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Metalúrgica

Universidad de Concepción

Concepción

Chile

Fhatuwani Sengani

Department of Geology and

Mining

University of Limpopo

Sovega

South Africa

Derek B. Apel

Faculty of Engineering, Civil

and Environmental

Engineering Dept

University of Alberta

Edmonton, AB

Canada

Faham Tahmasebinia

School of Civil Engineering

The University of Sydney

Sydney

Australia

Jianhang Chen

School of Energy and Mining

Engineering

China University of Mining

and Technology (Beijing)

Beijing

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Topic, published open access by the journals Applied Sciences (ISSN 2076-3417),

Minerals (ISSN 2075-163X), Mining (ISSN 2673-6489) and Sustainability (ISSN 2071-1050), freely

accessible at: https://www.mdpi.com/topics/V3W8O5TWEY.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-3479-2 (Hbk)

ISBN 978-3-7258-3480-8 (PDF)

https://doi.org/10.3390/books978-3-7258-3480-8

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

Nelcy Carolina Otalora Vasquez, Abdelkabir Maqsoud and Tikou Belem

Physical and Numerical Modeling of a Flow Control Layer Made with a Sludge and Slag
Mixture for Use in Waste Rock Pile Reclamation
Reprinted from: Mining 2024, 4, 47, https://doi.org/10.3390/mining4040047 . . . . . . . . . . . 1

Elsa Pansilvania Andre Manjate, Natsuo Okada, Yoko Ohtomo, Tsuyoshi Adachi,

Bernardo Miguel Bene, Takahiko Arima and Youhei Kawamura

An AI-Based Approach for Developing a Recommendation System for Underground Mining
Methods Pre-Selection
Reprinted from: Mining 2024, 4, 42, https://doi.org/10.3390/mining4040042 . . . . . . . . . . . 23
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Article

Physical and Numerical Modeling of a Flow Control Layer
Made with a Sludge and Slag Mixture for Use in Waste Rock
Pile Reclamation

Nelcy Carolina Otalora Vasquez, Abdelkabir Maqsoud * and Tikou Belem

Research Institut on Mines and Environment, Université du Québec en Abitibi-Témiscamingue,
Rouyn-Noranda, QC J9X 5E4, Canada; nelcycarolina.otaloravasquez@uqat.ca (N.C.O.V.);
tikou.belem@uqat.ca (T.B.)
* Correspondence: abdelkabir.maqsoud@uqat.ca

Abstract: The reclamation of waste rock piles (WRPs) is complex, requiring adaptation of existing
mine site reclamation techniques. An alternative approach has been developed for waste rock piles
reclamation which involves installing finer materials on the top of waste rock piles. These finer layers
(flow control layers—FCLs) redirect water flowing inside the pile toward its slope and limits water
infiltration into reactive waste rocks. In the context of sustainable development, a mixture material
made with sludge and slag can be used as an FCL in the reclamation of a waste rock pile. To assess
the effectiveness of this material, a physical model was used and instrumented with sensors for
monitoring volumetric water content and suction and equipped with the following components: (1) a
rain simulator; and (2) drains that allow the recovery of water that infiltrates through the system. The
physical model was tested with various cover layer thicknesses, inclinations, and precipitation rates.
Investigation results showed that the water infiltration across the system was very low, leading to the
conclusion that the sludge and slug mixture performed well as a flow control layer in the reclamation
of waste rock piles.

Keywords: acid mine drainage; waste rock piles; reclamation; flow control layers

1. Introduction

Quémont 2 tailings storage facility (TSF) is an active site located approximately 2.5 km
northeast of the Horne smelter plant, positioned between Osisko and Dufault Lakes, as
illustrated in Figure 1. Its area is estimated to be 105 hectares. Deposition of tailings
at this TSF began in 1949. Initially, sulfide tailings, which contributed to acidity, were
deposited at this site. Subsequently, they were overlaid with a mixture of slag tailings and
treatment sludge (UTAF sludge), which did not produce acidity. Between 1949 and 2018,
approximately 7.6 Mt of sulfide tailings, 14.2 Mt of slag, and 1.1 Mt of UTAF sludge were
deposited. These materials originated from the Quémont mine, the Gallen mine, and the
slag and hydrometallurgical treatment (UTAF) circuit [1]. It is important to note that some
of these materials may contribute to acid mine drainage.

Acid mine drainage (AMD) is widely acknowledged as one of the foremost envi-
ronmental challenges linked with the mining industry. To limit the generation of AMD,
numerous waste management options and site reclamation strategies are available. Among
these approaches, one can find oxygen barrier and hydraulic barrier covers [2].

Indeed, store and release covers (SRCs) represent another approach used to control
water infiltration into reactive tailings, particularly in arid environments [3–6].

In the context of sustainable development, the aim is to utilize sludge and slag materi-
als derived from metallurgical treatment by integrating them into construction materials
for engineering covers, especially as flow control layers (FCLs). To achieve this objective,
this study intends to test sludge and slag materials as FCLs using a physical model. The

Mining 2024, 4, 841–862. https://doi.org/10.3390/mining4040047 https://www.mdpi.com/journal/mining1
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study will involve varying the layer thickness, the slope, and the intensity of precipitation
to assess their effects on cover performance. It is important to recall that the sludge and
slag materials were tested to evaluate their geochemistry using humidity cells kinetic tests,
and results showed that these materials can be considered as not AMD generating with the
pH close to the neutrality [7].

Figure 1. Quémont 2 mine site location (https://mapamundi.online maps images, accessed on
11 July 2024).

In this paper, we begin with an overview of mine site reclamation techniques followed
by the sludge and slag material characterizations, along with descriptions of the physical
model configurations used in our study. Subsequently, investigation results obtained from
physical and numerical modeling are presented. Finally, this paper ends by a conclusion.

1.1. Mine Site Reclamation

The reclamation of mine sites is indeed a crucial aspect of mining practices, with the
primary goal of minimizing the environmental impact caused by mining activities. The
reclamation of mine sites is indeed a crucial aspect of mining practices, with the primary
goal of minimizing the environmental impact caused by mining activities.

One of the principal purposes of reclamation methods is to mitigate AMD by eliminat-
ing or reducing the presence of reactive elements involved in the acidification process, as
presented in Equation (1):

FeS2 + 15/4 O2 + 7/2 H2O→Fe(OH)3 + 2SO4
2− + 4H+ (1)

Various methods of the prevention and control of AMD are available, and the selection
of the most suitable method depends on the specific characteristics of each mine site. Below
is a summary of the major methods used for the prevention and control of AMD.

1.1.1. Oxygen Barrier

The objective of this method is to minimize or prevent the oxygen flow towards sulfide
tailings. There are several techniques commonly used to exclude oxygen to achieve this
objective, including the following ones [2]:

1. Water covers can effectively act as an oxygen barrier due to the lower concentration of
oxygen and the lower diffusion coefficient in water compared to in air [8,9];

2. The elevated water table combined with a monolayer cover technique aims to maintain
reactive tailings saturated or close to saturation (Sr = 1) by keeping the water table at
a higher level and close to interface cover-reactive tailings. This technique is similar
to water covers in that it provides a barrier to oxygen migration [10–12];
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3. Covers with a capillary barrier effect (CCBEs) are multilayer covers whose aim is to
maintain at least one of the layers at a high degree of saturation (Sr > 85%) to control
the migration of gases to reactive waste and limit water infiltration [13–15];

4. Oxygen-consuming materials (wood chips water, treatment sludge, etc.) can also
control oxygen migration by placing them on reactive tailings. Oxygen-consuming
materials limit the availability of oxygen that can reach underlying materials [16,17].

1.1.2. Hydraulic Barrier

In contrast, hydraulic barriers are specifically designed to prevent water infiltration.
In regions with humid climates, these barriers can be constructed using a combination of
natural and/or synthetic materials. Examples of such materials include clay, geosynthetic
clay liners, and geomembranes.

This method relies on the installation of covers composed of materials with a sat-
urated hydraulic conductivity (ksat) lower than 1 × 10−9 m/s. These covers typically
made from natural soils such as clays or compacted tills, as well as synthetic materials
(geotextiles, geomembranes, or geosynthetic clay liners), act as physical barriers to control
water infiltration into mine waste [2,18–20].

1.1.3. Flow Control Layer

This method aims to limit water infiltration into waste rocks by redirecting precip-
itation water along inclined layers. Precipitation is temporarily stored in a flow control
layer (FCL) and then evacuated by evaporation or lateral drainage, thereby preventing the
contact with waste rock materials [21–25].

Various laboratory work and numerical modeling have validated the effectiveness
of this method, including experiments conducted on waste rock piles of Lake Tio Mine.
Factors such climatic conditions, the thickness of the FCL, inclination, and cover material
properties influence the FCL performance [26–30].

The FCL will be tested in a laboratory by using a mixture material made from sludge
and slag.

In the following sections, materials and methods used in this evaluation are presented.

2. Materials and Methods

The material was both physically and hydrogeologically tested in a laboratory. Physi-
cal characterization included assessing particle size distribution and specific gravity, while
hydrogeological characterization involved determining parameters such as saturated hy-
draulic conductivity (ksat) and the water retention curve (WRC).

2.1. Physical Characterization

The purpose of particle size analysis was to quantitatively determine the distribution
of soil particles based on their diameter classes. For the sludge and slag mixture, particle
size distribution testing was conducted using a Malvern analytical Mastersizer 3000 laser
particle sizer. The results of the grain size distribution (GSD) are illustrated in Figure 2,
which displays the size distribution of particles in the mixture. The results of the GSD
analyses indicated very low percentages of the clay fraction (lower than 2 μm) in both
materials. The sludge–slag mixture had a silt fraction of 82% (fraction included between
2 and 80 μm). Additionally, the gravel material comprised a sand fraction of 49% and a
gravel fraction of 40%.

According to [31], the sludge and slag mixture and gravel materials can be categorized
as low plasticity silt (ML) and well-graded sand with silt (SW-SM), respectively.

Key parameters were extracted from the GSD curves and are listed in Table 1. D10,
D30, and D60 represent the diameters corresponding to 10%, 30%, and 60% passing on
the cumulative GSD curve, respectively (see Table 1). The coefficient of uniformity was
calculated as CU = D60/D10. The CU values of the sludge–slag mixture and the gravel
materials were 7.6 and 45.4, respectively. According to [31], these values (between 5 and 20)

3
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led to a classified sludge and slug materials as having a poorly graded GSD. In contrast,
the gravel was classified as having a well graded GSD.
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Figure 2. Particle size distribution of materials.

Table 1. Grain size distribution parameters of the used materials.

Material % Clay % Silt % Sand D10 (mm) D30 (mm) D60 (mm) CU CC

Sludge and slag 3 82 15 0.006 0.02 0.04 7.6 1.7
Gravel 2 9 49 0.11 1.5 5 45.4 4.1

The liquid limit (WL) corresponds to the water content at which the behavior of a
material changes from the plastic state to the liquid state. The WL was determined using
the Casagrande method, following ASTM D4318-17e1 [30]. The plastic limit (WP) is the
water content at which a material sample begins to disintegrate into pieces that are 3 to
10 mm long when rolled into a cylinder with a diameter of 3 mm. The WP was determined
using the rolling method [32].

For the sludge–slag mixture, the WL was 22%, and the WP was about 17%. These
values were used to calculate the plasticity index (PI). This index showed the difference
between the WL and the WP. The calculated PI was 5%, allowing concluding that this
material can be considered as a low plastic material.

The proctor tests is a method allowing evaluating the optimal water content at which
a given soil type becomes most dense and achieves its maximum dry density [33]. Protector
test results showed that from the compaction curves the maximum dry unit weight (γdopt),
the optimum water content (wopt (%)), the optimum void ration (eγopt), and the optimum
porosity (nγopt) were 2.5 g/cm3, 10 %, 0.80, and 0.44 respectively.

In this case, the sludge and slag mixture can be categorized as silt ML.

2.2. Hydrogeological Characterization

For the sludge and slag mixture, the water retention curve (WRC) was measured in a
laboratory using the Tempe cell. Laboratory testing using the “Tempe cell” method was
conducted at 20 ◦C on a single sample in a ceramic cylinder with a diameter of 85 mm
and a height of 60 mm. The Tempe cell is an instrument for assessing the volumetric
water content of a saturated sample, which desaturates after the application of suction.
Desaturation occurs when the applied suction pressures begin to force the water present in
the pores of the sample to move and, consequently, to be extracted downwards from the
cylinder [34,35].

4
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Measurement results are presented in Figure 3 and were fitted using the van Genuchten
model [36]. The fitting parameters for the sludge–slag mixture included volumetric water
content at saturation θs (0.53), residual volumetric water content θr (0.10), αvG (0.029 cm−1),
and nvG (2.911). The AEV calculated using the tangent method (see [37]) was about 22 kPa.
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Figure 3. Measured and fitted water retention curves of the sludge and slag mixture.

The saturated hydraulic conductivity (ksat) for the sludge–slag mixture was measured
in the laboratory using a constant-load rigid-wall permeameter [31]. The permeameter used
had a diameter of 11.4 cm and a height of 24 cm. It consisted of a Plexiglas cylinder, two
perforated plates, seals, a base, and a plastic cap fitted with a drainage valve. The sludge–
slag material was placed in the permeameter, and by applying a hydraulic load difference
across the sample, water could pass through the sample in a given time interval. The
saturated ksat of the sludge–slag mixture was calculated using the following Equation (2):

ksat =
QL

Δh A t
(2)

where Q is the quantity of water that flows (L3), L is the height of the material (L), Δh is the
hydraulic head difference (L), A is the flow area (L), and t is the time (T).

The average measured values of ksat of the sludge–slag material was about
1.00 × 10−4 cm/s.

For the gravel, the ksat was estimated using the predictive modified Kozeny–Carman
model (see Equation (3) [38]). In this model, only basic geotechnical properties are used
(see Table 1):

ksat = CG
γw

μw

e3+x

(1 + e)
C1/3

U D2
10 (3)

where e is the void ratio, CU is the coefficient of uniformity, D10 represents the diameter
corresponding to 10% (in cm), CG is the porous space geometry constant equal to 0.1, γw is
the unit weight of the water (N/m3), μw is the dynamic viscosity of water, and x ≈ 2.

The estimated ksat corresponded to 2.18 × 10−1 cm/s.

2.3. Experimental Setup and Physical Modeling

To assess the effectiveness of the FCL method in the waste rock pile reclamation, a
laboratory physical model was utilized. This model had dimensions of 2.5 m in length,
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0.6 m in width, and 1.5 m in height (see Figure 4). Equipped with a rotation axis, the
physical model allowed for adjustment and variation of inclination with angles ranging up
to 20 degrees [39]. Specific perforation in the lower part of the model along with drains
enabled the separate recovery of infiltration and runoff water. Drainpipes were used to
strain and collect infiltration water and runoff water separately.

(a) (b)
Figure 4. Experimental setup: (a) laboratory physical model; (b) locations of different devices used
for volumetric water content (θ), suction (ψ) measurements, and drains used to recover infiltration
and runoff.

The experimental setup was equipped with sensors for volumetric water content (θ)
and suction (ψ) measurements (see Figure 4 for sensor locations).

A water dispersion device served as a rain simulator, ensuring a homogeneous dis-
tribution of precipitation and preventing the formation of preferential infiltration paths.
Additionally, a flow meter was installed to maintain the specific flow rate. In the tests,
precipitation rates for return periods of 25 and 100 years for the Abitibi region (Québec,
Canada) were used.

The FCL physical model was constructed in three 25 cm layers of the slag–sludge
mixture to evaluate the impact of the FCL thicknesses on the cover performance (25 cm,
50 cm, and 75 cm). A non-reactive gravel layer with a draining function was installed at the
bottom of the device; this layer had a thickness of 50 cm; another layer was also installed in
the front of the FCL to facilitate water drainage from the FCL (see Figure 2).

In the first 25 cm layer, 6 volumetric water content probes (5TM) and 6 suction probes
(Watermark) were installed to monitor the sludge–slag layer near the top and near the
gravel–sludge–slag interface (see Figure 4). For the other layers (when the FCL thicknesses
were about 50 cm and 75 cm), only one level of instrumentation was installed (see Figure 4).

Two slope values were used: 2.5◦ and 5◦; the 2.5◦ slope represents the average slope of
various tailings storage facilities measured using satellite images. Conversely, the 5◦ slope
was utilized in an experimental cell constructed at the Lac Tio mine in 2014 to investigate
the hydrogeological behavior of an FCL under field conditions [23,25].

The proposed modeling aimed to assessing the impact of certain parameters on the
hydrogeological behavior of an FCL composed of a sludge–slag mixture. The elements
tested using the physical model were as follows: (i) the FCL thickness; (ii) the model slope;
and (iii) the intensity of precipitations.

Considering the different variables to test (the thickness of the layer, the slope, and the
intensity of precipitation), a total of 12 scenarios were performed as shown in Table 2.

6
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Table 2. Simulated scenarios conditions.

Thickness Layers Slope Used Precipitation Rate (mm/h)

25 cm
2.5◦
5◦

60.6 (100 years)
46.8 (25 years)50 cm

75 cm

In each tested scenario, all parameters were kept constant, except for one which was
varied to highlight its influence. In the first series of tests, a 25 cm layer of the sludge–slag
mixture was used as an FCL. Two inclinations were tested: 2.5◦ and 5◦. For each inclination
of the physical model, two different rates of precipitation were applied: 46.8 mm/h and
60.6 mm/h.

In the second series of tests, the thickness of the slag–sludge layer was increased to
50 cm by adding an additional 25 cm layer. For this configuration, the same scenarios
were tested with the same slopes and precipitation rates as for the 25 cm layer. In the
third series of tests, the thickness of the sludge–slag layer was further increased by adding
another 25 cm layer, resulting in a total thickness of 75 cm. For this new thickness, the same
scenarios as in the previous cases were tested. Each series of tests lasted approximately
three weeks, with precipitation conducted for 1 h and a drainage period of about 21 days.
This period was left between successive tests to allow the system to equilibrate.

2.4. Numerical Simulation Modeling

Simulations were conducted using SEEP/W 2021. This software employs the finite
element method (FEM) to simulate the movement of liquid water or water vapor through
both saturated and unsaturated porous media. Water flow modeling with SEEP/W is based
on the Richards equation, and simulations can be performed in either the steady state or
the transient mode, considering hydrogeological conditions [40].

Two-dimensional (2D) model was constructed. The model simulates FCLs was built
with the same dimensions as the laboratory physical model and include hydrogeological
properties of the materials measured in a laboratory (see Figure 5). These models represent
various scenarios and include different thicknesses of sludge–sludge layers (25 cm, 50 cm,
and 75 cm) and gravel drainage layers (highlighted in yellow in Figure 5). Regarding the
mesh sizes of the models, the 25 cm FCL model comprises 816 nodes and 750 quadrilateral
elements, the 50 cm FCL model comprises 1071 nodes and 1000 quadrilateral elements, and
the 75 cm FCL model comprises 1326 nodes and 1250 quadrilateral elements.

Figure 5. Numerical model and location of simulated sensors in SEEP/W.
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The van Genuchten (1980) model was chosen to describe the WRC and Mualem (1976)
model to predict the unsaturated hydraulic conductivity function.

The used functions (WRC and permeability functions) are presented in Figures 6 and 7
clearly shows the contrast in hydraulic properties between the used materials, allowing
creating the capillary barrier effects.
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Figure 6. Volumetric water content of the gravel and the sludge–slag materials.

Figure 7. Permeability function of the gravel and the sludge–slag materials.

3. Results

3.1. Infiltration and Runoff

After each test, seepage and runoff water were collected, measured and compared
with the volume of water injected. Results expressed as a percentage of injected water are
presented in Figure 8. Figure 8 presents the average ratios of the infiltration percentage
(drains 1–7) and the runoff (drains 8 and 9) for the different drains across various tested
scenarios, encompassing variations in precipitation, slope, and FCL thickness.

The yellow columns in Figure 8 represent the results of the initial infiltration tests,
conducted solely on the gravel layer, aiming to demonstrate that the infiltration system
did not impact drains 8 and 9, which captured runoff water. The green columns depict
precipitation at a rate of 60.6 mm/h, while the blue columns represent precipitation at
46.8 mm/h. Generally, the results indicated that runoff (drains 8 and 9) was higher with a
5◦ slope. Similarly, the 2.5◦ slope showed a higher infiltration rate on drain 7 by comparison
to on the other drains (1 to 6).
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Figure 8. Infiltration and runoff rates for different drains and for different slope and thickness
scenarios: (a) thickness of 25 cm; (b) thickness of 50 cm; and (c) thickness of 75 cm.

For the various scenarios tested, total infiltration and total runoff were calculated.
Results of these calculations are presented in Figure 9. Figure 9 indicates that the lowest
infiltration rates were 8%, 5%, and 4% for the FCL thicknesses of 25, 50, and 75 cm,
respectively, when the inclination was 5◦ and the precipitation rate was 60.6 mm/h. In
the same way, we can observe that the infiltration values were lower for the 75 cm layer
compared to the 25 cm layer infiltration values.

For the runoff, one can observe that this parameter increased with an increase in
inclination. The higher values were observed with the precipitation rate of 60.6 mm/h.
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Figure 9. Infiltration and runoff rates for different slope and thickness scenarios.

3.2. Volumetric Water Content and Suction

Figures 10 and 11 show the follow-up of the saturation degree and suction data
measured in the physical model. After the infiltration test, a drying process occurred over
20 days. The scenario presented here corresponded to the FCL with a 25 cm thickness, a 2.5◦
slope, and a precipitation rate of 60.6 mm/h. Figure 10 shows that during the infiltration
test, the saturation degree increased rapidly. During the drainage period, a decrease in
saturation degree (Sr) was observed at different levels.
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Figure 10. Saturation profiles for the scenario with an FCL thickness of 25 cm and a slope of 2.5◦.
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Figure 11. Suction profiles for the scenario with an FCL thickness of 25 cm and slope 2.5.

A significant decrease was observed at location 2.1 (near the middle of the model; see
Figure 4 for sensor locations). However, for all the sensors, the saturation degree remained
higher than 90%, indicating that this layer was maintained at a high degree of saturation.
This saturation was favorized by the capillary barrier effect created between a gravel layer
and an FCL.

In addition, this effect of capillary barrier effect was created near the front of the model
due to the presence of the gravel material.

Figure 11 illustrates the evolution of suctions where one can observe after the drop
in suction following the wetting test, an increase in suction was observed at various
sensors. The highest suction, 14 kPa, was measured at sensor 3.2. The lowest suctions, not
exceeding 6 kPa, were measured at sensor 2.1. It is worth mentioning that all measured
suctions remained below the Air Entry Value (AEV) of 22 kPa. These results agreed with
measurements of volumetric water content.

Results for the scenario with an FCL that was 50 cm thick with a 5◦ slope and a
precipitation rate of 60.6 mm/h are presented in Figures 12 and 13, showing saturation
degrees and suctions respectively. The saturation degrees for a drainage period of 31 days
indicated that desaturation was not significative. The sensor 1.3, located near the surface
layer, showed the lowest degree of saturation which was close to 97%. The other sensors
displayed saturation degrees equal to or greater than 98%. These saturation values showed
a good retention capacity of the sludge–slag mixture, similarly to the previous case. The
saturation of the FCL was favorized by the capillary barrier effect created between an
FCL and a gravel layer due to the contrast in the hydraulic properties of used materials.
It is worth mentioning that the FCL had some saturation at the start of this test, which
contributed to explaining the high saturation measured during this period.

At the end of the drainage period, the highest suction, 11 kPa, was measured at sensor
3.2. The lowest suctions, not exceeding 2 kPa, were measured at sensor 2.1. It is worth
mentioning that all measured suctions remained below the AEV of 22 kPa (calculated using
the tangent method in the water retention curve). These results agreed with measurements
of volumetric water content.

Measurement results showed that infiltration rates through the model were lower than
runoff rates and the FCL layer remained highly saturated. It is important to note that the
drain layer positioned at the model’s end enhanced water retention, potentially affecting
diversion capacity. This hypothesis will be further evaluated using numerical modeling.
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Figure 12. Saturation profiles for the scenario with an FCL thickness of 50 cm and a slope of 5◦.
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Figure 13. Suction profiles for the scenario with an FCL thickness of 50 cm and a slope of 5◦.

3.3. Numerical Simulation Results

Figures 14–25 show the results of volumetric water content simulations for a precipi-
tation of 46.8 mm/h. The evolution of volumetric water content showed that it increased
only during the first hour (period of a precipitation event) and then it began to decrease.
The time in which the volumetric water content began to decrease was less for the 5◦ slope,
compared to for the slope of 2.5◦.
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Figure 14. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 2.5◦, a layer
thickness of 25 cm, and a period of 720 h (30 days).
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Figure 15. Volumetric water content results at a precipitation rate of 46.8 mm/h, a slope of 2.5◦, a
layer thickness of 25 cm, and a period of 5 h.
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Figure 16. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 5◦, a layer
thickness of 25 cm, and a period of 720 h (30 days).
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Figure 17. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 5◦, a layer
thickness of 25 cm, and a period of 5 h.
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Figure 18. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 2.5◦, a layer
thickness of 50 cm, and a period of 720 h (30 days).
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Figure 19. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 2.5◦, a layer
thickness of 50 cm, and a period of 5 h.
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Figure 20. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 5◦, a layer
thickness of 50 cm, and a period of 720 h (30 days).
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Figure 21. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 5◦, a layer
thickness of 50 cm, and a period of 5 h.
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Figure 22. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 2.5◦, a layer
thickness of 75 cm, and a period of 720 h (30 days).
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Figure 23. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 2.5◦, a layer
thickness of 75 cm, and a period of 5 h.

For the layer thickness of 25 cm (see Figures 14–17), both sensors were affected by
precipitation. However, for the thickness of 50 cm (see Figures 18–21), it was observed
that the most superficial sensors were affected by precipitation, while the sensors near the
bottom of the FCL showed no variation in volumetric water content.

For the layer thickness of 75 cm (see Figures 22–25), it was observed that the sensors
most affected by precipitation were the ones closest to the superficial. Additionally, it was
evidenced that the deeper sensors showed little, or no variation induced by precipitation.

In the gravel layer and near the interface (G1-1, G2-1, G3-1, and G4-1), volumetric
water content showed no variation in any of the performed tests (different precipitation
rates, thicknesses, and slopes). This numerical simulation results indicated that water
infiltration did not reach the gravel layer. These results obtained at the gravel layer level
contradicted those from physical modeling. However, the infiltration water collected at the
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base of the model could be explained by the presence of a preferential flow along the walls
of the physical model.
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Figure 24. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 5◦, a layer
thickness of 75 cm, and a period of 720 h (30 days).
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Figure 25. Volumetric water content results for a precipitation of 46.8 mm/h, a slope of 5◦, a layer
thickness of 75 cm, and a period of 5 h.

This hypothesis could be verified by numerical simulation or artificial chemical tracing.
For numerical simulations, an additional boundary condition corresponding to vertical
flow along the wall could be included. For chemical tracing, a tracer could be placed along
the walls, and its presence at the bottom of the model could be monitored to confirm the
preferential flow.
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4. Final Remark

During laboratory tests, slopes of 2.5◦ and 5◦ showed no visible superficial erosion
(see Figure 26). However, additional tests conducted with a 10◦ slope demonstrated a
significant increase in water velocity and visible superficial erosion (see Figure 27). These
findings suggest that high slopes are unsuitable for FCLs unless protective measures are
implemented to safeguard the FCLs.

Figure 26. Photos showing FCLs at 2.5◦ and 5◦ slopes which were not affected by superficial erosion.

Figure 27. Visible superficial erosion for an FCL with a 10◦ slope.

Due to the erosion observed with the 10◦ slope (see Figure 27), an additional test was
conducted with a 10 cm gravel layer for protection of an FCL. This measure successfully
prevented superficial erosion. Subsequently, in this test involving an FCL with a thickness
of 75 cm, the measured infiltration rate was 2%.

As a final remark, the FCL remained saturated after the various tests, aided by the
capillary barrier effects created at the interface between the gravel layer and the FCL. This
capillary barrier effect was also present along the front of the FCL. This concept can be
applied to the inclined CEBC where the retention layer shows significant desaturation,
thereby reducing their performance.

5. Conclusions

The sludge and slag mixture has been classified as an ML, indicating a texture that
suggests low permeability behavior, as confirmed by the hydraulic conductivity test
(ksat = 1.00 × 10−4 cm/s). This characterization leads to the expectation of a low infil-
tration rate.

Investigation results demonstrated that a steeper slope correlated with lower infil-
tration rates. For instance, in the scenario with a rainfall intensity of 46.8 mm/h and an
FCL thickness of 25 cm, the infiltration rates were 17% for a 2.5◦ slope and 12% for a 5◦

19



Mining 2024, 4

slope. With a thicker FCL layer of 75 cm in thickness and the same rainfall intensity, the
infiltration rates were reduced to 9% and 7% for 2.5◦ and 5◦ slopes, respectively.

Similarly, when considering a rainfall intensity of 60.6 mm/h and a soil thickness of
0.25 m, the infiltration rates were 13% and 8% for 2.5◦ and 5◦ slopes, respectively. For a
scenario with an FCL thickness of 0.75 m, the rate decreased to 8% and 4% for 2.5◦ and 5◦
slopes, respectively.

Furthermore, the results indicated that a greater FCL thickness led to a lower infil-
tration rate. For instance, with a 2.5◦ slope and a rainfall intensity of 60.6 mm/h, the
infiltration rates were 13%, 9%, and 7% for FCL thicknesses of 0.25 m, 0.5 m, and 0.75 m,
respectively. Similarly, with a 5◦ slope and a rainfall intensity of 46.8 mm/h, the infiltration
rates were 12%, 9%, and 7% for the respective FCL thicknesses of 0.25 m, 0.5 m, and 0.75 m.

In terms of rainfall intensity, the lowest infiltration rates occurred during heavier
precipitation. For instance, for a 2.5◦ slope and a FCL thickness of 0.25 m, the infiltration
rate decreased from 17% at a rain intensity of 46.8 mm/h to 13% at a rain intensity of
60.6 mm/h. Similarly, for a 5◦ slope, infiltration rates dropped from 12% to 8% when
rainfall intensity increased from 46.8 mm/h to 60.6 mm/h.

For the runoff, one can observe that this parameter increased with an increase in
inclination. The higher values were observed with the precipitation rate of 60.6 mm/h.

The monitoring data indicated that sludge and slag possessed a higher water retention
capacity. Even after three weeks without rainfall under laboratory conditions, the minimum
observed volumetric water content corresponded to 96% of saturation. This high saturation
degree effectively restricted oxygen migration to reactive tailings.

The different results of simulated infiltration test indicated that precipitation rates
significantly influenced outcomes. For instance, during a 100-year return period rain event,
infiltration rates were 13% and 8% for slopes of 2.5◦ and 5◦, respectively. Conversely, during
a 25-year return period rain event, infiltration rates were 17% and 14% for slopes of 2.5◦
and 5◦, respectively, with an FCL thickness of 25 cm.

The sludge and slag mixture presented a good performance as an FCL. Once saturated,
the mixture demonstrated effective water diversion at a laboratory scale. Measurements
performed during different tests indicated strong water retention capabilities in this mate-
rial under controlled laboratory conditions (constant temperature and humidity and no
wind).

The numerical simulations confirmed the experimental results, allowing concluding
that this material can be used as an FCC layer or can be used as a component in a cover
with a capillary barrier effect.
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Abstract: Selecting the most appropriate mining method to recover mineral resources is a critical
decision-making task in mining project development. This study introduces an artificial intelligence-
based mining methods recommendation system (AI-MMRS) for the pre-selection of underground
mining methods. The study integrates and evaluates the capability of two approaches for mining
methods selection (MMS): the memory-based collaborative filtering (CF) approach aided by the
UBC-MMS system to predict the top-3 relevant mining methods and supervised machine learning
(ML) classification algorithms to enhance the effectiveness and novelty of the AI-MMRS, addressing
the limitations of the CF approach. The results reveal that the memory-based CF approach achieves
an accuracy ranging from 81.8% to 87.9%. Among the classification algorithms, artificial neural
network (ANN) and k-nearest neighbors (KNN) classifiers perform the best, with accuracy levels
of 66.7% and 63.6%, respectively. These findings demonstrate the effectiveness and viability of
both approaches in MMS, acknowledging their limitations and the need for continuous training
and optimization. The proposed AI-MMRS for the pre-selection stage supplemented by the direct
involvement of mining professionals in later stages of MMS, has the potential to significantly aid in
the MMS decision-making, providing data-driven and experience-based recommendations following
the ongoing evolution of mining practices.

Keywords: mining methods selection; underground mining; decision-making; recommendation
system; memory-based collaborative filtering; classification machine learning

1. Introduction

The mining industry plays a crucial role in human civilization, providing raw materi-
als, critical minerals, and metals vital for development, technological advancements, and
economic growth. Central to the success of any mining project is the careful selection of the
most feasible mining methods to extract mineral resources from the earth. These methods
typically fall into two most common categories: surface and underground mining. Under-
ground mining methods are more complex; they are applied to recover deposits that are not
economically (socially or politically, technically, and economically) feasible to be recovered
using surface methods. Underground mining methods are usually classified into three
groups based on a geotechnical viewpoint depending on the extent of support required to
sustain underground infrastructure and ensure the stability of the openings: unsupported,
supported, and caving [1]. Each mining method presents its own set of advantages and
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drawbacks, and the selection of the most appropriate method(s) is influenced by multi-
ple interconnected influencing factors. Key factors in selecting surface and underground
mining methods include the orebody geometry, geology and hydrology, geotechnical prop-
erties, technological factors, economic factors, and environmental considerations [1,2]. The
primary objective of mining methods selection (MMS) is to select method(s) that maximize
profitability, operational efficiency, safety, and cost-effectiveness while minimizing negative
environmental impacts. Typically, the task of MMS is performed by experienced mining
professionals (or decision-makers) who usually conduct comprehensive evaluations of
the various influencing factors to achieve the primary goal of MMS. Over the years, the
subject of MMS has undergone extensive study, leading to the development of different
methodologies aimed at addressing this complex decision-making process.

1.1. Previous Work on Mining Methods Selection

Research on mining methods selection (MMS) has been ongoing for several years,
yielding various methodologies/systems aimed at aiding decision-makers in this complex
decision-making process. This study categorizes MMS systems into four groups: qualitative,
quantitative, MCDM-based, and machine-learning-based.

Qualitative and quantitative systems were introduced in the 1970s, 1980s and 1990s.
Qualitative systems were flowcharts used to evaluate the suitability of mining methods
for particular deposits, mostly based on orebody geometry, geology, and geotechnical
properties [1,3]. The need for improvement and numerical methods led to the introduction
of the first quantitative system in 1981: the Nicholas approach [4]. In 1995, the University
of British Columbia (UBC) developed the UBC-MMS system [5]: a modified version of the
Nicholas approach to adjust the Nicholas approach to Canadian mining operations. Quan-
titative systems are based on a numerical decision matrix with ranks/weights assigned to
evaluate the feasibility of the mining methods based on orebody characteristics, including
orebody geometry, geology, and geotechnical properties. The advantage of the quantitative
system is providing solutions for the first phase of MMS or preliminary selection providing
a set of safe or suitable mining methods that will be submitted for further detailed evalua-
tion by the decision-making team. Perhaps that is one of the reasons quantitative systems
are still the most practically implemented in industries and studies/research. However, in
these systems, the relative importance of the influencing factors is not considered, implying
that all factors have the same weight (i.e., level of importance) during the evaluation and
selection process; plus, the systems may offer obsolete solutions for the current situation in
the mining practices. Since the 2000s, attention to multi-criteria decision-making (MCDM)
techniques has gained traction in addressing the shortcomings of quantitative systems,
introducing MCDM-based systems. Over the years, crisp and fuzzy MCDM techniques,
commonly the analytical hierarchy process (AHP), order of preference by similarity to ideal
solution (TOPSIS), and preference-ranking organization method for enrichment evaluations
(PROMETHEE), have been implemented for evaluating and selecting mining methods for
different case studies [6–9]. The advantage of the MCDM-based systems is the considera-
tion of the weights or the relative importance of the influencing factors and the possibility
of including a wide range of factors and methods customized to a case study. In most
MCDM-based systems, decision-makers (mining professionals) are directly involved in
the task, which can be of great advantage since the team can customize the evaluations
according to the objectives of a particular case study. Usually, the decision-making team
is assigned to select relevant methods and factors to consider in the evaluations and to
determine the weights or the relative importance of the factors based on their subjective
judgment or opinions, which reflect their experience in the field. However, using sub-
jective judgment may introduce a certain level of bias, which can inherently affect the
eligibility and accuracy of the evaluations [10,11]. Plus, the subjective judgment from the
decision-makers is mostly customized to a particular case study or mining project; that is,
a decision made for a particular case study/project may not be transferrable to another
case study/project [11]. In a study by Manjate et al. [10], the Entropy method (Shannon’s
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Entropy) was proposed as a method to determine the weights of the factors objectively
without the direct involvement of decision-makers in an attempt to avoid bias and the
customization of the decision-making process and enable the implementation of the results
when the direct judgment of the decision-makers is unavailable (totally or partially) or
not required.

In recent years, data-driven decision-making powered by artificial intelligence (AI)
systems has been heavily studied and gradually implemented for solving complex prob-
lems in different fields of science and engineering. The concept of Smart Mining or Mining
4.0 has emerged in the mining industry, which involves integrating digital technologies, AI,
and advanced data analytics to address challenges in the mining value chain to optimize
mining activities. Machine learning (ML) is a popular field of study in AI aimed at training
predictive models for AI systems; ML-based systems usually rely on algorithms trained
based on extensive historical data to learn the data pattern and predict future outcomes.
Recently, a few studies [12–16] have investigated the applicability of artificial neural net-
works (ANN) in MMS introducing ML-based MMS systems. Lv and Zhihui [13] and Chen
and Shixiang [14] investigated and showed the effectiveness of ANN in evaluating and
selecting underground mining methods for thin and thick coal seams. In 2020, Ozyurt and
Karadogan [12] further investigated the applicability of ANNs and game theory to develop
a model for underground MMS for different ore types. Their study further demonstrated
the effectiveness of ANNs in developing a robust system for detailed evaluations of un-
derground mining conditions to select the most feasible mining method. According to the
authors, their model can be applied even when there is a lack of information regarding
the relevant factors, thereby addressing one of the shortcomings of MCDM-based systems.
In 2022, Shohda et al. [16] developed a model for MMS by modifying the UBC-MMS
system and integrating ANN. Their study compared the results of the ANN model with
a commonly used MCDM TOPSIS technique, showing that the ANN model provided
similar results to the TOPSIS more easily and accurately. The above study demonstrated
ANN’s effectiveness in solving the complexity of the MMS process. Manjate et al. [11]
introduced the recommendation system concept in MMS through one of the collaborative
filtering algorithms: the nonnegative matrix factorization (NMF) algorithm. The authors
investigated the applicability of NMF to predicting underground mining methods, which
was shown to be effective with reasonable performance. Their NMF model was also pro-
posed for predicting missing information about the required input variables for MMS to
enable the implementation of the model even when information about some input variables
is not accessible. The advantage of ML-based systems is the provision of data-driven
decision-making insights and the possibility to continuously train and optimize the mod-
els with up-to-date information. Moreover, ML-based systems may enable the possible
use of the system with or without the direct involvement of decision-makers, even with
missing variables.

1.2. Purpose of the Study

Considering improving and expanding the application of AI in MMS, this study
proposes an AI-based approach to develop a system to recommend underground mining
methods in the preliminary stage of MMS (i.e., pre-selection). The proposed MMS system is
termed the AI-based mining methods recommendation system (AI-MMRS). The proposed
approach is to explore available databases of mining projects to develop a decision-making
support system during mine planning mainly based on the recommendation systems
approach. Recommendation systems are AI systems aimed at helping users deal with
information overload by filtering information to make customized recommendations (of
items that users might like), thus improving users’ decision-making capability [17]. The
study’s main objective is to investigate effective approaches for developing the AI-MMRS
integrating the memory-based collaborative filtering approach and classification machine
learning algorithms for MMS. This study also integrates the results from previous studies
where the Entropy method [10] and nonnegative matrix factorization (NMF) [11] were
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proposed as strategies to address challenges and gaps in the MMS, therefore, enhancing
the effectiveness of the AI-MMRS. The integrated AI-MMRS is intended to recommend
underground mining methods by evaluating the similarities among the projects regarding
orebody characteristics, including ore strength, host-rock strength, orebody thickness,
shape, and dip. By acknowledging the critical importance of MMS in mine planning and the
limitations of AI-based approaches in such a decision-making task, this study emphasizes
the need for the direct involvement of the decision-making team (i.e., mining professionals)
to perform detailed evaluations and selection of the most feasible methods in the MMS
process. As such, the proposed AI-MMRS is intended to serve as a decision-making
support tool for the preliminary selection of underground mining methods (i.e., based on
orebody characteristics), thereby recommending a set of methods that are suitable to the
orebody characteristics, which must then be submitted for further detailed evaluations
(i.e., environmental, economic, technological, and other relevant aspects for evaluations)
by the decision-making team. The proposed AI-MMRS has the potential to enhance the
efficiency and effectiveness of the decision-making process by providing data-driven and
experience-based recommendations based on past or existing mining projects’ procedures,
practices, and experiences. Furthermore, by leveraging the power of AI aided by the
direct involvement of decision-makers (in later stages of MMS), this approach can help
to identify and address key challenges in mining project development and support the
ongoing evolution of mining practices, especially the MMS discipline.

The remainder of this paper is organized into four main sections. Section 2 describes
and explains the methodology for developing the AI-MMRS. Section 3 presents the ex-
perimental results. Section 4 presents a discussion of the results. Finally, the concluding
remarks are presented in Section 5.

2. Materials and Methods

The process of evaluating and selecting mining methods typically involves two or three
main stages, with the initial stage focusing on the preliminary selection of methods suited to
the deposit’s characteristics, which is the outcome given in most qualitative and quantitative
mining methods selection (MMS) systems [1,3–5]. This preliminary selection phase usually
assesses factors such as orebody geometry, geology, and geotechnical properties to identify
a set of suitable mining methods and eliminate less suitable ones. Subsequently, the
methods deemed most suitable undergo further feasibility evaluations in later stages,
considering technological, economic, environmental, and other relevant factors to select
the most sustainable method(s) to recover the ore deposit. This study emphasizes the
need for the direct involvement of the decision-making team (i.e., mining professionals) to
perform detailed evaluations and selection of the most sustainable mining methods in the
MMS process, thereby proposing an AI-based mining methods recommendation system
(AI-MMRS) for the preliminary selection of underground mining methods.

The methodology for developing the AI-MMRS integrates artificial intelligence (AI)
techniques to leverage available mining project databases and facilitate the decision-making
process in mine planning, particularly in the mining methods selection (MMS) task. Specif-
ically, the study explores the effectiveness of the memory-based collaborative filtering
(CF) approach [18] and classification machine learning (ML) algorithms [19] for predicting
underground mining methods based on orebody characteristics (i.e., ore strength, host-rock
strength, thickness, shape, and dip). Figure 1 illustrates the methodological strategy for
developing the AI-MMRS, encompassing data preparation and ML model evaluation as the
main phases. In the data preparation phase, this study incorporates findings from a previ-
ous study to determine the relative importance of factors influencing the MMS process [10].
Additionally, insights from a prior study where the nonnegative matrix factorization (NMF)
algorithm was proposed to predict mining methods and address missing variables in sparse
input data are integrated into the AI-MMRS [11].
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Figure 1. Methodology for developing the AI-MMRS (DMS: document management software: Logi-
calDOC Business version 8.7.3; ML: machine learning, CF: collaborative filtering, NMF: nonnegative
matrix factorization) [10,11].

2.1. Estimating the Relative Importance of Factors Influencing MMS

Naturally, mining methods selection (MMS) is a complex task given the need to
consider many conflicting (and interconnected) factors to evaluate the performance of
different mining methods and select the most feasible method(s). In this study, the Entropy
method is adopted in the data preparation phase to address the complexity of the MMS
caused by many influencing factors. As such, the Entropy method is proposed as a feature
selection technique to assess the relative importance of factors influencing the MMS process
and identify the most relevant factors to be used as main input variables in the input
dataset. In ML, feature selection [20] is an essential step to improve the performance of
the prediction models (and reduce computation time) and the quality of the outcomes by
reducing the number of irrelevant (and redundant) features and selecting the most relevant
ones for building prediction models.

The Entropy method is used in a multi-criteria decision-making (MCDM) problem
to assess the relative importance of influencing factors in the MMS process [10]. In most
MCDM-based studies, the relative importance of the influencing factors is determined
based on the direct subjective opinions or judgment of the decision-makers involved in the
evaluation process for particular projects or case studies [6–9]. While the use of a subjective
approach offers the benefits of providing customized solutions to a specific case study, it also
means that the decisions made may not be generalized, i.e., the decisions may not be easily
applicable or transferable to different case studies. The proposed AI-based mining methods
recommendation system (AI-MMRS) seeks to leverage data-driven decision-making drawn
from diverse case studies, enabling its implementation across different case studies (or
project types). Subjective decision-making methods, while effective in certain contexts,
would introduce bias into the outputs of the AI-MMRS, potentially compromising their
eligibility and accuracy. Recognizing the limitation of subjective methods and considering
the primary aim of the study, which is to develop a system capable of supporting the
decision-making process across various case studies, the Entropy method was found
suitable due to its advantage of estimating the weights of the factors objectively. Unlike
subjective decision-making, the Entropy method determines the weights of the factors
objectively without the need for the direct involvement of decision-makers, thus, providing
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less biased and generalized outcomes suitable for diverse case studies. In this case, the use
of the Entropy method enhances the effectiveness and applicability of the AI-MMRS across
diverse mining projects.

In our previous study [10], the Entropy method, which is rooted in information theory
by Shannon [21], was applied to assess the relative importance of the factors categorized
into orebody geometry, geology and geotechnical properties, technological, economic, and
environmental factors. The Entropy method estimated the objective weights of the factors
based on a decision matrix created from literature sources, particularly methodologies
proposed by Miller et al. [5] and Hartman and Mutmansky [1], renowned for their contribu-
tions to the MMS discipline. This decision matrix encompassed twenty influencing factors
which are used to evaluate twelve mining methods (comprising both surface and under-
ground methods). Using the decision matrix as input, the Entropy method determined the
objective weights of the factors based on the following steps:

1. Normalization of values in the decision matrix using Equation (1) to ensure uniform
scaling across factors (or criteria) and mining methods (or alternatives):

rij =
xij

∑n
j=1 xij

, i = 1, 2 . . . , m; j = 1, 2 . . . n (1)

where xij is the criteria rate; rij is the normalized criteria rate; n is the number of criteria (or
factors), and m is the number of alternatives (mining methods).

2. Computation of Entropy (Ej) values in the matrix using Equation (2), measuring the
uncertainty among mining methods in the absence of factor preference:

Ej = −h
m

∑
i=1

rijln
(
rij

)
, j = 1, 2, . . . , n; h =

1
ln(m)

(2)

where rijln(rij) = 0 if rij = 0 and h is the Entropy constant.

3. Determination of diversity (Dj) or the degree of diversification using Equation (3), which
indicates the dispersion between rates of different mining methods for each factor:

Dj = 1 − Ej (3)

4. Calculation of objective weights of criteria based on Equation (4), which represents
the relative importance of factors in the evaluation and selection process:

wj =
Dj

∑n
j=1 Dj

, j = 1, 2, . . . , n (4)

where wj is the degree of importance or the objective weight of criterion j.
The results of the Entropy method, as shown in Table 1, provide entropy, diversity,

and objective weight values for the evaluated factors. These objective weights indicate the
relative importance of each factor in the mining methods selection (MMS) process. Notably,
geotechnical properties such as ore strength and host-rock strength, along with orebody
geometry factors like thickness, shape, and dip, were assigned the highest objective weights.
This underscores their critical role in the MMS process, especially during the preliminary
selection phase. On the other hand, environmental factors such as health and safety
and the stability of openings were attributed to comparatively lower objective weights.
This suggests their relatively lower impact on the decision-making process during the
preliminary selection stage. Based on the objective weights obtained, the study identified
the first five factors, ore strength, host-rock strength, orebody thickness, shape, and dip,
as the most critical in the preliminary selection stage with objective weights of 0.132,
0.115, 0.104, 0.100 and 0.072, respectively. The identified factors are then used as the main
variables in the input dataset used to train and evaluate the machine learning (ML) models
for the AI-MMRS. The high objective of the five factors weights signifies their substantial
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influence on the MMS process, particularly in the preliminary evaluation stage. These
results emphasize the critical role of the orebody characteristics, including the geotechnical
properties, orebody geometry, and geology, in the preliminary evaluation and selection of
mining methods, as is already shown in other MMS systems [1,3–5].

Table 1. Results of the Entropy method: highlighting the five most relevant factors.

Influential Factor Entropy Diversity Weights

Ore strength 0.895 0.105 0.132
Host-rock strength 0.909 0.091 0.115

Thickness 0.917 0.083 0.104
Shape 0.920 0.080 0.100

Dip 0.943 0.057 0.072
Ore uniformity 0.946 0.054 0.068

Mining cost 0.952 0.048 0.061
Dilution 0.955 0.045 0.057

Ore grade 0.961 0.039 0.048
Selectivity 0.968 0.032 0.040
Recovery 0.976 0.024 0.030

Productivity 0.977 0.023 0.029
Capital investment 0.981 0.019 0.024

Depth capacity 0.982 0.018 0.023
Flexibility 0.982 0.018 0.022

Depth 0.985 0.015 0.019
Production rate 0.985 0.015 0.019

Development rate 0.985 0.015 0.019
Health and Safety 0.991 0.009 0.011

Stability of openings 0.995 0.005 0.007

2.2. Study’s Database and Input Dataset

The proposed AI-based mining methods recommendation system (AI-MMRS) relies
on a comprehensive database comprising historical data extracted from mining projects’
technical reports (and literature-based data). The primary data source for this study
is the SEDAR database (The System for Electronic Document Analysis and Retrieval
(SEDAR): https://www.sedar.com/homepage_en.htm: accessed on 11 July 2022), a publicly
accessible repository of documents filed by Canadian public companies. Although there
are other platforms like Mining Data Online (MDO) (https://miningdataonline.com/##,
accessed on 11 July 2022) offering mining projects’ data, SEDAR’s open nature and global
coverage make it a suitable choice for this study. The study’s database encompasses
technical reports dating from 2000 to 2022, representing mining projects across various
continents and regions (in Africa, Asia, Europe, Oceania, and Central, North and South
America), all owned by Canadian companies. Around 1315 mining projects’ technical
reports were collected from SEDAR and managed within a document management software
(DMS). The database built into the DMS serves as a vital complementary resource for the
AI-MMRS, providing additional relevant insights for mine project planning, such as local
and regional geological, geotechnical conditions, labor costs, sociopolitical, environmental
considerations, and infrastructure availability, among others. In instances where data from
SEDAR was insufficient, literature sources such as papers and theses were utilized as
secondary data sources. The study data from the secondary source were cross-checked
with other literature, and the entire data (from primary and secondary sources) underwent
a validation process using the UBC-MMS system [5], to ensure data integrity and reliability.
Additionally, a thorough background check was conducted on the mining projects included
in the database, thereby excluding projects with a history of failure or negative practices.

The process of data cleaning and validation plays a crucial role in enhancing the quality
and reliability of the dataset used in this study. However, it is essential to acknowledge
that this rigorous process has also resulted in a reduction in the size of the input dataset,
which occurs as unreliable or inconsistent datapoints are filtered out to ensure that only
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high-quality and relevant information is retained for subsequent use. The limited number
of datapoints (or samples) in the input dataset stands as one of the biggest limitations
of this study, which can potentially affect the performance of the machine learning (ML)
models because usually, ML models require large input datasets in order to have a good
performance in the training and evaluation processes.

The input dataset for this study comprises historical information from thirty-three min-
ing projects, characterized by the five input variables selected using the Entropy method [10]
(i.e., ore strength, host-rock strength, orebody thickness, shape, and dip) along with the
underground mining methods selected or considered for each deposit. The seven un-
derground mining methods considered in this study are categorized into unsupported,
supported, and caving methods [1], with sublevel stoping, shrinkage, and room and pillar
representing the unsupported methods. Cut and fill is the only commonly applied sup-
ported mining method, while longwall, block caving, and sublevel caving represent the
caving methods. While variations exist within these methods, this study focuses on the
seven main underground mining methods mentioned earlier for the preliminary evaluation
and selection. The proposed AI-MMRS aims to provide recommendations for the prelim-
inary evaluation and selection of underground mining methods, thus recommending a
set of the most suitable main underground methods, which can be submitted to further
detailed evaluations by the decision-making team in subsequent stages to select the most
sustainable methods (including different variants of the main methods) considering variety
of factors like technical, economic, sociopolitical, and environmental, among other factors.

The study’s assessment of ore and host-rock strength factors is based on the widely
used and most available in the mining project historical data, the rock mass rating (RMR)
system, while the thickness, shape, and dip factors are described using the Nicholas
approach [11] and the UBC MMS system [12]. Table 2 shows the characteristics of the input
dataset utilized to evaluate machine learning algorithms for the AI-MMRS in subsequent
sections, including the classification of variables and the distribution of the projects (or
samples) in each mining method.

Table 2. Characteristics and classification of the variables in the input dataset.

Variables Description

Ore strength Very weak, weak, moderate, strong, and very strong
Host rock-strength Very weak, weak, moderate, strong, and very strong

Thickness Very narrow, narrow, intermediate, thick, and very thick
Shape Irregular, tabular, and massive

Dip Flat, intermediate, and steep

Underground mining methods

Sublevel stoping: 16 projects
Cut and fill: 10 projects

Longwall: 2 projects
Shrinkage: 2 projects

Room and pillar: 1 project
Block caving: 1 project

Sublevel caving: 1 project

2.3. Memory-Based Collaborative Filtering Approach for Mining Methods Selection

Memory-based collaborative filtering (CF), also known as the neighborhood-based
approach [22], is one of the earliest and simplest approaches for building recommendation
systems. It relies on the principle of similarity, which predicts unknown ratings for an
active user based on the ratings of its nearest neighbors or the most similar users. To
illustrate the CF recommendation system framework, let us consider a scenario where we
have a typical user—item rating dataset X shown in Figure 2, where each row represents a
user U, each column represents an item I, and the entries in the matrix represent the ratings
given by users for each item. The task is to generate recommendations for the active user
U5 who has watched movies 2, 3, and 6 (I2, I3, and I6) but has not yet watched movies 1, 4,
and 5 (I1, I4, and I5).
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Figure 2. Collaborative filtering recommendation system framework based on the user–item interac-
tion dataset X composed of u-users and i-items with ratings ranging from 1 to 5, “?” unknown or
missing rating.

There are two main steps to building a memory-based CF recommendation system:
(1) measure similarity and (2) generate predictions and recommendations [23]:

Step 1: Measuring similarity
The first step in building a memory-based CF recommendation system is to measure

the similarity between users or items. For example, we can use the cosine similarity
Equation (5) to compute the similarity between users. In this case, we need to find users
who are similar to U5 based on their ratings for movies 2, 3, and 6.

sim(a, b) = cos (θ) =
ra.rb

‖ra‖‖rb‖ = ∑I
raI .rbI√

∑I raI2
√

∑I rbI
2

(5)

where, raI is the rating of user a to an item I, and sim(a, b) is the similarity between users a
and b.

Step 2: Generate Predictions and Recommendations:
Once similarities are computed, we use the ratings from the most similar users to

predict unknown ratings for the active user U5. The weighted sum method shown in
Equation (6) is commonly used for prediction, where we compute the weighted average of
the ratings given by the most similar users.

ruI =
∑i∈users sim(u, I) ∗ ruI

∑v∈users|sim(u, I)| (6)

Finally, based on the predicted ratings, we can recommend the top-N movies with the
highest predicted ratings to user U5.

The k-nearest neighbors (KNN) algorithm is often employed to implement the memory-
based CF approach. The KNN algorithm is a non-parametric supervised machine learning
(ML) algorithm used as an unsupervised learner in the memory-based CF approach to
search for nearest neighbors and compute similarities among users and items [24]. In
this study, the KNN-cosine similarity algorithm is used to compute similarities among
mining projects. Thereafter, the weighted sum method is used to predict the ratings of the
mining methods for generating recommendations. The approach aims to build a model that
predicts and recommends the top-N relevant underground mining methods by analyzing
the similarities among the projects based on the orebody characteristics.

Data Pre-Processing for Memory-Based CF Approach

To incorporate the memory-based collaborative filtering (CF) approach for predicting
and recommending the top-N underground mining methods, the input dataset (described
in Section 2.2) needs to be prepared accordingly. The first step involves transforming
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the qualitative of the input variables into numerical values: the qualitative values of
ore strength (OS), host-rock strength (RS), thickness (TH), shape (SH), and dip (DP) are
transformed into numerical values based on their objective weights (shown in Table 1)
obtained from the previous study [10]. Then, transform the mining methods (which are
classes) into items to be recommended: the mining methods such as sublevel stoping
(SS), room and pillar (RP), shrinkage (SH), cut and fill (CF), longwall (LW), block caving
(BC), and sublevel caving (SC) are transformed from classes (or dependent variable) to
items to be recommended to the projects/users according to their similarity across the
input variables. Thereafter, assign relevant mining methods to each project: each project is
assigned three relevant mining methods, one primary and two secondary methods. The
project’s primary mining methods are obtained from the database (i.e., technical reports
and literature sources), and the two secondary mining methods are obtained using the
UBC-MMS tool [5]. Finally, ratings are assigned to the mining methods for each project
using a 9-point rating scale: a rating of 9 is assigned to the primary methods of the projects,
a rating of 5 is assigned to the two secondary methods, and the remaining methods are
assigned a rating of 1 (indicating they are not in the top 3 most relevant methods). In this
case, the task of the memory-based model is to provide an output of the top-3 most relevant
mining methods for each project. The employed 9-point rating system ensures the diversity
of the proposed AI-MMRS to recommend a set of top-N most relevant mining methods for
a particular active project according to the orebody characteristics.

Figure 3 illustrates the data pre-processing steps, showing the transformation of
the input dataset for experiments to evaluate the proposed memory-based collaborative
filtering approach. The transformed input dataset consists of thirty-three mining projects
(project IDs: PJ001, PJ002, . . . PJ033) characterized by the five input variables (OS, RS, TH,
SH, and DP) and the corresponding mining methods (SS, RP, SH, Cf, LW, BC and SC) with
the respective ratings. In the experiments, the transformed dataset is used to evaluate the
effectiveness of the proposed memory-based CF model in predicting and recommending
the top-3 most relevant mining methods.

Figure 3. Showing the data pre-processing: transformation of the input dataset for experiments to
evaluate the proposed memory-based collaborative filtering approach.

2.4. The Need for Supervised Classification Machine Learning Algorithms

In this study, supervised machine learning (ML) algorithms are a useful addition
to the memory-based collaborative filtering (CF) approach in addressing its limitations
associated with the dependence of the approach on the UBC-MMS tool, thus enhancing the
effectiveness of the proposed AI-MMRS for mining methods selection (MMS). Supervised
ML algorithms are trained using labeled datasets and are capable of predicting labels or re-
sponses based on the learned relationship between input variables and labels of datapoints
or samples [25]. Classification ML models are particularly relevant for MMS problems as
they are trained to predict class labels of datapoints based on input variables [19]. In this
study, five classifiers were selected for evaluation to identify the best models for MMS
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problems: decision trees, K-nearest neighbors (KNN) with cosine similarity, support vector
machines (linear SVM), kernel approximation (kernel SVM) and artificial neural networks
(ANN). The KNN algorithm is similar to the one implemented in the memory-based CF
approach; however, this section implements it as a supervised classification algorithm [26].
Like KNN, the decision tree is a non-parametric algorithm that learns the relationship
between input variables and class labels as a hierarchical tree structure. SVM finds a hy-
perplane that classifies datapoints in N-dimensional linear space, while the kernel version
solves the problem in non-linear space. Lastly, ANN is a powerful algorithm inspired
by the biological neural network of humans or animals [27], consisting of interconnected
nodes that mimic the neurons in the biological brain, enabling it to solve complex tasks like
classification and regression problems.

These algorithms have been extensively investigated in mining studies, including
MMS studies [12–15,28–31], and their implementation can enhance the effectiveness and
novelty of the proposed AI-MMRS. By leveraging these supervised ML algorithms, the
AI-MMRS can overcome the limitations of the memory-based CF approach and generate
more accurate, diverse, and novel recommendations.

3. Results

3.1. Memory-Based Collaborative Filtering Approach for Predicting and Recommending
Mining Methods

The memory-based collaborative filtering (CF) evaluation strategy for predicting and
recommending the top-N relevant mining methods is similar to the strategy used for
the offline evaluation of recommendation systems [18]. The strategy involves simulating
the practical implementation or real-world scenario of the AI-based mining methods
recommendation system (AI-MMRS). The first step in the experiments involves creating
sparse datasets from a dense input dataset by masking/hiding the known ratings of all
seven mining methods for a target project (e.g., Figure 4: in step 1, PJ001 masked rating).
Then, the proposed memory-based CF model is used to predict the masked ratings of the
mining methods for the target project (i.e., step 2 in Figure 4: predicted ratings highlighted
by thesquare). A list of the top-3 most relevant mining methods is extracted based on
the predicted ratings (i.e., step 3: extract the list based on ratings predicted in step 2);
priority is given to mining methods with higher predicted ratings. The hidden/masked
ratings are kept as ground truth data and used for evaluating the accuracy and quality
of the predictions and top-3 recommendations by comparing the predictions and the
actual relevant mining methods for the project. In other words, the performance of the
memory-based CF model in predicting the missing ratings and recommending the top-3
relevant mining methods is evaluated based on how well it matches the target project’s
three relevant mining methods (one primary and two secondary methods).

Prediction Accuracy and Quality of Recommendations

The memory-based CF model is tasked with predicting and outputting a list of top-3
most relevant mining methods for the projects. The performance of the memory-based
model is evaluated in two ways:

Evaluation 1: Evaluate the model’s capabilities to predict the primary mining methods
as the top-1 most relevant method for each project because the primary mining methods’
prediction defines the overall model’s quality. In this case, the global accuracy rate (GAR)
in Equation (7) is used as the performance evaluation metric:

GAR(%) =
number o f correct classi f ications

total number o f classi f ication
× 100, (7)

Evaluation 2: Evaluate the quality of the top-3 predicted and recommended mining
methods for each project. The evaluation is performed using decision support metrics such
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as F1-score for a fixed N (number of items in the list) based on the Precision (@N), Recall
(@N) and, which can be computed as shown in Equations (8)–(10) [32].

Precision(@N) =
TP

TP + FP
, (8)

Recall(@N) =
TP

TP + FN
, (9)

F1 − score = 2 × Recall × Precision
Recall + Precision

, (10)

Figure 4. Workflow of the proposed methodology for practical experiments: the memory-based
collaborative filtering approach for predicting and recommending top-N mining methods.

Figure 5 shows the model’s performance results regarding the global accuracy rate
(GAR) and the F1-score. Using the KNN-cosine similarity algorithm to find the nearest
projects, it is required to set the parameter k, which is the number of neighbors or projects
used for predictions [33]. In the experiments, the model’s accuracy is evaluated for the num-
ber of projects (neighborhood size) ranging from 2 to 10. The results show that the model’s
performance depends on the number of projects used for predictions (neighborhood size),
where the highest accuracy is achieved when using the two nearest projects.

Figure 5. Performance of the proposed model in predicting primary and top-3 most relevant mining
methods in terms of GAR and F1-score.
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The GAR measures the model’s overall accuracy for predicting the primary methods
as the top-1 within the top-3 list of recommendations. The GAR ranges from 45.5% to
63.6%, indicating that the model can correctly predict the primary mining method as a
top-1 method between 45.5% and 63.6% of the time, depending on the number of projects
used for predictions. The F1-score is used to further evaluate the accuracy and precision
of a recommendation system in predicting the top-3 relevant mining methods for a given
project, regardless of their exact rank position. The results in Figure 5 show the F1-score
ranging from 81.2% to 87.9%; the highest accuracy of 87.9% was achieved when using the
two nearest projects for prediction. These results suggest that the memory-based CF model
performs better when using a smaller neighborhood size.

In summary, the results show that the memory-based CF model provides the best
results when using a smaller neighborhood size (number of nearest projects for predictions)
for predictions and recommendations, which may be directly related to the intrinsic char-
acteristics of the input dataset (i.e., the size and class distribution of the datapoints). The
model performs reasonably well in predicting the primary mining methods as top-1 and
performs even better in predicting the top-3 relevant mining methods. Despite the limita-
tions of the dataset size (dataset with thirty-three projects), the proposed memory-based CF
approach performs quite well in generating recommendations of the top-3 most relevant
underground mining methods with about 87.9% prediction accuracy.

3.2. Classification Machine Learning for Predicting (Classifying) Underground Mining Methods

This section presents the experimental results of classification machine learning for
predicting (classifying) underground mining methods. The experiments were conducted in
MATLAB R2022a, using the Statistics and Machine Learning Toolbox, with the classification
learner application [34]. Five classifiers were evaluated on the same dataset: decision trees,
linear support vector machine (SVM), k-nearest neighbors (KNN) with cosine similarity,
kernel approximation (SVM kernel), and artificial neural networks (ANN). The 10-fold
cross-validation method was used to evaluate and validate the five classifiers. The k-fold
cross-validation method is known to perform better on small datasets (datasets with a
limited number of datapoints) as it ensures that every datapoint in the dataset can appear
in the training and testing sets [35]. Using the k-fold cross-validation results in models that
learn the underlying patterns well and evenly, creating more generalized and less biased
models [36].

Prediction (Classification) of Underground Mining Methods

The global accuracy rate (GAR), F1-score, and the confusion matrix are used to evaluate
the performance of the classifiers. Table 3 shows the results of the performance of the
classifiers in terms of the GAR and average per class F1-score. The artificial neural network
(ANN) model performed the best at 66.7% GAR, followed by k-nearest neighbors (KNN)
with 63.3%. It is worth noting that while the GAR metric provides an overall evaluation of
the classifier’s performance, it may not always reflect the per-class performance. Therefore,
the average per class F1-score is used to depict how well the classifier performs for each
class label (each mining method). In the context of mining methods prediction, this
means understanding how well the classifier performs for each specific mining method,
as each method may have different characteristics and patterns that need to be learned
by the classifier. In this case, we can observe lower values of the F1-score than the GAR
which can suggest that the classifiers are not performing well in identifying or classifying
individual classes.

Figure 6 further depicts the confusion matrix of the ANN model, showing each class’s
(mining methods) Recall or True Positive Rate (TPR) and the True Negative Rate (TNR).
The TPR shows the proportion of correct predictions in each mining method. As for any
other classification algorithm, the class-imbalanced dataset problem negatively affects
the performance of the evaluated classifiers. Class imbalanced datasets happen when
the distribution of datapoints among the classes is uneven, with majority and minority
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classes [37]. The study’s input dataset is class imbalanced, comprising thirty-three projects
(datapoints), with sixteen projects in sublevel stoping, ten in cut and fill, two in longwall
and shrinkage, and one in room and pillar and sublevel caving. Imbalanced datasets
can cause the classifiers to be biased towards the majority class, resulting in a model that
overlearns the patterns of the majority classes and ignores the minority classes [38]. The
confusion matrix shows that the ANN model accurately predicts the majority classes,
sublevel stoping (100%), and cut and fill (60%). However, it performs poorly predicting the
minority classes (block caving, longwall, room and pillar, and sublevel caving), all with
0% TPR. This result indicates that the class imbalance problem in the dataset negatively
affected the performance of the classifiers in learning the patterns of the seven underground
mining methods. This suggests the need to improve the dataset’s quality to build less
biased and generalized classifiers towards developing a robust AI-MMRS.

Table 3. Performance evaluation results of the classifiers in terms of global accuracy rate (GAR) and
average per-class F1-score.

Classifier GAR (%) Average Per-Class F1-Score (%)

ANN 66.7 20.6
KNN 63.6 20.3
SVM 63.6 21.2

Decision Tree 57.6 18.2
SVM Kernel 54.5 16.0

Figure 6. Confusion matrix of the artificial neural network (ANN) model showing the per-class Recall
or True Positive Rate (TPR) and the True Negative Rate (TNR).

In summary, the results of evaluating the applicability of the five machine learning
classification algorithms to predict underground mining methods suggest that the ANN
model is more effective in solving the complexity of mining methods selection (MMS).
This finding is consistent with the results of previous studies [12–14,16], which have also
demonstrated the effectiveness of regression ANN in MMS. The results also show that the
KNN classification model was effective for MMS. As a recap, this study used the same
KNN algorithm for implementing the memory-based collaborative filtering approach for
predicting and recommending top-N underground mining methods, producing reliable
and effective results with good accuracy. These findings consistently demonstrate the effec-
tiveness of classification algorithms, including ANN and KNN, in solving the complexity
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of MMS, which can potentially be further optimized and implemented interchangeably to
provide accurate recommendations.

4. Discussion

This study incorporates artificial intelligence (AI) to explore the available database of
mining projects and develop a system that can assist in mine project development decision-
making, particularly in the mining methods selection (MMS) task. This study develops an
integrated MMS system termed the AI-based mining methods recommendation system
(AI-MMRS). The study investigated the applicability of the memory-based collaborative
filtering (CF) approach and classification algorithms (i.e., KNN, ANN, SVM, decision trees,
and SVM kernel) for predicting underground mining methods. The proposed models were
evaluated based on an input dataset comprising data from thirty-three mining projects
described by five input variables (ore strength, host-rock, thickness, shape, and dip) and
seven underground mining methods (block caving, cut and fill, longwall, room and pillar,
shrinkage, sublevel caving, and sublevel stoping). The input dataset is characterized as
small for typical machine learning problems and imbalanced class issues, which stands as
one of the limitations of the study.

The results of evaluating the performance of the proposed memory-based approach
to predicting and recommending the top-3 most relevant underground mining methods
have demonstrated the models’ effectiveness with moderately good accuracy. On the other
hand, among the five evaluated classification models, artificial neural networks (ANN) and
k-nearest neighbors (KNN) performed the best in predicting (classifying) underground
mining methods, showing their effectiveness in solving the complexity of underground
MMS with moderate accuracy. The proposed memory-based approach generates recom-
mendations of the top-3 relevant underground mining methods aided by the UBC-MMS
system [5] in the data preprocessing step. The classification models are independent of the
UBC-MMS system; they are implemented to enhance the effectiveness and novelty of the
proposed AI-MMRS, as they can address the limitations of the memory-based approach
and generate more accurate and diverse recommendations. Furthermore, the AI-MMRS
integrates results from the previous study [11] using the NMF model to predict possible
missing information about the required input variables (orebody characteristics) to enable
the implementation of the AI-MMRS in situations where the information (or data) about
the necessary input variables is not available/missing, especially during early stages of
mine project development.

Some of the findings from this study are consistent with previous studies which have
shown the effectiveness of regression ANN in MMS [12–14,16]. Similar to the ANN model
by Ozyurt and Karadogan [12], this study is developed considering different ore types
(or commodities), which differs from the models by Lv and Zhang [13] and Chen and
Shixiang [14], which were specific to coal seams. In contrast to the model by Ozyurt and
Karadogan [12] and similar to the models by Lv and Zhang [13] and Chen and Shixiang [14],
the proposed AI-MMRS is fully based on data from real case studies. For the study, the
proposed AI-MMRS requires minimum and fairly easily accessible input factors, especially
during the early stages of mining project development where there can be limited access to
information about the deposit. The weights and selection of the five input variables in the
dataset were determined objectively in a previous study using the Entropy method without
the need for the direct involvement of decision-makers [10], unlike most MCDM-based
MMS systems [6–9], which typically require some level of subjective judgement. The
advantage of AI or ML-based systems is the possibility of continuous learning; as new data
becomes available and mining practices evolve, the models can be updated to reflect the
changes and provide up-to-date recommendations. This may help avoid the risk of obsolete
recommendations, which may be the case for quantitative and some MCDM-based systems.

Understanding the limitations of AI-based approaches in decision-making as well as
the need for careful evaluations in the mining methods selection (MMS) process, this study
emphasizes the need for the direct involvement of the decision-making team (i.e., mining
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professionals) to perform detailed evaluations and selection of most feasible methods in
the MMS process. Therefore, this study proposes an AI-based approach to develop a
mining methods recommendation system (AI-MMRS) for the preliminary evaluation and
selection of underground mining methods. As such, the proposed AI-MMRS is intended to
serve as a decision-making support system for the preliminary evaluation and selection
of underground mining methods, that is, to recommend options of suitable underground
mining methods based on orebody characteristics (geometry, geology, and geotechnical
properties). The recommended suitable methods by the AI-MMRS can then undergo further
feasibility evaluations by the decision-making team (mining experts), who will ultimately
select the most sustainable method(s) based on technological, economic, environmental,
and other relevant factors for the project evaluation. The proposed system is meant to
aid in the pre-selection stage (for new projects or ongoing projects that may need to select
mining methods for new horizons in the mine) based on historical and evolving data.
The system can help professionals focus their detailed evaluations on a narrower, more
relevant set of mining methods, thus enhancing the efficiency and thoroughness of the
decision-making process. In practical implementation, a target project should provide
five input variables (ore strength, host-rock strength, thickness, shape and dip) which will
be used to search for other projects with similar orebody characteristics in the database.
Thereafter, the system recommends a set of most suitable underground mining methods for
the deposit characteristics, to be submitted for further evaluations by the decision-making
team. The system is designed with the understanding that, due to the complexity of orebody
characteristics (such as geometry and geotechnical conditions), using a single mining
method is often impractical; therefore, the system provides recommendations for multiple
suitable methods. The study also highlights the importance of incorporating sociopolitical
and environmental risk assessments in the early stages of mine project planning, including
during the MMS process, which is demonstrated in a study by Barakos and Misho [39]. The
proposed integrated system can assist with these assessments, using its database of mining
project historical data to provide relevant information for decision-making, including
details about local or regional sociopolitical aspects, environmental concerns, common
mining methods, geology, geotechnical conditions, labor costs, infrastructure, and mineral
processing procedures and other project-specific factors.

