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Abstract: The source region of the Yellow River (SRYR) is an important water conservation and
farming area in China. Under the dual influence of the natural environment and external pressure,
ecological patches in the region are becoming increasingly fragmented, and landscape connectivity
is continuously declining, which directly affect the landscape patch pattern and SRYR sustainable
development. In the SRYR, morphological spatial pattern analysis (MSPA) and landscape index
methods were used to extract ecologically important sources. Based on the minimum cumulative
resistance model (MCR), Linkage Mapper was used to generate a potential corridor, and then potential
stepped stone patches were identified and extracted by the gravity model and betweenness centrality
to build an optimal SRYR ecological network. The distribution of patches in the core area of the SRYR
was fragmented, accounting for 80.53% of the total grassland area. The 10 ecological sources based on
the landscape connectivity index and 15 important corridors identified based on the MCR model were
mainly distributed in the central and eastern regions of the SRYR. Through betweenness centrality,
10 stepped stone patches were added, and 45 planned ecological corridors were obtained to optimize
the SRYR ecological network and enhance east and west connectivity. Our research results can
provide an important reference for the protection of the SRYR ecosystem, and have important guiding
significance and practical value for ecological network construction in ecologically fragmented areas.

Keywords: source region of the Yellow River (SRYR); landscape connectivity; morphological spatial
pattern analysis (MSPA); minimum cumulative resistance model (MCR); ecological network

1. Introduction

Building an ecological civilization is a “millennium plan” for sustainable development
in China, where the ecological environment has always been a key concern [1]. With rapid
social and economic development, the ecological environment is still deteriorating globally,
large ecological patches that maintain ecosystem stability are gradually fragmenting the
landscape, and patch connectivity is being reduced, thereby greatly hindering species
migration and material energy spread, which are serious threats to ecosystem structure
and function [2]. The SRYR is an important water conservation and livestock farming base
in China, and includes numerous ecological patches. The President of China, Xi Jinping,
once emphasized at a symposium on ecological protection and high-quality development
of the Yellow River Basin: “The Yellow River Basin is an important ecological barrier and
an important economic zone in China” [3]. In recent years, soil erosion, water and soil
loss, human activities, rodent browsing, and other phenomena have plagued the SRYR.
Consequently, the SRYR ecosystem structure has lost its inherent balance, and suffered
functional decline and weakened recovery ability. Therefore, it is urgent to construct
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and optimize the SRYR ecological network, to scientifically and effectively promote patch
connectivity. Additionally, ecological network construction and optimization are highly
significant for maintaining ecological security [4], optimizing ecological patterns [5], and
improving ecosystem quality [6].

Based on landscape ecology, island biogeography, and population theory, ecological
networks comprehensively analyze the distribution and connection of ecological patches in
space [7]. Since the 1990s, ecological network research has involved all ecosystem aspects,
including energy flow, material cycles, information transmission, and ecological network
structure and composition [8]. For example, Marc et al. [9] measured local, regional,
and inter-sample network diversity (α-, γ-, and β-diversity) to describe how ecological
interactions change over space and time. Isadora et al. [10] developed a spatial model that
identifies and prioritizes riparian corridors to improve landscape connectivity. Ecological
network construction simplifies ecological patches in a region into ecological nodes to build
an ecological corridor and ecological network. Presently, ecological network construction
methods include models such as graph theory [11], landscape suitability [12], minimum
consumption distance [13], current theory [14], and thermodynamic law [15]. Commonly
used software include ConeforSensinode, Circulitscape, Guidos, Zzonation, and Marxan.
Among them, the commonly used ecological network construction method is the least
cumulative resistance model (MCR). The MCR model construction is mainly about source
selection and resistance surface construction.

For source selection, considering the impact of habitat quality and human activities,
Gao et al. [16] extracted ecological sources based on ecosystem service function and ecolog-
ical sensitivity to construct ecological resistance surface. Yu et al. [17] selected Dengkou
County, a typical ecologically fragile area, as an ecological source area and improved ecolog-
ical network stability by optimizing the spatial layout of ecological nodes. However, most
current studies selected scenic parks or large nature reserves with good habitat patches
as ecological sources, although this approach is somewhat subjective. In recent years, a
morphological spatial pattern analysis (MSPA) method focusing on structural connections
has gradually been integrated into ecological network construction and analysis. Based on
Ritters research, Vogt et al. [18] combined the convolution algorithm with the mathematical
morphological mapping algorithm proposed by Soille [19], and proposed a new method
for a landscape connectivity analysis based on the principles of expansion, corrosion, and
open–close operation, i.e., morphological spatial pattern analysis. This algorithm can
divide the binary image into seven non-overlapping categories (namely, core area, bridge
area, loop, branch, edge area, pore, and island patch). Then, the landscape types that
are important to maintain patch connectivity are identified, which increases the scientific
rigor of the selection of ecological sources and ecological corridors. For example, using
the methods of morphological spatial pattern analysis (MSPA) and landscape connectivity,
Xiao et al. [20] combined the graphic theory and quantitative analysis to evaluate the spatio-
temporal pattern and network connectivity changes of ecological networks in Zhengzhou.
Yi et al. [14], based on a morphological spatial pattern analysis and circuit theory, focused
on the importance of human activities in tropical southwest China to the optimization of
the Asian elephant ecological network.

Construction of the resistance surface represents the degree of interference encountered
when the target species moves between patches, and it will seriously influence the ecological
corridor and ecological network research outputs [21]. Presently, scholars constructed the
resistance surface based on various methods, such as expert scoring, entropy weighting,
landscape development intensity index, and biological behavior resistance estimation.
Based on the TOPSIS model of entropy weight, Li [22] constructed an evaluation model of
the eco-geological environmental carrying capacity. Li et al. [23] took the Sichuan-Yunnan
ecological barrier as a typical national complex ecological barrier area, and proposed to
construct a sustainable Sichuan-Yunnan ecological barrier based on the cycle theory and
future land growth changes. Some scholars modified the resistance surface according to
the actual situation, to scientifically judge and simulate the potential ecological corridor.
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Yu Gao [24] proposed a landscape resistance surface construction method based on a
habitat quality assessment, and compared it with a resistance surface constructed using the
entropy coefficient and expert scoring methods, and found it more suitable for ecological
network research in the scattered Changzhou landscape. However, due to differences in
land nutrients and environmental elevations, there may also be differences between the
same land use types. Currently, most studies are based on professional knowledge and
overall rating of some land use types to construct the landscape resistance surface, which
leads to heavy dependence of the landscape resistance surface on the grade coefficient. The
MCR model can solve this problem well. Moreover, in general, the combination of MSPA
and MCR has been applied to ecological networks in urban landscapes in the central and
eastern regions of China, but it has rarely been used in the field of natural landscapes and
biological protection in the northwest inland areas.

Although MSPA can identify patches that are important for maintaining landscape
connectivity, it still requires assistance from the overall connectivity index (IIC), possibility
connectivity index (PC), and equivalent connection proposed by Pascual-Hortal et al. [25].
In addition to patch abundance and spatial arrangement, these indices combine the dis-
persal specificity of plant habitats. Wu et al. [26] took the Guangdong-Hong Kong-Macao
Greater Bay Area as an example, and found that the overall ecological connectivity of
ecological networks at all scales showed a gradual upward trend, and the overall connec-
tivity index (IIC) and the possible connectivity index (PC) gradually increased with the
increase in the maximum dispersal distance of species. Javier Babi Almenar [27] integrated
a landscape index analysis, including the overall connectivity index (IIC), probable connec-
tivity index (PC), and equivalent connectivity index (EC) to show that from 1999 to 2007,
habitat fragmentation and loss increased ecological connectivity in Luxembourg, Western
Europe. Although the MCR model can judge and simulate the potential ecological corridor
by constructing the regional cumulative resistance surface, for corridor relative impor-
tance, it is necessary to analyze the interaction strength between patches through a gravity
model [28]. This method mainly combines the network structure index and gravity model
to obtain the important patch node rank classification and potential corridor suitability
analysis through quantitative calculation, to make the research results more consistent with
ecological principles. L. Thiault [29] evaluated an ecological network of marine-protected
areas established on Moorea and French Polynesia through a progressive BACIPS method.
For the ecological network evaluation index, scholars also measured the ecological service
value based on the probability of occurrence of a certain species in ecological patches [30].
However, this method lacks consideration of the spatial relationship between landscape
ecological elements and is therefore unsuitable.

In summary, this paper took the SRYR alpine grassland as the research object, and
based on the MSPA method, identified and extracted the core area landscape type with
the best ecological function in the research area. According to the overall connectivity
(IIC), probable connectivity (PC), and patch importance (dPC) in the landscape index, core
area patches were quantitatively evaluated, to select the ecological sources. The least-
LCPs method was used to generate the ecological corridor through the MCR model, and
patch interaction intensity was determined based on the gravity model. Then, through
betweenness centrality, we identified patches with a better mediating effect as stepped
stones to identify potential corridors, and to build the SRYR ecological network. Our
research results can provide a basis for the construction and planning of the SRYR ecological
network, and also have a certain reference value for ecosystem protection in other regions.

2. Materials and Methods

2.1. Study Area

The SRYR, as one of the sources of three rivers, is an important water conservation
area on the Qinghai-Tibet plateau [31]. It is located at N 33◦56′~35◦51′ and E 95◦55′~98◦40′,
with an altitude of 4200 m to 5266 m and a total area of 12.54 × 104 km2. The SRYR is
extremely rich in grassland resources, covering about 80% of the source area, and is one of
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the most important livestock farming bases on the Qinghai-Tibet plateau [32]. Ecosystem
stability in this region could guarantee the ecological security of China and even East Asia.

2.2. Data Sources

The land use data in this study were obtained from the 30 m spatial resolution land
cover data in 2020 from the Resources and Environmental Data Center, Chinese Academy
of Sciences (https://www.resdc.cn/ (accessed on 5 December 2021)) (Figure 1). The land
use types in the SRYR include grassland, construction land, cultivated land, shrub, wetland,
forest land, ice and snow, water area, and bare land. The vegetation cover data (NDVI
spatial distribution map) were obtained from 2020 Landsat OLI downloaded from the
National Aeronautics and Space Administration (NASA) (https://www.nasa.gov/ (ac-
cessed on 2 January 2021)). And the data were preprocessed by ENV5.1 released by Exelis
Visual Information Solutions in Colorado, USA, and ArcGIS 10.8 released by the Envi-
ronmental Systems Institute in RedLands, California, USA. Elevation data were obtained
from Geospatial Data Cloud (https://www.gscloud.cn/ (accessed on 15 March 2022)).
The road data were obtained from the National Tibetan Plateau Scientific Data Center
(http://data.tpdc.ac.cn/ (accessed on 20 March 2022)). The Arctic 1: 1 million road data
set (2014) is tailored, and the data contain two types, namely, 5 main roads (RMR3) and
321 branch roads (ROR3).

Figure 1. Spatial distribution map of land use types in the SRYR.

2.3. Research Methods
2.3.1. Ecological Source Extraction Based on the MSPA Method

• MSPA method

The ecological network is composed of a “source” and an ecological corridor connected
to the source. Generally, the “source” is selected as a patch with a larger area in the
landscape, and the MSPA method is used to identify landscape connectivity from the pixel
level. Important ecological patches (such as source areas, corridors) can more accurately
classify the spatial pattern of raster images in a functional structure, thereby increasing the
scientific nature of ecological source areas and ecological corridor selection [33]. Firstly,
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based on the land use-type data of the SRYR (Figure 1), the grassland of the nine types
was set as the foreground of the MSPA, and the other types were set as the background
of the MSPA. At the same time, the data were converted into binary raster files in TIFF
format. Secondly, a landscape pattern analysis of raster data was conducted with the
eight-neighborhood analysis method using Guidos Toolbox analysis software to obtain
seven landscape types with different landscape functions (Table 1) [19]. Finally, according
to the MSPA classification of landscape types, the core area which plays an important role
in maintaining the connectivity of the regional landscape was determined as the basis for
selecting ecological source patches.

Table 1. Definition of MSPA landscape types and corresponding ecological representations.

Landscape Type Definition Ecological Elements and Characterization

Core area Foreground pixels with background pixels
larger than the set parameters

Ecological source patches, high vegetation coverage, can
provide a larger habitat for species, and has important

significance for biodiversity protection

Connecting bridge Linear pixels connecting at least 2 core areas

It has the characteristics of an ecological corridor, which
is conducive to species migration and connection of the
domestic landscape. The greater its number, the better

the connectivity between the patches

Marginal zone
Refers to the boundary between the core
area and the external background pixels,

which is linear

Located on the edge of the core area, it can reduce the
impact of the external environment and

human interference

Feeder

Linear pixels connecting the boundary
(edges and pores) or corridors (circles and
bridges) on one side only, and foreground

pixels on the other side

Represents the most marginal area where the green
landscape pixels communicate material energy

Ring road Linear pixels connected to the same
core area

Shortcut for material energy exchange within the
core area

Isolated island Small and isolated area Less organic matter exchange and flow with the outside
world, mostly small green spaces in cities or rural areas

Gap Transition area between core area and
non-green landscape patches

With edge effect, it can play a role in the peripheral edge
of the area that hinders species movement in the core area

• Landscape connectivity index

To maintain regional ecosystem stability and protect biodiversity, a landscape con-
nectivity index was introduced. The landscape connectivity assessment evaluates species
migration between patches, material energy exchange, and the biological movement ability
of information flow [34]. Among the many landscape connectivity evaluation methods,
graph theory can simultaneously quantify structural and functional characteristics [35].
Presently, based on a graph theory-based connectivity evaluation, researchers often use
three landscape indices (overall connectivity (I IC), possible connectivity (PC), and patch
importance (dPC)) to measure important landscape pattern and function indicators, which
can better reflect the connectivity level between core patches in the area.

I IC =
∑n

i=1 ∑n
j=1

aiaj
1+nlij

A2
L

(1)

PC =
∑n

i=1 ∑n
j=1 ai · aj · p∗ij

A2
L

(2)

dPC =
PC − PCremove

PC
× 100% (3)
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In Equations (1)–(3), n is the total number of patches in the area; ai and aj are the
areas of patches i and j, respectively; nlij is the connection between patch i and patch j,
which is patch i. The maximum product of all path probabilities between blocks j, AL is the
total area of the landscape in the study area. I IC represents the connectivity index value
(0 ≤ I IC ≤ 1). If I IC = 0, there is no connection between ecological patches; if I IC = 1,
the entire landscape is a habitat patch. PC represents the possible patch connectivity
index in the study area landscape; after PCremove removes patch i from the landscape, the
connectivity index value of the landscape (0 ≤ PC ≤ 1), the greater the PC value, the greater
the patch connectivity. In this study, Conefor Sensinode 2.6 software was selected, and
the connection distance threshold was set at 5000 m with a connection probability of 0.5,
and EdgeWidth was 1. The landscape connection degree of the core patch obtained after
the MSPA in the SRYR was evaluated by I IC, PC, and dPC landscape indexes. Moreover,
the 10 core patches with the highest dPC value were used as ecological sources for the
development and reproduction of biological species.

2.3.2. Ecological Resistance Surface Construction

Biological species migration from one ecological source to another requires overcoming
different resistances to carry out the material exchange, energy flow, and gene exchange [36].
Since roads strongly impact ecological patches, by dividing originally large ecological
patches and leading to ecosystem disorder in the region, there were two road factors in the
resistance indicator selection. Based on the MSPA and landscape connectivity evaluations,
we selected six resistance factors, including elevation, aspect, land use type, vegetation
coverage, distance from main roads, and distance from branch roads in combination with
the principles of quantification and select ability. The impact of each resistance factor on the
ecological source area was divided into five resistance scores, and the corresponding weight
of each resistance factor (Tables 2 and 3) was determined according to the SPSS principal
component analysis method, so that the “comprehensive weighted index sum method”
was used to build the minimum cumulative resistance surface under ArcGIS support.

Table 2. SPSS principal component analysis weight determination process.

Ecological Resistance First Principal Component Second Principal Component

Number of roads

Distance from branch road 0.93 0.27
Distance from main road 0.89 0.44

Slope 0.82 0.57
Land use type 0.77 0.63

Vegetation coverage 0.68 0.44
Elevation 0.01 0.98

Characteristic root of principal component 3.39 2.13

Coefficients in linear combinations

Distance from branch road 0.50 0.19
Distance from main road 0.48 0.30

Slope 0.45 0.39
Land use type 0.42 0.43

Vegetation coverage 0.37 0.30
Elevation 0.01 0.67

Variance of principal components 56.50 35.57

Coefficients in the integrated scoring model

Distance from branch road 0.23
Distance from main road 0.26

Slope 0.21
Land use type 0.06

Vegetation coverage 0.08
Elevation 0.16
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Table 3. Rating and weighting of resistance factors.

Resistance Factor Grading Index Resistance Value Weight

Elevation

0–3500 1

0.16
3500–4000 2
4000–4500 3
4500–5000 4

>5000 5

Slope

South 1

0.08
Southwest, Southeast 2

East, West 3
Northwest, Northeast 4

North 5

Land use type

Cultivated land, shrub, grassland, forest land 1

0.06
Water area 2

Wetland 3
Construction land 4

Ice and snow 5

Vegetation coverage

80–100% 1

0.21
60–80% 2
40–60% 3
20–40% 4
<20% 5

Distance from main road (m)

1300–2000 1

0.26
1000–1300 2
700–1000 3
400–700 4

<400 5

Distance from branch road (m)

400–700 1

0.23
300–400 2
200–300 3
100–200 4

<100 5

2.3.3. Ecological Network Construction Based on the MCR Model

• Ecological corridor extraction based on the MCR model

The basic principle of the minimum cumulative resistance model is the “source-sink”
theory. By calculating the minimum cumulative resistance distance between the source
and the target to determine the best path for species migration and diffusion, it can avoid
external interference to a minimum. It reflects the possibility and tendency for material
energy and biological species movement among ecological patches in the landscape [29].
The simplicity of its construction, the extension of the elements, and the wide range of
applications, have led to its wide use. The minimum cumulative resistance model (MCR)
was modified by multiple experts to obtain the following formula:

MCR = f
i=m

∑
i=n

(
Dij × Ri

)
min (4)

In Equation (4), Dij represents the spatial distance from the source point i to the space
unit j, and Ri represents the resistance coefficient of the space unit i.

In this study, based on the source and resistance surface obtained by the previous
method, we used the Linkage Mapper tool, based on the principle of minimum path, to
automatically draw the corridor of ecological patches and determine the priority protection
level, to establish the network and map connection, and gradually analyze the landscape
composition of its potential corridor network.
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• Patch interaction based on a gravity model

In this study, the interaction matrix among the eight ecological foci was constructed
using a gravity model, and the interaction intensity between the patches was quantitatively
evaluated, to scientifically combine interaction intensity with the actual research area
situation. The situation was combined to construct an ecological network map in line with
the SRYR. The gravity model formula is as follows:

Gij =
Ni Nj

D2
ij

=

[
1
Pi
× ln(Si)

][
1
Pj
× ln(Sj)

]
( Lij

Lmax

)2 =
L2

max ln
(
SiSj
)

L2
ijPiPj

(5)

where Gij is the interaction strength between patch i and patch j; Ni and Nj are the weight
coefficients of patch i and patch j, respectively; and Dij is the standardized resistance value
of the potential corridor between patch i and patch j. Pi is the overall resistance value
of patch i; Si is the area of patch i; Lij is the cumulative resistance value of the potential
corridor between patch i and patch j; and Lmax is the maximum resistance value of all
corridors in the research area.

• Selection of stepped stones based on betweenness centrality

Betweenness centrality is a concept proposed by American sociologist Professor Linton
C. Freeman [37]. It refers to the ratio of the shortest path that passes through a certain point
and connects the two points to the total number of shortest path lines between the two
points in the network, and it is a main indicator to measure the importance of nodes in the
graph. In this study, the betweenness centrality module in the Matrix Green analysis tool
was used to calculate Green space patches with good intermediary function in the ecological
network, and 10 Green space patches were identified as stepped stones, according to their
scores, to construct the planned ecological network.

GB
i =

1
(N − 1)(N − 2)

N

∑
j=1;k=1;j �=k �=i

nik(i)
nik

(6)

where N is the number of nodes in the network; nik is the number of shortest paths between
nodes j and k; nik(i) is the number of shortest paths between two nodes j and k passing
through node i. In the ecological network, the higher the betweenness centrality nodes,
the more obvious the role as a hub in the network, which can be used as an important
stepped stone.

3. Results

3.1. Landscape Pattern Analysis Based on the MSPA Method

The SRYR core area of the landscape type was 99,560.85 km2, accounting for 80.53% of
the total area of grassland, and was distributed mainly in the northeast of the study area.
However, the distribution of the core areas in the west was more fragmented. The edge area
and perforation were mainly distributed between the core area and the background, with
a relatively large area of 1725.99 km2 and 2283.26 km2, respectively. The three landscape
types of loop, branch, and bridge were mainly distributed in the western region, with an
area of 396.59 km2, 356.52 km2, and 213.66 km2, respectively. The landscape area of islet
was the smallest at 108.83 km2, accounting for only 0.09% of the total area (Figure 2 and
Table 4).

3.2. Research Area Landscape Connectivity Evaluation

Ten core areas with high dPC values were selected as ecological sources, and the
results showed that there was a big difference in dPC values among different ecological
sources. The number of ecological sources in the west was far less than that in the east, and
the northern and southern regions lacked the distribution of ecological sources. Patch 8
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had the largest dPC value of 542.80 km2, dPC was 83.17, and dIIC was 82.65 (Table 5). It
was located in the east of the SRYR and mainly distributed with cultivated land patches.
Secondly, the dPC values of patches 9, 4, 7, 10, 6, and 5 distributed in the east decreased
successively, mainly distributed in wetland patches. Patches 1, 2, and 3 located in the west
of the SRYR had low dPC values, and their dIIC and dPC values were all less than 1. They
were mainly regional small, fragmented patches, and mainly distributed with bare patches.

Figure 2. Spatial distribution of MSPA analysis of land cover in the SRYR.

Table 4. MSPA classification of land cover in source region of Yellow River.

Landscape Type Area (km2) Total Area of Grassland Landscape (%) Total Area (%)

Core 99,560.85 95.14% 80.53%
Bridge 356.52 0.34% 0.29%
Edge 1725.99 1.65% 1.40%

Branch 213.66 0.2% 0.17%
Loop 396.59 0.38% 0.32%
Islet 108.83 0.1% 0.09%

Perforation 2283.2568 2.18% 1.85%

Table 5. Core area ranking based on landscape connectivity.

Serial Number Patch Number dPC dIIC Area/km2

1 42,005 83.16607 82.64966 542.80
2 38,907 14.47701 9.222232 60.57
3 42,452 11.74287 11.68335 198.64
4 41,491 5.056864 0.201331 28.24
5 42,872 2.993351 2.024486 34.42
6 40,841 1.177503 0.147397 24.17
7 40,157 0.671658 0.115662 21.41
8 32,221 0.529326 0.595473 48.58
9 15,241 0.489112 0.558735 47.05
10 29,832 0.439163 0.492475 44.18
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3.3. Ecological Network Construction Based on the MCR Model

The minimum cumulative resistance of the ecological network in the SRYR decreased
from west to east. The northwestern region had the highest resistance, with a resistance
value of 4.50, mainly distributed in ice land, bare land, and the water area. The southeast
had the least resistance, with a resistance value of 0, mainly distributed in cultivated land
and wetland (Figure 3). The cost distance values of the 10 ecological sources expanded
from the source region to the source region boundary of the Yellow River and gradually
increased, with the maximum consumption distance value of 619,734 and the minimum
value of 0. In total, 45 potential ecological corridors were identified based on the MCR
model. At the same time, 15 important corridors were obtained by the gravity model,
which were mainly distributed in the east and less in the west (Figure 4).

Figure 3. Minimum cumulative resistance surface in the SRYR.

Figure 4. Corridor grade spatial distribution in the SRYR.
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The interaction matrix between patches in the ecological source region obtained from
the gravity model shows that the strength of the interaction between patches in the western
region was greater than that in the eastern region. The interaction intensity between patches
5 and 6 was the highest, with a value of 371,577.6 (Table 6). The two patches covered
adjacent wetland patches, and the landscape connectivity was the strongest. Secondly,
the intensity of interactions between patches 6, 7, and 8 was higher, and the values were
173,416.3 and 155,876.7, respectively. The interaction intensity between patch 1 with a large
amount of bare land in the west and other ecological source patches was relatively small,
indicating that the landscape connectivity between the bare land patch and the eastern
ecological source patch was poor.

Table 6. Patch interaction matrix based on the gravity model.

Patch Number 1 2 3 4 5 6 7 8 9 10

1 0.00 323.93 252.76 77.68 49.61 65.76 62.34 70.09 46.86 46.56
2 0.00 0.00 26,297.31 287.90 167.93 224.31 212.86 241.46 148.76 140.45
3 0.00 0.00 0.00 314.99 180.83 241.86 229.56 260.80 158.47 148.40
4 0.00 0.00 0.00 0.00 15,168.88 25,857.77 31,132.04 40,773.64 5665.64 3260.00
5 0.00 0.00 0.00 0.00 0.00 371,577.62 50,788.60 20,412.32 19,742.59 5238.65
6 0.00 0.00 0.00 0.00 0.00 0.00 155,876.68 173,416.31 22,879.16 7387.04
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 113,138.58 15,454.03 6547.94
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4693.51
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19,887.67
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.4. Ecological Network Construction and Optimization

According to the overall ecological network constructed, the distribution of ecological
sources and ecological corridors in the SRYR is unbalanced on the whole, and the landscape
connectivity between the eastern and western regions is poor. Therefore, in order to
maintain the balance of the ecological network system, we optimized the ecological network
of the SRYR by adding “stepped stone” patches. Among the patches in the core area,
10 green patches with higher scores of betweenness centrality were selected as stepped
stone patches (Table 7). Further, one hundred ninety planned ecological corridors were
constructed by combining ten ecological sources and selected stepped stone patches, among
which eight were important corridors. Finally, the optimized land cover ecological network
planning map of the SRYR was obtained (Figure 5).

Table 7. 10 “Stepped stone” patches based on betweenness centrality.

Serial Number Patch Number BC Area/km2

1 1211 1.54 6.67
2 3082 19.50 84.67
3 19,730 21.78 94.54
4 21,979 29.97 130.12
5 25,172 8.18 35.52
6 26,247 19.69 85.46
7 26,760 12.70 55.15
8 34,533 1.70 7.36
9 37,005 30.41 132.03
10 40,752 6.29 27.33

In addition, the network closure index (α index), network connectivity index (β index),
and network connectivity rate index (γ index) in the network analysis method [38] were
used to calculate the ecological network quality of the study area before and after planning.
It was found that each index was higher than the value before planning (Table 8). The results
showed that the planned ecological network significantly improved the connectivity level of
ecological patches in the study area and increased the effectiveness of network connectivity.
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Figure 5. Land cover ecological network planning map of the SRYR.

Table 8. Ecological network quality before and after planning based on network structure indices.

Network Structure Index Before Planning After Planning

Network closure index (α index) 0.73 1.72
Line point rate index (β index) 2.00 4.22

Network connectivity index (γ index) 53.33 2723.33

4. Discussion

4.1. Landscape Pattern Analysis Based on the MSPA Method

According to the results of the landscape pattern analysis based on the MSPA method,
the patches in the northeastern core area of the study area were mostly large patches with
good spatial connectivity, while the patches in the west core areas of the study area were
relatively fragmented, which hindered the material exchange of biological species to a
certain extent. The edge area was 1725.99 km2, accounting for 1.65% of the total grassland
area, and the perforation area accounted for 2.18% of the total grassland area. The area of
the edge area and perforation area was only smaller than that of the core area, indicating
that the grassland landscape in the study area had a better edge effect, which could reduce
the interference brought by external factors. As a way of animal migration within the patch,
the loop was conducive to species migration within the same patch, accounting for 0.38%
of the total grassland area. As a structural corridor for material exchange and energy flow
in the process of interspecies migration in the ecological network, bridges accounted for
0.34% of the total area of grassland. Branch represented the interrupted ecological corridors
in the ecological network, and had certain connectivity in the study area, accounting for
0.2% of the total grassland area. As an isolated grassland patch, the islet patch could be
used as a stepped stone for organisms. Its area was small, accounting for 0.1% of the total
grassland area.

When performing a landscape MSPA analysis, setting the research scale and edge
width has a greater impact on the results [39]. When setting the study scale, increasing
the size of the image grid will result in the disappearance of small landscape elements or
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their conversion to the non-core MSPA category [40]. Setting the edge width represents
the size range in which the patch produces edge effects. The edge effect is an important
ecological process in nature reserve function design, which is closely related to species
habitat protection, community dynamics, ecological restoration, and so on [41]. In this
study, we set the edge width to 1 by default. However, the edge effect is specific and
complex, and its width varies with different landscape areas, landscape types, and patch
shapes. Therefore, the width of the edge effect set in this study may not be suitable
for some species. When setting the influence range of the edge effect, it is necessary to
consider the protection object and the shape and suitability of the study area landscape [42].
Wickham [43] analyzed the green infrastructure in various states in the USA based on
MSPA to explore the effects of edge effects and neighborhood rules on the spatial and
temporal pattern of green infrastructure. Jonathan Phillips [44], for the North Carolina
coastal plain, identified three edge effect types, and found that their effects might be related
to the unique geomorphologic control along the boundary, and within boundary resistance
differences. Therefore, the scale effect and edge effect of MSPA should be further compared
and analyzed, so as to explore the influence of the edge effect on the construction of an
ecological network.

4.2. Ecological Network Construction Based on MCR Method
4.2.1. Landscape Connectivity Analysis

According to the results of the landscape connectivity evaluation in the study area,
10 ecological sources were selected in the study area according to the value of patch
importance (dPC), and the larger the value of dPC, the better the patch connectivity. On
the whole, the distribution of ecological source areas was extremely uneven. The ecological
source areas were mainly located in the east, which had good natural conditions of a high
vegetation coverage rate, providing a large ecological source area for the SRYR, which was
more suitable for species migration and material and energy exchange, and more conducive
to species survival to a certain extent. However, in the western region, vegetation coverage
was low, a large number of alpine grasslands were distributed, and ecological patches
with good ecological functions were lacking, so there was no distribution of the ecological
source, resulting in poor overall connectivity and serious east-west faults in the study area.
Patch 8 in the east, as the largest patch of dPC, indicated that the large area of swamp had
an impact on the overall ecological network connectivity level of patches, and had more
ecological functions than other patches in the study area. This is more conducive to the
protection of biodiversity and a greater degree of rich species diversity. Therefore, in the
future conservation of ecological diversity, priority should be given to the protection of
large ecological patches. The patches in other ecological sources were mainly regional,
small, fragmented patches with relatively small dPC value and poor landscape connectivity.
Meanwhile, it is necessary to construct a foot patch in the western and central regions to
strengthen the connectivity between the landscapes in the study area, maintain the balance
of the ecosystem and the value of ecological services, construct an ecological network in the
study area, and focus on protecting the patches with poor connectivity, so as to improve
the habitat suitability and landscape connectivity.

When landscape indices dPC and dIIC were used to calculate landscape patch con-
nectivity, the connection distance threshold must be set. If the distance between patches is
greater than the threshold, the patches are considered disconnected. Moreover, setting the
connection distance threshold requires considering species diffusion distance, as it often
differs between species. The threshold distance used in this paper was 5000 m, and the
connected probability was 0.5. Devi [45] proposed a graph theory method to determine
the optimal threshold distance for forest patches in a potential connectivity alternative for
tropical deciduous forests in the Eastern Ghats of India (optimum threshold 250 m). Louise
Geldenhuys [46] reported good within-patch connectivity when the grassland community
spreading distance in Mpumalanga was between 50 and 1000 m, and 99.6% of the total
habitat area was connected with a single patch at a 1000 m threshold distance. Therefore,
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setting the connection distance threshold has an important effect on quantifying the struc-
tural and functional connectivity of plaques [47]. Landscape connectivity will gradually
improve with the increase in diffusion distance, and the feasibility of the results needs
to be further verified in subsequent studies. Ultimately, landscape connectivity can be
used as an important indicator to measure landscape pattern and function, and provide an
important basis for ecological protection. Catia Matos [48], using the graph theory method
and incorporating the landscape connectivity model, studied the widespread but rapidly
diminishing pond amphibian Triturus cristatus, and the results were critical for predicting
the impacts on its migration and dispersal. Santiago Saura [49] confirmed that graphical
structure and habitat availability metrics can better analyze regional landscape connectivity
for various forest habitats in Lleida (northeastern Spain). This method can be adapted to
map different levels of ecological and spatial details, while still maintaining a coherent
framework for identifying key elements in the landscape network.

4.2.2. Ecological Network Construction

According to the results of ecological network construction based on the MCR model,
the connectivity of the central and eastern parts of the study area was better, and the
ecological corridors were more dense, which is conducive to species migration between
patches. The intensity of the interaction between patches indicates the importance of patch
connectivity and the importance of the corridor between patches. The patches of ecological
source areas in the eastern region had greater interaction intensity, closer distance, and a
relatively large area, and the exchange and propagation of species energy were simpler
and more extensive. Therefore, in landscape planning, it is necessary to strictly control and
protect this type of ecological corridor, ensure connectivity between patches, and avoid
damage due to natural disasters or external disturbances. The interaction intensity between
patch 1 and other patches in the west was the smallest, indicating that patch 1 and other
patches had greater landscape resistance, which hindered the migration of species. In
future ecosystem planning, the corridor connection between the two patches should be
increased to improve the habitat suitability of the corridor. However, from the overall view
of the ecological network constructed, the eastern and western parts of the study area were
not connected by corridors, and the ecological network was not perfect. Therefore, in order
to maintain the balance of the ecological network system, it is particularly important to
optimize the ecological network of the SRYR by planning and designing new ecological
sources and ecological corridors in the study area.

As an important species source and habitat, core patch is an important functional
node in constructing the ecological network. Therefore, on the basis of protecting the
core patches, we should reasonably plan the “stepped stone” patches to build a bridge
of material and energy exchange between the eastern and western regions, and enhance
the overall connectivity of the ecological network in the SRYR. Increasing the number of
“stepped stones” and decreasing the distance between “stepped stones” can effectively
improve the survival rate of species during migration [50]. In this study, 145 additional
planned ecological corridors were obtained by adding stepped stone patches, thus con-
structing the overall ecological network planning diagram of the SRYR. Among them,
important corridors were mainly concentrated in the middle of the SRYR, connecting the
main ecological sources and having great significance for biodiversity protection, so they
are the key areas to be protected in the ecological planning. The planning corridor was
optimized on the original general corridor to better communicate between the eastern and
western regions and optimize the overall structure of the ecological network. The planned
ecological network significantly improved the connectivity level of ecological patches in
the study area and increased the effectiveness of the network connection.

4.3. Limitations and Future Research Directions

In this study, based on the principles of landscape ecology, MSPA and MCR methods
were used to construct and optimize the ecological network in the SRYR, which provided
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an important indication for ecosystem protection. However, there are still some limitations.
Firstly, when constructing the minimum cumulative resistance surface, only elevation,
vegetation coverage, road, and land use type were selected as resistance factors, without
considering the impact of objective factors such as human factors on the ecological source
area. Secondly, in the analysis of landscape connectivity, there was a lack of research on the
impact of scale effects such as edge width and distance threshold in the research results.
Thirdly, due to the large basin area of the SRYR, complex landforms are formed under the
influence of internal precipitation, glaciers, evapotranspiration, and wind. Therefore, the
applicability of the research results still needs to be further discussed. Finally, in future
studies, the time scale should be expanded to study the changes of the land cover ecological
network in the SRYR in a long time series.

5. Conclusions

In this paper, the SRYR is taken as the research area. From the perspective of ecologi-
cal landscape connectivity, the ecological source region is identified based on the MSPA
method, and the land cover ecological network of the SRYR is constructed and optimized
by combining the MCR model. The conclusions are as follows.

(1) The core landscape area of the SRYR was 99,560.85 km2, accounting for 80.53% of the
total grassland area, which was mainly distributed in the northeast region, with relatively
large marginal areas and void patches. Ring roads, branch lines, and connecting bridges
were mainly distributed in the western region. The island had the smallest landscape area.

(2) The dPC values of different ecological sources in the SRYR were significantly
different. The number of ecological sources in the west was much less than that in the
east, and the northern and southern regions lack the distribution of ecological sources. The
patches with large dPC values were located in the east, mainly distributed in cultivated
land and wetland, while the dPC value was less than 1 in the western ecological source
area. The patches were mainly regional, small, fragmented patches, mainly distributed in
bare land.

(3) The minimum cumulative resistance of the ecological network in the SRYR de-
creased from west to east, and the northwestern region showed the highest resistance, with
a value of 4.5. The eastern part had the lowest resistance, with a resistance value of 1.16.
Meanwhile, 45 potential ecological corridors were identified based on the MCR model,
among which the important corridors were mainly distributed in the eastern part.

(4) In total, 190 planned ecological corridors were obtained by combining 10 core area
patches with increased betweenness centrality, which optimized the ecological network of
the SRYR. The optimized network structure index was much higher than before.

The results show that the ecological network based on the MCR model is poor, and the
eastern and western parts lack connectivity. The optimized ecological network effectively
improves the connectivity of the whole ecological patches in the SRYR, and promotes
the material exchange and energy flow among the core regions. The results of this study
provide an important basis for the sustainable development of the SRYR, and provide a
reference for the research and protection of fragile ecosystems. However, the influences
of the spatial scale, time scale, and resistance factor on the research results still need to be
further discussed.
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Abstract: Advancement in remote sensing platforms, sensors, and technology has significantly
improved the assessment of hard-to-access areas, such as mountains. Despite these improvements,
Africa lags in terms of research work published. This is of great concern as the continent needs
more research to achieve sustainable development. Therefore, this study applied a bibliometric
analysis of the annual production of publications on the application of remote sensing methods in
mountainous environments. In total, 3849 original articles between 1973 and 2021 were used, and the
results indicate a steady growth in publications from 2004 (n = 26) to 2021 (n = 504). Considering the
source journals, Remote Sensing was the top-ranked, with 453 total publications. The University of
the Chinese Academy of Sciences was the highest-ranking affiliation, with 217 articles, and China
produced the highest number of publications (n = 217). Keywords used between 1973 and 1997,
such as “Canada”, “alps”, and “GIS”, metamorphosed into “remote sensing” between 1998 and 2021.
This metamorphosis indicates a change in the areas of interest and an increase in the application of
remote sensing methods. Most studies were conducted in the Global North countries, and a few were
published in low-impact journals within the African continent. This study can help researchers and
scholars better understand the progress and intellectual structure of the field and future research
directions in the application of remote sensing methods in mountainous environments.

Keywords: data scarcity; publishing equity; mountain; remote sensing; sustainable development;
Africa; bibliometric analysis

1. Introduction

Mountain formation has been attributed to plate tectonics, in which pieces of the
Earth’s crust smash against each other [1]. The three main types of mountains mainly found
in Africa are volcanic, fold, and block [2]. As there is no proper definition of a mountain in
the literature, the general understanding is that it is distinctively elevated land compared
to the surrounding areas, with steep sides and exposed bedrock [3]. Due to their physical
characteristics, mountains provide goods and ecosystem services that humans and animals
use [4]. Mountains are one of the most vital ecosystems for the world population because
they offer clean water and energy that supports biodiversity [4,5]. The mountain elevation
provides for cooler climates and its rugged terrain discourages human intrusion [6]. These
characteristics promote the existence of species that are endemic to the area [7].

Many rivers originate from mountains, making them known as “water towers”, sup-
porting more than 2 billion lives worldwide [8]. A good example is the Maluti mountains in
Lesotho, which are associated with high precipitation and cloud cover, reduced evaporation,
and the provision of fresh potable water to the citizens of the kingdom [9]. Land use and
land cover (LULC) and climate changes make mountain ecosystems vulnerable to decay
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while limiting their provision of ecosystem goods and services [5]. These vulnerabilities
have affected the ecological stability of mountains and the livelihoods of communities that
access socioeconomic benefits from the mountains [10]. This is especially true in Africa,
where most of the population is rural, residing in headwater catchments that are dominated
by rugged and mountainous terrain [11]. There exists a beneficial relationship between
man and the environment in these areas that can inform management to plan and provide
people with equitable and sustainable ecological services [12].

The natural environment offers resources for communities to utilize, and communities,
in turn, maintain these environments [13]. Human populations in rural areas depend on
freshwater resources of sufficient quantity and quality to sustain their dominant agricultural
activities for their livelihoods [14]. The Pungwe River basin in the Zimbabwean part
is a good example of a basin that provides livelihood opportunities to inhabitants in
the area [11]. The catchment is generally mountainous [15], having the second-highest
mountain and the fourth-tallest waterfall in Africa [15]. The area produces enough water
resources to cater for the commercial and subsistence farming activities in the area, provides
a good environment for fish populations (the most common source of animal protein in
rural areas), and promotes ecotourism, which provides jobs for the local communities [16].
Degradation of the mountainous environment that supports this system directly affects
the livelihoods of communities that lag behind the successes of sustainable development
in Africa [16].

With current projections in climate change trends pointing towards a gloomy future,
especially for Africa, it is necessary to fully understand the impact of such change [9,17].
Africa, based on its adaptive capacity, has a limited ability to cope with climate change [2].
The livelihoods of communities in rural Africa are closely related to the availability and
use of natural resources, which results in LULC changes that threaten human well-being
in the region [18]. Climate change will increase the frequency and magnitude of extreme
weather events (e.g., heatwaves, droughts, floods, and hailstorms) [19]. As temperatures
increase, some animal species endemic to the cool climates provided by mountainous
environments will disappear, and there will be crop damage and failure in these envi-
ronments [5]. Understanding climate and LULC changes will allow decision-makers to
come up with adaptation strategies to combat these alterations [17,20]. However, moun-
tainous regions are data-scarce, a result of their inaccessibility that limits in situ data
capturing [21]. However, with modern science, data can be collected and evaluated ex situ
to understand changes that a place is undergoing [22]. Remote sensing has become one of
the most widely used ex situ data collection and analysis approaches for environmental
assessments [10,20,23]. The analysis approach is an alternative source that is quick, easy to
use, and intrinsically spatialized [22,24].

Remote sensing is a method of collecting information about objects by analyzing data
collected by sensors that are not in contact with the objects of interest [25,26]. The data can
be used to map, model, and monitor mountain ecosystem patterns [27]. Moreover, the data
can provide comprehensive and cost-effective geospatial information acquired at varying
spatial scales, temporal frequencies, and spectral properties [21–23]. The application
of remote sensing has been successfully used in mountainous environments to classify
habitats [28], estimate daily land surface temperature [24], water extraction [29], detect
vegetation cover [30], detect fire events [27], evaluate snowpack simulations [31], monitor
ecosystem services [5], detect changes in mountain glaciers [32], and mapping mountain
forests [33] among many functions. Remote sensing application has advanced where it
is used in combination with geographic information systems (GIS) systems in evaluating
glacier and permafrost dangers in mountains [33].

Remote sensing methods using optical and radar technology are increasingly crucial
for understanding environmental dynamics in mountainous areas [34]. These methods
include the use of unmanned aerial vehicles (UAVs), very high spatial and temporal reso-
lution data, and geographical information systems (GIS) data—such as digital elevation
models (DEMs)—in modelling, mapping, and monitoring changes in mountainous re-
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gions [35,36]. Persistent clouds, frequent and heavy snowfall, and output data accessibility
are particularly problematic for optical satellite sensors [37]. These problems can be re-
duced by using radar sensors that can penetrate clouds and measure mountain deformation
rates [38]. With the massive growth in the amount of free and open-access data available,
artificial intelligence (AI) and cloud computing are starting to enhance the processing of
these new datasets [37]. In mountainous areas, remote sensing has advanced, it has moved
beyond simply analyzing images from a single satellite sensor to combining data from
several satellite sensors and examining their long-term spatiotemporal properties [39].
Knowledge of the application and use of remote sensing in mountainous environments
can help to increase understanding of environmental dynamics [40]. This understanding is
useful for decision-makers, natural resource management officers, and other stakeholders
in making decisions for conserving and management of resources in mountainous regions.

There has been a rise in research in mountainous areas using passive optical data
with high spectral and temporal resolution. By capturing multiple bands and high spec-
tral resolution, the remote sensing data assist in distinguishing features in mountainous
regions [41]. Remote sensing advancements have a significant impact on the methods used
in monitoring mountainous environments. The use and type of remote sensing data vary
from polar to equatorial regions. For example, more observations from the polar regions
are seen on the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard the
polar orbit satellite Terra as compared to equatorial regions [42]. Remote sensing methods
are convenient in glacial mapping. Satellite imageries, such as IKONOS and Quickbird,
have been used to monitor glacial surfaces in three dimensions due to their capability to
acquire stereoscopic images, from which elevation data can be extracted [43]. However,
their use is constrained at broad spatial scales by their high costs, small swath sizes, and
lengthy revisit intervals. Remote sensing is applied to predict future water resources, and
glacial hazards and study earth crust movement in mountainous regions [43]. Several
indices, such as the Normalized Difference Snow Index (NDSI) and Normalized Difference
Vegetation Index (NDVI), are used to separate snow and ice from dark areas such as rocks
and monitor vegetation changes [44]. The application of remote sensing methodologies in
mountainous environments consists of several processing and analytical techniques. These
techniques include image pre-processing, which is important in correcting systematic and
non-systematic errors present in remotely sensed images [21,45]. Image post-processing
involves the extraction of information from the pre-processed images such as the classifica-
tion of mountainous environments using either pixel-based or object-based classification
methods [21]. Knowledge of the vulnerability of mountain regions to LULC and climate
changes and the dependence of communities residing in these regions emphasizes the need
for the application of remote sensing strategies in mountain environments [21]. Although
mountains are important and fragile, research on mountain environments is still scarce.
Existing studies in mountainous environments have been limited and focus on monitoring
shifting cultivation [46], measuring, modelling, and monitoring ecosystem services [17],
estimation and mapping of soil properties [47], and vulnerability assessments [4]. Under-
standing possible scenarios of trends in both anthropogenic and natural changes can aid
in creating adaptation strategies that are informed by science [32]. This gives a sense of
the direction of adaptation that can be followed. Africa is resource-limited and, therefore,
requires sound and cost-effective scientific evidence that informs decision-making.

It is against this background that this study applied a bibliometric analysis approach to
understand the distribution of relevant literature that applied remote sensing techniques in
mountainous environments. This analysis is important because it helps researchers provide
an integrated understanding of progress, gaps, directions, and targets for future research
studies. Bibliometric analysis popularity is attributed to the advancement, availability, and
accessibility of bibliometric software such as VOSviewer 1.6.19 and scientific databases
such as Web of Science (WoS) and Scopus [48]. Bibliometric analysis for this study will show
the point of view of Africa in terms of research carried out in mountainous areas versus
the whole world. The study summarized annual production, source journals, affiliations,
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collaborations, and country scientific production. Moreover, the study outlined common
research topics, co-occurrence networks, and thematic evolution of keywords in publica-
tions focusing on the application of remote sensing methods in mountainous environments.
The data source, materials, and description of the R statistical software (Version 4.2.2) and
packages were used in this study.

2. Materials and Methods

2.1. Bibliographic Database

The data used in this study included authors, keywords, citations, source journals, and
countries of publications obtained from the Web of Science and Scopus databases. The WoS
belongs to Clarivate Analytics and is one of the oldest databases, with more than 1.5 billion
references dating back to 1900 [35]. Scopus database has over 17 million researchers profiled,
81 million curated documents, 80,000 institution profiles, and 7000 publishers [36]. For
this study, the search for the article was guided by the terms: “mountain”, “mountainous”,
and “remote sensing” published between 1 January 1973 and 31 December 2021. A total of
3343 original articles were downloaded from the WoS database and 660 from the Scopus
database (Figure 1). The downloaded articles were merged, 154 duplicate articles were
removed, and 3849 articles were retained.

Figure 1. The total number of articles published between January 1973 and December 2021 on the
application of remote sensing methods in mountainous environments.

2.2. R Statistical Application

The bibliometric package in R statistical software analyzed the data generated from the
databases. The bibliometrix R-package is written in the R language, which is freely avail-
able for generating bibliometric maps using effective statistical algorithms [49]. The data
transported into R were translated into a bibliographic data frame and structured for dupli-
cation, and the duplicated records were presented as a single document. The bibliometrix
package analyzed data by creating a bibliographic coupling, collaboration, co-citation,
and co-occurrence network. Spelling errors in articles and associations were checked and
corrected before visualizing the author’s names, keywords plus, and keywords.

3. Results

3.1. Publication Time Series Analysis

From 1973 to 2021, a total of 3849 articles were published focusing on remote sensing
and mountain studies. Figure 1 shows how the articles were distributed for the selected
period of study. There was minimal production of articles between 1973 and 1989. A steady
increase in articles was noticed between 1990 and 2007. An exponential increase was
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recorded for the period 2008 to 2021. In terms of publishing journals, the top three were
Remote Sensing, Remote Sensing of Environment, and the International Journal of Remote Sensing
(Table 1). A total of 14 of the top main-source journals were from European countries,
4 were from the USA, 1 from China and 1 from India (Table 1). Table 1 also shows that the
top 20 main source journals had 8 journal names including the words “remote sensing”.

Table 1. Top 20 main source journals, country, and the total number of publications.

Rank Journal Name Country Number

1 Remote Sensing Switzerland 415
2 Remote Sensing of Environment USA 222
3 International Journal of Remote Sensing UK 181
4 Journal of Mountain Science China 154
5 IEEE Transactions on Geoscience and Remote Sensing USA 66
6 Geomorphology Netherlands 58
7 Journal of Glaciology UK 50
8 Mountain Research and Development Switzerland 50

9 IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing USA 46

10 Arabian Journal of Geosciences Germany 43
11 ISPRS Journal of Photogrammetry and Remote Sensing Netherlands 40

12 International Journal of Applied Earth Observation
and Geoinformation Netherlands 39

13 Canadian Journal of Remote Sensing UK 38
14 Forest Ecology and Management Netherlands 37
15 Cryosphere Germany 34
16 Environmental Earth Sciences Germany 34
17 Hydrological Processes UK 33
18 Forests Switzerland 32
19 Journal of Geophysical Research Atmospheres USA 32
20 Journal of the Indian Society of Remote Sensing India 31

3.2. Affiliations, Collaborations, Country Scientific Production, and Top-Cited Articles

From these results, 4480 institutions contributed to the analyzed publications on the
application of remote sensing techniques in mountainous environments. The University of
Chinese Academy of Sciences in China was the highest-ranked affiliation, with 217 articles
(Table 2). China and USA were the top-ranked nations, with 9 affiliations that published
research on the application of remote sensing methods in mountainous environments
(Table 2). Authors affiliated with Chinese institutions produced the highest number of
publications on the topic. China had a total of 1167 articles, with an intra-country or
single country publication (SCP) collaboration index of 863 and 304 for the inter-country
or multiple country publication (MCP) collaboration index, as shown in Figure 2. This
indicates that most of the corresponding authors in the published articles on the application
of remote sensing methods in mountainous environments were from China. The USA was
the second-ranked country, with 762 publications—554 for SCP and 208 for MCP (Figure 2).
Most countries had higher SCP compared to MCP values (Figure 2). The global distribution
of publications is shown in Figure 3 with most publications produced in China (n = 4659)
followed by the USA (n = 3969) and Germany (n = 1088). A few publications were produced
in the African continent.

The global distribution of publications is shown in Figure 3 and the darker the color, the
more publications have been produced. Most publications were produced in China (n = 4659),
followed by the USA (n = 3969) and Germany (n = 1088). A few publications were produced
in the African continent, and there was no single publication in Mauritius (Figure 3).
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Table 2. The rank of the top 20 affiliations, country, and the number of articles published.

Rank Affiliations Country Articles

1 University of Chinese Academy of Sciences China 217
2 Beijing Normal University China 209
3 The Institute of Mountain Hazards and Environment China 183
4 Institute of Remote Sensing and Digital Earth China 175
5 Chinese Academy of Sciences China 136
6 University of Colorado Boulder USA 120
7 Institute of Geographic Sciences and Natural Resources China 109
8 Jet Propulsion Laboratory USA 94
9 Northwest Institute of Eco-Environment and Resources China 91

10 University of Maryland USA 90
11 University of Idaho USA 89
12 United States Forest Service USA 88
13 University of Zurich Switzerland 86
14 Colorado State University USA 84
15 The University of Arizona USA 84
16 The University of Oklahoma USA 83
17 SETI Institute USA 76
18 University of Marburg Germany 76
19 Institute of Tibetan Plateau Research China 75
20 Lanzhou University China 73

Figure 2. Top 20 countries publishing articles on the application of remote sensing methods in
mountainous environments. The country collaborations are represented as inter-country (MCP) and
intra-country (SCP) collaboration indices.

The study revealed that the top five most cited publications focusing on the application
of remote sensing methods in mountainous environments were from the Journal of Glaciology,
Scientific Bulletin, Applied Geography, and Remote Sensing of Environment (Table 3). The top
20 publications cited were written between 2002 and 2019, with a highest total citations
(TC) of 587 and citations per year (TCpY) of 65.22 for a publication with Pfeffer as the first
author (Table 3). The TC and TCpY for the top 20 cited articles ranged from 87 to 587 and
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from 7.2 to 73.8, respectively. A total of 14 corresponding authors were affiliated with
Chinese institutions; 5 were from the USA, and 1 was from Germany. The Remote Sensing of
Environment had seven publications, followed by the Journal of Glaciology (n = 2), and the
rest had a single publication in the top 20 cited articles focused on the application of remote
sensing in mountainous environments.

Figure 3. The global distribution of publications in this study.

Table 3. Top 20 articles cited, corresponding author’s name, year, title, source, total cita-
tions (TC), and total citations per year (TCpY)on the application of remote sensing methods in
mountainous environments.

Rank
First Author’s

Name and Year
Title Source TC TCpY

1 Pfeffer et al. [50] The Randolph Glacier Inventory: A Globally
Complete Inventory of Glaciers Journal of Glaciology 587 65.2

2 Guo et al. [51] The Second Chinese Glacier Inventory Data
Methods and Results Journal of Glaciology

3 Gong et al. [52]

Stable Classification with Limited Sample
Transferring a 30 m Resolution Sample Set

Collected in 2015 to Mapping 10 m Resolution
Global Land Cover in 2017

Science Bulletin 295 73.8

4 Su et al. [53]
Characterizing Landscape Pattern and
Ecosystem Service Value Changes for

Urbanization Impacts at an Ecoregional Scale
Applied Geography 243 22.1

5 Zhu et al. [54] A Flexible Spatiotemporal Method for Fusing
Satellite Images with Different Resolutions

Remote Sensing
of Environment 235 33.6

6 Xiao et al. [55]
Characterization of Forest Types in

NorthEastern China using Multitemporal
SPOT4 Vegetation Sensor Data

Remote Sensing
of Environment 218 10.4

7 Li et al. [56]

Eco-environmental Vulnerability Evaluation in
Mountainous Region using Remote Sensing

and GIS: A Case Study in the Upper Reaches of
Minjiang River China

Ecological Modelling 190 11.2
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Table 3. Cont.

Rank
First Author’s

Name and Year
Title Source TC TCpY

8 Huang et al. [57]
Mapping Major Land Cover Dynamics in

Beijing Using All Landsat Images in Google
Earth Engine

Remote Sensing
of Environment 177 29.5

9 Zhang et al. [58]
A 2010 Update of National Land use cover
Database of China at 1:100,000 Scale Using
Medium Spatial Resolution Satellite Images

Remote Sensing
of Environment 172 19.1

10 Wulfmeyer et al. [59]

The Convective and Orographically-induced
Precipitation Study (COPS): The Scientific

Strategy, The Field Phase, and
Research Highlights

Quarterly Journal of the
Royal Meteorological Society 148 12.3

11 Chen et al. [60]

A Mangrove Forest Map of China In 2015
Analysis of Time Series Landsat 78 and

Sentinel1A Imagery in Google Earth Engine
Cloud Computing Platform

ISPRS Journal of
Photogrammetry and

Remote Sensing
139 23.2

12 Muno et al. [61]
A Catalog of Xray Point Sources from Two

Megaseconds of Chandra Observations of the
Galactic Center

Astrophysical Journal
Supplement Series 134 9.8

13 Nie et al. [62]
A Regional-scale Assessment of Himalayan

Glacial Lake Changes Using Satellite
Observations From 1990 to 2015

Remote Sensing
of Environment 121 20.2

14 Ma et al. [63]
Response of Hydrological Processes to

Landcover and Climate Changes in Kejie
Watershed Southwest China

Hydrological Processes 114 8.1

15 Li and Sheng [64]

An Automated Scheme for Glacial Lake
Dynamics Mapping using Landsat Imagery

and Digital Elevation Models: A Case Study in
the Himalayas

International Journal of
Remote Sensing 113 10.3

16 Chen et al. [65]
Forested Landslide Detection Using Lidar Data

and the Random Forest Algorithm: A Case
Study of the Three Gorges China

Remote Sensing
of Environment 109 12.1

17 Yin et al. [66]

An Assessment of the Biases of Satellite
Rainfall Estimates over the Tibetan Plateau and

Correction Methods Based on
Topographic Analysis

Journal of Hydrometeorology 108 7.2

18 Zhang et al. [67]
Regional Differences of Lake Evolution Across
China During 1960s–2015 and its Natural and

Anthropogenic Causes

Remote Sensing
of Environment 107 26.8

19 Jiapaer et al. [68]
Vegetation Dynamics and Responses to Recent
Climate Change in Xinjiang using Leaf Area

Index as an Indicator
Ecological Indicators 100 12.5

20 Yao et al. [69]
Spatiotemporal Pattern of Gross Primary

Productivity and Its Covariation with Climate
in China Over the Last Thirty Years

Global Change Biology 87 17.4

3.3. Remote Sensing Data Used in the Top 20 Articles Cited

The highest number of studies (n = 12) used freely available Landsat satellite images
in their studies (Table 4). LiDAR and radar data were used in two studies whilst only a
single study used hyperspectral data (Table 4).
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Table 4. Overview of the total number of studies, sensor type, and cost of the remote sensing data
used in the top 20 articles cited in the application of remote sensing in mountainous environments.

Data Type Number of Studies Sensor Acquisition Cost

Landsat 12 Multispectral Free
Sentinel 2 Multispectral Free
MODIS 2 Multispectral Free

Meteosat Second
Generation-8 (MSG-8),

LiDAR and radar
1 Multispectral,

LiDAR, and Radar Free and High

SPOT 1 Multispectral Free
Tropical Rainfall

Measuring
Mission (TRMM)

1 Radar Free

LiDAR 1 LiDAR High
Advanced CCD Imaging

Spectrometer (ACIS) 1 Hyperspectral Free

3.4. Word Cloud, Co-Occurrence Network, and Thematic Evolution

The word cloud shown in Figure 4 gives information on the most used keyword in
the published articles. The size of the keyword implies the number of occurrences in the
publication. Remote sensing was the word most used, with an occurrence of 504 times,
followed by climate change (n = 304) and vegetation (n = 283). Mountain was the 20th-most
used word, with an appearance of 115. The closeness of keywords to each other implies
their interrelation during the time under investigation.

Figure 4. Word cloud showing the top 20 keywords commonly used in studies focused on the
application of remote sensing methods in mountainous environments.

The research theme on the application of remote sensing methods in mountainous
environments was categorized into three colored groups. The highest number of keywords
were in the blue cluster (n = 23), followed by both the red and green clusters (n = 13) as
illustrated in Figure 5. The blue cluster has keywords including “climate change”, “model”,
“variability”, “climate”, and “cover”, while the red cluster had keywords including “remote
sensing”, “mountain region”, “China”, “satellite imagery”, and “modis”. The keyword
most used was “remote detection”, followed by “climate change”, which were in the red
and blue groups, respectively (Figure 5). There was a great connection between “remote
sensing”, “China”, and “mountain region” in the red group (Figure 5).
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Figure 5. Co-occurrence network for the keywords used in this study. Each node represents a
keyword, the size of the node shows the number of occurrences of the keyword, and the thickness of
the line shows the degree of connection.

Thematic evolution of keywords shows that five keywords (“model”, “Canada”,
“GIS”, “mountainous terrain”, and “satellites”) metamorphosed between 1973 and 2017 into
“remote sensing” between 1998 and 2021 (Figure 6). The keywords “alps”, “California”, and
“model” metamorphosed into “model” between 1998 and 2021. The keywords “Canada”,
“California”, and “alps” also metamorphosed into “climate change” during the 1998–2021
period. The keyword “satellites” changed to “remote sensing”, and “vegetation” during
the 1998–2021 period (Figure 6).

Figure 6. Thematic evolution of keywords from 1973 to 2021 for the publications used in this study.
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4. Discussion

4.1. Bibliographic Analysis

The results obtained from a thorough search of the application of remote sensing
methods in mountainous environments between 1973 and 2021 showed significant growth
in publications. This is a clear indication that more researchers are interested in applying
remote sensing methods in mountainous environments. Gathering information about the
Earth using remote sensing methods has seen significant evolution since the 1800s [70].
At the time, what appears primitive today was the technology of the time, utilizing pi-
geons, kites, and hot air balloons to gather information about the earth [71]. Technological
advancements in the 20th century saw the invention of airplanes [20]. Concurrently, pho-
tography was also developing enabling the capturing of aerial photographs [72]. The need
to accurately map how the land surface looks were enhanced by the invention of satellite
technology in the 1970s [70]. Since then, the images have been enhanced, and with an
increase in technology and understanding systems, satellite imagery has helped scientists
understand the environment, detect changes, and predict likely future scenarios [27,45,57].
Mountainous region studies have manipulated the remotely sensed data and have brought
about a better understanding of these once hard-to-reach areas [5,10,28]. This evolution in
remote sensing from simple tools to highly sophisticated satellite images and, currently,
drone-based images producing ultra-high-resolution data [10,35] is part of the reason why
the study saw the trend that was followed in Figure 1. In recent times, the use of airborne
and spaceborne sensors is replaced by the use of UAVs and small unmanned aerial vehicles
(sUAVS) that collect high-quality aerial image data that can help in managing mountainous
regions [73]. More articles can now be produced compared to previous decades, when
science was still being developed. It is expected that this trajectory will be followed in
the future as systems are understood, procedures are refined, and the use of technology
is enhanced.

The distribution of research that uses remote sensing in mountainous areas shows that
developed nations are the main contributors (Figure 2). China, Europe, and the USA have
significant work that utilizes remote sensing work compared to other regions. In Africa,
there is a distinct disconnect in the production of this work, as shown in Figure 2. This can
be explained by several factors that are inherent to the African situation. Socio-economic
and political vulnerabilities have crippled Africa’s progress to contribute to the body of
knowledge. During the 1970s, most African countries were battling colonial inequalities,
and those who had gained independence were often plunged into civil unrest because of
power dynamics [74]. This rendered the continent to contribute late to scientific research.
Access is another factor that has resulted in Africa not producing much research on remote
sensing applications in mountainous areas [75]. Most technologies are developed and
maintained by developed nations such that there are limited native scientists conversant
with the procedures and application of remote sensing [76].

Data scarcity has been reported to be a major barrier to environmental assessments
in the region [2,9,45]. Remotely sensed data would become the most obvious to use when
understanding systems in these data-scarce regions. However, copyrights and owner-
ship of remotely sensed data limit these regions from acquiring quality data to conduct
research [77]. This puts Africa in a lagging position as the continent depends on free
datasets, which usually have a coarse resolution [78,79]. As images are rendered obsolete
in developed nations, they are made available to developing nations for free [80]. Though
new to these countries, the information will not have temporal significance, resulting in
research based on these datasets not qualifying for publication in reputable journals with
a wide readership [81]. Limitations in research publications of this nature in Africa can
also be attributed to language barriers [82]. The journals studied are English-based, which
limits contributions from French-speaking nations. This is elaborated in Figure 2 without
research from the central and west African regions. However, it is different for countries
such as South Africa and Zimbabwe because of their well-established tertiary education
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system [83], the use of English as a language, and government initiatives that promote
scientific research [84].

4.2. Associations and Production

The top five affiliations where the publications in this study were produced are
from China. Chinese institutions published more studies because Chinese researchers
use advanced remote sensing applications to monitor mountainous environments and
almost two-thirds of the country is high in elevation [23]. This is supported by Li, Pei,
Zhao, Xiao, Sang, and Zhang [20], who highlighted that remote sensing methods are being
applied by Chinese institutions, including government agencies, research organizations,
and universities, in monitoring mountainous environments.

Most publications written by intra-country authors were also in China, with an SCP
collaboration index of 863. From the perspective of the spatial distribution of publications
in the world, China, the USA, and Germany were the countries with the most publications
(Figure 3). This highlights that China has invested so much in science and development;
hence, they have the most research studies that focus on the applications of remote sensing
methods in mountainous environments. A total of 8 out of 10 countries with high SCP
and MCP values are from the Global North, consisting of wealthy and technologically
advanced countries. This is in line with Wang, Zhao, and Wang [19], who highlight
that most developed papers are from the Global North because they are wealthy and
their governments assist them in promoting science and development through research
and publication.

The most cited author is Pfeffer et al. [50], with an article published in the Journal of
Glaciology that has a TC of 587 (Table 3). They were followed by Guo, Liu, Xu, Wu, Shang-
guan, Yao, Wei, Bao, Yu, Liu, and Jiang [51] who published in the Scientific Bulletin journal
with a TC of 295 and a TCpY of 73.8 (Table 3). In these studies, remote sensing methods
were applied in glacier mountains, and this shows their potential to the global audience,
hence high TC and TCpY rates. Other papers applied remote sensing methods in several
areas, including urbanization, forestry, land cover changes, glacial lake changes, climate
change, and rainfall estimations in mountainous environments [53,55,57,62,63,66]. Weiss
and Walsh [21] highlighted that remote sensing applications in mountainous environments
continue to be common because of the ongoing and improving utility of imageries in
solving real-world problems and providing solutions that can support sustainable moun-
tain management.

4.3. Cloud of Words, Co-Occurrence Associations, and Thematic Progress

Remote sensing is the commonly used keyword, followed by “climate change”. The
keyword “remote sensing” is close to “satellite imagery”, “temperature”, and “classifica-
tion” (Figure 4). This shows that studies have been growing over the years, focusing on the
application of remote sensing methods using satellite imageries by employing classification
techniques. This is in line with Praticò et al. [85], who highlighted that there have been
developments in the application of remote sensing methods in the classification of data
using satellite imageries in mountainous environments. China was the only country on
the word cloud that showed that most studies were conducted in this mountainous nation.
Zhao, Bian, and Li [35] highlight that since 2002, the application of remote sensing methods
and digital elevation techniques has gradually increased over the years in China for various
reasons, including the availability of research funds and technological advances.

The keywords used in the studies are connected, with “remote sensing”, “climate
change”, and “vegetation” as the most common words (Figure 5). These keywords are con-
nected because of the increase in remote sensing studies focusing on topics of great interest,
including climate change and vegetation studies. This is in agreement with Xu et al. [86],
who highlighted an increase in remote sensing research studies focusing on vegetation
ecosystem response to changing climate in the 21st centuryThis also explains the metamor-
phosis of the keywords: “alps”, “California”, “model”, “Canada”, “GIS”, “mountainous
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terrain”, “remote sensing”, and “satellites” for the period 1973–1997 into “remote sensing”,
“model”, “climate change”, and “vegetation” for the 1998–2021 period. Other keywords
that were in the co-occurrence network include “classification”, “mountain region”, “gis”,
“modis”, and “forest”, which are some of the areas and data sets that are of great concern
in recent studies.

4.4. Importance of the Study

In recent years, with the development and advancement of satellite imagery, sensors,
and techniques, the application of remote sensing methods has been broadly used in
the monitoring and management of mountainous environments [4]. The research studies
in mountainous environments using remote sensing methods provide knowledge and
information that can improve the level of monitoring and formulation of policies that assist
in the management and promotion of sustainable mountain management [35]. However,
with all these advances, African research in this regard still lags. Several factors affect
the ability of the continent to produce internationally recognized papers. The lag in terms
of technology and economics renders the research of developing countries “old news”
for publishers. However, what is important is not the level of sophistication of methods
employed in the African context but rather an understanding of processes and how they
impact their livelihoods. If the information on Africa is published in journals with a
wide readership, the dissemination of information will increase. This will show gaps
in science and promote sustainable development efforts in the region. With literature
e.g., [4,9,17,19,45] pointing out that Africa will be greatly impacted by the effects of climate
change, it only becomes the next best idea to improve and promote research coming out of
the continent.

4.5. Limitations

Despite the success of this study in showing the literature that has been published
over the years, some limitations were encountered. The study excluded some publications
from government agencies, nature conservancies, intergovernmental organizations, and
other institutions that have information on the application of remote sensing methods in
mountainous environments. Expanding the search across other databases, such as Google
Scholar, will help improve the analysis results. The other limitation is that the results were
all based on publications authored in the English language. Due to the high volume of
publications in China, there might be other studies written in Chinese characters that were
not used. This limitation can be addressed by including various languages while searching
the research databases.

5. Conclusions

This study analyzed global research and publication trends for remote sensing appli-
cations in mountainous environments from 1973 to 2021. The study comprised, among
others, annual production, source journals, affiliations, collaborations, countries, citations,
and keywords. The results indicated steady growth in the number of publications since
2004 and the main source journal was Remote Sensing, with a total of 415 publications. Con-
sidering the affiliations, the University of Chinese Academy of Sciences was top-ranked,
with 217 articles, and China produced the highest number of publications (n = 4659). This
provides China with a leading position to strengthen other countries on the application of
remote sensing in mountainous environments through more collaborations, funding and
the provision of technological knowledge. The top-cited article had authors from various
countries in the Global North, with a TC of 587 and a TCyP of 65.2. The countries in the
Global North can assist other countries in the Global South, especially developing countries
in Africa, with resources and funding to develop research using remote sensing methods in
mountainous environments. The interconnections and evolution of the keywords over the
years hint at the relatedness of remote sensing, climate, and vegetation for future studies.
This study offers knowledge of development trends and hotspots that can help in future
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research that focuses on the application of remote sensing methods in mountainous envi-
ronments. Research from all countries should strengthen collaborations and exchange of
ideas to increase the number of studies focused on topical issues that need remote sensing
applications in mountainous environments.
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Abstract: The Giant Panda (Ailuropoda melanoleuca) is a flagship species for endangered wildlife
conservation and is a specific relic species in China. Its habitat conservation has received widespread
attention around the world. Since 2010, the phenomenon of an aging labor force gradually appeared
within the Giant Panda Nature Reserve and its surrounding communities. Under the new labor force
structure, households’ resource utilization behavior has had different characteristics, which has led
an evolution in giant panda habitats. This study is based on a questionnaire and geographic data. It
reveals the internal mechanisms of households’ resource utilization behavior impacting giant panda
habitat patterns under the ongoing trend of labor force aging. The study shows that labor force aging
has promoted rising ecological niche widths and falling ecological niche overlaps. These could drive
a growth in giant panda habitat globally. From a spatial perspective, nature reserves with lower
comprehensive ecological niche widths and higher ecological niche overlaps face greater conflict
between conservation and development. However, the phenomenon of labor force aging mitigates
these ecological conflicts to a certain extent.

Keywords: aging labor force; resource utilization behavior; giant panda habitat; ecological niche;
ecological niche overlap

1. Introduction

At present, the conflict between giant panda conservation and development can no
longer be simply classified as a scramble for living space between a growing population
and the endangered giant panda. The changes in household labor force have complicated
this problem [1,2]. Following reforms that promote the opening up of Chinese society,
the separation barrier between rural and urban structures has been increasingly decon-
structed [3,4]. The households of the central and western regions have continued to migrate
to the southeastern coast to improve their livelihoods [5,6]. After more than 40 years of rural
migrant workers migrating into cities, the aging of the labor force in the central and western
regions has become significant [7,8]. Agricultural laborers are now predominantly middle-
aged and elderly people [9,10]. However, the aging problem is more significant when
combined with livelihood stress and institutional constraints in villages around Chinese
nature reserves, which are located in high mountain valleys and cold alpine region [10,11].
Therefore, the trade-off between conservation and development has been transformed into
a trade-off between small-scale family farming and the expansion of giant panda habitats.
The extent of this trade-off has been gradually reducing with the weakening of labor behav-
ior. Therefore, the Chinese government has proposed an improvement of the weak links
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between these areas and is promoting human-giant panda coexistence [12]. At present, the
habitat conservation of giant panda and its umbrella animals has entered a new stage: a
harmonious development period of humanistic coordination and ecological conservation.

Many previous studies have explored the effect of household resource utilization
behavior on biodiversity under the context of agricultural labor force aging. At present, the
interference factors of giant panda habitat include deforestation, bamboo and its shoots
cutting, fire utilization, hunting, road, herb gathering, grazing, cultivated land utilization
and firewood cutting. However, the cutting of forest and bamboo have been restricted by
the cuts target quota. Fire utilization and hunting have been expressly prohibited. The
roads among the nature reserves have been abandoned. A series of precious Chinese herbal
medicine grow in alpine meadows outside the giant panda habitat, while the proportion of
herb gathering was lower. Meanwhile, grazing was usually found in alpine meadows far
from the giant panda habitat and the behavior of bamboo shoots cutting was strictly limited
to March and April, due to which interference was relatively small. However, cultivated
land utilization and firewood cutting were closely related to the livelihood of households,
which were common in Sichuan giant panda habitats. Therefore, this paper took these two
resource utilization behaviors as typical representatives. Regarding the change in house-
hold resource utilization behavior, cultivated land in the edge of the forest has experienced
frequent geological disasters (such as debris flow and landslides) [10,11,13], serious soil
erosion [14,15] and cultivated land fragmentation [16]. These disasters have intensified the
abandonment of cultivated land utilization. In addition, a large area of cultivated land pre-
sides in high mountain valleys, which is hard and steep, meaning that the aging labor force
are unable to cultivate it [17,18]. The utilization rate of cultivated land has decreased with
the increasingly aging labor force [19,20]. Fuelwood is cut from brushwood in high moun-
tain valleys. However, as the labor capacity of the aging population is restricted [10,21],
hydropower stations provide free electricity for households in the villages around the
nature reserves and have replaced fuelwood [11,22]. Meanwhile, fuelwood utilization
has been decreasing with the aging of the agricultural labor force [23,24]. Some reforms
surrounding resource utilization have disappeared, such as the expanded Ecological Public-
Welfare Forests [25,26], a larger Giant Panda National Park which covered important nature
reserves and surrounding communities [27,28] and intensified regulations of planting be-
havior and firewood cutting. Under the diverse pressures of regulations [29,30], weakened
labor capacity [10] and natural condition constraints [31,32], households have gradually
accepted livelihood transformation and energy structure revolution.

At present, there are some research directions surrounding the effect of human ac-
tivities on the giant panda habitat, such as the ecological research method and economic
research method. The ecological research method sets an observation point to compare
the differences between infrared image probability of giant panda [33]. It also uses the
method of catch-rate-per-day and one clamp to explore the change of habitat at multiple
time quantum, using capture rate as a research basis [34]. It also used FRAGSTATS to
analyze the landscape pattern to explore the evolution of habitats [35]. The economic
research method uses the casual model, which analyzes the effect of an economic activity
(or disturbance activity) on giant panda habitats [36–38]. In addition, the geographical
research method is also applicable. Some scholars have integrated the concepts of ecology
and have taken natural geographic units as evaluation units. This could evaluate the habi-
tat of giant pandas using a static mathematical analysis method, such as the multi-index
comprehensive evaluation method, grey relational analysis or the entropy method [39].
However, a static evaluation model is unable to reflect the trajectory characteristics of
giant panda habitat changes. Therefore, an analytical framework of dynamically changing
spatio-temporal process should be created for the evaluation of giant panda habitats. As
such, this research adopts the ecological niche model to reveal the trajectory of changes in
giant panda habitats, under the context of human activity transformation, through the com-
bination of “state” and “potential”. In the model, the ecological niche overlap accurately
reflects the quantified competitive relations. The model is able to analyze the change in
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giant panda habitat under the context of current cultural and environmental changes in a
multi-dimensional dynamic view. Therefore, the research aims to build an ecological niche
model with macro-micro data interaction to explore the changes in giant panda habitat
under the context of agricultural labor force aging in Sichuan giant panda nature reserves,
using nine nature reserves as examples. This study could be used as a reference for the
further enhancement of the habitat level of the giant panda.

2. Research Design

2.1. Interaction between Household Resource Utilization Behavior and Habitat Pattern
2.1.1. Interactive Mechanisms between Household Resource Utilization Behavior and
Habitat Pattern

The interactive mechanisms between household resource utilization behavior and
habitat pattern occur between individual decision clustering and group decisions, and
between re-clustering and overall decisions. In a rural household survey, households were
considered as independent individuals, and a group consisted of households with similar
decision-making behaviors. Meanwhile, a village constituted a decision-making whole.
However, the clustering method was nonadditive. This was because households did not
have the main direction when they made these decisions. Furthermore, these short-term
changes were accumulated across time and space. Therefore, the concept of mapping
was introduced into the clustering process. In the macro scale, a village was regarded as
the interference source. Therefore, individuals could cluster into a whole, and villages
were used as evaluation units. From the point of view of space, the research could reveal
the impact of household resource utilization behavior on panda habitats. Furthermore, it
allowed for the exploration of the relationship between the resource utilization behavior
of the microcosmic body (household) and the mapping result of their interaction (macro-
habitat landscape pattern) through multi-scale transformation (shown in Figure 1) [40].

Figure 1. Spatial manifestation and transformation mechanism of households’ resource utilization
behavior decision.

2.1.2. Construction of Individual Household Resource Utilization Decision Model

• Construction of Belief Model

Belief referred to the cognition of the current system state and the estimates of the
future state of agents; this definition of belief was based on a study by Wooldridge [40,41].
Consequently, the beliefs of households could be understood as the cognition of the current
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resource utilization behavior under the background of nature reserve regulation institution
and the estimates of the future state under the context of aging labor force dominance.

Belief t+1 = f(Pt, Belief t), (1)

In the equation, Belieft was the cognition of the current resource utilization behavior
under the background of nature reserve regulation institution. Pt was the household
perception of different influencing factors in resource utilization activities.

• Construction of Household Resource Utilization Decision Model

Aspiration was defined as the expected achievement state under the background
of nature reserve regulation institution [40]. Therefore, households’ decisions could be
calculated through the following equation:

Decisiont+1 = f(Belief t, Aspirationt), (2)

In the equation, Decisiont was the decision of a household at the time t. Aspirationt
represented the importance of household resource utilization patterns under the Aspirationt.
The importance of the kth resource utilization pattern by the household and j expressed
the decision of time t with Belieft and Aspirationt of the household at the time t. The model
controlled for the following conditions:

o The household resource utilization decisions should be mainly considered over the past
five years.
o There was no significant difference in the technical level of resource utilization among
households.
o The physical geographical environment of the households were similar.
o There was no technological progress in the field of household resource utilization during
the study period.
o The external institutional environment remained unchanged during the study period.
o There was no significant difference in labor literacy among households.
o The price of resource market was stable during the study period.
o The data of household resource utilization behavior came from the survey of the re-
search group.

Therefore, a household resource utilization decision model was constructed as follows:

Decisionjkt = UAjkt × Ijkt/
n

∑
k=1

(
UAjkt × Ijkt

)
, (3)

In the equation, Decisiont was the importance of the kth resource utilization pattern
by the household j at the time t. UAjkt was the area/amount/intensity of the kth resource
utilization pattern by the household j at the time t. Ijkt was the revenue of the kth resource
utilization pattern by the household j at the time t. In the paper, k = 2. Therefore, the
importance of the resource utilization methods was not ranked.

2.1.3. Construction of Final Household Resource Utilization Decision Model

The final household resource utilization decision depended on ecological value recog-
nition, social pressure, environmental constraints and labor literacy, under the context
of aging labor force. Therefore, the decision equation for the following period could be
constructed as follows:

Decisionjk, t+1 = f(Decisionikt|I = 1, 2, 3, 4), (4)

In the equation, Decisionu, t+1 was the decision of the household for the next period.
Decisionit was the ecological value identity, social pressure, environmental constraints and
labor literacy acting on household decision, respectively, at the time t.
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In study area, there were few conversions of cropland and forest land. Land rent
was relatively stable. Two rounds of reforestation had been completed. There was no
government-led reforestation during the study period. The reduction in cultivated land
area was the result of individual household’s decision-making behaviors. The research
objects were the resource (cultivated land and fuelwood) utilization decision of households
alone. This was also the case for part-time households (operating eco-tourism), part-time
households (out-migration for work) and non-farm households, under the context of aging
labor force dominance. Therefore, the final resource utilization decisions of individual
households were mainly influenced by ecological value identity, social pressure, environ-
mental constraints and labor literacy. These were shown as choices between different
resource utilization pattern. Therefore, the above equation could be further transformed:

Decisionjk,t+1 =
4

∑
x=1

wxDecisionjkt, (5)

In the equation, w was the weight coefficient of the different factors on the effect of

household decision behavior. wx = ax/
4
∑

x=1
ax and w1 + w2 + w3 + w4 = 1 [40,41].

2.2. Ecological Niche Evaluation Model
2.2.1. Comprehensive Evaluation Index System of Ecological Niche

Based on the theory of “multi-dimensional super volume”, and the characteristics of
the giant panda habitat level, this paper has developed a comprehensive evaluation index
system with 4 dimensions and 14 measurement indexes (shown in Table 1).

Table 1. Comprehensive evaluation index system of ecological niches at the habitat level of giant
panda.

Target Dimension Measurement Index Explanation of Indexs
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X1: Resource Utilization
Strength level dimension

x1: Cultivated land utilization decision of community Obtained by MAS model
calculation, x1 ∈ [0, 1]

x2: Fuelwood utilization decision of community Obtained by MAS model
calculation, x2 ∈ [0, 1]

X2: Resource Utilization
Support force level dimension

x3: Proportion of available cultivated land in community AACL/TACL
x4: Proportion of available fuelwood land/miscellaneous
shrub forest in community AAFL(AMSSF)/TAFL

x5: Proportion of practitioners LFQH/TPR

X3: Resource Utilization
Constraint level dimension

x6: Perception on intensity change of planting
industry regulation

Obtained by MAS model
calculation, x6 ∈ [1, 5]

x7: Perception on intensity change of firewood
cutting regulation

Obtained by MAS model
calculation, x7 ∈ [1, 5]

x8: Changing rate of cultivated land area over the last
five years

Obtained by MAS model
calculation, x8 ∈ [0, 1]

x9: Changing rate of fuelwood cutting distance over the
last five years

Obtained by MAS model
calculation, x9 ∈ [0, 1]

x10: Changing rate of fuelwood cutting labor-hour over
the last five years

Obtained by MAS model
calculation, x10 ∈ [0, 1]

X4: Giant Panda Sustainable
Habitat Level Dimension

x11: Changing rate of giant panda habitat (AGPH4th − AGPH3rd)/AGPH3rd
x12: Changing rate of wild giant panda population (PGPH4th − PGPH3rd)/PGPH3rd
x13: Area percentage of staple food bamboo ASFB/ANR
x14: Owned percentage of staple food bamboo in giant
panda population ASFB/PGPH4th

Note: (1) Area of available cultivated land was shortened to AACL. (2) Area of available fuelwood
land/miscellaneous shrub forest was shortened to AAFL/AMSSF. (3) Area of giant panda habitat during the 3rd
survey report on giant pandas was shortened to AGPH3rd. (4) Area of giant panda habitat during the 4th survey
report on giant pandas was shortened to AGPH4th. (5) Area of staple food bamboo was shortened to ASFB. (6)
Area of nature reserve was shortened to ANR. (7) Total area of cultivated land was shortened to TACL. (8) Total
area of forestland was shortened to TAFL. (9) Labor force quantity of household was shortened to LFQH. (10) Total
population of region was shortened to TPR. (11) Population of giant panda habitat during the 3rd survey on giant
pandas was shortened to PGPH3rd. (12) Population of giant panda habitat during the 4th survey on giant pandas
was shortened to PGPH4th.
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2.2.2. Calculating Method of Ecological Niche Width

• Data Standardization

The purpose of the data standardization was to combine the units and dimensions of
each index, which were nondimensionalized. The paper adopted the standard deviation
method for standardization. The equation was as follows:

Xij =

∣∣∣∣∣ xij − xj

δj

∣∣∣∣∣, (6)

In the equation, xij, xij, xj, and δj were the standardized value, original value, arithmetic
mean and standard deviation of the jth index in ith community, respectively.

• Calculation of index Weights

The index weights were calculated by the following equation:

V =
δj

xj
, (7)

Wj =
V

n
∑

j=1
Vj

, (8)

In the equation, V was the variable coefficient of each index. Wj was the weight of the
jth index.

• Calculation of Ecological Niche Width

The calculating equation of ecological niche width was as follows:

Ni =
Wik(Si + AiPi)

n
∑

j=1
(Sj + AjPj)

, (9)

In the equation, i, j = 1, 2, . . . , n. Ni was the relative ecological niche in the community
i. Si and Sj were the state of communities i and j, respectively. Pi and Pj were the potentials
of community i and j, respectively. Ai and Aj were the conversion coefficients of dimension.
Si + AiPi indicated the absolute ecological niche of community i. Wik was the k-item weight
of the community i. The value range of the ecological niche width was between 0 and 1.
When the ecological niche width was closer to 1, this indicated a higher ecological level [42].

The comprehensive ecological niche width could obtain the relative ecological niche
width through an arithmetic method. The equation was as follows:

Mi =
n

∑
j=1

Nijwj, (10)

In the equation, Mi was the comprehensive ecological niche in the community i. Nij
was the relative ecological niche of the j-dimension in the community i. wj was the weight
of the j-dimension [42].

• Calculation of Ecological Niche Overlap

The ecological niche overlap reflected the relationship of ecological competition.

Ojk =

n
∑

i=1
PijPik√

n
∑

i=1
P2

ij

n
∑

i=1
P2

ik

, (11)
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In the equation, Ojk was the ecological niche overlap value of species k to species j. n
was the total resource status. Pij and Pik were the percentage ownerships of resources i in
the total resources utilized by species j and species k, respectively [42].

3. Study Areas and Data Sources

3.1. Study Areas

The study areas were the Sichuan Giant Panda Nature Reserves and their surrounding
communities. According to the sampling prescription, four national natural reserves and
five provincial nature reserves were sampled in this study. These were distributed across
35 communities (villages), 17 towns, 9 counties and 6 cities in Sichuan Province (shown
in Figure 2). The area of giant panda habitat in the study area was 302,940.03 hm2, which
accounted for 29.39% of total giant panda habitat area in Sichuan Province. The population
of wild giant panda was 304, which accounted for 34.23% of the total wild giant panda
population. Much of the youth labor force has migrated outside of the area and the aging
of the labor force is significant. In addition, cultivated land has encroached on the edge of
forestland. Furthermore, households still rely on fuelwood. These factors have disturbed
the habitat of giant panda. Meanwhile, the researchers consulted the administrative staff of
the Forestry and Grassland Administration of Sichuan Province, each giant panda nature
reserve administration and each giant panda nature reserve station. The nature reserves in
the samples were found across the entire scope of Giant Panda National Park. Therefore,
the samples were assumed to be representative in revealing current problems faced by
nature reserves.

3.2. Data Sources
3.2.1. Survey Data and Study Sample

At present, the Wawushan Giant Panda Nature Reserve is primarily located in lots
that do not belong to any individual and is a stated-owned forest. Some communities
were located on the edge of the nature reserve. There were less than 10 communities
with significant relevance to the nature reserves and 3–4 adjoining communities. In this
paper, we adopted a stratified sampling method. Four communities were sampled in each
nature reserve. Two communities were located inside the nature reserves. The community
presiding inside the Tangjiahe Giant Panda Nature Reserve was formed by merging two
villages. Meanwhile, two communities were located outside the nature reserves. In each
community, 15–18 households were randomly sampled as respondents.

The data were obtained from household questionnaires during July 2018, October 2018,
January 2019 and May 2019. A total of 557 questionnaires were distributed, and 538 valid
questionnaires were obtained after the rejection of invalid questionnaires. The samples
were in the experimental areas of the giant panda nature reserve and their surrounding
communities, within a 5 km geographic buffer zone outside the nature reserves. Some
communities were included in the scope of the Giant Panda National Park. At present,
the phenomenon of labor force aging is significant in the study areas, and the resource
utilization behavior of households have been constrained (as shown in Table 2).

3.2.2. Survey Data on Giant Panda

The area of giant panda habitat, the population of wild giant panda, the area of nature
reserve and the area of staple food bamboo were obtained from The 3rd National Survey
Report on Giant Panda in China [43] and The Pandas of Sichuan: The 4th survey report on giant
panda in Sichuan Province [33].

3.2.3. Land Use Data

The land use data included in this paper were sourced from public Landset TM/ETM+
/OLI images on Geospatial Data Cloud (http://www.gscloud.cn (accessed on 10 Septem-
ber 2022)), which was released by the Computer Network Information Center, Chinese
Academy of Sciences. The bands, strip numbers and row numbers of two period images
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were used. The images were taken between June and September. This defined period made
it easy to identify the information in the earth surface. The images were processed through
steps such as band compositions, geometric correction, image mosaic, geometry clipmaps,
supervised classification and the unification of coordinate systems. Following his, the land
use patterns were classified as cultivated land, forestland, grassland, shrubland, wetland,
water bodies, tundra, artificial surfaces, bareland and permanent snow and ice. These were
based on the Current Land Use Classification (GB/T 21010-2017).

Figure 2. Study area.
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Table 2. Characteristic of study areas.

Variables Explanation of Variables Mean
Standard
Deviation

Minimum Maximum

Labor force aging Quantity of labor force aging/Total
quantity of labor force 0.289 0.327 0 1

Proportion of aging labor force in
the field of planting

Quantity of aging labor force in the
field of planting/Total quantity of
labor force

0.478 0.287 0 1

Proportion of aging labor force in
the field of fuelwood utilization

Quantity of aging labor force in the
field of fuelwood utilization/Total
quantity of labor force

0.455 0.281 0 1

Educational level of aging
labor force

1 = Elementary school and below;
2 = Junior high school; 3 = Senior
high school and above

1.271 0.887 1 3

Health level of aging labor force 1 = Serious disease and disability;
2 = Chronic disease; 3 = Health 2.385 1.439 1 3

Type of household’s livelihoods
1 = Totally dependent on agriculture;
2 = Part-time household; 3=
Non-agricultural household

2.017 0.620 1 3

Soil quality 1 = Poor; 2 = General; 3 = Well 1.704 1.120 1 3

Degree of cultivated
land fragmentation

(Quantity of cultivated land
plots − 1)/(Total area of cultivated
land/Area of minimum cultivated
land plot in the study area)

0.733 1.507 0 1

Slope of Fuelwood
cutting destination

1 = Gentle; 2 = Steeper;
3 = Extremely steep 2.617 1.241 1 3

Restriction of fuelwood cutting 1 = Existence; 0 = Inexistence 0.684 0.474 0 1

Mean distance of fuelwood
cutting destination Kilometer 4.891 4.247 0 16

Note: (1) From the perspective of households’ resources utilization, the proportion of aging labor force in the field
of planting and fuelwood utilization were 47.80% and 45.50%. Therefore, aging labor force has become the main
body of resource utilization activities. (2) From the perspective of labor force literacy, lower educational level and
sub-health status was common among aging labor forces, whose mean values were 1.271 and 2.385. (3) From
the perspective of resource utilization constraints, the trend towards non-agriculture (2.017) has been obvious
in the study area. Meanwhile, less fertile soil (1.704) and fragmented cultivated land (0.733) could restrict the
planting behavior of households. Extremely steep topography (2.617), strongly restriction of fuelwood cutting
(0.684), and far distance of fuelwood cutting destination (4.891) could restrict the fuelwood utilization behavior
of households.

3.2.4. Geographic Information Data

A series of basic vector data came from the Basic Geographic Database of China (http:
//www.webmap.cn/commres.do?method=result100W (accessed on 10 September 2022))
and the 4th survey on giant pandas in Sichuan Province. This data had a 1:1 million
scale and the 4th survey on giant panda in Sichuan Province [41], which included roads,
rivers, the points of human activity and the points of giant panda activity trace. The
points of cultivated land utilization were obtained from the map of cultivated land in
LUCC. The points of firewood utilization came from the survey data. A 30 m Digital
Elevation Model (DEM) was obtained from the Geospatial Data Cloud, which was
produced by the Chinese Academy of Sciences Computer Network Information Center
(http://www.gscloud.cn/ (accessed on 10 September 2022)). Slope and slope direction
were obtained based on the DEM.
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4. Pattern of Giant Panda Habitat under the Different Age Structure of the Labor Force

4.1. Width of Comprehensive Ecological Niche

In this section, the measurement indexes of state were the values during 2013, and the
measurement indexes of potential were the increment of each index during the period of
2013 to 2018. The dimensional transformation coefficient was one year ago. According to
the methods discussed above, the ecological niche value of the giant panda habitat could
gain. This included the old-age group (the aging labor force ≥55 years ago) dominating the
natural resource utilization behavior of households, which was shortened to OAG and the
young adult group (the young adult labor force <55 years ago) dominated the natural resource
utilization behavior of households, which was shortened to YAG (shown in Figure 3).

Figure 3. Comparison of the ecological niche on the level of giant panda habitat under the different
age dominated natural resource utilization. Notes: (1) (A) Comparison of the relative ecological niche
on the level of giant panda sustainable habitat. (B) Comparison of the comprehensive ecological
niche on the level of giant panda sustainable habitat. (2) In the above two figures, the ecological niche
widths of the OAG were generally higher than the YAG. The differences between the ecological niche
widths of the OAG and YAG were smaller in the nature reserves with better giant panda habitat.
(3) The level of giant panda habitat in the Daxiangling Mountain System Reserve was higher than
others. The nature reserves in the Min Mountains were second. However, the giant panda habitat in
the nature reserves in Qionglai Mountains faced certain risks.
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Regarding the relative ecological niche of the level of giant panda sustainable habitat,
although the level of OAG was generally higher than YAG, the difference between their
ecological niche widths was small (as shown in Figure 3). As shown in the results in
Figure 3A, the aging phenomena created higher levels of sustainable habitat for giant
pandas. For example, the level of giant panda sustainable habitat in the Wawushan Nature
Reserve was in the front of the region and displayed significant differences between the
differentiation of giant panda sustainable habitat due to the labor force age structure
(the ecological niche width in the OAG was 0.0078 and the ecological niche width in the
YAG was 0.0076). The Xiaohegou Nature Reserve and the Heishuihe Nature Reserve
displayed similar results. There were two possible reasons for this phenomenon. Firstly,
labor force aging has prompted older households to shift toward less labor-intensive
work, which is less disruptive to the ecological environment, such as beekeeping and
white tea cultivation. These industries couple regional natural resource utilization and
conservation objectives. Secondly, the aging labor force in the region either lived alone in
the village, had moved to a city or lived with their children. Some young adults had left
the area for employment elsewhere, meaning that the permanent population were children,
women and the elderly. The impact of the size of the permanent population on divided
households created miniaturization. This reduced the demand of energy in households
and weakened the labor force resources, which drove households to prefer easy and cheap
clean energy (such as Hydropower, and marsh gas) to adapt to the changing household
structure. Therefore, the aging labor force in the region reduced the intensity of fuelwood
cutting to adapt to the aging of the labor force. However, the relative ecological niche
widths of the level of giant panda sustainable habitats in the Fengtongzhai Nature Reserve
were lower and age had no significant effect on the sustainable habitat differentiation of
the giant panda (The Ecological Niche Widths of OAG and YAG were 0.0001). There were
three main reasons for this. Firstly, the industrial cluster of ecotourism was dominated by
nuclear and main households, and the aging trend was not significant in the communities
built after the Wenchuan Earthquake, such as David Town in Baoxing County. Secondly,
the reconstructed communities were usually equipped with infrastructure for clean energy,
such as marsh gas and solar energy. However, some business operations still relied on
wood burning, such as for bonfire parties and heating by brazier. Therefore, households’
livelihoods still relied on firewood. Thirdly, Tibetans grew field corn to feed yak without
intensive cultivation, which did not rely highly on the literacy of the labor force. Therefore,
the intensity of planting behavior in the region did not fluctuate significantly with the
change in the labor force structure. Therefore, the relative ecological niche widths of the
level of giant panda sustainable habitat was at a relatively low level.

The widths of OAGs were generally higher than YAGs and labor force aging was
more significant in the relatively higher comprehensive ecological niche widths of giant
panda nature reserves (as shown in Figure 3B). According to the results, the level of the
comprehensive ecological niche widths in the Wawushan Nature Reserve were the highest
in the region (The ecological niche widths of the OAG in Changhe Village, Sheting Village,
Shawan Village and Yanyuan Village were 0.0046, 0.0043, 0.0047 and 0.0044, respectively.
The ecological niche widths of the YAG in these villages were 0.0043, 0.0041, 0.0045 and
0.0042, respectively). However, there was a large gap in the ecological niche widths between
the OAG and YAG. This was attributed to the exclusivity of natural resource utilization,
which only allowed these resources to be used within a given time and quantity of labor
force. However, the aging labor force was weaker than the young labor force in terms of
resource acquisition. This was because of their weak physiological function and ecological
identity. Hence, the ecological niche widths of the OAG were higher than for the YAG. The
Tangjiahe Nature Reserve, Longxi-Hongkou Nature Reserve, Xiaohegou Nature Reserve
and Heishuihe Nature Reserve came second. The comprehensive ecological niche widths
in Daxiangling Nature Reserve (The Ecological Niche Widths of OAG in Changsheng
Village, Fazhan Village, Qiaoxi Village and Changfu Village had results of 0.0022, 0.0015,
0.0021 and 0.0022, respectively. The ecological niche widths of the YAG in these villages
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were 0.0022, 0.0015, 0.0020 and 0.0022, respectively). The results for the ecological niche
width for the OAG in the Fengtongzhai Nature Reserve in Heping Village, Minhe Village,
Qingping Village and Jiala Village were 0.0012, 0.0011, 0.0016 and 0.0007, respectively. The
ecological niche widths of the YAG in these villages were 0.0011, 0.0011, 0.0016 and 0.0008,
respectively. These were the most unstable. This was because Fazhan Village was close
to the boundary of the nature reserve and it was also located in the southern gate of the
Giant Panda National Park, leading to the development of ecotourism and overstretched
natural resources. Meanwhile, ecotourism was also a leading industry in Heping Village
and Qingping Village, which had a similar problem to Fazhan Village. Furthermore, Jiala
Village was similar to Jiarong Tibetan village. Grazing, bonfire burning, and corn cultivation
were widespread in Jiala Village, where households relied on natural resources to earn a
living. Therefore, its ecological niche width was lower. In addition, the comprehensive
ecological niche widths of the OAG in the Fengtongzhai Nature Reserve were slightly
higher than the YAG. It also showed that the aging labor forces were weakened, which had
a lesser effect on ecology. Therefore, the phenomenon of labor force aging had a regulatory
effect on resource utilization decisions.

In view of the spatial pattern, nature reserves with a significantly aging labor force
usually had high comprehensive ecological niche widths. The nature reserves with the
best habitat were found in the Wawushan Nature Reserve in the Daxiangling Mountains.
The nature reserves with relatively low comprehensive ecological niche widths were found
in the Qionglai Mountains (as shown in Figure 4). Therefore, the spatial pattern of com-
prehensive ecological niche widths on the level of giant panda habitat further verifies the
previous research results, which showed that the nature reserves and their closely related
communities with a significantly aging labor force usually had relatively high ecological
niche widths. Labor force aging further drove households to reduce the intensity of their
resource utilization, while indirectly supporting the conservation of giant panda habitat.

