100 real weight samples; then, we split the collected data into 80 training and
20 test samples.

3.2. Image Stitching

It can be observed that the obtained consecutive scanned images overlap with each
other. If we directly use these images for pig segmentation and weight estimation without
further processing, the same pigs may be present in different scanned images, which makes
pig management difficult. To avoid this, we propose using the image stitching approach to
stitch all the images in an attempt to remove overlaps and give an overall perspective on
the livestock pigs in the captured pigsties. We follow the methods of [15,16] to combine
two or more overlapping images to make one larger image, which is realized in four steps.

In the first step, we aim to detect key points and obtain feature descriptors. Here, we
use the SIFT [17] detector since it is rotation-invariant and scale-invariant. In the second
step, we match key points with features. Specifically, we define a region around each
key point, and then compute local features from normalized regions. Based on the local
descriptors, we can perform the matching. In the third step, we firstly sample four random
potential matches from the second step, which are used to compute the transform matrix H
using direct linear transformation. We use the computed H to obtain the projected points
x′ from x, which is denoted as

x′ = Hx. (1)

where x and x′ are potentially matching pairs. We then count points with a projected
distance smaller than a defined threshold, which is set as 0.6. We view these counted points
as inliers. We repeat the above process of the third step and return H with the most inliers.

In the fourth step, we aim to stitch two given images, which are depicted as I1 and I2
for demonstration. Since we observe that there are the blurry regions in the final panoramic
image, we apply linear blending to reduce this effect. Technically, we first define left and
right-stitched margins for blending. We then attempt to define weight matrices W1 and W2
for I1 and I2, respectively. For I1, we define the weights from the left side of the output
panoramic image to the left stitched margin as 1, and the weights from the left stitched
margin to the right stitched margin are linearly decremented from 1 to 0. For I2, we define
the weights from the right side of the output panoramic image to the right-stitched margin
as 1, and the weights from the left-stitched margin to the right-stitched margin are linearly
decremented from 0 to 1. We further apply the weight matrices and combine I1 and I2. The
stitched images I′ are depicted as

I′ = W1 I1 + W2 I2. (2)

3.3. Pig Segmentation

Here, we aim to locate each instance of the farming pigs, such that we are able to
perform individual analysis for them. To this end, we adopt the state-of-the-art semantic
segmentation algorithm Mask R-CNN [36]. Technically, there are two stages of Mask R-
CNN. First, based on the input image, multiple region proposals are generated where there
might be an object. Second, the model predicts the object classes, refines the bounding box
positions, and also generates a mask in pixel level on the predicted masks from the first
step. Both stages are connected to the backbone structure.

Mask R-CNN uses a ResNet [43] as its backbone. It utilizes standard convolution
and FC heads for mask and box prediction, respectively. Moreover, the Feature Pyramid
Networks (FPN) [44] is also integrated into the ResNet model, which improves the seg-
mentation accuracy without sacrificing the inference speed. To give the segmentation
model a good training start point, we use the ImageNet [45] pretrained models to further
improve the segmentation performance. Since there is no publicly available model for pig
segmentation, we use our labeled data for model training.
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3.4. Pig Weight Estimation

Pig weights can be used to monitor pig growth status. With real-time weight data,
farmers are able to know if pigs are in a good or bad nutrient status and change their
fodder, which brings convenience to the pig farming process. To estimate pig weights
according to our generated segmentation masks, we first fit the obtained masks into ellipses.
We utilize the major axis and minor axis as pig length h and pig width w, respectively.
Then, we follow the equation proposed by [37]. However, considering the particular pig
breeds and camera installation conditions in our farms, we need to modify part of the given
equation parameters.

Specifically, we denote the weight estimation equations [37] as

M = a× hb × wc, (3)

where M denotes the estimated weights and a, b, and c are parameters that should be calcu-
lated from our collected data. In order to fit this equation, we first transform Equation (3) into

log(M) = log(a) + blog(h) + clog(w). (4)

Since Equation (4) is a linear system, we further adopt the linear regression algorithm
to obtain the above a, b, and c parameters. Our final optimized heuristic equation to
calculate pig weights is denoted as

M = 0.0017× h1.1908 × w1.0618. (5)

The tolerance of Equation (5) on our test samples is 1.8%.

4. Experiments

4.1. Implementation Details

Unmanned vehicle characteristics. The material of our rail-based unmanned vehicle
is iron, the size of which is 80 cm × 40 cm × 30 cm. The rails are installed 3 m above the
ground, where the vehicle moves forward at 0.1 m/s. The video camera is attached to the
vehicle and points vertically to the ground. The camera takes pictures at the interval of
1 s. The camera resolution is 1080p. To control the unmanned vehicle and camera, we use
the Firefly-RK3399 (https://en.t-firefly.com/Product/Rk3399/spec.html (accessed on 3
October 2022)) platform.

Segmentation model. Regarding our adopted pretrained segmentation model, we
adopt the Detectron2 (https://github.com/facebookresearch/detectron2 (accessed on 3
October 2022)) implementation. We fine-tune the pretrained segmentation model with a
learning rate of 0.00025, and the training iteration number is set as 3000.

Operation cost and efficiency. Our whole on-site system implementation for a one-
row pigsty costs around 5000 CNY, which is about 702 USD. This is affordable for our
deployed local farms. In terms of our operation efficiency, we perform the image stitching
and pig weight estimation components in the CPU, and the segmentation component is
conducted in the GPU. To be specific, the image stitching and weight estimation components
cost about 10 min and 5 s for a pigsty. We use a Nvidia 2080 GPU to obtain the segmented
results, and the inference time is 0.3 s per image.

4.2. Image Stitching Results

In Figure 4, we present one resulting image of key points detected by SIFT [17]. We
empirically observe that our adopted method gives abundant key point detection results. In
Figure 5, we demonstrate a comparison of the matched key points between two images with
various features, where we show the key point matching results of ORB [19], KAZE [20],
AKAZE [21], and SIFT [17]. Since we do not have ground truth labeling, we only evaluate
the performance of these methods qualitatively.
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Specifically, it is observed that the SIFT approach produces few intersected matching
lines, and the detected key points are diverse. In contrast, ORB and KAZE give many
intersected matching lines, and the diversity of AKAZE-generated key points are limited.
Key point matching is one of the intermediate steps, and its robust performance is important
to our following processing. In Figure 6, we show the qualitative results of the stitched
pig images, which cover multiple pigsties under our rail-based unmanned vehicles. The
presented qualitative examples demonstrate the efficacy of our adopted method for pig
farming image stitching.

Figure 4. One result of the detected key points by the SIFT detector.

Figure 5. Comparison of different features used for image stitching. We show results of ORB [19],
KAZE [20], AKAZE [21], and SIFT [17].
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Figure 6. Results of our stitched pigsty images, where each covers one row of the pigsty.

4.3. Segmented Results

In Table 2, we present the quantitative results of our segmentation model, which is
evaluated with average precision (AP) under different Intersection over Union (IoU) values.
Specifically, we list the quantitative results of various backbone models. DeepLabV3+ [26]
improves upon previous work [27] with several improvements, such as adding a simple
and effective decoder module to refine the segmentation results. It is proposed to perform
multi-class semantic segmentation. However, since we only need to perform segmentation
on pig instances, we observe that DeepLabV3+ fails to yield better results than our method.
Both ViTDet [28] and MViTv2 [29] adopt the transformer as their model backbones. Based
on the experimental results, our adopted ResNet [43] + FPN [44] architecture generalizes to
our particular scenarios and gives the best performance among our listed methods. When
IoU = 0.50:0.95, our average precision achieves 77.5% with the ResNet-101 model, which
indicates that our model performance is consistent under various conditions. ResNet-
101 [43] yields better results than ResNet-50 due to its higher complexity.

Table 2. Quantitative results for our pig segmentation validation set. IoU denotes Intersection over
Union. FPN denotes Feature Pyramid Network. We show average precision (AP) results of various
backbone models.

Method
Average Precision

IoU = 0.50 IoU = 0.75 IoU = 0.50:0.95

DeepLabV3+ [26] 71.1 37.2 36.5

ViTDet [28] 67.0 36.6 37.4

MViTv2 [29] 78.2 40.2 42.3

ResNet50+FPN (Ours) 97.1 87.7 72.4

ResNet101+FPN (Ours) 98.1 90.2 77.5

In Figure 7, we show the pig segmentation results of images taken by our unmanned
vehicle, where the results are from various scenarios. The challenge of pig segmentation in
our system is that we can only take images from the top view, which suffers from different
light conditions. Moreover, the livestock pigs have various poses, and some of them overlap
with each other. However, we observe that our adopted Mask R-CNN framework still
has achieved over 90% average precision for both IoU = 0.5 and IoU = 0.75, showing the
robustness of our system. Specifically, in the second instance of Figure 7, although only
parts of the pigs are shown in the image, our model still successfully captures the precise
location of these pigs. In the third instance, there are multiple pigs with different poses,
and our model also gives correct segmentation results.
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Figure 7. Pig segmentation results in images taken by our rail-based unmanned vehicle.

4.4. Weight Estimation Results

In Figure 8, we present visualizations for the weight estimation of each pig, giving an
overview to farmers. The tolerance of our adopted Equation (5) on our test set is 1.8%. The
quantitative and qualitative results both validate the usefulness of our adopted pig weight
estimation method. The advantage of our system is that it gives real-time feedback on
livestock pigs automatically. With the real-time captured weight data of each pig, farmers
are able to know the nutrition status and growth conditions of pigs.
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Figure 8. The estimated weight results of each pig for demonstration.

5. Limitations

The proposed system has two main limitations. First, the image stitching results may
fail due to pig movement, as shown in Figure 9. This is because our image stitching method
assumes that images for stitching contain a static scene and objects only; when a pig moves
too much across frames, failure cases may occur. However, our current implementation
aims to get the overall estimated pig weights, instead of tracking each pig. Hence, we ran
our unmanned vehicle multiple times a day to capture pig images in an attempt to alleviate
this issue.

Second, our current implementation only estimates the pig weights based on the
segmentation masks, which means we can only obtain an overview of the pig weights. It is
useful to uncover some extreme cases. However, we cannot track the weight information
and growth status for each individual pig. To improve this, we need to develop pig
recognition algorithms so that we are able to track the real-time data and obtain the
continuous weight change for each pig. We leave this to our future work.

Figure 9. Failure cases due to pig movement.

6. Conclusions

The next phase of the agricultural revolution will increase agricultural output and
enhance the sustainability and effectiveness of current farming methods. To support pig
farming in developing countries, collecting real-time data and performing relevant analysis
is critical. In this paper, we present a smart decision-support system for pig farming, which
is low-cost and affordable for developing countries. Specifically, we first adopt on-site
rail-based unmanned vehicles to capture all pigsty images at certain intervals. To avoid
overlapped pigs in captured images, we conduct image stitching; then, we use an image
segmentation model to output pig segmentation masks. Based on the extracted masks, the
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pig weights can be estimated, and data can be integrated in our developed mobile app.
Our proposed system enables pig farming participants and stakeholders to have real-time
data reports to help their decision-making.
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Abstract: The advancement in computing and telecommunication has broadened the applications
of drones beyond military surveillance to other fields, such as agriculture. Livestock farming using
unmanned aerial vehicle (UAV) systems requires surveillance and monitoring of animals on relatively
large farmland. A reliable communication system between UAVs and the ground control station
(GCS) is necessary to achieve this. This paper describes learning-based communication strategies and
techniques that enable interaction and data exchange between UAVs and a GCS. We propose a deep
auto-encoder UAV design framework for end-to-end communications. Simulation results show that
the auto-encoder learns joint transmitter (UAV) and receiver (GCS) mapping functions for various
communication strategies, such as QPSK, 8PSK, 16PSK and 16QAM, without prior knowledge.

Keywords: unmanned aerial vehicle; convolutional auto-encoder; livestock farming; deep neural
networks

1. Introduction

Unmanned Aerial Vehicles (UAVs), known as drones, are self-driven aircraft that work
without a human pilot on board [1]. Different types of UAVs are employed for various
intents [2]. Initially, the military used the technology for anti-aircraft target techniques,
intelligence gathering and surveillance of enemy territories [2–5]. Moreover, UAV tech-
nology has evolved beyond its initial purpose. It has, in recent years, gained prominence
in diverse spheres of human endeavour. The ease of operating drone technology results
in the widespread applications of UAVs in diverse fields, thus making it a prosperous
technology [6]. Livestock farming is one of the promising applications of UAVs, where
UAVs simplify various operations for efficient animal management [7–10]. Over the years,
livestock farming has faced environmental, economic, technical and strategic planning
due to varying climatic conditions, population growth and intense competition for land
and other natural resources [11]. Nevertheless, the use of advanced technologies such as
Artificial Intelligence (AI), the Internet of Things (IoT), Machine Learning (ML), cutting-
edge sensors, etc., integrated with UAVs has recently resulted in the widespread adoption
of drone technology amongst livestock farmers [9]. As an illustration, Figure 1 shows a
typical UAV conceptual design framework of a livestock farming management system
(LFMS). The system consists of four development stages; the water examination system,
Long-Range Wide-Area Network (LoRaWAN)-based network planning, drone mounted
with sensors and cameras and drone path planning optimization. The cattle are fitted with
transceivers around their necks. This provides a means for sharing information between
the drone and the ground station.
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The UAVs are controlled either remotely or manually by a pilot at a ground station,
guided using a pre-programmed flight procedure. Wireless communication is one of the
critical technologies for UAV wireless communication and is classified into a command
and control link and a data link [12]. The command and control link provides essential
information about the environment, operating conditions and control instructions for a
UAV’s safe operation. Therefore, it requires high reliability and low latency. Compared to
the command and control link, the data link often maintains the target-related information
and thus supports higher data rates

UAV equipped with sensors

Stationary receiverwith an  
internet connection 

Collar tag equipped  
with transceiver

Figure 1. Conceptual framework of UAV-based farm monitoring system [13].

1.1. Motivation

The use of UAVs for livestock location, detection, activity monitoring, anomaly detec-
tion and rearing requires onboard sensors operating at radio frequencies (RF) of 2.4 and
5.8 GHz for reliable data transfer between the UAVs and the ground stations [1,4]. However,
due to traffic of the target-related UAV data, the tasks become more strenuous and demand-
ing as the resolution of the onboard sensors becomes higher, specifically in the backbone
network [14]. Accordingly, this imposes enormous demands on the communication system
as well as the challenge of decoding the transmitted data with minimum error probability
at the user end. Livestock farming requires extensive farmland, located mainly in rural
areas. It is known that many rural areas, even in developed countries, are significantly
under-connected with mobile wireless technology. Therefore deploying 5G test beds in
rural areas can motivate service providers to improve internet connectivity. Recently, the
United Kingdom (UK) launched a project called 5G Rural Integrated Test bed (5GRIT)
to create test beds for 5G in rural areas [3]. The project seeks to demonstrate the role 5G
networks can play in consolidating farming and tourism sectors using an integrated system
of UAVs and AI technologies. Therefore, designing a robust communication system that
will provide reliable data transfer between UAVs and the GCS is necessary for UAV-based
livestock farming.

1.2. Related Works

Beyond using multirotor UAVs for aerial surveillance, substantial research has been
performed on UAVs to ease livestock and agricultural farming [15–17]. Drones have
explicitly become helpful in monitoring and enhancing crop and livestock production
due to real-time data that help farmers respond more quickly to weed incursion, pest
infestation, output projections, livestock health conditions and other issues [18]. UAVs and
other related technologies, such as the Internet of things (IoT), have been extensively used
for smart agriculture and animal farming [9,19–22].

Different types of UAVs are applied in pest control, crop irrigation, animal health mon-
itoring, animal rearing and other agriculture-related activities [19]. The joint application
that both IoT and UAVs can play in smart-driven agriculture was also discussed in [20].
Maddikunta et al. [9] have explored the architecture, adaption and usage of UAVs for smart
agriculture. The authors highlighted the UAV’s applications and related technologies to
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efficiently enhance and optimize diverse agricultural processes using smart Bluetooth-
enabled sensors. However, reliable data transfer was the major drawback of this approach
due to the short range of the Bluetooth UAV-enabled system. In some scenarios, UAVs
could be used as tools for mechanized agriculture to ameliorate disorders in various fields
through commercial, scientific, agricultural and livestock enhancement [21]. Specifically,
the paper focused on providing details of mechanized agriculture using UAV systems for
pesticides and fertilizer application in farms that were obstacle rich. Other issues related
to the lack of awareness and special education on precision agriculture in animal farming
using UAV technology were also highlighted. Furthermore, Alanezi et al. [22] presented
a comprehensive review of the state-of-the-art techniques incorporated with UAVs for
livestock. The authors highlighted various pressing issues, challenges and opportunities
associated with livestock management.

AI and ML have drawn growing research interests and are ubiquitously emerging
in many fields due to their capability to model systems through learning from data [23].
Recently, studies and findings have unveiled the potential benefits of deploying AI and
machine learning techniques and UAVs for effective livestock farming [2,3,8,24–26]. Stud-
ies have shown the feasibility of using UAV video monitoring to predict the food eating
behaviour of rangeland-raised Raramuri Criollo non-nursing beef cows [2]. To address
the problem associated with animal counting, a computer vision pipeline that uses DNN
architecture for automated Holstein Friesian cattle detection and identification was pro-
posed in [24]. The authors introduced a video processing mechanism to efficiently monitor
dynamic cattle footage filmed by UAVs. However, the UAV was manually flown and only
captured data within small-sized and relatively spaced herds. Rivas et al. [25] presented the
use of artificial intelligence techniques for real-time analysis and cattle monitoring using the
information captured by drones. The authors used a camera installed in the drone to take
images that were later analysed using Convolutional Neural Networks (CNNs) for cattle
identification captured in the images. However, the model could not determine the number
of animals in a cluster with utmost precision. Furthermore, a test bed implementation
that used deep learning algorithms was designed for precision livestock detection and
counting from aerial images captured by drones. In the same vein, the use of UAVs to track
the postural position of cattle and sheep was studied in [8] to find the optimal number
of UAVs that minimizes the UAV-animal distance using a streaming K-means clustering
algorithm. All the targeted herds were fitted with global positioning system (GPS) neck-
bands to monitor their movements. A dual-stream deep learning (DL) architecture that
combined exploration strategies learned from previous experiences with instantaneous
sensory inputs was proposed to capture the movement of the cattle [26].

Nonetheless, accurate livestock counting in a multi-path crossing by the same animal
is still an open problem. While many works of the literature mainly focus on combining
ML algorithms with UAVs for efficient smart farming and livestock management, little or
no attention is paid to the part that involves data transfer within the UAV communication
network. ML techniques, specifically DL, have been used to solve many physical layer
communication problems [27–29]. Therefore, this paper proposes a learning framework
for an efficient and reliable communications system for UAV-based livestock management.
Our contributions are summarized below:

• We built an auto-encoder for end-to-end wireless communications for UAV-assisted
livestock management systems. We showed that learning the entire transmitter (UAV)
and receiver (GCS or UAV) implementations for a given communication channel link
optimized for a chosen loss function (e.g. minimizing BER) is possible. The basic idea
is to describe the transmitter, channel, and receiver as a single deep CNN that can
be trained as an auto-encoder. Interestingly, this technique can be used as a model
approximator to approximate optimal solutions for systems with unknown channel
models and loss functions.

• We simulated the communication links with a different set of communication rates to
learn various communication schemes, such as QPSK, 8PSK and 16QAM.
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• For a (7, 4) communication rate, the proposed auto-encoder performance matched the
optimal Hamming code maximum likelihood decoding scheme.

The remainder of the paper is structured as follows: The system model and prob-
lem are presented in Section 2. The proposed methodology is described in Section 3.
Section 4 presents the simulation results and discussions. Finally, Section 5 summarizes
and concludes the paper.

Notations: We use bold uppercase symbols for matrices, bold lowercase symbols for
vectors and lowercase symbols for scalars. Finally, notation L (·) is reserved for the loss
function.

2. System Model and Problem Formulation

Reliable communication among UAVs monitoring livestock is critical for efficient
and accurate data transmission for managing large herds. Figure 2 portrays a typical
high-speed local architecture network constructed over long-distance WiFi access points to
establish communication with UAVs and the ground control stations used for cattle and
sheep rearing. The UAVs are equipped with onboard cameras and sensors used for taking
images of herds and territorial surveillance. Information about the locations of animals
is exchanged between the UAVs and the ground control station (GCS), which could be
monitored manually or remotely by a human operator.

Livestock mounted with
Transceivers

Operator

UAV equipped with sensors

Base Station (BS) antenna

Ground Control Station (GCS)

Communication Channel between UAV, BS & GCS

Communication Channel between UAVs

Figure 2. Communications network architecture of UAV-based livestock management system.

Throughout this section, we assume a known perfect channel state information (CSI)
between the UAVs and the GCS. The communication links between the UAVs and the
GCS can be viewed as a simple communications system consisting of a transmitter, a
channel and a receiver. Suppose the UAV wants to send one out of M possible messages
s ∈ M = {1, 2, · · · , M} to another UAV or GCS through a wireless fading channel. Then
the received message is modelled as

y = hx + n0 (1)
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where x, h and n are the message. The complex baseband message is converted to its
equivalent real format using the transformation f : M→ R

2n to the message s to generate
the transmitted signal x = f (s) ∈ R

2n. It should be noted that the UAV imposes some
constraints on the x based on either average energy or average power of the transmitted
message as follows [30]

‖x‖2
2 ≤ 2n, (2)

E[|xi|2] ≤ 1. (3)

For simplicity, we use Quadrature phase shift keying (QPSK) and 8-phase shift
keying (8PSK) modulation schemes because of their abilities to transmit two bits and
three per symbol, respectively. As an illustration, for QPSK, the transmitted symbols
s ∈M = { 1√

2
± j 1√

2
,− 1√

2
± j 1√

2
}. Compared to ordinary phase shift keying (PSK), QPSK

conveys twice as much information using the same bandwidth [31]. The rate at which
the message is sent over a communications channel, known as the communication rate, is
given by

R =
k
n
[bit/channel], (4)

where k = log2 (M) and M is the number of symbols or modulation index. Intuitively, (4)
shows that the communication system transmits one out of M = 2k messages through n
active channels or channel uses. This is usually presented by the notation (n, k) [32].

3. Proposed Methodology

Generally, a simple communications system can be viewed as a particular type of auto-
encoder from the deep learning viewpoint [30,33]. An auto-encoder is an unsupervised
learning model that learns to squeeze and reconstruct the input. Therefore, it can be
considered a dimensionality reduction framework that allows the input reconstruction
at the output with minimal error. However, in our case, the auto-encoder is used for
end-to-end communication to learn the representations of the messages s that are robust
to the channel impairments mapping x to y, such that the transmitted information can be
recovered with a minimal probability of error. Contrary to redundancy removal from the
input data for compression, our proposed auto-encoder usually adds redundancy, learning
an intermediate representation robust to channel variations for reliable data transfer.

Firstly, the UAV flies above the livestock to capture data (usually real-time images)
about the livestock and send it to the GCS for analysis. The reliable data transfer requires
that the UAV communication system be divided into a sequence of communication blocks,
which are traditionally optimized individually. Such an approach depends on complex
mathematical models that are usually intractable. However, the communication blocks
are jointly optimized as a single learning block to simplify the process while ensuring
reliable data transfer from the UAVs to the GCS. The proposed auto-encoder is shown
in Figure 3. Here, the transmitter, which could be a UAV, is the encoder consisting of
feedforward convolutional neural network (CNN) layers followed by a normalization layer
that guarantees that the physical constraints on x are met based on (2) or (3). Accordingly,
the input s to the encoder is encoded as a one-hot vector 1s ∈ R

M, having an M-dimensional
vector, the s-th element of which is equal to one and zero otherwise. The wireless channel
layer is represented by a fading channel obtained from a random normal distribution with
zero mean and unit variance and an Additive White Gaussian Noise (AWGN).

Similarly, the receiver (decoder), which could be the GCS, is also implemented as
a feedforward CNN. The decoder’s final layer uses a softmax activation whose output
p ∈ (0, 1)M is a probability vector over all possible messages. The estimated message corre-
sponds to the index of the element of p with the highest probability value. Consequently,
the conditional probability density function p(y|x) defines the channel, where y ∈ R

2n

designates the received signal. Once y is received, the decoder applies the transformation
g : R2n →M to yield the estimate of the transmitted message ŝ. We train the auto-encoder
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end-to-end using stochastic gradient descent (SGD) over all possible messages s ∈M using
the appropriate categorical cross-entropy loss function to generate the predicted output or
reconstructed estimate of the transmitted message. Therefore, the loss function is given by

L (θ) = − 1
N

N

∑
i=1

si log (ŝ), (5)

where N is the number of samples, θ is the model parameters (weights of the neural
network), s is the original transmitted message, and ŝ is the estimated message.
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Figure 3. UAV communications system over fading channel depicted as an auto-encoder with an
input message s encoded as a one-hot vector.

Accordingly, this end-to-end learning concept is applied to UAV communications,
where information about herds (usually images) from the UAVs is sent through a wireless
channel to the GCS for effective monitoring. The details of the proposed auto-encoder UAV
communications system are shown in Figure 4, and its architectural layout is provided in
Table 1.

Table 1. Layout of the proposed UAV-based auto-encoder.

Layer Output

Input (M, M, 1)
2D Convolution + ReLU (ME1, ME1, 2n), ME1 = M

2
2D Convolution + ReLU (ME2, ME2, 2n), ME2 = M

2
2D Convolution + ReLU (ME3, ME3, 2n), ME3 = M

2
Flatten (ME3 ×ME3 × 2n)
Normalization (ME3 ×ME3 × 2n)

Wireless channel + Noise (ME3 ×ME3 × 2n)

Fully Connected + ReLU (ME3 ×ME3 × 2n)
2D Convolution + ReLU (MD3, MD3, 2n), MD3 = M

2
2D Convolution + ReLU (MD2, MD2, 2n), MD2 = M

2
2D Convolution + ReLU (MD1, MD1, 2n), MD1 = M

2
Fully Connected + softmax (M, M, 1)
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Figure 4. UAV and GCS information communications system over wireless channel presented as an
auto-encoder.

Data Generation, Training and Inference

We have generated 50,000 message samples, from which 30,000 are the training sam-
ples, and 15,000 samples are used for validation and inference each. The auto-encoder is
trained with a fixed signal-to-noise ratio (SNR) or energy per bit to noise power spectral
density ( Eb

N0
) of 7 dB using an Adam optimizer [33] with a learning rate of 0.001. The

training was performed with various training batch sizes to determine the appropriate
size that gives the best performance. The performance of the trained auto-encoder was
tested over different SNR values. We have implemented the auto-encoder model in Keras
Tensorflow 2 DL framework and 3.8 Python.

4. Results and Discussions

This section presents the simulation results and discussions based on the performance
metric. For performance evaluation, bit-error-rate (BER), Pr(ŝ �= s) is used as a performance
metric for assessing the efficacy of our proposed learning model.

Figure 5 compares the BER performance of a communications system using uncoded
QPSK (4, 4) and a Hamming (7,4) code with the optimal maximum likelihood decoding
(MLD) against the BER gained by the auto-encoder (7,4) with different training samples
and average fixed energy constraints. It can be seen that the performance of the auto-
encoder trained with 25,000 training samples matches the Hamming (7, 4) maximum
likelihood decoding scheme. We also observe that the auto-encoder’s performance falls
as the number of training samples decreases. We ensure that the system operates at a
7/4 communication rate for fair performance evaluation. This result reveals that the
auto-encoder has learned the UAV and GCS information mapping (i.e., an encoder and
decoder function) that achieves the same performance as the Hamming (7,4) code with
MLD without prior knowledge.

Figure 6 compares the BER produced when the input data are modulated with binary
phase-shift keying (BPSK), QPSK and 8PSK against the BER achieved by the trained auto-
encoder with an average fixed energy constraint based on (2). Generally, the number of
encoded bits depends on the number of encoded phases. The BPSK uses two distinct
phases shifted by 1800 compared to QPSK, which utilizes four phases to encode the data.
Therefore, the QPSK transmits 2-bit data, twice the data transmitted by BPSK per symbol
cycle. In contrast, 8PSK uses eight phases, described by a 3-bit transmitting 3-bit symbols
per cycle. Accordingly, while the uncoded QPSK (4, 4) produces a BER lower than the
BPSK modulation scheme, the Hamming (7, 4) hard decision decoding scheme outperforms
all three modulation schemes. Interestingly, the auto-encoder trained with QPSK and
8PSK-modulated symbols performs better than all the baseline communication schemes.
We have observed that the performance gap between the auto-encoders trained with QPSK
and 8PSK tends to close between 2 and4 dB SNRs. At these SNRs, the communication rate
of the auto-encoder trained with QPSK-modulated symbols decreases; it is thus forced
to learn a lower modulation scheme. Beyond the 4 dB SNR, a significant decline in BER
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is observed, suggesting that the auto-encoder trained with the 8PSK modulation scheme
learns to transmit more bits per symbol cycle.

Figure 5. BER vs. SNR for the auto-encoder trained with different amounts of samples against
various benchmark communication techniques.

-4 -2 0 2 4 6 8
SNR [dB]

10-4

10-3

10-2

10-1

100

B
E

R

Hamming (7, 4) Hard Decision
Auto-encoder with QPSK Modulation
BPSK Modulation
Auto-encoder with 8PSK Modulation
Uncoded QPSK (4, 4)

Figure 6. BER vs. SNR for the auto-encoder trained with 25,000 training samples using QPSK and
8PSK modulation schemes against baseline modulation schemes.
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Figures 7 and 8 portray the effects of both fixed and varying SNR on the auto-encoder’s
performance. Figure 7 shows that the BER falls faster when the auto-encoder is trained with
a fixed SNR and then saturates at the 25th epoch. With this, a relatively small training effort
is required for the auto-encoder to learn various communication schemes. However, when
the auto-encoder is trained with a varying SNR from −4 to 10 dB, the BER slowly decreases
with the training epoch and finally saturates at the 10th epoch, as shown in Figure 8. From
these results, we can deduce that an auto-encoder trained with fixed SNR for end-to-end
communications converges faster than the one trained with varying SNRs.

Figure 7. BER vs. the number of epochs of the auto-encoder trained via fixed SNR = dB.

Figure 8. BER vs. the number of epochs of the auto-encoder trained via variable SNR values.

To investigate whether the auto-encoder has learnt some communication schemes
without prior knowledge of the channel model, we show the learned constellation repre-
sentations x of all messages for different values of (n, k). Figure 9 depicts a typical (2, 2)
system, which assembles rapidly to a classical QPSK constellation rotation. The symbol
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constellations spread over four possible carrier phases within a unit circle, as in the case of
a classical QPSK modulation technique.

Figure 9. Learned constellation produced by auto-encoders using a (2, 2) communication rate with
an average energy constraint.

Correspondingly, Figure 10 illustrates a (4, 2) communication system that produces a
rotated 16PSK constellation. Interestingly, with a fixed, average energy constraint, the re-
sulting constellation produced by the learned auto-encoder is similar to the one constructed
by the classical 16PSK. The effect of the choice of normalization function for a transmit mes-
sage under some constraints is noticeable from Figure 11 for the same settings but with an
average power normalization rather than an average fixed energy constraint. This produces
an intriguing hybrid pentagonal/hexagonal grid structure similar to the performance from
a distorted 16QAM constellation with a symbol near the origin surrounded by five equally
spaced nearest neighbours. Therefore, this shows that an auto-encoder trained with the
average energy constraint produces a much more regular and well-defined communication
scheme that matches a particular classical communication technique.

To find whether the proposed auto-encoder is doing well during the learning phase,
we compare the training loss against the validation loss in Figure 12. It can be observed
that both the training loss and validation loss converge at the eighth iteration. This further
demonstrates that the auto-encoder is doing well in learning various communication
strategies for efficient data transfer between the UAVs and the GCS.

192



Drones 2022, 6, 276

Figure 10. BER vs. SNR for the auto-encoder test with different amounts of test samples against
various benchmark communication techniques.

Figure 11. BER vs. SNR for the auto-encoder test with different amounts of test samples against
various benchmark communication techniques.
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Figure 12. BER vs. SNR for the auto-encoder test with different amounts of test samples against
various benchmark communication techniques.

5. Conclusions

This paper presents a communications system as an end-to-end optimization scheme
using an auto-encoder to jointly learn UAV (transmitter) and GCS (receiver) signal pro-
cessing implementations without prior knowledge. The auto-encoder was trained with
fixed and varying SNR values and an input message modulated with different modulation
schemes, such as BPSK, QPSK and 8PSK, and various communication rates. We have
seen from the results that the proposed learning-based communication framework can
learn standard and distorted classical modulation techniques when trained with average
and average power constraints, respectively. Comparisons with conventional baselines in
various scenarios unveil a competitive BER performance against traditional communication
techniques. From the results, we find that the proposed learning approach demonstrates its
efficacy in terms of reliability in learning optimal communication schemes in a challenging
environment or situations where the optimal strategies are not known. This could be used
to design UAV communication links for reliable data transfer and efficient smart livestock
farming. Future work should consider various channel types and communication rates for
a more practical UAV communication system for different baseline schemes. An extension
to a multiantenna UAV system with particular attention to beamforming, secrecy, channel
interference and energy efficiency is appealing.
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Abstract: Marking the tree canopies is an unavoidable step in any study working with high-resolution
aerial images taken by a UAV in any fruit tree crop, such as olive trees, as the extraction of pixel
features from these canopies is the first step to build the models whose predictions are compared
with the ground truth obtained by measurements made with other types of sensors. Marking
these canopies manually is an arduous and tedious process that is replaced by automatic methods
that rarely work well for groves with a thick plant cover on the ground. This paper develops a
standard method for the detection of olive tree canopies from high-resolution aerial images taken
by a multispectral camera, regardless of the plant cover density between canopies. The method is
based on the relative spatial information between canopies.The planting pattern used by the grower
is computed and extrapolated using Delaunay triangulation in order to fuse this knowledge with that
previously obtained from spectral information. It is shown that the minimisation of a certain function
provides an optimal fit of the parameters that define the marking of the trees, yielding promising
results of 77.5% recall and 70.9% precision.

Keywords: Delaunay triangulation; high-resolution aerial images; multispectral imagery; olive tree
canopy; precision agriculture; remote sensing; thick plant cover; UAV; weeds

1. Introduction

According to the Food and Agriculture Organization of the United Nations (FAO),
in the year 2020 there were 12.8 million hectares dedicated to olive trees in the world [1].
Although far from the figures of wheat, the most cultivated crop in the world with 219 mil-
lion hectares of dedicated land, olive trees stand in the 22nd position out of 161 in the
ranking of primary crops. The European Union (EU) represents 40% of the dedicated land
with 5.1 million hectares, with Spain accounting for 2.6 million hectares and 51.4% of the
European crop area, followed by Italy with 1.1 million hectares and 22.4%. These figures
translated into a total world production of 3.3 million tons of olive oil [2], of which 57.9%
(1.9 million tons) were produced by the EU. Within the EU, Spain accounted for 1.1 million
tons and 58.6% of the European production, with Italy producing 19.1% (0.37 million tons).
In turn, the table olive world production was 2.96 million tons, of which 21.9% (0.65 million
tons) were produced by Egypt and 26% (0.77 million tons) by the EU. Within the EU, Spain
was the largest producer with 0.46 million tons and 58.6% of the European production.

These figures explain the interest in the olive oil and table olives production from
the grove to the final production stages in the olive oil factories. Plenty of research has
been devoted to the improvement of the quality of olive oil by means of controlling the
key variables of the production process [3–5]. However, since no chemical or biochemical
coadjuvants can be employed to improve the olive oil features, as the production process is
carried out by mechanical means exclusively, focusing only on the operations on the olive
oil factory means that the best that can be achieved is to preserve the quality properties of
the olives arriving at the factory. Therefore, current research trends are starting to focus
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also on the improvement of the quality and productivity in the stages where the olives are
still on the tree.

Regarding this, there are works that study different watering strategies [6,7], their
effect on the organoleptic properties of the produced olive oil [8] or how the hydric stress
affects the olive trees [9,10]. Other works focus on the early detection of plagues, such
Xylella fastidiosa [11–13] and Verticillium [14], or the assessment of the nutritional state of
the trees [15,16], while others study the way to evaluate different parameters such as the
volume, height and width of the trees [17,18].

Many of these research works share a common factor, namely the acquisition of
information on the Earth’s surface using different types of sensors, such as visible spectra,
multispectral and thermal cameras, LiDAR laser sensors or synthetic-aperture radars,
mounted on satellites or unmanned aerial vehicles (UAV). Later, this information is used, in
conjunction with novel image processing methods [19], in several tasks such as monitoring
the temporal evolution of surface deformations [20] or mapping potential landslide runout
zones [21]. This is what is known as remote sensing. When these research approaches
are focused on the study of fruit tree groves, such as olive trees, a common necessity is to
extract features from the pixels of the images belonging to the tree canopy, since, in order to
verify the proposed hypothesis, the experimental results need to be compared with some
ground truth obtained from the use of other sensors on the trees.