In summary, this study demonstrated the effectiveness and viability of the proposed
approaches to develop the integrated AI-MMRS, which has significant potential to improve
the efficiency and effectiveness of decision-making in the MMS task. Despite the limitations,
the findings from this study are significant and can pave the way for future studies on
the MMS discipline and Smart Mining (Mining 4.0) in general, providing insights for
researchers and industry interested in leveraging the power of AI and data analytics to
improve efficiency and quality of the decision-making process. By leveraging the power
of AI and recommendation systems, this approach can help to address key challenges in
mining project development and support the ongoing evolution of mining practices. As
such, the system should be continually updated and improved with new data to ensure its
recommendations remain relevant and accurate.

5. Limitations and Future Works

The use of AI-based approaches in MMS is promising as it can be more efficient and
provide experience-based recommendations. However, a major limitation of the study is
the size and quality of the input dataset, primarily due to the limited access to reliable
mining projects’ historical data, which reflects on the quality and performance of the
models, especially classification models. As for any ML-based system, the proposed AI-
MMRS will only provide good predictions and better recommendations if continuous data
collection and training are performed. Therefore, the system is designed to be flexible
and open to the inclusion of new mining methods as they are developed or identified
by making the model open for new additions. Future studies will focus on improving
the quality of the input dataset, optimizing machine learning models, and validating the
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models considering various case studies. Additionally, actively include sociopolitical,
environmental and other critical aspects deemed critical in mine planning in the model to
enable active risk assessment analysis in decision-making, particularly in the evaluation
selection of mining methods.

To address the major limitation of the study, thereby improving the quality of the
training dataset, it is proposed to make the model open for new additions through an open-
line platform where industry professionals, researchers, and mining experts can contribute
to mining projects, which will continuously expand the training dataset. This approach not
only increases the dataset but also promotes collaborative knowledge sharing within the
mining community. By enriching the dataset over time, the AI model will become more
robust, improving its accuracy and utility in future applications. This strategy ensures that
the AI system evolves along with advancements in mining methods, emerging technologies,
and changes in orebody conditions and relevant selection factors, making it a valuable tool
for both current and future projects.

6. Conclusions

This study proposed an artificial intelligence (AI)-based approach to developing an AI-
based mining methods recommendation system (AI-MMRS) to serve as a decision support
system for the preliminary evaluation and selection of underground mining methods. The
study investigated the most effective approaches to exploring the available database of
mining projects to develop a decision-making system for mining project development (mine
planning), the AI-MMRS. The proposed AI-MMRS was developed based on the integration
of two main approaches to train the prediction models: memory-based collaborative
filtering (CF) and classification models to provide efficient and diverse recommendations for
underground mining methods. The study evaluated the applicability of the two approaches
in predicting underground mining methods based on orebody characteristics (i.e., ore
strength, host-rock strength, thickness, shape and dip). The results have demonstrated the
effectiveness of the memory-based CF approach and classification models (i.e., ANN and
KNN) with moderately good accuracy.

Despite the study’s limitations in the size and quality of the dataset, the findings
demonstrated that the integrated approaches in the AI-MMRS can be viable and practical
for MMS. Understanding that the mining methods selection (MMS) process is one of the
most critical decision-making tasks in mine planning, this study emphasizes the need for
the direct involvement of the decision-makers (mining professionals) to perform further
detailed evaluations and selection of mining methods. Therefore, the proposed AI-MMRS is
intended to serve as a decision-support tool for the preliminary evaluation and selection of
underground mining methods based on historical and evolving data. The system can help
professionals focus their detailed evaluations on a narrower, more relevant set of mining
methods, thus enhancing the efficiency and thoroughness of the decision-making process.

The proposed AI-MMRS has the potential to aid in decision-making in the mining
industry by providing efficient and experience-based recommendations for the preliminary
evaluation and selection of underground mining methods. However, as with any AI or
ML-based systems, the proposed AI-MMRS will only provide better recommendations if
continuous data collection and training are performed. Therefore, the system is designed
to be flexible and open to the inclusion of new mining methods as they are developed
or identified. Future studies will focus on improving the quality of the input dataset,
optimizing machine learning models, and validating the models on various case studies.

The study’s findings provide new insights into applying memory-based collaborative
filtering and classification models in MMS, providing a valuable resource for researchers
and industry professionals interested in data-driven approaches to mining project decision-
making. The study thus demonstrates that the application of AI and data analytics in the
mining industry has the potential to optimize the efficiency and effectiveness of decision-
making, which is the concept of Smart Mining (Mining 4.0).
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Abstract: Rill swell (RS) events are outflows of dry, fine-grained material mainly observed at draw-
points in cave mining. These events can negatively affect production and have fatal consequences.
Unfortunately, comprehensive studies analyzing these events are lacking. This paper uses the discrete
element method to study RS events. With this method, a numerical model was constructed and
calibrated based on an RS event recorded in Ridgeway Deeps Block Cave. Drawpoint geometries,
material properties, and the initial mass of the fine material were then analyzed. The results show
that both the brow beam height and drawpoint width had a noticeable influence on the RS magnitude,
mainly on the tonnage of the flow and the distance reached by coarse particles dragged into the
extraction drift. While the mass of fine material is crucial to the magnitude of RS events, results
suggest that narrowing drawpoint width and/or increasing brow beam height can mitigate the
impact of RS events.

Keywords: numerical modeling; discrete element method; granular material; mining risk

1. Introduction

Rill swell (RS) of fine material events are uncontrolled outflows of dry, fine-grained
materials from drawpoints in underground mining, which can also transport large rocks
interspersed with the fine material. The first events registered in Palabora Block Cave Lift
1 were described as fine rushes with material flowing in the air [1]; typical fine rushes
were observed to flow across the width of the production drift up to the opposite sidewall.
From May 2006 to 2020, more than 300 fine rushes occurred in Palabora, and those draw-
points classified as having a high risk of this type of event have subsequently been sealed
off [1,2].

Other operations have also experienced fine rushes. For example, the mine site at
Ridgeway Deeps has experienced these events since September 2014, with analysis showing
that the fine material came from the SLC mine above [3]. Also, in Australia, Cadia East PC1
has experienced inrushes since February 2016, mainly at the cave-back boundary projection
in the Production Level [4]. On the other hand, Mt. Wright has experienced inrushes since
May 2014, which have been ascribed to poor performance of ring charging, the formation
and release of boulders, and hang-up release procedures [5].

According to the literature, RS events are mainly related to two different mechanisms:
(1) removal of hang-ups and (2) slope failure of the fine material at drawpoint [2,4–6].
Removal of hang-up activity generates free space through which large masses of fine
material can fall and flow, and this has occurred in Ridgeway Deeps, Palabora, Mt. Wright,
and Cadia East PC1. On the other hand, a slope failure mechanism can occur during load
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haul dump (LHD) loading, when fine material located over the drawpoint is destabilized
and flows out. This kind of event has been observed at Mt. Wright and Cadia East PC1, and
recently, minor runoff of fines has also been observed in the Chuquicamata underground
mine. Both mechanisms require a previous accumulation of fine material in the drawbell,
while the presence of coarse fragments can also contribute to the occurrence of RS in
either mechanism.

The presence of fine material is critical in caving mines with inrush risk potential. Fine
materials can appear due to the mining process, or they can originate from previous adjacent
mine sectors [7]. Four sources of fine material have been identified in RS events: secondary
fragmentation, fine material migration, fine material from open pits, and fine material
from previous mine sectors. These sources can be independent or occur in combination to
influence the quantity of fine material found in underground mines.

Secondary fragmentation is the last fragmentation stage that ore undergoes in the
broken column before being extracted from the drawpoints. Here, the rock is mainly
fragmented by compression and abrasion [8–10]. Additionally, some authors [10–12]
include fragmentation by impact, when a rock block falls from the cave-back. Several
models have been used to estimate these fragmentations in block caving mines [9,12–15];
however, none has been specifically calibrated to estimate fine fragments.

The main mechanism of fine material generation during secondary fragmentation is
by abrasion generated by shear strain during gravity flow [13,16,17]. The problem is that
shear strain and overload are difficult to estimate. Moreover, both variables are influenced
by ore extraction. The shear strain can be determined based on the shear band during ore
flow [12,13]. This approach has been used in a secondary fragmentation model [18] based
on fragmentation studies involving shear [19,20]. This approach has improved the accuracy
of fine material fragmentation models. However, fine material can also be observed under
uniform draw due to large travel distances [21,22], which the previous models have failed
to consider.

Fines migration occurs when fine materials flow more rapidly than coarse materials
inside the broken column and eventually arrive at the drawpoint [7,23]. In block caving,
this process has been studied mainly through physical modeling [1,24,25] and also through
numerical modeling [26–28]. In cave mining, fine migration is mainly governed by the ratio
between coarse and fine fragment size, the particle size distribution of ore, rock density,
and draw strategies. Authors [12,13] suggest that fine migration also occurs around the
ellipsoid of movement induced by shearing. Fine material migration can accumulate fine
material in drawbells, increasing the risk of RS events.

Additionally, cave mining methods are sometimes developed after open-pit mining
has ceased [29,30]. Due to the caving process, material from the pit slope can fail and
become part of the caving-induced subsidence. Material incorporated from the pit is
softer and more fractured than the in situ mineralized rock. In many cases, that softer,
finer material is more susceptible to secondary fragmentation mechanisms. For example,
Palabora Block Cave Lift 1 identified their RS events as being related to fine material from
the pit slopes [1]. Abandoned cave mines are also sources of fine material for future deeper
projects. For instance, Ridgeway Deeps’ Block Cave suffered RS events related to fine
material from the abandoned Ridgeway Gold Sublevel Cave from 2014 to 2016 [3].

The slope failure mechanics observed during the inrush of fine material may have
certain similarities with rockslides that are well documented in the literature. At a large
scale, rock avalanches can be found involving dry flows of fine granular material [31]. Rock
avalanches are a type of landslide (large scale) in which a slope failure is produced [32]. This
type of rock flow is affected by lithology [33,34], but its distance is commonly correlated
with its debris mass [35]. Rockslides can occur in unconfined or confined conditions [32].
Additionally, particle sizes and shearing are key features in rockslides [31,36], along with a
low friction coefficient [35]. Low mixing is commonly observed in landslides associated
with laminar flow during slides. Commonly, in rock avalanches two motion mechanisms
can be appreciated: sliding at the beginning, and then material flow [37]. Acoustic fluidiza-
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tion is one of the triggering mechanisms associated with the pseudo-viscous flow of dry
rock debris moving long distances horizontally. In [38], a nonlinear model is proposed that
considers the evolutionary characteristics of the slope failure. Large rock blocks can be also
be associated with rockslides [33], similar to that observed in the inrush of fine reported
in [3].

Studies focusing on understanding the key variables and mechanics in RS events
are scarce, and although mine studies provide valuable information, the variables and
mechanisms involved cannot be controlled for deeper analysis. This study focuses on the
RS mechanism as it relates to hang-up removal, applying numerical modeling to analyze
these events. The numerical model was calibrated based on available mine data, providing
an opportunity to combine an in situ mine study with modeling to delve further into RS
event occurrence and its mechanisms.

2. Methods

2.1. Granular Material

The definition of fine material in mining depends primarily on the operation or sector
and the mine problem or phenomena being studied. For example, at Diablo Regimiento
sector in El Teniente, fine materials are considered to be 7 cm in diameter or smaller [39],
and mainly related to mud rush events. At Palabora Block Cave Lift 1, fine materials are
considered to be 1 cm in diameter or smaller [2], and also related to mud rush problems.
Some risk assessment studies have considered fine materials to be 25–30 cm in diameter
or smaller [40]. Additionally, gravitational flow studies of dilution by fine migration have
been used to define fine material size criteria [24,39,41,42]. Table 1 presents examples of
fine material definitions in the cave mining industry and related studies.

Table 1. Fine material in cave mining.

Operation’s Name/Study Mining Method Max. Size [cm] Reference

Esmeralda sector
(El Teniente mine) Panel Caving 5 [39]

Diablo Regimiento sector
(El Teniente mine) Panel Caving 7 [39]

Mud-rush study PC/BC (numerical modeling) 25 [40]
Palabora Lift 1 Panel Caving 1 [2]

Ridgeway Deeps Block Caving 1 (d50) [3]
Pipa Norte Extensión HW Panel Caving 25 [43]

Mt Wright Sublevel Shrinkage Stoping 1 [5]

As illustrated in Table 1, different fragment sizes are defined as fine material across
cave mining environments. Given this variation, the size was chosen from within this
range: For the numerical model, the fine material was set to 0.2 [m] in diameter and the
coarse material was set to 0.75–1.5 [m] in diameter (mean size, d50 = 1.18 m). Both fragment
size distributions can be observed in Figure 1.

The fine material (0.2 m) was selected as a mono-size mainly to achieve numerical
stability and to reduce simulation times. Size distribution has been shown to influence the
macro-mechanical properties of particulate material [44–47]; however, because this study
focused on geometric parameters, only one material size was used, and this was calibrated
with the case study. However, to evaluate the effect of the mechanical properties of the
material, a friction sensitivity analysis was also performed to analyze its effect in this study.

2.2. Base Event

A large RS event at Ridgeway Deeps registered in September 2015 [3] was used for
numerical model calibration. This event was identified as being caused by the outflow of
dry fine material during removal of a hang-up (coarse arch). The event had a magnitude of
260 [t] of fine material flow through a drawpoint, and large rocks of 0.5–1.5 [m] diameter
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were dragged by the fines. The geometrical characteristics of this event are summarized in
Table 2 and presented in Figure 2.

Figure 1. Fragment size distribution of the Numerical model material.

The flow was also described in terms of the distance reached and deposition angle in
the production drift. Both of these were measured in the two senses of the production drift:
towards the north, opposite to the direction of the extraction drift; and towards the south, in
the same direction as the extraction drift (Figure 2). In Figure 2, the blue contour represents
the fine material extension. The brow beam—in red—is located at the drawpoint where the
RS event took place as the result of a hang-up removal. The hang-up was removed using a
water cannon.

The run-out distance towards the south was not able to be determined because of the
presence of the water cannon. Accordingly, the run-out distance towards the north was
used in the calibration stage.

Table 2. Some base event characteristic used in calibration.

Parameter Value Unit

Tonnage 260 t
Real volume (non-apparent) 95 m3

Run-out distance towards the north - m
Run-out distance towards the south 9.4 m

Large rocks in production drift? Yes -
Deposition angle towards the north, 1 [m] over the floor 19 ◦
Deposition angle towards the south, 1 [m] over the floor 7 ◦

2.3. Drawbell and Pillar Geometries

The production level of Ridgeway Deeps Block Cave is an offset herringbone layout,
with 30 m between production drifts and 18 m between extraction drifts. Production and
extraction drifts form 45-degree corners. The distance from one drawpoint to the next in the
same drawbell is 11 m, and the drawbell height is 14 m from the drawpoint roof. Figure 3
presents detailed geometric characteristics of the drawbell and the pillar, respectively.

2.4. Numerical Model

The discrete element method (DEM) [48] is a numerical tool widely used for solving
problems involving the flow of granular assemblies, represented as individual elements
or particles. These particles interact with one another and other objects via contact force
laws [48,49]. The basis of the DEM software is particle–pairs contact. When contact
occurs, particles experience elastic repulsion and frictional forces, which are transformed
into translational and rotational moments. Through the application of Newton’s Second
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Law, the particle’s linear and angular accelerations are obtained. Then, through time
integration of the acceleration, the particle’s new velocity and new position are derived.
These mathematical steps are known as Δt, with the following held to be true: The smaller
the value of Δt, the greater the accuracy of the solution, and the longer the required
computation time will be [49].

Figure 2. Geometric characteristics of the drawpoint and the event studied. (a) Plan view of the
deposition profile (b) Lateral view of the deposition profile (after [3]).
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Figure 3. (a) Plan view of drawbell geometry, with red lines representing both drawpoints (b) Plan
view of the pillar geometry and extraction level layout.

For this study, free-access ESyS-Particle software (version 2.3.5) was employed to
implement DEM written in C++ with a Python API [50]. Using this program, it is possible
to create bonded and non-bonded granular assemblies of spheres, assign contact coefficients
such as friction and repulsion, model rotational and translational particles, and incorporate
rigid structures into the simulations.

The setup of the numerical model (Figure 4) considers two drawpoints, one drawbell,
two production drifts, two extraction drifts, two brow beams, coarse particles, fine particles,
a hang-up at one of the two drawpoints composed of large particles (white), and a mass of
fines (red) over the hang-up. The walls of the mine geometries are modeled with particles
(blue) to assign mechanical properties to them.

 

Figure 4. Initial setup of the numerical model developed in ESyS Particle. The red material is
composed of fine particles. The white material is composed of coarse particles.

The hang-up was located at the drawpoint brow beam, and the experiments were
focused on the behavior of the material flowing out from the drawpoint after part of the
hang-up was removed. The coarse material was initially placed to create the hang-up, and
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then, the fine material was added. The hang-up volume removed was 4.5 m deep into the
drawpoint (see yellow rectangle in Figure 5), a horizontal distance equivalent to 3 times the
largest fragment size.

 

Figure 5. Volume of large particles removed to trigger the inrush event.

The RS magnitude was quantified by measuring 7 parameters described below
(output variables):

• Tonnage of the event, including fine and coarse fragments (t)
• Run-out distance towards the north and the south, measured from the intersection of

the extraction drift axis and production drift axis (m)
• Presence of large particles (>0.75 m diameter) in the production drift
• Height of the material in the production drift (m)
• Deposition angle towards the north and the south. This indicator was measured 1 m

from the floor of the production drift (◦).

The measurement procedures for the run-out distance, height of material, and deposi-
tion angle are illustrated graphically in Figure 6.

Figure 6. (A) Plan view of the measurement of run-out distance. (B) Profile view of the measurement
of the height of flow and deposition angles.

The variables analyzed in this study were the following (control variables):
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• The quantity of fine material over the hang-up. This variable was studied through its
height, analyzing columns of 7 m, 15 m, and 30 m

• The effective height of the drawpoint. The effective drawpoint height is the nominal
height of the drawpoint (4.5 m in this study) minus the brow-beam height. Brow
beams are structures placed at the drawpoint brow to control RS or mud rush events

• The effective drawpoint width, which was measured wall-to-wall (3 and 5 m).

3. Numerical Calibration

The numerical model was calibrated according to the base event described in Section 2.2.
Particle density was set to 2.7 t/m3 and the Poisson ratio was set to 0.3. Drawpoint geometry
and quantity/height of the fine material over the hang-up were set to the following values:

• Drawpoint width: 5 m;
• Nominal drawpoint height: 4.5 m;
• Brow beam: 2 m (effective drawpoint height: 2.5 m).

The numerical and material parameters adjusted in the calibration phase were the
elastic repulsion module, damping, and the static and dynamic coefficients of friction.
Additionally, the height of fine material over the hang-up was calibrated. Regarding this
last parameter, although the amount of fine material that came out of the drawpoint is
known, the amount of initial fine material that was over the hang-up is unknown (part of
this fine material may have remained in the drawbell).

Table 3 presents the results for the best adjustment achieved. The results of the
calibration phase achieved a 1% deviation in terms of the tonnage and a 1◦ deviation in
terms of the deposition angle. As in the base event for calibration, fine material fell, flowed,
and dragged large particles up to the extraction drift bullnose, as can be seen in Figure 7.

Table 3. Parameter results obtained during the calibration.

Parameters Value Unit

Elastic repulsion 4.5 MPa
Static friction 0.9 -

Dynamic friction 0.8 -
Damping 0.25 -

Height of fine material over hang-up 7 m
Time Step 0.0004 s

 

Figure 7. Plan view of the event modeled during calibration phase.

Additionally, Table 4 compares results obtained with the calibrated numerical model
and the base event used in this study. Figure 7 and Table 4 demonstrate that coarse particles
under the initial fine material were also dragged in the numerical simulation. The tonnage,
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run-out distance and deposition angle obtained in the numerical model are similar to the
base event. The run-out distance to the south and the deposition angle were not reported
in the base event because the water cannon interrupted the material flow.

Table 4. Results of main output variables calibrated with base event.

Parameters Base Event Numerical Model

Tonnage (t) 260 257
Run-out distance + (m) - 6.4
Run-out distance − (m) 9.4 9.3

Large rocks in drift yes yes
Deposition angle + (◦) 7 8
Deposition angle − (◦) - 7

Height of flow (m) - 1.1

4. Results

This study focused on the relation between the drawpoint geometry and the quantity
of fines over the hang-up with the magnitude of the RS event.

4.1. Drawpoint Geometry

Drawpoint height and drawpoint width were studied to analyze the magnitude of
potential RS events. The quantity/height of fine material over the hang-up was adjusted at
the calibration phase (7 m).

4.1.1. Drawpoint Height

Drawpoint height was analyzed in terms of the brow-beam height while the drawpoint
width was fixed at 5 m and the amount of fine material over the hang-up was defined at
a height of 7 m. Brow beams of 1 m, 2 m, and 3 m high were simulated. A brow beam of
2 m was the base case equivalent to the setup in the calibration phase. Table 5 presents the
magnitude of the RS events simulated.

Table 5. RS magnitude for different brow beam (BB) heights.

Parameters BB 1 m BB * 2 m BB 3 m

Tonnage 374 257 125
Run-out distance towards the north (+; m) 11 6.4 6.5
Run-out distance towards the south (−; m) 7.8 9.3 2.8

Large rocks in production drift? Yes Yes No
Deposition angle in direction +, 1 (m) over the floor 14◦ 7◦ -
Deposition angle in direction −, 1 (m) over the floor 17◦ 8◦ -

Height of flow (m) 1.6 1.1 0.4
* Height of the base case.

Results showed a clear relation between the BB height and the RS magnitude. A brow
beam of 1 m in height implied an RS event of 374 t, 46% larger than the event associated
with the brow beam of 2 m in height. On the other hand, the 3 m high brow beam implied
an RS event of 125 t, 51% smaller than the base case. In addition, in the event associated
with the 1 m high brow beam, large particles were dragged to the production drift axis. On
the contrary, the event associated with the brow beam of 3 m in height did not drag large
particles through the extraction drift. Plan views of the material deposited are presented
in Figure 8.
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Figure 8. Plan views of the event modeled. (A) 1 m brow beam. (B) 3 m brow beam. Coarse fragments
for the event associated with the brow beam of 1 m were of minor size.

4.1.2. Drawpoint Width

Two drawpoint widths were modeled. A small drawpoint width of 3 m was evaluated
and compared with the large drawpoint width of 5 m used in Section 4.1.1. The effective
drawpoint height was fixed at 2.5 m, the brow beam was fixed at 2 m, and the mass of fine
material over the hang-ups at a height of 7 m.

Table 6 presents the magnitude of the RS events modeled. According to the results, the
new event modeled (DP of 3 m) achieved a magnitude of 193 t, 25% smaller than the base
event. Also, large rocks were dragged by the fines, but they did not arrive at the production
drift, as can be observed in Figure 9.

Table 6. RS magnitude for different drawpoint widths.

Parameters DP Width: 5 m * DP Width: 3 m

Tonnage 257 193
Run-out distance towards the north (+; m) 6.4 3
Run-out distance towards the south (−; m) 9.3 6.9

Large rocks in production drift? Yes No
Deposition angle in direction +, 1 (m) over the floor 7◦ -
Deposition angle in direction −, 1 (m) over the floor 8◦ -

Height of flow (m) 1.1 0.8
* Height of the base case.

4.2. Available Fine-Grained Material

The number of fines over the hang-up was analyzed by height: columns of fines of
6 m, 15 m, and 30 m in height were studied and compared with the 7 m high columns used
in previous sections. Brow beam heights of 1 m, 2 m, and 3 m and drawpoint widths of 5 m
and 3 m were considered.

51



Appl. Sci. 2024, 14, 8545

 
Figure 9. Plan view of the event modeled, with a drawpoint of 3 m in width. Coarse fragments that
were dragged were covered by the fine material.

Table 7 presents the RS magnitude for events associated with columns of fines that
were 6 m high, 15 m high, and 30 m high, respectively. According to the results, the RS
magnitude expressed in tonnage was noticeably influenced by the drawpoint geometry,
especially the brow beam height: For a brow beam of 1 m, the RS magnitude was 359–495 t
depending on the available quantity of fines over the hang-up; for a brow beam of 2 m, the
RS magnitude was 256–334 t; and for a brow beam of 3 m, the RS magnitude was 120–147 t.
Thus, the smaller the brow beam, the larger the RS event.

Table 7. RS magnitude for different heights of fine material tested.

Height of Fine Material
Over Drawpoint

Parameters
DP Width: 5 m DP Width: 3 m

BB 1 m
BB 2

m
BB 3

m
BB 2 m

6 m

Tonnage 359 256 120 190
Run-out distance towards the north (+; m) 11 8.6 4.9 7.9
Run-out distance towards the south (−; m) 5.7 4.6 2.1 2.2

Large rocks in production drift? Yes Yes No Yes
Deposition angle in direction +, 1 (m) over the floor 16 6 - -
Deposition angle in direction −, 1 (m) over the floor 15 6 - -

Height of flow (m) 1.4 1.1 0.4 0.9

15 m

Tonnage 446 287 137 212
Run-out distance towards the north (+; m) 8.8 8.2 3.6 4
Run-out distance towards the south (−; m) 13 9.8 6.5 7.3

Large rocks in production drift? Yes Yes No Yes
Deposition angle in direction +, 1 (m) over the floor 15◦ 7◦ - -
Deposition angle in direction −, 1 (m) over the floor 17◦ 8◦ - -

Height of flow (m) 2 1.1 0.4 0.5

30 m

Tonnage 495 334 147 234
Run-out distance towards the north (+; m) 12.3 11.5 5 5.1
Run-out distance towards the south (−; m) 13.3 10.6 6.5 9.4

Large rocks in production drift? Yes Yes No Yes
Deposition angle in direction +, 1 (m) over the floor 13◦ 7◦ - -
Deposition angle in direction −, 1 (m) over the floor 16◦ 12◦ - -

Height of flow (m) 2 1.4 0.5 1

The presence of large rocks in the production drift was observed for the brow beams
of 2 m and 1 m, but not for the brow beam of 3 m, independently of the mass of fines over
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the hang-up. This phenomenon can be explained by the flowability of the fine material for
different drawpoint opening widths.

5. Analysis

Figure 10 summarizes the magnitudes of all RS events modeled, including the draw-
point width of 3 m (dashed line). Here, the magnitudes increase according to the amount
of fine material over the hang-up; hence, there was a maximum expected RS event for each
drawpoint geometry. Considering drawpoints of 5 m in width, the maximum expected
RS events would be 500 t, 350 t, and 150 t for brow beams of 1 m, 2 m, and 3 m high,
respectively. Also, regarding drawpoints of 3 m in width and a brow beam of 2 m in
height (effective drawpoint height of 2.5 m), the maximum expected RS event would be
around 250 t.

Figure 10. RS magnitude for different heights of fines over the hang-up and different drawpoint
geometries.

On the other hand, the presence of large rocks in the production drift was observed
to increase with a smaller brow beam and/or a larger amount of fine material over the
hang-up. The observations in this study suggest an opportunity to define operational
guidelines for mining sectors that have been classified as at high risk for RS events. The
geometric characteristics of the drawpoints allow the maximum expected events to be
estimated. Additionally—as a mitigation measure—results suggest the brow beam could
be modified as caving progresses and finer fragmentation arrives at drawpoints.

The effect of rock density was quantified, and a sensitivity analysis of the density was
performed. The density varied by +/−25% in simulating the case of a 2 m brow beam, 7 m
of fine material height, and a drawpoint width of 5 m. The density was evaluated because
it is known to influence fine migration [7,19]. Figure 11 shows the simulations for different
rock densities. The red particles are the fine material, while the white ones are the coarse
material present in the hang-up. For the lowest density (Figure 11a), coarse particles were
not dragged to the production drift.

Table 8 shows the effect of particle density on RS events. It can be observed that at the
lowest density the tonnage decreases by 28.5%, while at higher densities it increases by as
much as 33%. It is possible that a lower density decreases the percolation and potential
energy available to generate an RS event. Therefore, density is a variable that can have an
important effect when this type of risk exists.
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Figure 11. RS event simulation with different rock densities (a) plan view of RS event for rock density
of 2.0 t/m3, (b) profile view of RS event for rock density of 2.0 t/m3, (c) plan view of RS event for
rock density of 3.4 t/m3, (d) profile view of RS event for rock density of 3.4 t/m3.

Table 8. RS results simulating different rock densities.

Parameter
Density (t/m3)

2.0 2.7 3.4

Tonnage 184 257 341
Run-out distance towards the north (+; m) 8.3 6.4 10.1
Run-out distance towards the south (−; m) 4.1 9.3 6.1

Large rocks in production drift? No Yes Yes
Deposition angle in direction +, 1 (m) over the floor (◦) 5 8 10
Deposition angle in direction −, 1 (m) over the floor (◦) 5 7 10

Height of flow (m) 1 1.1 1.4

Being able to model rill swell of fine material events in mining contributes to a better
understanding these phenomena. Although there is still much work to be done to achieve
a thorough understanding in this area, the variables and results presented here enhance the
comprehension of these critical events. However, one of the main variables associated with
these phenomena is the uncertainty of the fine material accumulated at the drawpoints. It
is advisable to use techniques to quantify this uncertainty [51,52] and thus minimize the
risk through better estimates of the fine material generation and gravity flow.

6. Conclusions

This numerical study analyzed the magnitude of RS events associated with a hang-up
release mechanism, modeling different drawpoint geometries and amounts of fine material
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over the hang-up. The numerical method was useful to replicate the RS events studied.
Here, it was observed that the effective drawpoint height and the amount of fine material
over the hang-up influenced the material flow. Based on the tonnage of fine material
available over the hang-up, each drawpoint geometry was associated with a maximum
expected RS event. The drawpoint geometry in terms of height and width were found to
highly influence RS event magnitude, almost independently of the amount of fine material
over the drawpoint. In our model, when the height of the brow beam increased by 50%, the
amount of fine material in the RS event decreased by 51.4%. Given these results, the design
of drawpoints should be evaluated and adjusted accordingly if there is a risk of RS events.
Narrower drawpoints with higher brow beams could significantly decrease the magnitude
of an RS event. If there is a potential risk of an RS event due to dry and fine material, the
methodology used here can be used to anticipate the magnitude of an RS event.
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Abstract: Stopes suffer from unreliable wireless communication due to their harsh environment.
There is a lack of confidence within industry regarding the effectiveness of existing solutions in
providing reliable high-bandwidth performance in hard rock stopes. This work proposes that Wi-Fi6
is a good candidate for reliable high-bandwidth communications in underground hard rock stopes.
Experiments in a tunnel and mine stope were conducted to evaluate the performance of Wi-Fi6
in terms of latency, jitter, and throughput. Different criteria, such as multi-hop systems, varying
multipath, mesh routing protocols, and frequencies at different bandwidths, were used to evaluate
performance. The results show that Wi-Fi6 performance is greater in stopes compared to tunnels.
Signal quality evaluations were conducted using the Asus RT-AX53U running OpenWrt, and an
additional experiment was conducted on the nrf7002dk running Zephyr OS to evaluate the power
consumption of Wi-Fi6 against the industry standard for low-powered wireless communications, IEEE
802.15.4. Wi-Fi6 was found to be more power-efficient than IEEE 802.15.4 for Mbps communications.
These experiments highlight the signal robustness of Wi-Fi6 in stope environments and also highlights
its low-powered nature. This work also highlights the performance of the two most widely used
open-source mesh routing protocols for Wi-Fi.

Keywords: B.A.T.M.A.N.; HWMP; jitter; latency; multipath; OpenThread; stope; throughput; Wi-Fi6

1. Introduction

A high-bandwidth wireless solution would be of significant value in modern mining
operations to enhance efficiency, safety, and productivity. They enable the real-time trans-
mission of critical data, ensuring that information from various sensors and monitoring
devices is swiftly communicated to control centres and decision-makers. This immediacy
supports advanced automation technologies, allowing for the precise remote control of
machinery and vehicles, and the seamless operation of automated processes. Furthermore,
a high-bandwidth infrastructure ensures rapid and reliable safety communications, which
is vital for protecting workers in the hazardous stope environment. It allows for instant
alerts and emergency responses, enhancing the overall safety of mining operations. Addi-
tionally, a high-bandwidth infrastructure supports comprehensive data analysis, where the
data can be analysed to optimize operations and inform strategic decisions. By leveraging
a high-bandwidth wireless infrastructure, mining companies can significantly improve
their operational effectiveness, reduce risks associated with equipment failures and envi-
ronmental hazards, and achieve better overall performance, ultimately leading to increased
productivity, profitability, and safety for stope activities. An example of an application
could be the transmission of LiDAR data from robots to facilitate automation, mapping
terrain, detecting potential obstacles, and determining safe pathways in real-time. These
automated robots could be used to calculate the ideal locations to place dynamite in a stope,
as well as facilitating the installation of the dynamite instead of using people, thus reducing
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risk to human lives. Another example could be the transmission of thermal and acoustic
data to a processing node to identify loose rocks and trigger alarms if the area is unsafe. The
transmission and analysis of geophone or accelerometer data could also be used to detect
seismic activity and trigger appropriate alarms. Other applications include maintaining
communication infrastructure; environmental monitoring using gas, temperature, and
humidity sensors; and equipment monitoring to ensure high efficiency and safety. Due
to the critical nature of these applications, the communication infrastructure would need
to have excellent levels of jitter and latency; and if high-bandwidth applications such as
LiDAR signal transmissions or geophone analysis are required then the infrastructure
would need to support excellent levels of jitter and latency whilst transmitting at very
high bandwidths.

The number of studies on wireless communication in stopes is extremely limited.
While various technologies have been proposed for tunnels and soft rock mines such as
coal mines [1,2], none have emerged as a mainstream solution for hard rock stopes such as
the underground gold and platinum stope environment. Underground gold and platinum
mine stopes are seen as much harsher environments due to their small size (approximately
1.5 m in height and 20 m in width), rough surfaces, as well as their irregular shape due
to the requirement of blasting for hard rock mines, and frequent path blockages due to
support pillars as well as large metallic mining equipment. Gold and platinum mines are
also several kilometres underground; thus, it is vital to have an energy efficient system
to prevent unnecessary battery replacements as it is not feasible to store large numbers
of batteries underground due to health and safety reasons. To develop the best possible
wireless solution for underground mine stopes, the technology would need to support high
data rates for productivity-enhancement applications, low-power consumption to reduce
battery replacements, and robustness to cope with the harsh stope environment.

Underground mines are dynamic, with each having peculiar conditions. They con-
tinue to involve extreme occupations in very hazardous environments, such as vehicle
accidents, roof falls, fire, explosions, the release of toxic gases, and floods. Hard rock mines,
particularly gold and platinum mine stopes, are very harsh environments. Mineral exca-
vation in hard rock stopes is characterized by the usage of explosives. Due to the narrow
and short nature of stopes and their rough, rocky surfaces, the wireless signals undergo
excessive amounts of signal reflections and scatterings. For home usage, Wi-Fi signals can
pass through layers of brick or blocks; however, in underground mines, wireless signals
cannot pass through the thick layers of dense rock; thus, the signals are contained within
a stope, which significantly increases the possibility of destructive interference alongside
excessive multipath propagation. Wireless transmissions in confined areas tend to experi-
ence more multipath propagation as compared to spacious areas. In confined areas, the
reflected signals have a much greater potential to interact with each other, and there is also
the increased possibility of causing distortions, such as fading, ghosting, or signal dropout.
For these reasons, stopes are seen as a difficult environment for wireless communications.
Stopes are very small in size, and it is not feasible to install excess amounts of cabling in this
environment as it would pose many health and safety risks. Cabling should be limited to
high-powered equipment that are critical to the operation of the mine. A wireless solution
is considered the most viable option for such an environment.

Coded Orthogonal Frequency Division Multiplexing (COFDM) has been identified
as a promising technology for addressing the harsh conditions of underground hard rock
stopes. This technology is well known for its role in the transformation of the terrestrial
broadcasting domain [3,4]. However, the prohibitive cost associated with COFDM equip-
ment limits its widespread adoption in the mining industry. In [5], Wi-Fi6 was shown to
offer similar signal robustness as COFDM, However, the experiments were performed in a
non-ideal office corridor. This work expands on [5] by performing the Wi-Fi6 experiments
in a test stope. Additional experiments were also performed to give a more comprehensive
analysis of Wi-Fi6 signal performance in a stope. The signal quality evaluations were per-
formed on an Asus RT-AX53U using the open-source OpenWrt OS with open-source mesh
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routing protocols, namely B.A.T.M.A.N.-adv [6] and HWMP [7]. The industry standard for
low-powered wireless communications was identified as IEEE 802.15.4 [8]. OpenThread
was selected as the IEEE 802.15.4 variant. Wi-Fi6 was identified as the potential candidate
for stope communications due to its potential for reliable high-bandwidth communica-
tions and power efficiency. This work compared the power consumption of Wi-Fi6 vs.
OpenThread by using an identical setup. The nRF7002dk was used alongside Zephyr OS,
since it supported both Wi-Fi6 and OpenThread. By using the same boards, same OS, same
transmission frequencies, and same input voltage, we were able to achieve the accurate
power consumption comparisons of the protocols.

2. Related Work

Due to the importance of communication in mining environments, wireless communi-
cation solutions have been developed and performance experiments have been conducted
for different mining areas and categories in real mining environments [9]. Due to the costs
of testing equipment, the unavailability of mining test sites, and the difficulty in experi-
mental applications, practical mine test experimental results are wide and few, and this is
especially true for underground gold and platinum mine stopes. In [10], an experimental
study of the Line-of-Sight Millimetre-Wave Underground Mine Channel was conducted.
In [11], experimental results for Zigbee in an underground mine are presented. The authors
of [12] study Multiple-Input and Multiple-Output (MIMO) antenna configurations for
underground mine communication and present measurements for a gold mine. Ref. [13]
presents experimental results obtained from narrowband and wideband radio-channel mea-
surements in an underground mine at 2.4 GHz. Ref. [14] explores and tests a smart phone
network for communicating sensor data from the underground production environment to
the surface, in a tunnel, stope, and shaft.

Power consumption is one of the major considerations for underground mine appli-
cations. The major drawbacks of high bandwidth wireless communications are that of
high-power consumption as well as the inability to cope with excessive multipath prop-
agation [15]. Low-power Wi-Fi6 systems have emerged as a potential candidate for the
underground mine stope. Ref. [16] presented an empirical study of Wi-Fi performance
where aerial-ground robots could be used to map, navigate, and search in an unknown
underground environment in the experimental mine of the Colorado School of Mines.
Laptops were used to represent the robots. The results show that the signal throughput
drops significantly over large distances within line of sight and is non-existent around
a corner. Ref. [17] performed measurements for mining Wi-Fi vehicle-to-vehicle (V2V)
communication to be utilized in a tunnel to increase the safety and productivity of the
transportation of mining goods. Furthermore, a signal performance analysis between
COFDM [18] vs. Wi-Fi6 (IEEE 802.11ax) [19] demonstrated the potential performance of
Wi-Fi6 for the underground mine stope [5]. In [5], the Asus RT-AX53U Wi-Fi6 device was
compared with the SOL8SDR COFDM device. In this paper, Wi-Fi6 was shown to be more
power efficient than the current industry standard of low power communications, IEEE
802.15.4 [8]. Even though Wi-Fi6 uses more peak power to transmit data, the total power
consumed for sending data is much less due to the shorter transmission durations. The idle
power consumption for both Wi-Fi6 and IEEE 802.15.4 (OpenThread [20]) were roughly
the same.

It is also important to incorporate a mesh topology for stope communications due
to its ability to enable multiple pathways between nodes and ease of network extensions
and strategic node placement. Furthermore, a critical component of mesh topologies
is its mesh routing protocol. These protocols are generally summarized into reactive
and proactive protocols. For proactive routing protocols, every node keeps a current
list of routes, and examples include the Optimized Link State Routing (OLSR) [21] and
Destination-Sequenced Distance Vector (DSDV) [22]. For reactive routing protocols, the
routes are only set up when necessary, and examples include Ad Hoc On-Demand Distance
Vector (AODV) [23] and Dynamic Source Routing (DSR) [24]. In [25], the throughput of
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proactive routing was better than reactive routing with multipath fading. This research
extends this by practically experimenting the performance of a decentralized proactive
mesh routing protocol (B.A.T.M.A.N. advanced) vs. the hybrid approach of using both
proactive and reactive routing (e.g., HWMP). For the highly regulated mining environment,
where mining equipment is notably costly and typically vendor-controlled, there exists a
compelling need for cost-effective alternatives to proprietary solutions. One such alternative
is the adoption of a mesh system employing an open-source mesh routing protocol, such as
the Hybrid Wireless Mesh Protocol (HWMP) or the Better Approach To Mobile Ad Hoc
Networking—advanced (B.A.T.M.A.N.-adv) protocol. Renowned for their versatility and
widespread adoption, these protocols offer the advantage of extended system lifespans, as
a result of their continual development within the open-source community. This strategic
shift not only mitigates cost concerns but also enhances adaptability and long-term viability
within the mining infrastructure. To our knowledge, an experimental investigation of these
two protocols has not been conducted in terms of multi-hop performance for the harsh
underground gold and platinum stope environments. The performance of these protocols
needs to be investigated for this type of stope environment; this is undertaken in this work.

3. Aim

The aim of this work is to demonstrate that Wi-Fi6 can offer reliable high-bandwidth
performance in an underground hard rock stope using open-source mesh routing protocols,
namely B.A.T.M.A.N.-adv and HWMP. This will be achieved by obtaining the fundamental
characteristics of wireless performance, namely throughput, jitter, and latency results,
in a stope and comparing them with the results from a more spacious tunnel which is
considered a friendlier environment for wireless communications. The aim of this work is
also to demonstrate that the Wi-Fi6 power efficiency rivals that of the industry standard for
low-powered wireless communications, namely IEEE 802.15.4.

4. Scope of Work

This work develops experimental measurement results for the following:

• Performance of Wi-Fi6 in a test simulation mine developed with the intention of
providing an easily accessible environment which closely resembled the conditions of
a real mine with a stope. The experiments were conducted in a high multipath stope
environment as well as a low multipath spacious tunnel environment within the mine
to evaluate the impact of excessive multipath propagation on Wi-Fi6.

• The performance parameters of throughput, jitter, power consumption, and latency
were considered. Different criteria such as the effects of channel bandwidths, trans-
mission frequencies, mesh routing protocols, transport layer protocols, and multi-hop
impact on the signal performance were investigated.

• The performance comparison of Wi-Fi6 and IEEE 802.15.4 (OpenThread) in terms of
power consumption was performed. The experiment setup features the nRF7002dk
alongside the Zephyr operating system transmitting at a frequency of 2.4 GHz. The
results indicated that even though Wi-F6 has a greater instantaneous power consump-
tion, its overall power consumption is much lower than that of OpenThread due to
the shorter transmission times. The idle power consumption of both protocols was
noted as being very similar.

• The performance comparison of HWMP and B.A.T.M.A.N.-adv routing protocols in
terms of reactive and proactive routing for stope environments. The experimental
test bed featured the open-source OpenWrt OS installed in the Wi-Fi6 nodes which
were configured using the IEEE 802.11s mesh standard. The results indicate that
even with the increased overhead of HWMP, it still outperforms B.A.T.M.A.N.-adv for
stope environments.

• The throughput, latency, and jitter performance of the protocols was surprisingly
found to be better in a stope than a spacious tunnel. This was attributed to the Wi-Fi6
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technology taking advantage of the waveguide nature of a stope and its ability to
efficiently handle the multipath signals.

5. Characteristics of the Applied Communication Technologies for the Underground
Mine Stope

5.1. Wi-Fi6

Wi-Fi has evolved drastically over the years. Wi-Fi1 initially introduced Direct Se-
quence Spread Spectrum (DSSS) modulation [26], which spread a signal over a wider
bandwidth as compared to its original size. This approach of spreading data reduced
the effects of interference from other signals or noise, making the communication more
robust. Wi-Fi2 uses Orthogonal Frequency Division Multiplexing (OFDM) [27], which
enabled multi-user capabilities by allocating subcarriers to individual clients. For OFDM,
the entire subcarrier could only be allocated to a single client. Wi-Fi3 uses the concept of
channel bonding [28], which allows adjacent 20 MHz channels to be combined to create
wider 40 MHz channels. This can effectively double the data throughput under optimal
conditions. Wi-Fi4 applies Multiple-Input Multiple-Output (MIMO) technology [27], which
allows for multiple streams of data to be transmitted simultaneously via multiple antennas.
This improved spectral efficiency and greatly improved throughput. Wi-Fi5 introduced
Multi-User MIMO (MU-MIMO) [29] for simultaneous data transmission to multiple clients.
For MIMO, each antenna pair served a single client, whilst MU-MIMO serves multiple
clients concurrently by spatially multiplexing the data streams. Whilst MIMO focused
primarily on improving the performance of a single client, MU-MIMO enables simultane-
ous communication with multiple clients, thereby increasing overall network performance.
Wi-Fi6 uses Orthogonal Frequency Division Multiple Access (OFDMA) [30] for improved
efficiency in high-density environments. Wi-Fi6 also introduced BSS colouring [31], which
is used to address co-channel interference. This helps devices make better decisions regard-
ing channel access, hence reducing collisions and improving overall network efficiency in
high-density environments. Due to the low-powered nature of Wi-Fi6, the devices can be
installed in certain allocated points in stopes without being a burden to the miners. All
these properties make Wi-Fi6 a good candidate for stopes.

Wi-Fi6 implements several technologies to address the concerns of multipath interfer-
ence. Wi-Fi6 uses OFDMA, which allows for a single channel to be divided into smaller
sub-channels known as Resource Units (RUs) [32]. These RUs can be transmitted to dif-
ferent users simultaneously, thus allowing for the increased utilization of the available
spectrum, hence reducing the impact of multipath interference. Wi-Fi6 also introduced
techniques such as BSS colouring with spatial frequency reuse [33] which enables multiple
devices within close proximity to communicate simultaneously whilst limiting interference.
This spatial reuse capability helps mitigate the effects of multipath interference by allowing
the more efficient use of the available spectrum. Although MU-MIMO was introduced
in Wi-Fi5; Wi-Fi6 expanded its capabilities by supporting MU-MIMO in both uplink and
downlink transmissions. This functionality enables multiple devices to simultaneously
receive and transmit data, even in environments with excessive multipath interference,
by using multiple antennas to spatially separate the signals [34]. Wi-Fi6 also utilizes an
improved beamforming technique, which enhances the reliability and efficiency of trans-
missions by directing signals towards the intended recipients [35]. For these reasons, Wi-Fi6
has become the perfect low-cost candidate for mine stope communications.

Previous research [5] has shown that COFDM offers slightly better signal robustness
as compared to Wi-Fi6, which would have made COFDM the ideal choice for a stope.
However, the cost of a COFDM device is much greater than that of a Wi-Fi6 device. Wi-
Fi6 devices are substantially cheaper than COFDM devices whilst offering similar signal
robustness. Wi-Fi6 devices also had substantially greater throughput than COFDM devices.
The reason why Wi-Fi6 is so desirable for stopes is because the technology is mainstream,
which prevents overly inflated prices. COFDM devices are expensive due to their niche
market and limited consumer demand for the technology, i.e., a situation where a few
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vendors can dictate the price of the COFDM devices. Stopes are very harsh environments,
where devices frequently become damaged. Due to the low cost of Wi-Fi6 devices, they are
considered expendable whilst giving more emphasis to productivity. Whereas previous
Wi-Fi generations focused mainly on speed improvements, Wi-Fi6 mainly focused on
improved spectral efficiency, making it a good contender for a mine stope. Due to its
characteristics, it is capable of dealing with harsh environments such as the underground
gold and platinum mine stopes. Therefore, the practical performance of Wi-Fi6 needs to
be investigated.

5.2. OpenThread

IEEE 802.15.4, alongside its variants, is well known for its place as the industry stan-
dard for low-powered wireless communications [8]. Its low power consumption makes
it ideal for battery-operated devices and sensors, ensuring prolonged operation without
frequent maintenance or battery replacements. OpenThread [36], an open-source implemen-
tation of the thread networking protocol, is an IEEE 802.15.4 variant that was engineered
specifically for low-rate wireless personal area networks (LR-WPANs) [37]. OpenThread
incorporates highly efficient modulation schemes optimized for long-range communication
and minimal power consumption. Leveraging Offset Quadrature Phase Shift Keying (O-
QPSK) [38], OpenThread achieves lower data rates tailored to the demands of Internet of
Things (IoT) applications, distinguishing itself from the Quadrature Amplitude Modulation
(QAM) utilized by Wi-Fi [39] within the same 2.4 GHz spectrum, albeit with reduced
throughput. O-QPSK was primarily designed to reduce the peak-to-average power ratio
(PAPR) in the transmitted signal [40]. By staggering the phase changes of the in-phase
and quadrature components, O-QPSK ensures that the phase changes are more gradual
compared to traditional QPSK. This results in a more constant envelope signal, which is
easier for power amplifiers to handle efficiently without significant distortion. The authors
of [41] demonstrate the low-powered nature of O-QPSK through the simulation of 180 nm,
90 nm, and 45 nm CMOS technologies and attempt to improve the power efficiency through
reframing using a booth multiplier. This modulation scheme, combined with OpenThread’s
mesh networking capabilities, provides reliable and resilient communication by allowing
devices to connect through multiple pathways, which is particularly advantageous in harsh
and obstructed environments; however, its low throughput is a significant limitation. An
experimental performance comparison of OpenThread and Wi-Fi6 is necessary to deter-
mine the feasibility of deployment of the two for the underground gold and platinum
stope environments.

5.3. Mesh Routing Protocols

The Hybrid Wireless Mesh Protocol (HWMP) is the default mesh routing protocol for
IEEE 802.11s. HWMP offers a combination of proactive routing (where nodes maintain
routing tables with precalculated paths) and reactive routing (where routes are discovered
on-demand) [7]. HWMP is an adaptation of the reactive Ad Hoc On-demand Distance
Vector (AODV) routing protocol [42] called Radio-Metric AODV (RM-AODV) [43]. AODV
operates in the IP layer and uses the hop count as its routing metric, whilst RM-AODV
operates in the MAC layer and uses the radio-aware routing metric for its path selection.

The Better Approach To Mobile Ad Hoc Networking (B.A.T.M.A.N.) [6] protocol is a
proactive mesh routing protocol. The main contribution of the B.A.T.M.A.N. mesh protocol
was the decentralization of knowledge regarding the complete route of a message chain,
from start to finish. A node in the network will not attempt to determine the complete path
of the message it is passing, but rather it will only determine its best next hop towards
the destination. The version known as B.A.T.M.A.N.-adv was used for this research. This
version of B.A.T.M.A.N. operates in the MAC layer.

An experimental performance comparison of HWMP and B.A.T.M.A.N is necessary
to determine the deployment of the two in different stope environments. Unfortunately,
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the short length of stopes limits the number of hops deployed to a minimum of three,
considering the range of the deployed Wi-Fi6 systems.

6. Mine Layout

The layout of an underground platinum mine where room and pillar mining is being
used, as shown in Figure 1. The tunnel is used to facilitate movement of machinery,
personnel, and equipment, as well as ventilation and the removal of ore. A stope is the area
where excavation and expansion occur. Stopes are within a room, a previously mined area,
and the room is within a panel. Support structures are installed to stabilize the room whilst
the stope is expanded. The entrance to the room is through a small tunnel called gully.

 
Figure 1. Mine layout.

7. Stope Characteristics

A stope in an underground hard rock mine is an area where blasting occurs; thus, it
is the area of mine expansion and where the extraction of ore takes place. Figure 2 shows
the stope, where support structures were installed to support the stope and prevent the
collapsing of the stope. The stope is around 1.5 m in height and 20 m in width. The depth
varies as the stope expands. The rooms, gulleys, etc., feature heavy machinery, ventilation
pipes, and many other obstacles. All these obstacles present communication challenges.

The depth of a stope continually expands, necessitating the need for a dynamic
mesh network. This area is very harsh for wireless communications as signals experience
excessive contained reflections, resulting in great deal of signal attenuation due to the
destructive interference that occurs as a result of the thick, layered walls and the large
machinery deployed for mining. A wireless mesh system is suitable for ease of adaptability,
route redundancy, and extensions required for such a system. The environment in a stope
features high seismic activities, temperature, and humidity levels. This results in frequent
breakdowns in communication system equipment, requiring a flexible ad hoc network
communication system. A stope is also continuously expanded to areas rich in ore. As node
distances increase, so does the path loss. A robust, low-powered, small-sized, self-healing
wireless mesh system with ad hoc capabilities is required for a stope.
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Figure 2. The stope.

8. Mine Wireless Communication Topology

Figure 3 shows the proposed mesh network topology for the mine stope. This archi-
tecture is universal by nature and should be adapted according to the specifications of
the intended stope. The distance between nodes should be varied according to a stope’s
dimensions and characteristics. For short tunnels, the use of intermediate nodes is not
encouraged, and they are only used as backup in the event of blocked nodes. A maximum
of two to three hops is usually utilized. Research has shown that it is more efficient to
transmit data via Wi-Fi6 over a long distance between two nodes directly rather than having
additional repeater nodes installed with shorter wireless hops [5]. The nodes should be
used for forwarding data packets to/from the client devices and the gateway node. The
gateway node acts as a sink node which is used for processing the data. The gateway
node is connected to the first node via a wired connection and is installed in an area a
considerable distance away from the harsh stope environment. The wired cable should be
installed in the gully. The whole system forms a mesh communication wireless network for
a stope.

 

Figure 3. Wi-Fi6 intended deployment for a stope.
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9. Materials and Methods

9.1. The Node Hardware

The nodes consisted of Wi-Fi6 routers for our signal quality experiments. The Asus
RT-AX53U router was chosen for its ease of accessibility, low-cost, and support of the
open-source OpenWrt [44] operating system. The Asus RT-AX53U is a 2 × 2 dual-band
Wi-Fi6 router that provides 80 MHz channel bandwidth and 1024 QAM for fast wireless
transmissions. The device was limited to an 80 MHz channel bandwidth due to an OpenWrt
limitation. It supports OFDMA, BSS Colouring, and two spatial streams, which allows it
to cope well with multi-hop performance in a stope environment. The throughput and
jitter results were recorded using the iperf3 utility within OpenWrt, whilst the latency was
obtained using the ping utility within OpenWrt. The utilized topology for signal quality
evaluation is shown in Figure 4.

 
Figure 4. Asus RT-AX53U Wi-Fi6 router.

To achieve an accurate power consumption comparison, the nRF7002dk [45] device
was used to evaluate both Wi-Fi6 and OpenThread protocols. The nRF7002dk is shown
in Figure 5. The nRF7002dk was flashed with an open-source operating system known as
Zephyr OS [46]. The boards were configured to transmit data via the 2.4 GHz channel for
both protocols. By using the same OS, same transmission frequency, same input voltage,
and same development kits, accurate power consumption comparison was achieved. The
power evaluation setup is shown in Figure 5.

 

Figure 5. Power evaluation setup.
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The Nordic Power Profiler Kit 2 (PPK2) was used to analyse the power consumption
of the nRF7002dk. The PPK2 provides measurement with a resolution of 0.2 μA and allows
for sampling at 100 KHz. Zephyr’s zperf utility was used to transmit data at specific
throughput values. The PPK2 was then used to record the power consumption for the
different transmission rates. Nordic Power Profiler software [47] was used to analyse power
consumption. The PPK2 powered the nRF7002dk with 3.3V for both of the Wi-Fi6 and
OpenThread tests. The PPK2 only recorded the power consumption of the nRF7002dk that
it was connected to during each test. At the time of performing the experiments, Zephyr
OS did not support Wi-Fi directly, so an additional Wi-Fi6 router was used for the Wi-Fi6
test, but the results are still accurate since the receive power was obtained directly from
the nRF7002dk and the transmit power was also obtained directly from the nRF7002dk
during transmissions. The two nRF7002dk boards alternated between being transmitters
and receivers. The PPK2 recorded the power consumption that the development kits used
to send/receive 10 MB of data at different transmission rates. Each test case was performed
several times, and the average results were recorded.

9.2. Test Environment

The performance comparison experiments to determine the effects of multipath fading
were performed in a spacious tunnel (Figure 6), where there is less multipath, as well as a
test stope (Figure 7), where there is severe multipath.

 

Figure 6. Test mine tunnel.

 

Figure 7. Stope.
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The general experimentation parameters are shown in Table 1.

Table 1. General experimental parameters.

Hardware Asus RT-AX53U, nRF7002dk, Nordic Power Profiler Kit 2

Software OpenWrt, Zephyr OS, iperf3, zperf, ping, Nordic Power Profiler software

Frequency 2.4 GHz and 5 GHz

Node distance
5 m (stope)

10 m (spacious tunnel)
0.5 m (nRF power evaluations)

Routing
protocols

HWMP (hybrid of reactive and proactive)
B.A.T.M.A.N.-adv (proactive)

Packet size Default iperf3 OpenWrt values (128 KB TCP, 1460 B UDP)
1 KB (nRF power evaluations)

Sample Rate 100 KHz (nRF power evaluations)

10. Results

10.1. Mesh Throughput Results

The average TCP and UDP throughput results for the tunnel as well as the stope
are shown in Figure 8. Transmissions were automatically recorded at 1 s intervals, and
a total of 120 samples were recorded for each test case. Each test was performed three
times, after which the average throughput was calculated. The 2.4 GHz experiments in the
tunnel proved ineffective in a multi-hop scenario due to the limitation of a 40 MHz channel
bandwidth; hence, only the 5 GHz experiments were performed in the stope.

 

Figure 8. Average Wi-Fi6 throughputs for tunnel and stope.

Figure 9 shows the samples used to calculate the average results that were utilized
in Figure 8. Each of the 120 samples from Figure 9 were averages calculated from three
separate test cases.
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Figure 9. Wi-Fi6 sample throughput.
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10.1.1. Frequency and Channel Bandwidth

At 2.4 GHz, the single hop throughput was significantly better than the double hop
throughput. However, at 5 GHz, the single hop throughput was marginally better than the
double hop throughput with the exception of HWMP UDP throughput in a stope, which
was greater with a double hop. Static hops were assigned to ensure that a wireless hop
did occur to ensure accurate results. To confirm the root cause behind the vast difference
in multi-hop performance between the 2.4 GHz and 5 GHz experiments, an additional
experiment was conducted. Multi-hop performance was recorded at different channel
bandwidths, and the results are given in Table 2. The 5 GHz multi-hop experiments
performed well due to it utilizing an 80 MHz channel bandwidth, whilst the 2.4 GHz
experiments performed poorly due to its utilization of a 40 MHz channel bandwidth. For
HWMP transmitting at 5 GHz, at a 20 MHz channel bandwidth, there was 50% loss of
throughput across a wireless hop; at a 40 MHz channel bandwidth, there was 43% loss of
throughput across a wireless hop; and at an 80 MHz channel bandwidth, there was 14%
loss of throughput across a wireless hop. The higher channel bandwidth, alongside BSS
Colouring, OFDMA, and beamforming, allowed for the efficient use of the spectrum, which
enabled Wi-Fi6 to utilize the waveguide effect provided by the stope to enhance the signal
quality rather than attenuating the signal.

Table 2. HWMP multi-hop performance using various channel bandwidths at 5 GHz.

CONFIGURATION 20 MHz 40 MHz 80 MHz

1 hop TCP 120 Mbps 210 Mbps 220 Mbps
2 hops TCP 60 Mbps 120 Mbps 190 Mbps
1 hop UDP 140 Mbps 140 Mbps 140 Mbps
2 hops UDP 80 Mbps 130 Mbps 130 Mbps

Table 2 shows the multi-hop performance which was recorded at different chan-
nel bandwidths.

10.1.2. Stope vs. Tunnel

The results also indicate that the throughput performance of both mesh routing
protocols in the stope was better than in the tunnel. This is contrary to the previous belief
that wireless communications suffer from degradation due to the nature of stopes. With
Wi-Fi6’s introduction of OFDMA, BSS Colouring, and MU-MIMO in both uplink and
downlink, as well as improved beamforming technologies, it has become much smarter,
with the ability to cope in high-density environments. This capability has resulted in Wi-Fi6
being able to make much more efficient use of the spectrum, which allows it to utilize
the benefits of the waveguide affect provided by a stope. Wi-Fi6 recognizes and uses the
waveguide properties of a stope to its advantage, improving signal quality and the resulting
throughput results compared to the open tunnel.

10.1.3. UDP vs. TCP

The results also indicate that for both mesh routing protocols, a double hop resulted
in better UDP performance as compared to TCP. This can be attributed to TCP’s handshake
acknowledgement packets being lost across wireless hops, which would result in retrans-
missions leading to a decrease in throughput. For single hop throughput performance,
HWMP performed better with TCP, since there was a low risk of acknowledgement packets
being lost due to no extra hops being required. B.A.T.M.A.N.-adv performed better with
UDP for both single and double hops. This can be attributed to the B.A.T.M.A.N.-adv
protocol’s decentralized proactive nature.
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10.1.4. HWMP vs. B.A.T.M.A.N.-Adv

The throughput performance of HWMP was better than B.A.T.M.A.N.-adv for all tests.
This can be attributed to HWMP’s utilization of a hybrid approach which uses both reactive
and proactive mesh routing whilst B.A.T.M.A.N. only uses proactive mesh routing. The
reactive component proved to be worth the expense of the additional overhead.

10.2. Mesh Jitter Results

The average jitter results for the tunnel as well the stope are shown in Figure 10. The
jitter values were obtained from the iperf3 UDP throughput results, and the average values
was calculated and plotted accordingly. The results show that the 5 GHz experiments
performed the best for both B.A.T.M.A.N. and HWMP. The results were also better in
the stope for both mesh routing protocols. The stope provided better results due to the
waveguide effect that it offered. The jitter values increased across the double hop; however,
this was expected due to the variation of latency caused by the additional signal processing
across each wireless hop. Generally, the system exhibited good jitter performance results
for all conducted experiments, enhancing the suitability of applying the system in mines.

 

Figure 10. Average jitter.

Figure 11 shows the samples used to calculate the average results used in Figure 10.
Each sample from Figure 11 were averages calculated from three separate test cases.
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Figure 11. Wi-Fi6 jitter samples.

10.3. Mesh Latency Results

The average latency results for the tunnel as well as the stope are shown in Figure 12.
The latency values were obtained using the OpenWrt ping utility. A total of 2000 samples
were recorded for each latency test case. Each test case was also performed three times,
after which the average latency was calculated. The results show that the double hop
experiments had higher latency values as compared to a single hop; however, this was
expected due to the additional signal processing that occurs across each wireless hop. The
results also show that the best performance for both protocols were in the stope. This can
be attributed to the waveguide effect provided by the stope. The 5 GHz experiments also
gave the best results, and this is expected due to its higher transmission frequency. The
difference in latency results for B.A.T.M.A.N.-adv and HWMP were found to be negligible
(approximately 1 ms difference). Overall, the latency values were good for all conducted
experiments, enhancing the applicability of technology in mining.

Figure 13 shows the samples used to calculate the average results used in Figure 12.
Each sample from Figure 13 were averages calculated from three separate test cases.

10.4. Wi-Fi6 vs. OpenThread Power Results

The performance of Wi-Fi6 is evaluated against IEEE 802.15.4 (OpenThread), the
industry standard for low-powered communications. The nRF7002dk was used since it
supported both OpenThread and Wi-Fi6. An open-source operating system known as
Zephyr OS was flashed onto the boards, and both protocols transmitted at 2.4 GHz. By
using the same boards, same OS, and same input voltage, we were able to obtain an accurate
power consumption comparison between the two protocols.

Figure 14 shows the total power for both protocols consumed to download 10 MB
of data. Due to the modulation limitations inherent in OpenThread’s O-QPSK scheme,
its data rates remain notably low and lack competitiveness when compared to the QAM
technique employed by Wi-Fi6. The OpenThread power evaluations were recorded from
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20/40/80 Kbps data transmission rates, whilst the Wi-Fi6 power evaluations were recorded
at 1/3 Mbps as well as 80 Kbps data transmission rates.

 

Figure 12. Average latency.

 

Figure 13. Wi-Fi6 latency samples.
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Figure 14. Power consumption for transmitting 10 MB of data.

The results show that both protocols performed best whilst transmitting at close to
their peak transmission rates with no packets loss. When trying to send at rates faster than
their peak transmission, they suffered from packet loss. The Wi-Fi6 device demonstrated
a maximum transmission rate of 3.6 Mbps, whereas the OpenThread device peaked at
86 Kbps. From the results, it can be seen that Wi-Fi6 was the most power-efficient protocol
with best transmission power consumption of 3.7 times less than that of OpenThread for the
transmitter and 3.9 for the receiver. Despite Wi-Fi6 exhibiting higher instantaneous trans-
mission power compared to OpenThread, its overall power consumption is significantly
lower due to its shorter transmission times. For the idle power consumption evaluation,
both OpenThread and Wi-Fi6 nodes operated as zperf servers; Wi-Fi6 exhibited an idle
power consumption of 26.62 mW, whilst OpenThread recorded 22.61 mW, exhibiting a
similar performance. Additionally, the results illustrate that at low transmission rates,
specifically when both protocols transmit the same data amount at 80 Kbps, OpenThread
consumed 8.3 times less power than Wi-Fi6. This can be attributed to the increased overhead
requirements of Wi-Fi6. However, the viability of Wi-Fi6 is still better for mine applications.

11. Discussion

There is a significant research gap regarding high-bandwidth wireless communications
for hard rock stope environments. Solutions have been proposed for tunnels and soft rock
mines such as coal mines, but there is currently no mainstream high-bandwidth wireless
solution for underground hard rock mine stopes, such as underground gold and platinum
mines stopes, and little research has been conducted in these areas. This work provides
real-world practical performance metrics of Wi-Fi6 in a tunnel and stope, and it was found
that the Wi-Fi6 performance is greater in the stope as compared to the tunnel. This can be
attributed to Wi-Fi6’s newly introduced features which mainly focus on spectral efficiency
which allowed it to utilize the waveguide nature of the stope to its advantage. This work
also emphasizes the minimal feasible requirements for a mesh system in the stope, and it
was found that the 5 GHz channel with 80 MHz channel bandwidth and two spatial streams
provided good results even with a multi-hop scenario in the stope. This work also outlines
the expected performances of using two of the most widely used open-source mesh routing
protocols, namely B.A.T.M.A.N.-adv and HWMP alongside the IEEE 802.11s mesh standard.
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This work emphasizes a wireless mesh solution for stopes. A wired connection should be
used to interconnect the first node of the mesh to a gateway/sink node, which would be
installed at a safe distance away from the stope. This work does not specify the routing
method to the surface above the mine. In terms of high-bandwidth solutions, IEEE 802.15.4
and its variants cannot be used due to its modulation scheme throughput limitations.
COFDM is a great solution for harsh environments, and [5] showcases its signal robustness.
For critical mine safety applications, COFDM is still desirable; however, the technology is
not available to the mainstream public as most vendors are of the broadcasting and military
nature. Due to COFDM not being mainstream, there are wide fluctuations in price, and
the technology is expensive. Wi-Fi6 is mainstream, and Wi-Fi has matured enough to be a
good solution for stopes.

12. Conclusions

This research has provided experimental results for the viability of the application of
Wi-Fi6 in underground gold and platinum mine stopes. This is due to its strong abilities,
namely resilience to excessive multipath propagation alongside multiple wireless hops
the ability to take advantage of the waveguide effect of stopes and its efficient spectrum
usage due to BSS Colouring, OFDMA, uplink and downlink MU-MIMO, and enhanced
beamforming techniques. Compared to other technologies like IEEE 802.15.4 (OpenThread),
it was proven to be more energy-efficient and provides better throughput in a stope. For
routing Wi-Fi6, the use of HWMP over B.A.T.M.A.N. is recommended due to HWMP’s
reactive nature, which establishes routes only when needed; this is crucial for stopes, as
signals undergo excessive amounts of contained reflections which increases the risk of
destructive interference. As for the Wi-Fi6 transport protocol, it is recommended that
TCP as opposed to UDP is used due to stopes’ waveguiding effect and Wi-Fi6’s ability
to make efficient use of its spectrum, which limit packet losses, ensuring that the robust
performance of TCP is maintained in a multi-hop setup. This recommendation is based
on a wide 80 MHz channel bandwidth. If a lower channel bandwidth must be used, then
UDP should be the preferred choice due to the increased contention, resulting in dropped
acknowledgement packets.

From the 5 GHz experimental results, it can be seen that the latency and jitter values
were exceptional in the stope, even across multiple wireless hops. This informs us that
real-time applications in a stope will work quite reliably. Furthermore, the exceptional
jitter results were obtained at very high throughputs; thus, this indicates that the system
will easily be able to handle real-time video processing. A low-spec Wi-Fi6 mesh system
with two spatial streams utilizing an 80 MHz channel bandwidth should easily handle the
processing of real-time LiDAR feedback, which is generally considered very bandwidth-
intensive (e.g., 100 Mbps).

This work opens frontiers to the practical applications of high-bandwidth wireless
communications in underground hard rock mine stopes. The world is rapidly advancing
towards automation and integrated networks, yet stopes has been largely overlooked in
this progress. It is crucial to demonstrate that incorporating automation and technology in
stopes is not only financially feasible but also sustainable, aligning it with the advancements
seen in other industries.

Wi-Fi7 has recently been released; however, there are currently very few development
kits available, and none are currently supported by the open-source Wi-Fi operating sys-
tem known as OpenWrt. This will be crucial for testing the open-source mesh standard,
IEEE 802.11s, alongside mesh-routing protocols such as HWMP and B.A.T.M.A.N.-adv.
When this technology is better established, it would be a good initiative to replicate these
experiments with Wi-Fi7, as each iteration of Wi-Fi differs greatly.
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Abstract: Big data and artificial intelligence have promoted mining innovation and sustainable
development, and the transportation used in open-pit mining has increasingly incorporated un-
manned driving, real-time information sharing, and intelligent algorithm applications. However, the
traditional manual scheduling used for mining transportation often prioritizes output over efficiency
and quality, resulting in high operational expenses, traffic jams, and long lines. In this study, a
novel scheduling model with multi-objective optimization was created to overcome these problems.
Production, demand, ore grade, and vehicle count were the model’s constraints. The optimization
goals were to minimize the shipping cost, total waiting time, and ore grade deviation. An enhanced
multi-objective beluga whale optimization (IMOBWO) algorithm was implemented in the model.
The algorithm’s superior performance was demonstrated in ten test functions, as well as the IEEE
30-bus system. It was enhanced by optimizing the population initialization, improving the adaptive
factor, and adding dynamic domain perturbation. The case analysis showed that, in comparison to
the other three conventional multi-objective algorithms, IMOBWO reduced the shipping cost from
7.65 to 0.84%, the total waiting time from 35.7 to 7.54%, and the ore grade deviation from 14.8 to 3.73%.
The implementation of this algorithm for truck scheduling in open-pit mines increased operational
efficiency, decreased operating costs, and advanced intelligent mine construction and transporta-
tion systems. These factors play a significant role in the safety, profitability, and sustainability of
open-pit mines.

Keywords: improved multi-objective beluga whale algorithm; unmanned driving; open-pit mine;
sustainable development

1. Introduction

Truck transportation is one of the main methods used in open-pit mining. In this
field, conventional transportation techniques were inefficient, which worsened the effects
on the environment and also consumed more energy and posed serious safety risks [1,2].
Truck schedule rigidity and reliance on manual operation frequently result in traffic jams
and delays, raising operating expenses and lengthening waiting times [3–5]. Furthermore,
it has been established that catastrophic geological occurrences such as landslides and
ground collapses are dangerous for driver safety [6,7]. Mining transportation systems are
going through a revolutionary age due to the rapid development of artificial intelligence
and unmanned driving in recent years [8–10]. Newer intelligent mining transportation
models maximize efficiency and safety while simultaneously consuming less energy [11–13].
Efficient data analytics can be used to enhance route planning and scheduling tactics,
effectively mitigating truck congestion and minimizing transportation lag, thanks to the
systems’ constant monitoring of the logistical dynamics and mining terrain. In particular,
the introduction of unmanned mining trucks not only has improved operational safety
but also plays a vital role in material transportation, because transportation cost accounts
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for a sizeable share of mine operating expenses [14–16]. Nevertheless, there are certain
drawbacks to the present scheduling procedures for the transferring of unmanned mining
trucks, including some waiting time during operations and comparatively high shipping
costs [17]. Therefore, it is crucial to design and optimize the unmanned mining truck
dispatching model for use in open-pit mines in order to decrease operating costs, increase
the effectiveness of ore transportation, decrease carbon emissions, and improve overall
corporate performance [18–22].

To simulate real-world dispatch situations and develop scheduling models that align
with real-world mining operations, researchers have undertaken in-depth investigations
on truck dispatching models. In general, this paper focuses on methods for solving these
models and optimizing goals [23–26]. Early research frequently described very simple
models that primarily focused on single-objective constraints before progressively expand-
ing to multi-objective, complex constraints. For instance, Temeng et al. developed and
validated a nonpreemptive goal-programming approach for truck dispatching to ensure
stable ore quality and maximize production [27]. Topal et al. concentrated on cutting
overall truck maintenance costs and used case studies to demonstrate the efficacy of the
mixed integer programming approach in doing so [28]. In order to solve energy difficul-
ties while achieving production needs, Patterson et al. proposed a domain search-based
algorithm to decrease the energy use of trucks and shovels required to reach production tar-
gets [29]. Yao et al. constructed a mine truck scheduling model under mixed transportation
constraints based on allocation demand [30].