Figure 4. Cont.
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Figure 4. Comprehensive Ecological Niche on the level of giant panda habitat under the different
age dominated natural resource utilization. Notes: (A) Comprehensive Ecological Niche of OAG.
(B) Comprehensive Ecological Niche of YAG. Map Content Approval Number: CS (2019) 282.

4.2. Ecological Niche Overlap

The purpose of measuring the ecological niche overlap was to explore the competitive
relationship between the communities that were close to the nature reserves (the ecological
niche overlap indexes are shown in Figure 5).

Figure 5. Ecological Niche Overlap Index between a part of communities and their neighbor-
ing communities.
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The ecological niche overlap commonly existed in the OAG and the YAG. The ecologi-
cal niche overlap of the YAG was slightly higher than the OAG. The values in some villages
were higher than 0.800, such as in Luoyigou Village and Yinping Village in the Tangjiahe
Nature Reserve. The ecological niche overlaps of Changfu Village in the Daxiangling Na-
ture Reserve were over 0.9000. Some problems were common in these communities. Firstly,
some communities were located inside the nature reserves, where there were experimental
zones at an elevation of above 1 km. In these communities, households relied on the
resources inside the nature reserves. Their resource utilization behavior always disturbed
giant panda habitat, such as in Luoyigou Village in the Tangjiahe Nature Reserve, Lianhe
community in the Longxi-Hongkou Nature Reserve and Wolong Special Administrative
Region in the Wolong Nature Reserve. Secondly, some communities depended on nature
reserves to operate ecotourism, which were far away from the nature reserves. However,
they also had a relatively weak regulation to intensify the intensity of household resource
utilization behavior where giant panda habitats would be disturbed. Thirdly, some com-
munities relied on hydropower before the small hydropower station was shut down in
2017. These communities were Sheting Village, Shawa Village and Yanyuan Village in the
Wawushan Nature Reserve. However, regional fuelwood utilization behavior significantly
expanded after 2017, which caused the intensified human activities to disturb the habitat of
giant pandas (as shown in Figure 5).

As shown in Figure 5, the ecological niche overlaps of the YAG were higher than the
OAG in the Tangjiahe Nature Reserve. This indicates that the weakened labor force had
relatively lower disturbances on giant panda habitats. The aging labor force reduced the
intensity of resource utilization to restore ecology. This had a negative effect on the growth
of the ecotourism economy. Therefore, the OAG had lower ecological niche overlaps. In
the Wawushan Nature Reserve, the aging labor forces in Changhe Village were predomi-
nantly engaged in agroforestry to keep bees and plant white tea for the improvement of
giant panda habitat level. Therefore, these aging labor forces were more sympathetic to
environmentally friendly production behavior and the ecological niche overlaps of the
OAG were lower than the YAG. In the Daxiangling Nature Reserve, households relied on
the forestry industry in Changsheng Village. They mainly engaged in the cultivation and
conservation of bamboo, willow cedar and yellow cypress. The main labor force was the
OAG. Households actively supported ecological protection to improve their livelihoods
and to reduce the disturbance of production activities on the ecological environment. They
aimed to achieve conservation development. Therefore, it is clear that households made
rational choices for sustainable livelihoods under the context of labor force aging, who
relied on eco-industries.

Positive differences in ecological niche overlaps on the level of giant panda habitat
were mainly found in most of regional communities under the context of labor force aging.
Negative differences were mainly found in the communities which were far away from
the nature reserves and had relatively frequent human activities and a relatively complex
population structure, such as Wenfeng Village and Kuofeng Village in the Xiaohegou Nature
Reserve, Feishui Village in the Heishuihe Nature Reserve, Jiala Village in the Fengtongzhai
Nature Reserve, and Changfu Village in the Daxiangling Nature Reserve. A positive
difference in the ecological niche overlap was the ratio of ecological niche overlaps of the
OAG to ecological niche overlaps of the YAG, of which the data range was (0, 1). The data
range of the negative differences was (1, +∞). This also showed that there were spatial
differences in the effects of the aging labor force on the competing relationships between
giant panda habitat levels and ecology. This further shows that the communities who lived
under a special geographical environment faced resource utilization constraints and labor
force weakening. This weakened the intensity of household resource utilization behavior
to reduce the disturbance of giant panda habitat. Therefore, it could indirectly weaken
the ecological conflicts and improve the number of giant panda sustainable habitats (as
shown in Figure 6).
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Figure 6. Comparison of ecological niche overlaps on the level of giant panda habitat under
the labor force aging. Note: Comparison of ecological niche overlaps on the level of giant
panda habitat = ecological niche overlap of OAG/Ecological Niche Overlap of YAG. Map Content
Approval Number: CS (2019) 282.

4.3. Analysis of General Tendency

This paper used the trend analysis tool, ArcGIS10.1, to identify the 3D Map with
comprehensive ecological niche widths and ecological niche overlaps (as shown in Figure 7).
In general, the spatial distribution of the U-shaped comprehensive ecological niche widths
were similar to the inverted U-shaped ecological niche overlaps. The lowest value of
ecological niche width corresponded to the highest value of ecological niche overlap. The
data showed that the extreme values were in the Fengtongzhai Nature Reserve and the
Wolong Nature Reserve. These were caused by human activities blocking the internal
structure of the nature reserves. The data indicated that human activity destroyed the
internal structure of the Fengtongzhai Nature Reserve and the Wolong Nature Reserve,
which caused the low values of ecological niche widths and the high values of ecological
niche overlaps. The communities distributed inside the Wolong Nature Reserve were
stripe-shaped, along the central main road, which caused the isolation of giant panda
habitat in the core zone and buffer zone. To develop the regional economy, some villages
were defined as being outside of the Fengtongzhai Nature Reserve boundary to create a
calabash-shaped nature reserve. However, the habitats on both sides of the nature reserve
were isolated and faced increased disturbance from human activities. As shown in Figure 7,
the differences between the ecological niche widths of the OAG and YAG were primarily in
the northern region, such as in the Tangjiahe Nature Reserve, which had a relatively high
level of community co-management to drive the effective transformation of the household
resource utilization structure. The differences in the ecological niche overlaps were mainly
in the southern region, such as in the Wawushan Nature Reserve. The livelihoods of
households depended on diverse resources. Additionally, the research further confirmed
that labor force aging could weaken the resource utilization behavior of households and
promote sustainable habitats for giant pandas.
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Figure 7. Comparison between ecological niche widths and overlaps on the level of giant panda
habitat under the different age dominated natural resource utilization. Note: (A) Trend of ecological
niche widths in OAG. (B) Trend of ecological niche widths in YAG. (C) Trend of ecological niche
overlaps in OAG. (D) Trend of ecological niche overlaps in YAG.

5. Conclusions and Discussion

This article analyzed the evolution of giant panda habitats in nature reserves in the
Sichuan Province, from a humanistic perspective, through the household resource utiliza-
tion decision model and ecological niche model, which were able to identify challenges to
giant panda habitat conservation. The results showed that labor force aging has contributed
to an increase in the comprehensive ecological niche widths and a decrease in the com-
prehensive ecological niche widths overlaps, which also somewhat alleviated ecological
conflict. Furthermore, it improved the sustainable habitat levels of the giant panda.

From a global perspective, the different age-dominated resource utilization behav-
iors created disparate intensities of resource utilization. Household resource utilization
activities created less disturbance and competitive characteristics of giant panda habitats
in significant aging regions. Rising ecological niche widths and falling ecological niche
overlaps appeared in these regions.

From a spatial perspective, the nature reserves in the middle region had lower com-
prehensive ecological niche widths and higher ecological niche overlaps with an effect on
terrain structure, population distribution, boundary of nature reserves and community
layout. This was the case in areas such as the Wolong Nature Reserve and the Fengtongzhai
Nature Reserve. These nature reserves faced a higher conflict between conservation and
development. However, the phenomenon of labor force aging could somewhat alleviate
the ecological conflict, which primarily manifested in disparate ecological niche widths
and ecological niche overlaps under the context of labor force weakening.

This paper aimed to evaluate the differentiation of giant panda habitats through eco-
logical niche theory under the context of labor force aging. This is a preliminary study. In a
follow-up study, we will further explore the effect of household natural resource utilization
on the differentiation of giant panda habitats under different labor force structures to reveal
the complex problems facing giant panda habitat conservation. The further study will be
the foundation for alleviating the conflict between conservation and development.
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Abstract: During industrial operations and in confined places, carbon monoxide (CO) may collect in
harmful proportions if ventilation is insufficient or appliances are not properly maintained. When the
concentration of CO is too high, it might result in suffocation, coma, or even death. The detection of
tiny concentrations of CO plays an important role in safe production. Due to the selective absorption
of specific wavelengths of light by gas molecules, lasers have a wide range of applications in the field
of gas detection. In this paper, a tunable diode laser absorption spectroscopy (TDLAS) system for
CO detection was constructed using an interband cascaded laser (ICL) with a central wavelength of
4.625 μm. The modulated signal generated by the FPGA module was output to the laser controller
to modulate the laser. The signal received by the detector was input to the FPGA module. After
lock-in amplification, the second harmonic signal of high frequency modulation was output. Several
concentrations of CO that were dispersed via static gas distribution were identified. A CO detection
system with an open optical path was constructed, and the detection distance was about 8 m. The
minimum detectable concentration is around 10.32 ppmm. The concentration of CO in the open
optical path was 510.6 ppmm, according to the calibration of the detected concentration. The remote
detection system based on TDLAS using an ICL can be used to monitor CO in the open optical path.

Keywords: gas detection; carbon monoxide; remote measurement

1. Introduction

Incomplete combustion of carbon fuel produces carbon monoxide (CO) during in-
dustrial processes such as coking and steelmaking, as well as in enclosed spaces such as
mines and submarines. Suffocation, unconsciousness, or even death can occur when CO
concentrations are exceeded [1]. The temperature of the coal seam has a direct impact on
the amount of CO that is produced during coal mining. It commonly serves as an indicator
gas for a coal seam fire warning [2]. The main methods of detecting CO are electrochemical
test, catalytic combustion, and laser detection [3]. The electrochemical approach relies on
the electrical signal generated by the chemical reaction of the target gas and the sensor
electrode; in addition, it is easily affected by other gases. Through the process of catalytic
combustion, heat is produced. With the increasing temperature, the detection electrode
wire’s resistance increases. It is typically used to detect flammable gases. Laser detection is
based on the selective absorption of light by gas molecules, which has the advantages of
fast detection and low detectable concentration.

In order to determine the concentration of the detected gas, laser direct absorption
detection technique measures the attenuation of a certain laser over a set length of gas [4–8].
The tunable diode laser absorption spectroscopy (TDLAS) system uses a wavelength-
tunable semiconductor laser to obtain gas absorption spectra within the tuning range.
The modulated laser is incident on the detector after passing through the gas, and the
concentration of the target gas is proportional to the harmonic signal intensity of the high-
frequency modulation signal. Usually, the second harmonic signal extracted by the lock-in
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amplifier is used as the detection signal. The concentration of the gas to be measured is
obtained through the calibration of the standard concentration gas [9–13]. Some of the
disadvantages associated with the laser direct absorption detection technique are a low
signal-to-noise ratio, large amount of data calculation, etc. Many of them can be improved
with TDLAS use. Semiconductor diode lasers found immediate application in the 1970s as
much needed tunable sources for high-resolution laser spectroscopy commonly referred to
as TDLAS. In reference [14], available semiconductor lasers for spectroscopy in the near-
and mid-infrared spectral region have been reviewed together with the main features of
TDLAS. A theoretical description of the wavelength-modulation spectrometry technique
is given by Kluczynski P et al. [15]. Chen et al. [16] introduced an instrument that takes
advantage of a mid-infrared quantum cascaded laser (QCL) operating at 4.8 μm and a
mercury cadmium telluride (HgCdTe) mid-infrared detector. Low detection sensitivity
down to 50 nmol/mol level in 4 s acquisition time was achieved using a multipass cell with
a 76 m absorption path length. The simultaneous atmospheric pressure measurement of
the trace gases methane (CH4) and CO using an open-path sensor based on TDLAS has
been described. The detection limit of 0.58 parts per million by volume (ppmv) for CO
and 0.4 ppmv for CH4 was accomplished at 1 s averaging time by using a distribution
feedback (DFB) laser operating at 2.33 μm [17]. Shao et al. [18] adopted a DFB laser to
constantly monitor CO and CH4 in an atmosphere based on TDLAS. The absorption signals
of the sample gases were improved using a multipass absorption cell with a 72 m optical
path length.

The laser detection of CO is typically performed in a multipass absorption cell. Gas
detection in an open environment is typically necessary in practical applications. The
telemetry detection of CO in an open optical path has received relatively little attention.
CO has a substantially higher absorption coefficient at 4.6 μm than it does at 2.3 μm. The
interband cascaded laser is currently the dominating light source for gas detection in
the infrared spectrum. It benefits from room temperature functioning, a small linewidth,
and an adjustable wavelength. In this paper, a TDLAS telemetry system is constructed
using an interband cascade laser with a center wavelength of 4.625 μm. To accurately
identify low concentrations of CO, the gas concentration is measured in accordance with
the concentration calibration. The detection device can be employed in industrial parks,
coal mining sites, and restricted places for fixed-point monitoring of low-concentration CO.

2. TDLAS Detection Principle

The light intensity is attenuated by the gas being measured in TDLAS, which uses a
laser to emit a specific wavelength of light that is absorbed. The gas concentration directly
relates to the degree of light intensity attenuation. It adheres to the Lambert-Beer law [19].

I[v(t)] = I0[v(t)] exp{−α[v(t)]cL}, (1)

where I0 is the intensity of incident laser, and I is the intensity of transmitted laser α

is the absorption coefficient of the gas, and V is the frequency of the laser. c is the gas
concentration, and L is the light path length. The direct absorption technology detected can
reversely calculate the concentration of the gas by the light intensity after attenuation.

When detecting trace gases, wavelength modulation technology can significantly
reduce noise, boost the signal-to-noise ratio, and lower the detection threshold. The
instantaneous frequency of laser emission at this time is

v(t) = v0 + σv cos(2πft), (2)

where v0 is the selected laser center frequency, σv is the modulation signal amplitude, and f
is the modulation frequency.
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The Fourier series expansion of Equation (2) can be obtained

I(v0, t) =
∞

∑
n=0

An(v0) cos(n2πft), (3)

The attenuation signal after gas absorption is received by detector and the second
harmonic signal is obtained after phase-locked amplification [20]

A2(v0) =
I0cL

4
σv

2 d2σ(v)
dv2

∣∣∣∣∣v=v0 , (4)

Therefore, the concentration of the gas to be measured can be inverted by the direct
current component I0 and the second harmonic amplitude

c =
A2(v0)

I0KL
, (5)

where K is the calibration constant. Equation (5) shows that the gas concentration and
second harmonic amplitude have a linear relationship. The determined gas concentration
can be derived by inversion through standard gas calibration.

The selection of spectral lines is critical for gas measurement using TDLAS technol-
ogy. The absorption spectra of CO and NO were shown in Figure 1. According to the
HITRAN2012 spectral library, the pressure was 1 atm and the temperature was 296 K. In
order to reduce the interference of N2O on CO detection, a laser source with a central
wavelength of 4.625 μm was selected.

 
4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90

Wavelength (μm)

 N2O
 CO

4.625μm

Figure 1. Absorption spectra of CO and N2O.

3. Experimental Equipment

The CO telemetry system based on TDLAS was shown in Figure 2. The light source
was a quantum cascade laser with a central wavelength of 4.625 μm. At a constant tem-
perature, the laser source was tuned around 15 nm by current, with a linewidth of less
than 2.14 × 10−4 nm. When the working temperature was 20 ◦C and the input current of
the laser was 72 mA, the output laser wavelength was 4.625 μm and the output power
was 7.9 mW. The diameter of the laser was 3 mm, and the divergence angle was 35◦ × 55◦.
After being collimated by the collimation mechanism, the spot size at 3 m was 4.5 mm.
About 30% energy was lost after the collimator. The light reflected from the corner re-
flector traveled via the focusing lens before concentrating on the detector. The receiver
was a HgCdTe detector with a working cut-off wavelength of 6 μm. The optical area was
1 × 1 mm2, the acceptance angle was 36◦, and the time constant was 50 ns. The optical
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axis distance between the laser and detector was around 45 mm, and the diameter of the
corner mirror was 50.8 mm. When the corner mirror was 8 m away from the laser source,
the incident light and reflected light were at the edge of the corner mirror. A sawtooth
wave with a frequency of 5 Hz and a sine wave with a frequency of 31.4 kHz were both
produced by the field programmable gate array (FPGA) module. The modulation signal
was loaded into the laser controller to modulate the laser source. The signal received by the
detector was input to the FPGA module, and the second harmonic signal was output after
the phase-locking operation. The second harmonic signal was gathered by a data collection
card and shown on the computer software.

Figure 2. Gas remote detection system based on TDLAS.

To determine the gas concentration, the gas detection system based on TDLAS requires
calibration using standard concentration gas. One easy way to set up standard gas concen-
trations is through static gas distribution. Calculations can be performed to determine the
gas concentration when a specific amount of gas is supplied to a container with a known
volume. A gas chamber with an inner diameter of 150 mm and a length of 1 m was put in
the optical path. An inelastic gas bag was used to contain the CO gas after it was discharged
from the high-pressure gas cylinder at the same pressure as the atmosphere. After the air
chamber was evacuated, the CO gas was retrieved from the air bag and injected into it.
After that, nitrogen was added to the gas chamber to bring the pressure there closer to that
of the atmosphere.

4. Results and Discussion

The calibration concentration was determined by detecting CO in the gas chamber
using an electrochemical gas detector. The electrochemical gas detector had a detection
range of 1–1000 ppm and a detection accuracy of 1 ppm. As shown in Figure 3, CO
was fed into the gas chamber in amounts of 0.2 mL, 0.5 mL, 1 mL, 2 mL, and 4 mL.
The measured concentrations were 12 ppm, 27 ppm, 52 ppm, 112 ppm, and 217 ppm,
respectively. The actual concentration of the gas was rather close to the theoretically
calculated concentration, and the error may have resulted from a volume error in the
injected gas. Through concentration calibration, the concentration of CO in the open optical
path can be directly obtained.

Different CO concentrations in the gas chamber were measured using the CO detection
system based on TDLAS. In Figure 4, the detection results were displayed. The amplitude
of the second harmonic signal (ASH) grew linearly with the gas concentration, confirming
the concept. Calculations revealed that the ratio of ASH to the gas concentration was
4.431 × 10−3/ppm. The lower detection limit of CO in the gas chamber was approximately
12 ppmm. (1 ppmm means that the concentration of 1 ppm gas was distributed in the
length of 1 m.) CO gas at a concentration of 240 ppb could be detected if a multipass
absorption cell with an optical path length of 50 m was utilized. The CO gas concentration
corresponding to the amplitude of various second harmonics of the gas detection system
might be determined using the ASH of CO gas with varied concentrations in the gas
chamber as the standard value. The signal-to-noise ratio can be improved, low-frequency
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background noise can be suppressed, and the limit of detection concentration can be
lowered compared with the laser direct absorption detection technique. It can detect CO
with low concentration; thus, gas leakage can be found at an early stage to keep people safe.
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Figure 3. CO concentration calibrated with an electrochemical gas detector as a function of CO gas
volume added into the gas chamber.
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Figure 4. Detected result of CO with different concentrations in the gas chamber based on TDLAS:
(a) waveforms of the second harmonic signal; and (b) amplitudes of the second harmonic signal.

The scanning period of the laser modulation signal was 200 ms. By continually
collecting the detection signal for 50 times, it was possible to achieve the stability of the
gas detection result within 10 s. Figure 5 displayed the stability of the ASH for gases at
various concentrations. The relative standard deviations of CO detection signals with
concentrations of 12 ppm, 27 ppm, 52 ppm, 112 ppm, and 217 ppm were 0.019, 0.029, 0.024,
0.02, and 0.017, respectively. The measurement results of the CO detection system based
on TDLAS were stable because the low-frequency background noise could be suppressed.
The detection result is stable and reliable; therefore, this system can work for a long time to
detect CO gas in the environment.
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Figure 5. The fluctuation of ASH with different concentrations of CO in the gas chamber.

The silicon slices used for the gas cell windows had a thickness of 5 mm, and their
transmittance at 4.625 μm was approximately 96.3%. Through the gas cell, about 14% of
the laser’s power was lost. The ASH was proportional to the gas concentration and the
laser emission power. According to the calibration of the standard concentration gas in the
gas chamber, the ratio of the ASH in the open optical path to the gas concentration was
5.152 × 10−3/ppm (4.431 × 10−3/ppm/(1–14%)), and the minimum detectable concentra-
tion was about 10.32 ppmm (12 ppmm×(1–14%)). CO gas was sprayed in the optical path
directly, and the measured second harmonic signal was shown in Figure 6a. The ASH was
2.638, and the concentration of CO gas in the optical path was approximately 510.6 ppmm.
The concentration of CO in the optical path within two minutes was shown in Figure 6b.
The detection result increased significantly right away after the gas was sprayed, and the
concentration fluctuation during the gas diffusion was not significant. The CO content in
the optical path immediately decreased as soon as the ventilation fan was turned on. The
concentration of CO was much lower after one minute of ventilation, although there was
still some CO gas present in comparison to before degassing. The diffusion of CO gas in the
optical path was generally uniform because of the air movement. This system can detect
the concentration of CO in the environment and give an alarm when the concentration
exceeds the standard value. The detectable concentration is low, so that the danger can
be detected in time. In confined spaces, timely ventilation can quickly reduce CO in the
environment, thereby reducing the impact on health.
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Figure 6. Remote detection result of CO based on TDLAS in the open optical path: (a) waveforms of
the second harmonic signal; and (b) fluctuations of the concentration.
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5. Conclusions

The laser detection of CO usually uses a long optical path gas chamber to improve
the detection sensitivity, and there are few studies on the telemetry system. A CO gas
telemetry system based on TDLAS was constructed using a 4.625 μm mid-infrared ICL with
a high CO absorption coefficient in order to increase the detection sensitivity. The standard
concentration of CO gas was prepared by the static gas distribution method. The standard
concentration gas was calibrated in the gas chamber. The results of the gas detection were
stable and reliable. The detection distance for CO gas in the open optical was roughly 8 m.
The lower limit of detection concentration was approximately 10.32 ppmm, according to
the calibration of standard concentration gas in the gas chamber. The gas detection distance
can be extended by increasing the diameter of the corner mirror and the laser intensity.
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Abstract: As one of the most sensitive areas to global environmental change, especially global climate
change, the Qinghai–Tibet Plateau is an ideal area for studying global climate change and ecosystems.
There are few studies on the analysis of the vegetation’s driving factors on the Qinghai–Tibet Plateau
based on large-scale and high-resolution data due to the incompetence of satellite sensors. In order
to study the long-term vegetation spatiotemporal pattern and its driving factors, this study used
the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) to improve the
spatial resolution of the GIMMS NDVI3g (8 km) data of the Qinghai–Tibet Plateau in 1990 and 1995
based on the MODIS NDVI (500 m) data. The research on the spatiotemporal pattern and driving
factors of vegetation on the Qinghai–Tibet Plateau from 1990 to 2015 was carried out afterward, with
combined data including topographic factors, annual average temperature, and annual precipitation.
The results showed that there was a strong correlation between the actual MODIS NDVI image and
the fused GIMMS NDVI3g image, which means that the accuracy of the fused GIMMS NDVI3g image
is reliable and can provide basic data for the accurate evaluation of the spatial and temporal patterns
of vegetation on the Qinghai–Tibet Plateau. From 1990 to 2015, the overall vegetation coverage of the
Qinghai–Tibet Plateau showed a degrading trend at a rate of −0.41%, and the degradation trend of
vegetation coverage was the weakest when the slope was ≥25◦. Due to the influence of the policy of
returning farmland to forests, the overall degradation trend has gradually weakened. The significant
changes in vegetation in 2010 can be attributed to the difference in the spatial distribution of climatic
factors such as temperature and precipitation. The area with reduced vegetation in the west was
larger than the area with increased vegetation in the east. The effects of temperature and precipitation
on the distribution, direction, and degradation level of vegetation coverage were varied by the areal
differentiation in different zones.

Keywords: vegetation coverage; ESTARFM; data fusion; climate change; topography

1. Introduction

Vegetation plays an irreplaceable role in the global mass–energy exchange, and it is interactive
with climate change by affecting water, the carbon cycle, and soil composition [1–3]. Some studies
have linked the vegetation change on the Qinghai–Tibet Plateau to global warming [4]. The
Qinghai–Tibet Plateau, known as “ the third pole of the earth”, is located in a high-altitude and
high-cold environment [5]. Its fragile ecosystem and complex geographic environment have
resulted in a drastic change in the vegetation dynamics in the region and made it more sensitive
to the change in global climate and ecosystems. Thus, it is considered to be an ideal research area
for vegetation cover dynamics and driving force analysis research [6]. For example, Zhou et al.
found that the vegetation on the Qinghai–Tibet Plateau exhibited an overall green profile from
1982 to 2012, using GIMMS NDVI3g data [7]. Xu et al. found that the vegetation coverage of the
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Qinghai–Tibet Plateau increased from 1982 to 2000 by extracting vegetation coverage derived
information from the leaf area index satellite images [8]. Zhang et al. compared the results of
vegetation trend changes based on vegetation indices from multiple data sources and found that
different data sources may cause variance in trend changes [9]. Therefore, the dynamic monitoring
of vegetation coverage on the Qinghai–Tibet Plateau and the analysis of driving factors are of great
significance to the evaluation of construction in the Qinghai–Tibet Plateau ecological environment
and environmental protection projects.

It should be noted that the current remote sensing data sources usually cannot have
both a long time series and a high spatial resolution. For example, predecessors studied the
vegetation changes in Northeast China from 1982 to 2009 [10], on the Mongolian Plateau
from 1982 to 2006 [11], in Xinjiang from 1982 to 2013 [12], and on the Qinghai–Tibet Plateau
from 1982 to 2015 [13] using GIMMS NDVI3g data, which is one of the longest time-series
NDVI data sets [14]. However, the spatial resolution of this data was low, which was
suitable for large-scale research, and had a weak ability to describe changes in regional
small-scale vegetation coverage. The data collected by satellite sensors, such as the Earth
Observation System (SPOT)-VEGETATION, MODIS, and ENVISAT Medium Resolution
Imaging Spectrometer (MERIS), have a high time resolution. The effects of clouds can be
reduced or even eliminated by synthesizing images within a certain period [14]. Thus,
the quality of remote sensing data is improved, which expands the usage of the regional
vegetation trend analysis on a global scale [15–17]. However, the demand for improving
the spatial resolution of the data remains unsolved. Although in comparison with GIMMS
NDVI3g, MODIS NDVI products have higher accuracy and can better express the time-
series changes of vegetation. Many scholars have analyzed the changes in vegetation cover
and its influencing factors on the Qinghai–Tibet Plateau with different temporal and spatial
resolutions based on MODIS data [13,18,19]. It is inappropriate to be applied in studies of
long time series due to its time coverage (July 2001 to present). Therefore, there is a need
to improve the resolution of early remote sensing data for long-term vegetation change
monitoring research.

There are great differences in vegetation types and distribution among different re-
gions, so it is difficult to evaluate the regional vegetation growth status based on a single
data set. It is urgent to reconstruct multi-source spatiotemporal data. At present, the
spatiotemporal fusion methods based on remote sensing data were roughly divided into
two types: on the one hand, the transformation model is based on systematic error, the
main idea of which was that the reflectivity of different objects in different data sources
has strong consistency, and the deviation was mainly caused by the system error of the
sensor itself, so it was necessary to establish a certain regular conversion relationship for
the data of different sensors. Li et al. established the data mapping relationship between
pixels through pixel-by-pixel regression analysis and analyzed the response of vegetation
dynamic changes on the Qinghai–Tibet Plateau to hydrothermal conditions in the past 40
years [20]. Zhang et al. obtained long-term remote sensing data by establishing a linear
regression equation between GIMMS NDVI3g and MODIS data [21]. On the other hand,
the principle of the data fusion method based on the reconstruction model was to realize
the fusion of temporal and spatial information between sensors of different data sources by
establishing the relationship between different data sources.

Predecessors have done a lot of research on the fusion of remote sensing data in
time and space. For example, the STARFM (spatial and temporal reflection fusion model)
proposed by Gao et al. [22] can fuse Landsat and MODIS surface reflectance to generate
synthetic reflectance data with high temporal and spatial resolution. Using the STARFM
model, Semmens et al. effectively monitored crop water use and soil water status at the
farmland scale [23], while Singh fully extracted the phenology of the crop during the 8-year
growing season [24]. Gevaert and Javier Garcia-Haro evaluated STARFM and believe
that it is practically more effective in constructing time profiles with more high-resolution
images [25]. Bhandari et al. [26] and Schmidt et al. [27] evaluated the ability of STARFM
to synthesize long-term time-series data and obtained the phenological characteristics of
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different vegetation for research. Zhu et al. improved the STARFM algorithm and proposed
the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) to reflect
the temporal and spatial changes of the land surface more accurately [28]. Moreover, in
areas with complex terrain, ESTARFM is frequently used to generate synthetic remote
sensing images with high spatial and temporal resolution due to its extraordinary fusion
effect [29,30]. This method not only considered the temporal variation characteristics of
pixel reflectivity but also considered the spatial reflectivity variation characteristics of
pixel reflectivity, which effectively improved the accuracy of fusion. However, very few
studies have focused on the synthesis of the GIMMS NDVI3g and MODIS NDVI on the
Qinghai–Tibet Plateau spatiotemporally based on ESTARFM and further analyzed the
spatiotemporal pattern of vegetation from 1990 to the present. For this reason, based on
the ESTARFM, the present article developed spatiotemporal fusion of the Qinghai–Tibet
Plateau, using GIMMS NDVI3g and MODIS NDVI to monitor the evolution of vegetation.

Therefore, this study used GIMMS NDVI3g and MODIS NDVI data to analyze the
temporal and spatial patterns and driving factors of vegetation cover on the Qinghai–Tibet
Plateau. Its main purposes were as follows. Firstly, we used the ESTARFM model to
establish the functional relationship between the two data sources to improve the spatial
resolution of the GIMMS NDVI3g data. Secondly, we quantified the vegetation coverage of
the Qinghai–Tibet Plateau. Finally, we analyzed long-term vegetation change characteristics
and their influencing factors on the Qinghai–Tibet Plateau.

2. Materials and Methods

2.1. Study Area

Known as the “roof of the world”, the Qinghai–Tibet Plateau (26◦00′ N–39◦47′ N,
73◦19′ E–104◦47′ E) is located in the mid-latitude alpine area with an average altitude
of higher than 4000 m, an area of about 2.57 million km2, and solar radiation of
0.5861–0.7954 MJ cm−1 a−1 and is the largest area in China with the highest solar ra-
diation value. This region has a complex terrain, numerous towering mountains, such as
the Tanggula Mountains, Kunlun Mountains, and the Himalayas. The connection of the
major mountains causes a huge terrain gap in the territory, showing an obvious altitudinal
zonality. The Qinghai–Tibet Plateau is therefore characterized by high altitudes, forming
natural conditions significantly different from other mid-latitude warm temperate zones
and subtropical regions [31]. The weather is cold all year round with the average annual
temperature in the hinterland below 0 ◦C. Moreover, the uneven distribution of precipita-
tion, such as in the Himalayan mountains, greatly blocks the northward movement of the
warm and wet air in the southern ocean, resulting in the decline of annual precipitation
from 2000 mm to below 50 mm in the region and a climate type change from the humid
southeast to the arid northwest [5]. The climate difference between different regions is
obvious, the dry and wet were distinct, the northwest region is cold and arid, and the
southeast region is warmer, hotter, and more humid. The Qinghai–Tibet Plateau has a long
snow cover in winter and covers a large area, which is the source of the Yellow River, the
Yangtze River, the Yarlung Zangbo River, and other important rivers. The Qinghai–Tibet
Plateau contains rich herbaceous resources, and the main vegetation types are mountain
forests, mountain shrubs, alpine meadows, alpine grasslands, alpine deserts, etc. [32]. Due
to the harsh climate and high altitude, human activities are scarce. The local natural vege-
tation is well preserved. Such a unique geographical location and climate characteristics
make the Tibetan Plateau a “sensor” of global climate change, where the vegetation is
highly sensitive to climate change. As an eco-environmental fragile area, this region serves
as an important ecological barrier in China. The vegetation changes pose a significant
impact on the hydrological characteristics, carbon cycle, and surface stability of this area’s
surface [33] as well as the climate and ecology of China or even the world. Therefore, it
is of great significance to explore the spatial and temporal distribution characteristics of
vegetation cover on the Qinghai–Tibet Plateau and analyze the main driving factors of
regional vegetation changes.
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2.2. Data Sources and Pre-Processing
2.2.1. NDVI Data

As one of the sensitive indicators of vegetation changes, NDVI is widely applied in
large-scale and regional vegetation monitoring research [33–35]. The MODIS NDVI used in
this study was acquired from the MODIS 13Q1 Vegetation Index data set product (Geospatial
Data Cloud Platform of the Computer Network Information Center of the Chinese Academy
of Sciences,http://www.gscloud.cn/ (accessed on 10 January 2022)), with a spatial resolution
of 500 m × 500 m and the temporal resolution of 30 days. To smooth the period of NDVI, the
self-adapted filtering operation Savitzky–Golay was used to reduce the influences caused by
noise such as outliers. GIMMS NDVI3g data set was downloaded from the ECOCAST website
(https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (accessed on 12 January 2022)), with
the spatial resolution of 8 km × 8 km and the temporal resolution of 15 days.

These two kinds of NDVI original data sets have discrepancies in spatial and temporal
resolutions. In order to enhance the fusion of the two data sets, reduce the influence of
cloud and other atmospheric effects on the data, and improve the data accuracy our study
adopted the maximum synthesis method to synthesize the MODIS NDVI data sets in 2000,
2005, 2010, and 2015 and GIMMS NDVI data sets in 1990, 1995, 2000, 2005, 2010 and 2015,
respectively [36]. In addition, to meet the data requirements of the ESTARFM, the spatial
resolution of the GIMMS NDVI data sets was configured to 500 m × 500 m after resampling,
using the nearest neighbor pixel method.

2.2.2. Climatic and Auxiliary Data

The meteorological data set includes the average annual temperature and annual precipi-
tation in 1990, 1995, 2000, 2005, 2010, and 2015, with a spatial resolution of 1 km × 1 km and
the terrain data spatial resolution of 500 m × 500 m. The climate data set, topographic data
set, and Qinghai–Tibet Plateau partitioned data were obtained from the Resource and Envi-
ronmental Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn
(accessed on 20 January 2022)). The vegetation type data came from the National Tibetan
Plateau Data Center (https://www.tpdc.ac.cn (accessed on 3 February 2022)). The climate
data set were adjusted with Australia’s ANUSPLIN interpolation software to interpolate
climatic factors such as temperature and precipitation. Specific principles are provided in the
reference [37].

To unify the data standards, the spatial resolution of the data set resampled by the
nearest-neighbor pixel method is 500 × 500 m. All data were converted into a unified
projected coordinate system WGS_1984_Zone_48N and cropped out in the study area.

2.3. Methods
2.3.1. ESTARFM Spatiotemporal Fusion Algorithm

Obtained the ESTARFM algorithm by improving the STARFM algorithm [28]. This
algorithm can generate fused data with high time and space resolution by combining
the time or space advantages of the two types of data sources. Based on the original
model, the weighting method was adjusted by the ESTARFM fusion model according to
the heterogeneity of the pixels, thus the prediction results by setting conversion coefficients
were improved (Algorithm 1). Greater heterogeneity led to higher prediction accuracy,
which preserved more details of spatial features [4]. In this study, based on MODIS NDVI
with a spatial resolution of 500 m × 500 m, the ESTARFM algorithm was used to obtain the
fused GIMMS NDVI3g data from 1990 and 1995 in the Tibetan Plateau, respectively, with a
spatial resolution of 500 m × 500 m. As shown in Figure 1:
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Algorithm 1: Pseudocode of the ESTARFM

Input: two fine-resolution images at tm and tn, three coarse-resolution images at tm , tn and tp
Output: fine-resolution image at tp
1: If F(x, y, tk, B) = a × C(x, y, tk, B) + b :

2: Tk =
1/|∑w

j=1 ∑w
l=1 C(xj ,yl ,tk ,B)−∑w

i=1 ∑w
l=1 C(xj ,yl ,tp ,B)|

∑k=m,n(1/|∑w
j=1 ∑w

l=1 C(xj ,yl ,tk ,B)−∑w
i=1 ∑w

l=1 C(xj ,yl ,tp ,B)|) , (k = m, n).

3: Then
4: F
(

xw/2, yw/2, tp, B
)
= Tm × Fm

(
xw/2, yw/2, tp, B

)
+ Tn × Fn

(
xw/2, yw/2, tp, B

)
5: Check convergence
6: |F(xi, yi, tk, B)− F(xw/2, yw/2, tk, B)| ≤ δ(B)× 2/m
7: Compute average absolute difference (AAD) and average absolute (AD)

 

Figure 1. Schematic explanation of the enhanced spatial and temporal adaptive reflectance fusion
model (ESTARFM) for fusing GIMMS NDVI3g and MODIS NDVI.

After preprocessing such as registration and cropping of the two images, it is assumed
that the systematic deviation between MODIS NDVI and GIMMS NDVI was solely at-
tributed to the discrepancy in NDVI values, and there was no significant difference between
the images in the two periods, as shown in Formula (1).

M
(
x, y, tp, B

)
= M(x, y, t0, B) + a × (G(x, y, tp, B

)− G(x, y, t0, B)
)

(1)

In which M represents the MODIS NDVI data, G represents the GIMMS NDVI3g data,
(x, y) represents the pixel location, B represents the image band, t0 and tp represent the
time of data acquisition, and a is the conversion coefficient, depending on the system error
of the sensor.

Complexity and uncertainty of the actual surface conditions caused deviations in
the actual pixel information prediction, therefore it was assumed that the change of the
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NDVI value of the mixed pixel is a typical epitome of NDVI amongst different land cover
types, and the change of the mixed pixel NDVI over time is the weighted sum of the NDVI
variations of the pixels from different land cover types. The proportion of each component
in different land cover types remains unchanged, as shown in Formula (2).

M
(
x, y, tp, B

)
= M(x, y, t0, B) + v(x, y)× (G(x, y, tp, B

)− G(x, y, t0, B)
)

(2)

v(x, y) represents the correlation coefficient corresponding to the i-th similar pixel
after the decomposition of mixed pixels. Formula (2) reveals that the change in the NDVI
value of a pixel is the most similar to its neighbors. Images were fused according to the
following steps. Using the moving window set by the adjacent pixels, similar pixels can be
found. Whilst using the mutual relationship among the pixels, the value of the center pixel
of the image can be obtained, as shown in Formula (3).

M
(
xw/2, yw/2, tp, B

)
= M(xw/2, yw/2, t0, B) +

N

∑
i=1

Wi × vi ×
(
G
(
xi, yi, tp, B

)− G(xi, yi, t0, B)
)

(3)

In which N represents the number of similar pixels in the center prediction pixel,
(xi, yi), W, and vi represent the position, the weight, and the conversion coefficient of the
i-th similar pixel, respectively.

The MODIS NDVI image at a time tp is obtained by fusing the MODIS NDVI at
time m in the first period and the GIMMS NDVI3g at a time tp, which is recorded as
Mm

(
xw/2, yw/2, tp, B

)
. The observation data at a time n in the second period and the

MODIS NDVI data at the time tp were fused and denoted as Mn
(
xw/2, yw/2, tp, B

)
. The

MODIS NDVI data at the time tp tended to be more accurate after weighting the two
results. The weights are calculated by the changes between GIMMS at the time tm and time
tn, and the GIMMS at time tp, respectively, as shown in Formula (4).

Tk =
1/
∣∣∣∑W

j=1 ∑W
i=1 G

(
xi, yj, tk, B

)− ∑W
j=1 ∑W

i=1 G
(
xi, yj, tp, B

)∣∣∣
∑k=m,n

(
1/
∣∣∣∑W

j=1 ∑W
i=1 G

(
xi, yj, tk, B

)− ∑W
j=1 ∑W

i=1 G
(

xi, yj, tp, B
)∣∣∣) , (k = m, n) (4)

The value of the center pixel can be obtained by Formula (5):

M
(
xw/2, yw/2, tp, B

)
= Tm × Mm

(
xw/2, yw/2, tp, B

)
+ Tn × Mn

(
xw/2, yw/2, tp, B

)
(5)

2.3.2. The Calculation of Vegetation Coverage

Vegetation coverage, as an important indicator for studying global climate change and
vegetation growth status, has received extensive attention from scholars worldwide [33,35,38].
The calculation method is shown in Formula (6):

F = (NDVI − NDVIn)/(NDVIi − NDVIn) (6)

where F represents the vegetation coverage; NDVI is the normalized vegetation index of
the pixel; NDVIi and NDVIn are, respectively, the vegetation index of vegetation-covered
land and bare soil land. NDVI values with 95% confidence (NDVIi ) and 5% confidence
(NDVIn ) in the study area were chosen.

2.3.3. Linear Regression Analysis

The simple linear regression model was used to assist the calculation of various
characteristics and laws of vegetation coverage in single-pixel [39].

A =
m × ∑m

i=1(i × Fi)− (∑m
i=1 i)× (∑m

i=1 Fi)

(m × ∑m
i=1 i2 − ∑m

i=1 i2)
(7)
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where A represents the change rate of vegetation coverage over time in the research period;
m represents the total research years; and Fi represents the vegetation coverage of the i-th
year. Thus, the variation range of vegetation coverage can be calculated as follows:

B = A × (n − 1) (8)

If A value is negative, the vegetation coverage of pixels from 1990 to 2015 shows A
downward trend; otherwise, it shows an upward trend. If A value is zero, it shows no obvious
change in trend; the larger the absolute value of A is, the more obvious the change is.

2.3.4. Hurst Index

According to the Hurst index, based on the R/S analysis method, the continuity of
vegetation coverage over time can be calculated effectively, as long as the value is in the
range of [0, 1]. It has received extensive attention in hydrology [40,41], geography [42],
climatology [43], and so on. The calculation procedure is demonstrated as follows:

The mean of vegetation coverage over time is determined by Formula (9), with the
time set t = 1, 2, . . . , n.

f (τ) =
1
τ

τ

∑
t=1

f (t), τ = 1, 2, . . . , n (9)

The cumulative deviation of time t:

X(t, τ) =
τ

∑
t=1

(
f (t)− f (t)

)
, 1 ≤ t ≤ τ (10)

The range of vegetation coverage over time set:

R(τ) = max
1≤t≤τ

X(t, τ)− min
1≤t≤τ

X(t, τ), τ = 1, 2, . . . , n (11)

Construct the standard deviation sequence:

S(τ) =

√
1
τ ∑τ

t=1

(
f (t)− f (t)

)2
, τ = 1, 2, . . . , n (12)

Hurst index:
R(τ)/S(τ) = (cτ)H (13)

In the formulas above, H is the Hurst index. Time set t is not continuous with H = 0.5.
Time set t has a distinctive feature of continuity with H > 0.5 . The continuous trend
becomes more and more obvious as H is approaching 1. The time set has a distinctive
feature of anti-continuity when H < 0.5 . The closer H is to 0, the more obvious the
anti-continuous trend is.

2.3.5. Partial Correlation Analysis

The complexity and the correlation which exist between elements of geographic
systems render the relation between driving factors become the key to driving analysis.
Using partial correlation analysis, the correlation between vegetation coverage and a single,
climate-driving factor can be determined by ruling out the influences of other climate
driving factors [44].

Rab,c =
Rab − RacRbc√

(1 − Rac2) + (1 − Rbc
2)

(14)

In the formula, Rab,c is the partial correlation index between a and b, based on the
control variable c ; Rab, Rbc , and Rac are, respectively, the simple correlation coefficients
between a and b, b and c, and a and c, in which a, b, and c are, respectively, the vegetation
coverage index, mean annual temperature, and annual precipitation. Two variables are
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positively correlated, when Rab,c > 0, and vice versa. Greater absolute value Rab,c stands
for a greater correlation between the two variables.

The calculation of the simple correlation coefficient is as follows:

Rxy =
∑n

i=1((xi − x)(yi − y))√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(15)

where, Rxy is the simple correlation coefficient between x and y, with the range of [−1, 1];
xi is the value of the variable x in the i-th year; yi is the value of a variable y in the i-th
year; x is the mean of a variable x during the study period; y is the mean of a variable y
during the study period.

3. Results

3.1. Data Fusion

We summarized and plotted the values of pixels in the fused GIMMS NDVI3g image
and the real MODIS NDVI image in 2000, 2005, 2010, and 2015, as shown in Figure 2. The
fused GIMMS NDVI3g data and the real MODIS NDVI data were in good agreement.
The scattered points of the pixels were evenly distributed along the trend line of y = x,
indicating a decent prediction effect.

Figure 2. Scatter plot of pixel values corresponding to the fused GIMMS NDVI3g and MODIS NDVI.

By comparing the details of GIMMS NDVI3g data, fused GIMMS NDVI3g data, and
real MODIS NDVI data in 2000, 2005, 2010, and 2015 (Figure 3), higher pixel resolutions
were observed with the fused GIMMS NDVI3g data and real MODIS NDVI data, where
the texture of the ground features was clear and the details of some characteristic areas can
be identified. In addition, the detailed features of the regional vegetation coverage can be
well reproduced.
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Figure 3. Detail comparison of fused GIMMS NDVI3g and real MODIS NDVI data.

3.2. Analysis of Vegetation Coverage Characteristics

The Qinghai–Tibet Plateau is a vast territory with complex and diverse climate types. In
order to better analyze the vegetation distribution and change characteristics of the Qinghai–
Tibet Plateau, the study area was divided into 18 zones according to the Qinghai–Tibet Plateau
zoning data and vegetation coverage type data. (Table 1). Notably, the VIIBiib, VIIIBi, VIIICi,
VIIICii, and VIIIBii zones had more obvious vegetation degradation trends, whereas the VIAiic
zone had a more obvious vegetation improvement trend. The absolute values of A in all the
zones were above 0.8%, implying that the vegetation changes in the Qinghai–Tibet Plateau
had extreme distribution characteristics. In areas with low average vegetation coverage, such
as desert zones and sub-zones, the vegetation tends to degenerate, while vegetation trends
improve as the average vegetation coverage becomes higher.

Table 1. Characteristics of different zones on the Qinghai–Tibet Plateau.

Zones Codes
Average Vegetation Coverage A Value(%) of

1990–20151990 2015

Warm temperate shrubbery, semi-shrubbery, and bare land zone VIIBiib 0.17 0.13 −0.87
Southern temperate sylvosteppe zone VIAiia 0.84 0.86 0.45

Southern temperate desert steppe sub-zone VIAiic 0.75 0.8 1.03
Alpine steppe zone VIIIBi 0.39 0.36 −0.84

Alpine shrub and meadow zone VIIIAi 0.89 0.9 0.19
Alpine meadow zone VIIIAii 0.68 0.72 0.58

Cold temperate coniferous forest zone in subtropical mountain IVBiii 0.8 0.81 0.2
Warm temperate shrub, semi-shrub and desert sub−zone VIIBiia 0.3 0.29 −0.38

Alpine desert zone VIIICi 0.21 0.18 −0.88
Temperate desert zone VIIICii 0.3 0.25 −1.08
Temperate steppe zone VIIIBii 0.53 0.49 −0.92

Mid-subtropical evergreen broad-leaved forest zone IVBi 0.99 0.98 −0.24
North tropical seasonal rain forest, semi evergreen season VBi 0.87 0.87 0.1

Northern mid-subtropical evergreen broad-leaved forest sub-zone IVAiia 0.95 0.94 −0.35
Northern subtropical mixed evergreen and deciduous broad-leaved zone IVAi 0.98 0.98 −0.07

Warm temperate deciduous oak forest zone IIIii 0.98 0.98 0.03
Temperate shrub and semi-fruticous desert zone VIIBib 0.55 0.56 −0.13
Temperate semi-shrub and fruticous desert zone VIIBi 0.19 0.18 −0.23
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In 2000, the State Council issued the “Several Opinions on Doing a Good Job in
Returning Cultivated Land to Forest and Grassland” [45]. Returning farmland to forest
and grassland policy was implemented nationwide in China, which generally promoted
vegetation growth. In order to explore the change in vegetation on the Qinghai–Tibet
Plateau since the promulgation of this policy, the profile of vegetation coverage and Hurst
index of the Qinghai–Tibet Plateau around 2000 and 1990–2015 were calculated in this
study, as shown in Figure 4. From 1990 to 1995, 37.46% of the area was subject to vegetation
degradation. The land with A values less than −0.5%, between −0.5% and 0%, and between
0% and 0.5% accounted for 9.93%, 27.53%, and 54.42% of the total area, respectively, while
the land with A values over 0.5% accounted for 8.12% of the total area. From 2000 to 2015,
52.47% of the area suffered from vegetation degradation, with an average growth trend
(A) of 0.02%. The land with A values less than −5%, between −5% and 0%, and between
0% and 5% accounted for 0.23%, 52.24%, and 47.37% of the total area, respectively, while
the land with A values over 5% accounted for 0.15% of the total area. From 1990 to 2015,
the area with vegetation degradation increased to 73.49% with an average growth trend
(A) of −0.041%. The land with A values less than −5%, between −5% and 0%, between
0% and 5%, and over 5% accounted for 0.10%, 73.39%, 26.42%, and 0.08% of the total
area, respectively. According to the distribution of vegetation temporal profile from 1990
to 2015 (Figure 4c), it is clear that the vegetation changes on the Qinghai–Tibet Plateau
were spatially heterogeneous and specifically manifest as degradation in the west and
rise in the east. Furthermore, the degradation of vegetation was prevalent in the study
area. Areas with a Hurst index less than 0.5, over 0.5, and equal to 0.5 accounted for 9.16%,
80.59%, and 10.25% of the total area, respectively. The spatial distribution of the Hurst index
indicated that the change of vegetation characteristics in most parts of the Qinghai–Tibet
Plateau was continuous, whereas the continuity was not evident in the western Sichuan
and the northern Yunnan regions. The comprehensive vegetation change trend and Hurst
index showed that 22.14% of the Tibetan Plateau continued to improve from 1990 to 2015
(A > 0 and H > 0.5).

Figure 4. The vegetation change trend and Hurst index on the Qinghai–Tibet Plateau, (a) is the
vegetation change trend from 1990 to 1995, (b) is the vegetation change trend from 2000 to 2015, (c) is
the vegetation change trend from 1990 to 2015, (d) is the Hurst index from 1990 to 2015.
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3.3. Impact of the Topographic on Vegetation Coverage

The terrain of the Qinghai–Tibet Plateau is complex and changeable, with ascending
attitude from the southeast toward the northwest. Regarding previous studies, this paper
extracted two types of terrain factors, namely slope, and aspect, to explore their driving
mechanism for vegetation change [46]. The slope was divided into 0–3, 3–8, 8–15, 15–25,
and greater than 25 degrees by the natural breakpoint method. At the same time, the slope
aspect was calculated by the elevation data, and the aspect data was divided into three
categories: flat slopes with a result of −1; sunny slopes were generally south, southwest,
west, and northwest and the value range was between 157.5◦and 337.5◦; shady slopes
were generally northeast, east, north, and southeast and the value range was 337.5◦–360◦
and 0◦–157.5◦. In the aspect of the spatial scale, when the slope was over 15◦or located
on the slope surface, the vegetation cover was in good condition. In terms of the time
scale, the vegetation coverage driven by terrain factors was developing toward continuous
degradation (A < 0 and Hurst > 0.5). The degradation trend appeared to be less significant
with steeper slopes. It should be highlighted that when the terrain slope was between
0◦and 3◦, the vegetation coverage in 1990 and 2015 was 0.38 and 0.36, respectively. In
contrast, with the A value of -0.58% (Hurst > 0.6) and the terrain slope of over 25◦, the
vegetation coverage in 1990 and 2015 increased to 0.71 and 0.70, respectively. In 2015, the
vegetation coverage was 0.71 and 0.70, respectively. Moreover, as the A value came to
−0.08% (Hurst > 0.6), the impact of this aspect on the vegetation coverage was smaller than
that of the slope (Table 2).

Table 2. Vegetation coverage and its variation characteristics on the Qinghai–Tibet Plateau under
different terrain factors.

Topographic Factors
Average Vegetation Coverage A Value (%) from

1990 to 2015
Hurst Index from

1990 to 2015
1990 2015

Slope (◦)

0–3 0.38 0.36 −0.58 0.67
3–8 0.5 0.5 −0.51 0.67

8–15 0.58 0.57 −0.37 0.65
12–25 0.63 0.62 −0.23 0.65
≥25 0.71 0.7 −0.08 0.64

Aspect
Flat 0.35 0.34 −0.45 0.65

Sunny slope 0.52 0.5 −0.4 0.66
Shady slope 0.53 0.51 −0.44 0.66

3.4. Link between Climate Change and Vegetation Coverage

Based on the partial correlation analysis (Figure 5), it could be found that the aver-
age annual temperature and annual precipitation in different areas of the Qinghai–Tibet
Plateau from 1990 to 2015 had significant differences due to the interference of vegetation
coverage. In general, their changes drove the decrease in vegetation coverage, with an-
nual mean temperature having a greater impact on vegetation coverage than annual pre-
cipitation. Rt > 0, that is, 9.59% of the total area was driven by the change of average
annual temperature promoting vegetation coverage. A lot of the 47.67% of the land had
Rp > 0, where the change of annual precipitation promotes vegetation coverage, while the
change in annual precipitation was negatively correlated with the vegetation coverage in the
rest of the area.
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Figure 5. The coefficient of partial correlation between vegetation coverage and climate factors, (a) is
the coefficient of partial correlation between vegetation coverage and average annual temperature,
and (b) is the coefficient of partial correlation between vegetation coverage and annual precipitation.

In the alpine region of the Qinghai–Tibet Plateau, vegetation coverage was positively
correlated with annual mean air temperature and negatively correlated with annual pre-
cipitation in the alpine shrub and meadow zone (VIIIAi) and in the alpine desert zone
(VIIICi). The annual precipitation and the average annual temperature, respectively, had
a negative and positive correlation with the vegetation coverage. In the temperate desert
region, the average annual temperature and annual precipitation had significant differences
in the driving degree of vegetation coverage changes, which showed that the correlation
degree between vegetation coverage and the annual air temperature was greater than that
of annual precipitation in the temperate shrub/semi-shrub desert sub-region (VIIBib) and
alpine desert region (VIIICi).

The degree of correlation is greater than the annual precipitation. The average annual
temperature had a stronger correlation with the vegetation coverage compared to the
annual precipitation.

The changes in vegetation coverage, temperature, and precipitation with time are
shown in Figure 6. In general, global warming caused by the increase of annual average
temperature had a positive effect on the alpine vegetation change on the Qinghai–Tibet
Plateau but a negative effect on the vegetation change in the temperate desert regions. The
increase in annual precipitation had a significant negative effect on alpine vegetation and
temperate desert vegetation on the Tibetan Plateau, presumably due to the hysteresis, with
a certain hysteresis effect. The annual vegetation coverage changes in the alpine shrub and
meadow zone (VIIIAi) and alpine desert zone (VIIICi) were more sensitive to the average
annual temperature than to the annual precipitation, due to the location of the alpine
region. Vegetation coverage had a significant positive correlation with the average annual
temperature and a weakly negative correlation with the annual precipitation. In addition,
hysteresis was one of the driving factors influencing the annual precipitation (Figure 6a–d).
Although both belong to the temperate desert region, the temperate shrub/semi-fruticous
desert zone (VIIBib) and the temperate semi-shrub/fruticous desert zone (VIIBi) showed
that the vegetation coverage was affected by the average annual temperature due to
different water and heat conditions. There were differences in the driving degree and
driving direction of annual precipitation. In temperate shrub and semi-fruticous desert
zone (VIIBib), the average annual temperature had a positive effect on vegetation coverage,
while the annual precipitation had a negative driving effect. Furthermore, the impact of
annual precipitation before 2010 was more obvious. The combined effect of annual average
temperature and annual precipitation was responsible for the improvement of vegetation
coverage after 2010. In the temperate semi-shrub and fruticous desert zone (VIIBi), the
average annual temperature and annual precipitation, with similar growth curves, both
showed a negative effect on vegetation coverage (Figure 6e–h).

72



Int. J. Environ. Res. Public Health 2022, 20, 8836

Figure 6. The change curves of vegetation coverage, average annual temperature, and annual precipi-
tation in VIIIAi (a,b), VIIICi (c,d), VIIBib (e,f), VIIBi (g,h). The change curves of vegetation coverage,
average annual temperature, and annual precipitation are, respectively, blue, red, and black.

4. Discussion

Biological and environmental factors were two main causes for the change of NDVI,
and the latter had a stronger influence [47]. Therefore, it is reasonable for the ESTARFM
model to assume that the change characteristics in a small range are similar [28]. The
adjustment of weighting and conversion coefficient can improve the results to a certain
extent and retain more spatial details. The high spatiotemporal-resolution image that
fused in this study, based on the ESTARFM, had preeminent spatial details and a strong
correlation with the original MODIS data (R2 ≥ 0.95, p < 0.01), which facilitated the study of
the characteristics of vegetation changes on the Qinghai–Tibet Plateau. This result demon-
strated the feasibility of the ESTARFM model to study the vegetation change characteristics
of the Tibetan Plateau, and further proved the scientific nature of the ESTARFM model to
integrate medium- and high-resolution images.
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From 1990 to 2015, the vegetation coverage of different slopes and slope directions on
the Qinghai–Tibet Plateau showed a trend of degradation. When the slope was more than
25◦, the vegetation coverage had the weakest degradation trend (A = −0.08%, Hurst = 0.64),
and the slope with the strongest degradation trend was between 0◦and 3◦ (A = −0.58%,
Hurst = 0.67). According to the analysis, the policy implemented by the State Council in
2000, that all the farmland with a slope of >25◦should be returned to forests and grasslands
in the Qinghai–Tibet Plateau area, was responsible for the improved vegetation coverage.
The areas with a slope between 0◦and 3◦ were mainly intermountain basins and low
mountains, where the degradation of grassland was significant and widespread, and the
ecological environment was poor. The data suggest that restoration measures, such as
returning farmland, further protection, and restoration need to be carried out in order to
achieve significant results. The vegetation cover and its degradation degree on the shady
slope was slightly higher than that of the sunny slope (Table 2), which further proves that
the vegetation cover change on a shady slope was more sensitive than that of the sunny
slope [46].

The total change percentage for vegetation coverage was −0.41% from 1990 to 2015
and 0.02% from 2000 to 2015. The results showed that the conversion of cropland to forest
and grassland in China since 2000 improved the vegetation coverage in this region to a
certain extent, which further proved that the vegetation coverage in the Tibetan Plateau
had decreased [48].

From 1990 to 2015, the vegetation coverage on the Tibetan Plateau increased in the
east while decreasing in the west with the larger land area (Figure 4c). In 2010, the
vegetation coverage of the Qinghai–Tibet Plateau changed significantly as well as the
average annual temperature and the annual precipitation (Figure 6). Previous studies and
analyses illustrated that the spatiotemporal distribution of major climatic factors is one
of the main reasons for their complexity [49,50]. The analysis of this study showed that
the distribution, trend, and direction of vegetation coverage were affected differently by
temperature and precipitation due to regional differences in different zones. The northeast
and northwest of the Qinghai–Tibet Plateau were mainly deserts, where vegetation coverage
had a strong and positive correlation with temperature but a negative correlation with
precipitation. The data indicated that vegetation coverage was sensitive to changes in
water and heat conditions. In this study, it was found that the precipitation change in the
northeast was the main reason for vegetation degradation (Figure 6), which was consistent
with previous research results [5,51]. In addition, a stronger positive correlation between
temperature and vegetation coverage in the alpine desert area of the Qinghai–Tibet Plateau
was observed, and the change of hysteresis in vegetation coverage caused by precipitation
is more significant compared to temperature. On the southeastern Qinghai–Tibet Plateau,
temperature and precipitation had similar change trends, and they both negatively affected
vegetation coverage.

The area was mainly located in temperate grassland and subtropical broad-leaved forest,
with good water and heat conditions. Therefore, in terms of climate impact, it was believed
that the effects of temperature and climate on vegetation growth in the area had reached
equilibrium or saturation. If significant climate change occurs, the growth of vegetation will
be inhibited. Combining our results with those of previous studies [5], it was concluded
that the uncertainty of other factors was an important reason for the de-concentration of
partial correlation between vegetation coverage and temperature and precipitation in the
northwest part of the Qinghai–Tibet Plateau (Figure 5). Therefore, further studies are needed
to determine the driving factors of vegetation change in this area.
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The ESTARFM model required two pairs of input data, and the accuracy of the input
data was high; due to the high altitude of the Qinghai–Tibet Plateau, the cloud cover
was more serious, which affected the accuracy of data fusion. The spatial resolution of
the data fusion in this study was 500 m. Therefore, follow-up research can calculate the
vegetation coverage before fusion and then remove and process outliers. The influencing
factors of vegetation change are complex, and future research should consider this more
comprehensively and use higher spatial resolution data to study the vegetation conditions
of the Qinghai–Tibet Plateau.

5. Conclusions

The fused NDVI results based on the ESTARFM model were used to study vegetation
changes on the Tibetan Plateau with complex terrain. From 1990 to 2015, the overall
vegetation coverage of the Qinghai–Tibet Plateau was degraded by 0.41%. However, under
the policy of returning farmland to forest and grassland, the overall degradation trend
degree and the degradation trend degree of slope ≥ 25◦ were weakened. In a local scale,
the area of vegetation reduced in the west was greater than that of vegetation increased in
the east. The regional variances in different zones led to various influences on temperature
and precipitation, in terms of distribution, change degree, and change in the direction of
vegetation coverage. The main causes of the significant changes in 2010 were attributed
to the spatial distribution of climate factors such as temperature and precipitation. This
study evaluated the vegetation coverage of the Qinghai–Tibet Plateau and revealed its key
characteristics for terrain and some climatic factors. The knowledge generated from this
study provides an important scientific basis for local government decision-making and
economic development.

The data used in this study has a long time interval, and some details may be neglected.
Two main climatic factors, average annual temperature and annual precipitation, were
selected for this study. Given the complexity of the geographic system and human activities,
other types of climatic factors should be considered as well. Thus, the specific response
mechanism needs to be further studied.
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Abstract: Sichuan Province is an important ecological barrier in the upper reaches of the Yangtze
River. Therefore, it is critical to investigate the temporal and spatial changes, as well as the driving
factors, of ecosystem service values (ESVs) in Sichuan Province. This paper used land use data
from 2000, 2005, 2010, 2015, and 2020 to quantify the spatiotemporal changes in the ESVs in Sichuan
Province. Correlation coefficients and bivariate spatial autocorrelation methods were used to analyze
the trade-offs and synergies of ESVs in the city (autonomous prefecture) and grid scales. At the same
time, we used a Geographical Detector model (GDM) to explore the synergies between nine factors
and ESVs. The results revealed that: (1) In Sichuan Province, the ESVs increased by 0.77% from
729.26 × 109 CNY in 2000 to 741.69 × 109 CNY in 2020 (unit: CNY = Chinese Yuan). Furthermore,
ecosystem services had a dynamic degree of 0.13%. Among them, the ESVs of forestland were the
highest, accounting for about 60.59% of the total value. Among the individual ecosystem services,
only food production, environmental purification, and soil conservation decreased in value, while the
values of other ecosystem services increased. (2) The ESVs increased with elevation, showing a spatial
distribution pattern of first rising and then decreasing. The high-value areas of ESVs per unit area
were primarily distributed in the forestland of the transition area between the basin and plateau; The
low-value areas were distributed in the northwest, or the urban areas with frequent human activities
in the Sichuan Basin. (3) The tradeoffs and synergies between multi-scale ecosystems showed that
ecosystem services were synergies-dominated. As the scale of research increased, the tradeoffs
between ecosystems gradually transformed into synergies. (4) The main driving factors for the
spatial differentiation of ESVs in Sichuan Province were average annual precipitation, average annual
temperature, and gross domestic product (GDP); the interaction between normalized difference
vegetation index (NDVI) and GDP had the strongest driving effect on ESVs, generally up to 30%. As
a result, the distribution of ESVs in Sichuan Province was influenced by both the natural environment
and the social economy. The present study not only identified the temporal and spatial variation
characteristics and driving factors of ESVs in Sichuan Province, but also provided a reference for
the establishment of land use planning and ecological environmental protection mechanisms in
this region.

Keywords: ecological service values; spatial-temporal variation; tradeoffs and synergies; multi-scale;
driving forces

1. Introduction

Ecosystem services refer to the products and benefits which humans obtain from
ecosystems. The provision of such services can occur directly or indirectly, depending on
the structure, processes, and functions of ecosystems [1,2]; ecosystem services are essential
for maintaining life on Earth and the ecosystem integrity [3,4]. The Millennium Ecosystem
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Assessment (MEA) promulgated by the United Nations in 2005 divided ecosystem services
into four categories: provisioning services, regulating services, supporting services and
cultural services, and quantifying the importance of ecosystems to human well-being is one
of its main objectives [5]. Ecosystem service values (ESVs) are a monetary quantification
of ecosystem services. In general, scientific evaluation of ESVs is conducive to improve
people’s awareness of biodiversity conservation, optimize land use structure, and provide
a reference for regional ecological security management and sustainable development [6,7].

There are generally two ways to quantify the ESVs [8]: one is based on the unit price of
ecological products, using the shadow engineering method, market price method, carbon
tax method, and other methods to calculate the ESVs [9–12]. This method has high data
requirements, complex calculations, and thus a unified and versatile evaluation standard
is difficult to achieve. The other is in concert with the economic value of the unit area of
the ecosystem, multiplying the value coefficient of the corresponding land use type area to
obtain the ESVs [13], this method was proposed by Costanza in 1997, and applied for the
assessment of ecosystem services all over the world [3]. However, the method is susceptible
to subjective factors and insensitive to the temporal and spatial changes in the properties
and quality of ecosystems [14,15]. To realize the dynamic change of ecosystem service
values, a dynamic equivalent factor combined with remote sensing was proposed [8]. At
present, the ecosystem adjustment coefficient is generally determined by incorporating
vegetation coverage [16,17], net primary productivity [18–21], and normalized vegetation
index [22,23], and the calculated ESVs have qualified spatial-temporal resolution and high
degree of credibility.

There are various degrees of trade-offs and synergies among ecosystem services due
to their complex and dynamic interactions [24]. The enhancement, in term of provision
level, of one ecosystem service at the expense of the provision of other ecosystem services
is referred to as a trade-off, whereas synergy is the simultaneous increase or decrease of
two ecosystem services [25]. With the rapid growth of the global economic population and
the growing shortage of resources, the study on ecosystem service trade-offs and synergies
not only is of great significance to global environmental changes and improvement of the
regional ecological environment but also provides a theoretical basis for the rational devel-
opment and utilization of resources [26,27]. Therefore, exploring the complex interactions
behind ecosystem services has become a popular topic among the scientific communities in
the past few years [28]. To date, tradeoffs and synergies among ecosystem services have
been analyzed at a global scale [29,30], national scale [31], watershed scale [32,33], and
landscape scale [34,35]. However, ecosystem service trade-offs and synergies are dependent
on spatiotemporal scales, and the synergistic relationship of ecosystem service tradeoffs
at the regional scale is not able to represent the ecosystem service relationship on a small
scale [36,37]. The tradeoffs and synergies of ecosystem services vary over time and space.
Moreno-Llorca et al. analyzed the relationship between four ecological services in the
Sierra Nevada Mountains of Spain from three nested spatial scales of biosphere reserves,
watersheds, and grid cell levels [38]. Yang et al. investigated the trade-offs and synergies
among ecosystem services in the Yellow River Basin and its eight subbasins. Their find-
ings revealed definite secondary basin differences and regional regularities, implying that
tradeoffs and synergies were scale-dependent [39].

Most of the aforementioned studies had carried out detailed research on the evaluation
of ESVs and their temporal and spatial changes. Although temporal and spatial changes in
ESVs are important, potential factors that affect changes in ESVs still need to be considered.
Understanding the ESVs and their driving forces helps to achieve the goal of sustainable
development of various ecosystems and the harmonious coexistence of human society
and natural ecosystems [40]. At present, some scholars have discussed the relationship
between land use change and ecosystem services [1,41,42], and also analyzed the impact of
ecological restoration policies on changes in ecosystem services [43–45]. However, previous
studies have shown that changes in ESVs are the result of a combination of multiple driving
factors. Therefore, a comprehensive analysis of the impact of natural factors [46–49], socio-
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economic factors [49–51], and political factors [44,52] on the ESVs is helpful to understand
the ecological environment protection and formation mechanism.

Sichuan Province is located on the eastern edge of the Qinghai-Tibet Plateau. The
region has large undulating terrain, complex geological structure, frequent natural dis-
asters, and sensitive and fragile ecosystems. Affected by human factors, the ecological
environment has been seriously degraded. In addition, it has been successively included
in the “Returning Farmland to Forest Project”, “Returning Grazing to Grassland”, the
Qinghai-Tibet Plateau Region (Sichuan Province) Ecological Construction and Environmen-
tal Protection Planning, and other ecological projects and planning to protect and construct
the ecological environment. Therefore, it is very important to fully understand the tempo-
ral and spatial variation characteristics of ESVs in Sichuan Province and their influencing
factors for regional ecological environment protection and sustainable development.

Previous studies have analyzed the relationship between land use change and ESVs
on the one hand [53–55], and the relationship between regional ESVs and driving factors on
the other hand [56,57]. Therefore, the value coefficient and evaluation model were modified
according to the actual situation in the study area. Based on the land use data in 2000, 2005,
2010, 2015, and 2020, the temporal and spatial variation characteristics and influencing
factors of ESVs were analyzed. The main objectives of this study were: (1) to quantify ESVs
and reveal the spatial distribution characteristics of ESVs; (2) to identify trade-offs and
synergies between the values of individual ecosystem services through correlation analysis;
(3) to use bivariate spatial autocorrelation analysis at different scales to reveal the spatial
heterogeneity of trade-offs and synergies among the six groups of ecosystem services;
(4) to quantify the degree of impact of driving factors on ecosystem service value.

Study Area

Our study area is located at the intersection of the Qinghai-Tibet Plateau and the
Middle-Lower Yangtze plain. Sichuan Province (26◦03′~34◦19′ N, 97◦21′~108◦12′ E) covers
an area of484,000 km2. The landform of Sichuan Province varies greatly from east to west,
the terrain is complex and diverse, and the terrain is high in the west and low in the east
(Figure 1). The western part is plateau and mountainous, and the altitude is mostly above
3 km. The eastern part is a basin and a hill, and the altitude is mostly between 0.5 and 2 km.
Sichuan Province has three major climates: The subtropical humid and semi-humid climate
in the Sichuan Basin is, respectively, divided into four distinct seasons, with the same
period of rain and heat, the average annual temperature is 16~18 ◦C, with 1000–1200 mm of
precipitation. The subtropical semi-humid climate in the mountains of southwest Sichuan
is not clearly distinguished between the four seasons, the annual average temperature is
12~20 ◦C, with 900–1200 mm of precipitation. The alpine plateau in northwest Sichuan has
an alpine climate with a great difference in altitude and significant temperature changes.
The average annual temperature is 4~12 ◦C, with 500–900 mm of precipitation.
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Figure 1. Location of Sichuan Province.

2. Materials and Methods

2.1. Factor Selection and Setting

We referred to the research of Xie et al. on the equivalent scale of ecological services per
unit area of terrestrial ecosystems in China [58] and combine the natural and socioeconomic
conditions of the study area to classify ecosystem services into four categories: provisioning,
regulating, supporting and cultural services, and further subdivided into 9 services (Table 1).
According to previous studies, it was determined that the farmland equivalent factor of
Sichuan Province is 1.35 times that of the national farmland [59]. The average value of the
coniferous forest and shrub forest was selected for forestland. The equivalent factors of
grassland and wetland were set according to the research results of Zheng [60]. The setting
of the equivalent factor of bare land and construction land is based on the research results
of Li [18].

Table 1. Ecological service value per unit area.

Ecosystem Services Farmland Forestland Grassland Water Bare Land
Construction

Land
Wetland

Provisioning services

Food production 1.35 0.205 0.1 0.1 0.01 0.01 0.51
Raw material production 0.135 0.475 0.14 0.01 0 0 0.5

81



Int. J. Environ. Res. Public Health 2022, 20, 8595

Table 1. Cont.

Ecosystem Services Farmland Forestland Grassland Water Bare Land
Construction

Land
Wetland

Regulating services

Gas regulation 0.675 1.555 0.51 0 0 0 1.9
Climate regulation 1.2015 4.65 1.34 0.46 0 0 3.6

Hydrological adjusting 0.81 3.345 0.98 20.38 0.03 −7.51 24.23
Environmental purification 2.214 1.385 0.44 18.18 0.01 −2.46 3.6

Supporting services

Soil conservation 1.971 1.89 0.62 0.01 0.02 0.02 2.31
Biodiversity 0.9585 1.725 0.56 2.49 0.34 0.34 7.87

Cultural services

Aesthetic landscape 0.0135 0.755 0.25 4.34 0.01 0.01 4.73

2.2. Data Sources and Processing

The land use data of five periods (2000, 2005, 2010, 2015, and 2020) were obtained
from the 30 m resolution annual China land cover dataset (CLCD) [61], Then it was divided
into 7 categories: farmland, forestland, grassland, water, bare land, construction land, and
wetland. Based on the MODIS dataset in the Google Earth Engine platform. The Modified
Normalized Difference Water Index (MNDWI) and the Remote Sensing Ecological Index
(RSEI) were calculated in the study area. Regardless of price fluctuations, according to
the website of the State Bureau of Grain and Material Reserves (http://www.lswz.gov.cn
(accessed on 12 January 2022)) and the Sichuan Statistical Yearbook, the average price of
grain in 2010 was 1.87 (unit: CNY/kg). The study area was divided into 1 km grids, and the
land use data of each grid and 21 prefecture-level administrative districts were extracted
based on the land use data of five periods.

Considering the availability of data and the fact that changes in ESVs were influenced
by a variety of factors such as the natural environment and the social economy, this pa-
per identified the following nine driving factors: Elevation and slope were derived from
Geospatial Data Cloud (http://www.gscloud.cn (accessed on 20 January 2022)). The annual
average temperature, annual average precipitation, and soil organic carbon content were
obtained from the National Tibetan Plateau Data Center (http://data.tpdc.an.cn (accessed
on 15 February 2022)). Population density, gross domestic product (GDP), normalized
difference vegetation index (NDVI), and river data were from the Resource and Environ-
mental Science and Data Center (https://www.resdc.cn/ (accessed on 10 March 2022)).
Finally, we analyzed the spatial differentiation characteristics between them and ESVs.

2.3. Ecosystem Service Values
2.3.1. Ecosystem Service Assessment Model

Ecological service values are dynamic value that changes over time and varies with
the type, size, and quality of regional ecosystems. Considering the impact of temporal and
spatial changes in ecological quality on ESVs, RSEI and MNDWI were chosen to correct the
ESVs of each pixel at each moment. The formula is as follows:

ESV(Si, j, th) =
q

∑
f=1

VCi f × ASi × R(Si, j, th) (1)

In Formula (1), when the i-th pixel is the j-th land use type, ESV(Si, j, th) represents
the ESV at the research moment th. The value coefficient of the f -th ecosystem service
function of the j-th land use type is denoted by VCi f (CNY/ha). ASi represents the pixel
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area (ha). R(Si, j, th) is the ecological quality correction coefficient at the research moment
th when the i-th pixel is of the j-th land use type.

VCi f = Ei f × Ccrop (2)

where Ei f is the equivalent coefficient of the f -th ecosystem service function of the j-th land
use type, representing the weight coefficient of each ecosystem service value. The standard
equivalence coefficient Ccrop (CNY/ha) is based on the ecological service equivalence table
per unit area of China’s ecosystems, combined with the social and economic development,
the economic value of the natural ecosystem is 1/7 of the food production service value
provided by the existing unit area of cultivated land without human input. The economic
value of an equivalent factor of ecological service value in Sichuan Province is calculated to
be 1403.56 CNY/ha.

R(Si, j, th) =
e(Si, j, th)

∑n
i=1 e(Si, j, th)/n

(3)

where e(Si, j, th) is the ecological condition index of the j-th land use type of the i-th pixel
when the study year is th. ∑n

i=1 e(Si, j, th)/n is the average value of the ecological condition
index of all pixels of the same land type at the same time.

RSEI is to reflect the impact of changes in external factors such as human activities,
climate change, and environmental state changes on the environment. In addition to quan-
titatively evaluating the ecological quality of the area, RSEI can also visualize the ecological
environment of the study area, and support the analysis, prediction, and assessment of
temporal and spatial changes in the ecological environment quality of the study area [62].
MNDWI can quickly extract water body information [63]. Li et al. corrected the equivalent
factor pixel by pixel through RSEI and MNDWI, which can effectively display the temporal
and spatial changes of ESVs in each pixel [64]. In order to better distinguish the ecological
status between pixels, this paper introduced RSEI and MNDWI to construct e(Si, j, th).

e(Si, j, th) = RSEI + MNDWI (4)

The formula for calculating MNDWI is as follows (5):

MNDWI =
ρgreen − ρmir

ρgreen + ρmir
(5)

RESI is defined as a function of greenness, wetness, heat, and dryness components,
where greenness uses the normalized vegetation index (NDVI) to describe the growth and
change of regional vegetation; The land surface temperature (LST) obtained by thermal
infrared remote sensing inversion represents heat; The land surface moisture (LSM) is
represented by the wetness component obtained by the tasseled-cap transformation of
the multispectral image; Normalized differential build-up and bare soil index (NDBSI)
composed of the index-based built-up index (IBI) and bare soil index (SI) was selected to
indicate dryness.

RSEI = f (Greeness, Wetness, Heat, Dryness) (6)

Then, the four indicators such as NDVI, LSM, LST, and NDBSI are normalized to be
between 0 and 1; Secondly, perform principal component analysis on the multi-band images
synthesized by the four indicators, using the first principal component (PC1) as the starting
remote sensing ecological index RSEI0; Finally, the RSEI obtained by normalizing RSEI0
ranges from 0 to 1. The larger the RSEI value, the better the ecological condition [65,66].
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2.3.2. Dynamic Degree of Ecological Service Values

The dynamic changes in regional ecological service values were analyzed using the
dynamic degree of ESVs, following the formula below:

Kesv =
ESVb − ESVa

ESVa
× 1

T
× 100 (7)

where Kesv reflects the intensity of ecosystem service values changes with time, T represents
the period, ESVa is the initial ecological service value in a period, and ESVb is the value of
terminated ecological service within a period.

2.4. Methods of Analysis
2.4.1. Correlation Analysis

Correlation analyses were conducted to determine whether there were synergies or
trade-offs between these ecosystem services, according to Formula (8). The higher the
value, the stronger the correlation between the two.

Vxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(y − y)2

(8)

where Vxy represents the correlation coefficient between the two ecosystems. n represent
the total number of ecosystem services. The value of ecosystem services is represented by
xi and yi, with x and y being the averages of the corresponding ecosystem service value.

2.4.2. Bivariate Spatial Autocorrelation Analysis

Spatial autocorrelation includes global autocorrelation and local autocorrelation and
is mainly used to describe whether the spatial distribution between variables is clustered.
In order to describe the correlation between multiple variables, Anselin et al. proposed a
bivariate spatial autocorrelation based on the Moran index to reveal the correlation charac-
teristics of the spatial distribution of different elements [67]. This method was introduced
into ecosystem services, and GeoDa software was used to calculate the Moran index to
evaluate the correlation between ecosystem services, and the local indicators of spatial asso-
ciation (LISA) were used to measure whether the ecosystem services have agglomeration.

2.4.3. Geographic Detector Model

The geographic detector model includes four types of detectors that are used as a new
statistical method to investigate the spatial and temporal differentiation characteristics
of things and their driving factors. Its central idea is based on the assumption that if an
independent variable has a significant influence on a dependent variable, the independent
variable’s spatial distribution and the dependent variable’s spatial distribution should be
consistent [68]. The dominant factors and their interactions in the spatial differentiation of
ESVs in Sichuan Province were analyzed using factor detection and interaction detection in
this paper. The following is the formula:

q = 1 − 1
Nσ2 ∑L

h=1 Nhσ2
h (9)

In the Formula (9), q represents the explanatory power of the influencing factors on
the spatial differentiation characteristics of ecosystem service value, and its value range is
[0, 1]. The greater the value, the greater the interpretive ability of the independent variable
X to the dependent variable Y. On the contrary, it is smaller; L is the number of categories
of variable Y or driving factor X; N and σ2 represent the total number of samples in the
study area and the discrete variance of the entire area, respectively; Nh and σ2

h represent
the number of samples and the dispersion variance in the h area.
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3. Results

3.1. Spatial-Temporal Changes in Landuse

The main land use types in the study area were forest land, followed by grassland and
cropland (Figure 2). From 2000 to 2020, among all land use types, forest land increased sig-
nificantly by 2.06% (Table 2). In the past 20 years, due to urban development, the situation
of cropland occupation was more significant, the cropland area had decreased by 8377 km2,
but the area of impervious land had increased by 1926 km2. With the development of
animal husbandry, overgrazing led to a significant reduction in the grassland area in the
study area, by 5763 km2.

 
Figure 2. Spatial distribution of land use from 2000 to 2020.

Table 2. Land use area in Sichuan Province from 2000 to 2020.

Types
Areas/(km2)

2000–2020
2000 2005 2010 2015 2020

Cropland 120,296 118,517 117,373 116,143 111,919 −1.73%
Forest 190,412 192,560 194,622 195,452 200,371 2.06%

Grassland 163,397 162,129 160,408 159,285 157,634 −1.19%
Water 4033 4674 4957 4875 4234 0.04%
Barren 3280 3424 3181 3974 4677 0.29%

Impervious 1907 2313 2993 3833 4453 0.53%
Wetland 418 126 209 181 455 0.01%

3.2. Spatial and Temporal Changes in Ecological Services
3.2.1. Characteristics of Temporal Development

According to Formulas (1)–(6), the ESVs of seven land use types in Sichuan Province
from 2000 to 2020 were calculated. The calculation results of grid data in the study area
were counted and shown in Tables 3 and 4. The ESVs and dynamic degree of all cities
(autonomous prefectures) were calculated by Formulas (1)–(7), and the results were shown
in Figure 3.
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Table 3. Changes in the value of ecological services in Sichuan Province from 2000 to 2020.

Ecosystem Services
ESV (109 CNY)

The Average Annual
Increasing Rate

Kesv

2000 2005 2010 2015 2020 2000–2020 2000–2020

Food production 30.64 30.34 30.17 29.94 29.27 −0.89% −0.76%
Raw material production 18.21 18.28 18.36 18.37 18.61 0.43% 0.36%

Gas regulation 64.73 64.87 65.11 65.08 65.71 0.30% 0.25%
Climate regulation 175.69 176.44 177.33 177.44 179.72 0.46% 0.38%

Hydrological adjusting 136.41 137.45 138.43 137.31 137.36 0.14% 0.12%
Environmental purification 94.26 95.39 95.86 95.05 92.88 −0.29% −0.24%

Soil conservation 98.12 97.99 98.1 97.88 97.97 −0.03% −0.03%
Biodiversity 77.21 77.32 77.74 77.7 78.34 0.29% 0.24%

Aesthetic landscape 28.86 29.24 29.62 29.6 29.85 0.68% 0.56%
Total value 724.13 727.32 730.72 728.38 729.71 0.15% 0.13%

Table 4. Ecological service value and proportion of land use in Sichuan Province from 2000 to 2020.

Types
ESV/(109 CNY) Proportion/%

2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

Cropland 157.42 155.09 153.6 151.98 146.45 21.59 21.14 20.79 20.57 19.75
Forest 427.05 431.86 436.49 438.35 449.39 58.56 58.87 59.08 59.34 60.59

Grassland 113.23 112.35 111.15 110.37 109.23 15.53 15.32 15.05 14.94 14.73
Water 25.92 30.05 31.88 31.34 27.21 3.55 4.1 4.32 4.24 3.67
Barren 0.19 0.2 0.19 0.23 0.28 0.03 0.03 0.03 0.03 0.04

Impervious −2.57 −3.11 −4.03 −5.16 −5.99 0.35 0.42 0.55 0.7 0.81
Wetland 2.89 0.87 1.44 1.25 3.15 0.4 0.12 0.2 0.17 0.42

Total 729.26 733.54 738.77 738.7 741.69 100 100 100 100 100

Figure 3. The value and dynamics of ecological waiters in various cities (autonomous regions) in
Sichuan Province from 2000 to 2020.
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According to Table 4, total ESVs increased from 724.13 × 109 CNY in 2000 to
729.71 × 109 CNY in 2020, with an average annual growth rate of 0.15%, a dynamic degree
of 0.13%, and an increased rate of 0.77%. Among them, the most prominent ecological
service was the regulating service, accounting for 65.19% of the total ESVs, followed by the
supporting service, the provisioning service, and the cultural service.

In the provisioning services, the ESVs of food production and raw material production
were low, showing four stages: gradual decline, rapid decline, slow rise, and rapid rise. In
the regulating services, the average annual growth rate (0.46%) and the growth rate (2.3%)
of climate regulation were the largest, with an increase of nearly 4.0 × 109 CNY in 20 years,
and the minimum growth rate from 2010 to 2015 was only 0.06%. The ESVs of hydrological
adjusting and environmental purification showed an upward trend, with a decline rate of
0.13 and 0.14% from 2010 to 2015, so the ESVs reached their peak in 2010. In the supporting
services, soil conservation and biodiversity accounted for a similar proportion, but the two
trends were opposite, with increases of −0.16 and 1.46%. In terms of cultural services, the
ESVs of aesthetic landscapes were relatively low, showing a steady upward trend with an
increase of 3.42%. In summary, the four ecosystem services in the study area are mainly
regulating services and supporting services. In contrast, provisioning services and cultural
services accounted for a smaller proportion but were more variable during the study period.
The ESVs of climate regulation, hydrological adjusting, and soil conservation were higher
in terms of individual ecological services.

Over the past 20 years, only ESVs in food production, environmental purification, and
soil conservation have declined, while other services have increased.

The results in Table 4 showed that among the seven land types in the study area, forest
land had the highest ESVs, followed by farmland, grassland, water, wetland, and bare land,
and the smallest was construction land. From 2000 to 2020, except for farmland, grassland,
and construction land, the ESVs of all other land types increased, but the degree of ESVs
change was different for each type of land. Forestland, farmland, and grassland were the
main contributors to ESVs in Sichuan Province, and the contribution rate of forest land
remains above 58%. The range of ESVs changes in water and wetland was more obvious.
The ESVs of water reduced by 14.65% between 2010 and 2020. The ESVs provided by
water reached a high of 31.83 × 109 CNY in 2010. Wetland ESVs increased, and the growth
rate reached the maximum (1.51%) from 2015 to 2020 and increased to 0.26 × 109 CNY.
The proportion of grassland ESVs has decreased by 0.8% over the last 20 years. Bare land
accounted for a small proportion of 0.03%, and ESVs fluctuations were small.

Figure 3 reflected the changes in ESVs in cities (autonomous prefectures). Among
them, three autonomous prefectures (Ganzi Tibetan Autonomous Prefecture, Liangshan
Yi Autonomous Prefecture, and Aba Tibetan Autonomous Prefecture) had relatively high
ESVs. In the past 20 years, the ESVs of each region have increased or decreased to varying
degrees. Overall, the most dynamic cities were Panzhihua, Suining, Guangyuan, and
Luzhou, while Meishan was the least dynamic (−0.04%). From 2000 to 2005, the ESVs of
Ziyang, Liangshan, Mianyang, Chengdu, Aba, Ya’an, and Panzhihua decreased by 0.02,
0.06, 0.22, 0.28, 0.38, 0.46 and 3.54%, other regions had increased, and the largest growth
rate was Luzhou (3.41%). From 2005 to 2010, the ESVs of 14 cities (autonomous prefectures)
in Sichuan Province declined, among which Chengdu had the largest decline (1.82%), and
among the remaining areas, the ESVs of the Ganzi had the largest increase of 1.69%; From
2010 to 2015, except for Neijiang, Zigong, Liangshan, Panzhihua and Ganzi, the overall
ecology has improved. From 2015 to 2020, the ESVs of Aba and Ganzi increased by 1.47 and
1.14%, respectively, and the ESVs of the rest of the regions showed a downward trend.
Overall, the cities (autonomous prefectures) with the largest ESVs fluctuations during the
study period were Garze, Luzhou, Panzhihua, and Guangyuan.

3.2.2. Spatial Distribution Characteristics

According to Formulas (1)–(6), the ESVs of the 1-km grid in Sichuan Province from
2000 to 2020 were calculated. GIS software was used for spatial mapping, and the ESVs
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were divided into 8 levels by the natural breakpoint method. Finally, the ESVs of each city
(autonomous prefecture) in Sichuan Province during the study period were obtained. The
spatial distribution of ESVs was shown in Figure 4.

Figure 4. Spatial distribution of ESVs in Sichuan Province from 2000 to 2020.

In 2000, the high-value areas of the unit area ESVs were mainly distributed in the
transition zone between the Sichuan Basin and the Western Sichuan Plateau, and the
Zoige Plateau in the northern part of Aba Tibetan and Qiang Autonomous Prefecture. The
low-value areas were mainly distributed in the northwest area and the central urban area
of Chengdu. The unit area ESVs of the eastern cities were generally high, ranging from
12,500–18,000 CNY/ha. In 2005, the unit area ESVs of Aba Tibetan and Qiang Autonomous
Prefecture increased, but there was no significant change in other areas. The ESVs per unit
area increased in all cities in 2010, particularly in eastern Sichuan Province. The ESVs per
unit area decreased between 2015 and 2020. Compared with the initial stage of the study,
the unit area ESVs in the central region showed a downward trend, from 11,400 CNY/ha
to 12,500 CNY/ha. Among them, the lowest value of Chengdu and its surrounding cities
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exceeded 6250 CNY/ha, and the area was constantly expanding. Overall, most of the
high-value areas were located in forestland, and gradually decreased to both sides with
the change of altitude. The low-value areas were mostly grassland and bare land in the
northwest. Compared with the initial period, the unit area ESVs showed an upward trend,
and the high-value area expanded at the end of the study.

3.3. Tradeoffs and Synergies Analysis
3.3.1. Correlation Analysis of Ecosystem Services

We analyzed the correlation between individual ecosystem services by using Formula (8),
and the results were shown in Table 5.

Table 5. Correlation of ecosystem services in Sichuan Province.
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Food production 1
Raw material production −0.268 1

Gas regulation −0.134 0.990 1
Climate regulation −0.290 0.999 0.986 1

Hydrological adjusting −0.179 0.480 0.461 0.491 1
Environmental

purification 0.283 0.034 0.063 0.046 0.790 1

Soil conservation 0.527 0.678 0.772 0.660 0.271 0.228 1
Biodiversity −0.020 0.862 0.881 0.857 0.744 0.436 0.738 1

Aesthetic landscape −0.357 0.518 0.474 0.535 0.947 0.704 0.169 0.744 1

Note: Correlation is significant at the 0.01 level (2-tailed).

Overall, various ecosystem services were positively correlated at the 0.01 significance
level, accounting for 83%, and synergy was the dominant relationship of ecosystem ser-
vices in Sichuan Province. In the provisioning services, food production was negatively
correlated with raw material production, gas regulation, climate regulation, hydrological
adjusting, biodiversity, and aesthetic landscape, while positively correlated with other
ecosystem services. Among them, the positive correlation between environmental purifi-
cation and raw material production was weak. In the regulation services, except for the
weak correlation among gas regulation, climate regulation, and environmental purification,
other ecosystem services showed a significant positive correlation. In the supporting ser-
vices, there was a weak negative correlation between biodiversity and food production,
and environmental purification and biodiversity were positively correlated with the other
ecological services, of which biodiversity was closely related to various other services. In
terms of cultural services, a positive correlation was found between aesthetic landscapes
and various ecosystem services, except food production.

3.3.2. Analysis of Multi-Scale Tradeoffs and Synergies in Ecosystem Services

To further understand the relationship between ecosystem services in Sichuan Province,
we analyzed the bivariate spatial autocorrelation between six pairs of ecosystem services at
the city (autonomous prefecture) and 5 km grid scales based on GeoDa software. When
Moran’s > 0, it means a positive correlation, which is a synergistic effect; when Moran’s < 0,
it means a negative correlation, which is a tradeoff effect.
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The results in Table 6 showed that the global autocorrelation indices between the six
pairs of ecosystem services on the two scales were positive and passed the 5% significance
level test. The results showed that there are synergistic effects among the four ecosystem
services. In Figures 5 and 6, the characteristics of high-high aggregation and low-low aggre-
gation indicated that the two ecosystem services exhibited synergistic effects, and high-low
aggregation and low-high aggregation represented the trade-off effect between the two.
At the city (autonomous region) scale, there were trade-off effects between provisioning
services and cultural services, regulating services and cultural services, provisioning ser-
vices, and supporting services in Luzhou. However, there was a trade-off effect for a large
number of regions at the grid-scale. Based on the two scales, the correlation between
ecosystem services was concluded as follows: as the research scale became larger, the
scope of synergistic effects gradually expanded, and the trade-off effect was gradually
transformed into a synergistic effect.

Table 6. Global spatial autocorrelation of four ecosystem services in Sichuan Province.

Ecosystem
Services

Scale
Provisioning Services and

Regulating Services
Provisioning Services and

Supporting Services
Provisioning Services and

Cultural Services

Moran’s I
City-scale 0.435 0.482 0.362
Grid-scale 0.377 0.669 0.01

Ecosystem
Services

Scale
Regulating Services and

Supporting Services
Regulating Services and

Cultural Services
Supporting Services and

Cultural Services

Moran’s I
City-scale 0.432 0.348 0.36
Grid-scale 0.709 0.605 0.453

 

Figure 5. LISA cluster map of four ecosystem services in Sichuan Province at the city-scale.

At the city (autonomous prefecture) scale, six pairs of ecosystem service functions
were distributed in the western and central parts of the study area. However, there were
tradeoffs between provisioning and supporting services, provisioning and cultural services,
and regulating and cultural services, respectively, in Luzhou. The specific performance
was as follows: In addition to regulating and supporting services, the ecosystem services of
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Ganzi Tibetan Autonomous Prefecture and Liangshan Yi Autonomous Prefecture showed
low-low clustering. High-high clusters were distributed in different cities but mainly
concentrated in the central part of Sichuan Province. For example, the high-high clusters of
provisioning and regulating services, and provisioning and cultural services were mainly
distributed in Meishan, Neijiang, Ziyang, and Suining (Figure 5A,C); the high-high clusters
of regulating and cultural services, and supporting and culture were mainly distributed in
Meishan, Neijiang, and Ziyang (Figure 5E,F); the high-high clusters of provisioning and
supporting services were distributed in Nejiang, Ziyang and Suining (Figure 5B); while the
high-high clusters of regulating and supporting services were mainly distributed in the
western Ganzi Tibetan Autonomous Prefecture and Liangshan Yi Autonomous Prefecture
in the western part of the study area (Figure 5D).

Figure 6. LISA cluster map of 4vecosystem services in Sichuan Province at grid-scale.
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At the grid-scale, the spatial distribution characteristics of the tradeoffs and synergies
among the six pairs of ecosystem services were significantly different. Synergies were
dominant, and tradeoffs existed in a few grids. The results in Figure 6 showed that the
synergies among ecosystem services were distributed in blocks, while the distribution of
tradeoffs was more scattered. The low-high clusters were mainly distributed around the
high-high clusters, and the high-low clusters were distributed in a ring around the low-low
clusters. Compared with the city (autonomous prefecture) scale, the synergistic effect at the
grid-scale was distributed in the northwest of the study area, or the transition zone between
the Sichuan Basin and the Western Sichuan Plateau. The results were as follows: the
synergies of provisioning and regulating services, provisioning, and supporting services,
and regulating and supporting services were distributed in the northwest of the study
area, the area around the Sichuan Basin, and a small part of Chengdu (Figure 6A,B,D). The
high-high clustering areas of the six pairs of ecosystem services were mainly distributed
in forestland. The tradeoff effects of provisioning and regulating services, provisioning,
and cultural services, and regulating and cultural services were more significant. Among
them, high-low clusters were distributed around low-low clusters, mainly concentrated in
low-altitude areas (Figure 6A,C,F).

3.4. Driving Force Analysis
3.4.1. Single Factor Detection of Ecosystem Service Value

The geographic detector model was implemented based on the GD package in R. To
make the calculation simple and combined with the actual situation of the study area, we
selected nine influencing factors related to the natural environment and social economy
to study their driving force on ESV. Among them, X1, X2, X3, X4, X5, X6, X7, X8, and
X9 represent elevation, slope, annual average precipitation, annual average temperature,
NDVI, and distance from the river, population density, GDP, and soil organic carbon
content, respectively. The geographic detector required the independent variable X to be a
discretized variable, so it is necessary to discretize the driving factor data. The GD package
provides 6 discretization methods, and the optimal method and optimal classification of
the data discretization are determined by algorithms, so as to obtain the most explanatory
q-value. The results of the factor detector detection are shown in Table 7.

Table 7. Detection results of driving factors for spatial differentiation of ESVs in Sichuan Province.

Driving Factors 2000 2005 2010 2015 2020

X1 0.247301 0.261944 0.155072 0.207354 0.216714
X2 0.012226 0.014617 0.024748 0.016525 0.016403
X3 0.157459 0.157646 0.162215 0.20978 0.156716
X4 0.253969 0.2528 0.166463 0.20753 0.219138
X5 0.105141 0.142849 0.061232 0.201623 0.154678
X6 0.004143 0.003967 0.002635 0.002828 0.002635
X7 0.113036 0.130435 0.06769 0.089033 0.093796
X8 0.223148 0.242428 0.188704 0.240205 0.191877
X9 0.106206 0.106207 0.077228 0.088671 0.087548

Among them, factors such as temperature, elevation, and GDP had a relatively large
contribution rate and were the main driving factors; while precipitation, population density,
soil organic carbon, etc. had relatively small contribution rates to the spatial differentiation
of ESVs and were secondary driving factors. From the perspective of the impact of driving
factors on ESVs, temperature changes within a certain range promote the growth of vegeta-
tion, and ESVs increased accordingly. The spatial differentiation of ESVs was influenced by
elevation. Lower elevations were more conducive to agricultural development and urban
expansion, and ecological land was significantly destroyed, whereas higher elevations had
fewer human activities, but the ecological environment for vegetation growth was harsh,
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and ESVs were also relatively low; GDP can reflect the strength of human activities, and
areas with higher GDP value had lower ESVs and vice versa.

There are some differences in the explanatory power of each factor for ESVs across
years, but it is generally consistent. Due to the proposal of the western development
strategy at the end of the 20th century, the industrial scale of Sichuan Province continued
to expand from 2000 to 2010, and the level of environmental pollution was relatively
high, so the explanatory power of most driving factors to ESVs was weakened. After the
“Eleventh Five-Year Plan”, Sichuan Province has stepped up efforts to protect the ecological
environment, and the contradiction between man and nature has been gradually eased.
Therefore, after 2010, the ability of each driving factor to explain ESVs in the study area has
steadily increased.