In order to relate these measurements with the features obtained from the pixels of
the tree canopies in the images, it is required to delimitate each of these canopies, which is
an arduous and tedious process were it to be performed manually [22]. Therefore, most
of the time, authors tend to use more or less standard software tools when the simplicity
of the images allows it [11,12,23]. Many works employ spectral values of the images to
perform this segmentation, which could bias the features extracted afterwards [24,25]. Only
a reduced number of articles explicitly address the problem of identifying the tree canopies
as their main topic.

Among them, it is worth highlighting [26], in which the authors use the Gram–Schmidt
spectral sharpening fusion method to integrate the panchromatic and multispectral images
and train a convolutional neural network (CNN) that manages to detect oil palm trees with
up to 98.65% precision and 98.88% recall using images obtained from the Quickbird satellite.
A different approach is applied in [27], where the authors use the red and infrared spectral
bands to compute the normalised difference vegetation index (NDVI) and apply classic
computer vision methods such as thresholding and blob detection, obtaining a relative
error of between 0.2% and 20.7%.

The next step to increase the ground sample distance (GSD) would be to perform
the data acquisition using airborne sensors mounted on aircrafts. In [28], the authors use
principal components analysis to process a single band image derived from the 8 bands
the sensor captures. They then apply a two-stage approach with edge detection followed
by marker-controlled watershed segmentation on an image of a forest of spruce trees,
Douglas firs and subalpine firs. According to the number of labelled trees, a recall of
85.3% is achieved, while the recall computed using the number of labelled pixels yields
75.6%. Ref. [29] employs colour-infrared images of forested regions and applies a fuzzy
thresholding algorithm to find the seeds that are used by a region growing algorithm. As
result, 73% of trees were correctly found, with a variation from 62% to 81%. Some more
examples of the use of CNN for individual tree canopy detection can be found in [30],
in which the data acquired by an RGB sensor is merged with the information collected
by a LiDAR. A previous segmentation of the trees of an open woodland of live oak, blue
oak and foothill pine is performed using the LiDAR information, so later the CNN can be
trained with each of these Region Of Interest (ROI). This model has an average tree canopy
recall of 0.69 with a precision of 0.61. In [31], citrus and other crop trees are detected from
UAV images using a simple CNN algorithm, followed by a classification refinement using
superpixels derived from a simple linear iterative clustering algorithm, achieving 94.59%
precision and 97.94% recall.
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When high-resolution images are captured with UAVs, contrary to the methodology
followed in this article, most of them extract structured 3D information using LiDAR
sensors or applying photogrammetric analysis. These methods can considerably improve
the results obtained, especially when it is necessary to differentiate pixels that are spectrally
similar but that are at different heights from the ground (tree canopies and weeds). Even
so, they have some disadvantages that are discussed in Section 4. For example, [32] uses
UAV LiDAR data for individual tree detection in subtropical mixed broadleaf forests in
urban scenes. This method improves on the popular local maximum filter by removing
those LMs caused by surface irregularities contained in the canopy height model, and
obtains an F-score between 73.7% and 93.2%, depending on how irregular the distribution
of trees or crown size is. In [33], RGB images of a maize plantation at the seedling stage
are combined with LiDAR data captured by a UAV. The maize seedlings extracted from
the images serve as seeds for the fuzzy C-means clustering algorithm used to segment
individual maize plants. The results revealed an accuracy with R2 greater than 0.95, a
mean square error (RMSE) of 3.04–4.55 cm and a mean absolute percentage error of 0.91–
3.75%. Other examples of articles using photogrammetry to detect and extract trees from
high-resolution UAV RGB images are [34] for citrus trees, [35] for peach trees, [36] for
chestnut trees and [37] for papaya trees. The first uses sequential thresholding, Canny
edge detection and circular Hough transform algorithms on the Digital Surface Model
(DSM), obtaining accuracies that exceeded 80%. The second uses an adaptive threshold and
marker-controlled watershed segmentation in the DSM to measure the canopy width and
canopy projection area, achieving an RMSE of 0.08–0.47 m and 3.87–4.96 m2, respectively.
The third applies a segmentation stage based on the computation of vegetation indices
combined with the canopy height model to extract the candidate tree canopies. The next
stage receives these tree canopies to divide those that are greater than a threshold. The last
stage extracts the desired features. The segmentation accuracy of this method is above 95%.
Finally, in the fourth article, the authors make an improvement with regard to the existing
scale-space filtering by applying a Lab colour transformation to reduce overdetection
problems associated with the original luminance image. The achieved F-score is larger
than 0.94.

As concluded in [38] and evidenced in the previous paragraphs, no algorithm is
optimal for all types of images and plant types. For this reason and for clarity, articles
related specifically to olive trees and how to detect their canopies have been compared in
the Section 3. Although these articles are closely related to the issue at hand, none of them
explicitly deals with images from groves with thick plant cover on the ground without
using three-dimensional data. Finally, to complement this literature review, mention should
also be made of articles dealing with detecting weeds in crops of herbaceous plants such as
maize [39], sugar beet [40], sunflower and cotton [41,42] or bean and spinach [43].

The objective of this paper is to develop a method to segment olive tree canopies from
high-resolution aerial images that contain information of the visible spectra, specifically,
the red, green and blue bands that can cope with high levels of plant cover in the ground
between canopies.

The key idea of the approach is to employ not just the spectral information contained
in the images but to also consider the relative distance between canopies, computing and
extrapolating the planting pattern used by the grower and fusing this information with
the spectral data. This paper shows that the minimisation of a certain function provides
an optimal fit of the parameters that define the marking of the trees, yielding promising
results, without the need to resort to deep learning methods that are difficult to interpret.

The structure of the paper is as follows: Section 2 presents a general diagram divided
into blocks that explains the workflow followed to achieve the results of this research. This
section is made up of subsections that correspond to each of the blocks in the diagram.
Although the methodology followed is explained in detail in all of them, the first block
Section 2.1 also focuses on the materials used during data capture and the way in which
it was carried out. In Section 3, first, the quality metrics of the results obtained after the
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application of the developed model are objectively shown, and these numbers are analyzed
together with an explanation of the possible causes of the model’s failures. Second, the
execution times of the building blocks of the model are computed, both for the trainings
and for the predictions of the model. Third, a comparison is made with other articles
related specifically to olive trees and how to detect their canopies. Finally, in Section 4, the
objective of the article is expanded and its usefulness and advantages compared with other
methodologies are explained. Possible improvements are also discussed and future work
is anticipated.

2. Materials and Methods

The workflow of the method proposed in this paper is presented in Figure 1 and shows
the different materials and methods used, as well as the information transference between
the different parts that compose it. This workflow can be divided into two blocks: the Data
Preprocessing (DP) of the images taken in the groves and the Olive Tree Canopy Detection
Model (OTCD), which is composed of three submodels, namely, the Vegetation Classification
(VC), the Olive Tree Canopy Estimation (OTCE) and the Olive Tree Canopy Marking (OTCM).
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Figure 1. Workflow of the method proposed in this paper. The arrows represent data transfers,
and the nodes represent functions that are applied to that data. As exceptions, the initial node,
Multispectral Captures, represents the data acquired by the UAV and the final node, Olive Tree Canopy
Coordinates, represents the most optimal coordinates that the model is capable of predicting. Blocks
with dotted outlines represent tasks that are performed beforehand.

The first block DP deals with the transformation and separation of the original raw
data captured by the sensors to the format required for the input of the model, specifically:
multispectral images, metadata associated with these multispectral images and pixels that
are labelled to their corresponding class.

This preprocessing task, together with the training of the two first submodels of the
OTCD block, is performed beforehand—in Figure 1 they are shown with a dashed line.
This way, the time required to perform these task does not influence the time required to
detect the tree canopies of a new image.
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The second block OTCD deals with the prediction of the coordinates of each of the
tree canopies included in the new images provided as inputs.

2.1. Multispectral Captures

The data employed in this work were gathered by the following sensors mounted on
a DJI Matrice 600 UAV:

• A Micasense RedEdge-M multispectral camera, capable of capturing 12 bit images with
a 1280 by 960 pixel resolution in five bands of the electromagnetic spectrum. These
bands are blue (475 nm), green (560 nm), red (668 nm), near infrared (840 nm) and
red-edge (717 nm).

• A sunlight sensor Micasense Downwelling Light Sensor (DLS) 1, capable of measuring
the ambient light for each of the five bands of the camera Micasense RedEdge-M.

• A global positioning system (GPS) Ublox M8N.

These sensors are completed with a calibrated reflectance panel (CRP) Micasense RP04-
1826404-SC that takes images of before and after each flight by the UAV in order to be used
for the radiometric correction process. The calibrated reflectance values for the specific
panel used in this work are 49.1%, 49.3%, 49.4%, 49.3% and 49.4% for the blue, green, red,
near-infrared and red-edge bands, respectively.

Each multispectral capture stores the images of each of the five bands in a disk in .tif
format, together with the metadata provided by the DLS and the GPS.

As commented in the Introduction, the main objective of this paper is to detect olive
tree canopies when there is a large amount of plant cover in the ground, so that traditional
segmentation methods fail to provide good results. This way, a set of 18 captures (Table 1)
with a large amount of plant cover in the ground, were taken from an olive grove in the
town of Diezma, province of Granada, in Andalucia, Southern Spain. This is an olive
grove of trees of Picual cultivar variety with 29.14 ha of extension, showing a traditional
arrangement of the trees. Six flight campaigns were carried out from October 2018 to
November 2019. Figure 2 depicts an example of the capture as taken by the multispectral
camera, depicting an image for each of the five bands previously mentioned. A thick plant
cover can be seen between the olive trees.

Figure 2. Capture 0, as provided by the multispectral camera: one image for each of the blue, green,
red, near-infrared and red-edge bands (left to right), where the large amount of plant cover in the
ground is clearly visible.

All these captures, together with the metadata, were used as inputs for the Radiometric
Correction and Band Alignment (RCBA), the manual labelling and the first two submodels of
the olive tree canopy detection model.

2.2. Radiometric Correction and Band Alignment (RCBA)

Once the multispectral captures are available as inputs to the RCBA, the first step is
to transform the digital numbers (DN) of the images obtained by the camera sensor to
radiance values first and to reflectance values afterwards. This correction, which is carried
out for each band, allows the values subsequently employed to be independent of the flight,
date, time of the day and climatic conditions, so that different captures can be compared in
the same reference frame. Posteriorly, before finishing the RCBA, the reflectance images of
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each band need to be aligned, since the five sensors of the camera have a slight offset from
each other.

Table 1. Detailed characteristics of the 18 captures used to train and test the proposed model.
Campaign is an identifier of the flight number. For each flight made in different months, 3 captures
are selected.

ID Campaign
Date and

Time
[ISO8601]

Latitude
[DD]

Longitude
[DD]

Altitude
above Sea
Level [m]

Altitude
above

Ground
Level [m]

Ground
Sample

Distance
[cm/px]

0

2

2018-10-
04T11:00:00Z 37.316932 −3.354593 1408.694 188.774 13.109

1
2018-10-

04T11:02:56Z 37.316660 −3.354487 1407.542 187.622 13.029

2
2018-10-

04T11:11:48Z 37.314839 −3.357709 1406.342 186.422 12.946

3

3

2018-11-
08T11:33:28Z 37.316566 −3.354403 1403.569 180.834 12.558

4
2018-11-

08T11:33:32Z 37.316642 −3.354134 1403.604 180.869 12.560

5
2018-11-

08T11:59:06Z 37.314442 −3.354405 1402.180 179.757 12.483

6

4

2018-11-
29T09:37:17Z 37.316852 −3.354528 1402.846 182.051 12.642

7
2018-11-

29T09:40:04Z 37.316620 −3.354438 1402.582 181.787 12.624

8
2018-11-

29T10:18:13Z 37.314431 −3.354456 1401.603 181.069 12.574

9

5

2019-07-
18T08:13:38Z 37.316618 −3.354430 1409.757 185.211 12.862

10
2019-07-

18T08:13:44Z 37.316764 −3.353918 1409.754 185.208 12.862

11
2019-07-

18T09:04:03Z 37.314307 −3.354476 1412.117 189.000 13.125

12

6

2019-10-
03T08:16:23Z 37.316612 −3.354427 1408.163 183.848 12.767

13
2019-10-

03T08:17:19Z 37.316682 −3.353719 1409.065 184.750 12.830

14
2019-10-

03T09:16:04Z 37.314328 −3.354328 1408.841 183.622 12.752

15

7

2019-11-
07T08:45:24Z 37.316665 −3.354254 1401.534 177.614 12.334

16
2019-11-

07T08:46:20Z 37.316640 −3.353892 1400.133 176.213 12.237

17
2019-11-

07T11:09:46Z 37.314307 −3.354477 1403.273 178.476 12.394

The computation of the metadata that are obtained from the RCBA is computionally
expensive, and that is the reason why it is performed beforehand. The results are not
applied directly to the multispectral captures but during the training and prediction phase
of the models, since the application of the these values is almost instantaneous. This
advocates for storing the multispectral captures with these metadata, since it eliminates the
need to store all the corrected and aligned images.

For clarity, in the following discussions the dependency of the equations with the
wavelength is omitted, but it must be noted that each computation needs to be carried out
for each of the five spectral bands captured by the camera.
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2.2.1. Raw Images to Radiance Images Conversion

The conversion of the DN into radiance values, Lr, is carried out using Equation (1),
as recommended by the camera manufacturer, to each of the pixels x and y, for each of the
5 wavelengths, λ.

Lr(x, y) =
a1

g · te
·V(x, y) · R(y) · DN(x, y)− DNBL

DNMAX
(1)

In this equation, DN are the raw digital numbers obtained by the camera sensor
and DNBL is the average of the raw values of all the covered pixels of the sensor, whose
objective is to measure the small amount of signal captured independently of the incident
light. The difference between these two values is normalised dividing by DNMAX , which
is the maximum digital number achievable, equal to the maximum bit depth of the stored
images minus 1. Although the camera captures 12 bit images, they are stored in 16 bits .tif
format, so the value of DNMAX is 216− 1. The terms a1, g and te refer to the first radiometric
calibration coefficient, the gain and the exposure time of the camera, respectively.

The correction of the decrease in the light captured by the sensor from its top to the
bottom, R(y), is given by Equation (2),

R(y) =
1

1 + (a2/te) · y− a3 · y , (2)

where a2 and a3 are the last two radiometric calibration coefficients.
The vignetting correcting function, V(x, y), is obtained according to Equations (3)–(5),

V(x, y) =
1

k(x, y)
, (3)

k(x, y) = 1 + k0 · r(x, y) + k1 · r(x, y)2 + k2 · r(x, y)3 + k3 · r(x, y)4 + k4 · r(x, y)5 + k5 · r(x, y)6, (4)

r(x, y) =
√
(x− cx)2 + (y− cy)2, (5)

where r is the distance of each pixel to the centre of the vignette (cx, cy) and k0−5 are the
polynomial correction factors.

The methods used to obtain Equations (1)–(5) have not been shared by the manufac-
turer Micasense, but the values can be extracted from the metadata tags embedded in the
images. They are shown in Table 2.

2.2.2. Radiance Images to Reflectance Images Conversion

The reflectance is defined as the ratio between the reflected and incoming radiant
fluxes. Due to energy conservation considerations, this ratio should always lie between 0
and 1. The most general formulation is given using the bidirectional reflectance distribution
function (BRDF), denoted by fr [44], as:

ρ(ωi; ωr; Li) =
dφr(θi, φi; θr, φr)

dφi(θi, φi)
=

∫
ωr

∫
ωi

fr(θi, φi; θr, φr) · Li(θi, φi) · dΩi · dΩr∫
ωi

Li(θi, φi) · dΩi

, (6)

where the subindex i refers to incoming magnitudes, and r refers to reflected magnitudes.
The geometric parameters w, θ, φ and Ω are the solid angles, azimuth angles, zenith angles
and projected solid angles, respectively.
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Table 2. Parameters used to convert raw images to radiance images and their corresponding values
and tags extracted from the metadata embedded in the raw images.

Parameter Metadata Tag Value

te ExposureTime 1/988

g ISOSpeed/100 200/100

DNBL (∑4
i=0 BlackLeveli)/4 (∑4

i=0 4800)/4

a1 RadiometricCalibration0 1.4511219999999999× 10−4

a2 RadiometricCalibration1 1.2972460000000001× 10−7

a3 RadiometricCalibration2 −2.9491650000000001× 10−5

cx VignettingCenter0 585.34460000000001

cy VignettingCenter1 480.0985

k0 VignettingPolynomial0 2.049875× 10−7

k1 VignettingPolynomial1 7.0480179999999998× 10−7

k2 VignettingPolynomial2 −6.5932030000000001× 10−9

k3 VignettingPolynomial3 1.907818× 10−11

k4 VignettingPolynomial4 −2.4725660000000001× 10−14

k5 VignettingPolynomial5 1.15035× 10−17

The BRDF is used to describe the dispersion of a ray of incident light on a surface from
an incoming direction towards another outgoing direction, and it is considered an intrinsic
property of the surface. Its definition is

fr(θi, φi; θr, φr) =
dLr(θi, φi; θr, φr; Ei)

dEi(θi, φi)
, (7)

here, dLr is the infinitesimal reflected radiance and dEi is the infinitesimal incoming irradi-
ance. Given its infinitesimal nature, BRDF is only useful for conceptually understanding
other related magnitudes, but it cannot be measured directly, since the raylights do not
include any radiant flux. What is measured by the sensors in the multispectral camera and
the DLS is the hemispherical–conical reflectance, which is used to obtain the hemispherical–
conical reflectance factor (HCRF). The incoming irradiance is hemispheric since, besides
the direct solar component, it also considers diffuse components coming from every di-
rection. The reflected radiance is conic due to the fact that each pixel of the camera fills a
certain solid angle equal to the instantaneous field of view (IFOV). This IFOV is so small
(0.03◦) that the measurement of the reflected radiance can be considered directional and not
conic, so the HCRF could be approximated using the hemispheric–directional reflectance
factor (HDRF).

The HDRF is obtained as the ratio between the radiant flux that is reflected by the
surface and the radiant flux that an ideal surface (lossless), and a perfectly diffuse (lamber-
tian) would reflect under the same geometric and luminance conditions, since this would
be equal to the incoming flux to this type of surface. This parameter could have values
between 0 and +∞, although it usually lies below 1 if the reflections are not specular or
close to being so.

HDRF =
dφr(2π; θr, φr)

dφi(2π)
=

cos θr · dLr(2π; θr, φr) · sin θr · dθr · dφr · dA
cos θr · dLid

r (2π) · sin θr · dθr · dφr · dA
=

dLr(2π; θr, φr) · dEi(2π)

dLid
r (2π) · dEi(2π)

, (8)

since the ideal diffuse reflectance is equal to 1/π,

HDRF =
π · dLr(2π; θr, φr)

dEi(2π)
. (9)
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The measurements made by the camera are already integrated through the whole
solid angle corresponding to each pixel, as are the measurements of the DLS through the
whole upper semisphere, so they can be used to compute the HDRF as:

HDRF =
π · Lr

Ei
=

π · Lr

Edir + Edi f
, (10)

here, Lr is the radiance reflected by the ground and vegetation surfaces, which is equal to
the radiance measured by each pixel of the multispectral camera after it is corrected using
Equation (1), and Ei is the incoming irradiance to these same surfaces. This irradiance is
divided into the direct irradiance that is perpendicular to the surface , Edir, and the diffuse
irradiance coming from every direction, Edi f . The former is computed using Equation (11),
where Es is the same direct irradiance but measured in the direction of the sun, θi is the
angle between the sun and the horizon, α is the angle between the sun and perpendicular
to the irradiance sensor, Edls is the raw measurement of the irradiance sensor, c f is the
coefficient applied to account for the reflected radiance that the sensor cannot measure due
to the Fresnel effect (the manufacturer provides a value of 0.9057) and wdi f is the percentage
of diffuse radiation with respect ot the total radiation (it has a value of 0.167 when the
sky is clear and the sun is at its zenith). The computation of the latter is carried out using
Equation (12).

Edir = Es · sin θi =
Edls/c f

wdi f + cos α
· sin θi (11)

Edi f = wdi f · Es (12)

The captures taken from the CRP before and after each flight also need to be taken
into account. These captures made on the ground are used to compute a correction factor
for each aerial capture, fCRP, which is applied to its correspondent incoming irradiance,
Ei. This factor is computed by assigning to each capture of each flight an interpolated
irradiance and radiance values (using the timestamps) between the irradiance and radiance
measured values from their previous and posterior CRP captures and afterwards applying
Equation (13).

fCRP =
π · Linterpolated

r,CRP

Einterpolated
i,CRP ·HDRFcalibrated

CRP

(13)

Therefore, in this paper, the terms reflectance and reflectance image refer to the
computed values of the corrected HDRF.

HDRFcorr =
π · Lr

Ei · fCRP
(14)

2.2.3. Band Alignment

Since the Micasense camera is composed of five image sensors with their correspond-
ing optics, independently mounted at some distance between each other, it is required to
perform an alignment of the images that were captured by each of them. This procedure
allows to link the reflectance value of each pixel in the green band with the corresponding
values of the rest of the pixels that reside on the same spatial coordinate in the rest of
the bands.

To perform this alignment, the camera library provides a method called align_capture,
based on the algorithm Enhanced Correlation Coefficient Maximisation [45]. The results of this
alignment are part of the generated metadata.

2.3. Manual Labelling

There is a large variety of software with different types of licenses that can be used
for the manual labelling of the images. These are typically web or desktop applications
that allow to assign a label to each image or to certain zones within it, usually delimited
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using rectangles, polygons, or more complex methods that require computer vision or
machine learning algorithms. In any case, the labels are always required to be supervised
by a human if they are to be used as references for the evaluation of other algorithms.

For the manual labeling of the images in this work the software needs to be able to
work with multispectral images, and since there are no applications in the market that can
handle this feature [46], a specific application written in Python using the library Matplotlib
was developed (Figure 3).

Figure 3. Developed application for the manual labelling of the aerial multispectral images of olive
groves. The image shown corresponds to capture 0. The regions are labelled red for the olive tree
class, yellow for the shadow class, blue for the weed class and purple for the ground class. The
background changes colour to indicate the class selected for labelling.

This application receives as inputs the aerial multispectral captures of the olive groves
together with the metadata computed by the RCBA, in order to present already corrected
and aligned images to the user. Each delimited region of the image can be labelled as one
of four possible labels (olive tree, ground, weed or shadow).

Although each labelled pixel is a vector of six components (five band values and the
corresponding class), for the rest of the processes only the red, green and blue bands have
been taken into account. The reason is that the results obtained using just these three bands
are very promising, and this enables the method to be used with simple visible spectra
cameras as well. Additionally, these three reflectance values are transformed to the CIELAB
colour space, so that the colour values are more perceptibly linear, meaning that if the
human eye detects two colours as similar, the coordinates in the CIELAB colour space are
also close together. Conversely, if two colours are perceived by the human eye as different,
the coordinates are far apart. This conversion was carried out using 32 bits floats to take
into account that the reflectance takes values between 0 and +∞.

2.4. Vegetation Classification (VC)

To be able to detect the olive canopies, the first step is to classify each of the pixels of
the images to determine which of those correspond to the olive class or, at least, which of
those have a high probability of belonging to that class.

Since during the manual labelling process, only positive cases of pixels for each class
are labelled, that is, there is no specific label for pixels not belonging to any of the classes
and, furthermore, not every pixel in the image is labelled, any classification algorithm could
only discern between these four classes. During the prediction stage, if the algorithm is
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given all the pixels in an image to assign a class to them, it would be forced to assign one
of the four possible classes even to pixels that do not belong to those, generating a large
amount of false positives.

A possible solution is to include all the nonlabelled pixels into a fifth class called other
to perform this classification, but this approach conveys two problems that prevented its
use. The first one is that, due to the tedious nature of the manual labelling process, a label
is assigned only to pixels that are almost 100% sure to belong to a class, according at the
criteria of the person that is performing this manual operation. This reduces the fatigue
during the process but provokes that the class other is filled with many pixels that actually
belong to one of the other classes, potentially confusing the algorithm enough to impair
a proper performance. The second problem is that the pixels classified as other are very
heterogeneous due to their multiple origins (roads, cars, rocks, buildings, other types of
vegetation, etc.), thus having very disperse values in the feature space and complicating
the computation of classification boundaries.

Because of the above reasons, the workflow includes the VC block, which represents
an initial filtering of the pixels to select only those marked as vegetation (olive tree or weed).
The task of discerning between these two classes, which is much more difficult, is left for a
later stage.

This vegetation classification is implemented using a one-class classification algorithm
(OCC) known as local outlier factor [47], which is an unsupervised method to detect atypical
values computing the local pixel density deviation with respect to its neighbours. In this
case, the algorithm is used to predict if each new pixel belongs to the vegetation class or
not, since during the training all the pixels received are not atypical.

In addition to the labelled pixels, the algorithm requires the definition of two parame-
ters whose values are not too relevant for the posterior stages. The contamination value has
been chosen to have the maximum possible value (0.5) in order to assure that each pixel
labelled as vegetation is effectively vegetation, although that means that pixels that could
be classified as such are lost. In turn, the number of neighbours evaluated for each pixel
is fixed at a high enough value so that the subsequent steps perform adequately without
excessively increasing the prediction time (100).

The output of this process is a vegetation mask (Figure 4) for each capture that rep-
resents the zone that, with high probability, is selected as olives or weed in the subse-
quent stages.

2.5. Olive Tree Canopy Estimation (OTCE)

The OTCE is based on a decision tree trained with the pixels labelled as olive tree
and weed. At prediction time, this tree receives as inputs only the pixels selected by the
vegetation mask, in order to classify them as olive tree or weed. However, the results
obtained for the olive tree class are not acceptable, nor were they better when different
classification algorithms were evaluated. This led to the conclusion that just the spectral
information of each pixel independently is not enough to obtain good results, so techniques
that take into account the spatial distribution of the pixels in the image were explored.

Nonetheless, this decision provides useful information: the probability image (Figure 5),
an image where each pixel of the vegetation mask receives a value between 0 and 1
according to the probability of it belonging to the olive tree class. This probability is
computed by dividing the number of pixels classified as olive tree between the total
number of pixels inside each leaf of the classification tree.

2.6. Olive Tree Canopy Marking (OTCM)

This block is the most important of the whole canopy detection algorithm and is
composed of several connected steps, so that the output of one block is the input to
the next.
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Figure 4. Vegetation mask associated with capture 0. It is a black and white image in which the white
pixels were predicted as belonging to the vegetation class by a one-class classification algorithm
known as local outlier factor.

Figure 5. Probability image associated with capture 0. It is a greyscale image in which the values of
each pixel indicate the probability of belonging to the olive tree class. This probability is calculated
by a decision tree that receives as input only the pixels classified as vegetation during training.
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The clipping and normalisation step receives as input the probability image that,
basically, is an image with just one channel where the pixel values represent the probability
of their belonging to the olive tree class. In this step, the value of all the pixels below a
threshold parameter are assigned 0, and the rest of the values are rescaled to work with all
the bit depth of the range. This step, therefore, removes those pixels with a probability of
belonging to olive tree class below this specified threshold, which is a parameter that needs
to be optimized automatically for each image.

The noise-filtering step receives an image where all nonzero pixels have a very high
probability of belonging to olive tree class, but they still keep a relative probability informa-
tion between them (Figure 6a), and applies a simple median filter with the smallest kernel
possible (3 × 3) in order to remove isolated pixels that are most likely noise (Figure 6b).

The next step computes the density for each pixel of the probability values, that is,
each pixel is assigned the mean of the probability values of the neighbouring pixels and
itself, using a mean filter with circular kernel. This steps allows to homogenise to high
values the probabilities of zones with clusters of pixels showing high probability, and to
low values areas where there are isolated pixels with low probability. The result is an image
where the canopies are homogeneously highlighted and isolated areas have been removed
(Figure 6c). The parameter optimisation phase carefully selects the size of the kernel for
this step.

The last parameter that has to be optimised in the OTCM block is the segmentation
threshold that, basically, is the threshold that is used to binarise the image during the
segmentation step (Figure 6d). All that is left is to search for the contours of this binary
image and obtain a list to extract the centroids (Figure 6e).

(a) (b) (c) (d) (e)

Figure 6. Images resulting from each stage of the OTCM block associated with capture 0. The resulting
image of each stage is the one received as input by the next stage. (a) Clipping and normalisation.
(b) Noise filtering. (c) Density computation. (d) Segmentation. (e) Centroid extraction.

This sequence of steps allows to achieve the objective of obtaining the correct co-
ordinates of the olive canopies in each image, but, in order to obtain good results, the
three parameters previously mentioned need to be chosen appropriately, as they strongly
influence the final result, and the optimum value varies notably between captures.

This is the reason to add the parameter optimisation block, whose task is to search
for the most adequate values for the probability threshold p, the kernel size k and the
segmentation threshold s for each probability image that it receives as input. In order to
do this, a brute force method is applied, where the different steps presented above are
performed repeatedly for each parameter combination taken from a regular discretisation of
their respective domains. For this work, the set P, considered for the probability threshold,
contains 19 values, starting at 0.05 and reaching 0.95 with increments of size 0.05. The
set K, related to the kernel size, contains 6 values from 5 to 30 with increments of size
5; finally, the set S contains 50 values for the segmentation threshold from 5 to 250 with
increments of 5. These sets provide a total of 5700 iterations. In each of these iterations, the
Delaunay triangulation (Figure 7) is computed using the coordinates of the olive canopies
found (x, y) and the variation coefficient (Cv) of the set of all of the triangle side length
{l1, l2, . . . , ln}, removing those that are on the edge (and belong to just one triangle) so
that the computation of the ratio between the radius of the inscribed circumference of the
adjacent triangle and that of the circumscribed circumference in itself is below 0.1. In order
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to not leave holes in the triangulation, this procedure is performed recursively until there
are no sides that do not fulfill the conditions.

Figure 7. Delaunay triangulation using the coordinates of the olive tree canopies from capture 0,
obtained with the optimal combination of parameters calculated by the model whose values are 0.9,
25 and 25 for the probability threshold, the kernel size and the segmentation threshold, respectively.

This procedure can be defined in each capture by means of the discrete function F as:

Cv = {F(p, k, s) | (p, k, s) ⊂ (P× K× S)}, (15)

whose value, for each combination of p, k and s, is:

Cv =
σ

l̄
=

√
N ·∑N

n=1(ln − l̄)2

∑N
n=1 ln

, (16)

with
ln =

√
(xi − xj)2 + (yi − yj)2, (17)

here, i and j refer to the indexes of each end of each side of the Delaunay triangulation
and n to the side itself. A graphical representation in R

3 of this discrete function can
be visualised if any of the three parameters p, k or s is fixed. For instance, Figure 8a,d
shows the function for p = 0.9, Figure 8b,e depicts the function for k = 25 and Figure 8c,f
represents it for s = 25. These values are the optimum values computed posteriorly by the
model for capture 0.

Figure 8 shows that there are no computed values of the F function for certain combi-
nations of parameters. This is due to the fact that the algorithm filters the results where
it cannot compute the Delaunay triangulations, for instance, if the number of detected
canopies is fewer than three. It can also be observed that the values that are close to the
limits of the domain fluctuate much more between iterations than the central values, with-
out following any clear trend. This happens because, for these parameter combinations,
almost no canopies are found if the values of p and s are too large or too small (either all
the pixels are removed if the values are too high, or very large contours filling almost the
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whole image are found if the values are too low), or the number of detected canopies is
way too large if the values of k are too low (all the noise is considered as valid regions).
This happens in all the images considered in this work and, in order to solve this issue, we
consider only the values of Cv that have a number of detected canopies within ±40% of the
median number of detected trees for all iterations. That is, a new function G that returns
the number of detected canopies is defined in Equation (18), along with the median of the
set of values {t1, t2, . . . , tc} computed by G in Equation (19):

T = {G(p, k, s) | (p, k, s) ⊂ (P× K× S)}, (18)

M =

{
t(c+1)/2 if c is odd
t(c/2)+t(c/2)+1

2 if c is even
, (19)

and both are used to redefine the function F in Equation (20):

Cv = {F(p, k, s) | (p, k, s) ⊂ (P× K× S) ∩ G(p, k, s) ∈ (0.6M, 1.4M)}, (20)

(a) (b) (c)

(d) (e) (f)

Figure 8. Graphical representation associated with capture 0 in R
3 of the discrete function F, assigning

a constant value to one of the parameters in each case. The selected values are the optimum ones
computed posteriorly by the model. (a) p = 0.9. (b) k = 25. (c) s = 25. (d) p = 0.9. (e) k = 25.
(f) s = 25.

The last step is reduced to an optimisation problem of the redefined function F to find
the values of p, k and s and minimise it in Equation (21).

(pmin, kmin, smin) = arg minp,k,s(Cv) (21)

The graphical representation of the redefined function F is depicted in Figure 9,
together with the minimum value of the variation coefficient marked. Many values have
been removed from those in Figure 8 due to this redefinition.
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(a) (b) (c)

Figure 9. Graphical representation of the redefined function F associated with capture 0, fixing one
of the parameters in each case. It is observed how the domain of the function changes when it is
redefined. The black dot represents the minimum value of the function. (a) p = 0.9. (b) k = 25.
(c) s = 25.

This methodology, besides using the spectral information of the pixels to detect the
tree canopies, includes spatial variables related to pattern detection in images, specifically,
the optimum iteration is that whose distribution of canopies provides the least variability,
that is, the one where the detected canopies are distributed as evenly as possible throughout
the image. Additionally, the variation coefficient is used instead of the standard deviation
in order to be able to compare captures with different ground sample distances or different
plantation distances.

This idea is key for the success of the algorithm, specially for the aerial images of
regular plantations with thick plant cover on the ground. The principle employed is similar
to the approach used by a human to manually discern whether there is a tree canopy or
just plant cover in a certain area of the image: the pattern of the plantation is recognised
and extrapolated to contiguous areas. If any extrapolated point is included in the area
of interest, then the region is probably classified as canopy. If, on the other hand, in that
zone there is no extrapolated point, then most likely the area is just some other type of
vegetation. From the grower’s point of view, it makes sense ot keep the distances between
the olive trees as invariant as possible, since once that the minimum distance is fixed,
there would be no reason to increase it, as it would imply reducing plantation density and,
consequently, profit.

3. Results and Discussion

Generally, during the evaluation of the results of a model, the provided prediction for
each input data is compared with the ground truth previously labelled by a person. If the
model has a training phase, the input data used during this phase cannot be reused later
during the evaluation step. For this, the input data are separated into a training dataset and
an evaluation dataset. In addition, to guarantee that the results obtained are independent
of the way in which both sets are separated, the evaluation is usually carried out through
some type of cross-validation.

For the model proposed in this work, it can be seen (Figure 1) that the type of input
data is different for the training phase and the prediction phase. In the first case, pixels
labelled as olive tree, ground, weed or shadow are used, while the second case only
accepts multispectral captures and their metadata as input. This reality means that the
evaluation phase is carried out on complete multispectral captures and not on the pixels
that make them up, although the first two blocks (VC and OTCE) extract the pixels from the
captures using the metadata. For this reason, it must be taken into account that the labelled
pixels used in the training have to be introduced in a grouped way for each multispectral
capture in order to guarantee the selection of those groups that are not used later during
the evaluation.

The first step is to carry out the manual labelling process to obtain the ground truth
for the training and prediction phases of blocks VC and OTCE. The labelled regions contain
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pixels with an absolute certainty of belonging to the chosen class, at the cost of leaving
possible pixels that still belong to that class unlabelled (Figure 3). Then, the pixels labelled
as olive are used as the ground truth in the rest of the model. This ground truth is a
binary mask for each multispectral capture, in which the regions belonging to the olive tree
canopies are marked (Figure 10). It is obtained by carrying out the morphological operation
of dilation with a circular kernel of 11 pixels in diameter applied to the pixels labelled as
olive tree in order to cover the entire region of the olive tree canopies. The resulting masks
are then inspected to ensure that this value is correct for all captures.

Figure 10. Ground truth associated with capture 0. It is a black and white image in which the white
pixels have been manually labeled by a person in order to calculate the quality metrics of the model.

The following concepts are precised in order to discuss the results of this study:

• Positive: Set of connected pixels (contour) marked as olive canopy in the ground truth.
• Negative: Set of connected pixels not marked as olive canopy in the ground truth.
• Predicted positive: Any coordinate in pixels computed by the model corresponding to

an olive tree canopy.
• Predicted negative: It is not applicable because the model does not compute coordi-

nates where there are no olive tree canopies.
• True positive: Every predicted positive whose coordinates are within the bounds of

some positive.
• True negative: Not applicable since the predicted negatives do not exist.
• False positive: Any predicted positive whose coordinates are not within the bounds of

any positive.
• False negative: Any positive for which there is no predicted positive coordinate that is

within its bounds.