The dynamic and multidimensional nature of truck dispatching in open-pit mines still
presents difficulties issues, despite the tremendous efforts of those researchers to introduce
helpful algorithms for truck dispatching models, better adapting them to real mining
transportation situations [13,18,22,31]. Environmental protection and worker safety are
becoming increasingly important in the context of pursuing intelligent and unmanned
mining operations. Increasing operational efficiency while minimizing environmental
impact and optimizing operational safety has become a critical issue. As a result, appro-
priate models must be created and put into use that take safety regulations, production
demands, environmental protection, technological advancements, and operation efficiency
into account.

Integer programming and the linear programming method are frequently presented
as solutions to these models [32–34]. Numerous studies have used artificial intelligence
algorithms to handle truck scheduling issues as a result of the quick advancement of evolu-
tionary computation techniques. In order to provide workable solutions for the allocation
and real-time scheduling of mining trucks, for instance, Coelho et al. employed three
multi-objective algorithms—2PPLSVNS, MOVNS, and NSGA-II—to solve dynamic truck
allocation problems in open-pit mining operations [35]. Practical scheduling solutions were
provided by Mendes et al. who proposed a multi-objective evolutionary algorithm for
dynamic truck scheduling in open-pit mines [36]. Two multi-objective genetic algorithms
were created by Alexandre et al. to handle scheduling schemes that maximize production
and minimize expenses while allocating trucks and shovels in open-pit mining opera-
tions [37]. Furthermore, while managing multi-dimensional dispatch objectives, traditional
algorithms frequently display subpar performance, lengthy calculation durations, and
challenges in generating workable scheduling solutions that efficiently support intelligent
dispatch systems. Therefore, there is an urgent need to introduce new solutions to ad-
dress the challenges in solving mining truck scheduling models. Zhang et al. proposed
a beluga optimization algorithm by observing a beluga group’s swimming, feeding, and
whale-falling activities [38]. Upon evaluation, the algorithm performed well, and case
studies on distributed generation (DG) optimization [39], iron ore sintering batching [40],
and anti-roll torsion bar optimization [41] were also carried out. Based on these factors, an
improved multi-objective beluga whale optimization (IMOBWO) was introduced, wherein
the population was initialized and its range expanded using logistic chaotic mapping.
Adaptive factors were proposed to improve the algorithm’s capacity for global searches
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and to quicken the algorithm’s pace of convergence. The algorithm’s solving power was
improved by increasing the domain perturbation approach, broadening the pool of poten-
tial solutions. The algorithm’s solution power was demonstrated using ten test functions
and the IEEE 30-bus problem for thorough assessment before it was ultimately used with a
real mining truck scheduling case.

In this study, a new open-pit mine truck scheduling model solved by the IMOBWO
algorithm was proposed. The model took production demands, ore grade requirements,
vehicle limitations, and route restrictions into account, aiming at achieving comprehensive
optimization in terms of carbon emissions, shipping cost, total waiting time, and ore grade
deviation. The IMOBWO algorithm performance was evaluated using test functions and
the IEEE 30-bus problem, and a scheduling solution was provided following case analysis.
This model enhanced operational safety and reduced transportation delays in the mining
industry, which was of great significance for improving the overall operational efficiency of
open-pit mines.

2. Problem Description and Model Establishment

2.1. Process Analysis of Truck Scheduling Problem

Trucking transportation scheduling is recognized as a multi-dimensional task en-
compassing path optimization, traffic flow coordination, and dynamic real-time decision
making. These dimensions impose significant complexity on the scheduling domain, neces-
sitating the pursuit of varied optimization goals amid numerous constraints. This paper
has focused on the achievement of reduced shipping cost, the minimization of total waiting
time, and the strict control of ore grade deviation. Furthermore, open-pit mine truck dis-
patching requires the consideration of complex constraints, such as truck transport capacity,
ore supply at loading points, ore demand at crushing stations, and ore grade differences at
different mining benches.

The research process followed in this article is shown in Figure 1, which outlines the
study problem, data collection method, model building, problem solving, and solution results.

 
Figure 1. Research route for truck scheduling problem.

2.2. Description of Symbols

According to the actual state of the open-pit mine in Guigang, Guangxi, the parameters
and the variables in the model are shown in Table 1.
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Table 1. List of variable definitions.

Parameter Definition Symbolic Value Unit

Working hours per shift H 8 hour
Number of loading points M 6 site

Number of crushing stations N 4 site
Number of mine Trucks K 13 vehicle

Truck load G 50 ton
Fuel cost per liter L 7.9 Yuan/L

Number of times truck k travels from
loading point i to crushing station j Xkij Decision variable times

Number of times truck k travels from
crushing station j to loading point i Ykij Decision variable Times

Minimum ore grade η 0.099 %
Fuel consumption of mine trucks with

full load Q1 6.7 L/km

No-load fuel consumption of mine trucks Q2 3.9 L/km
Fuel Conversion Rate λ 2.65 kg/L

Unit carbon trading cost l 0.041 yuan/kg
Mine car full load speed V1 18 km/h

Mine car no full load speed V2 37 km/h
Unit truck loading time tl 5 min

Unit truck unloading time ts 3 min
Errors in ore grade allowed in the mine w 0.05 %

2.3. Multi-Objective Truck Scheduling Model

In this study, to meet the demands of efficient and flexible mining transportation opera-
tions, a multi-objective scheduling model was established. The main optimization objectives
were to optimize shipping cost, total waiting time, and ore grade deviation, while the main
constraints were production constraints, transport capacity, and supply–demand balance.

2.3.1. Objective Function

Since diesel-powered trucks produce carbon emissions during operation, the cost of
truck transportation carbon emissions (C) is due to the fuel conversion factor (λ) and the
unit carbon transaction cost (l), as shown in Equation (1).

C =
K

∑
k=1

(
M

∑
i=1

N

∑
j=1

λl(XkijdijQ1 + YkijdijQ2)) (1)

The truck shipping cost function is constructed by the truck driving cost and carbon
emission treatment cost, as shown in Equation (2).

F(X1) = MIN(
M

∑
i=1

N

∑
j=1

(
K

∑
k=1

XkijdijQ1L +
k

∑
n=1

YkijdijQ2L) + C) (2)

X1 is represented the truck transportation cost, and F(X1) is represented the truck
cost function.

Since the number of ores transported per shift is constant, the ore transport task
completed in limited working hours reduced operating costs and improved the equipment
utilization rate, benefiting the company. However, irrational scheduling will lead to traffic
jams in the process of loading or unloading the trucks, thus increasing non-working hours.
As a result, the minimization of total waiting time for the trucks is considered as the
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optimization objective, and the total waiting time function is constructed, as shown in
Equation (3).

F(X2) = MIN
K

∑
k=1

(H −

m
∑

i=1

n
∑

j=1
[Xij(dij + tlV2)]

V2
−

m
∑

i=1

n
∑

j=1
[Yij(dij + tsV1)]

V1
) (3)

X2 represents the total waiting time of the trucks, and F(X2) represents the total waiting
time function.

In order to improve the efficiency of ore allocation, neutralize the different tastes
of ore, increase the output of qualified ores, reduce the amount of waste rock, meet the
requirements of ore quality, improve the economic efficiency of the mine, and enhance the
utilization rate of natural resources in the mine, the function with ore grade deviation as
the optimization objective is established, as shown in Equation (4).

F(X3) =

N
∑

j=1

M
∑

i=1

K
∑

k=1

∣∣∣GXkij(Ri − rj)
∣∣∣

N
∑

j=1

M
∑

i=1

K
∑

k=1
GXkij

(4)

X3 represents the ore grade deviation, and F(X3) represents the ore grade deviation
function, Ri represents the i loading point ore grade, rj represents the j crushing station
specified grade.

2.3.2. Constraints

In order to satisfy the ore quantity demand constraints of each crushing station for
each shift, the total ore car transportation quantity of each shift should be not less than
the planned output of each crushing station Fj, the crushing stations demand constraint
function is established, as shown in Equation (5).

M

∑
i=1

K

∑
k=1

(XkijG)− Fj ≥ 0 (5)

In order to satisfy the ore volume supply constraints for each shift at each mining site,
the total ore truck transportation volume for each shift should be no greater than the ore
production Wi at each mining site. The mining site supply constraint function is established,
as shown in Equation (6).

M

∑
i=1

K

∑
k=1

(XkijG)− Wi ≤ 0 (6)

In order to meet the requirements of ore allocation, the overall grade of the transported
ore and the error of the specified grade η the difference between the two should be no
greater than the ore taste error w allowed in the mine, and the ore grade error constraint
function is established, as shown in Equation (7).∣∣∣∣∣∣∣∣∣

K
∑

k=1

M
∑

i=1
GXkijRki

K
∑

k=1

M
∑

i=1
GXkij

− minη

∣∣∣∣∣∣∣∣∣− w ≤ 0 (7)

The total number of transportation trucks in the mine is limited, and the number
of trucks requires by the scheduling scheme should be less than the number of existing
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trucks K. The constraint on the number of transportation trucks is constructed, as shown in
Equation (8).

K

∑
k=1

Kk ≤ K (8)

In order to satisfy the scheduling continuity, the kth truck should proceed to the i (j)
crushing station (loading point) after completing the loading (unloading) of ore from the
j (i) loading point (crushing station), the trucks are always active between the loading points
and the crushing stations, the continuous trucking constraint is constructed as shown in
Equation (9).

M

∑
j=1

N

∑
i=1

Xkij −
M

∑
j=1

N

∑
i=1

Ykij = 0 (9)

3. Multi-Objective Beluga Whale Optimization

3.1. Beluga Whale Optimization

In 2022, Zhang et al. proposed a beluga whale optimization (BWO) algorithm upon
observing the swimming, feeding, and whale-falling behaviors of beluga whales [42,43].
The algorithm has been tested and validated in engineering cases and has shown good
results. Multiple objective beluga whale optimization (MOBWO) [44] is a fusion of the
beluga whale optimization algorithm and the idea of multi-objective optimization. The
beluga whale optimization algorithm contains the following four main steps.

3.1.1. Population Initialization

The algorithm is initialized by constructing a random population through an agent
model, where each beluga whale in the population is an initial solution, X represents the
agent position matrix, and the agent position matrix is built based on the population size n
and solution dimension d, xn,d is candidate solution, as shown in Equation (10):

X =

⎡⎢⎢⎢⎣
x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

...
...

xn,1 xn,2 · · · xn,d

⎤⎥⎥⎥⎦ (10)

where n is the size of the population for which the algorithm is designed and d is the dimen-
sion of the problem to be solved. Fx is the fitness value matrix, and f (xn,1 xn,2 . . . xn,d) is
the fitness value of each individual in the population, as shown in Equation (11).

Fx =

⎡⎢⎢⎢⎣
f (x1,1 x1,2 · · · x1,d)
f (x2,1 x2,2 · · · x2,d)

...
...

...
...

f (xn,1 xn,2 · · · xn,d)

⎤⎥⎥⎥⎦ (11)

In the beluga whale optimization algorithm, the balancing factor Bf determines the
degree of algorithm exploration and exploitation, as shown in Equation (12):

Bf = B0(1 − t/2T) (12)

where B0 is a random number between (0,1), T is the maximum number of iterations,
t is the current number of iterations, and Bf is the balancing factor that balanced the
exploration and development phases. The exploration stage occurs when the balancing
factor Bf > 0.5 and the development stage occurs when Bf ≤ 0.5; when t gradually increases,
Bf gradually decreases and the algorithm gradually transitions from the exploration stage
to the development stage.
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3.1.2. Exploration Phase

The exploration phase of the algorithm simulates the swimming behavior of a group
of beluga whales, which is updated with the location of the beluga whales, as shown in
Equation (13): {

Xt+1
i,j = Xt

i,pj
+ (Xt

r,p1
− Xt

i,pj
)(1 + r1) sin(2πr2)j = even

Xt+1
i,j = Xt

i,pj
+ (Xt

r,p1
− Xt

i,pj
)(1 + r1) cos(2πr2)j = odd

(13)

where Xt+1
i,j denotes the position of the ith beluga after the tth iteration in the jth dimension,

pj denotes a random number from 1 to d, and r denotes a random number from 1 to n, Xt
i,pj

and Xt
r,p1

are the current positions of the ith and rth beluga, r1 and r2 are random operators
for the enhanced exploration phase, taking values between (0,1), and sin (2πr2) and cos
(2πr2) are used to average the random numbers between fins.

3.1.3. Development Phase

The development stage expands the candidate solutions by simulating the feeding
behavior of beluga whales, where neighboring belugas cooperate and share information
with each other. Levi’s flight is introduced in the development phase of BWO to improve
the convergence performance of the algorithm, as shown in Equation (14):

Xt+1
i = r3Xt

best − r4Xt
i + C1 × L f × (Xt

r − Xt
i ) (14)

where t is the current iteration number, Xt+1
i is the position of the next iteration of the ith

beluga whale, Xt
best is the position of the optimal individual in the current population, Xt

r
and Xt

i are the positions of a random beluga whale and the ith beluga whale, r3 and r4 are
random numbers in the range of (0,1), C1 = 2r4 × (1 − t/T), which denotes the jumping
intensity of the Lévy flight, and Lf is the Lévy flight function.

3.1.4. Whale-Fall Stage

The beluga whale group faces many external threats during migration and foraging,
leading to the phenomenon of whale fall in some in the group. In order to ensure the
stability of the population, the population has undergone position updates, as shown in
Equations (15) and (16):

Xt+1
i = r5Xt

i − r6Xt
r + r7Xstep (15)

Xstep = (ub − lb) exp(−C2 × t/T) (16)

where r5 and r6 are random numbers between (0,1), Xstep is the beluga whale fall step,
ub is the upper limit of the variable, lb is the lower limit of the variable, C2 is the factor
controlling the step size, C2 = 2Wf × n, Wf denotes the probability of beluga whales falling,
Wf = 0.1 − 0.05 t/T, and n is the population size.

3.2. Improved Beluga Whale Optimization Algorithm

It has been shown that variants of the BWO algorithm can effectively overcome the
low accuracy and slow convergence of BWO, thus effectively solving multi-objection
problems [39–41]. In this section, three improvements were made: (i) logistic chaotic [45]
mapping was introduced to optimize the population distribution of BWO and enhance the
algorithm’s solution efficiency; (ii) the Bf factor was improved to balance the algorithm’s
global and local search capabilities; and (iii) domain perturbation was carried out during
the development stage for the population update, aiming to expand the solution range and
enhance the solution capability.

85



Sustainability 2024, 16, 6939

3.2.1. Optimized Population Initialization

The population initialization of BWO is introduced in Section 3.1.1, but BWO con-
structs the initial population randomly, resulting in an uneven distribution that affects the
algorithm’s solution efficiency. As a result, logistic chaotic mapping was introduced to
carry out the population initialization of the algorithm, expanding the range of the initial
population distribution and improving the algorithm’s solving efficiency, as shown in
Equation (17).

Xk+1 = λXk × (1 − Xk) (17)

where Xk ∈ (0,1), λ is a parameter that regulates the range of the mapping sequence,
λ ∈ [0, 4], and the mapping distribution becomes more uniform when λ increases; therefore,
λ takes the value of 4.

3.2.2. Improved the Bf Factor

The Bf factor determines the extent of the role of algorithm exploration and exploitation
and plays an important role in balancing the algorithm’s global and local search abilities.
According to Equation (12), Bf, depending on the number of current iterations, shows linear
changes, and the linear balancing factor hinders the global search ability of the algorithm
in the early stage and reduces the convergence speed of the algorithm in the later stage.
As a result, Bf is improved, and a nonlinear balancing factor is proposed to enhance the
performance of the algorithm, as shown in Equation (18).

Bf = B0(1 − 1
2
× (t/T)2) (18)

3.2.3. Dynamic Domain Perturbation

As seen in Section 3.1.3, the BWO development phase expands the candidate solutions
through beluga location sharing. As a result, a dynamic domain perturbation factor η
was designed to further expand the solutions. The domain perturbation factor showed an
increasing and then decreasing trend with the number of iterations, which accelerated the
optimization speed of the algorithm in the early stage, enhanced the development ability
in the middle stage, accelerated the convergence performance in the late stage, expanded
the candidate solutions as a whole, and strengthened the algorithm’s solving ability. The
dynamic domain perturbation factor is shown in Equation (19):

η = sin(π × t/T) (19)

With the inclusion of the dynamic domain perturbation factor, the beluga position
update during the development stage is shown in Equation (20):

Xt+1
i = r3Xt

best − ηXt
i + C1 × L f × (Xt

r − Xt
i ) (20)

3.2.4. Flowchart for Improved Beluga Whale Optimization Algorithm

The beluga whale optimization algorithm was further improved and combined with
the multi-objective idea of the non-dominated genetic algorithm, proposing an improved
multi-objective beluga whale optimization algorithm. A flow chart of the algorithm is
shown in Figure 2.
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Figure 2. IMOBWO flow chart.

4. IMOBWO Performance Analysis

In this paper, the beluga whale optimization algorithm was enhanced from three
aspects: initialization, adaptive factor, and development-stage domain perturbation. Upon
integrating multi-objective optimization ideas, an improved multi-objective beluga whale
algorithm was proposed. Ten multi-objective functions (ZDT1-ZDT4, Wfg5, Kursawe,
Viennet2, Viennet3, DTLZ6, DTLZ7) [46–48] and IEEE-30bus [49,50] were selected. Their
performance was analyzed to verify the solving capability of the IMOBWO.

4.1. Test Functions

The four main indexes for evaluating the performance of multi-objective algorithms,
namely generation distance (GD), inverted generation distance (IGD), hypervolume (HV),
and spacing (SP) were selected. The experimental software MATLAB 2022a was used, the
number of iterations was 200, and the number of populations was 100. By analyzing multi-
ple objective beluga whale optimization (MOBWO), multi-objective gray wolf optimization
(MOGWO) [51], non-dominated sorting whale optimization (NSWOA) [52], and IMOBWO
in 10 test functions were used, and the test results are shown in Table 2.

87



Su
st

ai
na

bi
lit

y
2
0
2
4
,1

6,
69

39

T
a

b
le

2
.

Te
st

re
su

lt
s

of
th

e
fo

ur
al

go
ri

th
m

s
on

th
e

10
te

st
fu

nc
ti

on
s.

T
e

st
F

u
n

ct
io

n

IM
O

B
W

O
M

O
B

W
O

M
O

G
W

O
N

S
W

O
A

G
D

IG
D

H
V

S
P

G
D

IG
D

H
V

S
P

G
D

IG
D

H
V

S
P

G
D

IG
D

H
V

S
P

Z
D

T1
6.

47
3
×

10
−5

0.
00

15
0.

72
29

0.
00

2
9.

61
7
×

10
−5

0.
00

49
0.

71
92

0.
00

45
6.

92
8
×

10
−5

0.
00

99
0.

70
9

0.
01

32
5.

25
7
×

10
−4

0.
00

57
0.

71
42

0.
00

58
Z

D
T2

2.
66

1
×

10
−5

0.
00

22
0.

44
67

0.
00

57
4.

80
9
×

10
−5

0.
00

6
0.

44
36

0.
00

62
4.

30
×

10
−5

0.
00

97
0.

43
53

0.
01

43
1.

64
4
×

10
−4

0.
00

47
0.

44
36

0.
00

69
Z

D
T3

9.
55

7
×

10
−5

0.
00

57
0.

60
45

0.
00

42
1.

30
7
×

10
−4

0.
10

49
0.

77
84

0.
00

5
1.

72
6
×

10
−4

0.
01

17
0.

59
74

0.
02

25
3.

92
1
×

10
−4

0.
00

69
0.

59
88

0.
00

64
Z

D
T4

4.
95

8
×

10
−5

0.
00

22
0.

72
22

0.
00

34
5.

56
2
×

10
−5

0.
00

3
0.

72
14

0.
00

42
1.

25
3
×

10
−4

0.
01

36
0.

70
89

0.
01

09
2.

51
8
×

10
−4

0.
00

51
0.

71
82

0.
00

76
W

fg
5

0.
00

45
0.

06
88

0.
30

92
0.

00
89

0.
00

52
0.

06
91

0.
30

86
0.

01
21

0.
00

68
0.

08
84

0.
29

94
0.

03
27

0.
00

64
0.

08
84

0.
29

94
0.

01
87

K
ur

sa
w

e
0.

00
15

0.
03

41
0.

50
62

0.
08

11
0.

00
21

0.
05

31
0.

50
48

0.
10

3
0.

00
65

0.
08

17
0.

49
77

0.
11

99
0.

00
36

0.
05

55
0.

50
43

0.
13

33
4

V
ie

nn
et

2
2.

05
2
×

10
−4

0.
02

56
34

16
0.

00
69

4.
65

7
×

10
−4

0.
06

94
0.

33
73

0.
01

71
2.

61
1
×

10
−4

0.
02

27
0.

33
87

0.
01

72
0.

00
99

0.
01

91
0.

33
81

0.
04

39
V

ie
nn

et
3

2.
21

2
×

10
−4

0.
02

7
0.

18
35

0.
03

42
2.

26
1
×

10
−4

0.
03

86
0.

18
34

0.
04

85
5.

13
6
×

10
−4

0.
09

74
0.

18
27

0.
09

73
5.

31
6
×

10
−4

0.
04

27
0.

18
3

0.
06

19
D

TL
Z

6
3.

75
9
×

10
−5

0.
00

32
0.

20
13

0.
00

43
6.

60
8
×

10
−5

0.
00

54
0.

20
08

0.
00

89
4.

90
1
×

10
−5

0.
00

87
0.

19
46

0.
00

99
4.

83
1
×

10
−5

0.
00

49
0.

19
99

0.
00

73
D

TL
Z

7
0.

00
18

0.
08

54
0.

27
68

0.
05

7
0.

00
19

0.
23

11
0.

25
99

0.
04

44
0.

00
71

0.
09

56
0.

25
96

0.
07

33
0.

00
55

0.
07

89
0.

26
73

0.
08

17

88



Sustainability 2024, 16, 6939

Among the 10 test functions, ZDT1-ZDT4 and Kursawe have two optimization ob-
jectives, and the other functions have three. The evaluation index values of the 10 test
functions obtained using four algorithms were analyzed, and the following conclusions
were drawn:

(i) The GD values obtained using IMOBWO were smaller than those obtained using the
other algorithms for all 10 test functions, which was shown in Figure 3. The GD values
obtained using IMOBWO for the functions ZDT2, ZDT3, Wfg5, and DTLZ6 were
2.661 × 10−5, 9.557 × 10−5, 0.0045, and 3.759 × 10−5. Compared to the other three
algorithms, IMOBWO showed significant performance advantages. According to
Figure 3, the line of IMOBWO was always located at the lowest level, which showed
that the average distance between the obtained solutions and the true Pareto solution
set of the function was minimized, proving the superior convergence performance of
IMOBWO.

Figure 3. Line graph of GD values obtained using four algorithms.

(ii) The IGD values obtained using IMOBWO were smaller than those obtained using
the other algorithms for eight of the test functions (excluding DTLZ7 and Viennet2),
which was shown in Figure 4. The IGD values obtained using IMOBWO for the
functions ZDT2, ZDT3, Kursawe, and Viennet3 were 0.0022, 0.0057, 0.0341, and 0.027.
Compared to the other three algorithms, IMOBWO showed good performance, with
the average distance from the set of Pareto solutions of the function to the solution
obtained using the algorithm being the smallest, confirming that IMOBWO performed
better than the other three algorithms in terms of diversity and convergence.

(iii) The HV values obtained using IMOBWO were greater than those obtained using the
other algorithms for nine of the test functions (excluding ZDT3), which was shown in
Figure 5. The HV values obtained using IMOBWO for the functions Wfg5, Viennet2,
and DTLZ7 were 0.3092, 0.3416, and 0.2768. Compared to the other three algorithms,
the HV values obtained using IMOBWO were always above the line graph, indicating
that the distribution of the population in the target space was significantly better than
that of the other algorithms.
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Figure 4. Line graph of IGD values obtained using four algorithms.

Figure 5. Line graph of HV values obtained using four algorithms.

(iv) The SP values obtained using IMOBWO were smaller than those obtained using the
other algorithms for nine of the test functions (excluding DTLZ7), which was shown in
Figure 6. The SP obtained values of IMOBWO on functions such as ZDT1, Wfg5, Kursawe,
Vinnet2, and Vinnet3 were 0.0020, 0.0089, 0.0811, 0.0069, and 0.0342. Compared to the other
three algorithms, the SP index values obtained using IMOBWO were significantly smaller,
indicating that the distance between each solution of IMOBWO and the other solutions was
the smallest and proved the homogeneity of the solution set. The performance of the 10 test
functions proved that IMOBWO had better convergence performance in the multi-objective
problem solving and the uniform distribution of the solution set possessed diversity.
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Figure 6. Line graph of SP values obtained by four algorithms.

4.2. IEEE 30-Bus

In order to test the ability of IMOBWO to solve engineering problems, the IEEE
30-bus problem was selected, and the Pareto frontier surfaces of the four algorithms were
generated to analyze the distribution of the solution space and the dominant relationship
between each multi-objective algorithm and verify the adaptability of IMOBWO for solving
multi-objective engineering problems. The distribution of the frontier surfaces of the four
algorithms were shown in Figure 7.

Figure 7. IEEE 30-bus test results.
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The analysis in Figure 7 showed the excellent performance of IMOBWO for the IEEE
30-bus problem. When observing the Pareto frontier distributions of the four algorithms, the
following could be seen: (i) a better solving ability of IMOBWO compared to MOBWO, with
most of the solutions obtained using the former being dominated by the latter; (ii) strong
solving ability of both IMOBWO and NSWOA for the test problem, with the latter having
had more non-dominant distributions on the Pareto frontier than the former, and poor
performance in terms of convergence performance; (iii) IMOBWO was better in both
solution space distribution and convergence performance compared to MOGWO. The
effective solving ability and superior convergence performance of IMOBWO for multi-
objective problems were further verified.

5. Case Analysis

In this section, IMOBWO was applied to the truck scheduling problem of an open-pit
mine in Guangxi, China. This section was divided into three parts; the first part provided
a brief introduction of the basic situation of the mine, the second part showed the data
needed for this study, and the third part introduced the research data and used IMOBWO to
solve the scheduling model, as well as compared the solution results of the four algorithms
and analyzed the application capabilities among the algorithms.

5.1. Introduction to an Open-Pit Mine

The mine is located in Guigang city in Guangxi, China, and is an open-pit mine
production, with an overall flat mining environment. There are six loading points and four
crushing stations in the mine, each of which is equipped with crushers and excavators, and
all of which are capable of mining. The daily ore output from the six working faces satisfies
the requirements of the mine’s production. The current mining status of the mine is shown
in Figure 8, letters A to E refer to the 6 loading point positions, while letters a to d refer to
the 4 crushing station positions.

Figure 8. Schematic diagram of loading points and crushing stations.
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The steps of ore production in this mine were as follows: after blasting, the ore was
initially crushed into blocks using rock drills and crushing hammers, then loaded onto
unmanned trucks using excavation shovels, and transported to the mine’s crushing stations
by road for granular crushing, in preparation for the subsequent extraction of minerals.
However, the mine production was relatively sloppy; transportation truck scheduling
relied on manual scheduling, and vehicle scheduling had the problems of high shipping
cost and waiting time. Additionally, there was an obvious deficiency in the control of ore
quality and the protection of transportation safety. As a result, a multi-objective scheduling
model based on intelligent algorithms was applied to this open-pit mine to promote the
intelligent transformation of truck scheduling, which was conducive to cost reduction,
efficiency improvement, and synergistic development of open-pit mine production.

5.2. Presentation of Research Data

The research data were divided into two parts. First, the existing mechanical equip-
ment in the mining area was considered, including data on the basic equipment such as
the crushers, excavators, and transportation trucks used. Second, the parameter settings
related to truck scheduling were included, such as the distance from each working face
(loading point) to each crushing station, the ore grade provided by each working face and
specified by each crushing plant, the amount of ore required to be supplied by the loading
points and crushing plants in each shift, and other model-solving information.

5.2.1. Basic Data on Mining Equipment

The basic operation data of the crushers, dump trucks, excavators, etc., were obtained
through field research on the current production status of the mine and combined with the
preliminary information such as the mine development program, as shown in Table 3.

Table 3. Basic data of the equipment.

Equipment
Name

Equipment Model Equipment Parameters

Crusher PCF2022
Production capacity/t·h−1 750~1000

Feed size/mm 1200 × 1000 × 1500
Discharge size/mm ≤40

Truck YT3761
Load/t 50

Full load speed/km·h−1 18
No-load speed/km·h−1 37

Excavator PC850-8E0
Working efficiency/t·h−1 465

Bucket volume/m3 4.3
Working weight/kg 78,300

5.2.2. Scheduling Model Parameterization

By collecting the location coordinates of each loading point and crushing station
through a satellite cloud map of the mining area and combining them with the current
production status of the mining area, the basic parameters such as the distance from each
loading point to each crushing station, the supply of ore at the loading points, and the ore
demand at the crushing stations was obtained, as shown in Tables 4–6.
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Table 4. Distances between loading points and crushing stations.

Average
Distance/km

Crushing
Stations a

Crushing
Stations b

Crushing
Stations c

Crushing
Stations d

Loading point A 3.251 2.694 2.838 1.543
Loading point B 1.902 2.264 3.031 3.194
Loading point C 2.861 1.348 2.984 2.142
Loading point D 1.596 3.689 1.865 3.065
Loading point E 1.64 2.87 2.716 2.887
Loading point F 3.227 1.658 1.334 1.793

Table 5. Ore supply at loading points.

Loading
Point A

Loading
Point B

Loading
Point C

Loading
Point D

Loading
Point E

Loading
Point F

Supply/t 5100 6100 4200 5300 6500 7000
Grade/% 0.137 0.131 0.119 0.139 0.13 0.121

Table 6. Ore demand by crushing plant.

Crushing
Stations a

Crushing
Stations b

Crushing
Stations c

Crushing
Stations d

Demand/t 3000 3000 3000 3000
Grade/% 0.125 0.125 0.125 0.125

5.3. Application Results

In this section, the results of four algorithms—IMOBWO, MOBWO, MOGWO, and
NSWOA—for solving the truck scheduling problem for open-pit mines were shown. The
experimental software was MATLAB 2022a was used, the number of iterations was 200,
and the population size was 100. The results were shown in Figure 9.
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Figure 9. The solution results from four algorithms. (a) The objectives of shipping cost, total waiting
time, and ore grade deviation. (b) The objectives of total waiting time and shipping cost. (c) The
objectives of ore grade deviation and shipping cost. (d) The objectives of total waiting time and ore
grade deviation.

In the analysis of the frontier surface distribution of the four algorithms, subplot
(a) showed that feasible solutions to the scheduling problem were obtained in the three-
dimensional objective space using all four algorithms, confirming the feasibility of the
multi-objective algorithms for multi-objective problem solving. From an analysis of subplot
(b), it was found that in terms of the total waiting time and the shipping cost, IMOBWO
showed a dominant relationship over the other three algorithms. From an analysis of
subplot (c), it was found that, in the two-dimensional objective space composed of ore
grade deviation and shipping cost, all algorithms showed better solution results, while
IMOBWO had better solution results. From an analysis of subfigure (d), it was found
that IMOBWO had a significant dominance over MOBWO, MOGWO, and NSWOA in the
two-dimensional objective space composed of total waiting time and ore grade deviation.

To demonstrate the solving ability of the improved algorithm, optimal solutions of the
four algorithms on three objectives were listed in Table 7.
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Table 7. The optimal values of four algorithms under three optimization objectives.

Optimization
Objective

Solution
Algorithm

Shipping
Cost/Yuan

Total Waiting
Time/h

Grade
Deviation

Minimize
Shipping cost

IMOBWO 52,108.4 21.2361 1.8878 × 10−3

MOBWO 52,617.1 27.1433 2.0602 × 10−3

MOGWO 52,544.4 28.2412 1.9897 × 10−3

NSWOA 56,094.9 28.8406 2.1777 × 10−3

Minimize Total
waiting time

IMOBWO 55,967.1 15.4318 1.9975 × 10−3

MOBWO 59,847.1 16.5958 2.1933 × 10−3

MOGWO 58,303.2 18.7224 2.1620 × 10−3

NSWOA 62,092.4 20.944 2.2873 × 10−3

Minimize Grade
deviation

IMOBWO 52,108.4 21.2361 1.8878 × 10−3

MOBWO 52,812.1 19.4529 1.9583 × 10−3

MOGWO 52,650.6 26.5475 1.9863 × 10−3

NSWOA 56,226.1 28.7033 2.1676 × 10−3

The optimal values of the four algorithms were listed in detail in the bar chart in
Figure 10.

Figure 10. The optimal values of four algorithms under three optimization objectives.

From Figure 10, it could be seen that by applying IMOBWO for open-pit mine truck
scheduling, the shipping cost decreased from 7.65 to 0.84%, the total waiting time decreased
from 35.7 to 7.54%, and the ore grade deviation decreased from 14.8 to 3.73%. Figure 10
confirms the effectiveness of the IMOBWO algorithm in optimizing truck scheduling,
which not only significantly reduced shipping cost but also optimized fuel consumption
and carbon emission treatment cost that made up the shipping cost, thereby directly
promoting mining environmental protection and sustainable development. In addition,
through optimization, the idle time of trucks was significantly reduced, and the grade
deviation of mined ore was better controlled. Compared to the other three algorithms,
IMOBWO had the best solution for the open-pit mine truck scheduling problem.

To further demonstrate the solution results and to provide a basis for the development
of a transportation truck scheduling scheme, the running routes of the trucks used for
scheduling by IMOBWO under the objective of minimizing the shipping cost are shown in
Table 8, and the Gantt chart of truck operation is shown in Figure 11.
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Table 8. Optimized truck routes.

Vehicle Number Optimized Trucks Route

1 AcEdDdAdCbCcCdEbAdFdDaEdEaCaBaCcAcBcCa
2 BdEdCaDaDdDbBcEbAcBbFaCbCdBbDdAaDbAdBd
3 CbBcBcAbCcCdCdEaFbDbEaCcEbCaFbBaBc
4 DdBaAbAdDdCdDdEaBaFdAbBcDbCaEbDaBdBcEdAa
5 EbAaFcAcBdDdEbEbBcDcCdAcCbCbFdEbBcBbCcCc
6 FaBdDbCbDbEbFaBaCaAdDaCbEaCcCbEbDa
7 AbBaAaAcCcBdAdEbCdBaEaDdBbAbBcAcAbCd
8 CdAbCdBcBcAdBaCbFcDbDaBaEaAcEbAc
9 DaCbDaBdEbAaAbCdEdBdFbEcDcDaCbAcCbDcDd
10 EaBbDcAaAbDbFcCbAaCcAaEaDcBdDcBaCcBc
11 FaCdBaBbFbFcBdFaEaCcFaCdDbFcFdFaBc
12 AdBcAdFaBcDcBaAdDcFdFcBdDcEdEdBbAaCaBbAd
13 BdEbDbBbFcAdEaAcAdAaFcBbFaBcCaFcBcDaBcCd

 

Figure 11. Gantt chart of truck operation.

In Table 8, the operating routes of unmanned trucks at the open-pit mine in Guigang
are presented using the IMOBWO algorithm. In Figure 11, a progress schedule of the
trucks within the first hour is shown. The above results demonstrated that the scheduling
algorithm proposed in this paper could effectively solve the actual scheduling problem and
provide certain decision support for production practice.

6. Conclusions and Future Directions

It has been acknowledged that planning transportation for mining trucks is essential to
the output of open-pit mines. The utilization of intelligent technology in truck scheduling
plays a crucial role in decreasing operational expenses, improving ore output, and reducing
transportation delays. It also reduces environmental pollution and work-related safety risks.
In order to overcome the challenges associated with the open-pit mine truck scheduling
problem, this study proposed a novel multi-objective intelligence algorithm. The following
conclusions were drawn:
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(1) With the help of extensive empirical data from a mine in Guigang, Guangxi Province,
China, a multi-objective truck scheduling model was built. This model was con-
structed to minimize ore grade deviation, total waiting time, and shipping cost. The
fuel coefficient was used to convert truck fuel consumption into carbon emissions
generated by vehicle operation, the truck shipping cost comprised two parts: the
carbon emission treatment cost generated by fuel consumption and the truck driving
cost, obviously, optimizing truck scheduling benefited the shipping cost, which could
help diminish fuel consumption and carbon emission treatment cost. The model
included constraints that take into account a number of factors, such as the availability
of truck resources, the distance between each loading site and crushing station, the
ore demand at crushing stations, and the supply of ore at loading locations.

(2) An improved multi-objective beluga whale optimization algorithm was proposed,
and performance testing was conducted. Using logistic chaotic mapping, the initial
population distribution was improved, and the distribution range of the solution was
expanded. An adaptive factor was proposed that balanced the global and local search
capabilities of the algorithm, overcoming the problem of slow convergence speed. The
dynamic domain perturbation strategy was added to increase the number of potential
solutions and improve the algorithm’s ability to solve problems. The performance of
IMOBWO was then investigated using IEEE 30-bus and 10 test functions, proving its
superior problem-solving capability.

(3) When used for mine truck scheduling, IMOBWO demonstrated strong application
skills. The shipping cost dropped from 7.65 to 0.84%, the total waiting time dropped
from 35.7 to 7.54%, and the ore grade deviation dropped from 14.8 to 3.73% when
compared to the other three algorithms.

This study’s findings, taken together, show that IMOBWO performs exceptionally
and has great value in mine scheduling applications. Future research directions might
include improving the algorithm’s solving capabilities. The applications of IMOBWO in
other engineering scenarios will also be explored. The goal of this study was to promote
the deep integration of intelligent scheduling algorithms and mine car scheduling, thereby
promoting the sustainable development of the open-pit mining industry.
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Abstract: The values of primary stresses are not allowed for as a criterion in the selection of roof
bolting systems in mining excavations located at various depths in Polish copper ore mines. There-
fore, in order to ensure enduring and safe operation of excavations, in particular, those driven in
unfavourable geological and mining conditions, this problem has required solutions based on numer-
ical methods. This article presents an example of applying numerical simulations to the evaluation
of the stability of headings in Polish copper ore mines. The analyses included mining excavations
located at various depths in the rock mass. This issue is of great importance, as safety regulations are
prioritised in mining excavations which remain in operation even for several decades. The stability
of the headings was evaluated with the use of the RS2 specialist numerical simulation software. This
computer program uses the finite element method (FEM) for calculations. The rock parameters used
in the numerical models have been determined on the basis of the Hoek–Brown classification. For that
purpose, the RocLab 1.0 software was used. The parameters of the stress field were identified from
the profile of the GG-1 shaft with the assumed hydrostatic state of stress. The numerical modelling
was performed in a triaxial stress state and in a plane strain state. The numerical analyses were based
on the Mohr–Coulomb failure criterion. The rock medium was described with the elastic-plastic
model with softening (roof and walls) and with the elastic-plastic model (floor). The results of the
numerical analyses served to provide an example of the application of a roof bolting system to protect
headings located at the depths of 1000 m b.g.l. and 1300 m b.g.l.

Keywords: stability of excavations; roof bolting systems; finite element method (FEM); numerical
simulations; Polish copper ore mines

1. Introduction

The copper ore deposit mined in Poland by KGHM Polska Miedz S.A. is located in
Lower Silesia, between the towns of Lubin and Glogow. The Legnica-Glogow Copper Belt
(LGCB) comprises three underground mining plants: Lubin, Polkowice-Sieroszowice and
Rudna. The copper-bearing rocks are located at a depth from approx. 370 m b.g.l. (in the
Lubin-Malomice mining area) to 1385 m b.g.l. (in the Deep Glogow mining area) [1].

Roof bolting is the most commonly used roof support system in the mines of the LGCB
region. The selection of a roof bolt system is preceded by identifying the roof class of a
mining excavation (from class 1—the worst—to class 5—the best) in accordance with the
“Instructions on determining the geomechanical parameters of roof rocks with respect to
roof classes in copper mines, as required in the selection of a roof bolting system design” [2].
Roof rocks are classified on the basis of such parameters as:

• Roof bedding (vertical split);
• Concentration of mineralised cracks;
• Fault concentration;
• Average fault throw;
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• Tensile strength of the roof rock beam.

A particular design of the roof bolting system is selected in accordance with the
“Regulations on the selection, construction and control of excavation support in the KGHM
Polska Miedz S.A. mines” [3]. The roofs in the headings are protected with bolts at least
1.6 m long. The distance between the bolts (the bolting mesh) is adjusted depending on the
class of the roof and on the width of the heading below the roof (Table 1).

Table 1. Selection of a roof bolting system for headings in the LGCB mines [3].

Roof Class Maximum Excavation Width [m] Bolting Mesh [m]

I 6.0 1.0 × 1.0
II 7.0 1.0 × 1.0
III 7.0 1.5 × 1.5
IV 7.0 2.0 × 2.0
V 8.0 2.0 × 2.0

Support is provided not only to the roof but also to the side walls of the heading
in cases where the excavation height is greater than 4.5 m (regardless of the side wall
inclination angle) or where the excavation height is not greater than 4.5 m and moving the
side walls outwards by approximately 10◦ is not possible. The roof bolts have a length of at
least 1.6 m and are spaced in the side walls at 1.5 × 1.5 m. The lower row of roof bolts is
situated at a distance of approximately 1.8 m from the floor [3,4].

The regulations on the selection of roof support systems for the headings and pro-
duction excavations in the LGCB mines do not allow for the values of primary stresses in
the rock mass at the depth of the excavations. As a result, the roof support system may
be inappropriately selected and lead to problems with the stability and functionality of
the excavations. This fact may be of particular importance in the case of headings (both
access and preparatory excavations) which have transport or ventilation functions. Their
functionality must be ensured over a time spanning from several years to over a decade.

In recent years, owing to the increase in computing power, numerical methods have
become a common tool in solving various problems related to rock mass mechanics. The
advantage of such methods lies in their ability to analyse objects of practically any geometry,
allowing for different models describing the behaviour of the material under load, spatial
changes in rock mass properties, specific field of primary stresses, dynamic loads, etc.
They also provide solutions to both two-dimensional and three-dimensional tasks [5–18].
Currently, the most popular numerical calculation methods employed in solving problems
related to rock mass mechanics include the finite element method (e.g., PHASE2, RS2,
RS3, NASTRAN, ANSYS, MIDAS GTS NX) and the finite difference method (e.g., FLAC
software). Other methods include the boundary element method (e.g., EXAMINE) or the
distinct element method (e.g., UDEC).

Numerical methods have significantly expanded research possibilities related to the
analysis and evaluation of the stability of excavations in underground mines. They are fre-
quently used, both in Poland and abroad, to solve problems related to driving excavations
in underground mines in varying or difficult geological and mining conditions [19–30].
Numerical modelling allows predictions of the stress concentration zones and the potential
locations in which the rock mass may become unstable in the vicinity of a mining exca-
vation. The results of numerical simulations are used to plan and design inter alia access,
preparatory, production, and other special-purpose excavations of various shapes and
dimensions, as well as to aid the selection of adequate support systems [31–38].

2. Predictions of the Stability of Headings in the LGCB Mines

The decrease or the loss of stability in headings located at different depths (1000 m b.g.l.
and 1300 m b.g.l.) in one of the LGCB mines were modelled with the use of numerical
simulations. The numerical calculations were performed in the RS2 software, which is
based on the finite element method (FEM), i.e., one of the most popular numerical methods.
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Table 2 lists rock parameters used in the numerical simulations of the stability of
headings in the conditions of one of the LGCB mines. The parameters were determined
from geomechanical tests of rock samples. The rock samples for the laboratory tests were
obtained from two boreholes: Jm-15/H-173 (rock layers in the roof and in the floor) and Jm-
15-460 (rock layers in the walls). The rock parameters obtained from the Jm-15/H-173 and
Jm-15-460 boreholes show the typical geological structure of the Fore Sudetic Monocline. In
this structure, the access and preparatory excavations of the LGCB mines are driven. The
immediate roof layers contain very strong carbonate formations (calcareous dolomite), as
opposed to the rock layers which form the mined deposit and the floor layers.

Table 2. Mean strength and strain rock parameters for the Jm-15/H-173 borehole and the Jm-15-460
borehole.

Location Rock Type
h

[m]
ρ

[MPa]
Rc

[MPa]
Rr

[MPa]
Ei

[MPa]
ν
[-]

Roof

Anhydrite I 0.70 2.94 132.49 6.43 42,420.00 0.24
Anhydrite II 1.80 2.94 117.61 5.25 38,240.00 0.24
Anhydrite III 3.00 2.94 97.88 5.58 40,600.00 0.24
Anhydrite IV 9.30 2.94 86.93 5.94 38,300.00 0.24

Dolomite I 1.20 2.81 175.86 7.20 68,400.00 0.26
Dolomite II 1.70 2.79 156.21 8.03 47,290.00 0.25
Dolomite III 0.60 2.63 194.22 10.05 89,800.00 0.27
Dolomite IV 0.70 2.64 186.60 8.98 82,050.00 0.28
Dolomite V 1.00 2.70 165.69 4.55 65,050.00 0.24
Dolomite VI 0.70 2.73 126.89 9.59 23,400.00 0.22
Dolomite VII 0.60 2.65 188.90 10.87 84,400.00 0.27
Dolomite VIII 0.70 2.80 118.44 5.45 39,150.00 0.23

Dolomite IX 1.60 2.71 95.00 10.16 27,170.00 0.22
Walls Dolomitic shale 0.60 2.69 111.49 9.06 28,890.00 0.23

Sandstone I 1.20 2.40 47.85 2.93 16,940.00 0.17

Floor Sandstone II 9.50 2.33 36.19 2.78 13,600.00 0.14

The symbols used in the above table are as follows: h—thickness of rock layers, ρ—volume density, Rc—rock
sample strength to uniaxial compression, Rr—tensile strength of the rock sample, Ei—longitudinal modulus of
elasticity, v—Poisson’s ratio.

Subsequently, the Hoek–Brown failure criterion, which is broadly used in geomechan-
ical analyses of rock mass deformations and effort, was assumed for the rock mass. The
generalised Hoek–Brown failure criterion for a fractured rock mass may be described with
the following equation [39]:

σ1 = σ3 + σci·
(

mb· σ3

σci
+ s

)a
(1)

where:

σ1—value of the maximum principal effective stress at failure,
σ3—value of the minimum principal effective stress at failure,
mb—the Hoek–Brown constant for the rock mass,
s and a—constants depending on the rock mass properties,
σci—uniaxial compressive strength of the rock sample.

When rock mass tensile strength σtm is exceeded, the equation for a = 0.5 can be
formulated as follows:

σtm =
σci
2
·
(

mb −
√

mb
2 + 4s

)
(2)

After the failure criterion had been assumed, the RocLab 1.0 software and Hoek–
Brown classification [39–42] were used to determine the rock mass parameters (strength
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and strain parameters) for each of the rock layers present in the Jm-15/H-173 and Jm-15-460
boreholes (Table 3).

Table 3. Rock mass parameters determined with the RocLab 1.0 software—the Jm-15/H-173 borehole
and the Jm-15-460 borehole.

Location Rock Type
c

[MPa]
ϕ
[◦]

σt
[MPa]

Erm
[MPa]

Roof

Anhydrite I 9.914 38.66 1.061 31,085.97
Anhydrite II 8.801 38.66 0.942 28,022.81
Anhydrite III 7.324 38.66 0.784 29,752.25
Anhydrite IV 6.505 38.66 0.696 28,066.78

Dolomite I 16.040 39.00 3.893 60,215.79
Dolomite II 14.248 39.00 3.458 41,631.65
Dolomite III 17.715 39.00 4.299 79,055.23
Dolomite IV 17.020 39.00 4.131 72,232.54
Dolomite V 15.113 39.00 3.668 57,266.63
Dolomite VI 11.574 39.00 2.809 20,600.14
Dolomite VII 17.229 39.00 4.182 74,301.36
Dolomite VIII 10.803 39.00 2.622 34,465.62

Dolomite IX 7.579 37.69 1.442 22,180.23
Walls Dolomitic shale 6.447 30.41 1.327 18,250.37

Sandstone I 3.589 40.54 0.180 10,701.33

Floor Sandstone II 2.520 39.06 0.093 7072.00
The symbols used in the above table are as follows: c—cohesion, ϕ—internal friction angle, σt—uniaxial tensile
strength of the rock mass, Erm—rock mass modulus of elasticity.

The numerical model was constructed in the RS2 application, in a triaxial stress state
and in a plane strain state. Numerical calculations were performed for an isotropic and
for a uniform medium. The rock medium was described with the elastic-plastic model
with softening (layers in the roof and walls) and with the elastic-plastic model (layers in
the floor). Table 4 shows the strength and strain parameters of the rocks in the model. The
numerical model was developed on the basis of the Mohr–Coulomb failure criterion, which
states that rock may reach threshold effort under the following condition:

σ1 = σ3·1 + sin ϕ

1 − sin ϕ
+

2c· cos ϕ

1 − sin ϕ
(3)

or
σ3 = −σt (4)

where:

σ1—effective maximum stress at failure,
σ3—effective minimum stress at failure,
ϕ—internal friction angle,
c—cohesion,
σt—uniaxial tensile strength of the rock mass.

Numerical analyses were performed for a group of four headings. The excavations
have a trapezoidal shape. In the headings, the side walls were inclined at an angle of
10◦. The adjacent excavations are separated by pillars 20 m in width. Table 5 lists the
dimensions of headings in their assumed cross-sections. The headings were protected with
full-length-grouted rockbolts in a 1.5 m × 1.5 m bolting grid (Figure 1). The parameters of
the employed RM-18 1.8 m long bolts are shown in Table 6.
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Table 4. Rock mass parameters adopted for the numerical modelling in the elastic-plastic medium
with softening (the roof and the walls) and in the elastic-plastic medium (the floor), for the Coulomb–
Mohr criterion.

Location Rock Type
h

[m]
Es

[MPa]
ν
[-]

σt
[MPa]

ϕ
[◦]

c
[MPa]

δ
[◦]

ϕres
[◦]

cres
[MPa]

Anhydrite I-III 5.50 29,356.00 0.24 0.871 38.66 8.137 2.00 36.73 1.627
Roof Anhydrite IV 9.30 28,066.78 0.24 0.696 38.66 6.505 2.00 36.73 1.301

Dolomite I-VIII 7.20 52,975.30 0.25 3.611 39.00 14.879 2.00 37.05 2.976

Walls
Dolomite—

shale—sandstone
formations

3.50 17,435.35 0.20 0.976 37.41 5.971 2.00 35.54 1.194

Floor Sandstone 9.50 7072.00 0.14 0.093 39.06 2.520 2.00 39.06 2.520

The symbols used in the above table are as follows: h—thickness of rock layers, Es—longitudinal modulus
of elasticity, v—Poisson’s ratio, σt—tensile strength of the rock mass, ϕ—internal friction angle, c—cohesion
coefficient, δ—dilatancy angle, φres—residual internal friction angle, cres—residual cohesion coefficient.

Table 5. Dimensions of the analysed headings.

Excavation
Height
hw [m]

Excavation Width
Below the Roof

dr [m]

Excavation Width
at the Floor

df [m]

Mean
Excavation Width

da [m]

Excavation
Surface

Area
Sr [m2]

3.50 7.00 5.80 6.40 22.40

 
Figure 1. Heading protected with full-length-grouted rockbolts in the 1.5 m × 1.5 m bolting grid;
legend: 1—dolomite I–VIII, 2—dolomite-shale-sandstone formations, 3—sandstone.

Table 6. Parameters of the RM-18 grouted rockbolts [43].

Parameter Value

Bar diameter [mm] 18.2
Bar length [m] 1.8
Bar material steel

Young’s modulus [MPa] 210,000.0
Real load-capacity [kN] 170.0

Residual load-capacity [kN] 17.0
Pretension [kN] 30.0
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The stress values were identified from the GG-1 shaft profile as per PN-G-05016:1997 [44].
The calculations included the porosity and water-logging of the rock layers. Table 7
shows the calculated primary stress values for two heading depths: 1000 m b.g.l. and
1300 m b.g.l. Owing to the deposit depth, the hydrostatic state of stress was assumed in the
numerical models:

σz = σx = σy, (5)

where:

σz—vertical stresses,
σx and σy—horizontal stresses.

Table 7. Primary stresses for two depths in the LGCB mines.

Depth
H [m]

Vertical Stresses
σz [MPa]

Horizontal Stresses
σx [MPa]

Horizontal Stresses
σy [MPa]

1000 22.11 22.11 22.11
1300 30.12 30.12 30.12

Two variants of loads acting on the group of headings were assumed for the numerical
calculations. The flat, rectangular plate with openings shaped to correspond to the shapes
of the analysed excavations located inside was assumed to be loaded on its edges:

• Load variant 1 (heading depth H = 1000 m b.g.l.):

– side edges: px = 22.11 MPa;
– upper edge and bottom edge: pz = 22.11 MPa;
– direction perpendicular to plate surface: py = 22.11 MPa.

• Load variant 2 (heading depth H = 1300 m b.g.l.):

– side edges: px = 30.12 MPa;
– upper edge and bottom edge: pz = 30.12 MPa;
– direction perpendicular to plate surface: py = 30.12 MPa.

The edges of the analysed plate were provided with supports which do not slide either
in the vertical or in the horizontal direction. The numerical modelling employed finite
elements having three nodes and a triangular shape. The plate edges were assumed to be at
a 100 m distance from the extreme points on each side of the analysed excavations (the roof,
the floor and the side walls). In all numerical models, the plate was 288.0 m × 203.5 m.
Owing to the assumed dimensions of the plate, its edges (pillars) were not located exces-
sively close to the excavations and thus had no influence on the results of calculations of
the area of the excavations. In order to increase the accuracy of numerical calculations,
smaller-size finite elements were used in the middle of the plate, in the area where the
headings were driven (region of dense finite elements) (Figure 2). In each numerical model,
the calculations were performed in two steps:

• Step 1: original state of the rock mass (no mining excavations present in the analysed
plate);

• Step 2: state with the excavations present (four mining excavations present in the rock
mass).

In the numerical simulations, it was assumed that the optimal measure of heading
stability is the range of the yielded rock mass zone in the roof of the heading.
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Figure 2. Numerical model of the group of headings generated in the RS2 software, the central
part of the model and region of dense finite elements. Legend: 1—anhydrite II–IV, 2—anhydrite I,
3—calcareous dolomite I–VIII, 4—dolomite-shale-sandstone formations, 5—quartz sandstone.

3. Modelling Results

The numerical modelling of the stability of headings located at different depths in
the rock mass (1000 m b.g.l. and 1300 m b.g.l.) in the geological and mining conditions
assumed for the LGCB mines confirmed the results in a three-stage work: “Regulations on
the selection of support systems for special-purpose room excavations in copper ore mines—
Stage 1, Stage 2 and Stage 3” [45–47]. The numerical simulations also demonstrated that:

• The maximum range of the yielded rock mass (from 50% to 100%) in the roof (Table 8)
of the headings located at the depth of 1000 m b.g.l. (load variant 1) was from 1.35 m to
1.54 m (Figures 3 and 4). For comparison, the maximum range of the yielded rock mass
(from 50% to 100%) in the roof of the headings located at the depth of 1300 m b.g.l.
(load variant 2) was from 1.97 m to 2.33 m (Figures 5 and 6). A change in the heading
depth from 1000 m b.g.l. to 1300 m b.g.l. has thus caused the range of the yielded rock
mass in the heading roof to increase from 0.43 m (heading 4) to 0.98 m (heading 2).
The maximum range of the yielded rock mass in the roofs of all headings was greater
than the 1.8 m range of the bolted zone. This fact indicates that in the LGCB mines, the
heading depth in the rock mass may have a decisive impact on its stability. Problems
with heading stability may occur when the yielded rock zone in the roof is larger than
the bolted zone.

• The surface of the yielded rock area around a group of headings increases together
with an increase in the excavation depth (increase in primary stress in the rock mass);
this phenomenon negatively influences the stability of mining excavations and is
strictly related to the stress and strain parameters of the rock layers surrounding
the excavations.

• The maximum range of the yielded rock mass (from 50% to 100%) in the walls (Table 9)
of the headings located at the depth of 1000 m b.g.l. was from 2.69 m to 3.02 m
(Figures 3 and 4). For comparison, the maximum range of the yielded rock mass
(from 50% to 100%) in the walls of the headings located at the depth of 1300 m b.g.l.
was from 3.23 m to 3.47 m (Figures 5 and 6). A change in the heading depth from
1000 m b.g.l. to 1300 m b.g.l. has thus caused the range of the yielded rock mass in the
walls to increase from 0.32 m (heading 4, left wall) to 0.62 m (heading 1, left wall).

• A more complex formation mechanism of yielded rock mass was observed in the floors
of the excavations. A change in the heading depth from 1000 m b.g.l. to 1300 m b.g.l.
has caused the vertical range of the yielded rock mass in the floors to increase only to
a limited degree in comparison to the change in the horizontal range. The maximum
vertical range of the yielded rock mass (from 50% to 100%) in the floors of the headings
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(Table 10) was from 2.53 m to 2.58 m (for the depth of 1000 m b.g.l.) and from 2.92 m
to 3.13 m (for the depth of 1300 m b.g.l.) A change in the heading depth caused the
vertical range of the yielded rock mass to increase from 0.38 m (heading 1 and heading
4) to 0.60 m (heading 3).

• The horizontal ranges of the yielded rock mass in the floors changed more significantly
due to the change in the heading depth (Table 11). The maximum horizontal range of
the yielded rock mass (from 50% to 100%) in the floors of the headings located at the
depth of 1000 m b.g.l. was 5.80 m and was equal to the width of the heading at the
floor. In the headings located at the depth of 1300 m b.g.l., the horizontal range of the
yielded rock mass in the floors increased significantly and was from 9.52 m to 10.25 m.
A change in the heading depth has thus caused the horizontal range of the yielded
rock mass to increase from 3.72 m (heading 1) to 4.45 m (heading 2).

• The results of the numerical analyses obtained for the plastic-elastic model with
rock softening correspond best to the observed cases of stability loss in the mining
excavations in the LGBC mines.

 

Figure 3. Yielded element area around headings 1 and 2, load variant 1.

 

Figure 4. Yielded element area around headings 3 and 4, load variant 1.
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Figure 5. Yielded element area around headings 1 and 2, load variant 2.

 

Figure 6. Yielded element area around headings 3 and 4, load variant 2.

Table 8. Yielded rock mass range in the roofs of the analysed excavations (yield between 50%
and 100%).

Excavation
Yield Range in the Roof [m] Increase in Yield Range in the Roof

Load Variant 1 Load Variant 2 [m] [%]

1 1.42 2.15 0.73 51.41
2 1.35 2.33 0.98 72.59
3 1.36 2.27 0.91 66.91
4 1.54 1.97 0.43 27.92

Table 9. Yielded rock mass range in the walls of the analysed excavations (yield between 50%
and 100%).

Excavation
Yield Range in the Wall [m] Increase in Yield Range in the Wall

Load Variant 1 Load Variant 2 [m] [%]

1 (left wall) 2.83 3.45 0.62 21.91
1 (right wall) 2.79 3.26 0.47 16.85
2 (left wall) 2.87 3.47 0.60 20.91

2 (right wall) 2.69 3.23 0.54 20.07
3 (left wall) 2.89 3.32 0.43 14.88
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Table 9. Cont.

Excavation
Yield Range in the Wall [m] Increase in Yield Range in the Wall

Load Variant 1 Load Variant 2 [m] [%]

3 (right wall) 2.78 3.24 0.46 16.55
4 (left wall) 3.02 3.34 0.32 10.60

4 (right wall) 2.73 3.25 0.52 19.05

Table 10. Yielded rock mass range in the floors of the analysed excavations (yield between 50%
and 100%).

Excavation
Yield Range in the Floor [m] Increase in Yield Range in the Floor

Load Variant 1 Load Variant 2 [m] [%]

1 2.54 2.92 0.38 14.96
2 2.58 2.97 0.39 15.12
3 2.53 3.13 0.60 23.72
4 2.58 2.96 0.38 14.73

Table 11. Horizontal range of yielded rock mass in the floors of the analysed excavations (yield
between 50% and 100%).

Excavation

Horizontal Range of Yielded Rock
Mass in the Floor [m]

Increase in Horizontal Yield Range
in the Floor

Load Variant 1 Load Variant 2 [m] [%]

1 5.80 9.52 3.72 64.14
2 5.80 10.25 4.45 76.72
3 5.80 9.98 4.18 72.07
4 5.80 9.71 3.91 67.41

4. Discussion

The numerical simulations allowed an optimal selection of the roof bolting design for
headings driven at different depths in the rock mass in the conditions of the LGCB mines.
For safety reasons, the simulations were based on an assumption that the bolted zone in
the roof must be larger by at least 0.25 m than the maximum range of the yielded zone
(yield from 50% to 100%). In the case of the headings driven at the depth of 1000 m b.g.l.,
the selection of 1.8 m long RM-18 grouted bolts in the 1.5 × 1.5 m grid (bolt distance) was
proven correct. However, in the case of headings driven at 1300 m b.g.l., the range of the
bolting zone should be increased. The selected bolts were 2.6 m long RM-18 grouted bolts
in the 1.5 × 1.5 m grid (bolt distance).

The analysis of the results of numerical simulations also confirmed that a change in
the heading depth from 1000 m b.g.l. to 1300 m b.g.l. caused the range of the yielded rock
mass in the walls to increase. In actual mining conditions, the stability of the walls may be
thus compromised. Observations in the LGCB mines indicate that in such cases, the walls
may be effectively reinforced with the use of bolts not shorter than 1.6 m and installed in
the 1.5 m × 1.5 m bolting grid (bolt spacing), with the bottom row of the bolts situated at a
distance approximately 1.8 m from the floor. In justified cases, the walls may be reinforced
with so-called deep bolts (longer than 2.6 m), e.g., cable bolts.

A change in the heading depth from 1000 m b.g.l. to 1300 m b.g.l. caused a limited
increase in the vertical range and a significant increase in the horizontal range of the yielded
rock mass in the floors. In situ observations in the LGCB mines indicate that in the case of
deep headings (located more than 1000 m b.g.l.), the floor is uplifted more frequently than
in the case of headings located at smaller depths. This phenomenon is also influenced by
the low values of strength and deformation parameters of sandstones present in the floors
of the headings.
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In situ studies performed in the LGCB mines confirm that in the geological and mining
conditions of the Polish copper ore mines, the stability of the heading is affected by its
depth in the rock mass. In some cases, a loss of stability was observed for headings which
were driven in similar geological and mining conditions but at different depths in the rock
mass. The roof support system was, in these cases, selected in accordance with the binding
regulations in the LGCB mines [3]. However, the regulations do not allow for the depth of
the excavation in the rock mass and, thus, for the level of primary stresses in the mined
rock mass.

Numerical modelling confirms that the stability of the heading is strictly related to its
depth and, thus, to the level of primary stresses in the rock mass. Therefore, the regulations
on the selection of roof bolting systems in the LGCB mines seem to require verification
based on the results of numerical simulations, and a criterion should be added which would
account for the depth of the heading in the selection process of such a roof bolting system.

The stability of the heading is also affected by its shape, height and width, as well as
by the strength and strain parameters of the rocks around it. These parameters should be
taken into consideration when selecting a roof support system for headings driven in the
difficult geological and mining conditions of the LGCB mines.

Increased computing power and improved specialist software has allowed mining
excavations and their roof support systems to be designed with the use of numerical
methods. They enable broad and extensive analyses of heading stability in any geological
and mining conditions. The results of such numerical analyses should be verified for
correctness with the help of in situ observations of the stability of mining excavations in
the LGCB mines.
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Abstract: This article proposes a novel methodology for estimating metallurgical copper recovery, a
critical feature in mining project evaluations. The complexity of modeling this nonadditive variable
using geostatistical methods due to low sampling density, strong heterotopic relationships with
other measurements, and nonlinearity is highlighted. As an alternative, a copula-based conditional
quantile regression method is proposed, which does not rely on linearity or additivity assumptions
and can fit any statistical distribution. The proposed methodology was evaluated using geochemical
log data and metallurgical testing from a simulated block model of a porphyry copper deposit. A
highly heterotopic sample was prepared for copper recovery, sampled at 10% with respect to other
variables. A copula-based nonparametric dependence model was constructed from the sample data
using a kernel smoothing method, followed by the application of a conditional quantile regression
for the estimation of copper recovery with chalcocite content as secondary variable, which turned out
to be the most related. The accuracy of the method was evaluated using the remaining 90% of the
data not included in the model. The new methodology was compared to cokriging placed under the
same conditions, using performance metrics RMSE, MAE, MAPE, and R2. The results show that the
proposed methodology reproduces the spatial variability of the secondary variable without the need
for a variogram model and improves all evaluation metrics compared to the geostatistical method.

Keywords: metallurgical copper recovery; copula model; conditional quantile regression; kernel
smoothing; collocated cokriging

1. Introduction

Metallurgical recovery, in the context of mineral mining, refers to the percentage of
valuable metal extracted from the ore during the processing or beneficiation stage [1,2].
It is a crucial metric in the mining industry as it indicates the efficiency of the extraction
process and ultimately affects the profitability of the mining operation.

From a mineral processing perspective, contemporary treatments for copper include
the flotation of sulfide ores, leaching for oxide ores, and a hybrid approach that integrates
flotation and magnetic separation for certain mixed ores [3]. Madenova and Madani
(2021) [4] define metallurgical recovery as a vital geometallurgical variable for mine plan-
ning, representing a response to the processing plant design and the geological characteris-
tics of the ore.

The process of extracting valuable metals from ore typically involves several stages,
including crushing, grinding, concentration, and refining. Metallurgical recovery measures
the effectiveness of these processes in separating and concentrating the valuable metal from
the ore.
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The calculation of metallurgical recovery involves comparing the amount of metal
recovered from the ore to the total amount of metal present in the ore. This is often expressed
as a percentage, where a higher percentage indicates a more efficient extraction process.

Factors influencing metallurgical recovery include the mineralogy and composition of
the ore, the efficiency of the processing equipment and techniques used, and the expertise
of the personnel involved in the operation. Improving metallurgical recovery is a key focus
area for mining companies seeking to optimize their operations and maximize the value of
their mineral resources.

To maximize profit, it is crucial to have a reliable estimation model for all variables
involved, both primary (geological properties, mineral grades, densities, contaminants,
etc.) and response variables (metallurgical recovery, bond work index, grindability index,
processing capacity, milling performance, etc.) [5]. The combination of a geological model
and metallurgical data is currently known as a geometallurgical model [6].

Metallurgical recovery is a critical feature in the evaluation and exploitation of mining
projects, as it directly influences net economic benefit. This variable is expressed as a
percentage and represents the yield of mineral processing, in the case of copper sulfides,
by flotation along the mining value chain [7].

Incorporating metallurgical recovery into mine planning poses a challenge for resource
modelers and mine planners. In most projects, the lack of proper collection and analysis
of geometallurgical data leads to unreliable metallurgical response models [8]. Samples
with this information are often scarce, costly, and highly heterotopic compared to primary
variables [9,10]. However, these primary variables are known to be useful indicators for
predicting metallurgical responses [11,12].

In the context of copper metallurgical recovery, a heterotopic sample refers to a sample
taken from a location within a mineral deposit that is geologically distinct from the primary
ore body being targeted for extraction.

For example, in a copper mining operation, the primary ore body may consist of a
specific geological formation or vein where copper minerals are concentrated. A heterotopic
sample, in this case, could be taken from a nearby area where copper mineralization
occurs but in a different geological setting. This could include samples from adjacent rock
formations, secondary veins, or areas with different mineralogical characteristics.

Analyzing heterotopic samples is important in copper metallurgical recovery because
they can provide insights into the variability of copper mineralization within a mining area.
Understanding the distribution and characteristics of copper mineralization in heterotopic
samples can help optimize mining processes, improve recovery rates, and inform mine
planning and development strategies.

Modeling metallurgical recovery is usually carried out using geostatistical techniques
and, more recently, by machine learning methods. Machine learning methods seek to pre-
dict geometallurgical response variables using assay and mineralogy data [13–17]; however,
they require a large number of variables and a considerable amount of data to consolidate
a robust model [18]. On the other hand, geostatistics requires initially defining domains
based on geometallurgical attributes [19] and then estimating indirectly, that is, by seeking
mathematical arrangements forced to meet the required assumptions. Techniques like
kriging are not usually recommended, as they can generate biased results due to the nonad-
ditive nature of metallurgical recovery [20]. It has been observed that the weighted average
of two sample values is not a good estimator of the corresponding value in the blend [21,22].
Additionally, cokriging and its variants have difficulties being applicable, mainly due to
the subjectivity in modeling variograms with little information and nonlinear or complex
dependency relationships with mineral grades and other geochemical variables [23].

Given the problems and limitations mentioned earlier, the application of copula-based
methods emerges as a promising alternative in the mining industry [24]. As is usual in
statistics and geostatistics, two approaches have been developed: one for estimation and
the other for simulation. In particular, several geostatistical methods based on copulas have
been published that have been successful in Earth sciences applications [25–29]. But above
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all, there are multiple developments in the sphere of finance using an estimation approach
known as quantile regression based on copulas [30–32].

A copula is a multivariate cumulative distribution function for which the marginal
probability distribution of each variable is uniform on the interval [0, 1]. They are functions
that describe the underlying dependence between random variables. Sklar’s theorem [33]
states that any multivariate joint distribution can be expressed in terms of univariate
marginal distribution functions and a copula that describes the dependency structure
between the variables [34,35].

This research evaluates the performance of the conditional quantile regression method
(CQRM) compared to the classical geostatistical collocated cokriging method (CCM) for mod-
eling copper metallurgical recovery based on a predominantly measured geological attribute.

The structure of the paper is as follows. In the Section 2, the problem statement
is established. The Section 3 presents the collocated cokriging and conditional quantile
regression methods, and the general methodology of their application. The Section 4 gives
a description of the dataset used in the comparative study. The Section 5 shows the results
of the application of both methods to the case study. In the Section 6, the comparison of the
performance of the two methods is discussed, and, finally, in the Section 7, the conclusions
and future work are given.

2. Problem Statement

In a basic mining exploitation unit to calculate mining profit, Equation (1), metallur-
gical recovery, ore grade, and metal price are critical variables, all subject to significant
uncertainty, as can be inferred from its own definition [36,37]:

Pro f it = RCu
rc · PCu

c · GCu · TCu − CCu
c (1)

where PCu
c is the price of the copper concentrate, GCu is the copper grade, TCu is the mineral

tonnage, and CCu
c are the costs associated with the production, processing, and sale of the

copper concentrate.
Due to the low sampling density, their strong heterotopic relationship with other

mineral deposit measurements, and the nonlinearity in these relationships, geostatistical
modeling appears to be a complex alternative.

Formally, metallurgical recovery can be defined for a copper mine by the following
expression [8]:

RCu
rc =

mCu
c

mCu = xCu
c fc

1
xcu (2)

where RCu
rc is the copper recovery, mCu

c is the mass of copper in the concentrate (i.e.,
the amount of recovered copper), and mCu is the initial mass of copper in the feed. xCu

c
is the copper grade in the concentrate, xcu is the feed grade, and fc is the fraction of
mass recovered.

Small variations in metallurgical recovery estimation will impact the profit valuation,
which defines the material’s destinations in strategic planning, whether as processed ore in
the plant, waste rock extracted for deposition in dumps, or low-grade ore for stockpiling.
Given the importance of this variable for downstream processes such as block model
optimization, mine design, and mine life planning, it is essential to seek the best practices
for its prediction.

3. Methodology

In this paper, a comparison of the conditional quantile regression method (CQRM)
is made with respect to the traditional collocated cokriging method (CCM) in terms of
accuracy and performance. To apply both methods, there are a series of steps that are
common, as is shown in the general methodological workflow of Figure 1.

The first step, consisting of the exploratory analysis of the data, is standard for any
statistical procedure and consists of a summary of its statistics and the probability distribu-
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tion graphics with its boxplots and histograms. Also, an evaluation of the impact of the
presence of outliers in the data sample on the statistics is also carried out.

In the variable selection step in both cases, the variable pair that has the greatest
dependence is sought, but the difference is that for CCM it must be a linear dependence
that should be estimated with the Pearson correlation coefficient, while for CQRM it is
recommendable to use a more robust measure of dependence by using Spearman or Kendall
rank correlation coefficients.

In the modeling part, different models are built. For CCM it is a spatial correlation
model with the variogram of the primary variable, while for CQRM it is the dependence
model that consists of the estimation and fitting of the marginal distributions of each
variable as well as the copula.

Figure 1. General methodological workflow.

The validation of the models is carried out for CCM with the usual cross-validation
method, i.e., a leave one out method [38], while CQRM is validated performing an esti-
mation with the same data used to build it. The quality of each method is evaluated in
terms of performance metrics, such as root mean squared error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and determination coefficient (R2).

Finally, the prediction of copper metallurgical recovery conditioned by a secondary
attribute is performed at each point where there are no sample values.

3.1. Collocated Cokriging Method

Collocated cokriging is a geostatistical method used for spatial interpolation or esti-
mation of a target variable at unsampled locations based on available data from sampled
locations [38]. This method is particularly useful when dealing with multiple correlated
variables or when auxiliary information is available. In collocated cokriging, the relation-
ship between the target variable and auxiliary variables is modeled using the concept
of spatial dependence, which assumes that nearby locations tend to have similar values.
The method estimates the target variable at an unsampled location by combining informa-
tion from both the target variable and auxiliary variables at nearby sampled locations (see
Appendix B).

The usual steps involved in the application of collocated cokriging method are
the following:

• Data collection: Collect data on the target variable and auxiliary variables from
sampled locations within the study area.

• Spatial correlation analysis: Assess the spatial correlation or dependence between the
target variable and auxiliary variables using variograms or covariance functions.

• Modeling: Model the spatial dependence structure between the target variable and
auxiliary variables using geostatistical techniques such as ordinary kriging.