3.4.2. Interaction Factor Detection of Ecosystem Service Values

The interaction detector is used to test the interaction between the two influencing
factors, that is, whether the two factors will increase or decrease the explanatory power of
the ESVs when they act together. The interaction of nine influencing factors on ESVs was
obtained with the help of the interaction detector module. The interactive detection results
were shown in Figure 7. All driving forces interacted to improve the spatial distribution and
differentiation of ESV, and the effects were not independent. This demonstrated that the
interaction of multiple factors affected ecosystem services in Sichuan Province from 2000
to 2020. The strongest interaction was between NDVI and GDP, which typically reached
30%. The interaction between the slope and the distance from the river was the weakest,
accounting for less than 4% of the total; it can be found that the interaction of elevation, GDP,
and other factors had a greater impact on the distribution of ESVs in Sichuan Province. The
distribution of land use was influenced by elevation. The intensity of human activities was
closely related to the level of GDP value. As a result, the interaction between the natural
environment and the social economy influenced the distribution of ESVs in Sichuan Province.

 

Figure 7. Interaction-driven results of ESVs in Sichuan Province.
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4. Discussion

4.1. Spatial-Temporal Variation of Ecosystem Services

This paper quantified the ESVs in Sichuan Province in 2000, 2005, 2010, 2015, and 2020
based on land use data. The rational planning and utilization of land resources were of
great significance to the ecological environment protection and sustainable development of
Sichuan Province. In this paper, the RSEI and MNDWI indices were introduced to correct
the ESVs of the study area, and the results showed that the total ecosystem service values
in Sichuan Province had improved. The calculation results of ESVs deviated from previous
studies because this paper took into account differences in ESVs between different pixels
of the same land type, but the changing trend was essentially the same [53]. The results
showed that the spatial heterogeneity of ecosystem services is closely related to the spatial
distribution of land use [69–71]. In recent 20 years, the area of forestland and impervious
land in Sichuan province had increased, while the area of cropland had decreased, which
was in line with the trend of increasing forest resources and expanding building area in
China, and was related to the project of “returning farmland to the forest”. Forestland and
grassland cover about 70% of the total area of Sichuan province, leading to the change
of regional ESVs. However, the stable distribution of land use types did not significantly
change the spatial pattern of ecosystem services.

In response to the current situation of the reduction of grassland and cultivated land
and the increase of forest land and construction land in Sichuan Province, the western
plateau region should vigorously implement grassland protection systems such as grazing
prohibition and fallow, the balance between grass and livestock, and grassland ecological
compensation [72]. The eastern region should take advantage of its unique location in the
core of the Chengdu-Chongqing economic circle, and actively integrate into the construction
of the “Belt and Road” and the Yangtze River Economic Belt, focusing on environmental
improvement, and in the process of improvement Repair the environment, protect the
ecology during development, comprehensively improve the ecological environment, and
achieve green development [73].

4.2. Scale Effects of Tradeoffs and Synergies

The tradeoffs and synergies of ecosystem services are spatially heterogeneous and
temporally dynamic and change over time and space. The correlation coefficient and
Moran index can reveal the trade-offs and synergies of ecosystem services on the temporal
and spatial scales. The correlation coefficients of the nine ecosystem services quantified
tradeoffs and synergies over time, with fast feedback on raw material production and
biodiversity services. However, the cycle of environmental purification was long, and there
was a lag in other ecosystem services. The results showed that the correlation coefficient
between gas regulation, climate regulation, and raw material production was close to 1,
which indicated that vegetation in the study area had a regulating effect on gas and climate,
and could also promote the production of raw materials. They had a strong synergistic
effect on mutual promotion. On the contrary, the tradeoff between food production and
other services was weak, indicating a conflict between food production and environmental
protection, reflecting the competition between cultivated land and other land uses [74].

A bivariate spatial autocorrelation method was used at the city (autonomous prefec-
ture) and grid scales to quantify the spatial synergy and tradeoff effects among six pairs of
ecosystem services. The results showed that the Moran’s I of the six pairs of ecosystems on
both scales were all positive, indicating that the relationship between ecosystem services
in Sichuan Province was mainly determined by synergistic effects (Table 6). At the same
time, three conclusions can be drawn from the results of the binary space autocorrelation
analysis: Firstly, the Moran’s I obtained at the grid-scale was generally larger than the
Moran’s I calculated at the city (autonomous region) scale. Secondly, the tradeoff effects
among the six pairs of ecosystems at the grid-scale were distributed around the synergistic
effect. However, there was not necessarily a trade-off effect between ecosystem services at
the city scale, indicating that the tradeoffs and synergies of the same ecosystem services at
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different regions and scales were also different [19]. Finally, the tradeoffs and synergies
among ecosystems at the city scale were mainly distributed in Garze Tibetan Autonomous
Prefecture, Liangshan Yi Autonomous Prefecture, and some eastern regions. On the grid-
scale, tradeoffs and synergies were only distributed in the northwestern part of the study
area, as well as in the transition area between the basin and the western Sichuan Plateau
(Figures 5 and 6).

4.3. Driving Factor Analysis

Exploring the relationship between ESVs and driving factors provides a basis for
ecosystem service management and decision-making. This study quantitatively analyzed
the relationship between ESVs and driving factors in the study area and identified the
interaction between factors. Ecosystem services in Sichuan Province were the result of the
interaction between natural and human factors. However, due to the large proportion of
forest land and grassland in the study area, our research focused on the influence of natural
factors. The results showed that the annual average temperature was the main driving
force, which was consistent with the existing research on the driving force of ecosystem
services [48,75–77]. The second most important driving factor was the elevation. The spatial
heterogeneity of elevation leads to changes in the regional ecological environment, thereby
changing the type of land use, which in turn affected the value of regional ecosystem
services [46,78].

The spatial differentiation of ESVs in the study area was caused by the interaction of
multiple factors. Only analyzing the impact of a single driving factor on ESVs was not able
to reveal the contribution of the synergistic effect of driving factors on ESVs. The results
of this study showed that the contribution of the interaction of GDP and other drivers
to ESVs was generally higher than that of GDP alone to ESVs. Therefore, it is crucial to
understand the impact of the interaction between drivers on ESVs. For example, Pan et al.
found the synergy of human activities, landscape pattern changes, and natural factors led
to the spatial differentiation of ESVs in the study area [79]; Fang et al. explored the impact
of natural and anthropogenic factors on the ecosystem service values of the Yangtze and
Yellow River basins using a geographically weighted regression model and a geographic
detector model, and the results showed that the combined effect of driving factors was
much higher than the individual effect [80].

4.4. Uncertainties and Further Work Outlook

The interaction mechanisms of ecosystem services are complex, and their evaluation
relies on the assessment of similar biological communities, but large ecosystems contain
diverse communities and habitat types. Therefore, it is impossible to accurately quantify
ESVs. In this study, the secondary land use types of forest land in Sichuan Province were
combined, and the equivalent factor was set as the average value of coniferous forest and
shrub forest, and the subcategories of land use types were not evaluated in detail.

Although the equivalence factors were revised according to the actual situation of
the study area, RSEI was sensitive to phenological changes. Therefore, different image
acquisition times will affect the calculation accuracy of RSEI. Considering the high spa-
tial correlation of RSEI, Zhu et al. calculated the remote sensing ecological index based
on a moving window, reducing the impact of long-distance features on specific research
blocks [81]. Furthermore, this study analyzed the impact of driving factors on the ESVs;
however, because the selection of driving factors focused on natural factors, the analysis’
results were biased. Human disturbance factors [82–84], natural factors [47,85], socioeco-
nomic factors [51,57], and policy factors [52] also affect the correlation between ecosystem
services. Therefore, the spatial aggregation distribution of ecosystem service trade-offs and
synergies will be different. Quantifying and modeling tradeoffs and synergies at multiple
scales is an important part of ecosystem services research. Therefore, it is necessary to
model the tradeoffs and synergies between climate change, land use change, human activity
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impacts, policy changes, and ecosystem services in future research, as well as forecast future
spatiotemporal changes in regional ecosystem services.

5. Conclusions

Based on the evaluation model of ecosystem services from 2000 to 2020, nine kinds
of ESVs in cities (autonomous prefectures) and 1 km grids were obtained in Sichuan
Province. The results revealed that the total amount of ecosystem services increased by
5.58 × 109 CNY, indicating that ecosystem services have improved. The spatial heterogene-
ity of ESVs was significant, and the ESVs showed a spatial pattern of first increase and
then decrease with the increase of altitude. However, due to the stability of the ecosys-
tem structure, the ecosystem pattern in Sichuan Province has not changed significantly
in the past 20 years. The results of correlation analysis showed that the synergistic effect
of ecosystem services dominated, and only food production and other services showed
a weaker tradeoff effect. Bivariate spatial autocorrelation analysis showed that the four
main services had different degrees of synergy at different scales, and the tradeoff effect of
ecosystems was more significant at small scales. In addition, the contribution of drivers
to ESVs was quantified using a geographic detector model, and it was found that the
combined effects of drivers were much higher than their individual effects. Therefore, the
relationship between driving factors and ESVs should be fully considered in the construc-
tion of ecological civilization in the future. In particular, when formulating development
policies, relevant departments need to find a balance between development and protection
to achieve coordinated development of ecosystem services at different levels, and to ensure
ecosystem stability while steadily increasing ESVs.
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Abstract: The Qinghai–Tibet Plateau (QTP) is a sensor of global climate change and regional human
activities, and drought monitoring will help to achieve its ecological protection and sustainable
development. In order to effectively control the geospatial scale effect, we divided the study area
into eight geomorphological sub-regions, and calculated the Temperature-Vegetation Drought Index
(TVDI) of each geomorphological sub-region based on MODIS Normalized Difference Vegetation
Index (NDVI) and Land Surface Temperature (LST) data, and synthesized the TVDI of the whole
region. We employed partial and multiple correlation analyses to identify the relationship between
TVDI and temperature and precipitation. The random forest model was further used to study the
driving mechanism of TVDI in each geomorphological division. The results of the study were as
follows: (1) From 2000 to 2019, the QTP showed a drought trend, with the most significant drought
trend in the central region. The spatial pattern of TVDI changes of QTP was consistent with the
gradient changes of precipitation and temperature, both showing a gradual trend from southeast to
northwest. (2) There was a risk of drought in the four seasons of the QTP, and the seasonal variation
of TVDI was significant, which was characterized by being relatively dry in spring and summer
and relatively humid in autumn and winter. (3) Drought in the QTP was mainly driven by natural
factors, supplemented by human factors. The driving effect of temperature and precipitation factors
on TVDI was stable and significant, which mainly determined the spatial distribution and variation
of TVDI of the QTP. Geomorphological factors led to regional intensification and local differentiation
effects of drought, especially in high mountains, flat slopes, sunny slopes and other places, which
had a more significant impact on TVDI. Human activities had local point-like and linear impacts, and
grass-land and cultivated land that were closely related to the relatively high impacts on TVDI of
human grazing and farming activities. In view of the spatial-temporal patterns of change in TVDI in
the study area, it is important to strengthen the monitoring and early warning of changes in natural
factors, optimize the spatial distribution of human activities, and scientifically promote ecological
protection and restoration.

Keywords: climate change; Temperature-Vegetation Drought Index (TVDI); random forest;
geomorphological division; Sanjiangyuan

1. Introduction

Drought represents a natural disaster bearing a wide range of impacts that often
occur at broad spatial scales and can last for a long time. Not only does drought seriously
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affect the growth of vegetation, the water cycle, and human life, but also destroys the
stability of the ecological environment and restricts the development of the social economy.
However, drought is difficult to monitor in time since the occurrence of drought is a slow
and dynamic process. This process begins with the reduction of precipitation, followed
by the loss of soil moisture and the rise of surface temperature, which eventually leads to
vegetation stress and a reduction in productivity [1]. In recent years, many researchers have
proposed drought indices or improved existing indexes, such as the Vegetation Condition
Index (VCI) [2–4], Normalized Difference Water Index (NDWI) [5], Vegetation Health Index
(VHI) [6], and Drought Frequency Index (DFI) [7], which have been used to monitor the
onset, duration, and intensity of drought and to explore the regional applicability of drought
indicators. Among them, the most commonly used drought indices were the Standardized
Precipitation Index (SPI) [8] and the Palmer Drought Severity Index (PDSI) [9]. SPI is based
on the cumulative probability of precipitation at different time scales and was developed to
reflect the impact of changes in water resources on groundwater and agriculture during the
study period, thereby revealing the degree of drought in the study area [10], which is often
used to capture the drought situation at multiple scales [11]. PDSI is a comprehensive index
that uses precipitation and air temperature data to evaluate drought status, and is widely
employed to study agricultural drought [12]. However, SPI only uses precipitation data
and ignores other drought variables, and thus cannot fully capture the degree of drought in
the study area [13]. PDSI has a fixed time scale and cannot be used to evaluate the drought
at long time scales [14]. The index may lag behind emerging drought conditions and may
not capture drought conditions in mountainous areas with complex climate [15].

Therefore, more comprehensive indicators need to be considered. Using the correlation
between the surface temperature and a vegetation index [16], Carlson et al. [17] proposed
the Different Water Index (DWI), which uses the Soil–Vegetation–Atmosphere-Transfer
(SVAT) model to estimate and describe the trapezoid feature of the characteristic space
composed of vegetation cover and surface soil water content. Sandholt et al. [18] proposed
a simplified surface drought index, Temperature-Vegetation Drought Index (TVDI), based
on temperature, radiation balance, and other factors. TVDI is an index which can monitor
the degree of drought in a region by establishing a model based on the relationship between
a vegetation index and a surface temperature index. This method only needs to use
remote sensing images to monitor the severity of drought, which is beneficial to study the
spatial and temporal characteristics of regional drought. Compared with the Standardized
Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index
(SPEI), TVDI is relatively simpler and has higher accuracy [19]. In addition, a conspicuous
feature of TVDI is that it correlates negatively with surface soil moisture [20,21]. Thus, this
method can be used to detect changes in soil moisture [22] and drought conditions [23,24].
Chen et al. [25] demonstrated that TVDI can effectively monitor soil water dynamics during
the growing season in the Huang-Huai-Hai Plain. Chen et al. [26] combined the TVDI
and the VHI method to monitor drought in Central America and assessed the affected
agricultural areas.

TVDI is commonly used to study areas across the entire range of surface moisture
content, from dry to wet, and from bare soil areas with no vegetation cover to areas
completely covered with vegetation [18]. However, affected by factors such as changes
in vegetation cover and complex and variable terrain, the edges of the dry and wet fitted
by TVDI are unstable, and TVDI cannot clearly express the spatial edge in a theoretical
sense [27]. At a large scale, changes in geomorphological types provide precipitation,
air temperature, evapotranspiration, and other factors with spatial heterogeneity, and
then control the differences in regional vegetation spatial distribution and vegetation
cover. Finally, these changes in turn have an impact on the regional climate and the
ecological environment. Therefore, the uncertainty of soil moisture estimation by TVDI will
increase with soil surface heterogeneity [28], and the TVDI method is only suitable for areas
with little topographic variability [29]. The differences in geomorphological divisions not
only reflect the changes of regional geological tectonic movement characteristics, but also
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indicate the differences in ecogeographic systems, such as climate, water resource allocation,
biology, and soil properties on a regional scale. Geomorphological division may effectively
address heterogeneity-related issues that arise when using the TVDI method in dry and
wet edges, and can effectively reduce the error and improve the calculation accuracy.

As an important ecological security barrier in China, the Qinghai–Tibet Plateau (QTP)
plays an important role in water conservation, biodiversity protection, soil and water
conservation, and is a ‘sensor’ of climate change in Asia and the Northern Hemisphere.
The QTP has a very significant warming effect in the background of global warming [30].
Elevated temperatures have increased evapotranspiration and drought probability, which
has seriously restricted the development of local agriculture and the animal husbandry
economy. Moreover, factors such as vegetation cover, the intensity of human activities, and
the distribution of plateau lakes and glaciers have affected drought severity in the QTP.
Therefore, methods to effectively monitor the spatial-temporal variability of drought in
such a large area as the QTP have become the focus of attention.

However, previous studies have shown significant differences in the spatial and
seasonal characteristics of drought in the QTP. For example, Wang et al. [31] pointed
out that the central QTP has become wetter using SPI and SPEI to study the drought
in China from 1961 to 2012. Bin et al. [32] demonstrated that the southeastern QTP is
an area prone to drought, and is a high-risk area by using the SPI method and monthly
precipitation data from 616 meteorological stations. Wang et al. [33] believed that drought
duration, drought severity, and drought frequency decreased in the central QTP from 1950
to 2006. Kai et al. [34] pointed out that there was a significant wet trend in the eastern QTP
from 1961 to 2012 using SPEI, SPI, and the Reconnaissance Drought Index (RDI) method.
Feng et al. [35] believed that in the future this region would become wetter in spring, more
arid in winter, and more arid in summer by using the SPEI-TH (Standardized Precipitation
Evapotranspiration Index-Thornthwaite) method after analyzing the meteorological data of
stations in the QTP from 1970 to 2017. Wang et al. [36] believed that the degree of drought
in the QTP was relieved by wet conditions in spring, slightly wet conditions in summer
and autumn, and more arid conditions in winter from 1994 to 2013. Overall, in terms of
spatial characteristics, drought severity in the central and southeastern QTP were found to
be changing differently, while the drought status in other regions was not clear. In terms of
seasonal characteristics, the drought severity in spring, summer, and autumn differed, and
drought occurred in winter for both regions.

In terms of the driving factors of drought in the QTP, previous studies focused on
the discussion of factors, such as precipitation, temperature, elevation, slope, and aspect,
the distribution of lakes on the plateau, human activities, and other factors. For example,
precipitation is often used to discuss changes in the degree of drought in the region
due to the significant correlation between precipitation and TVDI [37]. Temperature
affects regional heat distribution and is one of the important factors affecting drought
changes [38]. As for geomorphological factors, elevation produces vertical differences in
regional precipitation and temperature [39], and the slope and aspect produce regional
differences in precipitation and air temperature [40]. The QTP has a wide area of lakes,
glaciers, and permafrost, and thus the melting of glaciers and the freezing and thawing of
permafrost affect the seasonal changes of drought in the region [41]. Human activities are
also an important external driving force affecting changes in drought [42]. For example,
the expansion of urban construction decreases vegetation cover, while water resource
utilization for domestic, industrial and mining uses affect groundwater levels and recharge.
Due to the different intensities of human activities, differences in land use will lead to
differences in drought severity [43]. However, in an area as large as the QTP, changes in
drought must be the result of the comprehensive action of many factors, and such research
has received little attention.

Random forest is an algorithm that integrates multiple decision trees through the idea
of integrated learning [44]. This algorithm is one of the most commonly used and most
powerful supervised learning algorithms. It does not require dimensionality reduction
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and feature selection. It can better process high-dimensional data and solve regression and
classification problems. Moreover, it can be trained quickly and implemented easily [45].
The random forest algorithm can obtain estimates that are easier to explain and understand,
such as IncMSE and IncNodePurity. IncMSE, which is the increase in mean squared error,
indicates the increase of the error estimated by the random forest model relative to the
original error after the variable is randomly selected [46]. IncNodePurity, which is the
increase in node purity, indicates the degree of influence for a variable on each decision
tree node [47]. Both indices can judge the importance of the influencing factor, and the
larger the index value, the more important the variable. Moreover, after controlling the
interaction between exploratory variables, the individual marginal effect of each factor can
also be visualized [48]. However, at present, few researchers have systematically compared
the differences and similarities of the relative importance of drought factors in the QTP
using the random forest algorithm.

Therefore, the spatial-temporal differences and driving forces of the arid state in
the QTP still warrant attention. This paper attempts to: (1) analyze the feasibility of
using the TVDI method to study drought in the QTP, (2) clarify the spatial-temporal
variation of drought in the QTP, (3) evaluate the main driving forces affecting the QTP and
comprehend the specific range of various factors that affect drought. Based on the previous
rules of geomorphological division [49], the workflow of our study was to: (1) divide
the QTP into eight geomorphological sub-regions; (2) use the TVDI method to calculate
the annual TVDI and seasonal TVDI of eight regions from 2000 to 2019; (3) analyze the
spatial-temporal variation characteristics of annual and seasonal drought in the QTP, and
summarize the variation of TVDI in the study area; (4) use the partial correlation and
the multiple correlation analyses to investigate the relationship between air temperature,
precipitation, and TVDI; (5) select eight factors in four categories including meteorology,
landform, land use and land cover (LULC), and human activities to construct a random
forest model, explore the main factors driving the drying trends in each geomorphological
sub-division, and rank the contribution of each driving factor. The results of this paper
provide a theoretical basis for the division of drought risk in the QTP, the prevention of
drought hazards and the sustainable development of regional economy.

2. Study Area

The QTP is the highest plateau in the world and the largest plateau in China. It has an
important impact on the formation of geographical elements, such as climate and rivers
in China. The latitude and longitude of the QTP ranges from 25◦59′56′′ N to 39◦47′35′′ N
and 73◦30′22′′ E to 104◦39′50′′ E (Figure 1), covering six provinces, including the Tibet
Autonomous Region and Qinghai Province, the southern parts of the Xinjiang Autonomous
Region, the western parts of Sichuan Province, and small portions of Yunnan Province and
Gansu Province.

Referring to the previous results of geomorphological division of the QTP [49], we
divided the study area into 8 geomorphic areas (Appendix B, Table A2). The topography
of the QTP is complex, with high elevation mountains and many basins, canyons, and
lakes. The eight factors are shown in Figure 2. The elevation of the QTP is higher in the
west and lower in the east. The alpine areas on its edge bear large undulations and low
interior. Affected by its own geographical location, the QTP has formed a unique plateau
climate zone. The precipitation in QTP decreases from southeast to northwest (Figure 2b).
The temperature has a clear latitudinal zonality, decreasing from south to north (Figure 2c).
The land cover types in QTP are dominated by grassland (Figure 2h), which is widely
distributed in all parts of the QTP and mainly has low to medium canopy cover. Other land
cover types include Gobi, bare land, sandy land, saline–alkali land, and other areas with
vegetation cover below 5%, which are distributed in the northern part of the QTP. Forests
are mainly distributed in the southeast of the QTP due to the influence of precipitation
and temperature. Cultivated, urban, and rural built-up lands are mainly distributed in
low-lying, warm valleys with abundant water sources.
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Figure 1. Map of the Qinghai–Tibet Plateau (QTP). AQM is the high valley area of the Altun–Qilian
Mountains. QHB are the high mountain areas of Qaidam-Yellow River-Huangshui River Basin.
KWKM are the high mountain areas of Karakorum and Western Kunlun Mountains. CEKM are
the high mountain areas of the central and eastern Kunlun Mountains. QP are the lake and basin
areas of the Qiangtang Plateau. STR are the mountains sources of the Yangtze River, Yellow River,
and Lancang River (Three Rivers or Sanjiangyuan) and the valley bottom of the upper reaches of
Three Rivers. HMLY are the high mountain areas of the Himalayan Mountains. HDM are the high
mountain and valley areas of Hengduan Mountains. (Appendix A of Table A1 for acronyms).

Figure 2. Maps of the eight factors. (a) Elevation; (b) Annual precipitation; (c) Annual average
temperature; (d) Slope; (e) Aspect; (f) Euclidean distance of water surface body; (g) Euclidean
distance of built-up land; (h) Land use and Land cover.
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3. Materials and Methods

3.1. Materials
3.1.1. MODIS Data

The relationship between NDVI (Normalized Difference Vegetation Index) and surface
temperature can be used to calculate TVDI [50] to study the spatial-temporal drought
evolution of the QTP. We used NDVI and surface temperature data from 2000 to 2019
from NASA (https://search.earthdata.nasa.gov/, accessed on 1 March 2020). We selected
the MOD13A3 product (MOD/Terra monthly vegetation index data product with spatial
resolution of 1 km) for NDVI data, and the MOD11A2 product (MOD/Terra 8-day land
surface temperature data product with spatial resolution of 1 km) for surface temperature
data. The data projection coordinate system was WGS_1984_UTM_Zone_45N. After batch
splicing, band extraction, resampling, and projection, the data were processed using the
maximum value synthesis method to obtain annual and quarterly NDVI and daytime
surface temperature of the eight geomorphological divisions of the QTP. Using the NDVI
and surface temperature data, we calculated TVDI. We used Savizky–Golay filtering to
eliminate poor quality observations, and the maximum synthesis method was used to
eliminate deviation in the data caused by atmospheric interference and cloud cover.

3.1.2. Soil Moisture Data

There is a negative correlation between soil moisture and TVDI, and the relationship
between soil moisture at a depth of 10 cm and TVDI is more significant [25]. Therefore,
we used the measured 10 cm soil moisture data to verify whether the TVDI method could
capture the drought conditions in the QTP. The soil moisture data were obtained from the
National Qinghai–Tibet Plateau scientific data center (http://www.tpdc.ac.cn/zh-hans/,
accessed on 6 February 2021). Due to the lack of soil moisture measurements at some
sampling points, we selected data collected in summer from 2010 to 2016. After we
eliminated the missing sampling point data in this period, we calculated the mean value.

3.1.3. Driving Factors

Drought severity in the region is not only affected by the natural environment, but also
human activities. Precipitation and temperature are important factors that affect drought
variation, and these two factors determine the spatial distribution of drought grade and
drought frequency in the region [51]. Geomorphic factors lead to regional differentiation of
drought, among which elevation plays a critical role in the spatial-temporal differentiation
of drought spread in plateau mountains [52]. Human activities such as the increase in
domestic water supplies and the expansion of urban areas can accelerate the spread of
drought [53]. Changes in land cover will affect the supply of atmospheric water, thus
affecting the severity of regional drought [54]. Lakes, glaciers and other water areas will
also affect the seasonal variation of regional drought [41]. So, we adopted the random forest
method and selected six driving factors, including precipitation, temperature, elevation,
slope, aspect, the Euclidean distance of water surface land, the Euclidean distance of
built-up land, and LULC to explore the main driving factors of drought severity change in
various geomorphological divisions of the QTP. The source of data for the driving factors is
shown in Table 1, and the coordinate system of the data was WGS_1984_UTM_Zone_45N.

The slope and aspect of the geomorphological factors were extracted from the DEM
data, and the Euclidean distance of water surface body was used to represent the degree and
scope of influence of the water surface body in the QTP, and the human activity factor was
described by the Euclidean distance of built-up land. The land use types were combined
according to the attribute table, and finally the data of six main land use types, including
forest, grassland, cultivated land, water surface body, built-up land were obtained.
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Table 1. Data and data sources.

Data Class Data Data Sources
Spatial

Resolution
Time of

Data

Climatic factor
Precipitation National Qinghai Tibet Plateau scientific data center

(http://www.tpdc.ac.cn/zh-hans/,
accessed on 7 April 2021)

1 km
2000–2017

Temperature 2000–2017

Geomorphological
factor

Elevation
China Geological Survey

(https://www.cgs.gov.cn/, accessed on 21 April 2021) 1 km 2015Slope

Aspect

Accessibility
factor

Water surface body National Qinghai Tibet Plateau scientific data center
(http://www.tpdc.ac.cn/zh-hans/,

accessed on 21 April 2021)
1 km 2015

Built-up land

Land use factor LULC
National Qinghai Tibet Plateau scientific data center

(http://www.tpdc.ac.cn/zh-hans/,
accessed on 21 April 2021)

1 km 2015

3.2. Method
3.2.1. TVDI Calculation

TVDI is an index based on the correlation between a vegetation index and a surface
temperature index, and serves to reflect drought severity in a region [18]. After constructing
the NDVI-LST feature space with the same interval of NDVI values combined with the
maximum composite method and the minimum composite method, the TVDI value can be
calculated using Formula (1).

TVDI =
LST − LSTmin

LSTmax − LSTmin
(1)

LSTmin = a1 + b1 × NDVI (2)

LSTmax = a2 + b2 × NDVI (3)

In Formula (1), LST represents the surface temperature of any pixel in the study
area. In Formula (2), LSTmin is the fitted wet-edge function, representing the minimum
surface temperature. In Formula (3), LSTmax is the fitted dry-edge function, representing
the maximum surface temperature [18]. a1 and b1 are the linear fitting coefficients of the
wet-edge function, while a2 and b2 are the linear fitting coefficients of the dry-edge function.
The value of TVDI is between 0 to 1, and the higher the value, the drier the area. In
areas with obvious geomorphic differences and large scale areas, there may be errors in
using the TVDI method to study drought. Therefore, this paper adopts the method of
geomorphological divisions to reduce the uncertainty of the results.

3.2.2. Correlation Analysis

Partial correlation analysis was used to analyze the relationship between TVDI and
precipitation and temperature [55]. The partial correlation coefficient between temperature,
precipitation, and TVDI was obtained using Formula (4).

Rxy,z =
Rxy − RxzRyz√

(1 − Rxz2)
√(

1 − Ryz2
) (4)

In Formula (4), Rxy, z means that the dependent variable z is fixed, and the partial
correlation coefficient between the independent variables x and y. Rxy, Rxz, and Ryz are
the Pearson correlation coefficients of variables x and y, variables x and z, and variables
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y and z, respectively. If Rxy,z > 0, it means a positive correlation; if Rxy,z < 0, it means a
negative correlation. The larger the coefficient, the higher the correlation. The significance
test was performed using a t-test.

Similarly, in order to study the relationship between TVDI and precipitation and tem-
perature in the QTP, we applied the multiple correlation analysis method. The calculation
formula is shown in Formula (5):

Rxy,z =

√
1 −
(

1 − R2
xy

)(
1 − R2

xy,z

)
(5)

In Formula (5), Rxy,z is the multiple correlation coefficient between the dependent
variable x and the independent variables y and z. The larger the correlation coefficient, the
closer the linear correlation between the elements or variables. The correlation was tested
by F-test.

The partial correlation coefficient between TVDI and annual precipitation and average
annual temperature from 2000 to 2017 was calculated by Formula (5), then the t-test of the
partial correlation coefficient and the F-test of the multiple correlation were performed on
the calculation results. The statistics that meet the classification conditions were divided
into four categories, as shown in Table 2.

Table 2. Criteria for TVDI-driven zoning (It was reprinted with the permission from Ref. [56]
Copyright 2022, Chen).

Types of TVDI Changes
Zoning Criteria

rTVDI P,T rTVDI T,P RTVDI, TP

Precipitation driven t ≥ t0.05 F ≥ F0.05
Temperature driven t ≥ t0.05 F ≥ F0.05

Temperature and precipitation driven t ≤ t0.05 t ≤ t0.05 F ≥ F0.05
Other drive types F ≤ F0.05

In Table 2, rTVDI P,T is the partial correlation coefficient between TVDI and annual
precipitation, rTVDI T,P is the partial correlation coefficient between TVDI and annual
average temperature, RTVDI, TP represents the multiple correlation coefficient between
TVDI and temperature and precipitation, t and F are the statistical values of the t-test and
F-test, respectively, and t0.05 and F0.05 are the 0.05 significance levels of the t-test and the
F-test, respectively.

3.2.3. Linear Trend Analysis

Linear trend analysis is a method of predicting the change trend of a variable by
performing linear regression analysis on a variable that changes over time. The linear trend
analysis method can be used to analyze the change of each pixel. We applied this method
to analyze the changes of TVDI in the QTP in the recent 20 years. Formula (6) was used to
calculate the linear trend rate [57].

TVDI_Slope =
n × ∑n

i=1(i × TVDIi)− ∑n
i=1 i ∑n

i=1 TVDIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (6)

In Formula (6), i is the year of 2001, 2002, 2003 . . . 2019, n is the length of the time series;
TVDIi is the TVDI value of the year i, TVDI_Slope is the regression value of TVDI pixels.
TVDI_Slope > 0 indicates that TVDI in the time series is increasing, while TVDI_Slope < 0
means that the TVDI is decreasing.

To test the consistency of the trend of TVDI with time, we used a t-test to judge the level
of significance of the change. The p value was calculated using the obtained TVDI_Slope
of change and the results of the t-test, and the two significance judgment criteria were a
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95% confidence level and a 99% confidence level. According to Table 3, the trend in TVDI
was divided into six levels.

Table 3. Classification criteria of TVDI trend.

Grading Criteria TVDI Trend

TVDI_Slope < 0
p > t0.01 Extremely significant decrease

p ≥ t0.05 and p ≤ t0.01 Significant decrease
p < t0.05 Non-significant decrease

TVDI_Slope > 0
p < t0.05 Non-significant increase

p ≥ t 0.05 and p ≤ t0.01 Significant increase
p > t0.01 Extremely significant increase

3.2.4. Random Forest Algorithm

We selected eight factors: annual precipitation, annual average temperature, elevation,
slope, aspect, Euclidean distance of water surface body, Euclidean distance of built-up land,
and LULC. These eight factors were resampled to a spatial resolution of 4 km × 4 km in
ArcGIS 10.3 software. The degree of influence of these eight factors on TVDI was analyzed
using the Random Forest regression (RF) model, which was implemented by calling the
“Random Forest” package in R studio 3.6 software (R Studio, Boston, MA, USA). Each
group of samples was divided into two subsets, 70% of the training set and 30% of the
test set. On the basis of determining the optimal parameters, the fitting calculation was
performed to obtain the importance ranking (IncNodePurity) and local relative importance
of the driving factors [48]. The larger the IncNodePurity value, the higher the relative
importance of the factors and the deeper the influence on the regional TVDI. The analysis
of relative importance of the driving factors can reveal the relationship between a certain
range of driving factors and TVDI, where the higher the local relative importance value,
the higher the contribution to TVDI.

3.2.5. Verification of TVDI

To verify the accuracy of the TVDI method for monitoring drought, the common
method is to perform correlation analysis between measured soil moisture data and TVDI.
Due to the lack of soil moisture data in some years and some sampling points, we selected
summer soil moisture data from 2010 to 2015 to verify the accuracy of TVDI method and
compare the advantages and disadvantages between the two TVDI data with and without
geomorphological divisions. In Figures 3 and 4, the y-axis represents the measured soil
moisture content at 10 cm, and the x-axis is the TVDI value extracted from the location
of the sampling point. It can be seen from Figures 3 and 4 that there is a clear negative
correlation between soil moisture and TVDI in the summer from 2010 to 2015. With
increased soil moisture, TVDI shows an obvious negative trend. We found TVDI to have
a significant linear relationship (p < 0.01) with soil moisture in each year. Moreover, in
comparing Figures 3 and 4, we found that the correlation between TVDI data retrieved
by geomorphological division and soil moisture data was higher than that between TVDI
data retrieved directly without geomorphological division and soil moisture data, and
the R2 value of the former were all over 0.41. Therefore, the TVDI data retrieved by the
geomorphological division method can better reflect the soil moisture status, and also show
that the TVDI method is suitable for studying the drought status of the QTP.
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Figure 3. Correlation between TVDI retrieved directly without geomorphological division and 10 cm
soil moisture in summer from 2010 to 2015.

Figure 4. Correlation between TVDI retrieved by geomorphological division and 10 cm soil moisture
in summer from 2010 to 2015.

4. Results

4.1. Characteristic of NDVI-LST Feature Space

Figure 5 shows the feature spaces of the eight geomorphological divisions that we
constructed, which basically satisfied the triangular or trapezoidal space theory. The
maximum and minimum LST values corresponding to NDVI were extracted through the
TVDI VTCL plug-in of the ENVI 5.3 software, and the NDVI-LST space was constructed.
When constructing the NDVI-LST feature space of the QP, the range of NDVI value from 0
to 1 was selected. It should be noted that when constructing the NDVI-LST feature space
of the other seven regions, we excluded values of NDVI < 0.2 from the analysis. After
determining the NDVI range of each district, we set the sample size in the plug-in to 1 to
obtain the annual and quarterly NDVI-LST feature spaces from 2000 to 2019. Because the
NDVI-LST feature space of the eight geomorphological divisions in 2001 had the best fit
(the average R2 is 0.69), we took the characteristic space of 2001 as an example. Figure 4
shows that there was an obvious linear relationship between the maximum and minimum
surface temperature and NDVI. With increased NDVI, the maximum surface temperature
decreased gradually, while the minimum surface temperature increased slowly. It can be
seen from Appendix B Table A3 that the average R2 of the HDM was 0.35, with the low
value of R2, poor relative fitting, and low accuracy. Other regions have high R2 values,
a good fit, and high accuracy, among which the QHB, QP, and HMLY were the best (the
average value of R2 is 0.75).
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Figure 5. NDVI-LST spatial characteristics of eight geomorphological divisions of the QTP (taking
2001 as an example)(The horizontal axis represents NDVI. The vertical axis represents LST. The blue
line is the fitted wet edge equation. The red line is the fitted dry edge equation. The sample points
are represented by small hollow circles).

4.2. Temporal and Spatial Variation Characteristics of TVDI

The dry-edge and wet-edge equations were used to calculate the TDVI value of
each pixel at different times, and the TVDI value was applied as the classification index
of drought in the QTP [58]. TVDI was divided into five grades (Table 4) [21,24,59]: ex-
tremely wet (0 ≤ TVDI ≤ 0.2), wet (0.2 < TVDI ≤ 0.4), normal (0.4 < TVDI ≤ 0.6), dry
(0.6 < TVDI ≤ 0.8), and extremely dry (0.8 < TVDI ≤ 1.0). When the TVDI was between
[0, 0.6], the drought type of the region was no drought; when the TVDI was between
(0.6, 0.8], the drought type of the region was drought; and when the range was between
(0.8, 1.0], the drought type of the region was severe drought.

Table 4. TVDI classification criteria of drought in the QTP.

Classification of TVDI [0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

Drought rank Extremely wet Wet Normal Dry Extremely dry
Drought types No drought No drought No drought Drought Severe drought

4.2.1. Spatial Variation Characteristics of TVDI

Figure 6 shows that there were obvious regional differences in the spatial distribution
of the mean value of TVDI in the QTP from 2000 to 2019, which was mainly characterized
by drought in the southwest and north, and wet conditions in the northeast and southeast.
Overall, the average annual value of TVDI in the QTP was 0.56, which was normal. How-
ever, the regional drought situation was not consistent. For example, for QHB the average
annual TVDI was 0.66, which we classified as being in drought. The no-drought areas were
distributed in the eastern region of the STR, HMLY, HDM, the Qilian Mountains, and the
Kunlun Mountains. Most of these areas were forest and grassland, accounting for 56.9%
of the area of the QTP. The drought areas were mainly distributed in the southwest QP,
in the west HMLY and most of the KWKM, and grassland was the main land use type,
accounting for 33.4% of the area of the QTP. The severe drought areas accounted for 9.7%
of the QTP, and were mainly distributed in the Qaidam Basin, the western part of AQM,
and the river valleys of HMLY.
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Figure 6. Annual average TVDI classification of the QTP.

The QTP was drier in spring and summer and humid in autumn and winter (Figure 7).
Spring was the driest season of the year. The southern part of the QTP was humid, and
the southwestern and northern parts were dry. Most of the QHB, the southern part of the
QP, and the central and western parts of the HMLY were relatively dry. In summer, the
QTP was generally wet in the south and dry in the north, in which drought severity in the
southwest was reduced and drought severity in the north increased. In terms of spatial
distribution, the QHB, the Altun Mountain, the west of HMLY, and the southwest of QP
were relatively arid. In autumn, extremely wet areas in the QTP decreased, while wet and
normal areas increased. Dry areas were concentrated in the north and southwest, such as
the QHB, QP, and the west of HMLY. In winter, the central part of the QTP was wet, the
western part was dry, and the wet areas increased. Winter was the wettest season of the
year with the smallest arid area. Only the south of QP and the mid of HMLY were in a dry
state. In short, the AQM and QP were prone to spring drought, the HMLY was prone to
autumn drought, the QHB was prone to spring drought and summer drought, and the
central QHB was in a state of drought for a long time, and other areas had no obvious
seasonal drought.

Figure 7. Classification of seasonal average TVDI. (a) Spring; (b) summer; (c) autumn; (d) winter.

111



Int. J. Environ. Res. Public Health 2022, 20, 7909

4.2.2. Temporal Variation Characteristics of TVDI

The QTP has exhibited an obvious trend in drought severity over the past 20 years,
and the central region has become the center of increased drought (Figure 8). The area
with aggravated drought accounted for 52.9% of the area of the QTP, the area with a
significant increase in TVDI accounted for 5.8% of the QTP, and the area with a significant
and extremely substantial increase accounted for 2.3% of the QTP. These two types of
drought variation are mainly distributed in the southeast of QP, the southwest of STR, the
southwest of AQM, the most of KWKM, and the south of CEKM.

Figure 8. TVDI trends in QTP.

The land use types in these areas were mainly unused land and grassland, and the
regional characteristics were high elevation and low vegetation cover. The areas with
non-significant increase in TVDI accounted for 44.8% of the total area, mainly distributed
in the KWKM, CEKM, QP, STR, and other areas. The areas with non-significant decrease in
TVDI were mainly distributed in the northwest of HMLY, HDM, and QP. Most of these areas
were grassland and forest, and accounted for 47.1% of the whole area. In general, there
were obvious differences in drought severity trends in the QTP, with significant drying
trends in the eastern and southeastern parts of QP and the western and southwestern parts
of STR. There was a risk of drought in the Kunlun Mountains and its north, and the risk of
drought in the HDM and HMLY regions decreased.

The QTP had a drying trend in all seasons except autumn (Figure 9). Spring was the
season with the largest drying trend. The AQM, CEKM, STR, and HMLY were the centers
of increasing drought in spring. The land use types in these areas are mainly grassland
and unused land, accounting for 61.7% of the total area. The areas with a drying trend
in summer were mainly distributed in the mid of HMLY, the southeast of QP, and the
southwest of STR, which accounted for 60% of the entire region. Autumn was the season
with the smallest area with a drying trend, which accounted for 48.9% of the total area of
the region without a drying trend. There were three areas with strong drying trends in
winter, QP, QHB, and AQM, and the areas with drying trends accounted for 58.2% of the
total area. Overall, there was a significant drying trend in spring, the drought risk in the
northern QTP weakened in summer, but the drought risk in the southern part remained
very high. In autumn, most of the areas were the wettest and had a weaker trend in drought.
In winter, the risk of drought in the northern QTP increased significantly.
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Figure 9. Seasonal TVDI trends of the QTP. (a) Spring; (b) summer; (c) autumn; (d) winter.

4.2.3. Spatial and Temporal Variation Characteristics of TVDI Based on Cluster Analysis

According to the distribution and variation characteristics of TVDI in various regions
of the QTP, the method of cluster analysis was used to deeply explore the law of TVDI
variation in the QTP. Based on annual average TVDI, TVDI_Slope of the annual average
TVDI, and the trend classification of the annual average TVDI, we selected nine indicators
in each district, maximum and minimum annual average TVDI (TVDI-max and TVDI-min),
mean annual average TVDI (TVDI-mean), the standard deviation of annual mean TVDI
(TVDI-SD), the mean value of TVDI_Slope (slope-mean), the area proportion of areas
with non-significant decrease (TVDI-t3), the area proportion of areas with non-significant
increase (TVDI-t4), the area proportion of significantly increased areas (TVDI-t5), and the
area proportion of areas with extremely significant increase (TVDI-t6) (Table 5). We then
used the Pearson correlation to conduct a case-by-case systematic cluster analysis (Figure 9).

Table 5. Indicators of cluster analysis in each geomorphological division.

Geomorphological
Division

TVDI-Max
TVDI-
Min

TVDI-
Mean

TVDI-
SD

Slope-
Mean

TVDI-t3 TVDI-t4 TVDI-t5 TVDI-t6

AQM 1.00 0.00 0.55 0.24 3.75 47.34% 44.11% 6.19% 2.37%
QHB 0.97 0.01 0.66 0.20 1.04 42.64% 51.48% 4.07% 1.82%

KWKM 1.00 0.00 0.55 0.18 1.09 20.64% 69.28% 8.21% 1.87%
CEKM 1.00 0.00 0.54 0.21 1.54 25.59% 62.20% 9.96% 2.25%

QP 0.99 0.00 0.59 0.15 5.94 46.76% 42.58% 6.96% 3.70%
STR 0.94 0.00 0.50 0.10 9.69 41.10% 46.45% 8.04% 4.41%

HMLY 1.00 0.03 0.59 0.18 −3.43 58.71% 37.09% 3.41% 0.79%
HDM 1.00 0.00 0.52 0.15 −1.83 73.79% 24.25% 1.57% 0.40%

The TVDI of the QTP demonstrated obvious gradients in its characteristics. It can be
found from Figure 10 that the QTP are divided into three categories: HMLY and HDM are
one category, QP, STR, and AQM are one category, and the last category includes KWKM,
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CEKM, and QHB. The HMLY and HDM areas are located in the southern part of the QTP,
and their annual average TVDI values were 0.59 and 0.52, respectively, and the drought
severity was at the non-drought level. The standard deviation of their annual TVDI was not
much different, the mean value of slope was less than 0, and the areas with non-significant
decrease had the largest ratio of area to the total area. They were characterized by a low
degree of drought and a trend towards wetter conditions.

Figure 10. Pedigree of systematic cluster analysis.

The QP and STR are in the central QTP, and the AQM is in the northern part of
the QTP. The average TVDI of the three areas was between 0.5 and 0.6, and the drought
category was normal. The average slope was large, and the proportion of the area with
non-significant decrease to the total area was between 41.10% and 47.34%. These three
areas were characterized by a lower degree of drought and increased regional drought risk.

The KWKM, CEKM, and QHB are in the northern-central QTP. The average value of
QHB was relatively high, and the drought severity was drought. The standard deviation of
the annual average TVDI of the three places ranged from 0.18 to 0.21, and the average value
of slope was between 1.04 and 1.54. Among the three regions, the difference in results was
small. The ratio of the non-significant decrease area to the total area decreased in the three
regions, and the ratio of the non-significant increase area to the total area was the highest,
which indicated that the three regions were characterized by a higher degree of drought
and had a significant risk of drought in the region. In summary, the drought severity and
drought risk in the QTP increased from the southeast to the northwest, which indicated
that the spatial variation pattern of TVDI was roughly consistent with the spatial variation
of precipitation and temperature in the southeast–northwest gradient.

4.3. Characteristics of TVDI Drivers
4.3.1. Climate Driven Characteristics of TVDI

Figure 11 shows that the temperature, precipitation, and TVDI of the QTP had different
trends. Annual precipitation had a negative trend, average annual temperature had a
positive trend, and the average annual TVDI had a positive trend. The changes of these
three indicated that the study area had a tendency of drought. From 2000 to 2017, the annual
precipitation in the QTP had a negative trend, with a trend of −0.39 mm/year. The annual
precipitation in the QTP decreased from the southeast to the northwest. Among them, the
HMLY and HDM had the most precipitation, and the Qaidam Basin, AQM, and the western
QP had the least precipitation. From 2000 to 2017, the average annual temperature of the
QTP has fluctuated upward at a rate of 0.02 ◦C/year. The spatial distribution of the average
annual temperature for many years was uneven. The areas with lower temperature were
distributed in the Kunlun Mountains, the northern QP, and STR, and the areas with higher
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temperature are distributed in HMLY, the Qaidam Basin, and HDM. From 2000 to 2019, the
TVDI had an insignificant upward trend, with a cyclical change of roughly six years.

Figure 11. Changes in annual precipitation, average annual temperature and average annual TVDI
of the QTP.

There are regional differences in the effects of precipitation and temperature on the
TVDI of the QTP. The influence of meteorological factors on TVDI was quantitatively
analyzed using the partial correlation coefficient of TVDI, annual precipitation, and annual
average temperature obtained by pixel-by-pixel calculation. Figure 12a shows that the
partial correlation coefficients between TVDI and annual precipitation in the QTP ranged
from −0.97 to 0.93. The areas where TVDI were positively correlated with annual precipi-
tation accounted for 53.56% of the total area of the whole region, which were distributed
in the HMLY, STR, and QHB. The areas with a negative correlation accounted for 46.44%
of the total area, which were mostly distributed in the QP and HDM. According to the
spatial characteristics of partial correlation between TVDI and average annual temperature
in the QTP, Figure 12b shows that the partial correlation coefficient between TVDI and
temperature ranged from −0.89 to 0.98. Among them, the areas with a positive correlation
accounted for 64.06% of the entire region, and most of them were distributed in the QP, STR,
and the east wing of the HMLY, KWKM and CEKM. The areas with a negative correlation
accounted for 35.94% of the area and were mainly distributed in the west wing of the HMLY
and HDM.

 

Figure 12. The distribution of partial correlation coefficients between TVDI and annual precipita-
tion (a) and annual average temperature (b).

After calculating the t-test of the partial correlation coefficient and the F-test of the
multiple correlation coefficient, according to Table 1, the driving force of the climatic factor
of the QTP was obtained (Figure 13). The factors affecting the change in drought severity
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in the QTP were complex. The drought in most areas was affected by other factors. The
areas driven by a single factor of temperature or precipitation were distributed in clusters,
and the areas dominated by temperature and precipitation were scattered. The distribution
of the areas driven by precipitation was concentrated, accounted for 1.32% of the total area,
and were mainly located in the Qaidam Basin and scattered in the STR and HMLY. The
land use types in these areas were mainly unused land and the vegetation coverage was
low. The areas driven by temperature accounted for 3.65% of the total area of the region,
which were distributed in all regions of the QTP and concentrated in areas with higher
elevation, such as QP. The areas driven by precipitation and temperature account for 5.95%
of the total area, which were widely distributed in various regions of the QTP, mostly in
HMLY, HDM, and AQM.

Figure 13. Climatic factor-driven zones.

4.3.2. Driver Characteristics of TVDI

Figure 14 shows that the evolution of drought in the QTP was affected by various
factors, but different topography, vegetation types, and other factors led to differences in
the main driving factors of each geomorphological division. The drought situation in the
AQM was mainly driven by precipitation, and secondly affected by temperature. In the
KWKM area, the driving effect of the Euclidean distance factor to the water surface body
was more significant. The driving factors of QP drought were mainly temperature and
Euclidean distance of water surface body, and other factors had less influence. The drought
severity in the HMLY was driven by precipitation, followed by temperature and elevation.
The drought conditions of QHB, CEKM, STR, and HDM were comprehensively affected
by precipitation and temperature, and other factors had relatively little effect. In general,
the influence of climatic factors (temperature and precipitation) on the drought conditions
of the QTP was relatively stable, geomorphological factors (slope, aspect and elevation)
played an important role in the drought conditions in each region, and accessibility factors
(Euclidean distance of water surface body and Euclidean distance of built-up land) and
land use factors had relatively little influence.
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Figure 14. Ranking of the importance of factors in different geomorphological divisions of the QTP.

According to the random forest model, we obtained a local dependence map of
the driving factors in each geomorphological division (Figure 15), to further explore the
relationship between each driving factor and TVDI. We found that the overall trends of the
relative importance of driving factors in each region were similar, but there were obvious
differences in the sensitivity intervals of the driving factors.

First, the relative importance of annual average temperature increased between −20 ◦C
and 20 ◦C, and maintained a high level from 0 ◦C to 16 ◦C. The relative importance of HDM
peaked at 16 ◦C, and the relative importance of other regions peaked from 0 ◦C to 5 ◦C.

Second, the relative importance of annual precipitation fluctuated and decreased from
0 mm to 1500 mm, and the impact on regional drought was more profound when the
precipitation was less than 500 mm. The trend of the relative importance of the QHB and
CEKM showed a double peak, and the trend of the relative importance of other regions
had a single peak.

Third, the relative importance of elevation had a fluctuating and negative trend overall,
but there were obvious differences in the sensitive range of elevation in each area. The
relative importance of HMLY elevation had two peaks, about 0 m and 4700 m, respectively,
and the relative importance of elevation in other areas ranged from 3000 m to 5200 m.

Fourth, the relative importance of the slope changed similarly in different areas, with
an upward trend from 0◦ to 5◦, a downward trend from 5◦ to 30◦, and remained stable
above 20◦.

Fifth, the relative importance of the aspect had a clear peak, rising first and then falling
between 0◦ and 360◦, and had a high level from 175◦ to 200◦ (sunny slope).

Sixth, the relative importance of the Euclidean distance of built-up land did not
change significantly in the HMLY, KWKM, and QHB, and the relative importance of other
regions had a downward trend. The Euclidean distance of built-up land was the most
sensitive from 0 m to 1000 m. Seventh, the relative importance of the Euclidean distance of
water surface body was on the rise, at a high level from 1600 m to 3000 m, and remained
stable above 3000 m. Finally, the relative importance of land use types varied significantly
among different types, with grassland and cultivated land generally being the highest,
built-up land and other land use being higher, and the forest and water surface body being
the lowest.
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Figure 15. Relative importance of driving factors in different geomorphic regions. (a) Annual average
temperature; (b) Annual precipitation; (c) Elevation; (d) Slope; (e) Aspect; (f) Euclidean distance of
built-up land; (g) Euclidean distance of water surface body; (h) Land use and Land cover.

5. Discussion

5.1. Analysis of NDVI-LST Feature Space

Considering the characteristics of LST and NDVI data in the study area, determining
a reasonable range of NDVI for regression fitting and obtaining the appropriate dry- and
wet-edge equation was the key for calculating TVDI. When the vegetation coverage is less
than 15%, NDVI is a poor indicator of vegetation cover in the region [60]. Moreover, when
determining the NDVI range in the feature space, the corresponding LST minimum value in
the low-value area of NDVI has a tail decline phenomenon [61]. The above two phenomena
may lead to the deviation of the simulated dry and wet edge from the theoretical boundary.
Therefore, when determining the NDVI range of the feature space in our study, to avoid
regional differences and the occurrence of tail subsidence, except for the QP, we did not use
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NDVI values < 0.2 in the other seven regions, which ensured that the dry and wet edges of
each region conformed to the theoretical boundary.

Combined with Figure 4 and Appendix B Table A3, it can be concluded that the feature
spaces in different phases and different regions were triangular. Thus, as NDVI increased,
the maximum and minimum values of LST gradually approached and converged at one
point. The overall characteristics of the data in the study area were consistent, so the
NDVI-LST relationship could be used to accurately simulate the drought state [62]. The
fitting of the dry and wet edges in the eight geomorphological regions were all good, which
indicated that the NDVI-LST feature space of each region can accurately reflect the LST
distribution and NDVI characteristics. Among them, the dry- and wet-edge coefficients
(R2) of the QHB, QP, and HMLY were the most stable and had the best fit, while the dry-
and wet-edge coefficients (R2) of the HDM fluctuated greatly and the fit was relatively poor,
which may be related to deep-cut landforms and higher vegetation coverage [23].

5.2. Analysis of Spatial and Temporal Variation Trend of TVDI

The overall spatial distribution of the QTP was drought in the southwest and north,
and wet in the northeast and south, which was consistent with previous research results [31].
The QTP was drier in spring and summer, and wetter in autumn and winter. In spring
and summer, the western part of the QTP was relatively dry, which was caused by the
vegetation in the growing season, a large demand for water, high temperature, high
evapotranspiration, and less precipitation in the region. In autumn, with the decrease of
temperature and water evaporation, the water required for vegetation growth decreases,
and snowfall occurs in high-elevation areas, which replenishes water resources, increasing
the soil water content in the central part of the QTP, thus alleviating the drought. In winter,
under the combined influence of land-source water vapor and ocean-source water vapor,
the central region of the QTP is obviously humid [63]. In addition, it is also affected by
factors such as the decrease of temperature, vegetation dormancy, the expansion of snow
cover area and the increase of snow depth [64].

In the past 20 years, the degree of drought in more than half of the QTP has increased
significantly, and the central QTP has become the center of aggravated drought. Other stud-
ies have demonstrated similar findings [65,66]. The decrease in precipitation and increase
in evapotranspiration in the QTP decreased soil moisture and caused a drying trend [67].
The QTP demonstrates a drying trend in other seasons except autumn, which was also
concluded by Feng et al. [35] using the SPEI method. As the seasons changed, the drought
risk varied in different regions, such as AQM. The AQM was prone to spring drought and
combined with the drying trend in the region, the risk of drought was further increased.

Affected by the climatic gradient, the drought pattern of the QTP generally had a
southeast–northwest gradient. According to the statistical characteristics of TVDI in eight
geomorphological areas, the QTP could be divided into three categories by cluster analysis.
The first category included the HMLY and HDM, which had a low degree of drought and
a wetting trend. The second category included the QP, STR, and AQM, which had a low
degree of drought and a drying trend. The third category included the KWKM, CEKM,
and QHB, which had a higher degree of drought and an increased risk of drought. The
drought severity and variation characteristics of these three regions were different, which
was not only related to differences in precipitation, temperature, elevation, land use type,
and vegetation cover, but also affected by significant geomorphological effects. As the
Yangtze River, Yellow River, Yarlung Zangbo River, and other rivers flow through the
HMLY and HDM areas, there was abundant precipitation, sufficient water resources and
high soil humidity. The QP, STR, and AQM are located in inland areas, with high elevation,
low temperature, and less precipitation. However, lakes, glaciers, and other water bodies
have large areas, so water resources are more abundant and the regional drought is low.
The KWKM, CEKM, and QHB are located deep inland and receive little precipitation. The
land use type is dominated by grassland and unused land and drought conditions are
susceptible to climate change.
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5.3. Analysis of Driving Force of TVDI Change

The change of TVDI in the QTP was mainly affected by climate factors, but there were
slight differences in the driving factors of TVDI in each geomorphological division. The
AQM and HMLY were dominated by precipitation, the QP was dominated by temperature,
and the QHB, CEKM, STR, and HDM were affected by temperature and precipitation. The
driving factor of TVDI in the KWKM was the Euclidean distance of water surface body,
which was due to the wide distribution of glaciers and lakes affected by monsoon [68].
The leading factors of TVDI in all regions of the QTP echo the results of climate drivers
by partial correlation analysis, which also indirectly showed the reliability of the random
forest method. In addition, the random forest results of TVDI data obtained by direct
inversion without geomorphological division also showed that the QTP was dominated by
climate factors, followed by geomorphological characteristics, which was consistent with
the results we obtained.

5.3.1. Meteorological Factors

There were various factors affecting drought in the QTP, among which precipitation
and temperature played a significant role [69,70]. Precipitation affects water resources,
and temperature affects evapotranspiration, which interact and jointly affect drought in
the QTP. In recent years, the decrease of precipitation and the increase of temperature in
the QTP have changed the soil moisture [71], which has affected the growth of vegetation,
weakened the ability of soil to retain water, and led to increased drought in the QTP. Among
them, increased temperature has increased snow melt and evapotranspiration in the study
area [41], which is an important reason for the spatial-temporal change of drought in
the QTP [72]. Combined with analysis of relative importance, there were large spatial
differences in the relationship between TVDI and climate factors in the QTP. When the
annual average temperature was greater than 0 ◦C, the relationship between the TVDI
and the annual average temperature of the QTP was the most sensitive. When the annual
precipitation was less than 500 m, this factor had the most important impact on the change
of TVDI. The areas with high temperature and low precipitation are in the western parts
of HMLY, the southern parts of QP, and the northwestern parts of KWKM and the QHB.
Due to the combined influence of precipitation and temperature, these regions are prone to
drought and extreme drought.

Climate change largely affects the duration of drought [73]. A warming climate will
increase the risk of drought [74], especially the frequency and duration of drought in arid
areas [75]. The reduction of regional precipitation will lead to stronger and more frequent
drying periods and the intensification of evaporation induced by global warming, and this
situation will increase the probability of drought in the region [76]. From the climate driven
zone map, it was found that drought in the central QTP was dominated by temperature,
and drought in the northern basin was driven by precipitation, of which temperature was
more driven than precipitation. The Qaidam Basin is located deep within the interior of the
continent and is surrounded by high mountains, which affects the moist air flow into the
basin, resulting in less precipitation in the region. The TVDI in QHB was dominated by
precipitation and had a positive correlation with the annual precipitation. With decreased
precipitation, the drought in this area increased. The drought in QP was dominated by
temperature, and there was a positive correlation between TVDI and temperature in this
area. Affected by the temperature rise of the QTP in the recent 20 years, QP has become the
central area with an enhanced drying trend.

5.3.2. Geomorphological Factors

Geomorphological characteristics are important factors that affect the construction of
regional basic factors such as mountains, climate, vegetation, roads, and human activities.
The uplift of the QTP has not only formed a unique plateau climate [77], but also had
a profound impact on the composition of modern atmospheric circulation patterns, the
establishment of the Asian monsoon system [78], regional and global climate change, the
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development and evolution of desert loess, plateau ice and snow, lake and river water
systems and ecosystems, and the origin and evolution of human beings [79]. Among
them, the thermal effect of the QTP has an impact on the Asian monsoon and precipitation
variability [80], resulting in regional differentiation of precipitation and heat generation [81],
which directly or indirectly cause drought, water shortage, and deserts. The distribution of
water and heat in the region affected by elevation results in a gradient of drought conditions
in the QTP [82], especially in HMLY. The HMLY Valley area is blocked by the southern high
mountains to the water vapor from the North Indian Ocean, resulting in a large amount of
precipitation falling on the windward slope, and the area has been in a dry state for a long
time. At elevations between 3000 m and 5200 m, the impact on TVDI is most significant,
with rainfall and temperature changing positively in the high-altitude range [35].

Slope affects soil properties, soil nutrient content, and vegetation types to a certain
extent. With the increase of slope, precipitation infiltration is difficult, and the loss rate of
soil water intensifies, which further affects the likelihood of drought in the region [83]. The
smaller the slope, the better the soil moisture retention. Slopes less than 5◦ were the most
sensitive to TVDI in the study area. Such areas are mainly distributed in the central and
northern QTP, with high elevation and local precipitation less than 500 mm, and slope had
a low degree of influence on TVDI.

Aspect affects the amount of solar radiation, water content, and evapotranspiration
received by the slope, resulting in aspect-related differences in drought conditions [40].
When located on a sunny slope, TVDI was most sensitive to aspect. Compared with the
shady slope, the sunny slopes have longer sunshine hours, receive more solar radiation,
and better develop vegetation, which increases the regional evapotranspiration intensity,
reduces soil water content, and causes drought differentiation. Compared with factors
such as temperature, precipitation, and elevation, the aspect had less influence on the
TVDI, which indicated that the humidity change caused by the aspect had a relatively small
impact on the regional drought change.

5.3.3. Accessibility Factors

With economic development and the expansion of urban land, the impact of human
activities on regional drought has increased [84–87] and the impact of human activities
on drought is greater than the duration of drought [88]. There are two aspects to the
impact of human activities on drought. First, human activities directly act on surface
water and groundwater resources, consume and change the occurrence and regeneration
conditions of water resources, and cause or exacerbate drought [89]. Second, due to urban
and rural construction, traffic route development, deforestation, wasteland removal, and
other activities that change the land surface, the soil moisture and roughness are reduced
and the surface reflectivity of the underlying surface is increased, thereby changing the
production and confluence law and evaporation composition, which ultimately leads to
localized reductions in precipitation and increased drought. In terms of the accessibility
impact of cities and towns, the closer to cities and towns, the more intense human activities
become and the greater their effects on landform and surface cover. Therefore, the impact
of the Euclidean distance of built-up land demonstrated significant distance attenuation,
and its sensitive range was mostly between 0 m to 1000 m. Due to the relatively small
proportion of built-up land in the QTP, it had little impact on the overall changes in drought
on the QTP.

There are many frozen soils, glaciers, and lakes in the QTP, especially in KWKM and
QP. Soil moisture in the areas surrounding rivers and water bodies gradually declines as
one moves further away from the water bodies, which causes a wet to arid trend as the
distance from water bodies increases. Under the background of global warming and the
imbalance of water towers in Asia, the glaciers in the QTP are in a state of continuous
melting, their solid water is melting rapidly, and their liquid water is increasing [90]. This
affects the hydrological process in the study area and relieves the drought pressure in some
areas [91]. In our study, the Euclidean distance to water surface body was used to analyze
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the impact of glaciers, lakes, and other waters on TVDI. We found that the Euclidean
distance of water surface body had the characteristics of distance attenuation on the impact
of regional drought. When it was greater than 1600 m, the relationship between TVDI
and this factor was the most sensitive. In addition, the formation and melting of glaciers
and permafrost produce obvious seasonal differences in the drought situation of the QTP.
In summer, the QTP had high temperature, high evaporation, and a large demand for
water by vegetation, but its drought degree was less affected by glacier and frozen soil
melting than in spring [92]. In winter, the soil of the QTP gradually freezes, the regional
evapotranspiration decreases, and the soil water holding capacity increases, making winter
the wettest season of the year. In the short term, glacier melting will alleviate drought in
some areas, but long-term glacier melting will reduce the ability of arid areas to cope with
drought and increase the risk of drought.

5.3.4. Land Use Type Factor

Differences in vegetation cover and surface roughness of different land use types
lead to differences in their impact on TVDI [93]. The results of local dependence analysis
showed that grassland and cultivated land had the greatest impact on TVDI, followed
by urban and rural built-up land and other land, and that the forest and water bodies
had the lowest impact. The crops in the QTP are mainly highland barley, and the sowing
and growing season spans from March to September. The cultivated land is generally
adjacent to built-up land and is greatly affected by human activities [94]. The ecosystem
stability of cultivated land and built-up land is relatively weak, and the soil water holding
capacity is weak, which affects the change of TVDI [95]. Forest is mainly distributed in the
southeastern QTP, which has rich water resources, good soil coverage, less evaporation,
strong soil water holding capacity, and non-significant impact on TVDI [96]. The water
area includes lakes, permanent glaciers, reservoirs, ponds, beaches, and other water bodies,
which are humid and have low drought risk. Since the water changes to the surrounding
area, the soil moisture gradually decreases with a trend from wet to drought. Grassland
and unused land are the most widely distributed in the study area and are easily affected
by climate fluctuations, have relatively low vegetation coverage, poor stability, and strong
ground evaporation, and thus have a more significant impact on TVDI.

5.4. Applications and Limitations

As an important ecological security barrier in China, the QTP plays a role in water
conservation, biodiversity protection, and soil and water conservation. It is a ‘sensor’ of
climate change in Asia and the Northern Hemisphere. Drought affects regional vegetation
status, the water cycle, and human life, and can thereby destroy the stability of the ecological
environment and restrict social and economic development. Using geomorphological
division, we applied the TVDI method to identify the temporal and spatial variation of
drought in the QTP from 2000 to 2019 in an effort to provide a scientific basis for the
prevention and control of regional drought and promote sustainable development of the
region. Under the background of global warming, we found that the QTP had a tendency
of drought, and the central QTP has become the hotspot of increased drought severity. In
response to the potential challenges of drought risk, the government should actively adjust
and optimize drought prevention and control measures. In areas with low drought risk,
such as HDM and HMLY, the government should strengthen the ecological protection of
cultivated land and important areas such as rivers, lakes, and surrounding areas, control the
intensity of human reclamation activities, and closely monitor changes in the hydrological
conditions of grasses. In areas with perennial droughts, such as QHB, KWKM, and CEKM,
where the drying trend was aggravated, a multi-geographical synchronous monitoring
system should be established to identify and monitor drought dynamics. In sandy and bare
areas, ecosystems need to be restored. In agricultural farming areas, the planting structure
needs to be optimized, and high-efficiency, water-saving agricultural methods need to be
developed. In pastoral areas, the scale and quantity of grazing should be controlled, and
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the protection of grasslands should be strengthened by taking measures such as zoning
and rotation grazing.

There were some aspects of our study that could be improved. In terms of the TVDI
calculation, the TVDI of each area was calculated based on the geomorphological division,
and then the TVDI of the whole area was obtained by mosaic. However, this method led to
discontinuity of the TVDI value at the geomorphological edge, or the edge effect. Although
we used the TVDI classification to weaken the edge effect, the moving window method
can be tested to eliminate the edge effect in the future. In terms of index selection, the
effects of natural factors, such as stratigraphic lithology, geological structure, surface water,
and groundwater have not been fully considered, and the impact on human activities has
not been adequately described. Future research can further explore the mechanisms of
drought in the QTP and divide the regional drought risks based on drought severity and
drying trends. Methods such as GWR can be used in comparison with or combined with
RF methods to improve the accuracy of model interpretation.

6. Conclusions

Here, we selected the QTP as the study area. However, considering the influence of
the huge spatial scale effects of the study area on TVDI inversion, we divided the QTP into
eight geomorphological areas. TVDI inversion was carried out for each area and the data
for the whole area were synthesized using the TVDI grading method. Partial correlation
and multiple correlation analyses were used to explore the effects of precipitation and
temperature on TVDI. Then, eight factors, including meteorology, geomorphology, land
cover, and human activities, were selected to construct a random forest model to identify
the mechanisms driving changes in TVDI. We gathered four main findings.

First, in the past 20 years drought frequency and severity in the QTP has increased,
especially in the central region. The spatial distribution of TVDI was wet in the southeast
and arid in the northwest, with conspicuous regional differences. The main areas with
increasing TVDI were distributed in the southeast of QP, the southwest of STR, and the
Kunlun Mountains. The main areas where TVDI remained unchanged and decreased were
distributed in the HDM and HMLY where vegetation cover was high.

Second, the seasonal differences of drought were significant in the QTP. Spring was
the driest season of the year, and there was a significant drying trend in the central and
northern QTP. It was relatively dry in summer, the drought risk in the north of QTP was
weakened, and the risk in the south was still very high. Autumn was relatively wet, and
the region had a downward trend in drought severity. Winter was the wettest season of the
year, but the risk of drought increased significantly in the northern part of the QTP.

Third, the spatial pattern of TVDI changes in the QTP was generally consistent with
changes in precipitation and temperature, which had a gradual change from southeast to
northwest. According to the spatial distribution and variation of aridity, we divided the
study area into three categories. The first category, the HMLY and HDM in the southern
region, had low drought severity and was becoming more humid. The second category, the
QP, STR, and AQM in the central and northern regions, had low drought severity but had a
positive trend in drought severity. The third category, the KWKM, CEKM and QHB in the
north-central region, had higher drought severity and a positive trend in drought severity.

Finally, the driving effect of each factor on TVDI was significantly different in the
QTP. Except in the KWKM, temperature and precipitation were the dominant factors in the
variation of TVDI in the QTP, and regions with higher temperature and less precipitation
had a more significant impact on TVDI. Geomorphological factors play an important
role in the change of TVDI. The areas with an elevation of 3000~5200 m, slopes less than
5◦, and sun-facing slopes had a more significant impact on the change of TVDI. The
influence of the Euclidean distance of urban and rural built-up land and water bodies
showed distance attenuation, and the sensitive areas of these two factors were <1000 m
and >600 m, respectively. Among the land use types, grassland and cultivated land had a
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more significant impact on TVDI changes, while forest and water bodies had less impact
on TVDI changes.
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Appendix A

Table A1. Full name of abbreviation in the text.

Abbreviation Full Name

TVDI Temperature-Vegetation Drought Index
QTP The Qinghai–Tibet Plateau

AQM The high valley areas of Altun–Qilian Mountains
QHB The high mountain areas of Qaidam-Yellow River-Huangshui River Basin

KWKM The high mountain areas of Karakorum and Western Kunlun Mountain
CEKM The high mountain areas of Central and Eastern Kunlun Mountains

QP The lake and basin areas of Qiangtang Plateau

STR The mountains Sources of the Yangtze River, Yellow River, and Lancang River (Three Rivers
or Sanjiangyuan) and the valley bottom of the upper reaches of Three Rivers.

HMLY The high mountain areas of Himalayan
HDM The high mountain and valley areas of Hengduan Mountains

Appendix B

Table A2. Basic information of each geomorphological division.

Geomorphological
Division

Area (km2)
Annual Average

of TVDI
Annual Average of
Temperature (◦C)

Annual
Precipitation (mm)

Average
Elevation (m)

Average
Slope (◦)

AQM 182,475.56 0.55 −4.06 260.01 3768.06 5.55
QHB 231,433.86 0.66 2.18 250.69 3158.97 2.51

KWKM 207,715.72 0.55 −5.62 42.70 4765.07 8.70
CEKM 237,445.70 0.54 −4.40 262.23 4387.32 4.82

QP 511,338.20 0.59 −4.09 200.31 4988.01 2.70
STR 420,819.40 0.50 −3.59 513.88 4570.68 4.23

HMLY 513,158.23 0.59 −0.29 528.40 4492.26 8.99
HDM 316,219.62 0.52 2.07 699.36 3934.06 10.83
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Table A3. Dry-edge and wet-edge equations of eight geomorphological divisions from 2000 to 2019.

Geomorphological
Division

Year Dry-Edge Equation R2 Wet-Edge Equation R2

AQM

2000 Dy = 46.4 − 9.89*X 0.27 Wy = 11.7 + 11.3*X 0.50
2001 Dy = 48.6 − 15.2*X 0.68 Wy = 13.8 + 8.89*X 0.81
2002 Dy = 46.0 − 15.9*X 0.78 Wy = 11.7 + 9.81*X 0.79
2003 Dy = 43.3 − 6.96*X 0.35 Wy = 11.1 + 11.8*X 0.85
2004 Dy = 46.5 − 12.8*X 0.69 Wy = 11.4 + 11.1*X 0.57
2005 Dy = 46.6 − 12.6*X 0.81 Wy = 8.89 + 14.2*X 0.41
2006 Dy = 49.3 − 19.0*X 0.93 Wy = 12.1 + 11.7*X 0.75
2007 Dy = 50.4 − 18.7*X 0.70 Wy = 10.2 + 14.3*X 0.59
2008 Dy = 49.3 − 21.7*X 0.78 Wy = 11.0 + 11.6*X 0.66
2009 Dy = 42.5 − 6.92*X 0.27 Wy = 10.8 + 12.6*X 0.66
2010 Dy = 48.4 − 16.8*X 0.85 Wy = 9.60 + 15.5*X 0.59
2011 Dy = 43.4 − 10.1*X 0.60 Wy = 8.41 + 16.7*X 0.70
2012 Dy = 41.8 − 6.87*X 0.39 Wy = 8.60 + 14.1*X 0.71
2013 Dy = 47.2 − 15.2*X 0.62 Wy = 10.9 + 12.9*X 0.58
2014 Dy = 43.8 − 8.21*X 0.45 Wy = 11.5 + 10.5*X 0.59
2015 Dy = 47.1 − 15.9*X 0.63 Wy = 10.6 + 11.1*X 0.88
2016 Dy = 53.1 − 20.1*X 0.92 Wy = 14.5 + 8.93*X 0.52
2017 Dy = 50.1 − 22.7*X 0.82 Wy = 8.76 + 15.5*X 0.67
2018 Dy = 48.5 − 18.5*X 0.75 Wy = 8.97 + 12.7*X 0.59
2019 Dy = 45.2 − 12.1*X 0.69 Wy = 7.19 + 14.4*X 0.54

QHB

2000 Dy = 60.9 − 29.2*X 0.78 Wy = 12.8 + 7.97*X 0.52
2001 Dy = 57.7 − 25.7*X 0.69 Wy = 10.9 + 12.4*X 0.78
2002 Dy = 55.7 − 27.4*X 0.92 Wy = 11.3 + 10.0*X 0.57
2003 Dy = 54.3 − 17.7*X 0.59 Wy = 12.4 + 9.58*X 0.81
2004 Dy = 53.4 − 20.7*X 0.83 Wy = 10.9 + 11.2*X 0.90
2005 Dy = 56.0 − 27.9*X 0.92 Wy = 10.6 + 10.5*X 0.80
2006 Dy = 57.2 − 28.2*X 0.86 Wy = 14.6 + 7.29*X 0.74
2007 Dy = 59.0 − 30.4*X 0.79 Wy = 12.1 + 9.59*X 0.78
2008 Dy = 55.9 − 24.2*X 0.77 Wy = 12.5 + 9.22*X 0.71
2009 Dy = 54.5 − 23.6*X 0.80 Wy = 12.5 + 8.88*X 0.79
2010 Dy = 53.9 − 22.1*X 0.96 Wy = 13.0 + 5.95*X 0.14
2011 Dy = 56.4 − 26.5*X 0.86 Wy = 11.3 + 11.7*X 0.73
2012 Dy = 53.5 − 23.4*X 0.92 Wy = 9.76 + 12.6*X 0.91
2013 Dy = 56.5 − 27.4*X 0.87 Wy = 14.4 + 7.99*X 0.58
2014 Dy = 57.4 − 22.8*X 0.57 Wy = 12.4 + 9.00*X 0.61
2015 Dy = 57.6 − 28.3*X 0.84 Wy = 12.4 + 8.87*X 0.73
2016 Dy = 59.6 − 29.1*X 0.86 Wy = 15.2 + 6.56*X 0.63
2017 Dy = 56.5 − 25.8*X 0.82 Wy = 11.6 + 10.0*X 0.84
2018 Dy = 55.0 − 24.4*X 0.85 Wy = 10.3 + 9.28*X 0.75
2019 Dy = 56.1 − 28.3*X 0.91 Wy = 12.8 + 3.60*X 0.45

KWKM

2000 Dy = 55.9 − 44.6*X 0.75 Wy = −4.8 + 36.0*X 0.34
2001 Dy = 55.8 − 46.5*X 0.73 Wy = −6.4 + 44.8*X 0.38
2002 Dy = 53.3 − 38.6*X 0.78 Wy = −5.7 + 41.0*X 0.44
2003 Dy = 56.2 − 44.7*X 0.79 Wy = −5.9 + 39.0*X 0.41
2004 Dy = 54.6 − 43.4*X 0.79 Wy = −0.2 + 19.6*X 0.11
2005 Dy = 51.8 − 38.2*X 0.77 Wy = −7.4 + 38.5*X 0.44
2006 Dy = 56.1 − 45.8*X 0.72 Wy = −0.8 + 31.9*X 0.39
2007 Dy = 53.0 − 37.2*X 0.74 Wy = −0.6 + 37.0*X 0.34
2008 Dy = 52.1 − 36.2*X 0.77 Wy = −3.1 + 36.3*X 0.42
2009 Dy = 54.3 − 43.4*X 0.70 Wy = −4.7 + 40.6*X 0.39
2010 Dy = 52.8 − 40.6*X 0.82 Wy = −6.5 + 32.5*X 0.41
2011 Dy = 55.5 − 40.6*X 0.78 Wy = −2.8 + 31.4*X 0.28
2012 Dy = 56.2 − 45.1*X 0.83 Wy = −7.1 + 33.4*X 0.46
2013 Dy = 55.6 − 39.3*X 0.76 Wy−−3.1 + 35.8*X 0.31
2014 Dy = 53.5 − 38.3*X 0.79 Wy = −8.3 + 45.4*X 0.51
2015 Dy = 53.2 − 38.2*X 0.79 Wy = −7.3 + 35.4*X 0.33
2016 Dy = 54.9 − 38.9*X 0.81 Wy = −8.9 + 45.0*X 0.50
2017 Dy = 52.0 − 31.3*X 0.77 Wy = −2.9 + 27.2*X 0.31
2018 Dy = 55.7 − 37.0*X 0.76 Wy = −9.2 + 43.6*X 0.53
2019 Dy = 54.4 − 38.8*X 0.70 Wy = −6.0 + 32.0*X 0.40

125



Int. J. Environ. Res. Public Health 2022, 20, 7909

Table A3. Cont.

Geomorphological
Division

Year Dry-Edge Equation R2 Wet-Edge Equation R2

CEKM

2000 Dy = 49.7 − 17.7*X 0.65 Wy = 10.0 + 11.4*X 0.59
2001 Dy = 46.4 − 17.7*X 0.71 Wy = 11.6 + 8.75*X 0.67
2002 Dy = 44.7 − 13.8*X 0.77 Wy = 9.82 + 11.6*X 0.79
2003 Dy = 42.1 − 2.04*X 0.03 Wy = 9.56 + 11.1*X 0.77
2004 Dy = 42.1 − 8.66*X 0.70 Wy = 10.4 + 9.08*X 0.65
2005 Dy = 44.2 − 17.2*X 0.82 Wy = 10.9 + 6.97*X 0.39
2006 Dy = 47.9 − 18.9*X 0.76 Wy = 11.4 + 10.5*X 0.71
2007 Dy = 46.0 − 16.1*X 0.61 Wy = 10.5 + 9.32*X 0.71
2008 Dy = 42.8 − 9.09*X 0.37 Wy = 10.8 + 9.99*X 0.74
2009 Dy = 43.4 − 14.3*X 0.69 Wy = 5.75 + 14.1*X 0.59
2010 Dy = 44.0 − 12.7*X 0.71 Wy = 7.84 + 7.88*X 0.23
2011 Dy = 43.2 − 12.6*X 0.79 Wy = 10.2 + 10.6*X 0.74
2012 Dy = 45.4 − 18.0*X 0.88 Wy = 8.15 + 10.6*X 0.67
2013 Dy = 47.3 − 19.0*X 0.83 Wy = 10.4 + 10.9*X 0.67
2014 Dy = 45.4 − 10.4*X 0.26 Wy = 8.99 + 11.8*X 0.67
2015 Dy = 46.1 − 15.4*X 0.69 Wy = 11.1 + 9.57*X 0.72
2016 Dy = 46.9 − 14.6*X 0.71 Wy = 11.5 + 10.0*X 0.55
2017 Dy = 46.8 − 17.2*X 0.82 Wy = 8.92 + 10.2*X 0.62
2018 Dy = 43.5 − 14.3*X 0.81 Wy = 7.32 + 12.1*X 0.76
2019 Dy = 44.1 − 15.7*X 0.76 Wy = 6.38 + 10.5*X 0.52

QP

2000 Dy = 49.9 − 30.3*X 0.82 Wy = 6.68 + 14.1*X 0.61
2001 Dy = 47.3 − 29.5*X 0.87 Wy = 6.81 + 16.8*X 0.71
2002 Dy = 49.1 − 26.3*X 0.84 Wy = 7.04 + 16.5*X 0.69
2003 Dy = 48.3 − 30.0*X 0.88 Wy = 5.93 + 17.1*X 0.78
2004 Dy = 46.9 − 23.7*X 0.84 Wy = 7.46 + 15.2*X 0.68
2005 Dy = 49.4 − 28.8*X 0.86 Wy = 6.84 + 17.3*X 0.69
2006 Dy = 49.9 − 30.5*X 0.89 Wy = 6.90 + 17.9*X 0.66
2007 Dy = 4.9 − 21.5*X 0.65 Wy = 6.17 + 18.2*X 0.64
2008 Dy = 46.2 − 28.5*X 0.87 Wy = 5.29 + 17.0*X 0.74
2009 Dy = 50.5 − 26.2*X 0.80 Wy = 7.67 + 14.1*X 0.58
2010 Dy = 50.5 − 27.6*X 0.75 Wy = 2.17 + 22.1*X 0.68
2011 Dy = 47.8 − 30.3*X 0.86 Wy = 6.33 + 15.7*X 0.65
2012 Dy = 50.7 − 26.7*X 0.75 Wy = 5.47 + 17.7*X 0.65
2013 Dy = 51.5 − 33.1*X 0.85 Wy = 8.32 + 12.4*X 0.58
2014 Dy = 48.8 − 23.1*X 0.65 Wy = 7.07 + 12.7*X 0.57
2015 Dy = 49.7 − 30.0*X 0.78 Wy = 7.17 + 16.5*X 0.61
2016 Dy = 49.8 − 30.3*X 0.80 Wy = 6.71 + 14.5*X 0.71
2017 Dy = 45.4 − 21.7*X 0.61 Wy = 6.75 + 12.9*X 0.64
2018 Dy = 52.6 − 28.5*X 0.62 Wy = 8.08 + 7.84*X 0.67
2019 Dy = 50.9 − 35.6*X 0.73 Wy = 8.23 + 6.56*X 0.62

STR

2000 Dy = 43.9 − 6.73*X 0.33 Wy = 4.06 + 17.0*X 0.72
2001 Dy = 42.0 − 8.80*X 0.67 Wy = 2.24 + 20.0*X 0.78
2002 Dy = 43.9 − 6.73*X 0.33 Wy = 4.06 + 17.0*X 0.72
2003 Dy = 39.8 + 3.17*X 0.07 Wy = 4.70 + 14.9*X 0.66
2004 Dy = 42.6 − 4.75*X 0.46 Wy = 5.31 + 13.6*X 0.70
2005 Dy = 44.1 − 13.5*X 0.87 Wy = 5.95 + 12.4*X 0.86
2006 Dy = 42.8 − 8.80*X 0.57 Wy = 6.79 + 14.2*X 0.78
2007 Dy = 42.7 − 2.36*X 0.03 Wy = 5.65 + 16.3*X 0.79
2008 Dy = 37.3 + 6.57*X 0.54 Wy = 2.18 + 16.1*X 0.44
2009 Dy = 43.8 − 8.60*X 0.56 Wy = 3.96 + 18.0*X 0.87
2010 Dy = 42.4 − 3.37*X 0.22 Wy = 0.63 + 21.1*X 0.74
2011 Dy = 393 − 4.56*X 0.34 Wy = 5.75 + 13.8*X 0.66
2012 Dy = 42.6 − 9.66*X 0.71 Wy − 5.89 + 8.53*X 0.27
2013 Dy = 44.8 − 12.2*X 0.78 Wy = 7.45 + 15.2*X 0.82
2014 Dy = 44.1 − 9.94*X 0.42 Wy = 0.85 + 19.4*X 0.81
2015 Dy = 43.7 − 7.17*X 0.70 Wy − 6.60 + 14.8*X 0.75
2016 Dy = 47.8 − 11.3*X 0.69 Wy = 3.75 + 19.6*X 0.79
2017 Dy = 45.3 − 11.4*X 0.69 Wy = 5.24 + 14.2*X 0.75
2018 Dy = 45.6 − 9.84*X 0.38 Wy = 4.46 + 15.0*X 0.76
2019 Dy = 42.6 − 9.37*X 0.65 Wy = 4.54 + 14.0*X 0.65
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Table A3. Cont.

Geomorphological
Division

Year Dry-Edge Equation R2 Wet-Edge Equation R2

HMLY

2000 Dy = 53.1 − 20.3*X 0.82 Wy = −12.0 + 17.6*X 0.73
2001 Dy = 51.9 − 21.6*X 0.88 Wy = −7.3 + 16.5*X 0.82
2002 Dy = 53.5 − 22.4*X 0.92 Wy−−8.9 + 18.2*X 0.76
2003 Dy = 51.7 − 20.2*X 0.93 Wy = −12.0 + 16.7*X 0.73
2004 Dy = 52.0 − 19.2*X 0.87 Wy = −9.0 + 13.9*X 0.70
2005 Dy = 52.9 − 21.5*X 0.87 Wy = −10.0 + 14.5*X 0.75
2006 Dy = 52.0 − 20.9*X 0.92 Wy = −3.6 + 9.67*X 0.46
2007 Dy = 56.2 − 22.6*X 0.68 Wy = −9.1 + 18.3*X 0.73
2008 Dy = 48.9 − 16.9*X 0.92 Wy = −11.0 + 18.3*X 0.76
2009 Dy = 55.2 − 21.2*X 0.71 Wy = −9.2 + 19.0*X 0.81
2010 Dy = 56.1 − 23.8*X 0.81 Wy = −9.0 + 14.2*X 0.71
2011 Dy = 50.6 − 19.6*X 0.89 Wy = −8.3 + 11.9*X 0.69
2012 Dy = 54.3 − 22.1*X 0.89 Wy = −13.0 + 17.6*X 0.73
2013 Dy = 52.7 − 20.4*X 0.95 Wy = −4.7 + 11.6*X 0.48
2014 Dy = 54.4 − 21.1*X 0.77 Wy = −12.0 + 19.6*X 0.83
2015 Dy = 52.5 − 19.9*X 0.88 Wy = −8.8 + 14.3*X 0.66
2016 Dy = 51.6 − 18.6*X 0.87 Wy = −3.1 + 10.0*X 0.41
2017 Dy = 51.4 − 19.0*X 0.87 Wy = −5.7 + 14.3*X 0.74
2018 Dy = 55.4 − 22.9*X 0.87 Wy = −8.7 + 15.7*X 0.83
2019 Dy = 54.5 − 21.9*X 0.78 Wy = −11. + 18.3*X 0.84

HDM

2000 Dy = 47.6 − 14.8*X 0.43 Wy = −1.1 + 6.43*X 0.57
2001 Dy = 48.3 − 16.9*X 0.60 Wy = 2.75 + 8.98*X 0.27
2002 Dy = 48.3 − 15.9*X 0.50 Wy = 4.75 + 6.75*X 0.43
2003 Dy = 51.4 − 17.0*X 0.42 Wy = −0.1 + 10.4*X 0.50
2004 Dy − 45.1 − 12.1*X 0.38 Wy = 1.06 + 4.81*X 0.23
2005 Dy = 51.0 − 18.1*X 0.43 Wy = 0.87 + 4.39*X 0.24
2006 Dy = 50.3 − 18.2*X 0.59 Wy = 7.95 + 2.48*X 0.09
2007 Dy = 47.8 − 14.3*X 0.48 Wy = −0.7 + 11.1*X 0.42
2008 Dy = 48.2 − 16.4*X 0.50 Wy = −3.1 + 13.5*X 0.63
2009 Dy = 49.3 − 14.4*X 0.38 Wy = 5.60 + 2.31*X 0.07
2010 Dy = 47.6 − 14.3*X 0.37 Wy = 2.64 + 6.33*X 0.46
2011 Dy = 47.9 − 16.4*X 0.65 Wy = 4.88 + 1.54*X 0.02
2012 Dy = 49.6 − 13.1*X 0.26 Wy = 2.93 + 3.44*X 0.12
2013 Dy = 49.3 − 14.5*X 0.33 Wy = 7.73 + 5.00*X 0.20
2014 Dy = 49.1 − 12.0*X 0.24 Wy = 2.89 + 4.76*X 0.17
2015 Dy = 53.2 − 17.9*X 0.40 Wy = 6.14 + 1.77*X 0.02
2016 Dy = 46.8 − 12.8*X 0.30 Wy = 3.83 + 3.42*X 0.15
2017 Dy = 48.6 − 14.3*X 0.37 Wy = 3.43 + 8.85*X 0.56
2018 Dy = 47.7 − 12.6*X 0.30 Wy = −0.0 + 7.89*X 0.54
2019 Dy = 48.9 − 12.0*X 0.23 Wy = 3.13 + 6.85*X 0.30
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Abstract: Identifying the ecological evolution trends and vegetation driving mechanisms of giant
panda national parks can help to improve the protection of giant panda habitats. Based on the
research background of different geomorphological zoning, we selected the MODIS NDVI data from
2000 to 2020 to analyze the NDVI trends using a univariate linear model. A partial correlation analysis
and multiple correlation analysis were used to reveal the influence of temperature and precipitation
on NDVI trends. Fourteen factors related to meteorological factors, topographic factors, geological
activities, and human activities were selected, and the Geographically Weighted Regression model
was used to study the mechanisms driving NDVI change. The results were as follows: (1) The
NDVI value of Giant Panda National Park has fluctuated and increased in the past 21 years, with
an annual growth rate of 4.7%/yr. Affected by the Wenchuan earthquake in 2008, the NDVI value
fluctuated greatly from 2008 to 2012, and reached its peak in 2018. (2) The NDVI in 94% of the
study area improved, and the most significant improvement areas were mainly distributed in the
northern and southern regions of Southwest Subalpine and Middle Mountain and the Xiaoxiangling
area. Affected by the distribution of fault zones and their local activities, vegetation degradation
was concentrated in the Dujiangyan–Anzhou area of Hengduan Mountain Alpine Canyon. (3) The
Geographically Weighted Regression analysis showed that natural factors were dominant, with
climate and elevation having a double-factor enhancement effect, the peak acceleration of ground
motion and fault zone having a superimposed effect, and river density and slope having a double
effect, all of which had a significant impact on the NDVI value of the surrounding area. To optimize
the ecological security pattern of the Giant Panda National Park, we recommended strengthening the
construction of ecological security projects through monitoring meteorological changes, preventing,
and controlling geo-hazards, and optimizing the layout and intensity of human activities.

Keywords: vegetation; geographically weighted regression; climate change; Wenchuan earthquake;
ecological security

1. Introduction

The giant panda is an important national protected animal in China, and changes in
its habitat quality have received extensive attention from researchers. Affected by urban
and rural construction activities, the fragmentation of giant panda habitats is serious, and
the natural and anthropogenic threats to the habitat quality continue to intensify [1–3].
National parks are key areas for strictly protecting biodiversity in various countries [4], with
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the purpose of achieving effective ecological protection, rational utilization of resources
and sustainable social and economic development [5,6]. In order to adapt to the multi-
departmental collaborative management of giant panda reserves, the Chinese government
proposed the establishment of the China Giant Panda National Park (CGPNP) in 2017
and announced its formal establishment in 2021 [7]; this balances the needs of regional
ecological protection and socio-economic development and continuously improves the
ability of biodiversity protection to balance the needs of regional ecological protection
and socio-economic conservation [8,9]. Vegetation in CGPNP is affected by the complex
interaction of ecological elements such as soil, atmosphere, and water, and is also an
important medium for natural ecosystems and human production activities [10]. Among
many types of remote sensing data, the Normalized Difference Vegetation Index (NDVI)
is a sensitive parameter of surface vegetation coverage and vegetation growth which
reflects the difference between the radiation absorption in the red spectral region caused by
chlorophyll and the reflectivity of canopy structure caused by the NIR spectral region, and
it can effectively characterize the vegetation environment and its changes and effects [11,12].
The NDVI generated from remote sensing data have the advantage of a long time series,
wide coverage, and high spatial resolution [13], and there are many cases of NDVI being
used to monitor national park vegetation, ecological environments and their changes all
over the world, including passive monitoring over a long time series [14], vegetation
and climate coupling characteristics research [15], vegetation phenology characteristics
research [16], and so on.

Many studies have been conducted on vegetation changes in CGPNP reserves in
China [17], but these study areas consisted mainly of independent reserves in CGPNP,
and the data used are mostly SAR images [18–20]. Although the use of SAR image improves
the accuracy of image recognition, the coverage area of SAR images is small and the period is
limited, so it is not suitable for long-term dynamic monitoring of vegetation. The Moderate
Resolution Imaging Spectroradiometer (MODIS) can better solve this problem and can be
used for monitoring the vegetation environment and its changes in CGPNP. The research on
the trends of changes in vegetation environments is the key component of dynamic moni-
toring, and the methods involved include the linear regression analysis [21], Mann–Kendall
test [22,23], BFAST trend analysis and Theil–Sen median slope trend analysis [24]. Among
these, the linear regression analysis is a more effective method in this kind of research.

The driving mechanisms of climate and other factors based on the trends of changes
in NDVI form the basis for the formulation of national park protection strategies. Studying
the response mechanism of climate change to NDVI changes is of great significance in
predicting vegetation dynamics [25]. In the global research on the relationship between veg-
etation and climate, the climate-driving mechanisms in different regions show significant
geographical differentiation [26–29]. The CGPNP is located in a climate transition zone,
and climate drives NDVI with great complexity and uncertainty. Most previous studies on
NDVI drivers in this region have only considered climatic factors. For example, Lin et al.
focused on the two factors of temperature and precipitation in their research on NDVI-
driving forces in North China [30], and Liu et al. also only considered the spatial charac-
teristics of climate factors in the study of vegetation change in China [31]. The impact of
geological activities, topography, and human activities was not considered sufficiently [32].
Affected by the 12 May 2008 Wenchuan earthquake and its triggered geo-hazards, the local
NDVI decreased rapidly and the habitat quality deteriorated seriously [33,34]. In the more
than 10 years since the earthquake, the ecological geological environment has undergone
great changes, which has increased the spatial instability and complexity of the analysis of
the driving forces of NDVI changes [35]. At present, there are many research methods on
NDVI’s driving forces, such as the enhanced regression tree model [36], the Geographically
Weighted Regression (GWR) model [37], the correlation analysis method [38] and residual
trend analysis [39], most of which are only used for unilateral aspects such as climate
factors, ignoring the correlation and coupling between multiple factors and failing to take
into account the spatial difference of the action of driving factors. To study the driving
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mechanisms of NDVI changes, the GWR model is a suitable choice because it enables
one to change the parameter settings on the local scale, facilitates the determination of
local coefficients, and can solve the problems of spatial instability and scale dependence
to a certain extent in the analysis [40,41]. The GWR model can reveal the spatiotemporal
variability between each driving factor and vegetation activity by studying the spatial
non-stationary relationship between each driving factor and NDVI change value.

Aiming at the complex eco-geological environment of CGPNP, the MODIS NDVI data
products were selected, and the Savitzky–Golay filter was used to construct NDVI serial
data from 2000 to 2020. In this study, the univariate linear model was used to monitor
the interannual NDVI trends in the study area based on geomorphological zoning. The
GWR model was used to identify the driving mechanisms of NDVI trends by integrating
the effects of natural and human factors. Finally, combined with the temporal and spatial
differentiation characteristics and driving mechanisms of NDVI change, eco-geological
environmental protection countermeasures were proposed according to the local conditions.

2. Study Area and Data Processing

2.1. Study Area

The CGPNP is located in the ecological barrier area of the Sichuan–Yunnan Loess
Plateau in the “two screens and three belts” ecological barrier area in China’s ecological
security strategy [42] with the largest population, protected area type and quantity in
China [43]. The establishment of CGPNP brings together various nature reserves and
increases the connectivity of giant panda habitats [44–46]. From northeast to southwest,
the Sichuan Area of China Giant Panda National Park (SCOCGPNP) consists of seven
cities (prefectures), including 19 counties (cities and districts). It spans five areas: Qin-
ling Mountains, Baishui River, Minshan Mountain, Qionglai Mountain–Daxiangling, and
Xiaoxiangling (Figure 1a). The SCOCGPNP ranges from 102◦27′ to 105◦57′ E and 29◦42′
to 33◦34′ N, covering an area of 20,177 km2. As the study area is located in the transition
area from a subtropical zone to a warm temperate zone (Figure 1b) [47], the average annual
precipitation is 830 mm, and the average temperature is 10–17 ◦C. In the study area, the
altitude decreases from northwest to southeast, and the vertical distribution of vegetation is
obvious: subtropical evergreen deciduous forest, evergreen deciduous broad-leaved mixed
forest, temperate coniferous forest, cold temperate coniferous forest, shrub, and meadow.

In order to fully describe the influence of geomorphology on the basement of NDVI and
its changes, the study area was divided into five geomorphological areas (Figure 1c) [48],
including the Baishui River–Minshan Area of Southwest Subalpine and Middle Mountain
(BSMS), the Minshan Area of Hengduan Mountain Alpine Canyon (MS), the Dujiangyan–
Anzhou Area of Hengduan Mountain Alpine Canyon (DA), the Daxiangling Area of
Hengduan Mountain Alpine Canyon (DXL), and the Daxiangling-Xiaoxiangling Area of
Southwest Subalpine and Middle Mountain (DXLXXL).

2.2. Data Sources
2.2.1. MODIS NDVI Data

In this research, the Moderate-resolution Imaging Spectroradiometer (MODIS) spectral
imager on the EOS/Terra satellite was used to obtain MOD13A1 products, among which
MODIS VI products can be used to monitor the terrestrial photosynthetic vegetation
activities of the earth and support the phenology and change monitoring of vegetation
in national parks. The NDVI data from 2000 to 2020 in this research were downloaded
from the official website of NASA (https://earthdata.nasa.gov/, accessed on 20 February
2021). The product used in this research was the collection 6 data set. Compared with the
collection V data set, the 8-day surface reflection data (pre-synthesized based on the Terra
and Aqua data) were used, the CV-MVC synthesis method was modified, and the necessary
SDS was adjusted to reflect the new input data flow, which improves the change-detection
ability of the product [49]. We selected the best available pixel value from the data set

133



Int. J. Environ. Res. Public Health 2022, 20, 6722

collected in 16 days with a resolution of 500 m, resulting in NDVI values with low cloud
cover and low viewing angles [50].