Table 3 shows the results of performing a 5-fold cross-validation on the model. It
shows, from left to right, the ID of the capture (Table 1), the fold in which each capture is
part of the test set, the count of positives in the ground truth, the predicted positives, the
true positives, the false negatives and the false positives obtained by the model. Finally,
three metrics were evaluated: recall, precision and F1 score. In the last row, the sum of each

213



Sensors 2022, 22, 6219

column is calculated, except for the three metrics, which are calculated in the usual way
using the previous sums.

Table 3. 5-fold cross-validation results on the OTCD model. In each iteration, the metrics of the
model’s predictions are evaluated for the captures with the indicated IDs, performing the training
with the rest of the captures.

ID Fold
Positives

(P)

Predicted
Positives

(PP)

True
Positives

(TP)

False
Negatives

(FN)

False
Positives

(FP)
Recall Precision F1 Score

2

0

154 166 134 21 32 0.870 0.807 0.838
1 125 141 118 7 23 0.944 0.837 0.887
3 112 115 108 4 7 0.964 0.939 0.952
7 106 98 94 13 4 0.887 0.959 0.922

6

1

100 134 96 4 38 0.960 0.716 0.821
16 100 123 76 26 47 0.760 0.618 0.682
5 238 247 193 45 54 0.811 0.781 0.796
13 103 120 51 52 69 0.495 0.425 0.457

10

2

115 121 110 5 11 0.957 0.909 0.932
12 111 136 90 23 46 0.811 0.662 0.729
15 103 148 67 57 81 0.650 0.453 0.534
0 104 119 101 3 18 0.971 0.849 0.906

8
3

226 238 31 195 207 0.137 0.130 0.134
11 270 285 263 7 22 0.974 0.923 0.948
4 102 119 58 44 61 0.569 0.487 0.525

14
4

263 264 231 32 33 0.878 0.875 0.877
17 225 236 149 80 87 0.662 0.631 0.646
9 123 121 107 16 14 0.870 0.884 0.877

2680 2931 2077 634 854 0.775 0.709 0.740

For a better graphic interpretation of the results, the contours of the olive tree canopies
in the ground truth and the marks of the coordinates predicted by the model are combined
on single images. Both contours and marks that are true positives are coloured green, while
contours and marks that are false negatives and false positives, respectively, are coloured
red. Figure 11 shows an example of these images for 5 of the 18 captures.

(a) (b) (c) (d) (e)

Figure 11. Resulting images obtained and their comparison with the ground truth. Each green mark
and contour set indicates a true positive, each red mark indicates a false positive and each red contour
indicates a false negative. (a) Capture 0. (b) Capture 5. (c) Capture 8. (d) Capture 11. (e) Capture 17.
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Analysing the results table (Table 3), it can be seen that 89% of the captures obtain an
F1 score above 0.5, 61% above 0.75, 56% above 0.8 and 28% above 0.9. In 5 of the 18 captures
analyzed, practically perfect detection is achieved (Figure 11a,d), in six captures the detec-
tion is moderately good (Figure 11b), in five captures the canopies are detected acceptably
(Figure 11e) and only in two captures serious detection failures occur (Figure 11c). If the
causes of these two failures are analyzed in detail, it is seen that they are not related at all
to the main hypothesis proposed in this article—automatic detection of olive tree canopies
for groves with thick plant cover is optimised by minimizing the function of coefficients of
variation of the lengths of the sides of the Delaunay triangles formed from the coordinates
of the canopies predicted by the model. Rather, the causes are generated by the first part
of the model, the VC in the first instance, classifying shadow pixels as vegetation, and the
OTCE in the second instance, not being able to exclude them, at least, as weeds. In fact,
Figure 11c shows how each and every one of the olive trees is detected, but their shadows
are marked instead of the canopies. This is due to the fact that in the probability image
the VC and the OTCE assigned a greater canopy probability to the shadows than to the
canopies. The rest of the model from here works well even for images that, due to the time
of year they were taken, do not have as much grass on the ground as one would expect.

Table 4 shows the execution times of each model block in the workflow for each
capture during the cross-validation, including the VC and OTCE training time, same at
each fold. The last row shows the mean of each column.

Table 4. Execution times of each model block. A training time for each fold and the prediction times
for each capture ID are shown. The last row shows the mean of each column.
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0 46.3 6.4

28.7 0.15 56.7
1 40.4 0.24 65.5
3 40.1 0.26 57.7
7 34.8 0.13 55.2

6

1 57.7 6.4

29.7 0.12 60.1
16 46.6 0.16 66.0
5 34.8 0.19 59.6

13 33.8 0.07 51.0

10

2 54.9 7.3

24.5 0.05 43.6
12 28.8 0.11 60.9
15 28.5 0.11 71.7
0 30.8 0.22 61.1

8
3 66.4 6.7

28.2 0.14 56.6
11 26.1 0.04 52.2
4 28.1 0.15 53.1

14
4 63.6 6.8

29.2 0.10 50.9
17 38.7 0.23 54.3
9 29.9 0.09 53.0

57.0 6.7 32.3 0.14 57.2

As expected, one of the two most unfavorable times is the training time with an
average of 57 s per fold. This time must not be taken into account to assess the performance
of the model since it is a task that is performed only once. However, another of the
most critical times occurs during the prediction of the OTCM block with a mean of 57.2 s.
Although it may seem like a long time, it is necessary to realise that the time is divided for
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the 5700 iterations of the brute force method applied in this block, that is, each iteration
is executed in approximately one hundredth of a second. Furthermore, this time is no
longer a concern considering that, for validating and representation purposes, the number
of points computed by the F function was higher than it was really needed, and it can be
drastically reduced. After these, the next highest time is the prediction time for the VC
block, taking 32.3 s. This time could only be reduced by finding alternative vegetation
classification methods.

Finally, although no articles were found that explicitly deal with the detection or
segmentation of tree canopies with thick plant cover on the ground without using three-
dimensional data, those that are closely related are shown in Tables 5 and 6. They sum-
marise information about the article reference, the method used, the publication date,
where the data comes from (dataset), what type of data is used (channels), how much data
is used (no. of images) and what quality metrics are achieved (accuracy, precision, recall,
omission error, commission error and estimation error) in each of them. They are sorted by
publication date, and the first row corresponds to the method presented in this article.

Table 5. Comparison of the results of this study with the results of other closely related articles that,
although they do not explicitly use images of groves with thick plant cover on the ground, deal
with the detection or segmentation of the olive tree canopies. The article reference, the method used,
the publication date, where the data comes from (dataset) and what type of data is used (channels)
are shown.

Reference Method Publication Date Dataset Channels

- Proposed - MicaSense RedEdge-MX Red, green and blue

[48]
Deep learning model

(SwinTUnet) based on
Unet-like networks

15 January 2022 Satellites Pro Red, green and blue

[49] Orthophotos + Mask
R-CNN 25 February 2021 Parrot Sequoia camera Red, green, blue and

near infrared

[50]
Edge detection +
circular Hough

transform
1 June 2020 SIGPAC viewer Red

[25]
Laplacian of Gaussian +

improved k-means
clustering

26 February 2020 SIGPAC viewer Red, green and blue

[51]
Colour-based vs.

stereo-vision-based
segmentation

5 February 2019 DJI Phantom4 camera Red, green and blue

[52]
Multi-level thresholding

+ circular Hough
transform

4 December 2018 SIGPAC viewer Red, green and blue

[53]

Radiometrically
corrected orthophotos+

Object-based image
analysis

4 December 2017 Modified multiSPEC 4C
camera

Red, green, red-edge
and near-infrared

[54]

Orthophotos +
Thresholding +

watershed analysis +
microbiological cell
counting algorithm

27 October 2017
Leica ADS40, ADS80,
ADS100 and DMC III

cameras

Red, green, blue and
near-infrared

[55]
Optical + radar data +

object-based
classification

19 July 2011
ADS40 Airborne Digital

Sensor + RAMSES +
TerraSAR-X satellite

Panchromatic, red,
green, blue,

near-infrared and X

[56] K-mean clustering 2 July 2010 SIGPAC viewer Red, green and blue

[57] Reticular matching 31 August 2007 Quickbird Panchromatic
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Table 6. Comparison of the results of this study with the results of other closely related articles that,
although they do not explicitly use images of groves with thick plant cover on the ground, deal with
the detection or segmentation of the olive tree canopies. The article reference, how much data is used
(no. of images) and what quality metrics are achieved (accuracy, precision, recall, omission error,
commission error and estimation error) are shown.

Reference
No. of
Images

Accuracy Precision Recall
Omission
Error Rate

Commission
Error Rate

Estimation
Error

- 18 N/A 70.9% 77.5% 22.5% N/A 9.37%
[48] 230 98.3% N/A 98.8% 1.2% 0.97% 0.94%
[49] 150 N/A 90.07–100% 90.83–100% 0–9.17% N/A N/A
[50] 60 N/A N/A 96% 4% 1.2% 1.27%
[25] 110 97.5% N/A 99% 1% 4% 0.97%
[51] 10 N/A 99.84% 97.61% 2.39% N/A N/A
[52] N/A 96% N/A 97% 3% 3% 1.2%
[53] 315 93% 91.6% 95.9% 4.1% 10.57% 4.76%
[54] 4 N/A N/A N/A N/A N/A 4–27%
[55] 3 76.8–90.5% N/A 16–66.7% 33.3–84% 0.6–8.4% N/A
[56] N/A N/A N/A 83.33% 16.67% 0%
[57] 3 N/A N/A 93% 7% 5% 1.24%

4. Conclusions

This article presents quite promising results as far as the automatic detection of olive
tree canopies is concerned, even more so if we take into account the large amount of
plant cover that some of the captures present. This fact makes detection complicated even
sometimes for the human eye itself. Considering that olive growing is increasingly oriented
towards the search for the quality of the resulting oil, and that organic farming takes
advantage of the benefits of maintaining a thick plant cover on the ground, it is concluded
that the development of this type of model is an imperative need.

The vast majority of studies carried out with aerial images in the field with olive trees
and others fruit trees are based on the search for correlations between the samples collected
at the foot of the tree (ground truth) and the features extracted from the images collected by
the different types of onboard sensors on the UAV. For this purpose, it is always necessary
to extract from the complete images the parts that correspond to the ground truth, usually
the canopies. This task receives little attention in scientific works and can be arduous and
tedious if performed manually. Even when algorithms are developed to automate this task,
they are often used as an aid to the human labeller. In most cases, they work only for groves
in which the canopies are clearly delimited by soil with very different spectral features.

The model developed in this article is very useful for performing labelling tasks fully
automatically, but due to resulting prediction times of nearly 90 seconds (32.3 + 0.14 + 57.2)
per capture on average, it cannot be applied in real time for now, that is, the prediction time
is greater than the time that elapses between one capture and the next in the multispectral
camera. This time, called period, inverse to frames per second (FPS), was set to 1 second
during data collection. Despite this, the proposed method has advantages over alternative
methods based on structure from motion and multiview stereo to compute 3D information
such as photogrammetry or based on other sensors such as LiDAR. The first and most
obvious one is that it makes predictions from a single capture, while photogrammetry
requires a multitude of them in the same area. This fact allows cheaper data collection by
reducing the overlap of the captures from 80% to almost 0% without compromising the
accuracy. This consequently also reduces the flight time of the UAV. Another advantage is
that more complex and costly sensors with LiDAR technology or spectrometers that require
advanced knowledge and set-up are not used. In fact, only the red, green and blue bands
of the multispectral camera were used.

In this way, as future work, it is intended to explore the viability of the model if the
input data comes exclusively from a camera whose sensor works in the visible spectrum
without radiometric correction. Other possible future research would be to find out the
performance of the proposed method applied to other types of groves such as citrus trees,
peach trees, chestnut trees or even plants with other typologies such as vines.
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The success rate obtained in this study could be improved by evaluating the influence
of tree shadows on the VC block, increasing the number of images labelled and used for
training, or exploring other one-class classification algorithms that may exclude certain
types of data. On the other hand, the number of discrete intervals in which each of the
three parameters to be optimised is divided could be reduced with the aim of decreasing
the prediction time of the block OTCM. Furthermore, a more efficient approach could be
applied, such as gradient descent, widely used in the back-propagation algorithm of any
neural network.

Finally, the proposed model is developed thinking of performing a single task as best
as possible. This task is to detect olive tree canopies, that is, to predict with a very high
probability the coordinates of the image in which the pixels belonging to those canopies
would be found but without applying segmentation. This last task would have to be
optimised in the context of a different model. Furthermore, as future work, the region
classification task could be optimised, namely, the identification of the plantation from a
structured arrangement of trees against regions that would form part of the environment
such as roads, forests, buildings, uninhabited land, etc.
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Abbreviations

The following abbreviations are used in this manuscript:

BRDF Bidirectional Reflectance Distribution Function
CNN Convolutional Neural Network
CRP Calibrated Reflectance Panel
DSM Digital Surface Model
DD Decimal Degrees
DLS Downwelling Light Sensor
DN Digital Numbers
DP Data Preprocessing
EU European Union
FAO Food and Agriculture Organization of the United Nations
FN False Negative
FP False Positive
FPS Frames Per Second
GPS Global Positioning System
GSD Ground Sample Distance
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HCRF Hemispherical–Conical Reflectance Factor
HDRF Hemispheric–Directional Reflectance Factor
IFOV Instantaneous Field of View
LiDAR Laser Imaging Detection and Ranging
LM Local Maximum
OCC One-Class Classification
OTCD Olive Tree Canopy Detection Model
OTCE Olive Tree Canopy Estimation
OTCM Olive Tree Canopy Marking
P Positive
PN Predicted Negative
PP Predicted Positive
RCBA Radiometric Correction and Band Alignment
RMSE Root Mean Square Error
ROI Region Of Interest
TN True Negative
TP True Positive
UAV Unmanned Aerial Vehicles
VC Vegetation Classification
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Abstract: This paper addresses coverage loss and rapid energy depletion issues for wireless livestock
sensor networks by proposing a UAV-based energy-efficient reconfigurable routing (UBER) scheme
for smart wireless livestock sensor networking applications. This routing scheme relies on a dynamic
residual energy thresholding strategy, robust cluster-to-UAV link formation, and UAV-assisted network
coverage and recovery mechanism. The performance of UBER was evaluated using low, normal and
high UAV altitude scenarios. Performance metrics employed for this analysis are network stability
(NST), load balancing ratio (LBR), and topology fluctuation effect ratio (TFER). Obtained results
demonstrated that operating with a UAV altitude of 230 m yields gains of 31.58%, 61.67%, and 75.57%
for NST, LBR, and TFER, respectively. A comparative performance evaluation of UBER was carried
out with respect to hybrid heterogeneous routing (HYBRID) and mobile sink using directional virtual
coordinate routing (MS-DVCR). The performance indicators employed for this comparative analysis
are energy consumption (ENC), network coverage (COV), received packets (RPK), SN failures detected
(SNFD), route failures detected (RFD), routing overhead (ROH), and end-to-end delay (ETE). With
regard to the best-obtained results, UBER recorded performance gains of 46.48%, 47.33%, 15.68%,
19.78%, 46.44%, 29.38%, and 58.56% over HYBRID and MS-DVCR in terms of ENC, COV, RPK, SNFD,
RFD, ROH, and ETE, respectively. The results obtained demonstrated that the UBER scheme is highly
efficient with competitive performance against the benchmarked CBR schemes.

Keywords: cattle; herd cluster-based routing; performance analysis; unmanned aerial vehicle; wireless
livestock sensor network

1. Introduction

Livestock farming (LF) is one of the global economy’s backbone industries, but the
growing world population has placed tremendous pressure on the demand for food [1–3].
This implies that livestock industries’ production capacity and efficiency must scale up to
meet this increasing food demand [3–5]. Industrialists have explored arrays of wireless
sensor network (WSN) technologies to improve the quality, quantity and efficiency of
LF [1,6–9]. Recently, the performance of Internet of things (IoT) devices equipped with
embedded sensor nodes (SNs) have been significantly enhanced, which has led to effective
control and management of distributed energy supply systems (DESS) [3,10,11]. The
DESS acts as an energy source for the WSN while monitoring the livestock’s movement,
activities, and health status [2,3]. It must be mentioned that wearable SNs used for smart
livestock monitoring applications are portable battery-constrained devices with information
gathering and processing capabilities [3,10,12]. However, with harsh weather conditions,
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the dynamic and random movement of livestock in the field makes livestock monitoring
applications based solely on wearable/strap-on SNs face challenges. These challenges
include the high cost of frequent SN replacement, erratic loss of coverage, short network
lifetime, rapid energy drainage, and the frequent need for human involvement in the
system’s operation.

These challenges have prompted researchers to explore unmanned aerial vehicle
(UAV)-aided solutions to address routing issues associated with monitoring livestock
movement and activities [11,13–19]. UAV-aided solutions have created the possibility of
designing cost-effective livestock surveillance solutions [2,20–24]. In such surveillance
solutions, UAVs serve as: 1.) sinks for collecting time-sensitive data from strap-on SNs
and 2.) mobile aerial stations for directly monitoring the livestock [25,26]. Therefore,
the massive production of LF products requires innovative integration of WSN and UAV
technologies to address the increasing global food demand challenge. Several integrated
UAV-WSN solutions have been deployed to increase the yield of LF products, where
UAVs act as mobile sinks (MS) collecting livestock data from wearable SNs, and various
artificial intelligence (AI) tools are employed for interactive data analytics [3,8,25]. These
integrated solutions help increase sales revenue, sustain large-scale production, and ensure
the distribution of quality LF products to the end consumers [3,11,26]. Most importantly,
extensive unsupervised livestock monitoring applications address the difficulty, monotony,
and time-consuming challenges of manual monitoring of large livestock farms. However,
challenges of network lifetime issues and frequent disruptive topology changes still exist
and demand further research.

Researchers have proffered various generic [27–34] and specific [3,25,35–43] routing
algorithms to address these challenges. Among the proposed approaches, cluster-based
routing (CBR) techniques have shown more computational simplicity, versatility, robust-
ness and effectiveness in reducing energy consumption and preserving network connectiv-
ity/coverage [3,44–46].

Effective management of unattended and large LF fields requires energy-efficient
routing techniques and scalable network architectures. This is usually achieved by logically
organizing wearable SNs attached to livestock herds into groups called herd clusters (HCs)
in this context to achieve energy efficiency and network scalability. From each HC, some set
of SNs are elected as HC leads (HCLs) based on their residual energy, relative access and
proximity to the MS. HC members (HCMs) transmit livestock data to their HCLs by using
single-hop or multi-hop transmission mode. Subsequently, HCLs forward aggregated data
to the aerial MS for onward transmission to the base station (BS) [41,43,47,48].

Based on this herd cluster-based routing strategy, this paper presents a UAV-based
energy-efficient reconfigurable (UBER) routing algorithm for smart wireless livestock
sensor networking applications. UBER relies on a dynamic residual energy thresholding
mathematical model, robust cluster-to-UAV link formation strategy, and UAV-assisted
network coverage and recovery mechanisms. Simulation experiments were carried out with
OMNET++ and MATLAB, while comparative performance analysis was performed with
respect to hybrid heterogeneous routing (HYBRID) and mobile sink using directional virtual
coordinate routing (MS-DVCR) techniques. The results obtained demonstrated that the
proposed UBER scheme is highly energy-efficient with competitive network performance
when benchmarked against existing CBR schemes.

The structure of the remainder of this paper is organized in the following manner:
Section 2 covers the related research works pertinent to CBR approaches for wireless
livestock sensor networking applications. Section 3 provides a technical description of
the proposed UBER protocol, while Section 4 presents the obtained simulation results and
supporting discussions. Section 5 concludes this paper.

2. Related Works

Traditional CBR techniques are classified as generic based on their mode of network
operation and applicability to a wide range of WSN applications. However, generic
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CBR techniques often suffer from single HCL failure issues, high energy consumption
due to single-hop long-range data transmission, high time complexities, and cluster size
challenges [27–34,44,45,49–51].

The grey wolf optimizer (GWO)-based technique was proffered as a nature inspired
CBR algorithm for ensuring seamless and robust data transmission in livestock monitoring
applications [3]. This algorithm relies on the behavioral pattern of gray wolves and key
network parameters, such as transmission range, cluster size, residual energy and data
route to minimize energy consumption [3]. The limitation of this algorithm is that the HC
configuration process is not flexible and adaptable to varying network requirements.

The Markov decision process (MDP)-based technique was proposed as a path plan-
ning CBR technique that utilizes single UAV and static SNs for HC monitoring and data
gathering in a large LF field [25]. The CBR technique relies on Markov decision process
together with reward and value of information maximization analytical models. The key
benefit of this technique is the significant reduction in message delay [25]. The major
drawbacks of this technique are the algorithmic computational cost and high energy tax.

The dynamic decentralized/centralized free conflict unmanned aerial vehicle (DDCFC-
UAV) technique was proposed as a security-oriented CBR scheme that relies on SNs
mounted on UAVs to monitor a defined LF field [35]. The predefined LF field is logically
categorized into virtual HCs, and UAVs are assigned to monitor their assigned HC zones.
HCLs are elected by the UAV at each HC zone using dynamic network and energy require-
ments criteria stipulated by the CBR scheme [35]. The drawback of this CBR scheme is the
challenge of maintaining connectivity for the multi-UAV communication architecture.

The hybrid heterogeneous routing (HYBRID) technique was proffered as a network
lifetime improvement CBR technique by employing SNs deployed in harsh LF environ-
ments where energy efficiency is achieved by dividing the LF field into HCs and placing
the location of the BS at the edge of the LF field [36]. The criteria for HC formation are the
residual energy of SNs, which gives SNs having higher residual energy more chance of
being elected as HCLs. Inter-HC distance is also considered as a factor for multi-hop data
transmission of livestock data in the network [36]. The drawback of this CBR technique is
the algorithmic complexity associated with switching between varying energy levels and
different modes of transmission.

The mobile sink using directional virtual coordinate routing (MS-DVCR) technique
was offered as an energy minimization geographic routing scheme that relies on a direc-
tional virtual coordinate strategy in conjunction with the aerial MS operation [37]. The
central objective of this scheme is to reduce the frequency of network updates transmitted
by the MS to a BS. The main advantage of this scheme is that it provides an alternative
solution for dealing with MS localization without carrying out physical distance measure-
ments [37]. The major limitation of this scheme is the high overhead tied to maintaining
and exchanging information related to the virtual coordinates within the network.

The lightweight dynamic clustering algorithm (LDCA) was proposed as a real-time
low-complexity dynamic CBR scheme for livestock monitoring applications having limited
processing resources [38]. This CBR scheme utilizes single-hop transmission, variable
cluster size, and multiple parameters (SN-to-MS distance, signal strength, residual energy,
noise level, environmental factors) for HC configuration to maximize network coverage [38].
The drawbacks of this scheme are SN buffering and regional separation issues associated
with rapid MS mobility patterns.

3. Proposed UBER Scheme

This section discusses the integrated UAV-WSN heterogeneous network model, fun-
damental assumptions, cluster configuration, and data gathering phases.

3.1. Integrated UAV-WSN Network Model

Figure 1 shows the proposed UAV-WSN integrated solution for livestock monitoring
applications. In this network model, strap-on SNs acting as HCMs monitor vital parameters
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(location, perspiration, temperature, heart rate) and transmit sensed parameters to their
respective HCLs. The HCLs aggregate all sensed parameters received from their respective
HCMs and relay the compressed data to the neighboring UAVs acting as MS. UAVs fly over
the LF network perimeter at an altitude within the coverage of the SNs. These MS entities
forward aggregated data to the livestock monitoring server (LMS) for processing through a
network gateway (NGW)-BS link enabled with ZigBee (ZGB) interface. The LMS analyzes
the received livestock data and triggers the required LF controller (LFC) devices, such as
temperature regulators, alarms, lighting controllers, and other LFC devices. Authorized
mobile end users (MEUs) can check and work on livestock data from the LMS via Internet
(INET) connection.

Figure 1. UBER Network Model.

3.2. Assumptions

The fundamental assumptions for the proposed UBER CBR scheme are:

- All SNs are wearable, portable, and identical, with similar energy resources, processing
capacities and transceiver characteristics. This assumption describes the physical and
electronic properties of the sensor nodes suitable for livestock (cattle) monitoring. It
is necessary for the sensors to be wearable and portable to prevent discomfort to the
livestock, facilitate sensing through direct body contact, and make sensor replacement
easier. It is necessary for the sensors to be identical to avoid tagging/stamping,
synchronization and mismatch errors during data aggregation and processing.

- UAVs act as MS with more onboard radios and higher energy resources, processing
capacities and transceiver range. This assumption describes the functional and elec-
tronic properties of the UAVs suitable for the integrated model presented in Figure 1.
The fewer UAVs deployed should have more onboard radios to accommodate the
influx of periodic traffic from different clusters.

- UAV’s spatial movement is 3-D with a variable velocity profile. This assumption
describes the spatial motion capability (in x, y, z direction following straight-line left-
to-right up-and-down scanning pattern) of the employed UAV and its limitations (no
axial rotation, no angular twists/bends). Velocity profiles for the UAV are stationary,
scanning velocity (20 m/s), and data gathering velocity (5 m/s) as stated in Table 1.

- UAVs have embedded intelligence for smart decision-making, and they can be con-
trolled from the LMS. This assumption describes the cognitive capability of the UAV
and its limitations (not fully autonomous as its activities can be controlled from the
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LMS). The reason for utilizing this semi-autonomous arrangement is to prevent out-
of-perimeter straying, which can lead to lost UAV, theft, unrestrained energy loss or
device damage.

Table 1. Simulation Parameters.

Symbol Description Value

SN-DEP SNs Deployed 250
LF-NS LF Network Size 2000 m × 2000 m

PKS Packet Size 500 bytes
ETAX TL Energy Tax Threshold Levels 8

Etot Total Energy of each SN (before depletion) 2 J
Eidle Idle Energy 0.2 μJ
Eagg Aggregation Energy 5 pJ/bit
EEC Electronic Circuitry Energy 5 nJ/bit

CTRmax Maximum Transmission Range 250 m
A Path Loss Exponent 2.5

SN-RS SN Receiver Sensitivity −95 dBm
MS-ALT MS Maximum Altitude 230 m

MS-V MS Velocity 20 m/s
MS-SR MS Signaling Rate 2 s
MS-TD MS Tour Duration 960 s

AVG-STAT Simulation Runs for Statistical Averaging 50

3.3. Energy Consumption Model

The traditional energy consumption model is centrally dependent on the transmission
distance (l) and the number of packet bits transferred (b), as postulated in [27,28] as the first-
order radio energy model. The implication of this is that the transceiver energy tax (ETAX)
increases exponentially with increasing transmission distance, as expressed in Equation (1):

ETAX = b·
[

EEC +
(

EPA·l2
)]

(1)

where, EEC and EPA are the circuity energy dissipation and amplifier-dependent energy
loss parameter, respectively. Equation (2) defines the transmission distance as [52]:

l =
[

λ

16π2

] 1
α

(2)

where, α is the path loss exponent and λ is the wavelength. It must be mentioned that the
free space path loss model has limitations for SN-to-UAV communication, especially in the
presence of obstacles and weather conditions, which can affect the path loss and increase
the path loss exponent. This is one of the technical reasons why the UAV’s normal altitude
is operated at 230 m, which falls within the SN’s transmission range of 250 m in order to
preserve network coverage and connectivity. Furthermore, multipath communication has
been incorporated into an upcoming sequel paper in order to serve as an improvement.
UBER’s proposed energy consumption model curbs this exponential increase in ETAX by
forming HCs based on the HCM-to-HCL and HCL-to-MS distance parameter estimates,
which allows SNs nearest to the MS to be elected as HCLs. The effectiveness of this energy
conservation strategy is enhanced with the use of dynamic residual energy thresholding
(Eth

TAX) technique as:

Eth
TAX =

{
b·[EEC + (ES·l)], i f l ≤ lth
b·[EEC + (EL·l)], i f l > lth

(3)

where, ES, EL, and lth are short-range energy transmission, long-range energy transmission
and distance threshold. ES and EL are approximated based on practical design considera-
tions for IEEE 802.15.4 RF transceivers [53,54]. The distance threshold is defined as:
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lth =
2· fc·htx·hrx

k·v (4)

where, k, f c, v, htx, and hrx are threshold constant, carrier frequency, signal velocity, trans-
mitting SN antenna height and receiving SN antenna height, respectively. It must be
mentioned that Equation (3) has been simplified to a linear form (with the use of practical
field approximations [54]) compared to the quadratic form in Equation (1). This adap-
tive/programmable output power level specification helps to prevent exponential ETAX
increase, ensures robust HCL-to-MS data transmission, and reduces distance-dependent
interference experienced by SNs in the LF network perimeter.

3.4. Cluster Configuration Phase

The proposed UBER CBR algorithm commences with the network discovery phase.
The clustering costs (CCx) based on Zmax (peak value of the received signal strength levels)
are shared among neighboring SNs through HELLO packets. Zmax is the peak of the
received signal power (RSSI) values, which is a reliable indicator of the signal strength.
RSSI interpretation is based on proximity as relatively higher RSSI values will be recorded
for closer nodes. CCx is in dBm and it is formulated as:

CCx = max[Zx,t] (5)

where, x and Zx,t denote each SN and received signal strength level for SNx obtained from
UAV signals at duration t, respectively. After the network discovery phase, distributed
repetitive procedures are used to elect HCLs from candidate SNs. SNs with an established
connection with the MS opt to become HCLs by setting their electability probability (HCLPR)
as:

HCLPR =

{
max

[
LIMUP· Ersd

Etot
, LIMLOW

]
, i f CCx > 0

0, i f CCx = 0
(6)

where, LIMUP, LIMLOW, Ersd, and Etot are upper limit probabilistic values for HCL con-
tentions, lower limit probabilistic values for HCL contentions, residual energy, and total
energy, respectively. LIMUP is the upper limit set in the network to limit number of HCL
competitions/announcements while LIMLOW is the lower limit. Selection of these two
parameters is adjusted to allow rapid convergence of HCLPR. Ersd is obtained formally as:

Ersd = Etot − Eth
TAX (7)

Ersd/Etot ratio incorporates dynamic residual energy thresholding into the HC config-
uration process. The formulated electability probability implies that SNs with higher Ersd
and established proximal connection to the MS will have a higher chance of being elected
as trial HCLs after each round (R), 1 < R < Rmax. R means a round of network operation.
INFO packets about the trial HCLs are exchanged with neighboring SNs to maintain a set of
neighboring trial HCLs. An ordinary node SNx selects its HCL (MY_HCL) based on the trial
HCL with the least CCx in its neighboring set. The newly elected HCL broadcast POLLING
packets, HCL_polling(SN_ID, trial_HCL, CCx) to its neighboring SNs. After successful
completion of the network operation round, the status of the trial HCL is configured to
final HCL and POLLING packets, HCL_polling(SN_ID, final_HCL, CCx), are broadcasted
to neighboring SNs. SNs receiving the POLLING packets respond with JOIN packets to
update their cluster membership information. At the end of the set-up phase, SNs are
either tagged with HCM or final HCL status, while orphaned SNs establish a connection
with the closest HCM to become an affiliate of the HC. This cluster arrangement ensures
that SN-to-MS data transmission requires a maximum of three hops in the worst-case
scenario of orphaned SNs. The cluster configuration algorithm is shown in Algorithm 1.
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Algortihm 1 Cluster Configuration Algorithm for UBER.

1: for each SNx received MS_CONNECT signal
2: if (Zx,t ←MS && Zx,t �= NULL)
3: status.connect(MS)← TRUE
4: compute CCx ← find_peak(Zx,t)
5: else

6: status.connect(MS)← FALSE
7: CCx ←−INF
8: end if

9: broadcast CCx to SNx.ADJ within CTR
10: status.final_HCL← FALSE
11: end for

12: while (R �= Rmax && HCLPR �= 1)
13: if (status.connect(MS)← TRUE && status.trial_HCL← TRUE)
14: HHCLPR ← rand(0,1)CLPR ← rand(0,1)
15: elect.MY_HCL← trial_HCL.min(CCx)
16: if (MY_HCL = SN_ID && HCLPR �= 1)
17: broadcast HCL_polling(SN_ID, trial_HCL, CCx)
18: status.final_HCL← FALSE
19: end if

20: else

21: broadcast HCL_polling(SN_ID, final_HCL, CCx)
22: end if

23: HCLPR at t−1← HCLPR
24: HCLPR ←min(2xHCLPR,1)
25: end while

26: status.final_HCL← TRUE
27: update(trial_HCL)← POLLING packet
28: elect(trial_HCL)← IDLE
29: elect(final_HCL)← ACTIVE
30: broadcast POLLING packet within CTR
31: for each ordinary SNx received POLLING packet
32: compute Euclidean distance cost
33: multicast JOIN packet
34: end for

35: if SNx did not receive POLLING packet
36: compute euclidean distance cost to SNx.ADJ within CTR
37: construct EDGE using least distance cost
38: end if

39: for each HCL
40: register HCM list
41: construct EDGE with HCM set
42: end for

3.5. Data Gathering Phase

In the steady-state phase, the radio of each HCM is triggered to WAKE state for
monitoring and transmitting livestock data to their respective HCLs. It must be mentioned
that SNs are in WAKE state only for active network operation time and are put into
SLEEP state otherwise. The HCLs are assigned the network task of data aggregation and
forwarding to the nearest MS. Multi-hop communication chain is relied upon for end-to-end
(HCM-to-HCL, HCL-to-MS, and MS-to-LMS) data transmission. After the LMS receives
all the desired livestock data, END_ROUND packet is broadcasted to the network by the
HCLs based on the interrupting signal received from the MS.
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4. Results and Discussions

This section discusses UBER’s performance metrics, simulation parameters, algorith-
mic complexity, performance analysis to different MS altitudes, and comparative perfor-
mance evaluation of UBER against HYBRID and MS-DVCR.

4.1. Performance Metrics

The measures employed for performance analysis are network coverage (COV), net-
work stability (NST), energy consumption (ENC), received packets (RPK), topology fluctua-
tion effect ratio (TFER), SN failures detected (SNFD), route failures detected (RFD), routing
overhead (ROH), load balancing ratio (LBR), and end-to-end delay (ETE).

4.2. Simulation Parameters

Simulation experiments for this research work were conducted with OMNET++ and
MATLAB. Selected key parameters employed for this simulation are provided in Table 1.
From Table 1, energy tax threshold levels are obtained from Equation (3) and their signifi-
cance is explained as step-wise programmable power levels adopted to prevent exponential
ETAX increase. Aggregation energy is the energy consumed to perform data aggregation by
the HCL in order to reduce redundancy before onward transmission to the MS. Dual fre-
quency (433 MHz for SN localization and handshaking and 2.4 GHz for data transmission)
are used. The PHY/MAC layer characteristics are based on IEEE 802.15.4 protocol specifica-
tions while the NETWORK layer characteristics is based on ZigBee protocol specifications
(as indicated in Figure 1). Command and control signaling is used to enable the sending
of a command signal to the UAV from the LMS and receiving data traffic from the UAV
payload. Due to the focus of this paper on a smart wireless livestock sensor network, the
SNs deployment is by attachment to the neck region of the livestock (as shown in Figure 1)
and the UAVs are deployed to follow the livestock herd within the LF network perimeter.

4.3. Algorithmic Complexity

Through simulation experiments, it was observed that when LIMLOW is adjusted to
0.005, UBER converges at around 11 iterative rounds. Furthermore, it was also observed
that if LIMUP is adjusted to 0.05 (i.e., HCL of 5%), UBER converges at around seven iterative
rounds, together with the simultaneous observation that HCLPR converges to one after
seven iterative rounds. Therefore, this shows that UBER successfully converges after a
constant value of iterative rounds, and consequently, it has algorithmic complexity of Θ (1).

4.4. Performance Analysis
4.4.1. Analysis of UBER Performance

To examine the variations in MS altitude with respect to network stability, load balanc-
ing/distribution and topology fluctuation effect on connectivity on UBER performance,
scenarios of low altitude (120 m), normal altitude (230 m), and high altitude (340 m) were
experimented within the simulation. This choice of normal altitude (230 m) is duly guided
by practical network design considerations. This normal altitude falls within the SN’s
transmission range of 250 m and lies above the close range of the SNs.

