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Article

Accurate Robot Arm Attitude Estimation Based on Multi-View
Images and Super-Resolution Keypoint Detection Networks

Ling Zhou, Ruilin Wang and Liyan Zhang *

College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; zhouling_ttyy@nuaa.edu.cn (L.Z.); wangrl97@foxmail.com (R.W.)
* Correspondence: zhangly@nuaa.edu.cn

Abstract: Robot arm monitoring is often required in intelligent industrial scenarios. A two-stage
method for robot arm attitude estimation based on multi-view images is proposed. In the first stage,
a super-resolution keypoint detection network (SRKDNet) is proposed. The SRKDNet incorporates
a subpixel convolution module in the backbone neural network, which can output high-resolution
heatmaps for keypoint detection without significantly increasing the computational resource con-
sumption. Efficient virtual and real sampling and SRKDNet training methods are put forward. The
SRKDNet is trained with generated virtual data and fine-tuned with real sample data. This method
decreases the time and manpower consumed in collecting data in real scenarios and achieves a better
generalization effect on real data. A coarse-to-fine dual-SRKDNet detection mechanism is proposed
and verified. Full-view and close-up dual SRKDNets are executed to first detect the keypoints and
then refine the results. The keypoint detection accuracy, PCK@0.15, for the real robot arm reaches
up to 96.07%. In the second stage, an equation system, involving the camera imaging model, the
robot arm kinematic model and keypoints with different confidence values, is established to solve the
unknown rotation angles of the joints. The proposed confidence-based keypoint screening scheme
makes full use of the information redundancy of multi-view images to ensure attitude estimation
accuracy. Experiments on a real UR10 robot arm under three views demonstrate that the average
estimation error of the joint angles is 0.53 degrees, which is superior to that achieved with the
comparison methods.

Keywords: robot arm; attitude estimation; super-resolution keypoint detection network (SRKDNet);
multi-view images

1. Introduction

In the context of intelligent manufacturing, robot arms with multiple joints play
increasingly important roles in various industrial fields [1,2]. For instance, robot arms
are utilized to accomplish automatic drilling, riveting and milling tasks in aerospace
manufacturing; in automobile and traditional machinery manufacturing fields, robot arms
can be frequently seen in automatic loading/unloading, automatic measurement and other
production or assembly tasks.

In most industrial applications, a robot arm works in accordance with the pre-planned
program. However, on occasions where the robot arm becomes out of control by mistake,
serious collision or injury accidents may occur, especially in the work context of human–
machine cooperation. Therefore, it is critical to configure monitoring means to ensure safety.
On-site attitude monitoring of working robot arms is also essential for the collaborative
work of multiple robot arms.

Machine vision is one of the most suitable and widely used monitoring means due
to its relatively low cost, high applicability and good accuracy. To reduce the difficulty of
image feature recognition and to improve monitoring accuracy and reliability, a common
method in industry is to arrange cooperative visual targets on the monitored object [3,4].

Sensors 2024, 24, 305. https://doi.org/10.3390/s24010305 https://www.mdpi.com/journal/sensors1
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However, arranging cooperative targets is usually cumbersome and time-consuming, and
the targets in industrial sites tend to suffer from being stained or falling off. Studying
methods for accurately estimating the attitude of robot arms without relying on cooperative
visual markers presents a significant research challenge [5,6].

With their excellent ability to extract image features, deep neural networks have been
widely used in the field of computer vision. They can extract natural feature information
and deep semantic information from images and realize various computer vision tasks
based on the rich extracted information without relying on cooperative visual markers.
The base of the robot arm in most industrial scenes is fixed on the ground or a workbench.
In this situation, the motion attitude of the robot arm is completely determined by the
rotation angle of each joint. Therefore, monitoring the robot arm attitude is essential to
determine the rotation angles of the arm joints. One approach to this is constructing an
end-to-end neural network model to directly predict the attitude parameters of the robot
arm through the input image of the robot arm. However, the end-to-end method requires
more computing resources. In addition, it is not easy to make full use of the kinematic
constraints of the robot arm and the imaging constraints from 2D to 3D space. Therefore,
the attitude estimation accuracy of the end-to-end method is difficult to ensure. Another
possible approach to attitude estimation is composed of two stages. First, the feature points
of the robot arm are detected in the image, and then system equations are established to
solve the angle of each joint. This strategy can better leverage the advantages of deep
learning and 3D machine vision theory.