 

Figure 1. (a) Location of the study area. (b) Climatic zoning. (c) Geomorphological zoning.

2.2.2. Driving Factors

The GWR model was selected to explore the driving mechanism of various factors
influencing NDVI trends, and five categories and 14 variables were selected (Table 1).

As the main controlling factor of vegetation structure, composition, and distribution,
there is a strong correlation between precipitation and NDVI [51]. Since temperature can
regulate the photosynthesis of vegetation [52], annual mean temperature and variability
were used as analytical indicators (Figure 2a–d).

Located in a geomorphological boundary area, the study area has complex geomor-
phology. Among the topographic factors, elevation often determines the temperature
and CO2 content of vegetation growth (Figure 2e), slope represents soil moisture and
sunlight exposure for vegetation growth (Figure 2f), and aspect also has a certain impact
on vegetation lighting conditions [53] (Figure 2g).

Located near the Longmenshan fault zone, the crustal activity in the study area affects
the growth of vegetation, the looseness of soil, and the stability of its growth state. The
Euclidean distance from fault (Figure 2h) and the peak acceleration of ground motion
(Figure 2i) were used to characterize the activity of the geological activities [54].
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Table 1. Data sources.

Variable Class
Variable

Name
Definition and Units Data Sources

Spatial
Resolution

Climatic

TEM_MN Annual mean precipitation
2000–2020 (mm/yr)

National Qinghai
Tibet Plateau
scientific data

center a

1 km

PRE_MN Annual mean temperature
2000–2020 (◦C/yr) 1 km

TEM_BT

t-test grading of precipitation
trends (OLS)

during the growing season
2000–2020

1 km

PRE_BT
t-test grading of temperature

trends (OLS) during the growing
season 2000–2020

1 km

Geomorphological

ELEVATION Elevation represents macroscopic
geomorphology (m)

Geospatial data
cloud b

30 mSLOPE Slope represents groundcutting
condition (◦)

ASPECT Aspect represents
ground orientation

Geological activities

ED_FAULT Euclidean distance from fault (m) China Geological
Survey c Vector

PGA Peak ground acceleration (g) China earthquake
administration d Vector

Human activity
ED_BLAND Euclidean distance from

built-up land (m)
Data Sharing and
Service Portal e 30 m

DEN_ROAD Road density (km/km2)
National Geomatics

Center of China f Vector

Others

DEN_RIVER River density (km/km2)
National Geomatics

Center of China f Vector

LUCC Land-use change index European Space
Agency g 300 m

a http://data.tpdc.ac.cn/zh-hans/ (accessed on 25 February 2021); b http://www.gscloud.cn/ (accessed on 5
May 2021); c https://www.cgs.gov.cn/ (accessed on 20 May 2021); d https://www.cea.gov.cn/ (accessed on 20
May 2021); e http://data.casearth.cn/en/ (accessed on 16 April 2021); f http://www.ngcc.cn/ngcc/ (accessed on
18 April 2021); g https://www.esa.int/ (accessed on 25 April 2021).

Human activities around construction land, such as logging, grazing, fire, etc., which
disturb the original structure of the vegetation landscape, are closely related to changes in
the NDVI [55]. In addition, most of the study area is mountainous. Therefore, compared
with nighttime light data and POI data, choosing the Euclidean distance for construction
land can more intuitively characterize the intensity of human activities, and can exclude er-
rors caused by terrain fluctuations and weak human activities (Figure 2j). The construction
and use of roads have a devastating impact on the ecological environment, and the towns
and villages connected by them imply the impact of human activities. The denser the road
distribution (Figure 2k), the more serious the damage to the vegetation [31]; so the road
density was selected as one influencing factor. Due to the large proportion of forest land
and mountainous terrain in the study area, the dynamic change in human activities was
small, so the static data of 2020 were selected to characterize the impact of human activities.
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Figure 2. Driving factors used for GWR Model. (a) Temperature mean value; (b) temperature slope;
(c) precipitation mean value; (d) precipitation slope; (e) elevation; (f) slope; (g) aspect; (h) Euclidean
distance from fault; (i) seismic peak acceleration; (j) Euclidean distance from built-up land; (k) road
density; (l) river density; (m) land-use change index; (n) NDVI in 2000.

The distribution of rivers affects the stability of regional NDVI and controls ecological
changes and landscape dynamics [56]; therefore, the river density was chosen to charac-
terize its impact (Figure 2l). Different land-use types represent different NDVI values and
different NDVI change possibilities. For example, the conversion of construction land or
cultivated land to grassland or forest land is beneficial to the improvement of NDVI [57].
In the same geographical environment, the order of NDVI values from high to low is
forest land > cultivated land > grassland [58]; whereas a negative value of NDVI usually
represents water [59]. Referring to this law, the forest land, cultivated land, grassland,
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construction land, water bodies, and other land types in the initial and final years were
designated as 25, 15, 10, 0, −5, and 0, respectively (Figure 2m). A measure of the transfor-
mation of land-use types was obtained by subtracting the initial year from the final year.
The NDVI value of the starting year in 2000 was used to characterize the vegetation trends
and to assess whether the regional vegetation had reached a saturated state [60] (Figure 2n).

Different driving factors have spatial differences in different partitions (Table A1)
and applying this fact to the GWR model is conducive to the discussion of the driving
mechanisms of NDVI.

2.3. Method
2.3.1. Data Preprocessing

We selected the annual data synthesized from monthly data from 2000 to 2020 as the
research data of long time series. There are various synthesis methods available for NDVI
data, such as the average value method (AVM), maximum value composite (MVC), time
series reconstruction method, and so on. To remove the NDVI outliers in multi-temporal
images to a certain extent [61], the MVC method was selected to synthesize the data with a
period of 16 days to obtain the monthly NDVI value from 2000 to 2020, so as to eliminate
the deviation caused by atmospheric interference, solar elevation, cloud coverage, etc. To
eliminate the noise caused by sensor error or cloud cover in data acquisition, Savitzky–
Golay filtering was carried out on the NDVI value of continuous time series, and the NDVI
value images of 21 consecutive years from 2000 to 2020 were obtained (Figure A1).

2.3.2. NDVI Change Detection

The univariate linear regression analysis model monitors the NDVI time series through
the regression time function. The model can calculate the interannual variability of vegeta-
tion, which is the slope of the linear regression equation [62]. The calculation formula is
as follows:

θslope =
n × ∑n

i=1 i × NDVIi − ∑n
i=1 i ∑n

i=1 NDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where n represents the time span and i represents the NDVI value in the ith year; when
θslope > 0, it indicates that NDVI is in an improved state, and when θslope < 0, it indicates
that NDVI is degraded.

The t-test was used to obtain the significance of the temporal trend of NDVI:

t =
x1 − x2

s ×
√

1
n1

+ 1
n2

(2)

s =

√
n1S2

1 + n2S2
2

n1 + n2 − 2
(3)

where x1 and x2 represent the mean of the two subsamples, n1 and n2 represent the
number of the two subsamples and S1 and S2 represent the standard deviation of the
two subsamples.

Through the above process, the change in slope of NDVI and t-test results were
obtained. The θslope was divided into improvement and degradation, with the value of
0 as the boundary. Two confidence levels of 0.01 and 0.05 were selected in the t-test to
evaluate the significance of the change in NDVI. A p-value of 0.01 < p < 0.05 was considered
significant, p < 0.01 was extremely significant, and p > 0.05 was considered insignificant. The
combination of the two can be used to divide the NDVI trend into six categories: extremely
significant degradation, significant degradation, insignificant degradation, insignificant
improvement, significant improvement, and extremely significant improvement (Table 2).
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Table 2. Significance classification criteria.

θslope p Significance Test Classification

θslope< 0
p ≤ 0.01 Extremely significant degradation

0.01 < p ≤ 0.05 Significant degradation
p > 0.05 Insignificant degradation

θslope> 0
p > 0.05 No significant improvement

0.01 < p ≤ 0.05 Significant improvement
p ≤ 0.01 Extremely significant improvement

2.3.3. NDVI Climate-Driven Analysis

In order to describe the correlation between NDVI, precipitation, and temperature,
the partial correlation coefficient and multiple correlation coefficient were selected as
quantitative indicators to test significance, and the study area was divided into different
climate-driving types according to the test results.

A partial correlation analysis can measure the correlation between two factors under
the exclusion of other factors [63]. The formula for calculating the partial correlation
coefficient between temperature, precipitation, and NDVI is as follows:

r123 =
r12 − r13 ∗ r23√

(1 − r13
2) ∗ (1 − r232)

(4)

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∗ ∑n
i=1(yi − y)2

(5)

where r12, r13, and r23 are the correlation coefficients between NDVI and temperature,
NDVI and precipitation, and temperature and precipitation; r123 is the partial correlation
coefficient between the two parameters based on the third parameter.

A statistically significant confidence level of 0.05 was selected, and a t-test was per-
formed on the results of partial correlation analysis to obtain the significance between
climate-driving factors.

t =
r123√

1 − r123
2

√
n − m − 1 (6)

where n is the number of samples and m is the independent variable.
A multiple correlation analysis was used to study the degree of correlation between

NDVI and precipitation and temperature, thereby revealing the driving mechanism of
climate on NDVI changes.

rx,yz =
√

1 − (1 − r2xy
)(

1 − r2xz,y
)

(7)

A significant F-test was performed on the results of the multiple correlation analysis:

F =
r2

x,yz

1 − r2x,yz
× n − k − 1

k
(8)

where n is the number of samples and k is the number of independent variables.
Based on the existing precipitation, temperature, and NDVI data, a partial correlation

and multiple correlation analysis were carried out to test the correlation of the two coef-
ficients. In the partial correlation analysis, the t-test with a confidence level of 0.05 was
used to divide the precipitation-driving type and temperature-driving type pixel by pixel.
In the multiple correlation analysis, the F-test with a confidence level of 0.01 was used to
determine whether it was a climate-driven region. The combination of the two can be used
to obtain the climate-driven zoning map in the study area (Table 3).
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Table 3. Zoning criteria for climate-driving factors.

Driven Type
Zoning Criteria

r NDVI P, T *a r NDVI T, P *b r NDVI P, T *c

Precipitation-driven t ≥ t0.05 *1 F ≥ F0.01 *2

Temperature-driven t ≥ t0.05 F ≥ F0.01
Temperature- and precipitation-driven t ≥ t0.05 t ≥ t0.05 F ≥ F0.01

Other driving modes F ≤ F0.01

*a Partial correlation coefficient between NDVI and temperature. *b Partial correlation coefficient between NDVI
and precipitation. *c Multiple correlation coefficient between precipitation and temperature. *1 Confidence t-test
significance level of 0.05. *2 Confidence F-test significance level of 0.01.

2.3.4. NDVI-Driving Force Analysis Based on the GWR Model

The GWR model, which is a spatial decomposition of traditional regression models,
can be extended via the estimation of local parameters. The parameters of each spatial
point in the entire model are independently quantified, which is often used to test the
existence of spatial non-stationarity in the relationship between dependent variables and
independent variables [64]. The model can be used to characterize the effects of geology,
meteorology, and human activities on vegetation coverage at different spatial locations.
The GWR technique extends the traditional global regression by adding a geolocation
parameter, and the formula is as follows:

yi = βo (μi, vi) +
p

∑
k=1

βk(μi, vi)xik + εi, i = 1, 2, . . . n (9)

where yi is the dependent variable, x is the independent variable of the explanatory factor,
β0(μi, vi) represents the intercept at position i, βk(μi, vi) represents the local parameter
estimation of the explanatory variable xik at position i, and εi is the random error term at
point i.

The estimated coefficients of GWR are weighted according to the observations and
the spatial proximity of a particular point i. The parameters can be estimated using the
rectangular equation:

β̂(μ, v) =
(

XTW(μi, vi)X
)−1

XTW(μi, vi) Y (10)

where β̂(μ, v) represents the unbiased estimate of the regression coefficient β, W(μi, vi)
is the weighting matrix, and X and Y are the matrices of independent and dependent
variables. W(μi, vi) ensures that observations close to a specific location have greater
weight, expressed using a Gaussian weighted kernel function:

wij = exp
(
−dij

b2

)
(11)

where wij represents the weight of observation j at position i, dij represents the Euclidean
distance between regression point i and adjacent observation j, and b represents the basic
width of the kernel function.

Stationarity exists when the variable xik does not vary with position i, and the GWR-
based stationarity index is used to estimate spatial stationarity [65]:

SI =
βGWR_iqr

2 × GLM_se
(12)

where SI is the stationarity index, βGWR_iqr is the standard error interquartile range of the
GWR coefficient and GLM_se is the standard error of the global regression analysis. When
SI < 1, the explanatory variable y and the dependent variable x achieve spatial stationarity.
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AIC can be used to determine the significance of the coefficients to compare relative
measures of model performance, the smaller the AIC, the more reliable the model is, and
AICc represents the limited sample size correction result of the AIC [66].

AICc = 2nIn(σ̂) + nln(2π) + n
(

n + tr(S)
n − 2 − tr(S)

)
(13)

where n is the number of samples, σ̂ is the estimated value of the residual standard
deviation, tr(S) represents the trajectory of the hat matrix, and when the AICc value is lower
than three, the model performs better.

To study the driving mechanisms of NDVI in this study we used the local regression
method in the GWR Model, taking 14 driving factors related to climate factors, terrain
factors and geology and geomorphology as independent variables. In addition, the sig-
nificance grading result of the NDVI value was used as the dependent variable. Among
them, insignificant degradation, insignificant improvement, significant improvement, and
extremely significant improvement were assigned as −1, 1, 2, and 3 respectively to repre-
sent the change in NDVI. Thus, the estimation coefficients of different factors on NDVI at
more than 20,000 sampling points were obtained. To control the accuracy of the estimated
coefficients, the outliers of the estimated coefficients of each driving factor were deleted,
and the distribution map of the estimated coefficients was obtained through interpolation.

3. Results

3.1. Spatiotemporal Characteristics of NDVI Trends
3.1.1. Temporal Characteristics of NDVI Trends

The average value of NDVI in the whole region from 2000 to 2020 generally displayed
an upward trend (Figure 3). The NDVI value changed from 0.40 to 0.51 over 21 years,
roughly increasing by about 0.11, but the R2 value was smaller, at 0.486. The variation in
the mean value of NDVI had a small amount of fluctuation, and the fluctuation period was
about 3 years, reaching a minimum value in 2012 and a maximum value in 2018. Affected
by the Wenchuan earthquake and secondary geo-hazards, the NDVI value of the whole
region was in a continuous downward trend from 2009 to 2012, and gradually increased in
the following years. Although the NDVI of the whole region was generally on the rise, the
variation characteristics of NDVI in each subregion were different. Among these, the NDVI
value in DA generally showed a downward trend, with a serious and continuous decline
from 2007 to 2012 and reached the lowest value of 0.3136 in 2012. In the past 21 years,
NDVI values in other regions have been rising, but due to the influence of temperature, the
NDVI values in the whole region decreased significantly in 2012.

Figure 3. Average value of NDVI in different geomorphological zones from 2000 to 2020.

To obtain the correlation of the NDVI trends and average values between different
zones, we conducted a Pearson analysis on the variations in the average NDVI values
between different zones from 2000 to 2020 (Figure 4). Except for DA, the correlation
coefficient between NDVI trends in the whole area and each area reached more than 0.85.

140



Int. J. Environ. Res. Public Health 2022, 20, 6722

Affected by the surrounding crustal movement, the variation in the NDVI value in DA was
unstable, and the correlation coefficient with other areas was low, ranging from 0.27 to 0.59.
Due to the low altitude, suitable temperature and sufficient precipitation, the correlation
coefficients of BSMS and DXLXXL with the whole region reached 0.96 and 0.97, respectively,
which can better represent the NDVI trends in the whole region.

Figure 4. Correlation analysis of NDVI mean values in different geomorphological zones.

3.1.2. Spatial Characteristic of NDVI Trends

There were few human activities in the SCOCGPNP, and construction land accounted
for only 0.6%, so the distribution of NDVI was mainly affected by natural factors. In the
study area, the high NDVI values were mainly distributed in the BS, the eastern part of
BSMS, the eastern part of DXL and other places with lower altitudes (Figure 5a). Affected
by high altitude, the western region has barren vegetation, covered glaciers and low annual
precipitation, with an annual precipitation level below 1000 mm all year. The average
temperature in some areas was lower than 0 ◦C, and the basic conditions for vegetation
growth were not met. Therefore, the grassland area accounted for more and the woodland
accounted for less growth. The overall value of NDVI showed a decreasing trend from
northwest to southeast.

Figure 5. Annual average value of NDVI and its change from 2000 to 2020; (a) NDVI average value;
(b) NDVI θslope; (c) NDVI trends.

To analyze the spatial improvement and degradation of NDVI values in the study
area, in this study we calculated the NDVI variability (Figure 5b), and then divided
the calculated NDVI variability per pixel into four levels according to the significance
classification standards (Figure 5c) to obtain the spatial heterogeneity of the NDVI trends
over 21 years. During the period from 2000 to 2020, the NDVI trends showed an overall
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trend of improvement, and a vegetation coverage rate of 94% of the study area also showed
a trend of improvement with an annual growth rate of about 4.7%/yr. The proportion
of non-significantly degraded areas was 6%, mainly distributed in DA. The land-use
types consisted mainly of shrubs and grasslands, and these were close to the Wenchuan
earthquake-generating fault zone, which is prone to secondary geo-hazards. The extremely
significant improvement area accounted for 47% of the whole area, mainly distributed in
the north of BSMS, the southwest of DXLXXL, and the XXL area, which had high NDVI
values, abundant precipitation, and high temperature. The significant improvement area
accounted for 47% of the whole area, with scattered areas of non-significant improvement
and extremely significant improvement, and most of the land-use types were classed as
forest land. The SCOCGPNP, from northwest to southeast, is located in a transition zone
from a subtropical zone to a warm temperate zone and a transition zone from the Qinghai
Tibet Plateau to the Sichuan Basin. Therefore, the NDVI trends can be roughly divided into
the northwest region and southeast region, and the temperature in the southwest region is
low all year, which is not conducive to the growth of vegetation, whereas the temperature
in the southeast region is high all year, especially in the south.

3.1.3. Verification of NDVI Trends

To test the accuracy of the NDVI trend analysis, we selected five verification areas in
different nature reserves for accuracy verification (Figures 5c and A2). Figures show that
the Landsat Image of each verification area is consistent with the change trend of vegetation
coverage calculated by MODIS NDVI data. In addition, due to the significant degradation
of DA, the images of 2000, 2007, 2008, 2009, and 2020 were selected to verify the vegetation
changes before and after the Wenchuan earthquake of 12 May 2008. The selected images are
Landsat 5 images synthesized by bands 3, 2, and 1 in 2000, 2007, 2008, 2009 and Landsat 8
images synthesized by bands 4, 3, and 2 in 2020 (https://earthengine.google.com/, accessed
on 10 May 2022). In DA, the NDVI value changed greatly from 2007 to 2009 (Figure 6).
Due to the influence of the Wenchuan earthquake, the relatively strong vibration around
the fault caused varying degrees of vegetation damage [67]. Secondary disasters such as
landslides and collapses caused by the earthquake in this area gradually transformed the
forest land into grassland or bare land [68,69].

Figure 6. Remote sensing images of DA in 2000, 2007, 2008, 2009, and 2020.
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3.2. NDVI Driver Analysis
3.2.1. NDVI Climate Driver Analysis

From 2000 to 2020, the average value of NDVI, annual precipitation, and annual
temperature all showed an upward trend (Figure 7). The average range of NDVI was
mainly between 0.4 and 0.5, showing a downward trend from 2009 to 2012, but there was
a slight increase in the past 21 years. The average annual temperature range was mainly
between 5.6 ◦C and 6.6 ◦C, reaching the highest value in 2006 and 2016 and the lowest value
in 2000. The annual precipitation ranged from 700 mm to 900 mm, reaching the highest
value in 2013 and the lowest value in 2006. The precipitation fluctuated greatly from 2000
to 2006, and the range of fluctuation in temperature was similar to that of NDVI.

Figure 7. Statistical chart of NDVI, temperature and precipitation from 2000 to 2020.

Temperature and precipitation are two factors that directly affect the spatial distribu-
tion of vegetation. In this study, we calculated the partial correlation coefficient between
NDVI, precipitation and temperature from 2000 to 2020 pixel by pixel. In general, there was
a strong positive correlation between temperature and precipitation and NDVI. The partial
correlation coefficient between temperature and NDVI was greater than zero in more than
90% of the regions (Figure 8a), indicating that temperature and NDVI had a basically posi-
tive correlation. The high values of the partial correlation coefficient between temperature
and NDVI were mainly distributed in the BSMS and DXLXXL regions, which have a low
altitude and high temperature. The partial correlation coefficient between precipitation
and NDVI was greater than zero in more than 30% of the regions (Figure 8b). The places
with a high correlation between precipitation and NDVI were mainly distributed near the
boundaries of three geomorphological divisions in MS, the Wolong Nature Reserve, and
the eastern part of XXL.

In this study, a t-test with a confidence level of 0.05 was carried out on the analysis
results. In the partial correlation t-test between NDVI and temperature and precipitation the
proportions of results passing the 0.05 confidence test were 51.02% and 9.14%, respectively
(Figure 8c,d). After the complex correlation analysis between precipitation and temperature
(Figure 8e) the analysis results were tested with a confidence level of 0.05 (Figure 8f), and
the value of NDVI in 34.22% of the region was driven by climate factors, which was mainly
distributed in the north and south of Southwest Subalpine and Middle Mountain. The
average temperature in this region was approximately more than 12 ◦C, the average annual
precipitation was more than 1000 mm, and the variability of precipitation and temperature
was large, providing sufficient water and light for vegetation.

According to certain climate-driving factor zoning principles, the climate-driving
factors of the whole region were divided into four types: temperature-driven, precipitation-
driven, temperature- and precipitation-driven, and other driving modes (Figure 9). The
precipitation-driven area accounted for 1.32% of the whole area, which was distributed in
the middle of the Xuebaoding Nature Reserve and the Wolong Nature Reserve. The area
driven by temperature accounted for 27.46% of the whole region, which was distributed in
the west of MS and DXLXXL. The area driven by other driving modes accounted for 65.77%
of the whole region; the elevation was higher in this region, and the land-use type was
mainly bare land or grassland. Most climate-driven regions had higher NDVI values, higher
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temperatures, and higher average annual precipitation, which had a significant positive
effect on NDVI. Other driving mode areas were generally located at higher altitudes, with
lower NDVI values. In these areas, the vegetation was dominated by grasses, lichens,
and mosses; the air pressure was low and the carbon dioxide content was much lower, so
the driving effects of precipitation and temperature were weak. The driving mechanism
in this region is very complex, so it is necessary to use the GWR model to identify the
comprehensive driving mechanism of NDVI changes including climate factors based on
the analysis of the correlation between climate and NDVI changes.

 
Figure 8. Partial correlation and complex correlation analysis results among NDVI, precipitation and
temperature. (a) Partial correlation coefficient between temperature and NDVI; (b) partial correlation
coefficient between precipitation and NDVI; (c) partial correlation t-test of temperature and NDVI;
(d) partial correlation t-test of precipitation and NDVI; (e) multiple correlation coefficient between
precipitation and temperature; (f) multiple correlation F-test of precipitation and temperature.

Figure 9. Climate-driven zoning map. (a) Temperature-driven; (b) precipitation-driven;
(c) temperature- and precipitation-driven; (d) other driving modes.

3.2.2. NDVI Driver Analysis Based on the GWR Model

In this study we used the inverse distance weight to interpolate the spatial distribution
relationship of the continuous estimated coefficients between each driving factor and NDVI
(Figure 10). The average values of the estimated coefficients of each factor were sorted as
follows: TEM_MN > TEM_BT > PRE_MN > PRE_BT > DEN_RIVER > PGA > LUCC >
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ED_FAULT > NDVI2000 > ED_ROAD > Aspect > Elevation > ED_BLAND > Slope. This
indicates that natural factors occupied a dominant position, the variability-driving effect of
climate factors was strong, and the correlation between Euclidean distance from built-up
land and slope was low.

Figure 10. Driving factor estimation coefficient in GWR Model. (a) Temperature mean value;
(b) temperature slope value; (c) precipitation mean value; (d) precipitation slope value; (e) ele-
vation; (f) slope; (g) aspect; (h) Euclidean distance from fault; (i) peak ground acceleration; (j) road
density; (k) river density; (l) Euclidean distance from built-up land; (m) land-use change index;
(n) NDVI in 2000.
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(1) Driving Effect of Climate Factors

The driving effect of climate factors on NDVI is obvious, and the climate in most areas
played a driving role. High temperature and more precipitation were conducive to the
growth of vegetation. The positive-driving area of the average temperature accounted for
91.95%, mainly in DA. The negative-driving effect of the area was small, and the absolute
value of the estimated coefficient was only 0.66. In areas with higher altitudes, due to
the limitation of the growth environment, temperature mostly drove NDVI negatively,
and had no obvious promoting effect on vegetation growth. The estimation coefficient of
temperature variability was mainly positive-driven and concentrated in MS, whereas the
region with a large increase in temperature had less of a negative-driving effect on NDVI.

The positive-driving effect of precipitation-related factors on NDVI was smaller than
that of temperature-related factors. The positive-driving area accounted for 25.91% of
the estimated coefficient of the average precipitation and was mainly located in DXLXXL.
The negative-driving area accounted for a large proportion, but the absolute value of the
estimation coefficient was small, and was concentrated in MS.

(2) Driving Effect of Geomorphological Factors

In areas where the altitude was higher, the reduction in temperature and oxygen was
not conducive to the growth of vegetation, and the driving effect of slope and NDVI was
weak. The negative values of altitude estimation coefficients were mainly concentrated in
high-altitude mountainous areas in BSMS and MS. The driving effect of slope on NDVI
values was generally small, and the negative-driving area was mainly concentrated in
Wolong Nature Reserve where (compared with the surrounding areas) the slope was
relatively large. Most of the aspect estimation coefficients were positive, accounting for
87.44%, mainly concentrated in the middle of the study area.

(3) Driving Effect of Geological Activities Factors

In this study, we selected the Euclidean distance from the fault and the peak accel-
eration of the ground motion as the driving factors related to the geological and geo-
morphology, and the driving effects of the two on the NDVI were mainly positive. The
positive-driving area in terms of the Euclidean distance from the fault accounted for 46.46%.
It was mainly concentrated in the large area near the Longmenshan fault zone, which is
sensitive to the activity of the fault zone. The negative-driving area accounted for 53.54%,
which was mainly concentrated in the south and north of the study area. The positive-
driving area of seismic peak acceleration accounted for 64.74%. It was mainly concentrated
in DA, which was seriously affected by the secondary disaster of the earthquake. In the
northeast of BSMS, the Xuebaoding nature reserve, and the southwest of DXL, the stratum
was not active, so its driving effect was weak.

(4) Driving Effect of Human Activity

Human activities have a certain blocking effect on vegetation, in which the high density
of roads is not conducive to vegetation growth, and the distance from construction land
also has a negative impact on vegetation growth. The negative-driving area of road density
exceeded 60%, mainly concentrated in the north of BSMS and DA. The positive value of
Euclidean distance from built-up land accounted for 52.52%, and it was concentrated in
Da and DXL. The area was close to the construction land, and the NDVI value was low,
reflecting the restrictive effect of human activities on vegetation growth.

(5) Driving Effect of Other Factors

The distribution of rivers and the change in land-use types can represent the distribu-
tion of NDVI values, and the NDVI value in the initial year can indicate whether the NDVI
values in some areas have reached saturation. The river density mainly had a negative
impact on the NDVI trend, accounting for 76.44%, mainly in the south of DXL. The change
in land-use types reflected the changes in vegetation from a dynamic point of view. The
land-use change index was highly consistent with the change trends of NDVI, and the
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positive-driving area accounted for 85.47%, mainly concentrated in DA and DXL. The
negative distribution of the estimated coefficient of NDVI in 2000 was closely related to
the elevation. In the southeast of the study area and other low-altitude areas, the positive-
driving area of NDVI value in 2000 accounted for 52.43%. The regions with higher altitude
were limited by the environment, and the NDVI value reached a certain degree of saturation
and no longer had growth potential.

(6) Gradient Variation in Each Driving Factor

To study the gradient variation in each driving factor in SCOCGPNP from northeast
to southwest, the study area was divided into five areas, and the numerical distribution of
each driving factor estimation coefficient in each area was counted to obtain the histogram
shown in Figure A3. The estimated coefficients of the average values of temperature and
precipitation tended to increase from northeast to southwest, and most of the estimated
coefficients of the average values of temperature were positively correlated, especially
in DXL and DXLXXL, most of which were concentrated between 2 and 3. Among the
topographic factors, the elevation of BSMS in the Sichuan Basin mainly had a negative
correlation with the NDVI value, and the estimation coefficient was distributed between
−4 and 1; whereas the estimation coefficient in DXLXXL was mainly concentrated between
zero and three, with an obvious positive-driving effect. The road density had a great impact
on the NDVI trends in DA, with the slope around the road being large and close to the fault
zone. In DXLXXL, the negative impact of river density on vegetation was more obvious,
and the area had high annual precipitation and a large river flow. The Euclidean distance
to construction land had a great impact on the vegetation growth in DA, as this area is
adjacent to the urban area of Chengdu in the southeast and close to the urban area of
Wenchuan in the northwest and is thus greatly affected by the development of urbanization.
The low-altitude areas of DA and DXLXXL were greatly affected by human activities, and
the positive-driving effect of the land-use change index on the change in the NDVI value
was more obvious.

4. Discussion

4.1. Analysis of NDVI Trends

In the past two decades, mechanisms such as natural forest protection, ecological
compensation, ecological protection, and regional sustainable development in the study
area have all played positive roles in improving the vegetation environment. The Chinese
government implemented the project of returning farmland to forest in 2002, and the area
of farmland being returned to forest in Sichuan Province reached 77.6 × 104 hm2 [70,71].
From 2000 to 2020, the NDVI trends, precipitation, and temperature showed upward
trends. The years with a decreasing trend in NDVI change were similar to the years with
low values of temperature. With the decreases in temperature in the study area in 2008,
2012, 2014, and 2018, the NDVI value was affected to varying degrees. Affected by the
2008 Wenchuan earthquake and its secondary disasters, the NDVI value in DA showed a
continuous downward trend from 2009 to 2012. As the precipitation in the study area in
2011 was lower than that in previous years [72] due to drought events, the NDVI value of
the whole area showed an obvious downward trend in 2012.

The univariate linear regression model was able to accurately and intuitively analyze
the past NDVI trends and obtain the variation in vegetation characteristics of SCOCGPNP
in time and space. The results showed that the variations in vegetation in the study area
were mainly affected by elevation and the fault zone, with spatial heterogeneity. Affected by
external forces such as crustal instability near the fault zone, the insignificant degradation
areas were relatively concentrated, mainly distributed in DA. This area is located in the
core area of the Longmenshan fault zone, with a basic earthquake intensity of VIII and the
Wenchuan earthquake intensity of XI. In addition, this area is located in the core area of the
rain screen district on the eastern edge of the Qinghai Tibet Plateau, and there are problems
relating to remaining mining sites. The stability of slopes in the area has decreased sharply,
and collapses, landslides, and debris flows are relatively common [73,74]. Therefore, in the
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past two decades, the NDVI value in this area has shown no significant degradation. On
the contrary, the crust in DXL is not active, the temperature is appropriate, the precipitation
is sufficient, and the vegetation growth is relatively stable, so it was found to be in a
state of extremely significant improvement. In addition to the geological activities and
climatic factors, NDVI is also limited by topographic factors to a certain extent [75], and the
boundary between significant improvement and non-significant improvement is roughly
the same as the snow line. In high-altitude areas, due to perennial snow, thin oxygen, low
temperature, insufficient sunshine, and other environmental factors, vegetation generally
does not improve significantly.

4.2. Driving Force Analysis of NDVI Trends
4.2.1. Climatic Factors

Climate affects vegetation types and spatial distribution [76]. Temperature and precip-
itation affect plant growth and distribution by affecting effective accumulated temperature
and the amount of water available to regulate plant photosynthesis, respiration, and soil
organic carbon decomposition. The climate conditions in the study area are diverse. From
northwest to southeast, there are plateau temperate humid areas, northern subtropical
humid areas, and middle subtropical humid areas [77]. With the increase in tempera-
ture, the annual precipitation increases to the level of more than 800 mm, and the water
demands of vegetation gradually tend to be saturated, which shows that the sensitivity
driven by temperature is higher than that driven by precipitation. In plateau temperate
humid regions, such as DA and the Wolong Nature Reserve, due to the limitation of tem-
perature, when NDVI reached saturation, the influence of other driving modes increases.
In areas with abundant precipitation, such as the southern DXLXXL and XXL, the area
of temperature-driven areas accounts for a larger proportion, because when the precipi-
tation reaches saturation, the increase in temperature enhances the fertilization effect of
CO2, and the photosynthesis of vegetation is enhanced under high CO2 concentration and
water stress [78].

Affected by the complex topography of the study area and the transition from a sub-
tropical zone to a warm temperate zone, there was spatial heterogeneity in the distribution
of NDVI trends and climate factor regression coefficients obtained via GWR analysis. In
the study area, affected by the superposition effect of climate factors, low-altitude areas
are positively correlated with NDVI trends, and high-altitude areas are mostly negatively
correlated [79]. In BS and the west of MS, the driving effect of average temperature on
NDVI trends was mainly negative. In high-altitude, low-temperature, and relatively arid
areas affected by the alpine climate the vegetation types are mainly grassland and alpine
meadow [80]; the transpiration of vegetation becomes weaker and the improvement effect
of temperature rise on vegetation is not significant [81,82]. The negative-driving force of
annual precipitation variability on NDVI trends in the study area was mainly distributed in
DXL. Because the surface of this area is deeply cut, coupled with frequent seismic activities,
the increase in precipitation is accompanied by the occurrence of geo-hazards. At the same
time, the presence of complex landforms and a cloudy and rainy environment can also
reduce the accuracy of remote sensing results in vegetation monitoring [83].

4.2.2. Geomorphological Factors

Under natural conditions, plant growth and changes are closely related to regional-
scale topographic conditions [84] and elevation, cutting depth, and aspect affect soil mois-
ture and the solar radiation distribution. The northwest of the study area is dominated
by the Hengduan Mountain Alpine Canyon, which forms a deep elevation difference
with the basin in the southeast. The positive and negative-driving effect of elevation on
NDVI was about 2500 m, showing vertical zoning. From low altitude to high altitude, the
driving effect of elevation on NDVI gradually decreased. The Ya’an area of the subalpine
basin in southwestern Sichuan Province and central Yunnan, due to its low altitude, small
slope, and sufficient light and heat conditions is conducive to returning farmland to forests.
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Thanks to the relatively stable geological environment, relatively balanced soil nutrients,
and sufficient water conservation, the proportion of vegetation improvement in this area
was relatively large [85].

Slope has an important impact on surface runoff and soil properties, and affects the
intensity of human activities, so there are differences in vegetation growth conditions in
areas with different slopes. In MS and DXL, some areas were affected by slope changes, and
soil moisture increased [86], which is beneficial for vegetation to absorb water, and the slope
had an obvious positive-driving effect on the NDVI trends. At the same time, ecological
projects such as returning farmland to forests and closing mountains for afforestation since
1999 strengthened the protection of forest land [87], and the areas with significant impact
were mainly concentrated in low-altitude areas such as the Zhonglongxi-Hongkou area
and the Jiudingshan Nature Reserve in Aba Prefecture where there are more transitions of
cultivated land to forests, and vegetation coverage increases with the increase in slope.

Aspect indicates the intensity of solar radiation received by the slope and the value
and degree of changes in ground water, which affects the sunshine hours and light intensity
of vegetation [88]. Compared with topographic factors such as elevation, the driving effect
of aspect on NDVI was relatively small. Variations in vegetation were more positively
affected by sunlight on sunny slopes. In the southern part of DXL, due to high precipitation,
cloud cover and less solar radiation, and relatively wet conditions, the humidity change
caused by aspect had little impact on vegetation growth, so the driving force of sunny
slopes was small.

4.2.3. Geological Activities Factors

The peak acceleration of ground motion represents the differential movement of
crustal fault blocks, and crustal movement is often accompanied by secondary disasters
such as landslide and collapse, which affects the stability of the vegetation growth envi-
ronment [89]. The terrain around DA in the Sichuan Basin is relatively large, and they
are mainly considered part of the Longmenshan–Minshan strike-slip thrust seismic zones.
When the crustal in situ stress caused by the earthquake exceeds the ultimate strength of
the crustal rocks, the rocks fracture and cause surface damage. At the junction of mountains
and basins in MS and DXL, the slope is high. Strong earthquakes not only cause a large
number of co-seismic landslides, but also exacerbate slope instability for a long time after
the earthquake, resulting in drastic changes in land cover in forest or shrubland areas [90],
and the vegetation around the Wenchuan earthquake was affected to a certain extent.

Around the fault zone, crustal movement seriously damages the original vegetation
and topsoil, forming a large area of secondary bare land [91]. The study area is pushed
eastward by the western Qinghai Tibet Plateau [92], resulting in a thrust nappe structure
with a sharp difference in altitude. Near the fault zone, the 2008 Wenchuan earthquake
triggered rock faults and water and soil losses, which significantly reduced the species
richness of woodlands and shrubs, destroyed tree roots, and reduced the density of forest
crowns in the Longxi–Hongkou and the Caopo Nature Reserves near Wenchuan in the
study area [61]. On the contrary, in the Wolong Nature Reserve, the NDVI showed an
improving trend, indicating that after the 2008 Wenchuan earthquake, the vegetation
near the fault zone was seriously damaged, resulting in a forest gap [93]. Affected by
the amplification effect of slope-secondary geo-hazards after the earthquake, disasters
secondary to the Wenchuan earthquake were relatively common in the middle and low
mountainous areas. On the contrary, the geological environment of vegetation growth in
alpine areas is relatively stable [94]. In XXL, the precipitation level is mostly more than
1000 mm. Affected by the superposition effect of secondary disasters, a large number of
collapses and landslides caused by the Wenchuan earthquake provide rich loose solid
materials for debris flow activities and also cause a large amount of slope instability
and rock mass damage, which greatly reduces the precipitation threshold of debris flow
outbreaks in earthquake-stricken areas [95].
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4.2.4. Human Activity

The occupation of forest land by road construction for human activities is considered
to be an important instigator of habitat fragmentation and biodiversity loss [96]. Road
construction has mostly negative effects in areas with large topographic relief, especially
in the north of BSMJ and DA. Road construction leads to a change in land use in the
places the road passes, which can easily lead to the expansion of cultivated land and the
increase in construction land, directly leading to habitat fragmentation and habitat loss,
which is the most important and urgent factor threatening the habitat safety of wildlife [97].
In addition, in the south of Wolong Nature Reserve, the G317 national highway passes
through areas with deep valleys and large slopes. The construction and use of roads affect
the regeneration ability of vegetation to a certain extent, destroying the integrity of forest
landscape, and affecting the richness and diversity of vegetation [98].

With the development of urbanization, the expansion of construction land has intensi-
fied the impact of human activities on vegetation, and human activities have brought about
different degrees of ecosystem degradation. In DA, the area close to the construction land is
affected by human activities, which has a high negative effect on NDVI [99], and there are
residual problems of mineral development and a decline in the ecological restoration ability
of giant panda habitats, which accelerates the fragmentation of protected areas [100]. For
example, in the northwest of MS, the construction of the Jiuzhaigou–Mianyang expressway
has affected the NDVI value since 2017. In addition, engineering construction activities
related to the expansion and development of human society, such as road construction,
mining, scenic spots, and water conservancy facilities, are threatening the habitats of gi-
ant pandas [101], and the contradiction between ecological environment protection and
resource development and utilization is becoming more and more obvious. For example,
the opening of the Jiuzhaigou–Chengdu tourism link in the north of the study area and the
large-scale local hydropower development have seriously damaged the habitats of giant
pandas [102]. However, China entered the scientific development stage of environmental
protection in 2002 and then announced a new era of ecological civilization in 2012. During
this period, policies for returning farmland to forest and grassland have been initiated
as part of ecological immigration policy in extremely important areas of environmental
protection [103]. Due to the large distribution of giant pandas in DXL, such as Wanglang,
Wolong, and other nature reserves, the ecological migration policy of the nature reserve
regulations coordinates the relationship between the community and the ecological envi-
ronment [104], reducing the adverse impact of human activities. Especially around the
Wolong Nature Reserve, construction land has an effect on improving the growth of the
NDVI value, affected mainly by tourism, which has transformed the economic structure of
the local community [105] and effectively achieved the purpose of sustainable development
of the nature reserve.

4.2.5. Other Factors

The distribution of rivers has a regulating effect on the scope of human activities,
and the development of agriculture and the construction of water conservancy projects
are inseparable from the rivers, which have corresponding effects on the distribution and
changes in vegetation. In protected areas such as Wolong in DXL, the positive-driving force
of river density on NDVI changes is more obvious; benefiting from the higher elevations in
these areas are the development of low-grade rivers, less human disturbance, and better
vegetation preservation. However, Ya’an and other areas in DXLXXL were found to have
steep slopes, long rainy seasons and concentrated rainfall, fast river velocity, frequent
disasters such as floods and debris flows, and severe soil and water losses, resulting in
low vegetation development. In addition, human activities around rivers in low-altitude
areas are more frequent, and areas close to rivers are prone to the transformation of
natural vegetation to farmland, which has a certain inhibitory effect on the improvement
of NDVI [106].
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Transformation between woodlands, shrubs, swamp wetlands and meadows, and
built-up land imply changes in NDVI, resulting in changes in the temporal and spatial
patterns of NDVI [58]. In the study area, land-use change mainly has a positive-driving
effect on NDVI, which was concentrated in DA. The distribution of plant communities
depends on the type of land use, and indirectly affects the vegetation coverage [107]. The
transition from the main grassland in the study area to bare land or construction land
shows an obvious trend of NDVI degradation. However, the study area was dominated by
forest land, and the area of land-use type transformation was small, so the overall driving
force of land-use change on NDVI changes was low.

The initial NDVI in the year 2000 can be used to represent the direction of variations,
the degree of transition, and the spatial distribution characteristics of NDVI during the
21-year study period. The results show that the initial NDVI and the improvement of NDVI
in DA showed an obvious negative correlation because the vegetation cover in this area
significantly degraded from 2000 to 2020. The other negative correlations were concentrated
in the northwest of BSMS, which was high in elevation and low in temperature, and was
covered by ice, snow, and sparse vegetation all year, and the vegetation growth was limited
and easily reached extreme values [108]. When the estimated coefficient of NDVI trends
for the initial year was at a negative value, this usually indicated a constant or degrading
trend in the GWR analysis.

4.3. Implications and Limitations

In this research we studied the change trends and driving mechanisms of NDVI in
SCOCGPNP using univariate linear regression and the GWR model and obtained effective
results, but there were some deficiencies. Due to the limitation of the spatial resolution
of the NDVI data, the changes in vegetation growth at the slope scale caused by terrain
factors such as surface relief, slope position, and slope may not be fully described. The
Savitzky–Golay filtering was regarded as representative of annual data, and the different
synthesis methods of data from multiple months in this study area are worth studying. In
the GWR model, although the driving analysis considered the impact of land-use changes
on NDVI changes, the main body of the study area consisted of forest land and the impact
of different forest land types on NDVI changes was not subdivided.

With the continuous improvement of people’s awareness of ecological protection, most
of the vegetation in the study area is in a state of improvement through the implementation
of measures such as ecological protection zones and artificial afforestation. In key areas
of concern, ecological restoration will be gradually achieved through the combination of
geological engineering and ecological engineering. At the same time, zoning management
should be carried out according to the differences in different natural and human envi-
ronments. In the Mianyang area of MS, the Ya’an area of DXL and XXL, precipitation is
abundant, and the increase in temperature can stimulate the photosynthesis of vegetation
which can further improve the vegetation coverage in these areas. To achieve the ecolog-
ically sustainable development of GPNP, the government should mobilize surrounding
communities to participate in ecological protection projects and build a natural reserve
system with national parks as the main body, nature reserves as the foundation, and vari-
ous natural parks as supplements. During the operation of the national park, a long-term
ecological public welfare forest compensation plan and monitoring mechanism should be
added, so that residents can actively participate in ecological work. In ecological resource
management, attention should be paid to the development of ecotourism, which is an
important means of developing natural resource management by the community. At the
same time, the construction of GPNP should take the impact of human activities as one of
the monitoring indicators of the ecological environment, actively monitor climate change,
reduce the risk of geo-hazards, optimize the layout and intensity of human activities, and
actively implement measures such as ecological protection and ecological restoration.
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5. Conclusions

In this study, we not only used the univariate linear model to visualize the trends of
vegetation variations in the SCOCGPNP from 2000 to 2020, but also added driving factors
such as topography and human activities on the basis of previous studies limited to the
driving mechanisms of climate factors in GWR Model, so as to more comprehensively
explain the variations in NDVI values. The main conclusions were as follows:

(1) During 2000–2020, the NDVI value showed an upward trend as a whole, with a small
amount of fluctuation. Affected by the Wenchuan earthquake of 12 May 2008 and its
secondary disasters, the NDVI value in DA showed a continuous downward trend
from 2009 to 2012. As the precipitation in the study area in 2011 was lower than that in
previous years, affected by drought events, the NDVI value of the whole area showed
an obvious downward trend in 2012;

(2) The NDVI values of the study area showed an overall upward trend from 2000 to
2020, of which 94% of the areas were in an improved state, and the annual growth rate
was about 4.7%/yr. The degraded area accounted for 7.94% of the total area, which
was mainly concentrated in DA. This area was mainly affected by the Wenchuan
earthquake, and the vegetation degradation caused by secondary geo-hazards was
more serious;

(3) As the study area is located on the geomorphic boundary and climate transition zone,
the NDVI trends were mainly affected by the natural environment, in which climate
factors were dominant. Moreover, due to the saturation of precipitation in most areas,
the driving effect of temperature was more obvious than that of precipitation, mainly
concentrated in DXL and DXLXL. The superposition effect of rainfall and topographic
factors means the slope had a strong influence on vegetation change, and the areas
affected by this were concentrated mainly in BSMS and DA;

(4) In the protection of the ecological security patterns of the SCOCGPNP, we should
closely monitor regional climate change, prevent, and control geo-hazards, optimize
the vegetation growth environment, develop an ecological economy in combination
with the current situation of human communities, reduce human interference in the
reserve and finally realize sustainable development of the SCOCGPNP.
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Abbreviations

The following abbreviations are used in this manuscript:

CGPNP China Giant Panda National Park
SCOCGPNP Sichuan Area of China Giant Panda National Park
BS Baishui River
DXL Daxiangling Area
XXL Xiaoxiangling Area
MS Minshan Area
DA Dujiangyan–Anzhou Area

Appendix A

Figure A1. NDVI images from 2001 to 2020 in the study area.
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Figure A2. Remote sensing image of verification area.
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Table A1. Statistics of driving factors in different geomorphological zones.

Driving Factors Zone MIN MAX MEAN MEDIAN STD

Temperature mean value (◦C)

BSMS −5.0829 15.7139 7.3521 70.1019 39.5631
MS −9.9736 13.1671 2.3445 59.9676 44.4253
DA −4.7338 15.3926 7.0619 61.6296 40.9538

DXL −12.6181 15.4079 2.2980 51.3102 46.4041
DXLXXL −5.7426 16.7042 8.9454 66.6759 39.5315

Temperature slope (/yr)

BSMS −0.0001 0.0004 0.0001 0.0001 0.0001
MS 0.0000 0.0003 0.0002 0.0001 0.0001
DA −0.0001 0.0002 0.0000 0.0001 0.0001

DXL 0.0001 0.0005 0.0003 0.0002 0.0001
DXLXXL 0.0003 0.0007 0.0005 0.0003 0.0001

Precipitation mean value (mm)

BSMS 658.9722 859.2167 782.2140 784.7940 33.5782
MS 695.4556 873.4445 782.7805 784.2000 29.3065
DA 773.9556 1026.3611 849.5633 793.4415 37.9322

DXL 693.8834 1003.3723 789.6579 791.6530 31.8794
DXLXXL 733.5555 1406.8611 897.0535 805.3220 98.8965

Precipitation slope (mm/yr)

BSMS 0.0025 0.0066 0.0045 0.0046 0.0009
MS 0.0027 0.0066 0.0047 0.0046 0.0010
DA 0.0056 0.0076 0.0066 0.0049 0.0004

DXL −0.0011 0.0062 0.0039 0.0048 0.0017
DXLXXL −0.0011 0.0094 0.0032 0.0045 0.0022

Elevation (m)

BSMS 540.0000 4925.0000 2384.1665 2417.0000 763.3032
MS 1480.0000 5573.0000 3392.9168 2724.0000 692.7943
DA 798.0000 6679.0000 2738.7173 2726.0000 784.6719

DXL 1306.0000 6049.0000 3617.0638 3006.0000 756.6816
DXLXXL 828.0000 5280.0000 2559.0178 2807.0000 742.5512

Slope (◦)

BSMS 0.0000 87.6306 30.8077 31.2169 11.0657
MS 0.0000 86.9273 31.7692 31.4441 11.4606
DA 0.0000 89.2268 34.3517 31.7632 14.6286

DXL 0.0000 85.5856 30.6938 31.5075 11.0960
DXLXXL 0.0000 80.6044 29.6035 31.0237 11.4317

Aspect

BSMS −1.0000 359.9654 174.0972 167.7350 99.2573
MS −1.0000 359.8953 172.5753 165.9640 99.2998
DA −1.0000 359.9691 182.2276 168.8225 106.1093

DXL −1.0000 359.8900 180.2346 169.4465 101.4384
DXLXXL −1.0000 359.8964 177.7604 168.6900 103.1578

Euclidean distance from fault (m)

BSMS 7964.65 57,340.76 33,154.21 29,525.50 13,556.48
MS 0.00 58,590.46 30,462.28 28,367.10 17,789.54
DA 3125.00 14,950.59 10,578.60 24,974.55 2270.77

DXL 3334.18 44,026.04 20,923.41 22,911.85 9067.17
DXLXXL 412.31 59,519.36 17,369.14 18,596.30 13,259.30

Peak ground acceleration (g)

BSMS 0.1500 0.2000 0.1972 0.2000 0.0116
MS 0.2000 0.2000 0.2000 0.2000 0.0000
DA 0.1500 0.2000 0.2000 0.2000 0.0013

DXL 0.1000 0.2000 0.1664 0.2000 0.0277
DXLXXL 0.1500 0.3000 0.1791 0.2000 0.0248

Road density (km/km2)

BSMS 0.0000 0.2720 0.0179 0.0000 0.0352
MS 0.0000 0.1675 0.0036 0.0000 0.0149
DA 0.0000 0.5618 0.0150 0.0000 0.0474

DXL 0.0000 0.5000 0.0173 0.0000 0.0580
DXLXXL 0.0000 0.3815 0.0207 0.0000 0.0443
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Table A1. Cont.

Driving Factors Zone MIN MAX MEAN MEDIAN STD

River density (km/km2)

BSMS 0.0000 0.1821 0.0135 0.0000 0.0295
MS 0.0000 0.2451 0.0166 0.0000 0.0402
DA 0.0000 0.2138 0.0122 0.0000 0.0333

DXL 0.0000 0.2285 0.0102 0.0000 0.0265
DXLXXL 0.0000 0.1656 0.0099 0.0000 0.0260

Euclidean distance from built-up land
(m)

BSMS 0.00 22,410.94 8355.13 7905.69 4923.44
MS 0.00 28,517.54 12,538.66 8746.43 6845.54
DA 0.00 12,379.42 5563.95 7632.17 2819.50

DXL 0.00 26,504.72 11,982.42 9013.88 5840.43
DXLXXL 0.00 41,330.98 11,434.65 9219.54 7630.49

Land-use change index

BSMS −25.0000 20.0000 −0.1732 0.0000 2.3752
MS −20.0000 20.0000 −0.2752 0.0000 3.4373
DA −25.0000 20.0000 −1.1994 0.0000 4.7261

DXL −25.0000 20.0000 −0.2004 0.0000 4.2528
DXLXXL −25.0000 20.0000 −0.3407 0.0000 3.6004

NDVI in 2000

BSMS −0.0564 0.7470 0.4519 0.4870 0.1651
MS −0.0655 0.7716 0.2638 0.4457 0.2133
DA −0.0373 0.7750 0.4454 0.4550 0.1594

DXL −0.0701 0.8263 0.3059 0.4326 0.2331
DXLXXL −0.0594 0.7764 0.4500 0.4488 0.1652

 

 

Figure A3. Cont.
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Figure A3. Histogram of estimated coefficients for each factor in different partitions. (a) Temperature
mean value; (b) temperature slope value; (c) precipitation mean value; (d) precipitation slope value;
(e) elevation; (f) slope; (g) aspect; (h) Euclidean distance from fault; (i) peak ground acceleration;
(j) road density; (k) river density; (l) Euclidean distance from built-up land; (m) land-use change
index; (n) NDVI in 2000.
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Abstract: Soil pollution in coal mining areas is a serious environmental problem in China and
elsewhere. In this study, surface and vertical profile soil samples were collected from a coal mine
area in Dazhu, Southwestern China. Microscopic observation, concentrations, chemical speciation,
statistical analysis, spatial distribution, and risk assessment were used to assess heavy metal pollution.
The results show that the weathering of coal-bearing sandstone and mining activities substantially
contributed to soil pollution. The concentrations of Fe, Ni, Cu, Zn, Mn, Cd, Hg, and Pb exceeded
their background values. Cd caused the most intense pollution and was associated with heavily–
extremely contaminated soils. The residual fraction was dominant for most metals, except Cd
and Mn, for which the reducible fraction was dominant (Cd: 55.17%; Mn: 81.16%). Zn, Ni, Cd,
and Cu presented similar distribution patterns, and Hg and As also shared similar distribution
characteristics. Factor 1 represented anthropogenic and lithologic sources, which were affected by
mining activities; Factor 2 represented anthropogenic sources, e.g., fertilizers and traffic pollution;
and Factor 3 represented the contribution of metals from soil-forming parent material. More than
half of the study area had high pollution risk and was not suitable for vegetable cultivation.

Keywords: coal-bearing sandstone; heavy metal pollution; soil; multivariate statistics; spatial distribution

1. Introduction

Coal accounts for approximately 76% of China’s primary energy consumption, and
is predicted to remain the country’s primary energy source for several years [1]. The
coal mining industry is an important source of heavy metals in the environment, and is a
major contributor to soil pollution [2,3]. The accumulation of tailings and transportation
of coal, including the establishment of a large number of chemical plants, can lead to
heavy metal enrichment in the soil and affect the local ecological environment [4,5]. This
threatens the land productivity, ecological integrity, and ecological security of nearby
areas [6,7]. Through erosion, weathering, and leaching of tailings, the metals present
in the tailings can enter the surrounding groundwater, streams, sediments, and soil [8].
Moreover, in addition to causing environmental degradation, heavy metal pollution also
threatens soil ecosystems and human health through food chain contamination [9,10].
High concentrations of heavy metals reduce the diversity of soil bio-communities, lead
to plant toxicity, and affect agricultural productivity [11,12]. Heavy metals exist in the
soil in different fractions (exchangeable, reducible, oxidizable, and residual fractions).
The exchange fraction in heavy metals is easier for the plants to absorb, making it more
toxic [13]). Therefore, heavy metals can threaten food security and human health through
the water supply and food web [14,15].

In Southwest China, especially in the Sichuan Basin, most coal is mined in Triassic
sandstone strata. The stratum is generally exposed on the surface or buried at a shallow
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depth and forms the unique Quaternary eluvium soil in the mining area after weathering.
Weathering of parent rocks produces the soil primary and secondary minerals, such as
quartz, calcite, and montmorillonite. The minerals are different in particle size, cation
exchange capacity, metal species, etc., which endows soils with corresponding proper-
ties [16]. Under the influence of coal accumulation, coal and its strata in the sedimentary
environment are enriched in heavy metals. With the weathering of coal-bearing sandstone,
heavy metals migrate into the soil and enrich it during soil formation [17]. This soil formed
by weathering of coal-bearing sandstone is widely distributed, which makes the analysis of
this soil more representative. Moreover, coal mining drives the development of the local
industry and agriculture, which also leads to the enrichment of heavy metals in the soil [18].
Therefore, the accumulation of heavy metals in the soil, especially in the weathered area of
coal-bearing sandstone, should be investigated.

Researchers have adopted various factors and methods, including geoaccumulation
index, pollution factor, and enrichment factor, to determine the degree of soil pollution [19].
The qualitative and quantitative chemical speciation of heavy metals in the soil is an
important basis to clarify its migration and transformation and evaluate its potential
environmental impacts [20]. Geographic information system (GIS) technology is widely
used to quantify the spatial distribution of metals and identify pollution sources with low
costs [21]. The availability and risks associated with soil pollution by heavy metals should
be investigated for the development of reliable pollution management strategies.

To the best of our knowledge, this is the first study to investigate the characteristics
of this typical soil through geological, environmental, and statistical analyses. Therefore,
based on the heavy metal contents in the surface and vertical profiles of soil samples from a
coal mine area in Dazhu, the objectives of this study were (1) to investigate the influence of
weathering of coal-bearing sandstone on heavy metals in the soil; (2) characterize the pollu-
tion of heavy metals in the soil; and (3) analyze the correlation and spatial distribution of
heavy metals in the soils of the study area. The findings can help clarify the environmental
impacts of coal mining and closed mines as a basis for the development of mitigation and
prevention measures by local stakeholders and authorities.

2. Materials and Methods

2.1. Site Description

The study area is located approximately 15 km northeast of Dazhu County, Dazhou
City, Southwest Sichuan Province, China. It has an area of approximately 31.73 km2

(107◦20′30′ ′–107◦23′8′ ′ E, 30◦42′22′ ′–30◦45′15′ ′ N) and is under the administration of the
Xinsheng township of Dazhu County (Figure 1). The surface soil layer is covered with
eluvium soil of Quaternary, with a thickness of 0–8 m. The main mineral is quartz, ac-
companied by typical minerals such as muscovite and calcite. The lithology includes
block, gravel silt, and silty clay, which mainly derive from the weathering of coal-bearing
sandstone exposed on the surface. The land-use type is farmland, and the farming method
is water drought rotation. Sweet potato and rice are planted in the dry and rainy seasons,
respectively. The weathered rock in the study area is upper Triassic formation, which is the
coal-bearing strata of the area, with a continental sedimentary environment composed of
dark gray mudstone, shale, fine sandstone, siltstone, and coal seam. Since the 1960s, more
than 10 coal mines have operated in the study area. Except for Kongjiagou coal mine, which
is still active, all coal mines were closed between 1990 and 2010 because of the associated
pollution and economic changes. The outputs of these coal mines included mainly bright
coal, followed by dark coal. Bright coal has a strong shine and a layered structure with thin
charcoal. Dark coal has a milder shine, with the formation of lens-shaped specular coal and
silk charcoal. The average moisture content in the raw coal is less than 0.9%, the average
yield of volatile matter (Vdaf) is 29.04–33.36%, and the CO2 content is less than 2% [2].
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Figure 1. (a) The Sichuan Province in China; (b) location of study area in Sichuan Province; (c) location
of soil samples in study area.

2.2. Soil Sampling and Analysis

On October 2020, 44 surface soil samples and 10 vertical profile soil samples were
collected around the coal mine area in Dazhu (Figure 1). The surface soil samples were
collected randomly from farmlands on both sides of the road and near the pithead of
abandoned coal mines. Three soil cores collected from the top 0–15 cm were combined
to produce one composite surface soil sample in the plough layer. A 1 m-deep pit was
excavated at the foot of the slope of the tailings, and a vertical profile soil sample was ex-
tracted every 10 cm from top to bottom (TY40–TY49). Each sample weighed approximately
1.5–2.0 kg, and the sampling locations were recorded using GPS (Omap). All samples were
stored in black polyethylene bags and immediately transported to the laboratory. After
being air-dried at room temperature (15 ◦C) [22]), the samples were homogenized and
sieved (<74 μm) for chemical analysis.

X-ray diffraction (XRD) was used for the mineralogical characterization of samples
(TY02, TY40, and TY50) in a Rigaku diffractometer (Ultima IV, Akishima-shi, Tokyo, Japan).
The conditions were slit fixed at 10 mm, 0.5 mm Pb monochromatic radiation, 40 mA, and
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40 kV. The samples were run at a speed of 30◦/min (5–80◦). A microscope and scanning
electron microscope (SEM, Prisma E, Thermo Scientific, Waltham, MA, USA) were used to
observe the surface morphology of the soil (TY40) and tailings. The samples were gold-
plated in a vacuum environment for elemental analysis by SEM using energy-dispersive
X-ray (EDS) detectors.

Soil pH values were measured at a soil: water ratio of 1:2.5 (w:v) using potentiome-
try (HJ962-2018) with a pH meter (FE28-Standard, Mettler Toledo, Zurich, Switzerland).
Each soil sample was divided into three parts. The first was digested using the method
described in (DZ/T 0279-2016) [23]. Approximately 0.1 g of sample was digested in
a Teflon crucible using a HCl: HNO3: HF: HClO4 (2 mL:2 mL:1 mL:1 mL) solution
on a hot plate. Subsequently, Fe and Mn were determined using inductively coupled
plasma atomic emission spectrometry (ICP–AES) (iCAP 7400, Thermo Fisher Scientific,
Waltham, MA, USA), and the concentrations of Ni, Cu, Cd, and Pb were analyzed using
inductively coupled plasma mass spectrometry (ICP–MS; Agilent 7700, Agilent Scientific
Instruments, Palo Alto, CA, USA). The second part was digested using the method by
(HJ491-2019 [24]). Approximately 0.2 g of sample was digested in a digestion tank using
a HCl: HNO3: HF (3 mL:6 mL:2 mL) solution in a microwave digestion furnace. This
method was tested for Cr and Zn using a flame atomic absorption spectrophotometer
(GGX-9, Beijing Haiguang Instrument Co., Beijing, China). The third part was digested
using the method described in (GB/T 22105-2008) [25]. Approximately 0.2 g of sample was
digested in colorimetric tubes using 10 mL aqua regia solution in a boiling water bath for
2 h. Then, 10 mL of preservation solution were added, and As and Hg were tested using an
atomic fluorescence photometer (BAF-2000, Beijing Baode Instrument Co., Beijing, China).
Two blank samples (one procedure blank and one reagent blank) and two standard samples
(GBW07385: GSS-29) were analyzed as duplicates to ensure data reliability. The standard
sample was the flood plain sediment of the main river system in China, and it was the
standard substance for composition analysis, which was mainly used as the quantity value
and quality control standard for sample testing of geological and geochemical investigation
and mineral survey. All standard samples were free of pollution and the accuracy of the
repeated analysis was less than 5% RSD. The certified and test values of standard samples
and the detection limits of each element are presented in Table S1. Metal speciation was ex-
tracted sequentially using the BCR sequential extraction procedure [26,27], which includes
three sequential extractions and a digestion. The obtained fractions, respectively, included:
exchangeable fraction (F1, exchangeable and carbonate-associated fractions), reducible
fraction (F2, fraction associated with Fe and Mn oxides), oxidizable fraction (F3, fraction
bound to organic matter), and residual fraction (F4).

2.3. Evaluation of Soil Contamination

The contamination level of 44 surface soil samples could be analyzed by enrichment
factor (EF) and geoaccumulation index (Igeo).

Enrichment factor (EF) was used to express the enrichment degree of elements in soil,
and to judge and evaluate the source of elements in particulate matter [28]. EF can be
calculated by [29]:

EF = (Cn/Fe)sample/(Cn/Fe)background, (1)

In this study, where (Cn/Fe)sample is the ratio of the heavy metals value to the
iron concentration in the sample, while (Cn/Fe)background is the background ratio of the
heavy metals value to the iron concentration. EF numerical value can be divided into
5 grades [30]: <2 = minimal pollution; 2–5 = moderate enrichment; 5–20 = significant
enrichment; 20–40 = very highly enriched; >40 = extremely enriched.

The metal contamination degree of the soil samples was obtained based on the geoac-
cumulation index (Igeo) [31], which was defined by Müller and can be calculated by [32]:

Igeo = log2[Cn/1.5Bn], (2)
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where Cn is the concentration of metal n in the soil, Bn is the background value of metal n,
and the factor 1.5 is used to account for possible variations in background data owing to
lithological variations. The background values of metals were used as references [33]. The
geoaccumulation index can be divided into seven grades [34] and is shown in Table S2.

2.4. Statistical Analysis

In the field of environmental science, multivariate analysis has become a more power-
ful tool than the classical single variable method because it provides an easier means of
data analysis [35]. Multivariate analysis methods, such as principal component analysis
(PCA) and factor analysis (FA), have been successfully applied to assess soil quality and
identify the chemical processes therein [19,36–39].

To characterize and compare these parameters, the soil properties were analyzed using
the SPSS Statistics v22 software (International Business Machines Corporation, Armonk,
NY, USA). PCA was applied to the metal variable analysis [40]. Eigenvalues were used to
evaluate the number of principal components (PC), known as linear combinations of the
old used factors. Factor analysis (FA) was used to determine the common latent structure
among variables and reduce PC contribution through further simplification by rotating
PCA-defined axes [41]. The Kaiser–Meyer–Olkin (KMO) and Bartlett’s tests of sphericity
have been frequently used to test the appropriateness of FA with a correlation coefficient
matrix. In total, 9 soil parameters were measured, including Cr, Ni, Cu, Zn, As, Cd, Hg, Pb,
and Fe, and these parameters were used in the statistical analysis.

2.5. Risk Evaluation

The pollution risk can be quantified and evaluated by the synthesis index [42]. It
varies with the obtained metal concentration and the given evaluation criterion for each
soil sample [43]. The synthesis index [44] can be calculated as follows:

P =

√√√√√ (Ci/Si)
2
max + (1/n

n
∑

i=1
Ci/Si)

2
(3)

where P is the synthesis index, Ci is the examined metal concentration for sample i, and Si
is the evaluation criterion of the i-th kind of metal.

The Soil Environment Quality Risk Control Standard for Soil Contamination of Agricul-
tural Land [45] was adopted as the evaluation criterion. The risk evaluation was performed
according to the method mentioned by [46]. First, the synthesis index was calculated for
each soil sample based on Equation (3). Second, kriging was evaluated for all soil samples
to obtain the total contamination distribution. Finally, the contamination distribution was
divided into five grades based on [43,45]. All maps were created using ArcGIS version 10.2
(ESRI, Redlands, CA, USA).

3. Results and Discussion

3.1. Physical and Chemical Characterization

The samples collected in this study were mainly composed of eluvial silty clay of
Quaternary. Minerals such as quartz, muscovite, albite, and kaolinite were observed in
the soil samples (Figure 2). Hematite was observed in all three samples (TY02, TY40, and
TY50) as secondary minerals from oxidation. This may be the reason that hematite occurs
in coal and enters the soil during coal mining and transportation. As TY02 and TY40
soil samples were collected near the waste accumulation area, they contained chalcocite
and cuprite. Calcite was observed in TY40 and was attributed to the leaching effect of
precipitation on tailings, since calcite is found in both tailings and sandstone layers [47].
Both muscovite and quartz were found in TY40 and tailing under the microscope (Figure 3).
We observed several of soil samples (TY29, TY34, and TY40) and found that they presented
high similarity in the physical phase with the tailing containing coal seam [2]. This indicates
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that the main components of farmland soil originate from the minerals derived from
sandstone weathering. In addition, carbonate minerals and siliceous rocks were observed
in quartz fractures as interstitial materials (Figure 3). The SEM images show that the
surfaces of soil and tailing samples were irregular (Figure 4a,c). From the figure, quartz
could be observed, and pores were filled with weathered fragmental material. Figure 4b
shows the EDS analysis results. The main elements in the soil were C, N, O, Si, and Ca,
followed by metal elements such as Fe, Mn, Al, and Mg. This indicates that the surfaces of
quartz and carbonate minerals were covered by Fe-Mn oxide. (Figure 4d) shows the EDS
analysis result of tailing. The main elements were O, Si, Al, and Fe, which indicates that the
sandstone layer contained metal elements such as Fe, which remain in the soil in the form
of oxides after weathering. These results illustrate the environmental impact of intense
mining activities on soil quality.

Figure 2. The X-ray diffraction patterns of soils. A—albite; C—calcite; Ch—chalcocite; Cu—cuprite;
H—hematite; K—kaolinite; M—muscovite; Q—quartz.

 

Figure 3. Surface morphology of the soil (TY40) and tailing under microscope. M—muscovite;
Q—quartz.
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Figure 4. SEM images of the soil (a) and tailing (c), corresponding EDS spectrum (b,d). The red box
indicates the scope of EDS analysis. Q—quartz; C—clay.

3.2. Concentration and Speciation of Heavy Metals

The descriptive statistical results of pH and metal concentration of soil samples are
shown in Table 1 and the concentrations of these elements are listed in Table S3. The
concentrations of the 10 investigated metals varied widely. Most soil samples were weakly
alkaline, and their average pH was 7.22. Fe was the most abundant metal, with a mean
concentration of 3.55 wt%. The mean value of Mn was 956.27 mg/kg, and that of Zn was
89.07 mg/kg. The average concentrations of Ni, Cu, and Pb were relatively similar, at
34.85, 26.38, and 28.47 mg/kg, respectively. The mean Cr and As concentrations were
58.19 and 8.51 mg/kg, respectively. The concentrations of Cd and Hg were significantly
lower than those of other metals, at 0.41 and 0.14 mg/kg, respectively. Except for As and
Cr, the concentrations of most metals exceeded their respective background values [33],
especially those of Cd and Hg, the average concentrations of which were four and two
times the background values, respectively. In the surface soil, increased concentrations
of heavy metals were attributed to the dual function of secondary enrichment and parent
rock inheritance. Ni and Mn presented high coefficients of variation (CV), at 194% and
218%, respectively, which exceeded 100%. Therefore, they presented a greater variation
than other metals, and their high contents were strongly associated with a wide range of
human activities. The CV values of Zn, As, and Cd were 52%, 54%, and 85%, respectively,
which indicate a high level of spatial variation (CV > 50%) [48]. Similar to the results
of most researchers [49,50], the spatial variation of coal mine pits resulted in metal data
heterogeneity. The kurtosis values of Ni, Zn, Cd, Pb, and Mn were higher than 10, which
indicated that there was great heterogeneity in the distribution of these elements in the
soil [51]. In addition, the skewness values of all elements were greater than 0, which
indicated that most metal concentrations were at relatively low values.
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Table 1. pH and concentration of metals in soil samples of coal mine area.

Item
pH Cr Ni Cu Zn As Cd Hg Pb Mn Fe

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg wt%

N a 44 44 44 44 44 44 44 44 44 44 44
Minimum a 4.88 34.52 15.36 7.66 39.04 5.03 0.21 0.06 16.80 258.39 2.19
Maximum a 9.01 85.37 471.61 59.11 346.68 29.27 2.51 0.31 91.01 14314.45 6.18

Mean a 7.22 58.19 34.85 26.38 89.07 8.51 0.41 0.14 28.47 956.27 3.55
Median a 7.28 56.20 23.39 24.26 78.77 6.96 0.33 0.13 25.15 622.01 3.49

25th a 6.07 47.45 20.43 20.52 72.10 6.20 0.28 0.1 22.16 460.06 3
75th a 8.4 64.81 28.72 32.05 94.81 8.51 0.41 0.15 28.51 780.32 3.99

Skewness a −0.14 0.45 6.53 0.87 4.27 2.94 5.21 1.74 3.14 6.44 0.84
Kurtosis a −1.32 −0.43 43.10 1.66 22.64 9.89 30.43 4.84 10.75 42.2 1.55

SD a 1.27 12.51 67.70 9.72 46.44 4.60 0.35 0.04 13.99 2080.77 0.8
CV a 0.18 0.22 1.94 0.37 0.52 0.54 0.85 0.33 0.49 2.18 0.22

TY40-49 b 8.8 66.3 36.81 35.02 79.43 18.48 0.41 0.28 30.15 676.18 3.56
Background values c - 61 26.9 22.60 74.2 11.2 0.1 0.065 26 583 2.94

Limit value d - 200 100 100 250 30 0.3 2.4 120 - -

a Item of surface soil. b Item of profile soil. c Background values for soils in China [33]. d Soil Environment Quality
Risk Control Standard for Soil Contamination of Agricultural Land [45].

The EF index values are presented in Figure 5 and in Table S4. According to the
EF index values, heavy metals showed a wide range of enrichment at each sampling
location. Cd had the highest degree of enrichment, belonging to moderate enrichment
and significant enrichment. The Hg and Pb enrichment level of most soil samples was
minimal pollution, but a small part showed significant enrichment. The lower enrichment
degree was found for Cr and Ni, except in TY01. Briefly, the order of the average values of
the EF index was Cd > Hg > Pb > As > Zn > Cu > Ni > Cr. The high contents of Fe/Al/Mn
oxides, carbonaceous species, and clay (Al2/SiO2) were closely related to the enrichment of
heavy metals in the soil. Human activities such as coal combustion, waste incineration, and
transportation can release a large amount of dust containing Cd and Hg into the atmosphere,
which is then enriched through natural sedimentation and rain [52]. In addition, the heavy
application of chemical fertilizers and pesticides in agricultural production can lead to Cd
pollution [53]. These results illustrate the effects of weathering of primary minerals for soil
formation and the impacts of mining activities on the concentrations of heavy metals in the
soil of the mining area.

Figure 5. Three-dimensional plots of enrichment factor (EF).

169



Int. J. Environ. Res. Public Health 2022, 20, 6493

The mean Cd concentration exceeded the standard value given in [45] by 36% (Table 1).
The results of the geoaccumulation index (Igeo) are shown in Figure 6 and listed in Table S5.
Moreover, Figure 6 indicated that soils in the coal mine area were significantly polluted
by Cd, which presented Class 5 (heavily to extremely contaminated, TY01) and Class
3 (moderately–heavily contaminated, TY02 and TY03). In addition, the Igeo of Cd in
most soil samples were classified as Class 2 (moderately contaminated). Hg, Pb, and
Zn presented lower Igeo values, dominated by Classes 2 (moderately contaminated) and
1 (uncontaminated–moderately contaminated). Because the TY01 and TY02 mixed soil
samples were collected near the pithead of an abandoned coal mine, they were more
strongly affected by the deposition of primary minerals and immersional wetting of tailings,
which resulted in extremely high Igeo values for Ni, Pb, and Zn. In addition, As and Cu
were associated with Igeo Classes 1 and 0 (practically uncontaminated). Cr presented
the lowest pollution, and it was the only contaminant with Igeo Class 0 for all samples.
According to the Igeo results, heavy metal pollution in the study area was at a safe level,
except for Hg and Cd. The main pollution sources are likely the tailings, dust piled up
in mining areas, and settlement of industrial coal. The high concentration of Cd caused
heavy metal pollution in the agricultural soils of the study area. Accordingly, long-term
consumption of rice, vegetables, fruits, and water seriously polluted by Cd are likely to
lead to chronic poisoning [54,55]. In addition, Cd has become the most serious heavy metal
soil pollutant in China and substantially affects the quality and yield of crops [4,56].

Figure 7 shows the chemical speciation percentages of the metals in the soil sample
(TY40), which was at the foot of the slope of the tailings. In addition, a large number
of crops were planted near the site from which this soil was sampled. In general, the
residual fraction was dominant in most metals (F4), except for Cd and Mn, in which the
reducible fraction was dominant (F2) (Cd: 55.17%; Mn: 81.16%). Owing to their detection
limit, only residual fractions were observed for As and Hg (100%). Cd yielded the highest
exchangeable fraction (F1), up to 17.24%, whereas the exchangeable fraction of As, Pb, Hg,
and Fe were not detected. Pb presented the highest oxidizable fraction (F3) (14.98%).

The percentages of different Cd fractions for F1, F2, F3, and F4 were 17.24%, 55.17%,
6.9%, and 20.69%, respectively. The high proportion exchangeable fraction of Cd indicated
that its bioavailability was high, and its migration ability in the soil was strong [57].
In addition, the release of exchangeable elements can cause a large amount of cation
replacement in soil through precipitation (acid rain), which leads to substantial nutrient
deficiency and toxicity to plants [58]. The reducible fraction generally exists in the outer
capsule of minerals and fine powder particles, with strong exclusive adsorption, and it is
easily released when the redox potential of the water body decreases or the water lacks
oxygen [59]. Both exchangeable and reducible fractions of Cd showed great bioavailability,
which indicated that Cd presented a greater pollution to the environment than other
elements in the study area.

The proportions of reducible and residual fractions of Pb were similar, at 37.65% and
47.37%, respectively. Generally, the release of Pb in reducible species is difficult, but under
anoxic conditions, generated by a soil water saturation (for example) with no water transfer,
Pb will be released, thereby causing secondary pollution [60]. In addition, the proportions
of oxidizable fraction of Pb was 14.98%, which indicated that Pb easily formed complexes or
chelates with humic acid and other organic matter in sediments, and it then coprecipitated
with sulfide. The oxidable fraction of heavy metals reflects the aquatic activities and effects
of the discharge of organic-rich sewage. Heavy metals in this form are relatively stable in
the soil, but under strong oxidation conditions, their mobility can increase, and they can
enter the water [61].

The high ratio of residual fraction in As, Hg, Cr, and Fe indicated a strong combination
with the crystal structure of minerals, which was stable under natural conditions with
a low transferability [62]. Because these elements mainly existed in the crystal lattice of
the minerals, a non-anthropogenic source was suggested for the metals in the residual
fraction [63]. Similar to the conclusion of many researchers [64], Cu and Zn appeared
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mostly in the residual and reducible fractions. In this study, soil particles were mainly
composed of silty clay, and the adsorption of heavy metals increased with the decrease
in particle size [65]. Mn is mainly found in the reducible fraction (from Fe-Mn oxides)
and less in the oxidizable fraction (bound to OM) [66]. Many studies have shown that Ni
can preferentially combine with aluminosilicate minerals (e.g., kaolinite and muscovite
(Figure 2) [67], resulting in its residual fraction being high (78.06%).

  

  

  

  
Figure 6. The index of geoaccumulation (Igeo) of soils in the study area.
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Figure 7. The percentages of metals chemical speciation in soils.

3.3. Statistical Analysis

To further investigate the relationship between heavy metals in surface soils, the
Pearson correlation coefficients were calculated, and the results are shown in Table 2.
Ni was positively (p < 0.01) correlated with Zn, Cd, and Fe, whereas Cu was positively
correlated with Cr, Zn, As, Hg, and Pb. In addition, Zn exhibited positive significant
correlations with Cd, Pb, and Fe.

Table 2. The correlation matrix of metals and pH in soil.

Cr Ni Cu Zn As Cd Hg Pb Fe

Cr 1
Ni −0.128 1
Cu 0.506 ** 0.132 1
Zn 0.055 0.882 ** 0.511 ** 1
As 0.166 0.007 0.633 ** 0.259 1
Cd −0.183 0.921 ** 0.340 * 0.927 ** 0.18 1
Hg 0.251 −0.094 0.604 ** 0.186 0.636 ** 0.143 1
Pb −0.031 0.005 0.727 ** 0.389 ** 0.659 ** 0.326 * 0.596 ** 1
Fe 0.543 ** 0.568 ** 0.331 * 0.606 ** −0.022 0.473 ** −0.025 −0.05 1

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.

In this study, the sphericity (0.6) was larger than 0.5, and the KMO result was less
than 0.001, which indicated that the data was suitable for FA [68]. Based on eigenvalues
(eigenvalue > 1), three main factors explained 87.918% of the total variance. The variance
contribution rate of Factor 1 (F1) was 43.106%, and was positively correlated with Ni, Cd,
Zn, and Fe (0.975, 0.964, 0.934, and 0.589), respectively (Table 3). The interrelationships
between Ni, Zn, and Cd suggest the influence of local human activities (domestic waste
and fertilization) and lithology (weathering of parent rocks) on soil samples [41]. F2, which
explained 27.906% of the total variance, was highly positively correlated with Pb, As, Hg,
and Cu (0.885, 0.856, 0.831, and 0.8), respectively. Many researchers [69,70] believe that the
main reason for the enrichment of Cu and As in soils is the application of chemical fertilizers
and pesticides. The high correlation between Hg and Pb was attributed to the automobile
emissions from coal transportation and the fly ash produced by coal combustion [71]). F3
presented a variance contribution rate of 16.906%, and Cr and Fe presented high loads
(0.954 and 0.734, respectively). The high ratio of residual fraction in Cr and Fe indicated a
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high correlation with soil-forming parent material. Therefore, the analysis indicates that F1
represents anthropogenic and lithologic sources, which are affected by mining activities; F2
represents anthropogenic sources, such as fertilizers and traffic pollution; and F3 represents
the contribution of metals from soil-forming parent material.

Table 3. Factor loadings in soils.

F1 F2 F3 Communalities

Ni 0.975 −0.102 0.019 0.962
Cd 0.964 0.192 −0.084 0.962
Zn 0.934 0.275 0.146 0.879
Pb 0.167 0.885 −0.147 0.969
As 0.043 0.856 0.024 0.735
Hg −0.047 0.831 0.112 0.972
Cu 0.233 0.8 0.43 0.705
Cr −0.152 0.169 0.954 0.832
Fe 0.589 −0.099 0.734 0.896

Eigenvalues 0.975 −0.102 0.019
% of variance explained 43.106 27.906 16.906

Cumulative % of variance 43.106 71.012 87.918
Loading values for the PC axis higher than +0.5 and lower than −0.5 are given in bold.

3.4. Spatial Distribution and Risk Assessment

Figure 8 shows the distribution of metal concentrations in the vertical profile of the
soils under the tailings. The mean concentrations of all metals exceeded the background
values [33], especially those of Cd and Hg, which were four times the background values.
Only the concentration of Cd exceeded the limit value [45]. The metal concentrations in the
vertical profile of the soils (TY40–49) are listed in Table S3.

     

     

Figure 8. Distribution of metal concentrations in vertical profile soils under the tailings. The red line
indicates background value.

In general, the concentrations of most metals decreased with depth, which indicated
that most metals in the farmland were still in the plow layer. The average deviation of Mn
was the highest (79.1◦), followed by Cr (9.2◦). The average deviations of other metals were
found to be within ±5%. In Section 3.1, calcite and cuprite were found in TY40, which was
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sampled from the surface of the deep pit at the foot of the slope of the tailings. This may be
because the atmospheric precipitation would flow through the tailings before entering the
soil, bringing these minerals in the tailings into the surface soil. Therefore, heavy metals
were easier to enrich in surface layer. Fe and Mn concentrations were lower at 0–20 cm,
and higher at 60–80 cm, which was attributed to their predominant reducible (F2) and
residual fractions (F4). The weak acid water produced by tailing leaching reacted with
Fe and Mn oxides in the surface layer, which led to their enrichment in deeper soil layers.
The Cr concentration was low in the surface soil but rich at 70 cm. With the pH increase
(mean pH of 8.8), the Cr adsorption on soil was clearly weakened. This occurred because
higher pH values lead to more negative charges on the soil surface. This increases the
probability of the formation of complexes with organic acids, which decrease the adsorption
capacity and enhance the mobility of heavy metals in the soil [72]. In this study, the surface–
bottom soil pH showed a decreasing trend (from 9.05 to 8.54), which led to more Cr being
adsorbed on the clay in a deeper position than on the surface. The vertical distribution of Ni
concentration in the soil first decreased and then increased. The highest concentration of Ni
was at 70 cm. When the permeability of shallow soil was good, the density of deep soil was
high, the water retention was good, and the ability of Ni for downward migration would
increase [73]. In addition, the accumulation of Pb was likely related to the transportation of
leaded gasoline [67].

The spatial analysis of metals in the soils of the study area are shown in Figure 9, with
a clear spatial distribution pattern of heavy metals in the soil. Pb was mainly distributed
in the north and middle parts of the study area. The highest Pb values were observed
for TY02 (91.01 mg/kg), which was close to the entrance and exit of the transportation
center. This suggested that industrial activities substantially affected the enrichment of
Pb in the soil. The concentrations of Ni and Zn presented similar spatial distribution
patterns. High concentrations of Ni and Zn were mainly observed in areas where human
activities were concentrated, and they were observed throughout the entire study area,
from north to south. The high Ni and Zn contents in these other areas were mainly caused
by geochemical-related industrial activities, such as application of pesticides and chemical
fertilizers. The spatial distribution of Cu concentration was similar to those of Ni and Zn,
but it was more intense, which indicated that human activities had a more severe impact
on Cu.

The spatial distribution patterns of Cr were higher in the north and lower in the
south. High Cd concentration was mainly distributed in the north of the study area, where
pulverized fuel ash pipelines and tailings were located. A large number of pesticides
and chemical additives are used in agricultural activities both north and south of the
study area, resulting in the enrichment of As in the soils. High Hg concentrations were
observed southwest of the Xiaojiagou coal mine, which characterized a decrease in spatial
distribution from northeast to southwest. The Xiaojiagou coal mine, located south of the
study area, had been closed, whereas the Kongjiagou coal mine in the north was still
operative, so the northern road was the main coal transportation road. Moreover, there was
a large number of coal companies and tailings in the north of the research area, which likely
justified the enrichment of Zn, Ni, Cr, Cu, and Cd in the northern region. This also showed
that the mining operations exerted a more severe impact on the environment, whereas the
closure of mines was conducive to the recovery of the local environment.

We conducted a risk assessment for the study area to provide a basis for effective
suggestions for policy makers and farmers. The synthesis index was adopted for the
assessment. The results are shown in Table 4 and Figure 10, and they indicate that there
were few safe areas, accounting for only 0.06 km2 (0.21%). This was mainly attributed to
the concentration of Cd, which exceeded the limit value in most areas. Most of the soil
(56.90%, 18.06 km2) belonged to guard grade (0.7 < p ≤ 1), including central and southern
parts of the study area, where human activities were concentrated. Owing to the use of
chemical fertilizers and pesticides, these concentrated areas belonged to low pollution
grade. Considering the pithead of Kongjiagou coal mine as the boundary, several factors
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in the northern area caused them to belong to Levels 3–5, including coal transportation,
tailings accumulation, and chemical plants. These areas were classified under moderate
(1.96 km2, 6.17%) and severe (0.36 km2, 1.13%) with high concentrations of Cd (2.51 mg/kg)
and Pb (91.01 mg/kg). Some of the physiological effects of chronic exposure to waterborne
cadmium at sub-lethal concentrations are manifested in the form of reduction in growth and
changes in hematology and enzyme activity [74]. Lead at sub-lethal levels destroys normal
metabolic processes by disrupting calcium and sodium homeostasis [75]. In view of such
risks, protective measures are required to avoid heavy metal contamination of vegetables
and ensure food safety for human consumption. The risk assessment results can be used as
a basis to estimate the environmental cleaning costs of coal mine areas. The classification
suggests that vegetables should not be planted in high-risk areas, whereas in low-risk areas,
the cultivation of crops should consider the economic and environmental impacts.

 

Figure 9. Spatial distributions of metals in farmland soils.

Table 4. The evaluation standard and results in study area.

Level p a Grade Area (km2) Percent (%)

1 p ≤ 0.7 Safety 0.06 0.21
2 0.7 < ∂p ≤ 1 Guard 18.06 56.90
3 1 < p ≤ 2 Low pollution 11.29 35.59
4 2 < p ≤ 3 Moderate pollution 1.96 6.17
5 p < 3 Severe pollution 0.36 1.13

a The standard based on [43,45].
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Figure 10. The synthesis index map of metals in study area.

4. Conclusions

In this study, we investigated the mineralogical characterization, concentrations, spe-
ciation, statistical analysis, spatial distribution, and risk assessment of metals in a coal
mine area in Dazhu, China. Except for As and Cr, the concentrations of all metals (Fe, Ni,
Cu, Zn, Mn, Cd, Hg, and Pb) exceeded the background values [33], which indicated that
the weathering of primary minerals in soil formation and coal mining activities substan-
tially affected soil quality. Cd pollution was the most intense, and it exceeded the limit
by 36% [45]. Cd was classified under Igeo Class 5 (heavily–extremely contaminated) or
Class 6 (extremely contaminated). The XRD and SEM analyses indicated the presence
of many secondary minerals, which likely influenced the concentrations of heavy metals.
The residual fraction was dominant for most metals, except Cd and Mn, for which the
reducible fraction was dominant (Cd: 55.17%; Mn: 81.16%). The concentrations of most
metals decreased with depth, which indicated that most metals in the farmlands originated
from human activities and remained in the plow layer. The statistical analysis showed that
Factor 1 can represent anthropogenic and lithologic sources, which are affected by mining
activities, whereas Factor 2 can represent anthropogenic sources such as fertilizers and
traffic pollution. Factor 3 represented the contribution of metals from soil-forming parent
material. The heavy metal concentration in the mining area was high and presented high
risk, so the area is not suitable for agriculture. The mining activities had a severe impact on
the environment, whereas areas with closed mines were associated with the recovery of the
local environment.
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Abstract: The rapid socio-economic development of the metropolitan area has led to the continuous
deterioration of the ecological environment. This leads to intense competition and conflict between
different spatial use types. Spatial conflict research is essential to achieve ecological-economic
coordination and high-quality development. However, existing studies lack comprehensive and
direct ecological-economic spatial conflicts, especially those on the spatial-temporal evolution and
potential drivers of spatial conflict. In this study, we identified the ecological-economic spatial
conflicts in the Nanjing metropolitan area in 2010, 2015, and 2020. This study used the random forest
to analyze the factors that influenced the change of spatial conflict. Results show that: (1) From 2010 to
2020, the ecological-economic spatial conflict in the Nanjing metropolitan area changed significantly.
(2) Land use change has an important effect on spatial conflicts, which are easily triggered by
uncontrolled urban expansion, but ecological land can mitigate spatial conflicts. (3) Relevant driving
factors of spatial conflicts show multi-level features, so the development of conflict reconciliation
countermeasures needs to be tailored to local conditions. This study provides a significant foundation
for the high-quality development of the Nanjing metropolitan area and provides a reference for the
planning and management of the territorial space.

Keywords: spatial conflict; conflict identification; analysis of driving factor; the Nanjing
metropolitan area

1. Introduction

In sustainable development, the development of human society should not only meet
the needs of contemporary people, but also should not damage the ability of future gen-
erations to meet their own needs. “Space” is the collective term for the Earth’s surface
area that is suitable for human economic and social activities [1]. As an objective geo-
graphical phenomenon caused by spatial resource scarcity and spatial function overflow,
spatial conflict is caused by the competition for spatial resources in human activities [2].
Although there are relatively few studies related to spatial conflicts, scholars have noticed
the widespread phenomenon of spatial conflicts in society and have put forward the con-
cepts of “regional deprivation” and “spatial competition”, which are similar to spatial
conflicts. Those concepts’ connotations are all contradictory phenomena in the process
of spatial conflict. For example, the collision between urban space and rural space, the
encroachment of arable land by urban expansion, the competition between green ecological
space and urban construction land, and the decline of ecological environment quality due
to the disorderly expansion of urban construction land are all important manifestations of
the phenomenon of spatial conflict. Along with the continuous development of the social
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economy, human activities now have far more influence on the Earth’s surface than any
period in history. The friction generated by human activity space and natural ecological
space also exceeds the limit that the local environment can bear. The degradation of the
ecological environment caused by rapid urban expansion makes the ecological-economic
space conflict increasingly fierce [3]. The ecological-economic space conflict has also be-
come an important reason hindering sustainable development, which has attracted the
continuous attention of scholars [4].

Previous studies have provided various identification and evaluation methods of
ecological-economic space conflicts, but most existing studies on ecological-economic
conflict are based on panel data and lack spatial analysis. In the past few decades, rapid
advances in remote sensing (RS) and geographical information systems (GIS) technology
have provided the basis for spatial data acquisition and analysis, which provides an
accurate source of data for monitoring and detecting land use, ecological changes, and
human activity intensity [5,6]. The spatial data provided by remote sensing can reflect
the spatial variation in regions better than traditional statistical surveys. As the carrier
of ecological environment and economic activities, land use conflict is the most direct
manifestation of ecological-economic spatial conflict and the earliest research involving
ecological-economic space conflict [7]. Scholars determine the types of space they belong
to according to different land use patterns, and they have found that potential spatial
conflicts may arise from different land use patterns overlapping in space [8–10]. Based on
the actual situation in China, Chinese scholars have put forward the theory of “ecology-
production-life” to study spatial conflict, which is based on the three pillar theories of
sustainable development. In the ecological-production-life framework, space is divided
into three independent and interrelated spaces: ecological, production, and living space,
which makes it easier to distinguish conflicts between different spaces [11]. Meanwhile,
this theory also coordinates the relationship between ecological, production, and living
space and offers countermeasures and suggestions for the sustainable development of
society [12].

In addition, domestic and foreign scholars also analyze the ecological-economic space
conflict from the perspective of landscape [13]. The spatial conflict caused by the unrea-
sonable spatial structure of land use can be accurately identified by the landscape pattern
theory [14,15]. Scholars use landscape pattern theory to build a spatial conflict model to
describe the impact of human activity or natural environment change on the landscape
composition, structure, and function and also use relevant landscape pattern models to
measure spatial conflict [16,17]. As attention to ecological protection has increased, a
conflict analysis method that can directly link ecology and the economy has also made
great progress [18–20]. The theory of ecosystem service is considered the bridge between
natural environmental systems and social-economic systems [21]. Based on the “land use
mode-ecological process-ecological service system” [22], the contradiction between regional
ecological and economic space can be directly analyzed through the contradiction between
the supply and demand of ecosystem service theory [23–26].

In a word, the existing studies can basically reflect the ecological-economic space
conflict, but they are mostly specific ecological aspects, such as for wetlands, water, pro-
tected natural areas, and other social and economic space conflicts, and there is still a
lack of overall analysis of the ecological-economic space conflict [27–29]. Moreover, the
identification of spatial conflicts relies too much on land use change, neglecting other
socio-economic and natural environmental factors. The existing related methods also
have their disadvantages. The “ecology-production-life” theory divides space into three
separate spaces, thus separating the integrity of space, and cannot well analyze the space
conflict in complex situations. Due to its theoretical characteristics, the landscape pattern
theory considers economic factors less [30]. Influenced by dynamic changes in time and
space, the supply and demand studies of ecosystem services are greatly influenced by the
size of the study area [31]. Thus, the existing related methods have their shortcomings.
Some scholars have identified the relevant shortcomings and tried to combine multiple
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methods to study the regional spatial conflict situation, such as by analyzing the regional
ecosystem service value change under the framework of the “ecology-production-life” the-
ory [32], using the landscape pattern index to quickly and accurately identify the regional
“ecology-production-life” spatial evolution [33], or studying the response of ecosystem
service function to the landscape pattern change caused by land use transformation [34].
However, there is no study combining these three theories, leading to one-sided results in
the identification of ecological-economic space conflicts.

Most of the existing studies take cities and counties as the research units or take
the whole country as the subject investigated. Few studies have researched the spatial
conflict situation in metropolitan areas, which is a novel and advanced form of territorial
spatial organization [4,33,34]; the role of the metropolitan is becoming apparent in regional
economic development. Along with the rapid development of metropolitan areas, there
are frequent transfers between various land types [35,36]. The original spatial pattern
breaks, leading to many spatial conflict problems. Metropolitan areas have become an
important driving force behind China’s economic growth and contribute to the coordinated
development of regional space, which is increasingly receiving national attention [37].

Located in the Yangtze River Delta, the Nanjing metropolitan area is China’s first inter-
provincial metropolitan area. In February 2021, the Nanjing metropolitan area became the
first metropolitan area plan in China to be officially approved by the National Development
and Reform Commission, marking a further increase in the strategic status of the Nanjing
metropolitan area. Owing to its superior natural geographical conditions, the Nanjing
metropolitan area economy developed rapidly. At the same time, conflicts caused by envi-
ronmental protection and economic development are increasingly intensified. Therefore,
there is an urgent need to study the actual situation and the relevant influencing factors of
ecological-economic space conflicts [38]. To explore the conflict caused by the disharmony
and inconsistency between ecological and economic space, this study used the compre-
hensive evaluation model of ecological-economic space conflict to identify the severity
using the random forest method. This study provides an important realistic basis for the
high-quality development of the Nanjing metropolitan area and new ideas for studying the
sustainable development path of metropolitan areas in China.

2. Materials and Methods

2.1. Study Area

Situated at the lower reaches of the Yangtze River (Figure 1), the Nanjing metropolitan
area has a warm and humid climate and is blessed with abundant natural resources. The
southern part of the metropolitan area has a high forest cover and rich forest resources.
The northern and central parts are mainly plains, which are suitable for agricultural de-
velopment. The metropolitan area has well-developed river systems with two important
drainage systems, the Yangtze River and the Huai River, and large lakes such as Hung-tse
Lake and Gaoyou Lake. Now, the Nanjing metropolitan area has 8 cities and 2 districts,
including Nanjing, Zhenjiang, Yangzhou, Huaian, Maanshan, Chuzhou, Wuhu, Xuancheng,
Liyang, and Jintan in Changzhou. The total area of the Nanjing metropolitan is over
65,000 square km and the population is more than 35 million. Its GDP is above 4.6 trillion
yuan, making the Nanjing metropolitan area one of the most important economic centers
in the Yangtze River Delta. The rapid development of the social economy in the Nanjing
metropolitan area has brought great pressure and challenges to the local environment,
making the ecological-economic space conflict increasingly fierce.
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Figure 1. Administrative division and terrain of the study area.

2.2. Research Framework

The essence of spatial conflict is the game of spatial resource possession between the
conflicting parties. Along with the development and use of spatial resources, the original
spatial pattern will also change, leading to changes in spatial functions and thus changes in
the spatial carrying capacity of the region. On this basis, we divide the spatial use mode
into three different use types: spatial resource use, spatial function use, and spatial capacity
use and construct a spatial conflict identification system by combining relevant previous
studies [39]. Then, we classified spatial conflicts into five levels to identify and analyze
the ecological-economic conflicts in the Nanjing metropolitan area. Finally, the study used
the random forest method to measure the contribution of the relevant driving factors to
analyze their importance. Our study research framework is shown in Figure 2.

 

Figure 2. Research framework diagram.

2.3. Data Collection

Table 1 shows the source of the data; our data can be divided into three main categories.
First, the study divided the land use data into six types according to LUCC standards [40];
the specific situation of land use is shown in Figure 3. Second, the natural environment data
are mainly from relevant satellite remote-sensing image data. Third, the spatial resolution of
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the socioeconomic data is 1 km and was mostly provided by the Resource and Environment
Data Sharing Center of the Chinese Academy of Sciences.

Table 1. Data sources.