4.4.2. Effect of MS Altitude on Network Stability (NST)

NST is defined as the ratio of the number of stable HCL-to-MS connections to the
total number of connections after R network operation rounds. From Figure 2, the red
line represents UBER’s network stability performance trend under low MS altitude of
120 m, the green line represents UBER’s network stability performance trend under normal
MS altitude of 230 m, and the blue line represents UBER’s network stability performance
trend under high MS altitude of 340 m. With reference to Figure 2, a higher NST value
(NST ≥ 0.5) is desired as this means the MS can maintain a connection with the HCL for
a desirably long period (after R network operation rounds) before losing the connection.
The network recorded an average NST of 0.3004, 0.5391 and 0.3829 for the high-altitude
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(indicated as blue line), normal-altitude (indicated as green line) and low-altitude (indicated
as red line) scenarios throughout network operation. This means that by operating the
MS at normal altitude (indicated as green line), the network gains NST of 31.58% and
12.79% over a similar network configuration operating at high altitude (indicated as blue
line) and low altitude (indicated as red line), respectively. The technical justification for
this is that operating at high altitude (indicated with blue line) keeps the MS almost
out of communication range; while operating at low altitude (indicated with red line) is
not feasible due to the LF network terrain, interference, collision and congestion issues.
Results in Figure 2 emphasize the importance of adopting a suitable MS altitude on NST
performance.

 

Figure 2. Effect of MS Altitude on Network Stability.

4.4.3. Effect of MS Altitude on Load Balancing Ratio (LBR)

The LBR is defined as the comparative ratio of net load successfully accepted by the
MS to the total load offered by the HCLs, averaged for R network operation rounds. From
Figure 3, the red line represents UBER’s load balancing ratio performance trend under low
MS altitude of 120 m, the green line represents UBER’s load balancing ratio performance
trend under normal MS altitude of 230 m, and the blue line represents UBER’s load
balancing ratio performance trend under high MS altitude of 340 m. With respect to Figure 3,
a higher LBR value (LBR ≥ 0.5) is desired as this means data traffic coming from the HCLs
is well distributed (or balanced) among the MS to avoid underloading and overloading
scenarios. The network recorded an average LBR of 0.2478, 0.6466 and 0.3787 for the high-
altitude (indicated as blue line), normal-altitude (indicated as green line) and low-altitude
(indicated as red line) scenarios over the period of network operation. This means that
by operating the MS at normal altitude (indicated as green line), the network gains LBR
of 61.67% and 41.42% over a similar network configuration operating at high altitude
(indicated as blue line) and low altitude (indicated as red line), respectively. The reason for
this is that operating at high altitude (indicated with blue line) results in underloading (as
a result of long processing delays) due to weak strength of MS coverage; while operating at
low altitude (indicated with red line) results in overloading (as a result of packet flooding,
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frequent packet drops, reconnection and retransmissions) due to simultaneous detection of
MS by multiple HCLs. Figure 3 results underscore the significance of utilizing suitable MS
altitude on LBR performance.

 
Figure 3. Effect of MS Altitude on Load Balancing Ratio.

4.4.4. Effect of MS Altitude on Topology Fluctuation Effect Ratio (TFER)

The TFER is defined as the frequency by which the HCLs detect and switch MS
connections as a ratio of the total number of connections after R network operation rounds.
From Figure 4, the red line represents UBER’s topology fluctuation effect ratio performance
trend under low MS altitude of 120 m, the green line represents UBER’s topology fluctuation
effect ratio performance trend under normal MS altitude of 230 m, and the blue line
represents UBER’s topology fluctuation effect ratio performance trend under high MS
altitude of 340 m. With regard to Figure 4, a moderate TFER value (0.2 ≤ TFER ≤ 0.4) is
desired as this measures the frequency of switching MS-to-HCL connectivity as a result
of changing HC formation, location and re-assignment of HCLs. A moderate TFER value
is desired to avoid under-sensitivity and oversensitivity scenarios. The network recorded
an average TFER of 0.1291, 0.2925 and 0.5136 for the high-altitude (indicated as blue line),
normal-altitude (indicated as green line) and low-altitude (indicated as red line) scenarios
over the period of network operation. This means that by operating the MS at normal
altitude (indicated as green line), the network gains TFER of 55.86% and 75.57% over a
similar network configuration operating at high altitude (indicated as blue line) and low
altitude (indicated as red line), respectively. The technical reason for this is that operating
at high altitude (indicated with blue line) results in under-sensitivity due to near MS
out-of-reach issues; while operating at low altitude (indicated with red line) results in
oversensitivity to HC variations and re-configuration due to high MS proximity. Figure 4
results underline the influence of employing suitable MS altitude on TFER performance.

Table 2 summarizes UBER performance evaluation results for different MS altitudes.
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4.5. Comparitive Performance Evaluation of UBER

To conduct a comparative performance evaluation of UBER, HYBRID and MS-DVCR
are selected as baseline protocols for benchmarking in this research.

 

Figure 4. Effect of MS Altitude on Topology Fluctuation Effect Ratio.

Table 2. Summary of UBER Performance with MS Altitude Variations.

% Gain of 230 M Over

Metric 340 M 120 M

NST 31.58% 12.79%
LBR 61.67% 41.42%

TFER 55.86% 75.57%

4.5.1. Evaluation of Energy Consumption (ENC) Performance

ENC is defined as the aggregate energy tax (ETAX) by the SNs after R network op-
eration rounds. From Figure 5, the red line represents MS-DVCR’s energy consumption
performance trend, the green line represents HYBRID’s energy consumption performance
trend, and the blue line represents UBER’s energy consumption performance trend under
normal MS altitude of 230 m. Figure 5 shows the comparative plot of ENC for UBER
(indicated as blue line) against HYBRID (indicated as green line) and MS-DVCR (indicated
as red line). UBER (indicated with blue line) recorded lesser ETAX with 25.59% and 46.48%
improvements over HYBRID (indicated with green line) and MS-DVCR (indicated with
red line), respectively. The technical justification for UBER’s performance improvement
is due to the energy conservation benefits from the dynamic residual energy threshold-
ing technique, which ensures robust HCL-to-MS data transmission, and reduced energy
consumption for HC setup and topology maintenance.
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4.5.2. Evaluation of Network Coverage (COV) Performance

COV is defined as the percentage of successfully covered SNs to the total node density
for the LF network field. From Figure 6, the red line represents HYBRID’s network coverage
performance trend, the green line represents MS-DVCR’s network coverage performance
trend, and the blue line represents UBER’s network coverage performance trend under
normal MS altitude of 230 m. Figure 6 provides the comparative plot of COV for UBER
(indicated as blue line) with respect to HYBRID (indicated as red line) and MS-DVCR
(indicated as green line). UBER (indicated with blue line) exhibited better network coverage
by yielding improvements of 28.44% and 47.33% over HYBRID (indicated with red line) and
MS-DVCR (indicated with green line), respectively. UBER’s performance enhancements
are due to the effective HCL-to-MS cluster-based connectivity chain and suitable selection
of MS altitude for extending network coverage during network operation.

 

Figure 5. Energy Consumption Performance.

 

Figure 6. Network Coverage Performance.
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4.5.3. Evaluation of Received Packets (RPK) Performance

RPK is defined as total received packets recorded via the MS-to-LMS transmission
link after R network operation rounds. From Figure 7a, the red line represents MS-DVCR’s
received packets performance trend, the green line represents HYBRID’s received packets
performance trend, and the blue line represents UBER’s received packets performance
trend under normal MS altitude of 230 m. Figure 7a depicts the comparative plot of RPK
for UBER (indicated as blue line) compared to HYBRID (indicated as green line) and MS-
DVCR (indicated as red line). UBER (indicated with blue line) displayed higher RPK by
giving improvements of 15.68% and 3.637% over HYBRID (indicated with green line) and
MS-DVCR (indicated with red line), respectively. The technical justification for UBER’s
performance improvements is as a result of adopting an MS-assisted data-gathering strategy,
cluster resolution and assimilation for orphaned SNs, and minimal-hop SN-to-MS data
transmission. The close RPK performance between UBER and MS-DVCR is simply a slight
performance tradeoff and it is not as a result of high statistical error ranges or statistical
dependency issues. The standard deviation for RPK performance is shown in Figure 7b
to buttress this performance evaluation. The standard deviation plot demonstrates that
UBER has a significantly lesser standard deviation values for RPK (≤0.4) in all instances
of network operation rounds compared to MS-DVCR and HYBRID. Irrespective of the
close performance between UBER and MS-DVCR, the lesser standard deviation values
recorded for UBER is a relatively strong indicator of stable packet reception and statistical
significance of the obtained RPK results.

 
(a) 

Figure 7. Cont.
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(b) 

Figure 7. (a) Received Packets Performance. (b) Standard Deviation Performance Evaluation of SN
Failures Detected (SNFD) Performance.

SNFD is defined as the percentage of SN failures detected at each specified round
of network operation. From Figure 8, the blue bar represents MS-DVCR’s SN failures
detected performance trend, the green bar represents HYBRID’s SN failures detected
performance trend, and the yellow bar represents UBER’s SN failures detected performance
trend under normal MS altitude of 230 m. Figure 8 provides the comparative plot of
SNFD for UBER (indicated as yellow bar) with respect to HYBRID (indicated as green
bar) and MS-DVCR (indicated as blue bar). UBER (indicated with yellow bar) exhibited
lower SNFD by recording gains of 19.78% and 11.35% over HYBRID (indicated with green
bar) and MS-DVCR (indicated with blue bar), respectively. UBER’s performance gains are
due to the effective MS-assisted network coverage and recovery mechanism and effective
HCL-to-HCM enlisting process, which makes it possible to achieve seamless end-to-end
data transmission with reduced SN failures.

4.5.4. Evaluation of Route Failures Detected (RFD) Performance

RFD is defined as the percentage of route breakages detected at each specified round
of network operation. From Figure 9, the blue bar represents MS-DVCR’s route failures
detected performance trend, the green bar represents HYBRID’s route failures detected
performance trend, and the yellow bar represents UBER’s route failures detected perfor-
mance trend under normal MS altitude of 230 m. Figure 9 shows the comparative plot
of RFD for UBER (indicated as yellow bar) against HYBRID (indicated as green bar) and
MS-DVCR (indicated as blue bar). UBER (indicated with yellow bar) recorded lesser RFD
by showing improvements of 46.44% and 44.89% over HYBRID (indicated with green bar)
and MS-DVCR (indicated with blue bar), respectively. The technical justification for UBER’s
performance improvement is due to the effective HCL-to-MS cluster-based connectivity
chain and MS-based network monitoring and recovery mechanism that ensures robust
HCL-to-MS data transmission with reduced route failures.
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Figure 8. SN Failures Detected Performance.

 

Figure 9. Route Failures Detected Performance.

236



Sensors 2022, 22, 6158

4.5.5. Evaluation of Routing Overhead (ROH) Performance

ROH is defined as the ratio (in percentage) of packet processing (prior to actual data
transmission) duration to network operation duration. From Figure 10, the blue bar seg-
ment represents MS-DVCR’s routing overhead performance trend, the green bar segment
represents HYBRID’s routing overhead performance trend, and the yellow bar segment
represents UBER’s routing overhead performance trend under normal MS altitude of 230 m.
Figure 10 provides the comparative plot of ROH for UBER (indicated as yellow bar seg-
ment) with respect to HYBRID (indicated as green bar segment) and MS-DVCR (indicated
as blue bar segment). UBER (indicated with yellow bar segment) exhibited lower ROH by
recording gains of 29.38% and 16.45% over HYBRID (indicated with green bar segment)
and MS-DVCR (indicated with blue bar segment), respectively. UBER’s performance gains
are due to the reduced algorithmic complexity, which makes it possible for the network to
construct routes and carry out routing operations with reduced computational costs.

 

Figure 10. Routing Overhead Performance.

4.5.6. Evaluation of End-To-End Delay (ETE) Performance

ETE is defined as the total duration measured from initial packet generation at the
HCM to eventual delivery via the MS-to-LMS transmission link. From Figure 11, the blue
bar represents MS-DVCR’s end-to-end delay performance trend, the green bar represents
HYBRID’s end-to-end delay performance trend, and the yellow bar represents UBER’s
end-to-end delay performance trend under normal MS altitude of 230 m. Figure 11 depicts
the comparative plot of ETE for UBER (indicated as yellow bar) in comparison to HYBRID
(indicated as green bar) and MS-DVCR (indicated as blue bar). UBER (indicated with yellow
bar) displayed lesser ETE by 58.56% and 54.33% improvements over HYBRID (indicated
with green bar) and MS-DVCR (indicated with blue bar), respectively. The technical
justification for UBER’s performance improvements is due to the adaptive MS-assisted
maintenance of HCM-to-HCL, HCL-to-MS, and MS-to-LMS data forwarding chains. This
adaptive nature makes it possible to preserve end-to-end data transmission links with
lesser delays.
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Figure 11. End-to-End Delay Performance.

Table 3 summarizes UBER’s comparative performance evaluation against HYBRID
and MS-DVCR.

Table 3. Summary of UBER Comparative Performance Results.

Metric HYBRID MS-DVCR

ENC 25.59% 46.48%
COV 28.44% 47.33%
RPK 15.68% 3.637%

SNFD 19.78% 11.35%
RFD 46.44% 44.89%
ROH 29.38% 16.45%
ETE 58.56% 54.33%

5. Conclusions

This paper treats the issues of loss of coverage and rapid energy drainage for wireless
livestock sensor network applications by developing a UAV-based energy-efficient reconfig-
urable routing (UBER) scheme for smart wireless livestock sensor networking. This research
contrived and incorporated a dynamic residual energy thresholding mathematical model,
robust cluster-to-UAV link formation strategy, and UAV-assisted network coverage and
recovery mechanisms into this scheme for the proposed integrated heterogenous network
model. Experiments were carried out with OMNET++ and MATLAB. The performance
of UBER was analyzed using low, normal, and high UAV altitude scenarios. Simulation
results revealed that operating the network with a UAV altitude at normal range yielded
performance gains with respect to network stability, load balancing ratio, and topology
fluctuation effect ratio. A comparative performance analysis of UBER was performed with
respect to HYBRID and MS-DVCR. With regard to the obtained results, UBER recorded
significant performance improvements in terms of energy consumption, network coverage,
received packets, SN failures detected, route failures detected, routing overhead, and end-
to-end delay. The results obtained demonstrated that the UBER scheme is highly efficient
with competitive performance against the benchmarked CBR schemes. Future research
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work will focus on developing a lightweight, reliable, and energy-efficient repair/recovery
scheme for the identified SNFD and RFD issues.
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Abstract: To decrease the impact of uncertainty disturbance such as sideslip from the field environ-
ment on the path tracking control accuracy of an unmanned rice transplanter, a path tracking method
for an autonomous rice transplanter based on an adaptive sliding mode variable structure control was
proposed. A radial basis function (RBF) neural network, which can precisely approximate arbitrary
nonlinear function, was used for parameter auto-tuning on-line. The sliding surface was built by
a combination of parameter auto-tuning and the power approach law, and thereafter an adaptive
sliding controller was designed. Based on theoretical and simulation analysis, the performance of
the proposed method was evaluated by field tests. After the appropriate hardware modification, the
high-speed transplanter FLW 2ZG-6DM was adapted as a test platform in this study. The contribution
of this study is providing an adaptive sliding mode path tracking control strategy in the face of the
uncertainty influenced by the changeable slippery paddy soil environment in the actual operation
process of the unmanned transplanter. The experimental results demonstrated that: compared to
traditional sliding control methods, the maximum lateral deviation was degraded from 17.5 cm
to 9.3 cm and the average of absolute lateral deviation was degraded from 9.1 cm to 3.2 cm. The
maximum heading deviation was dropped from 46.7◦ to 3.1◦, and the average absolute heading
deviation from 10.7◦ to 1.3◦. The proposed control method not only alleviated the system chattering
caused by uncertain terms and environmental interference but also improved the path tracking
performance of the autonomous rice transplanter. The results show that the designed control system
provided good stability and reliability under the actual rice field conditions.

Keywords: autonomous rice transplanter; path tracking control; RBF neural network; automatic
steering; navigation system

1. Introduction

Due to the high labor cost, the shortage of rural labor force, and the poor straight-
ness accuracy of the seedling row, unmanned transplanters have gradually become a
significantly sought-after in promoting the mechanized transplanting of rice in China.
The path tracking control performance is the key to determining the straightness of
transplanting [1–3].

Scholars, both domestically and abroad, have carried out relevant studies on path
tracking control algorithms based on fuzzy control [4,5], the pure tracking model [2,6–8],
sliding mode control [9,10], and other methods. A fuzzy adaptive pure tracking algorithm
for agricultural machinery was proposed [11] which improved the tracking accuracy of
the model path. However, the control laws were difficult to establish and thus increased
the control difficulty. To enhance the adaptability of the navigation control system, a pure
tracking control method for tractor navigation was developed based on the SVR reverse
model; it was difficult to make real-time and dynamic adjustments for the tracking error
because of complex model construction and sample training [12]. An improved Stanley
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controller was proposed to improve the path tracking the performance of autonomous
tractors and the parameters of the controller were optimized based on a multiple-population
genetic algorithm [13]. The effectiveness and advantages were evaluated by simulation.
A control strategy based on nonsingular fast terminal sliding mode control with a finite
time disturbance observer was presented to improve the trajectory tracking ability of the
autonomous agricultural tractor [14]. However, the effectiveness of the designed control
algorithm was not verified by field tests. Some of the state-of-the-art deep learning models
have been used in agricultural applications. Deep learning methods were used in uncrewed
vehicles to detect fruits [15–17]. A modified YOLOv3 model, called YOLO-Tomato models,
was established to detect tomatoes in challenging environmental conditions [16]. The
real-time growth stage detection model for a high degree of occultation was developed
based on DenseNet-fused YOLOv4 [17]. The deep learning can be used for parameter
optimization of control systems. In order to improve the trajectory tracking performance of
autonomous orchard vehicles, a model-based control algorithm was presented for wheel
slip compensation [18]. The model predictive control algorithm was designed to improve
trajectory tracking performance, and nonlinear least squares frequency domain system
identification was applied to identify the yaw dynamics [19].

Sliding mode control (SMC) has the advantages of fast response, insensitivity to pa-
rameter changes and disturbances, no online system identification, and simple physical
implementation, which has widely concerned by scholars from all over the world. How-
ever, the chattering problem of sliding mode control in practical systems is a prominent
obstacle. A robust controller based on backstepping sliding mode control for a 4WS/4WD
agricultural robotic vehicle was designed against system uncertainties [20]. A layered
multi-loop powerful control architecture is presented for an electro-hydraulic coupling
system, and a sliding mode controller was applied to consider the parameter uncertainties
and disturbances from the system [21]. Although an adaptive steering control strategy
was proposed for varying yaw rate properties of a farm tractor, the performance is hardly
validated by experimental tests. To weaken chattering and improve the dynamic perfor-
mance of approaching movement by adopting various reaching laws, a significant number
of studies was carried out. A path tracking control strategy for the tracked robot was
proposed based on a sliding mode variable structure algorithm [22], and a good control
effect on path tracking was demonstrated by simulation. A fuzzy sliding mode control
algorithm was designed based on inverse control and good robustness was verified by
simulation results [23]. However, these two sliding mode control methods have not taken
into account the influence of uncertain disturbance such as sideslip caused by the variation
of the working environment and have not been verified by actual field tests. Moreover,
although widespread applications of sliding mode control algorithms including improved
algorithms have been found, most research has been limited to computer simulations and
constrained real-time in practical working processes.

Because of powerful approximation properties, neural networks (NN) and fuzzy
systems were applied to modeling the uncertainties and external disturbances in the system
or approaching the switching part of the controller by making discontinuous control signals
continuous and thus effectively reducing chattering. A novel neural network sliding mode
control method is proposed. The neural network is used to estimate the nonlinear part, the
uncertain part, and the unknown disturbance of the linear system. An equivalent control
based on a neural network is realized, and chattering is effectively eliminated [24]. Two
neural networks are used to approximate the equivalent sliding mode control part and
the switching sliding mode control part, respectively. The chattering of the controller is
eliminated effectively without an object model [25]. Compared with BP-NN, RBF-NN has
good generalization ability and a simple network structure, which can avoid unnecessary
and lengthy calculations and approximate any nonlinear function in a compact set at
arbitrary precision. Using the approximation ability of NN, a sliding mode controller based
on an RBF-NN is proposed. The switching function s is used as the network input, and the
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controller is entirely realized by the continuous RBF (radius basis function) function, which
eliminates the switching term and chattering [26].

To make up for the shortcomings of the above algorithms and realize the precise
control of the expected rotation angle and the travel speed, an adaptive sliding mode
variable structure path tracking control algorithm based on the power approach law and
an RBF-NN was proposed in this study, aiming at overcoming the influence of uncertainty
from the changeable slippery paddy soil environment in the actual operation process of the
unmanned transplanter. The reliability of the model and the feasibility of the method are
verified by the theoretical analysis, model simulation, and field tests.

2. System Hardware Modification

2.1. Steering Control

The hydraulic power steering device of the existing FLW 2ZG-6DM high-speed trans-
planter is installed as a whole, and its automatic steering was achieved by a parallel oil
circuit [27,28]. The automatic steering control only can be realized by adding an electric
steering wheel to the original steering mechanism and controlling the motor to simulate
the manual operation of the steering wheel. The AF300 electric steering wheel, as shown in
Figure 1, was adopted (Shanghai LIANSHI Navigation Co., Shanghai, China). The specific
parameters of the electric steering wheel are shown in Table 1.

  
(a) (b) 

Figure 1. Installation schematic diagram of steering wheel-like motor. (a) Structure diagram. (b) In-
stallation drawing: 1. Steering wheel; 2. Tight set; 3. Barrel motor; 4. Fixed axle support; 5. Locking
bolt; 6. Fixed shaft.

Table 1. Parameters of steering wheel-like motor.

Type Parameter

Rated voltage/V 12
Rated torque/(N*m) 15

Output mode RS232
Speed/rmp 100

To ensure accuracy, long-term operation stability, and reliable performance during
driving operation, the fixed bracket (Figure 2) is designed and installed under the front
axle arm of the rice transplanter. The connecting rod and the front wheel steering shaft
constituted a parallel four-bar mechanism, and the angle sensor was installed at the wheel
steering trapezoid, which provided accurate angle data for the steering control of the
transplanter. Considering the cost performance, volume, and other factors, the DWQT-
RS485-G/J angle sensor (Beijing Tianhai Technology Co., Beijing, China) was selected, and
the specific parameters are shown in Table 2.
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(a) (b) 

Figure 2. Installation schematic diagram of angle sensor. (a) Structure diagram; (b) installation
drawing: 1. Steering shaft; 2. Trellis bar; 3. Angle sensor; 4. Fixed bracket; 5. Fixed link; 6. Ball tie rod.

Table 2. Parameters of angle sensor.

Type Parameter

Rated voltage/V 8–24
Range/◦ 0–360

Output mode RS485
Accuracy/◦ 0.1

2.2. Travel Speed Control

As one of the essential control units of the traveling speed control, the accelerator
pedal mechanism is the key to ensuring the stability of the operating speed. The original
mechanical accelerator pedal of the rice transplanter is transformed into an electric push
rod pull accelerator pedal. The corresponding relationship between displacement and
velocity is established through the real-time displacement information of the electric push
rod. According to measurements, the actual pulling force of the accelerator pedal is about
50 N, and the displacement of the stay wire is 95 mm. Considering the water-resistance
of the operating equipment under the paddy field environment, a DC electric push rod
with position feedback (Taiwan, China, LD3-12-20-50-IP65-POT) was selected. Its structure
and installation are shown in Figure 3, and the main performance parameters are shown in
Table 3.

 

  
(a) (b) 

Figure 3. Installation schematic diagram of the electric push rod. (a) Structure diagram; (b) installation
drawing: 1. Accelerator pedal; 2. Linear actuator; 3. Support plate; 4. Transplanter chassis; 5. Steel
strand core; 6. Stay sleeve.

Table 3. Parameters of the electric push rod.

Type Parameter

Rated voltage/V 12
Load/N 200
Trip/mm 100

Speed/(mm*s−1) 24

2.3. Location Information Collection

During transplanting operations, to achieve continuous and accurate navigation,
reduce accumulated positioning error, and ensure the stability of the positioning system,
the combined navigation of BEIDOU and INS (inertial navigation system) [29] was adopted.
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A HUA XIN full band antenna, supporting C201 receiver, and a navigation reference station
were selected as the navigation module. The RTK horizontal positioning accuracy is ±2 cm,
and the data update rate is set at 5 Hz. The attitude sensor is a micro inertial sensor MTI-30
model manufactured by the XENS company of the Netherlands. The navigation reference
station and attitude sensor are shown in Figure 4, and the performance parameters of the
attitude sensor are shown in Table 4.

  
(a) (b) 

Figure 4. Diagram of inertia sensor and navigation system. (a) Navigation reference station; (b) pos-
ture sensor.

Table 4. Parameters of inertia sensor.

Type Parameter

Rated voltage/V 5
Sampling frequency/kHz 10

Output mode RS485
Rated power/mW 480–570

2.4. Main Controller

The main board of the series STM32F103 is used as the central controller to realize the
functions of position information collection, angle information collection, electric steering
wheel control, and travel control. The controller has 64KB SRAM, 512KB FLASH, five
serial ports, and 112 general I/O ports. It can meet the data processing requirements
of the intelligent control system. The system block diagram is shown in Figure 5. The
navigation module and angle transducer are attached to the master controller by two
groups of the RS485 interface. The navigation module provides position and gesture data
such as lateral deviation, heading deviation, and vehicle speed for the master controller
at a 10 Hz frequency. An angle transducer is employed to sense the front steering wheel
angle in real-time. The master controller is connected to the attitude sensor by RS485
interface, which manages the yaw angle, pitch, and roll angles from the attitude sensor at a
10 Hz frequency. The electric steering wheel is attached to the controller through the RS232
interface and is used to drive the front wheel of the rice transplanter. A linear actuator
with displacement sensor, attached to the controller by A/D and digital output interfaces
and assembled in the controller, is employed to adjust vehicle speed. Moreover, the touch
screen, which connects to the controller by the RS232 interface, is applied to display data,
and set control parameters.

Figure 5. Construction diagram of the system.
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3. Algorithm of Path Tracking Control System

3.1. Kinematic Modeling and Theoretical Analysis of Rice Transplanter

Take the transplanter as the controlled object and establish the relative kinematic
model between the transplanter and the path as shown in Figure 6. The kinematic model
can be expressed as [30]. ⎧⎪⎪⎨⎪⎪⎩

.
l = vcosρ

1−c(l)d.
d = vsinρ
.
ρ = v

(
tanθ
DL
− c(l)cosρ

1−c(l)d

) (1)

where d, DL and l denote lateral deviation, wheel base of transplanter and path track-
ing curvature, respectively; ρ = ϕc − ϕ, θ denotes the heading deviation and steer-
ing wheel angle, respectively; c(l) and v are the path arc length and speed of the rice
transplanter, respectively.

݈
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Figure 6. Kinematic model.

Let z =
[
z1, z2]

T =[d, ρ]T and calculate the derivative of z respect to l, the Equation (1)
can be rewritten as

.
z = f (z) + g(z)

tanθ

DL
(2)

where

f (z) =
[

tanz2(1− z1c(l))
−c(l)

]
g(z) =

[
0

secz2(1− z1c(l))

]
To ensure nonsingular of Equation (4), the following two conditions must be met:

1− c(l)z1 �= 0, z2 �= kπ +
π

2
(k = 0, 1, 2 · · ·)

The path curvature tracked by rice transplanters is generally not very large, 1/c(l)� z1;
during operation, the rice transplanter travels along the direction of the path and thus
z2 < π

2 . Therefore, the above conditions are easily met in the actual transplanting process.
Thus, Equation (2) can be expressed by the matrix form

.
z =

[ .
d
.
ρ

]
=

[
vsinρ

−
.
lc(l) + v tanθ

DL

]
(3)
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According to dynamic feedback linearization theory, Equation (4) can be obtained by
applying state transformation and input transformation to Equation (3) [31],⎧⎪⎪⎪⎨⎪⎪⎪⎩

e1 = z1
e2 = ∇e1 f (z) = (1− z1c(l))tanz2

u = ϕ
(

z, tanθ
DL

)
= sec3e2(1− z1c(l))2 tanθ

DL

+(z1c(l)− 1)c(l)
(
tan2z2 + sec2z2

) (4)

According to Equations (3) and (4), the controllable standard type can be expressed as[ .
e1.
e2

]
=

[
0 1
0 0

][
e1
e2

]
+

[
0
1

]
u (5)

The complexity and spatial variability of the operating environment brings great un-
certainty to the steady-state performance of the vehicle yaw rate [32]. The interference term
|γ| ≤ T (T) is introduced to represent this uncertain disturbance. Thus, the Equation (5)
can be rewritten as [ .

e1.
e2

]
=

[
0 1
0 0

][
e1
e2

]
+

[
0
1

]
u +

[
0
1

]
Δη (6)

where

Δη =
(1− dc(l))3

vcos3(ρ)
γ

It can be seen from Equations (5) and (6) that the path tracking ability of the model
under the conditions of uncertain interference is effectively improved by eliminating the
influence of time and speed on the system.

However, under the conditions of uncertain disturbance, the path tracking error of
the controlled object will change with an amplitude of Δη. If the control of the influence
of uncertain disturbances such as sideslip are realized, system chattering will occur in the
process of path tracking, which will affect the control of the system. Therefore, to decrease
or eliminate system chatting, sliding mode control is used to improve the convergence
speed of the system, and, then, the RBF neural network is used to approach the disturbance
adaptively and ensure the stability and convergence of the system.

3.2. Design and Analysis for Adaptive Sliding Mode Controller

The amplitude of the uncertain term Δη in Equation (6) varies greatly with the path
tracking error. If a large interference boundary is assumed in robust controller design, the
chattering amount will increased and the control results will be too conservative. In order to
decrease the lateral and heading deviations and improve the adaptive ability of the control
system, an adaptive sliding mode path tracking control algorithm is presented based on
the power approach rate (PAR) and RBF. The adaptive estimation of Δη is achieved by RBF,
and PAR is used to reduce or eliminate the chattering. The PAR is expressed as

.
σ = −ε

∣∣σ∣∣psgnσ− kσ (7)

where
0 < p < 1, ε > 0, k > 0

σ = μe1 + e2 (8)

where
μ > 0

By differentiation of l and combining Equations (6) and (7) as

.
σ = μ

.
e1 +

.
e2 = μ

.
e1 + u + Δη = −ε

∣∣σ∣∣psgnσ− kσ (9)
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Let the control rate Δη = 0 be

u = −μ
.
e1 − ε

∣∣σ∣∣psgnσ− kσ (10)

The stability analysis is carried out by using the Lyapunov function V = σ2/2 as

.
V = σ

.
σ ≤ −ε|σ|p+1 − kσ2 + |σ|Φ (11)

where
Φ ≥ |Δη|

According to Equation (11),

.
V + kσ2 =

.
V + 2kV ≤ −ε|σ|p+1 + |σ|T (12)

If |σ| ≥ (T/ε)
1
p ,

.
V + kσ2 ≤ 0 exists. Thus, there is an interference stability bound

of (T/ε)
1
p , which can make the system converge to the region |σ| ≤ (T/ε)

1
p stably in a

limited distance. This implies that an interference stability bound (T/ε)
1
p exists. In order to

eliminate this interference stability bound, the online estimation of Δη is performed by RBF
(Figure 7) in this study. The corresponding input and output of RBF is e = [e1, e2]

T and the
control rate is Δη. The 2-5-1 neural network architecture is determined by trial and error.
Mini-batch gradient descent is employed, and mini-batch size is set to 2048 by trial and
error. The number of epochs is 10. To accelerate learning in the early stage of algorithm
optimization and avoid large fluctuations in the later period, the learning rate is adjusted
from 0.9 to 0.2. The detailed structure diagram is as follows.

Figure 7. RBF neural network architecture diagram.

The network algorithm used to eliminate the interference stability bound can be
described as

hj = exp(
−∣∣∣∣e− cj

∣∣∣∣2
2b2

j
) (13)

where, hj denotes the jth neuron output of the network hidden layer, j is the jth node of the
network hidden layer (j = 1, 2 . . . 5). cj is the center vector value of the jth hidden layer and
bj is the base width parameter of the j hidden layer.

Δη = w∗T H (14)
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where w∗ denotes the ideal weight, H = [hj]
T is the output of the Gaussian basis function.

The estimation value of Δη can be written as

Δη̂ = ŵT H (15)

where ŵ is the actual weight of the network.

Δη − Δη̂ = w∗T H − ŵT H = −w̃T H (16)

where w̃ = ŵ− w∗. Substituting Δη̂ for Δη, the developed control rate can be presented as

u = −μ
.
e1 − ε|σ|psgnσ− kσ− ŵT H (17)

Lyapunov function is defined as V = 1
2 σ2 + 1

2λ w̃Tw̃ and λ is adjustment parameter
and λ > 0.

.
V = σ

.
σ + 1

λ w̃Tw̃ = σ
(
Δη − Δη̂ − ε

∣∣σ∣∣psgnσ− kσ
)
+ 1

λ w̃T
.

w̃
= σ(−w̃T H − ε|σ|psgnσ− kσ) + 1

λ w̃T
.

w̃ = −ε|σ|p+1 − kσ2 + w̃T( 1
λ

.
w̃− σH)

(18)

The path tracking error converges to zero when the adaptive rate of RBF is selected
as

.
ŵ = λσH and

.
V ≤ 0. Supposing β is the estimation error in the network, thus

Δη = w∗T H + β (|β| ≤ E and E is the upper bound of the estimation error). Finally, the

tracking error of the system converges steadily to (E/ε)
1
p . From Equation (11), it can be

seen that (E/ε)
1
p�(T/ε)

1
p , which can meet the tracking error requirements of the rice

transplanter. From the above analysis, the RBF neural network has good robustness to
approach the interference stability bound. In other words, when the system is disturbed by
uncertainty, the tracking path of the transplanter can still move along the sliding surface
towards the balance point, and the system is asymptotically stable.

3.3. Simulation Verification and Analysis

In order to evaluate the effectiveness of the proposed path tracking control strategy for
the rice transplanter, the simulation was conducted by MATLAB software. The adaptive
rate, neural network, wheelbase of the transplanter, and other relevant parameters are set.
The specific information is as follows: wheelbase DL = 1040 mm, approach law coefficient
” = 1.2, k = 0.8, p = 0.5, linear sliding surface coefficient ¯ = 8, adaptive rate coefficient
λ = 2000, neural network coefficient bj = 2, cj = (−0.1, −0.5, 0, 0.5, 1).

In the complex nonlinear system environment, the adaptive sliding mode path tracking
control is used to simulate the lateral deviation and heading deviation in the range of 10 m.
The simulation results are shown in Figure 8.

From Figure 8, under real field conditions with uncertain disturbance, it can be found
that the lateral error converges from a large deviation value to the zero point after about
0.6 m. Meanwhile, the heading deviation converges to the zero point after approximately
0.5 m, and the system gradually enters the steady state. When the adaptive sliding mode
path tracking control method is applied to approach uncertain disturbances such as vehicle
sideslip, it can effectively improve the steady-state performance of the system and reduce
the influence of chattering caused by the system track reaching the switching surface on
the system. That is to say, the adaptive sliding mode path tracking control method can
effectively eliminate the uncertain disturbances and chattering in the actual control process
under the influence of interference, which ensures the accuracy of path tracking and the
stability of long-term operation.
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(a) 

(b) 

Figure 8. Path tracking error simulation results. (a) Lateral deviation; (b) heading deviation.

4. Field Test and Data Analysis

4.1. Field Experiment

The performance of the proposed adaptive sliding mode path tracking control algo-
rithm is evaluated by comparing with a traditional sliding mode control algorithm, the
paddy field tests are carried out in the grain industrial park of XINGHUA City, JIANGSU
Province. The test platform and field test are shown in Figure 9.

  
(a) (b) 

Figure 9. Experimental platform and Path tracking test. (a) Test platform; (b) field experiment.

A 100 m × 30 m rectangular field was selected for the experiment. The unevenness
of paddy soil was less than 5 cm. The mud foot depth in the field is about 25 cm. During
paddy field experiments, the vehicle track with depth about 25 cm was generated after
the vehicle travelled across the planned paths. If the vehicle runs along the same path
many times, the mud foot depth will become deeper and deeper. Due to the influence
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of sideslip and the restriction of the driving ability of the electric steering wheel, in the
next round, it will be difficult for the vehicle to escape the track generated in the previous
round of testing. Hence, four groups of field tests with different paths were carried out
to validate effectiveness. Considering effect of the vehicle track of the previous trial on
tracking performance of the current run, the traditional sliding control and proposed
control algorithms were used alternately during each group of tests. For each group of tests,
the vehicle followed the same planned paths. During the group 1 and 3 tests, the traditional
sliding mode control was applied first and after the proposed control algorithms in this
study were run. For groups 2 and 4, the running sequence of the two control algorithms
was the opposite. After four sets of tests, the lateral and heading errors were averaged and
the corresponding path tracking results from the two control algorithms were presented in
Figures 10 and 11, respectively.