• Validation: Validate the accuracy of the predictions using cross-validation or compari-
son with independent data, if available.

• Prediction: Estimate the value of the target variable at unsampled locations by com-
bining information from nearby sampled locations and auxiliary variables, taking into
account their spatial correlation.

Collocated cokriging offers advantages over traditional kriging methods by incorpo-
rating additional information from auxiliary variables, which can improve the accuracy of
predictions, especially in areas with limited or sparse data coverage for the target variable.
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3.2. Conditional Quantile Regression Method

Conditional quantile regression based on copulas is a statistical method used for
modeling the relationship between variables, particularly when dealing with non-normal
or skewed distributions, and when there are complex dependencies among variables. Cop-
ulas are mathematical functions that describe the dependence structure between random
variables, independent of their marginal distributions. They capture the joint distribution
of variables without making assumptions about their individual distributions. Copulas
allow the modeling of both linear and nonlinear dependencies, making them useful for
capturing complex relationships between variables.

Conditional quantile regression extends the concept of linear regression by estimating
conditional quantiles of the response variable given the values of predictor variables. Un-
like ordinary least squares regression, which models the conditional mean of the response
variable, quantile regression models different quantiles (e.g., median, upper/lower quan-
tiles), providing a more comprehensive understanding of the conditional distribution of the
response variable. In quantile regression based on copulas, copulas are used to model the
dependence structure between variables, while quantile regression is applied to estimate
the conditional quantiles of the response variable given the values of predictor variables.
This approach allows the capturing of the joint distribution and conditional distributions
of variables simultaneously, taking into account complex dependencies among them.

Conditional quantile regression based on copulas offers several advantages:

• Flexibility: It can model nonlinear dependencies and account for heteroscedasticity.
• Robustness: It is robust to outliers and non-normality in the data.
• Interpretability: It provides insights into how different quantiles of the response

variable are affected by changes in the predictor variables.
• Tail behavior: It can capture extreme events or tail behavior in the conditional distri-

butions of variables.

This method is widely used in finance, economics, environmental science, and other
fields where understanding the relationship between variables across different quantiles
is essential. It can be used for risk management, forecasting, and decision making under
uncertainty. Overall, quantile regression based on copulas is a powerful tool for model-
ing complex dependencies and understanding the conditional distribution of variables,
especially in situations where traditional regression methods may not be adequate.

In this article, a nonparametric copula by the kernel smoothing method [39] is used,
given its good adaptability to any type of distribution and computational efficiency. In par-
ticular, kernel smoothing, a type of weighted moving average method, is applied for
probability density estimation, that is, to estimate the probability density function of a
random variable based on kernels as weights, where the term kernel in this context means
a window function.

A more detailed explanation of copula theory and the quantile regression method can
be found in Appendix A. In particular, additional explanations about the kernel smoothing
method can be found in Appendix A.2.

4. Dataset Description

With the purpose of carrying out the comparison between the collocated cokriging
and conditional quantile regression methods with mining data, a dataset extracted from
a synthetic porphyry copper deposit was selected, which was published in [19], and is
openly available for academic use. From the three-dimensional block model, the level 2080
is chosen to configure a 2D space and we use it as experimental data for this application.
This dataset consists of 3479 (71 × 49) cells of 20 × 20 meters, each spatially georeferenced
by their X (easting) and Y (northing) coordinates. Each cell contains geochemical records
of 1—clays, 2—chalcocite, 3—bornite, 4—chalcopyrite, 5—tennantite, 6—molybdenite,
7—pyrite, 8—copper (Cu), 9—molybdenum (Mo), and 10—arsenic (As), as well as the
results of metallurgical tests for 11—copper recovery and 12—bond work index.
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This exercise consists of extracting, in a random and spatially uniform manner, a
sample equivalent to 10% of the total available information of the metallurgical recovery,
constructing a strongly heterotopic case with respect to the other variables. Figure 2 shows
the copper recovery maps for the complete dataset on the left side and the corresponding
map for the 10% sampling on the right side, respectively.

Figure 2. Copper recovery for the 100% (in the left) and 10% (in the right) sample maps, respectively.

The comparison of the CCM and CQRM methods is carried out by applying them
to the rest of the data corresponding to 90% of the dataset, allowing a direct comparison
between the real information and the results obtained by the two methods under the same
heterotopic sampling conditions and validation metrics.

A comparative statistical summary between the full (100%) dataset and the 10% sample
for copper recovery is shown in Table 1 and Figures 3 and 4, respectively. It can be seen
that the 10% subset of data is statistically equivalent to the total dataset in terms of the
statistical values and probability distribution. Hereinafter, the subset corresponding to 10%
of the dataset will be referred to as “10% sample”.

Figure 3. Copper recovery histogram and boxplot for the full (100%) dataset.
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Figure 4. Copper recovery histogram and boxplot for 10% sample dataset.

Table 1. Copper recovery statistics summary for the total and 10% sample, respectively.

Statistics Total Sample 10% Sample

Size 3479 347
Minimum 68.7907 75.7572
1st quartile 84.2624 84.8486
Median 87.2162 87.503
Mean 86.5376 86.8988
3rd quartile 89.5262 89.6185
Maximum 93.2732 93.0413
Range 24.4825 17.2841
Interquartile range 5.2638 4.7699
Variance 13.8434 12.3059
Standard deviation 3.7207 3.508
Skewness −0.8964 −0.8003
Kurtosis 0.6558 0.2731

5. Case Study Application

5.1. Exploratory Data Analysis

A statistical summary of the geochemical attributes for the 10% sample is shown in
Table 2.

Table 2. Statistics summary for a 10% sample for all geochemical attributes, where the numbering
corresponds to: 1—clays, 2—chalcocite, 3—bornite, 4—chalcopyrite, 5—tennantite, 6—molybdenite,
7—pyrite, 8—copper (Cu), 9—molybdenum (Mo), and 10—arsenic (As), 11—copper recovery and
12—bond work index.

Statistics 1 2 3 4 5 6 7 8 9 10 11 12

Size 347 347 347 347 347 347 347 347 347 347 347 347
Minimum 0.7294 0.0045 0.0047 0.205 0.0046 0.0047 0.0053 0.0766 0.0028 0.0009 75.7572 11.39
1st quartile 2.1378 0.009 0.0674 0.5892 0.005 0.0089 0.6665 0.3199 0.0054 0.001 84.8486 12.5312
Median 3.2251 0.0457 0.1308 0.789 0.0067 0.0127 1.6151 0.4129 0.0076 0.0014 87.503 12.8145
Mean 4.08 0.0804 0.1733 0.9003 0.0128 0.0185 1.8393 0.4569 0.0111 0.0026 86.8988 12.9392
3rd quartile 5.0217 0.1261 0.2246 1.0561 0.0123 0.0218 2.7769 0.5312 0.0131 0.0025 89.6185 13.1052
Maximum 20.7767 0.7682 0.9131 3.6683 0.133 0.125 7.1561 1.6023 0.075 0.027 93.0413 22.2781
Range 20.0473 0.7637 0.9084 3.4633 0.1285 0.1203 7.1509 1.5257 0.0722 0.0261 17.2841 10.8881
Interquartile range 2.884 0.1172 0.1571 0.4669 0.0072 0.0129 2.1103 0.2113 0.0077 0.0015 4.7699 0.5739
Variance 8.0645 0.0101 0.0255 0.2463 0.0003 0.0002 1.911 0.0461 0.0001 0 12.3059 0.9168
Standard deviation 2.8398 0.1003 0.1597 0.4963 0.0174 0.0153 1.3824 0.2146 0.0092 0.0035 3.508 0.9575
Skewness 1.7563 2.9569 1.7926 2.3118 4.4297 2.4914 0.664 1.7473 2.4914 4.4297 −0.8003 5.058
Kurtosis 4.3005 14.3695 3.6934 7.8782 23.0514 9.0065 −0.1015 4.9835 9.0065 23.0514 0.2731 36.8668
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5.2. Variable Selection

A bivariate analysis is carried out to select the geochemical attribute that has a greater
dependence relationship with respect to copper recovery. For this purpose, heat maps of
the Pearson, Kendall, and Spearman correlation coefficients are obtained (see the latter in
Figure 5).

Figure 5. Spearman correlation heat map of all geochemical attributes for a 10% sample.

The geochemical attribute that shows the strongest correlation with copper recovery is
chalcocite, with correlation coefficients of −0.75, −0.84, and −0.63 according to Pearson,
Spearman, and Kendall, respectively (see Table 3). However, it is important to note that
the dependency relationship between the variables, as shown in Figure 6, presents a
clearly nonlinear behavior. The variable chalcocite, which is mostly sampled, is selected
to perform the comparison between the collocated cokriging and conditional quantile
regression methods.

Figure 6. Copper recovery vs. chalcocite scatterplot for 10% sample dataset.
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Table 3. Copper recovery and chalcocite correlation coefficients.

Primary Variable Secondary Variable Pearson Kendall Spearman

Copper recovery chalcocite −0.75 −0.63 −0.84

5.3. Modeling

As was mentioned in Section 3, the modeling step is different for each method. CCM
corresponds to a spatial correlation modeling step, while CQRM to a dependence modeling step,
as shown below.

5.3.1. Spatial Correlation Modeling

The spatial correlation model for CCM consists of estimating the sample variogram
and optimally adjusting a variogram model to the primary variable, which in this case is
copper recovery.

The chalcocite spatial distribution for the complete dataset on the left side and the
corresponding map for the 10% sampling on the right side are shown in Figure 7, while
Figure 8 shows the copper recovery empirical variogram calculated by Matheron estimator
and a spherical fitted model with an effective range of 141.12 m, a sill of 12.20, and no nugget
effect. This spatial correlation model is used in conjunction with Pearson’s correlation
coefficient in the collocated cokriging application to chalcocite complete dataset (left side
of Figure 7).

Figure 7. Chalcocite for the 100% (in the left) and 10% (in the right) sample maps, respectively.

Figure 8. Copper recovery variogram model. The blue dots are the empirical variogram and the
continuous green line is the fitted variogram model.
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5.3.2. Dependence Modeling

The distribution of chalcocite shows a strong positive skewness (see Figure 9), which
probably will not fit a parametric distribution, while copper recovery presents a slight
negative skewness (see Figure 10).

Figure 9. Model fitting of the chalcocite marginal using the kernel smoothing method with the
Student function. The cumulative distribution function is on the left side and the probability density
function is on the right side.

For both chalcocite and copper recovery, marginal distributions are fitted using the
nonparametric method of kernel smoothing, which estimates a probability density func-
tion (PDF) from data without assuming a specific form. In particular, an Epanechnikov
kernel [40] is the best fitting function for both marginals using the Bayesian information
criterion (see Figures 9 and 10). Subsequently, a copula model is fitted using the same
kernel smoothing method and criterion, but the best kernel is a Student function [41],
which shows a better fit than other evaluated kernels, including the Epanechnikov one (see
Figure 11).

Figure 10. Model fitting of the copper recovery marginal using the kernel smoothing method with
the Student function. The cumulative distribution function is on the left side and the probability
density function is on the right side.
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Figure 11. Copula model fitting using kernel smoothing method with a kernel Student function.

5.4. Validation

The validation stage consists of two parts. The first part involves verifying that the
dependency model accurately reproduces both the univariate statistics of the marginal
variables (chalcocite and copper recovery) and the bivariate statistics of the data sample.
This is achieved through a joint nonconditional simulation using the dependency model
(Appendix A.3). The second part assesses the predictive power of the quantile regression
method by comparing its results with the 10% data sample (Appendix A.4). Specifically,
copper recovery values are estimated by applying the quantile regression method condi-
tioned on the chalcocite data from the 10% sample and are then compared with the actual
copper recovery values from that sample.

The nonconditional simulation is generated using the bivariate probability distribution
function of chalcocite and copper recovery from the previous section. To ensure compa-
rability, the unconditional simulation produces a sample of the same size as the 10% data
sample. The resulting simulation is statistically equivalent to the 10% data sample (see
Tables 4 and 5). Additionally, the dependency model accurately reproduces the dependence
pattern between the chalcocite data and copper recovery (see Figure 12), thereby validating
both the models of the marginal distributions and the copula model.

Table 4. Statistics summary for copper recovery and chalcocite nonconditional joint simulation.

Statistics Chalcocite Copper Recovery

Size 347 347
Minimum −0.0051 75.8326
1st quartile 0.0109 84.4898
Median 0.0540 87.522
Mean 0.0872 86.8948
3rd quartile 0.1440 89.7867
Maximum 0.7676 93.2552
Range 0.7727 17.4227
Interquartile range 0.1331 5.2969
Variance 0.0108 13.7954
Standard deviation 0.1040 3.7142
Skewness 2.5942 −0.6636
Kurtosis 14.6298 2.8307
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Table 5. Copper recovery and chalcocite nonconditional simulation correlation coefficients.

Primary Variable Secondary Variable Pearson Kendall Spearman

Copper recovery Chalcocite −0.69 −0.52 −0.73

Figure 12. Joint copper recovery and chalcocite nonconditional simulation. The aquamarine circles
are the data sample values and blue crosses are the copper–chalcocite joint bivariate unconditional
simulation values.

Conditional quantile regression is applied to predict copper recovery conditional on
chalcocite data values. These results are compared to actual copper recovery values, which
are not used in the modeling. The estimated values of the median and the first (Q1) and
third (Q3) quartiles (50% quantile, 25% quantile and 75% quantile, respectively) by CQRM
follow the global trend of the real data (Figure 13) and their spatial distribution.

When comparing the omnidirectional variogram obtained from the copper recovery of
the complete dataset with the copper recovery variogram estimated through the CQRM, it
is observed that both are quite close (see Figure 14). This finding demonstrates the excellent
ability to reproduce spatial variability using CQRM at unsampled locations.

Figure 13. Scatterplot of copper recovery vs. chalcocite. The blue dots are the observed data values,
the red line is the median estimated values, and the orange and green lines are the first (Q1) and third
(Q3) quartiles, respectively, by CQRM application.
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Figure 14. Copper recovery empirical variograms from full data, 10% sample, CCM and CQRM.

5.5. Prediction

The collocated cokriging method (CCM) was applied with the Markov 1 model, de-
scribed in detail in [42], where chalcocite was employed as an exhaustive secondary variable.
The co-estimation plan considered a search neighborhood equivalent to the effective range
of the spherical variogram, at 145 radial meters, using a limit of 20 observations as the maxi-
mum for each co-estimation. Similarly, the conditional quantile regression method (CQRM)
was applied to each chalcocite cell using the dependence model obtained in Section 5.3.2
for the estimation of the median and interquartile range of copper recovery.

The results of the application of both methods are shown numerically in terms of
performance metrics in Table 6 and graphically in Figures 15 and 16.

Table 6. Performance metrics of collocated cokriging vs. quantile regression method for copper
recovery estimation conditioned by chalcocite for 10% sample data, where RMSE is the root mean
squared error, MAE is the mean absolute error, MAPE is the mean absolute percentage error, and R2

is the determination coefficient.

Performance Metrics CCM CQRM

RMSE 3.85 2.86
MAE 3.03 1.71
MAPE 3.58 2.04
R2 0.09 0.67

Figure 15. Mean estimation (on the left side) and standard deviation (on the right side) for copper
recovery conditioned by chalcocite using CCM.

126



Minerals 2024, 14, 691

Figure 16. Median estimation (on the left side) and interquartile range (on the right side) for copper
recovery conditioned by chalcocite using CQRM.

The performance metrics (RME, MAE, and MAPE) in Table 6 are significantly lower
for CQRM relative to CCM, meaning that CQRM is a much more accurate method, and R2

corroborates that CQRM has a better goodness of fit. Or, in other words, it explains a greater
percentage of the variance in the data than the CCM. This is complemented graphically,
since it can be seen that the spatial distribution pattern of the copper recovery estimate
using CCM (Figure 15) is very different from that of Figure 2 of the dataset complete, while
the CQRM estimation (Figure 16) has a much closer spatial distribution.

Performance Evaluation

By reducing heterotopy through an increase in the sampling of the primary variable,
a substantial decrease in error is observed. This improvement is logical and is due to the
fact that a greater amount of data for the primary variable allows for a better understanding
of its behavior and its relationship with other variables.

A comparison of CQRM performance under different scenarios is shown in Figure 17.
In particular, five scenarios were evaluated with a considerably high heterotopia, with dif-
ferent percentages (1%, 5%, 10%, 15%, and 20%) of the primary copper recovery variable,
but preserving the set of complete data for the secondary variable chalcocite. It can be
seen that with more information, the CQRM can more accurately estimate the primary
copper recovery variable, resulting in a significant reduction in uncertainty and, therefore,
the associated error. This is clearly demonstrated in Table 7, where the performance metrics
consistently improve as the percentage of data for the primary variable increases.

Table 7. Performance metrics of quantile regression method for copper recovery estimation con-
ditioned by chalcocite under different scenarios: 1%, 5%, 10%, 15%, and 20% sample data, where
RMSE is the root mean squared error, MAE is the mean absolute error, MAPE is the mean absolute
percentage error, and R2 is the determination coefficient.

Performance Metrics 1% 5% 10% 15% 20%

RMSE 3.78 2.97 2.86 2.35 2.24
MAE 2.64 1.92 1.71 1.52 1.41
MAPE 3.16 2.29 2.04 1.81 1.68
R2 0.39 0.63 0.67 0.79 0.81

The results are notable considering the simplicity of this approach, as it depends only
on a single secondary variable, and the computational efficiency it presents.
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Figure 17. Median quantile regression estimation for copper recovery conditioned by chalcocite
under different scenarios. The figures are arranged from left to right and from top to bottom: full
(100%) map, 1%, 5%, 10%, 15%, and 20% sample data.

6. Discussion

The results of the CCM, under the same heterotopic sampling conditions of 10%,
did not surpass those of the CQRM, even when the latter was used under less favorable
sampling conditions (Table 7). In particular, it can be observed that the performance metrics
for the 1% sample data are even better for CQRM than those for the 10% sample data
for CCM. This is because methods like the CCM depend on strictly linear relationships
between variables and are not competitive in this case, where there is no linearity and the
dependencies are complex.

Although the CQRM does not explicitly incorporate a spatial correlation model for
copper metallurgical recovery, it reproduces its variability quite well. When observing
Figure 14, there is a high similarity between the data sample and prediction variograms.
This occurs because the primary variable (copper recovery) inherits the spatial correlation
through the secondary variable using the joint dependence model. By not requiring a
spatial correlation model, a certain degree of subjectivity is eliminated from the process,
adding practicality and efficiency. It is shown that a copula-based dependence model
can reproduce spatial variability, provided that the joint dependence model is established
following the proposed methodological guidelines. This includes appropriately selecting
the predictor variable based on maximum dependence, correctly modeling marginal dis-
tributions, and choosing an appropriate bivariate model, as well as validating the model
through simulation to reproduce the dependence of the sampling data.

7. Conclusions

Copper metallurgical recovery is a key variable in defining the cutoff grade for mining
operations, directly influencing the amount of copper that can be profitably extracted
and processed. Consequently, it is critical in the economic evaluation of a project. In this
context, an accurate estimation of metallurgical recovery is vital for strategic planning and
decision making.
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The approach proposed in this article consists of the application of a novel conditional
quantile regression method for metallurgical copper recovery conditioned on a secondary
variable that is widely sampled and exhibits the maximum possible dependence. The par-
ticularity of this approach lies in the optimal estimation of the codependency model of the
variables using a kernel smoothing method for the marginals as well as for the copula.

The presented application is based on a synthetic but realistic case of a porphyry
copper deposit, where the median regression for copper recovery is estimated at all known
chalcocite locations, used as an explanatory variable. The comparison of the results obtained
by CQRM versus CCM shows that, both in terms of precision and efficiency, as well as
reproduction of spatial variability, the method proposed in this article is superior when the
dependencies are nonlinear.

Although this is a specific application to a case study, the methodology can be extended
to other scenarios, such as an exploration drilling campaign, where the largest scale of
information comes from drilling interval logs, with metallurgical recovery measured in
fewer quantities and not necessarily in the same locations.

CQRM is an innovative, practical, efficient, and versatile approach. It avoids strong as-
sumptions about the data and theoretical constraints in its implementation, demonstrating
a clear capacity to adapt to different levels of information and scales, making it applicable
to a wide variety of scenarios.

As future work, the implementation of conditional quantile regression method based
on copula model with multivariate dependencies is proposed. This model extension is
expected to further improve the accuracy of predictions while maintaining practicality,
versatility, and computational efficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

CCM Collocated cokriging method
CQRM Conditional quantile regression method based on copulas
MAE Mean absolute error
MAPE Mean absolute percentage error
PDF Probability density function
R2 Determination coefficient
RMSE Root mean squared error

Appendix A. Conditional Quantile Regression Method Based on Copulas

Sklar in 1959 [33] established a theorem indicating a functional relationship between
the joint probability distribution function of a random vector and its univariate marginal
distribution functions. For instance, in the case of two variables, if (X, Y) is a random
vector with a joint probability distribution HXY(x, y) = P(X ≤ x, Y ≤ y), then the marginal
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distribution functions of X and Y are FX(x) = P(X ≤ x) = HXY(x, ∞) and GY(y) = P(Y ≤
y) = HXY(∞, y), respectively. However, when marginalizing HXY, some information is
lost, as the marginal distributions FX and GY generally do not suffice to fully determine
HXY. This is because the marginal distributions only describe the individual probability
behavior of the random variables they represent. Sklar’s theorem demonstrates that there
exists a function CXY: [0, 1]2 
−→ [0, 1] such that

HXY(x, y) = CXY(FX(x), GY(y)) (A1)

where CXY is the copula function associated with the bivariate random vector (X, Y) and
describes its dependence relationship, H is the bivariate probability distribution function,
and F and G are the univariate (marginal) probability distributions.

Copula functions are a valuable tool for constructing joint probability models with
greater flexibility. They allow us to independently select univariate models for the random
variables of interest and choose a copula function that best represents their dependence,
either parametrically or nonparametrically. For example, in a multivariate normal model, all
marginal distributions must be normal, with no tail dependence and finite second moments
for well-defined correlations. The multivariate normal model is a specific instance where the
underlying copula is Gaussian and all univariate marginals follow a normal distribution.

When FX and GY are continuous, elementary probability theory tells us that U = FX(X)
and V = GY(Y) are continuous uniform random variables on (0, 1). The underlying copula
C for the random vector (U, V) is the same copula corresponding to (X, Y). Accord-
ing to Sklar’s theorem, the joint probability distribution function for (U, V) is given by
HUV(u, v) = C(FU(u), GV(v)) = C(u, v). Therefore, if FX and GY are known but HXY
is unknown, and we have an observed random sample {(x1, y1), . . . , (xn, yn)} of (X, Y),
the set {(uk, vk) = (FX(xk), GY(yk)) : k = 1, . . . , n} will be an observed random sample of
(U, V) with the same underlying copula C as (X, Y). Since C = FUV , we can use the values
(uk, vk) (known as copula observations) to estimate C as a joint empirical distribution:

Ĉ(u, v) =
1
n

n

∑
k=1

I{uk≤u,vk≤v} (A2)

Strictly, the estimate Ĉ is not a copula since it is discontinuous and copulas are always
continuous. If FX , GY, and HXY are all unknown, which is the most common case, FX and
GY are estimated by their empirical univariate distribution functions:

F̂X(x) =
1
n

n

∑
k=1

I{xk ≤ x}, ĜY(y) =
1
n

n

∑
k=1

I{yk ≤ y} (A3)

where I represents an indicator function equal to 1 when its argument is true and 0 otherwise.
We will refer to the set of pairs

{
(ûk, v̂k) = (F̂X(xk), ĜY(yk)) : k = 1, . . . , n

}
as pseudo

observations of the copula. It can be verified directly that F̂X(xk) = 1
n rank(xk) and

ĜY(yk) = 1
n rank(yk). In this case, the concept of empirical copula, see [34], is defined

as the following function Cn: I2
n 
−→ [0, 1], where In =

{
i
n : i = 0, . . . , n

}
, given by

Cn

(
i
n

,
j
n

)
=

1
n

n

∑
k=1

I{rank(xk)≤i,rank(yk)≤j)} (A4)

Again, Cn is not a copula but is an estimate of the underlying copula in the mesh I2
n that

can be extended to a copula in [0, 1]2of, for example, Bernstein polynomials, as proposed
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and studied in [43], leading to what is known as a nonparametric estimate of the Bernstein
copula C̃: [0, 1]2 
−→ [0, 1] given by

C̃(u, v) =
n

∑
i=0

n

∑
j=0

Cn

(
i
n

,
j
n

)(
n
i

)
ui(1 − u)n−i

(
n
j

)
vj(1 − v)n−j (A5)

Appendix A.1. Three Approaches to Building a Copula-Based Dependency Model

There are three approaches to building a copula-based dependency model: parametric,
nonparametric, and semiparametric.

The parametric approach consists of being able to fit a known copula model to the em-
pirical copula, such as the Frank, Gumbel, or Clayton copulas, which belong to the family of
Archimedean copulas [34,35], as well as being able to fit the empirical marginal probability
distributions to known distribution functions such as normal or Gaussian, lognormal,
gamma, Weibull, etc. In this way, a joint probability distribution model is obtained.

The nonparametric approach consists of numerically approximating the empirical cop-
ula and its marginals, usually by means of some polynomial expression. In this approach,
Bernstein polynomials [28,43] and splines [44], as well as the kernel smoothing method,
have been used [35], where kernel smoothing is a type of weighted moving average.

While a semiparametric approach is a combination of the two previous approaches,
this allows two options, that is, a model could be fitted to the empirical copula and approx-
imate the marginals with a polynomial, or the empirical copula could be approximated by
a polynomial expression and adjust the marginals with a known distribution model [45].

Appendix A.2. Kernel Density Estimation with Kernel Smoothing Method

Consider (x1, x2, . . . , xn) as independent and identically distributed samples drawn
from a univariate distribution characterized by an unknown density function f at any
arbitrary point x. Our focus lies in approximating the shape of this function f . Its kernel
density estimator is expressed as follows:

f̂h(x) =
1
n

n

∑
i=1

Kh(x − xi) =
1

nh

n

∑
i=1

K
( x − xi

h

)
, (A6)

In this context, K denotes the kernel, a function that yields only non-negative values,
while h > 0 represents a smoothing parameter referred to as the bandwidth. A kernel
labeled with the subscript h is termed the scaled kernel, defined by Kh(x) = 1

h K( x
h ).

In essence, one aims to select h to be as small as the data permits intuitively; nevertheless,
there invariably exists a trade-off between the estimator’s bias and its variance.

Appendix A.3. Copula Simulation Algorithm

As summarized in [45], in order to simulate the repetitions of the random vector (X, Y)
with the dependence structure inferred from the observed data (x1, y1), . . . , (xn, yn), we
have the following algorithm:

(i) Generate two independent and continuous random variables u and t uniformly
distributed in (0, 1).

(ii) Set v = c−1
u (t), where cu(v) =

∂C̃(u,v)
∂u .

(iii) The desired pair is (x, y) = (Q̃n(u), R̃n(v)), where Q̃n and R̃n are the empirical
quantile functions for X and Y, respectively.

Appendix A.4. Conditional Quantile Regression Algorithm

For a value x in the range of the random variable X and a given 0 < α < 1, let
y = ϕα(x) be the solution of the equation P(Y ≤ y|X = x) = α. Then the graph of
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y = ϕα(x) is the quantile regression curve α of Y conditional on X = x. In [34] it is
proven that

P(Y ≤ y|X = x) = cu(v)|u=FX(x),v=GY(y) (A7)

This result leads to the following algorithm to obtain quantile regression curve α of Y
conditional on X = x:

(i) Set cu(v) = α.
(ii) Solve the regression curve for v:

v = gα(u). (A8)

(iii) Replace u by Q̃−1
n (x) and v by R̃−1

n (y).
(iv) Solve the regression curve for y:

y = ϕα(x). (A9)

Appendix B. Collocated Cokriging Method with Markov Model

The kriging method is well known as the best unbiased linear spatial estimator of a
single random function and the cokriging method is its generalization for two or more
random functions. This requires calculating the primary variogram (e.g., copper recovery),
the secondary variogram (e.g., geochemical attribute), and the cross-variogram [38,46].
In particular, the cross-variogram takes into account the spatial dependence between the
two random functions and is defined as follows:

γ12(h) =
1

2N(h)

N

∑
α=1

(Z1()− Z1(xα + h))(Z2(xα)− Z2(xα + h)) (A10)

where γ12 is the semivariance between the random functions Z1 (copper recovery) and Z2
(geochemical attribute), h is the lag distance, xα is a spatial location, and N is the number
of lag distances.

The rigorous application of the ordinary cokriging method is frequently very difficult
and complicated since it also requires that the set of variograms comply with the linear
coregionalization model. This model is very restrictive since it requires that all variograms
fit the same model with a common range.

A more efficient and practical alternative is the collocated cokriging method that was
introduced by Almeida and Journel (1994) [47]. It is a variant of cokriging method for
spatial interpolation that leverages both primary and secondary data. But it simplifies the
computation by using only the secondary variable’s value that is collocated (at the same
location) as the primary variable. This method is particularly useful when secondary data
are more densely sampled than primary data.

However, this approach requires a conditional independence between the primary
variable and the secondary variable, given their collocated values. This is known as a
Markov assumption of conditional independence, which simplifies the modeling process.
There are two types of Markov models: Markov models 1 and 2, respectively. Here, Markov
model 1 (MM1) is used as it is the simplest and most straightforward option.

In Markov model 1, the following conditional independence assumption is made:

E(Z2(u)|Z1(u) = z1, Z1(u′) = z1(u′)) = E(Z2(u)|Z1(u) = z1) (A11)

This implies, under the assumptions of MM1, a simplification in the statistical rela-
tionship between the primary and secondary variables. Thus, the cross-correlogram model
can be written as

ρ12(h) = ρ12(0)ρ1(h) (A12)
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where the correlogram ρ is expressed by

ρ(h) = 1 − γ(h) (A13)

Assuming that γ(h) is the variogram for data with a standard normal distribution,
the correlogram is simply the variogram inverted and shifted upward by one. While
the variogram measures spatial covariance, the correlogram measures spatial correlation.
Therefore, ρ12(0), the correlogram at a lag distance of zero, is equivalent to the correlation
coefficient between variables 1 and 2.

In summary, to apply the collocated cokriging method with Markov model 1 (MM1),
all that is needed is the primary variable variogram and the linear correlation coefficient
between the primary and secondary variables. The variogram for secondary variable is
not necessary.

Note that you MUST to perform a normal score transformation for the primary and
secondary data prior to invoking MM1.
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Abstract: Polish National Standards for underground excavation support design outline the deforma-
tional pressure model for assessing loads acting on the support systems of deep underground excava-
tions. They distinguish two different rock mass models, highlighting the pivotal role of the critical
longitudinal strain of the rock mass in appropriate model selection. A comparison between the design
method given by Polish Standards and the widely recognized convergence–confinement method,
consisting of a ground reaction curve (GRC), longitudinal displacement profile (LDP), and support
characteristics curve (SCC), reveals the advantages of the latter in capturing the three-dimensional
nature of underground excavations. The following study presents a method for establishing a GRC
curve for the elasto-plasto-fractured rock mass model, featured in Polish Standards, demonstrating
its applicability through analyses of a typical circular roadway under varying rock mass conditions.
Practical implications are discussed, including the design of yielding steel arches as the primary
support system and the calculation of safety factors for both the support system and the surrounding
rock mass, considered as a natural support component. Overall, the study contributes to a deeper
understanding of the actions of rock masses in the vicinity of excavations located at great depths.
Furthermore, it provides practical insights for engineering applications.

Keywords: rock mechanics; convergence–confinement method; ground reaction curve; elasto-plasto-
fractured model; excavation support

1. Introduction

The development of the pressure of a rock mass that acts on an excavation support
depends on various factors, including the physical and mechanical properties of the rock
mass, the mining technology used, and the characteristics of the support [1]. As the
excavation face advances, the rock mass gradually moves toward the excavation axis. The
increment of the displacement of the rock mass is influenced by both the distance to the
excavation face and the time. However, in practical applications, the influence of time is
often overlooked [2]. An analysis of the impact of the time factor on the growth of the
displacement of rock masses requires the utilization of various rheological models—as
discussed, for example, in [3–7].

The development of a deformational pressure acting on an excavation support is the
result of the suppression of the increase in the displacement of the rock mass increment
caused by the installation of the support [1]. The magnitude of the deformational pressure
acting on a support system decreases as the ground displacement increases. Consequently,
its value is a function of the distance between the excavation face and the support location
during installation [2,8,9].
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Up to a certain level of ground displacement, the rock mass in the vicinity of an
excavation acts as an elastic medium. Once the displacement of the ground exceeds a
certain threshold, inelastic zones begin to form around the excavation, which could lead to
a reduction in the rock mass within these zones [4,10]. Therefore, four different types of
inelastic zones can be identified:

• The compressive strength of the rock mass within the inelastic zone is equal to the
compressive strength in the elastic zone, satisfying the condition:

Rcg = R
′
cg (1)

This scenario characterizes the elasto-perfectly plastic medium.

• The compressive strength of the rock mass within the inelastic zone is lower than the
compressive strength in the elastic zone, meeting the following condition:

Rcg > R
′
cg (2)

This represents the softening elasto-plastic medium.

• The rock mass within the inelastic zone exhibits no compressive strength:

R
′
cg = 0 (3)

This represents the elasto-fractured medium.

• Two coaxial inelastic zones form around the excavation. In the immediate vicinity of
the excavation, there exists a fractured rock mass zone without compressive strength.
At a certain distance from the excavation boundary, a zone of plastic rock mass
develops, retaining some residual compressive strength. This scenario denotes an
elasto-plasto-fractured medium [11].

The development of inelastic zones around the excavation corresponds to the occur-
rence of a static rock mass pressure, which arises from the gravitational load of plasticized
and fractured roof rocks. As the value of the ground displacement increases, the extent of
the inelastic zones, and thus the level of static pressure, also increases. The elasto-plastic
rock mass exhibits a boundary displacement value at which the static pressure reaches
its maximum, while the deformational pressure diminishes. Therefore, the elasto-plastic
model produces a paradox, since it suggests that the value of the support pressure always
decreases along with an increase in ground displacement, whereas according to practical
engineering, the support pressure is expected to increase significantly after reaching a cer-
tain value of ground displacement as a result of the loss of confinement and the detrimental
loosening of the rock mass.

Meanwhile, in elasto-fractured and elasto-plasto-fractured media, as displacements
increase, the static pressure theoretically tends toward infinity, while the deformational
pressure approaches zero. Therefore, the final value of the support pressure increases
after reaching a certain value of ground displacement, which seems to be consistent with
engineering practice [12,13].

2. Deformational Pressure Model According to Polish Standards

In the late 1970s, the Industrial Standards BN-78/0434-07 [14] and BN-79/0434-04 [15]
were introduced into Polish engineering practice. Their aim was to regulate and organize
the various methods for calculating loads acting on the support systems of underground
roadways and chambers. Previously used rheological models were replaced with the
so-called deformational pressure model, which was later implemented in the National
Standards PN-G-05600 [16] and PN-G-05020 [17], which remain in use up to today. The
equations used to calculate the radii of the inelastic zones and the values of deformational
and static pressure acting on excavation supports were based on the solution of a disk of
uniform thickness initially subjected to a hydrostatic far-field (primary) stress. Calculations
were performed under the following assumptions [18]:
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• the plain strain condition,
• the hydrostatic far-field (primary) stress condition,
• the circular shape of the excavation section,
• the homogeneity, isotropy and weightlessness of the rock mass,
• that rock mass destruction occurs in cases of exceeding its compressive strength (based

on the Mohr–Coulomb yield criterion).

The Polish Standards PN-G-05600 and PN-G-05020 distinguish between the following
rock mass models [16,17], depending on the characteristics of the rock mass within the
inelastic zone:

• the elasto-plastic model with softening (referred to simply as elasto-plastic model),
• the elasto-plasto-fractured model.

A schematic representation of the rock mass models as provided by the Polish Stan-
dards is depicted in Figure 1.

Figure 1. Deformational pressure model according to Polish Standards.

The choice of the appropriate rock mass model is dependent on the value of the
critical longitudinal strain of the rock mass. This strain value marks the point at which
the rock mass transitions from a plastic to a fractured medium in terms of its strength
properties [18]. The critical longitudinal strain of the rock mass can be calculated using the
equation provided by the PN-G-05020 standard [17]:

εng = 1.5·εns, (4)

where:
εns—the value of critical longitudinal strain of the intact rock, evaluated by loading

the rock sample to a value of around 95% of its compressive strength.
The PN-G-05020 Standard recommends employing the elasto-plasto-fractured model

when the following condition is satisfied [17]:

uw > rw·εng, (5)

where:
uw—value of ground displacement, m,
rw—excavation radius, m.
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Similarly, the PN-G-05600 Standard advises using the elasto-plasto-fractured model
under the condition outlined as follows [16]:

0 < po ≤ pg (6)

where:
pg—radial stress on the boundary of plastic and elastic zone, MPa,
po—radial stress on the boundary of fractured and plastic zone, MPa.
In accordance with the PN-G-05600 Standard, the dimensioning of the so-called shell

lining (comprising a thin layer of shotcrete with supplementary steel arches and rockbolts)
is based solely on the value of the static roof pressure. Deformational pressure can be
disregarded since the entire displacement of the rock mass must be transferred by the
supporting structure. Therefore, the following condition must be satisfied [16]:

uob ≥ k·uw (7)

where:
uob—radial deformability of the support, m.
To incorporate a portion of the displacement of the rock mass that occurs before

support installation, a coefficient k is introduced into Formula (7). This introduction can be
viewed as an attempt to crudely include the three-dimensional effect of road excavation in
an otherwise two-dimensional analysis. The PN-G-05600 standard assumes a fixed value
of the k factor, set at 0.9. However, the authors of this article regard such an assumption as
oversimplified, as it may lead to either overestimation or underestimation of the required
deformability of the roadway support. The actual value of the k coefficient depends on
numerous factors, including the rock mass and support properties, as well as the distance
between the location of the support installation and the excavation face [8,9,12,19]. This
topic has been extensively discussed in [20].

The dimensioning of the so-called vaulted lining (constructed of brick or a thick layer
of unreinforced or reinforced concrete) according to the PN-G-05020 Standard should be
carried out while considering the following load combinations [17]:

• simultaneous loading of the lining’s self-weight and the static pressure of the rock mass,
• simultaneous loading of the lining’s self-weight and the deformational pressure of the

rock mass,
• simultaneous load of the lining’s self-weight and the injection pressure.

Since the PN-G-05020 standard does not provide suitable formulas, the influence of
deformational pressure on the vaulted lining is sometimes overlooked by engineers [21].
This practice may be justified due to the utilization of a yieldable primary lining, which is ca-
pable of accommodating the entirety of the initial displacement of the rock mass (associated
with the advancement of the excavation face). According to the recommendation outlined
in the Polish Standard, secondary support can only be constructed once an equilibrium
state is reached between the primary layer and the rock mass [17]. Therefore, if a primary
lining with appropriate deformability is installed beforehand, the deformational pressure
acting on the secondary lining should be eliminated or significantly reduced.

In summary, according to Polish National Standards, the primary lining of an under-
ground roadway or chamber must always be designed as a yieldable structure in order
to eliminate the occurrence of deformational pressure. This assumption accounts for a
significant weakness of the discussed solution. Determining the value of the deformational
pressure acting on the support of limited deformability (for which condition (7) is not met)
is not possible using the equations provided by Polish Standards only. Additionally, it must
be noted that in engineering practice, the geotechnical properties of rock masses are never
constant, as they may be reduced due to mining activities, rock delamination, water inflow,
and contact with the mine’s atmosphere [10]. Therefore, in many cases, the use of shell
support with limited deformability, which allows for the rapid suppression of rock mass
displacement, may be highly desirable. This solution is widely employed in the worldwide
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tunneling industry, constituting one of the basic principles of the new Austrian tunneling
method [22].

3. Theoretical Background for the Convergence Confinement Method

The convergence confinement method (CCM) serves as a straightforward analytical
tool capable of estimating the deformational load acting on an excavation support. Initially,
the CCM method was based on the stress state solution of anelastic disc of a uniform
thickness proposed by Kirsch [23]. Over subsequent years, the method underwent further
refinement and enhancement, including considerations such as the development of the
plastic zone around the excavation [24–28]. Regardless of the specific yield criterion used,
these adaptations were based on the fundamental assumption of rock mass continuity [8].
Pacher [29] conducted research on potential disruptions in this continuity, leading to the
formulation of the hypothesis that appropriate radial deformability and the timing of
support installation are critical factors in ensuring both safety and cost-effectiveness in
excavation design.

CCM is a graphical method consisting of three basic components [22,30]:

• Ground reaction curve (GRC)—illustrates the correlation between fictitious support
pressure and the radial displacement of the excavation boundary. In essence, fictitious
pressure refers to the internal support pressure required to prevent further ground
displacement.

• Support characteristics curve (SCC)—depicts the relationship between increases in
the radial displacement of the support and the external radial stress applied to the
support (deformational pressure).

• Longitudinal displacement profile (LDP)—depicts the correlation between the radial
displacement of the excavation boundary and the longitudinal distance from the
excavation face.

In comparison to the design method advocated by Polish Standards, the convergence–
confinement method is capable of:

• More accurately considering the three-dimensional character of an underground
roadway or chamber excavation.

• Considering rigid support systems, which enable the quick suppression of rock mass
displacement.

• Considering the correlation between support system stiffness and the value of the
excavation boundary displacement.

• Considering the deformational load acting on the designed support system.

4. Algorithm for the Establishment of a Ground Reaction Curve for an
Elasto-Plasto-Fractured Rock Mass

An important issue connected with the use of the CCM method is the difficulty
in evaluating the real actions of rock masses within inelastic zones [31]. The simplest
procedure for determining a GRC curve is based on the model of an elasto-perfectly-plastic
medium [2]. Hoek and Brown claim that such a model can only be used for rock masses of
low quality (GSI < 30) [32]. Therefore, for a rock mass of medium (30 < GSI < 70) or high
(GSI > 70) quality, a number of alternative equations have been introduced over the years,
considering such issues as post-failure acting, including rock mass softening, stiffness
degradation, and dilatancy [31,33].

The development of a three-phase rock mass model, based on the model of elasto-
plasto-fractured medium, was considered an important achievement of Polish mining
engineering [18]. This three-phase model was introduced into Polish Standards [14–17]
and successfully applied in the design of underground roadways and chambers located at
significant depths in the vicinity of low and medium-quality rock masses. The properties
of an elasto-plasto-fractured medium may by depicted by polyline (Figure 2) [18]:
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• Within the elastic, the zone action of the rock mass is depicted by a straight line
inclined by the angle arctg

(
Eg

)
, where Eg is a rock mass deformation modulus.

• Within the plastic zone a following condition, depicting rock mass action, is met:

Rcg

Eg
< εt < εng, (8)

where:
Rcg—rock mass compressive strength in the elastic zone, MPa,
Eg—rock mass Young modulus, MPa,
εt—longitudinal strain of the rock mass.

• Within the fracture zone a following condition, depicting rock mass action, is met:

εt > εng. (9)

 
Figure 2. Stress–strain characteristics for a rock mass described by the elasto-plasto-fractured model.

This paper aims to present a guideline for the determination of a ground reaction
curve for an elasto-plasto-fractured rock mass model, employed by Polish Standards, which,
however, neither incorporate the convergence confinement method of support design nor
the concept of the ground reaction curve.

The presented solution of a ground reaction curve for a rock mass described by
an elasto-plasto-fractured model is based on the Mohr–Coulomb yield criterion. The
compressive strength of the rock mass is determined by the following equation:

Rcg =
2·c·cosφ

1 − sinφ
(10)

where:
c—cohesive strength of the rock mass, MPa,
φ—angle of internal friction of the rock mass, ◦.
According to the PN-G-05020 Standard, the residual compressive strength of the rock

mass is given by the following equation [17]:

R
′
cg = (0.4 ÷ 0.6)·Rcg (11)
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Alternatively, if the mechanical properties of a rock mass are determined based on
the Geological Strength Index (GSI), a residual GSI factor may be applied to estimate the
residual compressive strength of the rock mass [34]. Such an approach has been introduced
in various tunneling projects worldwide [35–38].

In order to simplify the calculation further, factor β, given by the following equation,
shall be introduced:

β =
2·sinφ

1 − sinφ
(12)

The critical radial stress (or radial stress on the boundary between the elastic and
plastic zones) is determined by the following equation:

pg =
2·pz − Rcg

2 + β
(13)

where:
pz—in situ hydrostatic stress, MPa.
The radial stress on the boundary between the fractured and plastic zones is deter-

mined by the following formula:

po =
pg·β + R

′
cg

β
·
[
(1 + ν)·(pz − pg

)
Eg·εng

] β
2

− R
′
cg

β
(14)

where:
ν—rock mass Poisson’s ratio.
The value of the ground displacement is a function of the radial stress that needs to be

applied to the excavation boundary to prevent further movement (fictitious pressure pa):

• if pa > pg, the rock mass acts as an elastic medium;
• if pg > pa > po, the rock mass acts as a plastic medium;
• if pa < po, the rock mass acts as a fractured medium.

The value of the ground displacement for an elastic medium is given by the following
equation:

u(pa) =
rw·(1 + ν)

Eg
·(pz − pa) (15)

where:
rw—excavation radius, m.
For a plastic medium, the plastic zone radius rl (which is a function of the fictitious

pressure pa) must be calculated beforehand:

rl(pa) = rw·
(

pg·β + R
′
cg

pa·β + R′
cg

) 1
β

(16)

The fracture zone radius ra is a function of the fictitious pressure pa and may be
calculated using the following equation:

ra(pa) = rw·
(

po

pa

) 1
β

(17)

As shown in Formula (17), with reductions in the fictitious pressure, the radius of the
fracture zone tends to infinity. At the equilibrium state, the value of the deformational
pressure is equal to the value of the static pressure of the fractured rock mass within
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the fracture zone. The radius of the fracture zone in the equilibrium state raeq may be
determined based on the equation given by the PN-G-05600 Standard [16]:(

ra

rw

)β+1
−

(
ra

rw

)β

=
po

γs·rw
(18)

where:
γs—average bulk density of the roof rocks, MN/m3.
The static pressure of the rock mass within the fracture zone for the radius determined

from Formula (18) is equal to the value of the deformational pressure at the equilib-
rium state:

pamin = qza = (ra − rw)·γs (19)

The radius of the plastic zone developed outside the range of the fracture zone is a
function of the fracture zone radius:

rl(ra) = ra·
(

pg·β + R
′
cg

po·β + R′
cg

) 1
β

(20)

The static pressure of the plastic and fractured rock masses within the inelastic zones
(both plastic and fracture zone) is a function of the plastic zone radius:

qzl(rl) = (rl − rw)·γs (21)

Ultimately, the value of the ground displacement for both plastic and fractured media
is a function of the plastic zone radius:

u(rl) =
rw·(1 + ν)

Eg
·
[

2·(1 − ν)·(pz − pg
)·( rl

rw

)2
− (1 − 2·ν)·(pz − pa)

]
(22)

Formulas (10) to (22) constitute all the essential relationships for the establishment
of a GRC curve for an elasto-plasto-fractured medium. The featured algorithm may be
introduced to the calculation sheet for rock masses fulfilling the conditions given by
Formulas (5) or (6).

5. Application of the Developed Approach

In order to verify the algorithm featured in Section 4, a series of analyses were per-
formed involving a typical circular roadway of radius rw = 3 m excavated at a depth of
1000 m, where the in situ hydrostatic stress equaled pz = 25 MPa. Three cases considering
rock mass classes with different mechanical properties were investigated for compara-
tive purposes:

• class I—competent rock mass,
• class II—fair rock mass,
• class III—weak rock mass.

Input parameters for different rock mass classes were selected based on Polish Indus-
trial Standard BN-78/0434-07 [14], which provides guidelines for the crude approximation
of basic rock mass parameters such as an internal friction angle, cohesive strength, Young
modulus, Poisson’s ratio and critical longitudinal strain. These approximations are derived
from the uniaxial compressive strength (UCS) of an intact rock and the Rock Quality Des-
ignation (RQD) of the rock mass. Input parameters selected for different rock mass class
parameters are presented in Table 1.
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Table 1. Input parameters for exemplary calculation of GRC curves for different rock mass classes.

Parameter Symbol Unit
Rock Mass Class

I II III

Cohesive strength of the rock mass c MPa 6.39 5.18 2.65
Internal friction angle of the rock mass φ 0 38.67 33.73 29.30

Rock mass Young modulus E MPa 7667 5409 3338
Rock mass Poisson’s ratio ν - 0.20 0.20 0.20

Critical longitudinal strain of the rock mass εng - 0.0046 0.0051 0.0054

The GRC curves for different rock mass classes were calculated based on the elasto-
plastic-fractured model of the rock mass and the procedure featured in Section 4. The
calculation results of basic GRC curves parameters are presented in Table 2.

Table 2. Calculation results of basic GRC parameters for elasto-plasto-fractured model for different
rock mass classes.

Parameter Symbol Unit
Rock Mass Class

I II III

Compressive strength of the rock mass within the elastic zone Rcg MPa 26.60 19.37 9.05
Compressive strength of the rock mass within the plastic zone R′

cg MPa 13.30 9.69 4.53
Computational factor β - 3.33 2.50 1.92

Radial stress on the boundary between plastic and elastic zone pg MPa 4.39 6.81 10.45
Radial stress on the boundary between fracture and plastic zone po MPa 0.65 4.10 10.03

Deformational pressure at the equilibrium state paeq MPa 0.071 0.284 0.354
Fracture zone radius at the equilibrium state raeq m 5.83 10.39 17.17
Plastic zone radius at the equilibrium state rleq m 6.96 11.68 17.47

Rock mass displacement at the equilibrium state u
(

paeq

)
m 0.076 0.217 0.833

The results of the GRC calculations based on the proposed elasto-plasto-fractured
model were compared with the typical elasto-plastic solution for the displacement of a
circular roadway. GRC curves obtained for both the elasto-plasto-fractured and elasto-
plastic model for different rock mass classes are depicted on Figures 3–5.
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Figure 3. GRC curves for the competent rock mass (class I).

 

Figure 4. GRC curves for the fair rock mass (class II).
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Figure 5. GRC curves for the weak rock mass (class III).

The analysis of Figures 3–5 highlights the importance of the proper selection of the
rock mass model used in geotechnical calculations. The initial portions of the GRC curves
for both the elasto-plasto-fractured model and the elasto-plastic model were identical.
According to the elasto-plasto-fractured model, once the fictitious pressure reached the
theoretical value of the radial stress at the boundary between the fracture and plastic zone
po (which is dependent on the value of the critical longitudinal strain of the rock mass εng),
a fracture zone began to develop in the vicinity of the roadway. Since the rock mass within
the fracture zone lacked cohesion (and thus compressive strength), a portion of the GRC
curve associated with the fractured rock mass exhibited a rapid displacement increase.

Along with the decrease in rock mass strength, a simultaneous increase was observed
in both the displacement of the rock mass and the values of deformational pressure occur-
ring at the equilibrium state between the static and deformational pressures. In practice,
the roadway support has to be installed before reaching an equilibrium point—especially
in the case of fair and weak rock mass. Otherwise, excess displacement may lead to the dis-
sipation of rock mass confinement, thereby allowing detrimental loosening and ultimately
ground failure.

Figure 6 illustrates the comparison of GRC (ground reaction curve) plots derived from
the elasto-plasto-fractured model for different rock mass classes.
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Figure 6. Comparison of GRC curves for different rock mass classes.

It is evident that with decreases in the mechanical parameters of the rock mass, there
was an increase in rock mass displacement observed at consistent values of fictitious
pressure. Regardless of the rock mass class under consideration, along with the reduction
in fictitious pressure, the radius of the fracture and the plastic zones—and thereby the
value of the displacement—tended to infinity, thereby indicating the need for support
installation. This feature of the GRC curve based on the elasto-plasto-fractured model
distinguishes it from a typical elasto-plastic GRC curve. In the latter, there is always a
theoretical equilibrium point where the fictitious pressure equals zero, while the radius
of the plastic zone and the value of ground displacement reach their maximum value (in
most cases, in practical applications, before such an equilibrium point is reached, excessive
displacements may lead to detrimental loosening and ground failure).

In the subsequent stage of the analysis, in order to determine the optimal moment for
the installation of the support, longitudinal deformation profiles (LDP) were established
for different rock mass classes. The determination of the LDP curve followed the algorithm
outlined in [8].

Considering that for the rock mass model based on an elasto-plasto-fractured medium,
the plastic zone radius and the value of the ground displacement consistently tended
towards infinity, a maximum value of these parameters could not be unambiguously
determined. Therefore, a plastic zone radius and the value of the ground displacement at
the equilibrium point between the static and deformational pressures were adopted for
the calculations. Although this assumption was simplified, further exploration into the
solution of LDP for elasto-plasto-fractured media seems to be necessary. An exemplary
LDP curve based on the solution given by [8] is illustrated in Figure 7.
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Figure 7. Exemplary LDP curve for a fair rock mass (class II).

The extent of the plastic and fracture zones, as well as the magnitude of rock mass
displacement, can be mitigated by the application of an appropriate support system. In
Polish underground coal mines, the most prevalent support system for long-lasting road-
ways and chambers consists of yielding steel arches, sometimes combined with a thin layer
of shotcrete.

Since a large amount of support deformation is to be expected, it was assumed that
the roadway support system should consist of yielding steel sets fitted with sliding joints.
These sets are installed immediately behind the roadway face, ensuring safety for personnel
working at the face.

Support characteristics curves (SCC) for yielding steel sets, determined using the
algorithm outlined in [39], consist of four parts:

(1) First part involves elastic deformation, where steel arches act as rigid elements.
(2) Second part involves yielding, where overlapped segments of the steel sets start to

slide and the arch section diminishes.
(3) Third part once again involves elastic deformation, wherein the maximum yielding

capacity of the steel arch is reached, and therefore, it acts again as a rigid element.
(4) Fourth part involves plastic deformation, wherein the bearing capacity of the rigid

steel support is reached, and therefore, a certain amount of plastic deformation occurs.

The input parameters and calculation results for SCC curves are shown in Table 3. The
resulting SCC curves, in conjunction with GRC curves, obtained for different mass classes
are depicted in Figures 7–9.
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Table 3. Input parameters and calculation results of the basic parameters of SCC curves for different
rock mass classes.

Parameter Symbol Unit
Rock Mass Class

I II III

Cross sectional area of the section As m2 0.00452
Young’s modulus of the steel Es MPa 210,000

Yield strength of the steel σys MPa 440
Yielding force of the sliding joint Nlim MN 0.35

Maximum sliding length slim m 0.30
Number of sliding joints in the steel set n - 3

Initial overlapped length s0 m 0.6
Steel set spacing d m 1.0 0.6 0.4

Support capacity at 1st part of elastic deformation p1 MPa 0.117 0.199 0.307
Maximum support capacity at yielding part p2 MPa 0.176 0.299 0.461

Support capacity at 2nd part of elastic deformation p3 MPa 0.701 1.192 1.842

Figure 8. SCC curve coupled with GRC curve for a competent rock mass (class I).
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Figure 9. SCC curve coupled with GRC curve for a fair rock mass (class II).

The graphical interpretation of the SCC and GRC curves along with the ground-
support equilibrium point included in Figures 8–10 allows for the estimation of the defor-
mational pressure applied to the roadway support (pasup). The factors of safety for both the
designed support system (Fsup) and the surrounding rock mass, considered as the natural
support component (Fsrm), can be derived from the following equations:

Fsup =
p3

pasup

(23)

Fsrm =
pasup

paeq

(24)

In cases of competent and fair rock masses (classes I and II), the ground-support
equilibrium point was located on the yielding part of the SCC curve. This is in contrast
to weak rock masses, where the ground-support equilibrium point was situated on the
2nd elastic deformation part of the SCC curve. This indicates that the maximum yielding
capacity of the support was reached, due to the large value of the ground displacement.
Consequently, the steel sets are no longer able to slide, thus acting like a rigid element. As a
result, the factor of the safety of the roadway support (Fsup = 2.00) for a weak rock mass was
significantly lower than in case of a fair (Fsup = 4.17) or competent rock mass (Fsup = 5.31).
Meanwhile the factor of the safety of the surrounding rock mass component was greater
in the case of the weak rock mass (Fsrn = 2.54) than in cases of a fair (Fsrm = 1.32) or
competent rock mass (Fsrm = 1.33).

In all analyzed cases, the support capacity at the yielding part of the SCC curve
exceeded the static load exerted on the steel arches at a certain value of ground displacement.
This observation, connected with the calculated values of the factors of safety, suggests that
the designed support system effectively ensures roadway stability—thereby mitigating
ground failure resulting from the loss of confinement and the eventual collapse of the
fractured rock mass.
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Figure 10. SCC curve coupled with GRC curve for the weak rock mass (class III).

After reaching the equilibrium point between the rock mass and yielding steel support,
a more rigid and durable support may be employed, such as a thin layer of shotcrete or
a thick layer of in situ-made concrete. Embedding steel sets in shotcrete or concrete may
yield some additional advantages:

• creation of a favorable, triaxial state of stress on the roadway boundary,
• protection of steel arches from corrosion,
• shielding the rock mass from the influence of water inflow and the mine’s atmosphere.

6. Engineering Application—Ventilating a Roadway in the “Knurów” Coal Mine

The “Knurów” coal mine is located in the western part of the Upper Silesian Coal
Basin in Poland. An elasto-plasto-fractured model of the rock mass was employed for the
initial support design of a ventilating roadway situated near the “Aniołki” ventilation shaft.
This roadway is to be excavated at a depth of 474 m using the conventional “drill and blast”
method. The roadway has a horseshoe shape with a maximum height of approximately
6.05 m and a width of approximately 6.09 m, corresponding to a circular geometry with a
radius of 3.13 m (Figure 11).

According to the geological survey, the roadway will be excavated in a thick layer of
claystone characterized by an uniaxial compressive strength (UCS) of at least 21.98 MPa.
Other geotechnical parameters of the rock mass, such as its cohesive strength, internal
friction angle, and Young’s modulus, were determined using the guidelines provided by the
Polish Industrial standard BN-78/0434-07 [14]. The input parameters and basic calculation
results of the Ground Reaction Curve (GRC), utilized in the initial design of the roadway
support structure, are listed in Table 4.
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Figure 11. Cross-section of the ventilating roadway in the “Knurów” coal mine.

Table 4. Input parameters for the calculation of the GRC curve for the ventilating roadway in the
“Knurów” coal mine.

Parameter Symbol Unit Value

Input Parameters

Excavation radius rw m 3.13
In situ hydrostatic stress pz MPa 11.39

Cohesive strength of the rock mass c MPa 2.65
Internal friction angle of the rock mass φ ◦ 29.30

Rock mass Young’s modulus E MPa 3347.83
Rock mass Poisson’s ratio ν - 0.24

Critical longitudinal strain of the rock mass εng - 0.0054

Results

Compressive strength of the rock mass within the
elastic zone Rcg MPa 9.05

Compressive strength of the rock mass within the
plastic zone R′

cg MPa 3.62

Computational factor β - 1.92
Radial stress on the boundary between plastic and

elastic zone pg MPa 3.504

Radial stress on the boundary between fracture and
plastic zone po MPa 1.103

Deformational pressure at the equilibrium state paeq MPa 0.143
Fracture zone radius at the equilibrium state raeq m 9.09
Plastic zone radius at the equilibrium state rleq m 12.35

Rock mass displacement at the equilibrium state u
(

paeq

)
m 0.210
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The support structure of the roadway under consideration consists of yielding steel
arches made from V36 profiles, spaced 0.50 m apart. After reaching an equilibrium point
between the rock mass and steel yielding support, additional steel arches shall be embedded
in fiber-reinforced shotcrete (Figure 12). The input parameters and basic calculation results
of SCC curve for the designed support structure are listed in Table 5.

 

Figure 12. Support scheme of the ventilating roadway in the “Knurów” coal mine.

Table 5. Input parameters and calculation results of the basic parameters of the SCC curve for the
ventilating roadway in the “Knurów” coal mine.

Parameter Symbol Unit Value

Input Parameters

Cross sectional area of the section As m2 0.00452
Young’s modulus of the steel Es MPa 210,000

Yield strength of the steel σys MPa 440
Yielding force of the sliding joint Nlim MN 0.35

Maximum sliding length slim m 0.15
Number of sliding joints in the steel set n - 7

Initial overlapped length s0 m 0.60
Steel set spacing d m 0.50

Results

Support capacity at 1st part of elastic deformation p1 MPa 0.227
Maximum support capacity at yielding part p2 MPa 0.299

Support capacity at 2nd part of elastic deformation p3 MPa 1.364

The SCC curve coupled with the GRC curve calculated for the geological conditions
of the ventilation roadway in the “Knurów” coal mine is depicted in Figure 13.

As a result of the application of the convergence–confinement method and the em-
ployment of the elasto-plasto-fractured rock mass model, the initial choice of the support
scheme—consisting of yielding steel arches made from V36 profiles with a spacing of 0.50 m—
was confirmed to be correct. The factors of safety for the roadway support ( Fsup = 5.39

)
and

the rock mass (Fsrm = 1.78) indicate that the designed support structure can be successfully
employed in a ventilation roadway under the given geological conditions.
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Figure 13. SCC curve coupled with the GRC curve for the ventilation roadway in the “Knurów”
coal mine.

7. Conclusions

Based on the conducted study, the following conclusions can be inferred:
(1) Polish National and Industrial Standards introduced the deformational pressure

model for calculating loads acting on the support systems of underground excavations
located at significant depths. These Standards distinguish between the softening elasto-
plastic and elasto-plasto-fractured models. The choice of the appropriate rock mass model
is contingent upon the value of the critical longitudinal strain of the rock mass, which
marks the point at which the rock mass transitions from a plastic to a fractured medium.
Since Equation (4), provided by the National Standards to calculate the value of the critical
longitudinal strain of the rock mass, is not supported by any empirical studies, further
investigation on this topic may be necessary.

(2) The three-phase rock mass model outlined in the Polish National and Industrial
Standards is based on the assumption that under certain conditions, a rock mass may act
as an elasto-plasto-fractured medium. In this scenario, two coaxial inelastic zones form
around the excavation: a fracture zone, where the rock mass lacks cohesion and therefore is
devoid of its compressive strength, and a plastic zone, where the rock mass can retain its
residual compressive strength. For an elasto-plasto-fractured model of the rock mass, the
support pressure value increases after reaching a certain ground displacement threshold,
which appears to align with engineering practice.

(3) The convergence–confinement method (CCM) is a widely recognized, straightfor-
ward analytical tool for predicting the ground action and support design of underground
roadways, chambers, and tunnels. Compared to the method outlined in Polish National
Standards, it can more accurately capture the three-dimensional nature of underground
excavations. Furthermore, it facilitates the design of a rigid support system, unlike the
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method prescribed by Polish Standards, which requires the support system to be able to
transfer the entirety of the predicted rock mass displacement.

(4) In Section 4 of this paper, a method for the establishment of the ground reaction
curve for an elasto-plasto-fractured rock mass model was presented; this detailed equa-
tions for determining the value of ground displacement and the radii of the plastic and
fracture zones, which are dependent on the value of fictitious pressure. These formulations
provide a basis for establishing the ground reaction curve and can be applied in practical
engineering calculations.

(5) In Section 5 of this paper, a series of analyses were conducted on a typical circular
roadway to verify the algorithm proposed in Section 4. Three rock mass classes with
different mechanical properties were considered. Ground reaction curves for each rock
mass class were calculated based on the elasto-plasto-fractured model. These curves were
compared with the GRC curves obtained for the typical elasto-plastic model. The elasto-
plasto-fractured model showed distinct action compared to the elasto-plastic model—most
importantly in terms of displacement increments.

(6) In the second part of the analyses conducted for the various rock mass classes,
exemplar calculations of a support system were performed. Yielding steel arches were
considered as the primary support system due to the expected large deformations. Support
characteristics curves were determined for different rock mass classes, taking into account
the action of the yielding steel sets. Based on ground-support equilibrium points, the factors
of safety for the designed support system and the surrounding rock mass were calculated,
indicating the correct choice of support parameters. Additionally, a real engineering case
of a ventilation roadway in the “Knurów” coal mine was introduced. The engineering
calculations, based on the convergence–confinement method and elasto-plasto-fractured
model of the rock mass, indicated that the designed support structure can be successfully
employed in the roadway under the given geological conditions.
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Abstract: The severe floor heave in gob-side entry retaining is the major restriction factor of the wide
application of pillarless mining thin coal seams. Reinforcement and stress-relief floor heave control
methods are the most promising. However, in practice, floor restoration is widely used. Therefore,
floor heave control technology in gob-side entry retaining needs to be improved. This study proposes
anti-shear pile technology to control floor heave in gob-side entry retaining. The research was mainly
carried out by numerical simulation. It was found that the transformation of high vertical stresses
in the entry floor underneath the filling wall and coal seam body into horizontal stresses starts the
floor heave process. The vertical dilatancy of rocks under the roadway span and their subsequent
unloading lead to the delamination of the floor strata and uplift of the entry contour. In this paper,
the best pile installation scheme was found. It is a 2pile 5+2 scheme with the installation of two
piles, each 2 m long. After that, it was shown that filling piles are more than 3.3 times cheaper than
comparable analogs, and pile installation is less labor-intensive. The implementation of the proposed
floor heave control method leads to a reduction in heaving by 2.47 times.

Keywords: gob-side entry retaining; pillarless mining; floor heave control; mine roadway stability;
thin coal seam mining; steel pile; filling pile; anti-shear pile technology

1. Introduction

Nowadays, coal provides about a quarter of the world’s energy generation. The
transition to renewable energy sources is inevitable. However, in reality, the pace of this
transition turned out to be slower than expected. The European energy crisis that was
caused by the war in Ukraine has shown that in the near future, abandoning coal as an
important source of energy is not possible. At the same time, certain types of coal are
important raw materials for the metallurgical and chemical industries. Therefore, coal
mining will be quite relevant in the near future.

To reduce the negative impact of mining on the environment, governments of various
coal-mining countries are introducing increasingly stringent restrictions and environmental
regulations. Also, every year, safety requirements in mining become more and more
stringent. This leads to an increase in the cost of coal, which stimulates the search and
implementation of new technological solutions.

A major part of the world’s underground coal is mined from longwall. The US, China,
Australia, Poland, and Ukraine use the longwall method. The modern trend in longwall
mining is the pillarless mining technology. Its advantages are the following:

- Reduced expenses to mine roadway excavation and, therefore, reduced coal cost;
- An increase in the pace of longwall panel preparation;
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- Improvement of the coal recovery ratio;
- Application of effective Y-shaped ventilation systems in the panel, which allows

longwall production to be increased by the ventilation factor.

The pillarless method has been known for over 70 years. Experience in its application
has been gained in traditional coal-mining countries. Scholars from Germany and Great
Britain have made a great scientific contribution to the development of this method [1,2].
Most progress was achieved through the implementation of goaf filling technology and the
installation of filling walls. In the 1950s–1960s in Germany, quick-setting materials based
on phosphogypsum were developed, from which filling walls were constructed. However,
pillarless systems were initially applied with an advancing-type layout of longwall in
which gateroads were formed as the coal face advanced (Figure 1a). The majority of such
methods were used in thin coal seam mining. However, the absence of a pre-prepared
panel and the complexity due to simultaneous roadway excavation and longwall mining
in the same panel result in a reduction in the pace of coal mining. Therefore, small coal
pillar methods have become more widely used (Figure 1b). In the 1970–1980s, traditional
wide pillars were reduced from 20 m to 2–3 m and were applied in many coal basins
of Europe and China [3,4]. In the 1970s, Ukrainian mines completely abandoned wide
pillars. The elaboration of technologies for the creation of new quick-setting materials has
ensured a gradual increase in non-pillar method application (Figure 1c) [5]. Many scholars
have researched the efficiency of the filling wall body of gob-side entry retaining in fully
mechanized longwalls [6–8].

 
(a) 

 
(b) 

 
(c) 

Figure 1. Evolution of thin coal seam longwall mining methods: (a)—pillarless method with advanc-
ing mining type; (b)—small coal pillar method; (c)—modern pillarless method.

Additional possibilities for using pillarless methods have appeared in recent years
thanks to Chinese scientists. Song and He [9] proposed new pillarless coal-mining tech-
nologies. Among them, the N110 construction method is currently the most used pillarless
coal-mining technology, which has many advantages [2,10,11]. The essence of this tech-
nique is to cut off the connection between the partial roof of the gob and the roof of the
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roadway by directional roof cutting so that the roof in a certain range above the roadway
forms a short-arm beam structure [12].

The widespread application of pillarless coal mining is restricted mainly by the dif-
ficulty of ensuring the stability of gob-side entry [13,14]. The problem of gob-side entry
retaining stability is aggravated by the constant increase in the mining depth and the
natural deterioration of geological conditions. The deformation and failure of the roof and
wall sides of the entry in most cases are effectively controlled by a multi-level support
system (steel arch, rock bolt, cable bolt), while the entry floor often remains free. Therefore,
severe floor heave is an unsolved problem in gob-side entry retaining. Floor heave control
will significantly increase the application of progressive pillarless mining technologies.

Many scholars have studied the floor heave mechanism in gob-side entry retaining
[15–17]. It can be concluded that failure or plastic flow of the immediate floor, caused by
stresses exceeding the strength limit of the rock, is a prerequisite for floor heave [18]. Li
et al. [19] pointed out that the key factors of floor heave are changes in the stress–strain
state of surrounding rocks after roof failure. This causes an increase in vertical stress in the
roadway side walls, which affects the floor strata state. Li et al. 2023 [16] found that the
floor is squeezed by the two sides to form an asymmetric sliding force towards the free face
of the floor.

Most scientists agree that high horizontal stresses in the immediate floor are one of
the main factors that cause severe floor heave. The magnitude of heaving depends on
the vertical–horizontal stress ratio [20,21]. Mo et al. [22] proposed the Horizontal Stress
Rating (HSR), which represents the magnitude of horizontal stress by statistical analysis on
an Australian database. Zhang and Shimada [23] found that variations in the horizontal–
vertical stress ratio in the floor strata are the main cause of large floor heave. Gong et al. [15]
found that horizontal stress in the immediate floor is the root factor that causes floor heave.
Chen et al. [24] proved that squeezing and fluid floor heave play an important role in the
stable stage of gob-side entry retaining. Gao et al. [25] defined the main role of shear failure
in roadway failure.

Traditional ideas about floor heave identify three main floor heave mechanisms:
bearing capacity failure, swelling, and buckling [26]. Each of these mechanisms is associated
with a key factor that causes it. Bearing capacity failure cases are associated with the shear
failures of the floor strata underneath the coal pillars when the vertical stress exceeds
the bearing capacity of the floor. Swelling occurs in wet rocks containing clay minerals.
Buckling occurs under the influence of high horizontal stresses on the floor strata [27].

However, in situ, the mechanisms of heaving are not so clear. In gob-side entry
retaining, different factors often have simultaneous influence. In each local case, this leads
to different magnitudes of floor heave. In addition, the headgate has different media from
the two wall sides (solid coal on one side and filling wall on another); it also has different
vertical pressure, which leads to asymmetry in the entry deformation.

In this paper, it was accepted that the main cause of floor heave is a change in the
stress field in surrounding rocks; moisture is still considered an additional negative factor.

Reinforcement and stress-relief methods have the greatest potential for the control
of floor heave in gob-side entry retaining. However, despite the significant scientific
substantiation of these methods, in practice, they are not widely used. Floor restoration has
been widely implemented. Therefore, scientists from different countries have searched for
new effective reinforcement schemes.

Traditional floor reinforcement schemes with rock bolts are modified by combining
them with flexible anchor supports [28], shotcrete and steel frames [29], concrete inverted
arches [30], pressure-relief holes [31], etc.

Zhu et al. [32] proposed the control method of “bottom lifting + bottom angle bolt
+ floor bolt” based on the results of a numerical simulation. Wang et al. [33] proposed
an asymmetric floor heave control scheme of “floor leveling + anchor cable support +
concrete hardening” on the basis of the control principle of “roof + two sides + floor”. Wei
et al. [34] used 3DEC discrete-element software to simulate and analyze the characteristics
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and evolution of asymmetric roadway floor heave under dynamic-load disturbance, and
proposed the asymmetric control scheme of “slurry anchor reinforcement + top cutting and
pressure relief”. Zhang et al. [35] used UDEC software to study the floor failure mechanism
under the influence of superimposed dynamic and static loads. Full-section anchor cables
and inverted arches were proposed to maintain the stability of the surrounding rock. Qin
et al. [36] proposed the zonal reinforcement scheme of “fix cable to shed, floor pressure
relief, deep-shallow composite grouting” and implemented it in practice, with good results.

It was also proposed to control heaving by installing bolts in the roadway corners.
Kang et al. [37] proposed the combined support method of grouting on the floor plate
and installing anchor rock bolts in floor corners. Yang et al. [38] studied the mechanical
properties of different types of floor corner bolts. However, in high-horizontal-stress
conditions, the rock bolts are easy to bend and yield, which reduces the supporting effect.

To control floor heave in gob-side entry retaining, Xu et al. [13] proposed a new steel
pile method that was similar to the anti-sliding pile method applied in slope engineering. In
this method, steel piles are installed in roadway floor corners before the dynamic pressure
zone has an influence.

Kang et al. [39] have shown that the floor angle pile with floor grouting can effectively
control the deformation of the roadway floor and two sides. Compared with the rock
bolt, the floor corner pile can effectively cut off the sliding line of the floor due to its high
bending shear capacity [39]. Guo et al. [40], based on the results of a numerical simulation,
field tests, and microseismic monitoring, proposed a floor pressure relief borehole with
a large diameter and a concrete-filled steel tube pile support to control floor rock burst.
Summing up, it can be seen that floor reinforcement methods in gob-side entry retaining
still need to be improved.