Data Resolution Data Available Time Interval Source

Land Use Data 1 km × 1 km 2010, 2015, 2020 Resource and Environmental Science and Data Center
(https://www.resdc.cn (accessed on 25 January 2020))

Net primary productivity
(NPP) 0.5 km × 0.5 km 2010–2020

Product of MOD17A3H estimated by moderate resolution
imaging spectroradiometer (MODIS) images

(http://www.noaa.gov/ (accessed on 26 January 2020))

Normalized difference vegetation
index (Ndvi) 1 km × 1 km 2010–2020 MYDND1M China 500M (http://www.noaa.gov/

(accessed on 11 January 2021))

Fine particulate matter (PM2.5) 1 km × 1 km 2010–2020 https://doi.org/10.5281/zenodo.6372847 (accessed on 18
March 2022)

Nighttime light (NtL) 1 km × 1 km 2010–2020 NOAA (https://ngdc.noaa.gov/eog/dmsp/downloadV4
composites.html (accessed on 7 April 2022))

Gross domestic product (GDP) 1 km × 1 km 2010, 2015, 2019 Resource and Environmental Science and Data Center
(https://www.resdc.cn (accessed on 17 April 2022))

Population data (Pop) 1 km × 1 km 2010–2020 Worldpop (https://www.worldpop.org/ (accessed on 27
March 2021))

Since the Chinese Academy of Sciences has not yet given the spatial data of China’s GDP in 2020, we choose to
use the spatial data of China’s GDP in 2019 instead.

 
Figure 3. Land use map of Nanjing metropolitan area. (a) 2010 land use map; (b) 2015 land use map;
(c) 2020 land use map.

2.4. Indicator Construction

In this study, spatial use was divided into three types, corresponding to the spatial
resource development process, the spatial function change situation, and the spatial car-
rying capacity change situation. We then selected the corresponding evaluation indexes
from the natural factors and socio-economic factors to construct an ecological-economic
spatial conflict evaluation index system. We selected relevant data from 2010, 2015, and
2020 and conducted standardized processing before the calculation to prevent the possible
uncertain impact of different data values on the overall operation. The composition of the
indicator system is shown in Figure 4. The entropy weighting method was used to calculate
the weights of resource conflict (RC), function conflict (FC), and capacity conflict (CC) to
derive the spatial conflict value for that year [39]. All of these are shown in Table 2. The
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entropy weight method is an objective empowerment way to calculate the weight through
the information entropy, which is through the dispersion degree of the original data of each
index. It can effectively avoid the deviation caused by subjective factors and improve the
credibility and accuracy of the index weight value [41,42]. We used the weighted average
of the 3 option weights as the final weight of the study, with resource conflict (RC), function
conflict (FC), and capacity conflict (CC) having final weight values of 0.32, 0.42, and 0.25.
Finally, the study used ArcGIS 10.7 and applied equal interval classification to classify the
Nanjing metropolitan area 2010–2020 ecosystem service demand index into five classes:
highest-conflict, high-conflict, medium-conflict, low-conflict, and lowest-conflict.

 

Figure 4. Indicator system diagram.

Table 2. Ecological-economic spatial conflict evaluation Indicator system.

Indicator Type Standard Layer Indicator Layer
Indicator
Attribute

Indicator Description

Resource Conflict (RC)

Land use conflict (RC1)
Landscape aggregation index (AI) Negative Reflects the conflict between cultivated

land resources and construction land

Landscape sprawl index (Contag) Negative Reflects the conflict between ecological
land resources and construction land

Human activities clash with natural
resources (RC2)

NPP data Negative Reflects the vegetation
regeneration capacity

Construction–land density reaction positive Reaction to the consumption of
land resources

Function Conflict (FC)

Supply and demand of ecosystem
services conflict (FC1)

Supply of ecosystem services Negative Reflects the supply and demand of
ecosystem servicesDemand of ecosystem services positive

Carbon-fixing capacity conflicts with
carbon emissions (FC2)

Carbon emissions positive Reflect carbon emissions and
carbon storageCarbon sequestration Negative

Capacity
Conflict (CC)

Biodiversity conflict (CC1) Habitat quality Negative Reflects species richness
through biodiversity

Economic and environmental
conflict (CC2)

GDP positive Reflects the economic
development situation

PM2.5 positive Reflects the air environmental
quality situation

Pop positive Reflects the size of the population

Ndvi data Negative Reflects the vegetation
coverage situation
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2.5. Interpretation and Calculation of Indicators

Resource conflict (RC) is mainly expressed as the conflicts between human-led eco-
nomic activities, food production, and other processes on other biological and resource
supplies. Among them, RC1 uses AI to measure the conflicts between arable land and
construction land, the degree of cultivated land fragmentation to reflect the conflict between
construction land and arable land, Contag to measure the degree of ecological land and
construction land, and the degree of fragmentation to respond to the conflicts between con-
struction land and ecological land. The degree of ecological land fragmentation responds to
the spatial connectivity of ecological land by the encroachment of construction land [43,44].
RC2 uses NPP data and the density of built-up land to reflect the influence of urban devel-
opment on vegetation regeneration capacity. The space occupied by human socio-economic
activities undoubtedly affects the growth of the original ecological vegetation. The NPP
data were used to reflect the spatial situation of vegetation growth activities on the surface,
whereas the density of built-up land reflects the distribution intensity of human economic
activities on the surface [45,46].

AI =

[
m

∑
i=1

(
gii

maxgii

)
pi

]
× 100 (1)

where g is the number of nodes between image elements of patch type i based on the
single-fold method and maxgii is the maximum number of nodes between image elements
of patch type i based on the single-fold method. Pi is the area proportion of patch type i
in landscape.

CONTAG =
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)]
×
[

ln pi

(
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m
∑

k=1
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)]
2 ln(m)

⎫⎪⎪⎬
⎪⎪⎭× 100 (2)

where Pi is the proportion of area of patch type i in the landscape, gik is the number of
nodes between patch type i and patch type k on the basis of the doubling method, and m is
the number of patch types in the landscape, including those in the landscape boundary.

Functional conflict (FC) is mainly reflected in the overlapping area of the economic
activity area and ecological function area. The overlap results in conflict caused by social
and economic production to ecological function disturbance. According to a previous
study, we used ecosystem service supply and demand to judge the functional conflict of
ecological-economic space [47]. The ecosystem service supply was calculated by the value
equivalent method, while the demand for ecosystem service was calculated according to
previous studies [25]. Based on previous studies, this study uses nighttime light (NtL) to
estimate carbon emissions [48]. Then we used the invest model carbon storage module to
calculate carbon reserves. The invest model carbon storage module specific formula is

Cx,t =
J

∑
j=1

Axj

(
Caj + Cbj + Csj + Cdj

)
(3)

Cx is the carbon stock of region x in t, Axj is the area of land cover type j in region x,
and Caj, Cbj, Csj, and Cdj represent the above-ground carbon density, below-ground carbon
density, soil carbon density, and dead organic matter carbon density of land cover type j,
respectively [49].

Capacity conflict (CC) mainly occurs in the process of space evolution between human
activities and the ecological environment. CC1 uses the invest model of the habitat quality
module to calculate the impact of human activities on the bearing capacity of the natural
environment [50]. Based on previous studies, CC2 uses GDP, PM2.5, Pop, and Ndvi to
reflect the conflict between environmental protection and economic development [39].
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GDP and Pop represent the capacity of economic development while the Ndvi and PM2.5
represent the capacity of ecological protection.

The habitat quality module formula is

Qxj = Hj

⎛
⎝ Kz(

Dz
xj + Kz

)
⎞
⎠ (4)

where Qxj is the habitat quality index of raster cell x in land use type j and Hj is the habitat
suitability of land use type j. The value range is [0, 1]. The closer the value is to 1, the higher
the habitat quality. Dxj is the degradation degree of raster cell x in land use/cover type j. K
is the half-saturation constant, which is usually half of the maximum degradation degree;
the default value is 0.5. z is the normalization constant, which is the default parameter of
the model, and takes the model definition value of 2.5 [51].

2.6. Data Sources and Methods of Driving Factor

Eight potential driving factors were selected for analysis as potential causes of ecological-
economic spatial conflicts that may affect the Nanjing metropolitan area [52]. These driving
factors include two main aspects: (1) For natural environmental factors, the study selected
DEM, distance to water, average annual temperature, and soil as driving factors in the
natural environment. DEM, distance to water, and soil type data were obtained from the
Chinese Academy of Sciences Resource Environment Data Sharing Center (https://www.
resdc.cn/(accessed on 11 March 2022)). The annual average temperature data were obtained
from the site data interpolation of China Meteorological Network (http://www.cma.gov.cn/
(accessed on 11 January 2022)). (2) For socio-economic factors such as distance to the major
highways, distance to the Nanjing, industrial density (nuclear density of industrial parks and
development zones), and distance to the railroad, the data were crawled from Amap.

The random forest algorithm has excellent performance for establishing the nonlinear
relationship between input variables and output variables [53]. Based on the principle
of random forest, Liang proposed a patch-generated land-use simulation model (PLUS
model), which has been successfully applied to dynamic simulation and prediction of
land-use change and can analyze the contribution of related drivers to land use change [54].
The role of the LEAS model is to transform the mining of transition rules of each land use
type in the PLUS model into a binary classification problem. This is specifically done to
calculate the relationship between the growth of each land use type and the associated
drivers based on the random forest algorithm and finally output the growth probability Pd

i,k
of land use type k at cell i. The random forest algorithm formula is

Pd
i,k(x) =

M
∑

n=1
I(hn(x) = d)

M
(5)

The value of d is either 0 or 1; when the value of d was 1, there were other land use
types changed to land use type k, while 0 represents other transitions; x is a vector that
consists of multiple driving factors; I (·) is the indicative function of the decision tree set;
hn(x) is the prediction type of the n-th decision tree for vector x; and M is the total count of
decision trees.

Jiang used similar principles to analyze the impact of related factors on potential pollu-
tion sites in the Yangtze River Delta [55]. On this basis, we performed spatial superpositions
on the ecological-economic spatial conflict zone data in different periods, subtracted the
previous spatial conflict zone data from the spatial conflict zone data in the latter period,
and extracted the changes to represent the change areas of each spatial conflict level. Then,
we used the LEAS module of the PLUS model to mine the influence of each driving factor on
the change of each level of conflict area based on the random forest algorithm to evaluate the
relative importance of each driver on different types of spatial conflict area and provide sta-
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ble and accurate classification results. For a detailed description of the PLUS model, please
refer to https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model (ac-
cessed on 27 January 2022).

3. Results

3.1. Spatial Distribution Characteristics of Ecological-Economic Space Conflict

This study used the constructed index system to obtain the ecological-economic spatial
conflict distribution characteristics of the Nanjing metropolitan area for the three periods
of 2010, 2015, and 2020. Figure 5 and Table 3 show that the ecological-economic spatial
conflict in the Nanjing metropolitan area changes substantially from 2010 to 2020. The
spatial conflict state in the Nanjing metropolitan area was dominated by low conflict.
The proportion of low-conflict areas increased from 58.94% in 2010 to 66.15% in 2020.
Meanwhile, the proportion of highest-conflict and high-conflict areas were low. These
situations together show that the degree of ecological-economic space conflict in the Nanjing
metropolitan area is not serious. However, we found some features of its space-time
evolution: First, numerous medium-conflict areas were spread along the edges of the city in
2010. Medium-conflict areas accounted for 24.49% of the period, which gradually stabilized
at around 18% over the next decade. Second, the high-conflict and highest-conflict areas
were distributed in the city and its surrounding areas, and two larger core conflict areas
formed in the central region along the river and northern region; the area proportion
of these two conflicts is increasing. Finally, the lowest-conflict areas were mainly in the
mountainous zone of Xuancheng and the hilly areas of Chuzhou, but the proportion of
low-conflict areas is shrinking.

 

Figure 5. Distribution of ecological-economic spatial conflict in Nanjing metropolitan area. (a) 2010
spatial conflict map; (b) 2015 spatial conflict map; (c) 2020 spatial conflict map.
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Table 3. Area composition of different conflict types.

Conflict Types Highest Conflict High Conflict Medium Conflict Low Conflict Lowest Conflict

2010 1.07% 2.95% 24.49% 58.94% 12.56%
2015 1.24% 3.33% 18.22% 64% 13.21%
2020 1.94% 3.69% 18.98% 66.15% 9.24%

3.2. Spatial-Temporal Evolution of Ecological-Economic Spatial Conflict

To investigate the spatial and temporal changes of ecological-economic spatial conflicts
in the Nanjing metropolitan area, we created a map of ecological-economic spatial conflict
change zone transfer in the Nanjing metropolitan area (Figure 6) between 2010 and 2020.
Figure 6 shows that transfers between spaces of different conflict levels were more frequent
during 2010–2015, whereas the frequency of transfers decreased remarkably during 2015–
2020. Specifically, highest-conflict and high-conflict areas had the least probability of spatial
shifts. Shifts between medium-conflict areas, low-conflict areas, and lowest-conflict areas were
frequent, especially between medium-conflict areas and low-conflict areas.

 

Figure 6. Transfer of ecological-economic space conflict change zone in Nanjing metropolitan area
from 2010 to 2020 (the color of the highest, high, medium, low, and lowest five different spatial
conflict levels is consistent with those in Figure 5).

Hotspot analysis (Figure 7) can fully show the clustering of ecological-economic spatial
conflicts in the Nanjing metropolitan area: the deeper the red color is, the higher the degree
of clustering in areas with high-conflict values, and vice versa [56]. Figure 7 shows that the
spatial agglomeration characteristic of cold and hot spots in the Nanjing metropolitan area
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is remarkable. The cold spots in the Nanjing metropolitan area are mostly concentrated in
the hilly areas of Chuzhou and the mountainous region of Xuancheng. The overall change
is large, with an obvious decrease in cold spots over the last 10 years. The proportion of
cold points in 2020 decreased by 22% compared with 2010. The hot spot areas were mainly
concentrated around the central part of the metropolitan area along the Yangtze river and
the urban area of Huai’an in the north, showing a trend of concentration to the city and its
surrounding areas, and the hot spot value has significantly increased.

 

Figure 7. Cold−hot spot map of ecological-economic space conflict for 2010−2020. (a) 2010 cold−hot
spot map; (b) 2015 cold−hot spot map; (c) 2020 cold−hot spot map.

3.3. Factors Influencing the Change of Ecological-Economic Spatial Conflict in Nanjing
Metropolitan Area
3.3.1. Effect of Land Use on Ecological-Economic Space Conflict

Based on the analysis of the proportion of land use type in different conflict levels
(Figure 8), construction land is the main land use type in the highest-conflict zone and
high-conflict zone in Nanjing metropolitan area from 2010 to 2020. Construction land in
2010 only accounted for 60% of the high-conflict area, while this proportion rose to 79%
by 2020. In the highest-conflict areas, the proportion of construction land has been above
90%, and reached 98% in 2020. The medium-conflict areas are mostly located around
various cities and mainly show spatial conflict between arable land and construction
land; that is, the proportion of arable land and construction land is the highest. As an
important carrier of many socio-economic activities, the coastal parts of lake areas are
disturbed by human activities and their ecological function is weakened, which makes
them prone to medium spatial conflicts. As arable land is the biggest land type in the
Nanjing metropolitan area, arable land is also the main type of land in the low-conflict
zones, where its share is consistently around 70%. According to the current situation, the
areas with the lowest conflict are mainly ecological lands such as forest and grassland, with
the highest percentage of woodlands consistently being around 70% (Table 4).
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Figure 8. Composition of land use in different years of each conflict types (A, B, and C refer to 2010,
2015, and 2020; 01, 02, 03, 04, 05 refer to lowest, low, medium, high, highest spatial conflict levels).

Table 4. The proportion of different land use types in each conflict level.

Time Land Use Type
Lowest
Conflict

Low
Conflict

Medium
Conflict

High
Conflict

Highest
Conflict

2010

Arable land 24.97 63.97 61.76 29.31 2.34
Woodland 65.73 11.68 5.11 3.97 3.21
Grassland 6.46 4.26 1.83 0.26 0.15

Waters 1.57 11.57 11.52 6.52 2.63
Construction Land 1.20 8.44 19.68 59.57 91.68

Unused land 0.07 0.08 0.10 0.37 0

2015

Arable land 6.3 74.71 40.90 11.80 0
Woodland 70.51 10.86 1.12 0.33 0
Grassland 12.89 3.08 0.53 0.09 0

Waters 10.20 9.23 14.79 1.42 0.25
Construction Land 0.06 2.09 42.36 85.88 99.75

Unused land 0.04 0.03 0.29 0.47 0

2020

Arable land 9.67 68.17 48.93 15.12 0.98
Woodland 77.54 13.20 2.28 1.07 0
Grassland 10.22 4.18 0.77 0.17 0

Waters 2.45 10.07 15.46 4.33 0.98
Construction Land 0.10 4.31 32.35 79.22 98.04

Unused land 0.02 0.06 0.21 0.09 0

3.3.2. Driving Factor of Changes in the Ecological-Economic Space Conflict

This study was based on previous studies that used similar principles to the LEAS
model, which is based on the random forest method to rank the ecological-economic
spatial conflict driving factors in the Nanjing metropolitan area. Then, we analyzed the
contribution of different driving factors to different conflict rank regions. The number of
decision trees was set as 50, the sampling rate set as 0.1, and the total sample size was
8939; also, this study used RMSE to reflect the accuracy of random forests. In general,
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the precision values of the random forest were inversely proportional to the RMSE values
(Table 5).

Table 5. Random forest accuracy by RMSE.

Time
Highest
Conflict

High
Conflict

Medium
Conflict

Low
Conflict

Lowest
Conflict

2010–2015 0.03 0.07 0.14 0.17 0.12
2015–2020 0.07 0.15 0.17 0.13 0.09
2010–2020 0.07 0.14 0.16 0.13 0.09

Just as shown in Figure 9 and Table 6, the different influencing factors affect each
conflict state to different degrees, and the influence of DEM on each conflict-level area is
substantial, especially for the lowest-conflict areas. In the 2010–2015 period, the contribution
weight of DEM to the lowest-conflict region and low-conflict region both exceeded 0.2.
In the 2015–2020 period, the contribution weight of DEM to the lowest-conflict region
reached 0.39. As a whole, the contribution weights of DEM to the lowest conflict region
and low conflict region during 2010–2020 were 0.18 and 0.24, both of which are at the
top of the contribution scale. The distance to water is also an important driving factor
for lowest-conflict and low-conflict areas. Overall, industrial density had the greatest
impact on the expansion of high and highest conflict areas in the 2010–2020 period, with
contribution weights of 0.2 and 0.23, which were above the other driving factors. However,
between 2010 and 2015, the largest contributor to the expansion of highest-conflict areas was
distance to railroads with a weight of 0.22, slightly higher than the industrial density (0.18),
while the distance to highways contributed much less than the distance to railroads. The
weight of the contribution of industrial density to the highest-conflict areas was 0.23 for the
2015–2020 period, which was at the top of each driving factor. The degree of contribution
of soil type, the distance to the Nanjing, and the annual average temperature were also not
remarkable, indicating that the development of the Nanjing metropolitan area relies more
on the remaining characteristics.

Figure 9. Driving factors of the ecological-economic spatial change.
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Table 6. Contribution weight values of related driving factors.

Time Factors
Highest
Conflict

High
Conflict

Medium
Conflict

Low
Conflict

Lowest
Conflict

2010–2015

Industrial density 0.18 0.18 0.12 0.13 0.12
DEM 0.09 0.13 0.19 0.2 0.24

Distance to highways 0.06 0.13 0.09 0.1 0.09
Distance to Nanjing city 0.13 0.08 0.07 0.07 0.09

Average annual temperature 0.19 0.17 0.14 0.13 0.13
Distance to water 0.07 0.13 0.18 0.16 0.19

Distance to railroad 0.22 0.12 0.08 0.11 0.05
Soil type 0.05 0.07 0.12 0.1 0.09

2015–2020

Industrial density 0.23 0.15 0.16 0.11 0.11
DEM 0.15 0.19 0.19 0.21 0.39

Distance to highways 0.11 0.1 0.09 0.12 0.06
Distance to Nanjing city 0.07 0.1 0.1 0.1 0.09

Average annual temperature 0.13 0.14 0.13 0.15 0.11
Distance to water 0.1 0.13 0.12 0.14 0.1

Distance to railroad 0.14 0.1 0.1 0.1 0.08
Soil type 0.07 0.09 0.1 0.08 0.05

2010–2020

Industrial density 0.2 0.23 0.13 0.15 0.13
DEM 0.12 0.1 0.22 0.18 0.24

Distance to highways 0.09 0.09 0.08 0.1 0.08
Distance to Nanjing city 0.09 0.08 0.08 0.08 0.08

Average annual temperature 0.17 0.17 0.16 0.14 0.17
Distance to water 0.12 0.11 0.12 0.15 0.11

Distance to railroad 0.15 0.13 0.1 0.11 0.09
Soil type 0.07 0.09 0.11 0.09 0.1

4. Discussion

In the context of ecological civilization construction, the identification of ecological-
economic spatial conflict and research on influencing factors have become an important
prerequisite for high-quality development, which may help policymakers and stakeholders
to conduct investigation and adjustment work. In this study, all the data were derived
from remote sensing satellite data and their deductive data to ensure accuracy and authen-
ticity. Researchers have carried out many related studies on space conflict identification,
which provided us with the relevant theoretical basis and methods for the identification
of ecological-economic space conflicts. However, due to the defects of relevant theories,
there are still some deficiencies in the identification of ecological-economic space conflicts.
Based on previous studies, we tried to create a comprehensive, integrated index system to
reflect the ecological-economic space conflict in the Nanjing metropolitan area as truthfully
and thoroughly as possible. Furthermore, we analyze the extent of different drivers of the
ecological-economic spatial conflict in the Nanjing metropolitan area through the latest
random forest methods [55].

4.1. The overall Pattern of Ecological-Economic Spatial Conflicts Is Stabilizing, but the Lowest
Conflict Areas Will Gradually Shrink

Our study shows that the situation of ecological-economic spatial conflict in the
Nanjing metropolitan area has changed significantly over the past decade. This is reflected
in the continuous increase of the highest-conflict and high-conflict zones, while the area
of the lowest-conflict zone continues to decline. The percentage of area in the lowest
conflict region in 2020 was only 9.24%. The area proportion of low-conflict zones increased
from 58.94% in 2010 to 66.15%, and the area share of medium-conflict zones gradually
decreased from 24.49% in 2010 before stabilizing at about 18% in 2020. In terms of the
transfer of spatial conflict regions, the frequency of transfer is decreasing, indicating that
the overall spatial conflict patterns gradually stabilize. Among them, the probability of
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the highest-conflict and high-conflict areas undergoing spatial transfer is minimal, and the
highest-conflict and high-conflict areas will be difficult to change once formed. Medium-
conflict and low-conflict areas are the most likely to be affected and change. In particular,
the transfer of medium-conflict zones from 2010 to 2015 was very frequent. The spatial
structure of medium-conflict zones and low-conflict zones was still not stable enough, the
spatial structure of these areas was not stable enough, and changes in relevant policies or
new development projects can change the local spatial conflict situation. From the change
on the cold–hot spot maps, we can further see that the hot spots eventually contracted
to be near the city, especially around the central part of the metropolitan area along the
Yangtze river and the urban area of Huai’an in the north. This further proves that the
ecological-economic space conflict situation in the Nanjing metropolitan area is effectively
controlled and that the high-conflict level areas are restricted to the city zone. At the
same time, we also note that with the development of the economy, the proportion of the
cold spot areas will continue to decrease; in particular, the Xuancheng area decreased at a
significant rate, which means that the pressure on ecological and environmental protection
will continue to increase.

4.2. Different Land Use Types Have Different Effects on Changes in Ecological-Economic
Spatial Conflicts

The spatial overlap of different functional requirements leads to spatial conflict. As
the most common and direct influencing factor of spatial conflicts, land use patterns
have always had a profound effect on the evolution of spatial conflicts [57]. Based on
the proportion of different land use types at different conflict levels, construction land is
undoubtedly the most important trigger of ecological-economic conflicts, because it must
carry out most socio-economic activities, which further weakens the ecological functions
of this land use type. The medium-conflict and low-conflict areas are mainly made up of
arable land and water areas. Arable and water areas are mostly on the edge area of human
activities. By rational planning of the use of these two types of land, industrial development
can be achieved without damaging the ecosystem. However, they are inherently less stable
and vulnerable to the influence of surrounding areas, so strict spatial boundary planning
control of these land use types is needed to reduce the impact of adjacent units on them [12].
Pure ecological land types such as woodland and grassland are the main land types in the
lowest-conflict areas, and strict protection measures should be taken so that ecological land
can rebuild the regional ecological security pattern. Developing ecotourism industries and
other industries that have less effect on the ecological environment while improving land
use efficiency as much as possible is also important [58].

4.3. The Development of Eco-Economic Spatial Conflict Mitigation Measures Needs to Be Tailored
to Local Conditions

According to the analysis of the relevant factors, we found that the relevant driving
factors of spatial conflicts showed multi-level features, meaning that the development of
conflict reconciliation countermeasures should also be adjusted to local conditions [59].
The distribution of industries largely influences the proliferation of both high-conflict and
highest-conflict areas, so the study can conclude that the construction of industrial parks
will quickly change the local conflict state and will lead to the rapid enhancement of socio-
economic functions as well as the decline of ecological functions [60]. Hence, industrial
parks must be built in and around cities as much as possible, away from ecological reserves
or ecologically fragile areas. This was also confirmed in a study by Wang et al. [61]. DEM is
the factor that contributes most to the lowest-conflict and low-conflict areas. Given that the
Nanjing metropolitan high-altitude areas are mountainous forests, they are not amenable
to socio-economic activities. Moreover, most of these areas belong to ecological protection
zones, so the distribution of altitude highly overlaps with the distribution of lowest-conflict
and low-conflict areas. At the same time, the low-elevation Nanjing metropolitan areas are
mostly plains, which are suitable for socio-economic activities and agricultural production.
Therefore, the spatial utilization of the Nanjing metropolitan area should be developed
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rationally according to local conditions. In addition, relevant policies or major constructions
can have a remarkable effect on the conflict situation in that year. For example, railroads
contributed the most to the expansion of high-conflict areas during 2010–2015. High-speed
railway stations were mostly established near suburbs in the past and the establishment of
high-speed railway stations could drive the rapid development of the surrounding area,
which made the ecological-economic spatial conflicts near high-speed railway stations
intensify rapidly.

4.4. Findings and Policy Suggestions

In sum, we found that due to better ecological background conditions, the degree of
ecological-economic spatial conflict in the Nanjing metropolitan area is not serious and
mainly dominated by low conflict. However, the Nanjing metropolitan area’s ecological
environment pressure will gradually increase with the continuous development of the
social economy, so relevant ecological environment protection measures, such as set natural
protection and water protection, should be implemented to ensure that the low-conflict
areas no longer drop. Along with the continuous development of the city, the high-conflict
and highest-conflict areas will inevitably increase. Based on the analysis of the changes in
spatial conflict over the past 10 years and related influencing factors, we find that the most
advisable way to alleviate the ecological-economic space conflict in the Nanjing metropoli-
tan area is to, first, limit the disorderly growth of the urban area and strictly implement the
requirements of ecological civilization construction and land space planning, second, pro-
tect the relevant ecological areas, and third, lock the eco-economic space conflict area in the
city and its surrounding areas. This can maximize the avoidance of disorderly expansion
similar to 2010 to ensure the normal operation of other ecological spaces and achieve the
overall ecological-economic harmony state. In so doing, the Nanjing metropolitan circle
can finally achieve the goal of sustainable development. Our conclusion is consistent with
the findings of Zhang and Xu [62,63], as well as with the current mainstream solution
view of spatial conflict. Scholars now believe that since spatial conflict is inevitable, the
solution to spatial conflict should shift from traditional confrontation and elimination to
guidance and weakening and should give priority to the legitimate needs of human social
development [64–66].

4.5. Implications and Limitations

To diagnose Nanjing metropolitan area ecological-economic spatial conflicts, iden-
tify them, and determine their intensity, several problems remain to be solved. First, the
theoretical understanding of spatial conflict must be strengthened. Most existing studies
consider the overlap of different functions of space to be a conflict [67,68]. Most existing
studies also believe that an important cause of spatial conflicts is the overlap of different
spatial functions. However, a space with only a single function is rare in reality. There-
fore, subsequent studies need to systematically discuss the forms and connotations of
spatial conflicts. Second, although this study attempted to use spatial data to establish a
comprehensive system of indicators to measure ecological-economic spatial conflicts to
compensate for the shortcomings of existing studies, we have only analyzed spatial conflicts
from an ecological-economic perspective. Space also has cultural, aesthetic, and other social
functions, and analyzing these social spatial functions requires the reuse of panel data or
through methods such as questionnaires. Our future research may explore spatial conflict
from the perspective of civil rights protection and social spatial equity [69]. However,
the method for considering these functions in the study of spatial conflicts remains to
be explored.

5. Conclusions

This study identified and diagnosed the intensity of ecological-economic spatial con-
flicts in the Nanjing metropolitan area in 2010, 2015, and 2020. The degree of contribution
of selected natural environmental and socio-economic factors to the spatial conflict changes
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was analyzed via the random forest method. The main conclusions of this paper are
as follows:

(1) From 2010 to 2020, the ecological-economic space conflict in the Nanjing metropolitan
area changed considerably. The spatial conflict status of the Nanjing metropolitan
area was dominated by low conflict areas, and the lowest-conflict areas were mainly
concentrated in the hilly areas of Chuzhou and the mountainous areas of Xuancheng.
High-conflict and highest-conflict areas had the lowest proportion and were mainly
concentrated in urban areas, while two large conflict areas formed in the central and
northern regions of the metropolitan area. The proportion of medium-conflict areas is
larger and mainly concentrated in the urban periphery.

(2) The change in land use has a substantial effect on spatial conflicts. In general, the
main land use types in the lowest-conflict zone are forest land and arable land, the
main land use types in the low-conflict and medium-conflict zones are arable land,
and the high-conflict and highest-conflict zones consist mainly of construction land.
Therefore, spatial conflicts are easily triggered or intensified by disorderly urban
expansion, whereas the presence of ecological land can mitigate spatial conflicts.

(3) The relevant driving factors of spatial conflicts showed multi-level features. The factor
that contributed most to the lowest-conflict and low-conflict areas was DEM, and
the factor that contributed most to the highest-conflict and high-conflict areas was
industrial density. However, the situation varied from year to year and from region
to region, so the development of conflict reconciliation countermeasures needs to be
tailored to local conditions.

Finally, this paper offers suggestions to help the Nanjing metropolitan area achieve
sustainable development. As a typical metropolitan area in China, the sustainability and
spatial conflict situation of the Nanjing metropolitan area needs more attention.
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Abstract: The Central Andes in northwestern Argentina are characterized by steep topographic
and climatic gradients. The humid foreland areas at 1 km asl elevation rapidly rise to over 5 km in
the eastern Cordillera, and they form an orographic rainfall barrier on the eastern windward side.
This topographic setting combined with seasonal moisture transport through the South American
monsoon system leads to intense rainstorms with cascading effects such as landsliding and flooding.
In order to better quantify the dynamics of water vapour transport, we use high-temporal-resolution
global navigation satellite system (GNSS) remote sensing techniques. We are particularly interested in
better understanding the dynamics of high-magnitude storms with high water vapour amounts that
have destructive effects on human infrastructure. We used an existing GNSS station network with
12 years of time series data, and we installed two new ground stations along the climatic gradient and
collected GNSS time series data for three years. For several stations we calculated the GNSS signal
delay gradient to determine water vapour transport direction. Our statistical analysis combines in
situ rainfall measurements and ERA5 reanalysis data to reveal the water vapour transport mechanism
for the study area. The results show a strong relationship between altitude and the water vapour
content, as well as between the transportation pathways and the topography.

Keywords: GNSS meteorology; GNSS remote sensing; intense rain events; water vapour; Central
Andes; orographic barrier; South American monsoon system

1. Introduction

Strong rainfall events repeatedly lead to natural disasters in steep mountain regions,
e.g., [1–5]. Especially along the eastern Andes, intense hydro-meteorological events cause
landsliding and flooding that impact population and infrastructures [6–8]. Previous studies
indicate that hydro-meteorological extreme events are often a consequence of several
additive climatic and topographic factors [9]. For example, the availability of high water
vapour transported through the South American low-level jet (SALLJ) from the north
along the eastern Andes, the advancement of cold fronts from the south, and the steep
topography lead to unstable atmospheric conditions and heavy cloudbursts in the eastern
Central Andes [4,6].

A core component for understanding these hydrometeorologic processes are highly dy-
namic observations. While satellite-based observations have advanced our understanding
of large-scale orographic effects at windward sides of mountain ranges, e.g., [10,11], these
data often do not provide the temporal resolution to decipher dynamic processes, including
the vertical and horizontal components of water vapour transport within storms. Similarly,
reanalysis and numerical weather prediction data are very useful for understanding the
dynamics of large-scale processes, but they often do not allow for the reliable measurement
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of spatially small (<2 km) and temporally short (<1 h) processes, e.g., [9,12]. With the
recent advancement of global navigation satellite system (GNSS)-based observation and
the increase in availability of these data, an alternative meteorological observation method
is readily available, e.g., [13–15].

The study area in northwestern Argentina is on the eastern side of the second largest
orogenic plateau—the Altiplano–Puna plateau. The plateau is rich in mineral and geore-
sources, especially lithium. Maintaining infrastructural networks in this area is important,
but the seasonal South American monsoon system (SAMS) heavily impacts the road net-
work connecting the high-elevation and resource-rich areas with the low-elevation foreland
areas. In addition, global warming leads to changing rainfall and discharge patterns,
shifting the distributions of low frequency and high magnitude hydrometeorological
events [4,9,16,17].

In this study, we explore the potential of GNSS-based observations to track water
vapour transport along and across the south-central Andes. For this purpose, we used
available station data since 2010, but also installed additional monitoring sites in medium
and high elevation areas for the duration of three years (cf. Figure 1). We use GNSS
time series data to group stations into clusters and use their high temporal resolution
to analyse water vapour distributions. Furthermore, we implement an analysis of water
vapour gradients using GNSS delays to determine direction of water vapour transport.
Our investigation is complemented by in situ weather stations and ERA5 reanalysis data to
validate results and provide a hydrometeorological context.

Figure 1. Topographic setting of the south-central Andes with GNSS station network location. We
have selected a subset of these stations for an analysis of water vapour transport: across the Andes in
east–west (E-W) direction (UNSA, GOLG, SRSA, and SALC) and along the Andes in north–south (N-
S) direction (UNSA, TUCU, JBAL, and CATA). UNSA, GOLG/TUCU, SRSA/JBAL, and SALC/CATA
are represented with blue, yellow, pink, and orange colours, respectively. The white line outlines
the internally drained Altiplano–Puna plateau, also called the Central Andean plateau. Black lines
are international borders (A). (B) shows enhanced vegetation index (EVI) information for the area
of interest between 2001 and 2017. The blue line points out 500 mm annual rainfall (Topographic
data obtained from ETOPO1 [18], EVI data obtained from MODIS/Terra [19], rainfall information
retrieved from the Tropical Rainfall Measuring Mission (TRMM) [20], as cited in Bookhagen and
Strecker [10]).

201



Remote Sens. 2022, 14, 5427

2. Climatic Setting of the Study Region in Northwestern Argentina

The climatic setting of the study area in the Central Andes in northwestern Argentina is
controlled by several interfering factors. In short, these are: (1) the moisture transport from
tropical regions; (2) unstable atmospheric conditions at the boundary between tropical and
subtropical air masses; (3) the steep topographic gradient leading to orographic processes;
and (4) cold temperature excursion from the southern polar region. This leads to strong
climatic gradients in the east–west (E-W) and north–south (N-S) directions.

The conveyor belt transporting water vapour from north to south east of the Andes is
the South American low-level jet (SALLJ). The authors in Montini et al. [21] showed that
moisture transport associated with the jet is greater during summer, when the SALLJ is
influenced by warm, moisture-rich air masses from tropical South America. During the
austral summer (DJF), it mainly transports moist air from the latitudes of the Amazon
southward [22,23]. Reanalysis data show that the inter-annual variability of the jet’s
strength and frequency is significantly modulated by the El Niño southern oscillation,
especially during spring [24].

Moreover, the SALLJ is controlled by the dynamics of the SAMS. From a synoptic and
seasonal perspective, the SAMS is highly dependent on the surface temperature difference
between the ocean and surrounding land masses [23,25,26]. During the SAMS activity in
the DJF, more than 50% of annual rainfall occurs along the Andes. The same region receives
less than 10% of the annual rainfall in JJA season, which leads to distinct warm-wet and
cold-dry seasons, e.g., [17,23].

The Central Andes in northwestern Argentina are located near the end of the SALLJ
and also receive moisture from mesoscale convective systems [27–29]. To the east of the
study area exists one of the global hotspots for mesoscale convective systems. The complex
topography and interaction of unstable air masses leads to some of the heaviest rainfall and
largest cloudbursts on the South American continent, e.g., [4,6,16,30]. An additional impor-
tant component influencing heavy cloudbursts in this area is the interplay of high moisture
availability through the SALLJ and cold surges and frontal systems propagating from the
south [4,29]. This is an important process, especially in the generation of areal-extensive
heavy rainfall leading to major flooding in the eastern Central Andes and downstream
areas. Previous studies have shown that 80% of the 40 largest discharge events of the past
40 years are associated with propagating cold fronts [4]. The interplay of these factors lead
to complex rainfall patterns on the South American continent and in the study area [31].

In addition to the atmospheric conditions, the topographic setting of the study
area with deeply incised valleys funneling moisture to the higher-elevation area lead
to pronounced orographic barriers on the eastern, windward sides of the mountain
ranges [10,15,32]. The authors of Castino et al. [17] suggest three climate zones that
follow the topographic and rainfall gradient from east to west: a low-elevation and low-
slope sector, a medium-elevation sector dissected by rivers with steep hill slopes, and a
high-elevation sector with moderate to steep slopes. The climatic contrast between these
areas is large: the foreland zone receives more than 1.5 m/yr rainfall, whereas the high-
elevation areas receive less than 0.2 m/yr [10]. The intermediate elevations show high
topographic relief and force orographic lifting and convection resulting in pronounced
rainfall on the windward slopes [6,9,33]. The convective cells have lifetimes of several
hours and observations with high temporal resolution are required [23,34,35]. In addition
to the spatial and inter-annual rainfall distribution patterns, there is also an inter-diurnal
variation. According to meteorological data from Salta [36], we observe a nocturnal rainfall
peak during DJF between 21:00 and 4:00 local time [37].

3. Data

We processed GNSS and reanalysis data from ERA5 [38], and our analysis focuses
on the years between 2010 and 2021 [39]. This time frame is mainly constrained by the
availability of the GNSS data.
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3.1. GNSS Network Description

We analysed data from 23 GNSS stations listed in Table 1. A total of 16 stations are
located in northwestern Argentina, four stations in Chile, and three stations in Bolivia.
The elevation range of the station spans more than 5 km, and the network extends 450 km
in the E-W and 700 km in the N-S direction. This area is impacted by the moisture transport
associated with the SALLJ from north to south, but also the westward moisture transport
across the orographic barrier.

Table 1. Geographic coordinates of the stations that were used for water vapour analysis. The in-
stitutions that were responsible for the installation of the facilities are listed in the column Source

and are the National Geographic Institute of Argentina (Instituto Geográfico Nacional—IGN), UN-
AVCO, the University of Potsdam (UP), and the German Research Centre for Geosciences (Deutsches
GeoForschungsZentrum—GFZ). The column Analysis Centre shows where the data processing was
carried out: either at the GFZ or the Nevada Geodetic Laboratory (NGL).

Station Name Latitude Longitude Height (m) Source Analysis Centre

ABRA 22°43′19.32′′S 65°41′50.31′′W 3530.10 IGN NGL
ALUM 27°19′24.33′′S 66°35′47.86′′W 2736.94 IGN NGL
CAFJ 26°10′51.22′′S 65°52′49.17′′W 1702.36 UP/GFZ GFZ
CATA 28°28′15.54′′S 65°46′26.83′′W 547.15 IGN NGL
CBAA 22°44′46.92′′S 68°26′53.33′′W 3514.84 UNAVCO NGL
CJNT 23°01′38.96′′S 67°45′38.06′′W 5074.05 UNAVCO NGL
COLO 22°10′02.57′′S 67°48′14.32′′W 4376.93 UNAVCO NGL
GOLG 24°41′26.11′′S 65°45′38.80′′W 2381.15 UNAVCO NGL
JBAL 27°35′03.86′′S 65°37′21.89′′W 409.16 IGN NGL
LCEN 25°19′33.81′′S 68°36′09.36′′W 4270.94 UNAVCO NGL
PUNJ 24°42′46.96′′S 66°47′37.27′′W 3802.58 UP/GFZ GFZ
SALC 24°12′47.11′′S 66°19′20.83′′W 3841.62 UNAVCO NGL
SOCM 24°27′16.60′′S 68°17′42.59′′W 3969.45 UNAVCO NGL
SRSA 24°26′59.24′′S 65°57′11.85′′W 3153.80 UNAVCO NGL
TAVA 26°51′10.72′′S 65°42′36.02′′W 2036.74 IGN NGL
TERO 27°41′57.30′′S 64°10′42.17′′W 222.63 IGN NGL
TIL2 23°34′37.70′′S 65°23′42.26′′W 2517.78 IGN NGL

TRNC 26°13′48.77′′S 65°16′55.82′′W 816.08 IGN NGL
TUCU 26°50′35.71′′S 65°13′49.26′′W 485.02 IGN NGL
TUZG 24°01′53.82′′S 66°30′59.56′′W 4338.67 UNAVCO NGL
UNSA 24°43′38.84′′S 65°24′27.51′′W 1257.79 IGN NGL
UTUR 22°14′31.21′′S 67°12′19.94′′W 5184.09 UNAVCO NGL
YCBA 22°01′01.56′′S 63°40′47.94′′W 659.66 IGN NGL

The station data are maintained by different data providers, and they have been
compiled and prepared for this study. The stations CAFJ and PUNJ were installed by the
University of Potsdam (UP) and the German Research Centre for Geosciences (Deutsches
GeoForschungsZentrum—GFZ), while their observations were processed by the GFZ. All
other stations were installed by UNAVCO [40–52] and by the National Geographic Institute
of Argentina (Instituto Geográfico Nacional—IGN) [53]. The Nevada Geodetic Laboratory
(NGL) provides access to these data [54].

Due to the heterogeneous development of the GNSS network, observations do not
always overlap. Generally, the network spans the years from 2010 to 2021, but only six time
series extend through the entire range. Furthermore, all stations have undergone data loss
for limited periods of time due to technical reasons.

For the analysis of the topographic impact, we selected four stations across the central
Andes in an E-W direction (UNSA, GOLG, SRSA, and SALC, cf. Figure 1). Moreover, four
stations were chosen (UNSA, TUCU, JBAL, and CATA) perpendicular to this and along a
N-S direction. Those two subsets have one station in common, they cover multiple years
with simultaneous observations, and they reflect the diverse climate conditions of the region.
The largest elevation difference exists between the stations UNSA at 1224 m and SALC at
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3799 m asl. In this research, we use these two stations to assess data measurements from
different climatic conditions. In addition, we rely on the stations UNSA, CAFJ, and PUNJ
for in situ comparisons because these are accompanied by rain gauge sensors in short
distance. The water vapour readings in those locations is directly related to high-precision
rainfall information.

3.2. ERA5 Data

We rely on ERA5 hourly data on pressure levels from 2010 to 2021 [38], and we use the
native temporal and spatial resolution (0.25°). ERA5 data span several decades, and they
are continually updated with a minimal latency of a few days. Furthermore, ERA5 analyses
37 pressure levels, reaching a height of 80 km. This way we can calculate refraction and
wind speed information, which is vital for the methodology that we follow. Finally, we
linearly resample ERA5 data (with a temporal resolution of one hour) to the 5 min temporal
resolution of the GNSS data.

4. GNSS Meteorology

GNSS meteorology is a methodology for acquiring neutral atmosphere information by
employing GNSS measurements. The primary output of this technique is the slant total
delay between the receiver and the satellite. In this section, we discuss the translation of
this product into the zenith total delay and its gradients along the E-W and N-S directions,
and subsequently, the calculation of the zenith hydrostatic delay, the zenith wet delay,
and the water vapour amount. We also describe the approach to derive the gradients of the
zenith hydrostatic and wet delay.

4.1. Slant Delay Decomposition

The atmospheric delays of the GNSS signals, both in the slant and the zenith direc-
tions, are composed of the hydrostatic (or dry) and the wet counterparts [55]. In order
to decompose the slant total delay, we project these to the vertical using mapping func-
tions. The simplest versions of the mapping functions assumes a uniform atmosphere
and mainly depends on the elevation (ε), whereas the more advanced versions take into
account azimuthal asymmetry [56,57]. The latter approximations yield significantly better
results because they better reflect the reality by introducing gradients along the E-W and
N-S directions. According to Kačmařík et al. [58], a complete expression of the observation
equation of the slant total delay can be written as follows:

Stotal = mdryZdry + mwetZwet + mgrad(GNS cos(a) + GEW sin(a)) (1)

where:
a azimuth
Zdry,Zwet zenith hydrostatic and wet delay
mdry,mwet mapping functions for the dry and wet component
mgrad mapping function of the gradient parts
GNS,GEW gradients in the N-S and E-W directions

In a later step, the water vapour is directly calculated by the slant total delay. The formula
for this conversion is implemented by Bevis et al. [59], and it can be written as follows:

WV = ZwetΠ (2)

Π =
106

�Ru[(k3/Tm) + k′
2]

(3)

k
′
2 = k2 − mK1 (4)
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where:
� density of liquid water
Ru specific gas constant of water
m ratio of molar masses of water vapour and air
k1, k2, k3 physical constants

4.2. Data Processing

Because the GNSS data were not obtained from a homogenized network (cf. Section 3.1),
various software packages are used for the calculation of the zenith total delay and its
gradients. More specifically, Receiver Independent Exchange Format files are processed
with Earth Parameter and Orbit System (EPOS) [60] and GipsyX [61] software packages.
Although both programs are very robust and they rely on the same fundamentals, each
application follows its own strategy, and it is important to know the detailed differences
for a proper assessment of the analysis results.

4.2.1. EPOS

EPOS is a GNSS analysis software that was developed in the 1990s by the scientific
team of the GFZ [60]. Even though it was initially designed for space applications (e.g.,
precise orbit determination), it can be also used for terrestrial applications. More specifically,
EPOS estimates the slant total delay in near real-time mode using precise point positioning
algorithms [62,63]. For each set of epochs, the zenith hydrostatic and wet delay, and the
gradients of the zenith total delay are estimated in a least squares adjustment where the
functional model is Equation (1). Additionally, the utilized mapping function for the zenith
components is the global mapping function [64], while for the azimuthal component it is a
mapping function described by Bar-Sever et al. [57].

4.2.2. GipsyX

Gipsy is a multi-purpose navigation software that was developed in the 1980s by the Jet
Propulsion Laboratory [61]. Its last version is GipsyX and it does not only allow for GNSS
data processing, but for other space geodetic techniques, such as satellite laser ranging and
Doppler orbitography and radiopositioning integrated by satellite. The processing strategy
of the GNSS data is similar to EPOS. The only difference is that GipsyX employs the Vienna
Mapping Function 1 [65,66] instead of a global mapping function [54,61].

4.3. Ray Tracing

To obtain a signal delay while propagating through the atmosphere, we adopted the
geometrical optics approximation. First, we calculated the index of refraction based on
hourly ERA5 data on equiangular 0.25° grids up to the maximum height of 80 km; we rely
on pressure, geopotential height, temperature, and specific humidity of all ERA5 levels.

To perform ray tracing, we adopt a variational approach (Euler–Lagrange equations)
employing an implicit finite difference scheme [67–69]. The atmospheric delays are calcu-
lated by integrating refractivity along the ray path. The ray-traced delays describe how
atmospheric delay varies with elevation and azimuth. Because it is not practical to employ
geodetic observations, delay is often described as a continuous function of elevation and
azimuth as shown in Equation (1). The weather model-derived zenith delays and gradients
are comparable to those from space geodetic data analysis.

While zenith delays are not affected by the choice of the parametric model describ-
ing directional delay variations, the gradient components that describe azimuthal delay
variations do. In particular, the choice of the scheme describing the elevational decay
of the asymmetric delay with increasing elevation is crucial. Although the latest Inter-
national Earth Rotation Service [70] recommends a first-order continued fraction form
for sin(ε) cot(ε) ((sin(ε) tan(ε) + 0.0032)−1) [56], it is popular to use a gradient mapping
function that involves the wet mapping function (mwet cot(ε)) [57]. As demonstrated in Bal-
idakis [71] and Kačmařík et al. [58], these two sets of gradients are incompatible, and they
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cannot be accurately transformed to be used with other gradient mapping functions. Be-
cause the latter gradient mapping function has been adopted during the estimation of
first-degree gradient components employing GipsyX [54] and EPOS [60], we adopt consis-
tent elevation-decay modelling to estimate gradients from our ray-traced delays. That is,
in the station- and epoch-wise least squares adjustment of ray-traced delays, we constrained
the estimates of the dry and wet symmetric mapping function to the values given by the
gridded version of Vienna Mapping Function 1 so that we may directly compare ray-traced
gradients with GNSS-derived gradients.

5. Analysis Methods

We performed spatio-temporal analyses by applying several methods: First, we identi-
fied temporal correlations between GNSS time series through k-means clustering. Second,
we used spectral analysis to identify recurrence of specific event magnitudes. Third, we
related GNSS-based water vapour observations with rainfall measurements for several
in situ meteorologic stations, and we analysed the frequency–magnitude distributions of
water vapour and rainfall. Furthermore, fourth, we determined latitude moisture transport
through zenith delay gradient measurements.

5.1. k-Means Clustering of GNSS Time Series

We used k-Means clustering of monthly averaged water vapour measurements to
group similar station data. More specifically, we employed the TimeSeriesKMeans algo-
rithm within the Tslearn library [72], which is especially implemented for time series. Using
this algorithm, we relied on Euclidean distances, because the seasonal meteorological of
various locations data differ in amplitude and not in frequency, and they are not subject
to time shifts. We set the number of clustering classes to three, because the topographic
and climatic setting creates three zones in low-, medium-, and high-elevation areas [17] (cf.
Figure 1 and Section 2).

Due to the lack of simultaneous and overlapping observations (cf. Figure 2), the clus-
tering for all years cannot be realized. Instead, we selected only the measurements from
20 stations during 2014, when there were no major data interruptions. Even though this
is a fraction of the available data, it is adequate for the classification because it covers an
entire annual cycle, and the selected stations are distributed over various altitudes along
the E-W and N-S cross-sections.

Figure 2. Temporal coverage of the stations used in this study. Blue areas indicate times with
data availability.
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5.2. Spectral Analysis

The GNSS water vapour signal was generated by overlapping periodic oscillations
and we decomposed the signals by analysing their spectral behaviour. The annual time
series depict the water vapour observations in a low- (UNSA) and a high-altitude (SALC)
station during 2012 with a daily temporal resolution (Figure 3). In this characteristic
overview, one can clearly identify the annual oscillation in both stations. Moreover, there
are shorter oscillations with frequencies of about one week, which correspond to the
synoptic-scale water vapour cycles in the atmosphere. We also show the 5 min water
vapour time series illustrating the sub-daily cycles for two periods in summer and winter.

Figure 3. Top: Water vapour observations with 1 day sampling rate for the UNSA and SALC stations
during 2012. Bottom: Detailed view with 1 h sampling rate during two incidents in February (A) and
July (B) 2012. The panels have a different scales in their y-axes because of the contrasting water
vapour levels during the wet and dry season and their different temporal resolutions.

The frequency domain analysis is accomplished by generating 3D graphs of the signal
responses at various frequencies over time (or spectrograms) with a series of Fourier
transforms [73,74]. Considering the non-simultaneous observations at all stations, we
selected data between 2010 and 2014, when the stations along the E-W and N-S cross-
sections were functional. We set the sampling window to seven days because it is aligned
with the period of the synoptic events, and we forecast data discontinuities smaller than
two weeks using the Prophet algorithm. This approximation employs an additive model
that is sensitive to periodic fluctuations. It decomposes the signal into a trend, seasonality,
and irregular occurrences, and it does not require regularlyspaced data as input [75].

For the next step, we quantified the spectral signals. Transient water vapour variations
y were approximated as the sum of four different signal groups:

y = yp + yh + ya + yn (5)
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where yp, yh, ya, and yn indicate the polynomial term, the harmonic variations, the synoptic
term, and the noise, respectively.

The polynomial counterpart (yp = ∑i xiti) is time (t) dependent, and it yields largely
non-significant estimates for coefficient terms i > 1. It will not be discussed herein given
the relatively short data duration. The harmonic variations that are of main interest are
described as follows:

yh(t) = ∑
j

Aj cos
(
χj(t)− φj

)
(6)

where j is a certain wave with a particular frequency, Aj denotes the amplitude, φj denotes
the phase, and χj denotes the astronomical argument. To build the latter, we adopt Doo-
dson multipliers from Hartmann and Wenzel [76]. We estimate in-phase and quadrature
components for all waves whose speed spans from the Nyquist frequency to one cycle per
half-time series length, making sure that the Rayleigh criterion is fulfilled for all possible
pairs, while water vapour features marked modulation in certain spectral lines (e.g., S1
and S2) it is not explicitly considered, because the purpose of the this step is the estimation
of the power spectral density (PSD) of the post-fit residual time series, and eventually to
perform a scaling analysis using power-law fitting [77]. We refer the interested reader to
Balidakis et al.[78] and the accompanying supplementary material for further details on
the estimation of harmonic amplitudes from meteorological time series. We prefer this
approach to adopting a bandstop filter (as in [79]) because the gap filling strategy may
introduce artificial spectral signatures. A power-law distribution is suitable for describing
natural phenomena because we assume that the probability of an event is inversely propor-
tional to the power of its magnitude as it has been documented in several other natural
science datasets, e.g., [80].

To estimate the PSD given the water vapour post-fit residuals, we utilize the multitaper
method, e.g., [81]. Two sets of data are employed: raw post-tidal-fit residuals with their
uncertainty estimates and a normalized version of the former by its standard deviation
to facilitate the direct comparison of the PSD estimates from several data types stemming
either from the weather model (ERA5) or the GNSS observations themselves. The moti-
vation behind employing post-fit residuals instead of the raw water vapour time series
is that the sharp spectral lines at frequencies associated with radiative forcing (Sa and S1,
as well as overtones thereof) bias the estimation of the spectral indices in the power-law
approximation of the PSD.

5.3. Water Vapour and Rainfall Relation

We analysed the relation between liquid precipitation and water vapour to better
understand their relation. The magnitude of water vapour varies throughout the season
and during rainstorm events, but water vapour is always present in the atmosphere. On the
other hand, rainfall occurs during events or in the form of episodes, when water vapour
reaches the peak relative humidity level (100%), and it forms water particles in various
forms [82]. In an initial analysis, we selected all daily averaged water vapour values that
exceed the 90th percentile and the corresponding daily summed rainfall, and we analysed
their relationship in a power-law framework. This data subset also includes zero-rainfall
days and we exclude those epochs from the power-law relation analysis. We repeated the
analysis by selecting daily rainfall exceeding the 75th percentile and the associated daily
averaged water vapour, and we examined the relationship of their linearly binned readings
in a quantile–quantile (Q-Q) plot. For this comparison analysis, we selected the UNSA,
CAFJ, and PUNJ stations for the period between August 2019 and July 2021. UNSA is a
long-term station, and the other two sites were specifically installed for this study. All three
stations are accompanied by in situ rain-gauges.

5.4. Latitudinal Moisture Gradient Transport

In order to better understand the dynamics of the moisture transported by the SALLJ
and the impact of the strong orographic effect in our study area, we examined the zenith
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wet delay gradients (or wet gradients). In order to detect correlation between wind vectors
and wet gradients, we firstly plotted their azimuthal distributions. We removed potential
wind shear effects with the surface by only considering pressure levels exceeding the
altitude by 1 km above the surface. Subsequently, we focused on the variation of the wet
gradients per epoch. We analysed the seasonal distributions and, apart from the number
of events per azimuthal segment, we also showed the 90th to 50th percentile ratio for
the corresponding segment. This assessment assists us in the detection of the directions
towards which the strongest—compared to the median average—events take place. Those
occurrences indicate large increases in the zenith wet delay gradient that points in the
direction of incoming moisture. Finally, we selected zenith wet delay gradient readings
for the corresponding epochs, when the greater 75th percentile rainfall amount occurs.
According to those epochs, we plotted the azimuthal distributions of the wet gradients to
detect key directions. Similarly to the previous step, we used the stations UNSA, CAFJ,
and PUNJ because they are complimented by precise rainfall data.

6. Results

In this section, we present the results for each analysis method following the same
order as in Section 5.

6.1. k-Means Clustering of GNSS Time Series

Our k-means clustering analysis shows that the separation of the water vapour time
series into three classes divides them according to their geographic position and seasonality
(cf. Figure 4). The clustering is based on mean monthly time series and their seasonal
gradients determine the cluster generation. The time series of the highest seasonal ampli-
tude (cluster 3) shows an oscillating signal with a central value 27.5 mm and an amplitude
of 12.5 mm. The baseline of cluster 2 is shifted by 10 to 15 mm. Cluster 1 represents the
stations with the lowest seasonal amplitude.

Figure 4. Results of clustering the water vapour readings showing all time series within a cluster
with daily temporal resolution (A), but station clustering was performed on mean monthly values
shown in (B). (B) shows individual mean monthly values along the topographic gradient exemplified
for UNSA at 1224 m, GOLG at 2343 m, and SALC at 3799 m asl station elevation.

We observe the highest values in the austral summer during the SAMS seasons
(January and February), whereas the lowest values take place in June. Moreover, October
yields high magnitudes—in both the daily and mean monthly water vapour time series—
followed by a slightly lower magnitude in November for 2014.

The map view of the station clusters show their expected geographic separation
(cf. Figure 5). We emphasize that the clustering did not take into account the spatial
location, but only the time series data. We separate stations by elevation and climatic
conditions and use the 500 mm annual rainfall contour.
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Figure 5. Map view of the clustered stations using the monthly mean values during 2014. Circle
colours are similar to Figure 4. The stations with elevations up to 1225 m asl are located in the foothill
zone (blue points), the sites with elevation between 2000 m and 2700 m asl are located in the transition
zone (yellow points), and almost all stations above 3115 m asl are situated on the Altiplano–Puna
plateau (red points). (Topographic data obtained from ETOPO1 [18], rainfall information retrieved
from Tropical Rainfall Measuring Mission (TRMM) [20], as cited in Bookhagen and Strecker [10]).

6.2. Spectral Analysis

We analysed the spectrograms for all stations along the E-W and N-S directions
(Figure 6). In our analysis, we only evaluated periods up to seven days, because this is the
maximum range of the analysis window. The comparison between the UNSA, GOLG, SRSA,
and SALC stations shows that the response strength is inversely proportional to the altitude.
On the other hand, the stations along the N-S direction show a relatively homogeneous
signal. Moreover, there is a notable difference in magnitude between the weaker winter and
stronger summer signals. We also observe a diurnal signal independently of the station.
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Figure 6. Spectral analysis of the stations along the E-W and N-S directions (Altitude asl:
UNSA—1224 m, GOLG—2343 m, SRSA—3113 m, SALC—3799 m, TUCU—456 m, JBAL—381 m,
and CATA—518 m; cf. Figure 1 and Table 1 for station location). A seven-day sampling window
was used.

In Figure 7, we observe the PSDs of the UNSA and SALC stations. In addition,
we highlight the power responses of the annual (An), semi-annual (S-An), monthly (M),
weekly (W), and diurnal (D) periods. The strongest power signals at both stations are
the annual, semi-annual, and diurnal periods. In a next step, we compare power signal
strength between the stations: the higher elevations show significantly lower power for
lower frequencies, in some cases, by one order of magnitude. The only exception is the
half-year period, which is relatively higher in the SALC station.

Figure 7. Power spectral densities (PSDs) of the low-elevation UNSA (upper panel) and the high-
elevation SALC stations (lower panel). The thick and light-coloured lines represent the raw PSDs,
while the thinner lines show the filtered values.
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We note that the stations along the N-S cross-section are relatively homogeneous, while
the stations along the topographic gradient alter significantly (Table 2). The decrease in the
amplitude is at the level of 70–80%, which is in accordance with the observations made in
Figure 6. In terms of the lower power signals, it appears that there is no physical relationship
between those periods and the data series. Moreover, the normalized amplitudes show
homogeneous behaviour for the daily and semi-annual signals, but we observe a decrease
in the annual cycle at higher altitudes.

Table 2. Amplitude estimation of various harmonics for the stations along the E-W and N-S profiles.

Period
Absolute and Std.-Normalized Amplitude (mm/−)

UNSA GOLG SRSA SALC JBAL TUCU CATA

1 day 1.85/0.19 1.82/0.25 1.44/0.26 0.54/0.14 1.63/0.14 1.90/0.16 0.83/0.18
1 week 0.30/0.03 0.08/0.01 0.05/0.01 0.11/0.03 0.37/0.03 0.54/0.05 0.53/0.05

1 month 0.51/0.05 0.43/0,06 0.32/0.06 0.24/0.06 0.94/0.08 1.27/0.11 0.68/0.06
6 months 10.13/1.01 7.22/1.00 5.39/0.97 3.12/0.80 11.77/0.99 11.73/0.98 10.16/0.96

1 year 21.86/2.19 12.60/1.74 7.99/1.44 4.89/1.25 27.55/2.31 28.22/2.37 23.37/2.22

The power-law fitting of the binned filtered PSDs signals show a general agreement
between the behaviours of the two stations (cf. Figure 8). The power-law exponents are
comparable, but their roll-over magnitudes differ. With the exception of the low-magnitude
spectrum, the log-binned datasets match well with this distribution. The estimated alpha
values for UNSA and SALC stations are 1.50 and 1.46, respectively. Taking into account
the power-law exponents, their standard deviations, and the degrees of freedom (18),
the t-score equals 2.898. This value is lower than the threshold point of a t-distribution
with a confidence interval of 99.9%, and we can assume that the two lines have comparable
power-law slopes. Because of the different seasonal magnitudes of these two stations, we
expect different roll-over magnitudes.

Figure 8. Power-law fitting of the filtered PSDs of the UNSA and SALC stations. The dots indicate
the input data that are logarithmically binned using 20 classes. The power-law exponent is described
by α, and both exponents are comparable within their standard deviations. The fitting is constrained
by the minimum value (xmin) that corresponds to the point/bin, where the frequency magnitude
starts to decrease.

6.3. Water Vapour and Rainfall Relation

We analysed the differences between power-law fits and water vapour and rainfall
amount (Figure 9). For our analysis, we filtered the greater than 90th percentile daily mean
water vapour values, and we selected the cumulative rainfall readings for the corresponding
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days. The water vapour series suggest that a power-law distribution is appropriate for
modelling the log-binned observations. The exponent (α), which describes the slope of the
line, is similar for the low- and medium-elevation stations, but it changes significantly for
the high-elevation stations on the Altiplano–Puna plateau. On the contrary, the maximum
value (xmax), which is related to the shift of the slope on the x-axis, is negatively correlated
with the altitude. With respect to the rainfall values, we observe that the differences
between the slopes are less pronounced, and the PUNJ station shows a slightly steeper
relation. This indicates a lower variation between the rainfall events in the UNSA station.
Even though there is a trend of heavier events in lower altitudes, the CAFJ time series
yields lower peak values than the higher-elevation PUNJ station. We observe that the
standard deviations of power-law exponents for the water vapour and rainfall relation
varies: exponent uncertainties are large for water vapour relation and uncertainties are
reduced to 8–22% for the rainfall relation (Table 3).

Figure 9. Power-law fitting of greater than the 90th percentile daily mean water vapour values (left)
and the cumulative rainfall for the corresponding epochs (right) of the UNSA, CAFJ, and PUNJ
stations. In both cases, the inputs (white dots) are grouped into 20 bins using a logarithmic scale.
The minimum value (xmin) for the water vapour modelling was set to the lowest-magnitude bin,
whereas the daily sums lower than 0.01 mm were omitted for the rainfall fitting.

Table 3. Statistical attributes for α and its standard deviation and xmax of the power-law fitted lines
in Figure 9.

Station Name
Water Vapour Rainfall

α xmax α xmax

UNSA 12.05 ± 5.68 45.0 1.23 ± 0.10 72.40
CAFJ 10.56 ± 4.89 36.0 1.26 ± 0.17 15.90
PUNJ 5.94 ± 2.64 14.0 1.41 ± 0.31 46.40

In the next step, we reverse the reference dataset, and we examine the relation between
rainfall and their corresponding water vapour values. We exemplify this by selecting the
75th percentile cumulative rainfall events on daily basis and their corresponding mean
water vapour values during those epochs. Taking into account the non-continuous presence
of this scalar, we set a lower percentile threshold in order to retrieve sufficient data from
all stations.

While we do not observe a relation between all rainfall events and water vapour
amounts, we detect certain location-related tendencies when comparing stronger rainfall
events and water vapour (cf. Figure 10). The scattering in the y-axis is broader in the
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lower-elevation stations. On the other hand, the spreading in the x-axis follows the same
trend but at a lower rate. However, the relations are very dynamic, and they cannot be
described by a linear function.

Figure 10. Quantile–quantile (Q-Q) plots of the greater than the 75th percentile daily-summed rainfall
against the corresponding daily mean water vapour values of UNSA, CAFJ, and PUNJ stations.
The lower number of measurements (epochs) in the higher-altitude stations is explained by the lower
frequency of rainfall occurrences.

6.4. Zonal Moisture Gradient Transport

We compared the calculated zonal moisture gradient with ERA5-derived wind vectors
(Figure 11). We observe annual wet gradients pointing in the general moisture directions
to the north-west for UNSA and to the east for the high-elevation PUNJ station. This
corresponds to the main wind direction for UNSA, which is toward the south-west. The ob-
served eastward wind speeds in PUNJ are much higher, and they reflect the generally
higher wind velocities following a high-to-low elevation gradient.

Figure 11. Azimuthal and magnitude distributions of the wet gradients and wind vectors of the
UNSA and PUNJ stations. Wet gradients show the direction of moisture from the station location and
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wind vectors show direction of wind transport. The azimuths are separated into 12 angular bins of
30°, and the magnitudes are arranged into five non-equal-width classes, in order to better illustrate
distinct features for each station. The radius of the major influence is approximately 20 km. The wind
directions are calculated from ERA5 hourly data on pressure levels [38] by extracting the median
wind components between the station and the pressure level of 200 hPa. Because of the wind surface
friction, the first km above the station is ignored. In both datasets we utilize a temporal resolution of
5 min, and the temporal coverage is adjusted to the shorter extent of the GNSS measurements.

We performed a seasonal analysis of wet gradient directions to highlight their strong
seasonal dependence (Figure 12). For the low-elevation UNSA station located in the SALLJ
we observe two peaks, and the majority of the azimuths point either to the east (90°) or to
the west (270°) during austral spring/summer and fall/winter, respectively. During the
fall season, there are higher values pointing to the west, which is reversed in the spring.
The high-elevation PUNJ station shows different patterns: there is a peak azimuth direction
from the north-east (45°) to the south-east (135°) throughout the year.

Figure 12. Azimuthal distribution of monthly-based wet gradients for the UNSA and PUNJ stations.
Seasons are given as austral seasons (i.e., Summer is DJF), and the angular bins are defined as in
Figure 11. The events indicate the number of hourly-sampled wet gradients that occur for each
angular bin during each month.

Subsequently, we examined the ratios between the 90th to 50th percentile for all
directions and seasons (Figure 13). In other words, we normalized the 90th percentile
values by their medians and show the relation to the higher percentile: if the ratio is
high, the 90th is much higher than the median. This analysis focuses on the wet gradient
hotspots that are significantly larger than the mean, both in the spatial and temporal
domain. Those occurrences are particularly interesting, because they indicate changing
boundary conditions fluctuations. The ratios are high for the UNSA station and suggest a
wide directional range. The PUNJ station shows a more homogeneous signal. There are no
significant intra-seasonal variations of the distribution of the wet gradients in both cases.
We also observe that moisture–gradient ratios vary by their directions. At the low-elevation
UNSA station, the largest ratios occur during the summer and are directed towards the
east-north-east (15° to 75° azimuth).

In the last step, we analysed the wet gradient direction during rainfall events exceeding
the 75th percentile rainfall amount (Figure 14) in order to focus on those episodes. We
observe that moisture gradients during rainfall events are spread out with a dominant
direction from the south-east. In contrast, the high-elevation PUNJ station only shows
five main direction that reflect local topographic shielding patterns and main moisture
directions. We note that the majority of the events point towards the east in an azimuth
range between 105–165◦ and 15–135◦ for UNSA and PUNJ, respectively.
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Figure 13. 90th to 50th percentile ratio of the wet gradients for the UNSA and PUNJ stations.
The temporal and azimuthal separation is done similarly to Figures 11 and 12. The percentiles are
extracted from the hourly averaged observations that occur in each directional and seasonal segment.

Figure 14. Summer season wet gradients for the larger than the 75th percentile rainfall events for the
UNSA and PUNJ stations. The seasonal and azimuthal segmentation coincides with Figures 11–13,
and the rainfall events are identified by the cumulative rainfall on 1 h basis that is measured with in
situ rain gauges.

7. Discussion

The discussion follows the same organization of the Results sections.

7.1. k-Means Clustering of GNSS Time Series

We analysed the time series of the monthly water vapour during 2014 (Figure 4).
The results of the clustering and the spatial water vapour distribution show the impact
of topography and climate: the higher-elevation stations with low seasonal amplitudes
are located on the arid Altiplano–Puna plateau, and the low-elevation densely vegetated
areas are characterized by high seasonality. The transitional zone between these two end
members shows an intermediate behaviour. This finding confirms our initial hypothesis and
previous observations that orography plays a significant role on the local climate [10,32].
We further calculated the water vapour readings of UNSA at various altitudes, and we
directly compare them with other stations (Figure 15). According to [83,84], the water
vapour of a site can be projected to a higher altitude with the following equation:

wv = wv0 exp
C2Δh
1000

(7)
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where C2 is a constant equal to 0.439, and Δh is the height difference in meters.

Figure 15. Projection of the mean monthly water vapour values of UNSA station (1224 m asl) at
higher altitudes for the direct comparison of the readings with actual measurements at those points.
UNSA’ is the water vapour content at the corresponding height of the GOLG station at 2343 m asl,
and UNSA” corresponds to the SALC station at 3799 m asl. In most cases, the water vapour contents
at UNSA at the corresponding heights are higher than at the measured station.

Additionally, all stations show a seasonal signal, independent of altitude, and we
observe a near-continuous signal from austral winter to spring (September to November).
In order to examine this signal, we plot the monthly means over a longer period (Figure 16).
The transitional seasons are characterized by larger 1 sigma standard deviations and show
a larger variability in atmospheric water vapour.

Figure 16. Mean monthly water vapour values for the stations along the topographic gradient from
low to high elevations (cf. Figure 4). We analysed water vapour readings from 2010 to 2021 derived
from ray tracing that only utilizes ERA5 meteorological data on pressure levels [38]. The semi-
transparent colouring indicates the per-month standard deviation.

7.2. Spectral Analysis

We compare the signal responses at various frequencies of the GNSS-derived water
vapour estimates against the ERA5 reanalysis data (Figure 17). We observe similar be-
haviour between the two spectrograms, which indicates high coincidence in the seasonal
signals. In addition, the majority of the relative differences are less than 1%, showing that
the GNSS observations are equally reliable. One advantage of GNSS data is that they can
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achieve a significantly higher temporal resolution of five minutes, and detect features in
this region on short time scales. In contrast, the reanalysis or mesoscale models have a
temporal resolution of one hour and capture synoptic-scale processes.

Figure 17. Left: Spectral analysis of the station along the E-W and N-S directions using a seven-day
sampling window. This figure can be directly compared to Figure 6. In this case, we employed the
ray-tracing derived water vapour using only meteorological information from ERA5 hourly data
on pressure levels [38], instead of the GNSS-derived water vapour. Right: Difference in relative
response power between the spectrograms of the GNSS- and the ERA5 ray-tracing derived water
vapour series.

The spectral behaviour of the water vapour shows that all signals are primarily tuned
at the annual, semi-annual, and diurnal periods, which correspond to the seasonal cycles
of the moist air masses. The shape of the signal affects the ratio between period responses.
In the case of the higher-elevation stations, the semi-annual periods are pronounced. This
is due to the flattening of the water vapour series, which leads to a time series that can
be better characterized by a harmonic equation with two oscillations. The water vapour
values of the lower-elevation stations are reflected both in the spectrograms and the PSDs,
showing the influence of the topography on the regional climate. Lastly, the frequency–
magnitude relation of the filtered PSDs reveals relatively analogous responses to the
seasonal fluctuations, regardless of location (cf. Figure 8).

7.3. Water Vapour and Rainfall Relation

The power-law fitting of the water vapour observations reveals higher values in lower
altitudes on the one hand and a lower decay ratio for the PUNJ station. The prior is ex-
pected, and it has been noted in the previous sections (e.g., Figures 3 and 4). The latter is
interesting, and we note that the high-percentile readings are more equally distributed in
this station. Additionally, the fitting of the rainfall readings demonstrates that strong events
will also take place at high elevations, but less frequently. However, this interpretation is
not well applicable to the CAFJ station, because this station is part of an inter-mountain
valley; thus the lower cloud coverage results in different temperature conditions. The high
standard deviations of the exponents indicate skewed datasets that diverge significantly
from a normal distribution. Despite the high uncertainty of the water vapour fitting, we
observe clear trends. The Q-Q plots also show that extreme rainfall events are observed
at high elevations, but they occur in a narrower water vapour peak range. This demon-
strates the direct relationship between the required amount of water vapour to produce
atmospheric saturation and the elevation. Additionally, the saturation is also dependent on
the tropospheric temperature above the examined locations. In this case, there is a notable
difference because of the within-the-layer temperature decrease along the altitude and the
complex terrain that impacts cloud coverage.
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7.4. Zonal Moisture Gradient Transport

We observe that the wind directions in the low-elevation stations are associated with
the SALLJ and show moisture transport from the north-east and east towards the southerly
directions (cf. Figure 11). Wind directions on the Altiplano–Puna plateau show only a
minimal correlation with the SALLJ. There is a large difference in the wind speed between
the low- and high-elevation stations, because the measurements do not take place at the
same height. When considering a fixed pressure level (e.g., 500 hPa), the wind speed is
homogeneous over the area. The distribution of the per-season-separated wet gradients
shows dominant patterns for every station that slightly change through the year. This
suggests a major influence of the topography and the altitude.

The higher 90th to 50th percentile ratios of the wet gradients in the low-elevation
station are associated with the SALLJ that transports moist masses over the foothill zone of
the south-central Andes. Moreover, the direction of the strongest occurrences (in terms of
ratio) in this station (east-north-east) reveal important information. This is the direction
of the topographic barrier which intersects with the SALLJ. The analogy between the
wet gradients and the most intense rainfall occurrences suggests that most rainfall events
reaching Salta are transported across the orographic barriers to the east and south-east of the
city. In conjunction with our prior findings, this indicates good correlation between the wet
gradients and the location of the wet air masses. Moreover, some rainfall events occur in the
opposite direction, pointing to the orographic barrier west of Salta (cf. Figures 12 and 18).
For the arid PUNJ station, we observe weaker wet gradients, but a strong correlation with
topography. The correlation is pronounced because gradient generation is only triggered
by the moisture transport on topographic barriers.

Figure 18. Topography setting of the low-elevation UNSA (1224 m asl) and high-elevation PUNJ
(3760 m asl) stations. The dark- and light-blue circles show the area of influence of the 50th and
90th percentile of the water vapour above each site, respectively. The black vectors indicate the
main moisture directions associated with high rainfall, as calculated in Figure 14. Topographic data
obtained from ETOPO1 [18].

8. Conclusions

In this study, we have used GNSS time series data to better understand the climatic
dynamics of the central Andes in northwestern Argentina. We have compiled 23 GNSS
observations from 2001 to 2021 and have installed two GNSS stations that collected data
between 2019 and 2021. The GNSS signal is used to measure water vapour content in the
atmosphere at high temporal resolutions of 5 min. We use these data to make the following
key observations:

(1) The GNSS time series data show distinctive climatic behaviour for the Central Andes
that was analysed using a clustering analysis: GNSS stations from the low-elevation
area in the pathway of the SALLJ show similar behaviour and cluster into the same
group. Stations from intermediate elevations at the transition from low- to high-
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elevation areas show a distinctive signal and cluster into the same group. Stations
from the high elevations located on the Altiplano–Puna plateau behave similarly and
have the lowest absolute (not relative) seasonal component.

(2) A frequency analysis depicts the seasonal signals, and it illustrates the impact of
the orographic uplift. The annual, semi-annual, and diurnal periods can be clearly
identified, but there are also spectral differences across the time series. The most
prominent variations between the stations are found in the magnitude of the water
vapour levels, where the readings are inversely proportional to the station elevations.

(3) The association between water vapour and rainfall reveals a general correlation of
stronger water vapour amounts. We observe that high water vapour episodes are less
frequent at higher altitudes, but strong events still occur. We note that the rainfall–
water vapour relation varies along the topographic gradient. At lower altitudes,
rainfall occurs across a wide water vapour peak range. In contrast, at high elevations
only a narrow band of water vapour amounts can be associated with rainfall events.

(4) We have used wet gradients to identify moisture transport for two sites: the low-
elevation UNSA station at 1224 m and the high-elevation PUNJ station at 3760 m.
The wet gradients allow us to document that local topographic effects strongly impact
the characteristics of the GNSS and hydrologic stations. Even though the moisture
fluxes’ magnitude is subject to the circulation of the SALLJ and the mesoscale convec-
tive systems, nearby topography controls the circulation of atmospheric water vapour
and controls the moisture pathways.

In comparison to reanalysis data, there are several advantages of GNSS meteorology
techniques: a good accuracy of water vapour measurements, the ability to measure water
vapour in three dimensions, and the high sampling rate of seconds to minutes. A network
of homogenized and reliable GNSS stations will allow for an improved weather prediction.
The National Geographic Institute of Argentina continuously operates a GNSS network
that is very dense in urban zones, but lacks facilities in remote areas. Considering the
ability of GNSS to measure the atmospheric moisture gradient, the aggregation of more
stations and the integration of those data into meteorological applications would allow for
short-term predictions of heavy rainfall, and would improve the weather prediction. This
knowledge may help in reducing the damage from natural hazards, and it would benefit
the agriculture sector, which is crucial for the local economy.
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Abstract: The dynamic variation in the water surfaces of the river networks within the Qinghai-Tibet
Plateau affects the water resource availability for downstream ecosystems and human activities.
Small rivers (with a river width less than 30 m) are an important component of this network, but
are difficult to map in the Qinghai-Tibet Plateau. Firstly, the width of most rivers is very narrow, at
around 20 m, which appears as only one or two pixels in Sentinel-2 images and thus is susceptible
to salt-and-pepper noise. Secondly, local mountain shadows, cloud shadows, and snow pixels have
spectral characteristics similar to those of rivers, leading to misclassification. Therefore, we propose
an automated small river mapping (ASRM) method based on Sentinel-2 imagery to address these
two difficulties. A preprocessing procedure was designed to remove the salt-and-pepper noise and
enhance the linear characteristic of rivers with specific widths. A flexible digital elevation model
(DEM)-based post-processing was then imposed to remove the misclassifications caused by mountain
shadows, cloud shadows, and snow pixels. The ASRM results achieved an overall accuracy of 87.5%,
outperforming five preexisting remote sensing-derived river network products. The proposed ASRM
method has shown great potential for small river mapping in the entire Qinghai-Tibet Plateau.

Keywords: small rivers; Sentinel-2; Google Earth Engine; Gabor filtering; HAND index

1. Introduction

Terrestrial river networks store and transport large amounts of water and surface
materials, and are an important part of the Earth’s biochemical cycle [1–3]. They influ-
ence global climate change processes and ecosystem nutrient balances [4,5]. Rivers with
channel patterns can be clustered into heterogeneous types based on their morphological
characteristics and flow behaviors [6], and can be analyzed through automated and semi-
automated approaches [7] using various data sources such as historical maps [8]. With the
rapid development of earth observation technology, satellite remote sensing images have
become an important data source for monitoring the dynamic changes of terrestrial river
networks [9–11].

In recent years, many studies used satellite remote sensing imagery to produce remote
sensing data for terrestrial river networks. Yamazaki et al. (2015) produced a Global 3
arc-second Water Body Map (G3WBM, 90 m) dataset using long time series, multi-seasonal
Landsat imagery. The Global 3 arc-second Water Body Map (G3WBM, 90 m) dataset used long
time series of multi-seasonal Landsat imagery to distinguish permanent from seasonal water
bodies based on their frequency of occurrence in the images [12]. Gong et al. (2017) produced
a 10-m spatial resolution global land cover product based on Sentinel-2 (10 m) imagery from
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2017, and a multiseasonal, multiscale (from 30 m × 30 m to 500 m × 500 m) training sample of
global land cover types sampled by visual interpretation using a supervised classification
approach, named the Finer Resolution Observation and Monitoring-Global Land Cover
(FROM-GLC10) [13], which labelled the global surface water distribution extent with high
accuracy. Pekel et al. (2016) used nearly three million Landsat images to produce the Global
Surface Water (GSW, 30 m) dataset [14], which contains month-by-month global surface
water extraction results from the past 37 years and classifies permanent and seasonal water
bodies according to their frequency of occurrence, supporting studies on water conservation
management and decision-making, biodiversity conservation, and climate change. GSW
records the spatial distribution and dynamics of global water bodies from 1984 to 2020
(37 years). Allen and Pavelsky (2018) produced the Global River Widths from Land-
sat (GRWL, 30 m) dataset containing river centerline and river width attributes using
7376 Landsat images and field measurements from 3963 hydrographic stations [15]. The
total global river area estimated based on the GRWL dataset is more than 44% larger than
the results of previous studies. The existing river network remote sensing data products
are mainly based on Landsat imageries with a spatial resolution of 30 m. As a result,
small rivers with a width of 30 m or less are ignored [16,17]. However, compared with
large rivers, small rivers have active ecosystems and frequent land-air interactions [18].
Moreover, ignoring small rivers can cause underestimation of the role of terrestrial river
networks in geochemical cycles [19]. Therefore, it is important to use high-resolution
satellite imagery to monitor the dynamics of the water surfaces of the small rivers [20].

The Qinghai-Tibet Plateau in China, which accounts for 1/4 of its land area, stores a
large number of water resources in the form of glaciers and snow, and is the birthplace of
China’s major rivers, such as the Yangtze, Yellow, Lantsang, and Tarim rivers [21]. It has a
dense network of rivers with different river morphologies, and the spatial and temporal
distribution of its rivers dynamically affects the downstream ecosystems and human
activities [22–24]. Therefore, water monitoring on the Qinghai-Tibet Plateau is crucial
for China’s water security. However, the Qinghai-Tibet Plateau has steep terrain, narrow
river channels, and widespread small rivers. Additionally, shadows from mountains
and clouds and snow cover inevitably influence the remote sensing monitoring of river
networks [25,26]. Therefore, developing an advanced method for mapping small rivers on
the Qinghai-Tibet Plateau is necessary to improve our understanding of the spatial and
temporal dynamic characteristics in water surfaces of the river networks on the Qinghai-
Tibet Plateau and quantify their impacts on downstream ecosystems.

2. Materials and Methods

2.1. Study Area

Zagunao Basin (about 2391 km2) is a sub-basin of the Yangtze River Basin within the
Tibetan Plateau (Figure 1) and was selected as the study area. The Yangtze River is one of
the five major rivers in the Tibetan Plateau outflow area. The terrain of the study area is
steep. The river networks are complex, and the rivers are mostly narrow and small, with
an average width of 20 m (Figure 1d) as observed from the existing remote sensing-derived
product Finer Resolution Observation and Monitoring-Global Land Cover (FROM-GLC10).
Additionally, the study area has an extensive snow cover, and the surface water recharge is
snowmelt runoff, which is regulated by temperature. The flood season is usually in summer
(June–August), while the dry season is usually in winter (December–February) [27].
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Figure 1. Location of the study area. (a) Location of the study area; (b) Main river channel (the
confluence of more than two tributaries with wider river width) within the study area; (c) Small river
(<30 m) channel within the study area; (d) Distribution of river widths in the study area. The river
widths were extracted from FROM-GLC10.

2.2. Data
2.2.1. Satellite Data

Optical remote sensing images of the Sentinel-2 satellite with 10-m spatial resolution
were used for small river monitoring. Sentinel-2 acquires images with a Multispectral
Imager (MSI) and is mainly used for terrestrial observation [28]. There are two Sentinel-2
satellites: Sentinel-2A (launched in 2015) and Sentinel-2B (launched in 2017). The Sentinel-2
MSI includes visible and shortwave-infrared bands: Band 2 (blue, 10 m), Band 3 (green,
10 m), Band 4 (red, 10 m), and Band 11 (SWIR, 20 m) [29]. Sentinel-2 has a relatively
high spatial resolution among the currently freely available satellite images and has a
broad application prospect in the global remote sensing monitoring of environmental
resources [30]. Sentinel-2 imagery from May 2017 to October 2020 was acquired and
mosaiced to a monthly time step using the GEE platform to produce monthly cloud-free
synthetic images for the study area, which were then processed for the extraction and
analysis of the river networks.

2.2.2. Digital Elevation Model (DEM)

The MERIT DEM (Multi-Error-Removed Improved-Terrain DEM) is a hydrologically
adjusted DEM produced from the MERIT Hydro dataset with a spatial resolution of 30 m
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that is particularly suitable for hydrological analysis [31]. We selected MERIT DEM to build
the river ROI because it is specially developed for hydrological analysis by reducing error
components from existing DEM products, in which river networks and hill-valley structures
are clearly represented. The vertical error of MERIT DEM is ±12 m (90th percentile of the
error range) [32]. Therefore, we suggest it possesses sufficient accuracy to create river AOIs.

The Height Above the Nearest Drainage Network (HAND) is a topographic index
based on topographic data used to simulate the possible occurrence of water bodies [33]. It
is widely used in the fields of soil moisture simulation, flood prediction, and assessment [33].
The HAND index has also been used for Arctic river mapping [34]. The higher the difference
in elevation, the higher the gravitational potential energy, and the more work is required
to transport water from the river to a location, so a lower soil-water content indicates a
lower possibility of the presence of a water body [33]. The HAND data produced from the
MERIT DEM were obtained from the MERIT Hydro dataset on the GEE platform and used
as auxiliary data to remove mountain and cloud shadows as well as snow cover.

The HAND index is calculated as follows:

HAND = Ei − Enearest (1)

where Ei denotes the elevation of each pixel in DEM. The Enearest is the elevation of the
nearest pixel of the DEM-modeled river network.

2.2.3. Existing Remote Sensing River Network Products

Five existing river network remote sensing products were obtained for comparison
with ASRM (Table 1).

Table 1. Existing river network remote sensing products.

Name Data Source Resolution Introduction Reference

FROM-GLC10 Sentinel-2 MSI 10 m Global land cover data
products Gong et al., 2019 [13]

GSW Landsat
MSS/TM/ETM+/OLI 30 m

Long time series
monthly surface water

cover
Pekel et al., 2016 [14]

GRWL Landsat
MSS/TM/ETM+/OLI 30m Vector data product

with river width Allen et al., 2018 [15]

OSM
Aerial, satellite imagery,
GPS devices and in situ

observation data
None

Vector data product
based on opensource

community
contributions

https://www.
openstreetmap.org/,

accessed on 1 January 2021

HydroSHEDS SRTM DEM 450, 900 m
Continuous river

networks generated by
DEM

Lehner et al., 2008 [35]

(1) FROM-GLC10: 10-m spatial resolution global land cover product

Finer Resolution Observation and Monitoring-Global Land Cover (FROM-GLC10) is a
10-m spatial resolution global land cover product that includes water bodies identified from
Sentinel-2 imagery [13]. The overall accuracy of all land cover types tested was 72.76%.

(2) GSW: Long-time-series remote sensing dataset

Global Surface Water (GSW) is global surface water remote sensing dataset produced
based on nearly three million Landsat images [14]. The dataset contains the global monthly
surface water extents for the past 37 years. This dataset contains sub-datasets of monthly
surface water extents, the annual frequencies of water bodies, and the maximum water body
distribution range, all with a spatial resolution of 30 m. In this paper, the “maximum water
body distribution range” data in the GSW dataset were selected for comparison with ASRM.
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(3) GRWL: A global river network dataset with river width

Global River Widths from Landsat (GRWL) is a global river network dataset with
river width attributes [15]. The dataset is based on over 7000 cloud-free Landsat im-
ages acquired during the normal water flow period and field measurements from nearly
4000 hydrological stations, combined with statistical models to model the centerline loca-
tions and width of the global rivers. GRWL is the first global river network dataset with
river width attributes.

(4) OSM: Real-time update of a global geographic dataset

OpenStreetMap (OSM) is free open-source dataset. Every member of the OSM com-
munity can upload and maintain the data, including rivers, lakes, roads, railroads, etc.
Contributors combine aerial and satellite imagery, GPS devices, and field work to verify
and correct the data to ensure accuracy and timeliness. The river network dataset in vector
format from the OSM community was acquired for this paper.

(5) HydroSHEDS: A global river network dataset produced from DEM

HydroSHEDS is a global river network dataset produced using Shuttle Radar Topog-
raphy Mission (SRTM) DEM data [35]. Since the HydroSHEDS dataset is generated from
DEM data modelling, it contains only river centerline information, and lacks information
on the actual extents of the rivers.

2.2.4. Validation Data

We extracted samples from various months (Figure 2b) and manually classified the
pixels as rivers or background (i.e., non-river pixels) referring to the original Sentinel-2
image. A total of 137,357 pixels were selected as validation samples, 73,254 of which
corresponded to river pixels.

Figure 2. Validation samples. (a) Distribution of validation samples collected in July 2018; (b) Ratio
of river pixels to background pixels in samples from various months.

2.3. Automated Small River Mapping

Due to the unique climatic and topographical conditions of the Tibetan Plateau, there
are two main difficulties in mapping small rivers. Firstly, the widths of the rivers are very
narrow (around 20 m) (Figure 1d). They appear in the images as one or two pixels and are
susceptible to salt-and-pepper noise from unexpected atmospheric conditions and quality
issues with the electronic sensor during the image production process. Secondly, local
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mountain shadows, cloud shadows and snow cover have similar spectral characteristics to
those of rivers. To address these two problems, a preprocessing procedure was imposed
to remove the salt-and-pepper noise and enhance the linear characteristics of the rivers.
Additionally, a DEM-based post-processing was imposed to crop the misclassifications
caused by mountain shadows, cloud shadows, and snow cover. Then, the river network
map generated by ASRM was compared with the existing five products.

2.3.1. Water Index

The first step is to calculate the MNDWI (Modified Normalized Difference Water
Index) (Figure 3b), which is an improved normalized water index based on the NDWI
(Normalized Difference Water Index) [36], both of which take advantage of the spectral
characteristics of water bodies with very low reflectance in the short-wave infrared band
and high reflectance in the visible bands. The MNDWI is constructed by adjusting the
combination of the bands that comprise the NDWI [37]. In particular, MNDWI can better
distinguish between shadows and water bodies, and is calculated as follows:

MNDWI = Green − SWIR
Green + SWIR (2)

where Green and SWIR denote the reflectance in the green and shortwave infrared bands,
corresponding to Band 3 and Band 11 of Sentinel-2 images, respectively.

Figure 3. Workflow of remote sensing river extraction.

2.3.2. River Enhancement

The salt-and-pepper effect increases the difficulty of distinguishing small rivers. There-
fore, mean smooth filtering with a window size of 3 × 3 is imposed to suppress the
salt-and-pepper noise (Figure 4). However, the smoothing process also blurs river bound-
aries. Therefore, we use a histogram equalization algorithm to enhance the local contrast
between the water boundary and the background. Then, a Gabor filter is applied to enhance
the linear characteristics.
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Figure 4. Salt-and-pepper noise removal using smooth filtering. (a) MNDWI before smoothing.
(b) MNDWI after smoothing.

A Gabor filter is a band-pass filter that enhances the linear characteristics of a specific
width (20 m for this study) while suppressing irrelevant linear elements (e.g., feature edges).
It is often used in the delineation of linear blood vessels in medical imaging [38]. Since
rivers and blood vessels have similar linear features, it is also used for river identifica-
tion [39]. Here, Gabor filtering is imposed to enhance the linear characteristics of small
rivers in MNDWI images so that the contrast between small linear rivers and background
is enhanced.

The Gabor filter kernel with an angle of θ = −π/2 can be expressed as:

g(x, y) = 1
2πσxσy

exp
[
− 1

2

(
x2

σ2
x
+ y2

σ2
y

)]
cos(2π f0x) (3)

where σx, σy is the standard deviation in the x, y-direction, and f0 is the frequency of the
modulated sinusoidal curve. The setting of these three parameters can be adjusted to the
specific width of the linear features to be enhanced. Assuming that W is the width of the
river to be enhanced, the bandwidth w of the Gabor filter and W satisfy Equation (3). The
values of σx, σy, and f0 satisfy Equations (4) and (5).

W = 2w + 1. (4)

σx = σy = w
2
√

2ln2 (5)

f0 = 1
w (6)

Since Gabor filtering is performed in the null domain, it is necessary to place g(x, y)
according to a certain angle θ to enhance the river lines in different directions. The rotation,
(θ ∈ [−π/2, π/2]) equation is as follows:

⎧⎨
⎩

gθ(x′, y′) = g(x, y)
x′ = xcosθ + ysinθ
y′ = ycosθ − xsinθ

(7)

Depending on the rotation angle, the filter can observe the river in the direction that is
not used. For the input image f (x, y), the filter will respond with the following equation:

rθ(x, y) = gθ(x, y) ∗ f (x, y) (8)

The final maximum response in all directions is expressed as:

r(x, y) = max
(
rθ(x, y)

)
, θ ∈ [−π

2 , π
2
]

(9)

After experiments, the filter performs most successfully for rivers with a width of
20 m when w = 2, θ = 15◦. The result after applying the Gabor filter is shown in Figure 5.
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The river is more clearly differentiated from the background, and the connectivity of the
river is further improved. Moreover, the range of pixel values is set to 0–255.

Figure 5. Performance of Gabor filtering. (a) MNDWI before filtering. (b) MNDWI after filtering.

After manual testing at 0.5 intervals, a threshold of 10 was applied on the low-noise
high-contrast and on the linear enhanced MNDWI image for river segmentation. Pixels
with values higher than 10 were classified as river pixels, while others were classified as
non-river pixels. However, the interferences from mountain shadows, cloud shadows, and
snow cover remain unremoved and will be handled in the post-processing.

2.3.3. Post-Processing

The preliminary remote sensing river networks have been obtained after threshold
segmentation of the Gabor-filtered MNDWI (Figure 6b). However, there is still extensive
noise caused by mountain shadows, cloud shadows, and snow cover. The spectrum of
shadows will vary depending on the underlying surface. The shadow overlying on the
vegetation and snow cover would have a quite low reflectance in all bands with a higher
reflectance in the visible bands than in the SWIR band, which is an effect similar to that of
water. While the shadow overlying on the bare land has a lower reflectance in the visible
bands than in the SWIR band, snow has a much higher reflectance in the visible bands
than in the SWIR band. Although the reflectance value of snow is greater than that of
water (especially the visible part), the MNDWI of snow and water are similar. Since we
use the MNDWI index in this paper, both snow and shadows can be misclassified as rivers.
Therefore, DEM data were used as auxiliary data to post-process the river extraction results
and to remove the noises caused by shadows and snow cover.

Figure 6. Classification removal based on DEM-modelled area of interest (AOI). (a) Original Sentinel-
2 image. RGB: band 4 (Red), band 3 (Green), band 2 (Blue). (b) Results before cropping. (c) AOI
generated from HAND index. (d) Cropped results.

Lu et al. [40] used a DEM to model the central line of a river channel and generated a
50-m buffer on each side of the river. The water pixels outside the AOI were considered to
be misclassified. However, the method did not consider different river widths. Creating
buffers with uniform distances along different parts of the rivers may cause the partial
cropping out of wider tributaries while retaining the noise around the small tributaries.
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To overcome this limitation, the HAND index was introduced, which considers the
possibility of a river’s presence (Figure 6) to create river AOIs of different widths [38]. We
used a relatively high threshold of 50 m for the segmentation of HAND imaging to ensure
all river pixels are within the AOI, while the pixels with a value of lower than 50 m were
considered as a part of river AOI. The AOIs were used to crop the preliminary results of the
extraction (Figure 6b) to obtain the final images. After cropping, the noise caused by shadows
and snow cover were removed, while the river networks were kept intact (Figure 6d).

2.4. Accuracy Evaluation

We constructed a validation sample set by randomly and uniformly sampling a total
of 137,357 pixels from different months (Figure 2b), identifying the river pixels by manual
visual interpretation and by referring to the original Sentinel-2 image.

Based on the manually interpreted validation data, we calculated the user accuracy,
producer accuracy, and overall accuracy to evaluate the reliability of ASRM results. The
formulae are as follows:

User accuracy = Number o f Correct river pixels
Number o f Correct+misclassi f ied pixels (10)

Producer accuracy = Number o f Correct river pixels
Number o f Total river pixels (11)

Overall accuracy = Number o f Correctly predicted pixels
Number o f Total pixels (12)

The Kappa coefficient is calculated as:

Kappa coefficient = N ∑n
i=1 mi,i−∑n

i=1(GiCi)

N2−∑N
i=1(GiCi)

(13)

where i is the number of classes, N is the total number of pixels, mi,i is the number of pixels
correctly predicted as class I, Ci is the total number of pixels predicted as class I, and Gi is
the total number of truth values belonging to class i.

3. Results

3.1. Results of ASRM

The overall accuracy of the ASRM reached 87.5%, and the Kappa coefficient was 0.75.
The producer accuracy of river classification was 79.25%, and the user accuracy was 96.82%
(Table 2), which indicates that there is more leakage of river pixels than misclassification.
Most of the unidentified river sections were small rivers with a width less than or equal to
the spatial resolution (10 m) of the Sentinel-2 images. These small rivers were represented
as mixed pixels in the images, and their spectral characteristics differed less from the
background features, rendering them difficult to identify. In addition, we validated the
performance per month using the samples collected in the corresponding months (Figure 7).

Table 2. Validation of the accuracy of the proposed method (Unit: pixels).

Background River Overall User Accuracy

Background 62,194 15,197 77,391 80.36%
River 1909 58,057 59,966 96.82%

Overall 64,103 73,254 137,357
Producer
Accuracy 97.02% 79.25%

Total accuracy: 87.5% Kappa coefficient: 0.75
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Figure 7. Validation of the accuracy of the proposed method per month using the samples collected
in the corresponding months.

Further, we evaluated the performance of the ASRM method in different situations.
When there were residential areas around the river (Figure 8), the residential areas would
potentially affect river mapping, as the edge of the buildings would be enhanced through
the Gabor filtering. ASRM identified the intact river channels and removed the residential
areas with non-linear characteristics.

Figure 8. ASRM results in the presence of residential areas. (a) Original Sentinel-2 image. RGB:
band 4 (Red), band 3 (Green), band 2 (Blue). (b) MNDWI image. (c) Gabor-filtered MNDWI image.
(d) ASRM results.

To eliminate the influence of mountain shadows (Figure 9), Gabor filtering can enhance
the contrast between linear rivers and the nearby pixel clusters of mountain shadows. The
post-processing further cropped the mountain shadows far from the central line of the
river channel.