Keypoint detection is a major application of deep learning methods. Toshev et al. [7]
directly located the image coordinates of the keypoints on the human body through convo-
lutional neural networks to determine the human pose. Instead of outputting determined
positions for the detected keypoints, the subsequent keypoint detection networks com-
monly output the positions in the form of heatmaps [8–11]. Newell et al. [8] proposed
SHNet (Stacked Hourglass Network), which stacked several hourglass modules and de-
tected keypoints based on multi-scale image feature information. Chen et al. [9] proposed
CPNet (Cascaded Pyramid Network), which is cascaded by two convolutional neural
network modules. The first module is used to detect all keypoints, and the second module
corrects the poor-quality results detected by the first module to improve the final detec-
tion accuracy. Peng et al. [10] proposed PVNet (Pixel-wise Voting Network), which can
obtain superior keypoint detection results when the target object is partially blocked. Sun
et al. [11] proposed HRNet (High-Resolution Network), which processes feature maps
under multiple-resolution branches in parallel, so that the network can maintain relatively
high-resolution representation in forward propagation. These neural networks have found
successful applications in tasks such as human body posture estimation, where qualitative
understanding instead of quantitative accuracy is the main concern. Due to the huge de-
mand for computing resources for network training, these neural networks have to resort
to a downsampling process for front-end feature extraction, which leads to the resolution
of the output heatmaps being insufficient for high-accuracy estimation.

Determining how to make the neural network output a higher-resolution heatmap
without significantly increasing the consumption of computing resources is a significant
problem worth investigating. Super-resolution image recovery based on deep learning has
seen great progress in recent years. SRCNNet (Super-Resolution Convolutional Neural
Network) [12], VDSRNet (Very Deep Super-Resolution Network) [13], EDSRNet (Enhanced
Deep Super-Resolution Network) [14], etc., have been proposed. The early super-resolution
reconstruction networks need to upsample a low-resolution input image to the target resolu-
tion for subsequent processing before training and prediction; therefore, the computational
complexity is high. Shi et al. [15] proposed ESPCNNet (Efficient Subpixel Convolutional
Neural Network) from the perspective of reducing computational complexity. This convo-
lutional neural network deals with low-resolution feature maps in the training process and
only adds a subpixel convolution layer to realize upsampling operation in the end, which
effectively increases the speed of super-resolution image reconstruction. It has the potential
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to improve the resolution of the output keypoint heatmaps and in turn improve the key-
point positioning accuracy by introducing the idea of super-resolution image reconstruction
into the keypoint detection network.

To monitor the attitude of a robot arm, it is essential to solve the rotation angle of
each joint. Based on the depth image of the robot arm, Widmaier et al. [16] used a random
forest regression model to estimate the robot arm attitude. Labbe et al. [17] and Zuo
et al. [18] estimated the robot arm attitude based on one single grayscale image. However,
serious joint occlusion is inevitable in one single-perspective image, which makes it hard
to detect some keypoints and may even lead to wrong estimation results. Moreover, the
depth ambiguity problem in monocular vision may lead to multiple solutions in attitude
estimation, reducing the monitoring reliability of the robot arm.

In this paper, we present a two-stage high-precision attitude estimation method for
base-fixed six-joint robot arms based on multi-view images. The contributions include the
following: (1) A new super-resolution keypoint detection network (SRKDNet for short)
is proposed. The novelty of the SRKDNet lies in that a subpixel convolution module is
incorporated in the backbone neural network HRNet [11] to learn the law of resolution
recovery of the downsampled feature maps. This method can alleviate the disadvantages of
low-resolution heatmaps and improve the keypoint detection accuracy without significantly
increasing the computing resource consumption. (2) A coarse-to-fine detection mechanism
based on dual SRKDNets is put forward. A full-view SRKDNet obtains a relatively rough
keypoint detection result. Then, a close-up SRKDNet is executed to refine the results with
a cropped image of the ROI determined by the results of the full-view SRKDNet. The
dual-SRKDNet detection mechanism performs better than one-time detection, and the
keypoint detection accuracy is drastically improved. (3) Efficient virtual-and-real sampling
and neural network training methods are proposed and verified. The virtual sample data
are first used to train the neural network, and then a small number of real data are applied
to fine-tune the model. This method achieves accurate keypoint detection for real data
without consuming a huge amount of time and manpower. (4) The constraint equations for
solving the rotation angles of each joint are established; they depict the relation among the
detected keypoints in the multi-view images, the camera imaging model and the kinematic
model of the robot arm. A screening strategy based on the keypoint detection confidence
is incorporated in the solving process and is proved to be critical for ensuring attitude
estimation accuracy. Experiments demonstrate that the whole set of methods proposed in
this paper can realize high-accuracy estimation of robotic arm attitude without utilizing
cooperative visual markers.