This paper is focused on the evolution of floor heave in gob-side entry retaining. Floor
heave control with an anti-shear pile method was studied. The numerical simulation with
ANSYS code was used for the stress–strain analysis of the surrounding rock. Previous
articles researching the effectiveness of pile methods as a method for floor heave control in
underground roadways have mainly focused on floor corner piles. The main novelty of
this paper is the study of a highly effective floor heave control scheme in which piles were
installed not only in the floor corners but in five different positions along the entry span. At
the same time, the length and type of the piles varied. Based on the analysis of floor heave
causes, promising schemes of pile installation in the immediate floor were proposed and
a study of their effectiveness was carried out. As a result, the most effective floor control
scheme was determined.

2. Engineering Background

2.1. Geological and Engineering Conditions

The Pivdennodonbasskaya mine is a typical underground coal mine with a depth of
800 m, in the Donbas region of Ukraine. The coal seam has a thickness of 1.3 m and an
average inclination of 6◦. The immediate roof strata and floor strata of the coal seam are
both soft mudstone with thicknesses of 8.2 m and 6.0 m, respectively, as shown in Figure 2a.

Typically, longwall panels have a U-shaped layout where fresh air flows through the
headgate to the longwall face, taking away methane, coal dust, and heat, and then flows
through the tailgate. At the same time, the small coal pillar method is used with a pillar
width of 1.5–3 m. With this system, the daily extraction of coal from the longwall is limited
by the gas factor.

Eleven- and twelve-longwall panels have more advanced Y-type longwall mining
systems (Figure 2b) based on a retained gob-side entry. Y-type systems contribute to
reducing gas accumulation and loss of coal resources in pillars. In Y-shaped systems, fresh
air can flow in through two gateroads before the coal face and then flow out through
gob-side entry retaining. After the longwall panel mining finishes, gob-side entry retaining
can be reused for the next longwall panel.
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(a) 

 
(b) 

Figure 2. The geological and engineering conditions of a mine: (a) strata histogram; (b) layout of
longwall panels.

2.2. Supporting Parameters and Deformation of Gob-Side Entry Retaining

A U-shaped steel arch support (U33) with steel mesh was used in the entry. The
width and height of the entry were 5.2 m and 3.65 m, respectively. The cross-sectional
area of the entry during the excavation stage was 15.1 m2. The distance between the
steel arch frames was 0.67 m. After coal mining in the longwall face, an artificial filling
wall was built to maintain the gob-side entry. Figure 3a shows the original design of the
support scheme. However, at a longwall retreat with a distance of 200 m, the width and
height of the headgate of the 12-panel longwall were 2.6 m and 1.29 m, respectively. The
total vertical convergence was about 64% of the initial roadway height. The average floor
uplift was 1.04 m, and the average roof lowering was 1.32 m. The headgate deformed
asymmetrically. The steel arches were critically bent and irreversibly deformed. The
yielding nodes failed, and the steel mesh was disrupted. The entry required repair. The
failure of the headgate support system and the floor heave consequences are shown in
Figure 3b. To increase the load-bearing capacity of the steel arch frames, wooden pillars
were installed. Floor restoration was carried out with a Hasemag EL160 loader machine
to ensure the required cross-sectional area in the gob-side entry retaining. This practice is
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typical for coal mines in Ukraine [41]. Scholars from other countries report similar cases of
critical floor heave [16,18,27,42,43].

Floor heave monitoring was performed in the headgate of the 12 panels. Measurements
were carried out at three monitoring stations. The distance between stations was 9.6 m.
Each station consisted of 4 marker points installed in the roof, floor, and both wall sides
of the gateroad. The measurements were carried out over 4 months. The graphs of floor
heave evolution in the center of the headgate span in front of the longwall face and behind
it are presented in Figure 3c. The floor uplift in front of the longwall influence zone was
95 mm (9% of the total floor heave) and occurred during the roadway excavation stage. The
monitoring results show that the main part of the floor uplift occurred at a distance of +40 m
in front of the longwall face and −50 m behind it. In total, 35% of the floor uplift occurred
at a distance of “+40” m in front of the longwall face to the intersection of the headgate
with the face. Another 28% of floor uplift appears in the section of the headgate “0”–“−50”
m behind the longwall face. The floor uplift has a damping tendency and stabilizes at a
distance of 260–300 m behind the longwall face. At the stage of maintaining the headgate
behind the longwall face, 56% of the total floor uplift occurs.

An analysis of the floor heave dynamic monitoring showed that this phenomenon
evolved with different intensities at different stages of the gateroad’s life. This is generally
consistent with previous studies [15,17,27,41]. The gateroad that was an object of study
had no water inflows. Therefore, the swelling mechanism of heaving is not typical for
it. The greatest increase in gateroad floor heave was associated with the longwall face
influence. The abutment pressure changed the equilibrium state of rock masses, increased
vertical stress concentration and led to post-elastic deformation of rocks. In this case, the
immediate floor lost its continuity and became discontinued. This was visually confirmed
after rock excavation during floor restoration, similar to previous studies [41]. Post-elastic
deformation (pseudoplastic flow) and dilatancy are the main causes of floor heave. Floor
heave in the gob-side entry is complicated by the asymmetrical stress–strain state. In this
case, the heaving mechanism is close to bearing capacity in failure cases. However, due to
the stress asymmetry, failures of the floor strata underneath the coal body and the filling
wall body are different.

 
(a) 

Figure 3. Cont.
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(b) 

(c) 

Figure 3. The parameters of the original support system (a), view on gob-side entry at a retreat of
the longwall at a distance of 200 m (b), monitoring curve of floor heave in headgate in longwall face
influence zone (c). 1, 2, 3—monitoring stations.

To control the lowering of the roof, the distance between the steel arch frames was
reduced to 0.5 m in the gateroad of 11 panels. However, the floor of entry remained unsup-
ported. So, the main problem for entry stability was the large floor heave. Floor restoration
with dinting loaders is an ineffective passive method, which requires additional labor and
material resources, organization of transport of the excavated rock, and time. Therefore,
optimization of the support scheme to control floor heave is an important problem.
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3. Study of the Floor Heave in Gob-Side Entry Retaining

3.1. Numerical Model

The geotechnical conditions of the 11-longwall panel of the Pivdennodonbasskaya coal
mine were the basis of the numerical model that was realized by ANSYS 17.2 software. The
simulation zone is indicated in Figure 4a, and the numerical model is shown in Figure 4b.

The model was three-dimensional (3D). The size is 250 m along the x direction, 60 m
along the y direction, and 25 m along the z direction. Half of the panel width was simulated
due to symmetry. The height and width of the gob-side entry were 3.65 m and 5.2 m,
respectively. The height and width of the filling wall were 1.3 m and 1.95 m, respectively.
The bottom boundary of the model was fixed vertically; displacements of lateral boundaries
were constrained in the normal direction. Vertical pressure, which was equivalent to the
strata weight at a depth of 900 m (22.5 MPa), was applied to the top boundary.

To simulate the behavior of rock mass, filling wall material, and gangue in the goaf,
the Drucker–Prager model was applied. The capability of the Drucker–Prager model to
adequately simulate the behavior of pressure-dependent materials (like rocks) has been
shown in previous studies [44–46]. The bilinear isotropic hardening model was used to
simulate the behavior of the steel arch frame, rock bolt, and steel pile.

The surrounding rocks of gob-side entry retaining were failured and discontinuous.
Therefore, the mechanical parameters of intact rock (Figure 2a) should have been corrected.
The Hoek–Brown Failure Criterion [47] was used to calculate the properties of rock mass in
gob-side entry retaining. The Geological Strength Index (GSI), the “mi“ constant, and the
disturbance factor (D) were determined.

 
(a) 

Figure 4. Cont.
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(b) 

Figure 4. Plan of the simulated area (a); numerical model and support elements (b).

The GSI was calculated as RMR89-5 [48]. RMR89 was determined on the basis of
geological documentation, results of the uniaxial strength tests, tests of the drill cores,
and the observation of exposure of rock mass during gateroad repairs according to the
Bieniawski method [49].

The “mi“ constant was 8 for mudstones, 17 for coal, and 12 for sandstone. The D
parameter corresponded to Hoek’s classification categories: “squeezing problems result in
significant floor heave, disturbance can be severe unless a temporary invert is placed” for
mudstone and sandstone; “mechanical excavation in poor quality rock masses resulting in
minimal disturbance to the surrounding rock mass” for coal seams [47].

The deformation modulus (Erm), friction angle (ϕ), and cohesive strength (c) were
calculated according to Hoek and Diederichs’ empirical method [48]. The calculation
procedure was described in previous studies [18,50]. The calculated rock mass properties
are presented in Table 1. The filling wall body in the case of a longwall retreat with a distance
of 100 m was fissured and discontinuous. Therefore, the same method was applied for the
filling wall material. The properties of the filling wall are shown in Table 1. To simulate the
behavior of the broken gangue in the goaf, Poisson’s ratio = 0.45, and Erm = 30 MPa were
applied [51]. The properties of the steel arch frame are shown in Table 2.

3.2. Simulation Results

The stress–strain distributions in the surrounding rocks are shown in Figures 5 and 6.
The initial position of the rock layers during the excavation of the gateroad is shown in
Figure 5a,b by the dashed line. In these figures, the movement of rock strata can be tracked
comparative to the initial state. Specific displacements of rock strata are marked with
arrows in Figure 5a. The subsidence of the roof above the longwall goaf, caused by coal
mining, leads to loading of the filling wall body. As a result, the filling wall is pressed into
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the immediate floor, which causes an increase in the concentration of vertical stresses in it
(Figure 5a). The magnitude of vertical pressure on the filling wall body depends on the
length of the roof console above the goaf and the rigidity of the filling wall material [5].
This issue is not discussed in this paper.

Table 1. Rock mass and filling wall material parameters for numerical simulation.

GSI D
Compressive

Strength (MPa)

Tensile
Strength

(MPa)

Deformation
Modulus (GPa)

Poisson’s
Ratio

Cohesion
Value (MPa)

Angle of
Internal

Friction (deg)

Dilatancy
Angle (deg)

Main roof (sandy mudstone)

52 0.5 1.75 0.09 1.19 0.3 2.83 24 24

Immediate roof (sandy mudstone)

52 0.5 1.48 0.08 0.97 0.3 2.45 27 27

Coal seam c11

35 0 0.32 0.006 0.22 0.3 1.13 20 20

Immediate floor (mudstone)

47 0.5 0.87 0.04 0.50 0.3 1.61 22 22

Main floor (sandstone)

55 0.5 2.90 0.11 1.80 0.3 3.90 34 34

Filling wall material

66 0.5 3.62 0.16 1.48 0.3 3.33 29 -

Table 2. Steel arch frame parameters for numerical simulation.

Primary Support Type of Elements
Material

Behavior Option
Elastic Modulus

(GPa)
Poisson’s Ratio Yield Strength

(MPa)

Tangent
Modulus

(GPa)

U-shaped steel
support Beam Bilinear isotropic

hardening 200 0.27 295 52.2

From the side of the coal seam body, vertical stresses also increase in the roof and
floor. Increased vertical stresses in the floor strata underneath the gateroad walls cause
lateral expansion of rocks in the horizontal direction. Thus, the horizontal stresses in the
immediate floor underneath the filling wall and coal seam body increase. Moreover, the
magnitude of these stresses underneath the filling wall is higher than underneath the
coal seam body, as can be seen from Figure 5b. High horizontal stresses under the steel
arch legs provoke transverse expansion of the rocks (in the vertical direction) and their
displacement towards the gateroad cavity. This causes stress relief in the rock mass as it
approaches the entry contour and changes stress sign in the near-contour area (Figure 5a,b).
The zone of vertical rock expansion and elevation in the immediate floor covers 5 m in
depth according to the numerical modeling results, which are shown in Figure 5b. As a
result of the filling wall body indentation in the immediate floor underneath the wall, a
zone of rock subsidence is formed, up to 3.5 m deep, as shown in Figure 5b. The floor heave
was 948 mm. This is 9.7% lower than the results of in situ monitoring. Overall, it can be
concluded that the numerical model is adequate.

The mechanism described above is confirmed by analyzing the strain distribution
(Figure 5c,d).

The results of rock specimen tests show [52–55] that for mudstone, siltstone, argillite,
and sandstone with a uniaxial strength of 25–40 MPa, the failure criterion for strain is about
0.02-0.03. Therefore, in the numerical simulation, the post-peak limit was accepted in the
range of “−0.02”–“+0.02”. In this paper, the authors do not study the failure of rocks in
detail. The authors understand that in a triaxial stress field, failure will depend on the ratio
of stress components and can vary. In the context of this study, it is important to recognize
the post-elastic stage. Therefore, the post-peak strain is analyzed. In the Drucker–Prager
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model, pseudoplastic deformation is accepted for analyzing the behavior of rock mass
beyond the elastic stage, including discontinuous rock.

 
(a) (b) 

 
(c) (d) 

Figure 5. Stress–strain distributions around the gob-side entry retaining: (a) vertical stress; (b)
horizontal stress; (c) vertical strain; (d) horizontal strain.

 
(a) (b) 

Figure 6. Shear stress (a) and shear strain (b) distributions around the gob-side entry retaining.

The contour of the vertical expansion zone with post-peak strain is shown in Figure 5c.
The positive strain scale in the figures is limited to “+0.05”. All strains that are greater
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than +0.05 are indicated in gray. Vertical strains in this zone exceed the post-peak strain for
mudstone by more than two times. In this zone, post-elastic deformation and delamination
of rocks occur.

Zones of horizontal post-peak expansion of rocks are formed under the filling wall
body and coal seam body. In these zones, dilatancy expansion of rock is observed under
the influence of high vertical stresses (Figure 5d). The expansion of rocks in these zones
leads to compression of the rocks between them, underneath the entry span. The post-peak
horizontal compression zone is shown in Figure 5d. Dilatancy in this zone is caused by the
horizontal stresses.

Zones of post-peak horizontal strains also form in the side walls of the entry. This
causes deformation of the legs of the steel arch frame. The stress asymmetry not only leads
to floor heave asymmetry but also irregular curvature of the support frame, which confirms
the results of in situ observations in the gob-side entry retaining.

Analysis of Figure 5 shows that counter-movements of rocks occur on the entry floor.
Such movements cause shear deformations. Therefore, to analyze them, the distributions
of shear stresses and strains in the surrounding rocks are shown in Figure 6. The main
interest in this study is the central high-shear zone that occurs between the zone of uplift
and the zone of subsidence of the immediate floor. This zone originates in the corner of the
filling wall body and extends into the depth of the entry floor at an angle (Figure 6a). The
post-peak shear strain zones are shown in Figure 6b. On the opposite side of the filling wall
body and underneath the arch frame leg on the coal seam side, zones of increased shear
stress and strain are also formed, as shown in Figure 6. Thus, shear has an important role
in the deformation and failure of immediate floors.

The simulation results lead to comprehension of the floor heave mechanism in gob-
side entry retaining. The main processes on the entry floor and their cause-and-effect
relationships have been identified. The floor heave most likely corresponds to a buckling
mechanism. Such findings are consistent with those reported by Mo et al. [22,27] regarding
cases of floor heave in Australian mines. Since the main cause of heaving is horizontal stress,
it can be concluded that a high degree of deformation is caused by rock mass buckling due
to the failure of the floor materials in accordance with Mo et al.’s hypothesis [22].

3.3. Simulation Discussions

Several conclusions can be drawn according to the above analyses:
(1) The main reason for dramatic floor heave in gob-side entry retaining is the vertical

loading of the filling wall by the weight of the roof that has lost its support after coal
extraction in the longwall face. The high pressure of the roof leads to the indentation of the
filling wall body into the immediate floor and the formation of a zone of increased vertical
stresses underneath it. These stresses are higher than those on the side of the coal seam
body, which is the main reason for the asymmetry of the gateroad deformation. Further
redistribution of stresses in the immediate floor leads to an increase in horizontal stresses,
which have a key role in floor heave.

(2) High vertical stresses underneath the filling wall and coal seam body lead to
dilatancy expansion of rocks in the horizontal direction. High horizontal stresses in the
immediate floor under the side wall provoke the formation of a post-peak horizontal
compression zone under the entry span. In this zone, the dilatancy and lateral expansion
of rocks in the vertical direction cause delamination of the immediate floor and uplift of
discontinuous rocks.

(3) A zone of high shear occurs between the zone of rock uplift under the entry span
and the zone of rock subsidence underneath the filling wall body. A zone of high shear
stress and strain is also formed under the steel arch leg on the solid coal side. The rock
failure in these zones complicates the floor heave mechanism described above. In shear
strain zones, vertical stresses are transformed into horizontal ones.
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(4) Numerical simulation results are valid only for geostress, geological and mechanical
parameters of rock mass, filling wall setting, and support elements that were applied.
However, the mechanism of floor heave is typical for similar engineering conditions.

4. Floor Heave Control with Anti-Shear Pile Technology

4.1. Design and Parameters of Floor Heave Control Schemes

The analysis of stresses and strains given in the previous section showed that the key
factor of floor heave in gob-side entry retaining is the transmission of stresses from under
the filling wall body to the zone under the entry span, which causes delamination, vertical
expansion, and uplift of the discontinuous rocks in the immediate floor. A reinforcement
method with anti-shear pile installation was proposed for the floor heave control.

The study of the effectiveness of the anti-shear pile was carried out in three stages.
In the first stage, three floor heave control schemes with one anti-shear pile were studied.
Each scheme was simulated twice: with a pile length of 2 m and 4 m. The distance between
piles was equal to the distance between steel arch frames. Figure 7a–f show the support
schemes that were studied. The parameters of the schemes are presented in Table 3.

Table 3. The parameters of floor heave control schemes for numerical simulation.

Scheme
Number of

Piles
Pile Position

Pile Length
(m)

Summary
Length of
Piles (m)

Pile Type
Class Of

Concrete in
the Pile

Deformation
Modulus

(GPa)

Poisson’s
Ratio

1st simulation stage

1pile 5 (4) 1 #5 4 4 Steel pile B-60 72 0.25

1pile 4 (4) 1 #4 4 4 Steel pile B-60 72 0.25

1pile 3 (4) 1 #3 4 4 Steel pile B-60 72 0.25

1pile 5 (2) 1 #5 2 2 Steel pile B-60 72 0.25

1pile 4 (2) 1 #4 2 2 Steel pile B-60 72 0.25

1pile 3 (2) 1 #3 2 2 Steel pile B-60 72 0.25

2nd simulation stage

2pile 5+1 2 #5, #1 2 4 Steel pile B-60 72 0.25

2pile 5+2 2 #5, #2 2 4 Steel pile B-60 72 0.25

2pile 5+3 2 #5, #1 2 4 Steel pile B-60 72 0.25

3rd simulation stage

2pile 5+2 2 #5, #2 2 4 Steel pile B-60 72 0.25

2pile
5+2(tube) 2 #5, #2 2 4 Steel tube - 200 0.3

2pile
5+2(B-20) 2 #5, #2 2 4 Filling pile B-20 27.5 0.19

2pile
5+2(B-40) 2 #5, #2 2 4 Filling pile B-40 36.0 0.19

2pile
5+2(B-60) 2 #5, #2 2 4 Filling pile B-60 39.5 0.19

In the second stage, three floor heave control schemes with two anti-shear piles were
modeled. The length of each pile was 2.0 m. Thus, the summary pile length in the first
simulation stage and in the second simulation stage was equal. Schemes of the second
simulation stage are shown in Figure 7g–i.

In the third simulation stage, the investigation of the optimal type of pile was carried
out. In this case, a comparison of three pile types was conducted:

- “Steel pile”—steel tube with a diameter of 200 mm and a wall thickness of 4 mm, filled
with concrete (for this type of pile, two previous simulation stages were performed);

- “Steel tube”– steel tube with a diameter of 200 mm and a wall thickness of 4 mm;
- “Filling pile”—a pile of reinforced concrete (simulation was carried out for concrete

classes B-20, B-40, and B-60).
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 7. Finite-element models for simulated floor heave control schemes: (a) scheme 1pile 5 (4);
(b) scheme 1pile 4 (4); (c) scheme 1pile 3 (4); (d) scheme 1pile 5 (2); (e) scheme 1pile 4 (2); (f) scheme
1pile 3 (2); (g) scheme 2pile 5+1; (h) scheme 2pile 5+2; (i) scheme 2pile 5+3.

The plan of the numerical experiment is presented in Table 3.
The pile positions were numbered in the direction from the solid coal body to the

filling wall body. The central pile (position #3) has a vertical orientation along the axis
of the roadway cross-section. The piles that were installed in floor corners (position #1,
position #5) were inclined 48 degrees to the horizon. The piles in the position between
the central pile and floor corner pile (position #2, position #4) were inclined 66 degrees to
the horizon. The pile inclination was chosen by taking into account the simulation results
presented in the previous section.

The original U-shaped steel arch was not changed. Table 3 shows the mechanical
parameters of floor support components in the numerical model. The piles were modeled
as beam elements. In this case, the deformation modulus was calculated as a weighted
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average between steel and concrete for each pile type structure separately according to the
theory of elasticity.

4.2. Effectiveness of Anti-Shear Pile Method

First simulation stage.
In the first simulation stage, the search for the best floor control scheme was carried

out while installing one pile.
The distributions of vertical strain and shear strain around the entry before and after

pile installation are shown in Figures 8 and 9. It can be seen that the installation of the
pile in any of the positions significantly reduces the size of the post-peak strain zone
on the immediate floor. Pile installation does not significantly affect the distribution of
compressive stresses; however, the zone of tensile stresses underneath the entry span is
reduced. The smallest dimensions of this zone are for the 1pile 4 scheme (4) (Figure 8c).
The pile installed in the entry corner (scheme 1pile 5 (4)) bends at a depth of 1–2 m in the
zone of high horizontal stresses. This pile orientation effectively restricts floor delamination
on the side of the filling wall, but practically does not restrain expansion on the side of the
coal seam body (Figure 8b). Pile installation in the center of the entry span (scheme 1pile
3 (4)) restricts floor delamination on the side of the coal seam body, but on the side of the
filling wall, vertical delamination remains significant (Figure 8d).

 
(a) (b) 

 
(c) (d) 

Figure 8. The vertical strain distributions in surrounding rock in gob-side entry retaining: (a) before
pile installation; after pile installation with schemes (b) 1pile 5 (4); (c) 1pile 4 (4); (d) 1pile 3 (4).
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(a) (b) 

 
(c) (d) 

Figure 9. The shear strain distributions in surrounding rock in gob-side entry retaining: (a) before
pile installation; after pile installation with schemes (b) 1pile 5 (4); (c) 1pile 4 (4); (d) 1pile 3 (4).

Pile installation has a similar effect on shear strain in the geometric sense. The smallest
dimensions of the post-peak shear strain zone are for the 1pile 4 (4) scheme (Figure 9c).
The pile in the center of the entry span (scheme 1pile 3 (4)) does not reduce the floor heave
by the anti-shear (anti-slide) effect (Figures 8d and 9d). It is more likely that such pile
installation halves the entry span, which ensures a reduction in floor delamination.

The discussed stress–strain distributions are in accordance with the results of the floor
heave analysis. The floor heave before and after pile installation at the first simulation
stage is shown in Figure 10a. The smallest contour uplifts among schemes with piles 4
m long are noted for the 1pile 4 (4) scheme. In this case, the smallest dimensions of the
horizontal compression zone on the entry floor are observed (Figure 10b). However, the
smallest dimensions of the horizontal post-peak expansion zone are observed in scheme
1pile 5 (4) (Figure 10b). This scheme is worthy of interest since the post-peak horizontal
strain is the key factor of the floor heave in the gob-side entry, which was discussed in the
previous section.

The vertical strain distributions around the gob-side entry retaining after installation
of 2 m long piles are shown in Figure 11. Reducing the length of the piles to 2 m for schemes
1pile 4(2) and 1pile 3(2) led to a significant decrease in the efficiency of counteraction
to immediate floor delamination. The 1pile 3(2) scheme affects only the local maximum
of floor heave in the center of the entry (Figure 10a) and the vertical floor delamination
in the central part of the entry span (Figure 11c). The size of the post-peak strain zone
in the immediate floor does not decrease significantly compared to the case before pile
installation (Figure 8a). Pile installation with the 1pile 4(2) scheme reduces the size of the
vertical post-peak strain zone on the filling wall body side (Figure 11b), which leads to a
decrease in floor heave on the filling wall side (Figure 10a). However, the length of the pile
is insufficient to counteract the delamination of the floor from the side of the coal seam body
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(Figure 11b) and reduce the size of the horizontal expansion zones under the filling wall
(Figure 10b). At the same time, the scheme 1pile 5(2) is as effective as the scheme 1pile 5(4).
Reducing the pile length at this position does not have a significant effect on the floor heave
(Figure 10a) and the configuration of the post-peak strain zones (Figure 10b, Figure 11a).
The maximum floor heaves in the 1pile 4(4) and 1pile 5(2) schemes differ by only 60 mm,
i.e., by 14%; at the same time, the pile length differs by 2.0 m, i.e., 50%. Therefore, it can be
concluded that the 1pile 5(2) scheme is more effective. The obtained results were the basis
for the elaboration of schemes that were studied at the second simulation stage.

 
(a) (b) 

Figure 10. The entry floor heave (a) and horizontal strain distributions in surrounding rock (b) before
and after pile installation at the 1st simulation stage.

 
(a) (b) (c) 

Figure 11. The vertical strain distributions around the gob-side entry retaining after pile installation
with schemes (a) 1pile 5 (2); (b) 1pile 4 (2); (c) 1pile 3 (2).

Second simulation stage.
The elaboration of schemes for the second simulation stage was based on the concept

that the summary length of the piles should not be more than 4.0 m (more than at the first
simulation stage), since the borehole drilling and pile consumption depend on it. At this
stage, it was assumed that two piles would be installed on the immediate floor. The position
of one of these piles was determined in the results of the analysis of the investigation at
the first simulation stage. This was position #5. Pile installation in this position leads to
the highest efficiency among the compared ones. Thus, the most effective position for the
second pile was searched for in the second simulation stage. The distributions of vertical
strain and shear strain around the entry before and after pile installation are shown in
Figures 12 and 13.
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(a) (b) (c) 

Figure 12. The vertical strain distributions around the gob-side entry retaining after pile installation
with schemes (a) 2pile 5+1; (b) 2pile 5+2; (c) 2pile 5+3.

 
(a) (b) (c) 

Figure 13. The shear strain distributions around the gob-side entry retaining after pile installation
with schemes (a) 2pile 5+1; (b) 2pile 5+2; (c) 2pile 5+3.

It can be seen that installing a second pile in any of the compared positions reduces
the size of the post-peak strain zone on the immediate floor. The best effect is obtained in
the case of the 2pile 5+2 scheme. The size of the vertical delamination zone (Figure 12b)
and the post-peak shear strain zone (Figure 13b) is the smallest in this case. It is clear that
this is reflected in the size of the floor heave, which is minimal for this scheme. The scheme
2pile 5+1 is less effective, as can be seen from the larger size of the post-peak shear strain
(Figure 13a) and post-peak vertical strain (Figure 12a) on the entry floor. However, the
2pile 5+1 scheme is better than the scheme 2pile 5+3. The post-peak strain zones in the
2pile 5+3 scheme (Figures 12c and 13c) are the largest among the compared schemes. It
can be concluded that the anti-shear effect of pile installation is more efficient than the
span-lowering effect for floor heave control in gob-side entry retaining.

The entry floor heave before and after pile installation at the second simulation stage
is shown in Figure 14a. The scheme 2pile 5+2 is the most effective one. With this scheme,
the maximum floor heave is 361 mm (Figure 14a), and the size of the horizontal post-peak
strains is the smallest (Figure 14b). Thus, the most efficient scheme has been determined.
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Third simulation stage.
For the practical implementation of the proposed method, it must satisfy two condi-

tions: be technologically simple and inexpensive. There is no doubt that the piles should
be installed in the gateroad outside the longwall influence zone. This will allow us to start
floor heave control in a timely manner. Hole drilling for piles is a necessary process for
floor support technology, and there is only one possible way to implement it. Therefore, the
attention at the third simulation stage was focused on finding the optimal type of pile. In
order to find more economical and simple solutions, a technical and economic comparison
of different types of piles was carried out. A metal tube with a concrete filling was the
initial pile type, for which all previous simulation stages were carried out. This type of
pile was called the “steel pile” (Figure 15a). As an alternative, pile variants were proposed,
such as tubes without filling (scheme 2pile 5+2(tube)), called “steel tubes” (Figure 15b).
Concrete filling piles with different concrete classes (2pile 5+2(B-20...B-60)) were also stud-
ied. In these piles, five main steel bars for longitudinal reinforcement and spiral lateral
reinforcement stirrups were used (Figure 15c).

 

Figure 14. The entry floor heave and horizontal strain distributions in surrounding rock before and
after pile installation at the 2nd simulation stage.

The entry floor heave after pile installation with different schemes is shown in
Figure 16. The form of the floor contour is the same for all pile variants. Steel piles
have the best counteraction to heaving (the maximum floor heave is 361 mm). The worst
variant is the “steel tube” (the maximum floor heave is 399 mm). The effectiveness of the
“filling pile” depends on the class of concrete. Thus, the floor heave for the B-20 class is
397 mm, and for the B-60 class, it is 386 mm. An increase in the class of concrete leads to a
decrease in the size of the vertical post-peak strain zone in the entry floor (Figure 17b,c)
and a decrease in floor uplift. The localization and size of the post-peak strain zone for the
steel tube pile and filling pile with B-20 concrete do not differ (Figure 17a,b). However, the
cost of piles varies significantly. A comparison of costs for one set of piles (2 × 2 m) for
different types is shown in Table 4. The prices are correct for Ukraine as of March 2024.
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(a) 

(b) 

(c) 

Figure 15. Pile design in numerical simulation: (a) steel pile; (b) steel tube; (c) filling pile. 1—steel
tube (diameter 200 mm); 2—concrete; 3—main steel bars (5 × 14 mm); 4—lateral reinforcement
stirrups (spiral length 14 m, diameter 6 mm).

Figure 16. The entry floor heave after pile installation at the 3rd simulation stage with different
schemes.
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(a) (b) (c) 

Figure 17. The vertical strain distributions around the gob-side entry retaining after pile installation
with schemes (a) 2pile 5+2(tube); (b) 2pile 5+2(B-20); (c) 2pile 5+2(B-60).

Table 4. Comparison of the costs of materials for different types of piles with scheme 2pile 5+2.

Scheme Pile Type
Class of

Concrete in
the Pile

Cost of
Concrete, EUR

Cost of Tube,
EUR

Cost of Longitudinal
and Lateral

Reinforcement, EUR

Total Cost,
EUR

Maximal Floor
Heave, mm

2pile 5+2 Steel pile B-60 9.35 116.81 126.16 361

2pile 5+2(tube) Steel tube - - 116.81 116.81 399

2pile 5+2(B-20) Filling pile B-20 8.48 - 25.92 34.40 397

2pile 5+2(B-40) Filling pile B-40 8.78 - 25.92 34.70 389

2pile 5+2(B-60) Filling pile B-60 9.35 - 25.92 35.27 386

Filling piles have a minimal cost, which gives them an advantage. So, with the 2pile
5+2(B-60) scheme, the cost of the pile is 3.57 times less than with the 2pile 5+2 scheme.
Installation of the filling pile is easier, since the weight of reinforcement elements is less,
which also reduces transportation costs. In addition, the installation of reinforcement of
filling piles, unlike the installation of tubes, can be carried out without significant labor
costs. Thus, filling piles are more beneficial for floor heave control. The design of the
proposed pile is shown in Figure 15c. Optimization of pile reinforcement design requires
additional research and is not studied in this article.

4.3. Filling Pile Floor Support Scheme

The analysis of monitoring of gob-side entry retaining shows that the main gateroad
stability problem is dramatic floor heave. Therefore, the modification of the current support
system of the entry is necessary.

Based on numerical simulation results, it was found that the most effective floor
support scheme is the 2pile 5+2 (B-60) scheme. Additional installation of piles in the
original support system was proposed. The rationale for the effectiveness of this scheme is
presented in the previous section of this paper. Figure 18 shows the proposed design of the
support scheme. Drilling of boreholes for piles into the entry floor can be carried out with
a machine for drilling degassing wells. SBG-1M is an example of such a machine.

According to the authors, the proposed anti-shear pile technology does not require
significant investment. Investments are required to purchase an SBG-1M-type drilling
machine. The approximate cost of such equipment in Ukraine, taking into account trans-
portation costs, is EUR 15,000. Taking into account the service life, residual value, average
monthly depreciation, and downtime, the depreciation expense will be EUR 205/month.
The machine repairs and maintenance expenses, taking into account planned repairs, are
0.012 man-hours. Taking into account wages in Ukraine, monthly maintenance expenses
will be EUR 119/month. Electric energy consumption and the salary of a worker operating
the drilling machine depend on local wages and the quantities of drilling work. Three
workers per shift are involved in the implementation of the proposed technology.
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Figure 18. Design of support scheme.

Pile installation must be carried out after the roadway excavation stage, and before
the longwall mining stage. Therefore, the production schedule of the working face does
not affect the schedule of pile installation. The estimated pace of installation of piles in a
gateroad in a three-shift operating mode is 819 m/month.

5. Conclusions

This study was focused on floor heave evolution and its restriction in gob-side entry
retaining. Floor heave control with anti-shear pile technology was studied. Numerical sim-
ulation by ANSYS 17.2 software was used for the stress–strain analysis of the surrounding
rock. As a result, a floor heave mechanism was proposed. Based on the analysis of the floor
heave causes, perspective schemes for immediate floor reinforcement were proposed and a
study of their effectiveness was conducted. Based on the results of this investigation, the
following conclusions can be drawn:

(1) The transformation of high vertical stresses, which arise in the entry floor under-
neath the filling wall and coal seam body, into horizontal stresses starts the floor heave
process. Increased vertical stresses under the filling wall and coal seam body cause the
dilatancy expansion of rocks in the horizontal direction. As a result, a zone of horizontal
compression underneath the entry span occurs. Rocks within this zone, in the process of
dilatancy expansion to relieve stress, displace towards the entry cavity. This leads to the
delamination of rocks in the vertical direction and uplift of the entry contour. Between
the zone of rock uplift under the entry span and the zones of rock subsidence underneath
the filling wall body and coal seam body, high-shear zones arise, in which vertical stresses
are transformed into horizontal ones. The rock failure in these zones complicates the floor
heave mechanism described above.

(2) The ways to control floor heave are (1) restricting stress transformation in the
entry floor; (2) increasing the bearing capacity of the immediate floor to counteract rock
dilatation and delamination. A floor heave control method with anti-shear pile installation
was proposed. The numerical simulation results confirmed the efficiency of pile installation.
This makes it possible to significantly reduce the floor heave and the size of the zone
of horizontal post-peak strain. As a result of numerical simulation, the most effective
scheme (2pile 5+2) was found. A technical and economic comparison of different types of
piles was carried out to find the most economical and simple solutions for the practical
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implementation of this scheme. Analysis of the numerical simulation results and the cost
comparison of different types of piles shows that filling piles are the most effective ones.
The cost of filling piles is more than 3.5 times less than the steel pile cost. In addition,
the installation of filling piles does not require significant labor costs; the weight of the
reinforcement used in this scheme is less than the weight of tubes in analog piles, which
also reduces transportation costs. The implementation of the proposed floor heave control
method with anti-shear piles leads to a significant reduction in heaving in gob-side entry
retaining. The results of this study can be used to design a support system in gob-side
entry retaining.

(3) Anti-shear pile technology is at the stage of elaboration and justification of parame-
ters. In situ tests are planned for the future. Therefore, the above-described effect is based
only on the results of numerical simulation so far. Further research will aim to study the
effectiveness of the proposed floor heave control method in situ in coal mines. The best
design for filling piles will also be found.
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Abstract: The working environment of mining electric locomotives is wet and muddy coal mine
roadway. Due to low friction between the wheel and rail and insufficient utilization of creep rate,
there may be idling or slipping between the wheels and rails of mining electric locomotives. Therefore,
it is necessary to control the creep rate within a reasonable range. In this paper, the autonomous
control algorithm for mining electric locomotives based on improved ε-greedy is theoretically proven
to be convergent and effective firstly. Secondly, after analyzing the contact state between the wheel
and rail under wet and slippery road conditions, it is concluded that the value of creep rate is an
important factor affecting the autonomous driving of mining electric locomotives. Therefore, the
autonomous control method for mining electric locomotives based on creep control is proposed in
this paper. Finally, the effectiveness of the proposed method is verified through simulation. The
problem of wheel slipping and idling caused by insufficient friction of mining electric locomotives
in coal mining environments is effectively suppressed. Autonomous operation of vehicles with
optimal driving efficiency can be achieved through quantitative control and utilization of the creep
rate between wheels and rails.

Keywords: autonomous driving; creep rate; mining electric locomotive; reinforcement learning;
speed control

1. Introduction

Mining electric locomotives have the transportation function of materials, equipment,
and people in roadway. Safe driving of mining electric locomotives is crucial. However,
the method of underground mining is often used in the Chinese coal mining industry [1].
In deep underground confined spaces, there are unfavorable conditions for driving in
coal mine roadway, such as slippery, muddy, dusty, foggy, and complex human behavior,
which lead to frequent accidents. Reducing personnel participation and ensuring the safe
operation of production and transportation equipment are necessary to ensure the safety
production of coal mines. At present, the intelligent development of coal mine equipment
has become an inevitable trend [2]. Unmanned transportation of coal mine equipment can
fundamentally solve the problem of personnel participation and reduce casualties in the
event of inevitable accidents. We have conducted relevant research on autonomous mining
electric locomotives [3]. The mining electric locomotive has achieved functions based on
Reinforcement Learning (RL) and improved ε-greedy such as autonomous and efficient
operation on speed limited sections, maintaining a safe distance from vehicle in front, and
avoiding obstacles.

However, problems such as slipping of autonomous vehicles and wheel idling caused
by slippery roadway in deep mines have not been addressed in a targeted manner. Man-
ually driven mining electric locomotives rely on the driver’s experience to sprinkle sand
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to increase wheel rail friction. But this method is a remedial measure taken when slip-
ping/idling occurs during driving. And there is no quantitative evaluation standard
for actions judged by human subjectivity. Moreover, actions based on human subjective
judgment cannot be used as a quantifiable evaluation criterion applicable to machine au-
tonomous decision-making. In the autonomous driving control process of mining electric
locomotives, it is necessary to make decisions that can actively control the interaction
between wheels and rails to prevent slipping, idling, and other phenomena caused by
external environment.

For rail vehicles, the destruction of the adhesion between the wheel and rail is the
basic reason of wheel slip/idling [4]. One of the reasons for the traction and braking forces
of wheelsets is the presence of contact and friction between the wheel and rail [5]. This
kind of wheel rail interaction force is not pure friction, but a phenomenon called creep
caused by deformation after wheel rail contact [6]. Reasonably utilizing the creep rate can
improve the efficiency and safety of vehicle operation [7]. Nowadays, to prevent train wheel
slipping or idling, scholars have conducted research on algorithms related to adhesion
control. According to different control methods, adhesion control algorithms are generally
divided into re-adhesion control and optimized adhesion control [8]. Re-adhesion control
is a method that can quickly adjust the motor torque to achieve balance with the current
adhesion conditions, and avoid wheel idling when determining whether the locomotive’s
wheels are idling/slipping. The research on this method is relatively mature [9–11], but
it belongs to passive adhesion control method, with a low adhesion utilization rate and
long algorithm response time. The purpose of optimizing adhesion control is to achieve
the peak point of the optimal adhesion utilization, which is of great significance for the
operation control of trains under wet, muddy and emergency braking conditions. Mehmet
Ali Çimen et al. [12] analyzed the input and output phase shift dynamic characteristics
of the traction system. They also proposed an adaptive control method that effectively
controls the adhesion utilization rate of the traction system. Song Wang et al. [13] proposed
an adhesion control method based on optimal torque search for high-speed trains, which
can achieve stable operation of trains in the optimal adhesion state under changes of track
surface and high-speed driving conditions, effectively reducing the idle rate of the wheel
and improving train adhesion utilization. Shuai Zhang et al. [14] proposed a sliding mode
control method, which used recursive least squares method based on enhanced forgetting
factor to solve the problem of wheel anti lock on heavy-duty trains. This algorithm can
obtain the optimal creep rate and construct a PI closed-loop observer to estimate the
unmeasured adhesion torque, enabling the locomotive to adjust to the optimal creep rate
when the contact of wheel and rail changes. The optimized adhesion control algorithm can
suppress the sliding and idling of the wheel. However, the maximum adhesion point in
the contact area of wheel and rail is at the junction of creep and sliding, making it difficult
to ensure that the contact state of wheel and rail is always creep during the actual control
process. Therefore, this method still belongs to passive adhesion control. In addition,
there are certain differences in the utilization of adhesion capacity among the axles of the
train. The existing methods have insufficient control accuracy, as most of the adhesive
characteristic curves relied on are empirical formulas obtained through experiments.

Therefore, this paper proposes a creep control method for mining electric locomotives
based on RL. This method converts the impact of complex driving environments on mining
electric locomotives into reward feedback values obtained by the electric locomotives from
the environment. The impact of creep conditions that are difficult to quantify and evaluate
on vehicles has been particularly considered in this method. The optimal range of creep
rate is tried to achieve after training the mining electric locomotive to adjust the driving
torque of the wheelset in this method. To achieve maximum driving efficiency under safe
operating conditions is the goal of this method.

The overall structure of this paper is shown in Figure 1. Firstly, the autonomous control
method of mining electric locomotives based on improved ε-greedy is analyzed from the
theoretical perspective. By changing environmental variables and replicating algorithms,
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the important factor affecting the operation of mining electric locomotive on wet and
slippery tracks is identified. Secondly, a mining electric locomotives autonomous control
algorithm based on creep control is proposed, which can effectively improve the safety
and reliability of autonomous driving of mining electric locomotives. Finally, based on the
three-dimensional dynamic model of mining electric locomotives modeled using Simpack,
the feasibility of the proposed algorithm is verified using a multi software (PyCharm2021,
MATLAB R2014b and Simpack 2018) co-simulation platform.

Figure 1. The framework of creep control method for autonomous driving of the mining electric locomotive.

Compared to [3], this paper identifies the creep rate, a key factor affecting the au-
tonomous operation of mining electric locomotives, through theoretical verification of the
algorithm and practical analysis of operating conditions. This paper also proposes a creep
control method suitable for mining electric locomotives, which improves the accuracy of
autonomous operation control for mining electric locomotives.

2. Analysis of Autonomous Control Algorithm for Mining Electric Locomotives

In this section, an important factor is found through theoretical analysis and simulation,
which was not particularly considered in the previous algorithm design but affected the
autonomous driving of mining electric locomotives. First, in reproducing the autonomous
control algorithm of mining electric locomotives based on RL, we find that changing
the friction between the wheels and rails can lead to poor control performance. Second,
this algorithm has been theoretically proven to be reasonable and convergent. Mining
electric locomotives can stably achieve autonomous driving under the control of this
algorithm. Third, the relationship between creep rate and adhesion coefficient of rail
vehicles is analyzed. It is necessary to take the creep rate between the wheel and rail into
the autonomous control algorithm. Finally, we conclude that the improved control objective
is to achieve the optimal control range of creep rate.

2.1. Problem Formulation

As shown in Figure 2, RL was adopted to solve the autonomous control problem
of mining electric locomotives, and the ε-greedy strategy was improved to balance the
relationship of exploration and exploitation better in reference [3]. This control method is
reproduced in this paper on the condition that the friction of wheel and rail is adjusted
from 0.4 to 0.3. Under this working condition, the autonomous control state curve of the
mining electric locomotive shown in Figure 3 is obtained. It can be seen that mining electric
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locomotive operates safely and efficiently on speed limited sections, and can maintain a
safe distance from obstacles when using the autonomous control method based on the
improved ε-greedy strategy. However, it is found that the mining electric locomotive is
unable to control the acceleration duration correctly when accelerating and reaching the
maximum speed limit, and the running speed of the electric locomotive would slightly
exceed the maximum speed limit. Moreover, the mining electric locomotive cannot control
the deceleration duration to reach the maximum speed on the next speed limit section
when decelerating.

Figure 2. Improved ε-greedy strategy [3].

Figure 3. The autonomous control state curve of the mining electric locomotive without creep control.

2.2. Theoretical Analysis

In order to find out the reasons for the problem above, we first verify whether the
algorithm structure is designed reasonably from the perspective of algorithm theory. If
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the structural design is reasonable, the results of the algorithm will tend to converge with
the training process of the agent. In this section, the convergence of the algorithm is
demonstrated from two aspects: RL and improved ε-greedy strategy.

2.2.1. Reinforcement Learning

RL is a method for studying how an agent maximizes its reward in a complex and
uncertain environment [15,16]. Figure 4 shows the process of RL. The agent interacts with
the environment, obtains the current state St and reward Rt at moment t, and takes action
At based on certain strategies. After the agent takes action At, the environment obtains
the latest state St+1 and reward Rt+1 at moment t + 1, and passes them to the agent. This
interaction process can be represented by the Markov Decision Process (MDP).

Figure 4. Reinforcement Learning.

The MDP adds a decision layer to the commonly used Markov Process/Markov
Reward Process, which is the action a shown in the Figure 5. This means that when the
agent is in the state St at time t, it must first decide on a specific action a to take in order to
reach the middle layer, which is the black node in the diagram. After reaching the black
node, the state of the agent at the moment t+1 also depends on the probability distribution.

Figure 5. The Markov Decision Process and Markov Process/Markov Reward Process.

RL, as a trial and error learning method, continuously repeats the above interaction
process between agents and the environment to find a mapping that can maximize the
cumulative sum Gt of benefits Rt over time.

Gt =
T−i−1

∑
i=0

γiRt+i+1. (1)

where, T is the total time, γ is the discount factor.
However, the sum of cumulative returns, also known as value return Gt, is not easily

obtained. To solve this problem, researchers propose two value functions for estimating
the sum of cumulative returns: the state value function Vπ(s) and the action value function
Qπ(s, a). The state value function Vπ(s) is the expected value of the sum of the reward
functions under π strategy and s state. The action value function Qπ(s, a) represents the
expected value of the sum of the benefit functions of action a under the π strategy and
s state.

Vπ(s) = Eπ [Gt|St = s] = ∑
a∈A

π(a|s) · Qπ(s, a). (2)
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Qπ(s, a) = Eπ [Gt|St = s, At = a] = ∑
r,st+1

p(st+1, r|s, a) · [R + γVπ(st+1)]. (3)

where, A is the set of action a.
According to the value function, the Bellman equation is derived as follows:

V(s) = R(s) + γ ∑
st+1∈S

p(st+1|s) · V(st+1). (4)

where, S is the set of state s.
The Bellman equation for the Q-function is as follows:

Q(s, a) = R(s, a) + γmax
at+1

Q(st+1, at+1). (5)

We adopt Theorem - Cauchy’s convergence Test to verify the convergence of RL we
design to apply in the field of autonomous control of mining electric locomotives. The
specific steps to prove the convergence of RL are detailed in Appendix A.

The RL algorithm focuses on the feedback information obtained by the agent from
the environment for decision-making, without relying on the agent and the environment
model. This method does not require modeling of the intelligent agent, directly avoiding
control bias caused by inaccurate modeling. In addition, this algorithm idea enables the
algorithm proposed in this paper to be applicable to different types of mining electric
locomotives driving on different road sections. So this method is universally applicable in
complex mine conditions. The method proposed in this paper is applied in the actual field
based on the results of laboratory simulation training, which greatly reduces the debugging
time of the algorithm in the actual application process.

2.2.2. Improved ε-Greedy

In reference [3], in order to balance the relationship between exploration and ex-
ploitation, the traditional ε-greedy algorithm was improved by changing the value of ε in
Formula (6) to the value of ε in Formula (7).

ε1 = (εinitial − εfinal) · (1 − episode/max_episodes) (6)

ε2 = { (εinitial − εfinal) · (0.5 +
√

0.25 − (episode/max_episodes)2), (episode/max_episodes) ∈ [0, 0.5]
(εinitial − εfinal) · (0.5 −√

0.25 − (1 − episode/max_episodes)2), (episode/max_episodes) ∈ (0.5, 1]
(7)

For the improved ε-greedy, the selection of actions follows the following rules:

at =

{
argmax

a
Q(st+1, a), f or probability 1 − εt

random f rom A, f or probability εt
(8)

We can obtain the probability distribution of whether an action is the optimal action:

π(a|s) =
{

1 − ε + ε
|A(s)| , i f a = argmax

a
Q(s, a)

ε
|A(s)| , i f a �= argmax

a
Q(s, a)

(9)

The specific steps to prove the convergence of improved ε-greedy strategy are detailed
in Appendix B.

In summary, RL and improved ε-greedy strategy applied to autonomous control of
mining electric locomotives is convergent. The autonomous control method for mining
electric locomotives based on the improved ε-greedy strategy is feasible.

2.3. Adhesion and Creep

After the analysis, we will focus on the constraints considered in the algorithm de-
sign process. When designing the algorithm, conditions are taken into consideration,
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such as speed limits, road obstacles, and safe following of mining electric locomotives.
However, the road surface of the coal mine roadway is very slippery and muddy. The
contact condition between the wheels and rails is also one of the factors that needs to be
carefully considered.

Two conditions must be met simultaneously to enable rail vehicles to run along the
track [17]. One is that the rotating torque is applied to the moving wheel, and the other is
that the contact between the moving wheel and the steel rail has a frictional effect. As shown
in Figure 6, the moving wheel is in contact with the track due to the vertical force P applied
by the vehicle body, and generates a motion trend under the torque M transmitted by the
transmission device [18]. Assuming that there is static friction between the wheel and rail,
the force F’ generated by the moving wheel on the track is equal in magnitude to the force
F generated by the track on the moving wheel, but in opposite directions. For the mining
electric locomotive, rim traction force F is the driving traction force. But the wheels of rail
vehicles mostly have conical tread, which can cause elastic-plastic deformation when the
wheels come into contact with the rail. The mining electric locomotive is subjected to shock
and vibration during operation. When the wheel set rolls on the rail, it is accompanied
by longitudinal and transverse sliding. There is no pure static friction state between the
wheel and rail, but rather ‘slight movement in stillness’ and ‘slight sliding in rolling’. This
phenomenon is creep, also known as adhesion between wheel and rail. The maximum
longitudinal horizontal force in the adhesive state is the adhesive force, and the ratio
of adhesive force Fμ to vertical load P is the adhesive coefficient μ. According to Hertz
elasticity contact theory [19], the contact area between the wheel and rail is approximately
elliptical. The area where the wheel and rail are relatively stationary and do not slide
under the action of positive pressure is called the adhesion zone. The area where slight
sliding occurs is called the creep zone. As the driving torque M increases, the creep zone
becomes larger and the adhesion zone decreases to 0, and the wheels are in a sliding state.
Therefore, when the vehicle is in traction or braking conditions, if the traction or braking
force is greater than the adhesion between the wheels and rails, the wheels will idling or
slip. This phenomenon can cause damage to the wheel rail tread and even affect the safety
of rail vehicles.

Figure 6. Schematic diagram of adhesion between wheels and rails.

According to the International Union of Railways (UIC) definition of creep rate, the
creep rate is represented as follows:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
CRlongitudinal =

(VWlongitudinal−VTlongitudinal)At the contact patch
Nominal f orwardvelocity

CRlateral =
(Wheel lateral velocity−Track lateral velocity)At the contact patch

Nominal f orwardvelocity

CRspin =
(Wheel angular velocity−Track Wheelangularvelocity velocity)At the contact patch

Nominal f orwardvelocity

(10)

Based on the operating results when the friction between the wheel and rail is 0.3
(Figure 2), it can be observed that there is a sudden change in the interaction of wheel and
rail during vehicle acceleration, and the creep rate value is abnormal.

2.4. Control Objectives

As the main auxiliary transportation tool in the coal mine roadway, the mining electric
locomotive is greatly affected by the humid, muddy and other harsh environment during
driving. When there are pedestrians or obstacles, the tram can’t bypass to avoid them,
but only take emergency braking. Wet and slippery road surface may lead to insufficient
wheel/rail adhesion of mining electric locomotive. When the vehicle is in traction condition
and the traction force is greater than the wheel/rail adhesion, the wheel will idling. When
the vehicle is in braking condition and the braking force is greater than the adhesion, the
wheels will slip. The occurrence of these situation will cause the wheel tread and rail
surface to be scratched, which will seriously affect the safety and stability of the vehicle.
Therefore, the most critical control factor for the safe running of mining electric locomotive
on the track is the value of the driving/braking torque applied on the axle. In this way,
we can directly control the driving acceleration and speed of the vehicle by controlling the
torque to avoid driving accidents such as vehicle braking failure and vehicle rollover.

As shown by the adhesion characteristic curves under dry and wet rail surface con-
ditions in Figure 7, when the creep rate is within the range of −10% to 10%, the absolute
value of the adhesion coefficient between the wheel and rail rapidly increases under brak-
ing/traction conditions [20]. When the creep rate is within the range of −30% to −10%
and 10% to 30%, the absolute value of the adhesion coefficient between the wheel and rail
reaches its optimal value under braking/traction conditions. When the creep rate is around
±20%, the wheel rail adhesion coefficient will reach its peak, and at this time, the vehicle
can obtain maximum ground braking/traction force, which can minimize the braking
distance. Therefore, controlling the creep rate within the range of ±10% to ±30% is an ideal
control goal.

Figure 7. The adhesion characteristic curves under dry and wet rail surface conditions.

3. Creep Controller Model

In this section, an RL speed control method for mining electric locomotives based
on the optimal creep rate is proposed. For mining electric locomotives, there are many
turns and narrow sections in coal mine roadway, and there are many emergencies during
the operation of the locomotives. This method can fully utilize the advantage of RL that
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does not rely on models. The impact of complex mine environments on vehicle driving
processes, especially the impact of slippery wheel/rail conditions that are difficult to
quantify and evaluate on vehicle safety and autonomous operation, is converted into
reward feedback obtained by vehicles from the environment. This method simplifies the
modeling process of vehicle driving conditions and improves the efficiency of intelligent
algorithm calculation. There are three major elements in RL, including state, reward, and
strategy for selecting actions. When using RL method for creep control of the mining
electric locomotive, the mining electric locomotive is considered as an intelligent agent,
and the algorithm components are designed as follows.

3.1. State and Action

According to the starting or stopping of the mining electric locomotive, whether the
driving section is a curve or a straight road, whether there are obstacles, whether the
operating speed reaches the speed limit of the corresponding section, and whether the
electric locomotive reaches the destination, the state of the RL creep control algorithm for
the mine electric locomotive is set to 16 as shown in the Table 1. In addition, the torque
applied on the axle has three forms: positive, negative, and zero, corresponding to the three
actions of vehicle acceleration, deceleration, and uniform speed.

Table 1. State Design of the Mining Electric Locomotive Autonomous Control Based on RL

State Meaning

begin Electric locomotive start
to_the_end Electric locomotive reaches the destination

obstacle_stop Stop when encountering obstacles
c_within_obstacle Close to the vehicle in front on curves

max_spd_c_no_obstacle The maximum set speed is reached on curves
over_spd_c_no_obstacle Overspeed on curves

below_spd_c_no_obstacle The maximum set speed is not reached
on curves

l_within_obstacle Keep close to the obstacle in front when
driving straight

near_to_the_end_brake The speed is greater than 0 when approaching
the terminal

near_to_the_end_drive The speed is less than 0 when approaching
the terminal

max_spd_l_to_c The maximum speed allowed in the curve is
reached when preparing to turn

over_spd_l_to_c Overspeed when preparing to turn

below_spd_l_to_c
The maximum speed allowed in the curve is

not reached when the vehicle is preparing
to turn

max_spd_l_no_obstacle The maximum set speed is reached on the
straight track

over_spd_l_no_obstacle Overspeed on the straight

below_spd_l_no_obstacle The maximum set speed is not reached on the
straight track

During the execution of the algorithm, the real-time position and speed of the mining
electric locomotive are recorded every 0.01s to determine the changes of electric locomotive
state during the sampling interval. At the same time, the algorithm will also timely provide
the actions that should be applied within the sampling time of 0.01s, ensuring the timeliness
of control.

It is worth pointing out that ‘Technical Conditions for Explosion-proof Special Battery
Electric Locomotives in Coal Mines’ (JB/T 4091-2014, published by Ministry of Industry
and Information Technology of the People’s Republic of China in Jul. 2014) stipulates that
mining electric locomotives should pass through the curve radius at a 50% of hourly speed.
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For the CTY1.5/6 electric locomotive used in this case, the maximum speed of the vehicle is
2.83 m/s (10.2 km/h), and the hourly speed of the vehicle is 1.80 m/s (6.5 km/h). Therefore,
when the mining electric locomotive passes a curve with a radius of curvature greater than
4m, the minimum speed of the vehicle is 0.90 m/s.

3.2. Features of Reward Function

The appropriate definition of the reward function can directly determine whether the
learning process of RL algorithms can efficiently and quickly achieve the desired training
objectives. The main task of RL is to maximize rewards by selecting the best action at
each sampling time. The ultimate goal of control algorithm for the electric locomotive is to
achieve the optimal creep rate utilization in uncertain and harsh roadway environments,
reduce the occurrence of slip and idling phenomena, and achieve the best operating
efficiency under the premise of safe operation. Therefore, the reward function is directly
related to the control effect of the mining electric locomotive’s driving speed and creep rate
under different states.

Whether the mining electric locomotive has encountered obstacles or reached the
maximum speed of the corresponding road section is classified during the state setting.
When setting the reward function, whether the vehicle is accelerating, decelerating, or
running at the uniform speed in the current state should be considered. The vehicle
changing at a faster speed to achieve the desired control purpose will present a better
training effect. The following speed reward conditions is defined based on repeated
experiments. The main way to measure the size of the reward value is to calculate the
speed change that occurs during the unit sampling interval for the vehicle to achieve
control objectives.

rewardspeed = cspeed × (vrecord − vcurrent) (11)

where, ccreep represents the speed reward coefficient, which can be obtained through
multiple experiments.

According to the control goal proposed in Section 2.4 of the paper to control the creep
rate within the range of ±10% to ±30%, the creep control reward conditions are set. We
have comprehensively considered the creep rate of four wheels, and the evaluation criteria
for the creep rate reward are set as follows.

When the absolute values of the creep rate of the left front wheel |ξFL|, right front
wheel |ξFR|, left rear wheel |ξBL|, and right rear wheel |ξBR| are all approximately equal
to the optimal creep rate of 0.2 when taking two decimal places, the reward value can be
set to:

rewardcreep = ccreep_max (12)

In other cases, the reward value is set to:

rewardcreep =
ccreep_max√

(|ξFL| − 0.2)2 + (|ξFR| − 0.2)2 + (|ξBL| − 0.2)2 + (|ξBR| − 0.2)2
(13)

where, ccreep_max and ccreep represent the reward coefficient for optimal creep rate and the
reward coefficient for creep rate respectively, which can be obtained through multiple
experiments.

We add the evaluation results of speed and creep with ratio of 1:1 to obtain the final
reward function formula:

reward = rewardspeed + rewardcreep (14)

3.3. Structure of the Creep Control Method

After setting up the intelligent agent, state, action, and reward function, a complete
creep control framework for mining electric locomotives should be designed. As shown in
the Figure 8, the mining electric locomotive serves as an intelligent agent to determine the
current state St based on the conditions of the environment at the current moment t. Then
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the intelligent agent uses an improved ε-greedy method to select the actions to be executed,
obtain the current action At, and apply it to the axle. Finally, the intelligent agent obtains
the corresponding reward value Rt+1 based on the current environment and state. This
reward is used to update Q-table.

Figure 8. Details of the CTY1.5/6 creep control method.

4. Simulation Verification and Results

In this section, we verify the proposed RL based creep control method for autonomous
operation of mining electric locomotives through simulation experiments. A dynamic
model of the CTY1.5/6 mining electric locomotive is built through Simpack. And the
algorithm framework based on the Python language environment is designed. MATLAB is
used as the intermediate carrier for connecting the algorithm and model, mainly responsible
for the collection of dynamic model data and the output of algorithm operation results.
Therefore, in this paper, the validation of the algorithm will be carried out through a
co-simulation platform built by Simpack, MATLAB, and Python. The simulation platform
is used to verify the effectiveness of the creep control method for autonomous operation
of mining electric locomotives. The creep control method is compared with traditional
ε-greedy algorithms to highlight the advantages of the improved ε-greedy algorithm in
terms of learning efficiency.

4.1. Simulation Platform and Setup

The Windows 11 Professional 64 bit system is used as a simulation platform operating
system, equipped with an Intel (R) Core (TM) i9-9900K CPU @ 3.60 GHz CPU and NVIDIA
GeForce RTX 2070 SUPER GPU. The composition software of the co-simulation platform
is PyCharm Community Edition, MATLAB R2014b and Simpack 2018.1. The language
environment of Python 2.7 and its equipped third-party libraries such as Matlabengine for
Python R2014b and Openpyxl 2.6.4 provide the foundation for the operation of simulation
platform algorithms.

We use the RL algorithm based on the improved ε-greedy mentioned above to train
the creep control of the CTY1.5/6 mining electric locomotive. The number of iterations
is 500, with a maximum runtime of 45 s and a sampling interval of 0.01 s. The learning
rate of this algorithm is set to 0.2, and the Q-learning discount rate is 0.8. The initial and
final values of ε are set to 0.01 and 1, respectively. The driving section of the mining electric
locomotive is composed of a combination of 20 m straight road-20 m curved road-20 m
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straight road. In general, the friction between the rail and the wheel is 0.2–0.4. Therefore,
the friction coefficient on the track surface is set to 0.3.

4.2. Simulation Results

The reward values for creep control of the mining electric locomotive obtained through
simulation using traditional ε-greedy and improved ε-greedy algorithms are shown in
the Figure 9. It can be seen that under the condition of training 500 times, the agent
obtains larger reward values in the first half of the training using traditional ε-greedy. The
increasingly stable creep control reward value is obtained in the later stages of training
during the use of improved ε-greedy algorithm for autonomous driving simulation in
mining electric locomotives. This indicates that the improved ε-greedy algorithm we have
designed can fully utilize the experience gained from exploration in the first half of the
training, while the exploration of traditional ε-greedy in the first half of the training is
clearly limited. And towards the end of the training stage, the reward value tends to
stabilize to ensure the reliability of the training results, allowing the agent to repeatedly
train and verify the optimal value.

Figure 9. Results of reward with different values of ε.

We take the results every 125 iterations and plot the real-time position, speed, and
creep rate of each wheel of the mining electric locomotive. From the 125th iteration to
the 500th iteration (Figures 10 and 11), the mining electric locomotive can achieve their
destination. However, the speed change is different. It can be easily observed that the
mining electric locomotive cannot fully achieve the maximum speed limit for straight or
curved roads during the initial training stage, and the vehicle cannot stop at its destination.
As the training progresses, the mining electric locomotive acceleration increases.It can
operate efficiently on speed limited sections, with accurate braking at the destination. On
the first straight section of the road, the mining electric locomotive can maintain a safe
distance when encountering obstacles.
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Figure 10. The operating status of mining electric locomotives with episode = 125 and episode = 250.

Figure 11. The operating status of mining electric locomotives with episode = 375 and episode = 500.

In terms of controlling the creep rate, it can be seen that the creep rate fluctuates greatly
during vehicle acceleration, which can easily lead to wheel spin. Meanwhile, when the
vehicle is driving in a bend, there is also a fluctuation in creep rate, indicating the possibility
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of some wheels slipping at certain times during the turning process. After training the
agent, it can be seen that as the number of iterations increases, the idle time during the
vehicle acceleration process significantly decreases, almost eliminating the phenomenon of
the vehicle slipping on curves. When the intelligent agent is trained 500 times, the creep
rate of the vehicle during acceleration can be controlled within the range of 0.1 to 0.4. This
indicates that the creep rate between the wheels and rails is well controlled during vehicle
operation and is well utilized to drive wheel acceleration. This proves that the design of
our learning algorithm is reasonable and effective, which can better utilize the creep rate
and achieve the goal of safe and efficient creep control.

We also conduct simulation experiments on the driving results of an 8-ton electric
locomotive in an 86 m tunnel with a friction coefficient of 0.2. The results are detailed in
Appendix C. From the results in Appendix C, it can be concluded that this method can be
applied to different mining electric locomotives traveling on different track conditions. This
method has good universal applicability in the control of creep rate and obstacle avoidance
of mining electric locomotives.

5. Conclusions

In order to reduce the occurrence of idling or slipping caused by wet track surface
and improve vehicle safety when mining electric locomotive is driving, an improved ε-
greedy of creep control strategy for mining electric locomotives based on RL algorithm
is designed in this paper. By reproducing and proving the autonomous control method
of mining electric locomotives based on improved ε-greedy, the analysis of the operating
conditions of mining electric locomotives shows that creep rate is an important influencing
factor on the operation of electric locomotives in wet and slippery tunnels. An RL based
creep control method is proposed, which considers the efficiency of vehicle driving speed
and the effectiveness of creep control in the algorithm design process. Finally, simulation
verification is conducted based on a co-simulation platform that can simulate the dynamic
process of mining electric locomotives underground. The results show that this method can
achieve safe operation of mining electric locomotives in complex and ever-changing mine
environments, including being able to drive with maximum efficiency on speed limited
sections, follow at a safe distance, and reduce the occurrence of dangerous phenomena
such as slipping and idling during vehicle driving.

In addition, coal mine tunnels have harsh environmental conditions such as small
cross-sections, high pressure, and easy deformation. The coal mine tracks are slippery
and muddy, with many turns, and the behavior of nearby personnel is complex. The road
environment for coal mine electric locomotives is difficult to predict. Therefore, we use
real-time perception of vehicle driving conditions instead of predictive analysis, which is
limited by sensor accuracy. In the future, we plan to adopt a data-driven fusion analysis
method based on multi-source sensor information to improve the real-time perception
accuracy of mining electric locomotives.

We will also apply the control strategy proposed in this article to coal mines in the
future, and further optimize and improve the algorithm based on on-site test results. We
will import the training results of the algorithm, namely the generated Q-table, into the
industrial control computer of the electric locomotive to guide the vehicle to operate
autonomously underground in the coal mine. At the same time, the actual operation data
of the electric locomotive will also be continuously updated to optimize the Q-table.
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Appendix A

Assumption A1. Define H as the contraction operator, the following formula is easily obtained:

HQ(s, a) = R(s, a) + γEst+1∼p(·|s,a)[max
at+1

Q(st+1, at+1)]. (A1)

Assuming that the optimal value function Q∗ is a fixed point of H, it means:

Q∗ = HQ∗. (A2)

That is, Q∗ remains at its original value after any multiplication with the H operator.

(Hq)(s, a) = ∑
st+1∈S

pa(s, st+1)[r(s, a, st+1) + γ max
at+1∈A

q(st+1, at+1)]. (A3)

Lemma A1. Theorem-Cauchy’s convergence Test: The necessary and sufficient condition for
the convergence of a sequence is that for any positive number ε, there must be a positive integer N
that satisfies the following equation under the condition of n > m � N:

|xn − xm| < ε. (A4)

We refer to {xn} that satisfies this condition as a Cauchy sequence. So the theorem can be
expressed as: the necessary and sufficient condition for the convergence of sequence {xn} is that the
sequence is a Cauchy sequence.

Theorem A1. In the Q-learning algorithm, Q(s, a) can converge to Q∗ when the agent accesses
any action in any state multiple times.

Proof. The convergence of the Q function is proved:

||Hq1 − Hq2||∞ = max
s,a

γ| ∑
st+1∈S

pa(s, st+1)[ max
at+1∈A

q1(st+1, at+1)− max
at+1∈A

q2(st+1, at+1)]|

≤ max
s,a

γ ∑
st+1∈S

pa(s, st+1)| max
at+1∈A

q1(st+1, at+1)− max
at+1∈A

q2(st+1, at+1)|

≤ max
s,a

γ ∑
st+1∈S

pa(s, st+1) max
at+1∈A

|q1(st+1, at+1)− q2(st+1, at+1)|

= γ||q1 − q2||∞.

(A5)

According to the Theorem-Cauchy’s convergence Test, any q1 function can ultimately converge
to Q∗ when q2 is the optimal function of Q∗.

Appendix B

In order to evaluate the balance effect of exploration and exploitation, regret lt is
defined to represent the average possible loss at each step:

lt = E[V∗ − Q(at)] (A6)
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where, V∗ = Q∗(a∗) = max
a∈A

Q∗(a) represents the expected return value corresponding to

the optimal action.
Total regret Lt is defined to represent the total loss:

Lt = E[
t

∑
τ=1

V∗ − Q(aτ)] = ∑
a∈A

E[Nt(a)](V∗ − Q(a)) = ∑
a∈A

E[Nt(a)]Δa (A7)

where, Δa = (V∗ − Q(a)) represents the gap between the value of the action and the
optimal action, and Nt(a) represents the number of times that the action a has been selected.
The goal of maximizing cumulative returns is actually equivalent to minimizing total regret,
and an excellent algorithm is hoped to reduce the number of choices for actions with large
gaps. For such an evaluation system, the most crucial issue is that the gap in practical
problems is difficult to obtain, as V∗ is unknown and Q∗(a) also needs to be estimated.
However, this evaluation system can still have guiding significance for the evaluation of
strategies. It is usually assumed that Δa is a known constant value when discussing.

If the total regret Lt increases linearly with the increase of iteration, it indicates that
the probability of selecting each action in the algorithm does not change at each time
interval. That is, the regret lt at each step does not change, and the information obtained
from exploration is not better utilized. A strategy that can better balance exploration and
exploitation should have a sublinear total regret. As the iteration progresses, the regret lt
for each time interval gradually decreases, and the selection of algorithms will gradually
abandon those that are likely to achieve lower returns.

Lai and Robbins has proven that for all total regrets that may become an optimal strat-
egy, an asymptotic lower bound in the form of logarithmic growth is required [16,21,22]:

lim
t→∞

Lt ≤ 8 ln t ∑
a|Δa

Δa

KL(Ra||Ra∗)
(A8)

The strategy of ε-greedy strategy can ensure that all actions are sampled infinitely
as the number of iterations increases. Thereby the convergence of Q(a) is ensured. This
means that the probability of selecting the optimal action can converge to greater than 1 - ε,
which is close to certainty. However, the probability of selecting the optimal action is only
approaching a value, and its effectiveness cannot be guaranteed in practice. Obviously,
the probability of each choice of action by ε-greedy is more than ε

A . So the regret lt is
more than ε

A ∑
a∈A

Δa, which is a linear total regret. However, although ε-greedy is not the

optimal method in theory, Kuleshov and Precup [23] have demonstrated through extensive
experimental data that ε-greedy can often achieve better results than some complex methods
in practice.

Set episode = t, max_episodes = T. We will write the value of ε in the improved
ε-greedy as follows:

εt =

{
(0.5 +

√
0.25 − (t/T)2), (t/T) ∈ [0, 0.5]

(0.5 −√
0.25 − (1 − t/T)2), (t/T) ∈ (0.5, 1]

(A9)

To demonstrate the convergence of the improved ε-greedy strategy, we calculate the
regret of the strategy:

lt = π(a|s) ∑
a∈A

Δa =

⎧⎨⎩
(1 − ε + ε

|A(s)| ) ∑
a∈A

Δa, i f a = argmax
a

Q(s, a)
ε

|A(s)| ∑
a∈A

Δa, i f a �= argmax
a

Q(s, a)
(A10)
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Lt ≈
∫
t

ltdt =
∫
t

ε

|A| ∑
a∈A

Δadt

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
t

∑
a∈A

Δa

|A| (0.5 +
√

0.25 − (t/T)2)dt, (t/T) ∈ [0, 0.5]∫
t

∑
a∈A

Δa

|A| (0.5 −√
0.25 − (1 − t/T)2)dt, (t/T) ∈ (0.5, 1]

→

⎧⎪⎨⎪⎩
∑

a∈A
Δa

|A| ( t
2 + 1

8 T arcsin( 2t
T ) +

t
4

√
1 − 4( t

T )
2), (t/T) ∈ [0, 0.5]

∑
a∈A

Δa

|A| ( t
2 + 1

8 T arcsin(2(1 − t
T )) +

T
4 (1 − t

T )
√

1 − 4(1 − t
T )

2), (t/T) ∈ (0.5, 1]

(A11)

Plot the trends of Lt and its derivative Lt
′ as the number of iterations increases. In

Figure A1, it can be seen that Lt
′ is 0 in the later stage of iteration, and the value of Lt no

longer increases, indicating that the improved ε-greedy tends to converge.

Figure A1. The trend of total regret Lt and its derivative Lt
′.
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Appendix C

Figure A2. The operating status of 8t mining electric locomotives with episode = 125 and
episode = 250.

Figure A3. The operating status of 8t mining electric locomotives with episode = 375 and
episode = 500.
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Figure A4. The distance from the vehicel in front of 8t mining electric locomotives.

In order to verify the universal applicability of the creep control based unmanned
speed control method for mining electric locomotives proposed in this paper on differ-
ent vehicles and road sections, we conduct simulation experiments on the autonomous
operation of an 8-ton mining electric locomotive in this section. The hourly speed of the
electric locomotive is 7.8 km/h (2.167 m/s). From the Figures A2 and A3, it can be seen
that the intelligent agent can control the creep rate within ±10%∼±30% during accelera-
tion/deceleration sections. This indicates that our speed control method for autonomous
operation of electric locomotives is effective in controlling creep rate.

In addition, to verify the effectiveness of this method in ensuring driving safety, we set
the safety distance to 5 m when encountering obstacles or maintaining a safe distance from
the preceding vehicle. From the Figure A4, it can be seen that the autonomous driving of
the electric locomotive using this method is safe and effective, ensuring that the vehicle
always maintains a distance of 5 m from obstacles or the preceding vehicle.