 
(a) 

 
(b) 

Figure 10. Path tracking error using traditional sliding mode. (a) Lateral deviation; (b) heading deviation.

 
(a) 

 
(b) 

Figure 11. Path tracking error using proposed control algorithm. (a) Lateral deviation; (b) head-
ing deviation.

The four longitude and latitude coordinates of the field vertices were collected by
the navigation module and transformed into the current field coordinates. According to
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the operation width of the rice transplanter, the field operation path was independently
planned and autonomously generated. Once the transplanter starts to work along the
starting position of the long side, the real-time data of lateral deviation and heading
deviation were collected through the RS485 serial port of the navigation module. It can
be seen from Figure 10 that the lateral deviation obviously increases at about 93 m where
the rice transplanter suffered a sudden side slip, which causes the electric steering wheel
to rotate beyond the maximum range towards the planned path. In order to prevent the
vehicle from rolling over and ensure driving safety, only a small turning angle can be used
to approach the planned path step by step. This means that the robustness and adaptive
ability of the traditional sliding mode control algorithm is poor when the rice transplanter
suffers from uncertain interference such as sideslip or a bumpy road. Moreover, large
fluctuations of lateral and heading deviations can be observed, which perhaps are caused
by a large stability bound of the control algorithm.

The small fluctuation amplitude of lateral deviation and heading deviation is observed
in Figure 11. This indicates that the proposed control algorithm is robust and has good
adaptive ability to uncertain inference.

4.2. Data Analysis

In order to verify the performance of the adaptive sliding mode path tracking control
method, it is compared with the traditional sliding mode path tracking control method.
The compared results are shown in Table 5.

Table 5. Results of experiment.

Type Traditional Sliding Mode Adaptive Sliding Mode

Maximum lateral
deviation/cm 17.5 7.9

Average of lateral
deviation/cm 9.1 3.2

Maximum heading
deviation/◦ 19.3 2.7

Mean of heading deviation/◦ 8.5 1.3

It can be seen from Table 5 and Figures 10 and 11 that system chattering is obvious
when using the traditional sliding mode control; the maximum lateral deviation and the
average lateral deviation of path tracking are 17.5 cm and 9.1 cm, respectively. However,
the lateral deviation and the average lateral deviation from the adaptive sliding mode
control reduce to 7.9 cm and 3.2 cm, respectively. Furthermore, the maximum heading
deviation drops from 19.3◦ to 2.7◦, and the mean value of the heading deviation decreases
from 8.5◦ to 1.3◦. This phenomenon implies that the control quantity from the controller
changes smoothly by adopting the proposed control algorithm and chattering is effectively
eliminated, which shows that the proposed path tracking control method is better than the
traditional sliding mode path tracking control method.

5. Conclusions

In view of the chattering problem of the system, which is easily caused by external
interference and uncertainty in the process of path tracking of the unmanned transplanter,
an adaptive sliding mode path tracking control algorithm was proposed. The proposed
control algorithm integrated an RBF neural network and sliding mode control which
improved the adaptability of the transplanter to the complex and uncertain environment
and reduced the lateral deviation and heading deviation.

Based on modified FLW 2ZG-6DM high-speed transplanter, the vehicle kinematic
model was established. The simulation tests demonstrated that the position tracking
distance approximated from a large deviation distance to near the zero point within about
0.6 m, the direction tracking angle converged to the zero point within 0.5 m, and the system
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gradually entered the steady state. The model can effectively improve the steady-state
performance of the system, reduce the impact of chattering on the system when the system
track reaches the switching surface, and ensure the path tracking accuracy and long-term
operation stability in the process of driving operation.

The field test results demonstrated that the maximum value and the average value of
the lateral deviation were 7.9 cm and 3.2 cm, respectively. The corresponding maximum
angle and average value of the heading deviation were 2.7◦ and 1.3◦, respectively. The
experimental results implied that the proposed control strategy can meet the automatic
driving requirements of rice transplanter in the field.
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Abstract: Livestock farming is assisted more and more by technological solutions, such as robots.
One of the main problems for shepherds is the control and care of livestock in areas difficult to
access where grazing animals are attacked by predators such as the Iberian wolf in the northwest
of the Iberian Peninsula. In this paper, we propose a system to automatically generate benchmarks
of animal images of different species from iNaturalist API, which is coupled with a vision-based
module that allows us to automatically detect predators and distinguish them from other animals.
We tested multiple existing object detection models to determine the best one in terms of efficiency
and speed, as it is conceived for real-time environments. YOLOv5m achieves the best performance
as it can process 64 FPS, achieving an mAP (with IoU of 50%) of 99.49% for a dataset where wolves
(predator) or dogs (prey) have to be detected and distinguished. This result meets the requirements
of pasture-based livestock farms.

Keywords: computer vision; threat identification; wolf recognition; herding; sheepdog robots;
precision livestock farming

1. Introduction

Nowadays, people are more concerned about sustainability and biodiversity, and they
demand eco-products and healthier food [1]. This trend also helps to enhance regions
that have experienced a huge depopulation in recent years. For example, traditional jobs
such as sheep herding have become again popular, initiating extensive livestock farming
in rural areas as a form of entrepreneurship. Industrial livestock production systems are
mainly indoors and have a higher profitability [2]. On the contrary, pasture-based livestock
farming increases animal welfare as they can behave naturally and move freely, and it is
also positive for biodiversity [3,4]. However, grazing and monitoring the welfare of cattle
and sheep is an arduous and time-consuming task, as the animals are often scattered over
large areas and require year-round attention [5]. For this reason, assisting the required tasks
by deploying autonomous systems is of utmost timeliness, although it presents challenges.

Precision Livestock Farming (PLF) offers technological tools to assist farmers in live-
stock management [6]. Through the use of sensors and data-driven systems, the herdsmen
are able to manage and control several stages of the production flow [7]. In this sense, the
benefits of adding new technologies to improve herder productivity are being explored,
such as in the case of pasture-based livestock farming. Several different approaches in the
literature use certain sensors such as accelerometers, cameras or GPS collars among others
to obtain data useful to understand the animal behaviour and monitor them in order to
detect diseases, supervise feeding and weight gain control [8].

Pasture-based livestock production remains an important sector in the European
Mediterranean basin. It contributes to preserving large agricultural areas of high nature
value, which are often located in less industrialised regions with low productive capacity,
such as mountainous regions, e.g., in southern Europe [9]. These grazing systems present

Sensors 2022, 22, 5321. https://doi.org/10.3390/s22145321 https://www.mdpi.com/journal/sensors256



Sensors 2022, 22, 5321

environmental advantages, facilitating biodiversity and encouraging cultural and landscape
diversity [9]. Furthermore the shepherd’s working conditions have personal benefits,
such as working in a natural environment. On the downside, they may suffer from
inclement weather.

However, pasture-based livestock farming has several trade-offs [9]. Exclusively
pasture-feeding animals ensures they maintain nutrient cycles, but it implies landscape
modification. Another issue to consider is the prevention of environmental risks, such as
wolf attacks. They might indeed harm the herd, causing a reduction in profits. Therefore,
the introduction of a mobile robot capable of monitoring the herd, performing grazing tasks
and sending information to the farmers when they cannot cover the whole herd would
help to improve current PLF solutions. It also helps biodiversity as it can locate wolf packs
and send their position to the herder to avoid encountering them.

Robots have applications in many fields as they have a multitude of functionalities
such as the ability to swim [10], navigation in dark underground mines [11], assistance in
subterranean search-and-rescue [12], and others. In livestock production, many commercial
solutions help farmers in their daily routines. One example is robotic milking farms, which
allow experts to analyse herd behaviour during the summer, enabling them to control
how temperature affects milk production as well as contributing to animal welfare [13].
Other tasks have also been automated to assist farmers, such as feeding robots (https:
//www.lely.com/solutions/feeding/vector/, accessed on 28 May 2022), forage pushers
(https://milkingparlour.co.uk/portfolio/joz-moov-robotic-silage-pusher/, accessed on
28 May 2022), scraping robots (https://www.lely.com/gb/centers/eglish/farm-business-
improvement-scheme/, accessed on 28 May 2022) or herd-monitoring robots (https://
www.gea.com/en/articles/data-for-better-fresh-cow-management/index.jsp, accessed on
28 May 2022), which provide data to monitor animal welfare, control feeding and prevent
disease. However, most of them are used indoors, as they require a specific infrastructure.

Although the use of a four-legged robot as a sheepdog has been reported in the news,
it is still an unsolved problem [14]. The reason is basically that the challenges of deploying
a robot into the wild (perception of the environment, herd control or communication prob-
lems, among others) still requires investigation to allow its use in real-world scenarios. In
this work, we focus on the development of a perception system that can build automat-
ically a dataset with the desired predators using the iNaturalist API and determine the
presence of such potential threats in order to prevent damages and respecting biodiversity.
Otherwise, the proposed system can be deployed on an autonomous robot operating as a
sheepdog in an outdoor farm.

We present a vision-based system that provides herders with valuable information
from on-site sheepdog robots in real time. This information helps to increase the profitability
of the sheep farm by avoiding some threats and helping the shepherd in their daily tasks.
The proposed system identifies threats such as the presence of wolves, which helps make
decisions about which grazing areas to drive the flock to. Moreover, we have developed a
method to automatically build datasets of images of certain potential predators of a region
by using the iNaturalist API [15]. The proposed system can be thus adapted to any region,
including species of animals specific of a certain area or part of the world.

This paper is organised as follows. In Section 2, the related works are discussed.
Section 3 presents the proposed system. The dataset considered to conduct the experiments
and all the experimental setup is given in Section 4. Section 5 shows the obtained results.
Finally, Section 6 includes a comparison with existing techniques, and Section 7 gathers the
achieved conclusions.

2. Related Works

PLF involves data-driven systems to control animals, supervising all the related aspects
such as their welfare or health, improving the production process. As sensor technology has
advanced enormously in recent years, many measures related to physiological, behavioural
and productivity aspects can be acquired [16]. Most of them are focused on monitoring
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and tracking animal behaviour [17,18] as it is related to livestock diseases and also allows
for the analysis of extensive and hilly pastures [19].

Different sensors are employed to develop these tasks such as GPS, cameras, accelerom-
eters or thermographic devices [20,21]. Generally, these sensors are classified in two groups:
sensors worn by animals such as ear tags, collars, leg straps or implants [5], and sensors
placed in the animal’s surroundings as in the case of cameras. Sensors placed on animals
have several drawbacks. For example, the use of GPS collars can harm animals or even
become stuck in forest. This is solved with sensors placed in the environment, which have
more advantages by allowing the tracking of many animals simultaneously instead of a
single one.

Among wearable sensors, there are approaches that use accelerometers or gyroscopes.
These sensors are attached to the ear or collar to classify grazing and ruminant behaviour
in sheep, providing information about their health or even detecting the lack of pasture
quality [22].

With non-wearable sensors, in [23], a system for tracking sheep that detects if they
are standing or lying with infrared radiation cameras and computer vision techniques
is proposed. Using video cameras and deep learning, wild animals can be successfully
identified, counted and described [24,25] as well as other particular species such as Holstein
Friesian cattle [26]. A quadcopter with a Mask R-CNN architecture has been used to detect
and count cattle in both extensive production pastures and in feedlots with an accuracy of
94% [27,28]. A complete review of the use of images from satellites, manned aircraft and
unmanned aerial systems to detect wild animals is given in [29].

Regarding herding, most of the existing approaches are based on monitoring animals
from a distance, since it results in a performance increase of the livestock farm, improves
animal welfare and reduces the environmental impact. This is called Virtual Fencing (VF),
and it is used for handling free-ranging livestock, as it optimises the rangelands and acts
like a virtual shepherd [30]. By combining GPS information from the collars and remote
sensing, it is possible to monitor animal interactions with the landscape to predict animal
behaviour and manage rangelands, protecting those regions that are sensitive or likely to
suffer degradation due to overgrazing [31]. Other approaches use drones to herd and move
animals, especially in areas dangerous for herders [5,32]. Regarding the impact of drones
to animals, there are studies that conclude that terrestrial mammals are more tolerant to
unmanned aircraft systems [33], becoming accustomed to them [34], but other species, such
as penguins, react differently [35]. Moreover, while unmanned ground vehicles (UGVs)
can operate in adverse weather conditions, drones cannot and have problems in forested
areas [36].

As the proposed system is developed outdoors, wireless coverage is not guaranteed.
In [37,38], a review of the existing wireless sensor networks that can be employed in
Precision Agriculture is gathered. Among them, the Long-Range Radio (LoRa) Protocol is
discussed as well as its use in different approaches such as smart irrigation systems or the
monitoring of agricultural production [38,39].

The proposed method goes a step further, focusing not only on the herd but also
on potential threats such as the presence of predators such as wolves, which is a major
challenge as it involves both livestock safety and wolf conservation [40,41]. In other
regions, predators are jaguars [42] or bears [43,44]. Thus, an adaptive method should be
automatically configured to work with different species of predators. In Section 4.1, we
show how to configure the method to detect other predators. In addition to this, contact
between wildlife and livestock can also be studied as it can potentially transmit zoonotic
diseases [45].

In order to detect the presence of wolves, computer vision techniques are employed.
Traditionally, features such as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust
Features (SURF) or Histogram of Oriented Gradients (HOG) were extracted from images
and then were classified using Support Vector Machines, among other classifiers, in order
to detect objects in an image [46]. These HOG features have been employed, i.e., for human

258



Sensors 2022, 22, 5321

detection [47], animal detection to avoid animal–vehicle collisions [48], and also in real
time [49].

Modern approaches use deep learning techniques such as Convolutional Neural
Networks (CNN) that extract features from images, which were subsequently classified
using several dense layers. There are also solutions that combine traditional features such
as HoG with CNN [50,51]. An extensive review of the object detection techniques using
deep learning is provided in [52]. Different CNN architectures are used for object detection
and classification, which are trained for large datasets—a time-consuming task [53]. As
it is not possible to handle certain problems if the available dataset is not so large or the
hardware requirements do not allow obtaining results in a short period of time, a technique
named transfer learning is used to take advantage of those existing models that have been
trained to detect certain objects and adapt them to a different domain [54].

Through transfer learning, pre-trained models can be adapted to new domains in a
way that takes advantage of the knowledge extracted from the set of millions of images on
which the network was trained and adapts it to the new problem [54]. They also reduce
training time as only the added layers, which introduce the information of the particular
problem, are trained. The model layers are frozen or fine-tuned, so the existing knowledge
is maintained but adapted to the new problem. Most of the popular solutions for object
detection are: YOLO (You Only Look Once), Single Shot Detector (SSD) and R-CNN. The
existing architectures with the pre-trained models have been applied to animal classification
with an accuracy over 90%. Some examples are fish classification [55], bird classification
[56], camera trap images classification [57] or wild animal image classification [39].

3. System Architecture

The imitation of sheepdog behaviours with a shepherd robot requires a decision-
making system that is able to manage information collected by its sensors and to generate
actions through its actuators, taking into account the changing characteristics of the envi-
ronment. As this system will be deployed in a real environment, some conditions, such
as lighting and obstacles that must be detected for a proper navigation, are not fixed,
since they vary over time. Moreover, these decisions have to offer long and short-term
opportunities to be reactive to any expected and unexpected behaviour in the scenario.

This research uses MERLIN [58], which combines deliberative and behavioural capaci-
ties. Deliberative capacities define the characteristics of planning to infer long-term tasks.
Behavioural capabilities provide the set of actions capable of responding to changes in the
environment more quickly. Thus, Merlin allows us to set a certain goal but is also able to
react if an unexpected event occurs.

Once the robot is deployed in a real context, it is crucial to handle unexpected be-
haviours, and for this, the use of different sensors is required. Traditionally, the literature
proposes the use of camera sensors, such as the one proposed in this research. This sensor
provides information about the context, such as dangerous species, identification of certain
animals or predator attacks. The information provided by the proposed method in the
robot’s closed environment will promote alternative navigation routes, keep herd control
updated or trigger an alarm process to alert the herder remotely if a wolf is detected. The
proposed vision module can also be deployed in fixed cameras near grazing areas.

The proposed vision module is included along with the other reactive components. It
assumes a background approach, feeding a knowledge database and keeping the delibera-
tive monitoring system that would interrupt the active task up to date. The architecture
proposed in [58] requires to be updated by including the new vision-based module pro-
posed in this paper in the reactive layer. As this reactive layer gathers all the sensors of
the robot, with the proposed vision module, the images acquired by the robot camera are
processed. The obtained information is sent to the rest of the layers of the architecture. The
useful provided knowledge about what the robot has seen helps the rest of the architecture
to make decisions about the subsequent actions to carry out (see Figure 1).
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Figure 1. MERLIN architecture and proposed vision module.

In some scenarios, the autonomous features of the robot are not sufficient for the
continuous monitoring of the herd, and there are some specific events where the herder
needs to access the robot in real time to monitor dangerous external contexts or improve
productivity. The point of view of the sheperd and of the sheepdog are not always the same,
so the robot can respond to the commands of the shepherd, who has previous experience
and knows how to deal with situations such as weather conditions or grazing specific areas.
Thus, images from the robot can be sent to the shepherd’s mobile phone on demand.

The acquired images are processed in the vision module in order to obtain infor-
mation about the environment. This information is sent to the shepherd by using the
LoRaWan® networking protocol. It is widely used in those areas where there are not
wireless connections satisfying Internet of Things requirements. The LoRaWan® network
architecture allows bi-directional communication, and messages are sent to a gateway
that functions as a bridge to the Internet network [59]. Those gateways can be located at
different points of the region, making it possible to cover a huge area (≈15 km).

4. Vision Module

The vision module belongs to the perception system, which plays an important role in
the behaviour of a robot. The use of a Unitree A1, which is a robot dog, has been proposed
to detect victim and pedestrians in emergency rescue situations by using thermal and color
cameras [60]. These systems usually use a Robot Operating System (ROS) with a vision
module to acquire images and detect the existing objects, i.e., smart glasses [61] or cameras
on drones [62]. Cameras can also be used to help in robot navigation, exploration and
mapping as in [63,64].

We propose a vision module that can be used in fixed cameras near pastures and
villages or in cameras built into SheepDog robot systems. Figure 2 shows the complete
pipeline of the process, where images are acquired and labelled in order to train the object
detection models.

There are datasets that are very frequently used in object detection problems [65].
PASCAL Visual Object Classes (VOC) [66] includes 20 categories with animals such as
birds, cats, cows, dogs, horses and sheep. ImageNet [67] provides an important source of
data for object detection with 200 labelled categories in the 2017 version. Common Objects
in Context (COCO) [68] includes the localisation, label and semantic information for each
object in one of the 80 categories. In this work, the proposed system can automatically
generate species-specific animal datasets through an API.
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Figure 2. Pipeline of the vision module. First, images and their location are acquired using an API;
then, images are labelled to train object detection models.

4.1. Data Acquisition And Labelling

Shepherds have to deal with predator attacks on the herd, so it is necessary to anticipate
this situation by evading the threat and distinguishing if there is a potential risk [69]. We
consider the presence of predatory animals as a potential risk, which can be a bear, tiger,
lion or wolf. In the proposed system, prey animals are distinguished from predators to
determine suitable grazing areas to maintain distances from predator locations.

We focus on a predatory species of the northwest of the Iberian Peninsula: the Iberian
wolf. In [70], a study of the diet of the Iberian wolf shows that it tends to eat goats, cattle,
sheep and rabbits, which are some of the animals that farmers raise in the area. Iberian
wolves have phylogenetic proximity to other European wolf populations (Canis lupus),
being considered as a sub-specie of it (Canis lupus signatus). Otherwise, dogs are the
domesticated descendants of the wolf, presenting similarities as specie (Canis familiaris). In
this paper, we have created a dataset to differentiate a predator (wolf) from a prey (dog)
that can be implemented for more species diversity.

We have used the iNaturalist API [15] to create the dataset, obtaining images from two
species: Canis lupus (wolf) and Canis familiaris (dog). As the code is available in [71], the
vision module can be adapted to other predators of other regions by using the notebook
get_inaturalist and choosing the desired species. Localisation has allowed us to divide
the images into two groups: Europe and Outside Europe. Then, images were labelled
manually by experts, removing images with low quality. Figure 3 shows how 925 images
and 1137 detections are split by species and location.

Figure 3. Information of the dataset disaggregated by species and location in number of images
(left side) and number of detections (right side).
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Images present diversity, as different animals can appear on the images (Figure 4a),
lying (Figure 4b), looking to the camera (Figure 4c), partially occluded (Figure 4d), with
different lighting conditions (Figure 4e), with multiple detections (Figure 4f) or just one
(Figure 4g), feeding (Figure 4h) with different illuminations and different distances from
the camera. Due to this information, in Europe, we can observe wolves in couples or alone,
as can be shown in Figure 5.

Figure 4. Samples of dogs (upper row) and wolves (bottom row) in Europe (left) and the rest of the
world (right).

Figure 5. Iberian wolves detected in Europe. Bubble size depends on the number of images.

4.2. Object Detection Architectures

Object detectors are evaluated based on accuracy, speed and complexity. Two-stage
detectors have two steps: extract features from the input image (feature extractor) and
recognise the features (classifier). Meanwhile, one-stage detectors combine the feature
extractor and classifier into one, reducing complexity and improving speed, but accuracy
may be reduced. As the proposed module is deployed in real-time environments, it is
based on one-stage detectors. The considered state-of-the-art algorithms [72] based on one
stage are You Only Look Once (YOLO) in different versions (YOLOv1, YOLOv2, YOLOv3,
YOLOv4, YOLOv5) and Single-Shot MultiBox Detector (SSD). SSD has improved versions
such as Deconvolutional SSD (DSSD) that includes large-scale context in object detection,
Rainbow SSD (RSSD) that concatenates different feature maps using deconvolution and
batch normalisation [73], and Feature-fusion SSD (FSSD) that balances semantic and posi-
tional information using bilinear interpolation to resize feature maps to the same size to
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be subsequently concatenated [74]. The comparison of different architectures for real-time
applications presented in [75] also mentions RetinaNet because it has higher accuracy,
but it is not recommended for real-time applications, as it has a frame rate lower than
25 frames per second (FPS). EdgeEye [76] proposes an edge computing framework to
analyse real-time video with a mean of 55 FPS as inference speed.

For evaluation, different metrics have been considered. First, Intersection over Union
(IoU) measures the overlapping area between the predicted bounding box and the ground-
truth divided by the union of the areas. IoU is fixed by a threshold (t) generating the
confusion matrix as:

• True Positives (TP) are those objects detected by the model with an IoU greater than
the considered threshold (IoU ≥ t);

• False Positives (FP) are the detected objects whose IoU is less than the fixed threshold
(IoU < t);

• False Negatives (FN) stand for those objects that are not detected;
• True Negatives (TN) are the number of objects detected by the model when actually

the image does not have such objects.

Detector models use performance metrics computed from the confusion matrix men-
tioned above as follows:

• Precision: measures how many of the predicted outputs labelled as true predictions
are correctly predicted:

Precision =
TP

TP + FP
(1)

• Recall: measures how many of the real true predictions are correctly predicted:

Recall =
TP

TP + FN
(2)

In order to compare the results of different authors, there are well-established metrics
based on mean Average Precision (mAP), which is the average of the accuracy obtained
in the object detection over all the dataset categories. Specifically, metrics are related to
datasets mentioned previously [77]:

• COCO metric (mAPCOCO or mAP@50 : 5 : 95): evaluates 10 IoUs between 50% and
95% with steps of 5% of mean Average Precision as

mAPCOCO =
mAP0.50 + mAP0.55 + mAP0.60 + · · ·+ mAP0.95

10
(3)

• PASCAL VOC metric (mAPVOC or mAP50): evaluates IoU at 50%.

4.3. SSD

SSD is composed by two components: a backbone model (in this case, a pre-trained
VGG16) and an SSD head with convolutional layers to obtain the bounding boxes and
categories of the detected objects. From an image of 300 by 300 pixels, SSD achieves 72.1%
mAPVOC on a VOC2007 test at 58 FPS on a Nvidia Titan X [78]. The model has been trained
from the PAZ (Perception for Autonomous Systems) library with the object detection
module [79].

4.4. YOLO

YOLO is also based on a classification backbone with new headers to obtain the
bounding box and the assigned class of the object. There are multiple implementations of
the architecture, for example, YOLOv3 [80], which uses a DarkNet framework and makes
predictions in three different scales. It achieves 57.9% mAPVOC in 51 ms (around 20 FPS).
An improvement was made with YOLOv4 [81] obtaining 65.7% of mAPVOC and a speed
of 65 FPS. After this, a tiny version of YOLOv3 [82] was proposed with higher speed but
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lower precision. The newest version, which is YOLOv5 [83], can achieve 68.9% of mAPVOC
with more than 80 FPS. Moreover, it includes different versions of complexity, obtaining
more precision and more inference time when the model is more complex. The YOLOv5
models are: Nano (YOLOv5n), Small (YOLOv5s), Medium (YOLOv5m), Large (YOLOv5l)
and Extra-Large (YOLOv5x).

5. Results

The goal of the following experiment is to establish which of the existing architectures
is better to detect predators as wolves in images taking into account performance and speed
due to it being a real-time vision module.

On the one hand, an SSD model was trained with pre-trained weights from VGG and
Stochastic Gradient Descent (SGD) optimizer (as in [78]) with a learning rate of 0.0001.
Training was completed during 100 epochs with a batch size of 16. The model achieves
92.90% of mAPVOC in the training set and 85.49% in the test set. Inference takes 80 ms on
average, which corresponds with 12.5 FPS (in an NVIDIA GeForce RTX 2060).

On the other hand, multiple YOLO models were trained with an SGD optimizer
configured with a learning rate of 0.01 (as in [80]) and a batch size of 4 during 50 epochs.
Table 1 shows the obtained results of the different models. As it can be observed, YOLOv3
achieved the best results in mAPCOCO with 88.63%, while the tiny model is the fastest one
with 64 FPS also with an NVIDIA GeForce RTX 2060. With the newest version of YOLO, the
extra-large model YOLOv5x yielded the highest mAPCOCO with 88.24% but with the lower
frame rate, whereas the nano, small and medium architectures are faster, achieving 64 FPS
and keeping a mAP sligthly lower. Small architectures (nano YOLOv5n, small YOLOv5s
and medium YOLOv5m) are lighter in weight, and therefore, the execution time is lower.
Heavier architectures (large YOLOv5l and extra-large YOLOv5x) take longer to run but
have higher precision in the results.

Table 1. Results of the models over the test set, where mAPVOC is the PASCAL VOC metric and
mAPCOCO corresponds with the COCO metric. Inference time is measured in ms, and YOLOv3t is
YOLOv3-tiny. Best results are highlighted in bold.

Model Precision Recall mAPVOC mAPCOCO Inference FPS

SSD 85.49 93.33 85.49 47.87 80 12.5

YOLOv3 99.35 99.56 99.49 88.63 31.24 32.01
YOLOv3t 94.86 94.97 98.63 71.98 15.62 64.01

YOLOv5n 95.88 96.13 99.07 75.86 15.62 64.02
YOLOv5s 98.54 98.54 99.47 82.78 15.62 64.01
YOLOv5m 99.17 99.52 99.49 85.53 15.62 64.02
YOLOv5l 99.47 99.61 99.50 87.57 31.24 32.01
YOLOv5x 99.38 99.73 99.50 88.24 46.86 21.34

Figure 6 shows the scheme of the final module. Images are divided into training
and validation using localisation: species from outside Europe are used for training and
validation is performed with images of European species. First, the YOLO model is trained
and then, metrics are calculated using the validation set (2nd step). Once the model is
trained and evaluated as it is proposed in this paper, further steps involve integrating the
model in an autonomous system such as a robot or in any device with a fixed camera,
which acquires images (3rd step). The acquired images are processed by the model (4th
step). Finally, identified threats such as the presence of wolves can be used to raise an alarm
and inform the shepherd to avoid the area where they are located (5th step).
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Figure 6. Complete scheme of the proposed vision module.

Further study of the results indicates that YOLO performs best in terms of accuracy
and speed; that is, it is able to recognise wolves or wolf packs and distinguish them
from dogs with high accuracy and in real time. Figure 7 shows a graph with the COCO
metric and speed (FPS), where the best results are in the top right. We can determine that
YOLOv5m (medium) is the best model in terms of speed and mAP, as it can process 64 FPS
with 99.49% of mAPVOC and 85.53% of mAPCOCO. Observing these results, YOLOv5m is
chosen to form the vision module.

Figure 7. Results of the mAPCOCO over the speed for YOLO models.

YOLOv5 employs a loss function composed by three losses: the bounding box loss,
which uses a regression loss for object location (Mean Squared Error, MSE), the object loss,
which obtains the confidence of object presence (Binary Cross-Entropy) and classification
loss, which determines that the classification is correct (Cross-Entropy). Figure 8 displays
the evolution of the loss functions during the training that shows the good behaviour of
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the model. Moreover, an evolution of the obtained metrics is shown in Figure 9, achieving
a high performance after 30 epochs.

Figure 8. Loss functions of YOLOv5m during the training: bounding box loss with Mean Squared
Error (first graph), object loss with Binary Cross-Entropy (second graph) and classification loss with
Cross-Entropy (third graph).

Figure 9. Metrics of YOLOv5m: precision (first graph), recall (second graph), mAPVOC which
corresponds with PASCAL VOC metric (third graph) and mAPCOCO which corresponds with COCO
metric (fourth graph).

Finally, Figure 10 gathers some samples of the dataset with the objects detected by the
YOLOv5m model. As it can be pointed out, there are images of the considered categories in
which the objects to be detected, wolves and dogs, are at different distances to the camera
and also deal with occlusions. Figure 11 shows the confusion matrix for training and
validation data with an IoU greater than 0.5.

Figure 10. Samples of dogs (upper row) and wolves (bottom row) in Europe (left) and the rest of the
world (right) with the detections yielded by YOLOv5m.
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Figure 11. Confusion matrix for training (left) and validation (right) of YOLOv5m.

6. Discussion

There are approaches in the literature where researchers address similar problems of
animal detection and classification. For instance, in [27], cattle are counted by analysing
the images with a Mask R-CNN, obtaining 92% accuracy and AP for the detection of 91%,
which is outperformed by the proposed method. In addition, using image processing
and Mask R-CNN for counting animals, in [28], livestock, sheep and cattle are counted
and classified, achieving a precision of 95.5% and mAP40 values of 95.2%, 95% and 95.4%
for livestock, sheep and cattle, respectively. Using thermal images, animals such as dogs,
cats, deer, rhinos, horses and elephants are detected and classified with an mAPVOC of
75.98% with YOLOv3, 84.52% with YOLOv4 and 98.54% with Fast-RCNN [25]. In [24], the
problem is turned into a classification as follows. First, a binary classification is performed
to decide whether or not there are animals in the image, with an accuracy of 96.8%. If
animals are detected, then a classification of the number of animals in the image is carried
out, considering 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11–50, or +51 individuals and achieving 63.1%
top-1 accuracy.

According to the previously discussed methods, the proposed vision module outper-
forms the state-of-the-art results not only in precision and accuracy but also in speed to
be able to couple to real-time systems. Table 2 summarises the comparison between the
state-of-art methods explained above and the proposed method.

Table 2. Comparison of the state-of-the-art results with the proposed method for animal detection
and count of different species.

Problem Results

Holstein Friesian cattle detection and
count [24]

Animal detection: accuracy of 96.8%
Counting animals: 63.1% top-1 accuracy

Cattle count [27]
Counting animals: accuracy of 92%
Bounding box prediction (localisation): AP of 91%

Livestock, Sheep, Cattle detection [28]
Precision rate: 95.5%, 96% and 95%
Recall with IoU of 0.4: 95,2%, 95% and 95.4%

Animal detection in thermal images [25]
mAPVOC with YOLOv4: 75.98%
mAPVOC with YOLOv3: 84.52%
mAPVOC with Faster-RCNN: 98.54%

Wolf and Dog detection (Vision Module)
mAPVOC with YOLOv3: 99.49% (FPS: 32)
mAPVOC with YOLOv5m: 99.49% (FPS: 64)

7. Conclusions

In this paper, a vision-based module to detect predators in pasture-based livestock
farming and distinguish them from other species is proposed. This module can be deployed
within on-site sheepdog robots and fixed cameras to assist shepherds in threat detection.
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First, we propose a system that can automatically generate datasets of different species
through the iNaturalist API in order to obtain a module that can be used in any region
depending on the existing predators. Focusing on a predator specie of the northwest of the
Iberian Peninsula, namely the Iberian wolf, a particular dataset is obtained. The generated
benchmark has the aim of providing data and an evaluation framework to test different
algorithms to detect wolves, as a predator specie, and differentiate from other animals
such as dogs, which have a similar physical appearance. These data can be automatically
extended with the new predator and prey species of the region.

Then, multiple object detection models have been trained to establish which one
achieves better results in a real-time module. According to the obtained results, the best
results are achieved with YOLOv5m yielding an inference time of 15.62 ms, which allows
64 FPS. This model achieves a precision of 99.17% and a recall of 99.52% on the considered
benchmark, outperforming other existing approaches, with an mAPVOC of 99.49% and
mAPCOCO of 85.53%. These results fulfil the requirements of a real-time detection module
and improve state-of-the-art methods.

Future development lines involve integration into autonomous systems and data
collection in the field. Information about potential threats will enable early warning alerts
to be managed for herders in difficult-to-access terrain.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
COCO Common Objects in Context
FPS Frame per second
IoU Intersection over Union
LoRa Long-Range Radio
mAP mean Average Precision
PAZ Perception for Autonomous Systems
PLF Precision Livestock Farming
ROS Robot Operating System
SGD Stochastic Gradient Descent
SSD Single-Shot MultiBox Detector
UGVs Unmanned Ground Vehicles
VF Virtual Fencing
VOC Visual Object Classes
YOLO You Only Look Once
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Abstract: Contour planting minimizes soil degradation, making agricultural production more sustain-
able. Currently, geotechnologies can provide more precise and fast data from relief than rudimentary
data acquisition for agricultural management. Thus, the objective of this work was to analyze the sim-
ilarities between contour lines from topography and Remotely Piloted Aircraft, using the Hausdorff
distance algorithm. This study was carried out in the period between January 2020 and November
2021 in four localities in the State of Rio de Janeiro, Brazil: two areas located in the municipality
of Bom Jardim and two areas in the municipality of Seropédica. Data were acquired through a
conventional topographic survey and an aerial photogrammetric survey by Remotely Piloted Aircraft.
From the acquired field data for the studied areas, the Digital Elevation Models were generated with
a spatial resolution of 0.20 m and the contour lines with an equidistance of one meter. The contour
lines obtained by both techniques were superimposed and their similarity was verified using the
Hausdorff distance. The results show that there was a better similarity among the contour lines
in areas with a very rugged relief than in a smooth relief. Also, the lowest altimetric differences
observed in the Digital Elevation Models were associated with the smallest Hausdorff distance. These
adjustments correspond, respectively, to the segments between the contour lines with the best and
the worst individual similarity for each area. We observed that the similarity between the contour
lines from topography and RPA yielded slope differences lower than 6.1% for at least 95% of all
studied areas. The Hausdorff distance analysis allowed us to conclude that contour planting can be
performed from data obtained via Remotely Piloted Aircraft, provided that vertical accuracy analysis
controls the quality of the Digital Elevation Models.

Keywords: aerial photogrammetry by Remotely Piloted Aircraft; contour planting; Digital Elevation
Model

1. Introduction

Food demand is expected to increase, and the rational use of natural resources available
on Earth becomes an incontestable premise from any perspective in the near future. Soil is
one of the most precious and necessary resources for agricultural activities, and because
of it, its use must be subjected to processes that increasingly generate less damage to
the environment.

Conservation agricultural practices play a key role in a sustainable agricultural pro-
duction scenario [1]. Agricultural productivity could expand without an increase in en-
vironmental degradation if the amount of impact per unit of product or activity were
reduced [2].
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Among the usable conservation practices, contour planting is one of the viable op-
tions to preserve soil erosion processes, according to Santos et al. [3], Griebeler et al. [4],
Leite et al. [5], and Xavier et al. [6]. Contour planting contributes to sustainability by con-
trolling the loss of soil particles so that the soil becomes more resistant to the erosive
process [7]. In this context, techniques that result in more efficient agricultural produc-
tion [8], such as implementing Intelligent Agriculture practices will become relevant for
preserving natural resources [9].

Presenting different technologies to farmers will allow them to acquire skills to achieve
socially, economically, and environmentally advanced agriculture technology [1]. From
this premise, geotechnologies contribute to decision making, providing promising tools
to perform different analyzes in rural space which can be used as a means of control and
knowledge concerning land use [10,11].