Figure 9. ASRM results in the presence of mountain shadow. (a) Original Sentinel-2 image. RGB:
band 4 (Red), band 3 (Green), band 2 (Blue). (b) MNDWI image. (c) Gabor filtered MNDWI image.
(d) ASRM results.

In the presence of cloud cover (Figure 10), although the spectral characteristics of
clouds and cloud shadows are similar to those of rivers, the result contained few misclassi-
fications. The misclassifications caused by cloud cover were cropped by the DEM-modelled
AOI because they were far from the central line of the river.
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Figure 10. ASRM results in the presence of cloud cover. (a) Original Sentinel-2 image. RGB:
band 4 (Red), band 3 (Green), band 2 (Blue). (b) MNDWI image. (c) Gabor filtered MNDWI image.
(d) ASRM results.

3.2. Assessment against Existing River Network Products

Five existing remote sensing data products of river network (FROM-GLC10, GSW,
GRWL, HydroSHEDS, OSM) were quantitatively compared with ASRM (Figure 11). The
results demonstrate that the accuracy of ASRM is superior to those of the other data
products (Table 3). In addition, to compare the completeness and continuity of river
networks in different data products, drainage density (Dd, the ratio of river length to
watershed area) and Open Water Fraction (OWF, the ratio of water body area to watershed
area) (Figure 12) were calculated for each product. For the GSW product, we utilized the
maximum water extent to form the comparison. For other products with only one period
of results, we consider them to represent the maximum extent of water bodies detected in
these datasets. We compared them with the ASRM results of 2018.08, which has the highest
OWF among results of all months.

Figure 11. Comparison of ASRM with other remote sensing data products.
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Table 3. Comparison of accuracy of various products.

Product Producer Accuracy User Accuracy Total Accuracy

ASRM 1 79.25% 96.82% 87.5%
FROM-GLC10 4.8% 92.9% 59.0%

GSW 37.1% 93.2% 69.6%
GRWL 11.6% 100.0% 57.0%

1 Result of the proposed method.

Figure 12. Comparison of ASRM with other data products for Dd and OWF.

Compared with FROM-GLC10, GSW, and GRWL, the river networks in ASRM are
more complete and more consistent. The Dd of ASRM is 6 times higher than that of FROM-
GLC10, 10.17 times higher than that of GSW, and 12.14 times higher than that of GRWL,
while only 0.48 times higher than that of HydroSHEDS.

The OWF of ASRM is 6.84 times higher than that of FROM-GLC10, 1.98 times higher
than that of GSW, and 12.81 times higher than that of GRWL.

The river width of both ASRM and the FROM-GLC10 dataset reached the peak fre-
quency around 20 m and were mostly distributed in the range of 10–30 m (Figure 13). The
peak frequency of river width in the GSW dataset was around 30 m because Landsat images
identify rivers less than 30 m. As for the GRWL dataset, the peak frequency of river width
is around 70 m.

Figure 13. Comparison of ASRM with other data products on river width.
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4. Discussion

4.1. Advantages of the Proposed Method over Existing Datasets

Considering the special geographical condition of the Qinghai-Tibet Plateau, there are
two important advances in our approach. Firstly, to address the problem of narrow river
channels caused by the steep terrain, we used Gabor filtering to enhance the linear features
of small rivers. Secondly, we introduced the HAND index to build AOIs and mitigate the
effects of mountain and cloud shadows and snow cover.

Gabor filtering enhanced the linear characteristics of small and medium-sized rivers in
the image. Additionally, Sentinel-2 images (10 m) have higher spatial resolution compared
with Landsat images (30 m), based on which the GSW and GRWL were produced. Therefore,
the Dd of ASRM is much higher than that of GSW, GRWL and FROM-GLC10 (Figure 12).
HydroSHEDS is produced from a DEM, which continuity ensures that its rivers features
show fewer interruptions than remote sensing results, and for this reason, it should have a
higher Dd. However, because it lacks the details of small tributaries, its Dd is still smaller
than that of ASRM.

The OWF difference between ASRM and the GSW dataset is relatively small
(1.98 times) compared to the Dd difference (Figure 12). The low spatial resolution of
the Landsat imagery results in the overestimation of OWF due to the identification of rivers
less than 30 m wide as 30 m, and the mixed pixels of river boundaries as rivers.

The study compared the river width attributes of the Sentinel-2 extraction results and
other five global river network remote sensing data products (Figure 11) and found that
Sentinel-2 could extract more rivers with river widths of less than 30 m, which compensated
for the shortcoming of the Landsat imagery, which could only extract rivers wider than
30 m. For both the ASRM and the FROM-GLC10 extraction results, the peak frequency
was around 20 m, while the peak frequency of GSW was around 30 m as a result of the
Landsat images pixel 30-m resolution, assigning all rivers less than 30 m to a 30-m width.
The peak frequency of the river width of GRWL was around 70 m, which is likely because
the GRWL data product only identified the main streams with the largest flow connected
to the pour point in the study area, while the small tributaries with smaller river widths
upstream were not identified.

However, there are still several limitations of this method. First, the producer accuracy
of river classification was 79.25% (Table 2), which indicates that a large portion of river
pixels were not identified. Compared to the Sentinel-2 image, it is found that most of the
unidentified river sections were small rivers with a width less than or equal to the spatial
resolution (10 m) of the Sentinel-2 images. These small rivers were represented as mixed
pixels in the images, and their spectral characteristics differed less from the background
features, rendering them difficult to identify. Second, this method is based on a pixel-wise
algorithm, leading to the disconnection in the river networks. To create a real river network,
those river pixels must be interconnected to form a continuity. Third, our method can only
monitor dynamic variation in the water surface of the rivers, instead of the transformation
of the river courses. Therefore, our analysis is limited to the variation of the water surface
rather than the geomorphological characteristics of the river network.

4.2. Dynamic Monitoring in Water Surface of the River Networks in the Study Area

The main source of surface water recharge in the basin is snowmelt runoff, which is
seasonal. The proposed method automatically extracted the study area’s river network from
May to October during the 2017–2020 period (20 extractions in total, as there were no high-
quality images in May, June, and July 2017, and October 2018) (Figure 14). Furthermore,
the spatial distribution characteristics, as well as the seasonal and annual dynamic change
characteristics of the variation in water surface of the river networks in the study area, were
analyzed based on the extraction results.
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Figure 14. Remote sensing river network of the study area, 2017–2020. The cloud area of 2019.07 was
cropped, and the remaining area was used to calculate the Dd and OWF.

4.2.1. Spatial Distribution Characteristics of the River Networks

The highest elevation along the river network is about 4800 m. The farthest distance
from the pour point is 66.4 km (Figure 15). The study areas have steep terrain, and a large
proportion (>15%) of the river networks are in areas with slopes greater than 30◦. The
tributary streams in the upper reaches are narrow and merge into the wider mainstream in
the lower reaches. The mainstream with the highest flow and best continuity is distributed
near the downstream pour point in the southeast part of the study area. All the water in
the basin runs off through the pour point.

4.2.2. Dynamic Variation in Water Surface of the River Networks

Since our method can only monitor dynamic variation in water surface of the rivers
instead of the transformation of the river courses, our analysis is limited to the variation of
the water surface rather than the geomorphological characteristics of the river network.

(1) Annual Dynamic Variation

From 2017 to 2020, the Dd and OWF of the river networks were stable, exhibiting small
annual differences (Table 4, Figure 16). The annual peak of OWF was highest in 2018 (0.58%)
and lowest in 2020 (0.52%). In contrast, the peak of Dd in each year did not differ significantly.

238



Remote Sens. 2022, 14, 4693

Figure 15. Spatial distribution of river networks. (a) River mask; (b) Elevation of river pixels;
(c) Distance from water pixels to pour point; (d) Slope of river pixels.

Table 4. Statistics of OWF, Dd of river networks.

Date OWF (%) Dd (km−1)

2017/08 0.51 0.21
2017/09 0.56 0.25
2017/10 0.18 0.08
2018/06 0.37 0.16
2018/07 0.52 0.22
2018/08 0.58 0.24
2018/09 0.43 0.17
2019/05 0.24 0.11
2019/06 0.44 0.20
2019/07 0.40 0.17
2019/08 0.54 0.22
2019/09 0.26 0.22
2019/10 0.17 0.07
2020/05 0.12 0.05
2020/06 0.22 0.08
2020/07 0.49 0.20
2020/08 0.53 0.23
2020/09 0.49 0.21
2020/10 0.30 0.13

The trends of Dd and OWF are consistent, both experiencing an increase followed by
a decrease during the summer (May to October), with the flood period in July-August and
the dry period in May, September, and October.

239



Remote Sens. 2022, 14, 4693

Figure 16. Seasonal variation in the water surfaces of the river networks in the study area.

(2) Seasonal Variation

Based on the proposed method, the dynamic variations in the water surfaces of the
river networks in the study area were monitored and well-characterized during each
summer between 2017–2020 (Table 5, Figure 17).

Table 5. Mean values of OWF and Dd from 2017 to 2020.

Month OWF (%) Dd (km−1)

May 0.22 0.10
June 0.34 0.15

July 0.47 0.20
August 0.54 0.23

September 0.43 0.21
October 0.22 0.10

May is the transition period from low to abundant water in the study area, and the
lowest Dd and OWF are recorded in May. June is the period of rapid development of water
surface, when the OWF is 56% higher than that of May, while Dd is 45% higher. In July and
August, the high-water period, both the Dd and OWF reach their peak. September is the
transition period from high-water to normal flow; finally, rivers gradually enter the low-flow
period in October, and the OWF and Dd decrease by 0.22% and 0.098 km, respectively.

Sentinel-2 imagery displays successful performance in mapping the small rivers within
the Qinghai-Tibet Plateau.
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Figure 17. Monthly averages of OWF and Dd from 2017 to 2020.

5. Conclusions

In this study, we proposed ASRM, an advanced method used for small river mapping
using 10-m Sentinel-2 imagery that can overcome the mapping challenges created by the
special geographic conditions of the Qinghai-Tibet Plateau. The approach was evaluated
with validation samples collected from different months and compared with five existing
remote sensing products. Finally, the method was applied to a basin (~2391 km2) within
the Qinghai-Tibet Plateau, and the spatial distribution and dynamic variation in the water
surfaces of the river networks in the study area from May to October in the period from
2017 to 2020 were analyzed. The results reveal that:

(1) ASRM achieved an overall accuracy of 87.5%, with more leakage of river pixels than
misclassifications. The ASRM performed well in the presence of residential areas,
mountain shadows, and cloud cover.

(2) Compared to five existing remote sensing products, ASRM identified more small
rivers, providing more detailed and consistent maps. The Drainage density (Dd) of
ASRM was more than six times that of other datasets, and the Open Water Fraction
(OWF) was more than 1.9 times that of other datasets.

(3) From the perspective of interannual variations, the annual variations of maximum
Dd and OWF of the river networks in the study area were less than 15% from 2017 to
2020. In terms of the seasonal variations, both Dd and OWF increased from May to
August, and decreased monthly after August.
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Abstract: The research on regional aerosol optical properties is of great significance for exploring
climate regulation mechanisms and controlling atmospheric pollution. Based on the solar radiation
observation platform, a three-month optical observation of atmospheric aerosols was conducted in
Wuhan, China. The daily and monthly variation characteristics of aerosol optical depth (AOD550),
Angstrom parameter (α440–870), and turbidity coefficient (β) were revealed, and the interrelations
between the three optical parameters were fitted. Then, the potential relationships between atmo-
spheric particulate matter (PM2.5, PM10) with AOD550 and β were discussed. The results show that
the average values of AOD550, α440–870, and β in this case study are 0.42, 1.32, and 0.20, respectively.
The frequency distribution patterns of the three optical parameters are all unimodal. AOD550 has
a good linear correlation system with β, and the Pearson correlation coefficient reaches 0.94, while
its correlation with α440–870 is not significant. The daily variation in AOD550 and β both show an
increasing trend, and their monthly increases are more than 50%. However, the daily variation in
α440–870 is relatively stable, and the fitted line is a nearly horizontal line with no significant monthly
variation. The fluctuation of particulate matter concentration affects the aerosol optical properties
to some extent, among which β has a prominent effect on the response to the change in PM2.5

concentration with a linear correlation coefficient of 0.861. As the concentration of particulate matter
increases, the proportion of fine particulate matter in the atmosphere increases monthly, and the
ratio of PM10 to PM2.5 concentrations decreases from 1.8:1 to 1.2:1. Atmospheric pollution conditions
are frequent during this observation period, mainly at mildly turbid levels. Atmospheric turbidity
shows an increasing trend month by month, and the concentration of particulate matter increases
rapidly. The response of atmospheric aerosol optical properties to the changes in fine particulate
matter concentration is significant, and controlling the particulate matter content in the atmosphere
is an effective means to mitigate aerosol pollution.

Keywords: TBS-4 solar spectrometer; aerosol optical depth; Angstrom parameter; turbidity
coefficient; particulate matter

1. Introduction

Aerosols are multiphase systems of solid particles and liquid droplets suspended in
the atmosphere, with diameters usually ranging from 0.001 to 100 μm. Aerosols change
the regional climate environment by participating in the formation of clouds and rain in
the atmosphere, and their absorption and scattering effects on solar radiation also affect
the radiation balance of the Earth-atmosphere system [1,2]. Aerosols can be classified
into various categories according to different classification bases, and multiple types of
aerosols can exist simultaneously in the atmosphere [3,4]. Various types of aerosol particles
participate together in the evolution of the atmosphere, and their interactions lead to the
production of more aerosol particles, diversifying the composition of the atmosphere [5–7].
Aerosols are present in the human living environment all the time, and the occurrence
of atmospheric pollution events such as acid rain, haze, and dust are closely related to
aerosols [8,9]. Harmful substances such as viruses and bacteria carried in aerosols can
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cause respiratory damage and pose a serious threat to human health [10–12]. Some studies
have shown that transmissible diseases such as COVID-19 can be transmitted through
aerosols [13]. As an important component of the atmosphere, aerosols have an inescapable
role in the regional climate environment, the energy balance of the Earth-atmosphere
system, and human life [14,15]. Therefore, it is of great application and scientific significance
to actively extend the research of aerosol optical properties of multi-regional and deeply
analyze their response mechanisms to the atmospheric environment.

The more pronounced spatial and temporal variability of aerosols and their smaller
amount in the atmosphere makes it difficult to obtain the optical properties of aerosols
than other gases [16,17]. The current methods of aerosol observation are ground-based
observations and satellite remote sensing [18,19]. The advantages of satellite remote sensing
include wide spatial coverage, lengthy time series, high resolution, and regional projection
imaging [20,21]. In recent years, a large number of observations and analyses of aerosol
optical properties have been carried out by domestic and foreign scientists using satellite
remote sensing [22–25]. Instruments such as Moderate-resolution Imaging Spectroradiome-
ter (MODIS) and Multi-angle Imaging Spectrometer (MISR) have become common tools
for satellite remote sensing observations [26,27]. Satellite remote sensing technology allows
real-time aerosol observations in most regions of the world by combining different inver-
sion algorithms. Therefore, it is a good solution to the challenge of aerosol research across
regions [28,29]. However, the drawbacks of satellite remote sensing cannot be ignored,
such as fewer aerosol product bands, longer intervals between remote sensing observations,
and insufficient data accuracy [30,31].

Continuous long-term series of aerosol characterization is indispensable in resolving
the response of the atmospheric environment to aerosol changes. In order to make up for the
shortage of satellite remote sensing observations, ground-based observations are favored by
many scientists because of their high accuracy and time continuity [32–34]. Gong W. et al.
analyzed columnar aerosol volume size distributions from March 2012 to February 2013 in
Wuhan, China [35]. Ground-based observation methods have also been used to verify the
accuracy of satellite remote sensing data [36–38]. Wang W. et al. evaluated the AOD of VIIRS
and MODIS in the Wuhan area using photometric measurements [39]. In fact, most ground-
based observational studies rely on the global Aerosol Robotic Network (AERONET)
established by NASA. However, there are few ground-based sites in China, and many
of them are not publicly authorized for use. Therefore, in regions where AERONET
stations are not located, self-established aerosol ground-based observation platforms are of
significant importance for aerosol characterization research [40,41].

Domestic and foreign scientists have conducted extensive studies worldwide through
ground-based measurements and remote-sensing observations. However, regional research
on aerosol optical properties, especially for regions without AERONET sites, still needs
to be supplemented. Therefore, in this study, aerosol optical depth (AOD550), Angstrom
parameter (α440–870), and turbidity coefficient (β) were measured for the period from
November 2021 to January 2022 using a ground-based observation platform equipped with
the TBS-4 solar spectrometer built in Wuhan. Its applicability as an aerosol observation
instrument was verified by comparison with the aerosol products obtained from satellite
remote sensing. The variation characteristics of aerosol optical parameters and their
interrelationships were then analyzed from the perspective of daily and monthly variation,
respectively. Finally, the effects of particulate matter (PM2.5, PM10) on aerosol optical
properties were revealed based on air quality data.

2. Experimental Principles and Methods

2.1. Experimental Instruments and Data

The TBS-4 solar spectrometer used in this paper is manufactured by Jinzhou Sunshine
Meteorological Technology Co., Ltd. (Jinzhou, China). It uses synchronous measurement
technology and GPS satellite location tracking technology to simultaneously measure
solar spectral radiation in 9 bands (340, 380, 440, 500, 675, 870, 936, 1020, and 1640 nm)
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with a measurement accuracy of less than 1%. The experimental site is located at Wuhan
University of Science and Technology (114◦26′ E, 30◦44′ N), with an altitude of 40 m above
sea level. There is no shade over the location of the solar spectrometer, and the instrument
is powered by solar photovoltaic panels, with a power storage device that can meet the
low light operation for 3 days. Figure 1 shows the location and physical presence of the
TBS-4 sun photometer. The observation period is from November 2021 to January 2022,
with spectral radiation collected every 5 min. Valid data selection criteria: Cumulative
sunshine hours must be greater than 5 h, or the data for that day are rejected. Mean
values were taken for each half-hour observation, excluding offsets greater than 20% and
550 band radiative values less than 10 W·m−2 from the observations. To take three adjacent
data in chronological order, the intermediate moment data need not be smaller than the
previous and next data values; otherwise, the data are not available. The remaining daily
data amounts larger than 50 were used as the final radiation data. The data were filtered to
leave 38 available observation days.

 
Figure 1. The TBS-4 solar photometer and its location.

PM2.5 and PM10 are pollution concentration indicators that are divided based on the
equivalent diameter of particles, and their values directly affect atmospheric quality. The
concentration data of PM2.5 and PM10 are sourced from the Air Quality Online Monitoring
and Analysis Platform (https://www.aqistudy.cn/ (accessed on 21 May 2023)). The daily
and monthly average PM concentrations were calculated separately for use. The satellite
remote sensing data used in this study were obtained from 3 km resolution AOD550 prod-
ucts provided by the Terra satellite of the National Aeronautics and Space Administration
(NASA). Remote sensing image processing and analysis of the study area were carried out
by ENVI + IDL software.

2.2. Principles and Methods of Calculation

According to Bouguer–Lamber law, in the non-water vapor absorption channel, the
direct solar radiation E(λ) of the surface incident on the earth with a wavelength of λ is:

E(λ) = E0(λ)R2Tgexp[−m(θ)τ(λ)] (1)

E0(λ) is the solar spectral irradiance at the solar-terrestrial mean distance at the upper
boundary of the atmosphere at a wavelength of λ. R2 is the solar-terrestrial distance
correction factor. Neglecting the absorption of solar radiation by the absorbing gas in the
above bands, Tg = 1. m(θ) is the atmospheric optical mass at a zenith angle of θ. τ(λ) is
the total atmospheric optical depth of the spectrum.

R2 = 1 + 0.033 cos
2π·n
365

(2)
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m(θ) =
1

sin(h) + 0.15(h + 3.885)−1.253 (3)

where n is the number of day sequences, with January 1st as the first day, and h is the solar
altitude angle.

Take the logarithm at both ends of Equation (1) to obtain the following formula:

ln
(

Eλ

R2

)
= ln E0λ − mτλ (4)

A simple linear regression was performed with m as the independent variable and
ln
(
Eλ/R2) as the dependent variable. The total atmospheric optical depth τ(λ) is repre-

sented by the slope of the fit result in absolute terms, and the instrument calibration value
is represented by the intercept ln E0λ.

In order to ensure calibration accuracy, clear weather is chosen for the calibration of
the spectrometer. When the atmosphere is clear and cloudless, the aerosol state is stable,
and the AOD changes slightly. In the linear regression fitting, the variation range of m
should be larger than 3.5. The sample points with the largest fitting residuals should be
excluded when the correlation coefficient is less than 0.99. The number of excluded samples
should be less than 30%, and the remaining samples should be more than 15.

The total atmospheric optical depth τ(λ) is mainly composed of Rayleigh scattering
optical depth τr(λ), aerosol optical depth τa(λ) and absorbing gas optical depth τo(λ).

τa(λ) = τ(λ)− τr(λ)− τo(λ) (5)

τr(λ) =
P
P0

0.0088λ−4.05 (6)

τ0(λ) = k0
U

1000
(7)

where the main components of the absorbing gas are ozone, water vapor, carbon dioxide,
and oxygen, among others. For the 440 nm and 870 nm bands chosen for the calculations
in this paper, only the absorption effect of ozone needs to be taken into account; P and
P0 are the atmospheric pressure and standard atmospheric pressure (1013.25 mbar) at the
observation site, respectively; λ is the wavelength of the spectrum, calculated in μm; k0 is
the absorption coefficient of ozone; and U is the ozone content.

The formula for calculating the ozone content is as follows:

U = 235 + {150 + 40 sin[0.9865(n − 30)] + 20 sin[3(ξ + 20)]} sin2(1.28ϕ) (8)

where ξ and ϕ are the longitude and latitude of the observation location.
The relationship between aerosol optical depth τa(λ) and the Angstrom parameter α

and turbidity coefficient β is expressed as:

τa(λ) = β× λ−α (9)

AOD, α, and β are three basic dimensionless parameters to characterize the atmo-
spheric aerosol optical properties, which are key factors used to assess aerosol content,
determine the types of aerosols and measure the degree of atmospheric pollution [42–44].
AOD is defined as the integral of the atmospheric extinction coefficient in the vertical
direction, which reflects the extinction characteristics of aerosols. α reflects the particle size
of aerosol particles, and its value generally ranges from 0 to 2. The closer the value of α
is to 2, the smaller the particle size of the main particles of aerosols, and vice versa. β is
numerically equal to the aerosol optical depth at a wavelength of 1 μm and can be used to
indicate the degree of atmospheric turbidity. According to the common classification basis,
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the atmosphere is generally classified into four classes: clean atmosphere (β ≤ 0.1), mildly
turbid atmosphere (0.1 < β ≤ 0.2), turbid atmosphere (0.2 < β ≤ 0.4), and heavily turbid
atmosphere (β > 0.4) [45,46].

To match the 550 nm band aerosol products provided by MODIS, the AOD550 are obtained
by substituting α440–870 and β values into Equation (10) using the interpolation method.

τ(550) = β× 0.55−α440−870 (10)

2.3. Accuracy Verification of the Measured AOD550

In order to verify the feasibility of observing aerosol optical properties by this model
of the spectrometer, the accuracy of ground-based measurement of AOD550 was verified
using AOD550 of MOD04_3K. The average value of ground-based observations before
and after the satellite transit for half an hour is calculated as the measured value. The
image element of the remote sensing image where the ground-based site is located, its
surroundings are selected as the study area, and its mean value is used as the satellite
remote sensing value. The ground-based measurement values and the satellite remote
sensing values were spatially and temporally matched according to the above method and
then presented as data points in Figure 2, with linear regression processing. The linear fit of
data points results in Y = 0.08+ 0.89× X, which shows a small angle with the 1:1 reference
line. In the low-value region of AOD550, the ground-based measurements are somewhat
underestimated compared with the satellite remote sensing values. The experimentally
measured AOD550 was calculated to have a good linear correlation with the remotely
sensed observed AOD550. Their Pearson correlation coefficients reached 0.96, and the root
mean square error was 0.076. It is evident that the inversion of AOD550 using the TBS-4
model solar spectrometer is workable.

Y X

 

Figure 2. Accuracy verification of ground-based measured AOD550.

3. Results and Discussion

3.1. Aerosol Optical Properties
3.1.1. General Characteristics of Aerosol Optical Parameters

The daily average values of the three optical parameters (AOD550, α440–870, and β) were
calculated daily, and their daily variations were presented as dotted line plots in Figure 3.
As seen in the figure, the AOD550 on November 30, 2021, is 0.19, and the β coefficient is
only 0.09, which is the lowest value during the observation period. According to the criteria
for classifying atmospheric turbidity levels by beta coefficients, the atmosphere was in the
best clean state on that day. The AOD550 values on 9 December 2021 and 19 January 2022
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showed anomalously high values of 1.16 and 1.26, respectively, which far exceeded the
values of other observed days. Moreover, the turbidity coefficients exceed 0.4, and the
atmosphere is in a heavily turbid state on these two days due to severe aerosol pollution
events. The daily mean values of the optical parameters are fitted linearly, as shown by
the dashed lines in Figure 3. AOD550 and β show an increasing trend, and the slope of the
fitted line is 0.0067 and 0.0029, respectively, which indicates that the atmospheric pollution
condition is worsening. As a whole, when the AOD550 value increases or decreases, the β

value also produces a certain magnitude of isotropic fluctuations. The trends of AOD550 and
β are consistent, but the growth rate of AOD550 is higher than that of β, and the linear fit of
α440–870 results in an approximate horizontal straight line. The data points show irregular
and limited fluctuations above and below the fitted line, indicating that the particle size of
the main atmospheric aerosol particles changes steadily during the observation period.

Figure 3. Daily variation in the atmospheric aerosol optical properties.

The experimental AOD550, α440–870, and β were numerically counted, and their means
and standard deviations were calculated for the whole experimental period. The detailed
values are shown in Table 1. The intervals of AOD550, α440–870, and β were divided by
0.1 steps, and the frequency ratios of each interval were counted, and the results are
shown in Figure 4. The frequency ratios for all three optical parameters show unimodal
distribution. The percentage of frequencies of AOD550 in the low-value range (AOD550 < 0.4)
reached 55.7%. Its peak occurs in the interval of 0.3–0.4, and the frequency in this interval
reaches 23.0%. The mean value of AOD550 is 0.42, and the standard deviation is 0.24, which
shows that the attenuation effect of aerosols on solar radiation is not significant. The mean
value of α440–870 is 1.32 with a standard deviation of 0.20. Its frequency proportion in the
peak interval of 1.3–1.4 reaches 23.4%, indicating that the atmosphere is mainly composed
of fine size aerosol particles. The mean value of β is 0.20 with a standard deviation of
0.09. According to the distribution of the frequency proportion of β in each interval, it
can be seen that the frequency proportion of clean atmosphere is only 12.9%, while the
frequency in the interval of 0.1–0.2 is as high as 52.6%. Based on the criteria for classifying
atmospheric turbidity levels based on β values, the atmospheric pollution conditions in
the Wuhan area during this observation period were frequent, mainly at mild turbidity
degrees, and some states reached heavy turbidity levels.
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Table 1. Mean value and standard deviation of aerosol optical parameters.

Optical Parameter Mean Value Standard Deviation

AOD550 0.42 0.24
α440–870 1.32 0.20

β 0.20 0.09

 
Figure 4. Frequency distribution of atmospheric aerosol optical properties.

3.1.2. Correlation of Aerosol Optical Parameters

Figure 5 shows the scatter plot of AOD550 with α440–870 and β, respectively, using
density mapping to show the data distribution. The solid line in the figures is the result
of the linear fit. The red color represents the high degree of sample aggregation, while
the blue color represents the small sample size and low aggregation. AOD550 and β show
a regular linear distribution, and their fitting equation is Y = 2.34 × X − 0.02. With the
increase in atmospheric turbidity, the attenuation effect of aerosol particles on radiation
is enhanced, which makes AOD550 increase. Their linear correlation was extremely high,
with a positive correlation coefficient of 0.94. In the low-value region where AOD550 was
less than 0.4 and β was less than 0.2, the proportion of samples reached 57.6%, while in the
high-value region, it was relatively scattered. Once again, it shows that the main state of
atmospheric aerosols during this observation period was mildly turbid degree with low
aerosol content. The sample distribution of AOD550 and α440–870 was relatively scattered,
and the linear fit correlation coefficient was only 0.36. The scattered distribution results
of AOD550 and α440–870 showed that they were mainly gathered in the region of AOD550
less than 0.6 but did not show an obvious linear correlation. With the increase in AOD550,
α440–870 and β mainly showed increasing trends, among which the increasing trend of
α440–870 was relatively slight. This phenomenon indicated that the particle size of the main
aerosol particles showed a small decrease when the atmospheric turbidity increased.
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Figure 5. Scatter distribution of the combination of AOD550 with β (a) and α440–870 (b), respectively.

3.1.3. Monthly Variation in Aerosol Optical Parameters

The mean values of AOD550, α440–870, and β by month are counted, and the results
are shown in Table 2. Moreover, Figure 6 shows the numerical variations in the three
optical parameters in the form of a boxplot. Compared with November 2021, the mean
value of α440–870 in December 2021 increased by 0.1, indicating a small decrease in the
aerosol particle size. The standard deviation of α440–870 in each month was close, among
which the standard deviation of α440–870 in December 2021 was the smallest at 0.19, and
the best concentration of particle size can be found in that month combined with the
boxplot. The mean value of α440–870 fell back to 1.26 in January 2022. However, the
particle size distribution of aerosols was more dispersed in that month, with a maximum
standard deviation of 0.25. The aerosols in each month of the observation period mainly
consisted of fine-sized particles with a more concentrated particle size distribution. The
mean value of β showed an increasing trend monthly, from 0.14 in November 2021 to
0.22 in December 2021, reflecting the increase in the atmospheric from mild turbidity
level to turbidity level. The mean value of β increased again to 0.36 in January 2022,
which was 63.64% higher compared to the previous month, and the degree of atmospheric
pollution further increased. The standard deviation of β for all months was less than 0.1,
indicating the high degree of aggregation of β distribution. AOD550 increased rapidly
at a rate of more than 0.20 per month. Its average value was 0.30 in November 2021,
and by January 2022, the average AOD550 value reached 0.76, an increase of 153.33%. It
revealed that the atmospheric turbidity in the Wuhan region gradually increased during the
study period, and the attenuation of solar radiation by atmospheric aerosol particles also
gradually increased.

Table 2. Monthly means and standard deviations of aerosol optical parameters.

Optical Parameters November 2021 December 2021 January 2022

α440–870 1.28 ± 0.21 1.38 ± 0.19 1.26 ± 0.25
β 0.14 ± 0.06 0.22 ± 0.09 0.36 ± 0.08

AOD550 0.30 ± 0.15 0.50 ± 0.22 0.76 ± 0.18
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Figure 6. Boxplot of monthly variation in AOD550, α440–870, and β.

3.2. Atmospheric Particulate Matter

The mean values of particulate matter concentrations (PM2.5, PM10) during the obser-
vation period were calculated by month and shown in Figure 7, along with the monthly
variations in aerosol optical depth and turbidity coefficient. By comparing with the aerosol
optical parameters, it can be found that the concentration of particulate matter rises rapidly
with the aggravation of atmospheric turbidity, showing an increasing trend from month to
month. The monthly relative increases in PM2.5, AOD550, and β all exceeded 50%, while the
monthly relative increase in PM10 was near 30%. The monthly increase in fine particulate
matter content far exceeded the increase in coarse particulate matter over the same period,
as detailed in Table 3. Regarding the closest monthly relative increase in PM2.5 and β, the
increase in PM2.5 content from November 2021 to December 2021 was 52%, and the increase
in β during the same period was 57%. By January 2022, the monthly increase in PM2.5
increased to 76%, and the increase in β value in that period was 64%. This indicates that
there was a relatively strong correlation between the fine particulate matter content and the
degree of atmospheric turbidity. In November 2021, the PM10 and PM2.5 concentrations
were 74.47 μg·m−3 and 41.82 μg·m−3, respectively, with a ratio of 1.8:1, and in January 2022,
the ratio decreased to 1.2:1. As atmospheric turbidity increases during the observation
period, the particulate matter content increases significantly, with fine particulate matter
playing a major role in this process.

Table 3. Statistics of monthly average growth of particulate matter and optical parameters.

Project November 2021 Monthly Increase December 2021 Monthly Increase January 2022

PM2.5 (μg·m−3) 41.82 52% 63.38 76% 111.60
PM10 (μg·m−3) 74.47 30% 96.88 33% 129.20

AOD550 0.30 67% 0.50 52% 0.76
β 0.14 57% 0.22 64% 0.36
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Figure 7. Variation in monthly mean and standard error of particulate matter, AOD550, and β.

The interrelation between atmospheric particulate matter and aerosol optical proper-
ties was further investigated. Firstly, the daily average concentration values of particulate
matter were calculated. Then scatter plots were drawn with AOD550 and β as horizontal
coordinates and particulate matter concentrations as vertical coordinates, respectively. The
results of the linear fit based on scatter plots are shown in Figure 8. The fitting results of
PM concentration and AOD550 were similar to those of PM concentration and β, and their
scatter distribution had some similarity, which was caused by the high linear correlation
between AOD550 and β. With the increase in AOD550 or β, the PM concentration showed an
obvious positive correlation trend. Among them, PM2.5 concentration showed the strongest
linear correlation with β, and the Pearson correlation coefficient reached 0.861. When the
concentration of particulate matter suspended in the atmosphere increases, the attenuation
effect of aerosols on solar radiation is enhanced, leading to an increase in aerosol optical
depth, along with an increase in atmospheric turbidity. During the fluctuation of aerosol
optical properties caused by the change in particulate matter concentration, the response
effect of AOD550 and β to the change in fine particulate matter concentration is more
prominent. From the above analysis, it can be seen that reducing the particulate matter
content in the atmosphere is an effective way to reduce atmospheric turbidity, of which
controlling the fine particulate matter content is the most important.
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Figure 8. The correlation between particulate matter concentration with AOD550 (a) and β (b).

4. Conclusions

Experimental observations of aerosols were carried out in Wuhan from January 2021
to January 2022 using the TBS-4 solar spectrometer, and the variation characteristics of
aerosol optical properties are analyzed in detail. By monitoring the air quality during the
observation period, the influence of atmospheric particulate matter content on the aerosol
optical properties is revealed to some extent. The main conclusions are as follows:

(1) During this case study, the mean value of AOD550 was 0.42, and the atmospheric
aerosol content was at a low level; the mean value of β was 0.20, and the atmosphere
was lightly turbid. Their daily variations show an increasing trend. The mean value of
α440–870 was 1.32, and the fitting result of its daily variation indicates that the fluctuation of
aerosol particle size is more stable, which is mainly fine particle size aerosol. The frequency
ratios of AOD550, α440–870, and β are unimodal distributions. The results of the frequency
distribution of the aerosol optical parameters show the frequency of atmospheric pollution
conditions. The atmosphere was mainly in mild turbidity degree. The linear correlation
coefficient between AOD550 and β reached 0.94. With the increase in atmospheric turbidity,
the attenuation effect of aerosol particles on solar radiation was enhanced, resulting in an
increase in AOD550. The data points consisting of AOD550 and α440–870 presented a weak
positive correlation growth trend, and their linear fit correlation was poor.

(2) Atmospheric turbidity increased on a monthly basis, from a mild turbidity level in
November 2021 to a high turbidity level in December 2021. β increased again in January
2022, and atmospheric turbidity increased further. Along with the increase in β, AOD550
rapidly increased, and the monthly increase in both exceeded 50%. The monthly variation
in α440–870 was relatively small, and its value had a small proportional increase in December
2021 and decreased in January 2022. The mean value of α440–870 in December 2021 was
higher than the remaining two months, the standard deviation of α440–870 in that month
was the smallest, and the aerosol particle size distribution was the most concentrated.
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(3) Particulate matter concentrations show a good linear correlation with both AOD550
and β. A sharp increase in the concentration of particulate matter was observed when the
aerosol content increased, and the turbidity level increased. Among them, the response of
β to the change in fine particulate matter concentration is most effective, with their linear
correlation coefficient reaching 0.861 and their monthly relative increases being close. The
monthly relative increase in PM2.5 exceeds 50%, while the monthly relative increase in
PM10 is near 30%. As atmospheric turbidity increases month by month, the ratio of PM10
to PM2.5 concentration shrinks from 1.8:1 in November 2021 to 1.2:1 in January 2022, with
the proportion of fine particulate matter in the atmosphere increasing.
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Abstract: Long-term sea surface salinity (SSS) in the East China Sea (ECS) was estimated based on
Ocean Color Climate Change Initiative (OC-CCI) data using machine learning during the summer
season (June to September) from 1997 to 2021. Changjiang diluted water (CDW) in the ECS propagates
northeastward and forms longitudinally-oriented ocean fronts. To determine the CDW’s distribution,
three fronts were investigated: (1) a CDW front based on chlorophyll-a concentration (Chl), SSS, and
sea surface temperature (SST); (2) a CDW front based on sea surface density (SSD); and (3) a CDW
front for nutrient distribution. The Chl fronts matched well with the SSS fronts, suggesting that Chl
variation in the ECS is highly correlated with the CDW. Furthermore, the SSD fronts spatially matched
well with nitrogen concentration. Sea level anomaly (SLA) variation with SSD was also detected,
indicating that CDW had sufficiently large effects on SLA so that they may be detectable by altimeter
measurements. This result suggests that the influence of steric height changes and the inflow from
rivers are significant in the ECS. Additionally, the continuous long-term SSD developed in this study
enables researchers to detect the CDW front and its influence on the ECS marine environment.

Keywords: Changjiang diluted water; sea surface salinity estimation; ocean front; long-term ocean
color; OC-CCI

1. Introduction

Because Changjiang diluted water (CDW) includes freshwater, nutrients, and sed-
iments, understanding the variations in CDW systems is crucial for analyzing material
transport and biogeochemical processes in the East China Sea (ECS) [1–3]. CDW detection
has been attemptI confirmed using satellite measurements of sea surface salinity (SSS),
chlorophyll-a concentration (Chl), and turbidity; however, studies on long-term SSS distri-
bution patterns are scarce, possibly because of limitations in continuous measurements [2,4].

Several recent studies have demonstrated the potential of ocean color satellite remote
sensing for estimating the SSS in the ECS [2,5,6]. This is because CDW contains colored
dissolved solids or pollutant matter that reflects light at specific wavelengths, such as
colored dissolved organic matter (CDOM) and terrestrial particles; the optical feature of
CDW is indirectly related to SSS. Based on this principle, Kim et al. [6] estimated the
SSS using Geostationary Ocean Color Imager (GOCI, 500 m resolution) data from 2015
to 2020. The application of the same approach also detected SSS variation due to river
discharge near the estuaries of the mid-Atlantic [7] and Gulf of Mexico [8], suggesting that
SSS variation may be monitored globally using ocean color satellite sensors.

Kim et al. [4] defined CDW based on statistical analysis with the K-means clustering
technique using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chl in the summer in
the ECS from 1998 to 2007. The study results revealed the interannual variation in the
CDW indicated by the high satellite Chl and correlated it with the interannual variation in
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the Changjiang summer freshwater discharge. Bai et al. [2] analyzed summertime CDW
variations from 1998 to 2010 using the remote sensing reflectance (Rrs) of SeaWiFS. This
study identified three types of plume shapes: (1) the commonly known northeastward
transportation, (2) a case in which most of the CDW is to the north of Jeju Island, and (3) a
rare case in which the CDW front is transported southeastward. The plume shapes were
related to discharge, wind speed in the 45◦ and 60◦ directions, and typhoons. Although
these studies analyzed the CDW distribution over 10 years, they mainly focused on the
variation in CDW distribution and did not investigate the impact of CDW fronts on the
biogeochemical environment in the ECS.

Because the Changjiang River is one of the primary ECS nutrient sources, plume
water is rich in nutrients compared with that of ambient seawater [9–11]. In particular,
dissolved inorganic nitrogen (DIN) and phosphate (DIP) fluxes have increased owing to the
widespread use of chemical fertilizers in the Changjiang River basin [12]. Kwon et al. [13]
analyzed DIN and DIP concentrations from the Changjiang River Estuary to the Korean
Strait. The concentrations of DIN and DIP decreased sharply from the river mouth and
were depleted within 200 km, and subsequently maintained approximately 0.28 μM L−1

and 0.07 μM L−1, respectively, until 800 km. However, the analysis of DIN and DIP
concentrations depending on CDW extension was conducted in previous studies because
of the limitation of the spatiotemporal coverage of shipboard surveys. Therefore, satellite-
based CDW monitoring and analysis with in situ chemical measurements are required.

Therefore, the objective of this study was to estimate the long-term SSS distribution
using 25 years of satellite observations and to determine the biogeochemical influence of
CDW. Because oceanic fronts offer habitats for marine biology, detecting the principal front
is an important task. This study presents the differences in the location of the SSS, Chl, sea
surface temperature (SST), and sea surface density (SSD) fronts. In addition, the nitrogen
and phosphate distributions were compared to the CDW front locations.

2. Materials and Methods

2.1. Materials
2.1.1. Satellite Data

To estimate the long-term SSS in the ECS, Rrs measurements derived from the Ocean
Color Climate Change Initiative (OC-CCI) version 5.0 were used [14]. The OC-CCI products
were developed by merging observations from the SeaWiFS, moderate resolution imag-
ing spectroradiometer onboard the Aqua Earth Observing System (MODIS-Aqua), and
Medium Resolution Imaging Spectrometer (MERIS). The products were constructed based
on SeaWiFS datasets, and the atmospherically corrected Rrs values of MODIS and MERIS
data were shifted to the nearest SeaWiFS bands (412, 443, 490, 510, 560, and 665 nm) based
on a bio-optical model [15]. This process generates a set of Rrs values in six bands, which
increases the inter-sensor consistency and reduces the bias values. In addition, the OC-CCI
Chl dataset was used. OC-CCI uses the OC4V6 algorithm to retrieve Chl. The spatial and
temporal resolutions of the OC-CCI used in this study are 4 km and daily, respectively.

MODIS-Aqua global level 3 mapped SST version 2019.0 data from 2002 to 2021 were
obtained from the Physical Oceanography Distributed Active Archive Center (PO.DAAC) of
National Aeronautics and Space Administration (NASA). Because SST data were available
from 2002 to 2021 (20 years), SST front detection and SSD calculations were conducted
for 20 years. In addition, altimeter satellite-gridded SLA data from 1997 to 2020 were
computed with respect to a twenty-year (1993–2012) mean. These data were estimated by
optimal interpolation by merging the measurements from the different available altimeter
missions: Jason-3, Sentinel-3A, Haiyang-2A (HY-2A), Saral/AltiKa, Cryosat-2, Jason-2,
Jason-1, Topex/Poseidon, Environmental Satellite (ENVISAT), Geostat follow-on radar
altimeter (GFO), European Remote Sensing Satellite (ERS) 1 and 2. The spatial and temporal
resolutions were 0.25 × 0.25◦ and monthly mean, respectively.
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2.1.2. Observation Data

Repeated shipboard measurements conducted by the National Institute of Fisheries
Science (NIFS) from 1997 to 2021 were used to develop and evaluate the SSS model.
Observations were conducted near the Korean Peninsula, including the Yellow (YS) and
East/Japan Sea (EJS), South Sea of Korea (SSK), and ECS. This shipboard observation
investigates SST, SSS, dissolved oxygen, phosphate, nitrite, nitrate, and silica bi-monthly
in the YS, EJS, and SSK, and at three-month intervals in the ECS. Because the model was
designed to detect CDW, the southern part of the YS and EJS and the total SSK and ECS
station datasets were collected (Figure 1). The data for these observations in various regions
are presented in Table 1. All datasets, including satellite measurements, were obtained
during the summer season (June to September) when the CDW is a major factor in SSS
variation in the ECS.

Figure 1. Research region and matching stations for the in situ and OC-CCI data from 1997 to
2021. The serial shipboard observation stations were marked in green squares. The red, blue, and
yellow arrows indicate warm, cold, and Changjiang outflow ocean currents, respectively, during
summer season from 2002 to 2005 in this region (provided by Korea Hydrographic and Oceanographic
Agency). Three bathymetric isobaths (50, 100, and 500 m) are also overlaid.
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Table 1. The number of serial shipboard observations by Korean National Institute of Fisheries
Science at the four regions from summertime (June to September) of 1998 to 2021. Among total
5488 data, about half (2421) data were matched with OC-CCI.

Year ECS a SSK b YC c ES d

1998 26 122 77 34
1999 22 108 68 19
2000 32 105 68 20
2001 33 102 68 20
2002 32 98 67 18
2003 61 108 68 20
2004 32 108 68 20
2005 32 108 69 20
2006 33 108 68 20
2007 32 110 68 20
2008 32 110 68 20
2009 32 108 68 20
2010 32 108 48 20
2011 32 108 68 20
2012 32 108 68 20
2013 32 108 68 20
2014 32 108 68 20
2015 34 108 68 20
2016 32 108 68 20
2017 32 108 68 20
2018 32 108 68 20
2019 32 108 68 20
2020 32 108 68 20
2021 32 108 68 20

a East China Sea. b Southern Sea of Korea. c Yellow Sea. d East Sea.

2.2. MPNN Model for SSS Estimation

Because the multi-layer perceptron neural network (MPNN) has been used to estimate
SSS based on ocean color measurements in various regions [5–8], this method was adopted
to develop an SSS estimation model for the OC-CCI. Because the shipboard survey stations
are far from the Changjiang River mouth, the SSS range of in situ data lacking in the
low-salinity conditions (under 25 psu). Thus, the model overestimates the Changjiang
River mouth region, where the SSS is extremely low (<20 psu). Figure 2 shows an MPNN
schematic diagram including six OC-CCI Rrs bands in the input layer and in situ SSS data
in the output layer. To assemble two different datasets, the temporal resolution of in situ
measurements was regarded as daily, and OC-CCI data were selected at the nearest location
of the in situ survey stations. Thereafter, the datasets were randomly divided into training
(80%) and validation (20%) datasets during the training period. The training was repeated
1000 times for each step while changing the number of hidden layers and neurons.

Figure 3a shows the performance of the MPNN model based on the validation dataset
independent of the training dataset. The scatters were concentrated from 30 to 33 psu and
R2 and root mean square error (RMSE) were 0.56 and 1.06 psu, respectively. Although the
RMSE was acceptable, the SSS was corrected by the slope and bias owing to overestimation
in the low SSS range (under 30 psu). After linear fitting, the overestimation and under-
estimation in the low and high SSS ranges were reduced despite the RMSE increasing to
0.34 psu. As the KNIFS serial shipboard survey stations are far from the Changjiang River
mouth, an SSS under 25 psu was not obtained. Therefore, the accuracy decreased for low
SSS values (under 30 psu). Given that the isohaline of the CDW in previous studies was
30 to 32 over the middle ECS [2,4,16,17], detection of the CDW fronts using our model
near Jeju Island and the Korean Peninsula was possible. Moreover, the OC-CCI SSD was
validated with KNIFS in situ measurements from 1997 to 2021 (Figure 3b). The R2 and
RMSE between in situ and OC-CCI-based SSD were 0.67 and 1.27 kg m−3, respectively.
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Figure 2. The MPNN model architecture based on the OC-CCI Rrs six bands data and KNIFS serial
shipboard measurements. Among the 2421 datasets, 80% were used to train, and 20% were used
to validate model. The input datasets were fixed, and the number of hidden layers and neurons in
hidden layers were varied to derive the best performance.

Figure 3. (a) Linear fitting by slope and bias scatter diagrams between NIFS serial shipboard
measurements and OC-CCI SSS. (b) Scatter plot between in situ and OC-CCI SSD. Red line indicates
a linear regression line.

3. Results

3.1. CDW Front Based on SSS, Chl, and SST

Because CDW rapidly evolves, factors such as gaps from frequent cloud cover, sun
glint, and thick aerosols make it difficult to produce a monthly SSS distribution. However,
it is possible to combine daily isohaline locations to produce cumulative isohaline foot-
prints. Figure 4 shows the monthly cumulative isohaline footprints and monthly mean Chl
concentrations from the June to September 2016 case as an example. The same figures from
1997 to 2021 are provided in the Supplementary Figures. The background color displays
Chl; black dotted and solid lines and gray solid lines indicate 30, 31, and 32 isohaline
footprints, respectively. The plume was generally directed northeastward, reaching Jeju
Island, the Korean Peninsula, and sometimes the EJS through the Tsushima–Korea Strait.
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The isohalines are nearly parallel to the isobaths, especially the 50 m isobaths in June and
the 100 m isobaths in the other three months (Figure 1). The plume shapes were in good
agreement with the results of Bai et al. [2]. They presented the SSS distribution in July and
August from 1998 to 2010 and identified three major types of extending shapes of the CDW
based on the 31 isohalines. In August (Figure 4b and Supplementary Figures), the most
apparent shape appeared as a type 2 plume in Bai et al. [2], which extends entirely north-
eastward, with the majority of the plume water traveling northward to the southern YS
and then advected eastward through the Jeju Strait, with less low-salinity water remaining
on the middle shelf of the southern ECS. However, the classification of the three types was
not conducted owing to the ambiguous criteria. For example, mixed features appeared in
August 2016 and the plume extended northeastward and southward.

Figure 4. Monthly Chl (shown with color map) and cumulative SSS footprint (shown with contours)
from (a−d) June to September 2016. The dotted and solid black and gray lines indicate 30, 31, and 32
isohalines, respectively.

The Chl distribution corresponded well with the isohaline footprints, despite not
accumulating Chl. A probable reason for this is that the interaction between Chl and
CDW had a time lag. Chl directly changes near the river mouth from the river origin
Chl, but the rich nutrients in the CDW influence Chl within offshore regions [1,4,18]. This
indicates that CDW could affect Chl for approximately one month. In addition, Chl rapidly
decreased with increasing distance from the river mouth, unlike the isohalines pattern. This
is because of complex situations, such as nutrient consumption, subsurface mixing, and the
phytoplankton life cycle, which are difficult to demonstrate quantitatively in this study.

Figure 5 shows the climatology of SSS, Chl, and SST from June to September. The
SSS and Chl were averaged from 1997 to 2021 (25 years), and SST was averaged from
2002 to 2021 (20 years) because the available data periods were different. Similar to CDW,
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the SSS and Chl fronts were distributed longitudinally. Chl and SSS showed river plume
fronts, whereas SST did not. Near the Changjiang River mouth, SST formed ocean fronts
longitudinally but was maintained up to 123◦E. Except for this area, SST generated fronts
latitudinally because of an insolation gradient. In addition, the CDW water mass, distin-
guished by 30 isohalines, was detached from the river mouth and transported to the Jeju
Island. This detachment can be generated by the interaction between tide-induced vertical
mixing and horizontal wind-driven movement of the CDW [19]. They determined the
mechanism for the offshore detachment of the CDW using a three-dimensional numerical
model. The detached patches in this study showed a pattern similar to the results of
Moon et al. [19].

 

Figure 5. Climatology of OC-CCI (a–d) SSS and (e–h) Chl from June to September between 1997 and
2021. (i–l) Climatology of MODIS SST from June to September between 2002 and 2021.

3.2. CDW Front Based on Surface Density

The different patterns of the various fronts suggest a complicated environment in the
study area. Therefore, SSD was calculated using SST and SSS to distinguish CDW. Figure 6
shows the climatology of SSD from 2002 to 2021. The overall pattern seems similar to SSS
(Figure 5a–d), but over the southeast of the CDW, it is different. This region is known as
the high SST and SSS region because the Kuroshio Current is strong in summer. Because
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SSS is almost sustained in this area, SST increases from June to September, decreasing
SSD by approximately 2 kg m−3. However, in the northern area, isopycnic lines follow
isohalines, although the isothermal lines are obviously different. In September, the area of
the 1019 isopycnic line (Figure 6a) was smaller than the area of 30 isohalines (Figure 5d)
west of Jeju Island. However, detached patches were still clearly identified in the SSD
distribution. During the summer, SSD decreased with increasing SST in the entire study
region, but a noticeable reduction was observed in the CDW-dominated area.

Figure 6. SSD climatology from June to September (a−d) between 2002 and 2021. The CDW identified
by 1019 isopycnic lines in the central ECS.

Figure 7 shows the climatology of SSD in September for 20 years (2002 to 2021) and
the SSD, SSS, SST, Chl, and SLA values along with a line originating from the Changjiang
River mouth to the northeastern offshore region of the Jeju Island (AB line, presented in
Figure 7a). The SSD shows a similar pattern to the SSS rather than the SST, indicating that
SSS is a major factor driving SSD during September at this region. The detached SSD patch
is also observed in Figure 7. The detached patch (high SSD and high SSS) was formed
by tidal mixing with the subsurface, and ambient seawater covering due to the wind [19].
The Chl is at maximum at the river mouth and decreases toward B. However, the second
peak of Chl appears around 124.3◦E, where the SSD phase changes from high to low. This
signifies that the Chl increased near the CDW front. Moreover, the SLA showed patterns
similar to SSD. From the steric height variation perspective, the SLA evolved not only
as water was added but also as SST or SSS evolved. In this case, the SSS variation could
change the SLA since the SST is almost constant at 26 ◦C. When the SSD is high (low), SLA
is low (high) because the water volume has a negative relationship with water density.
However, the exact locations of the SSD and SLA peaks were slightly different. There are
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three possible causes: (1) the observed values were diminished by the 20-year averaging,
(2) the spatial resolution of the SSD and SLA observations varied, and (3) the time lag
between the SSD evolutions and the resulting SLA reaction. However, these assumptions
are not clear. Consequently, additional studies are required to understand the relationship
between SSD and SLA.

Figure 7. (a) SSD climatology during September for 20 years (from 2002 to 2021). (b) Climatology for
SSD, SSS, SST, Chl, and SLA along the A–B line (red line in (a)) during September.
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In addition, the correlation coefficient map and R2 map showed the regions where
Chl was affected by SSD (Figure 8). A relatively high R2 (negative relationship) between
Chl and SSD was observed near Jeju Island, the Yellow Sea, and the Tsushima–Korea Strait
(p < 0.05). However, the other regions (particularly further south than 30◦N) showed a
low R2 at insignificant levels. Therefore, the SSD variation caused by SST changes did not
influence Chl; however, the SSS changes contributed to regional Chl variation.

Figure 8. (a) Correlation coefficient and (b) R2 between Chl and SSD from 2002 to 2021. The gray
cross symbols mark a p-value < 0.05.

3.3. CDW Front for Nutrients’ Distribution

Because the CDW is rich in nutrients, the CDW extension transports nutrients over
the ECS. Therefore, the nutrient conditions differed across the CDW front. In this study, the
shipboard observed nitrogen (N) and phosphorus (P) concentrations, and the SSD fronts
from satellite data were compared. Figures 9 and 10 show the N and P levels with isopycnic
lines in August for nine years (2002, 2005, 2006, 2007, 2009, 2011, 2014, 2019, and 2020)
because the shipboard observations were conducted only in August at the ECS stations.
In general, N was relatively high (4 to >10 μM L−1) at a low SSD, close to the Changjiang
River mouth. N showed a different pattern across the 1019 isopycnic lines, indicating that
the CDW had more N than ambient seawater. Because N was obtained only once at each
station, in contrast with SSD, which was a monthly average, the comparison of the spatial
distribution had some limitations. Nevertheless, clear differences were revealed in August
2005, 2007, 2011, 2014, and 2020, except for a few stations that showed relatively high (low)
N inside (outside) of each 1019 isopycnic line. This indicates that the CDW is relatively rich
in N from the river plume, and that the satellite-driven SSD can distinguish the front of N.
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Figure 9. (a–i) In situ nitrogen concentration (colored square) and 1019 isopycnic line during Au-
gust 2002, 2005, 2006, 2007, 2009, 2011, 2014, 2019, and 2020. Nitrogen resulted from NIFS serial
shipboard observations.

However, P did not follow the N and SSD spatial distributions over the nine year
period. A high P inside the CDW cases was observed in 2002, 2006, and 2007 (Figure 10).
In particular, P was relatively lower in the CDW interior than in the exterior during 2020,
which was the opposite phenomenon in the case of N. Li et al. [20] determined the increasing
N trend during the past 50 years in the ECS due to the Changjiang River plume; however, P
has been nearly stable since 2000. Therefore, the N/P ratio increased, which contributed to
changes in the phytoplankton community’s composition. Jiang et al. [21] obtained the same
results in August 2009. They determined the factors that control the summer phytoplankton
community in the ECS. This study examined phytoplankton blooms that caused enhanced
eastward and southward CDW extension in August 2009. The diatoms and dinoflagellates
bloomed under high N and low P conditions off the Changjiang Estuary. In addition,
Zhou et al. [22] suggested that CDW plays an important role in diatom blooms by enhancing
the pycnocline and P stress. Moreover, the coastal area adjacent to the Changjiang River
Estuary is a high-risk region for harmful algal blooms [20,23,24]. Although the analysis
of the phytoplankton community’s composition depending on the CDW front was not
conducted in this study, satellite-driven SSD can be useful for the prediction of N and P
distributions or major phytoplankton species before shipboard surveys.
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Figure 10. (a–i) Same as Figure 9 but phosphate during August 2002, 2005, 2006, 2007, 2009, 2011,
2014, 2019, and 2020.

4. Discussion

The SSS estimation model based on the OC-CCI ocean color measurements was
developed using NIFS serial shipboard observation data. Although the in situ observation
stations cover large regions, including the SSK and central ECS, the lowest SSS in these data
was higher than 25 psu (see Figure 3a) because the stations were far from the Changjiang
River mouth. Therefore, the model seldom estimated low SSS conditions (<20 psu) (Figure 5)
despite being revealed near the Changjiang River mouth. Hence, the SSD in this area is
underestimated. Bai et al. [2] also revealed this limitation. They used a simple analytical
algorithm to estimate the SSS using the absorption of CDOM. The range of the in situ SSS
was 26–36, and a low SSS (<28 psu) was not observed. However, such handling was not
excessive owing to their interest in the variation in the CDW extension between 28, 29, 30,
and 31 isohalines. Similarly, in this study, the middle range of SSS (29–32 psu) was used
to analyze CDW identification and its impact; thus, the overestimation of low SSS was
not significant. The training dataset contained abundant data in the middle SSS range, for
which the model performance was relatively accurate (Figure 5). As shown in Figure 4,
the monthly cumulative 31 isohalines were in good agreement with Chl fronts. As the
cumulative SSS footprint was not influenced by low SSS (<20 psu), the results were reliable.
However, the detached patches in July and August may have impacted the SSS (SSD)
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overestimation (underestimation) (Figures 5 and 6). Thirty isohalines and 1019 isopycnic
lines were separated from the Changjiang River mouth at 122.5◦E, where the uncertainty
was high. The overestimation (underestimation) of the SSS (SSD) produced a westward
extension of the detached patches. Therefore, offshore CDW detachment occurred on the
east side, and the area of the patch might have been much smaller than indicated.

To overcome these model limitations, more training datasets near the Changjiang
River mouth region are required. Rarely obtained shipboard measurements are valuable
for validating satellite-driven SSS products; however, they are insufficient for developing
an SSS estimation model. Microwave satellite sensor-based SSS data can solve this problem.
Kim et al. [5] and Kim et al. [6] avoided such limitations by using soil moisture active
passive (SMAP) SSS data. Their model could estimate an extremely low SSS (<20 psu)
near the Changjiang River mouth. However, it was difficult to develop the SSS estimation
model for 25 years because SMAP data are available from 2015. Although the Soil Moisture
and Ocean Salinity (SMOS) satellite has observed SSS since 2009, the low spatiotemporal
resolutions and imprecision in coastal regions (a result of land interference) result in
difficulties for its utilization in the ECS. Improving microwave SSS data quality in the ECS
and assimilation with in situ measurements are recommended for further research.

In general, oceanic fronts are detected using specific algorithms, such as the histogram-
based Cayula–Cornillon algorithm (CCA) and gradient-based Belkin–O’Reilly algorithm
(BOA) [25]. However, these algorithms are unsuitable for investigating continuous front
detection because they are highly sensitive to different parameter ranges. Therefore, the
gradient-based fronts were inconsistent at different times. Therefore, the CDW fronts based
on SSS and SSD were identified using thresholds (31 psu for SSS and 1019 kg m−1 for SSD).
Although the thresholds were simply determined, previous research [2] supports the value
of the threshold (31 psu), and effectively produced CDW fronts for 25 years.

This study was mainly conducted based on qualitative analysis because we focused on
the spatial variation in marine environments caused by CDW. The spatial distribution of the
CDW fronts explains the influence of CDW on Chl and DIN. However, to understand the
mechanism and major factors of CDW behavior, more quantitative analyses are required in
further studies. To conduct a quantitative analysis, more accurate SSS estimation and small-
scale analyses are required. GOCI and GOCI-II measurements are valuable for small-scale
analysis. Using high spatial (<500 m) and temporal (hourly) resolutions, more detailed
analyses are possible, such as tides, small-scale eddies, wind, and typhoons.

5. Conclusions

In this study, an MPNN model for summertime SSS estimation in the ECS was devel-
oped based on satellite and in situ data from 1997 to 2021. Using time-series satellite-derived
data, the monthly SSS, Chl, SST, and SSD fronts were presented and examined. The concur-
rence of SSS and Chl fronts indicated that CDW contributed significantly to Chl distribution
in the ECS. In contrast, the SST fronts formed different patterns with Chl, indicating that
the nutrients in the CDW were a major factor for Chl compared to the SST conditions
during the summer months. CDW was identified in 31 isohaline and 1019 isopycnic lines.
Detached patches were clearly revealed in the SSS and SSD distributions. In addition, N
differences across the SSD fronts were observed. Although such an N distribution is possi-
bly a consequence of CDW extension, more studies are required to explain the interaction
between CDW extension and N.
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Abstract: Remote sensing is the technique of acquiring data from the earth’s surface from sensors
installed on satellites or on manned or unmanned aircrafts. Its use is common in dozens of sectors of
science and technology, agriculture, atmosphere, soil, water, land surface, oceans and coasts, snow
and ice, and natural disasters, among others. This article focuses on an in-depth literature review of
some of the most common and promising disciplines, which are asbestos–cement roof identification,
vegetation identification, the oil and gas industry, and geology, with the aim of having clarity on the
trends in research on these issues at the international level. The most relevant problems in each sector
have been highlighted, evidencing the need for future research in the area in light of technological
advances in multi- and hyperspectral sensors and the availability of satellite images with more precise
spatial resolution. A bibliometric analysis is proposed for each discipline and the network of related
keywords is discussed. Finally, the results suggest that policymakers, urban planners, mine, and oil
and gas companies should consider remote sensing as primary tool when planning comprehensive
development strategies and in field parameter multitemporal analysis.

Keywords: remote sensing review; vegetation index; oil spill detection; soil identification

1. Introduction

Remote sensing is the process of detecting and monitoring the physical characteristics
of an area by measuring its reflected and emitted radiation at a distance [1–5]. Electromag-
netic (EM) energy, produced by the vibration of charged particles, travels as waves through
the atmosphere and the vacuum of space [6–8]. These waves have different wavelengths
(the distance from wave crest to wave crest) and frequencies; a shorter wavelength means
a higher frequency. Some waves, such as radio, micro-, and infrared waves, have longer
wavelengths, while others, such as ultraviolet rays, X-rays, and gamma rays, have much
shorter wavelengths. Visible light is in the middle of that range of long- to short-wave
radiation. This small portion of energy is all that the human eye is capable of detecting.
Instrumentation is needed to detect all other forms of electromagnetic energy (see Figure 1
taken from [2]).

Some waves are absorbed or reflected by atmospheric components, such as water
vapor and carbon dioxide, while some wavelengths allow unimpeded movement through
the atmosphere; visible light has wavelengths that can be transmitted through the atmo-
sphere. Microwave energy has wavelengths that can pass through clouds, an attribute used
by many weather and 5rftcommunication satellites. All things on earth reflect, absorb, or
transmit energy, the amount of which varies by wavelength, creating a spectral fingerprint,
called a spectral signature, unique to each object [9]. Remote sensing sensors sense the EM
waves reflected/emitted by the objects on the Earth’s surface. The sensors record these
waves as images depending on their spectral capabilities.

Spectral sensors collect remote sensing images taken via drone, plane, or satellite.
They can be used in the environmental field to monitor changes in temperature in the
land surface, oceans and in the topography of the ocean floor [10,11], map great forest
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fires [12–14], track clouds to help predict the weather [15,16], or observe volcanoes erupt
and help monitor dust storms [17,18]. Additionally, among its most common applications
are the monitoring of the growth of a city through multitemporal analysis [19,20], the
identification of objects on the ground, military, intelligence, commercial, planning, and
humanitarian applications, among others [21].

 

Figure 1. Diagram of the electromagnetic spectrum. Source: NASA Science [2].

As remote technologies continue to develop, their use is becoming more widespread
and multidisciplinary [22–29]. Often, review works focus mainly on one highly specific
topic [22–29], while a comparison between remote sensing applications is neglected.

The present study focuses particularly on the selected applications of remote sensing
for civil and environmental engineering, such as the identification of asbestos–cement
roofs, vegetation and its health status, oil and gas, and geological applications. The
authors acknowledge the fact that many other applications of remote sensing exist and
are of primary interest in the academic world; nevertheless, in this work, the topics were
narrowed for extension. This review includes the most relevant papers on the matter in
the last decades found mainly in Science Direct, Scopus, and SpringerLink databases. A
historical cross section of research on the subject aims to detect past and present trends,
thinking about possible developments in the coming years.

2. Methodology

The thirty most relevant articles of each topic treated were identified considering the
number of citations and the relevance of the journal. They were read in order to be filtered,
tabulated, and finally included in the discussion of this document. This review reports a
chapter for each main application. Where relevant, the keywords network was analyzed.
Finally, an original discussion of the spectral signature is presented, which is useful for the
reader while comparing different applications for similar materials to identify a pattern
that is useful for future policy makers’ decisions and future research.
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3. Remote Sensing and Asbestos–Cement Roofs

In the 1940s to 1990s, asbestos was widely used as an additive in construction ma-
terials [30–32]. This mineral is formed by a group of fibrous microcrystalline hydrated
silicates, among which Chrysotile stands out in the form of serpentines. On the other hand,
thermolite, crocidolite, actinolite, anthophyllite, and amosite are classified as part of the
amphibole’s family. All of them are considered carcinogenic to humans by the International
Agency for Cancer Research (IACR) and by the World Health Organization (WHO) [33–35].
The risk of this mineral to humans has been known approximately since the first decades
of the 20th century. The danger is mainly due to the inhalation of fibers that, penetrating
into the respiratory system, cause permanent damage in humans, producing diseases such
as asbestosis, pleural thickening, neoplastic diseases such as lung cancer, mesothelioma of
the pleura, and peritoneum, among others [36]. The use of asbestos on a large scale began
around World War II, with an annual world production of 1 million metric tons in 1950 up
to 5 million in 1975. In 2000, a cumulative world production of approximately 173 millions
of tons was estimated [37]. More recently, in 2021, independent agencies estimated that the
annual world production of asbestos was still at 1.29 million metric tons [38], mainly in
Russia, Kazakhstan, China, and Brazil.

Due to the great impact on public health that occurs due to the inhalation of asbestos
fibers, it is vitally important to invest in methodologies that seek to estimate the amount of
this mineral in the urban environment, where people are more exposed. This is especially
the case for countries that have recently prohibited the use and commercialization of the
material, as it would allow the competent authorities to formulate strategies to mitigate the
environmental and public health problem.

One of the first steps to mitigate the public health problem [37,39–42] is the identifi-
cation of the distribution of asbestos–cement roofs through remote sensing from spectral
images. As evidenced in the literature [30,43,44], for the capture of this type of image, mul-
tispectral sensors are particularly used, with a band range between 400 nm and 2400 nm.
The sensor can be mounted on an unmanned aircraft (drone), on a manned aircraft, and
on satellites.

The relationship between the spatial resolution (SRE) and the economic factor is one
of the most relevant factors when choosing between the three modalities mentioned above.
The unmanned aircraft guarantees the SRE of the order of centimeters, with a flight height
between 100 m and 300 m [45,46]. However, when it comes to identifying large areas, such
as cities or entire regions, this tool has strong logistical limitations; companies providing
this service are scarce and the costs are very high. On the other hand, the overflight with a
manned aircraft could reach an SRE between 0.4 m and 2.0 m with a flight height between
500 m and 1500 m. The relationship between the SRE and cost is acceptable, although it
costs between 600 and 1000 USD per km2, which makes it a common tool in developed
countries and scarcely used in developing countries such as those in South America [47].
The third option, through satellite images, has been highly debated in the international
scientific community in recent years. This is because until 2020, the SRE of WorldView-
3 images had 7.5 m pixels (56.25 m2) for eight short-wave infrared (SWIR) bands [48].
Considering that most roofs have a dimension equal to or less than 56.25 m2, this method
is not effective according to the literature [44,49]. However, to date, thanks to technological
advances, the satellite images that are on the market offer an SRE of 3.70 m (13.69 m2) in
the SWIR band range between 1000 nm and 2400 nm [50], and an SRE of 0.30 m (0.09 m2) in
the band range between 400 nm and 1000 nm (eight bands in the visible and near-infrared
(VNIR) region). This makes them attractive since they have limited costs and do not require
flight permits or particular logistics to purchase them directly from official suppliers.

In the last two decades, the use of remote sensing has proven to be a good instrument
to identify and evaluate the condition and material of roofs [30,51,52] (Table A1). There are
different methodologies for classifying asbestos–cement roofs through the use of multispec-
tral and hyperspectral images, which focus on algorithms such as object classification or
object-based image analysis (OBIA) [53], Spectral Feature Fitting (SFF) [54], Spectral Angle
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Mapper (SAM) [43], Support Vector Machine (SVM) [55], decision trees and Random Forest
(RF), discriminant function analysis (DFA) [56], and the maximum likelihood method
(MLC), among others. The use of Convolutional Neural Networks (CNNs) has also been
implemented [44] for the identification of asbestos–cement tiles with the use of aerial RGB
and color–infrared (CIR) imagery.

OBIA is characterized by simulating the way in which human beings perceive and
recognize objects in the real world. The analysis begins by segmenting an image into
homogeneous regions or objects that roughly represent real-world objects. This approach
is based on the idea that the information in an image should be interpreted as significant
objects rather than individual pixels, classified from spectral, spatial, textual, and contextual
data [53]. On the other hand, the SFF classification method is responsible for comparing the
image pixel spectrum with a reference spectrum from a spectral library or a field/laboratory
spectrum. [54]. Something similar is conducted by the SAM and SVM algorithms. In the
case of SAM, this allows one to quickly map the similarities between the image spectra
and the reference spectra by calculating the angle formed between the spectra. This
algorithm is used in the ENVI® software [57]. Similarly, the SVM is a supervised machine
learning statistical algorithm that analyzes the data and recognizes patterns based on a
decision plane that defines the decision boundary that separates objects with different
class memberships [53]. On the other side, RF is a machine learning algorithm that works
based on the bagging method and the classification and regression tree, in which each
tree contributes a single vote to determine the most frequent class in a set of variables
data [58,59].

In attempts to identify asbestos–cement roofs, the trend is to increase the overall
accuracy of the classification by reducing the error of the algorithm through the delimitation
of the construction areas. Abriha et al. (2018) [56] carried out the identification of asbestos–
cement tiles in the city of Debrecen in Hungary through a mask with the normalized digital
surface model derived from a Digital Terrain Model and a digital surface model using a
LiDAR study, in addition to another mask with the values obtained from the Normalized
Difference Vegetation Index (NDVI). At the time of classification, the discrimination of tiles
was made by those that were shaded and sunny. However, the classification accuracy was
6–7 percent worse compared to the simple approach that did not discriminate, so it is not
particularly efficient to perform this procedure.

In another study carried out in the same city mentioned above by Szabó et al. (2014) [51],
the same procedure was carried out for the delimitation of the construction areas without
including the LiDAR model, giving a global precision of almost 80% against 85% where the
model was applied. On the other hand, it was shown that the DFA and RF classification
methods that were applied by [56] showed better results compared to SVM, SAM, and
MLC [51].

Tommasini et al. (2019) [30] filtered areas in image that were not covered by build-
ings using a vector mask with a layer of cadastral forms. This involved a topographic
map where all the buildings related to the selected area were described using a vector
graphics editor. The clipping operation was performed using functions offered by the
free software QGIS. Something similar was performed in the study carried out by Cilia
et al. (2015) [52] in five municipalities located in northern Italy, where the cadastre map
was superimposed on a multispectral infrared visible imaging spectrometer (MIVIS) to
improve the classification. In addition, roofs with surfaces less than 36 m2 were excluded
due to the 3 × 3 m resolution of the images. However, Frassy et al. (2014) [43] established
that MIVIS data from the Valle d’Aosta region, Italy, with a spatial resolution of 4 × 4 m,
assume that at least a 3 × 3 pixel window containing asbestos–cement roofing is needed for
correct detection to occur, classifying roofs larger than 144 m2 with reasonable confidence.
These assumptions can influence the accuracy of the classification. The authors found a
43% correct classification independent of the roofs size and 75% when only roofs bigger
than 3 × 3 pixels were considered. Krówczyńska et al. (2016) [44] found similar results
with an accuracy of 60% for surfaces up to 300 m2 and 20% for roof surfaces smaller than
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3 × 3 pixels. On the contrary, Cilia et al. (2015) [52] obtained better results by applying
the same algorithm with precisions of 86% and 89%, respectively, showing the impact of
spatial resolution when making the classification. Hence, the finer the spatial resolution,
the better the performance of the classification algorithms.

Methodologies to improve spatial resolution are available, such as pansharpening,
which is an improvement in the geometric resolution of multispectral bands with the finer
resolution of the panchromatic band. This method tends to affect the spectral profiles of the
objects; nevertheless, it improves the spatial characteristics. This method is applied when a
pixel is larger than a possible house, so its values are mixed with those of the environment,
making the spectral profiles not accurate. Pansharpening has been used in different works
found in the literature, such as Abriha et al. (2018) [56], where this technique improved
the classification by 2–3%. It was also used in the cities of Kajang and Bangi, Malaysia, for
the determination of asbestos–cement tiles in buildings, achieving an accuracy of up to
93.10%, [53].

These methods from hyperspectral and multispectral images present in some cases
low resolutions or little information within the spectral range. To ensure that they cover a
spectral range and a high spatial resolution, the costs increase significantly. For this reason,
over time, other methodologies have been studied that have high spatial resolutions, do
not need spectral information, and are cheaper. Among these is the use of CNNs, which
were introduced theoretically for the first time by LeCun et al. (1989) [60]. However, the
first practical use was probably by Krizhevsky in 2012 [61]. The network was named
AlexNet and was used to classify images from the ImageNet library. Neural networks
are characterized by having greater precision than other methods used. Nevertheless, to
classify asbestos–cement tiles, it was used for the first time by Krówczyńska et al. (2020) [44]
in Checiny, Polonia. RGB and color–infrared (CIR) images were used and global accuracies
of 89% were obtained. According to the authors, this could be a more economical and
practical method for the identification of both roof types and other areas of interest.

Remote sensing has been widely studied worldwide, mainly for the identification of
vegetation, minerals, and oil spills. However, in the case of asbestos–cement tiles, studies
are still limited in the literature. The first part of Table A1 shows an overview of the most
recent and cited works found in the literature in the matter of asbestos identification. A
comparison between the classification results in WV3 satellite images (multispectral) and
hyperspectral images is not found in the literature. This would allow for an assessment
of the technical–economic feasibility of the two options, favoring greater awareness in
decision making by authorities and professionals.

The words Remote sensing and Asbestos were searched for in Scopus, resulting in
708 works; then, through the free platform VOSviewer, the network of related keywords
and their distribution per year were obtained (Figure 2). It is clear that in general, the issue
of the remote sensing of asbestos–cement has had its greatest relevance in the last 20 years,
due to strict regulation, especially in European countries [62], which has led to a greater
sensitivity in the authorities and the academic world on the subject. The use of the words
airborne remote sensing, MIVIS, multispectral infrared marked the 2000s [54], especially in
studies in Italy, which also appeared as a keyword; however, in the last 5 years, the most
trending keywords have been hyperspectral, machine learning, satellite data, and satellite
imagery, showing an evolution in technology towards more precise sensors with higher
bands both in aircrafts and at a satellite level [56,63]. The need to have greater spatial
resolution and the costs of these images are the two contrasting factors that dominate the
academic and professional scene. The dominant countries in these investigations are the
United States, Italy, and China; however, adding the studies of European countries, it is
noted that this continent represents the true center of research on asbestos and remote
sensing worldwide. Asia also plays an important role as China, India, and Malaysia are
dominant countries in these investigations, while Latin America has a deep lack of studies.
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Figure 2. Relationship between keywords found in Scopus per year. Graph made with VOSviewer.

4. Remote Sensing and Vegetation

Vegetation studies are carried out for the planning and management of land use
through studies of vegetation cover, the determination of changes caused by fires, the
evaluation of water stress in plants, or the evaluation of stress in the vegetation caused
by water or atmosphere contaminants, among others [64–66]. Remote sensing allows one
to see places that are difficult to access and allows for clarity when estimating changes or
anomalies in the vegetation. For multispectral imagery, images from Landsat, Sentinel, or
QuickBird satellites are commonly used [67,68]. Hyperspectral images are hardly ever used
for this purpose according to the literature found.

Table A2 shows the development of the most common vegetation indices (VIs) over
the last 50+ years; more IVs can be found at [69]. Among these, one of the first to be
conceived was the Normalized Difference Vegetation Index (NDVI), which is attractive
for its ability to rapidly delineate vegetation and vegetative stress. It is widely used in
commercial agriculture and in land-use studies. For reasons related to its long history, its
simplicity, and its reliance on readily available multispectral bands, the NDVI has become
the most popular index used for vegetation assessment [70]. This index measures the
relationship between the energy absorbed and emitted by plant covers through intensity
values of the greenness of the area, the amount of vegetation present on a surface, and
its state of health or vegetative vigor [71]. The NDVI relates the information acquired in
the red and near-infrared (NIR) bands with the state and characteristics of the vegetation
covers through the normalized difference of the two bands whose range of variation is
between −1 and 1. Negative values (−1) to zero (0) are bare surfaces, while values from
zero (0) to one (1) show the presence of plants [72]. Dense vegetation is given from values
between 0.5 and 0.7 [73]. Another index used for vegetation is the Simple Relation Index

278



Atmosphere 2023, 14, 172

(SR), which reduces or eliminates the influence of the soil on solar reflectance values. It is
considered as a structural index that allows for the estimation of leaf area index values [71].
On the other hand, the Soil-Adjusted Vegetation Index (SAVI) minimizes the effect of the
soil on the characterization of the vegetation, especially on partially covered surfaces [71].

Different combinations of bands were made in order to analyze the most appropriate
combinations for the study of the detection of pests in the vegetation between the Misantla
and Coatepec coffee regions in the state of Veracruz, Mexico [73]. For this, Landsat satellite
images with 11 bands were taken, with each one used to record the characteristics of
surface objects such as soil, vegetation, and water. The methodology consisted of three
main steps: obtaining digital images by flying a drone equipped with a multispectral
sensor, characterizing the levels of the disease in a field-monitoring plot, and the digital
processing of the images to obtain eleven vegetation indices compared in different levels of
severity. These were evaluated from the Shapiro–Wilk, Levene, ANOVA, Kruskal–Wallis,
and Wilcoxon statistical tests [74].

On the other hand, for studies carried out in areas affected by fires [75,76] as in Las
Peñuelas in Moguer, Spain, vegetation indices were calculated for the evaluation of the
recovery of plant vigor. In this case, cartographic maps were made that allowed one
to observe the levels of recovery or retreat of the affected vegetation. Images from the
Sentinel 2 and Pléaides satellites and images obtained in flyovers were used. Imagery was
corrected for dark pixels produced by atmospheric scattering and then they compared with
information obtained in the field to assess the reliability of the classification.

In general, Table A2 shows that IVs have their origins in the ‘60s–‘70s and had their
great development during the ‘90s and ‘00s. Although, in the last decade, new method-
ologies and advances have also been proposed. However, some fundamental aspects are
evident. The first is that with technological advances, the concentration of researchers has
focused on improving the quality of images with a greater number of bands in satellite
sensors and smaller pixels on the ground. The second is that almost all the new indices
have been developed in the United States, denoting a predominance of interest from the
large universities and companies of this country on the subject, probably due to dominance
over technology, the large extensions of vegetation in the country, and attention to envi-
ronmental issues. Additionally, it was observed that the great concern was initially the
reduction in atmospheric disturbance; however, with the arrival of specialized software
on the subject, IVs have focused more on the preliminary identification of the state of the
vegetation to correctly identify the use, timing, and dosage of treatments to intensify crop
production, especially corn [77].

It is felt that the development of new indices is not as essential as in the past and
that agreement has been reached on this. The academy and companies in the last decade
have focused mainly on multitemporal studies of vegetation, evaluating water stress, and
deforestation [78].

Other methodologies for the delimitation and calculation of vegetation areas are found
with the use of spectral libraries that allow for the incorporation of new representative
spectral signatures. For example, in Manaus, Brazil, Landsat satellite images were used, and
the spectral library of urban materials based on categories of urban land cover components
was created. The spectra that had a high probability of confusion with other classes of
materials were eliminated and the most representative member of each class was chosen.
To identify the most representative spectra of each class of material, the root mean square
error (RMSE) was applied [79,80]. The end product of this analysis was a set of fractional
abundance maps for each material class (i.e., vegetation, impervious surfaces, soil, and
water). A similar methodology was applied in Yellowstone National Park, USA, which
aimed at mapping the vegetation cover. In this study, a spectral library of reflectance
signatures was created by pixel averaging over the known occurrences of 27 vegetation
cover types in the study area [81].

Scopus showed that there were 43,651 works that included the words Remote sensing
and Vegetation in the keywords, abstract, or title. Figure 3 shows the most common results
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of the associated keywords. In terms of work frequency, the subject has had its greatest
relevance in the last 20 years, probably due to greater attention to climate–environmental
issues by institutions and companies. China, the United States, and Europe are the areas
where the subject is most studied. Asia also plays an important role as China, India, and
Japan are the dominant countries in these investigations, while Latin America again showed
a trend that was similar to the case of asbestos.

 

Figure 3. Keywords network found in Scopus searching with remote sensing and vegetation. Graph
elaborated with VOSviewer.

5. Remote Sensing and Oil and Gas

Multispectral remote sensing is an emerging technology for the oil and gas industry. It
has experienced an enormous advancement in relatively new fields such as geosciences for
the exploration of hydrocarbons [82]. Remote sensing is a support tool for hydrocarbon
exploration as it allows access to areas of physical inaccessibility, guaranteeing control of the
threats caused by oil spills. Oil is an essential asset for societies; however, its transfer turns
out to be difficult, since it is necessary to manage several transfers to take the hydrocarbons
from the deposits to the refineries, the industries, and later the final clients [82]. During
these transfers, spills may occur on land or in the water. In the latter case, waves, wind, and
ocean currents can spread large slicks across open water in a matter of hours [83]. The early
detection of anthropogenic oil slicks can enable the timely protection of critical habitats
and limit economical damage [84].

In San Juan Capistrano, California, a remote sensing study was carried out in which
the authors presented thermal infrared spectra of oil slicks made from five oil samples of
different compositions. Different thicknesses of oil in water was tested in a laboratory to
determine the reflectance spectra [85]. A similar methodology was applied by [86] in which
three annual experiments of artificial mesocosms with oil in ice were carried out at the Sea
Ice Environmental Research Facility (SERF) of the University of Manitoba, Canada, during
2016–2018 in order to see the behavior of oil in the ice.

On the other hand, in the Niger Delta (Nigeria) [87,88], Landsat images were acquired
for the period of 2000–2018, and the NDVI was applied to determine the changes in
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vegetation caused by oil spills. Another similar procedure was the case study in Deep
Horizon (2012) and Campo Basin (2011), in which they used resolution images to monitor
oil slicks using the fluorescence/emissivity index and image analysis, using a multispectral
sensor 36-band with a resolution of 250 m to 1000 m on the EOS AM (Terra) and EOS PM
(Aqua) satellites [89]. The study did not show acceptable results since oil does not have
specific spectral characteristics that can be used for direct detection. However, in some
circumstances, oil can have a silvery appearance with a reflectance higher than that of the
background [82].

Another use of satellite images is that applied to the coast of Lake Albert (Africa), in
which time series of multisensory satellites with images from 1999 to 2008 were used. These
images were corrected for the atmosphere and radiometric calibration; subsequently, a
comparison was made between the anomaly map generated by multisensor satellite images
and the map with superimposed oil and gas fields. In the comparison, it was shown that
all the anomalies are located in areas with high gravimetric gradients, so it was concluded
that microleakage maps can provide new high-quality data, complementary to those of
traditional geophysics, at an affordable cost and with no need for exploration licenses to
help the oil and gas industry reduce exploration risk [82]. This methodology was also
applied in Lake Turkana (Africa), in which satellite multispectral data were used to detect
microfiltration signals. These were grouped into spectral anomalies according to land
use, geographic, geological, and subsoil variables. The study gave good results since an
underground accumulation of hydrocarbons was evidenced [90].

Scopus showed that works with the keywords remote sensing and oil and gas were
not very frequent as 1176 documents were found, which was probably because most of the
works were carried out by private companies that do not publish their results due to issues
related to copyright, patents, and industrial secrets, as this is a strategic economic sector.
Appendix A reports some of the most relevant papers on the matter, confirming that most
of them are related to hydrocarbon seepage. Once again, the United States and China led
the investigations, followed by the Russian Federation.

6. Geology Applications

Remote sensing has become a very important instrument, being used in various inves-
tigations related to the identification of minerals [91–93], lithology mapping [94–96], and
environmental geology due to contamination by mining areas [97]. Mineralogical studies
and lithological mapping have been performed in different climatic and tectonic conditions
where hyperspectral imaging for VNIR and SWIR spectral ranges is common [98]. Never-
theless, according to [99], most minerals are identifiable in the SWIR and Long Wavelength
Infrared (LWIR) ranges.

The basis on which a spectral processing technique requires a priori reference data
or not is used to establish a categorization scheme. In the case of no reference data, the
method is usually able to directly use the available spectral patterns in a pixel (or measured
spectra). Additionally, there are techniques that try to describe the spectral content of a pixel
according to some predefined representative facts, known as reference data or endmembers.
This initial difference gives rise to two different categories: the knowledge-based approach
and the data-driven approach, which contain different classifiers [100].

Other forms for the identification of mineral assemblages is from relation indices, sim-
ilar to the case of vegetation indices [101]. The Index Data Base (IDB) is a tool for working
with remote sensing indices available on the web [69,102]. It provides a quick overview
of which indices are usable for a specific sensor and a specific topic. It is a valuable tool
for indices developed before 2012 based on the Advanced Spaceborne Thermal Emission
and Reflection Radiometer sensor (ASTER), 15 bands from 520–11,650 μm, resolution of
15–90 m. Carbonate, clay, ferric iron, and SiO2, among many other indexes to identify
minerals, are reported in the literature. Clearly, for this type of large-scale application, high
resolution is not needed. The use of hyperspectral images with a spatial resolution of less
than 30 cm is possible thanks to modern technology; however, the information requires
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extraordinary storage and a consequent computational capacity that is not very accessible
at a commercial level.

An applied step in methodologies for geology that can be diligent within other disci-
plines would be the use of Linear Spectral Unmixing (LSU) classifiers, which is a spectral
unmixing tool that decomposes a reflectance source spectrum into a set of end-member
spectra. This classifier showed better results compared to others that were used. According
to [91], the LSU indicates a better technique for estimating the distribution of pure and
impure pixels compared to methodologies such as SAM and SFF that classify all pixels as
pure when they are actually impure. Another technique that performs a partial unmixing
of spectra is the CEM algorithm, applied by [103], which is considered a powerful sub-pixel
demixing analysis tool for analyzing ASTER reflectance data.

Machine learning algorithms are known because they work from training data sets.
In a study carried out by [104] to obtain a lithological map in the greenstone belt of the
Hutti area, India, the impact of the quantity on the performance of these algorithms was
evaluated, for which a reduction of 15%, 30%, and 45% was made of the total samples,
showing that there was a slight reduction in the global accuracies. In the case of LDA,
the precision was reduced by 5%, in RF by 2%, and in SVM by 1%, thus showing that the
least sensitive method to the size of data sets was SVM compared to the other two. This
statement was validated in other studies [105], where SVM showed better results than other
methodologies such as SAM using a relatively low number of sampling data. However,
the SVM method is not widely used for lithology mapping; it is an effective algorithm
for remote predictive mapping for remote areas as well as for updating existing lithology
maps. It generates a high precision of up to 85% as in the lithological cartography of the
Souk Arbaa Sahel region belonging to the Sidi Ifni located in southern Morocco [106].

Over time, new methodologies that are different from the conventional ones have been
applied, such as the Convolutional Neural Networks (CNNs), which have presented better
results. The authors of [96] presented a comparison of this methodology based on other
conventional methodologies such as SAM, SID, FCLSU, SVM, and RF, showing that two-
dimensional CNNs and three-dimensional CNNs were approximately 2.5–12% higher than
that of SVM and RF and approximately 12−25% higher than that of SAM, SID, and FCLSU.
Therefore, the CNN 2D and CNN 3D algorithms improve the classification of hyperspectral
TIR remote sensing images, as it offers a better classification performance, higher noise
immunity, and more accurate boundary classification. It should be noted that with this
method, the global accuracies were up to 98.56%. Despite other classification methodologies
being better for the identification of minerals and the generation of lithological maps such
as SVM, RF, and CNN, the most used classifier is SAM which, as mentioned above, does not
work very well when there are not enough training data [28,96,107]. In geological studies,
it is quite difficult to obtain a lot of training data due to difficult access areas as in the case
of [105] where a lithological map of an area formed by the Teide-Pico Viejo stratovolcano
was made.

In unsupervised classification techniques, where classes are created purely based on
spectral information and not manual visual interpretation, methods such as K-means and
the Iterative self-organizing method (ISODATA) are most common. However, this topic is
outside the scope of this work.

Geological applications of remote sensing are among those that have generated interest
in researchers and companies since the 1980s, aimed at characterizing and monitoring large
extensions of soil, the search for precious minerals, and lithological studies. Appendix A
shows a summary of the most relevant and mentioned works in the literature on the subject.
It can be noted that this field has the greatest variety of applications, mostly focused on
the identification of minerals; however, there are also more advanced applications, such as
in structural geology, crustal deformation, and geological lineaments. Scopus shows that
there are 16,326 works to date with the words “Remote sensing” and “Geology”. Figure 4
shows the most common results of the associated keywords. In terms of the frequency
of keywords, the same frequencies per country are evident as in the case of asbestos,
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vegetation, and oil and gas. On the other hand, relationships between geological and
geotechnical studies with climate change, glacial geology, risk, and landslides are noted.

Figure 4. Keywords found in Scopus while looking for works with the keywords “Remote sensing”
and “Geology”. Graphic made with VOSviewer.

7. Spectral Signature

One of the key points in remote sensing studies in any of its fields of application is
the response of materials to the incidence of a light ray and their identification through
the spectral signature [49]. Each material has a different spectral signature, which varies
depending on its physical–chemical and morphological characteristics and its capacity to
absorb, transmit, or reflect the energy received. The latter is measurable through reflectance
as a function of wavelength [108]. The most reflective part of the electromagnetic spectrum
is in the wavelength range of 350 nm to 2500 nm, so it is within these values that most
remote sensing research and applications are carried out [109].

Figure 5 shows some of the spectral signatures that can be found in the fields of
application mentioned above: asbestos, vegetation, oil and gas, and soil. Most of these
spectral signatures can be found in the U.S. Geological Survey (USGS) spectral library, made
with laboratory, field, or aircraft-mounted spectroradiometers and covering the spectrum
from 200 nm to 200,000 nm depending on the measurement performed [110].
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(a) (b) 

  

(c) (d) 

Figure 5. Spectral signatures of some materials within the categories: (a) asbestos, (b) oil and
gas, (c) vegetation, and (d) soil. Vertical lines represent blue, green and red area of the spectrum.
Reflectance can vary from 0 to 1.

The spectral signatures of asbestos are part of an ongoing investigation by the authors,
where an aircraft mounted with a HySpex V620 hyperspectral sensor was used to collect
the information. Asbestos, having different types of fibers, can present different spectral
signatures according to the material under study; however, the greatest variations in
reflectance occurred near the SWIR wavelengths between 1195 to 1415 nm and between
1742 and 1974 nm, which makes this range quite useful in its identification by means
of classification tools such as SAM or SVM [111]. The state of deterioration and type of
asbestos fibers significantly modify the spectral signature [63,112]. Asbestos–cement roofs
with a nondeteriorated cement matrix may present greater energy reflection; on the contrary,
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those painted or protected with waterproofing usually have lower energy reflection [63,112].
Figure 5a shows some spectral signatures of asbestos–cement roofs in the city of Cartagena,
Colombia. Higher reflectance values in the NIR and SWIR zones were observed, with
some reflectance peaks near 1080, 1250, and 1550 nm. However, low spectral values in the
visible range could differ significantly, while the spectral values for longer wavelengths are
similar. Some asbestos–cement ceilings were painted different colors, and this produced an
effect on the spectral signature of this material, reflecting a high reflectance near the ranges
corresponding to the color; in the case of a blue ceiling, there was a modification that was
significant near 490 nm, and for the red ceiling, an increase in reflectance was seen from
620 nm to 900 nm, passing from the green band to the first part of the near infrared. In both
cases, the spectral signature maintained its shape, but with higher reflectance values.

In the case of the oil and gas industry, the application of remote sensing for the
identification of contamination from oil spills has been of the utmost importance. During
these events, it is necessary to know where the contaminant moves in the water and the
magnitude of the places affected. In an investigation performed by [113] on an oil spill from
the Deepwater Horizon platform in Barataria Bay, Louisiana, the authors found that the
oil spectral signature was affected according to the materials that were in the background,
such as water, sediment, or vegetation. Figure 5b shows the series “Oil Black Poolon
Beach” and “Oil Water Emuls”, where the difference between them was that the first one
was on beach sand and the second one was in the water. Another important factor is the
mixing ratio and the thickness of the oil layer, both of which can cause the oil to emulsify
and therefore change the spectral signature. In the same event as the Deepwater Horizon
spill, the authors of [114] found that the proportion of oil:water that yielded the highest
reflectance values was 40:60 and that the thickness of the layers, even if they varied by a
few millimeters, caused the reflectance to vary considerably.

The vegetation, for its part, presented low values of reflectance in the visible range,
except for a peak near 500 nm where the green band is located; this was due to the
photosynthesis processes of the plants that absorbed most of the energy in the other
wavelengths. However, advancing in the spectrum, near 700 nm where it is known as
the “red-edge region”, the spectral signature increased the reflectance values, maintaining
a similar trend until crossing the midinfrared, where there was a large absorption of
energy due to the water content in the plants. Again the reflectance values rose in the
SWIR area [115]. It is for this reason that the vegetation indices are mostly related to red
and near-infrared wavelengths and some more recent ones use SWIR for applications of
nonphotosynthetic processes [116]. In Figure 5c, the typical behavior of vegetation in four
different species, i.e., Aspen Leaf A (Denver, CO [110]), Conifer Meadow Mix (Yellowstone
Park [81]), Maple Leaves (Golden, CO [110]), and Mango Leaves (Cartagena, Colombia)
is observed, in which the reflectance values vary but the trend and shape of the spectral
signatures are similar to each other. These changes in reflectance allow one to know the
type of vegetation under study and contribute to analyzing changes within the vegetation,
such as the stress levels, leaves’ health, and overall quality of the vegetation [117,118].

The soils presented higher reflectance values than the other categories in the entire
spectrum. They tended to reflect electromagnetic energy in a greater proportion. Most
of the time it was related to the chemical composition of the soil under study and its
relationship with the ecosystem in which it was found [118–120]. The characteristics of
each type of soil made it possible to find some absorption peaks in the spectral signature.
In Figure 5d, it is observed that the greatest energy absorption was found in the SWIR part;
however, the highest reflectance values were maintained in this area. In the case of the
Calcite.5+.Ca-Mont.5 (mixture of Calcite and Montmorillonite) and Limestone signatures,
the authors of [110] describe that the absorptions in the SWIR are related to the interaction
of C-O within the chemical composition and some organic impurities of the materials,
giving the signature a negative slope in this short wave zone. A similar effect also occurred
for Kaol + Muscov (mixture of Kaolinite and Muscovite), where it was observed that a
band was highly influenced by Muscovite in the 2200 nm zone. These patterns can explain
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the behavior of the Limestone Gravel series, from the city of Cartagena, which presented
combinations of the first two materials mentioned.

8. Conclusions

In this work, world trends on remote sensing related to some of the most relevant
issues at the global level were studied. In particular, the present manuscript focused on
public health problems in the case of asbestos; environmental issues in the case of vegetation
and oil and gas, in addition to hydrocarbon exploration; and geological applications in the
case of the identification and characterization of soils and minerals. Several aspects that are
worth highlighting were evidenced. Remote sensing studies related to vegetation were the
studies most frequently found in the literature, with a marked tendency for researchers in
the 1990s and 2000s to create new vegetation indices (Figure 6). More than 30 indices were
found among the most relevant and mentioned studies in the literature, which are useful
for different applications. However, no recent studies were found that would allow all the
indices to be compared with each other in the same multispectral or hyperspectral image.
In the latter case, it is probably due to the scarcity of satellite hyperspectral sensors and
their cost/logistics for use in drones or manned aircraft.

 

Figure 6. Summary of publications by country on oil and gas (black), asbestos (red), geology (brown),
and vegetations (green).

In terms of public health, the applications for the detection of asbestos–cement roofs
are interesting. Developing countries that are barely banning the use of this material have
multispectral satellite images available, such as those from Word View 3 (WV3), to be able
to identify asbestos–cement roofing. Since 2020, these have had a reasonable SRE for SWIR
(~3.7 m). However, with this tool, countries that have also banned the material decades ago
can track the progress of removal. It is evident that this technology of the WV3, with its 8
VNIR bands and 8 SWIR bands, is also useful for other applications. The main limitation
in this case is cloudiness, which in some areas is constant throughout the year; however,
images can be taken upon request with a limit to the percentage of cloudiness. More
studies are needed to investigate the efficiency of cover identification through multispectral
satellite imagery and hyperspectral flyby imagery. Since these studies are on urban areas,
the overflights have the limitation of urban airports, or military areas, with restrictions in
the landing cone and surrounding areas. Finally, remote sensing applied to oil and gas is a
subject that has not been studied much; however, it has great potential as a tool to support
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preliminary studies for the exploration of wells to find hydrocarbons. As mentioned, this
lack of published studies probably reflects the need for companies in the sector to keep
information and methodologies confidential.

9. Recommendations

The results highlighted in the present review are relevant for environmental policy-
makers. Remote sensing should be applied in problem identification, policy formulation,
policy implementation, and policy control and evaluation to strengthen governance and
improve policy efficiency and effectiveness. For instance, in the case of asbestos–cement
roofs, better strategies for removing and wasting can be tailored if roof distribution has been
previously categorized. On the other hand, great economic development has characterized
entire economic sectors after asbestos prohibition, and private companies should encourage
remote sensing in urban areas to customize roof replacement options and optimize position
of the disposal sites.