Therefore, this method can be applied to different vehicles traveling on different track
conditions. This method has good universal applicability in the control of creep rate and
obstacle avoidance of mining electric locomotives.
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Abstract: The essential part of the flake graphite flotation apparatus is a micro-bubble generator.
Developing a micro-bubble generator with a reasonable structure and superior self-absorption
performance is crucial to improving flake graphite sorting. In this study, to realize the integrated
treatment of the grinding and mineralization of flake graphite, the development and manufacturing
of a double-nozzle jet micro-bubble generator were based on the concepts of shear-type cavitation
water jets and jet pumps, among other theories. A numerical simulation of the air–water–flake
graphite triple-phase flow field of the generator was conducted using the CFD method. The goal was
to investigate the grinding and mineralization process of flake graphite by analyzing the distribution
of the air phase’s volume percentage and the speed distribution of the air–water–flake graphite
triple-phase flow field. The findings indicate that the air-phase volume percentage produced by the
generator ranges from 98.3% to 99.9%, and the air-phase volume percentage is evenly distributed
within the steady flow tube, achieving the mineralization function. Additionally, the flake graphite
particles are dissociated from the flake graphite under the combined effect of friction shear and
cavitation of the internal nozzles, thereby achieving the grinding function.

Keywords: double-nozzle jet micro-bubble generator; flake graphite; air–water–flake graphite
triple-phase flow; grinding; mineralization; numerical simulation

1. Introduction

Graphite is an allotrope of carbon and a crucial non-metallic mineral resource [1].
Flake graphite is an essential branch of natural graphite, formed by combining many single
layers of graphite with a distinctly oriented crystal structure. Flake graphite’s floatability,
lubricity, and plasticity are superior to those of other types of graphite. However, the
grade of the flake graphite ore is quite low, posing challenges to its direct utilization. To
satisfy industrial manufacturing demands, flake graphite needs to be purified by multistage
grinding and multistage flotation beneficiation processes [2–4], such as seven grinding,
eight flotation, nine grinding, and ten flotation processes. These beneficiation processes can
improve the grade of flake graphite; however, the process is long and complex, and it is
straightforward to damage the graphite structure on large scales. Therefore, optimizing the
beneficiation process while ensuring the grade recovery and extraction of the flake graphite
concentrate has emerged as a pressing issue that necessitates resolution within the existing
flake graphite beneficiation procedure [5,6].

Flotation via froth serves as the primary sorting approach in the flake graphite ben-
eficiation process [7,8], which involves the creation of micro-bubbles by micro-bubble
generators that are beneficial to flake graphite mineralization. Therefore, micro-bubble
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generators are known as the core technology of froth flotation [9,10]. Micro-bubble gener-
ators are categorized into internal and external based on the bubble generation method.
Internal micro-bubble generators are subdivided into riser micro-bubble generators, fil-
ter disk micro-bubble generators, gravel bed micro-bubble generators, etc. [11]. Internal
micro-bubble generators are prone to scaling and clogging of the flow channel [12], which
often leads to the failure of the flotation column within a flotation system. External micro-
bubble generators are subdivided into jet micro-bubble generators, cyclone micro-bubble
generators, air–water micro-bubble generators, etc. [11]. They effectively resolve the issue
of frequent clogging [13], which has withstood the test of industrial practice and lays the
foundation for the industrial application of high-efficiency jet flotation columns. Among
them, the jet micro-bubble generator harnesses the vacuum produced by the high-velocity
jet to draw in the air as well as crush it into minuscule bubbles, which has the advantages
of a smaller bubble diameter, high volume fraction of gas phase, simple structure, and low
energy consumption [14,15]. Therefore, the current study on jet micro-bubble generators
has become one of the essential study contents of micro-bubble generators.

The jet micro-bubble generator’s structural arrangement impacts the dimension of the
created bubbles and the air phase’s volume percentage and directly affects the flotation
effect of minerals; as a result, scholars in the field have conducted several related study
efforts. Wu et al. [16] added a variable pitch spiral guide vane inside the conventional
jet bubble generator to generate a vortex jet, which enhanced the shear-crushing effect of
the bubbles. Sadatomi et al. [17] designed a new type of jet micro-bubble generator. The
study conducted micro-bubble measurement tests in order to examine the influence of
tubular size ratio, air-intake port diameter, and axial position on the number and size of
micro-bubbles generated. Gordiychuk et al. [18] evaluated the impact of the air-intake
port diameter on the venturi jet micro-bubble producer and the gas–liquid rate of flow
upon the distribution of particle sizes of the micro-bubbles generated. Deng et al. [19]
utilized the AFM to investigate the cavitation-generated micro-nanobubbles by a particular
structured venturi jet micro-bubble generator and observed a positive correlation with
water flow velocity and cavitation cloud density. Fujiwara et al. [20] employed a fast-speed
digital camera to investigate the dynamic development of micro-bubbles at the venturi
jet micro-bubble producer’s throat and concluded that microbubble diameter is inversely
proportional to flow velocity at the throat. Tsave et al. [21] combined the traditional jet
bubble generator and the micro-bubbles generated by water electrolysis to produce a new
micro-bubble generator device, which can generate 76 μm micro-bubbles and enhance the
flotation efficiency of materials with fine grains to a great extent. Fu et al. [22] employed a
fast-speed digital camera in combination with dissolved oxygen analysis to study the self-
absorption and foaming performance of a self-designed venturi jet micro-bubble generator.
The findings indicated that the generator’s self-absorption ability and foaming performance
had a positive correlation with the flow velocity, and the maximum dissolved oxygen
could be up to 14.4 mg/L. Li et al. [23] optimized the design based on the structure of
a conventional venturi micro-bubble generator to increase the number of micro-bubbles
and micro-bubble dispersion effectively. They determined that the breaking of bubbles
primarily takes place within the diffusion section of the venturi bubble producer through
numerical analog and visualization tests.

CFD has become a crucial approach for optimizing structural design due to the advent
of computational fluid dynamics and advancements in computer technology. It is applied
in the analysis of the fluid pattern exhibited by the micro-bubble generator. Xu et al. [24]
employed a CFD-PBM model to analyze and solve the kinematic law of the flow field
within the jet bubble generator and found that the air bubbles produced inside the bubble
generator’s dimensions are 0.99–140 μm. The air is sheared and broken into micro-bubbles
after being injected into the generator from the suction tube under negative pressure,
and the micro-bubbles gradually move from the center of the tube to the peripheral wall.
Li et al. [25] employed CFD in conjunction with the PIV technique to investigate the
foaming performance of single- and dual-port jet micro-bubble generators. The findings
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demonstrated that the gas-phase velocity vector distribution of the dual-port jet micro-
bubble generator is more symmetric, which improves the dispersion of micro-bubbles.
Basso et al. [26] conducted a CFD simulation to analyze the air–water double-phase stream
field of a novel venturi jet micro-bubble producer with a helix angle and found that
compared with the conventional venturi micro-bubble producer the average size of the
bubbles produced by the novel venturi jet micro-bubble producer is smaller, which can
solve the problem of the unstable foaming performance of a venturi bubble generator at
a low flow rate. Wang et al. [27] simulated the kinetic energy of turbulence in various
configurations of cyclonic bubble generators using the CFD method, and the findings from
the simulation indicate that the turbulent kinetic energy of the staggered array design was
found to be optimal, which was more conducive to the collision and adhesion between
bubbles and mineral grains. Alam et al. [28] employed a CFD-PBM model to examine the
distribution of bubble dimensions in a cyclonic nanobubble producer and found that the
standardized k-Ω model is suitable for bubble dispersion analysis at high flow velocities,
and the micro-bubble dispersion increases proportionally with the turbulence dissipation
rate. Al-Azzawi et al. [29] applied CFD to computationally analyze the flow field for a
cyclonic nanobubble generator with three types of air-intake structures: single inlet, double
inlet, and tangential inlet. The simulation results revealed that a clear vortex appeared in
the low-pressure region of the micro-bubble generator with the tangential inlet, and the
self-absorption performance was optimal.

Through the optimization of the structure of the jet micro-bubble generator and the
study of its internal flow characteristics, it was found that the jet micro-bubble generator
can achieve a higher air intake through self-absorption at a lower working pressure. At
the same time, the micro-bubbles generated possess a substantial specified area of surface
and exhibit exceptional mass transmission efficiency, making it suitable for the flotation
of diverse minerals. Palazuelos et al. [30] applied a jet bubble generator to the flotation
of metallic silver, and under the optimal process conditions, the optimal recovery rate of
silver reached 93%. Taghavi et al. [31] investigated the application of a jet micro-bubble
producer in the flotation process of phosphorite, and the findings demonstrated that the
jet micro-bubble producer’s generation of micro-bubbles could significantly improve the
recovery of phosphorite flotation and concentrate grade. Parga et al. [32] applied their
bubble generator to the flotation machine for the sorting of pyrite, and the test showed that
this sorting method decreased the cost of flotation compared with the traditional flotation
machine by two-thirds, concentrate quality exhibited a 7% rise, and recuperation improved
by 5%. Ni et al. [33], to improve the crude coal recovery and grade, connected a self-
absorbing jet micro-bubble producer to the entry tube of a conventional flotation column
to realize the coal pre-mineralization process. A comparison with the conventional coal
slurry flotation column found that the refined coal recovery rate improved by 9.29%. Ma
et al. [34] utilized a nanojet micro-bubble generator for a graphite flotation test. The results
show that the nanobubbles effectively reduce the electrostatic rejection among graphite
particles and promote the process of agglomerating fine-grained graphite, resulting in a
notable enhancement in both graphite recovery and concentrate grade.

In summary, at present, scholars in this field have carried out some structural opti-
mization of jet micro-bubble generators, numerical simulation analysis of the gas–liquid
dual-phase flow, research on the flotation tests of different minerals, etc. It has not been
found that the structure of the micro-bubble producer can simultaneously achieve the
dissociation of flake graphite by jet flow and the mineralization of flake graphite by the
jet flow of negative-pressure-induced air. In this paper, a double-nozzle jet micro-bubble
generator was designed and fabricated using the principles of grinding dynamics, shear
cavitation water jet theory, jet pump principle, and bubble generator principle. A numerical
simulation of the air–water–flake graphite triple-phase flow field of the homemade double-
nozzle jet micro-bubble generator using the CFD method and ANSYS FLUENT software
was carried out. This simulation allowed for the determination of the air phase’s volume
percentage within the generator, as well as the velocity distribution of the air–water–flake
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graphite triple-phase flow. A comparative analysis was carried out with the existing jet
micro-bubble generator to validate the homemade double-nozzle jet micro-bubble gen-
erator’s design rationality. In order to integrate the current conventional flake graphite
grinding and mineralization of two step-by-step independent operations of the process to
solve the problem of flake graphite grinding, the flotation process is long and complex to
provide a specific reference.

2. Materials and Methods

2.1. Simulation Parameters

The flake graphite samples were sourced from the Liumao graphite pit in Jixi, Hei-
longjiang Province, China. The main product of this graphite mine is large flake graphite.
The product selection from the first stage of the beneficiation plant was taken as the pa-
rameter value of solid-phase flake graphite for the numerical simulation. In the numerical
simulation, liquid-phase water is set as the main phase density value at 1000 kg/m3, and
the viscosity value is 1 × 10−3 Pa·s; solid-phase flake graphite is set as the secondary phase
density value at 2100 kg/m3, and the viscosity value is 1 × 10−5 Pa·s, with a volume
concentration of 30% and an equivalent diameter of 0.1 mm. Gas-phase air is set as the
secondary phase density value at 1.225 kg/m3, and the viscosity value is 1.8 × 10−5 Pa·s,
by varying the double-nozzle jet micro-bubble generator’s inlet pressure to examine the
flow field.

2.2. Double-Nozzle Jet Micro-Bubble Generator
2.2.1. Overall Structure

Figure 1 illustrates the schematic configuration of the homemade double-nozzle jet
micro-bubble generator. As depicted in Figure 1, the homemade double-nozzle jet micro-
bubble generator consists of two parts: an internal tandem friction shear cavitation nozzle
and an external negative-pressure-induced air nozzle. The internal tandem friction shear
cavitation nozzle consists of four levels of nozzles: the first level for the cone-convergence-
type nozzle, the second and third levels for the rectangular convergence of the flat friction
nozzle, and the fourth level for the friction shear cavitation nozzle. The external negative-
pressure ejection air nozzle consists of two air-intake pipes, a suction mixing chamber,
throat, diffusion tube, and flow regulator tube. The physical diagram of the double-nozzle
jet micro-bubble generator is shown in Figure 2.

The internal tandem friction shear cavitation nozzle 

First level 
Second level 

Third level 
Fourth level 

Air-intake pipe 1 

Air-intake pipe 2 

Suction mixing chamber 

Diffusion tube 

The external negative-pressure ejection air nozzle 

Throat 

Figure 1. Structure of the double-nozzle jet micro-bubble genrator.

 

Figure 2. Image of the double-nozzle jet micro-bubble generator.
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The homemade double-nozzle jet micro-bubble generator has two functions. Firstly,
the internal tandem friction shear cavitation nozzles make full use of the characteristics
of the laminated structure of the flake graphite, the application of friction on the nozzle’s
interior wall, and the dissociation of flake graphite through the cavitation of water jets
to achieve the function of grinding. Secondly, the external negative-pressure-induced
air nozzle can continuously and stably generate and release micro-bubbles of a suitable
size and uniform distribution, which can fully collide and adhere with the dissociated
flake graphite particles in the internal nozzle to form mineralized bubbles and realize the
mineralization function.

The geometrical model of the inner fluid channel of the homemade double-nozzle jet
micro-bubble generator is given in Figure 3. In Figure 3, for the internal tandem friction
shear cavitation nozzles, the inlet diameter of the first-stage conical convergent nozzle
is 5.3 mm, the flat section of the second third-stage rectangular convergent flat friction
nozzles has a straight notch shape, and the diffusion section of the fourth-stage friction
shear cavitation nozzle’s outlet diameter is 10 mm. The interior nozzles’ total length is
78 mm. For the external negative-pressure-induced air nozzle, the inlet diameter of both
induced air tubes is 4 mm, and the suction mixing chamber’s diameter value is 20 mm. The
double-nozzle jet micro-bubble’s total length value is 288 mm.

5.
3

78

20

288

Figure 3. Geometric model of the inner channel of the double-nozzle jet micro-bubble generator.

2.2.2. Internal Tandem Friction Shear Cavitation Nozzle Design

The internal tandem friction shear cavitation nozzle is made up of four sections. The
first section of the cone convergent nozzle is designed according to the design guidelines
of the cone convergent water nozzle and the actual demand to realize the acceleration of
the flake graphite slurry. When the inlet pressure and flow rate of the first-stage cone-
convergent nozzle are specific, the nozzle outlet diameter d is as follows [35]:

d =

√√√√ 4Q

πμ
√

2p
ρ

(1)

where Q represents the nozzle flow rate (m3/s); μ represents the flow coefficient, 0.80; p
represents the inlet pressure (Pa); and ρ represents the density of flake graphite (kg/m3).

For the second- and third-level rectangular convergent flat friction nozzles, according
to the characteristics of the laminated structure of flake graphite and the principle of
grinding dynamics on the rectangular convergence of flat friction nozzle flat section of the
straight groove design, enhance the friction shear effect of flake graphite particles and the
nozzle channel wall, the dissociation of flake graphite. For the fourth level of the friction
shear cavitation nozzle, due to the nozzle channel structure before the diffusion section
with the second- and third-level nozzle structure being the same, the design method is
the same as the second- and third-level nozzle, and for the fourth-level nozzle diffusion
section, based on the theory of shear-type cavitation water jet design, the use of cavitation
water jet bubbles produced by the collapse of the jet impact dissociates the flake graphite
further. Simultaneously, the first-, second-, third-, and fourth-level nozzles are connected in
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a series to enhance the effect of the dissociation of the flake graphite, realizing the grinding
function of the double-nozzle jet micro-bubble generator.

2.2.3. External Negative-Pressure-Induced Air Nozzle Design

The external negative-pressure-induced air nozzle is designed based on the jet pump
and bubble generator principles. According to the exit diameter of the diffusion section of
the fourth-stage nozzle of the internal tandem friction shear cavitation nozzle and taking
into account that the solid-phase flake graphite particles should be in suspension during
the conveying process, it is required that the mixed triple-phase flow velocity is not less
than the critical velocity in the tube. Therefore, the diameter of the suction mixing chamber
can be determined.

The external negative-pressure-induced air nozzle adopts a long throat design to
enhance the likelihood of the colliding and adhesion of flake graphite particles and micro-
bubbles and strengthen the mineralization effect. The throat’s diameter dh according to the
empirical formula for jet pumps is as follows [36,37]:

dh= d
√
εm (2)

m =0.981
(
pc − patm

)
+ 1 (3)

where ε is the throat shrinkage coefficient (0.6~0.72); m is the optimal area ratio of the throat
and inner nozzle outlet section; pc is the external negative-pressure-induced air nozzle
outlet pressure (Pa); and patm is the atmospheric pressure (Pa).

The optimal throat length L is as follows [38]:

L =(7.77 + 2.42m)dh (4)

The external negative-pressure-induced air nozzle is designed with a diffusion tube
cone angle of 14◦, and given the diffusion tube outlet diameter, the diffusion tube length
Ld is determined by the results of the laboratory tests in this project and by referring to the
literature [37]:

Ld= k(d d−dh) (5)

where k is the diffusion angle coefficient, take 7~10; dd is the outlet inner diameter
of the diffusion angle (mm); and dh is the diameter of the throat (mm), according to
Equations (2) to (5). The throat diameter, throat length, and diffusion tube length can be
calculated, respectively.

2.3. Calculation Method and Boundary Condition Setting

To determine the calculation method and boundary condition setting, a separation
solver is applied to the air–water–flake graphite triple-phase flow field characteristics of
the double-nozzle jet micro-bubble generator and the Eulerian multiphase flow model is
selected. Moreover, the default first-order accuracy windward differential format is used,
and the standardized k-ε model is selected for the turbulence model [39]. The convergence
criterion for the numerical simulation is the residual R ≤ 10−6, the relaxation factors are
all adopted as default values, and the pressure–velocity coupling approach employs the
phase-coupled SIMPLE algorithm [40].

The inlet of the internal cavitation nozzle of the double-nozzle jet micro-bubble gener-
ator is set as the liquid-solid two-phase pressure inlet, and the two air inlets and nozzle
outlets of the external air nozzle of the double-nozzle jet micro-bubble generator are set as
the air-phase pressure inlet and the air–water–flake graphite triple-phase pressure outlet,
respectively. The double-nozzle jet micro-bubble generator’s interior wall is slid without
velocity, and a standard wall function is selected near the inner wall surface of the nozzle.
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3. Mathematical Mode

3.1. Control Equations for the Three-Phase Flow of Air–Water–Flake Graphite

The double-nozzle jet micro-bubble generator’s internal field of flow is a hybrid
triple-phase highly turbulent jet, with interpenetrations and interactions between air-
phase, water-phase, and flake-graphite-phase media. The hybrid triple-phase media are all
approximate to a continuous medium. Furthermore, the solid-phase flake graphite slurry
in the mixed three-phase has a volume percentage of 30%, which is more than 10%. These
conditions are suitable for the Eulerian multiphase flow model [41]. Therefore, the Eulerian
model is chosen in this study to investigate the triple-phase flow characteristics of the air,
water, and flake graphite phases.

(1) The equations for the conservation of mass for air, water, and flake graphite are as
follows [42]:

∂

∂t
(αaρa) +∇ · (αaρava) = 0 (6)

∂

∂t
(αwρw) +∇ · (αwρwvw) = 0 (7)

∂

∂t
(αsρs) +∇ · (αsρsvs) = 0 (8)

where t represents the time (s); αa represents the volume ratio occupied by the air phase (%);
ρa represents the air density (kg/m3); va represents the air velocity (m/s); αw represents
the volume ratio occupied by the water (%); ρw represents the water density (kg/m3); vw
represents the water velocity (m/s); αs represents the volume ratio occupied by the flake
graphite (%); ρs represents the flake graphite density (kg/m3); and vs. represents the flake
graphite velocity (m/s).

(2) The equations for the conservation of momentum for air, water, and flake graphite are
as follows [42]:

∂

∂t
(αaρava) +∇ · (αaρavava) = −αa∇p −∇(αaτa) + αaρag + Mi,a (9)

∂

∂t
(αwρwvw) +∇ · (αwρwvwvw) = −αw∇p −∇(αwτw) + αwρwg + Mi,w (10)

∂

∂t
(αsρsvs) +∇ · (αsρsvsvs) = −αs∇p −∇(αsτs) + αsρsg + Mi,s (11)

where p represents the working pressure (Pa); τa represents the air shear stress (Pa); g
represents the acceleration of gravity (m/s2); Mi,a represents the air-phase interphase
force (N); τw represents the water-phase shear stress (Pa); Mi,w represents the water-phase
interphase force (N); τs represents the flake-graphite-phase shear stress (Pa); and Mi,s
represents the flake-graphite-phase interphase force (N).

The shear stresses τa, τw, and τs in Equations (9) to (11) for air, water, and flake
graphite are as follows [43]:

τa = αaμa

(
∇va +∇va

T
)
+ αa

(
λa − 2

3
va

)
∇vaI (12)

τw = αwμw

(
∇vw +∇vw

T
)
+ αw

(
λw − 2

3
vw

)
∇vwI (13)

τs = αsμs

(
∇vs +∇vs

T
)
+ αs

(
λs − 2

3
vs

)
∇vsI (14)
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where μa represents the air shear viscosity (Pa·s); λa represents the air bulk viscosity (Pa·s);
μw represents the water shear viscosity (Pa·s); λw represents the water bulk viscosity (Pa·s);
μs represents the flake graphite shear viscosity (Pa·s); λs represents the flake graphite bulk
viscosity (Pa·s); and I represents the unit tensor.

(3) Interphase forces of air, water, and flake graphite

In the air–water–flake graphite Eulerian triple-phase flow model, as a result of the
phases’ different velocities, a velocity difference occurs between the phases so that in-
teraction forces are generated between the phases, and momentum exchange is induced
between the phases. To study the interphase forces between the three phases, it is now
expected to take the interaction between two phases into account first and then analyze the
impact of the presence of the third phase on the interplay between the other two phases to
establish the interphase force equation for the coupling of the air–liquid–solid three phases.
Therefore, this study is divided into air phase–water phase, water phase–flake graphite
phase, and air phase–flake graphite phase to establish the interphase force equations.

1©
Interphase forces in the air phase–water phase

The gas–liquid added mass force is caused by the acceleration difference between
the water and air phases in the internal flow field of the double-nozzle jet micro-bubble
generator. When the bubble accelerates, part of the fluid in the trailing vortex accelerates to
increase its resistance, equivalent to increasing the bubble mass. The gas–liquid additional
mass force Fvm,a-w is as follows [43]:

Fvm,a-w = αaρwCM
∂

∂t
(vw − va) (15)

where CM represents the additional mass force coefficient, which is taken to be 0.5 by de-
fault.

There are traction forces between air and water, and the Schiller–Naumann traction
model can better describe air–liquid traction, which is Fdrag,a-w as follows [43–45]:

Fdrag,a-w = CD(vw − va) (16)

CD =

{
24(1 + 0.15Re0.687)/Re Re < 1000
0.44 Re ≥ 1000

(17)

where CD represents the gas–liquid traction coefficient, and Re represents the Reynolds number.

2©
Interphase forces in the water phase–flake graphite phase

In the internal flow field of the double-nozzle jet micro-bubble generator, the trailing
force between liquid and solid is minimal, and due to the small diameter of the flake
graphite mineral particles, which has a robust flow-following property, the interphase force
of the water phase–flake graphite phase in this environment can be neglected as a trailing
force; only the shear lift of the water phase–flake graphite phase will be examined, and the
liquid–solid shear lift Flift,w-s is as follows [43]:

Flift,w−s = αwρsCL(vs − vw)(∇× vs) (18)

3©
Interphase forces in the air phase–flake graphite phase

The force between the air phase–flake graphite phase in the inner flow field of the
double-nozzle jet micro-bubble generator is mainly a trailing force generated due to the
velocity gradient between the air bubbles and the flake graphite particles. This air–solid
trailing force Fdrag,a-s is as follows [43,46]:

Fdrag,a-s =
3
4

CD
αsαaρa|va − vs|

ds
αa

−2.65 (19)
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CD =

{
24

αsRes

[
1 + 0.15(αsRes)

0.687
]

0.44
Res < 1000
Res ≥ 1000

(20)

Res =
ρads|vs − va|

μa
(21)

where CD represents the gas–solid tracer coefficient, Res represents the gas–solid relative
Reynolds number, and ds represents the flake graphite particles’ diameter (mm).

3.2. Turbulence Model

The double-nozzle jet micro-bubble generator’s inner flow field in this study belongs
to the complex gas–liquid–solid three-phase turbulent suspension flow, which contains
multifactorial physical processes such as turbulent jets, particle collisions, jet swirling
suction, turbulent mixing, etc. At the same time, a high Reynolds number exists in the
multiphase flow, so the standardized k-ε model for computing is selected as the turbulence
model. This turbulence model contains two basic equations, the transport equations for
turbulent kinetic energy k and dissipation rate ε [47]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
μ+

μt
σk

)
∂k
∂xj

]
+ Gk + Gb − ρε− YM (22)

where μ represents the kinetic viscosity coefficient (Pa·s); μt represents the turbulent vis-
cosity (Pa·s); σk represents the turbulent Platt’s number of turbulent kinetic energy; Gk
represents the turbulent kinetic energy produced by the average velocity gradient; Gb repre-
sents the turbulent kinetic energy generated by the buoyancy force; and YM represents the
contribution of pulsating expansion to the total dissipation rate in compressible turbulence.

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xi

[(
μ+

μt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

kε
(23)

where σε represents the turbulent Prandtl number of the dissipation rate; and C1ε, C2ε,
and C3ε are the experimentally measured constant coefficients. For numerical simulations,
C1ε = 1.44, C2ε = 1.92, σk = 1.0, and σε = 1.3.

4. Simulation Results and Discussion

4.1. Finite Element Model

This study applies Solidworks to establish a geometric model of the flow field inside the
double-nozzle jet micro-bubble generator. ICEM is used to perform tetrahedral unstructured
meshing on the model. For the internal tandem friction shear cavitation nozzle rectangular
convergence flat section and the external negative-pressure-induced air nozzle throat and other
turbulence intensity regions for local encryption, this is to enhance the precision of calculations.
Figure 4 depicts the finite element model of the double-nozzle jet micro-bubble generator.

z 
x 

y 

Air inlet 1 

Air inlet 2 

Pressure outlet 

Pressure inlet 

Figure 4. The finite element model.
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4.2. Mesh-Independence Test

A high-quality mesh is critical to the impact of computational results. In practical fluid
dynamics computational applications, it is necessary to find the threshold value to reach
mesh irrelevance [48]. Mesh-independence verification is a common method to solve this
problem, and the most reasonable meshing scheme is selected based on the computational
accuracy of numerical simulations with different numbers of meshes [49]. This study
examines the mesh independence of the maximal axis velocity of the air–water–flake
graphite triple-phase flow field under the inlet pressure of 45 MPa for five different grid
number conditions, and the results of the simulation calculations after reaching the steady
state can be seen in Table 1.

Table 1. Mesh-independence test results.

Maximum Axial Velocity
(m·s−1)

Number of Meshes

1,568,291 2,068,291 2,568,291 3,068,291 3,568,291

Air-phase flow field 174.135 180.011 187.355 187.358 187.359
Water-phase flow field 169.418 175.213 183.615 183.619 183.620

Flake-graphite-phase flow field 166.254 172.201 180.606 180.607 180.609

The maximal axis velocity variation curves of the air–water–flake graphite triple-phase
flow field for five different mesh numbers are given in Figure 5. According to Figure 5 and
Table 1 when the number of meshes is less than 2,568,291, the numerical simulation values
of the maximal axis velocity of the water–air–flake graphite triple-phase flow field have a
significant difference; when the number of meshes is greater than or equal to 2,568,291, the
numerical simulation values of the maximal axis velocity of the air–water–flake graphite
triple-phase flow field have a minimal difference. Therefore, considering the computational
efficiency and precision of the simulation, it is determined that the number of meshes is
2,568,291 to meet the requirement of mesh number irrelevance, and the corresponding
number of nodes is 356,453.
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Figure 5. Speed curves of the three-phase flow field with different meshes.

4.3. Effect of Inlet Pressure on the Air Flow Field

With different inlet pressures of the double-nozzle jet micro-bubble generator, the
flake graphite slurry is ejected from the internal nozzles at different speeds, with varying
air intake and air-phase volume fractions. Figure 6 depicts a cloud chart of the air volume
fraction distribution when the inlet pressure of the micro-bubble generator is 5, 15, 25, 35,
and 45 MPa, respectively. According to the data demonstrated in Figure 6, the air volume
fraction in the flow field of the double-nozzle jet micro-bubble generator is more significant

211



Minerals 2024, 14, 533

than 98% under different inlet pressures, and it is approximately uniformly distributed
in the steady flow tube. Specifically, when the flake graphite slurry is ejected from the
internal series friction shear cavitation nozzle at high speed, the cavitation nozzle’s exit
point experiences negative pressure due to the high-speed flow of the slurry. The ejection
generates a negative pressure, causing the outside air to be drawn into the mixing chamber
via the entrance of the double-input pipe of the external air nozzle.
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Figure 6. Cloud chart of the air volume fraction distribution.

The air entering the mixing chamber is fully collided and sheared by the graphite slurry
sprayed out from the cavitation nozzle at high speed, and split into countless tiny bubbles
to form an air–water–flake graphite triple-phase flow into the throat and then into the
diffusion tube and the steady flow tube; in the throat, diffusion tube, and the continuous
flow tube, due to the fluid role of the high turbulence intensity of the air–water–flake
graphite triple-phase media to enhance further mixing to promote a more even distribution
of bubbles, the bubbles in the steady flow tube show an approximate uniform distribution.
The results obtained by Li et al. [25] align with the present study, as they found that the
dual-intake tube configuration yields a more homogeneous dispersion of bubbles compared
to the jet micro-bubble generator with a single-intake tube configuration.

At the same time, as seen in Figure 6, the negative-pressure ejection effect of the flake
graphite slurry from the cavitation nozzle at high speed is directly proportional to the
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inlet pressure. As the inlet pressure increases, a greater influx of air results in a more
substantial air-phase volume percentage. When the inlet pressure is 5, 15, 25, 35, and
45 MPa, the resulting air-phase volume fraction is 98.3%, 99.2%, 99.7%, 99.8%, and 99.9%,
respectively, which indicates that the homemade double-nozzle jet micro-bubble generator
has good self-absorption performance. Sufficient air intake by the high-speed flow of
flake graphite slurry fully collision shears into tiny bubbles, which is conducive to the
mineralization of flake graphite, to achieve the mineralization function of the double-nozzle
jet micro-bubble generator.

Figure 6 also shows a significant air-phase volume percentage close to the wall of the
diffusion portion of the internal tandem friction shear cavitation nozzle. This is because
the flake graphite slurry is ejected from the friction portion of the fourth-stage nozzle
of the internal tandem friction shear cavitation nozzle into the diffusion portion. In the
diffusion portion, the slurry’s axial velocity in the radial direction exhibits a substantial
velocity gradient. This gradient is further amplified in the shear layer, producing a notable
structural vortex ring. The pressure in the center of the vortex ring is lower than the
saturated vapor pressure of the water, forming numerous bubbles due to cavitation. This
finding aligns with the result drawn by Yasunari et al. [50], which suggests that the primary
site for vacuole formation inside the depressurized nozzle is the low-pressure area of the
flow channel, as seen by a high-speed camera.

Figure 7 gives the vector diagram of air flow field velocity distribution in the mixing
chamber of the external negative-pressure-induced air nozzle at the inlet pressure of
25 MPa of the double-nozzle jet micro-bubble generator. As seen in Figure 7, there is
obvious air reflux near the wall of the diffusion section of the internal tandem friction shear
cavitation nozzle; the refluxed air is superimposed with the air bubbles generated during
the cavitation of the diffusion section and under the hostage effect of the slurry to form
an air–water–flake graphite triple-phase flow to the downstream throat, diffusion tube
up to the stabilizer tube, and the bubbles exhibit a uniform spread in the flow stabilizer
tube. Therefore, the vacuoles generated by cavitation are an essential part of the gas
volume percentage in the homemade double-nozzle jet micro-bubble generator. This is
in agreement with Deng [19], who found that the cavitation effect of the micro-bubble
generator assumes a crucial function in micro-bubble production and the mineralization
process during mineral flotation when simulated.

 
Negative-pressure-induced air 

Reflux shear 

Flake graphite slurry mixed with microfoam 

Reflux shear 

Negative-pressure-induced air 

Figure 7. Vector diagram of air flow velocity in the mixing chamber.

4.4. Effect of Inlet Pressure on the Flow Field of Water and the Flow Field of Flake Graphite

As shown in Figure 8, the axis velocity of the water of the double-nozzle jet micro-
bubble generator shows a symmetrical distribution up and down at inlet pressures of 5, 15,
25, 35, and 45 MPa, respectively, and the maximum axis velocity of the water is proportional
to the inlet pressure. Specifically, the liquid-phase water in the slurry enters the slurry
through the inlet of the tandem friction shear cavitation nozzles inside the double-nozzle
jet micro-bubble generator. After entering the water first through the internal nozzle of the
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first stage of the nozzle, the first stage of the nozzle convergence section of the axis velocity
of the water increases rapidly. In the cylindrical section, the axis velocity basically remains
unchanged; this is due to the cylindrical section of the entrance position. In the inertial
effect of the water, the water can only exhibit a gradual, smooth, and continuous bending of
the water flow so that the fluid cross-section of the contraction is of a certain degree. Then,
into the second level of the rectangular convergence flat friction nozzle, because the second
level of the nozzle entrance in the flow channel cross-section expands and then gradually
contracts, the axis velocity of the water in the second level of the nozzle first decreases
and then gradually increases in the friction section of the axial velocity, which remains
unchanged. After entering the third level of the rectangular convergence flat friction nozzle,
because the third level of the nozzle structure is the same as the second-level nozzle, the
axis velocity of the water in the third level of the rule of change and the second level of
the rule of change of is the same. Finally, the water enters the fourth level of friction shear
cavitation nozzle because the fourth level of nozzle channel structure in the before diffusion
section with the second level and the third level of nozzle structure, so in this part of the
channel in the axis velocity change rule of the water with the second level, the third level of
the axis velocity change rule of the nozzle is the same; in the nozzle diffusion section of the
axis velocity of the water is rapidly decreasing.
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Figure 8. Water axial velocity distribution cloud diagram.
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The water from the fourth-stage nozzle in the mixing chamber of the external air nozzle
is strongly mixed with the air introduced under negative pressure, and then flows into the
throat through the mixing chamber contraction section to realize the second acceleration,
and then flows through the downstream diffusion section and the steady flow tube out of
the double-nozzle jet micro-bubble generator. The axial velocity is basically kept unchanged
in the throat and decreases because of the gradual expansion of the cross-section in the
diffusion tube, which basically keeps the axial velocity constant in the steady flow tube.
The maximum axial velocities of the water are 59.1, 103.0, 134.0, 163.0, and 184.0 m/s when
the inlet pressures are 5, 15, 25, 35, and 45 MPa, respectively.

As shown in Figure 9, the change rule and distribution of axis velocity of the flake
graphite of the double-nozzle jet micro-bubble generator is the same as that of the water
when the inlet pressures are 5, 15, 25, 35, and 45 MPa, respectively. The maximum axis
velocity of the flake graphite is proportional to the inlet pressure. The maximum axis
velocities of the flake graphite are 58.5, 101.0, 132.0, 161.0, and 181.0 m/s when the inlet
pressures are 5, 15, 25, 35, and 45 MPa, respectively.
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Figure 9. Flake graphite axial velocity distribution cloud diagram.
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It should be emphasized that first, under the same inlet pressure conditions, the maxi-
mum axis velocity of the flake graphite is slightly smaller than the maximum axis velocity
of the water. This is due to the density of flake graphite being 2.1 times the density of
water, and the inertia of flake graphite is greater than the inertia of water in the water–flake
graphite liquid–solid two-phase flow and air–water–flake graphite gas–liquid–solid three-
phase flow process. Secondly, the slurry composed of water and flake graphite is sprayed
from the internal nozzle at high speed into the suction mixing chamber of the external
nozzle, which is strongly combined with the air inhaled from the double-inlet pipe to
form the air–water–flake graphite triple-phase flow field, and then flows into the throat
through the suction mixing chamber contraction tube to realize the secondary acceleration
and the stabilized flow adjustment of the three-phase fluid flow in the throat. Third, the
air–water–flake graphite triple-phase fluid enters the downstream diffusion tube after
stabilizing the flow through the throat. The axis velocity of the air–water–flake graphite
triple-phase fluid in the diffusion tube has a large radial velocity gradient. A sizeable
structural vortex ring is formed by the velocity gradient in the shear layer. The vortex ring
generates a region of reduced pressure at its central region, resulting in the roll suction
effect on the surrounding fluid. The air has a significantly lower density compared to
the water and the flake graphite, so the air bubbles are first rolled into the vortex ring,
realizing intense collisions between bubbles, crushing and prolonging the residence time
of bubbles. This coincides with the findings of Huang et al. [51] that the reflux coiling
suction impact observed in the diffusion zone of the micro-bubble generator can effectively
enhance the interaction between bubbles while prolonging the bubble residence time and
significantly increasing the collision probability. Fourthly, the flake graphite particles in
the friction region of level two to level four of the internal nozzle and the convergence
region of level one to level four of the nozzles all generate strong friction and shear effects
between the flake graphite particles and the interior portion of the nozzle to dissociate
the flake graphite, and at the same time, the cavitation effect generated in the diffusion
section of the fourth-stage nozzles of the internal nozzles also dissociates the flake graphite.
This comprehensive dissociation of flake graphite realizes the micro-bubble generator’s
grinding function.

After studying the law of the inlet pressure on the triple-phase velocity flow field, the
influence of the inlet pressure on the turbulence intensity of the law was further studied.
Figure 10 provides an example of the turbulence kinetic energy distribution of the double-
nozzle jet micro-bubble generator inlet pressure of 15 MPa in a cloud diagram. As can be
seen from Figure 10, the turbulent kinetic energy reaches its maximum at the joint of the
double air-intake pipe and the mixing chamber, and the maximum value is generated due to
the low-speed airflow being sucked, collided, and sheared by the high-speed jet slurry. The
high turbulence intensity is conducive to promoting the air–water–flake graphite mixing,
thus improving the shear effect on the airflow introduced by the negative pressure, which
is conducive to the realization of the generation and uniform distribution of micro-bubbles.

Turbulent Kinetic Energy (k) 
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Figure 10. Cloud of the turbulence intensity distribution at 15 MPa.
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4.5. Experimental Validation
4.5.1. Bubble Cluster Visualization Test

The bubble visualization test system for the homemade double-nozzle jet micro-bubble
generator is shown in Figure 11. As seen in Figure 11, the system mainly consists of a
water tank, a high-pressure pump, a high-pressure control valve, a high-pressure tube, a
double-nozzle jet micro-bubble generator, a float flow meter, a flotation column unit, a
high-frequency LED light source, a light plate, a high-speed camera, and a computer PC
port. During the test, the inlet pressure of the double-nozzle jet micro-bubble generator
was 15 MPa, and the air inlet of the float flow meter was 20 LPM. The high-speed camera
captured a photo of the bubble group morphology generated by the air–water two-phase
fluid injected into the capture area of the flotation column unit through the double-nozzle
jet micro-bubble generator.

 

Figure 11. Bubble visualization test system for the double-nozzle jet micro-bubble generator.

The working principle of the double-nozzle jet micro-bubble generator is that the
high-pressure water generated by the high-pressure pump enters the double-nozzle jet
micro-bubble generator through the high-pressure tube into the internal tandem friction
shear cavitation nozzle and is then sprayed out at the fourth cavitation nozzle at a very
high speed. The negative-pressure ejection of high-speed jets causes the outside air to
enter into the double air-intake pipe through the float flow meter, and at the inlet of the
double air-intake pipe, a relatively uniform flow rate is sucked into the mixing chamber
of the external negative-pressure ejection air nozzle of the double-nozzle jet micro-bubble
generator. Near the outlet of the fourth-stage cavitation nozzle, there is a significant velocity
difference between the high-speed jet and the airflow introduced by the negative pressure.
The low-speed airflow is carried by the high-speed jet and crushed into countless tiny
bubbles. The contraction section of the throat promotes the gas–liquid two-phase flow to
contact and mix further fully, and then it is injected into the flotation column device through
the outlet of the double-nozzle jet micro-bubble generator. The bubble group morphology
photos of the double-nozzle jet micro-bubble generator taken by the high-speed camera are
shown in Figure 12. It can be seen from Figure 12 that under the combined action of the
internal tandem friction shear cavitation nozzle diffusion section and the external negative-
pressure ejection air nozzle steady flow tube, the jet produced a dense and uniform bubble
group. The area percentage, aspect ratio, and bubble spacing of the bubble group were
good, indicating that the self-suction performance of the homemade double-nozzle jet
micro-bubble generator was good. The sufficient air intake was fully collided and sheared
into tiny bubbles by the high-speed jet, which could produce a bubble group with uniform
dispersion, which verified the accuracy of the numerical simulation results.
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Figure 12. Photograph of bubble cluster morphology.

Since the bubble size determines the surface area of the bubble in contact with the
flake graphite particles, it plays a crucial role in the flotation flake graphite environment.
Therefore, to evaluate the bubble size generated by the double-nozzle jet micro-bubble
generator, Image-Pro Plus software was used to obtain the average bubble size, and the
bubble size distribution graph was plotted, to visually characterize the diameter of micro-
bubbles generated by the double-nozzle jet micro-bubble generator. The histogram of
bubble diameter distribution is shown in Figure 13, from which it can be seen that the
bubble size distribution is unimodal, and the average size of bubbles less than or equal to
1 mm accounted for 71.26% of the total number of bubbles, indicating that the bubble size
distribution is centralized, presenting a uniform bubble group dispersion distribution state
and a good specific surface area, which is conducive to the realization of the sorting of the
flake graphite.
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Figure 13. Histogram of bubble diameter distribution.

4.5.2. Integration Test of Flake Graphite Grinding and Floating

The integrated test system of the double-nozzle jet micro-bubble generator on flake
graphite grinding and floating is shown in Figure 14. As can be seen in Figure 14, the
system mainly consists of a water tank, high-pressure pump, electronic control cabinet,
high-pressure pipe, high-pressure control valve, flake graphite slurry tank, double-nozzle
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jet micro-bubble generator, a float flow meter, flotation column unit, concentrate collection
bucket, and tailings collection bucket and other components. The test process is as follows: a
high-pressure pump to pressurize the water to the working pressure of 15 MPa, pressurized
high-pressure water into the flake graphite slurry tank to complete the mixing with the flake
graphite after the flow to the double-nozzle jet micro-bubble generator, the internal tandem
friction shear cavitation nozzle for multistage dissociation of the flake graphite to achieve
the function of grinding, while at the same time, a graphite slurry high-speed flow of the
negative pressure generated by the air sucked into the external negative-pressure ejection
air nozzle inside the mixing chamber, air from the high-speed flow of the graphite slurry
impact and shear action to form tiny bubbles, and gas–liquid two-phase accumulation
to form a high gas capacity, conducive to the formation of mineralization bubbling and
mineralization function. The flake graphite slurry after grinding and mineralization is
discharged to the flotation column device through the double-nozzle jet micro-bubble
generator, the graphite concentrate and tailings are separated in the flotation column
device, the graphite concentrate is collected in the concentrate tank at the upper end of the
flotation column device, and the tailings are discharged from the tailings tank at the lower
end of the flotation column device, which realizes the integration of grinding and flotation
in the processing of flake graphite.

Figure 14. Integration test of flake graphite grinding and floating.

In this study, the fixed carbon content of flake graphite was used as an evaluation
index. By measuring the fixed carbon content of flake graphite samples before and after
the test, the grinding and mineralization effect of flake graphite by the double-nozzle
jet micro-bubble generator was obtained. Since the test sample is the first stage of the
beneficiation product of Jixi Liumao graphite ore, the fixed carbon content of the flake
graphite sample after the test was compared with the fixed carbon content of the secondary
and tertiary stage of the beneficiation products in the actual industrial beneficiation process
of Jixi Liumao graphite, and the optimization effect of the double-nozzle jet micro-bubble
generator on shortening the flake graphite beneficiation process was evaluated.

In order to ensure the accuracy of the measurement results of the fixed carbon content
of flake graphite, the flake graphite samples before the grinding and flotation integration
test and the flake graphite concentrate samples after the grinding and flotation integration
test were divided into two groups, with 1 g for each group. The fixed carbon content of
each group of samples was determined by using the subtraction method, and the average
value was calculated. The fixed carbon content of the flake graphite samples before the
test and the flake graphite concentrate samples after the test were 49.11% and 80.70%,
respectively. Moreover, the fixed carbon content of the concentrate samples after the test
increased by 31.59%, indicating that the double-nozzle jet micro-bubble generator can
effectively dissociate the vein stone impurities on the surface of flake graphite, and at the
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same time, the generator can realize the mineralization function of flake graphite, which
greatly improves its grade. In addition, the fixed carbon content of the flake graphite
concentrate samples after the grinding and flotation integration test was higher than the
fixed carbon content of the secondary and tertiary stages of the beneficiation products of
Jixi Liumao graphite ore. This result indicates that conducting the single grinding and
flotation integration test on flake graphite by using the double-nozzle jet micro-bubble
generator can replace the three beneficiation steps of primary grinding, secondary flotation,
and secondary grinding in the actual beneficiation process; moreover, the generator can
achieve the aim of shortening the actual conventional flake graphite beneficiation process.

5. Conclusions

In this study, a homemade double-nozzle jet micro-bubble generator was proposed
to integrate the existing independent operations of conventional flake graphite grinding
and mineralization into one process. The CFD method was used to solve the micro-bubble
generator air–water–flake graphite triple-phase flow, and the results were compared with
those from an existing jet micro-bubble generator to validate the reasonableness of the
design of the homemade double-nozzle jet micro-bubble generator.

A positive correlation exists between the air-phase volume percentage and the inlet
pressure produced by the double-nozzle jet micro-bubble generator. The air-phase volume
percentage is approximately uniformly distributed in the stabilizer tube. The air-phase
volume percentages produced by the micro-bubble generator are 98.3, 99.2, 99.7, 99.8, and
99.9% when the inlet pressures are 5, 15, 25, 35, and 45 MPa, respectively. This indicates
a homemade double-nozzle jet micro-bubble generator has an excellent self-absorption
performance to achieve the mineralization function.

The axis velocities of the water and the flake graphite inside the homemade double-
nozzle jet micro-bubble generator were distributed symmetrically upward and downward,
and both positively correlated with the inlet pressure for the same inlet pressure. The
maximum axial velocity of the flake graphite was slightly smaller than that of the water.
The flake graphite is dissociated under the combined effect of friction shear and cavitation
in the internal nozzle to realize the grinding function.
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Abstract: Navigating miners during an evacuation using smart evacuation technology can signifi-
cantly decrease the evacuation time of an underground mine in case of emergency hazards. This
paper presents a mathematical programming model to calculate the most efficient escape path for
miners as a critical component of smart evacuation technology. In this model, the total evacuation
distance of the crew is minimized and scenarios with blocked pathways and stamina categories for
the miners are simulated. The findings revealed that all the tested scenarios were technically feasible.
Using the feature that filters out blocked pathways has no downsides as safer routes are calculated
and there is no penalty in the computation time. This paper also discusses the social and technical
issues that must be resolved before the algorithm can be implemented as an actual escape solution.

Keywords: smart evacuation; mathematical programming; hazards; underground mines

1. Introduction

Current strategies for mine evacuation are blind and outdated technologies that only
require people to run to predefined locations such as escape ways or refugee chambers
during emergencies [1]. An evacuation is usually initiated by an explosion [2,3] and the
release of a stench gas [4]. Upon smelling the stinky gas, miners leave their workplaces
and start moving to predefined locations. This is quite a blind methodology because (i) it
takes a relatively long time for the air current to reach the people underground [5]; (ii) not
all people may be familiar with the layout of the mine, which may lead to confusion when
trying to find the route to a safe haven; (iii) some of the predefined escape paths may cross
danger zones (such as fires), and miners may approach the danger instead of running away
from it; and (iv) people may get confused while navigating when the visibility decreases,
which could lead to them making decisions while panicking.

Currently, several methods are used to guide miners to a safe haven during an emer-
gency. These conventional technologies can be divided into passive and active guidance
systems [1]. One passive method is to hang signs with directions to the nearest exit at
intersections in the mine [4]. These, however, may be hard to read when dirty or when the
visibility in the mine is limited (for instance, because of smoke). Another passive method is
the use of lifelines [6]. These lines lead the miner from the workstations to the safe havens
and use cones to indicate the direction of egress. Active guidance methods give the miners
visual and audible cues about the route to safety. For visible cues, LEDs, lasers, or strobe
lights may be used. These visual aids have a green color when one is heading towards a
safe haven and a red color when one is moving away from it. Audible cues are given to
augment the visual cues and use the pitch of sound to guide miners in the right direction.

In a virtual reality environment, it has been proven that smart evacuation is faster than
conventional methods of evacuation [7]. According to Gaab (2019), smart evacuation sys-
tems are real-time evacuation guidance systems that are adaptable to changing conditions
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such as location and spreading of fire and resulting safest and fastest exit routes. To employ
smart evacuation, an algorithm is needed to determine the safest and fastest exit routes.

In order to utilize smart evacuation, the real-time localization of individuals under-
ground is needed. There are different methods for localization:

• Radio Frequency Identification (RFID): RFID systems make a connection between
what are called tags and readers [8–10]. Tags can be worn by miners or attached to
vehicles and contain information about the wearer. Tags communicate with readers
using electromagnetic waves. The location of the wearer of the tag can be calculated
using the difference in time of arrival, the received signal strength indicator (RSSI), or
the time-of-flight method.

• Wi-Fi: Uses the RSSI principle [11]. In this case, access points of the wireless local
area network measure the signal strength of smart devices (e.g., smartwatches and
smartphones) [9].

• Bluetooth: Uses the RSSI principle in a similar way to Wi-Fi, but can use multiple
channels (which is an advantage when there is a lot of background noise) [9]. Bluetooth
offers good signal detection, is relatively cheap, and enables the easy introduction of
new applications [12]. Also, Bluetooth devices can communicate with each other.

• Wireless Sensor Networks (WSNs): Uses fingerprinting, which is a localization method
based on the RSSI principle [13–15]. In this case, a map of sensor patterns (that is,
signal strengths of tags at known locations in the mine) is made before the operation
is started. These maps compare the actual signals in the mine, giving an idea of where
miners or vehicles may be located.

• Image-Assisted Person Location: Identifies miners by the lamp on their helmet (each
of which has a unique shape) [16].

There are a number of the shortest path algorithms that could be used for smart
evacuation. Three notable examples will be given here:

• Dijkstra’s Algorithm: Dijkstra’s algorithm is a well-established and popular shortest
path algorithm [17–20]. The algorithm assumes a network of nodes, which are con-
nected to one another by arcs. It consists of two methods: one for tree networks (where
only one path between two nodes is possible) and one for more complicated networks
(such as in underground mines) [21]. The algorithm will always return the shortest
path possible but is computationally inefficient (with a running time of O(n3)) [22].
Many shortest path algorithms are derived from Dijkstra’s algorithm, each with its
own advantages and disadvantages.

• Floyd–Warshall Algorithm: Another method that can be used to compute the shortest
path is the Floyd–Warshall algorithm [23]. According to Hougardy (2010), it is widely
used and relatively simple. Just like Dijkstra’s algorithm, Floyd–Warshall’s method
works on a network of nodes that are connected by arcs (again, it will be assumed that
one is not dealing with tree networks). The worst-case runtime of the algorithm is
O(n3). If used correctly, the method will always return the shortest route between all
nodes in a network. However, it does not work in networks where some of the edges
have negative values. This, however, is not the case in underground mines.

• Ant Colony Optimization (ACO): ACO can also be used to find a route of egress in
case of an underground mine emergency [24]. ACO is inspired by foraging ants [25].
Ants are blind and, therefore, initially, seek food at random. However, they do leave
a trail of pheromones while they are on their way. Once they have found food they
follow the pheromone trail back to their anthill, leaving new pheromones, making
the trail stronger. The crux of the matter is that ants are more likely to follow the
stronger pheromone trails. As, over time, the shorter routes to food will have more
deposited pheromones on them, more ants will use the more efficient routes. The main
advantage of this method is that it is relatively fast; the main disadvantage is that the
final solution may be suboptimal [26].
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It is clear, then, that each shortest path algorithm has its own advantages and dis-
advantages. In this paper, a new method based on mathematical programming will be
introduced. More specifically, the method will be used to calculate the escape strategy
for an underground mine. The development of this method will be presented as a part
of a larger project to develop practical smart evacuation technology, supported by the US
National Institute of Occupational Health and Safety (NIOSH) at the University of Nevada,
Reno. A case study was executed for a drift and fill gold mine located in north-central
Nevada, USA. For the case study, a CAD model of the mine containing information on
the network of the underground tunnels was used. The locations of the miners, fires, and
their destinations in case of an emergency (refugee chambers and shafts) were randomized.
This paper investigates if mathematical programming can be used to determine the most
efficient escape solution in case of an evacuation.

2. Method

This section outlines a step-by-step procedure for the proposed technique in this study.
Figure 1 illustrates this process, which includes gathering necessary data, acquiring the dig-
ital mine model, investigating triggered hazards, identifying personnel and hazard location
data, constructing the mathematical model, developing and evaluating diverse scenarios,
utilizing optimization techniques to solve the built model for each scenario, disseminating
results to individuals, guiding individuals to their destinations, and, ultimately, receiving
updated hazard locations and furnishing new results if necessary.

Figure 1. A step-by-step flowchart for the proposed procedure in this study.
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2.1. Digital Model of the Mine

The digital modeling process started by constructing a network model that reflected
the physical model of the access roads within the mine. The data concerning the dimensions
of the mine used for the case study was delivered in an AutoCAD file (in a ‘.dxf’ format).
Then, the AutoCAD file was loaded onto the Python environment. Subsequently, the data
were converted to an Excel file (‘.xlsx’ format), serving as the source of data for the main
programming file. Converting the data to the Excel format made it easier to comprehend
and manipulate the data.

A visual inspection of the file revealed that it contained three categories of data: ‘AIR-
DATA’, ‘2DARROW’, and ‘AIRLINES’. The first category contained points in space, while
the latter two were line strings, with a beginning and an end node. It was found that ‘AIR-
DATA’ and ‘2DARROW’ were used merely for ventilation purposes, while the ‘AIRLINES’
dataset contained the drifts making up the mine used for the case study. Therefore, all
further use and manipulation of data were performed solely with the ‘AIRLINES’ category.
A plot of the ‘AIRLINES’ data is given in Figure 2.

Figure 2. ‘AIRLINES’ data, with the unit being ‘Meter’ (k stands for 1000).

The next step was to build a model in which optimization models could be run. It
must be noted that although line strings had been drawn, they had not been quantified
yet. The only information that was known at this point was the start and end coordinates
of each arc. The first step that needed to be taken, then, was to identify each individual
node in the network. This was done using a function in Python specifically designed for
this purpose. This function first runs through all coordinates of the starting nodes of the
line strings. If a combination of coordinates does not occur, it is added to a list. After
implementing this process, a sweep is made through the tail nodes to see if any original
nodes can be found there. These are also added to the list. In total, 453 nodes were found
using this function.

Afterwards, it was essential to find which nodes were combined to form arcs. This
procedure was conducted by using another Python function. Firstly, the nodes that were
found before were stored in a Pandas data frame. Secondly, the coordinates of each begin
and end node of the arcs in the ‘AIRLINES’ data were compared to their position in the
data frame. In this way, a list could be made with the relative positions of the node pairs.
For instance, node zero was connected to node six. This appeared as [0, 6] in the list of arcs.
In total, there were 522 arcs. Also, the pairs were reversed, as it was assumed that miners
could travel in both directions on each arc. In this case, both directions of a pathway could
be used during the evacuation optimization process.

Finally, the distance between the connected nodes, the slope of the particular path,
and a correction to the distance for this slope needed to be calculated. The calculations for
the distances between the nodes were performed using the Euclidian method. The slope
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angle of each path was calculated using the tangent. Adjiski et al. (2015) [27] devised a
formula that makes a correction to the Euclidian distance to give paths that go more steeply
upwards more weight. The correction factor was calculated using the following equation:

kgi =
m × g × v0 × sinθi

P0
+ cosθi (1)

where

• kgi is the correction factor
• m is the mass of the miner (taken to be eighty kilograms on average)
• g is the gravitational constant (9.81 m/s2)
• v0 is the average walking speed (taken to be 1.35 m per second [28])
• θi is the slope angle of the path in degrees
• P0 is the human’s walking power (taken to be 200 Watts)

The correction factor was only used for slopes that rose upwards. Slopes going
downwards were kept at their original length. The correction for the slope was linked to
a maximum angle (taken to be 80 degrees). This was done to prevent the weights for the
shafts, which went steeply upwards, becoming erratic. The Euclidian distances corrected
by Adjiski’s formula were used as the definitive distances between the nodes to be used in
the optimization model.

2.2. Mathematical Model

The task of finding the optimal evacuation routes for each specific miner during an
emergency in an underground mine can be modeled as a ‘Minimum-Cost Network Flow
Problem’ (MCNFP). This mathematical programming model can be solved with different
approaches, such as linear programming and integer programming [29].

The divisibility assumption is an important characteristic of mathematical program-
ming. This assumption states that each variable xi is allowed to take fractional values.
This, of course, is not the case in mine evacuation scenarios (one cannot split miners
into fractions). Therefore, a special type of mathematical programming, called integer
programming, will be used for all optimization problems in this paper.

The mathematical programming representation of an MCNFP is stated as follows:

min ∑
all arcs

cij ∗ xij (2)

subject to
∑

j
xij − ∑

k
xki = bi (3)

where

• xij is the number of units of flow sent from node i to node j through arc (i, j)
• cij is the cost of transporting one unit of flow from node i to node j via arc (i, j)
• bi is the net supply (outflow minus inflow) at node i

In the objective function (Expression (2)), the total distance that miners needed to travel
altogether was minimized as the length of the arc between two nodes, cij, was multiplied
by the number of miners, xij, that took this route when they were heading for the exit.
It should be noted that cij, as mentioned, was not only based on the distance between
nodes [27]. Influences like the slope angle of the path, the temperature, and the quality of
the air could be incorporated into this parameter. This allowed for the calculation of not
only the shortest route but also one that prioritized safety and efficiency. In this paper, only
slope angle, closed pathways, and the stamina of the miners are considered.

Constraint (3) describes the difference between the flows that led towards a node (xij)
and the flows that led away from it (xki). By setting parameter bi to a certain value, places
where miners are located at the time of an emergency and the nodes where they can find a
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safe haven could be simulated. For instance, if a worker was present at node 1, b1 could
be set to one. In this way, the workers were introduced into the network of nodes and
arcs. If a refugee chamber at node i could house 10 people, bi needed to be set to greater
or equal to −10. Also, if a miner reached a safe haven, this individual ‘disappeared’ from
the system. A relatively large coefficient was assigned to the mine shaft due to its high
capacity. Keeping bi zero at nodes that served no particular purpose made sure that all
miners arriving at this node would have to leave as well. This way, miners had to keep
passing ‘empty’ nodes until they found a safe haven.

2.3. Implementing the Built Model

Two pieces of code were written to perform the optimizations: one where all miners
were assumed to have the same stamina and one where the miners were divided into
stamina categories. In this sub-chapter, a brief overview will be presented, outlining the
design process of both codes.

2.3.1. Common Stamina

Although different methods of localizing miners underground were briefly given
previously, the exact locations of workers or workstations were not available for this study.
Moreover, the locations of safe havens and possible safety hazards were also not known.
Therefore, a lot of randomizations were used in the optimization processes. The locations
of safe havens were chosen by the author at random nodes in the network and kept equal
for all optimizations. The positioning of miners was a bit more complicated as the workers
needed to be located at the nodes of the network and always exactly halfway down an
arc. This problem was solved by letting the computer pick two things at random: the arc
where a miner was located and a number between 0 and 1, which indicated how far a miner
was along the specific arc. At this location, a temporary node was created together with
two temporary arcs, which connected the temporary node with the two adjacent ordinary
nodes. To simulate a safety hazard (for instance, a fire), a random arc was selected and
subsequently removed (in both directions) from the network. This arc could not be used in
escape routes.

Now that the miners and safety hazards had been introduced to the underground
tunnel network, the objective function and constraints (as given in Expression (2) and
Constraint (3)) could be set. The linear functions were loaded onto GUROBI, which is a
Python application that can be used to solve linear optimization problems. Subsequently, a
first optimization attempt could be undertaken. This could lead to two situations: an escape
solution being determined or the model being found to be infeasible, which would mean
that one or more miners could not reach a safe haven without crossing a safety hazard.
If the model came back as infeasible, two things needed to happen: the trapped miners
needed to be localized and their colleagues needed to be directed to a safe haven. This
could be done by linear relaxation, where GUROBI filters out the constraints that cannot be
met and optimizes the model without these. As the violated constraints were linked to the
temporary nodes where miners were trapped, it was quite easy to locate these workers.

At this point, the routes for the miners that had a means of escape were calculated and
the trapped miners were localized. The route for each individual miner could be plotted,
an example of which is given in Figure 3. The red dot indicates the initial location of the
miner, while the red lines indicate the route that the miner needed to take to reach safety.
In the case of a trapped miner, only a red dot is shown.
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Figure 3. Example of route plot, with the unit being ‘Meter’ (k stands for 1000).

2.3.2. Stamina Categories

In the second piece of code, stamina categories were introduced. Miners could have
stamina with a factor of 0.8, 0.9, 1.0, 1.1, or 1.2. A stamina of 0.8 (or 80 percent) meant that
the stamina of the miner was low, while a stamina of 1.2 (or 120 percent) meant that the
miner was in very good shape. The stamina values were used to correct the distances that
the miners needed to travel, which will be explained later in this sub-chapter.

The localization of miners and safety hazards was performed in the same manner
as when no stamina categories were used. However, to each individual miner, an extra
piece of data was added: an integer between zero and four (which was also chosen by the
computer at random). A zero indicated that a miner was in the lowest stamina category,
while a four indicated that he or she was in the highest category. Afterwards, five spin-offs
needed to be created for each drift in the mine (one for each stamina category). For instance,
if a drift was 100 m long, the spin-off drift for miners in the lowest stamina category would
be 125 m (which is 100

0.8 ) . For miners in the highest stamina category, this would be 83.3 m
(which is 100

1.2 ). In this way, the routes for miners with low stamina were made artificially
longer, while, for miners with high stamina, they were made shorter. The purpose of this
was to assign relatively lower weight to miners with higher stamina levels in the objective
function (as given in Constraint (2)). This approach ensured that such miners were directed
towards a distant safe haven if the closest option was almost their capacity. For instance, if
two miners (one in a high and one in a low stamina category) were at location A, while
the safe haven at location B could only harbor one more individual, the miner in the lower
stamina category would be favored for this spot. Indeed, it was less expensive to send a
miner in the higher category to a safe haven farther away.

At this point, the objective function and the constraints could be fed to the GUROBI
application. This, however, was a bit more complicated than previously. This was because
miners needed to take only the spin-off path that belonged to their stamina category.
This meant a large increase in the constraints of the optimization problem (which were
multiplied by a factor of five). This situation led to longer computation times (which will
be further elaborated on in the Results section). The final result, however, was the same as
in the version of the code without stamina categories: trapped miners were located, and all
others received directions for a safe haven.

2.4. Scenarios and Situations

A total of four scenarios were tested:
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• Scenario 1: No correction to the pathlengths for the stamina of the miners and no
blocked pathways.

• Scenario 2: No correction to the pathlengths for the stamina of the miners and
10 blocked pathways.

• Scenario 3: Pathlengths corrected for the stamina of the miners and no blocked path-
ways.

• Scenario 4: Pathlengths corrected for the stamina of the miners and 10 blocked pathways.

Each of the scenarios was run for five different situations. In each situation, the miners
and fires were located differently. The situations remained consistent across all scenarios,
and optimizations were run with 1, 5, 10, 50, 100, 200, 500, and 1000 underground workers.
The locations of the safe havens were kept the same in all optimizations.

3. Results

In this section, three different types of results relevant to utilizing a smart evacuation
algorithm will be analyzed. Firstly, the division of miners among the safe havens in the
different scenarios for a specific situation will be looked at. This is done for two reasons:
firstly, to see how various scenarios influence the escape solution and, secondly, to see what
the impact of an increasing number of miners is on this solution. After completing this step,
the paths of an individual miner (called Miner X) in the different scenarios are analyzed to
characterize how blocked paths and the use of stamina categories influence the route to
safety for a specific miner. Finally, the computation times of the different situations will be
compared to see how added features influence the efficiency of the algorithms.

3.1. Distribution of Miners among Safe Havens

Five safe havens were used in each of the optimizations: two shafts (located at nodes
200 and 250) and three refugee chambers (located at nodes 120, 150, and 300). The refugee
chambers were assumed to have a capacity of 30 miners, while the shafts had infinite
capacity. Tables 1–4 provide the distribution of miners among the safe havens for different
scenarios in Situation 3.

Table 1. Defined destinations for Scenario 1 in Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 2 3 10 22 30 30 30
Chamber 150 0 0 0 4 11 30 30 30
Chamber 300 0 0 0 2 5 16 30 30

Shaft 200 0 0 4 22 42 85 223 482
Shaft 250 1 3 3 12 20 39 187 428

Total 1 5 10 50 100 200 500 1000

Table 2. Defined destinations for Scenario 2 in Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 2 3 9 18 30 30 30
Chamber 150 0 0 0 4 11 21 30 30
Chamber 300 0 0 0 3 8 24 30 30

Shaft 200 0 0 4 22 44 87 242 503
Shaft 250 1 3 3 11 18 35 163 402

Total 1 5 10 49 99 197 495 995
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Table 3. Defined destinations for Scenario 3 in Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 2 3 10 22 30 30 30
Chamber 150 0 0 0 4 11 30 30 30
Chamber 300 0 0 0 2 5 16 30 30

Shaft 200 0 0 4 22 42 85 224 475
Shaft 250 1 3 3 12 20 39 186 435

Total 1 5 10 50 100 200 500 1000

Table 4. Defined destinations for Scenario 4 in Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 2 3 9 18 30 30 30
Chamber 150 0 0 0 4 11 21 30 30
Chamber 300 0 0 0 3 8 24 30 30

Shaft 200 0 0 4 22 44 87 243 502
Shaft 250 1 3 3 11 18 35 162 403

Total 1 5 10 49 99 197 495 995

The first point that one should notice is that for up to 200 underground workers, the
capacities of the refugee chambers were sufficient. This meant that each miner could be
sent to the safe haven closest to them. From 500 miners and up, the refugee chambers
reached capacity, which led to more miners being sent to a shaft. In Scenarios 2 and 4, not
all miners could make it to a safe haven. This was, as mentioned, due to the blocked paths
in these scenarios, which led to miners getting trapped.

In order to compare the scenarios, Tables 5–8 present the absolute differences in the
number of miners located in a specific safe haven across all scenarios.

Table 5. The difference in the number of miners located in a safe haven between Scenarios 1 and 2 in
Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 0 0 1 4 0 0 0
Chamber 150 0 0 0 0 0 9 0 0
Chamber 300 0 0 0 1 3 8 0 0

Shaft 200 0 0 0 0 2 2 19 21
Shaft 250 0 0 0 1 2 4 24 26

Table 6. The difference in the number of miners located in a safe haven between Scenarios 3 and 4 in
Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 0 0 1 4 0 0 0
Chamber 150 0 0 0 0 0 9 0 0
Chamber 300 0 0 0 1 3 8 0 0

Shaft 200 0 0 0 0 2 2 19 27
Shaft 250 0 0 0 1 2 4 24 32

Tables 5 and 6 compare the scenarios with and without blocked paths. According
to these tables, the blocked paths caused a significant shift in how miners were divided
among the safe havens. This circumstance occurred due to two reasons. The first, and most
important, was that miners may have needed to take detours due to blocked pathways. On
their new route, the safe haven that was previously closest may then have been relatively
farther away. Moreover, the route to a safe haven may have been blocked entirely for a
specific miner. This could lead to miners heading to a different destination than the one
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they would have gone to when all paths were available. The second, and less important,
reason for the differences was the trapped miners. These miners did not make it to a safe
haven at all, which can be found back in the numbers.

Table 7. The difference in the number of miners located in a safe haven between Scenarios 1 and 3 in
Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 0 0 0 0 0 0 0
Chamber 150 0 0 0 0 0 0 0 0
Chamber 300 0 0 0 0 0 0 0 0

Shaft 200 0 0 0 0 0 0 1 7
Shaft 250 0 0 0 0 0 0 1 7

Table 8. The difference in the number of miners located in a safe haven between Scenarios 2 and 4 in
Situation 3.

Refuge/# of Miners 1 5 10 50 100 200 500 1000

Chamber 120 0 0 0 0 0 0 0 0
Chamber 150 0 0 0 0 0 0 0 0
Chamber 300 0 0 0 0 0 0 0 0

Shaft 200 0 0 0 0 0 0 1 1
Shaft 250 0 0 0 0 0 0 1 1

Tables 7 and 8 give the differences with and without the use of stamina categories
in the algorithms. In these cases, no differences could be seen for the optimizations with
up to 200 miners. Minimal differences could be seen for the shafts for optimizations
with 500 miners or more. This was attributed to the fact that the refugee chambers could
accommodate enough miners, up to a capacity of 200. This meant that miners were sent to
the safe haven closest to them, regardless of their stamina category. In the optimizations
where the refugee chambers were full, miners that had lower stamina were favored for a
spot in the refugee chambers (if this was relatively closer by). This meant that a miner with
better stamina would be sent to a shaft in his/her place. However, it is essential to note
that this shaft may not have been the same one the weaker miner would have gone to. This
led to some differences in the division of miners around the shafts.

3.2. Miner X

The purpose of this section is to investigate how blocked pathways and stamina
categories influenced the path of an individual miner. Miner X was part of the optimizations
executed in the second situation. This individual was in the highest stamina category, and
his/her path was determined in the case where 500 miners were present. The different
paths are presented in Table 9.

Table 9. Destinations of Miner X.

Scenario Distance in Meters Final Destination Node

1 2502.7 150 (Refugee Chamber)
2 2502.7 150 (Refugee Chamber)
3 4285.1 250 (Shaft)
4 6821.1 250 (Shaft)

According to Table 9, there was no difference between Scenarios 1 and 2. This means
that, despite the fires, Miner X encountered no blocked paths on his/her route to safety
in Scenario 2. When evaluating Scenario 3, it becomes evident that the distance Miner X
needed travel increased significantly compared to Scenarios 1 and 2. This was because a
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weaker miner was favored for a spot in refugee chamber 150, and Miner X had to head
to a shaft in his/her place. Finally, in Scenario 4, the path for Miner X was longer than in
Scenario 3. This was because one or more pathways on his/her original route were blocked
because of fire, which meant that he/she needed to take a detour to get to the shaft at
node 250.

It can be concluded from Table 9 that both blocked pathways and stamina categories
added significantly to the path of an individual miner. In the case of blocked pathways,
this was not necessarily undesirable. Although the route for the individual miner may
have been longer, it did avoid hazardous situations such as fires. Therefore, pathlength
was exchanged for safety. That said, the added pathlength due to the stamina categories
does raise social and ethical questions. Can you expect a miner to travel farther in favor of
a weaker colleague?

It should be noted that the pathlengths for Miner X seem unrealistically long. The
reason for these unrealistic pathlengths is the randomization that was used in the optimiza-
tions for the locations of miners and safe havens. In this randomization, safety standards
were disregarded. Naturally, when implementing this system in an actual underground
mine, the locations of workstations and safe havens are known, and all pathlengths in case
of an evacuation would be within the limits stated in safety regulations.

3.3. Computation Times

The average times to run the algorithms for different scenarios are indicated in Figure 4.

Figure 4. Average computation times for different scenarios.

As shown in Figure 4, blocked pathways had a negligible effect on the computation
time of the algorithms. This is remarkable as these scenarios required more execution of
code. This means that there is virtually no downside to including the feature that filters out
blocked pathways. Trapped miners are localized, and their colleagues are sent on routes
that avoid hazardous situations, without overly complicating the algorithm. It is therefore
highly recommended to use this feature in escape solutions.

Using stamina categories, on the other hand, did add to the computation time (up to
5 s in optimizations with 1000 miners underground). Although this time difference would
most likely not result in a matter of life and death, it does, again, raise some questions about
desirability. Firstly, if the refugee capacity is sufficient, the final solution that the algorithm
generates will be the same. In this case, it is undesirable to have the added computation
time. Secondly, if the capacity of the refugee chambers is insufficient, added computation
time is just one of the objections one can have against the use of stamina categories.
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A final note is that the optimizations were run on an ordinary, everyday-use laptop. If
this system were to be implemented in an actual mining operation, most likely, a specialized
computer would be used. This could lead to a significant decrease in the time it takes for
the algorithms to run.

4. Discussion

This paper raises some ethical and social questions about the obtained solutions.
Firstly, there is the issue of using stamina categories. It has been proven that using this type
of category is technically feasible, but one could question whether it is desirable to employ
sexual and/or fitness discrimination in decision-making. Furthermore, they can have an
adverse effect on the path of an individual miner (who has good stamina). Is it ethical or
socially acceptable to expect a miner to accept a longer path of escape in favor of a weaker
colleague? However, it is worth noting that these categories may be useful in cases where
the operation employs vehicles, such as underground trucks. These categories, then, might
not be used for dividing miners but can be used for a different purpose.