Hunt and Daughtry [12] and Maes and Steppe [13] reviewed the progress of remote
sensing with Remotely Piloted Aircrafts (RPAs) in the scope of Precision Agriculture (PA).
The authors emphasized that the focus of the most recently discussed applications in the
scientific environment has been the detection of water stress, pathogens, and pesticide
applications, monitoring and detection of weeds, and assessment of the nutritional status,
growth, biomass, and yield forecast of crops. Literature reviews on this subject are available
in Bendig et al. [14], Pérez-Ortiz et al. [15], Chang et al. [16], Schut et al. [17], Tsouros, Bibi,
and Sarigianni-dis [18], Santos et al. [19] and Delavarpour et al. [20].

RPAs generate digital cartographic products, such as Digital Elevation Models
(DEMs) [21,22] and slope maps [23,24], which are necessary for the discretization of the
relief, where the farming will be installed. Such products are considered indispensable
for several farmland management, e.g., coffee [25]. Coffee is generally growing on slop-
ing lands and contour planting provides a well-distributed crop, increasing operational
efficiency, mainly those arising from mechanized activity [25,26].

For digital cartographic products via RPA it is necessary to proceed with the quality
data analysis referring to the DEMs and their derived attributes, e.g., the contour lines for
the correct application in PA. This work presented a new perspective regarding the use
of RPAs in the data acquired, i.e., similarity analysis by the Hausdorff distance algorithm
among the contour lines compared to a more accurate elevation data source, such as
conventional topography. The objective of this comparison is based on the use of the contour
lines from aerial photogrammetry by RPAs, to carry out contour planting, optimizing the
PA cycle.

2. Study Area

We selected four rural localities in the State of Rio de Janeiro, Brazil: two properties
located in the municipality of Bom Jardim, in the Mountain Region of Rio de Janeiro, and
two areas located at the Federal Rural University of Rio de Janeiro (UFRRJ), in the lowlands
of Rio de Janeiro, municipality of Seropédica.

Areas 1 and 2 are located in the municipality of Bom Jardim. The first area of approxi-
mately 0.344 ha, between latitude 22◦17′23.987′′S–22◦17′21.494′′S, longitude 42◦20′6.930′′W–
42◦20′3.157′′W, the slope average of 38.4%. The second area of approximately 0.183 ha, be-
tween latitude 22◦17′30.056′′S–22◦17′28.826′′S, longitude 42◦19′54.851′′W–42◦19′52.368′′W,
the average slope 41.2%. Both sites at the time of data acquisition (January 2020) had collard
(Brassica oleracea, Acephala group), plantations carried out in beds, with an average height
of the crop around 0.25 m, planted intermittently, without weeds and the interference of
trees or buildings in the polygon of interest. Bare soil was predominant in these two areas.

Areas 3 and 4 are located on the UFRRJ campus. Area 3 of approximately 1044 ha,
between latitude 22◦47′11.965′′S–22◦47′6.392′′S, longitude 43◦40′49.271′′W–43◦40′44.625′′W,
and an average slope 6.5%. Area 4 of approximately 0.756 ha, between latitude 22◦46′47.015′′S–
22◦46′40.282′′, longitude 43◦41′7.111′′W–43◦41′2.119′′W and slope average of 6.3%. Both areas
had grass cover at a height close to 0.05 m with patches of bare soil and without the interference
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of trees or buildings in the polygon of interest at the time of image acquisition in November
2021.

According to the Brazilian soil classification system [27], areas 1 and 2 have topography
characterized as very rugged relief. Areas 3 and 4 have topography characterized as smooth
relief. Figures 1 and 2 present the four study areas separated by region and the spatial
distribution of the control and checkpoints to perform the external orientation of the images
and the quality control.

Figure 1. Orthophotomosaic of area 1 (a) and area 2 (b), with their respective control and checkpoints.

Figure 2. Orthophotomosaic of areas 3 (a) and 4 (b), with their respective control and checkpoints.
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3. Data and Methods

3.1. Data Acquisition and Analysis

In this section, the procedures for data acquisition and analysis were presented accord-
ing to the steps shown in the flowchart (Figure 3).

 

Figure 3. Flowchart for data acquisition and analysis.

The following sections presented the detailed steps in Figure 3.

3.1.1. Tracking Points by GNSS

We chose a pair of GNSS points implanted in the field in each of the four studied
areas for georeferencing topographical points and to carry out the external orientation of
the images obtained by the RPA. The tracking was performed using the fast static relative
type method, with three hours of occupancy at each vertex. The equipment used was a
dual-frequency (L1, L2) Spectra Precision EPOCH 25 GNSS receiver, performing the data
post-processing using the Leica Geo Office software.

The processing was made with the coordinates (E, N, and h) of the control stations
originating from the Brazilian Network for Continuous Monitoring of GPS (RBMC), located
in the municipalities of Niterói (RJNI) and Vassouras (RJVA), State of Rio de Janeiro,
Brazil. The coordinates were extracted from the descriptions of the databases provided by
the Brazilian Institute of Geography and Statistics (IBGE), responsible for regulating the
Brazilian Geodetic System (SGB). The geoid height component (N) was used to convert
the ellipsoidal height (h) into orthometric height (H), where N was calculated from the
MAPGEO 2015 software provided by the IBGE.

We defined the reference ellipsoid and the projection system for the elaboration of
the products of interest. For this purpose, the elliptical Geodetic Reference System 1980
(GRS80) was used in the Geocentric Reference System for the Americas (SIRGAS 2000).
The GRS80 ellipsoid was used due it is the basis of SIRGAS 2000, the current Geodetic
Reference System of the SGB. The projection system was the Universal Transverse Mercator
(UTM), Zone 23 South, central meridian equal to 45◦W.

3.1.2. Conventional Topographic Survey

The topographic planialtimetric survey was carried out using a total station, Spectra
Precision, model Focus 2 by the irradiation method. The equipment has a nominal angular
precision of 2 s and a nominal linear precision of 2 mm + 2 ppm, classified as a high
precision device according to the Brazilian Standard (NBR) 13.133 (Brazilian Association of
Technical Standards—ABNT, 1994) which regulates topographic surveys.

The topographic survey aimed to register the relief variations of the areas for the
production of DEMs, contour lines, and topographic slope maps, as shown in Figures 4
and 5. We surveyed the 15 control points and 20 checkpoints implemented in the field,
as reference for the processes inherent to the aerial photogrammetric survey by RPA
and subsequent validation in the quality control stage. The polygonal and topographic
irradiation data were processed using the GeoOffice Topographic 2008 software v. 2.8.4.0,
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exporting the attributes spreadsheet in text format and the “.txt” extension to ArcGis V.
10.8. In the GIS environment, Digital Elevation Models were generated and then contour
lines and slope maps were derived. To perform these operations, the “Topo to Raster”
interpolator was used. This interpolation algorithm is based on iterative finite differences
to generate a regular grid from elevation points and/or contour lines ESRI [28]. According
to Hutchinson [29], the “Topo to Raster” uses known information from surface elevation,
such as elevation points (such as in this work), contour lines, and water body delimitations,
among others. Also, according to the author, the insertion of this information optimizes the
resolution of the DEM, improving the quality of the generated product.

Figure 4. Surveyed points from the areas of Bom Jardim municipality: (a) location of points registered
in area 1 by conventional topographic survey and (b) location of points registered in area 2 by the
conventional topographic survey.

3.1.3. Remotely Piloted Aircraft Survey

The RPA Phantom 4 Pro equipment was used to carry out the aerial photogrammetric
survey (Figure 6). The 20-megapixel CMOS camera was programmed to obtain aerial
images at previously stipulated time intervals and according to the flight plan prepared for
the area.

The aerial photogrammetric survey was conducted following the steps: flight plan-
ning, field implementation of control points and checkpoints, image acquisition, project
configuration, and the digital processing of the images.

Initially, the prior planning was prepared through the Drone Deploy application, with
the information relevant to the flight lines configured for the imaging of the areas. Then, we
defined the flight height of 60 m, flight direction in the longitudinal direction, and lateral
and longitudinal overlaps of 80% and 80%, respectively, for the four areas.

Before the flight, we checked the propellers’ fixation, the energy load of the remote
control and the aircraft, the amount of satellite signal the RPA was receiving and enabled
the starting point system, checked the compass, radio, IMU, and gimbal calibration using
DJI GO v.4 software (DJI, G.O.4, 2017).

After the flight, the digital processing of the images was performed using the software
Pix4D mapper v. 4.5.6. This software automatically calculated the positions and orienta-
tions of the original images obtained using the RPA through aerial triangulation, finally
performing the bundle block adjustment. The interior and exterior orientation parameters
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were provided and recognized by the software automatically, as they were in the RPA
camera library.

Figure 5. Surveyed points from the areas of Seropédica municipality: (a) location of points registered
in area 3 by conventional topographic survey and (b) location of points registered in area 4 by the
conventional topographic survey.

(a) (b) 
Figure 6. Phantom 4 Pro RPA for field survey. (a) Above view, and (b) Side view.

In the Pix4D mapper environment, all three processing steps were performed auto-
matically [30]. These steps followed interior orientation, automatic correspondence among
images imported into the software, and with some overlap, the simultaneous bundle block
adjustment, and the generation of final products, such as the orthophotomosaic and the
dense point cloud generation. However, in the external orientation stage in the image
orthorectification process, the control points in the images were identified manually with
the insertion of their respective coordinates.

The Structure from Motion (SfM) algorithm, which uses the combined approach to
know the pattern of correspondence in the images, was used to derive dense point clouds
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in three dimensions (3D) from the images obtained by the camera coupled to RPA [31].
Initial processing was performed by selecting the Pre-Set Standard 3D Maps option, using
the original image scale. Digital Surface Models (DSM) were generated, performing the
automatic filtering procedure for the dense cloud of points generation. The densification
of the point cloud was performed based on the original scale of the image. The density of
points of the dense cloud was elaborated with the optimized parameter (Pix4D default).

After performing the steps of digital image processing, orthophotomosaics and dense
point clouds were generated for all areas in the Pix4D mapper software, which were
exported in LAS format to the ArcGIS software. In the GIS environment, the data were
processed to obtain the DEMs, derive the contour lines, and prepare the slope maps, using
the “Topo to Raster” interpolator.

In a GIS environment, the coordinates E (m), N (m), and H (m) of homologous points to
the checkpoints registered by topography were extracted from the orthophotomosaics and
the DEMs of areas 1, 2, 3, and 4. This procedure was necessary to carry out the planimetric
and altimetric quality control of the generated digital cartographic products.

3.2. Quality Control

The product accuracy measured by comparing its information with those observed
in the field is more reliable and of better quality. The verification of the accuracy of
the product was determined based on statistical parameters linked to a certain level of
confidence adopted, following the standardization recommended for each country [32].
Therefore, those obtained by conventional topography were considered reference data, as
one of the most accurate methods for obtaining data [33]. Therefore, the digital cartographic
products obtained through RPA were considered data to be validated.

The assessment of the positional accuracy of the orthophotomosaics and the altimetric
accuracy of the DEMs was based on the Positional Accuracy Standards for Digital Geospa-
tial Data (PASDGD) (ASPRS 2014), considering open terrain and areas without vegetation
(NVA classification) [34]. This was possible because the vegetation had low heights in the
four areas (0.25 m in areas 1 and 2 with mostly bare soil and 0.05 m in areas 3 and 4 with
patches of bare soil). GeoPEC software v. 3.5.2 was used to evaluate the horizontal and
vertical accuracy, where the coordinate data of the 20 checkpoints (reference and test) in
each area were inserted through a file (.txt). The ASPRS PASDGD standard was used for the
analysis of geospatial datasets based on the Root Mean Square Error (RMSE) statistic of the
checkpoints. The RMSE was obtained as a function of the difference between the reference
coordinates and the observed coordinates, for the three axes (x, y, and z), as presented in
Equations (1)–(3), respectively [35].

RMSEx =

√
1
n

n

∑
i=1

(Xre f erence − Xtest)
2 (1)

where:

n is the number of samples;
Xreference as coordinate value (x) in the reference product (m);
Xtest as coordinate value (x) in the product tested (m).

RMSEy =

√
1
n

n

∑
i=1

(Yre f erence −Ytest)
2 (2)

where:

n is the number of samples;
Yreference as coordinate value (y) in the product reference (m);
Ytest as coordinate value (y) in the reference product (m).
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RMSEz =

√
1
n

n

∑
i=1

(Zre f erence − Ztest)
2 (3)

where:

n is the number of samples;
Zreference as coordinate value (z) in the reference product (m);
Ztest as coordinate value (z) in the reference product (m).

From the results found in the RMSEx and RMSEy, the value of the RMSEr (radial
direction) was determined using Equation (4) [36].

RMSEr =
√
(RMSE2

x) + RMSE2
y) (4)

After RMSEr and RMSEz results, horizontal (Equation (5)) and vertical (Equation (6))
accuracy values were calculated for each of the areas, according to the PASDGD standard
(ASPRS 2014).

Accuracyr = 1.7308× RMSEr (5)

Accuracyv = 1.960× RMSEz (6)

3.3. Hausdorff Distance Application

The Hausdorff distance (dH) algorithm was used to quantify the similarity between
the homologous contour lines referring to the digital products generated by two different
data acquisition techniques. According to Gregoire and Bouillot [37], the algorithm had its
conception developed by Felix Hausdorff, according to Equation (7):

dH(A, B) = sup{h(A, B), h(B, A)} (7)

where:

dH(A,B): as Hausdorff distance.
sup: as the highest value between two data set.
h(A,B): as the highest distance between the minimum data set from A to B.
h(B,A): as the highest distance between the minimum data set from B to A.

h(A,B) and h(A,B) were given by Equations (8) and (9):

h(A, B) = sup{minb∈B{d{(a, b )}} (8)

h(B, A) = supb∈B{mina∈A{d{(b, a )}} (9)

According to data sets (A and B), which are the linear features that describe the contour
lines, the Euclidean distance from each point a ε A to all points b ε B was determined.
The data set (A) is composed of contour lines from conventional topography (reference
line), whereas the data set (B) is formed by contours obtained via RPAs (test line). Figure 7
represents the distance from the data set A to B (d1) and the distance from data set B to A
(d2) between the reference line (LR) and the test line (LT).

Figure 7. Hausdorff distance survey. Adapted with permission from Santos et al. [38].
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The smallest distances between the points in the data set A to B were determined, and
the supreme value of the smallest ones was taken, that is, the greatest distance between
the smallest measured distances was fixed. This same process was repeated, starting from
data set B to A. At the end of the process, two maximum values h(A,B) and h(B,A) were
determined, therefore, the dH was the biggest value.

The analysis of the dH algorithm between the contour lines was performed with the
aid of the similarity checker software, developed for this experiment. For such, the user
inserted the data in the format (GeoJSON) of the georeferenced files containing the contour
lines of both representations to be compared.

From the insertion of the data, the software applied the algorithm based on the
recognition of the elevation of the homologous contour lines and their georeferenced
positioning, returning with the dH for each pair of curves. The similarity of a cartographic
representation obtained by different techniques can be individually and jointly analyzed,
determining statistical parameters such as mean (x), standard deviation (σ), maximum
(max), and minimum (min) distance from a set of contour lines in the same representation.

Finally, the contour lines were superimposed on the maps that represent the altimetric
differences and the resulting slope differences between both techniques to associate them
with the results found by the dH.

3.4. Database System Application of Hausdorff Algorithm

A Database System (DBS) was created for the application of the Hausdorff algorithm,
which is composed of, at least, an application program, a Database Management System
(DBMS), and a Database [39]. The flowchart for using this system is shown in Figure 8.
The application program for this system was available on a website divided into front-end
and back-end. Apache Lounge 2.4 was used on the Windows 10 Pro operating system to
provide this application on a local network.

 

Figure 8. Flowchart of the Database System.

The HTML, the CSS style, and the Javascript programming languages were used
to develop the front end. The Hypertext Preprocessor (PHP) version 8.1 and Standard
Query Language (SQL) were used for the back-end implementation, while the MySQL
Community Server DBMS version 8.0 was used for geospatial data storage.

Thus, the application consisted of a Web system with a Geographic Database. MySQL
was chosen due to its fast processing speed and spatial function with the implementa-
tion of the Hausdorff distance algorithm between two linear features. This function is
called “ST_HausdorffDistance” and can calculate the similarity of two different geometries
inserted in the WEB system.

Data entry in this system was performed by uploading a file in GeoJSON format [40,41].
The choice of GeoJSON was based on their fast processing speed, easy data readability
by humans and machines, reduced file size, and full compatibility between all software
technologies used in this work. Therefore, all contour lines were created or converted to a
file in GeoJSON format. The European Petroleum Survey Group (EPSG) Geodetic Parameter
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Dataset of the geospatial data used corresponds to the MySQL-controlled geographic
database. EPSG 31983 was configured in the SIRGAS 2000 Reference System, zone 23 S,
Central Meridian 45◦W, of the UTM Projection System.

The “ogr2ogr” is a Geospatial Data Abstraction Library (GDAL/OGR) command-line
tool to convert one OGR Simple Features Library into another. In this work procedure, the
software “ogr2ogr” was used to convert files in DXF format, which contained the contour
lines, to files in GeoJSON format. However, the file in GeoJSON format was constructed
with features of the type LineString (shown in the blue rectangle of Figure 9) and each point
of the LineString had the three axes x, y, and z.

 

Figure 9. Example of a system input GeoJSON file.

Thus, the z coordinate consisted of the elevation of the contour lines (shown in the red
rectangle in Figure 9). The z coordinate value is used in the software to sort and organize
the contour lines in this system.

The contour lines were uploaded by the user via the website’s graphical interface. After
performing this procedure, the system’s back-end received and sent the geospatial data to
be stored in a MySQL database. After correctly populating the geographic database, spatial
queries were created using SQL. A new webpage was developed to present the results
of these queries. On this webpage, the results obtained according to the dH algorithm
between the linear features, which represent the contour lines, were presented in table
format. In Figure 10, the PHP and SQL code of the query is analyzed to calculate the
Hausdorff distance between curves of different geospatial objects in MySQL. Figure 11
shows the PHP and SQL implementation of the query to calculate the Hausdorff distance
between contour lines in a single MySQL geospatial object.
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Figure 10. Implementation of the query in PHP and SQL to obtain the Hausdorff distance among
features of different geospatial objects.

 

Figure 11. Implementation of the query in PHP and SQL to obtain the Hausdorff distance among
features of the same geospatial object.
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4. Results and Discussion

4.1. Differences in Relief Modeling

The DEMs were generated for areas 1, 2, 3, and 4 from the topographic and aerial
photogrammetric surveys. Subsequently, the map algebra operation among their respective
products was carried out to obtain the altimetric difference between both techniques
(Figures 12 and 13).

Figure 12. DEMs for areas 1 and 2 and the differences of DEM from both methodologies: (a) DEM
of area 1, obtained by conventional topographic survey; (b) DEM of area 1, obtained using RPA;
(c) altimetric difference between DEMs (a,b). (d) DEM of area 2, obtained by conventional topographic
survey; (e) DEM of area 2, obtained using RPA; (f) altimetric difference between DEMs (d,e).

The maps represented in Figure 12c,f and Figure 13c,f show the differences among the
DEMs for area 1, area 2, area 3, and area 4. Based on the area occupied by the classifications
indicated on the maps (≤0.065 m; 0.066–0.135 m; 0.136–0.270 m; 0.271–0.500 m; ≥0.501 m),
the percentages of differences obtained in the total area measured (Table 1).

Table 1. Percentages of the differences among the DEMs in the total area.

Intervals of Difference
among DEMs (m)

Area 1 (%) Area 2 (%) Area 3 (%) Area 4 (%)

≤0.065 23.50 25.23 55.76 84.99
0.066–0.135 36.50 69.43 38.66 14.03
0.136–0.270 38.86 5.33 5.58 0.84
0.271–0.500 1.14 0.01 0.00 0.14
≥0.501 0.00 0.00 0.00 0.00

After generating the DEMs, slope maps were derived for all areas, repeating the map
algebra operation (Figures 14 and 15).

The difference between the slope maps of area 1, area 2, area 3, and area 4 are rep-
resented sequentially by Figure 14c,f and Figure 15c,f. From the classifications presented
in the maps (≤2.0%; 2.1–4.0%; 4.1–6.0%; ≥6.1%), the percentage of occurrence of these
intervals of differences in the total area was verified (Table 2).
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Figure 13. DEMs for areas 3 and 4 and the differences of DEM from both methodologies: (a) DEM
of area 3, obtained by conventional topographic survey; (b) DEM of area 3, obtained using RPA;
(c) altimetric difference between DEMs (a,b). (d) DEM of area 4, obtained by conventional topographic
survey; (e) DEM of area 4, obtained using RPA; (f) altimetric difference between DEMs (d,e).

Figure 14. Slope maps for areas 1 and 2 and the differences in slope from both methodologies:
(a) slope map of area 1, obtained by conventional topographic survey; (b) slope map of area 1
obtained using RPA; (c) difference between slope maps (a,b). (d) slope map of area 2 obtained by
conventional topographic survey; (e) slope map of area 2 obtained using RPA; (f) difference between
slope maps (d,e).
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Figure 15. Slope maps for areas 3 and 4 and the differences in slope from both methodologies:
(a) slope map of area 3, obtained by conventional topographic survey; (b) slope map of area 3,
obtained using RPA; (c) difference in slope between maps (a,b). (d) slope map of area 4, obtained by
conventional topographic survey; (e) slope map, of area 4, obtained using RPA; (f) difference in slope
between maps (d,e).

Table 2. Occurrence percentages of the slope difference in the total area.

Slope Difference Intervals (%) Area 1 (%) Area 2 (%) Area 3 (%) Area 4 (%)

≤2.0 93.15 84.69 92.73 99.59
2.1–4.0 6.25 9.78 4.92 0.31
4.1–6.0 0.51 3.29 1.39 0.10

6.1 0.09 2.24 0.96 0.00

4.2. Validation and Accuracy Analysis

Validation was performed after extracting the planimetric and altimetric coordinates
of the 20 checkpoints determined by the topography (reference). The points were com-
pared to their respective counterparts extracted from orthophotomosaics (planimetry) and
DEMs (altimetry), generated after digital image processing obtained through RPA (test).
Tables 3 and 4 sequentially present the results of the statistical parameters of the planimetric
validations of the orthophotomosaics and altimetric of the DEMs.

Table 3. Result of the statistical parameters of planimetric validations of orthophotomosaics.

Parameters Area 1 Area 2 Area 3 Area 4

x (m) 0.032 0.043 0.029 0.018
σ (m) 0.019 0.037 0.019 0.008

max. (m) 0.078 0.112 0.071 0.036
min. (m) 0.010 0.000 0.000 0.010

RMSEx (m) 0.027 0.035 0.029 0.014
RMSEy (m) 0.025 0.044 0.018 0.014
RMSEr (m) 0.037 0.057 0.035 0.020
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Table 4. Result of statistical parameters of DEM altimetric validations.

Parameters Area 1 Area 2 Area 3 Area 4

x (m) 0.046 −0.003 0.039 0.022
σ (m) 0.056 0.065 0.048 0.033

max. (m) 0.210 0.140 0.150 0.090
min. (m) −0.050 −0.100 −0.050 −0.040

RMSEz (m) 0.071 0.063 0.061 0.039

The highest RMSEr values occurred in areas 1 and 2, whose average slopes are higher
than areas 3 and 4, as they are areas classified as very rugged relief (Table 3). Similarly to
what was perceived in the determination of the planimetric statistical parameters of the
orthophotomosaics (Table 3), the highest values of RMSEz occurred in areas 1 and 2, whose
behavior was already expected because they are areas with greater slopes when compared
with areas 3 and 4 (Table 4).

The horizontal and vertical absolute accuracy values were independently determined
at the 95% confidence level for the four study areas (Table 5).

Table 5. Horizontal and vertical absolute accuracy of the areas.

Parameters Area 1 Area 2 Area 3 Area 4

Horizontal accuracy (m) 0.064 0.099 0.061 0.035
Vertical accuracy (m) 0.139 0.123 0.120 0.076

The results found in Table 5 for horizontal accuracy indicate that the worst value
occurred for area 2, in the order of 0.099 m, whose average relief slope is higher than the
others. While the best value occurred for area 4, in the order of 0.035 m, whose average
relief slope is the smallest among all areas.

For vertical accuracy, area 1 presented the worst value (0.139 m) when compared to the
other areas and area 4 presented the best overall result, in the order of 0.076 m. However, it
is noteworthy that all areas presented a vertical accuracy smaller than the size of a pixel of
the DEMs (0.20 m). The results found in the analysis of DEM vertical accuracy for areas 1
and 2 (very rugged relief) were similar to those found by Pedreira et al. [42]. The authors
used 20 checkpoints to determine accuracy and performed an aerophotogrammetric survey
in a single study area, dividing it into relief classes according to the slope. The altimetric
accuracy results found by the authors for the relief class which is comparable to areas 1 and
2 of this study, were in the order of 0.125 m. In our study area, 1 presented a lower vertical
accuracy value (0.139 m), however, area 2 was slightly higher (0.123 m). They found a
vertical accuracy in the order of 0.156 m for the relief class similar to areas 3 and 4 of this
work (smooth relief). Areas 3 and 4 presented vertical accuracy in the order of 0.120 and
0.076 m, respectively, therefore both were higher than those found by the authors [42].

4.3. Simiarity of Hausdorff Distance

After validating the aerophotogrammetric DEMs, contour lines were derived for each
area. Concomitantly, the contour lines were generated using the conventional topographic
survey. The contour lines were superimposed and the similarity evaluator software re-
turned with the dH for each pair of homologous contour lines in each area, as shown in
Table 6.

The results show that the best fit represented by the dH in area 1, occurred in the
contour line of 881 m of elevation, with the measure of similarity in the order of 0.295 m.
While in the contour line at 863 m of elevation, the measure of similarity found was 1.275 m,
which is considered the worst fit in this representation.

The best fit represented by the dH in area 2 was found in the contour line at 869 m of
elevation, with the similarity measure in the order of 0.218 m. The worst fit occurred in the
contour line at 857 m of elevation, with a similarity measure of 0.573 m.
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Table 6. Determination of dH for contour lines in areas 1 to 4.

Contour Line
Elevation (m)

Hausdorff Distance (m) Contour Line
Elevation (m)

Hausdorff Distance (m)

Area 1 Area 2 Area 3 Area 4

857 - 0.573 13 1.046 -
858 - 0.382 14 2.005 0.983
859 - 0.448 15 1.570 1.400
860 - 0.448 16 2.247 0.290
861 - 0.424 17 3.102 0.238
862 - 0.354 18 1.372 0.187
863 1.275 0.416 19 2.808 0.223
864 1.096 0.334 20 2.083 -
865 0.535 0.388 21 2.861 -
866 0.663 0.262 22 1.677 -
867 0.545 0.352 23 3.011 -
868 0.765 0.258 - - -
869 0.600 0.218 - - -
870 0.547 0.249 - - -
871 0.637 - - - -
872 0.560 - - - -
873 0.551 - - - -
874 0.491 - - - -
875 0.572 - - - -
876 0.841 - - - -
877 0.581 - - - -
878 0.592 - - - -
879 0.331 - - - -
880 0.437 - - - -
881 0.295 - - - -

The best fit indicated by the dH for area 3 occurred in the contour line at 13 m of
elevation, in the order of 1.046 m. The worst fit was identified in the contour line at 17 m of
elevation, in the order of 3.102 m.

The best fit by the dH in area 4 was in the contour line at 18 m of elevation, in the
order of 0.187 m. The worst adjustment was found in the contour line at 15 m of elevation,
in the order of 1.400 m.

From the dH data set presented in Table 6, the statistical parameters (mean, standard
deviation, maximum and minimum) of the data set that represent all the contour lines of
the same area were determined, as shown in Table 7.

Table 7. Statistical parameters of the dH analysis of the set of contour lines.

Parameters Area 1 Area 2 Area 3 Area 4

x (m) 0.627 0.365 2.162 0.554
σ (m) 0.235 0.097 0.707 0.512

max. (m) 1.275 0.573 3.102 1.400
min. (m) 0.295 0.218 1.046 0.187

The highest value of the mean and standard deviation of contour lines using dH
was credited to area 3 (smooth relief), indicating the worst similarity. Additionally, area 4
(smooth relief) also presented a dispersion of data associated with dH higher than areas 1
and 2, even reporting a maximum value above these areas.

The lowest value observed for the mean and standard deviation of the contour lines
associated with dH occurred in area 2 (very rugged relief). Area 1 (very rugged relief),
despite having an average associated with dH higher than area 4, has better similarity than
area 4, it has a higher number of contour lines than those arranged in area 4.

However, the dH must be interpreted in association with the correlated effects of the
differences found between the DEMs and their respective slopes that occurred between
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the data acquisition techniques. Figures 16 and 17 present the sets of contour lines derived
from the two techniques, superimposed respectively on maps that represent differences in
elevation and slope for the areas.

Figure 16. Superposition of homologous contour lines from topography and RPA of areas 1 and 2 over
elevation and slope difference maps: (a) superposition of contour lines over DEM differences of area 1,
(b) superposition of contour lines over slope differences of area 1, (c) superposition of contour lines over
DEM differences of area 2, (d) superposition of contour lines over slope differences of area 2.

Figure 17. Superposition of homologous contour lines from topography and RPA of areas 3 and 4 over
elevation and slope difference maps: (a) superposition of contour lines over DEM differences of area 3,
(b) superposition of contour lines over slope differences of area 3, (c) superposition of contour lines over
DEM differences of area 4, (d) superposition of contour lines over slope differences of area 4.
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Considering the overlap in the differences of DEMs of the contour lines in area 1
(Figure 16a), we observed that the contour line at 881 m of elevation (best similarity) is
inserted in a place with less altimetric divergence compared to the contour line at 863 m of
elevation (worst similarity). However, the slope differences (Figure 16b) remain in a range
of 0 to 2% where these curves are located.

In area 2, the contour line at the 869 m of elevation (best similarity) is located in lower
altimetric divergences, when compared to the trajectory of the contour line at the elevation
of 857 m (worst similarity), as shown in Figure 16c. In areas with these contour lines, the
slope differences remained at 0 to 2% in almost the entire path of the contour lines, however
presenting variations in small intervals of 2.1 to 4% for the contour line at the elevation of
869 m (Figure 16d). As for the contour line at the elevation of 857 m, the range from 0 to
2% of slope difference was predominant, but there were small stretches with values above
6.1% (Figure 16d).

In area 3 (Figure 17a), the contour lines at the elevation of 13 m (best similarity)
and 17 m (worst similarity) were inserted in places with the same altimetric divergences.
When checking the slope differences on these curves (Figure 17b), discrete stretches with
variations in this parameter were observed. In the places where these curves are located,
the slope differences remained in a range of 0 to 2% in most of their entire path, however,
they present different intervals above 6.1% for both contour lines.

We found for area 4 (Figure 17c) that the contour lines at an elevation of 18 m (best sim-
ilarity) passed through places with lower classes of altimetric differences when compared
to the contour lines at an elevation of 15 m in the upper part of Figure 17c (worst similarity).
No differences were observed in slope associated with dH in both curves (Figure 17d), as
contour lines at 18 m and 15 m of elevation remained in a slope range difference from 0
to 2%.

The results found by the analysis of Hausdorff distance between homologous contour
lines allows us to infer that this algorithm can be used to evaluate the accuracy of vector
geometries. Gonçalves and Mitishita [43] also used Hausdorff distance for reviewing and
updating urban maps by analyzing the similarity between vector geometries. After deter-
mining the quality and verifying the similarity of the features described by the contour lines
obtained via RPA, a new perspective on using the RPAs for Precision Agriculture was intro-
duced here. Martos et al. [44] describe the need to ensure sustainable agriculture, including
the use of RPA technology to achieve this goal. Therefore, this work applies remote sensing
with a robust methodology to achieve the goal described by Martos et al. [44], opening this
segment to new perspectives of research and applications in Precision Agriculture.

5. Conclusions

In general, area 2 had the best similarity by the average of the data set provided by dH,
while area 3 had the worst similarity. By comparing areas with similar reliefs, area 2 had
smaller differences between the DEMs (topographic x RPA) and better vertical accuracy
when compared to area 1. Both areas have a very rugged relief. This performance is
repeated in the data found by similarity analysis when observing the general parameters of
the dataset provided by dH. All indicators (average, standard deviation, maximum and
minimum value) in area 2 were better than those found in area 1, according to Table 7.

For areas 3 and 4 classified as smooth relief, we found that area 4 presented the smallest
differences between the DEMs (topographic x RPA), also associated with better vertical
accuracy when compared to area 3. Area 3 and area 4 had the same performance when
the similarity was evaluated by dH. All parameters evaluated (mean, standard deviation,
maximum and minimum value) were better than those found in area 3, according to data
in Table 7.

Although areas 3 and 4 have respectively presented the highest values associated with
dH (3.102 m and 1.400 m), when compared to areas 1 and 2, whose maximum values were
1.275 m and 0.573 m, respectively, the differences between altimetry and slope were lower
than those found in area 2 (best similarity of the set). The average slope rate of area 2 is
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much higher than in areas 3 and 4. Therefore, the best general similarity found by applying
the dH algorithm in area 2 did not mean a smaller difference between the DEMs, nor a
better difference in slope when compared to areas with flatter reliefs.

The similarity by dH associated with vertical accuracy can be used as a quality indi-
cator of an aerophotogrammetric product obtained by RPA when compared to the same
product obtained by a source of superior precision. Therefore, the similarity algorithm used
concomitantly with vertical accuracy is likely to be used for decision-making on issues
involving application in precision agriculture.

Based on the results, the application of RPAs for the generation of contour lines proved
to be a sufficiently effective technology capable of providing adequate contour planting.
This finding is especially valid when analyzing the quantitative differences in slope, with
the similarity obtained by the dH. It was noticed that the similarity obtained between the
curves generated by topography and by RPA did not cause differences in slope greater than
6% in at least 95% of all study areas. This result indicates a high possibility of applying the
contour lines derived from the RPA technology, for the safe application of contour planting.

In conclusion, the dH similarity algorithm can analyze the feasibility of contour plant-
ing with the products obtained by RPA according to the situations addressed in this study.
The determination of vertical accuracy of Digital Elevation Models is of paramount impor-
tance and the Hausdorff similarity algorithm is a predictor of this quality by comparing
different data acquisition techniques. Therefore, RPAs can generate contour lines for con-
tour planting in Precision Agriculture, provided that vertical accuracy analysis controls the
quality of the Digital Elevation Models.
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Abstract: Lodging depresses the grain yield and quality of maize crop. Previous machine learning
methods are used to classify crop lodging extents through visual interpretation and sensitive features
extraction manually, which are cost-intensive, subjective and inefficient. The analysis on the accuracy
of subdivision categories is insufficient for multi-grade crop lodging. In this study, a classification
method of maize lodging extents was proposed based on deep learning algorithms and unmanned
aerial vehicle (UAV) RGB and multispectral images. The characteristic variation of three lodging
extents in RGB and multispectral images were analyzed. The VGG-16, Inception-V3 and ResNet-50
algorithms were trained and compared depending on classification accuracy and Kappa coefficient.
The results showed that the more severe the lodging, the higher the intensity value and spectral
reflectance of RGB and multispectral image. The reflectance variation in red edge band were more
evident than that in visible band with different lodging extents. The classification performance
using multispectral images was better than that of RGB images in various lodging extents. The test
accuracies of three deep learning algorithms in non-lodging based on RGB images were high, i.e.,
over 90%, but the classification performance between moderate lodging and severe lodging needed
to be improved. The test accuracy of ResNet-50 was 96.32% with Kappa coefficients of 0.9551 by
using multispectral images, which was superior to VGG-16 and Inception-V3, and the accuracies of
ResNet-50 on each lodging subdivision category all reached 96%. The ResNet-50 algorithm of deep
learning combined with multispectral images can realize accurate lodging classification to promote
post-stress field management and production assessment.