Air quality and quality of life in urban environments are in part related to the presence
of green areas. Policymakers and environmental engineering companies should promote
multitemporal remote sensing analysis to control and improve vegetation in urban environ-
ments, especially in underdeveloped countries where the population density and building
speculations are extreme. Similar to the case of oil slick identification, permanent control
with remote sensing will help prevent the spread of environmental disasters, especially in
remote areas of developing counties.

Finally, remote sensing should change paradigms in policymakers and companies
since inversions in this technology and these images may generate high returns in terms
of quality of life and environmental quality, maximize the resources to explore the raw
materials, and minimize the costs of mitigating environmental problems.
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Abstract: The heterogeneity of the fractured-basalt and interbedded-sediment aquifer along the
eastern margin of the Columbia Plateau Regional Aquifer System has presented challenges to resource
managers in quantifying recharge and estimating sustainable withdrawals. Previous studies indicated
recharge pathways in alluvial sediments atop a mountain–front interface upgradient of the basalt
flows. In this sedimentary zone, six seismic stations were deployed for one year to detect velocity
changes in low-frequency seismic waves that could be correlated to changes in groundwater recorded
by a well transducer near the center of the seismic station network. Waveforms in the 1−5 Hz range
were recorded at each station to determine changes in wave velocities between station pairs and
correlate these velocity changes to changes in groundwater levels. The velocity–groundwater relation
allowed for estimation of daily groundwater levels beneath the seismic station network. Existing
hydrogeologic information was used to estimate hydraulic gradients and hydraulic conductivities,
which allowed for the calculation of the daily volume of recharge passing beneath the seismic stations
and into the confined aquifer system. The daily recharge volumes across the seismic station network
were summed for comparison of the total annual recharge calculated from the change in seismic
wave velocities (154,660 m3) to a flow model calculation of recharge based on areal precipitation and
infiltration (26,250 m3). The 6× greater recharge estimated from the seismic wave velocity changes for
this portion of the recharge zone is attributed to preferential pathways of high hydraulic conductivity
and greater depth associated with paleochannels beneath the seismic station network.

Keywords: groundwater recharge; ambient seismic field; passive monitoring

1. Introduction

Groundwater is an important resource for municipal, agricultural, and industrial uses
across Idaho, the United States, and the globe [1–4]. Since 1935, water levels have declined
in the multi-aquifer system in the South Fork Palouse River Basin (Figure 1) located in the
Palouse geographic region and eastern margin of the Columbia Plateau Regional Aquifer
System [5–7]. The South Fork Palouse River Basin aquifer system is contained in the
fractured basalts of the Columbia River Basalt Group (CRBG) and interbedded sediments
of the Latah Formation (Figure 2) that compose the eastern portion of the basin, designated
as the Moscow–Pullman Basin (MPB) [8–10]. Groundwater in the local basin provides a
primary source for drinking water and irrigation [11] and is the sole source of municipal
water in the MPB [12]. Extrapolation of current trends in declining groundwater levels
indicates the possibility of insufficient groundwater resources to meet future community
needs [13]. Quantification of recharge to the MPB aquifer system is necessary to evaluate
sustainable withdrawals or potential water storage/recovery systems. This study was
conducted to evaluate groundwater changes and quantify the annual recharge along a
portion of a theorized recharge zone by passively monitoring the ambient seismic field and
correlating changes in seismic wave velocities to changes in groundwater levels.

Geosciences 2023, 13, 9. https://doi.org/10.3390/geosciences13010009 https://www.mdpi.com/journal/geosciences308
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Figure 1. Location of the South Fork Palouse River Basin in the Palouse River Basin within the
Columbia Plateau Regional Aquifer System (CPRAS) (modified from Behrens et al. [14]).

Figure 2. Southwest-to-northeast cross section (A–A’, Figure 1) of the eastern South Fork Palouse
River Basin near Moscow, Idaho, USA (modified from Bush et al. [9]).

Past modeling efforts to predict future declines in groundwater levels of the MPB
have produced mixed results due to a limited understanding of recharge processes [15–19].
The variable permeability and discontinuity of basalt flows and interbedded sediments
create heterogeneous and anisotropic aquifer matrices in the basin [10,20,21]. Resource
management entities across the northwestern United States continue to struggle to model
and predict recharge in such terrains [22]. An interstate, multi-agency committee of water
providers in the MPB, Palouse Basin Aquifer Committee (PBAC), implemented a study
to develop a new groundwater flow model to assist in understanding the continued
decline in groundwater levels. As part of the modeling effort, recharge to the aquifer
system was estimated by assigning a higher areal precipitation and infiltration rate to
the foothill/mountainous region across the eastern portion of the basin (aligns with the
recharge zone in Figure 1) and a lower rate for the lowlands of the basin [20]. This current
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study was conducted to compare the annual recharge of the PBAC groundwater model in
a portion of the recharge zone to the annual recharge calculated from groundwater levels
derived from changes in the velocity of low frequency seismic waves recorded in the same
portion of the recharge zone.

1.1. Recharge Zone

Previous studies have indicated that groundwater recharge (e.g., snowmelt) is entering
the aquifer system through sediments of the Latah Formation [14,23–25] at the mountain–
front interface along the eastern margin of the MPB [15,25–28]. These sediments overly
the granitic basement rock at the mountain front of the Palouse Range (Figure 3). The
sediments of the Latah Formation can range from permeable alluvial/colluvial deposits to
clayey wetland deposits emplaced during damming of streams with the intrusion of CRBG
flows [10]. Additionally, coarse paleochannel sediments are interspersed throughout the
Latah Formation because of the continued rerouting of the paleostream network with the
intrusion of at least 25 basalt flows [9,10]. The uppermost sediments of the Latah Formation
can be clay rich but also contain coarser material that corresponds to the current stream
network [9,10].

 

Figure 3. Theorized mountain–front interface of the Palouse Range and sedimentary units of the
Latah Formation that contain paleochannel deposits from prior iterations of the stream network
draining the Palouse Range (updated from Bush et al. [29]).

Downgradient of the theorized recharge zone, Duckett et al. [25] were able to dis-
criminate two primary groundwater sources that originated from snowmelt moving either
quickly into the subsurface (“fast pathway”) or snowmelt and/or rainfall that stayed in the
surface-water network and entered the subsurface further downgradient (“slow pathway”).
Behrens et al. [14] were able to refine the fast and slow pathway concept through an isotopic
analysis of snowpack, snowmelt, runoff, creek, and groundwater samples collected from
the mountain top to the recharge zone. The fastest recharge pathways appear to be located
within the central portion of the recharge zone and slower pathways are located along the
western and eastern peripheries [14]. These pathway types have some overlap with the
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existing stream network but are not fully aligned, and the higher conductivity flowpaths in
the recharge zone likely are associated with paleochannels [14].

1.2. Passive Seismic Monitoring for Estimating Groundwater Levels

Passive seismic monitoring can be used to interpret near-surface conditions [30–34],
such as changes in groundwater levels in unconfined and non-compartmentalized alluvial
aquifers [35–37]. The scattering of seismic waves in the Earth’s crust allows for an averaged
and volumetric view of changes in groundwater where the velocity of scattered seismic
waves is sensitive to changes in pore pressure (e.g., grain-to-grain contact) [37–39]. Seis-
mometers can be deployed to passively record low frequency waves of the ambient seismic
field generated by natural or anthropogenic earth movements [40,41]. These low-frequency
waves are influenced by the elastic properties of near surface materials and properties, such
as changes in saturated thickness/pore pressure [37,38,40,42–46]. The velocity of scattered
seismic waves in an aquifer will respond to changes in pore pressure caused by increased
water levels and decreased grain contacts [36,38]. The recharge zone at the mountain front
in the MPB is composed of unconsolidated sediments of the Latah Formation outside of
the furthest extent of the basalts, which allowed for deployment of a temporary network
of seismic stations to enhance the limited groundwater monitoring in this area (one well
transducer).

2. Materials and Methods

To quantify the annual recharge along a portion of the mountain–front recharge zone,
six seismic stations were installed as a transect perpendicular to groundwater flow. This
temporary seismic network was used to collect seismic spectra from October 2020 through
September 2021 to correlate changes in seismic wave velocities to changes in groundwater
levels. Available geologic data (e.g., well logs and local geologic reports) were used to inter-
pret hydraulic gradients and hydraulic conductivities. The combination of groundwater
levels/saturated thicknesses, hydraulic gradients, and hydraulic conductivities, allowed
for estimating the volume of water passing beneath the seismic network and entering the
MPB confined aquifer system during the study period.

2.1. Seismometer and Station Construction

The Raspberry Shake® 1D was used for construction of the seismic stations. The Rasp-
berry Shake® 1D contains a 4.5-Hz vertical geophone and internal memory for datalogging
of up to 80 days. The geophone has the potential to resolve the low frequency range (0.1–5
Hz) that constitute the portion of the ambient seismic field that has previously been used
to detect changes in seismic velocity because of changes in pore pressure/groundwater
levels [31,37,45,47]. The seismometers were fitted with GPS units for an accurate record
of time because of the need for cross-correlation analysis between stations for identifying
changes in wave velocities [37,41,48,49]. The seismometer vaults (Figure 4) consisted of
a weather-proof sealable container (action packer) for containing the seismometer in a
weatherproof case and a deep cycle marine battery for power. The weatherproof case
containing the seismometer was bolted to a granitic rock plinth and placed on a sand
bed inside the action packer to ensure connection of the seismometer to the surrounding
earth. The battery was connected to a solar panel (Figure 4) to reduce the need for battery
replacement during the deployment period. Each seismic station was placed 1 m below
land surface to connect with the surrounding earth and allow access to the seismometer.
A data retrieval cable was paired with the power cable connecting the solar panel to the
seismic station.
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Figure 4. Seismic station composed of the buried, sealable container with solar panel and an inner
view of the container with the marine battery and weatherproof case containing the seismometer.

2.2. Seismic Station Locations

Seismic station locations (Table 1) were based on proximity to the mountain front and
outside the extent of the Wanapum basalt (Figure 3). Local drilling logs indicated that the
selected sites likely had relatively shallow groundwater (<100 m) and relatively shallow
basement rock (<500 m). One site was pre-selected because of an existing well containing an
hourly recording Aqua4Plus 1.9.10 transducer (Figure 5) to which the seismic spectra were
correlated for estimating groundwater across the seismic station network. The transducer
well is 77 m deep and set in a mixed alluvium consisting of alternating clay- or gravel-rich
layers that are part of the sediments of Bovill [9,24]. For quality control purposes, each
seismic station was visited monthly for data downloading to ensure data preservation and
identification of possible recording/power issues. If abnormal data output or power levels
were detected, the vault was opened, and the instrumentation checked on-site.

Table 1. Seismic station location description.

Station ID Latitude 1 Longitude 1 Elevation (m) 2

1 46.78935 −117.010 848
2 46.78417 −116.987 853
3 46.77367 −116.975 824
4 46.77975 −116.972 848
5 46.77078 −116.951 846
6 46.76875 −116.936 863

1 North American Datum of 1983 (NAD 83); 2 North American Vertical Datum of 1988 (NAVD 88).

2.3. Seismic Station Network and Quantifying Recharge

The seismic stations constituted a network of points overlying the non-compartmentalized
sedimentary units composing the recharge zone, which connects the primary source water
(e.g., infiltrated snowmelt at the mountain front) to the confined portion of the aquifer
system. To correlate changes in seismic wave velocities and groundwater levels, the
seismic station network was divided into station pairs and associated segments (Table 2
and Figure 5). Stations were paired by closest neighbor (west to east) for cross-correlation
analysis of the waveforms recorded at each station. If a station could be paired to multiple
stations (correlatable waveform distributions), each available pair was included in the
analysis and recharge volumes from overlapping station pairs were averaged across the
intersected area. From the station pairs and given sufficient ambient waveforms, a change
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in velocity relative to velocity (dv/v) can be used to determine groundwater levels [37].
Such a correlation is possible because the velocity of ambient waves is sensitive to changes
in pore pressure with increasing or decreasing groundwater levels [38]. The velocity
comparison (dv/v) is a relativistic determination of waveform velocity differences recorded
across the paired stations and represents a perturbation in the waveform velocity due to a
change in groundwater levels that influence grain-to-grain contact from changes in pore
pressure [37].

Table 2. Station pairs and associated network segments.

Station pairs 1–2 2–3 2–4 3–5 4–5 5–6
Recharge segments A B 1 C 1 D 1 E 1 F

1 Overlapping station pairs were averaged for recharge calculations.

Figure 5. Seismic station locations and station pairs (paired segments) in the study area that is part of
the theorized recharge zone along the Palouse Range.

2.4. Identifying Applicable Waveforms in the Ambient Seismic Field

The waveforms from each seismic station were evaluated in ObsPy [50] with prob-
abilistic power spectral density (PPSD) plots [51], which provided a view of smoothed
and binned power spectral densities. These plots assisted in determining if low frequency
waves were consistently detected by each seismometer. The 1–5 Hz range proved to be
the most consistent waveform range at each station, which is within the applicable range
for detecting changes in saturated thickness/pore pressure [37]. Small periods (hours to a
few days) of data loss occurred at most seismic stations because of data corruption, but
these short periods were linearly interpolated using the preceding and following changes
in velocity. The percent of missing data ranged from 0% (segment F) to 11.8% (segment A)
with an average data loss of 4.4%.

The cross-correlation function of MsNoise [52] was used to identify similar waveforms
recorded between stations to create a proxy of Green’s function. A whitening filter from
1–5 Hz was applied to correct for frequency attenuation of the recorded waves in this target
range [53,54]. The cross-correlation functions between each station pair were computed at
1 h intervals with a 30 min overlap [37]. A 14-day stack of cross-correlation functions was
used to maximize temporal resolution while minimizing spurious oscillations. A moving
window cross spectral (MWCS) technique [37,55] was used to evaluate the delay in arrival
times (change in time relative to time or dt/t) for waveforms in the 1–5 Hz target range. It is
assumed that there is a linear relation between relative time lags and seismic wave velocity
changes (change in velocity relative to velocity or dv/v), or −dt/t = dv/v [37,41,54,56].
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2.5. Velocity Changes to Groundwater Levels

The groundwater level (GWL) between each station pair was derived through cor-
relation of station pair dv/v and groundwater levels recorded by the well transducer
near the center of the network. A single transducer recording groundwater levels can be
reflective of changes in saturated thickness across a seismic station network overlying a
non-compartmentalized alluvial aquifer (no barriers to recharge and GWL changes across
the sedimentary units composing the aquifer) [37]. Estimates of GWL were calculated
for each day at each station pair to produce daily groundwater values across the seismic
station network for estimating the annual recharge volume. To correlate dv/v to ground-
water, the relative changes had to be correlated within distinct seasonal periods. The
dv/v-groundwater relations were assumed linear during the seasonal periods (rising or
falling on a seasonal basis) and reflective of the elastic properties of the aquifer [37,40,57].
The study time frame was divided into four periods that correlate with periods of sea-
sonal precipitation and infiltration or the lack of precipitation and infiltration: the end of
the dry season and return of rainfall (October or period 1), winter snowfall/snowmelt
(November through May or period 2), spring/summer snowmelt (June or period 3), and
the dry summer season (July through September or period 4). These divisions align with
basin precipitation patterns and subsequent streamflow and mountain–front groundwater
response as monitored by the Natural Resources Conservation Service [58] and identified
by past research in the basin [1,14,20,59]. The linear relation of groundwater changes
(ΔGWL) and dv/v changes (Δdv/v) were calculated from the period difference (maximum
value − minimum value) of each seasonal period to determine the applicable correlation
constant (Cperiod):

GWLmax − GWLmin

dv/vmax − dv/vmin
=

ΔGWL
Δdv/v

= Cperiod (1)

The daily dv/v change (Δdv/vday) was calculated by the difference between the initial
dv/v of the period and a specific day dv/v:

dv/vinitial − dv/vday = Δdv/vday (2)

The daily change in groundwater level (ΔGWLday) was derived from the Cperiod and the
Δdv/vday):

Δdv/vday × Cperiod = ΔGWLday (3)

The ΔGWLday was added to the initial period groundwater level (GWLinitial) measured by
the transducer to obtain the daily groundwater level (GWLday) for each station pair:

ΔGWLday + GWLinitial = GWLday (4)

2.6. Interpretations of Hydraulic Conductivity, Gradient, and Recharge

By discriminating sedimentary layer composition beneath seismic stations from local
well logs and geologic reports [9,10,60,61], a composite hydraulic conductivity (K, m/d) was
assigned for each station pair according to accepted K values for such alluvium types [62,63].
Given the unconfined alluvial aquifer of the recharge zone, hydraulic gradients (Δh/L)
were assumed to correspond to basement rock gradients beneath each station pair. The
Δh/L of groundwater passing beneath each station pair were estimated from well logs
above and below each station pair (depth to bedrock and linear interpretation of depth
perpendicular to the station pair) and checked against the bedrock gradient derived by
Bush et al. [10]. The Δh/L values ranged from 0.03 to 0.08 and correspond to the land
surface gradient with the transition from the steeper mountain slope of the Palouse Range
to the basin floor [10]. With calculation of daily groundwater levels from dv/v and depth
to basement rock from the well logs, the daily saturated thickness could be calculated for
each network segment (depth × segment length = area (A) in m2). Given K, Δh/L, and
A, the daily volume of recharge (Q, m3/d) passing beneath each network segment was
calculated using Darcy’s law (Q = A × K × Δh/L).
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3. Results

3.1. Velocity Changes and Relation to Groundwater

Changes in seismic velocity varied between station pairs (Figure 6) and ranged from a
dv/v high of +0.45% (period 4) to a dv/v low of −0.3% (period 2). The velocity changes
inversely reflected the seasonal changes (rising or falling during the seasonal period) in
groundwater elevation that ranged between 791 m and 795 m (Figure 6). The recorded
changes in groundwater levels were representative of historical annual changes recorded
at the transducer well location near the center of the transducer network. The dv/v
values were lowest during periods of higher groundwater elevation (period 2 or the
winter/spring snowmelt season) and highest during the dry periods (periods 1 and 4)
that produced lower groundwater elevations (Figure 6). This inverse relation of dv/v
and groundwater elevation corresponds to the expected changes in low-frequency wave
velocities with changes in saturated thickness [37,40,45]. The seasonal flux of groundwater
at the transducer represents the expected seasonal flux of recharge to the aquifer that is
primarily driven by fall rainfall and winter/spring snowmelt [1,14,59].

 
Figure 6. Changes in seismic velocity (dv/v) at each network segment (Figure 5) and groundwater
elevation recorded by the well transducer. Temporal periods (1–4) are seasonal divisions used to
develop correlations between dv/v and groundwater changes for each seasonal period.

3.2. Converting Seismic Velocity to Groundwater

The distinct seasonal periods in groundwater levels recorded by the transducer pro-
vided the necessary temporal periods for correlating dv/v and groundwater as separate
seasonal relations (Table 3). The assumption of seasonal dv/v-groundwater relations paral-
lels the seasonal flux of recharge that corresponds to surface hydrological processes of the
basin [1,14,28,59]. The change in Cperiod (range of 4.6 to 37.3) reflects the high variability
of groundwater levels/recharge during the 1-year study period (Table 3). Although the
seasonal discrimination of the dv/v-groundwater relation provided a more refined correla-
tion compared to an annual relation, groundwater elevations derived from dv/v tended
to underestimate groundwater elevation during periods of increasing groundwater and
overestimate groundwater elevation during periods of decreasing groundwater (Figure 7).
These underestimation/overestimation periods represent a lag in the dv/v-groundwater
relation following substantial changes in aquifer recharge (Figure 7). It is assumed that the
lag period is an adjustment of overall grain-to-grain contact to the pore pressure changes
reflective of the change in groundwater level.
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Table 3. Seasonal periods and associated changes in groundwater (ΔGWL) and seismic wave velocity
(Δdv/v) for correlating (Cperiod) the data sets and estimating groundwater levels.

Period
Date Range
(2020–2021)

ΔGWL (m) Δdv/v (%) Cperiod

1 October +2.19 −0.07 31.2
2 November–May +0.93 −0.20 4.6
3 June −1.89 +0.05 37.3
4 July–September −0.62 +0.12 5.3

Figure 7. Groundwater elevations derived from dv/v for each network segment (Figure 5) compared
to the groundwater elevation measured by the well transducer. Temporal periods (1–4) were seasonal
divisions used to develop correlations between dv/v and groundwater changes.

3.3. Recharge Volumes by Network Segment

Interpretation of the well logs and geologic reports for evaluation of hydraulic conduc-
tivity (K) by network segment produced a range of segment composite K values from a low
of 0.024 m/d (more clayey sediments of Bovill that are part of the Latah Formation [8]) to a
high of 0.052 m/d (more paleochannel sand) (Table 4). These interpreted K values were
calculated by the proportion of different sediment types estimated beneath each station or
the mixture of lower conductivity alluvium (clayey) with paleochannel deposits (sand) and
the presence of eroded basement rock (granular) [24]. The segment K values were smaller
towards the west and largest on the east end of the seismic network. Hydraulic (bedrock)
gradients also varied from low to high moving west to east with a corresponding increase in
saturated thickness (Table 4). With the available groundwater levels (saturated thicknesses)
across the seismic network and associated hydraulic conductivities and hydraulic gradients
at each station pair, daily recharge volumes (example in Table 4) were calculated for each
network segment and the overall seismic network (Figure 8). The average recharge volume
was 422 m3/d with the largest recharge during period 2 (435 m3/d) and smallest during pe-
riod 1 (404 m3/d) (Figure 8). Recharge was largest after a 10-day snowmelt period in early
spring when approximately 15% of the mountain-snowpack water equivalent was lost [59].
Recharge volumes were smallest in period 1 following the summer dry season when <4 cm
precipitation occurred in the preceding 3 months [59]. The total annual recharge for the
recharge zone beneath the seismic network was estimated at 154,660 m3.
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Table 4. Example of recharge calculations at each network segment and total recharge across the
network for 1 October 2020. Overlapping segments were averaged for an adjusted recharge value.

Network
Segment

Hydraulic
Conductivity

(m/d)

Saturated
Thickness (m)

Station
Distance (m)

Hydraulic
Gradient

Potential
Recharge

(m3/d)

Adjusted
Recharge 1

(m3/d)

A 0.024 8.0 1812 0.030 10.3 10.3
B 1 0.033 17.8 1253 0.031 22.4

43.0C 1 0.033 23.5 1500 0.055 63.5
D 1 0.042 32.9 1883 0.080 210.6

189.8E 1 0.042 47.6 1927 0.044 169.0
F 0.052 44.9 1130 0.063 164.6 164.6

Network sum (m3/d): 407.7
1 Average recharge for overlapping network segments (Figure 5).

 
Figure 8. Daily recharge passing beneath the segments of the seismic network (Figure 5) and their
summation from dv/v-derived groundwater elevations. Temporal periods (1–4) were seasonal
divisions used to develop correlations between dv/v and groundwater changes.

4. Discussion

Recharge volumes were spatially variable across the seismic network with the largest
volumes occurring in the central to eastern portion of the network because of greater
saturated thicknesses (deeper bedrock), higher hydraulic conductivities (coarser grains
from the presence of paleochannels), and steeper hydraulic gradients. This portion of
the network (segments D/E and F) constituted 86% of the annual recharge volume while
comprising about 50% of the network. The coarser grains, larger hydraulic conductivi-
ties, and steeper gradients of the eastern portion of the seismic network suggest faster
recharge pathways, which aligns with the theorized fast recharge pathway identified for
this area by Behrens et al. [14]. This faster pathway was assumed to be dominated by a
greater concentration of paleochannels, which aligns with the review of sedimentary layer
composition beneath this portion of the seismic network. The deeper bedrock of this area
suggests greater erosion of the mountain front and correlates with the greater concentration
of paleochannels and steeper gradients.
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To compare the dv/v-derived recharge volume and the recharge volume derived by the
PBAC groundwater model, the model aerial infiltration rate used for the foothills/mountainous
region (105 mm/yr) was applied to the area from the seismic network to the upgradient
watershed boundary for an annual estimate of 26,250 m3/yr. The larger estimate of recharge
derived from the dv/v data (154,660 m3) is a reflection of greater saturated thicknesses and
higher hydraulic conductivities paired with steeper hydraulic gradients, which align with
the fast pathway concept of Duckett et al. [25] and Behrens et al. [14].

5. Conclusions

Discrimination of recharge pathways and quantification of recharge to the Moscow–
Pullman Basin aquifer system in the Columbia Plateau Regional Aquifer System has posed
challenges to resource managers due to the unique geology of the basin and limited well
drilling in the theorized recharge zone. Such limitations have made it difficult to determine
sustainable withdrawals from the aquifer system, which has undergone groundwater
mining for a century. A recent groundwater modeling effort to assist with interpreting the
effects of water conservation and withdrawal practices used an aerial infiltration method
to estimate recharge along the eastern margin of the basin in a primary recharge zone. Six
seismic stations were temporarily installed to enhance groundwater monitoring in a portion
of the recharge zone and calculate an annual recharge to the confined aquifer system for
comparison to recharge estimates from the groundwater model. Sufficient low-frequency
seismic waves were recorded at the six seismic stations composing the seismic network for
correlation to groundwater levels recorded by a well transducer located in the center of
the network. Estimates of groundwater changes from changes in seismic wave velocities
and estimates of hydraulic conductivities and hydraulic gradients from local well logs and
geologic reports allowed for estimation of daily recharge volumes passing beneath the
seismic network. Summation of the daily recharge estimates produced an annual recharge
volume of 154,660 m3, which is six times greater than the model estimate of 26,250 m3 for
the same area. The larger estimate of recharge derived from the dv/v data is a reflection
of a perceived faster pathway of recharge underlying a substantial portion of the seismic
network. This faster pathway area highlights the variability of recharge pathways across
the mountain front and the difficulty in modeling recharge in the basin.
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Abstract: The planetary boundary layer height is a very important parameter in the atmosphere
because it determines the range where the most effective dispersion processes take place, and it serves
as a medium for the vertical transport of heat, moisture, and pollutants. The accurate estimation of
boundary layer height (BLH) is vital for air pollution prediction. In this paper, the BLH estimated
by AD-Net was compared with that from the ECMWFs over East Asia from September 2015 to
August 2018. A continuous 24 h BLH estimation from AD-Net generally matched with the aerosol
vertical structures. Diurnal and seasonal variation and spatial variation of BLH can also be shown,
suggesting the good performance of AD-Net BLH. The comparison of seasonal mean BLH between
AD-Net and ECMWFs was conducted at 20 lidar sites. On average, there was an underestimation of
the ECMWFs, mostly in summer and winter. A significant disagreement between AD-Net and the
ECMWFs was noted, especially over coastal areas and mountain areas. In order to investigate the
difference between them, two BLHs were compared under different land cover types and climate
conditions. In general, the BLH of the ECMWFs was less than that of AD-Net over most of the land
cover types in summer and winter. The smallest differences (0.26 km) existed over water surfaces in
winter compared with AD-Net, and the largest underestimation (1.42 km) occurred over grassland
surfaces in summer. Similarly, all the BLHs of the ECMWFs were lesser than those of AD-Net under
different climatological conditions in summer and winter. The mean difference between AD-Net BLH
and ECMWFs BLH was 1.05, 0.71, and 0.48 km for arid regions, semi-arid and semi-wet regions, and
wet regions, respectively. The largest underestimation occurred over arid regions in winter, with a
value of 1.42 km. The smallest underestimation occurred over wet regions, with a value of 0.27 km.
The present research provides better insight into the BLH performance in the ECMWFs reanalysis
data. The new continuous PBL dataset can be used to improve the model parameterization of PBL
and our understanding of the atmospheric transport of pollutants which affect air quality and human
health.

Keywords: planetary boundary layer; boundary layer height; lidar; ECMWFs; aerosol

1. Introduction

The planetary boundary layer (PBL) is the lowest part of the troposphere and is
directly influenced by the Earth’s surface through the exchange of heat, momentum, and
moisture [1,2]. It determines the vertical extent of turbulent mixing, vertical diffusion,
and convective transport within the PBL, and it is also a primary determinant of cloud
type and coverage that affects the Earth’s radiation budget [3]. The important roles of the
PBL in weather and climate have long been recognized. In order to better characterize the
structure of the PBL, the concept of boundary layer height (BLH) is commonly used [4,5].
Therefore, it is critical to obtain an accurate BLH, since it is important for air quality, weather
forecasting, and the assessment of regional climate change.

Traditionally, the BLH is diagnosed using the vertical profiles of temperature, humidity,
and wind from radiosonde observation [4–6]. The bulk Richardson number (Ri) method [7]
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can also be used to estimate the BLH. New data sources such as ground-based lidar [8,9] in-
struments, sodar [10], ceilometer [11], aircraft sounding [12], and space-borne lidar [13–15]
can be relied on to retrieve the BLH. In addition, the structure of turbulence can also be
determined from optical measurements performed on ground-based telescopes [16–19].

It is noted that products on the global climatology of BLHs are available freely from the
European Centre for Medium-Range Weather Forecasts (ECMWFs). A comparison of sea-
sonally averaged BLHs derived from fine-resolution sounding observations and ECMWFs
reanalysis over China showed good agreement on average, despite the pronounced in-
consistencies in some regions [6]. However, the ECMWFs reanalysis products perform
significantly worse than those from the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSOs) lidar-based BLH over the oceans and coastal areas in China.
The BLHs from the ECMWFs are greater than those from CALIPSOs over North China in
spring and summer. The majority of the ECMWFs BLHs are within 25% of the estimates
derived from CALIPSOs in autumn. The comparison of CALIPSOs and ECMWFs BLHs
under different land-cover conditions reveals that the BLH estimated by the CALIPSOs
backscatter climatology is higher over ocean and forest surfaces and lower over grassland
and bare land surfaces in spring and summer [14]. Although many researchers have used
the ECMWFs BLH, its precision is still poor because the verification of the BLH by direct
observations is rare. Additionally, climate modelers are constantly searching for new
opportunities to verify model outputs.

BLH derived from ground-based lidar can be used for comparison and validation with
others. Ground-based lidar has the advantage of continuous tracing and thus avoids confu-
sion with elevated layers. BLH is determined using a combination of the averaging variance
method and the high-resolution gradient method from lidar backscatter measurements [8].
Additionally, it also can be detected from micropulse lidar (MPL)-measured backscatter [9].
In addition, AD-Net is used for the validation of EarthCARE satellite observation and data
assimilation to evaluate emissions of air pollution and dust aerosols in East Asia [20,21].
Therefore, AD-Net BLHs can be used for comparison with the ECMWFs reanalysis data in
this study.

Here, the seasonal mean BLH derived from the National Institute for Environmental
Studies’ (NIESs’) ground-based lidar in the Asian Dust and Aerosol Lidar Observation
Network (AD-Net) is directly used to perform comparisons and further validations with
the BLH from the ECMWF ERA-Interim fields from September 2015 to August 2018 in this
study. This paper is arranged as follows. The details of the datasets are given in Section 2.
In Section 3, a comparison of BLHs obtained from AD-Net and the ECMWF in summer
and winter and under different land cover types and climate conditions is presented. The
conclusion and discussion are presented in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. BLH Derived from AD-Net

AD-Net is a lidar network for the continuous observation of vertical distributions of
Asian dust and other aerosols (including industrial, forest fire, volcanic) in East Asia, and for
studying the impacts of aerosols on the air quality and atmosphere environment. Gaining
a quantitative understanding of Asian dust emissions, transport, and deposition, the long-
term variations of Asian dust and anthropogenic aerosols, and the effects of aerosols on
human health, vegetation, and radiation is objective of this network. Officially, there are
20 sites with automatic lidars over East Asia, mainly situated in Japan. The standard lidar
in AD-Net is a two-wavelength polarization-sensitive (532 nm) Mie-scattering lidar [22].
The measured data are transferred to the AD-Net in real-time and processed automatically.
Data from AD-Net are strictly managed and quality-assured (http://www-lidar.nies.go.jp/
AD-Net/ncdf/, accessed on 23 November 2022).

Figure 1 shows the topography of 20 AD-Net lidar stations in AD-Net [23,24], i.e.,
Chiba (CHB), Fukue (FKE), Fukuoka (FKO), Hedo (HED), Gosan Jeju (JEJ), Matsue (MTS),
Nagasaki (NGS), Niigata (NIG), Osaka (OSK), Phimai (PHM), Seoul (SEO), Sendai (SND),
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Sainshand (SNS), Sapporo (SPR), Tsukuba (TKB), Tokyo (TKO), Toyama (TYM), Ulaan-
baatar (ULN), Ulsan (ULS), and Zamynuud (ZMY). The basic parameters derived are the
attenuated backscattering coefficients (ABCs) at 532 nm and 1064 nm, and the volume de-
polarization ratio at 532 nm. Extinction coefficient estimates for non-spherical and spherical
aerosols are also derived with this method using the backscattering and depolarization
ratio [25,26].

Figure 1. The location of AD-Net lidar stations (the red solid circle). The color represents surface
elevation.

BLH is identified using the vertical gradient of the ABC at 532 nm with the method
used in Sugimoto et al. [22]. Due to the fact that the aerosols have the largest loading
in the PBL, the gradient of the backscattering signal decreases rapidly at the top of the
PBL. Therefore, the BLH is defined as the height at which the gradient of the ABC at
532 nm reaches a minimum value. The minimum value was set empirically. When this
criterion is satisfied, the layer is identified as an aerosol layer, and the top of the layer is
identified as the BLH [20]. AD-Net provides the near-real-time mixing layer height (MLH)
since 2001 at 20 sites. The vertical and temporal resolution of AD-Net lidar is 30 m and
15 min, respectively. Here, the MLH was regarded as the BLH and was compared with the
ECMWFs BLH.

2.2. BLHs from ECMWFs

The ECMWFs’ core mission is to produce numerical weather forecasts and monitor
the Earth system, as well as to carry out scientific and technical research to improve
forecasting skills and to maintain an archive of meteorological data. It provides air quality
analysis, atmospheric composition monitoring, and climate monitoring. Global climatology
BLHs are a small part of their products and are important for understanding the physical
process in the boundary layer. The ECMWFs models produce BLHs by means of the bulk
Richardson number method. The bulk Richardson number is defined as the ratio of stability
to vertical wind shear, which is expressed as:

Ri(z) =

(
g

θvs

)
(θvz − θvs)(z − zs)

(uz − us)
2 + (vz − vs)

2 + (bu2∗)
(1)
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where g is the acceleration due to gravity, θ is the potential temperature, θvs and θvz are
the virtual potential temperature at surface and at height z above ground level, respec-
tively, u and v are the components of wind speed, and u∗ is the surface friction velocity,
while b is a coefficient to be determined [7]. Previous theoretical and laboratory studies
(e.g., [2]) suggested that when Ri is smaller than the critical value (~0.25), the laminar
flow becomes unstable. Thus, the lowest-level z at which the interpolated Ri crosses the
critical value of 0.25 is referred to as the BLH in this study, similar to the criteria used by
Seidel et al. [12,27–31]. This method works well for both stable and convective boundary
layers [27]. However, it may reach this critical value at a height somewhat below the BLH
defined by other means [32].

The ECMWFs has provided monthly mean BLHs with 0.125 × 0.125 latitude–longitude
resolution at the global scale from 1979 to the present. Here, the BLH from September 2015
to August 2018 over East Asia was used for comparison with the AD-Net BLH.

3. Results

It was proved that the BLH from CALIPSO is strongly correlated with that from
ground-based lidar [14]. Therefore, the BLH derived using the maximum standard variance
method is reliable. Figure 2 shows a series of cases of BLH estimation using the ABCs
profile and extinction profile in August 2018. The BLHs from the AD-Net product and
the BLHs derived using the maximum standard variance method [14] are shown as a
dotted line and dashed line, respectively. The two methods are both based on the aerosol
backscatter. Close agreement was observed between them, which suggested the good
performance of the AD-Net BLH.

 

Figure 2. Profile of the attenuated backscatter coefficient (ABC) at 532 nm and extinction coefficient
profiles (EXT) using the Fernald inversion on (a) 29 August 2018 at the site of FKO, (b) 4 August 2018
at the site of HED, (c) 4 August 2018 at the site of JEJ, (d) 22 August 2018 at the site of CHB, (e) 19
August 2018 at the site of JEJ and (f) 14 August 2018 at the site of CHB. The BLH from CALIPSO and
Lidar is shown in dotted line and dashed line, respectively. The vertical and time resolution is 30 m
and 15 min, respectively.

Figure 3 shows a case study of a continuous 24 h AD-Net ground-based lidar profile,
which contains the ABC at 532 nm (a), the ABC at 1064 nm (b), the volume depolarization
ratio (d), and the color ratio (d) distributions observed from AD-Net lidar at the MTS
station, with the BLH (gray solid circle) on 7 August 2018. The depolarization ratio, which
is a parameter sensitive to the nonsphericity of the scatters, is useful for identifying mineral
dust aerosols and in discriminating between water and ice clouds [22]. The color ratio
between 1064 nm and 532 nm backscatter is efficient in detecting falling droplets which
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evaporate before reaching the surface [33]. Clear aerosol signature layers extending from
120 m to 1 km and the boundary layer cloud at the top of the boundary layer are shown. In
order to minimize the influence of the clouds on the BLH determination, all of the lidar
measurements with clouds were excluded for further analyses. The BLH derived from
AD-Net lidar generally matched with the aerosol vertical structures. In addition, a diurnal
variation of BLH can be clearly seen. During a diurnal cycle, the BLH is typically shallow
(about 900 m) at night due to the strong near-surface stability, and well-developed and
reaching a maximum of 1.18 km in the afternoon.

Figure 3. (a) Attenuated backscatter coefficient at 532 nm, (b) attenuated backscatter coefficient at
1064 nm, (c) volume depolarization ratio at 532 nm, and (d) color ratio (1064 nm/532 nm) observed
from AD−Net ground-based lidar on 7 August 2018. The gray solid circle indicates AD−Net lidar
BLH.

Figure 4 shows the mean seasonal geographic distribution of the BLH concerning
the location of each lidar site. It can be clearly seen that the BLHs exhibit large spatial
and seasonal variations. On average, more intense solar radiation reaching the surface
in summer favors the PBL development on the land, but the development of the PBL is
typically suppressed due to the smaller amount of solar radiation received at the surface [2].
For ocean areas, the situation is entirely different due to its relatively large heat capacity.
The mean BLH over inland areas (including the ULN, SNS, ZMY, and PHM sites) was larger
than that over ocean areas (including the JEJ, FKE, and HED sites) in summer (see Table 1).
However, the opposite distribution was observed in winter. Additionally, this indicated
that over coastal areas, the BLH in winter was greater than that in summer, which was
consistent with Liu et al. [14]. A possible explanation is that the sea–land wind contributes
to the development of the PBL height over the coastal areas. The highest BLH (2.23 km)
was seen at the ZMY site (at the border of Mongolia, surface elevation of 962 m) in summer
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(June, July, and August), and the lowest BLH value (0.77 km) occurred at the TYM site (on
the west coast of Japan) in winter (December, January, and February).

 
Figure 4. Spatial patterns of 3-year seasonal mean BLH for 20 sites in AD-Net over East Asia from
the AD-Net for summer (a) and winter (b).

Table 1. BLH derived from AD-Net over inland and ocean area.

Summer Winter

Inland 1.44 1.19
Ocean 1.01 1.22

A comparison between BLHs from AD-Net and the ECMWFs was conducted at 20 lidar
sites, as shown in Figure 5. In terms of similar spatial distribution of BLH, discrepancies
between them still existed. Compared with AD-Net BLH, there was an underestimation
of the ECMWFs BLH both in summer and winter, except over the ocean in winter. The
ECMWFs BLH was in close agreement with the AD-Net BLH at the JEJ, MTS, and NGS sites
in winter with a relative difference smaller than 10% (Figure 6b). The spatial distribution of
the BLH revealed a tendency for higher BLHs over high-elevation regions, consistent with
the dependence on elevation reported in the United States [27]. However, the BLH from
the ECMWFs was severely underestimated at high-surface elevation sites (including ULN,
ZMY, and SNS in Mongolia), especially in winter, with a relative difference around 80%
(Figure 6b).
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Figure 5. Comparison of the AD-Net PBL and ECMWFs PBL for 20 sites from AD-Net for summer
(a) and winter (b).

Figure 6. (a) Absolute difference, (b) relative difference in the BLH from AD-Net and ECMWFs for
20 sites in AD-Net.

As noted above, a seasonal disagreement was found in BLH climatology. Here, we
continue to explore these seasonal biases quantitatively. The seasonally averaged absolute
differences and relative differences between the AD-Net BLH and the ECMWFs BLH
are presented in Figure 6a,b. The mean absolute difference was 0.68 km and 0.42 km in
summer and in winter, respectively. Additionally, the relative difference was 0.51 and
0.30 in summer and in winter, respectively. The larger absolute difference in BLH was in
summer because the BLH from the ECMWFs was uniformly underestimated compared
to the AD-Net BLH. The poor estimation of BLH can mainly be attributed to the lower
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BLH over land, especially for mountainous areas (see Table 2). However, large biases of the
seasonal BLHs were most likely due to the different methods utilized based on radiosonde,
ground-based lidar, and CALIPOs observations over one site in South Africa [34].

Table 2. Mean difference in BLH derived from AD-Net and ECMWFs (ECMWFs BLH minus AD-Net
BLH) in summer and winter.

Absolute Difference (km) Relative Difference

Summer Winter Summer Winter

Inland −0.64 −1.09 −0.41 −0.73
Ocean −0.65 0.26 −0.58 0.28

Coastal areas −0.70 −0.37 −0.53 −0.30
Mountain −0.60 −1.27 −0.37 −0.83

Next, we will analyze which land cover type and climate condition has the largest
influence on the differences in the seasonal variation between the ECMWFs BLH and the
AD-Net BLH. The vegetation types in China, as determined by MODIS at 0.05 degrees of
spatial resolution, are plotted in Figure 7a, including 17 different surface types. Precipitation
data from the University of East Anglia Climate Research Unit (CRU) global climate dataset
at 0.5◦ latitude and longitude resolution were used as a proxy for climate state [35]. In this
study, the monthly mean climatology was calculated relative to the average for the period
of 1961–1990. The spatial distribution of precipitation is shown in Figure 7b. The annual
mean precipitation ranges from 0 to 200, from 200 to 800, and over 800 mm yr−1 in arid
regions, semi-arid and semi-wet regions, and wet regions, respectively.

Figure 7. (a) Land cover distribution in 2011 from MODIS (0.05 degree) over East Asia. (b) Precipi-
tation distribution averaged from 1961 to 1990. (0 = water, 1 = evergreen needleleaf, 2 = evergreen
broadleaf, 3 = deciduous needleleaf, 4=deciduous broadleaf, 5 = mixed forests, 6 = closed shrubland,
7 = open shrublands, 8 = woody savannas, 9 = savannas, 10 = grasslands, 11=permanent wetlands,
12 = croplands, 13 = urban and built-up, 14 = cropland mosaic, 15 = snow and ice, 16 = bare or
sparsely vegetated).

The seasonal mean values of the AD-Net BLH and the ECMWFs BLH under the
condition of different land cover types are presented in Figure 8, and detailed differences
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in summer and winter are listed in Table 3. We found that, in general, the BLHs of the
ECMWFs were lower than those of AD-Net over most of the land cover types in summer
and winter, except for over ocean areas in winter. The smallest differences existed over
water surfaces in winter and bare surfaces in summer. Additionally, the largest differences
occurred over grassland surfaces in winter, with the largest underestimation of 1.93 km
compared to the AD-Net BLH, followed by 1.08 km over grassland surfaces in summer.
Overall, the mean minimum and maximum differences occurred over water surfaces and
grassland surfaces, respectively. These results are different from those of Liu et al. [14],
who suggested that the largest differences occurred over bare land surfaces in summer
with the largest overestimate (0.97 km), and over water surfaces in spring with the greatest
underestimate (−0.91 km) compared with CALIPSOs. There are more land cover types in
China due to its vast area, and different meteorological conditions along with its complex
pollution conditions, which may lead to the above results.

Figure 8. Comparison of AD-Net (red) and ECMWFs (blue) PBL in the case of different land cover
types (water, forest, grassland, cropland, and bare vegetation) for summer (a) and winter (b).

Table 3. Seasonal differences in BLH between AD-Net and ECMWFs (ECMWFs PBL minus AD-Net
PBL) given different land cover conditions.

Water Forest Grassland Cropland
Bare

Vegetation

Summer −0.65 −0.79 −1.08 −0.67 −0.28
Winter 0.26 −0.52 −1.93 −0.43 −0.91

The seasonal mean values of the AD-Net BLH and the ECMWFs BLH under different
climatological conditions are presented in Figure 9, and detailed differences in summer
and winter are listed in Table 4. We found that all the BLHs of the ECMWFs were lower
than those of AD-Net under different climatological conditions in summer and winter. The
largest underestimation occurred over arid regions in winter, with a value of 1.42 km. The
smallest underestimation occurred over wet regions, with a value of 0.27 km. The mean
difference between the AD-Net BLH and the ECMWFs BLH was 1.05, 0.71, and 0.48 km for
arid regions, semi-arid and semi-wet regions, and wet regions, respectively. In wet regions,
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the number of lidar stations was the largest, which may contribute to the minor difference
between the AD-Net BLH and the ECMWFs BLH. Special attention should be paid to the
fact that it is in arid regions that the relative difference in summer and in winter (0.74 km)
was the largest, which meant that this region was the most sensitive in the related physical
parameterization in the ECMWFs model.

Figure 9. Comparison of AD-Net (red) and ECMWFs (blue) PBL in the case of different climate
conditions (arid, semi-arid and semi-wet, and wet) for summer (a) and winter (b).

Table 4. Mean differences in BLH between AD-Net and ECMWFs (ECMWFs PBL minus AD-Net
PBL) in summer and winter when given different climate conditions.

Arid
Semi-Arid and

Semi-Wet
Wet

Summer −0.68 −0.45 −0.69
Winter −1.42 −0.96 −0.27

4. Conclusions

In this paper, we compared the BLHs estimated by AD-Net and the ECMWFs over
East Asia from September 2015 to August 2018. The present research provides better insight
into the BLH performance in the ECMWFs reanalysis data.

The BLH determined by AD-Net was in close agreement with that calculated by Liu
et al. [14], using the methods based on the aerosol backscatter. Additionally, a continuous
24 h BLH estimation from AD-Net generally matched with the aerosol vertical structures
and the diurnal variation of the BLH is clearly shown, which suggests the good performance
of the AD-Net BLH.

A comparison between seasonal mean BLH from AD-Net and the ECMWFs was
conducted at 20 lidar sites. On average, there was an underestimation from the ECMWFs
compared with AD-Net, both in summer and winter, except for over ocean areas in winter.
A significant disagreement between the AD-Net BLH and the ECMWFs was noted over
coastal areas and mountain areas. The absolute difference in BLH was larger in summer
because the BLH from the ECMWFs was uniformly underestimated.

In general, the BLH of the ECMWFs was lower than that of AD-Net over most of
the land cover types in summer and winter, except for over ocean areas in winter. The
smallest differences existed over water surfaces in winter and bare surfaces in summer,
and the largest differences occurred over grassland surfaces in summer, with the largest
underestimation of 1.93 km compared with AD-Net. Overall, the mean minimum and
maximum differences occurred over water surfaces and grassland surfaces, respectively.

All the BLHs of the ECMWFs were lower than those of AD-Net under different
climatological conditions in summer and winter. The largest underestimation occurred
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over arid regions in winter, with a value of 1.42 km. The smallest underestimation occurred
over wet regions, with a value of 0.27 km. The mean difference between the AD-Net
BLH and the ECMWFs BLH was of 1.05, 0.71, and 0.48 km for arid regions, semi-arid and
semi-wet regions, and wet regions, respectively. The difference in absolute uncertainly of
the two BLHs in summer and in winter (0.74 km) was the largest in arid regions, which
meant that this region was the most sensitive in the related physical parameterization in
the ECMWFs model.

5. Discussion

To the best of our knowledge, there have been a number of studies that have used
remote sensing to generate the BLH. These studies have used different techniques to
identify the top of the PBL. The first set of studies used the temperature difference at the
top marine stratus or stratocumulus clouds and sea surface to estimate PBL depth [36].
Height-resolved temperature observations from limb sounders, however, have the potential
for PBL depth detection. Due to the fact that the PBL top is often marked with a sharp
decrease in aerosol scattering signals that can be detected from space [37], the second
approach is to use these signals to estimate the BLH [14]. Additionally, refractivity profiles
with high vertical resolution provide, by means of a space-borne global positioning system,
radio occultation, making this approach attractive for PBL detection [38,39]. Their strengths
and weaknesses are all different, owing to the different detection methods. It is noted that
the BLH is not produced directly. Therefore, the quality of the related physical variables is
vital for the accurate estimation of the BLH.

Many researchers have shown that dust events seem to be a possible reason for the
great difference between the different estimations of the BLH [40,41]. Thus, it is necessary
to screen the dust cases when a comparison is conducted. In order to identify the dust cases,
it is the best solution for us to use the lidar observations. The volume linear depolarization
ratio (VLDR), which can indicate the shape of atmospheric particles, is a key parameter to
distinguish the aerosol types. The different aerosol types exhibit a clear difference in the
VLDR. Due to this, the VLDR can be considered to identify the dust aerosols, together with
the lidar return signal [28,42–46]. The identification of the dust case can be achieved by
using the VLDR; that is, when the value of the layer is larger than the threshold of dust, the
profile is considered to be affected by the dust aerosols, and then the profile is screened
for the comparison of BLHs. On the other hand, during a diurnal cycle, the atmosphere
boundary layer structure can be classified into three major regimes [2]: convective boundary
layer (CBL), stable boundary layer (SBL), and residual layer (RL). Lidar has been used for
tracking the evolution of the BLH by using aerosol backscatter as a tracer, assuming aerosol
is generally well-mixed in the planetary boundary layer. However, the validity of this
assumption in fact varies with atmospheric stability [47]. For example, the relationship of
the heights of intense turbulent exchange and the corresponding temperature gradients in
the boundary layer of the atmosphere are analyzed with the ground values of wind speed
and vertical turbulent heat flow [48]. Therefore, it is necessary to compare the BLH under
different atmosphere stratifications.

In coastal regions, the formation of a thermal internal boundary layer (TIBL) is a
common boundary layer phenomenon. In the sunny daytime, the sea breeze will blow the
stable or neutrally stratified air over the sea toward the land. The surface-heating effect
and dynamic-disturbance effect intensify the turbulence in the lowest atmospheric layer
to form an unstable layer, which develops into the TIBL. Notably, the TIBL progressively
grows from the coastline to the inland areas. The structure and dynamics of the planetary
boundary layer in the ocean–continent zone during the summer period was reconstructed
from lidar sounding data [49]. The TIBL is always associated with a sea breeze, so the
meteorological factors that can be used include wind speed, wind direction, air temperature,
relative humidity, and precipitation. On the other hand, the height of the TIBL can be
considered as the height of the shallow convective boundary layer [50,51]. In the previous
study, a TIBL forms if the wind blows from the sea and the boundary layer height is lower
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than 500 m, as indicated by the ceilometer [52]. However, as the minimum value of the
BLH is about 600 m at 20 lidar sites, using the threshold value of 500 m to identify the TIBL
is not reasonable. Overall, the TIBL is an important factor when considering the BLH over
the coastal areas. Thus, extra efforts must be made to select or screen the cases of TIBL,
such as obtaining meteorological data, determining the direction of sea breeze, and setting
the threshold value, for example, to 500 m for different stations. Finally, all this work will
be conducted in the near future with enough time.

Due to the limited number of lidar observation sites, the quality of the ECMWFs-
derived BLHs is still under investigation. We will perform further evaluations for as long
as more ground-based lidar observations are available. Special attention should be paid
when using the ECMWFs BLH over coastal areas and mountain areas.
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Abstract: Thunderstorms are among the most common and most dangerous meteorological hazards
in the world. They cause lightning and can lead to strong wind gusts, squall lines, hail and heavy
precipitation combined with flooding, and therefore pose a threat to health and life, can cause
enormous property damage and also endanger flight safety. Monitoring and forecast of thunderstorms
are, therefore, important topics. In this work, a novel method for the detection and forecast of
thunderstorms and strong convection is presented. The detection is based on the global GLD360
lightning data in combination with satellite information from the satellite series Meteosat, HIMAWARI
and GOES, covering the complete geostationary ring. Three severity levels are defined depending on
the occurrence of lightning and the brightness temperature difference of the water vapour channels
and the infrared window channel (∼10.8 μm). The detection of thunderstorms and strong convection
is the basis for the nowcasting up to 2 h, which is performed with the optical flow method TV-L1. This
method provides the needed atmospheric motion vectors for the extrapolation of the thunderstorm
movement. Both, the validation results as well as the feedback of the customers show the great value
of the new NowCastSat-Aviation (NCS-A) method. For example, the Critical Success Index (CSI) is,
with 0.64, still quite high for the 60 min forecast of severe thunderstorms. The method is operated
24/7 by the German Weather Service (DWD), and is used to provide thunderstorm information to
aviation customers and the central weather forecast unit of DWD.

Keywords: thunderstorms; cumulonimbus; convection; nowcasting; lightning

1. Introduction

Thunderstorms are among the most common and most dangerous meteorological
hazards in the world. They are often associated with heavy rainfall, hail, wind gusts, squall
lines and violent lightning. Phenomena that pose a threat to life, health, infrastructure and
the environment. Thunderstorms are also referred to as Cumulonimbus clouds (Cbs) in
meteorology. Any cloud that produces lightning is, by definition, a Cb.

While aircraft are well protected against direct lightning strokes as a result of the
phenomena known as Faraday cage, turbulences and icing pose serious risks to aircraft
and passengers. Therefore, for a safe transport, the location and expected severity of Cbs
must be known. Aircraft are equipped with a board radar. However, these radars have
only a short range, a limited viewing angle and the coverage is additionally hampered by
“shadowing” by Cbs or optical thick clouds. Thus, relying only on the board radar could
result in misleading judgement about the size and position of the Cbs and Cb clusters
and cannot be exclusively used for the decision of the optimal and safest route in areas
with Cbs. It is mainly suitable for spontaneous short-term evasive manoeuvres. Thus,
gridded data of Cb information with a large geographical coverage are needed for forecast
horizons from 0 to 3 h. The availability of such information in the cockpit improves
the early Cb reconnaissance and, thus, the early selection of the safest flight routes—see
Figure 1 for illustration.
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Figure 1. (Left hand): Photograph of the on-board radar display of a Lufthansa flight with heading
152 degree near way-point EGEBI (China) towards waypoint PADNO. The NCS-A information
(right hand) provided in the EFB tablet computer in the cockpit supports situational awareness, e.g.,
that the passage of the southeast way-point PADNO could be possible and that there is likely no
strong convection behind it (in the South, the lower part of the map).

Thunderstorm detection and nowcasting are also offered by operators of lightning
detection networks—see [1–6]. However, these services are commercial and do not use
satellite information for the estimation of severity levels and atmospheric motion vectors
and are, therefore, based on a reduced set of information. The Nowcasting Satellite Appli-
cation facility (NWC-SAF) [7] focuses on the development of software for satellite-based
estimation of thunderstorms. However, the detection of Cbs based only on satellites is
associated with a relatively high Flse Alarm Ratio (FAR) [8], which calls for the additional
use of lightning data for Cb detection. Cbs are defined by the occurrence of lightning.
Hence, using lightning data enables the detection of Cbs with a Probability of Detection
(POD) about 100% and a FAR about 0%. It is obvious that this is a optimal basis for the
nowcasting as it starts with the best possible POD and FAR values. Further, the NWC-SAF
software is technically cumbersome and not optimised for a 24/7 operation at DWD. As a
result of the request of key aviation customers the complete geostationary ring is covered by
NCS-A, a feature not provided by NWC-SAF (Version 2018) . Finally, for many nowcasting
applications a dense vector field is needed, e.g., [9]. DWD had quite good experience
with modern Computer Vision techniques, e.g., [10,11]. They can be easily adapted to
the different application fields as they provide a dense vector field based on a multi-scale
approach. The parameters can be optimised for the respective application. Optical flow
is used at DWD for turbulence [12], solar surface irradiance [9] and precipitation/radar
nowcasting [13,14]. Thus, DWD wanted to use the established optical flow methods also
for Cb nowcasting—an option not available within the NWC-SAF software. This motivates
the development and operational implementation of a novel Cb nowcasting approach,
referred to as NowCastSat-Aviation (NCS-A) version 1.0. NCS-A (Global Scan Service) is
an operational 24/7 product from Deutscher Wetterdienst. NCS-A provides near real-time
detection and predictions of convective cells across the global domain using the highest tem-
poral and spatial resolution available from geostationary weather satellites. These includes
METEOSAT, the European METEOrological SATellite [15], GOES, the US Geostationary
Operational Environmental Satellite [16] and HIMAWARI [17], which means sunflower in
English. The satellite information is combined with the global GLD360 lightning data from
VAISALA [2–5]—see Section 2 for details. The novel aspects are the combination of modern
Computer Vision methods with global lightning data, satellite information and numerical
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weather prediction data as well as the resulting definition of severity levels, which are
described in more detail in the following paragraph. DWD also develops and 24/7 operates
another Cb nowcasting system, which is called NowCastMIX-Aviation (NCM-A)—see
James et al. [14]. NCM-A employs a multitude of data such as ground-based radar infor-
mation, high-resolution lightning and model data. During the processing, the different
information is combined by a fuzzy-logic technique to derive an optimal analysis of thun-
derstorm severity. However, due to the utilised sensors, the domain of NCM-A is limited
and it cannot be applied to intercontinental long-haul flights. However, the viewing ge-
ometries of ground-based radar and satellites used by NCM-A and NCS-A, respectively,
provide distinct insight into the characteristics of thunderstorms which complement each
other. Therefore, using both nowcasting systems in combination, where possible, such as at
air-traffic control centres, provides useful additional weather information for the air traffic
controler [18]. Another global Cb nowcasting product is based on Convective Diagnosis
Oceanic (CDO) algorithm. It is used to detect the area of storms that are most hazardous for
aviation by a combination of geostationary satellite-based data and ground-based lightning
data. A simple fuzzy-logic approach is used to combine the information from different
input fields. The CDO input fields are the cloud top height, the Global Convective Diag-
nosis [19], the Overshooting Tops Detection algorithm [20] and the EarthNetworks global,
ground-based lightning detection network. However, it is a commercial product, and cen-
tral methods are not published in peer-reviewed journals or published at all. Furthermore,
modern optical flow methods are to the knowledge of the authors not applied for the
nowcasting. Therefore, the authors felt that the time was ripe to develop a new method
using new techniques and approaches such as optical flow. The development was driven
by a tight feedback loop with the users. In the process, some aspects of the CDO algorithm,
e.g., the use of discretised severity levels, were adopted.

2. Materials and Methods: The Cb Detection and Nowcasting Method

In this section, the method for the detection and nowcasting of thunderstorms are
described in more detail. For Cbs, three levels of severity are defined, which are discussed
first. Then, the nowcasting method is described. The cloud top height of thunderstorms
is of interest for the user as well. Thus, the method to derive CTH is discussed after that.
The last issue covers the aspect of research to operations. The 24/7 implementation of the
method as a basis for the end-user evaluation is documented here.

2.1. Detection and Definition of Severity Levels

The brightness temperature of the water vapour channels are used [8] for the satellite-
based detection of Cbs. This concept is an adaptation of Schmetz et al. [21]. For the
definition of the severity level the InfraRed (IR) window channel, (∼10.8 μm) is used in
addition. However, Cb detection based only on satellite data is associated with a relatively
high FAR with sub-optimal POD [8]. In order to increase POD and reduce FAR, in particular
for severe warnings, lightning data from VAISALA are used in addition [2–6]. The GLD360
data cover the globe and are based on Broadband VLF Radio Reception [22]. The use
of receivers in the very low-frequency range (VLF; 3–30 kHz) enables the detection of
radio pulses associated with lightning discharges over large distances (several thousand
kilometers) [4,5]. The VLF frequency range enables an efficient routing of the signal through
the ionosphere.

The severity of a thunderstorm provides important information for planning protective
measures and was, therefore, an important user requirement. The definition of the severity
levels are described in more detail below.

2.1.1. Light Convection

Light convection is defined as a region with neutral to in-stable layering of the atmo-
sphere for satellite pixels with a brightness temperature difference of the water vapour
channels (BT6.2 − BT7.3) larger than −1. The regions with potential for thunderstorms
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are identified from numerical weather prediction model ICON [23] and are defined by
a convective KO index of less than 2 [8]. Optically thick cold clouds can evolve into a
thunderstorm and might be associated with strong convection. Thus, these clouds are also
attributed to the light intensity level even when there is no lightning. Hence, the occurrence
of lightning is not a precondition for the light convection level. The composition of the
light convection is illustrated in Figure 2. The colour green is assigned to light convection.

Figure 2. Illustration of the process for the definition of the light convection. The satellite data with
BT larger than −1 (left hand) is folded with the NWP filter (middle) in order to derive the final
product for light convection (right hand).

2.1.2. Moderate Convection

Furthermore, for moderate convection, the occurrence of lightning is not required. For
this level, however, the clouds must be colder and thus closer to or in the tropopause. The
brightness temperature of the water vapour channels and the IR window channel are used
to define this level. If the differences exceed a specific threshold then deep convection is
assumed to occur. The thresholds are defined as greater than 0.7 for the difference in the
water water channels (WV063 − WV073 > 0.7) and greater than 2 for the BT difference
of the water vapour channel and the window channel (WV062 − IR10.8 > 2). The latter
condition can be used to identify overshooting tops, which are an indicator for strong
updrafts associated with significant convection [20]. As for the light convection the NWP
(KO) filter is used for this level. However, the likelihood for thunderstorms for OTs is quite
high; hence, the NWP filtering is less important for this level than for the light level [8].
The colour yellow is assigned to moderate convection.

2.1.3. Severe Convection

The severity level for convection is defined as severe if lightning occurs, hence, the
severe level is usually surrounded by the light or moderate level. The occurrence for
lightning is a pre-requisite for the definition of severe convection within NCS-A. All
lightning measurements occurring 15 min before the end of the latest satellite scan are
taken into account and form the highest convection level “severe”. The warning colour
red is used for this level. It should be noted that the detection efficiency of the lightning
measurements can vary somewhat and is particularly lower over large and remote ocean
areas such as the South Pacific due to the lack of measurement sensors.
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2.2. Cloud Top Height—CTH

The BT observed by the satellite corresponds to the temperature of the cloud top for
optically thick clouds in the IR channel, since a black body can be assumed here [8]. As a
consequence, Equation (1) is used to estimate the cloud top height

CTH = −(BT − Ttropo)/LR + Htropo (1)

Here, BT is the brightness temperature of the IR window channel (∼10.8 μm), Ttropo
is the temperature of the tropopause and Htropo is the height of the tropopause from the
numerical weather prediction model ICON [23]. LR is the lapse rate and is set to 8 K/km.

This value represents a minor change from the value reported by Griffin et al. [24],
which was determined by the expert knowledge of the DWD weather forecasters. Thus, the
BT from IR channel at the top of the clouds is related to the cloud top height (flight level).
The above mentioned “black body” assumption is not valid for semitransparent clouds and
another method has to be applied. The respective method is referred to as water vapour
H2O- intercept method applicable for upper-level semitransparent clouds [12].

2.3. Nowcasting

The nowcasting is performed with the optical flow method TV-L1 [10], which is
provided as part of OpenCV [25,26]. The method allows the calculation of atmospheric
motion vectors (AMVs) from two subsequent satellite images of the water vapour channels
(ca. 6.2 μm) from the different geostationary satellites. The Cb image is then extrapolated
in time based on the estimated atmospheric flow. Development and dissipation of cells is
not captured by the method. The Cbs are only advected in time based on the AMVs. This
limitation is an inherit feature and hold for all atmospheric motion vector methods. The
TV-L1 parameters have been optimised for the nowcasting of Cbs—see Table 1. Forecast
are calculated every 15 min and cover lead times up to to 2 h after the latest satellite scan.
The temporal and spatial resolutions are 15 min and 0.1 degree (ca. 10 km) for satellite data
and 1500 m for lightning.

Table 1. The NCS-A parameter settings used for TV-L1 .

Parameter Value Parameter Value Parameter Value

Tau 0.15 Lambda 0.05 Theta 0.3
Epsilon 0.005 Outer Iterations 20 Inner Iterations 20
Gamma 0 Scales N 5 Scale Step 0.5
Warps 10 Median Filtering 1 - -

2.4. 24/7 Implementation and Operation at DWD
2.4.1. Geotools

The processing of the satellite, lightning and NWP data is performed with a software
package developed at DWD referred to as Geotools. The Geotools package is written in
Python using Pytroll (https://pytroll.github.io/, accessed on 12 May 2022) for reading the
satellite data and conducting basic image processing. Furthermore, Geotools are designed
to merge the information from the various satellite sources and to apply the optical flow
for the nowcasting, the geolocation and the polygonisation of the data. The latter is needed
in order to reduce the necessary bandwidth for the transmission of the thunderstorm
information to the flight desks. The software is optimised for speed in order to enable the
processing of the complete geostationary ring and is also used for the polygonisation of the
netcdf raster data.
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2.4.2. 24/7 Processing

NowCastSat-Aviation NCS-A is hosted and operated 24/7 at DWD’s High Perfor-
mance Computer (HPC). For the 24/7 operation, Geotools are controlled by a shell script
that processes the input and output data and calls the algorithms. EcFlow is used for
the operational 24/7 call and monitoring of the job. EcFlow is a workflow package
which has been developed to run a large number of programs in a controlled envi-
ronment, providing restart and monitoring capabilities (via web page or email). It is
used at DWD to run all operational suites on the HPC. EcFlow is developed and main-
tained by the European Center for Medium-Range Weather Forecasts (ECMWF)—see
https://confluence.ecmwf.int/display/ECFLOW (accessed on 12 May 2022) for further
details. The 24/7 processing uses multiple interfaces to the various data sources, the
database, and the distribution systems that provide the resulting output data to external
users. Figure 3 illustrates the end-to-end processing of NCS-A.

Figure 3. Illustration of the NCS-A end-to-end processing at DWD.

The Cb products are produced as raster data retrieval in cf conform netcdf Format.
However, the data transfer rate to the cockpits of aeroplanes is limited. Thus, the raster data
are polygonised to reduce the amount of data transferred to the cockpit. The Cb nowcasting
product can be also visualised at DWD’s meteorological workstation NinJo [27] and is,
therefore, available to the routine forecasters. Figure 4 shows the visualisation of the NCS-A
Cb severity product as displayed with DWD’s geoweb service and the meteorological
workstations.

2.5. Cockpit Implementation

For effective use of the data for route planning, the data are visualised in the cockpit
with the aid of a tablet computer (Electronic Flight Bag EFB). Several customers have
implemented the NCS-A data for visualisation in their specific visualisation tool. Figure 5
provides an overview about the existing implementations. The examples are eWAS from
SITA (https://www.sita.aero/, accessed on 12 May 2022) and eRM as well as mPILOT from
Lufthansa Systems (LHSys) (https://www.lhsystems.de/, accessed on 12 May 2022).
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Figure 4. (Top): Visualisation of the NowCastSat-Aviation product in DWD’s WebGIS Briefing
System protoype. NCS-A covers the complete geostationary ring. The blue line indicates the satellite
coverage. Light convection is shown in green, moderate in orange and severe in red. (Bottom):
Visualisation of the NowCastSat-Aviation product in DWD’s NinJo meteorological workstation. Both
images show the convective situation on 25 April 2022 6:30 UTC. Note the tropical cyclone “Jasmine”
in the Indian Ocean and a large mesoscale convective system (MCS) in the La Plata Basin, as well
as other significant convective systems in the Altantic and Indo-Pacific. Both client systems are
connected to DWD’s Geoserver where the data are available per Web Mapping and Web Feature
Service (WMS/WFS)—see Figure 3.
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Figure 5. Technical implementation of NCS-A in various visualisation systems. (Top left): For
forecasters in DWD workstation NinJo with observed satellite and lightning data underlayed. For
pilots in different EFBs: (top right): eWAS/SITA, (bottom left): eRM/LHSys, (bottom right): mPI-
LOT/LHSys. A mesoscale convective system is shown with severe convection (cloud top height in
flight level 540) over Kenya on 14 February 2022 12 UTC.

3. Results

3.1. Validation of the Operational Nowcasting

Different methods and skill scores are available and applied for evaluation of forecasts.
Therefore, the selection and decision of the method and skill scores should be quided by
users of the respective forecast product. DWD is therefore in regular contact with aviation
customers, e.g., pilots evaluating the products. The near-real-time Cb product reaches the
pilot 15 to 20 min after the end of the satellite scan and is interpreted as a quasi-current
convection analysis. The focus of the pilots is usually on the forecast periods of 30–60 min.
Consequently, special consideration is given to this time interval.

Well established skill scores are used for the statistical analysis of the forecasts up to
2 h. In detail, the probability of detection (POD), the false alarm ratio (FAR) and the critical
success index (CSI) [8,14,28]. These skill scores are based on 2 × 2 contingency tables [29]
and are determined for the detection and nowcasting of the light and severe convection
level of NCS-A compared to the measured lightning. Because the predictions are used
in the form of polygons, verification on the basis of objects or pixels would be possible.
Both methodological approaches have advantages [28]. Validation based on objects is not
optimal to consider the severity or size of the Cbs for the evaluation of the scores. That is
why the pixel- and object-based approaches are combined. Lightning can also occur outside
the coldest cloud top because of the inclination of the discharge. In addition, horizontal
displacement is also possible when the upper, coldest part of the cloud is blown away by
strong winds. Finally parallax effects lead to a displacement between NCS-A polygons
relative to the lightning events. To account for these spatial uncertainties, a distance of
0.3 degree between nowcasting (ncsa-light-polygon,ncsa-severe-polygon) and lightning
measurements are accepted and counted as intersect. This distance of 0.3 degrees considers
also the recommendation of the American Air Safety Authority FAA, according to which
aircraft should maintain 20 miles lateral distance to Cbs. For each time step (00, 30, 60, 90,
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120 min) it is analysed whether the NCS-A “light” and “severe” polygons intersect within
the 0.3 degree search radius with a lightning polygon, which is formed from the discharges
of the last 15 min of the respective time step. The NCS-A polygon is counted as correctly
detected if there is an intersect, otherwise it is classed as a false detection.

In order to consider the size of the polygons, the pixels are counted in a second step.
However, disadvantages of the pixel-based method are to be anticipated. Lightning cells
and satellite objects cannot be expected to have the same size.

The months of August and September 2021 were used for the validation. Because an
update of the NCS-A nowcasting takes place every 15 min, 5650 runs were verified against
the lightning measurements for each investigated severity level. The validation is done for
the light and subsequently for severe convection:

3.1.1. Light Convection

The resulting skill scores are presented in Figure 6 for the investigated forecast steps.
The skill scores show the good performance of the method in particular up to 1 h forecast
time. The scores correspond to comparable studies (e.g., best of James et al. [14], POD 0.75
FAR 0.32). The high POD at time step 0 is explained by the fact that due to the morphological
filter for the polygons strong convection, i.e., lightning, are usually surrounded by green
polygons (the polygons for light convection). Hence, allmost all lightning events are
captured by the polygons for light convection for the time step 0. The optimum for POD, a
value of 1, is not reached because of slight differences in the synchronisation of satellite
scans and lightning data in combination with the polygonisation procedure. The FAR is
relatively high for the time step zero. However, it has to be considered that lightning is
not a must for the definition of the light convection and that satellite based detection of
convection is limited by several handicaps, e.g., misclassification of stratiform cold clouds
as Cb [8]. Further, not every cold convective cloud has permanent discharges at all times of
the day. Nevertheless, respective convective systems pose still a danger to aviation, e.g.,
induced by the presence of downdrafts, heavy precipitation or hail, (clear air) turbulence
and icing conditions.

Figure 6. Skill Scores for light severity level of NCS-Av1GL as a function of lead time for analysis
(timestep 0) and nowcasting after 30, 60, 90, 120 min against lightning measurement with an offset of
0.3 degree.

The POD, CSI and FAR values for the 1 h forecast are still good in comparison to the
values for the analysis, demonstrating the good performance of the nowcasting method.
This is also reflected in the comparison with the best values of James et al. [14] (POD 0.46
FAR 0.53). However, as mentioned in Müller et al. [8] comparison with values from the
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literature have to be interpreted carefully and can only provide a first hint. The optical flow
method applied for the nowcasting does not account for decay or development of cells
after the analysis time. Thus, the scores degrade with forecast lead time. Furthermore, un-
certainties in the estimated optical flow (the velocity vectors) contribute to this degradation.
Up to a time step of 90 min, the prediction performance can be considered sufficient and
usable for operational applications. For general reliable nowcasting of more than 120 min
improvements are necessary—see Section 4.

3.1.2. Severe Convection

Severe convection was validated analogously to light convection, but here the polygons
of the severe convection were validated against the lightning measurements. The resulting
skill scores are presented in Figure 7 for the investigated forecast steps. The definition of the
severe level requires lightning for the detection of Cbs, hence the POD is about 100% and
FAR about 0% at the time step 0, also referred to as analysis. These are much better starting
values for the nowcasting (the extrapolation with optical flow) than for the light level. Thus,
the nowcasting performs much better for the severe level. The POD, CSI and FAR values for
the 1 h forecast are still very good. The CSI is with 0.64 significantly above the critical value
of 0.5. This demonstrates the good performance of the nowcasting method. The optical flow
method applied for the nowcasting does not account for decay of cells or development of
cells after the analysis time. This is independent on the severity level and is a serious source
for the degradation of the scores with forecast lead time. Up to a time step of 90 min, the
prediction performance can be considered sufficient and usable for operational applications.
For general reliable nowcasting of more than 120 min improvements are necessary—see
Section 4.

Figure 7. Skill Scores for severe severity level of NCS-Av1GL as a function of lead time for analysis
(timestep 0) and nowcasting after 30, 60, 90, 120 min against lightning measurement with an offset of
0.3 degree.

3.2. User Evaluation

In addition to the validation study, which provides objective statistical values, the
product was also evaluated by forecasters for specific cases. Forecaster of several European
weather services have tested the convection product over Europe in summer 2021 within
the annual testbed of the European Severe Storm Laboratory [30]: They summarised that
“NowCastSAT’s ability to detect the future location of cells was rated on a scale of 1 (bad in
all cases) to 5 (spot-on). On average, it was rated 3.6 with grades ranging from 3 (good in
about half of the cases) to 4 (good in most cases) and performance was best up to a forecast
range of 60 min”. Pilots (of the airlines Lufthansa and SWISS) came to similarly positive
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assessments in the form of evaluation reports during various trials in the last 1–2 years.
Overall, these evaluations in combination with the validation results demonstrated the
quality and usability of the novel NCS-A approach.

4. Discussion

The fact that the occurrence of lightning is not a pre-requisite for light and moderate
convection level is also due to the reduced detection efficiency over oceans and rural
areas with poor sensor coverage. Here, convection indicated by brightness temperature
differences might show convection where lightning is not detected by the network.

Optical flow allows only advection of cells, decay or development of new cells are not
captured. For example, cells developing after the satellite scan can not be detected by the
method. Further all cells are extrapolated up to 2 h, but some cells might already decay
before 2 h. DWD is currently developing a respective seamless prediction of convection
based on the presented nowcasting approach and the NWP model ICON to overcome
these limitations.

The ICOsahedral Nonhydrostatic D2 [23,31] is a nonhydrostatic model that enables
improved forecasts of hazardous weather conditions with high-level moisture convection
(super and multi-cell thunderstorms, squall lines, mesoscale convective complexes) due
to improved physics in combination with its fine mesh size. The first validation results
indicates the ability of the model to forecast Cbs with higher skill scores for lead times up
to several hours. This would be ground breaking and a good basis for a seamless prediction
of Cbs up to 8 h. The domain of ICON-D2 covers Germany and bordering countries with a
spatial resolution of 2.2 km.

A first prototype based on simple blending is planned for the summer season 2022. For
this, the data fusion will be performed with a simple blending. However, for an improved
data fusion, the ANAKLIM++ method is envisioned in analogy to Urbich et al. [32]. First
steps with ANAKLIM++ are planned for summer 2022. The novel seamless prediction
product will be presented and discussed in detail in a forthcoming paper.

Another way to improve NCS-A is to use artificial intelligence. In Brodehl et al. [33],
for example, strong indications are given that deep learning could improve satellite-based
Cb nowcasting.

5. Conclusions

The novel NowCastSat-Aviation product was extensively validated and evaluated.
The validation compiles an objective analysis based on the skill scores POD, FAR and CSI
for 2 months. In addition, an evaluation was performed by external forecasters and pilots,
which provide an important feedback concerning the practical usability. Overall, the results
demonstrate that the product is quite useful for aviation and general weather forecasts up
to 60–90 min forecasts. For example, the CSI for the severe level is, with 0.64, still quite
high for the 60 min forecast. It should be emphasised that the product is available on the
geostationary ring, i. H. the entire globe is covered in the range of ±75 degrees north and
south. This feature sets it apart from regional convection products and enables the use
for global aviation applications, thereby meeting the requirements of key customers. The
use of the global lightning data GLD360 of VAISALA improve the quality of the product
significantly. Furthermore, together with the satellite information, they are a key to a
reasonable definition of severity levels. Finally, the use of open source software from the
Pytroll and OpenCV libraries is of great benefit to the flexibility of the method and its
maintenance and allows to overcome significant technical drawbacks associated with the
NWC-SAF software. Currently, the formation or decay of cells is not considered in the
nowcasting of NCS-A. This weakness could be addressed by intelligent combination with
lightning prediction from NWP or by using deep learning.
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The following abbreviations are used in this manuscript:

Cb Comulinmbus Cloud, Thunderstorm
CSI Critical Success Index
CTH Cloud top Height
DWD Deutscher Wetterdienst
FAR False Alarm Ratio
GLD Globale Lightning Detection
GOES Geostationary Operational Environmental Satellite
h hour(s)
HIMAWARI Sunslower
MDPI Multidisciplinary Digital Publishing Institute
METEOSAT METEOrological SATellite
min minute(s)
MSG Meteosat Second Generation
NCS-A Nowcast Satellite Aviation
POD Probability Of Detection
TV-L1 Total Variation L1 norm
LD Linear dichroism
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Abstract: Mapping and monitoring coral reef benthic composition using remotely sensed imagery
provides a large-scale inference of spatial and temporal dynamics. These maps have become essential
components in marine science and management, with their utility being dependent upon accuracy,
scale, and repeatability. One of the primary factors that affects the utility of a coral reef benthic
composition map is the choice of the machine-learning algorithm used to classify the coral reef
benthic classes. Current machine-learning algorithms used to map coral reef benthic composition
and detect changes over time achieve moderate to high overall accuracies yet have not demonstrated
spatio-temporal generalisation. The inability to generalise limits their scalability to only those reefs
where in situ reference data samples are present. This limitation is becoming more pronounced
given the rapid increase in the availability of high temporal (daily) and high spatial resolution (<5 m)
multispectral satellite imagery. Therefore, there is presently a need to identify algorithms capable of
spatio-temporal generalisation in order to increase the scalability of coral reef benthic composition
mapping and change detection. This review focuses on the most commonly used machine-learning
algorithms applied to map coral reef benthic composition and detect benthic changes over time
using multispectral satellite imagery. The review then introduces convolutional neural networks
that have recently demonstrated an ability to spatially and temporally generalise in relation to
coral reef benthic mapping; and recurrent neural networks that have demonstrated spatio-temporal
generalisation in the field of land cover change detection. A clear conclusion of this review is that
existing convolutional neural network and recurrent neural network frameworks hold the most
potential in relation to increasing the spatio-temporal scalability of coral reef benthic composition
mapping and change detection due to their ability to spatially and temporally generalise.

Keywords: remote sensing; machine-learning; deep-learning; coral reefs; mapping; change detection;
spatio-temporal generalisation

1. Introduction

Coral reef benthic composition maps have become an essential component in marine
science and management [1]. In order for these maps to be most effective, they need
to represent the underlying benthic classes as accurately as possible. The field of coral
reef remote sensing science has established a number of key findings that have led to
improvements in coral reef benthic composition map accuracies. These include: identifying
the effects of spatial and spectral resolution [2–4]; the number of classes mapped [5–8]; the
spatial and spectral similarities between benthic classes [4,8]; the use of either pixel or object-
based classification methods [9]; and the in situ reference data collection method used [10].
The development of image pre-processing algorithms such as correction for absorption
and scattering of light in the water column [11], sunglint removal [12], and atmospheric
correction [13] have also contributed to improvements in the ability to accurately map coral
reef benthic composition using remotely sensed imagery.
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Another factor that affects the accuracy of a coral reef benthic composition map,
which is in the control of a remote sensing scientist, is the choice of the machine-learning
algorithm used to classify the coral reef benthic classes. To this end, these machine-
learning algorithms use labelled samples in the form of either individual pixels or ob-
jects (grouped pixels) from within an image that are representative of specific classes
in order to train an algorithm to subsequently classify all pixels or objects. In the field
of coral reef benthic composition mapping, machine-learning algorithms are now more
commonly used than manual delineation by expert interpretation [14], expert manual
class assignment [5,15], and expert-derived ruleset development [9,16–20] This is because
machine-learning algorithms are less subjective and more easily repeatable [21]. The most
commonly used machine-learning algorithms for coral reef benthic composition mapping
are the k-Nearest Neighbours (k-NN), Maximum Likelihood Classification (MLC), Mini-
mum Distance to Means (MDM), Random Forest (RF), and Support Vector Machine (SVM)
(Tables 1 and 2). A key advantage of these algorithms is the fact that they are able to
achieve moderate to high overall accuracies with only small amounts of training data
(i.e., <1000 training samples per class). To date, this has been a prerequisite for coral reef
benthic mapping due to the logistical complexities inherent in acquiring in situ reference
samples from a coral reef site, which are usually in the form of georeferenced benthic
photographs [10].

The scarcity of coral reef benthic in situ reference data is perhaps the reason almost
all related publications, to date, use training and testing data derived from the same
specific reef, or reef area, within the extent that they are mapping. While this is suitable for
mapping coral reef benthic composition at the target locations, where in situ reference data
are present, the inherent bias between the training and testing samples will result in the
machine-learning algorithm overfitting on this localised data. Therefore, it is unlikely that
the trained algorithm can then generalise to mapping the coral reef benthic composition
of a new reef (spatial generalisation), or even new imagery of the same reef (temporal
generalisation) since remote sensing conditions may vary between images. The inability to
spatially or temporally generalise therefore affects the spatio-temporal scalability of coral
reef benthic mapping by limiting the target extents to only those reefs or reef areas that
contain in-situ reference data.

In addition to mapping coral reef benthic composition at one point in time, on-
going monitoring is essential for conservation management. Coral reef benthic com-
position monitoring using remotely sensed imagery, to date, has relied primarily on
post-classification comparison change detection (PCCCD), which classifies each individ-
ual image separately [14,22–24] before subsequently overlaying the classified images
in order to identify where change has occurred. The accuracy of PCCCD methods
is therefore dependent upon the accuracy of each individual classified map in the se-
quence. Since each map in the multi-temporal sequence is usually classified using similar
machine-learning algorithms as those used in coral reef benthic composition mapping,
the same primary limitation in terms of spatio-temporal scalability, the inability to gen-
eralise, is also present in PCCCD methods used for coral reef benthic change detection.
The inability to generalise is becoming more pronounced given the rapid increase in the
availability of high temporal (daily) and high spatial resolution (<5 m) multispectral
satellite imagery [25].

Coincident with the increase in the availability of multispectral satellite imagery are
advancements in deep learning frameworks [26,27]. Of particular interest to remote sensing
scientists are convolutional neural networks (CNNs), which, in the field of land cover
mapping, have demonstrated superior overall accuracies compared to traditional machine-
learning classification algorithms such as object-based k-nearest neighbour (OBIA–KNN),
object-based support vector machine (OBIA–SVM), and object-based random forest (OBIA–
RF) [28,29], as well as spatio-temporal generalisation [30]. CNNs have only recently been
used in the field of coral reef benthic mapping [31–33] but have already demonstrated high
overall accuracies and spatio-temporal generalisation [32]. In relation to change detection,
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Long Short-Term Memory networks (LSTMs) and recurrent convolutional neural networks
(ReCNN) have been applied to binary (changed or unchanged) and multi-class land cover
change detection and achieved superior overall accuracies compared to traditional land
cover change detection methods, and they have demonstrated binary spatio-temporal
generalisation [34,35]. To the best of our knowledge, however, LSTMs have not yet been
applied to coral reef benthic change detection.

This review focuses on the most commonly used machine-learning algorithms applied
to map coral reef benthic composition and detect changes over time using multispectral
satellite imagery in order to identify their advantages as well as the primary limitations
impacting their spatio-temporal scalability. Recent publications that have used CNNs for
coral reef benthic mapping, and LSTMs in the field of land cover change detection are
subsequently reviewed with a focus on their potential utility for increasing the spatio-
temporal scalability of coral reef benthic mapping. Three keywords, ‘coral reef habitat
mapping’, ‘coral reef mapping using machine learning’, and ‘coral reef change detection’
were searched in ScienceDirect and Google Scholar. For each keyword the first 100 results
were screened in ScienceDirect and the first 10 pages in Google Scholar. No date range for
publications was applied. We limited publications to only those that used multispectral
satellite imagery and mapped shallow coral reef habitat classes. Multispectral satellite im-
agery was chosen since it is the most easily accessible imagery type for researchers, covers
the largest area globally, and has the highest temporal frequency compared to airborne
and/or UAV imagery. Publications focusing only on seagrass or coral reef geomorphologi-
cal classes were excluded. Book chapters, theses, reports, and reviews were also excluded.
From 600 screened results, 87 publications were deemed relevant based on the title and/or
the abstract. Of these, 6 could not be accessed and 15 after being reviewed did not include
enough detail to be included, as seen in Tables 1–3, leaving a total of 66 publications. A
further five additional publications were manually searched since they were referenced a
number of times within these 66 publications and therefore deemed important to include
in this review. These publications were: [7,9,15,17,21]. One additional publication [33], was
brought to our attention because it used a CNN for coral reef benthic mapping. In total,
72 publications based on coral reef mapping and change detection have been included in
this review.

For CNN publications used in Sections 2.2 and 2.2.1, in addition to recurrent neural
networks (RNNs) in Section 2.3.2, a keyword search methodology was not applied. CNNs
were included in this review based on the fact they are starting to be used for coral reef
benthic mapping. RNNs were included because they have demonstrated spatio-temporal
generalisation in the field of land cover change detection, which current coral reef change
detection methods have not demonstrated.

2. Machine-Learning Algorithms Applied to Coral Reef Benthic Mapping Using
Multispectral Satellite Imagery

2.1. Pixel-Based Machine-Learning Classification Algorithms

Pixel-based machine-learning classification algorithms applied to mapping coral reef
benthic composition, classify each individual pixel within an image as being one of a
certain number of classes (i.e., coral, algae, and sand). In order for pixel-based algorithms
to be feasible, two assumptions need to be met. First, each individual pixel needs to be
represented by only one benthic class, meaning the spatial resolution of the pixel is higher
than or similar to the target object. Secondly, pixels representing each class need to have
similar spectral reflectance values to each other (i.e., all coral pixels need to have similar
spectral reflectance signatures to each other, which are different to the spectral reflectance
signatures of sand and other classes) [36]. For coral reef benthic composition mapping, the
main pixel-based machine-learning algorithm used is MLC, based on the fact it is used by
47% of publications in Table 1 (In relation to calculating the number of publications that use
each specific machine learning algorithm in Tables 1–3, only one algorithm per publication
is used. When a publication compares multiple different machine learning algorithms, only
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the algorithm that achieves the highest overall accuracy is used in the calculation. This
was done in order to ensure that publications that use one machine learning algorithm and
those that are comparing multiple different ones are weighted equally in the calculation).
MLC, which first assumes the data are normally distributed, takes the mean vector and
covariance of each classes’ spectral values into account before subsequently determining
the membership of individual pixels to each class based on the highest statistical probability
(maximum likelihood). Figure 1 illustrates equiprobability contours forming probability
density regions around the mean of the class training samples that are used in order to
determine the probability of pixel x belonging to each class. In this example pixel x would
be classified as belonging to the coral class.

Figure 1. Basic conceptualisation of maximum likelihood classification illustrating 3 different classes
with equiprobability contours.

Moderate to high overall accuracies can be achieved using pixel-based MLC to map
coral reef benthic classes (Table 1) (All overall accuracies reported in this review, except for
those in Section 2.3.2 have been rounded to the nearest whole number since there was not a
consistent level of precision between all publications (i.e., some recorded overall accuracy
to the nearest one decimal place while others to the nearest whole number)). Compared
to the second most commonly used machine-learning algorithms in Table 1, which are RF,
SVM, and MDM, each being used by 12% of publications, MLC has demonstrated higher
overall accuracies when directly compared to MDM in Hossain et al. [37]. Wicaksono and
Aryaguna [8], and Chegoonian et al. [38], however, found that RF and SVM, respectively,
achieved higher overall accuracies when directly compared to MLC (Table 1).
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Table 1. Pixel-based coral reef benthic mapping publications.

Authors
Sensor/Spatial

Resolution
Pixel or

Object-Based
Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[39] WorldView-3
(1.2 m). Pixel-based. SVM. Supervised. 15 79%

[37] QuickBird
(2.4 m). Pixel-based.

MLC, MD, k-NN,
Parallelepiped

classification (PP),
and Fisher (F); then

ensemble.
Classification using

Majority Voting
(MV), Simple

Averaging (SA),
and Mode

Combination (MC).

Supervised. 4

55% (MLC), 53%
(MD), 54% (KNN),
41% (PP), 47% (F),

83% (MV), 71% (SA),
and 68% (MC).

[8] WorldView-2
(1.9 m). Pixel-based. MLC, RF. Supervised. 2–26

74.01–22.15% (mean
MLC), 95.97–76.83%

(mean RF).

[40] PlanetScope
(3.7 m). Pixel-based. RF. Supervised. 4

78% (Cemara Islands
based on 500 trees),
61% (Gelang Island
based on 500 trees);

79% (Cemara Islands
based using Log and

Entropy function),
61% (Geland Island
using Square Root
and Gini function).

[41] Landsat-8 OLI
(30 m). Pixel-based.

Linear
Discriminant

Analysis (LDA).
Supervised. 4

80% (Palmyara Atoll),
79% (Kingman Reef),

69% (Howland
Island), 71% (Baker
Island Atoll), and
74% (Combined).

[42] Planet Dove
(4.7 m). Pixel-based. ISODATA

classification. Unsupervised. 8 63%

[38] Landsat-8
(30 m). Pixel-based. MLC, SVM, ANN. Supervised. 4

Lizard Island; 72%
(ANN), 67% SVM,
67% MLC; Qeshm
and Larak Islands;
58% (ANN), 68%

(SVM), 66% (MLC).

[43] IKONOS (4 m). Pixel-based. MLC. Supervised. 6 82%

[10] QuickBird-2
(2.4 m) local. Pixel-based. MDM. Supervised. 21

Suva site: 69% (photo
transect), 65%
(spot check).

[44] IKONOS (4 m). Pixel-based. MLC. Supervised. 9 89% (Bawe) and 80%
(Chumbe).

[45] QuickBird
(2.4 m). Pixel-based. MLC. Supervised. 6

67% (no water
column correction),

89% (with water
column correction.
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Table 1. Cont.

Authors
Sensor/Spatial

Resolution
Pixel or

Object-Based
Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[46] Landsat-7
ETM+ (30 m). Pixel-based. Ensemble of hybrid

SVM Classifiers. Supervised. 5 89%

[47]
QuickBird-2

(2.4 m), Landsat
5 TM (30 m).

Pixel-based. MDM. Supervised. 10–21 25–62%

[48] Landsat 5 TM
(30 m). Pixel-based. MLC. Supervised. 7 76%

[7] IKONOS (4 m). Pixel-based. MLC. Supervised. 4, 8, 13
75% (4 classes), ~65%
(8 classes), and 50%

(13 classes).

[49] Landsat TM
(30 m). Pixel-based. MLC followed by

contextual editing. Supervised. 4, 8, and 13 ~60%, ~40%, and
~25%, respectively.

[4] Landsat TM
(30 m). Pixel-based. MLC. Supervised. 4, 6, 9

~57% (4 classes),
~53% (6 classes), and

~50% (9 classes).

For both Tables 1 and 2, in publications that compared multiple different sensors, only the sensors with the highest
overall are in this table, since this is the most common metric reported in the majority of these publications.
Furthermore, we aimed to make overall accuracies as consistent as possible between publications, which was
difficult since many compared OA of different sensors, spatial resolution, classification algorithms etc., therefore,
as a general rule we aimed to report the highest OA from each publication. This resulted in some including more
information than others, which is a shortcoming of this review. Only the overall accuracies from the IKONOS
sensor used in Mumby and Edwards. Ref. [7] are included since it was thought to be the most relevant to that
particular publication even though it was not the highest overall accuracy achieved. While Andréfouët et al. [5]
mapped multiple sites, the overall accuracies reported in this table are derived from their abstract, which is
thought to be the average overall accuracy reported based on the number of classes mapped. When more than
two accuracy metrics were used, only the overall accuracies were included.

In relation to spatio-temporal generalisation, only one publication in Table 1 demon-
strated spatial generalisation [41] and none demonstrated temporal generalisation. Gap-
per et al. [41] used a pixel-based Linear Discriminant Analysis (LDA) classification algo-
rithm applied to mapping two coral reef benthic habitat classes (coral and algae/sand) and
two background classes (land/cloud and deep water) at four different coral reef sites using
Landsat-8 multispectral imagery with a spatial resolution of 30 m. Their results showed
the pixel-based LDA achieved an overall accuracy of 80% when trained and tested on the
same reef, and 79%, 69%, and 71% when tested on three different reefs that the LDA had
not been trained on; therefore, demonstrating spatial generalisation.

Although moderate to high overall accuracies can be achieved using pixel-based
machine-learning algorithms, there are three inherent problems that affect pixel-based
classification. The first is the problem of a mixed pixel, whereby a single pixel may
contain multiple benthic classes, as illustrated in Figure 2a. The mixed pixel problem
is a serious challenge for mapping coral reef benthic composition because of the spatial
heterogeneity inherent in coral reef benthic habitats. The second problem is known as the
‘salt and pepper effect’ whereby single pixels are classified differently to neighbouring
pixels surrounding them, since no information from the neighbouring pixels is considered
during per-pixel classification [50]. The third problem is pixel redundancy resulting from
the spatial resolution being much finer than the target objects as shown in Figure 2c, where
a large number of pixels represent the same target feature [51,52]. Pixel redundancy is
becoming more pronounced given the increasingly higher spatial resolutions of satellite
imagery (<5 m).
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Figure 2. Illustration depicting the effect of spatial resolution on target objects. (a) At 10 m pixel
resolution it is evident that pixel resolution is much lower (meaning the pixel is larger) than the
objects resulting in a mixed class pixel. (b) At 2.5 m resolution the objects are closer to actual pixel
resolution and are clearly separated meaning this 2.5 m resolution would not result in the mixed
pixel problem and pixel redundancy would not be an issue. (c) At 1 m resolution objects are larger
than pixels resulting in pixel redundancy. Illustration is based on Figure 1 in Blaschke [51].

Object-Based Image Analysis

An alternative approach to pixel-based classification is Object-based Image Analysis
(OBIA), which is a segmentation approach that is not as severely affected by mixed-pixels,
salt and pepper effects, and pixel redundancy. OBIA has also been referred to as Geographic
Object Based Image Analysis (GEOBIA) [53] and Object-oriented Image Analysis [54]. The
foundation for OBIA is image segmentation that dates back to the 1970s [55,56]. OBIA
considers contextual information, which, in addition to spectral information, includes
spatial dimensions of shape and compactness in order to generate relatively homogenous
segments of grouped pixels that are semantically significant [51] (Figure 3b,c). Compared
to individual pixels, these segmented objects have the advantage of containing much more
spectral information such as the mean, median, minimum, and maximum spectral values
per band in addition to mean ratios and variance [51].

 

Figure 3. Example of object-based segmentation applied to an illustration depicting pixels. (a) Con-
sists of 5 × green pixels and 4 × yellow pixels, (b) shows the result of object-based segmentation
where all 5 × green pixels have been grouped into 1 × green object and 2 × yellow objects. The red A
represents a georeferenced in situ reference sample which in (a) represents 1 × pixel, however, after
OBIA segmentation in (b,c) it now represents 1 × green object consisting of 5 × grouped pixels.

355



Remote Sens. 2022, 14, 2666

Segmenting individual pixels into objects can be done using specialised software such
as Trimble eCognition or ENVI [6,9,15–18,20,21,57–64]. Other approaches to generating
segmented objects include unsupervised ISODATA clustering [65,66], unsupervised k-
means cluster analysis [67], bag of features [68], seed pixel regional growing technique [69],
texture analysis [70], image patches [33], and manual polygon digitisation [71,72].

It is important to note that OBIA using specialised software such as Trimble eCognition
requires a user to determine a scale parameter. This scale parameter determines the output
object size, which is difficult to identify since semantically significant regions are found at
different scales [73]. While there have been techniques developed to objectively identify the
optimal scale parameter, such as the estimation of scale parameter tool (ESP) developed by
Dragut et al. [74], most coral reef benthic mapping publications that use OBIA determine
the scale parameter based on subjective trial and error [6,21,59].

In the field of coral reef benthic composition mapping, OBIA has been applied on
local [6,9,16,20,21,57,60–64,71] and regional scales [15,17,18,59]. In order to classify objects
derived from OBIA segmentation, expert class assignment, whereby the map producer
assigns classes to objects manually, has been shown to be an effective method for mapping
coral reef benthic habitat classes on regional scales [15]. The limitations associated with
expert class assignment, however, are the subjective nature of the map producer’s classifica-
tion ability, the limitation in the number of objects a map producer can manually label, and
the difficulty in replicating this same classification with a new map producer. These issues
therefore limit the spatio-temporal scalability of this approach. Phinn et al. [9] demon-
strated how OBIA followed by expert-driven membership rulesets, which are used to
assign classes to objects, can achieve overall accuracies of up to 78% for mapping 13 benthic
habitat classes using Quickbird-2 multispectral satellite imagery with a spatial resolution
of 2.4 m. OBIA followed by expert-driven membership rulesets is the most commonly used
approach in Table 2, which is used by 23% of publications. Using expert-driven membership
rulesets for classification, however, is also relatively subjective. For example, Phinn et al. [9]
developed a total of 36 membership rules (based on variables such as brightness, standard
deviation, blue/green band ratio, and others) with each rule containing an individual
threshold that is iteratively determined by comparing the resultant segmented objects with
expert knowledge of the reef, image interpretation, and references to in situ reference data
in order to label reef scale classes (i.e., land, deep water, and shallow reef), geomorphic
scale classes (i.e., outer reef flat and shallow lagoon), and benthic community scale classes
(i.e., algae, seagrass, sand, and rock) [9].

Apart from expert class assignment or developing expert driven rulesets in the field
of coral reef benthic composition mapping, one of the most commonly used machine-
learning algorithms applied to classifying segmented objects derived from OBIA is the k-NN
algorithm that is used by 12% of the publications in Table 2. The k-NN algorithm classifies
segmented objects based on the class most represented by their k nearest neighbours [75,76].
K is a user-defined parameter that is the number of nearest neighbouring objects that are
included in the majority voting process. When k is equal to one it is referred to as the
Nearest Neighbour (NN) [21] and simply classifies an object based on the class of its nearest
neighbour. The choice of k affects accuracy, as illustrated in Figure 4, whereby a value
of k = 1 would result in x being classified as algae while a value of k = 5 would classify x
as coral.