Using the algorithm without stamina categories also raises ethical issues. For instance,
if five miners are positioned at the same workstation, the closest refugee chamber can only
harbor four more workers. In this case, a decision would have to be made about which
miner misses out on a spot in this safe haven. This can present a tough ethical dilemma.
Who is entrusted with making the decision about which miner cannot access the closest
safe haven—the algorithm, the miners themselves, or the emergency controller? There is,
probably, not a single definitive answer to this question. Nevertheless, this issue must be
addressed and resolved before implementing a smart evacuation system.

Another issue is how to classify which paths are suitable to use for escape and which
are not. Naturally, in the case of a fire or toxic gases, the exclusion of a path is obvious.
However, what if a path is partly blocked by machinery or other obstacles? What if a drift
is partly filled with water? This issue can partly be resolved by giving these paths extra
weight in the objective function, but it requires that the conditions for every underground
location are extensively monitored. A system would need to be devised that assigns certain
penalties to certain situations. It can be argued, then, that the current system of assigning
weights to the pathways is not yet complete.

5. Conclusions

In this paper, a mathematical programming component for a new smart evacuation
algorithm for underground mines was proposed. The algorithm set the evacuation model
as a ‘Minimum-Cost Network Flow Problem’ that can be solved using any mathematical
programming solver. This was conducted by setting the evacuation as an objective function
that was subject to several constraints. The objective function minimized the total distance
traveled by all underground miners. The constraints were used to indicate the locations
of workers and safe havens. The algorithms for this paper were written in the Python
programming language and solved by use of the GUROBI library.

A total of four scenarios were tested: with and without blocked pathways and with
and without dividing the miners up into stamina categories. Each of the scenarios was run
for five different situations, with optimizations for 1, 5, 10, 50, 100, 200, 500, and 1000 miners.
The locations of miners and blocked pathways were chosen randomly by the computer in
different situations. The safe havens were chosen randomly by the author and kept the
same for all optimizations.

It was found that in optimizations with up to 200 miners, the capacity of the refugee
chambers was sufficient. For optimizations with 500 miners or more, the refugee chambers
reached the designated capacity, which led to more miners heading to the shafts. The
introduction of blocked pathways had a significant influence on how the miners were
divided up among the safe havens. There were two reasons for this. Firstly, blocked paths
may cause a safe haven that was once closest to become relatively farther away or entirely
unreachable. This can lead to miners being sent to a different safe haven. The second reason
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is that blocked pathways may cause miners to get trapped. Therefore, they will not reach a
safe haven, which can be found back in the numbers. Stamina categories only had some
effect on the division of miners around the shafts in optimizations with 500 miners and
more. This is because when a stronger miner was sent to a shaft in favor of a weaker miner,
this did not need to be the same shaft as that the latter would have originally gone to.

To give an idea of how the different scenarios influence the path of an individual
worker, Miner X was introduced (who came from an optimization with 500 miners and was
in the highest stamina category). It was found that both blocked pathways and stamina
categories may add significantly to the path of an individual miner. This is not that big of
an issue in the case of blocked paths as pathlength is exchanged for a safer route. However,
in the case of stamina categories, there are some social and ethical objections that can
be raised.

Introducing a feature that filters out blocked pathways and localizes trapped miners
does not give a penalty to the computation time of the algorithms. This means that there
is virtually no downside to using this feature. Stamina categories add to the computation
time. If there is sufficient refugee capacity, this is undesirable, as there will be no impact on
the final solution. If the capacity is insufficient, the time penalty will most likely not result
in a matter of life and death. However, social and ethical objections play a role here as well.
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Abstract: The dry stacking of filtered tailings is an option to deal with safety-related issues involving
traditional slurry disposition in impoundments. Filtered tailings can be compacted to pre-define
design specifications, which minimizes structural instability problems, such as those related to
liquefaction. Yet, comprehending the tailing’s response under various stress states is essential to
designing any dry stacking facility properly. Thus, the present research evaluated the mechanical
response of cemented and uncemented compacted filtered iron ore tailings, considering different
molding characteristics related to compaction degree and molding moisture content. Therefore,
a series of one-dimensional compression tests and consolidated isotropically drained triaxial tests
(CID), using 300 kPa and 3000 kPa effective confining pressures, were carried out for different
specimens compacted at various molding characteristics. In addition, changes in gradation owing
to both compression and shearing were evaluated using sedimentation with scanning electron
microscope tests. The overall results have indicated that the 3% Portland cement addition enhanced
the strength and stiffness of the compacted iron ore tailings, considering the lower confining pressure.
Nevertheless, the same was not evidenced for the higher confining stress. Moreover, the dry-side
molded specimens were initially stiffer, and significant particle breakage did not occur owing to
one-dimensional compression but only due to shearing (triaxial condition).

Keywords: iron ore tailings; dry staking; filtered tailings; tailings dam; Portland cement

1. Introduction

The dry stacking of filtered tailings has become feasible due to the recent evolution
of dewatering technologies, which enables the obtainment of an unsaturated material,
known as ‘cake,’ that can be compacted to form stackings of hundreds of meters [1,2].
Hence, this technique can potentially overcome most safety-related drawbacks associated
with traditional slurry disposal in pounds. That is, the stored tailings are no longer
found saturated and in a loose condition susceptible to liquefaction. They are arranged
according to design specifications, such as dry density and compaction water content [3,4].
In addition, dry stacking requires less physical space for tailings storage. It involves
recovering substantial amounts of water that can be later reused in the extraction and
beneficiation processes [5].

The dry stacking of mining tailings has become an attractive alternative, especially
considering that more rigid regulations/laws have been recently introduced prohibiting
the construction of new tailings dams using the upstream method while demanding the
de-characterization and decommissioning of existing ones in countries such as Brazil [6].
This was motivated by the recent catastrophic incidents that occurred in the Fundão dam
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(2015) and Mina do Córrego do Feijão (2019) dam, both of which stored iron ore tailings
and were constructed using the upstream method [7–9]. In this sense, Brazil has been one
of the top three global iron ore suppliers, with the Quadrilátero Ferrífero (Iron Quadrangle)
region (located in the province of Minas Gerais) accounting for around 65% of the Brazilian
iron ore production [10,11]. This scenario highlights the need to reallocate the vast amount
of iron ore tailings already stored in upstream dams and provide a proper destination for
the upcoming tailings.

The appropriate conception of a tailings storage facility (TSF) relies upon comprehend-
ing the tailings’ mechanics under operational boundary conditions, which involves, among
other aspects, knowing the material’s response under various stress states [12,13]. In this
regard, dry stacking tailings have the advantage over hydraulic disposal in dams concern-
ing spatial predictability of the tailing’s properties. The first involves the compaction of a
well-characterized material. In contrast, the latter comprehends the hydraulic deposition,
sedimentation, and subsequent consolidation over a vast impoundment, enhancing the
problem’s inherent complexity [14,15]. Still, a resilient design of a dry stacking facility
demands an understanding of the filtered tailings response over a wide range of stresses
and the effect of the compaction characteristics on the mechanical response. Eventually,
it is also possible to incorporate a cementitious material into the tailings to enhance the
material’s strength and stiffness [16–20].

The behavior of artificially cemented geomaterials is well-known and extensively
documented: developing a cementitious matrix in a granular media leads to significant
strength and stiffness gains until cementing bond degradation, accompanied by a more di-
latative response and post-peak brittleness [21,22]. Naturally, once the bonds are degraded,
the cement is ineffective in providing actual enhancements in the material’s mechanical
response; that is, the cement may be useless for higher confinement levels [23]. In general,
artificially cemented tailings behave like cemented soils and can be analyzed using the
same approaches [18]. Nonetheless, despite a variety of studies concerning the response of
cemented tailings for mine backfill [19,24–29], few have been carried out on the behavior of
artificially cemented filtered tailings for dry staking purposes, particularly for high-stress
levels and different compaction conditions.

Accordingly, the present study evaluated the mechanical response of cemented (C = 3%)
and uncemented (C = 0%) compacted filtered iron ore tailings under low (p’0 = 300 kPa) and
high (p’0 = 3000 kPa) confining pressures. Both cemented and uncemented test specimens
were molded considering various compaction characteristics that involved compaction
degrees (97% and 100%) for modified and standard Proctor compaction efforts and mois-
ture contents (dry, optimum, and wet sides of the compaction curve). A series of 1-D
consolidation tests were carried out for all the test specimens and consolidated isotrop-
ically drained triaxial tests (CID) under two different confinement levels (p’0 = 300 kPa
and p’0 = 3000 kPa). Particle breakage analysis was carried out for both stress paths with
sedimentation and scanning electron microscope tests.

2. Experimental Program

Three phases compose the experimental program. The first comprehended the physical
characterization of the iron ore tailings (IOTs), in which the molding points were determined
based on the compaction characteristics obtained using the standard and modified Proctor
compaction efforts—the second consisted of the conduction of the 1-D compression tests
and the triaxial tests, both executed on the cemented and uncemented tailings compacted
under different conditions. In the third phase, the possibility of particle breakage during
the compression and shearing of the specimens was evaluated using the analysis of grain
size distribution with the aid of scanning electron microscope (SEM) tests.
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3. Materials

The iron ore tailings utilized herein come from a filtration plant in the Province of
Minas Gerais (southeast Brazil). Table 1 summarizes the main physical characteristics of
these tailings.

Table 1. Physical properties of the iron ore tailings.

Physical Properties Iron Ore Tailings Test Method

Liquid limit (%) -
ASTM D4318Plastic limit (%) -

Plastic index (%) non-plastic
Specific gravity 2.72 ASTM D854
Coarse Sand (2.00 mm < diameter < 4.75 mm) (%) 0.0

ASTM D7928
Medium Sand (0.425 mm < diameter < 2.00 mm) (%) 0.0
Fine Sand (0.075 mm < diameter < 0.425 mm) (%) 8.0
Silt (0.002 < diameter < 0.075 mm) (%) 88.7
Clay (diameter < 0.002 mm) (%) 3.3
Maximum dry unit weight at standard effort (kN/m3) 17.4 (w = 15.2%) ASTM D1557
Maximum dry unit weight at modified effort (kN/m3) 18.5 (w = 11.6%) ASTM D698

The gradation was evaluated through sedimentation and sieve analysis following
ASTM D7928 [30]. The Atterberg limits and the specific gravity were analyzed following
ASTM D4318 [31] and ASTM D854 [32], respectively. According to the Unified Soil Classi-
fication System [33], the studied IOTs can be classified as silty sand once non-plastic and
around 83% of their particles are in the silt-size range. Figure 1 depicts the compaction char-
acteristics obtained using the standard ASTM D698 [34] and the modified ASTM D1557 [35]
Proctor compaction efforts.

 

Figure 1. Compaction characteristics of the iron ore tailings and molding points.

Chemically, the X-ray fluorescence (XRF) test has revealed that the IOTs are mainly
constituted of silicon (Si = 57%), iron (Fe = 36%), and aluminum (Al = 5%), as well as
other minor constituents. Mineralogically, X-ray diffraction analysis (XRD), combined with
a semi-quantification using the reference intensity ratio (RIR) method, have attested the
presence of quartz (85%), kaolinite (13%), and hematite (3%). Figure 2 exhibits the scanning
electron microscope (SEM) micrographs of the iron ore tailings at 100× (Figure 2a), 500×
(Figure 2b), and 5000× (Figure 2c) magnification rates. The IOTs are composed primarily of
flattened-angular quartz grains and a lesser amount of smaller hematite particles (Figure 2c).
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(a) 

 
(b) 

 
(c) 

Figure 2. SEM micrographs of the iron ore tailings magnified by (a) 100× and (b) 500×; (c) 5000×.
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The XRF tests were conducted on a WDS spectrometer model RIX 2000 from Rigaku®.
A D-500 Siemens® X-ray diffractometer (Akishima-shi, Tokyo, Japan), equipped with a
fixed Cu anode tube, was used in the XRD tests, whereas a scanning electron microscope
with an electron beam of 20 kV using gold-coated samples (Q150 and JMS-6610 models)
was used for the SEM tests. Commercially available high early strength Portland cement
(type III) was used as the cementing agent. The cement’s specific grain unit weight was
3.15 g/cm3. Distilled water was used for molding and saturating the test specimens and
throughout the physical characterization tests.

4. Methods

4.1. Molding Characteristics

Characteristics of the filtered cake, such as gradation and moisture content, may vary
across a particular range owing to inherent variations related to the filtration plant and the
tailings’ nature [36–38]. As a result, the filtered tailings moisture content (w) is a crucial
variable in affecting the compaction process and, thus, the in situ mechanical response of
the compacted material, as it is intimately linked to both the attainable compaction degrees
and the compacted materials fabrics [39–41]. Therefore, understanding the iron ore tailings
response under certain compaction conditions is essential to guarantee a rational design of
filtered STF.

Considering the cemented and uncemented specimens, the molding points were based
on the compaction tests and are depicted in Figure 1. For both compaction efforts, the
highest dry density values and the corresponding optimum moisture contents were chosen.
In addition, within each curve, three points with a degree of compaction of around 97%
were chosen: one located on the dry side of the curve, one located on the wet side of the
curve, and the other presenting the same dry unit weight of those two but molded using
the corresponding optimum moisture content. Therefore, those three additional points
obtained for each compaction curve have the same molding void ratio but different molding
moisture contents. This enables the assessment of the influence of molding characteristics
on the response of the cemented and uncemented iron ore tailings.

4.2. Specimen Molding and Curing

Cylindrical specimens were statically molded for the one-dimensional compression
tests (5 cm in diameter and 2 cm in height) and the triaxial tests (5 cm in diameter and
10 cm in height). For the first, the material was directly compacted in one layer inside
the oedometric ring. For the latter, the compaction was carried out in three layers in
a cylindrical split mold, with the top of the first and second layers slightly scarified to
guarantee the adherence of the subsequent layer. Still, before compaction, the correct
amount of distilled water, iron ore tailings, and cement (when needed) were manually
mixed until a homogeneous material of a homogeneous aspect was obtained. For the
cemented samples (containing 3% of cement based upon the mass of dry tailings), the
oedemetric ring or the retrieved specimen from the split mold was sealed inside a plastic
bag and forwarded to be cured in a room with a controlled environment (23 ± 2 ◦C and 95%
of relative moisture). All cemented specimens were cured for seven days. Otherwise, the
specimens were ready to be tested. As an acceptance criterion, each sample was considered
suitable for testing if the following requirements were met: dry unit weight (γd) within
±1% of the target value and moisture content (w) within ±0.5% of the assigned value.

4.3. One-Dimensional Compression Tests

The one-dimensional compression tests agreed with the procedures stated by ASTM
D2435 [42] using a setup composed of a consolidometer, a load device, and a linear variable
differential transformer (LDVT) used to measure the vertical displacement. Porous discs
and filter papers were utilized at the bottom and top of the testing ring to permit the
drainage of the compacted specimen during the loading stages. After applying a setting
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stress of 5 kPa, the loading schedule was: 50 kPa, 100 kPa, 200 kPa, 400 kPa, 800 kPa,
1600 kPa, 3200 kPa, and 6400 kPa.

4.4. Triaxial Tests

Consolidated isotropically drained (CID) triaxial tests were carried out according to
the recommendations preconized by ASTM D7181 [43] in a triaxial test apparatus capable
of attaining high confining pressures and in which all the data were digitally monitored and
recorded. The test samples were entirely saturated by a process involving CO2 percolation,
distilled water percolation, and the increment of backpressure (maintaining p’ = 20 kPa) at
a rate of 1.5 kPa/min. Irrespective of the test specimen configuration, a backpressure of
400 kPa was sufficient to guarantee the obtainment of B values greater than 0.95. The con-
solidation stage consisted of incrementing the chamber confining pressure at a 2 kPa/min
rate up to the desired initial mean effective stress (p’0) value. At this rate, no excess pore
pressure was developed. The shearing followed a conventional loading path, maintaining
the confining pressure constant, conducted at a strain rate of 1.0 mm/hour. Hall effect
sensors [44], attached directly to the test specimen (two in the axial direction and one in
the radial direction), enabled the local strain assessment along all the test phases. Also,
the volumetric strains during the consolidation and shearing phases were measured by
the flow volume of water leaving/entering the specimen. Both confining pressure and
backpressure were digitally monitored by pressure transducers and were applied using
general-purpose water pressure sources. The axial load was also digitally scanned using a
100 kN load cell.

4.5. Particle Breakage Analysis

The possibility of particle breakage owing to the one-dimensional consolidation and
the shearing phase on the triaxial test was evaluated for some representative specimens.
Quantitatively, the after-test gradation was compared to the natural (untested) iron ore
tailings grain size distribution using the particle breakage factor (Bf). The breakage factor is
defined as the difference between the amount of the finer particles after testing compared
to the original content of finer particles [45]. Qualitatively, SEM micrographs were carried
out on some specimens to study the particle breakage, as shown in Section 5.3.

5. Results and Discussions

The notation used to characterize a test specimen takes the form of A_B_C. A is the
corresponding compaction energy (S = standard; M = modified), B refers to the molding
moisture content relative to the compaction curve depicted in Figure 1 (W = wet side;
O = optimum; R = optimum but with reduced density; D = dry side), and C concerns the
amount of cement required (3C = 3%; 0C = 0%).

5.1. One-Dimensional Compression Tests

Figure 3a depicts the one-dimensional compression tests for the uncemented iron
ore tailings specimens, and Figure 3b exhibits the same results, considering the samples
containing 3% cement. Initially, the cemented samples were substantially less compressible
until cementing bond breakage, which occurred at vertical pressures below 800 kPa.

Table 2 summarizes the values of the compression indexes (Cc). These Cc values
indicate that, at higher pressures, the molding void ratio appears to influence the slope of
the one-dimensional normal compression line (1D-NCL).

In other words, the Cc values of the denser samples are very similar, as are the Cc
values of the looser specimens. Nevertheless, the compression curves converge towards
a unique 1D-NCL, indicating that the initial fabric effects created by the cement addition
and compaction characteristics would be erased at higher stresses [46]. This is reinforced
when calculating the m parameter [47], obtained by plotting a specific volume at the most
elevated pressure versus a specific volume at 20 kPa. Considering the test specimens’
data, no linear trend was obtained, and the resultant m was close to zero, indicating no
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transitional behavior of the studied iron ore tailings [48]. In this regard, at the highest
vertical pressure, the difference between the highest and lowest e values was only 0.024.

Figure 3. One-dimensional compression tests (a) uncemented and (b) cemented specimens.
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Table 2. One-dimensional compression characteristics.

Specimen e0 e6400 Cc

S_W_3C 0.605 0.412 0.14
S_O_3C 0.568 0.422 0.14
S_R_3C 0.608 0.428 0.14
S_D_3C 0.610 0.427 0.14

M_W_3C 0.512 0.410 0.10
M_O_3C 0.471 0.408 0.07
M_R_3C 0.511 0.412 0.11
M_D_3C 0.509 0.414 0.10
S_W_0C 0.603 0.412 0.11
S_O_0C 0.566 0.403 0.14
S_R_0C 0.608 0.421 0.12
S_D_0C 0.609 0.421 0.12

M_W_0C 0.512 0.426 0.04
M_O_0C 0.473 0.419 0.04
M_R_0C 0.514 0.421 0.04
M_D_0C 0.514 0.422 0.04

5.2. Triaxial Tests
5.2.1. Stress–Strain Data

The stress–strain (εa × q) response and the volume change behavior (εa × εv) are
plotted in Figure 4a (p’0 = 300 kPa, uncemented), Figure 4b (p’0 = 300 kPa, cemented),
Figure 4c (p’0 = 3000 kPa, uncemented), and Figure 4d (p’0 = 3000 kPa, cemented). Table 3
summarizes the main data relative to the triaxial testing program.

 

 
(a) 

Figure 4. Cont.
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(b) 

 

 
(c) 

Figure 4. Cont.
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(d) 

ε

Figure 4. Triaxial stress–strain data and volume change response: (a) p’0 = 300 kPa, uncemented;
(b) p’0 = 300 kPa, cemented; (c) p’0 = 3000 kPa, uncemented; (d) p’0 = 3000 kPa, cemented.

Considering the lowest confinement level, all specimens have shown an initial brittle
response, presenting well-defined peak stress, followed by post-peak strain softening.
This was accompanied by an initial contraction, followed by a dilatative trend. For the
uncemented samples, the peak stress coincides with the highest dilation rate, which is
the typical response of purely frictional granular materials. This was not the case for the
cement-containing specimens [21,22]. For both cemented and uncemented samples, the
top deviatoric stress (qmax) was proportional to the molding void ratio when considering
the optimum molding conditions at standard and modified compaction efforts (i.e., γdmax
and wopt). Moreover, slightly higher strengths were obtained for the specimens molded
at the optimum moisture content but with reduced dry unit weight, followed by the dry
side samples and, ultimately, the wet side ones. The addition of cement has also led to a
substantial increment in the strength and pre-peak stiffness of the samples, has augmented
the dilation rate, and has enhanced the brittleness. This suggests that the cement bonds have
remained intact during the consolidation phase up to the attainment of p’0 = 300 kPa [23].
In other words, the cement bonds were responsible for the reported strength and stiffness
gains as they only degraded during the shearing [22,49].

Concerning the highest confinement, both uncemented and cemented specimens have
not presented a well-defined peak strength and have shown a fully contractive response,
characterizing a ductile behavior. For most of the tests conducted at p’0 = 3000 kPa, the
deviatoric stress (q) and the volumetric strain (εv) seem to stabilize for axial strain (εa) values
greater than 15%. Moreover, the cement addition appeared to have negligible influence
on the iron ore tailings’ responses to this high confinement level, indicating that the bonds
were probably broken during the consolidation phase [49–51]. This is corroborated by the
quantitively and qualitatively similar responses of the cemented and uncemented samples
under the highest confining stress that attained deviatoric stresses of the same order of
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magnitude and comparable compression during shear. The top strength value followed the
previously discussed trend for the p’0 = 300 kPa tests.

Table 3. Triaxial test specimens’ characteristics.

Specimen p’0 (kPa) e0 ec Gεs = 0.5% (MPa)

S_W_3C

300 kPa

0.59 0.57 56.1
S_O_3C 0.54 0.53 63.8
S_R_3C 0.58 0.57 68.8
S_D_3C 0.58 0.57 76.6

M_W_3C 0.49 0.49 63.1
M_O_3C 0.44 0.43 75.2
M_R_3C 0.44 0.43 83.5
M_D_3C 0.49 0.47 88.8
S_W_0C 0.58 0.57 7.5
S_O_0C 0.54 0.53 9.4
S_R_0C 0.58 0.57 11.1
S_D_0C 0.58 0.56 15.2

M_W_0C 0.48 0.48 21.4
M_O_0C 0.44 0.43 9.8
M_R_0C 0.44 0.43 11.2
M_D_0C 0.48 0.47 38.5

S_W_3C

3000 kPa

0.59 0.41 188.5
S_O_3C 0.54 0.43 261.5
S_R_3C 0.58 0.43 282.4
S_D_3C 0.58 0.43 303.9

M_W_3C 0.49 0.42 170.5
M_O_3C 0.44 0.41 264.7
M_R_3C 0.48 0.42 221.5
M_D_3C 0.49 0.41 351.3
S_W_0C 0.58 0.43 33.5
S_O_0C 0.54 0.43 66.6
S_R_0C 0.58 0.43 69.8
S_D_0C 0.58 0.42 146.6

M_W_0C 0.48 0.43 46.8
M_O_0C 0.44 0.40 71.6
M_R_0C 0.48 0.42 74.8
M_D_0C 0.48 0.41 109.7

5.2.2. Effect of Molding Characteristics

For the uncemented samples, within each confinement level and separately consider-
ing each compaction energy, the highest strength was attained at the optimum molding
conditions (i.e., lowest void ratio and optimum moisture content). This reinforces the role
of the degree of interlocking in the strength of purely frictional materials, which contributes
to minimizing the compressive trend and assists in enhancing the strength associated with
dilation, particularly for lower confinement pressures [52–54]. For the 97% compaction
degree, the specimens assembled using the optimum moisture content and the dry side
samples attained comparable top strength values. They were slightly less compressible and
more dilatant than the wet-side ones, thus more resistant. The fabrics that have arisen when
compacting the samples using lower moisture contents have favored this trend because the
particles are less lubricated than in the wet-side arrangement and, as a reason, less likely to
compress during shear. Considering the cemented samples, the same trend regarding the
strength response was obtained, but with the addition of a cohesion-related strength parcel
for the p’0 = 300 kPa tests [18,21,55]. This has substantially increased the top strength in
comparison to the uncemented samples.

In contrast, the initial stiffness does not follow the above trend for the strength data.
For both the cemented and uncemented specimens, and within the same compaction energy,
the dry-side samples were initially stiffer, followed by the ones molded at the optimum
conditions, the ones compacted at the optimum moisture content but with reduced dry
density, and, ultimately, the ones compacted on the wet side. This indicates that the fabric
created by the compaction on the dry side of the compaction curves has favored the stiffness.
The lack of lubrication between the particles on the dry side has somewhat restrained the
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relative movement between the constituent grains, enhancing the stiffness in this condition.
Consoli et al. [50] reported a similar trend for conventional geotechnical materials. Likewise,
the cement addition enhanced the initial stiffness of the iron ore tailings, particularly in
p’0 = 300 kPa tests, in which the cemented samples were initially much stiffer than the
uncemented ones. This difference is not as pronounced for the highest level of confinement
since most of the cement bonds were broken during consolidation. The shear modulus
values corroborate these for a distortional strain of εs = 0.5%, summarized in the last column
of Table 3.

5.3. Particle Breakage Analysis

Figure 5 depicts the grain size distribution of the specimens submitted to the one-
dimensional compression tests, and Figure 6 exhibits the same regarding the triaxial tests
conducted at p’0 = 3000 kPa. Both figures contain the gradation of the natural (untested)
iron ore tailings. Table 4 summarizes the particle breakage factor (Bf) calculated based on
those curves.

(a) 

(b) 

Figure 5. Grain size distribution test conducted after the one-dimensional compression test: (a) uncemented
and (b) cemented.
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(a) 

(b) 

Figure 6. Grain size distribution test conducted after the triaxial test: (a) uncemented and (b) cemented.

The amount of grain crushing due to one-dimensional compression is negligible, as
evidenced by the near-zero values of the Bf, regardless of the specimen’s characteristics.
This is corroborated by the SEM micrographs of specimens M_D_3C and M_D_0C, shown
in Figure 7a and 7b, respectively. Features of the tested material, such as particle size,
shape, and surface roughness, have remained unaltered when vertically compressed up
to 6400 kPa. Higher pressures would probably cause grain breakage for this loading
condition [56,57].
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Table 4. Particle breakage factor.

Specimen

Particle Breakage Factor (Bf)

Test Type

1-D Comp. Triaxial

S_W_3C 0.02 0.04
S_O_3C 0.02 0.10
S_R_3C 0.01 0.08
S_D_3C 0.02 0.11

M_W_3C 0.01 0.10
M_O_3C 0.01 0.14
M_R_3C 0.02 0.11
M_D_3C 0.01 0.19
S_W_0C 0.00 0.05
S_O_0C 0.00 0.09
S_R_0C 0.00 0.07
S_D_0C 0.00 0.12

M_W_0C 0.00 0.10
M_O_0C 0.00 0.13
M_R_0C 0.00 0.11
M_D_0C 0.00 0.19

 
(a) 

 
(b) 

Figure 7. SEM micrographs after one-dimensional compression tests at 500× magnification rate:
(a) M_D_0C and (b) M_D_3C.
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In contrast, shearing at p’0 = 3000 kPa caused grain breakage, which varied according
to the molding specimen’s characteristics, suggesting that Bf values ranged from 4% to
19%. The amount of particle crushing was higher when the specimens were molded at a
modified energy (97% or 100% of compaction degree), which is probably related to the
denser packing that favored inter-particle contact [58]. Considering the moisture content,
the specimens compacted on the wet side presented slightly lower Bf values, which is
probably related to the higher degree of lubrication between the particles in this condition.
Moreover, the cement-containing specimens showed marginally higher Bf values than the
uncemented samples compacted at the same density and using the same moisture content.
However, this difference was practically negligible. The after-shearing SEM micrographs
of samples M_D_3C and M_D_0C are presented in Figure 8a and 8b, respectively.

 
(a) 

(b) 

Figure 8. SEM micrographs after triaxial testing at 500× magnification rate: (a) M_D_0C and
(b) M_D_3C. Red circles and arrows represent the grain breakage of the samples.
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It is noticeable that the particles became smaller and slightly more angular owing to
the breakage that occurred during shearing. Again, no differences between the cemented
and uncemented samples can be noticed, indicating that the cement bonds were thoroughly
broken during the 3000 kPa consolidation stage.

6. Concluding Remarks

From the data presented herein and considering the boundaries of the present research,
the following conclusions can be drawn:

• Despite the non-convergent behavior of all samples up to the attained vertical stress
(σ’v = 6400 kPa), as indicated by the different compression index values between the
denser and looser samples, the studied iron ore tailings appear to be non-transitional
since a near-zero m parameter value was obtained. This indicates that fabric-related
differences resulting from various molding conditions (such as compaction degree,
initial moisture content, and cement addition) diminish at higher stress levels during
one-dimensional compression.

• The molding characteristics appeared to have significantly influenced the stress–strain
response of the triaxial tests considering the lowest confining pressure (p’0 = 300 kPa).
At the highest confinement level (p’0 = 3000 kPa), most of the cement bonds were bro-
ken during the consolidation phase, exerting a marginal effect on the shearing phase.

• For lower confinement levels, the cement addition appears to be an interesting option
to enhance the strength and stiffness of the compacted iron ore tailings. Compacting
the samples at the optimum conditions maximizes the top strength. In contrast, the
initial stiffness is enhanced when the compaction is performed on the dry side of the
compaction curve.

• The one-dimensional compression tests did not reveal substantial particle break-
age, regardless of the initial molding characteristics. On the other side, shearing at
p’0 = 3000 kPa generated a considerable grain breakage, particularly in the densest
samples. In this regard, the cement addition appeared to have exerted a marginal
influence concerning preventing particle breakage due to shearing at p’0 = 3000 kPa.

• Despite the differences arising from using distinct compaction characteristics, the
overall volume change response was not profoundly altered by adding cement and
altering the molding moisture content. In other words, all the specimens sheared at
p’0 = 300 kPa initially contracted and then dilated, whereas all the specimens sheared
at p’0 = 3000 kPa contracted.

• The durability of artificially cemented filtered iron ore tailings is relevant for ade-
quately designing and maintaining dry stacking facilities. Particularly those submitted
to harsh environmental conditions. Therefore, it is an exciting topic for future research.
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Notations

γ d dry unit weight
γs unit weight of solids of the iron ore tailings
w moisture content
G initial shear modulus
γ bulk density
1-D one-dimensional
CID consolidated isotropically drained
SEM scanning electron microscope
XRD X-ray diffraction
XRF X-ray fluorescence
IOT iron ore tailings
NCL normal compression line
M modified compaction energy
S standard compaction energy
W wet side
D dry side
O optimum molding conditions
e0 molding void ratio
ec after consolidation, the void ratio
Bf breakage factor
C amount of cement expressed in percentage
Cc compression index
p’ mean effective stress
p’0 initial mean effective stress
q deviatoric stress
qmax peak deviatoric stress
εa axial strain
εv volumetric strain
εs distortional strain
σ’v vertical stress
σ1, σ3 principal stresses
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Abstract: In coal mining, solid backfilling technology is widely used. However, its efficiency is
seriously hindered by the following two factors. Firstly, the process flow of the solid backfilling
operation is more complicated in the back, and the spatiotemporal linkage (SPL) between actions
of the cylinders powering each support and between hydraulic supports in the whole face lacks
continuity. Secondly, the coal mining process in the front has a higher level of intelligence and
technical maturity than the backfilling operation in the back, the latter permanently staying behind
the former. To this end, the present study investigates the SPL of the mining and backfilling operations
for single supports in the working and whole faces. The SPL of cylinder actions is analyzed for
intelligent backfilling using hydraulic supports. We also investigate the SPL of the positions of
each piece of key equipment involved in different steps of intelligent backfilling in the whole face.
Formulas are derived for calculating the time required to complete the cyclic hydraulic support
movement–discharge–filling operation for single supports and the whole face. The key factors
influencing the time required to complete a hydraulic support movement–discharge–filling cycle
are analyzed. On this basis, a backfilling efficiency optimization scheme is proposed. It envisages
reducing the number of tampings and time gaps in actions of single supports and cylinders, increasing
the number of hydraulic supports in parallel operation, and intelligent upgrading of the backfilling
operation. These findings help synchronize coal mining and backfilling operations.

Keywords: intelligent backfilling; mining and backfilling operation; spatiotemporal linkage; parallel
mining and filling

1. Introduction

Due to the tendency to minimize heaps on the surface, solutions are being sought
to manage waste rocks in mining technologies [1–3] both in preparatory excavations and
exploitation systems; studies on the automation of mining and backfilling operations
mainly focus on paste transport and backfilling and cemented backfilling [4]. Solid back-
filling still needs to be fully automated. The research progress in automated backfilling
is reviewed below. For automated paste backfilling, Chang et al. [5] introduced the tech-
nology principles and technological process of paste backfilling mining in coal mines
and discussed the components and features of backfill materials, the constitution of the
backfilling system, and the backfilling process. Qing et al. [6] optimized the transport
process in high-efficiency automated paste filling with double pumps working in paral-
lel by reasonably laying backfill pipelines. For automated cemented backfilling, Dong
et al. [7] utilized a signal transmission network, intelligent instrumentation, and a control
software algorithm to realize fault self-diagnosis and processing for long-distance, large
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diameter backfill pipelines and a fast and precise preparation and control technique for
non-cemented slurry. Shi et al. [8] employed automatic control technology and intelligent
recognition and processing technology for the automated control of cemented backfilling,
improving the tailings backfill quality. Zhang et al. [9] systematically elaborated on an
overall framework for underground intelligent sorting and an in situ backfill for deep coal
mines for solid backfilling and mining–selection–filling processes. They built an overall
research framework and equipment system for underground intelligent sorting and in situ
backfill for deep coal mines. A novel solid backfilling mining technology that integrated
mining, sorting, and backfilling and achieved the original underground gangue’s sorting
and an in situ backfill was proposed in works [10,11] Yao et al. [12] installed support
pressure, angle, stroke, and blanking height sensors to transmit data to the central con-
troller. A control program was used for conditional judgment of the gangue filling rate
and compaction degree, thereby realizing the process flow of gangue backfilling control
automation. Gao et al. [13] studied machine-following automation for fully mechanized
mining hydraulic supports that consisted of three stages: automation of center following,
automation of head following, and automation of tail following. Then, based on the action
flow for hydraulic supports and the motion trajectory of the shearer, the automated process
flow of the machine head and tail following was subdivided into six stages. Liu et al. [14]
proposed a collaborative control technology for the shearer and hydraulic supports in a
fully mechanized working face based on memory cutting performed by the shearer and
automated following control technology for hydraulic supports. Shi et al. [15] analyzed the
process of following automation for hydraulic supports in the middle of the working face
and presented a mathematical model for following automated control in the middle of the
fully mechanized working face.

Despite significant progress achieved in the above studies, the mechanism of spa-
tiotemporal linkages (SPL) of mining and backfilling operations in the solid backfilling
working face in fully mechanized mining remains unclear. A method to quantify the time
required to complete parallel mining and backfilling operations and reduce the time gap
between the two operations to improve the backfilling efficiency is very topical.

To this end, the current study analyzes the SPL of different cylinders involved in
sequential actions for intelligent backfilling using single supports in parallel mining and
backfilling operations in fully mechanized mining. We also investigate the SPL of the
positions of each piece of key equipment involved in different steps of intelligent backfilling
in the whole face. Formulas for calculating the time of a complete hydraulic support
movement–discharge–filling cycle for single supports and the whole face are derived.
The influencing factors of the time required to complete a hydraulic support movement–
discharge–filling cycle are identified. On this basis, we propose an optimization scheme
to improve the backfilling efficiency, which consists in reducing the number of tampings,
reducing the time gaps in the actions of single supports and cylinders, increasing the
number of hydraulic supports in parallel operation, and intelligent upgrading.

2. Evolution of Intelligent Mining and Backfilling Operations in Fully Mechanized
Mining and the Connotation of the Mechanism of SPL

2.1. Evolution of Intelligent Mining and Backfilling Operations in Fully Mechanized Mining

Early mining and backfilling operations have been carried out by manually operating
a hydraulic valve control lever. Along with the applications of electrohydraulic control
technology, there has been an evolution toward automatic filling based on electrohydraulic
control [16,17]. In recent years, intelligent backfilling has emerged due to advances in
intelligent perception and control technology [18–20].

In teams of mining workers involved in mechanized backfilling, each worker usually
operates a filling hydraulic support and observes the field environment with the naked
eye [21]. The workers manually operate the valve lever based on their experiences in
controlling hydraulic valve reversion, stretching out, and drawing back the cylinders.
Common deficiencies of mechanized backfilling technology include the disordered actions
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of cylinders powering single supports and frame supports, prolonged time gap between
cylinder actions (sum of human response time and actuating time), heavy reliance of the
backfilling effect upon subjective experiences, and high labor intensity.

Compared with mechanized solid backfilling, automated solid backfilling involves
an electrohydraulic control system, greatly simplifying manual operations. Processes that
were once accomplished by workers manually operating different valve levers are now
carried out by pushing buttons, which means a higher level of automation. However, there
is still a need for manual observation, decision-making, and manipulation, apart from
the long-standing problems of disordered actions of cylinders powering single hydraulic
supports and frame supports and prolonged time gaps in cylinder actions.

In intelligent solid backfilling mining [22–24], to intelligently control the backfilling
process, travel sensors are often installed on the hydraulic cylinders of backfilling hydraulic
supports to monitor their real-time stroke values. Tilt sensors are installed on the base
and front and rear beams to monitor the tilt angles. Pressure sensors are installed inside
the hydraulic cylinder cavities or at the outlet of the oil supply pipelines to monitor the
loads on the hydraulic cylinders. In addition, to monitor other abnormal conditions in the
backfilling space, computer vision technology can also be used to assist [25]. Furthermore,
for intelligent control of the coal mining process, the relatively mature LASC (Longwall
Automation Steering Committee) [26,27] automated coal mining technology is usually
adopted, and image recognition and other technologies are utilized to assist in improving
the intelligibility of the coal mining process. Various sensors are installed to acquire the
status and position information of hydraulic supports, and the host computer optimizes
the execution sequences for cylinders. The electrohydraulic control system powered by the
host computer executes the cylinder actions. There is no need to stop the shearer or for
human involvement during the operations. Intelligent backfilling optimizes the sequences
of cylinder actions and reduces the time gaps between cylinder actions.

2.2. Connotation of the SPL of Sequential Processes of Intelligent Mining and
Backfilling Operations

The basic principle of SPL of sequential processes of intelligent mining and backfilling
operations is that the mining and backfilling operations are carried out simultaneously
between different frames, whereas either mining or backfilling is carried out within the
same frame at a time [28]. The SPL is defined to determine the spatial sequence of processes
executed by mining and backfilling equipment at different frame positions in the working
face at different nodes of the process flow for a complete cycle that consists of end coal
cutting, central coal cutting, opposite coal cutting, and backfilling operations within a
mining and backfilling footage. The time frame for executing different steps of the mining
and backfilling processes should be determined for a specific frame position, including coal
cutting, push-pull, support moving, dumping, tamping, operation of the perforated bottom
discharge scraper conveyor, and operation of the self-moving redoming conveyor. The time
sequence of steps of a specific process executed by an actuator should be established. Based
on the above, one can define the mechanism of SPL for the automated organization of
the mining and backfilling operations. Then, by incorporating the automated coal mining
process, one can design the automated process flow of the whole mining and backfilling
operations. Finally, intelligent upgrading of solid backfilling mining is carried out to
improve the backfilling efficiency, which can resolve the difficulty in parallel operations in
conventional mechanized solid backfilling mining technology.

3. Spatiotemporal Linkage between Different Steps of Intelligent Backfilling
Operation Using Single Hydraulic Supports

3.1. Division of Sequential Actions of Filling Using Single Hydraulic Supports

In the solid backfilling working face, the roof is supported by the solid backfilling
mining hydraulic support (SBMHS). The front space is used for coal mining, and the rear
space is used for backfilling. The gangue materials used for filling are transported by the
belt conveyor for transporting gangue from the tail gate to the backfilling scraped conveyor,
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and then dumped to the gob area and then compacted densely by the tamping mechanism
of the SBMHS [29], as shown in Figure 1.

 

Figure 1. Schematic diagram of solid backfilling material transportation in working face.

The mining and filling actions executed by the SBMHS are realized by stretching
out and drawing back each hydraulic cylinder. A typical cylinder configuration of the
hydraulic support is shown in Figure 2, where the front and rear columns, cylinders, and
various types of jacks are all hydraulic jacks.

Figure 2. Schematic diagram of the cylinder configuration of the backfilling mining hydraulic support.

The names of the hydraulic cylinders No.1–15 in Figure 2 are 1. front column; 2. rear
column; 3. bottom-lifting jack; 4. bottom-adjustment jack; 5. push jack; 6. equilibrium
jack; 7. first-level protection jack; 8. secondary protection jack; 9. hydraulic support
telescopic beam jack; 10. front roof beam-side push jack; 11. rear roof beam-side push jack;
12. expansion jack of the backfilling scraped conveyor; 13. discharge jack of the backfilling
scraped conveyor; 14. swing beam jack; 15. compaction jack.

To analyze the SPL of the backfilling operation, the backfilling operation is first subdi-
vided into the following four processes: (i) hydraulic support motion process, (ii) hydraulic
support adjusting process, (iii) dumping process, and (iv) tamping process. The cylinders
involved in each process and their functions are listed in Table 1.
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Table 1. Functionality list of cylinders of the four-column, four-bar linkage backfilling mining
hydraulic support.

Serial No. Process Specification Number Functions

1

Hydraulic support
motion process

Front column 2 Lift the support canopy

2 Rear column 2 Lift the support canopy

3 Bottom-lifting jack 1 Lift the bottom up during support
movement to facilitate the movement

4 Bottom-adjustment jack 2
Maintain a proper distance between the

supports, and adjust the bottom as
appropriate during support movement

5 Push jack 1 Pull the support

6

Hydraulic support
adjusting process

Equilibrium jack 2 Adjust the support pose so that the
canopy is better connected to the roof

7 Hydraulic support
first-level protection jack 2

Drive the first-level face guard to protect
the coal walls and prevent rib spalling.

Retrieve the jack before the shearer passes
through and stretch out again to protect

the coal walls after the shearer
passes through

8 Hydraulic support
secondary protection jack 1

Drive the secondary face guard to protect
the coal walls and prevent rib spalling.

Retrieve the jack before the shearer passes
through and stretch out again to protect

the coal walls after the shearer
passes through

9 Hydraulic support
telescopic beam jack 2

After the coal cutting and before support
pulling, drive the telescopic beam to

stretch out and temporarily support the
roof; retrieve the telescopic beam during

support pulling

10 Front roof beam-side push
jack 2 Front roof beam stretches out and

retrieves the mobile side guard

11 Rear roof beam-side push
jack 3 Rear roof beam stretches out and retrieves

the mobile side guard

12

Dumping process

Expansion jack of
Backfilling scraped

conveyor
1 Pull the filling conveyor, fulfilling similar

functions as the push jack

13
Expansion jack of

Backfilling scraped
conveyor

1 The backfilling scraped conveyor dumps
the backfill material

14
Tamping process

Swing beam jack 2 Adjust the angle of the tamping
mechanism

15 Compaction jack 1 Make the backfill material compact

The hydraulic support motion process refers to a series of actions moving the hydraulic
support forward. After the shearer has finished coal cutting, the support is moved forward
to cover the exposed roof seam to ensure mining space safety. The front and rear columns
are intended to lift the support canopy up and down. The columns lift the support canopy
to cover the coal seam roof to ensure mining space safety. The bottom-lifting jack reaches
out to lift the bottom during support movement, thereby reducing the contact area between
the support bottom and the coal seam floor. This further reduces the frictional resistance
to support movement and facilitates movement. The bottom-lifting jack is intended to
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maintain a proper distance between the supports. During support movement, the bottom
spacing should be adjusted as appropriate. The push jack is used for pulling the support so
that the support slides forward. The support movement process consists of the following
steps: push jack (push-pull) → lift the front and rear columns by hydraulic operation →
bottom-lifting jack → the bottom-lifting jack makes adjustments → push jack (pull the
support) → the bottom-lifting jack makes adjustments → bottom-lifting jack→front and
back columns rise. A flowchart of the cylinder actions for the hydraulic support motion
process is depicted in Figure 3.

 
Figure 3. Flowchart of cylinder actions for the hydraulic support motion process.

It needs to be noted that the numbers in Figures 3 and 4 correspond to the serial
numbers (Serial No.) in Table 1, representing the columns or jacks participating in the
current process action. In addition, the text in blue font within the rectangular boxes is used
to emphasize the movement direction of the columns or jacks, while the text in blue font
within the diamond-shaped boxes represents the judgment logic of whether the process
can enter the next step.

Adjustment refers to adjusting support positions, once before and once after the
hydraulic support motion process. The equilibrium jack adjusts support positions so that
the canopy is better connected to the roof. The first-level and secondary face guards are
intended to protect the coal walls and prevent rib spalling. They are retrieved before
the shearer passes through and stretched out again to protect the coal walls after the
shearer passes through. The hydraulic support telescopic beam jack drives the telescopic
beam to stretch out and temporarily support the roof after coal cutting and before support
pulling; it retrieves the telescopic beam during support pulling. The front and rear roof
beam-side push jacks are used to stretch out and retrieve the mobile side guards. The
hydraulic support adjusting process involves the sequential actions of the following jacks:
equilibrium jack → first level protection jack → secondary projection jack → front and rear
roof beam-side push jacks → telescopic beam jack.

Dumping refers to the orderly discharge of solid backfill material from the backfilling
scraped conveyor. The expansion jack of the backfilling scraped conveyor is used to pull
the filling conveyor in the back before the support moves to enter the support-moving state.
After the support is made straight in the working face, the expansion jack pushes the filling
support to the back to enter the dumping state. The discharge jack of the backfilling scraped
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conveyor is used to open the discharge port and dump the backfill material. The dumping
process consists of the following steps: the rear roof beam-side push jack pushes backward,
the discharge jack of the backfilling scraped conveyor starts working, the discharge jack
of the backfilling scraped conveyor stops working, and the rear roof beam-side push jack
pulls forward.

The tamping process refers to the push and compaction of the solid backfill material
so that the backfill material is tightly connected to the roof and becomes compacted [25,26].
The swing beam jack is used to adjust the angle of the tamping mechanism. The compaction
jack is used to compact the backfill material. Cyclic compaction is carried out to have the
solid backfill material in full and tight connection to the roof and become compacted,
thereby achieving a satisfactory backfilling effect. The tamping process involves the se-
quential actions of the following jacks: compaction jack → swing beam jack → compaction
jack → swing beam jack. A flowchart of the cylinder actions for the tamping process is
shown in Figure 4.

(14)Compaction 
jack extends

(14)Compaction 
jack retracts

(15)Compaction jack (14)Swing beam jack

Figure 4. Flowchart of cylinder actions for the tamping process.

3.2. Theoretical Analysis of the Actuation Time of Sequential Actions of the Backfilling Operation
Using Single Hydraulic Supports

The complete support movement–discharge–filling cycle for a single hydraulic support
consists of the following: adjusting process, motion process, adjusting process, dumping
process, and tamping process. The time needed to complete the cyclic operation is derived
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ts = 2Ta + Tm + Tu + Tc

Ta = Ta f + na
Tr
λ

Tm = Tm f + nm
Tr
λ

Tu = Tu f + nu
Tr
λ

Tc = n · (Tc f + nc
Tr
λ

)
(1)

where Ts is the time required for a single support to complete the entire cycle; Ta is the time
required to complete the adjusting process; Tm is the time required to complete the motion
process; Tu is the time required to complete the dumping process; Tc is the time required
to complete the tamping process; Ta f is the total actuating time of cylinders to complete
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the adjusting process; Tm f is the total actuating time of cylinders to complete the motion
process; Tu f is the total actuating time of cylinders to complete the dumping process; Tc f is
the actuating time of cylinders to complete tamping once; Tr is the time gap in the actions
of the cylinders to complete mechanized processes, that is, the human response time; n is
the number of tampings completed by the tamping mechanism in one cycle; na, nm, nu, and
nc are numbers of connections between cylinder actions to complete the adjusting, moving,
dumping, and tamping processes, respectively; and λ is the intelligence index; the higher
the index is, the higher the intelligence level.

For the entire working face, the complete work cycle time of the working face is
affected by many factors such as the working face length, coal seam mining height, shearer
cutting depth, and the number of supports for parallel operations. For a single hydraulic
support, different mining parameters of the working face will lead to changes in the time
for the hydraulic support to execute the step actions. The larger the shearer cutting depth,
the longer the moving support step takes. The greater the mining thickness, the longer the
unloading and tamping steps take. For the entire working face, the longer the working face
length, the more hydraulic supports there are, and the longer the complete work cycle time.
In addition, given the complexity of underground mining conditions, the actuating time of
cylinders in any single hydraulic support varies in the same working face. The speed of
cylinder action is related to the oil pump pressure and the number of cylinders operating
simultaneously in unit time. Therefore, when using the above formulas for calculation,
the mining parameters of the working face and the structural parameters of the hydraulic
supports need to be considered.

During the field measurement at the Xingdong Mine, the actuating time of a four-
column, four-bar linkage backfilling mining hydraulic support was averaged. The results
were used for a quantitative analysis of the actuating time of the cylinders and the time
gaps between cylinder actions. The action sequence of the cylinders is optimized. The time
sequence of the actions of all cylinders in a complete process cycle for a single support is
designed, as shown in Figure 5.

Figure 5. Time sequence of all actions of the cylinders involved in a complete hydraulic support
movement–discharge–filling cycle for a single support.
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In Figure 5, the different colors of rectangles in the same row represent that the
movement directions of the corresponding columns or jacks are different.

It can be seen from Figure 5 that the total actuation time Tm f of the cylinders involved
in the support motion process is 60 s; the number na of connections between cylinder actions
is 8. The total actuation time Ta f of the cylinders involved in the support adjustment process
is 40 s; the number nm of connections between cylinder actions is 12. The total actuating
time Tu f of the cylinders in the dumping process is 35 s, and the number nu of connections
between cylinder actions is 3. For the dumping process, the tamping mechanism should
execute the tamping actions n times to achieve a satisfactory effect. The actuation time Tc f
of the cylinder for each tamping is 45 s. For this process, the number nc of connections
between cylinder actions is 3, the total time of the tamping process is 45 times n s, and the
number of connections between cylinder actions is 3 times n.

From the system of Equation (1), the time required to complete a mining and backfilling
cycle for a single solid filling support in mechanized operation is derived as follows:

TS = 175 + 31Tr + (45 + 3Tr) · n (2)

The time required to complete a mining and backfilling cycle for a single solid filling
support in automated operation is given by Formula (3):

TS = 175 + 31
Tr

λ
+ (45 + 3

Tr

λ
) · n (3)

In theory, the intelligent solid backfilling process does not require human participation.
That is, at λ = +∞, the time gap between cylinder actions approaches 0 s. Hence, the time
required to complete a mining and backfilling cycle for intelligent operation is given by
Formula (4):

TS = 175 + 45n (4)

It can be deduced from Formulas (2)–(4) that the time required to complete an intel-
ligent operation cycle for single support is only directly proportional to the number of
tampings. However, for mechanized and automated operations, the time to complete an
operation cycle for single support is directly proportional to the time gaps between cylinder
actions and the number of tampings. We then optimize the time sequence of cylinder
actions so that the cylinders can operate in parallel, reducing the number of tampings and
improving the intelligence level of the supports. This way, one can reduce the time required
to complete a mining and backfilling cycle.

4. SPL between Different Steps of Intelligent Mining and Backfilling Operations for
the Whole Face

4.1. Division of Sequential Actions of the Intelligent Backfilling Operation for the Whole Face

The overall cycling operation time of the backfilling working face includes the cycling
time of coal mining and backfilling operations. The coal mining by the coal shearer can
be considered as a continuous operation. The time it takes is relatively short compared
with the hydraulic support motion process, hydraulic support adjusting process, dumping
process, and tamping process. Therefore, the cutting depth and mining height of the coal
shearer have little impact on the sequential operation time of the solid backfilling working
face. However, the length of the working face is the main factor affecting the cycling
operation time. It determines the advance length that can be achieved daily. According
to the working face length and the cycling operation time of the backfilling process, three
shifts of production (18 h) are usually arranged per day with one shift for maintenance
(6 h) or two shifts for production (16 h), with one shift for maintenance (8 h). Therefore, the
maximum shutdown time, i.e., maintenance time, of the backfilling working face per day is
6–8 h. The daily advance length that can be achieved is mainly determined by the cycling
time of the backfilling process.

264



Appl. Sci. 2023, 13, 12298

For the whole backfilling working face, the optimal operation implies achieving paral-
lel, autonomous execution of the mining and filling processes through the shearer, scraper
conveyor, hydraulic supports, and perforated bottom discharge scraper conveyor. For
this purpose, one should ensure that the equipment and mechanisms executing different
mining and filling processes do not interfere with each other and fulfill specified func-
tions in a spatially and temporally organized manner. The spatial sequence refers to an
appropriate spatial alternation of processes executed by different equipment at different
frame positions in the working face. Temporal sequence refers to the chronological order
of specific processes involving different mechanisms within a specific frame, which are
organized temporally to complete the mining and backfilling operations. Based on the
above principles, this study designed the cyclic parallel mining and backfilling operations
in the fully mechanized mining face, as shown in Figure 6.

 

Figure 6. Illustration of the cyclic parallel mining and backfilling operations in the intelligent
backfilling face.

It is easy to see that the operation cycle is divided into distinct stages. Representative
time points demarcating different stages are chosen as the benchmarks for analysis: 23:52
(end-oblique cutting knife stage), 00:14 (cutting triangular coal stage), 00:32 (end-brake
bottom coal-cleaning stage), and 01:13 (central coal-cutting stage). Over the longitudinal
section of the working face, we can divide the mining and intelligent solid backfilling
operation cycle into four distinct stages. Thus, we obtain the relationship between the
spatial positions of the equipment executing the corresponding processes at different stages,
as shown in Figure 7.
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(a) 

 
(b) 

 
(c) 

Figure 7. Cont.
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(d) 

Figure 7. Relationship between spatial positions of the mining and backfilling equipment execut-
ing corresponding processes at different stages in the working face, (a) end-oblique cutting knife
stage, (b) cutting triangular coal stage, (c) cutting residual triangular coal at the bottom, (d) central
coal-cutting.

(1) End-oblique cutting knife stage: When the shearer moves to the end of the working
face, the hydraulic support behind it follows the shearer and moves to the position
of the rear drum. The scraper conveyor follows accordingly, and a curved segment
for oblique knife-cutting is formed at the end. The shearer moves reversely, obliquely
cutting the coal bodies ahead via the curved segment. As the end-oblique cutting
knife stage is completed, the backfilling operation is orderly. The perforated bot-
tom discharge scraper conveyor dumps the backfill material in groups, followed by
tamping by the tamping mechanism.

(2) Cutting triangular coal stage: Following the end-oblique cutting knife stage, the
supports, located from the end of the working face to the position of oblique knife
cutting, push the scraper conveyor forward to form a straight line. The shearer moves
in the reverse direction, cutting the triangular coal left by oblique knife cutting. The
backfilling operation is conducted in an orderly manner. The perforated bottom dis-
charge scraper conveyor dumps the backfill material in groups, followed by tamping
by the tamping mechanism.

(3) End-brake bottom coal cleaning: After the shearer returns to cut triangular coals, the
front drum drops down, cutting the triangular residual coal equal in length and height
to the shearer’s body. The backfilling operation is conducted in an orderly manner.
The perforated bottom discharge scraper conveyor dumps the backfill material in
groups, followed by tamping by the tamping mechanism.

(4) Central coal-cutting stage: The front drum of the shearer is lifted to cut the coal bodies
in the reverse direction. The hydraulic supports behind the shearer follow, and the
scraper conveyor is pushed accordingly. The backfilling operation is conducted in
an orderly manner. The perforated bottom discharge scraper conveyor dumps the
backfill material in groups, followed by tamping by the tamping mechanism.

4.2. Theoretical Analysis of the Time of Cyclic Backfilling Operation for the Whole Face

The total time of cyclic operation in the whole face is the sum of the time required to
complete the cycle for all supports. Since several supports can operate in parallel, the total
time for the cyclic operation in the working face can be estimated as follows:{

Tw = L
NA (Ts + TR)

TR= 3Tr
(5)
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where Tw is the total time of cyclic operation in the whole face; L is the length of the working
face; N is the number of supports in parallel operation; A is the distance between support
centers; and TR is the time gap between supports.

The time required for a complete operation cycle for mechanized solid backfilling can
be assessed from Formulas (2) and (5), yielding Equation (6), while that for automated solid
backfilling is obtained from Equations (3) and (5), yielding Equation (7):

Tw =
L

NA
[175 + 34Tr + (45 + 3Tr) · n] (6)

Tw =
L

NA

[
175 + 34

Tr

λ
+ (45 + 3

Tr

λ
) · n

]
(7)

For intelligent solid backfilling, the time gap Tr in cylinder actions approaches zero,
and the time gap TR for supports also approaches 0 s. Combining Formulas (4) and (5), we
estimate the time required for a complete operation cycle for intelligent solid backfilling, as
given by Formula (8):

Tw =
L

NA
(175 + 45n) (8)

If the length of the working face and the distance between support centers are fixed,
the time required for a complete cycle of automated solid backfilling is directly proportional
to the time gap in cylinder actions and the number of tampings. It is inversely proportional
to the number of parallel operations and intelligence level supports. For intelligent solid
backfilling, the time required to complete an operation cycle is irrelevant to the time gap
in cylinder actions but directly proportional to the number of tampings and inversely
proportional to the number of supports in parallel operation.

5. Analysis of Key Factors Influencing the Cyclic Operation Time

For the time for cyclic operation for intelligent solid backfilling, the influencing factors
include geological conditions, working face layout, filling equipment and processes used,
backfill material, and intelligence level.

When the integrity of the roof strata in the working face is poor or causes the rear
beam of the SBMHS to rotate and sink, and the caving of roof rocks into the goaf reduces
the space available for backfilling operations, it will lead to increased interference between
the tamping mechanism and the backfilling scraper conveyor, resulting in an increased
number of connections for the tamping cylinder. In addition, an uneven roof will increase
the time for the hydraulic support adjusting process [30].

With the constant geological conditions, working face layout, and filling equipment,
we can shorten the time of the operation cycle by upgrading the intelligence level and
optimizing the processes. We change the parameters of the filling technology to analyze the
influence of upgrading the intelligence level and optimizing the processes on the backfilling
efficiency. The filling process parameters include the following: time gap in cylinder actions,
number of tampings, number of supports in parallel operation, and intelligence index.

Univariate analysis was performed, and the values of the parameters were preset as
follows: length of the working face of 58 m, distance between support centers of 1.5 m,
number of supports of 39, and time gap in cylinder actions of 5.0 s; the number of tampings
required to achieve a satisfactory filling effect was 10; the number of supports in parallel
operation was 3; and the intelligence indices of the mechanized, automated, and intelligent
operations were 1, 2, and ∞, respectively.

5.1. Time Gaps in Cylinder Actions

The actuation time of the cylinder is related to the pump pressure. The greater the
pressure, the faster the cylinder expansion and the shorter the actuation time of the cylinder.
Under a given pressure, the time required for a complete operation cycle can be reduced by
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minimizing the time gap in cylinder actions. The relationship between the two is plotted in
Figure 8.

Figure 8. Relationship between the time of cyclic operation and time gap in cylinder actions.

It can be seen in Figure 8 that for mechanized and automated solid backfilling op-
erations, the time of cyclic operation is directly proportional to the time gap in cylinder
actions. However, for intelligent operation, the time gap in cylinder actions approaches zero.
When the time gap in cylinder actions is 5 s, the times of cyclic operation for mechanized,
automated, and intelligent solid backfilling technologies are 3.13, 2.52, and 1.92 h, respec-
tively. Compared with mechanized backfilling, the backfilling efficiency of automated and
intelligent operations is improved by 19% and 39%, respectively.

5.2. Number of Tampings

The number of tampings has a significant impact on the backfilling efficiency. However,
if the number of tampings is low and the total time required for completing one intelligent
operation cycle is short, one has to improve the cohesiveness of the backfill material to
meet the requirements for the compaction ratio. The relationship between the time of cyclic
operation and the number of tampings is plotted in Figure 9.

As shown in Figure 8, the time of cyclic operation was directly proportional to the
number of tampings for all three backfilling operations. When the number of tampings is 5,
the times of cyclic operation for mechanized, automated, and intelligent solid backfilling
technologies are 2.15 h, 1.67 h, and 1.20 h, respectively. Compared with mechanized filling,
the backfilling efficiency of automated and intelligent operations is improved by 22% and
44%, respectively.

5.3. Number of Supports in Parallel Operation

The higher the number of supports in parallel operation per unit time and the higher
the number of cylinders in simultaneous operation, the shorter the time of cyclic operation.
Intelligent solid backfilling technology can optimize the action sequences of cylinders and
single supports and increase the number of supports in parallel operation. The relationship
between the time of the cyclic backfilling operation and the number of supports in parallel
operation is plotted in Figure 10.
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Figure 9. Relationship between the time of cyclic operation and the number of tamping.

 
Figure 10. Relationship between the time of the cyclic backfilling operation and the number of
supports in parallel operation.

It can be seen in Figure 9 that the time of cyclic operation in the three backfilling
techniques is hyperbolically related to the number of supports in parallel operation. When
the number of supports in parallel operation is 4, the times of cyclic operation in the three
backfilling techniques are 2.35, 1.89, and 1.43 h, respectively. Compared with mechanized
filling, the backfilling efficiency of automated and intelligent operations is improved by
20% and 39%, respectively.
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5.4. Degree of Intelligence

The higher the intelligence level, the less human participation in observation, decision-
making, and manipulation; therefore, the shorter the time gaps in actions of cylinders
and supports. In addition, all actions are regulated by the intelligent control of the master
computer throughout the operations. The execution of actions is controlled by the hydraulic
support electrohydraulic control system, thereby reducing the number of workers required
at the working face and improving the overall efficiency. For the above reasons, the time of
cyclic operation is the shortest for intelligent solid backfilling. The relationship between
the time of cyclic operation and the intelligence index is plotted in Figure 11.

It can be deduced from Figure 11 that the time of cyclic operation in mechanized and
intelligent solid backfilling technologies is irrelevant to the intelligence index. However, the
time of cyclic operation in automated solid backfilling technology is inversely proportional
to the intelligence index. At an intelligence index of 4, the times of cyclic operation
for mechanized, automated, and intelligent solid backfilling technologies are 3.13, 2.22,
and 1.92 h, respectively. Compared with mechanized filling, the backfilling efficiency of
automated and intelligent operations is improved by 32% and 39%, respectively.

Figure 11. Relationship between the time of cyclic operation and the intelligence index.

6. Efficiency Analysis of Intelligent Solid Backfilling Mining

6.1. An Overview of the Case Study’s Filling Working Face

A case study was performed for the #11233 filling working face of Xingdong Mine,
China, operated by Jizhong Energy Resources Co., Ltd. In the case study, the average dip
angle of the #2 coal seam under exploitation in the #11233 filling working face was 8◦ and
the bulk density was 14.8 KN/m3. The old roof was composed of fine sandstone with an
average thickness of 6.8 m. The direct roof comprised sandy mudstone with an average
thickness of 3.9 m. The direct floor was siltstone with an average thickness of 0.6 m. The
working face was 58 m long, with a mining height of 4.4 m. The distance between support
centers was 1.5 m. A total of 39 hydraulic supports were involved, and the step length
of advance was 0.7 m. The time gap in cylinder actions was 5.0 s. A satisfactory filling
effect was achieved with ten tampings, three supports used in parallel operation, and the
intelligence index of 1.

6.2. Backfilling Efficiency Analysis and Optimization Plan
6.2.1. Efficiency Analysis

In Figure 12, the time of cyclic operation with ten tampings for mechanized solid
backfilling was treated as the benchmark. Next, we studied the variations in backfilling
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efficiency for this working face under different numbers of tampings for different mining
technologies. As the number of tampings increased, the backfilling efficiency dropped
linearly for all three backfilling techniques.

Figure 12. Variation of backfilling efficiency in the three mining technologies under different numbers
of tamping.

Compared with mechanized solid backfilling, the backfilling efficiency of the intelli-
gent and automated solid backfilling technologies with ten tampings increased by 39% and
19%, respectively, while those with three tampings increased by 71% and 57%, respectively.
As seen in Figure 10, when the number of tampings was reduced from ten to three, the
backfilling efficiency of mechanized solid backfilling increased by 44%.

The number of underground workers, time of cyclic operation for single support, time
of cyclic operation for the whole face, and backfilling efficiency of the three solid backfilling
technologies are compared and summarized in Table 2.

Table 2. Comparison of different parameters of the three technologies under study.

Type
Technology

Mechanized Automated Intelligent

Number of workers required for each shift (workers) 20–30 15–20 7–10

Time of cyclic operation for a single support (min) 20–35 10–20 5–10

Time of cyclic operation for the whole face (h) 3.5–5.0 2.0–3.5 1.0–2.0

Backfilling efficiency Moderate Improve efficiency
by 20%

Improve efficiency by
40–80%

Interference and adjustment Manual Manual Automated

Electrohydraulic control system No Yes Yes

Intelligent system No No Yes

6.2.2. Recommended Actions for Optimizing the Backfilling Efficiency

According to the performed analysis of Figure 11 and Table 2, reducing the number
of tampings drastically improves the backfilling efficiency. The backfilling material used
in working face #11233 is underground sorted gangue, which sources from various coal
mining working faces. After sorting, its particle size becomes below 200 mm. The particle
size gradation still needs to be optimized. We recommend the following measures to
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improve the backfilling efficiency: change the mix ratio of the backfill material, improve
the material’s cohesiveness, increase the natural angle of repose, and reduce the number
of tampings.

The second direction is intelligent upgrade and transformation, which is underway
in the case study site. Before the intelligence upgrade, workers were involved in many
operation steps in the #11233 filling working face. The backfilling efficiency was greatly
improved through intelligence upgrading and by increasing the number of supports in
parallel while reducing the time gaps in the actions of cylinders and supports.

7. Conclusions

The results obtained in this study made it possible to draw the following conclusions:

(1) Based on the spatiotemporal linkage (SPL) of the mining and backfilling operations for
single supports, the operations were divided into four processes involving cylinder
actions for single support: support motion, support adjusting, dumping, and tamping.
Theoretical formulas for calculating the actuation time of single support in the three
solid backfilling technologies were derived and further validated via a case study.

(2) The SPL of different mining and backfilling processes in the whole face for intelligent
parallel operations was studied. The intelligent solid backfilling operation for the
whole face was subdivided into four distinct stages. We further presented the theoret-
ical formula for estimating the time of cyclic operation for the whole face in the three
mining technologies.

(3) The influence of key factors on the time of cyclic operation of three backfilling tech-
niques was analyzed. It is concluded that the time of cyclic operation is positively
correlated with the time gap between hydraulic cylinder actions and the number
of tampings; it is hyperbolically correlated with the number of supports in parallel
operation and the intelligence index. Moreover, reducing the number of tampings,
increasing the number of supports in parallel operation, and the intelligence index
can significantly improve the backfilling efficiency.

(4) A case study was performed for the #11233 filling working face of Xingdong Mine,
China, operated by Jizhong Energy Resources Co., Ltd. Keeping other parameters
unchanged, by adopting the optimized method of grain diameter grading of back-
filling materials to reduce the number of tampings to 3 times and increasing the
number of parallel supports to 4, with the intelligence index being 1, the backfilling
efficiency can be increased by 39%. The improvement of backfilling efficiency is the
most significant. It has great significance for improving production capacity, reducing
staff, and improving efficiency and safety of the backfilling working face.
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Abstract: This paper analyzes the typical technical problems arising from dumping and tamping
collision interferences in the working faces of conventional mechanized solid backfilling mining
(SBM). Additionally, the technical and consecutive characteristics of the solid intelligent backfilling
(SIB) method, the execution device, and the corresponding process categories of the SIB process
are analyzed. A design for an SIB process flow is presented. Critical algorithms, including auto-
matic recognition and optimization planning based on the cost function and laying the algorithm
foundation, are proposed to develop a backfilling process control system. A joint simulation test
system is built on a MATLAB/Simulink simulation toolkit (MSST) to simulate and test the optimized
algorithms. The results show that the optimized algorithm can realize the automatic optimization
planning and automatic interference-recognition adjustment of the backfilling process under actual
engineering conditions. In conclusion, this paper analyzes typical technical problems in the conven-
tional backfilling process, designs the SIB process flow, and develops key algorithms to achieve the
automatic control of the backfilling process.

Keywords: solid intelligent backfilling; joint simulation; interference recognition

1. Introduction

With the state’s active promotion of intelligent coal mine construction [1,2] and the
development of intelligent mines [3,4], the intelligent advancement of backfilling mining
technology was also in full swing [5,6], and intelligence was the prevalent direction of
future backfilling mining development.

The existing backfilling methods, such as tailings and cemented backfilling, based on
industrial pumps and the pipeline transportation of cementitious materials, achieved a
significant development in intelligent research and initially achieved intelligent control
of the backfilling material, key parameters, and core processes [7,8]. However, the SBM
method was based on the collaborative control of backfilling hydraulic support and a
perforated bottom discharge scraper conveyor, and the difficulty lay in the high number of
key parameters and intricate core procedure. Despite the application of electrohydraulic
control technology in mechanical devices, full autonomy in the mining and backfilling
processes was yet to be achieved. Consequently, intelligent research currently mainly
focuses on device and process improvements, and the degree of its intelligence is gradually
increasing with the development of technology.

In the research of intelligent mining’s internal logic and operation mode, the research
team of Wang et al. [9–11] designed a set of coal mine top-level system frameworks based
on integrating intelligent management and control. Huang [12] constructed a logical
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architecture centered on the “sensing, decision-making, execution and operation and
maintenance” quadrants that could preliminarily realize the demand for intelligent and
automatic mining. In the research on simulating intelligent mining devices, Liu et al. [13]
proposed a method for establishing a digital twin model of equipment at a fully mechanized
mining face. The study also conducted a simulation analysis of the fully mechanized mining
process. Wang et al. [14] designed a virtual simulation system for solid backfilling hydraulic
support (SBHS) based on Unity3D. The system utilized Unity3D to simulate the motion
of the support. Yuan et al. [15] used MATLAB software (https://ww2.mathworks.cn/en/
products/matlab.html (accessed on 10 October 2023)) to perform a kinematic simulation of
a shielded hydraulic support. In terms of hydraulic support control algorithm development
and testing, Tian et al. [16] combined BP neural network algorithms with PID control
algorithms to achieve an online adjustment of PID parameters, improving the response
speed and control accuracy of the hydraulic cylinders. Meng et al. [17] designed and
built an emulsion/pure-water hydraulic cylinder precision push experiment platform that
could complete eccentric loads, lateral loads, and other experiments on hydraulic cylinders,
providing an experimental platform for the precise control of hydraulic cylinders and the
coordinated control of hydraulic cylinder clusters.

The abovementioned literature mainly focuses on the automation and intelligence of
fully mechanized mining equipment, while the research on the automation and intelligence
of SBM technology is still limited and needs further investigation.

This paper analyzes the key links of the conventional mechanized backfilling process,
clarifies the process organization requirements of the SIB working face, and designs the
autonomous execution process of the coal mine SIB process flow. Based on the motion and
positional constraint relationships between hydraulic support mechanisms, it develops
algorithms for machine interference identification and tamping path planning to design an
SIB process flow. It builds an SIB model simulation testing system to test and preliminarily
validate the reliability of the algorithms.

2. Design for Solid Intelligent Backfilling Mining Process

2.1. Issues in the Execution of Dumping and Tamping Process

Backfilling technology can be divided into two stages: dumping and tamping. Firstly,
the working face is filled to complete the front part of the coal cutting. The coal scraper
conveyor is then pushed, followed by moving the frame and pushing the back part of
the perforated bottom discharge scraper conveyor. The working face is filled straight at
this point, and the backfilling technology can be executed. There are two typical kinds of
pose interferences in the process [18]; one is dumping interference, which occurs when the
tamping device is buried during the unloading of backfilling material from the middle slot
of an open skylight in the dumping process, as shown in Figure 1.

Figure 1. Dumping process interference.

The other one is collision interference, where the tamping device collides with the
perforated bottom discharge scraper conveyor during the tamping process, as shown in
Figure 2.
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Figure 2. Tamping process interference.

2.2. The Solution for the Interference of Dumping and Tamping Processes

From the abovementioned analysis, it is evident that achieving the automatic control
of fully mechanized coal mining solid backfilling technology is challenging due to the
problems of dumping and collision interferences. Therefore, there is an urgent need to
develop SIB technology with interference prediction and the automatic adjustment of the
mechanism’s movement. Before performing the tamping process, it must be ensured that
there is a suitable dumping clearance distance between the tamping device of the SBHS and
the perforated bottom discharge scraper conveyor to ensure that the backfilling materials
fall into the backfilling space. During the tamping process, it must be ensured that the
SBHS tamping device is properly positioned concerning the perforated bottom discharge
scraper conveyor during the movement of the tamping device. Therefore, it is essential to
develop an “interference-recognition algorithm” [19,20] to achieve the abovementioned
function. By analyzing the relationship between the dumping and tamping processes, an
SIB process flow without human intervention was designed, as shown in Figure 3.