Keywords: lodging classification; unmanned aerial vehicle (UAV); sensitive band; ResNet algorithm

1. Introduction

According to the data released by China’s National Bureau of Statistics, the planting
area of maize reached 43.324 million hectares in 2021, increasing by 2.059 million hectares
compared with 2020. The total output of maize achieved 272 million tons, which made it
the most productive of China’s major crops. The yield variance of maize has an important
impact on national food security and agricultural economic development. However, crop
lodging is one of the major negative elements to affect maize output. It is stated as the
displacement of the above-ground stems from their upright position or failure of root-soil
attachment [1]. Lodging is generally caused by rainstorms, loose soil, high planting density
and unreasonable fertilization [2–4]. Lodging hinders the growth of maize [5], reduces
grain quality [6] and affects mechanized harvesting [7], which is becoming an important
restricting issue to increase maize yield [8]. Therefore, precise and efficient classification
with different maize lodging extents can help agricultural departments to investigate the
influence of maize growth, guide farmers to implement post-stress field management and
facilitate insurance firms to settle disputes properly [9,10].
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The traditional lodging assessment methods widely used are mainly visual inspection
and artificial measurement [11], which are inefficient, time-consuming and environment-
constraining [12]. The inaccuracy and subjectivity of them may lead to compensation
disputes between farmers and insurance companies, which cannot meet the needs of
precision agriculture. Remote sensing technology, as a new approach, has greatly promoted
the development of crop lodging detection [13]. The lodging incidence in wheat, rice and
barley were detected using visible and thermal infrared images based on the ground-based
and space-borne platforms [14–17]. In recent decades, the unmanned aerial vehicle (UAV)
has been increasingly applied for lodging monitoring due to its advantages of convenient,
flexible, low cost and high resolution [18,19]. It can timely and accurately obtain centimeter-
level images with multiple sensors, which plays a powerful role in lodging detection [20].
Many studies detected crop lodging based on a UAV system equipped with a digital camera.
They discriminated lodging from non-lodging and evaluated the extents of crop lodging by
analyzing color and texture features [21–23]. However, compared to RGB images with only
three visible bands, multispectral images with red edge and infrared bands reflecting the
growth capacity of crops can offer more information in crop lodging [12,24,25]. Both spatial
and spectral information of ground targets are obtained in the meantime. Therefore, the
information richness of lodging features between these two types of images are different.
It is worth studying to verify the performance of discriminating lodging severity extents
using RGB and multispectral images.

The appropriate classification methods for crop lodging extents are significant as well
as the selection of data source. Traditionally, machine learning algorithms consisting of a
support vector machine (SVM) [8], decision tree [26] and nearest neighbor [5] were used
to classify lodging by extracting crop morphology and spectral characteristics [21,23,27].
However, these manual approaches for extracting features often required empirical knowl-
edge and were typically suboptimal in the results [28]. With the development of machine
learning, the convolutional neural network (CNN) of deep learning has gradually become
the mainstream. CNN algorithms can automatically extract image features, and depict rich
intrinsic information with strong nonlinear modeling ability. Xia hao et al. [29] proposed
a classification model named GL-CNN on account of convolutional neural networks to
determine the optimal growth stage of leafy vegetables. Ananda et al. [30] used the Visual
Geometry Group (VGG) model to achieve the disease detection and classification of grapes
and tomatoes. CNN has been proved to be superior to existing traditional machine classifi-
cation algorithms [31]. The Inception and ResNet algorithms were proposed with better
performance, which could automatically extract target features from images more accu-
rately. They have been widely used in disease detection and crop classification in intelligent
agriculture [32,33]. However, there are few studies on maize lodging classification based
on deep learning algorithms. The maize lodging characteristics of multiple data types need
to be analyzed. The performance difference using RGB and multispectral images will be
compared. Previous studies have often focused on the overall classification accuracy of crop
lodging, which were unable to fully embody the quality of the model. The classification
effects of algorithms under subdivision categories are also worthy of attention.

The purpose of this study is to use deep learning algorithms to monitor the lodging
extents of maize based on RGB or multispectral images. The lodging extents are dis-
criminated as non-lodging, moderate lodging and severe lodging by lodging angle. The
specific objectives are as follows: (1) to analyze the characteristics of obtained images with
different lodging extents, (2) classify lodging extents of maize based on RGB and multi-
spectral images through VGG-16, Inception-V3 and ResNet-50 algorithms and (3) evaluate
classification performance in different lodging extents to determine the optimal algorithm.

2. Materials and Methods

The processes of classifying maize lodging extents in the study were showed in
Figure 1. The RGB and multispectral images were acquired via UAV, which were respec-
tively cropped, augmented and labeled to build the datasets. The difference of each band
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of RGB and multispectral images caused by maize lodging extents were analyzed. The
classification results of maize lodging extents using three deep learning algorithms were
compared and validated.

Figure 1. Flowchart of RGB and multispectral dataset acquisition and classification of different
lodging extents using deep learning algorithms.

2.1. Study Area

The study area is located in Lishu County, Siping City, southwest Jilin Province, China
(Figure 2). The geographical coordinates of it are 43◦02′ N–43◦46′ N, 123◦45′ E–124◦53′ E.
Lishu is in the hinterland of Songliao Plain and the major grain producing county with a
maize planting area of 213,300 hectares. During the maize growth period, sunshine and
precipitation are sufficient, which can fully meet the growth needs of one ripe a year. From
late August to early September in 2020, strong winds and heavy rain caused crop lodging.

Figure 2. Overview of the study area (a) Geographical location of the study area. (b) The UAV RGB
image. (c) The UAV multispectral image (false color composite, R: Red, G: NIR, B: Green).
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2.2. Data Acquisition

The data collection of maize lodging canopy images in this study was performed with
a DJI Phantom 4 Pro (DJI-Innovations, Inc., Shenzhen, China) at 12:00 am on 12 September
2020. The weather was cloudless and windless. The overall weight of UAV system is 1388 g,
and the duration of flight is about 30 min. In this study, the flight altitude was 30 m above
the ground. The forward and lateral overlap was 80%. The digital camera had three color
channels of red, green and blue with a resolution of 1 cm/pixel. The multispectral images
were collected by a Parrot Sequoia camera (MicaSense, Inc., Seattle, DC, USA). It consisted
of four multispectral channels of green (550 nm), red (660 nm), red edge (735 nm) and
near-infrared (790 nm) with a resolution of 2 cm/pixel. The global positioning system
(GPS) and irradiance sensors were equipped at the same time. Before and after each flight,
radiometric calibration images were obtained by a calibrated reflectance panel. The field
inspection was taken after UAV data acquisition. Lodging has a huge impact on both yield
and grain quality. Lodging caused a maize yield loss of approximately 0–50% at different
lodging angles [3]. In general, the smaller the lodging angle, the smaller the yield loss.
Lodging classification can provide a basis for predicting future harvest yield. According
to the investigation of maize lodging in the study area, we categorically defined three
lodging extents based on crop lodging angle: non-lodging (NL) maize with a crop angle
<10◦, moderate lodging (ML) maize with a crop angle between 10–50◦ and severe lodging
(SL) maize with a crop angle >50◦ (Figure 3).

Figure 3. Maize lodging data collection (left), aerial imagery collection; (right), classification of three
lodging extents based on crop lodging angle.

2.3. Data Cleaning and Augmentation

RGB and multispectral images of the entire study area were obtained by Agisoft
Photoscan software. RGB images were resampled to 2 cm/pixel to match the resolution of
multispectral images. Then, the images of the entire study area were cropped into small
images with a resolution of 300 × 300 pixels. The actual spatial size of each image was
6 m, achieving a precise classification of maize lodging. Considering the partial areas of
the images were not related to maize lodging, the original dataset of 1326 images was
acquired by deleting the cropped images containing roads and weeds. Then, each sample
was labeled as non-lodging, moderate lodging and severe lodging by an expert through
visual interpretation (Figure 4).
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Figure 4. Maize lodging samples after data cleaning.

For the purpose of improving the overall generalization ability of the model, abundant
training images are needed in the deep learning algorithms to avoid over-fitting. Data
augmentation undertakes a more crucial improvement upon the classification accuracy in
the dataset [28]. Therefore, we performed data augmentation on the obtained dataset to
expand the number of samples. In this study, we enhanced image numbers by random
rotation, horizontal inversion and vertical inversion. A dataset of 5000 RGB images and
5000 multispectral images was generated by data augmentation without introducing extra
labeling costs. The dataset included 1616 non-lodging samples, 1684 moderate lodging
samples and 1700 severe lodging samples. The results of image augmentation taking an
RGB image as an example are shown in Figure 5.

Figure 5. Original UAV image and three augmented images.
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2.4. Deep Learning
2.4.1. Convolutional Neural Networks

Convolutional neural networks (CNN) have been essential to the development of deep
learning. Remarkable advancements have been made on image classification [34]. CNN
architecture is mainly divided into convolution layer, pooling layer and fully connected
layer (Figure 6). The various aspects in the whole image are assigned importance for
establishing a distinction between different objects in convolution layer. The weights
of convolution kernels (not directly accessible to users) are constantly updated during
algorithm iterations. After the convolution, the pooling operation can reduce the spatial
size of the convolved features. It can help reduce the computing power requirements of
data processing. We generally use two pooling methods, including maximum pooling
and average pooling. Maximum pooling was superior in this study, because it could
suppress noise while reducing dimension. Convolution and pooling layers were combined
to extract image features of different levels. The last layer is the fully connected layer,
which identifies the extracted features and provides the predicted label by using Softmax
regression classifier eventually.

Figure 6. Structure diagram of the convolutional neural network.

2.4.2. VGG-16

VGG-16 is a CNN algorithm proposed by the Visual Geometry Group of Oxford
University [35]. It consists of thirteen convolution layers (extracting image features), five
maximum pooling layers (reducing image spatial size) and three fully connected layers
(classifying images into labels) (Figure 7). Compared with traditional convolutional neural
networks, this algorithm uses a 3 × 3 convolution kernel to replace the larger one (e.g.,
5 × 5, 7 × 7). This optimization effectively reduces the number of model parameters
and extracts the detail features of the images more accurately. Hence, it can improve the
computing speed and has good generalization performance.

Figure 7. Structure diagram of VGG-16.

2.4.3. Inception-V3

Inception-V3 is the most representative algorithm among inception algorithms [36].
It uses the Inception module, which performs multiple convolution and max pooling
operations in parallel to obtain a deeper feature map. The Inception-V2 references VGG
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net using small convolution kernels (e.g., 1 × 1, 3 × 3) to reduce the computational cost
effectively. On the basis of that, Inception-V3 decomposes the 3 × 3 convolution kernel into
1 × 3 and 3 × 1 convolution kernels (Figure 8). The depth and nonlinearity of the network
increase, which makes the network classification ability stronger.

Figure 8. The optimization procedure of Inception module: (left), architecture of the initial Inception
module; (middle), module architecture in Inception-V2; (right), module architecture in Inceptiom-V3.

2.4.4. ResNet-50

ResNet-50 is proposed to solve the degradation problem in neural network training,
which means the performance of the algorithm decreases with the deepening of network
layers [37]. Residual block is the core of ResNet network (Figure 9), which mainly connects
the convolution layer across layer by jumping connection and short circuit methods. It
can transfer the input x as the initial result directly to the output, ensuring the integrity of
the information. The output result is H(x) = F(x) + x, where F(x) is the residual function,
which helps to transmit information to deeper neural networks and improve the accuracy
of the algorithm.

Figure 9. Architecture of the residual block to solve the degradation problem.
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These three algorithms were used to classify different lodging extents and test their
accuracy performance. The ReLU function was used as the activation function, and the
dropout layer was imported to prevent the algorithms from overfitting (dropout_ratio = 0.5).
The last layer (fully connected layer) was replaced by three classification categories to adapt
to the dataset of this study.

To demonstrate the algorithms’ validity and reliability, 70% of the samples (without
substitution) were randomly selected as the training set and the remaining 30% of samples
were the test set.

2.5. Validation

The image classification results of the dataset are evaluated by the confusion matrix,
test accuracy and Kappa coefficient. The test accuracy is figured by the ratio between
the number of correctly classified samples and the total number of samples in the test set.
Kappa coefficient is a robust measure of the extents of agreement. In order to evaluate these
indicators more persuasively, we repeated the experiments 10 times. The test accuracy and
Kappa coefficients were calculated by the following formula and recorded as the average
of ten repetitions:

Test Accuracy =
∑ n

i=1xii

N
(1)

Kappa =
∑ n

i=1xii/N −∑ n
i=1(∑

n
j=1xij∑ n

j=1xji)/N2

1−∑ n
i=1(∑

n
j=1xij∑ n

j=1xji)/N2 (2)

where xii refers to the correctly predicted samples, xij refers to the elements of the i-th row
and j-th column of the confusion matrix, n is the number of classifications and N is the total
number of samples in test set.

3. Results

3.1. Research Images Analysis

In order to obtain an understanding of the lodging features under different types
of images better, all the samples were used to observe the characteristics variation of
maize canopy in the different lodging extents. The intensity values of RGB images and the
reflectance of multispectral images were extracted directly by the statistical function of the
ENVI 5.3 software.

3.1.1. RGB Images Analysis

RGB images contain the intensity values in red, green and blue color channels ranging
from 0 to 255. Different intensity values of the three channels are combined into different
colors. The means and standard deviations of three channels with different lodging extents
were calculated in Figure 10. The intensity values of lodging (moderate lodging and severe
lodging) were all significantly higher than that of non-lodging in three bands, but those
of moderate and severe lodging were close relatively. In the non-lodging area, there were
interspaces between maize plants along with shadows, and the soil was exposed to aerial
photography, which made the intensity values low. After lodging, the plants tilted and
piled each other, causing the soil to be covered. The intensity values increased with the
decrease of soil bareness and the increase of plant density. Meanwhile, the changes of
intensity values with different lodging extents were consistent in three bands, which were
the lowest in blue and highest in green band. In Table 1, compared with the intensity
values of non-lodging maize in three bands, those of the moderate lodging increased by
37.64%, 21.68% and 27.73%, and those of the severe lodging increased by 53.81%, 32.89%
and 40.81%, respectively. It showed that the intensity values increased rapidly after lodging,
and the increase rate of the values in the blue band was the highest.

301



Agriculture 2022, 12, 970

Figure 10. The intensity values variation (left) and the maize canopy under the UAV aerial with
different lodging extents (right).

Table 1. The average intensity values with three lodging extents in different bands.

Extents Bands Blue Green Red

Non-lodging 82.49 103.99 94.84
Moderate lodging 113.54 126.54 121.14

Severe lodging 126.88 138.20 133.55

3.1.2. Multispectral Images Analysis

Multispectral images show the reflectance in green, red, red edge and near-infrared
bands with different lodging extents. The reflectance ranges from 0 to 1. The means and
standard deviations of four channels with different lodging extents were calculated in
Figure 11. The spectral reflectance increased following the enhancement of lodging extents
in four bands. The reason was that lodging has changed the morphological structure of the
maize population. The original maize canopy was damaged with the stems exposed. As
the severity of maize lodging increased, more stems were exposed in aerial images taken
by the UAV. Furthermore, the reflectance of the leaf was lower than that of the stem [24]. In
Table 2, the reflectance of the red edge and near-infrared bands was significantly higher
than that of the green and red bands. Compared with the reflectance of non-lodging maize
in four bands, that of the moderate lodging increased by 6.45%, 12.50%, 19.51% and 13.20%,
and that of the severe lodging increased by 19.35%, 25%, 36.58% and 20.75%, respectively. It
indicated that in different lodging extents, the variation of reflectance in the red edge band
was more evident than that in the visible band, which meant the increase rate of reflectance
in the red edge band was the largest as well.

Table 2. The average reflectance with three lodging extents in different bands.

Extents Bands Green Red Red Edge Near-Infrared

Non-lodging 0.31 0.24 0.41 0.53
Moderate lodging 0.33 0.27 0.49 0.60

Severe lodging 0.37 0.30 0.56 0.64
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Figure 11. Spectral reflectance of four bands under different lodging extents.

3.2. Lodging Classification Using RGB Images

VGG-16, Inception-V3 and ResNet-50 had pre-trained CNN models to deal with RGB
images. Their weight parameters were trained and identified based on a huge number of
RGB images from the ImageNet Dataset (http://image-net.org/index, accessed on 4 March
2022). The transfer-learning method could achieve sharing of model features through the
hyperparameter transfer. Therefore, the backbone parameters of three CNN algorithms
were initialized using the pre-trained weights, which could save algorithm training time
and obtain accurate results. The PyTorch framework with Python 3.6 was used to support
all experiments, and GTX 1070 6G GPU was employed to accelerate the overall process.
The learning rate, batch size and the number of iterations of the three algorithms were set
to 0.0001, 20 and 100, respectively. The networks were trained with the Adam optimizer
and cross-entropy loss function to optimize the objectives.

The changes of classification accuracy and loss in three algorithms during 100 iterations
were shown in Figure 12. Due to the use of pre-training models, the initial training
accuracies were all more than 0.6. With the continuous optimization of the algorithms, the
classification accuracy improved rapidly. Eventually, the training accuracy of the three
algorithms reached 86.16%, 91.89% and 94.16%, respectively. In addition, we chose cross-
entropy as the loss function, and loss gradually decreased following the opposite overall
trend to accuracy curves. Both of them began to maintain stability after approximately
20 iterations. The convergence rate of ResNet-50 algorithm was obviously faster than the
other two algorithms. In Table 3, the test accuracies of the three algorithms were 83.55%,
87.32% and 90.08% with Kappa coefficients of 0.7421, 0.8040 and 0.8599, respectively. The
overfitting phenomenon did not occur in the training process. ResNet-50 obtained the
optimal performance in three algorithms, whose test accuracy was 7.81% and 3.16% higher
than VGG-16 and Inception-V3. However, in addition to discussing the overall classification
accuracies of the three algorithms, the classification performance of different categories
was also worth further analysis.
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Figure 12. Accuracy and loss for the training and test sets of the three algorithms through RGB images.

Table 3. Performance of the three algorithms for the test sets of RGB images.

Algorithms Test Accuracy Kappa

VGG-16 83.55% 0.7421
Inception-V3 87.32% 0.8040

ResNet-50 90.08% 0.8599

The confusion matrices of the three algorithms are shown in Figure 13. It indicated
that the performance varied for different lodging severity extents in three algorithms. The
identifications of non-lodging all achieved good results, whose classification accuracies
were more than 90%. The accuracies of Inception-V3 and ResNet-50 in moderate lodging
were improved over 10% compared to that of VGG-16. The three algorithms had no distinct
differences in severe lodging. However, the classification error of the three algorithms
between moderate lodging and severe lodging was high with almost over 10%, especially
VGG-16, which made it difficult to identify the subdivision of lodging effectively.

Figure 13. The confusion matrices of the three algorithms through RGB images. Types of lodging
extents: NL is non-lodging, ML is moderate lodging, SL is severe lodging.
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3.3. Lodging Classification Using Multispectral Images

For multispectral images, the backbone parameters of the three algorithms needed to
be randomly initialized to retrain models by the Xavier initialization method [38]. The last
layer (fully connected layer) was replaced by three classification categories as well. The
software environment and hyperparameter settings were the same as the operation on the
RGB images.

The fluctuations of classification accuracy and loss of the three algorithms during
100 iterations using multispectral images were represented in Figure 14. In the early stage
of algorithm optimization, the accuracy and loss curves showed an oscillating trend. That
was because the algorithms were quickly adjusting the parameters to meet the classification
requirements at the beginning. Then, the training accuracy of the three algorithms gradually
increased and converged after 60 iterations with 92.34%, 94.70% and 98.55%, respectively.
With the continuous optimization, the loss decreased quickly and ResNet-50 was the first
to realize convergence. In Table 4, the test accuracies of the three algorithms were 89.91%,
92.36% and 96.32% with Kappa coefficients of 0.8318, 0.8935 and 0.9551, respectively. There
was no over-fitting phenomenon in the training process as well. The test accuracy of
ResNet-50 was 7.12% and 4.28% higher than VGG-16 and Inception-V3, respectively.

Figure 14. Accuracy and loss for the training and test sets of the three algorithms through
multispectral images.

Table 4. Performance of the three algorithms for the test sets of multispectral images.

Algorithms Test Accuracy Kappa

VGG-16 88.91% 0.8318
Inception-V3 92.36% 0.8935

ResNet-50 96.32% 0.9551

The confusion matrices of the three algorithms through multispectral images are
shown in Figure 15. The three algorithms still performed well in the classification of non-
lodging, which was higher than 92%. Compared with the RGB images, the classification of
moderate lodging and severe lodging was significantly improved by multispectral images,
and the accuracies of Inception-V3 and ResNet-50 were more than 90%. The accuracy error
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of ResNet-50 between moderate lodging and severe lodging was less than 5%, which can
better classify the three extents of maize lodging.

Figure 15. Confusion matrix for the three algorithms through multispectral images. NL is non-
lodging, ML is moderate lodging, SL is severe lodging.

3.4. Classification Results

In this study, the experiment results indicated that the overall performance of three
deep learning algorithms using multispectral images in classification of different maize
lodging extents was better than that of RGB images with an increase of 6.42%, 5.77%
and 6.93% (Figure 16). The maize lodging classification based on RGB images using
three algorithms realized high accuracy in non-lodging, which was suitable for the binary
classification of lodging and non-lodging. Among the three deep learning algorithms,
ResNet-50 was efficient and robust to classify the different lodging extents with the fastest
convergence rate and highest classification accuracy during algorithm training. ResNet-
50 also had the highest improvement in classification accuracy of multispectral images
compared with RGB images, which could extract the lodging features more effectively.
Therefore, ResNet-50 was the optimal algorithm to realize the classification of maize
lodging extents.

Figure 16. Classification accuracy of the three algorithms with two image types.
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4. Discussion

Lodging is a major factor in decreasing the crop yields worldwide. Accurate clas-
sification of lodging extents is beneficial to monitoring crop production and conducting
reasonable decision-making. Timely and effectively obtaining experimental data plays a
crucial role in it. Some researchers used satellite data to conduct crop lodging studies [14,39].
However, it is susceptible to clouds and the revisiting time is long with low spatial resolu-
tion. With the development of UAV technology, remote sensing research based on UAVs
platform has been highly valued and become a hotspot [40]. The wide application of UAVs
has indeed facilitated the monitoring of crop lodging. Tan et al. [23] used RGB images for
grading lodging severity with the accuracy of 79.1%. Sun et al. [25] realized the detection
of maize lodging with the overall accuracy of 86.61% and the Kappa coefficient of 0.8327
using maximum likelihood classification (MLC) by multispectral images. Furthermore,
through applying machine learning methods, such as nearest neighborhood classification
and Support Vector Machine (SVM), Chauhan et al. [24] and Rajapaksa et al. [41] reported
the wheat lodging classification using multispectral images with 90% and 92.6% accuracies,
respectively. Multispectral images had more potential to explore the characteristics of crop
lodging. The lodging feature extraction is also of great significance for the classification re-
sult. Canopy texture, crop height, spectral reflectance and vegetation indices were extracted
separately to research in the above study. The extraction process was both time-consuming
and subjective. The features extracted for different crops were also different. It created
difficult problems for further research of crop lodging.

We further realized the maize lodging classification based on deep learning algorithms.
Deep learning algorithms can automatically extract intrinsic features from massive data
through supervised learning to classify different lodging extents. Among the three deep
learning algorithms in this study, the ResNet-50 algorithm performed best, with a test
accuracy of 96.32% and Kappa coefficients of 0.9551, which was significantly better than
traditional machine learning algorithms. On the type of images used above, although
the lodging classification using multispectral images was more accurate, the low cost
of RGB images acquisition and more than 80% test accuracy made it more beneficial
for smallholders to detect crop lodging. The application of transfer-learning method can
greatly shorten the training time of the models, which can facilitate more timely agricultural
disaster assessment and management. In addition, through using multispectral images, the
reflectance variation in red edge band was more evident than that in visible band with the
increase of lodging severity extents, which may be an important factor for better lodging
classification using multispectral images. Using red edge band to extract sensitive features
for classifying lodging extents is worth further study.

There are still some deficiencies that need to be improved. We divided the exper-
imental plots into three lodging extents. Further detailed classification of the lodging
extents is necessary, which meets the requirements of precision agriculture. Moreover,
the models presented in this study need to be tested and validated in other crop lodging
classifications. The solution of them can serve crop yield prediction and precise agricultural
insurance claim.

5. Conclusions

In this study, unmanned aerial vehicles (UAVs) provided convenience for multiple
types of data acquisition. The RGB and multispectral images of maize lodging canopy were
tested to classify different lodging extents. The images were preprocessed by cropping,
cleaning and enhancing to generate the dataset containing 5000 subimages. The experi-
mental results indicated that the spectral reflectance increased with the increase of lodging
severity on the multispectral images of maize lodging. The red edge band was the most
sensitive to the change of lodging severity extents. The classification performance of the
three algorithms using RGB images, although good for non-lodging with over 90% accu-
racy, was unsatisfactory for moderate and severe lodging. The test accuracies of VGG-16,
Inception-V3 and ResNet-50 were 89.91%, 92.36% and 96.32% with Kappa coefficients of
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0.8318, 0.8935 and 0.9551, respectively, by using multispectral images. The accuracy of
ResNet-50 on each lodging subdivision category all reached 96%. Therefore, ResNet-50
outperformed the Inception-V3 and VGG-16 algorithms, and multispectral images were
more suitable for crop lodging classification than RGB images. This study provides a
more accurate and effective method for the classification of crop lodging extents. Further
detailed lodging classification and the general applicability of the method will be the focus
of subsequent research.
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Abstract: In this paper, we propose a centralized task allocation and an alignment technique based on
constraint table and alignment rules. For task allocation, a scoring scheme has to be set. The existing
time-discounted scoring scheme has two problems; if the score is calculated based on arrival time,
the agent who arrives in a task point first may finish the task late, and if the score is calculated based
on end-time of the task, agents who have the same score may appear because of temporal constraints.
Therefore, a modified time-discounted reward scheme based on both arrival and end-time is proposed.
Additionally, an accumulated distance cost scheme is proposed for minimum fuel consumption. The
constraint table made by tasks that are already aligned is also considered in scoring. For centralized
task alignment based on the constraint table and alignment rules, a technique based on sequential
greedy algorithm is proposed. Resolving conflicts on alignment is described in detail using constraint
table and alignment rules, which are composed of four basic principles. We demonstrate simulations
about task allocation and alignment for multi-agent with coupled constraints. Simple and complicated
cases are used to verify the scoring schemes and the proposed techniques. Additionally, a huge case
is used to show computational efficiency. The results are feasibly good when the constraints are
properly set.

Keywords: task allocation; task alignment; mission planning; task planning; multi-agent systems;
multi-agent planning and scheduling

1. Introduction

Automation techniques of systems are among some highly interesting research themes
currently. According to this trend, concepts of swarming with a lot of the Unmanned
Vehicles (UxVs) or teaming with manned and unmanned vehicles occur to overcome hard
tasks with manned or single vehicle using the UxVs. To coordinate several tasks with the
UxVs as described above, the sequence of tasks for each UxV has to be issued to them based
on their situations and capabilities. In addition, the purpose of task allocation, for example
minimizing total mission time, minimizing fuel consumption, etc., and spatial or temporal
constraints have to be considered for successful task allocation and alignment. Hence,
management techniques for multi-agent systems have been widely studied with various
approaches and algorithms [1–11]. One of them is developed to recommend tasks to MOD
drivers by analyzing and modeling the Mobility-on-Demand Vehicular Crowdsensing
(MOD-CS) and MOD-Human-Crowdsensing (MOMAN-CS) market [10]. It is for manned
vehicles, so they have freedom to refuse the recommendation. Another is developed for
an urban delivery drone system considering energy consumption [11]. Previous research
supposed that the energy consumption of robots, especially drones, is proportional to their
moving distance but it did not match for delivery drone. Therefore, the weight of the drone
including the consignment is also considered when calculating energy consumption.

One of the general task allocation algorithms is Consensus-Based Bundle Algorithm
(CBBA), which is based on the auction process [12]. Several agents calculate the task
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rewards or costs which differ by the purpose, and the task is allocated to the agent that
has the highest reward in CBBA. To calculate task rewards, the time-discounted reward
scheme, one of the general scoring themes in score-based task allocation algorithm, is used
in CBBA. This scheme calculates scores as decreasing time-invariant maximum rewards as
time passes. This algorithm is fast to obtain the local optimum solution but CBBA cannot
consider the constraints as depicted above. Therefore, Coupled-constraint CBBA (CCBBA),
further improved CBBA, is developed [13,14]. In CCBBA, some spatial and temporal
constraints can be considered in the task allocation and alignment. Each agent decides
the bidding strategy for each task before bidding. According to the decided strategy, task
rewards for each agent are calculated for task allocation. For task alignment, ‘number of
iterations in constraint violation’, and some counts are considered. In the optimistic strategy,
if the agent violates some constraints when performing a task, the number of iterations in
constraint violation increases but the task can be aligned to the agent if it is lower than some
thresholds. CCBBA has the ability to handle most multi-agent management problems, but
there is a problem concerning the convergence of solution in certain scenarios. Additionally,
there is a minor problem in setting temporal constraints; the user must set the maximum
permitted time for each task unless they cannot predict it exactly.

CBBA and CCBBA are fast task allocation and alignment algorithms, but computa-
tional cost rapidly increases as the number of agents and tasks increases. The reason in
CBBA is in the bundle construction phase. When creating a bundle for each agent, the score
is calculated not only after the last task of the agent but also before and after all allocated
tasks of the agent. For example, an agent has been allocated tasks 1 and 2, and there is
an unallocated task 3. Then, scores about sequence of tasks (3-1-2), (1-3-2), and (1-2-3) are
calculated to allocate the task 3. Note that task allocation and alignment with coupled
constraints are NP-hard problems, and the solution of CBBA is just the local optimum
solution. It is a time-consuming process to obtain this kind of solution. The reason in
CCBBA is the process about whether an agent can bid to tasks or not. First, the groups
of tasks are made based on coupled constraints, called activities. Dependency matrices
and temporal constraint matrices are made for each activity to obtain a solution applying
constraints. Then, each agent decides optimistic or pessimistic strategies for bidding on
each task. For bidding, each agent counts violation iterations, number of bidding alone to
task, and number of bidding of any task. This process is also time-consuming.

There is another way to allocate and align tasks from a different point of view, game
theory [15]. In this method, the individual agent has freedom for its actions and the agent
decides its action by sampling from its possible action set stochastically. When the agent
violates the constraints for collective action, penalties that are larger than other rewards are
given to it. These penalties are added to the score according to time-discounted reward
scheme, so each agent is constrained to obey the constraints. This method solved a minor
problem of CCBBA as setting the temporal constraints by just the relationship, such as
‘before’ or ‘after’ etc., so there is no need to set permitted time, such as ‘do in 30 min after
task 1’. While CBBA and CCBBA did not permit the task to be allocated to multi-agents,
task allocation based on game theory permits collective actions for one task. In this case,
duration time of the task decreases because several agents work together. However, this
method results in acceptable and stable solutions only when the probability distributions
of actions in action set for each agent are set based on large experiments. It means that a lot
of experiments for several cases are needed to obtain the suitable probability distributions.
Additionally, computation time is reduced compared to CCBBA, but it is still slow so the
update interval of task allocation and alignment results is long. According to the results
in [15], 18.086 s (mean time) to obtain reasonable central task allocation solution with six
agents and 27 tasks.

In this paper, we consider an algorithm for coupled-constraint task allocation and
alignment problems using a constraint table and alignment rules. This is based on CBBA
and CCBBA, but a new method is proposed alternating some time-consuming procedures,
so local optimum solutions are obtained fast enough. For the task allocation, two scoring
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schemes are proposed; modified time-discounted scoring scheme and accumulated dis-
tance scoring scheme. Additionally, a spatial constraint in CCBBA is considered, called
MUTually EXclusive (MUTEX). In addition, a new spatial constraint, called local MUTEX,
is considered for essential cases; cooperative work, and etc. For classification, MUTEX
in CCBBA is called global MUTEX. Unilateral dependency in CCBBA is considered by
temporal constraints instead. For the task alignment, some temporal constraints in CCBBA
are considered afterwards, called simultaneous. Temporal constraints ‘before’ and ‘between’
are replaced to ‘after’. Additionally, constraints ‘during’ is separated to two constraints;
‘start during’ and ‘end during’. Constraint ‘not during’ in CCBBA is not used. These tempo-
ral constraints are considered using the constraint table which is made when alignment of
a task is completed. To apply these constraints and scoring schemes to the task allocation
and alignment, the algorithm called centralized Task Allocation and alignment based on
Constraint Table and Alignment Rules (TACTAR) is proposed.

2. Preliminaries

2.1. Task Allocation and Alignment Problems

The task allocation problem is to find matching of tasks to agents that maximizes
global reward as below [12,16]:

max
Nu

∑
i=1

(
Nt

∑
j=1

cij(xi, pi)xij

)
, (1)

subject to
Nu

∑
i=1

xij ≤ 1 ∀j ∈ J, (2)

Nt

∑
j=1

xij ≤ Lt ∀i ∈ I, (3)

Nu

∑
i=1

Nt

∑
j=1

xij = Nmin, (4)

xij ∈ {0, 1}, (5)

where Nu is number of agents, Nt is number of tasks, and Lt is maximum number of tasks
each agent can be allocated. xij is the flag that is 1 if task j is allocated to agent i and is 0
otherwise, xi is the flag vector whose jth element is xij, and pi is the ordered sequence of
tasks for agent i. Nmin is the lowest number between Nt and NuLt. cij is scoring function
and cij(xi, pi) means reward of task j if agent i completes tasks along pi based on xi. I and J
are agent group and task group, respectively, so number of elements for I and J are Nu and
Nt, respectively. As in Equation (2), one task is allocated to only one agent.

The task alignment problem is to calculate the arrival time, start-time, and end-time of
each task satisfying temporal constraints and allocated sequence of tasks for each agent.
If the temporal constraints have logical error, for example a task1 has to be started after
finishing task2, and task2 has to be started after finishing task1, the task alignment result
cannot be calculated. To prevent this, we assume that temporal constraints have no logical
error so there must be at least one task alignment solution satisfying temporal constraints.

2.2. Consensus-Based Bundle Algorithm (CBBA)

CBBA is a multi-agent task allocation algorithm based on auction concept. CBBA is
organized into two phases, bundle construction phase and consensus phase. In bundle
construction phase, each agent makes its own ordered sequence of tasks and bundle by
calculating the rewards of each task. The rewards are obtained by arriving or completing
tasks so the sequence of tasks for each agent is changed according to reward function

312



Appl. Sci. 2022, 12, 6780

to obtain maximum global reward. Algorithm of the bundle construction phase is as
below [12,17]:

In lines 1~4 of Algorithm 1, vectors about agent i for bundle construction are initialized
to previous iteration results, where t is number of iteration, yi is winning bids list that the
agent i knows, zi is winning agent list that the agent i knows, bi is bundle of the agent
i, and pi is sequence of tasks for agent i. Then, the bundle and the sequence of tasks are
constructed until the size of the bundle is same with Lt in lines 5~14 of Algorithm 1. In line
6 of Algorithm 1, it founds agent i’s maximum reward when a task is added to a previous
sequence of tasks of agent i, where Spi

i is reward of agent i along pi and pi(+)n{j}means
that task j is added after nth component of pi. The rewards are then multiplied to the flag
whether the reward is higher than winning bid or not. Finally, the task and the sequence
that maximize the agent i’s reward are found in lines 8~9 of Algorithm 1 and the task is
added to iteration results in lines 10~13 of Algorithm 1.

Algorithm 1 CBBA Phase 1: Bundle construction

1: yi(t) = yi(t− 1)
2: zi(t) = zi(t− 1)
3: bi(t) = bi(t− 1)
4: pi(t) = pi(t− 1)
5: while |bi| < Lt, do

6: cij = maxn≤|pi |S
pi(+)n{j}
i − Spi

i , ∀j ∈ J\bi

7: hij = I I
(

cij > yij

)
, ∀j ∈ J

8: J Ji = argmaxjcij·hij

9: ni,J Ji = argmaxn Spi(+)n{J Ji}
i

10: bi = bi(+)end{J Ji}
11: pi = pi(+)ni,J Ji

{J Ji}
12: yi,J Ji (t) = ci,J Ji

13: zi,J Ji (t) = i
14: end while

In the consensus phase, agents confirm tasks to perform based on the bundles made in
the bundle construction phase. In the decentralized system, the agents have to communicate
data with each other for deciding the winning agent. However, in a centralized system,
the agents send data only to the central computer. In the central computer, the data from
the agents are collected and the consensus algorithm is processed with the data. The
general centralized consensus algorithm is Sequential Greedy Algorithm (SGA) as shown
in Algorithm 2 [12]. In lines 1~3 of Algorithm 2, variables for SGA are initialized, where I
and J are groups of agents and tasks, respectively, ηi is number of confirmed tasks for agent
i, and cij

[
b(n)i

]
is a reward that is obtained by finishing task j by agent i based on the bundle

of agent i, b(n)i . Superscript means the number of iterations. In lines 4~18 of Algorithm 2,
agent i∗n and task j∗n, which are row and column of maximum value of cn, respectively, are
found, and the agent i∗n is confirmed to do the task j∗n. For the next iteration, the task j∗n is
excluded from the group of tasks J because of the assumption ‘one task is allocated to only
one agent’ in Equation (2). If the number of confirmed tasks ηi∗n for the agent i∗n is equal to
the limit number of task Lt, the agent i∗n is also excluded from the group of agents I. This
procedure is repeated for Nmin times to allocate all tasks to the agents.
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Algorithm 2 Sequential greedy algorithm

1: I1 = I, J1 = J
2: ηi = 0, ∀i ∈ I
3: c(1)ij = cij[{∅}], (i, j) ∈ I × J
4: for n = 1 to Nmin do

5: (i∗n, j∗n) = argmax(i,j)∈I×J cn
ij

6: ηi∗n = ηi∗n + 1
7: Jn+1 = Jn\{j∗n}
8: b(n)i∗n

= b(n−1)
i∗n

(+)end{j∗n}
9: b(n)in

= b(n−1)
in

, ∀i �= i∗n
10: if ηi∗n = Lt then

11: In+1 = In\{i∗n}
12: c(n+1)

i∗n ,j = 0, ∀j ∈ J
13: else

14: In+1 = In
15: end if

16: c(n+1)
i,j∗n

= 0, ∀i ∈ In+1

17: c(n+1)
ij = cij

[
b(n)i

]
, ∀(i, j) ∈ In+1 × Jn+1

18: end for

2.3. Coupled-Constraint Consensus-Based Bundle Algorithm (CCBBA)

CCBBA is an extension version of CBBA. CCBBA is designed to supplement the
weakness of CBBA which is incapacity to resolve task allocation and alignment problems
with coupled constraints. The coupled constraints which are considered in CCBBA are
described in Tables 1 and 2 [13–15].