The accuracy of the k-NN algorithm is also affected (when not detected and separated)
by the presence of class outliers [77]. Class outliers will be defined here as objects with
classes other than their own surrounding them. These outliers can be the result of an
insufficient number of training samples associated with the outlier class or skewed class
distributions. Datasets used to train machine-learning algorithms for classifying coral
reef benthic composition may be prone to containing class outliers since coral reef benthic
classes are typically heterogenous in spatial distribution. Further, the logistical complexities
of acquiring in situ reference samples from a coral reef location limits the quantity of
samples that can be acquired.
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Figure 4. Basic conceptualisation of k nearest neighbour classification illustrating 3 classes. Circles
show the class when k = 1 and when k = 5.

To address the fact that coral reef benthic habitat complexity varies across different
coral reef geomorphologic zones [5], hierarchical OBIA segmentation approaches were
developed by [9,15,21], which first segments a reef into different geomorphic zones and then
re-segments each of these geomorphic zones individually in order to generate segments
representing benthic habitat classes within each. Roelfsema et al. [21] compared a k-NN
classification algorithm to the expert driven membership rulesets classification approach
of Phinn et al. [9], applied to the same reef using the same in situ reference data and
Quickbird-2 multispectral imagery. The results showed the object-based k-NN achieved
an overall accuracy of 62% based on seven benthic classes, while the membership rulesets
classification approach achieved an overall accuracy of 78% based on eleven benthic classes
(Table 2). Although the overall accuracy of the object-based k-NN is lower, in addition to
being less subjective, Roelfsema et al. [21] estimated that their hierarchical object-based
k-NN approach is around twenty times faster to develop compared to Phinn et al. [9].

Another of the most commonly used object-based machine-learning classification
algorithms applied to mapping coral reef benthic composition is the SVM algorithm, which
is used in 17% of publications in Table 2. The modern formulation of an SVM, developed
by Vapnik and Cortes [78], classify inputs by identifying decision boundaries that split
input data points into two spaces that correlate to two different classes (Figure 5). This
is done by mapping the input data to a new high-dimensional representation where the
decision boundary (expressed as a hyperplane) is computed by maximising the distance
between the decision boundary and the nearest data points from each class [79]. In order
to find good decision boundaries, rather than explicitly computing the coordinates of
the points in the new representation space, which is often computationally intractable, a
kernel function is used. This maps two points in the initial representation space to the
distance between these points in the target representation space, which is more efficient [79]
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(Figure 5). Object-based SVM have been proven to achieve higher overall accuracies when
directly compared to k-NN [63,68,72] (Table 2).

 
Figure 5. General conceptualisation of an SVM.

Table 2. Object-based coral reef benthic mapping publications.

Authors
Sensor/Spatial

Resolution
Pixel or

Object-Based
Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[58] Sentinel-2
(10 m). Object-based.

OBIA–RF
followed by

expert-driven
membership

rulesets.

Supervised. 4 62%

[70] Sentinel-2
(10 m). Object-based.

Mean Texture
Analysis

followed by
either RF or

SVM.

Supervised. 4 71% (RF, highest),
73 (SVM, highest).

[59]

Worldview-2
(1.9 m), Planet

Dove (5 m),
Sentinel-2 (10 m),

Landsat-8
(15 m).

Pixel-based and
object-based.

Pixel-based RF
and OBIA–RF
followed by

expert-driven
membership

rulesets.

Supervised. 8 78% (mean).
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Table 2. Cont.

Authors
Sensor/Spatial

Resolution
Pixel or

Object-Based
Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[17] Landsat OLI
(15 m). Object-based.

OBIA followed
by expert-driven

membership
rulesets.

Supervised. 6 50%

[31]

WorldView-2
(1.9 m),

Sentinel-2
(10 m).

Object-based. LAPDANN. Supervised. 10

86% (trained/tested on
same reef), 47%

(trained/tested on data
from Indian Ocean and

Pacific Ocean
simultaneously).

[32]

WorldView-2
(1.9 m),

PlanetScope
(3.7 m).

Object-based
and

pixel-based.

FCN–KNN,
VGG16–FCN,

DeepLab,
SharpMask.

Supervised. 9

WorldView-2 imagery:
84% (FCN–KNN), 80%

(VGG16–FCN), 81%
(DeepLab), 80%

(SharpMask);
PlanetScope imagery:

73% (FCN–KNN), 73%
(VGG16–FCN), 73%

(DeepLab), 71%
(SharpMask);

Generalisation tests:
85% (FCN–KNN), 83%

(VGG16–FCN), 78%
(DeepLab), 82%
(SharpMask).

[80]

WorldView-2
(1.9 m),

Gaofen-2
(3.2 m).

Object-based.
CNN–SVM,

CNN–RF, CNN,
RF, SVM.

Supervised. 4

WorldView-2 data set 1:
92% (CNN–SVM), 91%

(CNN–RF), 91%
(CNN), 90% (RF),

89% (SVM);
WorldView-2 data set 2:
86% (CNN_SVM), 85%

(CNN–RF), 85%
(CNN), 82% (RF),

84% (SVM)
Gaofen-2 data set: 91%

(CNN–SVM), 88%
(CNN–RF), 89%

(CNN), 87% (RF),
88% (SVM).

[33]

QuickBird
(0.6 m)

(benthic),
GeoEye-1

(0.5 m)
(seagrass).

Object-based. CNN. Supervised. 7 benthic,
4 seagrass.

90% (benthic),
91% (seagrass).

[67] Sentinel-2
(10 m). Object-based.

MD followed
by post-

classification
filtering.

Supervised.

17 (incl.
5 non-coral reef
benthic classes

(i.e., man-
groves, beach).

77%
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Table 2. Cont.

Authors
Sensor/Spatial

Resolution
Pixel or

Object-Based
Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[72] WorldView-
2 (1.9 m). Object-based.

MLC, Neural
Network

(NN), SVM.
Supervised. 5 86% (MLC), 87%(NN),

93% (SVM).

[15] WorldView-2
(1.9–2.4 m). Object-based.

OBIA followed
by manual class

assignment.
Expert-derived.

Atlantic sites:
7 (aggregated
Benthic cover
type and geo-
morphology
classes (i.e.,
Fore Reef

Sediment with
Algae),

Non-Atlantic
sites: 16.

81% (Atlantic sites),
90%

(non-Atlantic sites).

[60] WorldView-2
(1.9 m). Object-based.

OBIA–RF,
OBIA–

Classification
Tree Analysis
(OBIA–CTA),
OBIA–SVM.

Supervised. 14 89% (RF), 78% (CTA),
76% (SVM).

[61] Planet Dove
(3 m). Object-based. OBIA–KNN. Supervised. 11 82%

[57] GeoEye-1 (2 m). Object-based.

OBIA and
Jeffries–
Matusita
distance
measure.

Supervised. 175 72%

[21] QuickBird-2
(2.4 m). Object-based. OBIA–KNN. Supervised. 7 62%

[68] QuickBird
(2.4 m). Object-based.

Bag of Features
(BOF) followed

by either
Bagging (BAG),
KNN, or SVM
then lastly a

Weighted
Majority Voting

(WMV).

Supervised. 4
80% (BAG), 81%

(KNN), 86% (SVM),
89% (WMV).

[71] WorldView-2
(1.9 m). Object-based. SVM. Supervised. 5 78%

[16] Sentinel-2
(10 m). Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised. 6 49%

[19] Landsat 8
(15 m). Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised. 5 33%
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Table 2. Cont.

Authors
Sensor/Spatial

Resolution
Pixel or

Object-Based
Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[69]
Landsat 7 ETM+
(30 m), Landsat

8 (30 m).
Object-based.

Seed pixel
regional
growing.

Supervised.

3 coral reef
benthic and

2 non-benthic
(i.e., land and

human habitats).

75–99.7% based on
10 sites.

[20] WorldView-2
(1.9 m). Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised. 4 76%

[62] WorldView-2
(1.9 m). Object-based.

OBIA-
multinomial

logistic discrete
choice models.

Supervised.

8 benthic and 3
non-benthic

(i.e., terrestrial
vegetation).

85% (Vanua Vatu site).

[63] Landsat 8 OLI
(30 m). Object-based.

OBIA–SVM,
OBIA–RT,
OBIA–DT,

OBIA–KNN,
OBIA–Bayesian.

Supervised. 7

73% (OBIA–SVM), 68%
(OBIA–RT), 67%

(OBIA–KNN), 66%
(OBIA–Bayesian), and

56% (OBIA–DT).

[18]
QuickBird-2

(2.4 m),
IKONOS (4 m).

Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised.

14–17
(individual
reefs), 20–30

(reef systems).

52–75%.

[9] QuickBird-2
(2.4 m).

Pixel-based and
object based.

OBIA with
expert-driven
membership

rulesets;
pixel-based

MDM.

Supervised.

Heron Reef: 13
Ngderack
Reef: 11

Navakavu
Reef: 17.

78% (Heron Reef,
object-based),

52% (Ngderack Reef,
object-based), 65%, 57%

(Navakavu Reef,
object-based and

pixel-based,
respectively).

[64]
QuickBird-2

(2.4 m),
IKONOS (4 m).

Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised
22 benthic and
3 non-benthic
(i.e., cloud).

67%.

[6]
QuickBird
(0.6 m Pan-
sharpened).

Pixel-based and
object-based.

Pixel-based
MLC and
contextual

editing;
OBIA–NN.

Supervised. 5, 7, and 11.

59–77% (MLC), 61–76%
(contextual editing),

and 81–90%
(OBIA–NN).

[66] Landsat TM
(30 m). Object-based.

Unsupervised
ISODATA

Classification.
Unsupervised. 7 74%

[5]
IKONOS (4 m),

Landsat
7 ETM+ (30 m).

Object-based
(unsupervised
segments and

ground-truthed
polygons).

Unsupervised
segmentation
followed by
expert class
assignment
(applied to

2 reefs); MLC
(applied to

7 reefs).

Unsupervised
(2 reefs) and
supervised

(7 reefs).

4–5, 7–8, 9–11,
>13.

77% (4–5 classes), 71%
(7–8 classes), 65%

(9–11 classes), and 53%
(> 13 classes).
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Table 2. Cont.

Authors
Sensor/Spatial

Resolution
Pixel or

Object-Based
Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[65] IKONOS (4 m). Object-based. MLC. Supervised. 5 90% (Half Moon Bay),
89% (Tabyana Bay).

Unsupervised ISODATA clustering [65,66], unsupervised K-means cluster analysis [67], bag of features [68],
seed pixel regional growing technique [69], image patches [33], manual polygon digitisation [71], and digitising
regions of interest [57], have been grouped into the ‘object-based’ even though these polygons are not derived by
utilizing a segmentation algorithm such as those derived from OBIA (eCognition for example). Additionally, the
multi-scale feature extraction approach using bidimensional empirical mode decomposition (BEMD) [80] has also
been grouped into ‘object-based.’ Publications that included both pixel-based and object-based classifications are
included in Table 2 only, rather than Table 1 as well.

Second to the object-based SVM, and equal with the k-NN algorithm in terms of being
used in Table 2, is the RF algorithm that is used by 12% of publications. RFs construct
a wide variety of uncorrelated decision trees during training, with each individual tree
consisting of a random sample (bootstrapped) of the training data, and then takes the
aggregate (mode) of these individual trees as the output classification [81,82] (Figure 6).
RFs are less prone to overfitting compared to individual decision trees [82] and they use the
‘stochastic discrimination’ method [83], which has been proven to reduce overfitting and a
lack of generalisation properties [84–86]. These properties lead to RF algorithms gaining
accuracy as they become bigger and more complex [81,83].

 

Figure 6. Basic conceptualization of random forest classification.

In Table 2 there are two publications that have directly compared object-based RF to
object-based SVM algorithms. One found the object-based RF algorithms to be inferior in
terms of overall accuracy compared to an object-based SVM [70], while the other found
the object-based RF to be superior [40] (Table 2). In relation to spatio-temporal generali-
sation, Lyons et al. [59], as part of the Allen Coral Atlas project that aims to map shallow
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water coral reefs on a global scale, adopted a similar hierarchical mapping approach to
Roelfsema et al. [21] in order to map fourteen geomorphic classes and eight benthic habitat
classes on individual (~200 km2 of reef) to regional scales (~200,000 km2 of reef). A key
difference, however, is that Lyons et al. [59] used an object-based RF algorithm rather than a
k-NN algorithm, which is used by Roelfsema et al. [21]. When applied to mapping benthic
habitat classes at different scales (individual reefs and regional scales), their frameworks
mean that the overall accuracy is 78%. This overall accuracy, however, is based on vali-
dation data derived from within the regions where in situ training and validation data
samples are present. Although this overall accuracy has been inferred to areas that contain
no in situ training or validation data, for example, when scaling up from individual reefs
to regional scales such as the entire GBR region, the accuracy for such areas is uncertain.
Therefore, while their framework can be transferred to new areas provided that coincident
in situ reference data (or expert derived polygons) is available, it is yet to be determined
if it can spatially or temporally generalise to areas where no in situ reference training or
validation data are present.

2.2. Convolutional Neural Networks

In relation to land cover mapping using remotely sensed imagery, convolutional neural
networks (CNNs) have emerged as new algorithmic approaches for object detection [87],
image classification [88], and image segmentation [89]. CNNs are a class of deep learning
algorithms, which, put generally, take an input image (Figure 7) and convolve it through a
series of successive layers in order to learn a hierarchical feature set that can subsequently
be used for supervised classification at the final layer of the framework (Figure 8). In
relation to remotely sensed imagery, the input layer is a tensor with shape dimensions
equal to the image height multiplied by image width, and the number of channels (spectral
bands) For instance, Figure 7 illustrates an example input from a multispectral satellite
image with dimensions of 256 pixels (image height) × 256 pixels (width) × 4 channels
(red, green, blue, and near-infrared bands). The input sample starts as 262,144 individual
pixels, each consisting of four spectral bands. If there are 65,536 pixels representing ‘coral’
(white), this then leaves 196,608 pixels that are ‘non-coral’ (black), which are assigned a
value of 0. This particular input sample will therefore consist of 65,536 individual pixels
each with four spectral values. This input sample differs from the pixel-based samples
in Figure 2, which each only contain one pixel with four spectral values, and also from
the OBIA sample in Figure 3, since it does not contain grouped information (i.e., mean,
minimum, maximum spectral values etc.) for the object itself, although CNNs do still
extract contextual information from the input sample.

The fundamental building blocks of a CNN are the convolution operations that work
by applying multiple filters each consisting of weights that either learn to find local patterns
such as edges and textures or have been predefined to do so. Each filter is usually 3 × 3 in
size and is applied across the width, height, and depth of the input image by computing
the dot product between filter weights and the input pixel values. These values are
then summed with their combined value outputting a summed activation. This summed
activation is subsequently transformed by applying an activation function in order to allow
the subsequent use of stochastic gradient descent with backpropagation. Backpropagation
computes the gradient of the loss function in order to learn and update weights and biases in
order to minimize the loss function, resulting in a more accurate identification of underlying
features that best represent the input. If, however, the filters have been predefined to search
for specific local patterns, such as edges in the case of an edge detection filter for example,
then the gradient of the loss does not need to be learnt. For CNNs, the most commonly
used activation function is the Rectified Linear Unit (ReLU), which is a calculation that
returns input values if they are positive (>0.0) or returns a value of zero if the input value
is 0.0 or less [90,91]. The bias is a learnable value that can be thought of as a threshold
applied to the activation function in order for the activation function to return values that
are most relevant to extracting the underlying features of the input layer. The output of
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a convolution layer is an activated feature map that characterises features detected by
the filters.

 

Figure 7. Example of a 256 × 256 × 4 training samples representing the class ‘coral’ (white) used as
input to a CNN. The values 256 × 256 represent height and width in pixels while 4 represents the
depth/number of bands in the multispectral image. The 256 × 256 × 4 sample is first extracted from
the satellite image on the left. Next, all ‘coral’ pixels (white) are masked in order to assign the value
of 0 to all non-coral pixels (black) from the training sample.

Figure 8. Illustration depicting a generic convolutional neural network consisting of convolutional,
pooling, and fully connected layers.

In addition to the convolution operation, CNNs usually consist of pooling operations
that are most commonly applied after a convolution operation. Pooling operations are used
to reduce the dimensions (number of pixels) of the output feature map from the previous
convolutional layer. For example, the max pooling operation uses a 2 × 2 filter applied
across the height, width, and depth of the output feature map of the previous convolutional
layer and outputs the maximum value of each channel. Unlike most convolution operations,
max pooling uses a filter that is 2 × 2 in size rather than 3 × 3, and also uses a stride of two,
therefore reducing the dimensionality of the feature map by a factor of two. Furthermore,
max pooling filters do not learn weights like a convolutional filter. Max pooling, for
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example, does not have weights but instead takes the maximum value from each 2 × 2 filter
covering the region of the feature map from the previous convolutional layer as its output.
The resulting feature map after max pooling, therefore, only contains the most prominent
features from the previous feature map.

A key difference between MLC, k-NN, SVM, and RF classification algorithms com-
pared to CNNs is the incremental, layer by layer way in which CNNs extract increasingly
complex representations from inputs and the fact that these representations are learned
jointly. This means that, whenever the framework updates one of its internal features,
all dependent features automatically adapt to this update without manual human inter-
vention. This therefore allows CNNs to consist of tens to even hundreds of successive
layers of representations [79]. In contrast, traditional machine-learning algorithms usually
only transform the input data into one or two successive layers of representations such as
decision trees in the case of RFs, or high-dimensional non-linear projections in the case of
SVMs [79]. CNNs can therefore extract much more complex representations of the inputs
that can then be used for supervised classification at the end of the network (Figure 8).

2.2.1. Fully Convolutional Neural Networks

While there are CNN frameworks capable of object detection and image classification,
it is image segmentation frameworks that are most suited to mapping coral reef benthic
composition using remotely sensed imagery. Image segmentation frameworks assign a
class label based on a probability to each individual pixel. There have been a number of
different deep learning-based approaches identified for image segmentation. For example,
Cireşan et al. [92] developed a deep neural network (DNN) to segment neuronal membranes
in electron microscopy images based on a sliding-window approach. For this, a patch
(window) is placed around a pixel and a DNN is then used to classify the central pixel within
each patch. Farabet et al. [93] developed a multiscale feature extraction framework for scene
labelling (labelling each individual pixel based on the class it belongs to), and Pinheiro and
Collobert [94] demonstrated the use of recurrent convolutional neural networks (RCNN)
for scene labelling. Another approach was developed by Long et al. [95] using a fully
convolutional neural network (FCN) framework for semantic segmentation; this surpassed
previous approaches in terms of accuracy and learning speed. Building upon the FCN
framework of Long et al. [95], Ronneberger et al. [96] developed an FCN they called U-Net
(Figure 9), which was designed to work with very few training images and yields more
precise segmentations.

Figure 9. Illustration of U-Net based on the illustration of the U-Net framework by Ron-
neberger et al. [96].
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Figure 9 illustrates the U-Net framework developed by Ronneberger et al. [96]. It
starts with a contracting path that resembles a typical CNN framework, illustrated as
contracting blocks in Figure 9, and consisting of convolutional and max pooling layers.
Next, the contracting path transitions into a bottleneck consisting of two convolution
layers followed by a ReLU and one up-convolution layer that initiates the expansive path.
After each up-convolution the input is concatenated with a cropped version of the input
from the corresponding block in the contracting path by using skip connections. The up-
convolutions allow the framework to propagate contextual information to higher resolution
layers, while the concatenation with corresponding contracting layers via skip connections
allows for a more precise localisation [96]. At the final layer of the framework, the input
passes through a 1 × 1 convolution with the number of output feature maps being equal to
the number of classes that are being segmented. A pixel-wise softmax with a cross-entropy
loss function is applied over the final feature map. Since its inception in 2015, U-Net has
been used in a range of remote sensing publications [89,97–99].

2.2.2. Convolutional and Fully Convolutional Neural Networks Applied to Coral Reef
Benthic Composition Mapping

Recently, a small number of publications have used CNN and FCN frameworks
to map coral reef benthic composition using multispectral satellite imagery [31–33,80].
Mohamed et al. [33] used a simple CNN framework consisting of seven layers in order to
classify seven coral reef benthic habitat classes located at Shiraho and four seagrass classes
located at Fukido on Ishigaki, Japan, using pansharpened QuickBird (0.6 m) and GeoEye-1
(0.5 m) imagery, respectively. The inputs to their CNN framework were 1500 image patches
that were each 2 × 2 pixels, which were placed around each correctly labelled in situ
reference image location (an individual pixel) in horizontal and vertical directions. The
results of their CNN frameworks showed an overall accuracy of 90% for mapping seven
benthic classes at Shiraho and 91% for mapping four seagrass classes at Fukido.

In order to overcome the problem of spectral similarity between coral reef benthic
classes, Wan and Ma [80] developed a CNN–SVM method that used spectral and multi-
scale spatial information to map three different reef substrate classes (reef-depositional area,
reef-clumping area, and submerged reef) and also ‘seawater’ using WorldView-2 (1.9 m)
and Gaofen-2 (3.2 m) imagery covering Qilianyu Island, South China Sea. In addition
to spectral and spatial information, Wan and Ma [80] use bidimensional empirical mode
decomposition (BEMD) to extract multiscale information to incorporate into their CNN–
SVM. The CNN is used to extract features of the four classes while the SVM is used in order
to classify these features [80]. To determine the utility of their CNN–SVM framework, Wan
and Ma [80] compared it to four other frameworks: SVM, RF, CNN, and CNN–RF, with the
CNN–SVM achieving the highest overall accuracies (Table 2).

In relation to spatio-temporal generalisation, two publications have tested the utility of
FCNs applied to coral reef benthic mapping [31,32]. Li et al. [32] developed an object-based
fully convolutional neural network (FCN), which is similar to the U-Net framework. Unlike
U-Net, however, for the contracting path Li et al. [32] use ResNet-50 adapted from [100],
and for the expanding path a RefineNet [101,102] framework that uses residual convolution
units (RCUs). Chained residual pooling (CRP) structures during the upsampling procedure
allow additional context to be inferred. After initial segmentation using their FCN frame-
work, they then used classified pixels in order to train a pixel-based k-NN algorithm based
on the nearest ten points to classify coral, sediment, and seagrass. A conditional random
field (CRF) on the k-NN algorithm was applied afterwards in order to reduce noise in the
k-NN output and refine the boundaries.

Li et al. [32] refer to their framework as NeMO-Net and tested its capability by classify-
ing five scenes, each with 256 × 256 patches covering Circa Island, Fiji, using WorldView-2
(1.9 m) imagery, and seven scenes, each with 256 × 256 patches using PlanetScope (3.7 m)
imagery. The scenes were acquired over different dates and therefore significant spectral
variations were present. NeMO-Net was compared to three other image FCN segmen-
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tation frameworks: VGG16–FCN, DeepLab, and SharpMask. The results showed that
NeMO-Net with the k-NN applied to coral, sediments, and seagrass achieved the highest
overall accuracy for both WorldView-2 and PlanetScope imagery (Table 2). In order to
test if NeMO-Net is capable of spatio-temporal generalisation using WorldView-2 imagery,
nine different patches each 256 × 256 covering a different island (Fulaga, Kabara, Mago,
Matuka, Moala, Nayau, Totoya, Tuvuca, and Vanua Vatu) on different days were tested
and compared to the three other FCN frameworks. The results showed that all four FCN
frameworks are capable of spatio-temporal generalisation based on overall accuracies >77%,
with NeMO-Net achieving the highest (85%).

In order to address the problem of limited training data for coral reef benthic mapping
algorithms, Asanjan et al. [31] developed a framework they refer to as LAPDANN, which
can use labeled samples from high-resolution WorldView-2 imagery (1.9 m) in order to
accurately predict benthic classes in medium-resolution Sentinel-2 imagery (10 m); the
classified Sentinel-2 imagery can then be downscaled to match the WorldView-2 spatial
resolution of 1.9 m. LAPDANN consists of an improved version of a Domain Adaptation
Neural Network (DANN) adapted from Ganin et al. [103] that is capable of learning from
source domains and subsequently transferring learnt information to the target domain by
implementing a three-part neural network consisting of: a generative network to extract
domain invariant features, a U-Net framework to segment and classify input images, and a
domain discriminative network to discern features from the source and target domains [31].
Next, a Laplacian Generative Adversarial Network (LAPGAN) framework proposed by
Denton et al. [104] is adapted in order to downscale the segmented Sentinel-2 imagery to
higher resolution (1.9 m) coral reef maps.

The results showed an overall accuracy of 86% for ten habitat classes consisting of a
mix of benthic and terrestrial classes when training and testing on Peros Banhos Island
in the Indian Ocean [31]. When testing the framework’s ability to generalise to new
geographical regions by training LAPDANN on data from the Indian Ocean and Pacific
Oceans simultaneously (information on number of samples or which reefs in the Pacific
Ocean are used for training are not included), the results showed an overall accuracy of
47%. Although this lower overall accuracy indicates an inability to generalise, Asanjan
et al. [31] anticipate a higher overall accuracy provided more training data capturing
variations in sensing conditions over multiple islands is used. They also tested the ability
of LAPDANN to generalise by training on a subset of islands and then testing on an
island that is new. The overall accuracy for this experiment, however, is not reported in
Asanjan et al. [31].

2.3. Change Detection
2.3.1. Coral Reef Benthic Change Detection Methods

Mapping changes in coral reef benthic composition using multi-temporal satellite
imagery is an inherently difficult task because atmospheric, water surface, water depth, and
water clarity conditions may differ between multi-temporal satellite imagery. Compared to
coral reef benthic composition mapping, there are a relatively small number of publications
(Table 2). This is likely due to the lack of available in situ reference data sets that have been
acquired consistently over such long timeframes. Benthic change detection publications
can generally be separated into either pixel-based change detection (PBCD) or object-based
change detection (OBCD).

PBCD methods, in general, first map benthic composition for each image separately
by using either an unsupervised or supervised pixel-based machine-learning classification
algorithm [22,23,105–111], or spectral unmixing [112]. The most used pixel-based machine-
learning algorithm in PBCD is the Mahalanobis distance classification algorithm, which is
used by 15% of publications in Table 3, followed by MLC and SVM, each used by 12%.

OBCD approaches on the other hand usually first generate segmented objects using
either manual delineation [14,24,113] or specialized object-based software such as Trimble
eCongition followed by the use of a machine-learning classification algorithm such as
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MLC [105] or RF [114,115]. Aside from manual polygon delineation and class assignment,
which is used by 12% of publications in Table 3, the RF algorithm is the most used object-
based machine-learning algorithm in OBCD, used by 8% of publications.

Once coral reef benthic composition has been mapped within each multi-temporal
image, in order to subsequently identify changes, the most common approach is to use
post-classification comparison change detection (PCCCD), which overlays classified images
in order to identify changes between either individual pixels (post-classification pixel-
based change detection (PC-PBCD)) or class objects (post-classification object-based change
detection (PC-OBCD)). Alternatively, pixel-based modelling [116], simulation [117], and
statistical analysis [118,119] approaches have been used to identify benthic change. These
approaches, however, are usually based on expert knowledge and may even require
coincident classified benthic maps to validate the models’ performance [116]. This makes
them prone to the similar scalability limitations of the PBCD and OBCD approaches.

The accuracies of PC-PBCD and PC-OBCD, are dependent upon the accuracy of the
initial benthic composition classification; therefore, the same primary limitation present
in benthic composition mapping (the inability to spatially or temporally generalise) is
also present in PC-PBCD and PC-OBCD. A further limitation with PC-PBCD or PC-OBCD
is the fact that image classification occurs separately between images, thus leaving the
change detection output maps prone to image misregistration errors. These errors are more
pronounced in PC-PBCD compared to PC-OBCD, with PC-PBCD also being prone to the
‘salt-and-pepper effect’ [50,115]. However, PC- OBCD accuracy is dependent on how well
the objects resulting from OBIA segmentation represent the underlying benthic classes.
Therefore, the choice of an optimal scale parameter used to determine the size of objects
resulting from the segmentation algorithm is very important [120].

An alternative approach to PC-OBCD, which reduces image misregistration errors,
is multi-temporal image object analysis (MTOA), which simultaneously segments each
image within a multi-temporal data set before using a machine-learning algorithm to
predict benthic change type [115]. Zhou et al. [115] developed a multi-temporal OBCD
(MT-OBCD) method that simultaneously segments images before using an RF algorithm
to predict change types (i.e., ‘reef sediment extension’, ‘algae grow’). To identify the optimal
scale parameter, Zhou et al. [115] used the Estimate Scale of Parameter Tool that is based
on the rate of local variance concept (ROC-LV). In this, the scale parameter is objectively
determined by automatically increasing the local variance (LV) incrementally until the
ROV-LV reaches a peak. At that point, it is considered to be the optimal scale parameter [74].
They applied this MT-OBCD method to Taiping Island, Zhongye Island, and two coral reef
sites on the Barque Canada Reef in the South China Sea to predict four different coral reef
benthic change types using QuickBird and World View-2 satellite imagery. They achieved
an overall accuracy >90% for each site.

Table 3. Coral reef benthic change detection publications summary.

Authors
Pixel or

Object-Based
Time-Series Classification Method

Supervised or
Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[121] Pixel-based. 2015–2016

Radiometric
normalization with
pseudo invariant

features (PIFs),
multi-temporal depth

invariant indices
(DII), followed by SVM.

Supervised. 1 (bleached
coral). PCCCD.

[122] Object-based. 2017–2019 Unsupervised ISODATA
classification. Unsupervised. 4 PCCCD.
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Table 3. Cont.

Authors
Pixel or

Object-Based
Time-Series Classification Method

Supervised or
Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[23] Pixel-based.
2000–2014,
2002–2014,
2001–2015

Pixel-based-SVM. Supervised. 2 PCCCD.

[112] Pixel-based. 2009–2015

Spectral linear unmixing
using IDL

CONSTRAINED_MIN
optimization algorithm
followed by assigning

class thresholds.

Supervised. 13 PCCCD.

[113] Object-based. 2001–2015 Manual
polygon delineation. Supervised.

8 (habitat
scenario

trajectories).
PCCCD.

[114] Object-based 2014–2016

Unsupervised IRMAD to
detect areas of change,

OBIA–RF to classify
classes, overlaying
images to perform

supervised
change detection.

Unsupervised
and

Supervised.

10 habitat
classes and 5

classes of
change type.

PCCCD.

[115]

Object-based
(multiresolution
segmentation)

and pixel-based.

2013–2015

OBIA–RF
change prediction,

pixel-based-RF
change prediction.

Supervised.

5 change types
(i.e., reef

sediments
extension).

MT-OBCD.

[123] Pixel-based. 1994–2014

Unsupervised Iterative
self-organizing class
analysis (ISOCLASS)

followed by supervised
reclassification based on

visual interpretation.

Unsupervised
and

Supervised.
5 PCCCD.

[110] Pixel-based. 2001–2014 SVM Supervised. 11 PCCCD.

[22] Pixel-based. 1987–2013

ISODATA clustering
followed by

unsupervised k-means
classification; MLC.

Unsupervised
and

Supervised.

10
unsupervised,
5 supervised.

PCCCD.

[124] Pixel-based. 2005–2008

MLC for mapping 5
classes then ‘differences in
reflectance values between
two images within the coral
classes were used to detect

bleached corals.’

Supervised. 5 PCCCD.

[24]

Object-based
(manually
delineated
polygons).

1972–2007
Photo-interpretation

based on manual
polygon delineation.

Supervised.

3, 19, and 42
(based on level

1, 2, and
3 maps).

PCCCD.
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Table 3. Cont.

Authors
Pixel or

Object-Based
Time-Series Classification Method

Supervised or
Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[105] Pixel-based and
object-based. 2002–2004

Post-cyclone coral
community structure

maps:
Photo-interpretation

based on manual polygon
delineation, pixel-based

MLC, OBIA-MLC;
Pre-cyclone community
maps: post-cyclone coral

community structure classes
were used to label

pre-cyclone polygons based
on consistent colour and

texture visible on the images,
and also accounting for

proximity [105].

Supervised. 20 PCCCD.

[111] Pixel-based. 1991–2002 Parallelepiped
classification. Supervised. 6 PCCCD.

[14]

Object-based
(manually
delineated
polygons).

1973–2007
Photo-interpretation

based on manual
polygon delineation.

Supervised. 15 PCCCD.

[106] Pixel-based. 1984–2002 Mahalanobis distance
classification. Supervised. 4 PCCCD.

[116]

Object-based
(timed automata

model),
Pixel-based
(minimum

distance
classification).

2002–2004

A combined generic
timed automata model of
reef habitat trajectories
and classified remotely

sensed imagery based on
MD classification.

Supervised. 36 (habitat
classes).

PCCCD,
Modelling

(generic
timed

automata).

[119] Pixel-based. 1990–2001

Unsupervised
ISODATA classification
followed by calculating

the median coefficient of
variation (COV). Images
were then segmented by
habitat to create habitat

masks and also
segmented by

representative quadrants.
The median COV for

each habitat and quadrat
were calculated before

performing a
Kruskall–Wallis

nonparametric test to
determine whether

differences between the
median COV values

were significant at the
0.05 level.

Unsupervised
and

Supervised.

6 class habitat
map, test for
significant
differences.

PCCCD,
statistical
analysis.
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Table 3. Cont.

Authors
Pixel or

Object-Based
Time-Series Classification Method

Supervised or
Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[125] Pixel-based. 1987–2000

Multi-component change
detection: image

differencing to determine
areas of significant
change followed by

MLC. Images were then
‘combined’ to create a

‘from-to change map.’

Supervised.

4 benthic
classes each

with 6 possible
change types.

PCCCD.

[126] Pixel-based. 1991–2003,
2000–2001

Unsupervised K-means
clustering followed

by PCA.
Unsupervised. 3 PCCCD.

[117] Pixel-based. 1984–2000

Radiative transfer
simulation and also an
image normalisation

method [127] followed
by digital

number comparison.

Supervised.

2 (radiative
transfer

simulation:
bleached coral,
healthy coral),
2 (normalisa-
tion method:

slightly or
non-bleached,

severely
bleached).

PCCCD (nor-
malisation
method),

Modelling
(radiative
transfer

simulation).

[109] Pixel-based. 1984–2000 Mahalanobis Distance
classifier. Supervised. 4 PCCCD.

[108] Pixel-based. 1981–2000 Mahalanobis Distance
classifier. Supervised. 4 PCCCD.

[128] Pixel-based.
1998 (February)–

1998
(August)

Image differencing based
on mean (3 × 3) filtering,
PCA, difference between
local variation calculated
as a standard deviation

in a 3 × 3
neighbourhood.

Supervised. 1 (bleaching
detection). PCCCD.

[118] Pixel-based. 1994–1996 Getis Statistic. Supervised.
Test for

significant
difference.

PCCCD—
Spatial

autocorrela-
tion.

[107] Pixel-based. 1984–1999 Mahalanobis Distance
classification. Supervised. 4 PCCCD.

(Unsupervised ISODATA Clustering [22,122] and photointerpretation based on manually delineating poly-
gons [14,24] has been grouped into ‘object-based’ even though these polygons are not derived by utilizing a
segmentation algorithm such as those derived from OBIA. Accuracies are not reported since no consistent accu-
racy metric (i.e., overall accuracy) is used between all publications. Sensor/spatial resolution of imagery used
is also not reported as it is in Tables 1 and 2 since it is not directly relevant in terms of identifying the change
detection methodology and since accuracies are not reported (i.e., sensor/spatial resolution affects accuracies,
therefore, should be included with accuracies). Pixel-based modelling [116], simulation [117] and statistical
analysis [118,119] approaches have been grouped into PCCCD).

Due to the logistical complexities inherent to collecting in situ reference data from
coral reef sites, there are very few consistent long-term in situ reference data sets available.
Therefore, to map benthic changes over long time periods (>30 years), scientists have had to
collate any available in situ reference data and imagery. This may not be consistent in terms
of in situ reference data acquisition methodology, imagery type (i.e., aerial photographs
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and satellite imagery), image extent, and imagery acquisition dates. For example, in order
to map fifty years of benthic habitat changes occurring on the outer reef flats of Grand
Recif of Toliara in southwest Madagascar, Andréfouët et al. [129] used an imagery data set
consisting of a combination of irregularly dated historical aerial photographs and satellite
imagery from different satellite sensors (Quickbird, WorldView-2, Landsat-5, Landsat-7). In
addition, there was a training and validation data set consisting of a combination of in situ
reference data derived from benthic photo-transects as well as data derived from reference
to hand drawn maps. Such mixed data sets make it difficult to train machine-learning
algorithms to produce accurate benthic maps that can be used in PCCCD. In such instances,
photointerpretation based on manual polygon delineation has been demonstrated as being
a suitable alternative [14,129], although as previously mentioned, it is difficult to replicate
since it is relatively subjective.

Because of the increase in high temporal and high spatial resolution satellite imagery
now available to coral reef remote sensing scientists, it is now possible to ensure the
consistent spatial and spectral resolution of imagery to be used for coral reef benthic change
detection. For example, Planet Labs provide high spatial resolution (<5 m) multispectral
satellite imagery covering the entire Earth’s landmass with a daily temporal resolution.
However, even with high temporal resolution satellite imagery, for a benthic change
detection methodology to be relatively objective in nature compared to manual delineation,
coincident in situ reference data are required. This requirement remains a primary limitation
in relation to the spatio-temporal scalability of coral reef benthic change detection regardless
of whether PC-PBCD, PC-OBCD, or MT-OBCD is used.

To address this limitation, Gapper et al. [23] investigated the use of an SVM algorithm
applied to binary (coral and not coral) PC-PBCD and tested its spatial generalisability
when applied to new reef sites that contained no site-specific in situ reference data. Four
reef sites were used with an iterative classification process applied whereby each reef
was first classified individually (training and test data derived from the same reef) using
a site-specific SVM algorithm, then subsequently applying an SVM algorithm that has
been trained on data derived from the three other reefs that they refer to as a controlled
parameter cross-validation (CPCV) procedure. Site-specific overall accuracies ranged from
69% to 88% while the CPCV overall accuracies ranged from 65% to 81%. Although the
CPCV overall accuracies were on average 10% lower than the overall accuracies of the
site-specific SVM algorithms, and the fact this approach was tested on medium resolution
(30 m) Landsat-7 and Landsat-8 imagery, which only allowed for binary (coral or not coral)
PC-PBCD, Gapper et al. [23] has demonstrated the ability of an SVM to spatially generalise
to new reefs, while maintaining moderate to high overall accuracies.

2.3.2. Recurrent Neural Networks Applied to Land Cover Change Detection Using
Multispectral Satellite Imagery

Deep learning frameworks are also emerging as new algorithmic approaches for
change detection using multispectral satellite imagery. So far though, they have not
been applied to coral reef benthic change detection. When it comes to processing multi-
temporal imagery, there is a subset of deep learning frameworks known as recurrent
neural networks (RNNs) that are suited to dealing with sequential time series data [34,35].
A key difference between RNN frameworks compared to the PC-PBCD, PC-OBCD, and
MT-OBCD methods currently used for coral reef benthic change detection is their ability
to learn information relating to the difference between corresponding pixels within multi-
temporal imagery (i.e., the difference between a pixel in the time-two image compared
to the corresponding pixel in the time-one image) and store that learned information as a
hidden state. This hidden state allows the RNN framework to detect changes in any new
corresponding pixels added to the sequence (i.e., the corresponding pixel at time-three
compared to the same pixel at time-two) without further training, since it still contains
the stored memory of prior inputs.
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While simple RNNs can suffer from the vanishing and exploding gradient problems,
recurrent neural networks composed of Long Short-Term Memory units (LSTM), first
introduced by Hochreiter and Schmidhuber [130], are less prone to this problem. Each
LSTM unit contains a core memory cell that is regulated by three gates: an input gate, an
output gate, and a forget gate (Figure 10). The core memory cell remembers information
between multi-temporal data, while the input gate controls what new information is added
into the cell, the forget gate controls what information is kept within the core memory cell
or forgotten, and the output gate controls the information used to compute the output
activation. For multi-temporal satellite imagery, recurrent connections between LSTM units
at each time step allow the model to learn information relating to the difference between
corresponding pixels (pixel from the time-two image and the corresponding pixel from
the time-one image) that can subsequently be used for binary and/or multi-class change
detection [34].

 
Figure 10. Basic conceptualisation of an LSTM unit where Xt represents the input vector at time t. It,
Ot, Ft, and Ct represent the input gate, output gate, forget gate, and core memory cell, respectively.
Blue arrows indicate directional information flow. Dotted blue arrows indicate peephole connections.
This illustration is based on the illustration of an LSTM unit in Figure 5 depicted in Lyu et al. [34].

Lyu et al. [34], who were perhaps the first to use an RNN framework for the purpose of
land cover change detection using multispectral satellite imagery, detected binary (changed
and unchanged) and multi-class (i.e., city expansion, changed soil region, and changed
water areas) changes at three different city sites in China using an LSTM framework they
refer to as REFEREE (Figure 11). Looking at their REFEREE framework in Figure 11, it
can be seen that first the input layer receives a 6-band pixel (pixel from a multispectral
image with six spectral bands) that has been extracted from the T1 image (image at time-1).
Next, the hidden layer receives this input and calculates its state information (which
can be thought of as information about this particular pixel at this particular point in
time) and stores this information. It is important to note that the hidden layer consists of
LSTM units. The corresponding 6-band pixel from the T2 image (image at time-2) is then
input to the hidden layer simultaneously, whereby change information between these two
corresponding pixels can be learned by the current hidden layer. The label of ‘changes’ or
‘no changes’ can then be predicted in the decision layer.

Lyu et al. [34] compared their LSTM framework to four conventional change detection
methods (change vector analysis (CVA), principal component analysis (PCA), iteratively
reweighted multivariate alteration detection (IRMAD), and Slow Feature Analysis (SSFA))
for their binary change detection and three methods for their multi-class change detection
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(support vector machine (SVM), Decision Tree (DT), and a CNN). The results of their binary
change detection experiments showed that their LSTM framework achieved the highest
overall accuracies at three sites (the overall accuracies were all 98%), outperforming CVA
(70–87%), PCA (74–90%), IRMAD (84–94%), and supervised slow feature analysis (SSFA)
(95–98% (When overall accuracies are rounded to the nearest whole number of the LSTM
of Lyu et al. [34], the highest is 98%, which is the same as the highest overall accuracy
for SSFA, however, when rounded to the nearest one decimal place the LSTM is higher
(98.4%) compared to the SSFA (97.6%)). Their multi-class change detection experiments
resulted in their LSTM framework again achieving the highest overall accuracies (95–96%),
outperforming CNN (92–93%), SVM (80–84%), and DT (70–71%). Lyu et al. [34] also
demonstrated that their LSTM framework is capable of spatio-temporal generalisation
when applied to binary change detection. This means it can transfer a learned change rule
(information relating to the difference between corresponding pixels from multi-temporal
imagery) to new multi-temporal imagery of a different city that the LSTM framework has
not been trained on without requiring any extra learning processes. All imagery used in
their transfer experiments had a similar spectral resolution (six bands) and the same spatial
resolution (30 m). Their transfer experiments for binary change detection using different
numbers of training samples ranging from 200–1000 resulted in overall accuracies ranging
from 72–97%.

 
Figure 11. Illustration of the RNN-LSTM framework developed by Lyu et al. [34], which they refer to
as REFEREE. The hidden layer consists of LSTM units as illustrated in Figure 10. This illustration is
based on the illustration in Figure 4 depicted in Lyu et al. [34].

Another binary and multi-class land cover change detection framework was developed
by Mou et al. [35] who used a recurrent convolutional neural network (ReCNN) that
extracts joint spectral-spatial-temporal features from bi-temporal multispectral images.
Their ReCNN combined the ability of a CNN to extract contextual features with an RNN’s
ability to model the temporal correlation between multi-temporal data. Their publication
compared their ReCNNs’ overall accuracy with the overall accuracy of six conventional
land cover change detection methods (CVA, PCA, multivariate alteration detection (MAD),
IRMAD, DT, and SVM). In addition, the LSTM framework referred to as REFEREE that was
developed by Lyu et al. [34] was also compared, as well as three variations in the recurrent
sub-network of their ReCNN framework. One had a fully connected RNN (ReCNN–FC),
a second had LSTM units as the recurrent component (ReCNN–LSTM), and a third had
Gated Recurrent Units (ReCNN–GRU). For both binary and multi-class change detection
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experiments, the overall accuracy of their ReCNN–LSTM achieved the highest overall
accuracies ranging from 98–99%, which proved superior to the six conventional change
detection methods (75–96%), as well as the REFEREE model of Lyu et al. [34] and the three
variations in the recurrent sub-network of their ReCNN (95–99% (When the ReCNN–LSTM
and ReCNN–GRU frameworks of Mou et al. [35] are rounded to the nearest whole number
of 99%, they are the same. However, in Mou et al. [35] they round overall accuracies to the
nearest two decimal points which shows the ReCNN–LSTM achieving the highest (98.70)
compared to the ReCNN–GRU (98.64)). However, the spatio-temporal generalisability of
their ReCNN framework was not tested.

3. Conclusions

3.1. Coral Reef Benthic Mapping

In relation to mapping coral reef benthic composition using multispectral satellite
imagery, Tables 1 and 2 show a total of 47 papers; 17 are pixel-based and 30 are object-
based. The most used pixel-based machine-learning classification algorithm is MLC, which
is used by 47% of publications in Table 1, followed by RF, SVM, and MDM in second
with each being used by 12%. In relation to object-based publications, aside from OBIA
followed by expert driven membership rulesets (23%), SVM is the most used machine-
learning classification algorithm, being used by 17%, followed by RF and k-NN in second
place, each being used by 12%. Based on these two tables, we can conclude that object-
based machine-learning classification algorithms are more commonly used compared to
pixel-based. Furthermore, object-based machine-learning algorithms are not as prone to
pixel-based issues mentioned in Section 2.1.

It is not possible to directly compare all machine-learning algorithms and change
the detection methods covered in this review because of inconsistencies in classification
schemes. These inconsistencies can be caused by a variety of differences in imagery
(spectral and spatial resolutions), in situ reference data collection methodologies, the
number and types of benthic classes mapped, and accuracy assessment protocols. It is
clear that currently the main limitation in relation to spatio-temporal scalability is the
requirement of coincident in situ reference data. It should be noted that this review focused
on overall accuracy as the metric used to determine the accuracy of each machine-learning
algorithm reviewed. However, the overall accuracy does not provide insight into class-
specific accuracies. Therefore, further investigation is required to determine the utility of
each algorithm in relation to class-specific accuracies.

In relation to spatio-temporal generalisation, only three publications in Tables 1 and 2
tested the generalisability of machine-learning algorithms [31,32,41], and one is still yet
to verify the accuracy of their OBIA–RF s generalisability [59]. Based on the findings of
these four publications, we believe there are two current approaches that have the potential
to increase the spatio-temporal scalability of coral reef benthic mapping. The first is to
use expert-derived training and validation samples [59,131]. This approach is necessary
because existing pixel- and object-based machine-learning classification algorithms require
coincident in situ reference data. Therefore, to increase their spatial scalability to a global
scale, in situ reference data sets need to increase to a global scale as well. While [59], as part
of the Allen Coral Atlas, have adopted this approach developed by Roelfsema et al. [131] on
a global scale, they do not, however, report the accuracy of their object-based RF algorithm
in areas outside the extent of their reference data; therefore, it remains currently unvalidated
in those areas.

The second approach is to identify machine-learning algorithms capable of spatio-
temporal generalisation. To this end, Gapper et al. [41] used pixel-based Linear Discrimi-
nant Analysis to map two benthic classes (coral and algae/sand). However, this was based
on low resolution (30 m) Landsat-8 imagery, making it prone to pixel-based issues and
was limited in terms of the number of benthic classes that could be mapped. Li et al. [32]
demonstrated that na FCN framework combined with a k-NN classification algorithm can
achieve high overall accuracies in relation to mapping three benthic classes (coral, seagrass,
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and sediment) using high resolution WorldView-2 (1.9 m) and PlanetScope (3.7 m) imagery
and also demonstrated spatio-temporal generalisation. Furthermore, Asanjan et al. [31]
developed the LAPDANN framework that can use labeled samples from high resolution
WorldView-2 imagery (1.9 m) to accurately predict five benthic classes (reef crest—coralline
algae ridge, fore-reef, back-reef pavement or sediment, back-reef coral framework, and
seagrass meadows) in medium resolution Sentinel-2 imagery (10 m) with a high over-
all accuracy. This demonstrates an ability to generalise to different sensors and spatial
resolutions. Based on these papers, the deep learning frameworks of Li et al. [32] and Asan-
jan et al. [31] appear to hold the most potential in relation to increasing the spatio-temporal
scalability of coral reef benthic mapping.

3.1.1. Coral Reef Benthic Change Detection

In relation to change detection, Table 3 shows 26 papers that have mapped coral reef
benthic change over time. Most (54%) of these use some form of pixel-based PCCCD.
The most used pixel-based machine-learning algorithm used in PBCD is the Mahalanobis
distance classification algorithm, used by 15% of publications in Table 3 followed by MLC
and SVM, each used by 12%. Aside from manual polygon delineation and class assignment
which is used by 12% of publications in Table 3, the RF algorithm is the most used object-
based machine-learning algorithm in OBCD, used by 8% of publications. None of the
26 publications in Table 3 have demonstrated spatio-temporal generalisation. However,
in this review we did identify the LSTM framework of Lyu et al. [34] that has proven
superior in terms of overall accuracy compared to post-classification land-cover change
detection methodologies. It has also demonstrated spatio-temporal generalisability. Coral
reef benthic mapping and change detection may be a more difficult task to accomplish
compared to land cover mapping and change detection because of the further complication
of the water surface and water column light scattering and absorption affecting spectral
reflectance. However, we believe it is reasonable to hypothesize the potential utility of the
LSTM framework for binary and/or multi-class coral reef benthic change detection using
multispectral satellite imagery.

3.1.2. Future Research

Given the increase in the number of publications using deep learning frameworks for
the purpose of mapping and change detection using remotely sensed imagery, we acknowl-
edge that other deep learning frameworks may also be candidates for spatio-temporal
generalisation in relation to coral reef benthic mapping and change detection. However,
based on examples in this review we believe there are four potential areas for further
investigation relevant to increasing the spatio-temporal scalability of coral reef benthic
mapping and change detection. These potential areas are to determine: (1) whether the FCN
framework of Li et al. [32] (NeMO-Net) can generalise to different biogeographical regions
that might exhibit different benthic compositions and spatial complexity; (2) whether the
LAPDANN framework of Asanjan et al. [31] can spatially generalise when more training
data-capturing variations in sensing conditions over multiple reefs is used; (3) whether
the OBIA–RF of Lyons et al. [59], using the expert-derived training and validation data
approach of Roelfsema et al. [131], can generalise to areas outside the extent of their refer-
ence data; and (4) the utility of the LSTM framework of Lyu et al. [34] for coral reef benthic
change detection.
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Abstract: Objectives of this study are to evaluate the performance of different satellite-derived
bathymetry (SDB) empirical models developed for multispectral satellite mission applications and
to propose an uncertainty model based on inferential statistics. The study site is the Arcachon Bay
inlet (France). A dataset composed of 450,837 echosounder data points and 89 Sentinel-2 A/B and
Landsat-8 images acquired from 2013 to 2020, is generated to test and validate SDB and uncertainty
models for various contrasting optical conditions. Results show that water column optical properties
are characterized by a high spatio-temporal variability controlled by hydrodynamics and seasonal
conditions. The best performance and highest robustness are found for the cluster-based approach
using a green band log-linear regression model. A total of 80 satellite images can be exploited to
calibrate SDB models, providing average values of root mean square error and maximum bathymetry
of 0.53 m and 7.3 m, respectively. The uncertainty model, developed to extrapolate information
beyond the calibration dataset, is based on a multi-scene approach. The sensitivity of the model to
the optical variability not explained by the calibration dataset is demonstrated but represents a risk
of error of less than 5%. Finally, the uncertainty model applied to a diachronic analysis definitively
demonstrates the interest in SDB maps for a better understanding of morphodynamic evolutions of
large-scale and complex coastal systems.

Keywords: satellite-derived bathymetry; uncertainty; coastal; morphodynamics; multispectral;
empirical model; cluster-based approach; Sentinel-2; Landsat-8

1. Introduction

Coastal areas are major socio-ecological interfaces dramatically exposed to climate
change and anthropogenic pressures [1,2]. Implementing effective climate change adap-
tation and disaster risk reduction policies requires correctly anticipating the response of
coastal environments to long-term forcing factors and to the increase in intensity and
frequency of hydrometeorological hazards. However, this remains a major challenge,
particularly for morphodynamics models addressing multi-scale approaches [3]. For imme-
diate needs, improving coastal impact model prediction involves systematic monitoring
of coastal zones based on both space-based and in situ observation systems [4,5]. The
availability of time-referenced bathymetry data with the appropriate temporal and spa-
tial resolution is still greatly lacking [6] and appears to be a major key to the progress of
morphodynamic models [7].

A major obstacle to the availability of accurate large-scale bathymetric data is the
high cost (in terms of acquisition and/or post-treatment) associated with conventional
observation systems, i.e., echo sounders on ships and LiDAR on aircraft. As a result,
and due to constantly enhanced instrument features, radar [8] and optical [9] satellite
imagery is expected to be a key complementary tool for generating bathymetry maps in the
coming years. Two distinct approaches are used to retrieve Satellite-Derived Bathymetry
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(SDB). The wave-based inversion exploits the relationship between water depth and surface
gravity wave speeds and directions [10]. The radiative signal-based inversion exploits
the relationship between water depth and water-leaving radiance for optically shallow
waters [11]. Although the light propagation in the water column along the surface-bottom-
surface path is limited by the diffuse attenuation coefficient of irradiance [12,13], this
second approach is often the only alternative for environments controlled by wave and
tidal current energy. In these mixed energy environments, the Doppler effect can negatively
affect SDB accuracy of the wave-based inversion method [14].

Radiative signal-based inversion models were initially proposed in the late 1970s [15]
and then reformulated in the 1990s [12,13]. Based on these formulations, many empiri-
cal [16] and physics-based algorithms [17,18] were developed over the past two decades.
For physics-based algorithms, field data are not required, potentially ensuring repro-
ducibility over space and time. However, their performances are strongly impacted by
environmental noise and various sources of error performed on the water-leaving sig-
nal [19]. Empirical algorithms require a training dataset composed of sounding points in
order to statistically calibrate the inversion model. These approaches are site- and time-
dependent. Moreover, their accuracy depends on the spatial heterogeneity of substrate and
water column optical properties. To overcome these limitations, empirical approaches are
now associated with machine learning and multi-temporal techniques [20,21]. However,
in most cases, regardless of approach, SDB suffers from a lack of precise quantification of
uncertainty, limiting the massive scientific and operational exploitation of this product.

Uncertainty can be defined as a statistical parameter “characterizing the range of
values within which the true value of a measurement is expected to lie as defined within
a particular confidence level” [22]. Its accurate quantification remains a major issue for
most ocean color products [23]. For SDB applications, uncertainty is depth-dependent and
requires expressing it as a function of depth. However, in the scientific literature, metrics
used to describe the SDB uncertainty are most often computed for all data without differ-
entiating between the specific ranges of depth. Furthermore, the impact of extrapolating
models beyond the domain of the calibration dataset on uncertainty is rarely addressed
despite being a major issue due to often incomplete spatial data coverage [20]. Finally,
the uncertainty associated with SDB is essential information for data interpretation, and,
therefore, must be quantified when analyzing and interpreting bathymetric changes.

Objectives of this study are, therefore, to evaluate the performance and robustness
of well-established SDB empirical models and to propose and validate an uncertainty
model based on inferential statistics, and using a multi-scene approach for a mixed energy
coastal environment.

2. Materials and Methods

2.1. Study Area

The Arcachon Bay is a semi-enclosed lagoon of approximately 180 km2 located in SW
France (44◦40′ N, 1◦10′ W) (Figure 1). The lagoon is connected to the Atlantic Ocean through
a 10 km large tidal inlet, which disrupts the southerly longshore drift of the 110 km-long
stretches of sandy coast. The inlet is a mixed energy environment [24], subject to meso-
to macro-tidal conditions. The tidal range varies approximately from 1.5 m during neap
tide conditions to 5 m during spring tide conditions [25]. The wave climate is energetic
and strongly seasonally modulated with a monthly-averaged significant wave height Hs
(peak wave period Tp), ranging from 1.1 m (8.5 s) in July with a dominant west-northwest
direction to 2.4 m (13 s) in January with a dominant west direction [26]. Extreme wave
conditions with the 100-year return Hs picking at 11.5 m [27] were observed during winter,
where the significant wave height annually exceeds 6 m during storm events. The inlet
was composed of 3 main subtidal morphological units, i.e., the spit platform, the Ebb-tidal
delta, and the Flood-tidal delta, connected to a 9 m-deep northern channel and a 11 m-deep
southern channel. Their morphology changes dynamically on timescales from months to
years and decades [28,29].
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Figure 1. The Arcachon Bay inlet located south of the Gironde estuary at the end of the 110 km-long
linear Gironde sandy coast (SW France). The three main morphological units of the study area are
the spit platform connected to the Cap Ferret sand spit, the edd-tidal, and the flood-tidal deltas.

Optical properties of seawater along the Arcachon inlet change with hydrodynamics
and seasonal conditions. They were mainly controlled by the suspended particulate and
colored dissolved organic matters coming from the ocean, lagoon, or adjacent coasts. The
particulate organic matter (POM) was mainly dominated by phytoplankton (89% on aver-
age) and a non-negligible contribution of anthropogenic (6%) and river (5%) sources [30].
The seasonal variability of total suspended particulate matter (SPM) was controlled by
river discharges and biological and hydro-sedimentary processes [31]. Over the period
2010–2020, the mean annual values of the concentration of SPM, chlorophyll-a (Chl),
and particulate organic carbon to nitrogen ratio (C/N ratio, proxy of the origin of POM)
were 4.95 ± 4.78 mg/L, 1.86 ± 0.79 μg/L, and 8.21 ± 20.13 mol/mol, respectively, at the
station Bouée 13 located north of the inlet (statistics extracted from the data set of the
French Coastal Monitoring Network SOMLIT). Maximum values of Chl (2.42 ± 1.33 μg/L)
were observed in spring due to phytoplankton blooms, while maximum values of SPM
(7.90 ± 7.32 mg/L) were recorded in winter due to resuspension processes. These condi-
tions generated mildly to moderately turbid seawaters. The satellite-derived vertically
averaged diffuse attenuation coefficient for downwelling irradiance (Kd) at 545 nm ranges
from 0.32 to 0.79 m−1, with a mean value of 0.52 m−1 [11]. The bottom substrate of optically
shallow waters, defined as seawater surfaces where the bottom significantly affects the re-
mote sensing reflectance Rrs, was uniformly covered by medium quartz sand characterized
by a cross-section ranging from 200 to 400 μm [28,32].

2.2. Ground Reference Bathymetry Data

Echo sound bathymetric data of the Arcachon Bay inlet were collected every year from
April to October by the Direction Départementale des Territoires et de la Mer (DDTM) and
the Syndicat Intercommunal du Bassin d’Arcachon (SIBA). These surveys were mainly
carried out for the monitoring of navigation channels and the repositioning of navigation
buoys; thus, bathymetric data generally covered only part of the study site. Due to the
large lateral extent (almost 10 km from North to South), strong tidal currents and energetic
waves, and shallow water areas (spit platform, inter-channels banks), the Arcachon inlet
was a very challenging site to survey with conventional tools, which explained the lack

385



Remote Sens. 2022, 14, 2350

of complete synchronous coverage. A comprehensive dataset of 450,837 echo sound data
points collected between 2013 and 2020 was used in this study (Table 1). Echo sound data
were acquired with an Odom Hydrotrac single-beam echosounder co-located with a Leica
DGPS during low or high tide slack. The observed depths were then corrected for roll,
pitch, yaw, GPS latency, and theoretical tide computed at the Arcachon-Eyrac reference
tide gauge at the time of acquisition. Finally, the bathymetry (noted, Zsitu), which was
associated with the corrected depth reduced within the appropriate vertical datum, was
obtained after the correction of the local chart datum of the Lowest Astronomical Tide
(LAT). Accuracy on Zsitu was assumed to be within 0.2 m.

Table 1. Date, location (ED: Ebb tidal Delta; FD: Flood tidal Delta; SP: Cap Ferret sand Spit Platform;
CO: Coastal Ocean; CH: Channel), number of echo sound data points, and the minimum, maximum
and median values of Zsitu, associated with the different bathymetric surveys.

Date Location
Number
of Points

Zmin (m) Zmax (m) Zmedian (m)

15 October 2013 CH 2231 1.1 17.5 5.6
27 November 2013 ED; CH 5716 0.0 18.1 5.0

18 March 2014 ED; CH 155,077 0.0 19.7 5.4
16 April 2014 FD; CH; CO 40,620 0.0 25.5 6.4
28 May 2014 SP; CH 4727 0.0 21.1 4.0

23 September 2014 ED 3750 0.0 16.4 5.9

19 March 2015 ED 5266 0.0 17.3 5.5
15 April 2015 FD; SP; CO 102,422 0.2 24.4 8.1

25 September 2015 ED; CO 11,552 0.0 18.4 5.1
13 October 2015 ED 9406 0.0 20.3 3.7

22 March 2016 ED; CH 5960 0.0 19.0 6.1
15 May 2016 SP 2986 0.0 25.5 5.1

11 April 2017 ED; CH 3856 0.0 17.0 5.9
23 June 2017 FD; CH; CO 8804 0.0 22.0 6.6

20 September 2017 ED; SP 7283 0.0 18.3 4.5
15 November 2017 SP 8348 0.0 18.8 3.1

25 April 2018 ED 4446 0.0 16.3 5.6
29 May 2018 FD; CO 9276 0.0 25.2 7.9

08 October 2018 ED; CH; CO 7300 0.0 24.3 5.5
26 November 2018 SP 1988 0.0 18.0 4.6

20 March 2019 CO 2484 0.0 21.6 11.2
19 April 2019 ED; SP 8579 0.0 16.1 4.5
14 May 2019 FD; CH 4874 0.0 25.4 5.1
17 June 2019 FD; CH 3236 0.0 21.3 4.8

16 September 2019 ED; CH 6835 0.0 16.1 4.8

23 March 2020 ED 6669 0.0 16.1 5.0
01 July 2020 FD; CH; CO 4833 0.1 26.1 13.1

01 September 2020 SP 6817 0.0 17.4 2.5
19 October 2020 SP; CO 5496 0.0 25.9 5.1

2.3. Selection and Processing of Landsat-8 and Sentinel-2 Images

The Landsat-8 satellite mission was launched on 11 February 2013 by the National
Aeronautics and Space Administration (NASA). Its payload comprised the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). OLI provides enhanced instru-
ment features for aquatic surface observation compared to former Landsat sensors [33].
OLI operates in the visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR)
for 9 spectral bands with a 12-bit radiometric resolution. Its spatial resolution was 30 m
for multispectral images and 15 m for the panchromatic band. Landsat-8 Collection 1
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Level 1 products were downloaded freely on https://earthexplorer.usgs.gov (accessed on
31 March 2022).

Sentinel-2A and 2B were twin polar-orbiting satellite missions launched in June 2015
and March 2017, respectively, by the European Space Agency (ESA). The multispectral
instrument (MSI) mounted on the Sentinel spacecraft was very similar in design and
requirements to OLI [34,35]. MSI acquired data in 13 spectral bands from VIS to SWIR
with a spatial resolution ranging from 10 to 60 m and a radiometric resolution of 12 bit.
Sentinel-2 Level 1C products associated with the T30TXQ tile were downloaded freely from
https://scihub.copernicus.eu/ (accessed on 31 March 2022). OLI and MSI products were
sufficiently consistent to be merged and to provide comprehensive observations for the
monitoring of aquatic systems [36]. The combination of the products of these 3 missions
yielded a global median average revisit interval of 2.9 days since the repeat cycle is 16-days
for Landsat-8 and 5-days for Sentinel-2A/B [37].

SDB requires satellite images with high standards of quality, considerably re-
ducing the number of usable images. The accuracy of SDB retrievals was strongly
impacted by environmental noise caused by atmospheric and ocean surface effects [21].
Before applying atmospheric correction models, a pre-selection of satellite images was
performed based on environmental criteria such as the absence of foam due to break-
ing waves, the absence of clouds that should not cover more than 10% of the images,
and the absence of sun glint. An additional criterion of temporal proximity between
bathymetry surveys and the date of image acquisition was also required, given that
rapid bathymetry changes could be observed along the Arcachon inlet in response
to energetic hydrodynamic conditions. For example, Capo et al. [11] demonstrated
that, on average, sand bars along the Arcachon inlet migrated by about 10 m a month.
Considering the spatial resolution of MSI products, only satellite images acquired
within a 30-day time window of the bathymetry surveys were selected to avoid having
larger bathymetric changes than the spatial resolution of images. Application of these
4 criteria to the 2013–2020 Landsat-8 and to the 2015–2020 Sentinel-2A/B archives
allowed selection of 89 satellite images, among which 49 were Landsat-8 images and
40 were Sentinel-2A/B images (Figure 2a). Most of the images were acquired in Octo-
ber, September, April, and March (Figure 2b), when atmospheric and swell conditions
(Figure 2c) were most suitable for acquiring high-quality images [38] and bathymetric
field data, respectively.

In optically shallow waters, the remote sensing reflectance (Rrs) is a function of
water depth, bottom albedo, and water column optical properties. Extracting Rrs from
the top-of-atmosphere signal recorded by sensors requires accurate and consistent at-
mospheric corrections. In this study, the dark spectrum fitting atmospheric correction
method (DSF), associated with the open access ACOLITE processor, was selected to
process satellite images from Level-1C to Level-2A [39,40]. ACOLITE-DSF demon-
strated high performance in deriving bathymetry from empirical SDB models [41].
This high performance compared to other atmospheric correction algorithms may be
explained by less noisy ACOLITE products due to the assumption of spatially consis-
tent aerosols [41,42]. Landsat-8 and Sentinel-2 A/B images were, therefore, processed
to Rrs using the fixed aerosol optical thickness option for our 20 km × 20 km region
of interest. Due to the large amount of bathymetry and satellite data, the sun glint
correction option was not applied. All pixels contaminated by the sun glint effect
were masked to avoid additional environmental noise for the assessment of the SDB
empirical model performances. Finally, OLI and MSI data were projected on the same
30 m × 30 m grid to enable a joint statistical study to be carried out.
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Figure 2. (a) Acquisition dates of the different Landsat-8 and Sentinel-2 A/B images belonging to the
dataset; (b) distribution of these images per month; and (c) average monthly value of the significant
wave height (Hs) computed over the period 2013–2020.

2.4. Inter-Comparison of SDB Empirical Model Performance

Three empirical approaches were selected for inter-comparison of performances. While
many SDB empirical models were developed in the literature, the choice of these 3 ap-
proaches was motivated by the fact that they were representative of the 3 main well-
established and emerging algorithm categories. The linear regression model (LRM) using
log-transformed bands or log-transformed band ratios was originally developed by [43]
and [44], and recently revisited by [41] for Sentinel-2A/B applications. The switching
model (SM) [19] and the cluster-based regression model (CBR) [21] can be considered as an
extension of LRM. SM was based on 2 LRM using the Red-Blue (LRM-RB) and Green-Blue
(LRM-GB) log-transformed band ratios. This multi-conditional approach selects the most
sensitive log-transformed band ratio for a predefined water depth range. LRM-RB was
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used for very shallow waters, while LRM-GB was used for deeper regions. CBR segments
the region into different optical classes for which class-specific LRM were calibrated.

In practice, LRM is based on the following formulation:

Zsat = m1X + m0, (1)

where Zsat is the satellite-derived bathymetry (in meters) and X is the log-transformed
band or log-transformed band ratio. The different parameterizations of X used in this study
are log(B), log(G), log(R), log(B)/log(G), and log(R)/log(G), where B, G, and R are Rrs at
the blue, green, and red bands, respectively. m0 and m1 are the coefficients of the linear
regression established between the response variable Zsitu and the explanatory variable X,
retrieved from a least-square approach.

The linear regression models calibrated for each satellite image have a range of appli-
cation bounded by a lower limit (Zmin) and upper limit (Zmax) (Figure 3a,b). To compute
Zmin and Zmax, the entire range of X values was divided into 20 intervals, bins, of equal
sizes comprised between Xmin and Xmax. For each bin, the number of observations (Nbin)
and the standard deviation of Zsitu values (σbin) was computed. When Nbin was lower than
30 or σbin higher than 1 m, observations of the bin were removed. The Nbin value of 30 was
selected to ensure a statistical weight to the regression, while the choice of a 1 m-σbin filter
was performed to remove observations associated with a strong environmental noise that
generated large uncertainty on the Zsitu retrievals. The linear regression model was then
calibrated from filtered observations. Zmin and Zmax were defined as the minimum and
maximum values of Zsat computed from Equation (1).

SM was based on a multi-conditional procedure. In step 1, Zmax and Zmin values
associated with the different parameterizations of X are computed (Figure 3c). In step 2,
the calibration dataset is filtered to remove all values of Zsitu higher than the lowest Zmax
values (noted Zmax-ref). In step 3, the coefficient of determination (r2) of the linear regression
models calibrated for the different parameterizations of X are computed. In step 4, if the r2

value of the parameterization of X associated with Zmax-ref (noted Xref) is higher than all
other X parameterization r2 values, the associated LRM is selected for the range of Zsitu
values comprised between Zmin-ref and Zmax-ref. The calibration dataset is then filtered to
remove all values of Zsitu lower than Zmax-ref. Xref is no longer considered in the procedure
and the algorithm returns to step 2. In the opposite case, the LRM associated with Xref is
not considered and the algorithm returns to step 2.

Figure 3. Cont.
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Figure 3. Illustration of the satellite-derived bathymetry linear regression (LRM), switching (SM), and
cluster-based regression (CBR) methods for the 10 September 2020 Sentinel-2 cropped image. (a) Data
filtration procedure for the green band. X is the log-transformed green band. Zsitu is the field-reduced
depth (in m). The entire range of X values are divided into 20 bins of equal sizes comprised between
Xmin and Xmin. Nbin and σbin are the number of observations and the standard deviation of Zsitu

values per bins, respectively. When Nbin is lower than 30 or σbin higher than 1 m, observations of
the bin are removed (blue points). The red line is associated with the linear regression model for the
green band (LRM-G) computed from filtered observations (black points). Zmin and Zmax correspond
to the minimum and maximum values of Zsat computed from LRM-G. (b) Comparison between
Zsat derived from LRM-G and Zsitu. (c) Computation of the linear regression model for the red
band (LRM-R), Zmax and switching points (lim−, lim+). (d) Comparison between Zsat derived from
SM using LRM-R and LRM-G and Zsitu. Black points are associated with the smoothing interval.
(e) Example of classification of satellite image pixels into 8 optical classes using a k-means classifier.
(f) Comparison between Zsat derived from CBR and Zsitu. The color of points is associated with the
color of optical classes. (g) Location of Zsitu data points used in this example for calibration of LRM,
SM, and CBR.

If more than one LRM is selected, a procedure of weighting is applied between Zsat
values derived from the shallowest (LRM−) and deepest (LRM+) models to ensure a
smooth transition (Figure 3d). The lower and upper bounds of the smoothing intervals
are lim− = Zmax − σbin and lim+ = Zmax + σbin, respectively, where Zmax and σbin are
computed from the shallowest LRM. The equation of weighting is:

Zsat = α LRM− + (1 − α)LRM+, (2)
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where
α =

(
lim+ − LRM−)/(lim+ − lim−). (3)

This procedure for the switching method allows for the switching points (lim−, lim+)
to automatically adapt when the water column optical properties change.

For the CBR method, we selected a k-means clustering algorithm for classifying each
pixel into homogeneous optical classes, as in [21]. These unsupervised learning tech-
niques showed high performance in differentiating between optically contrasted seawater
classes [45,46]. The set of variables used for the classification was composed of B, G, R, and
NIR was Rrs at the near-infrared band. Then, class-specific linear regression models were
calibrated for each optical class using the LRM approach. To cover the optical variability of
the entire study area, we selected a number of 8 optical classes. This number of classes was
based on the assumption that optical conditions were controlled mainly by 3 independent
environmental variables, each taking 2 outcomes, water depth (deep or shallow), sediment
resuspension (yes or no), main origin of water column optical properties (ocean or lagoon),
i.e., 8 possible combinations. The spatial distribution of optical classes varied from one
satellite image to another, depending on hydrological conditions. One example of the
distribution is presented in Figure 3f. It is important to note that pixels assigned to classes
associated with optically deep waters or to classes that do not have enough Zsitu points for
calibration (see the LRM procedure) will be automatically masked (Figure 3e,g).

Four statistical parameters were used to assess and compare the performance of the
LRM, SM, and CBR methodologies applied to the 89 satellite images. The coefficient of
determination (r2), bias (Bias), mean relative absolute difference (MRAD), and root mean
square error (RMSE) were computed from the matchup dataset (DS) composed of Zsitu
and its estimator Zsat. The number of observations (NDS) varies with each pair of satellite
images and field bathymetry dataset. Bias, MRAD, and RMSE are computed as follows:

Bias =
1

NDS ∑NDS

i=1 (Zsat;i − Zsitu;i), (4)

MRAD =
1

NDS

NDS

∑
i=1

|Zsat;i − Zsitu;i|
Zsitu;i

× 100%, (5)

MSE =

√
1

NDS ∑NDS

i=1 (Zsat;i − Zsitu;i)
2. (6)

2.5. Assessment of SDB Uncertainty Using a Multi-Scene Approach

The calibration dataset often only partially covers the study area (Figure 3g). For
pixels associated with areas that were not sampled and were, therefore, not included
within the calibration dataset (here, referred as unsampled pixels), quantification of SDB
uncertainty requires taking into account 2 terms (Figure 4). The first term was associated
with the uncertainty of the SDB regression model. The second term was associated with
the uncertainty generated by the extrapolation of the SDB model beyond the calibration
domain. To estimate these 2 terms, an uncertainty model based on a multi-scene approach
was proposed. We expressed the uncertainty as a positive value and assumed that error
follows a normal distribution.

Combination of Landsat-8 and Sentinel-2 enables to have several image acquisitions
in a 1 month-interval around the bathymetric survey. Assume we have N usable images for
a given bathymetry survey. For each image, an SDB model was calibrated independently of
other SDB models generating N bathymetry maps which can be associated with N random
variables Zsat1, Zsat2, . . . ZsatN. Each variable was then separated into 2 parts comprising
observations associated with the DS-matchup dataset, ZDS

satj, and observations associated

with the NS-unsampled pixels dataset, ZNS
satj.
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Figure 4. Flowchart describing the multi-scene algorithm used to quantify the 95% uncertainty
on SDB.

The multi-scene approach allows to define a new variable Zsat as:

Zsat =
1
N ∑N

j=1 ZDS
satj. (7)

Quantification of uncertainty associated with the multi-scene model requires char-
acterizing the statistical distribution of errors over DS for different levels of bathymetry.
The entire range of Zsat values were divided into bathymetry intervals of 0.5 m comprised
between the minimum and maximum values. For each 0.5 meter-bin, the error term, εbin,
was computed as:

εbin = Zsat − Zsitu. (8)

392



Remote Sens. 2022, 14, 2350

For each bin, the normality of the εbin distribution was tested. If the normality was
rejected, observations associated with the given bin were removed. For the other bins,
the bias, εbin, was computed as the averaged value of εbin, and the uncertainty at the 95%
confidence level associated with the SDB multi-scene model was computed as:

Ubin = 1.96 × σεbin , (9)

where σεbin is the standard deviation of εbin.
Quantification of the uncertainty associated with the extrapolation of the SDB model

beyond the calibration domain was based on the model democracy theory or “one model
one vote” [47]. This theory requires that variables ZNS

sat1, ZNS
sat2, . . . ZNS

satN are reasonably
independent, equally plausible and that the range of model predictions represents the
uncertainty in the prediction. Independence is ensured by hydrodynamic conditions,
which change from one image to another, and which do not allow inference on the spatial
distribution of water column optical properties. The equal plausibility criterion is controlled
by a statistical test on the probability density functions that are supposed to be the same.
The last criterion is controlled by a test of normality for each pixels using the Shapiro–
Wilk normality test. To avoid the problem of a small sample, N should be higher than 5
if possible.

For each observation of ZNS
sat1, ZNS

sat2, . . . ZNS
satN , associated with a given pixel i of the

bathymetry maps, the spread of the ensemble is computed as:

si =
1

N − 1 ∑N
j=1

(
ZNS

satj;i − ZNS
satj;i

)2
. (10)

The uncertainty at the 95% confidence level associated with the true value of ZNS
sat,i and

generated by the extrapolation of the SDB model beyond the calibration is then given by:

UNS
i = tN−1;1−α/2 × si√

N
, (11)

where tN−1;1−α/2 is the critical value found from the t-distribution table. N − 1 is the degree
of freedom and α is the level of significance of the test. For a N and α value of 5 and 5%,
respectively, t4;0.975 is 2.776.

Finally, the total vertical uncertainty at the 95% confidence level associated with Zsitu
is computed as:

TVUNS
i = UNS

i + Ubin. (12)

Validation of the uncertainty model was carried out from a dataset composed
of 6 satellite images acquired in an interval of 1 month (S2A, 6 October 2017;_S2A,
11 October 2017;_S2A and L8, 16 October 2017;_L8, 25 October 2017; S2A, 31 Octo-
ber 2017) around a bathymetric survey characterized by one of the greatest spatial
coverages. DS was randomly separated into 2 parts comprising a calibration dataset
(DS-C) and a validation dataset (DS-V), which represented 67% and 33% of the data,
respectively. DS-C allows to compute Ubin, which was used to estimate TVUNS

i for
each observation of DS-V. DS-V allows to compute the error, εDS−V

i , associated with the
SDB multi-scene model for each observation as:

εDS−V
i = ZDS−V

sat,i − ZDS−V
situ . (13)

The uncertainty model was finally evaluated by computing the percentage of
absolute values of εDS−V

i lower than TVUNS
i . To avoid any biais due to the random

extraction of a specific dataset for DS-C and DS-V, an analysis of results was conducted
on 100 random samplings.
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3. Results

3.1. Hydrological Conditions and Spatio-Temporal Variability of Rrs

The dataset encompasses a wide range of hydrodynamic conditions. The number
of images per tidal stage (TS) varies depending on flood (N = 29), ebb (N = 26), low tide
(N = 19), and high tide (N = 15) conditions (Table 2). Tidal range (TR) and tidal level (TL)
data were normally distributed with a mean value of 3.10 ± 0.84 m and 2.16 ± 0.92 m,
respectively. Hs ranged from 0.25 to 2.20 m, with a mean value of 1.14 ± 0.50 m. Results
showed that variables TL and TS (ANOVA p-value of 1.10–11), and Season and Hs (ANOVA
p-value of 0.046) were not independent. However, there was a statistical relationship be-
tween TR and TS (ANOVA p-value < 0.001), which represents a sampling bias with respect
to hydrodynamic conditions. Low tide and flood were mainly associated with high TR val-
ues, while high tide and ebb show on average low TR conditions. TR was also significantly
correlated with TL, with a correlation coefficient value of −0.79 (p-value < 0.001).

Table 2. Descriptive statistics of environmental conditions (TS: Tidal Stage; TL: Tidal Level; TR: Tidal
Range; Hs: significant wave height) associated with the 89 Sentinel-2 and Landsat-8 images.

Season TS TR (m) TL (m) Hs (m)

Sp 20 HT 15 Mean 3.10 Mean 2.16 Mean 1.14
Su 24 LT 19 Sd 0.84 Sd 0.92 Sd 0.50
Fa 32 F 29 Min 1.50 Min 0.03 Min 0.25
Wi 13 E 26 Max 4.80 Max 3.60 Max 2.50

Sp: Spring; Su: Summer; Fa: Fall; Wi: Winter; HT: High Tide; LT: Low Tide; F: Flood; E: Ebb.

A principal component analysis (PCA) using the T-mode and S-mode orientations [48]
was used to characterize the complexity of the spatio-temporal patterns of Rrs in the
Arcachon inlet (Figure 5a). PCA was applied on G maps, as the green band was the most
sensitive band for moderate values of SPM [49]. The S-mode PCA focuses on recurrent
temporal patterns over space. The first principal component (PC1) explained 93.2% of the
total variance. The spatial pattern associated with PC1 exhibited homogenous correlation
values over the entire domain (Figure 5b). Statistical analyses performed between PC1 and
environmental factors showed a significant seasonal influence with an ANOVA p-value
lower than 0.001 (Table 3). The mean loading values for spring, winter, fall, and summer
were 62.8, 40.0, −20.0, and −57.5, respectively. PC1 can be interpreted as describing a
seasonal oscillation with high values of G in spring and winter probably associated with
phytoplankton bloom and sediment resuspension processes, respectively, and low values
in fall and summer.

The T-mode PCA focuses on recurrent spatial patterns over time. Results provide
additional information to analyze more precisely spatial processes controlling the variability
of G. The three first principal components accounted for 27.0%, 14.5%, and 6.9% of the
variance. PC1 displayed an out-of-phase relationship between the G anomalies in the
north and in the south (Figure 5c). A significant negative correlation was found between
the PC1 and TL (p-value < 0.01) and between PC1 and TS (p-value < 0.01) (Table 3). This
indicates that these anomalies of G were mainly controlled by tidal cycles. During low
tide, positive anomalies of G were observed in the south associated with the downstream
migration of turbid water dominated by lagoon optical properties, while negative anomalies
observed during hide tide were correlated to the presence of less turbid oceanic seawater.
PC2 displayed an out-of-phase relationship between the G anomalies on the western and
eastern side of the channel (Figure 5d). TS significantly impacts the PC2 loadings with an
ANOVA p-value lower than 0.05. The averaged loading value associated with the flood
was strongly negative (−20.7), while the averaged loading value of the ebb was strongly
positive (8.6). This indicates that PC2 describes a west-east oscillation of G controlled by the
variation in the tidal current direction. During ebb, a strong west-east gradient of turbidity
can be observed due to resuspension and advection of sediment on the eastern side of the
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channel. During the flood, the gradient was reversed, showing the highest turbidity values
on the western side of the channel.

Figure 5. (a) Optically deep-water study area (red line) for analysis of the spatio-temporal variability
of Rrs at the green band (noted G) using the 89 Landsat-8 and Sentinel-2 images; (b) the first principal
component of the PCA using the S-mode orientation, which explains 93.2% of variance; (c) the first
and; (d) the second principal components of PCA using the T-mode orientation, which explain
27.0% and 14.5% of the variance, respectively. Spatial patterns are presented as homogeneous
correlation maps.

Table 3. p-values (significance code: “***” 0.001; “**” 0.01; “*” 0.05) of statistical analyses between
the three first principal components using the S-mode and T-mode orientation and environmental
variables (TS: Tidal Stage; TL: Tidal Level; TR: Tidal Range; Hs: significant Wave Height).

S-Mode T-Mode
PC1 PC2 PC3 PC1 PC2 PC3

Season *** 0.20 0.92 * * 0.50
TS 0.34 * 0.12 ** * ***
TL 0.78 ** 0.48 ** 0.78 *
TR 0.58 * 0.33 * 0.27 0.82
Hs 0.56 * 0.33 0.13 0.61 0.85

3.2. Sensitivity of Linear Regression Models to Bathymetry Changes

The sensitivity of radiometric bands or ratios to bathymetry changes can be strongly
impacted by the water column optical properties, which show very specific spatial patterns
associated with the hydrodynamics forcing. To analyze this sensitivity, the mean and
standard deviation of Zsitu associated with the 20 X bins were computed for each image
and for the different parameterizations of X. For a given value of Zsitu mean, it was
assumed that the higher the standard deviation, the lower the possibility of statistically
differentiating this mean value from other means and, therefore, the lower the sensitivity.

Standard deviations associated with the G-band were lower than for the other X
parameterizations, except for bathymetric values deeper than 9 m (Figure 6a). On the other
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hand, R-band showed the highest standard deviations except for bathymetric values that
ranged from 2 m to 2.5 m. For G-band, the standard deviation was less than 1 m for all
bathymetry lower than 4.4 m. This value decreased to 4.1 m, 3.8 m, 3.4 m, and 3.2 m, for
B-band, B/G ratio, R-band, and R/G ratio, respectively. B-band and R-band showed a lower
sensitivity than the G-band. This confirms a comprehensive sensitivity analysis carried
out prior to this study, which demonstrates that the best performance for LRM and CBR
was obtained by using G-band, while for SM, it was obtained by using the combination of
R-band and G-band. In the following, the presentation of LRM, SM, and CBR results will
be focused only on these X parameterizations.

Figure 6. (a) Evolution of the standard deviation of Zsitu as a function of Zsitu mean computed over
the 89 Landsat-8 and Sentinel-2 images for the different parameterizations of log-transformed bands
and ratios; (b) number of matchups available for each of the 89 satellite images for non-filtered data
and for 1σ-filtered data using LRM-G, LRM-R, and CBR approaches; (c) computation of the 1σ-filter
maximum bathymetry for each of the 89 satellite images.

When the filter of 1σ was applied to the calibration dataset, the number of matchups
significantly decreased from 915,326 points to 337,607 points, 130,583 points, and
19,737 points, for CBR, LRM using the log-transformed G-band (LRM-G), and LRM us-
ing the log-transformed R-band (LRM-R) methods, respectively (Figure 6b). A total of
70 satellite images had more than 100 matchups for CBR, whereas LRM-G and LRM-R had
only 44 and 31 satellite images, respectively. It was interesting to note that the number
of satellites images with more than 1000 and 10,000 matchups for CBR filter, was 43 and
3, respectively. Satellite images with few match-ups generated a 1σ-filtered maximum
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bathymetry (Zmax−1σ) value of 0. For CBR, 80 satellite scenes show a Zmax−1σ value dif-
ferent of 0 (Figure 6c). The mean value of Zmax−1σ was 7.3 ± 2.1 m. For LRM-G and
LRM-R, the mean values were 5.1 ± 1.7 m and 3.2 ± 1.1 m, with a total number of images
of 50 and 39, respectively.

Data filtering for CBR approach was applied on the different class-specific LRM-G.
Each class was associated with specific optical conditions. The use of these classes allowed
us to split the initial matchup dataset into class-specific matchup datasets for which the
natural variability in the relationships between X and Zsitu was significantly reduced.
This reduction of variability allowed us to reduce the number of matchups removed by
the 1σ-filter.

3.3. Inter-Comparison of the Performance of Empirical SDB Approaches

The performance of the LRM-G approach was evaluated using the 50 satellite images
for which the Zmax−1σ value was different than 0. The median values for r2, RMSE, Bias,
and MRAD were 0.58, 0.54 m, 0.40 m, and 9.70%, respectively (Figure 7). The performance of
SM using LRM-G and LRM-R was evaluated using a reduced dataset of 33 satellite images
for which the Zmax−1σ value was different than 0 for G-band and R-band. SM performance
was slightly higher than LRM-G performance. The median values for r2, RMSE, Bias, and
MRAD were 0.64, 0.54 m, 0.39 m, and 8.99%, respectively. The CRB approach allowed us to
evaluate the performance using a significantly larger dataset (N = 80). The median values
for r2, RMSE, Bias, and MRAD were 0.90, 0.53 m, 0.40 m, and 7.62%, which demonstrated
higher performance than LRM-G and SA. When the analysis focused on a reduced dataset
of the 33 best satellite scenes, performance became significantly higher. The median values
for r2, RMSE, Bias, and MRAD were 0.94, 0.46 m, 0.36 m, and 6.15%.

(a) 

(b) 

(c) 

Figure 7. Distribution of performance of empirical SDB approaches for (a) the linear regression model
using the log-transformed G-band (LRM-G); (b) the switching algorithm using LRM-G and LRM-R (SM);
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and (c) the cluster-based regression model (CBR). Performance is quantified using the coefficient of
determination (r2), the root mean square error (RMSE), the bias (Bias), and the mean relative absolute
difference (MRAD). N is the number of satellite images; MeV is the median value. The MeV value
between parentheses is calculated using the 33 best satellite scenes.

3.4. Validation of the SDB Uncertainty Model

Validation of the multi-scene SDB uncertainty model was carried out only for the CBR
approach that showed the best performance for regression models and allowed exploiting
more satellite images and generating bathymetry maps over a larger depth range. After
applying the 1σ-filter, the matchup dataset (DS), associated with the six satellite images
acquired in October 2017, was composed of 3188 sounding points. The random point
extraction procedures generated a calibration dataset (DS-C) and a validation dataset (DS-V)
composed of 2136 and 1052 points, respectively (Figure 8a). The percentage of observations
associated with an SDB error lower than the total vertical uncertainty, P(εDS−V

i < TVUi),
was computed for each of the 100 random samplings (Figure 8b). The absolute frequency
of P(εDS−V

i < TVUi) displayed a normal distribution with a mean value of 95.8% and a
standard deviation of 0.5%. The minimum and maximum values were 94.6% and 97.2%,
respectively. 90% of the P(εDS−V

i < TVUi) values were comprised between 95.1% and 96.7%.
Only five samplings showed a value lower than 95%, indicating that the risk of failure of
our multi-scene SDB uncertainty model was less than 5%.

Figure 8. (a) Field bathymetry data point location of the matchup dataset DS associated with the
6 satellite images acquired in October 2017. Example of a random sampling where black points
are associated with the calibration dataset (ZDS−C

situ ) and yellow points are associated with the val-
idation dataset (ZDS−V

situ ). (b) Frequency distribution of the percentage of DS-V points showing
an SDB error (εDS−V

i ) lower than the total vertical uncertainty (TVUi) generated from a set of
100 random samplings.

4. Discussion

4.1. Impact of the Multi-Scene Approach on Uncertainty

Three periods of 1 month each were identified to derive SDB and uncertainty maps
from the multi-scene approach. The first period in October 2017 was covered by six satellite
images. The second and third periods were centered on the months of September 2019
and September 2020, including, respectively, five and four satellite images of high qual-
ity. Field bathymetry datasets associated with these two last periods were composed of
2148 and 2802 sounding points, respectively. In comparison to the 2017 bathymetric survey,
the spatial distributions of the bathymetric data points in 2019 and 2020 were smaller
(Figure 9a,c,e). In 2020, field bathymetry data were mainly located on the spit platform,
while the data collected in 2020, were gathered along the southern part of the inlet. Con-
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sequently, the bathymetry acquired in 2017, 2019, and 2020 showed different frequency
distributions with median values of 3.8 m, 4.3 m, and 3.3 m, respectively.

Figure 9. On the left panels, location of the field bathymetry data points is included within the
matchup dataset; on the right panels, the 95% uncertainty (Ubin) and the bias (εbin ) computed
per 0.5 m bathymetry intervals (bins) in (a,b) 2017, (c,d) 2019, and (e,f) 2020.

The bias (εbin) and the 95% uncertainty associated with CBR (Ubin) were computed
from DS for each 0.5 m bins (Figure 9b,d,f). εbin showed well-distributed values around
zero, indicating the good performance of linear regressions. The average values of εbin for
2017, 2019, and 2020, were −0.02 m, −0.03 m, and −0.07 m, respectively. It can be noted
that in 2020, εbin showed a significant deviation from zero for bathymetry higher than 3.5 m.
This deviation was due to the low number of observations for these bathymetry ranges.
The average values of Ubin computed from Zsat were 0.67 m, 0.94 m, and 0.67 m in 2017,
2019, and 2020, respectively. When Ubin were computed from Zsatj, with j ranging from 1
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to N, the general mean values of Ubin were 1.0 m, 1.54 m, and 0.96 m, respectively. These
results highlighted that the multi-scene approach allowed us to significantly reduce the
95% uncertainty associated with the SDB regression models.

4.2. Impact of the Spatial Distribution of Sounding Point on Uncertainty

SDB and uncertainty maps, generated from the multi-scene approach, for the three
1-month time periods are presented in Figure 10. Most of the study site area was covered by
the SDB models (Figure 10a–c), except for optically deep regions (ocean and tidal channels).
The TVU map of 2017 shows values lower or equal to 1 m, except for the northern section
of the inlet inner part where more turbid seawaters could generate higher uncertainties
(Figure 10d). In 2019 and 2020, areas with uncertainties higher than 1 m (Figure 10e,f)
showed larger cumulative surfaces than the ones in 2017. The mean values of TVU for each
bin of Zsat were displayed for the three years (Figure 10g–i). The average values were 0.89,
1.21, and 1.41 m, respectively. In 2017, all TVU averaged values were lower than 1.1 m, with
a minimum observed for bathymetric values ranging from 1 to 1.5 m and a maximum value
for the ones ranging from 4 to 4.5 m. In 2019, the maximum value of TVU was observed
for bathymetric values comprised between 2 and 2.5 m, while the minimum value was
observed for deeper waters. In 2020, the maximum TVU values were observed for deeper
waters. These results may directly be associated with the specific spatial distribution of
sounding points in 2019 and 2020, reducing the quality of the representativeness of the
calibration dataset.

Figure 10. (a–c) SDB maps, (d–f) total vertical uncertainty (TVU) maps, and (g–i) TVU averaged per
bins for 2017 (6 images), 2019 (5 images), and 2020 (4 images), computed from a multi-scene approach.
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To better illustrate the impact of the spatial distribution of sounding points on the
uncertainty model performance, three examples of the contrasted spatial distribution of
sounding points for the 2017 dataset are discussed (Figure 11a). The first case (case 1) was
associated with a spatially homogeneous point extraction from DS. One point out of three
was extracted in order to generate DS-V. This selection ensured that DS-C was optically
representative of DS-V. The second (case 2) and third (case 3) cases were associated with a
geographic segmentation of DS-C and DS-V. For case 2, DS-C points were located on the
northern part of the study area, while DS-C points were located on the southern part of the
study area for case 3. These configurations may potentially affect the representativeness
of the optical variability associated with DS-C, as the largest SDB errors, εbin, in DS were
located in the northeast section of the study area. This specific distribution of εbin was due
to a strong east-west optical gradient controlled by the tidal current direction.

Figure 11. (a) Field bathymetry data point location associated with three contrasted spatial distribu-
tion of DS-C and DS-V (case 1: homogeneous distribution; case 2 and case 3: geographic segmentation)
for the 2017 dataset. (b) Comparison between values of absolute error εDS−V

i (m), and total vertical
uncertainty, TVUi (m), computed for each observation of DS-V for case 1, case 2 and case 3.

εDS−V
i and TVUi values were computed for each observation of DS-V for the three

different cases (Figure 11b). Case 1 showed a P(εDS−V
i < TVUi) value of 95.8% was equal

to the mean value of P(εDS−V
i < TVUi) computed over the 100 random samplings. For

case 2, P(εDS−V
i < TVUi) showed a value of 97.7%, significantly higher than the maximum

previously observed for the 100 random samplings. This case was a favorable configuration
of the spatial distribution of sounding points. The risk of εDS−V

i being greater than TVUi
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was less than 5%. This result was due to lower optical variability in DS-V than in DS-C,
which leads to overestimating Ubin and finally, TVUi. Case 3 was the opposite configuration.
The high optical variability associated with DS-V was not taken into account in DS-C and
led to significantly underestimated Ubin. In this unfavorable scenario, 10.1% of observations
had a εDS−V

i value greater than TVUi. However, this result should not be interpreted as a
limitation of the uncertainty model but rather as a limitation of the classification approach
selected in the CBR approach. Observations in DS-V associated with the strongest errors
were classified among the classes that contained observations of DS-C despite a low spectral
similarity. For future research, an alternative to the k-means clustering algorithm would
be a fuzzy-c means clustering approach, which quantifies the performance of the pixels
classification in relation to their optical properties [50,51]. Another alternative would
be a supervised approach based, for example, on a random forests classifier [16]. This
technique provides an accuracy map for the classification, which contains the indicator of
the confidence degree of the classification.

4.3. Morphodynamics Application

SDB maps offer a unique opportunity to study morphological changes of large-
scale tidal inlets, such as the Arcachon inlet, including the migration of sandbars, shoals,
and tidal ebb and flood deltas. These maps can be used in semi-quantitative way by
analyzing the longitudinal and latitudinal changes of specific isobaths. An example of
the comparison between two isobaths (3 m and 4 m deep) extracted from SDB maps in
2017 and 2019 (Figure 12a–c) shows a southward migration of the ebb tidal delta and
the formation of a large sandbar on the adjacent coast (−1.27◦, 44.53◦). The analysis
of these morphological changes analyzed from SDB maps spanning years to decades
supports the comprehensive understanding of the multi-annual dynamics of tidal inlet
and the adjacent coast over relatively large spatial scales [52]. The supplementary use
of uncertainty maps offers the opportunity to consider the analysis of vertical and
volumetric morphological changes observed along the tidal inlet. The comparison of
the 2017 and 2019 SDB maps (Figure 12d) showed that absolute vertical changes ranged
from 0 to 4 m, while the sum of the uncertainties of 2017 and 2019 ranged from 0 to 3 m
(Figure 12e). Despite high TVU values in 2019 due to low representativeness of the
calibration dataset, several regions showed lower uncertainty values than bathymetric
changes (Figure 12f). This result allows these changes to be assigned a high degree
of confidence. For other regions, uncertainties were in the same order of magnitude
as the vertical changes. However, they were meant to be significantly reduced in the
future with the increase in the number and quality of the satellite images, along with
enhancements of the bathymetry survey strategies and SDB algorithms.

Figure 12. Cont.
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Figure 12. Maps of the 3-meter and 4-meter isobaths in (a) 2017 and (b) 2019. (c) comparison of the
position of the 4-meter isobaths of 2017 and 2019. (d) Maps of the bathymetric vertical changes (dZ)
between 2017 and 2019, (e) total vertical uncertainty (TVU), and (f) TVU to dZ absolute value ratio
expressed in percentage.

5. Conclusions

In this study, the objectives are to evaluate the performance and robustness of well-
established SDB empirical models and to propose and validate an uncertainty model for
a mixed energy coastal environment. Uncertainty estimation provides new fundamental
information for assessing the interpretability of SBDs and new perspectives for the use of
these types of maps for the analysis of large-scale coastal systems.

The Arcachon lagoon inlet is characterized by a high spatial and temporal variability
of water column optical properties mainly controlled by hydrodynamics and seasonal
conditions. The CBR approach is the most appropriate approach to exploit the greatest
number of images over the largest depth range and to reduce the natural optical variability
of class-specific regression models, providing better performance and robustness than the
other methods.

The total vertical uncertainty (TVU) associated with SDB empirical models depends
on both the uncertainty generated by the regression model and the uncertainty due to
the extrapolation of the SDB model beyond the calibration domain. The multi-scene
approach developed in this study allows us to significantly reduce the uncertainty related
to the regression models. The uncertainty associated with out-of-scope optical conditions
is sensitive to the sampling of optical variability of the study area and consequently
to the spatial distribution of sounding points. Furthermore, this component of TVU is
impacted by the number of satellite images used for the multi-scene approach and by
the associated hydrodynamic conditions. In the context of multisource bathymetric data
merging approaches, these results demonstrate the need to adapt the sampling strategy
of sounding points of bathymetric surveys to the optical conditions of the water column
in order to generate a calibration dataset representative of the optical variability of the
study site.
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