 
Figure 3. Solid intelligent backfilling process flow.
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3. Interference Automatic Recognition and Tamping Path Planning

3.1. Interference Criticality Solving and Interference Automatic-Recognition Method

The SBHS tamping device is a two-degree-of-freedom structure [21], a rotating pair
between the base and tamping device, and a moving pair between the primary and sec-
ondary tamping devices. A coordinate system was established to obtain the transformation
relationship between the tamping device’s head coordinates, tamping angle, and tamping
path, as shown in Figure 4.

Figure 4. Interference critical analysis.

In Figure 4, BC and DC represent the bottom and rear boundaries of the perforated
bottom discharge scraper conveyor, respectively; EM is the centerline of the dumping port
of the perforated bottom discharge scraper conveyor [22,23]; L0 is the unextruded length of
the tamping device, mm; L is the tapping path, mm; q1 is the tamping angle, ◦; A(x,y) is the
tamping head path function; x is the abscissa of the tamping head; y is the ordinate of the
tamping head.

The kinematic equation establishment of the tamping device is as follows:⎧⎨⎩
x = L · cos(q1)
y = L · sin(q1)
L = L + L0

(1)

It is evident that to prevent any dumping interference in the dumping process, the
tamping head coordinate must be positioned to the left of the EM straight-line portion
before commencing the dumping. Therefore, the left side of the EM straight-line portion
can be defined as the dumping non-interference area.

Similarly, during the execution of the tamping process, to prevent the collision inter-
ference between the tamping device and the bottom of the perforated bottom discharge
scraper conveyor when the tamping device extends, it is only necessary to ensure that
the tamping head coordinate is beneath the BC straight-line portion. When retracting the
tamping device, it is necessary to ensure that the tamping head ordinate is smaller than the
BC straight-line ordinate to avoid collision interference between the tamping device and
the rear side of the multi-space perforated bottom discharge scraper conveyor, especially
when the tamping head abscissa is higher than or close to the CD straight-line abscissa.
For this reason, the area where the BC straight line rotates around point C to CD can be
defined as the tamping non-interference area. Based on the abovementioned principles, an
SIB process interference automatic recognition and regulation algorithm was designed, as
shown in Figure 5.
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Figure 5. Automatic recognition and regulation algorithm of SIB process interference.

In Figure 5, L is the tamping path, mm; q is the tapping angle, ◦; YA is the ordinate
value of the tamping head; XA is the abscissa value of the tamping head; YlBC is the
ordinate value of the BC straight-line portion; XlDC is the abscissa value of the straight-line
DC; XlEM is the abscissa value of the EM straight-line portion; Δq is the increment of the
cyclic tamping angle adjustment, ◦; Lmax is the maximum tamping path, mm; nmax is the
maximum number of cycles required for user-defined and designed tamping processes;
and qi is the tamping angle of the i-th tamping, ◦.

The left part of Figure 5 displays the automatic recognition and regulation algorithm of
the dumping process, while the right part shows the automatic recognition and regulation
algorithm of the tamping process. In the SIB process, the dumping and tamping processes
form a loop.

In addition, it is necessary to calculate the conversion relationship between the tamping
head coordinate A(x,y), tamping angle q1, and tamping path L for the tamping device,
which mainly involves a swing angle cylinder and tamping cylinder, and where the driving
parameters are the tamping angle and tamping path, as shown below:⎧⎨⎩ q1 = −2 · arctan

(
x−

√
x2+y2

y

)
L0 =

√
x2 + y2 − L

(2)

3.2. Automatic Control of the Tamping Device Hydraulic Cylinder

(1) Construction of the hydraulic drive physical model for the tamping device.
For example, a hydraulic drive physical model was established for the tamping device

cylinder. As the main driving component, the hydraulic cylinder mainly involved hydraulic
pressure Fy and its corresponding hydraulic pump station, relating to hydraulic pressure P.
The hydraulic drive model ensured a stable hydraulic pressure provided by the hydraulic
pump station and controlled the tamping angle and path, as well as the stability of its
angular and linear velocities, through the internal oil pressure Fy of the cylinder. The
analysis process is as follows:

Fy = myay + Bvy (3)

where B is the damping coefficient; vy is the velocity of the cylinder motion; ay is the
cylinder motion acceleration; my is the payload quality of the cylinder; and Fy is the internal
liquid pressure of the cylinder.

.
x1 = ay
x1 = vy.
x2 = x1
Fy = U

(4)
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Therefore:
U = m

.
x + Bx (5)

The equivalent equation has the following form:

.
x1 = − B

m x1 +
U
m.

x2 = x1
(6)

where x1, x2, and U are the conversion variables.
(2) Algorithm for automatic control of hydraulic cylinder position and motion.
To guarantee the stable and efficient navigation of the tamping device past obstacles

towards its desired position, we used the common one (PID) control algorithm to build
a PID closed-loop negative feedback controller for the position/motion control of the hy-
draulic cylinder, and the PID algorithm contained proportional, integral, and derivative
parts. In the real control process, achieving the anticipated control effect involved continu-
ous adjustments to the ratio coefficient Kp, integral time constant Ki, and differential time
constant Kd parameters. The control principle diagram is shown in Figure 6 [24].

Figure 6. PID control system schematic diagram.

In Figure 6, e(t) is the deviation between the input and output values, where r(t) in
e(t) = y(t) − r(t) is the input value, y(t) is the output value, t is the time interval between the
start of the adjustment and the output of the current control quantity, and y(t) is the input
control signal at the moment when the PID starts adjusting. The adjustment process is a
fixed value.

The hydraulic-cylinder-drive physical and PID control models were run using the
MATLAB platform. Following a period of closed-loop control, the tamping angular velocity,
angular acceleration, linear velocity, and linear acceleration of the tamping path of the
tamping device all entered a stable state. The debugging results are shown in Figure 7.

 
Figure 7. Hydraulic drive simulation model diagram.
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3.3. Automatic Optimization Path Planning of the Tamping Device

During the movement of the tamping device, the tamping angle q1 and tamping
path L were functions of time t. By discretizing them, the point where the unit angle line
intersected with the unit elongation line was determined as the movable position of the
tamping device, and the path points within the movable range of the tamping device were
obtained. The connection point between points was the movable path of the tamping
device [25,26], forming the theoretical workspace lattice of the tamping device, as shown in
Figure 8.

Figure 8. Movable path analysis diagram of the tamping device.

For a certain target location, the motion path of the tamping device included multiple
paths. To achieve the automatic optimization planning of the tamping device path, the cost
function was used to calculate the corresponding costs of multiple movable paths, and the
optimal path selection was achieved by minimizing the cost. The cost function considers
interference avoidance, angle adjustment, and elongation (path) adjustment.

F(i) = Z ∗ {
wqF(q) + wLF(L)

}
(7)

where i is the alternative path label; F(i) is the cost function; the Z value (0 or 1) indicates
whether there are obstacles or not, respectively; F(q) is the angle adjustment cost; F(L) is
the elongation (path) adjustment cost; wq is the angle adjustment weight; and wL is the
path adjustment weight.

The value of Z was only 0 or 1, indicating whether there were obstacles or not. If there
were obstacles, it was 0, indicating that the path cost was 0 and not selected. The weight
was designed based on the actual impact of the working environment on the hydraulic
adjustment. Due to the on-site data showing a higher cost of the angle adjustment, the
angle adjustment weight exceeded the path adjustment weight.

For example, as shown in Figure 8, the tamping device has multiple paths to choose
from, such as Paths I and II, from the current position A to the target position B in the
movable paths set. From Equation (7), it is evident that both paths have the same costs as
angle adjustments. Path I had a pose interference, Z = 0, and this path was discarded; Path
II had no interference, Z = 1, and Path II was selected.

Based on the cost function principle, an automatic optimization planning of the tamp-
ing device motion path was achieved. Combined with the backfilling process interference
automatic recognition and regulation algorithm previously constructed, as well as the
control algorithm of the hydraulic cylinder, an intelligent control system of the backfilling
operation movement was formed.

4. Establishment of the Simulation Test System and Design of Testing Methods

4.1. Design of the Simulation Test System Architecture

To guarantee the efficacy of simulation testing, the simulation test system was designed
with three major functions: mechanical assembly and motion simulation, electrohydraulic

282



Appl. Sci. 2023, 13, 11704

control system simulation, and process action automatic-execution algorithm simulation.
The system architecture is shown in Figure 9.

Figure 9. Architecture diagram of SIB process motion simulation testing system.

In Figure 9, the mechanical assembly and motion simulation function is achieved using
SolidWorks to model, assemble, and provide a 3D motion simulation of the SBHS. It can
perform a mechanical assembly and motion simulation of key mechanisms, which is the
foundation of the entire simulation testing system. The simulation system of the hydraulic
cylinder electrohydraulic control system was implemented through the MATLAB platform,
which could analyze and simulate the driving process of the hydraulic cylinder, ensure
the stability of the hydraulic cylinder speed, and ensure the effectiveness of the process
action automatic-execution algorithm testing. The process action automatic-execution
algorithm simulation function was implemented through the joint simulation of MSST and
SolidWorks [27,28]. Based on the SIBPF, the process action automatic-execution algorithm
was designed, mainly including the interference automatic-recognition and path automatic-
planning algorithms.

4.2. Establishment of the Simulation Test System

(1) Three-dimensional model construction.
The SBHS model was assembled from key structures, such as a perforated bottom

discharge scraper conveyor and tamping device, as shown in Figure 10.

 

Figure 10. Assembly drawing of the support mechanical model.
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The Simscape Multibody Link plugin can automatically convert the 3D geometric solid
model established by SolidWorks into a SimMechanics model [29], as shown in Figure 11.

Figure 11. Backfilling hydraulic support SimMechanics model.

(2) Key parameter collection.
To achieve a simulation of the backfilling process, it was first necessary to implement

the control of the backfilling hydraulic support model. Therefore, it was necessary to
collect the paths of each hydraulic cylinder in the backfilling hydraulic support in real time.
For example, the support process required obtaining the front and rear column paths to
grasp the front top beam’s support height and inclination angle. Key parameters, such
as the expansion and contraction quantities of the perforated bottom discharge scraper
conveyor, tamping path, tamping angle, and tamping pressure must be obtained in both
the unloading and tamping processes. Correspondingly, the distance, angle, and pressure
sensors were used, and those sensors were set in the model to monitor the positions [30], as
shown in Table 1.

Table 1. Monitoring parameter settings and sensor arrangement for the backfilling hydraulic support
model.

No. Parameter Type Sensor Type Installation Position

1 Front column path ΔLf Range sensor Front-column hinge joint A
2 Rear column path ΔLh Range sensor Rear-column hinge joint B
3 Front top-beam height HB Range sensor Front top-beam hinge joint C

4 Expansion and contraction quantities of perforated
bottom discharge scraper conveyor ΔLs

Range sensor Scraper and jack hinge joint D

5 Tamping pressure FN Pressure sensor Tamping head junction E
6 Tamping path L0 Range sensor Tamping head junction F
7 Tamping angle q1 Angle sensor Tamping-device hinge joint G

The installation location and model’s data collected by the sensor on the model are
illustrated in Figure 12.
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Figure 12. Installation design drawing of model sensor.

(3) Cylinder electrohydraulic drive function.
The expansion and contraction of each hydraulic cylinder in the backfilling hydraulic

support were controlled by an electromagnetic directional valve. The electromagnetic di-
rectional valve belonged to a switch valve and its extension/retraction state corresponded
to the extension and retraction states of the hydraulic cylinder. The opening time corre-
sponded to a certain number of extension and retraction paths of the hydraulic cylinder. The
reversing valve and corresponding cylinder settings in the model are shown in Figure 13.

Figure 13. Model reversing-valve cylinder configuration design diagram.

Among them, the support process controlled the path of the front and rear columns
by controlling the extension/contraction states of reversing valves I and II. The unload-
ing process controlled the dumping cylinder of the perforated bottom discharge scraper
conveyor by controlling the extension/contraction states of reversing valve III, thereby
simulating the control of the unloading volume. The tamping process controlled the com-
paction and swing-angle cylinder paths by controlling the extension/contraction states
of reversing valves IV and V, thereby achieving the control of the tamping head path,
which was the main control object for the interference automatic-recognition and the path
automatic-planning algorithms.

(4) Establishment of SolidWorks and (MSST) joint-simulation testing system.
The joint simulation testing system is shown in Figure 14. The key steps for the system

setup are as follows:
(i) Build a PID hydraulic drive model for each hydraulic cylinder in the backfilling

hydraulic support on the MSST and connect it to the motion joints in the SimMechanics
model to serve as a controller for hydraulic cylinder actions.

(ii) Using the MSST, write the SIB process interference automatic recognition and regu-
lation algorithm and the tamping path automatic-planning algorithm into the MATLAB-
Function module and construct the process action automatic-execution algorithm module
based on the SIBPF previously designed.
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Figure 14. Joint-simulation testing system of SolidWorks and MATLAB/Simulink.

(iii) Use the constant module to set each hydraulic cylinder’s target positions, i.e.,
operating parameters, in the backfilling hydraulic support. When executing the internal
interference automatic-recognition and tamping path automatic-planning algorithms in
the module, the tamping angle q1 and tamping path L obtained from the algorithm will be
transmitted to the PID control module of the hydraulic drive simulation model, thereby
controlling the movement of the tamping device.

(iv) Finally, the coordinate transformation sensor was used to output the motion path
data of the tamping device, and the process motion path of the tamping head in the absolute
coordinate system was displayed in the SBHS model built by SolidWorks.

4.3. Design of the Simulation Testing Plan and Process Simulation

Based on the simulation testing system previously established, different simulation
testing schemes could be achieved by setting and adjusting the operating parameters, such
as the support inclination angle and height; the initial states of driving parameters, such as
the tamping angle, tamping path, and column path; as well as the target position of the
tamping device motion.

This study simulated the support, dumping, and tamping processes using the column,
swing-angle cylinder, and tamping cylinder path as the driving parameters. Before the
start of the support process, the initial value of the support height was 2980 mm, the
target position was 3550 mm, and the simulation path was A1-A2. Before starting the
tamping process, the initial value of the tamping angle was 9◦ and the initial value of the
tamping path was 600 mm. By setting the target position points of the tamping process to
C2 and C5, the tamping device was controlled by the interface automatic-recognition and
tamping path automatic-planning algorithm modules, also known as the process action
automatic-execution algorithm module, and the simulation path was C1-C2-C3-C4-C5. After
the tamping process was completed, resetting the tamping device to the initial position
before the dumping process started to prepare for the next dumping and tamping cycles
was necessary. Before the dumping process started, the initial position of the tamping
device was C5, the target position point of the tamping device in the dumping process was
C8, and the simulation path was C5-C6-C7-C8. The abovementioned simulation results are
shown in Figure 15.
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Figure 15. Simulation model test diagram of the SIB hydraulic support.

From Figure 15, it can be seen that the motion path of the tamping device does not
reach the optimal path. During the movement process, there was a collision interference
with the perforated bottom discharge scraper conveyor. For the C5-C6 and C6-C8 segments,
the optimal action sequence should first reduce the tamping path and then increase the
tamping angle to avoid collision interference. As shown in Figure 5, when the tamping
angle reaches the maximum value, it needs to be further increased to trigger the tamping
end process, which initiates the dumping interference-recognition part. This process might
cause instability in the tamping device motion, leading to interference. Therefore, it was
necessary to improve the process action automatic-execution algorithm module. The
optimization of the algorithm is shown in the dashed box in Figure 5. The tamping device
tamping angle and tamping path reaching the maximum value were used as discriminant
markers for the end of the tamping, thus avoiding the abovementioned problems.

5. Engineering Cases

5.1. Overview of the Working Face and Process of the Solid Intelligent Backfilling

The SIB mining face of a particular coal mine in Xingtai taken as the case study was
located in the first level-2# coal seams mining area, with an average thickness of 4.4 m
and an average inclination angle of 8◦ for the coal seams. The old top was gray–white fine
sandstone with a thickness of 5–8.5 m, and the direct top was dark-gray sandy mudstone
with a 1.49–6 m thickness. The direct floor was black siltstone with a thickness of 0.40–1 m
and the old bottom was gray, medium-grained sandstone with a 3–4.83 m thickness. The
working face coal seams had a stable thickness and simple structure. The coal seams had a
strike of 92–131◦, a dip of 2–41◦, an inclination angle of 3–12◦, and a hardness coefficient
of 0.62.

By analyzing the key geological parameters, such as the average thickness of the
SIB mining-face coal seams, the average inclination angle of the coal seams, the mining
length, and the recoverable reserves of the abovementioned mine in Xingtai, the respective
parameters of the SIB mining working face were used, as listed in Table 2.

Table 2. SIB mining working face parameters.

Working Face
Name

Working Face
Length/m

Mining
Distance/m

Mining Height/m
Average Inclination

Angle/◦
Recoverable

Reserves/10,000 t

1# 58 633 4.4 8 21.6
2# 58 880 4.6 12 31.5
3# 58 730 4.5 11 25.5

The SIB mining face of the case study coal mine had abandoned the comprehensive
mechanized backfilling technology of operating SBM devices with the staff as the core for
full mining-height tamping.

The SIB technology of this working face comprised a sensing process, recognition
process, pose adjustment and support processes, unloading process, and tamping pro-
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cess. The key SIB technology included operation movement, execution mechanism, and
corresponding process categories, as shown in Table 3.

Table 3. Mining and backfilling process table for the SIB mining method.

No. Device Name Operation Movement Execution Device Process Category

1 Backfilling hydraulic
support

Roof guard
Moving frame, lifting frame

Sensing of parameters, such as
support height

Pose interference recognition

Cylinder guard
Cylinder bottom, column

Sensing element
Recognition module

Support process
Support process
Sensing process

Recognition process

2 Tamping device

Tapping angle change
Sensing of parameters, such as

sampling angle
Pose interference demodulation

Tamping cylinder
Slant-angle cylinder

Sensing element
Tamping cylinder, slant-angle

cylinder, etc.

Tamping process
Tamping process
Sensing process

Pose adjustment process

3 Perforated bottom
discharge conveyor

Material transportation
Dumping port switch

Body position slip
Sensing parameters, such as

dumping height
Pose interference demodulation

Scraper chain
Dumping cylinder

Slip cylinder
Sensing element

Dumping cylinder, Slip cylinder

Unloading process
Unloading process
Unloading process

Sensing process
Pose adjustment process

After designing the SIB technology, various sensors were used to obtain the backfilling
hydraulic support status and pose information. The optimized process action automatic-
execution algorithm module controlled the execution of the support cyclone action. It
controlled the electrohydraulic control system to execute the cylinder action without the
need for coal-mining machine shutdown or human intervention, saving the continuation
time of the cylinder action, reducing personnel, increasing efficiency, and ensuring a
safe production.

5.2. Model Operating-Condition Parameter Setting and Simulation Testing Scheme Design

An SIB technology testing model was built based on the SIB model simulation testing
system, combined with the mining geological conditions and filling equipment parameters
of the SIB working face for the case-study coal mine. The pre- and post-improvement
process action automatic-execution algorithm modules were used for the simulation testing
to compare the improvement effect of the process action automatic-execution algorithm.

According to the test model design in Table 4, the SBHS’s inclination angle was set at
8◦, the mining height was set at 4400 mm, and the equipment model was a four-column
backfilling hydraulic support. In the initial state, the device assembly simulation model
had a sampling angle of 6◦, a sampling path of 400 mm, and front and rear column paths of
620 mm were used as the carrier, while the front and rear columns, slant -angle cylinder,
and tamping cylinder were used as the drivers. The A1–A2 path of the support process and
C1-C2-C3-C4-C5-C6-C7-C8-C9 of the tamping process were run for the simulation testing, as
shown in Figure 16.
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Table 4. SIB working-face test model design information.

Design Object Key Design Information

Assembly design

Working environment
Inclination angle/◦ Mining height/mm Device model

8 4400 Four-column type

Initial state
Tamping angle/◦ Tamping path/mm Column path/mm

7 60 3000

Drive design
Drive cylinder Front and rear columns Slant-angle cylinder, tamping cylinder

Key parameters Front and rear column paths Tamping angle, tamping path

Process plan
Process category Support process Tamping process

Motion path A1-A2 C1-C2-C3-C4-C5-C6-C7-C8-C9

Figure 16. SIB process testing model diagram.

5.3. Quantitative Analysis of the Test Results

The motion path of the tamping device of the SBHS in the simulation testing model is
shown in Figure 16. The model sensor module was used to output and analyze the path
curve during the simulation process.

The variations of the tamping device of the SBHS tamping angle and path under the
control of two algorithms during the process simulation are shown in Figure 17.

From Figure 17a,b, it can be seen that the response time of the old process action
automatic-execution algorithm for controlling the tamping angle and tamping path is 32 s.
The optimized process action automatic-execution algorithm for controlling the timing
tamping angle and tamping path has a response time of 30 s, which improves the efficiency
by 7%. In both cases, the tamping angle and path reach the target position C1–C9 with a
small amplitude difference and do not result in pose interference.

The column path variations in the process simulation under the control of two algo-
rithms are shown in Figure 18.

Figure 18 shows that, during the 2.0 s operation of the column, a pose interference
g1 occurs in the optimized process action automatic-execution algorithm. The optimized
process action automatic-execution algorithm successfully conducts interference recogni-
tion s1 and autonomously regulates b1. The regulation is successful at around 3.2 s, and the
columns overlap with the ideal state to achieve automatic avoidance. It reaches the target
position A2 of the process in 3.5 s.
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(a) Variation chart of tamping device tamping angle. 

(b) Variation chart of tamping device tamping path. 
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Figure 17. Comparison of control effects of different algorithms on the tamping device.

Figure 18. Comparison of control effects of different algorithms on the column.
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The motion path of the tamping device under the control of two algorithms during
the process simulation is shown in Figure 19.

C6

C9
s2

g3

g2

C8

C7 C5

C4

C3

C2

C1

s3

b2

b3

Figure 19. Motion path diagram under different algorithm controls.

Figure 19 shows no abnormalities in the C1–C7 process. In C7–C8 and C8–C9, the
tamping device and the perforated bottom discharge scraper conveyor collide. The
interference-recognition algorithm identifies s2 and s3 values, automatically avoiding b2
and b3. However, automatic avoidance b3 still has a slight collision interference due to the
low-accuracy control.

6. Conclusions

(1) This study investigated the dumping interference and tamping collision interfer-
ence problems in a conventional mechanical solid backfilling working face. It designed the
SIB process flow to mitigate these problems, providing a theoretical basis for realizing the
intelligent control of the solid backfilling process.

(2) Crucial algorithms were proposed for the automatic interference recognition and
planning the motion path of the tamping mechanism in an SIB process, including the
interference automatic-recognition algorithm and automatic optimization planning algo-
rithm based on the cost function, laying the algorithm foundation for the development of a
backfilling process control system.

(3) A joint-simulation test system was built on the MSST to run and validate the
optimized algorithms. The results show that the optimized algorithm can efficiently realize
the automatic optimization planning and automatic interference-recognition adjustment of
the backfilling process under actual engineering conditions.
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Abstract: At present, the carbon emissions in China’s metal mining industry can be calculated based
on the amount of energy consumed in the mining process. However, it is still difficult to predict the
carbon emissions before implementation of mining engineering. There are no effective approaches
that could reasonably estimate the amount of carbon emissions before mining. To this end, based
on the ‘Top–down’ carbon emission accounting method recommended by the Intergovernmental
Panel on Climate Change (IPCC), this study proposes a model to predict the greenhouse gases
emitted in seven carbon-intensive mining stages, namely, drilling, blasting, ventilation, drainage, air
compression, transportation, and backfilling. The contribution of this model is to enable a prediction
of the accumulation of greenhouse gases based on the mining preliminary design of mine, rather than
on the consumption of energy and materials commonly used in recent research. It also establishes the
amount of carbon emissions generated by mining per unit cubic meter of ore rock as the minimum
calculation unit for carbon emissions, which allows for the cost and footprint of carbon emissions in
the mining process to become clearer. Then, a gold–copper mine is involved as a case study, and the
greenhouse gas emissions were predicted employing its preliminary design. Among all the predicted
results, the carbon emissions from air compression and ventilation are larger than others, reaching
22.00 kg CO2/m3 and 10.10 kg CO2/m3, respectively. By contrast, the carbon emissions of rock
drilling, drainage, and backfilling material pumping are 5.87 kg CO2/m3, 6.80 kg CO2/m3, and
7.79 kg CO2/m3, respectively. To validate the proposed model, the calculation results are compared
with the actual energy consumption data of the mine. The estimated overall relative error is only
5.08%. The preliminary predictions of carbon emissions and carbon emission costs in mining before
mineral investment were realized, thus helping mining companies to reduce their investment risk.

Keywords: mining carbon emissions; metal mines; carbon emission prediction model; cost of carbon
emission; carbon emissions

1. Introduction

With the continuous emission of greenhouse gases, the frequency of extreme weather
around the world has increased significantly, causing great economic losses and also posing
a serious threat to human sustainable development [1–3]. Against the background of
countries around the world having reached a consensus on the adjustment of the energy
structure and control of greenhouse gas emissions, the impact of mining activities on
climate change is often insufficiently considered. M. Azadi et al. [4] calculated a 130%
increase in fuel consumption per unit of copper mined in Chile from 2001 to 2017 and
a 32% increase in electricity consumption. Meanwhile, greenhouse gas emissions from
metal and mineral production accounted for about 10% of global energy-related green-
house gas emissions in 2018. Therefore, the large increase in energy consumption in the
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mining industry needs to be taken seriously, and regulators must consider greenhouse gas
emissions more actively, accurately, and transparently to be able to implement effective
mitigation strategies. According to the to the EU Green Deal fit for 55 packages [5], resource
acquisition is also a strategic security issue in the process of realizing the Green New Deal.
Therefore, accelerating the reduction of primary material production energy consumption
caused by mining activities and ensuring the supply of sustainable raw materials are also
prerequisites for achieving green transformation (EU 2018; Pelin and Mehmet 2022) [6,7].
At the same time, to further improve the initiative of enterprises in various industries to
control greenhouse gas emissions, many countries and regions have successively formed
their own carbon trading systems. China’s carbon emission trading market was officially
launched on December 19, 2017. In the long term, the carbon market will have a sig-
nificant impact on the carbon emissions and investment decisions of various industries
(X. Song et al., 2022) [8].

To date, numerous scholars have conducted extensive research on the problem of
mining carbon emissions. With the goal of carbon emission reduction required in each
production process of open-pit mines, Guoyu Wang et al. (2022) [9] used a multi-objective
optimization algorithm to establish a multi-objective carbon emission distribution model
for open-pit mines from the perspective of carbon quota allocation, and used this model
to provide optimization suggestions for carbon emission quotas in each process link in
the production process. Boyu Yang et al. (2021) [10] selected the Pingshuo open pit coal
mine in Shanxi Province, China, as a case study object, analyzed the dynamic changes of
carbon emissions based on the IPCC method, and used the IPAT equation to analyze the
influencing factors of carbon emissions. It is concluded that the carbon emission sources of
open-pit mines mainly include the use of fuel and explosives, methane escape from coal
mines, spontaneous combustion of coal and gangue, power consumption, and other parts;
at the same time, the carbon emissions caused by the open-pit coal mine increased year
by year, with an average annual growth rate of 11.64%, of which the carbon emissions of
fuel consumption and methane emissions accounted for 41.79% and 46.66%, respectively.
This paper focuses on how to use the IPAT equation to analyze the influencing factors of
carbon emissions in actual cases of mines. However, the dynamic change calculation of
mine carbon emissions still uses the accounting model based on post-clearance provided
by IPCC, and it is still difficult to solve the problem of how mining enterprises estimate
the carbon emission intensity of mining before mining. Based on the life cycle concept,
Benzheng Li et al. (2022) [11] established a carbon emission accounting model for each
process link of a fully mechanized coal mine. And, according to the IPCC calculation
method and the China Coal Production Enterprises Green Gas Emissions Accounting
Methodology and Reporting Guide, producing the carbon emission model is feasible.
However, the verification method of the model lacks the detailed data basis of real-time
production statistics. Youshun Cui et al. (2015) [12] proposed a method for calculating the
carbon emissions of diesel vehicles in underground mines using a geographic information
system. The carbon emissions related to trucking work and were calculated by considering
the carbon emission factors of the road and the distance as determined by the best-route
analysis based on GIS. Lili Wei et al. (2021) [13] established a carbon emission estimation
model to estimate the carbon emissions of the energy consumption of China’s mining
industry from 2000 to 2020, referring to the methods and parameters of the 2006 IPCC
National Greenhouse Gas Inventory Guidelines. Then, using the extended Kaya identity
and the LMDI model, analyzed the influencing factors of carbon emissions in the mining
industry, including energy carbon emission intensity, energy structure, energy intensity,
industrial structure, and output value. This paper analyzed the correlation between mining
carbon emissions and economic output at the macro level, but ignored the significant
differences in carbon emissions caused by different production processes among different
types of mines.

Timothy Rijsdijk et al. (2022) [14] studied the impact of the change in carbon price
on the mining economy of high-grade copper–cobalt mines in the Democratic Republic

295



Sustainability 2023, 15, 12738

of Congo during mining and beneficiation processes. They came to the conclusion that
the change in carbon price had little impact on the open-pit mining limit and cut-off
grade. Yang Liu et al. (2022) [15] calculated the energy consumption of open-pit metal
mines based on IPCC method and combined the traditional energy-saving supply curve
analysis method with the open-pit mining boundary to evaluate the energy-saving potential
and carbon emission costs caused by the application of energy-saving technologies. Sam
Ulrich et al. (2022) [16] studied the interaction between greenhouse gas emissions from
gold mining, abatement measures, and carbon prices. The impact of the carbon price varied
markedly between countries, with a 100 USD/t CO2-e price increasing gold production
costs on average by 13 USD/oz in Finland and up to 275 USD/oz in South Africa. If the
mine’s primary energy source is replaced, the greenhouse gas emissions generated will
be reduced by up to 46%. Further, by improving energy efficiency, the processes with the
largest reductions in greenhouse gas emissions in underground mining are ventilation and
cooling, going down by up to 24% (Sam Ulrich et al., 2022) [16]. From the perspective of
carbon price, energy-saving technology application, and mining economy, the works above
provide a reference for mineral development investors to make decisions by demonstrating
the quantitative relationship between carbon emission costs and mining costs. However,
mining is a huge and multi-process joint system. How to distinguish and clarify the carbon
emission cost of various production processes is still a difficult problem.

In general, scholars have constructed a carbon emission accounting model for the
whole life cycle of coal mine production, but research on carbon emission accounting
models in the metal and non-metal mining stages is rare. At the same time, the current
research in the mining field focuses on calculating carbon emissions based on the amount
of energy consumed during the mining process, which is a method of post-liquidation. The
disadvantage is that it can only passively calculate the carbon emissions generated after
mining. If the prediction of mining carbon emissions can be realized before production,
mining enterprises will be able to calculate the carbon emission cost in advance, thus
reducing their investment risk. Table 1 shows the critical things such the parameter
selection, modeling, analysis advantages, and limitations of existing literature.

√
means

the citation has used or studied the methods.

Table 1. Key information comparison table of existing literature.

Ref. Coal Mine
Open-Pit

Metal Mine
Underground
Metal Mine

IPCC Method
Model Reliability

Verification
Predicting Carbon

Emissions

[9]
√ √

[10]
√ √

[11]
√ √ √

[15]
√ √

In China, where underground mines account for 90 per cent of the total number of
metal mines, there has been no review of the technical strategy needed by Chinese metal
mines to achieve the goals of “carbon peak and carbon neutrality” (Q.F. Guo et al., 2022) [17].
With China’s carbon emission trading market and mechanism becoming more and more
mature and perfect, a more detailed carbon emission estimation model has been established
for underground mines. According to the geological survey and preliminary design data
obtained before mining, the carbon emission prediction will be realized after the mine is
put into operation. At the same time, if the mine is in the exploitation stage, the method
can provide a more accurate assessment of carbon emissions and energy-saving technology
applications generated by different processes in the mine. The above two points are of
great significance to the current developers of mineral resources.

2. Carbon Emission Prediction Model for the Metal Mine Underground Mining Stage

To calculate the carbon emissions in the underground mining stage of metal mines, the
calculation boundary first needs to be determined (R. Chambi-Legoas et al., 2021) [18]. All

296



Sustainability 2023, 15, 12738

production processes in the actual mining stage fit into nine categories: drilling, blasting,
supporting, ventilation, transportation, lifting, drainage, air compression, and backfilling.
It is necessary to point out that the carbon emission of the underground support process
mainly results from cement. Since almost all of the carbon emission of cement is from
its production process, its carbon emission has been included in the cement production
industry (T. Du et al., 2020) [19]. Since the lifting process involves the transport of ores,
personnel, and all kinds of materials required for underground construction, the factors
considered to affect the carbon emissions of this process include mining depth, person-
nel scheduling, underground production schedule, etc., making it difficult to model the
energy consumption of different mines during the lifting process. Therefore, this study
aimed to establish the seven production processes of rock drilling, blasting, ventilation, air
compression, drainage, transportation, and backfilling as the calculation boundaries, and
to construct the corresponding carbon emission models.

When metal mines are mined underground, there are differences in the types of
energy and working methods used by equipment in various production processes. If the
carbon emission calculation results of each process are not based on the same indicators, a
comparison of the carbon emissions of different processes will be very inconsistent. Since
the purpose of all mining work is to mine ore, in order to further quantify and compare
the carbon emission value of each mining production process, this study opted to use ‘per
cubic meter rock mass’ as the calculation unit for the process of mining carbon emissions.

2.1. Carbon Emission Accounting Method for Each Process in the Mining Stage

The most widely used carbon emission accounting method is the carbon emission
coefficient method recommended by the Intergovernmental Panel on Climate Change
(IPCC), which can be classified into two types of calculation methods: ‘Top–down’ and
‘bottom–up’. The ‘Top–down’ method refers to the classification of energy used within the
defined boundary, and the carbon emissions are obtained by multiplying the corresponding
carbon emission coefficients after measuring the consumption. The ‘bottom–up’ method is
used for the direct, on-site measurement of the carbon emissions of all equipment in order to
calculate the total carbon emissions. Due to factors such as changing operating conditions,
numerous sources of carbon emissions, and complex measurement environments in mines,
it is almost impossible to use the ‘bottom–up’ method for the complete measurement of
emission data for each source and component.

In this study, the ‘Top–down’ method was used to calculate the carbon emissions in
the underground mining stage of metal mines (G.Y. Wang and J.S. Zhou, 2022) [9]. The
calculation formula is as follows:

E = ∑ψ′
ψ=1 Δψ · EFΔ (1)

where E represents the carbon emission per cubic meter rock mass in the process, ψ
represents the number of equipment types used, Δψ represents the energy consumption
per cubic meter rock mass, and EFΔ represents the corresponding carbon emission factor of
the energy type consumed by the ψ type of equipment. The subsequent model calculation
formulas will be based on Formula (1).

In this study, when selecting the main types of carbon emission energy—which refers
to the energy that is classified by carbon emission accounting according to the guidelines
for the greenhouse gas emissions of national mining enterprises—two types of energy
were selected: electricity and diesel. These two types of energy are the main sources
of carbon emissions in the mining stage. In addition, because blasting is an important
underground mining process, the explosive consumption in the blasting process is also
measured. The following Figure 1 is shown as the boundary chart of carbon emission
prediction in underground mining stage of metal mine.

297



Sustainability 2023, 15, 12738

Figure 1. Carbon emission system boundary of the underground mining stage of a metals mine.

2.2. Carbon Emission Model in the Rock Drilling Process

The greenhouse gas emissions in the drilling process mainly result from the energy
consumption of the drilling equipment. Underground drilling construction includes shaft
and roadway excavation. The carbon emissions produced by different construction methods
are not the same. To facilitate the calculation, it is assumed that drilling and blasting are
used throughout the excavation of the mine, and, therefore, only the carbon emissions
generated during the drilling process are considered. At present, the drilling tools used
in underground mining are the pneumatic leg rock drill, tunneling trolley, and deep-
hole trolley drilling. The pneumatic leg rock drill is used to drill shallow holes, and the
tunneling and drilling trolleys are used to drill medium-depth and deep holes. Although
the pneumatic leg rock drill is used for shallow-hole drilling work, its energy consumption
is essentially different from the power and oil consumption of the tunneling and drilling
trolleys. Its power results from the use of high-pressure air. The mine is equipped with
several air compressors to supply compressed air to the underground pneumatic leg rock
drill, air pick, and other rock drilling equipment by establishing a compressor station on
the surface. Because the air compressor does not directly affect the rock drilling work, it is
distinguished from the rock drilling work performed by the tunneling trolley drilling and
deep-hole trolley drilling, and the carbon emissions from the shallow-hole drilling work of
the pneumatic leg rock drill are calculated in the air pressure process.

The energy consumption of the drilling work carried out for medium-depth and deep
holes depends on the rock breaking working time and the machine power of drilling tools.
Machine power is usually a known quantity, and the time consumed by drilling work is
related to factors such as drilling length, drilling number, and rock properties. The average
drilling length, drilling number, and mechanical drilling efficiency required for mining are
used to calculate the rock breaking working time per cubic meter rock mass of different
drilling tools. Derived from Formula (1) above, when drilling medium-depth and deep
holes, underground mines use the drilling and tunneling trolleys to drill different types of
ore per cubic meter. The drilling carbon emissions per cubic meter rock mass are calculated
as follows:

Edr
1 = ∑j′

j=1 P1 ·
a1

j · b1
j

η1
· EFelectricity+∑j′

j=1 P2 ·
a2

j · b2
j

η2
· EFelectricity (2)

where Edr
1 represents greenhouse gas emissions per cubic meter rock mass drilled by a rock

drilling rig, t CO2/m3; j′ represents the number of rock types with obvious differences in
properties in the mine; P1 and P2 represent the rated power of the drilling trolley and deep-
holetrolley at work, kW; a1

j and a2
j represent the average number of boreholes drilled by a

drilling trolley and a deep-hole trolley in a certain type of rock mass; b1
j and b2

j represent
the average borehole length per unit cube of a certain type of rock mass for the drilling and
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deep-hole trolleys, m/m3; η1 and η2 represent the general drilling efficiency of tunneling
drilling and deep-holetrolleys, m/h; EFelectricity represents the greenhouse gas emission
factor of electric energy, t CO2/kWh.

2.3. Carbon Emission Model for the Blasting Process

The greenhouse gas emissions in blasting operations mainly result from the consump-
tion of industrial explosives; the consumption of explosives is the product of unit explosive
consumption and blasting volume. For underground metal mines, blasting work can
be classified into excavation blasting, preparatory blasting, and stopping blasting. For
excavation blasting and preparatory blasting, there is only one free surface, the blasting
conditions are difficult, and the unit consumption of the explosives is generally higher than
that in stopping blasting.

The average explosive unit consumption of various types of rocks commonly used in
mine blasting work (distinguished here by the rock general coefficient) is measured. The
calculation model for greenhouse gas emissions per cubic meter rock mass in different
blasting processes is as follows:

Eex
2 = ∑j′

j=1

[
K1

j · α + K2
j · (1 − α)

]
· EFexplosive

1000
(3)

where Eex
2 represents greenhouse gas emissions per cubic meter rock mass mined during

blasting, t CO2/m3; j′ represents the number of rock mass types with obvious differences
in rock properties in the mines; K1

j and K2
j represent the unit consumption of explosives for

the same type of rock mass for preparation blasting and ore blasting, respectively, kg/m3; α
represents the proportion of preparatory work in the whole underground mine; EFexplosive
represents the greenhouse gas emission factor for industrial explosives used in mines,
t CO2/t.

2.4. Carbon Emission Model in the Ventilation, Drainage, and Air Compression Processes

The carbon emission attributes of the ventilation, drainage, and compressed air sys-
tems in underground mines are similar, mainly in the following aspects: the carbon emis-
sions of the three systems are all derived from power consumption; the number of fans,
drainage pumps, and compressors required for the mine increases with the expansion of
the mining area; during production, the main fan, drainage pump, and compressor are
kept uninterrupted at work. The purposes of the ventilation, drainage, and compressed
air systems are to ensure the safe production of mines, and they are not strongly related
to the amount of ore being mined. Therefore, in order to convert the carbon emissions
produced by ventilation, drainage, and air compression into unit cubic ore, the ratio of the
daily power consumption of the ventilation and drainage systems to the sum of the daily
ore and waste rock production in mines is considered to be able to determine the carbon
emissions caused by ventilation and drainage technology when mining rock masses. By
calculating the ratio of the daily power consumption of the compressed air system to the
daily average amount of rock mass mined by the compressed air equipment in the mine,
the carbon emission produced by air compression when mining the unit cubic rock mass
is determined.

The carbon emissions of related equipment can be calculated using the
following formula:

Ev−w−c
3 =

(
∑𝒾’

𝒾=1 Pve
𝒾 · n𝒾 · t𝒾 + ∑ℊ’

ℊ=1 Pwa
ℊ · nℊ · tℊ

)
· ρ · EFelectricity

Qday · 1000
+

∑𝒵’

𝓏=1 PCO
𝒵 · n𝒵 · t𝓏 · ρ · EFelectricity

Q1
day · 1000

(4)

where Ev−w−c
3 represents the greenhouse gas emissions from the ventilation, drainage, and

pressurization processes when treating a unit cube of rock mass, t CO2/m3; 𝒾, ℊ, and 𝓏
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represent the number of types of ventilators, drainage pumps, and compressors; Pve
𝒾 , Pwa

ℊ ,
and Pco

𝓏 represent the respective working power of a certain type of fan, drain pump, and
compressor, kW; n𝒾 , nℊ, and n𝓏 represent the number of working units of ventilators,
drainage pumps, and compressors of a certain type; t𝒾 , tℊ, and t𝓏 represent the average
daily working time of a certain type of ventilator, drainage pump, and compressor, h; ρ
represents the average density of mine rock mass, kg/m3; EFelectricity represents greenhouse
gas emission factor of electricity, t CO2/kWh; Qday represents the sum of daily ore and
waste rock in the underground mine, t/day; Q1

day represents the daily average amount of
rock mass excavated in the underground mine using compressed air equipment, t/day.

2.5. Carbon Emission Model in the Transportation Process

The transportation process in underground mines can be divided into stope trans-
portation and bottom-hole yard transportation. At present, the commonly used equipment
for stope transportation includes the electric scraper, diesel scraper, loader, etc., and the
bottom-hole yard transportation equipment generally involves the use of an electric loco-
motive. The carbon emission during the transportation process of the stope is the most
complex, mainly due to the following aspects: the location and scope of the stope are
constantly changing, and the distance covered by the transportation equipment is also
constantly changing; the power consumed by the mining equipment varies under different
transportation conditions, such as no-load, heavy load, uphill, downhill, and vehicle per-
formance. In the process of mine production, there are usually multiple stopes at the same
time, and the transportation distance and working conditions for the mining and loading
equipment in each stope are not consistent. Therefore, in order to provide data statistics and
facilitate calculation, the following assumptions are made on the transport process of the
stope: without considering the transport distance of different stopes, the slope of the stope
and the performance of the vehicle itself and their influence on the mining and loading
equipment, the transport distance parameter is converted into the average round-trip time
required for mining and loading; the load of the underground scraper is usually about
3 tons. The power ratio coefficient λ of the engine is defined when the mining vehicle is
empty and heavy, and the value of λ could be taken as 0.91 (Z.Y. Zhang et al., 2014) [20].
Because the electric locomotive uses the method of rail transportation, its characteristics
include having a large capacity and a small running friction resistance. The running power
of the empty and heavy load is regarded as the rated power of the supporting motor.

Different from the electric scraper, the carbon emission of the diesel scraper is the result
of diesel consumption. Therefore, it is necessary to convert the engine power of the diesel
scraper into diesel consumption. The greenhouse gas emission model for transporting a
unit cube of rock mass by diesel scraper is as follows:

Edi
4 = ∑𝒽′

𝒽=1

P𝒽
di(1 + λ) · tav

sc · EFdiesel

2 · αdi · V𝒽
bucket · ksc

(5)

where Edi
4 represents carbon emissions per unit cube of rock mass for diesel scrapers, t

CO2/m3; 𝒽′ represents the number of diesel scraper types used in the mine; P𝒽
di represents

the engine rated power of a certain type of diesel scraper, w; λ represents the power ratio
coefficient of an engine under no-load and heavy load, λ = 0.91; tav

sc represents the average
round-trip time of the scraper, s; EFdiesel represents the carbon emission factor of diesel, t
CO2/J; αdi represents the diesel combustion conversion efficiency; V𝒽

bucket represents the
bucket capacity corresponding to a certain type of diesel scraper used in the mine, m3; ksc
represents the full bucket coefficient of the scraper.

Based on the above assumptions, the greenhouse gas emission models for electric
scrapers and electric locomotives during underground mine transportation are as follows:

Eel
5 = ∑𝓀′

𝓀=1

P1
el(1 + λ) · tav

sc · EFelectricity

2 · Vel−1
bucket · ksc · 3600

+ ∑𝒻′
𝒻=1

P2
el · tav

el · EFelectricity

Vel−2
bucket · n′ · ktrain

(6)
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where Eel
5 represents the carbon emissions per unit cube of rock mass shoveled by electric

scrapers and electric locomotives in the mine, t CO2/m3; 𝓀′ and 𝒻′ represent the number
of types of electric scrapers and electric locomotives used in the underground mine; P𝓀

el
and P𝒻

el represent the respective rated power of a certain type of electric scraper and electric
locomotive, kW; tav

el represents the average round-trip time of electric locomotives, h; Vel−1
bucket

and Vel−2
bucket represent the bucket volume of the electric scraper and the carriage volume

of the electric locomotive, respectively, m3; n′ represents the number of carriages in the
electric locomotives; ktrain represents the full bucket coefficient of the electric locomotive.

2.6. Carbon Emission Model in the Backfilling Process

The carbon emission in the backfilling stage is the result of the large amount of elec-
tricity consumed during the preparation and transportation of the backfilling material. At
present, there are many kinds of backfilling processes. Due to the different formation and
geological conditions, the mineral processing technology used, and other factors, the back-
filling process, backfilling material ratio, and backfilling material preparation equipment
used in different mines are also different. The equipment utilized in the backfilling process
includes filter presses, mixers, and pumps.

The carbon emission in the backfilling process is the sum of the preparation of the
backfilling material and the hydraulic transportation. The source of carbon emissions
during preparation is the equipment power consumption during the pressure filtration and
mixing processes, while the carbon emissions in the hydraulic transportation process are
the result of the equipment power consumption during the pumping process. Thus, the
carbon emission accounting model for the backfilling unit cubic cavity process is obtained
as follows:

EF f i
8 = ∑𝓌′

𝓌=1

P𝓌
pr · tav

pr · n𝓌
pr · EFelectricity

Vav
pr

+ ∑𝓇′
𝓇=1

P𝓇
st · tav

st · n𝓇
st · EFelectricity

Vav
st

+ ∑𝓊′
𝓊=1

P𝓊
pu · tav

pu · n𝓊
pu · EFelectricity

Vav
pu

(7)

where EF f i
8 represents the carbon emissions produced during the backfilling of each cubic

cavity, t CO2/m3; 𝓌′, 𝓇′, and 𝓊′ represent the types of filter presses, mixers, and pumps
used in the processes of pressure filtration, mixing, and pumping, respectively; P𝓌

pr , P𝓇
st, and

P𝓊
pu represent the rated power of each type of filter press, mixer, and pump, kW; tav

pr , tav
st ,

and tav
pu represent the average working time of the filter press, mixer, and pump to complete

a workflow, h; n𝓌
pr, n𝓇

st, and n𝓊
pu represent the number of presses, mixers, and pumps for

each type, respectively; Vav
pr , Vav

st , and Vav
pu represent the treatment volume of the filter press,

mixer, and pump in their respective single workflow time, m3.

2.7. Summary of Section 2

In the Section 2, based on the IPCC ‘Top–down’ calculation method, we construct a car-
bon emission prediction model for different processes in the mining stage of underground
metal mines. The calculation results of different processes are unified as the carbon emis-
sions per cubic meter of ore, the core modeling idea is to decompose the mining process and
divide the process into direct production processes and auxiliary production processes. The
direct production processes include drilling, blasting, transportation, and filling process,
their carbon emission models were constructed by calculating the energy consumption per
unit cubic ore of direct production equipment. The auxiliary production processes include
ventilation, drainage, and air pressing process, and their modeling method was to calculate
the ratio of daily energy consumption of auxiliary production equipment to daily output
of ore. The advantage of this modeling is that all input parameters in the model can be
obtained in advance in the preliminary design, and it is easy to compare the differences
in carbon emissions between different production processes. The disadvantage is that the
model calculation results cannot be accurately adjusted according to the changes in the
actual production plan of the mine, and when the production equipment is faced with
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changes in working capacity caused by migration and failure, it will lead to deviations in
the model prediction results.

3. Case Study

This study selected an underground gold and copper mine located in Daye, Hubei
Province, China (114◦54′42′′~114◦55′45′′ E, 30◦04′45′′~30◦05′50′′ N), and the total area
is about 2.4 km2. The underground mine is mined by the filling method. The main
mineral products are gold copper ore, sulfur ore, and associated iron ore. At present, the
mining depth has reached 500 m underground. Its actual production was investigated
and measured, and the carbon emission accounting model designed above was utilized to
calculate the carbon emission of each unit cube of ore body treated by each process flow.
In calculating the carbon emissions of each process, the electric energy carbon emission
factor used was 0.581 t CO2/MWh, as given in the Enterprise Greenhouse Gas Emission
Accounting Method and Reporting Guide Power Generation Facilities (Environmental
Climate No. 111) (2022) [21], and the selected diesel carbon emission factor was 74.1 t
CO2/TJ, as given in the International Greenhouse Gas Emission Factor Guide provided by
the IPCC in 2006 (IPCC, 2006) [22].

3.1. Carbon Emissions during Rock Drilling

The drilling parameters (drilling length and drilling number) for each unit cube of rock
mass with different lithology were determined in this underground gold–copper mine, as
shown in Table 2. The technical parameters of the excavation and drilling trolleys selected
for the mine are shown in Table 3.

Table 2. Technical parameters of the drilling trolley under different rock masses.

Common Rock Mass Types in the Mine Average Borehole Length (m/m3) Average Number of Boreholes

(Orebody) Skarn 0.83 5
(Orebody) Marble 0.83 5

(Wall-rock) Quartz diorite porphyrite 0.94 5
(Wall-rock) Diorite 0.94 5.4

Table 3. Technical parameters of the tunneling and drilling trolleys.

Drill Type Model of Drill Nominal Power (kW)
Rock Breaking
Efficiency (m/h)

Equipment Size (m) Equipment Weight (t)

Tunneling trolley Huatai HT82 62 30 11 × 1.45 × 2.08 10
Deep-hole drilling Huatai HT72 62 60 9.05 × 1.45 × 2.08 11.5

Substitute the data into Formula (2) to calculate:
When the tunneling trolley was used for rock drilling, the carbon emission of quartz

diorite porphyrite was 5.64 × 10−3 t CO2/m3, and the carbon emission of diorite was
6.09 × 10−3 t CO2/m3.

When the deep-hole trolley was used for rock drilling, the general carbon emission of
the ore rock with the lithology of skarn and marble was 2.49 × 10−3 t CO2/m3.

3.2. Carbon Emissions during Blasting

The explosive used in the mine production process is modified amine oil explosive,
and its carbon emission factor is 0.2 t CO2/t. The average density of skarn and marble is
2700 kg/m3 and 2600 kg/m3, respectively. The proportion of preparatory cutting work to
the whole project is about 0.2. The average explosive unit consumption of various types of
rocks in different blasting work of the mine (here, distinguished by the general coefficient
of rock) is counted. The statistical results are shown in the Table 4.
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Table 4. Explosive blasting parameters.

Rock Mass Types Solid Coefficient of Rock (f )
Unit Explosive Consumption
of Preparatory Cutting Work

Unit Explosive Consumption
of Ore Blasting Work

Skarn 8~10 1.62~1.89 kg/m3 1.49 kg/m3

Marble 10~12 1.84~2.11 kg/m3 1.58 kg/m3

Substitute the data into Formula (2) to calculate:
When the rock is skarn, the carbon emission of blasting is about 3.03 × 10−4 t

CO2/m3~3.14 × 10−4 t CO2/m3. When the rock is marble, the carbon emission of blasting
is about 3.26 × 10−4 t CO2/m3~3.37 × 10−4 t CO2/m3.

3.3. Carbon Emissions during Ventilation, Drainage, and Air Compression

In the production process of the mine, the daily ore output was about 3000 t, the
amount of waste rock was about 250 t per day, the average density of ore and rock was
3200 kg/m3, and the proportion of the compressed air equipment used as power source to
the mine ore accounts for about 70% of the total output of the mine. The mine made use of
a frequency conversion fan, with the energy-saving effect reaching 40% (Z.X. Zeng et al.,
2020) [23]; the fan was kept open for 24 h. The number of working tables with the same
type of drainage pump was 2, and the rest were on standby. The average daily working
time was 3 h. The working arrangement of the air compressor was as follows: 8:00–16:00 all
open, 16:00–8:00 three open. This is because the working mechanism of the air compressor
is meant to stop the air pressure when it reaches the required air pressure value, and when
it is lower than this value, it is programmed to resume operation. Mine technicians found
that the actual full-power working time of the air compressor in this gold–copper mine
could be multiplied by the utilization coefficient of 0.8. The mine fan and drainage pump
data are shown in Tables 5 and 6, while the surface air compressor data are shown in
Table 7.

Table 5. Fan data.

Type of Fan
Operating

Capacity (kW)
Number of

Working Devices
Fan Air Volume

(m3/min)
Static Pressure (Pa) Fan Speed (r/min)

K40-6-№14 30 1 984~2064 150~695 960
K45-6-№14 45 1 1434~2718 500~959 980

FCDZ-6-№22 370 3 2400~7600 750~2750 990
K40-4-№12 37 1 882~1926 242~1118 1450

Table 6. Drainage pump data.

Type of Pump Operating Capacity (kW)
Number of

Working Devices
Pumping Capacity (m3/h) Fan Speed (r/min)

200D43*6 300 1 280 1480
MD280-65*7 630 2 280 1480
MD280-43*5 250 2 280 1480
MD280-65*9 800 2 280 1480

Table 7. Air compressor data.

Type of
Compressor

Operating
Capacity (kW)

Number of
Working Devices

Operating Time
Rated Exhaust
Pressure (MPa)

Nominal Volume
Flow (m3/min)

TS325-400 300 8 8 h 0.7 41.8
TS325-400 300 3 16 h 0.7 61.7
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Bring the above data into Formula (4), and the calculation results are as follows:
In the process of mine production, the carbon emission produced by the ventilation

process is about 1.01 × 10−2 t CO2/m3, the carbon emission produced by the drainage
process is about 6.80 × 10−3 t CO2/m3, and the carbon emission from the compressed air
process is about 2.20 × 10−2 t CO2/m3.

3.4. Carbon Emissions during Transportation

The average round-trip time of the diesel scraper is 200 s; diesel engine efficiency is
generally between 34% and 45%; here, 40% was used for the calculation. It is assumed that
only one type of diesel scraper is used in the whole process of transporting the same rock
mass. Data on diesel scrapers used in mines are shown in Table 8.

Table 8. Diesel scraper data.

Type of Diesel Scraper Rated Power (kW)
Number of

Working Devices
Bucket Capacity (m3)

Full-Bucket
Coefficient

WJ-1.5 63 8 1.5 1.12
WJ-0.75 58 4 0.75 1.09

WJ-1 58 7 1 1.10

Substitute the above diesel engine-related production data into Formula (5), and the
calculation results are as follows:

When the WJ-1.5 diesel scraper was selected, the carbon emission produced by the
process of scraping ore was about 1.33 × 10−4 t CO2/m3.

When the WJ-0.75 diesel scraper was used, the carbon emission produced by the
process of scraping ore was about 2.51 × 10−4 t CO2/m3.

When the WJ-1 diesel scraper was used, the carbon emission produced by the process
of scraping ore was about 1.87 × 10−4 t CO2/m3.

The average round-trip time of the electric scraper and the electric locomotive in the
mine was 200 s and 600 s, respectively. Similarly, it is assumed that only one type of electric
scraper and electric locomotive is used in the whole process of transporting the same rock
mass. The electric scraper and electric locomotive equipment parameters are shown in
Tables 9 and 10, respectively.

Table 9. Electric scraper data.

Types of
Electric Scraper

Rated Power (kW)
Number of Working

Devices
Bucket Capacity (m3)

Full-Bucket
Coefficient

WJD-1.5 55 20 1.5 1.12
WJD-1 45 13 1 1.10

Table 10. Electric locomotive production data.

Types of
Electric Locomotive

Rated Power (kW)
Number of Working

Devices
Number of Carriages

and Capacity
Full-Bucket
Coefficient

CJY5/6GB 250 15 16 96 (0.75 m3) 0.91
CJK7/6GB 250 42 8 28 (1.2 m3) 0.95

CTY5/6G 15 4 10 (1.2 m3) 0.95

Substitute the above data into Formula (6), and the calculation results are as follows:
When the WJD-1.5 electric scraper was selected, the carbon emission produced by the

process of scraping ore was about 1.01 × 10−3 t CO2/m3.
When the WJD-1 electric scraper was used, the carbon emission produced by the

process of scraping ore was about 1.26 × 10−3 t CO2/m3.
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In the transportation process of the CJY5/6GB 250 electric locomotive, the carbon
emission produced by ore transportation was about 2.22 × 10−5 t CO2/m3.

In the CJY7/6GB 250 locomotive transport process, the carbon emissions produced by
the ore handling process was about 1.27 × 10−4 t CO2/m3.

In the transportation process of the CTY5/6G electric locomotive, the carbon emission
produced by ore transportation was about 1.27 × 10−4 t CO2/m3.

3.5. Carbon Emission during the Backfilling Process

In the process of mine production, the backfilling process is converted into 3000 T/day
according to the ore, and to 800 m3/day according to the backfilling amount. The specific
parameters of the equipment involved in the backfilling process are shown in Table 11.

Table 11. Backfilling equipment parameter table.

Equipment Number of Types Number of Working Devices Rated Power (kW) Operating Time (h)

Filter press KGZ600/2000-U 3 20.7 24

Mixer
ϕ2000*2200 1 30 16

SJ6*6 2 30 16
SJ6*8 1 30 16

Pump

100ZJ-I-A46 1 55 8
100ZJ-I-A50 3 90 8
100ZJ-I-A50 2 55 8

150D30*3 1 75 8
80ZBYL-450 7 90 8
150ZJ-I-A70 1 200 8

Substitute the data into Formula (7), and the calculation results are as follows:
In the process of mine backfilling, the carbon emission produced by the pressure

filtration process was about 1.08 × 10−3 t CO2/m3, the carbon emission produced by the
agitation process was about 1.39 × 10−3 t CO2/m3, and the carbon emission produced by
the pumping process was about 7.79 × 10−3 t CO2/m3.

3.6. Data Analysis

(1) Comparative analysis of the theoretical calculation and actual production

In the production process of the gold–copper mine in Hubei Province, the power
consumption of the main departments of the mine is monitored and measured on a monthly
basis. However, due to the relatively stable energy consumption, equipment operation
positions, and working conditions in the mine’s ventilation, drainage, compressed air,
and backfilling departments, the energy consumption data for these departments were
more accessible and accurate than those from other departments. Therefore, the monthly
power consumption data of the ventilation, drainage, compressed air, and backfilling
departments of the mine from January to June 2022 were averaged separately to eliminate
the contingency of the monthly data. And the following Table 12 is the actual monthly
energy consumption of the four departments of the mine.

Table 12. Actual monthly energy consumption data (January to June 2022).

Department
January

(1.0 ×104 kwh)
February

(1.0×104 kwh)
March

(1.0 ×104 kwh)
April

(1.0 ×104 kwh)
May

(1.0×104 kwh)
June

(1.0 ×104 kwh)
Average

(1.0×104 kwh)

Ventilation 56.5684 52.7422 47.7846 51.5141 50.8204 51.7728 51.87
Drainage 28.8745 27.7241 22.0039 25.2564 24.3321 25.6627 25.64

Compressed
air 83.7515 72.6625 74.2611 79.0424 83.2553 82.0065 79.16

Backfilling 44.6089 38.6525 39.6776 44.5871 39.0314 45.3569 41.99
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The model calculates the carbon emission per cubic rock mass by calculating the ratio
of the daily average carbon emission to the daily average production. The daily average
carbon emission of each process is the product of the daily average energy consumption
and the corresponding energy carbon emission factor in each process. Since the average
daily output of the mine and the energy carbon emission factor can be regarded as fixed
values, the reliability of the carbon emission model can be verified by ensuring that the
theoretical energy consumption calculated by the model for each process is consistent with
the actual energy consumption. Therefore, the theoretical monthly energy consumption of
the above process is calculated and compared with the actual monthly energy consumption
of the mine, as shown in Figure 2.

Figure 2. Comparison of the theoretical calculation and the actual energy consumption.

The analysis results show that the relative error between the overall calculation results
of the model and the actual production statistics is 5.08%. For the ventilation process, the
theoretically calculated power consumption of the model is 9200 kWh higher than the
average monthly consumption of the mine, and the relative error is 1.77%. For the drainage
process, the power consumption calculated by the model is 73,000 kWh higher than the
average monthly consumption of the mine, and the relative error is 28.5%. For the air
compression process, the power consumption calculated by the model is 14,800 kWh higher
than the average monthly consumption of the mine, and the relative error is 1.87%. For the
backfilling process, the power consumption calculated by the model is 4600 kWh higher
than the average monthly consumption of the mine, and the relative error is 0.94%. It can
be seen that the difference between the theoretical calculation and the actual consumption
of the drainage process is the biggest. The main reason for this is that the mine drainage is
affected by seasonal climate change. The precipitation is different for each month, resulting
in different water inflows during the mine production process. The working time of the
drainage pump is also different. In the theoretical model, this working time is a fixed value,
and the statistical data in the previous paper were taken from the period of January–June,
which is the dry season and when the rainfall is low; these produced a high relative error
between the theoretical calculation and the actual energy consumption in the drainage
process. In contrast, the relative errors between theory and practice in the ventilation,
compressed air, and backfilling processes are less than 2%. Thus, the reliability of the
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model is well-verified, making it capable of conducting the accounting and estimation of
the carbon emissions of each process in mine production.

(2) Analysis of carbon emission differences between different processes

The results of the calculation of carbon emissions for the different processes above are
shown in Figure 3.

Figure 3. Carbon emission per unit cube of ore rock treated by each process.

In the diagram, it can be seen that there are obvious differences between the carbon
emissions of different processes. The carbon emissions of the rock treated with compressed
air and ventilation are the highest, reaching 22.00 kg CO2/m3 and 10.10 kg CO2/m3,
respectively, and accounting for 54.24% of the whole process. The carbon emissions of rock
drilling, drainage, and backfilling pumping of the heading trolley also reached 5.87 kg
CO2/m3, 6.80 kg CO2/m3, and 7.79 kg CO2/m3, respectively; these are the key processes
that need energy saving and carbon reduction. It is possible to start the energy-saving and
carbon-reduction work of the compressed air process by reducing the use of the pneumatic
leg rock drill and increasing the use of the tunneling trolley and the middle–deep-hole rock
drilling trolley. The other processes can be applied based on economic rationality. New
energy-saving and carbon-reducing technologies are used for equipment transformation.

For the underground transportation, although the direct carbon emission value of the
rock from the diesel scraper is lower than that from the electric scraper, the use of the diesel
scraper will increase the burden of the underground ventilation system, thus resulting
in increased energy consumption. The indirect carbon emissions produced by this are
not calculated, and other toxic and harmful gases produced by diesel combustion are not
converted into CO2 for the statistics. On the other hand, the carbon emission value of a
unit cube of ore rock transported by the underground electric locomotive is only 0.02 kg
CO2/m3, which is the lowest in the whole process. The large capacity of the underground
electric locomotive fully reduces the carbon emission cost per cubic ore rock, which also
demonstrates that the promotion and use of large-scale and intelligent equipment in
underground mines indeed promotes a reduction in carbon emissions in production.

(3) Carbon emission cost calculation
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The China Carbon Price Survey 2020 predicted the prices in the national carbon
emission trading market and provided the following average expected price of carbon
quotas: 49 CNY/t in 2020, 71 CNY/t in 2025, 93 CNY/t in 2030, and 167 CNY/t in 2050
(H. Shi, 2022) [24]. In the Carbon Emissions Trading Management Measures (Trial) issued
by the Ministry of Ecology and Environment, the distribution of carbon quotas is mainly
free in the early stage, while paid distribution is introduced in the later stage (B. Cox et al.,
2022) [25]. The proportion of free carbon quotas has a great impact on the development
of the industry. To compare the impact of different free quota ratios of carbon emission
rights on the cost of carbon emissions per ton of ore mined, the gold–copper mine in Hubei
Province is again used as an example. The total carbon emission per cubic ore and rock
in underground mining is 59.18 kg CO2/m3, and the average density per ore and rock is
3200 kg/m3. Different free quota ratios are set at 100%, 90%, 80%, 70%, 60%, and 50% of
carbon emissions per ton of ore produced, and the cost of carbon emissions per ton of ore
mined is calculated, as shown in Figure 4.

Figure 4. Carbon emission costs per ton of mining under different carbon quota ratios.

It can be seen in the figure that the carbon emission cost per ton of ore in the under-
ground mining stage is positively correlated with the carbon price and negatively correlated
with the free carbon quota ratio. When the ratio of the free carbon quota is 50%, according
to the current carbon price forecast, the carbon emission cost interval of one ton of ore
mined underground in this gold–copper mine is CNY 0.45–1.55. The gold grade of the ore
is 1.74 g/t, and the carbon emission cost interval of one gram of gold mined underground
is CNY 0.27–0.89. At the same time, after mining, it is necessary to crush and produce a
concentration of the ore in the concentrator, and the energy consumption in this part is
also huge. It is foreseeable that with the comprehensive improvement of China’s carbon
market and the continuous rise of the carbon price, mining enterprises will pay more and
more attention to the cost increase caused by carbon emissions. Therefore, at this stage,
mining enterprises should have the ability to make a preliminary estimate of the carbon
emission cost in the mining production process before making an investment so as to reduce
investment risk. For mines in the process of mining, an accounting of carbon emissions for
various processes should also be carried out to provide a basis for decision making with
respect to the application of energy-saving and carbon-reduction technology.
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4. Conclusions

Based on the principle of the IPCC carbon emission calculation, this study utilized the
carbon emission of a unit cube of rock mass as the calculation index; determined the drilling,
blasting, ventilation, drainage, compressed air, transportation, and backfilling processes
as the boundaries of carbon emission calculation; and established the carbon emission
prediction model for each process. Taking a gold–copper mine in Hubei Province, China,
as an example, the proposed model was verified. The following conclusions were drawn:

(1) The accuracy of the carbon emission accounting model was verified using the actual
production energy consumption data from the ventilation, drainage, compressed
air, and filling processes. The relative error between the overall calculation results
of the model and the actual values was 5.08%, which verifies the practicability of
the model and has a popularization value in underground mines using the same
production processes. But among them, the prediction error of the drainage model
is quite different from the actual one, reaching 28.5%. Although there are signs that
this is due to the fact that the mine drainage situation is greatly affected by seasonal
factors, it also shows that the model still has uncertainty in some aspects. Therefore,
we still recommend that mining companies use models to predict and evaluate the
average, and try to avoid the pursuit of accurate prediction at a certain stage;

(2) The existing post-liquidation method for calculating carbon emissions based on the
amount of energy consumed in the mining industry was improved, and the prelim-
inary prediction of carbon emissions and carbon emission costs in mining before
mineral investment was realized;

(3) In the process of underground mining, the carbon emission per unit of cubic rock
treated with compressed air and ventilation was the highest, reaching
22.00 kg CO2/m3 and 10.10 kg CO2/m3, respectively, accounting for 54.24% of the
whole process. Our analysis showed that using the rock-drilling trolley instead of
the pneumatic leg rock drill and increasing the proportion of the large transport
equipment can effectively reduce carbon emissions.

Further Study

(1) Conduct a sensitivity analysis on the model’s predictions, to study the influence of
different input parameters on mining carbon emissions, so as to provide more clear
decision-making suggestions for the subsequent application of energy saving and
emission reduction technology in mines;

(2) Carbon emission prediction models still have many limitations, such as limited ac-
counting boundaries, difficulty of making timely adjustments according to actual
production plan changes of the mine, equipment production capacity, and working
parameters not being immutable. Subsequent research should try to improve these
defects, expanding the scope of research, considering cross-validation of different
types of mines, and further improving the accuracy and generalization of the model.
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Abbreviations

The main notations comparison list is as follows:

Notations Meaning Unit

Edr
1 greenhouse gas emissions per cubic meter rock mass drilled by a rock drilling rig t CO2/m3

j’ the number of rock types with obvious differences in properties in the mine
P1 the rated power of the drilling trolley kw
P2 the rated power of the heading trolley kw
a1

j the average number of boreholes drilled by a drilling trolley in a certain type of rock mass
a2

j the average number of boreholes drilled by a heading trolley in a certain type of rock mass
b1

j the average borehole length per unit cube of a certain type of rock mass for the drilling trolleys m/m3

b2
j the average borehole length per unit cube of a certain type of rock mass for the heading

trolleys
m/m3

η1 the general drilling efficiency of drilling trolleys m/h
η2 the general drilling efficiency of heading trolleys m/h
EFelectricity greenhouse gas emission factor of electric energy t CO2/kwh
Eex

2 greenhouse gas emissions per cubic meter rock mass mined during blasting t CO2/m3

K1
j the unit consumption of explosives for the same type of rock mass for preparation blasting kg/m3

K2
j the unit consumption of explosives for the same type of rock mass for ore blasting kg/m3

EFexplosive the greenhouse gas emission factor for industrial explosives used in mines t CO2/t
Ev−w−c

3 the greenhouse gas emissions from the ventilation, drainage, and pressurization processes
when treating a unit cube of rock mass

t CO2/m3

𝒾 the number of types of ventilators kW
ℊ the number of types of drainage pumps kW
𝓏 the number of types of compressors kW
n𝒾 the number of working units of ventilators of a certain type
nℊ the number of working units of drainage pumps of a certain type
n𝓏 the number of working units of compressors of a certain type
t𝒾 the average daily working time of a certain type of ventilator h
tℊ the average daily working time of a certain type of drainage pump h
t𝓏 the average daily working time of a certain type of compressor h
ρ the average density of mine rock mass kg/m3

Qday the sum of daily ore and waste rock in the underground mine t/day
Q1

day the daily average amount of rock mass excavated in the underground mine using compressed
air equipment

t/day

Edi
4 carbon emissions per unit cube of rock mass for diesel scrapers t CO2/m3

𝒽’ the number of diesel scraper types used in the mine
P𝒽

di the engine rated power of a certain type of diesel scraper kw
λ the power ratio coefficient of an engine under no-load and heavy load
tav
sc the average round-trip time of the scraper h

EFdiesel the carbon emission factor of diesel t CO2/J
αdi the diesel combustion conversion efficiency
V𝒽

bucket the bucket capacity corresponding to a certain type of diesel scraper used in the mine m3

ksc the full bucket coefficient of the scraper
Edi

5 carbon emissions per unit cube of rock mass shoveled by electric scrapers and electric locomo-
tives in the mine

t CO2/m3
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Notations Meaning Unit

𝓀’ the number of types of electric scrapers
𝒻’ the number of types of electric locomotives
P𝓀

el the respective rated power of a certain type of electric scraper kw
P𝒻

el the respective rated power of a certain type of electric locomotive kw
tav
el the average round-trip time of electric locomotives h

Vel−1
bucket the bucket volume of the electric scraper m3

Vel−2
bucket the carriage volume of the electric locomotive m3

n’ the number of carriages in the electric locomotive
ktrain the full bucket coefficient of the electric locomotive
EF f i

8 the carbon emissions produced during the backfilling of each cubic cavity t CO2/m3

𝓌’ the types of filter presses used in the processes of pressure filtration, mixing, and pumping
𝓇’ the types of mixers used in the processes of pressure filtration, mixing, and pumping
𝓊’ the types of pumps used in the processes of pressure filtration, mixing, and pumping
P𝓌

pr the rated power of each type of filter press kW
P𝓇

st the rated power of each type of mixers kW
P𝓊

pu the rated power of each type of pumps kW
tav

pr the average working time of the filter press to complete a workflow
tav
st the average working time of the mixer to complete a workflow

tav
pu the average working time of the pump to complete a workflow

n𝓌
pr the number of presses for each type

n𝓇
st the number of mixers for each type

n𝓊
pu the number of pumps for each type

Vav
pr the treatment volume of the filter press in their respective single workflow time m3

Vav
st the treatment volume of the mixer in their respective single workflow time m3

Vav
pu the treatment volume of the pump in their respective single workflow time m3

References

1. Zhou, A.; Hu, J.; Wang, K. Carbon emission assessment and control measures for coal mining in China. Environ. Earth Sci. 2020,
79, 1–15. [CrossRef]

2. Yuan, Y.; Chuai, X.; Xiang, C.; Gao, R. Carbon emissions from land use in Jiangsu, China, and analysis of the regional interactions.
Environ. Sci. Pollut. Res. 2022, 29, 44540. [CrossRef] [PubMed]

3. Clarke, B.J.; Otto, F.E.L.; Jones, R.G. Inventories of extreme weather events and impacts: Implications for loss and damage from
and adaptation to climate extremes. Clim. Risk Manag. 2021, 32, 100285. [CrossRef]

4. Azadi, M.; Northey, S.A.; Ali, S.H.; Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change
mitigation. Nat. Geosci. 2020, 13, 100–104. [CrossRef]

5. European (EU) Commission. European Green Deal 2021 Fit for 55 Package: The EU’s Fit for 55 Package—Key Takeaways from Bernstein
Renewables, Chemical, Airlines & Energy Teams; European (EU) Commission: Brussels, Belgium, 2021.

6. European (EU) Commission. European Green Deal 2018 A Clean Planet for All; European (EU) Commission: Brussels, Belgium,
2018; p. 773.
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