Table 1. Spatial coupled constraints in CCBBA.

Name Description

Unilateral dependency Task A can be allocated if task B is allocated
Mutual dependency Task A and B must either be all allocated or not at all

Mutual Exclusive Only either task A or B can be allocated at each time

Table 2. Temporal coupled constraints in CCBBA.

Name Description

Simultaneous Task A and B must start at the same time
Before Task A must end before task B starts
After Task A must start after task B ends

During Task A must start between task B starts and ends
Not during Task A must either end before task B starts or start after task B ends

Between Task A must start after task B ends and end before task C starts

For applying these coupled constraints to CCBBA, tasks are partitioned into subgroups
called activity that share coupled constraints. The activity does not share constraints with
other activities. For each activity, two matrices called dependency matrix and temporal
constraint matrix, which are defined as shown in Tables 3 and 4, are used [13–15]. Using
these matrices, each agent decides bidding strategies, optimistic and pessimistic, for each
task before bundle construction. The agent decides to bid or not according to these strategies
in bundle construction and consensus phase. In this process, the concept of ‘number of
iterations in constraint violation’ is applied. These are additional processes compared to
CBBA. Although CCBBA can resolve most coupled constraint task allocation and alignment
cases, there are some problems in CCBBA. First of all, it faces convergence problems in
some cases due to latency. Additionally, the user must set maximum amount of time to
the temporal constraint matrix. It means that the user should calculate the time for task

314



Appl. Sci. 2022, 12, 6780

alignment in a defined order. However, expected arrival time, start-time, and end-time
of tasks are changed frequently based on multi-agent operation environment, so the user
finds it hard to expect the maximum amount of time.

Table 3. Entry codes for dependency matrix in CCBBA.

Entry Code (D(q, p)) Description

0 Task p can be allocated independently of task q
−1 Task p and q are mutually exclusive
1 Task p depends on task q

a > 1 Task p requires either q or another element with the same code, a *
* Entries are used sequentially: 3 is not used unless 2 is used.

Table 4. Entry for temporal constraint matrix in CCBBA.

Entry (T(q, p)) Description

0 Diagonal component (if task p and task q are same)
a �= ∞, a �= 0 Maximum amount of time at which task q can start after task p starts

∞ No temporal constraint exists between task p and q

3. Scoring Scheme

A method that is similar to the bundle construction phase of CBBA is used in central-
ized TACTAR for task allocation. As we can see in Algorithm 1, rewarding function has to
decide on making pi. In this paper, two scoring schemes are used: modified time-discounted
reward and accumulated distance cost.

3.1. Modified Time-Discounted Reward

The basic time-discounted reward function calculates the reward of agent i as the
maximum reward of each task decreases over time as below [12,17]:

Spi
i = ∑

j∈pi

cjρ
τ

j
i (pi) (6)

where cj is time-invariant maximum reward of task j, ρ is decreasing ratio, and τ
j
i (pi) is

arrival time of task j for agent i along the sequence of task pi. If the reward can be obtained
when the agent finishes the task, τ

j
i (pi) can be substituted to the end-time of task j. This

method can be used in various ways. For example, if the importance of each task is different,
a reasonable sequence of tasks can be made by setting cj to the importance level of task j.
Additionally, it can be used in food delivery problems if cj is the same for all tasks and ρ
is different for each task. In that case, delivering the food to appropriate places would be
tasks, and ρ differs by the kind of food. If the reward of task is considered as safety level, it
can be used in finding the safest sequence of tasks for agent i.

However, this rewarding scheme needs to be fixed because of two cases: one is that an
agent is confirmed to perform a task because they arrive at the task point early, but finishes
the task later than other agents; the other is that the agent cannot be confirmed to perform a
task based on the rewards when several agents finish the task simultaneously. The second
case occurs usually because of temporal constraints. Therefore, a modified time-discounted
rewarding scheme has to be applied in TACTAR.

Spi
i = ∑

j∈pi

cj

(
warrρτ

j
i,arr(pi) + weρτ

j
i,end(pi)

)
(7)

where warr and we are weights for arrival and end rewards, respectively, and τ
j
i,arr(pi) and

τ
j
i,end(pi) are arrival time and end-time of task j for agent i based on sequence of tasks pi.
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3.2. Accumulated Distance Cost

This cost function is used for finding the sequence of tasks for agents that minimizes
total distance. To apply this cost function, bundle construction phase of CBBA should be
changed as in Algorithm 3.

Algorithm 3 CBBA Phase 1: Bundle construction for Accumulated Distance Cost

1: yi(t) = yi(t− 1)
2: zi(t) = zi(t− 1)
3: bi(t) = bi(t− 1)
4: pi(t) = pi(t− 1)
5: while |bi| < Lt, do

6: cij = daccum + dj
pend

i
, ∀j ∈ J\bi

7: hij =

{
1 (cij < yij)

∞ (otherwise)
, ∀j ∈ J

8: J Ji = argminjcij·hij
9: bi = bi(+)end{J Ji}
10: pi = pi(+)end{J Ji}
11: yi,J Ji (t) = ci,J Ji

12: zi,J Ji (t) = i
13: end while

In line 6 of Algorithm 3, daccum is total accumulated distance and dj
pend

i
is distance

between agent i and point of task in pi(end). Note that the inequality sign and argument
of the maxima in lines 7~8 of Algorithm 3 are changed for finding the sequence of tasks
that minimizes total accumulated distance. To allocate tasks to agents, sequential greedy
algorithm in Algorithm 2 also should be changed as described in Algorithm 4.

Algorithm 4 Sequential greedy algorithm for Accumulated Distance Cost

1: I1 = I, J1 = J
2: ηi = 0, ∀i ∈ I
3: c(1)ij = cij[{∅}], (i, j) ∈ I × J
4: for n = 1 to Nmin do

5: (i∗n, j∗n) = argmin(i,j)∈I×J cn
ij

6: ηi∗n = ηi∗n + 1
7: Jn+1 = Jn\{j∗n}
8: b(n)i∗n

= b(n−1)
i∗n

(+)end{j∗n}
9: b(n)in

= b(n−1)
in

, ∀i �= i∗n
10: if ηi∗n = Lt then

11: In+1 = In\{i∗n}
12: c(n+1)

i∗n ,j = 0, ∀j ∈ J
13: else

14: In+1 = In
15: end if

16: c(n+1)
i,j∗n

= 0, ∀i ∈ In+1

17: c(n+1)
ij = cij

[
b(n)i

]
, ∀(i, j) ∈ In+1 × Jn+1

18: end for

In line 5 of Algorithm 4, argument of maxima is changed to argument of minimum
as line 8 of Algorithm 3. Note that daccum should be replaced to c(n)i∗n ,j∗n when calculating the

next iteration costs, c(n+1)
ij in line 17 of Algorithm 4. Additionally, note that accumulated

distance cost can be only applied to centralized task allocation. This method can be used in
the situation; a minimum number of agents are used for completing all tasks with minimum
fuel consumption.
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4. Scheduling Scheme

After task allocation, task alignment should be processed to meet temporal constraints.
Assume that every agent has a speed limit and moves to target task points as soon as
possible. Additionally, the duration time of each task is not changed by scheduling, such as
shrinking or stretching; it is changed only by agents. Then, four basic rules can be made
as in Table 5. If the task B is aligned, temporal constraints about the task B are generated.
These constraints have to be considered for the next alignment of tasks, the task A in Table 5.
If the task B is dropped by rules in Table 5, these constraints cannot be considered any
more. Therefore, a constraint table is used in centralized TACTAR to manage generated
constraints by aligned tasks. This table has number-of-constraints rows and six columns
that contain that shown in Table 6.

Table 5. Basic rules for scheduling.

No. Description *

1 If task A should start at or after t and start-time of task A is before t,
start-time of task A is set to t and recalculate rewards/costs of candidate tasks.

2 If task A should start at or before t and start-time of task A is after t,
task B and tasks aligned after task B are dropped and re-alignment proceeds.

3 If task A should end at or after t and end-time of task A is before t,
end-time of task A is set to t and recalculate rewards/costs of candidate tasks.

4 If task A should end at or before t and end-time of task A is after t,
task B and tasks aligned after task B are dropped and re-alignment proceeds.

* Task A is a candidate task of alignment and task B is an aligned task already. Additionally, temporal constraint
at time t is made by task B.

Table 6. Contents of constraint table.

Column Description

1 Target task ID
2 Allocated agent of task that makes constraint
3 ID of task that makes constraint
4 Target time(0: start-time, 1: end-time)
5 Constraint time
6 Constraint type(0: before, 1: after, 2: simultaneous)

For example, task 2 must start after task 1 ends and task 2 is aligned to agent 3. Then,
a row of the constraint table is created. Column 1 of row 1 would be 1 which means task 1.
Columns 2 and 3 would be 3 and 2 which mean agent 3 and task 2, respectively. Note that
columns 2 and 3 are needed for deleting constraints when tasks are dropped. Column 4
would be 1 which means end-time of task 1. Columns 5 and 6 would be start-time of tasks
2 and 0, respectively. The zero in column 6 means that task 1 should end before the time in
column 5. If temporal constraints on task 2 are more than one, other rows of the constraint
table will be made.

Following the rules in Table 5, one of the temporal constraints ‘Not During’ in Table 2
cannot be applied because it cannot decide which rule should be applied when violating
the constraint. For example, if task A must either end before task B starts or start after task
B ends but task A starts after task B starts and task A ends before task B ends, it corresponds
to rule 2 and 4. In this situation, task A cannot be aligned without changing the duration
time of task A. Additionally, the temporal constraint ‘Between’ in Table 2 can be separated
to ‘Before’ and ‘After’, so ‘Between’ is no longer needed in temporal constraints. The
temporal constraint ‘Before’ can be replaced to ‘After’. For example, ‘Task A must end
before task B starts’ can be ‘Task B must start after task A ends’.

The spatial constraint ‘Mutual exclusive’ in Table 1 means that only either task A or
B can be allocated to all agents at each time. For example, if task A is allocated to agent
1, task B cannot be allocated to all agents. However, it needs to allocate task B to agents
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except agent 1. Hence, the spatial constraint ‘Mutual exclusive’ should be separated to two
constraints: global and local. Additionally, ‘Unilateral dependency’ in Table 1 is useless
because tasks which have unilateral dependency relationship have at least one temporal
constraint so checking only temporal constraints violation is enough. Therefore, spatial
and temporal constraints in centralized TACTAR are as in Tables 7 and 8.

Table 7. Spatial coupled constraints in centralized TACTAR.

Name Description

Local Mutual Exclusive Only either task A or B can be allocated to
each agent at each time

Global Mutual Exclusive Only either task A or B can be allocated to
all agents at each time

Table 8. Temporal coupled constraints in centralized TACTAR.

Name Description

Simultaneous Task A and B must start at the same time
After Task A must start after task B ends

Start during Task A must start between task B starts and ends
End during Task A must end between task B starts and ends

For applying these coupled constraints to centralized TACTAR, two matrices are
defined as in Tables 9 and 10. Note that the components of temporal constraint matrix are
just codes in Table 9, not maximum amount of time in Table 4.

Table 9. Entry codes for dependency matrix in centralized TACTAR.

Entry Code (D(q, p)) Description

0 Task p can be allocated independently of task q
1 Task p and q are locally mutual exclusive
2 Task p and q are globally mutual exclusive

Table 10. Entry for temporal constraint matrix in centralized TACTAR.

Entry (T(q, p)) Description

0 No temporal constraint exist between task p and q
1 Task p and q must start at the same time
2 Task p must start after task q ends
3 Task p must start between task q starts and ends
4 Task p must end between task q starts and ends

5. Algorithm

The algorithm of centralized TACTAR including scoring and scheduling schemes as
described in Sections 3 and 4, respectively, can be summarized as in Algorithm 5. In line 1
of Algorithm 5, variables for centralized TACTAR are set where Xa is positions of agents,
Xt is task points, and Dt and Tt are spatial and temporal constraint matrix, respectively.

In line 2 of Algorithm 5, constants for centralized TACTAR are set where Tt,dur is
duration time of tasks, Vmax,a is maximum velocity of each agent, Fbid,a is bidding flags
whether each agent can bid to tasks or not, and Tmin,dur is minimum overlapping time
between working time of tasks in ‘start during’ or ‘end during’ relationship. c is time-
invariant maximum reward for each task, ρ is decreasing ratio of it for each task as described
in Equation (7), warr and wend are weight of arrival and end-reward (cost) for Equation (7),
respectively.
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Algorithm 5 Centralized TACTAR: main

1: set variables X(0)
a , X(0)

t , Dt, Tt
2: set constants Tt,dur, Vmax,a, Fbid,a, Tmin,dur, c, ρ, warr, wend
3: While (at least one capable task is remained incompletion)
4: initialize uncompleted tasks
5: make sequence of tasks
6: end while

In lines 3~7 of Algorithm 5, task allocation and alignment are performed until all tasks
are completed. At the first iteration, variables for uncompleted tasks need to be initialized.
The initialization for iterations is as below:

In Algorithm 6, lines 2~15 are performed for each agent. In lines 3~9 of Algorithm
6, initialization is performed based on condition of each task where pm is sequence of
tasks for agent m. If the agent has not arrived at the task point, initialization in line 4 of
Algorithm 6 is performed. In the case that the agent has arrived at the task point or started
the task, initialization in line 7 of Algorithm 6 is performed. tarr, ts, and te are arrival time,
start-time, and end-time of tasks, respectively, z is the agent in charge of each task. If the
user chooses accumulated distance cost scheme, lines 11~13 of Algorithm 6 are performed
for recalculating accumulated distance, daccum. After all, constraints made by deleted tasks
in lines 4 or 7 of Algorithm 6 are deleted from the constraint table in line 14 of Algorithm
6. Note that if the agent in charge of the task differs from the agent in column 3 of the
constraint table, these constraints also need to be deleted.

Algorithm 6 Centralized TACTAR: line 4 of main

1: for m = 1:Nu
2: for n = 1:size(pm)
3: if agent m is not arrived pm(n) point
4: initialize tarr, ts, te, z, pm for tasks pm(n) and after
5: Break

6: else if agent m is arrived pm(n) point or start pm(n) task last
7: initialize tarr, ts, te, z, pm for after pm(n)
8: Break

9: end if

10: end for

11: if accumulated distance cost scheme
12: recalculate daccum for pm
13: end if

14: delete constraints made by deleted tasks
15: end for

After initialization is completed in line 4 of Algorithm 5, making a sequence of tasks,
i.e., task allocation and alignment, is performed in line 5 of Algorithm 5 as follows:

In Algorithm 7, start-time, end-time, and reward(cost) of each task need to be cal-
culated in line 1 before making the sequence of tasks if the task can be allocated. The
conditions for the prohibition of task allocation are as in Table 11. Note that start-time and
end-time of each task is calculated by assuming that agents move at maximum velocity. If
at least one condition in Table 11 fails, the reward(cost), start-time, and end-time of the task
are not calculated. In that case, the reward will be 0 if the user selects a time-discounted
reward scheme and the cost will be infinity if the user selects an accumulated distance cost
scheme.
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Algorithm 7 Centralized TACTAR: line 5 of main

1: calculate ts, te, and reward(cost) of each task
2: while (at least one task is not allocated)
3: if time-discounted reward scheme
4: find maximum reward
5: if maximum reward == 0
6: Break

7: end if

8: else if accumulated distance cost scheme
9: find minimum cost
10: if minimum cost == infinity
11: break

12: end if

13: end if

14: find (agent, task) that have maximum reward(minimum cost)
15: align (agent, task)
16: renew tarr, ts, te, z, pm for (agent, task)
17: add constraints to constraint table
18: if accumulated distance cost scheme
19: recalculate daccum for pm
20: end if

21: calculate reward(cost) of each task
22: end while

Table 11. Conditions for prohibition of allocating task p to agent A in TACTAR.

No. Contents Cannot Be Allocated

1 Bidding flags,
Fbid,a(p) (1.1) 0

2 Condition of task p (2.1) After arriving point of task p

3 Local MUTEX
with task q (3.1) Task q is allocated to agent A

4 Global MUTEX
with task q (4.1) Task q is allocated already

5 Simultaneous with task q (5.1) Task q is allocated to agent A
6 After task q (6.1) Task q is not allocated yet

7 Start during task q

(7.1) Task q is not allocated yet or
(7.2) Task q is allocated to agent A or
(7.3) Task q has relationship (except ‘After’) with
task r, task r is allocated to agent A and agent A
cannot arrive point of task p after finishing task r

8 End during task q

(8.1) Task q is not allocated yet or
(8.2) Task q is allocated to agent A or
(8.3) Task q has relationship (except ‘After’) with
task r, task r is allocated to agent A and agent A
cannot finish task p after finishing task r

9 Task r starts simultaneous with tasks q
(9.1 *) Some tasks in q, called qsub, are allocated
and agent A cannot arrive point of task r after
finishing task p

10 Task r starts during task q
(10.1 **) Only task q is allocated and agent A
cannot start task r after finishing task p before
end-time of task q ***

11 Task r ends during task q
(11.1 **) Only task q is allocated and agent A
cannot end task r after finishing task p before
end-time of task q

* There is no task p in tasks (q− qsub). ** The task p is not equal to task r. *** If the Tmin,dur is not 0, the ‘end-time
of task q’ is changed to ‘(end-time of task q)—Tmin,dur’.
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If 11 conditions in Table 11 are all passed, start-time and end-time of each task are
checked by the constraints table. If temporal violation can be solved by delaying these
times, time correction proceeds. If not, these times are not corrected and reward(cost)
calculation is processed. It is for time correction of already aligned tasks. Note that this
procedure is not equal to bundle construction in Algorithm 1 or 3. In bundle construction,
the sequence of whole tasks of each agent is made by calculating rewards(costs). However,
in line 1 of Algorithm 7, reward(cost) of each task is calculated just for the next step. For
example, there is an agent that is assigned task 1 and 2 and there are three remaining
tasks. Then the rewards(costs), calculated in line 1 of Algorithm 7, are three rewards(costs)
of remaining tasks for three sequences, (1-2-3), (1-2-4), and (1-2-5). The cost based on
accumulated distance cost scheme is calculated as described in lines 6~7 of Algorithm 3.

The lines 2~22 in Algorithm 7 are repeated until all tasks are allocated. It will find
(agent, task) set that has maximum reward(minimum cost) in line 14 of Algorithm 7. The
alignment of this set is tried in line 15 of Algorithm 7 as described in Algorithm 8. In line 1
of Algorithm 8, constraints associated with the task in line 14 of Algorithm 7 are found in
the constraint table. The lines 4~8 and lines 10~14 of Algorithm 8 are violation checked for
start-time and end-time of the task, respectively. Note that only violations for ‘before’ and
‘simultaneous’ in Table 6 are checked because start-time and end-time are delayed based
on the constraint table in line 1 of Algorithm 7 if they violate ‘after’ in Table 6. In lines 5
and 11 of Algorithm 8, aligned tasks correction proceeds. First, a task which made violated
constraints afterwards are removed from tasks of the agent who made violated constraint.
Then, constraints made by deleted tasks are removed from the constraint table. After that,
constraints associated with the task in renewed constraint table are found in line 1 again.
If the user choses accumulated distance cost scheme, daccum is recalculated based on pm
renewed in line 16 of Algorithm 7. Then, the calculation of rewards(costs) for remaining
tasks proceeds for next iteration of lines 2~21 of Algorithm 7.

After the process in line 5 of Algorithm 5, task allocation and alignment for one
iteration is performed. Lines 4 and 5 in Algorithm 5 are repeated every iteration until all
capable tasks are completed, so real-time task allocation and alignment are performed
by TACTAR.

Algorithm 8 Centralized TACTAR: line 15 of Algorithm 7

1: find constraints associated the task in constraint table
2: for a = 1:number of constraints in line 1
3: if column 4 is 0 //start-time of task
4: if ts > column 5 and column 6 is 0 or 2 //violate before or simultaneous
5: delete the tasks constraint(a,3) and after all from constraint(a,2)
6: delete constraints made by deleted tasks in line 5
7: goto line 1
8: end if

9: else if column 4 is 1 //end-time of task
10: if te > column 5 and column 6 is 0 or 2 //violate before or simultaneous
11: delete the tasks constraint(a,3) and after all from constraint(a,3)
12: delete constraints made by deleted tasks in line 5
13: goto line 1
14: end if

15: end if

16: end for

6. Results and Discussion

In this section, simulation results are provided to assess TACTAR. First, two scoring
schemes as described in Section 3 are applied to a simple case for verification of scoring
schemes because it is hard to verify the schemes in complicated cases. This case is intuitive
enough to prove the performance of scoring schemes. Then, these schemes are applied to
complicated cases to check that TACTAR can derive a solution satisfying spatial and tempo-
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ral constraints. Note that the complicated case must contain almost constraints in Tables 7
and 8, and there are one or more solutions satisfying constraints for verification. Finally,
a huge case which is composed of six agents, 30 tasks, and coupled constraints similar to
the complicated case is used to emphasize the computational efficiency of TACTAR. These
simulations are run by MATLAB 2018b, and specifications of the computer are in Table 12.
Additionally, the settings for three cases are as shown in Table 13. To apply constraints in
Table 13 to TACTAR, spatial and temporal matrices for the simple and complicated cases,
respectively, should be made as described in Table 14.

Table 12. Specifications of computer.

Contents Specification

CPU Intel(R) Core(TM) i5-10500 3.10 GHz
GPU Intel(R) UHD Graphics 630
RAM 16GB

Storage 256GB SSD
Program MATALB 2018b

Table 13. Settings for simulations.

Contents Simple Case Complicated Case Huge Case

Nu 3 6
Nt 8 30

X(0)
a (1,0), (2,0), (3,0) (1,0), (1,1), (2,0),

(2,1), (3,0), (3,1)

X(0)
t *

(−2,3), (−4,3), (−4,5.1), (−2,5.2),
(7,7), (9,7), (9,9.1), (7,9.2)

20 rand (30,1)
−10

Tt,dur 0.5 [s] for all tasks
Vmax,a 2 [m/s] for all agents

Tmin,dur 0.3 [s] for all tasks
Fbid,a 1 for all tasks and agents

c 100 for all tasks
ρ 0.8 for all tasks

warr 0.1 for all tasks
wend 1 for all tasks

Spatial constraints None Local MUTEX (1-3)
Global MUTEX (4-8)

Temporal constraints Task sequence (1-2-3-4)
Task sequence (5-6-7-8)

Task sequence (1-2-3-4)
Task simultaneously (1-5)
Task 6 starts during task 7

* If arrival time, start-time, end-time, or distances between tasks are same for some agents, scoring schemes may
not operate appropriately. In real world, these are hard to be same so the task points are adjusted slightly. This
adjustment is reasonable enough.

6.1. Time-Discounted Rewarding for Simple Case

Results for the simple case using the time-discounted scoring scheme are as in
Figures 1–3. In Figure 1, ‘A’ and ‘T’ mean agent and task, respectively, and numbers
after these are the indices for agents or tasks. The red lines mean sequence of tasks for each
agent. The number of tasks are larger than the number of agents so all agents are allocated
(and aligned) tasks to get high total reward. Task 1 is allocated to agent 1 because agent 1 is
the first to arrive at point of the task 1. Task 2 is allocated to agent 2 because the arrival time
of task 2 for agent 2 is faster than agent 1. Figure 1 is the reasonable result from this point
of view. Note that agent 2 is allocated to near tasks, task 2 and task 4, instead of far tasks,
tasks 5~8, to obtain a high reward. It means that the modified time-discounted scoring
scheme (and its original version as described in Equation (6)) is not used for minimizing
total time for finishing all tasks. Figure 2 shows the computational time in this case. Most
iterations are under 0.02 s so it is fast enough. Figure 3 describes the timetable of this case.
Each row of Figure 2 shows the schedule of each agent. Blue bars mean working time of
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each task and the labels of y-axis mean agent in charge of tasks. ‘T’ and indices after that
have same meaning as described in Figure 1. Note that the temporal constraints described
in Table 13 are satisfied in the results.

Table 14. Settings for simulations.

Contents Simple Case Complicated Case

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 1 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1. 2-D result of TACTAR for a simple case applying a modified time-discounted reward
scheme.
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Figure 2. Computational time of TACTAR for a simple case applying a modified time-discounted
reward scheme.

Figure 3. Timetable result of TACTAR for a simple case applying a modified time-discounted reward
scheme.

6.2. Accumulated Distance Cost for Simple Case

The results for the simple case using the accumulated distance scoring scheme are
as in Figures 4–6. Unlike the results in Section 6.1, only two agents, except agent two, are
allocated tasks, although the number of tasks are larger than the number of agents. Task 1
is allocated to agent 1 first because distance between the point of the task 1 and the agent 1
is the shortest. Next, task 2 is allocated to agent 1 because increased total travel distance
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after finishing the task 1 is the smallest in this case. Figure 4 is an intuitive and reasonable
result from this point of view. Figure 5 shows the computational time in this case. Most
iterations are also under 0.02 s as seen in Figure 2 so it is fast enough. Figure 6 describes
the timetable of this case. Agent 2 is not allocated to any task, so there is no timetable in
row 2 of Figure 6. Note that the temporal constraints described in Table 13 are satisfied in
the results.

Figure 4. 2-D result of TACTAR for a simple case applying an accumulated distance cost scheme.

Figure 5. Computational time of TACTAR for a simple case applying an accumulated distance cost
scheme.
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Figure 6. Timetable result of TACTAR for a simple case applying an accumulated distance cost
scheme.

6.3. Time-Discounted Rewarding for Complicated Case

The time-discounted scoring scheme is verified in simple cases as in Section 6.1. There-
fore, this scheme is applied to the complicated case and the results are as in Figures 7–9.
These results are different from the results in Section 6.1 because the spatial and temporal
constraints are changed. In Figure 7, agent 1 is not allocated task 3 because task 1 is in local
MUTEX relationship with the task 3. Additionally, the start-time of task 8 is faster than task
4 which is in global MUTEX relationship with task 8 so task 4 is not allocated to all agents.
Therefore, all spatial constraints in Table 13 are satisfied in the results. Figure 8 shows the
computational time in this case. Most iterations are under 0.05 s so it is fast enough. In
Figure 9, agent 1 arrives at the point of task 1 early but task 1 starts late because task 1
must start with task 5 simultaneously. The red bar means hold time at point of each task.
Note that the hold time is from arrival time to start time of task. Task 2 must start after task
1 ends so agent 2 waits until the task 1 ends. The third temporal constraint is that task 6
must start during work at task 7. To satisfy this constraint, agent 3 waits until 0.2 s before
the start-time of the task 6 because Tmin,dur is set to 0.3 s and Tt,dur is set to 0.5 s. Note that
TACTAR is iterated frequently so if the start-time of task 6 is delayed, the start-time of task
7 will be also delayed reflecting the situation of task 6. All temporal constraints in Table 13
are also satisfied in the results.

Figure 7. 2-D result of TACTAR for a complicated case applying a modified time-discounted reward
scheme.
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Figure 8. Computational time of TACTAR for a complicated case applying a modified time-
discounted reward scheme.

Figure 9. Timetable result of TACTAR for a complicated case applying a modified time-discounted
reward scheme.

6.4. Accumulated Distance Cost for Complicated Case

The accumulated distance scoring scheme is also verified in the simple case as in Sec-
tion 6.2, so this scheme is applied to the complicated case. The results are as in Figures 10–12.
These results are also different to the results in Section 6.2 because of constraints. In Fig-
ure 10, agent 1 is not allocated task 3 because task 1 is in local MUTEX relationship with
the task 3. Additionally, start-time of task 4 is faster than task 8 which is in global MUTEX
relationship with the task 4, so the task 8 is not allocated to all agents. Therefore, all spatial
constraints in Table 13 are satisfied in the results. Figure 11 shows the computational time
in this case. Most iterations are also under 0.05 s as seen in Figure 8 so it is fast enough. In
Figure 12, agent 1 arrives at the point of task 1 early but task 1 starts late because the task 1
must start with task 5 simultaneously. Task 3 also starts late because task 3 must start after
the end of task 2. Task 7 is paused to start so long because of the third temporal constraint
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in Table 13. When the current time is 0.2 s before the start-time of task 6, the task is started
by agent 3. Therefore, all temporal constraints in Table 13 are also satisfied in the results.

Figure 10. 2-D result of TACTAR for a complicated case applying an accumulated distance cost
scheme.

Figure 11. Computational time of TACTAR for a complicated case applying an accumulated distance
cost scheme.
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Figure 12. Timetable result of TACTAR for a complicated case applying an accumulated distance cost
scheme.

6.5. Time-Discounted Rewarding for Huge Case

The time-discounted scoring scheme is verified in simple and complicated cases as in
Sections 6.1 and 6.3, so this scheme is applied to the huge case for showing computational
efficiency. The results are as in Figures 13–15. As we can see, all spatial and temporal
constraints in Table 13 are satisfied in Figures 13 and 15. Figure 14 describes computational
time of huge cases. The computational time is under 0.15 s for all iterations except the
first one. Additionally, it decreases as the number of iterations increases because tasks are
finished by agents. Note that these are the results using MATLAB which uses only a single
CPU core. If the simulations are run by another compiler such as Visual Studio etc., the
computational time will be much lower.

Figure 13. 2-D result of TACTAR for a huge case applying a modified time-discounted reward
scheme.
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Figure 14. Computational time of TACTAR for a huge case applying a modified time-discounted
reward scheme.

Figure 15. Timetable result of TACTAR for a huge case applying a modified time-discounted reward
scheme.
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7. Conclusions

In this paper, we introduced an algorithm for coupled-constraint task allocation and
alignment problems using a constraint table and alignment rules called TACTAR. The two
scoring schemes are used for task allocation. One is time-discounted reward scheme which
is used in CBBA. For preventing the situation that two or more rewards of tasks are the
same and calculating rewards based on both arrival time and end-time of tasks, a modified
version of the reward scheme is used in TACTAR. To obtain reasonable allocation results,
we need to set weights of arrival and end-rewards appropriately. The other is accumulated
distance cost scheme which is proposed first in this paper. This scoring scheme is used for
allocation with minimum fuel consumption.

The constraint table is used for task allocation and alignment. The constraint table
has six columns which contain constrained task, who and which task makes constraints,
and the contents of constraints. It is used in task allocation when arrival, start, and end-
time of each task are used for calculating reward(cost). Additionally, it is used in task
alignment, which is based on alignment rules. The alignment rules are about methods
between candidate task of alignment and tasks already aligned. Finally, pseudo-codes of
TACTAR and simulations for simple and complicated cases are described. The constraints
used in TACTAR are different from those in CCBBA because some constraints are added for
needs. Additionally, some constraints are deleted because it can be replaced with another
one. However, the temporal constraint ‘Not During’ in CCBBA cannot be handled in this
paper, which is a minor limitation of TACTAR. Some limitations including this have to be
solved in future works.

Author Contributions: Conceptualization, N.E.H.; methodology, N.E.H.; software, N.E.H.; valida-
tion, N.E.H.; formal analysis, N.E.H.; investigation, N.E.H.; resources, N.E.H.; data curation, N.E.H.;
writing—original draft preparation, N.E.H.; writing—review and editing, N.E.H.; visualization,
N.E.H.; supervision, H.J.K. and J.G.K.; project administration, H.J.K. and J.G.K.; funding acquisition,
H.J.K. and J.G.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Korea Research Institute for defense Technology planning and
advancement (KRIT) grant funded by the Korea government (DAPA (Defense Acquisition Program
Administration)) (No. KRIT-CT-21-009, Development of Realtime Automatic Mission Execution and
Correction Technology based on Battlefield Information, 2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study might be available on reasonable
request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jeong, B.M.; Ha, J.S.; Choi, H.L. MDP-Based Mission Planning for Multi-UAV Persistent Surveillance. In Proceedings of the 2014
14th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 22–25 October 2014.

2. Billionnet, A.; Costa, M.C.; Sutter, A. An Efficient Algorithm for a Task Allocation Problem. J. ACM 1992, 39, 502–518. [CrossRef]
3. Bellingham, J.; Tillerson, M.; Richards, A.; How, J.P. Multi-Task Allocation and Path Planning for Cooperating UAVs. In Cooperative

Control: Models, Applications and Algorithms, 1st ed.; Butenko, S., Murphey, R., Pardalos, P.M., Eds.; Springer: Boston, MA, USA,
2003; Volume 1, pp. 23–41.

4. Liu, C.; Kroll, A. A Centralized Multi-Robot Task Allocation for Industrial Plant Inspection by Using A* and Genetic Algorithms.
In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 29 April–3 May
2012.

5. Jin, Y.; Minai, A.A.; Polycarpou, M.M. Cooperative Real-Time Search and Task Allocation in UAV Teams. In Proceedings of the
42nd IEEE International Conference on Decision and Control, Hawaii, HI, USA, 9–12 December 2003.

6. Lagoudakis, M.G.; Berhault, M.; Koenig, S.; Keskinocak, P.; Kleywegt, A.J. Simple Auctions with Performance Guarantees for
Multi-Robot Task Allocation. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sendai, Japan, 28 September–2 October 2004.

331



Appl. Sci. 2022, 12, 6780

7. Marcarthur, K.S.; Stranders, R.; Ramchurn, S.D.; Jennings, N.R. A Distributed Anytime Algorithm for Dynamic Task Allocation
in Multi-Agent Systems. In Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
7–11 August 2011.

8. Oh, K.T.; Kim, W.D. Task Assignment Algorithm for Rendezvous of Multiple UAVs. In Proceedings of the 2012 Korean Society
for Aeronautical and Space Sciences Fall Conference, Jeju, Korea, 7–11 November 2012.

9. Wei, H.; Lv, Q.; Duo, N.; Wang, G.S.; Liang, B. Consensus Algorithms Based Multi-Robot Formation Control under Noise and
Time Delay Conditions. Appl. Sci. 2019, 9, 229–244. [CrossRef]

10. Xiang, C.; Li, Y.; Zhou, Y.; He, S.; Qu, Y.; Li, Z.; Gong, L.; Chen, C. A Comparative Approach to Resurrecting the Market of
MOD Vehicular Crowdsensing. In Proceedings of the IEEE International Conference on Computer Communications, Virtual
Conference, 2–5 May 2022.

11. Xiang, C.; Zhou, Y.; Dai, H.; Qu, Y.; He, S.; Chen, C.; Yang, P. Reusing Delivery Drones for Urban Crowdsensing. IEEE Trans. Mob.
Compt. 2021; preprint. [CrossRef]

12. Choi, H.L.; Brunet, L.; How, J.P. Consensus-Based Decentralized Auctions for Robust Task Allocation. IEEE Trans. Robot. 2009, 25,
912–926. [CrossRef]

13. Whitten, A.K.; Choi, H.L.; Johnson, L.B.; How, J.P. Decentralized Task Allocation with Coupled Constraints in Complex Missions.
In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011.

14. Whitten, A. Decentralized Planning for Autonomous Agents Cooperating in Complex Missions. Master’s Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2010.

15. Lim, M.C.; Choi, H.L. Improving Computational Efficiency in Crowded Task Allocation Games with Coupled Constraints. Appl.
Sci. 2019, 9, 29–52. [CrossRef]

16. Lee, C.H.; Moon, G.H.; Yoo, D.W.; Tahk, M.J.; Lee, I.S. Distributed Task Assignment Algorithm for SEAD Mission of Heterogeneous
UAVs Based on CBBA Algorithm. J. Korean Soc. Aeronaut. Space Sci. 2012, 40, 988–996.

17. Moon, S.; Kim, H.J. Cooperation with Ground and Arieal Vehicles for Multiple Tasks: Decentralized Task Assignment and Graph
Connectivity Control. J. Inst. Contr. Robot Syst. 2012, 18, 218–223. [CrossRef]

332



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

MDPI Books Editorial Office
E-mail: books@mdpi.com
www.mdpi.com/books

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-2096-2