The remaining contents of this paper are arranged as follows: In Section 2, we in-
troduce the whole set of methods, including the approaches to high-precision keypoint
detection (Section 2.1), automatic virtual sample generation (Section 2.2) and robot arm
attitude estimation (Section 2.3). Experiments on virtual and real robot arms are reported
in Section 3. We conclude the paper in Section 4.

2. Materials and Methods

2.1. High-Precision Detection of Keypoints

The first step of the two-stage attitude estimation method proposed in this paper is
to detect the preset keypoints on/in the robot arm in the images. The detection accuracy
directly affects the accuracy of the joint angle estimation.

The preset keypoints were selected under three basic criteria: (1) The keypoints should
have distinctive features to be identified in the images. (2) The keypoints should be helpful
for determining the attitude of the robot arm. (3) There are at least 2 keypoints on each rod.
Taking the commonly used UR10 robot arm as the research object, we selected 20 keypoints
on/in the robot arm (including the working unit attached at the end). The keypoint set was
composed of the 3D center points (the red points) of each rotating joint, the 3D midpoint
(the blue points) of each rod segment and some salient feature points (the green points) of
the arm, as shown in Figure 1. The first two types of points are inside the structure, and the
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third type of points is on the surface of the structure. The keypoints form a skeleton, which
can effectively characterize the attitude of the entire robot arm.

Figure 1. The selected keypoints on/in the robot arm.

Each keypoint was directly selected on the 3D digital model of the robot arm when it
was in the zero position. To generate the sample data for neural network training, either
a virtual or real robot arm was controlled to move to the specified positions. The 3D
coordinates of the preset keypoints at each specified position (for instance, the position as
in Figure 1) could be obtained according to the kinematics of robotic arms [19], which will
be detailed in Section 2.2.2.

Given any predefined keypoint position in/on the digital model, its corresponding
image point can be calculated according to the camera model. In this way, we obtained a
large number of training samples for the keypoint detection network. Experiments show
that with the predefined keypoints, the keypoint detection network works well and the
arm attitude estimation achieves high accuracy.

This section begins with a brief introduction to the backbone network HRNet [11] used
in this paper. Then, we introduce the idea of image super-resolution reconstruction into
keypoint detection and propose a super-resolution keypoint detection network, SRKDNet,
which can alleviate the disadvantages of the low-resolution heatmaps without significantly
increasing the computing resource consumption. A coarse-to-fine keypoint detection
scheme based on dual SRKDNets is also presented in this section.

2.1.1. Brief Introduction to HRNet

To retain high resolution for the feature maps in the forward propagation, the high-
resolution network HRNet processes feature maps at various resolutions, as shown in
Figure 2. First, a preprocessing module is used to downsample the input image, which
lowers the resolution of the output heatmaps as well. The main structure of HRNet can
be divided into several stages, and the branches at different resolutions in each stage
use the residual blocks to extract features. After each stage, a new branch is created
without abandoning the original-resolution branch. The new branch is obtained by strided
convolutions. The length and width of the new feature map are reduced to 1/2 of the
original, but the number of channels becomes twice that of the original. In the new stage,
the feature maps are created by fusing the multi-scale feature maps of each branch in the
previous stage. The HRNet shown in Figure 2 has four branches with different resolutions.
The final output feature map integrates the information extracted from the four branches
and is used for generating the keypoint heatmap.
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Figure 2. Network structure of HRNet.

The multi-scale fusion operation in HRNet is shown in Figure 3. The feature maps
from the branches with the same resolution remain the same while those with different
resolutions are converted to the same resolution first via upsampling or downsampling
(strided convolutions). Then, they are aggregated to obtain the output maps. HRNet
has powerful multi-scale image feature extraction capability and has been widely used in
classification recognition, semantic segmentation and object detection. We take HRNet as
the backbone in our super-resolution keypoint detection network (SRKDNet) which will be
presented in the next subsection.

 

Figure 3. Multi-scale fusion method of HRNet.

2.1.2. Super-Resolution Keypoint Detection Network (SRKDNet)

If the resolution of the sample images is large, the neural networks will consume huge
amounts of computing resources in the training. Therefore, HRNet and most related neural
networks like SHNet [8] utilize a preprocessing convolution module to downsample the
input images. Taking HRNet for instance, the original images need to be downsampled
to 64 × 64 through the preprocessing convolution module. The so-called high-resolution
feature map maintained in each subsequent layer of the convolutional neural network
structure is only 64 × 64. If an ordinary upsampling method, e.g., neighbor interpolation, is
used to restore the resolution, the downsampling operation will lead to precision loss of the
keypoint positions in the heatmaps. Suppose the coordinates of a keypoint in the original
image are (u, v), and the downsampling scale is a; then, the coordinates of the keypoint
on the corresponding ground-truth heatmap are (u/a, v/a), which have to be rounded
as ([u/a], [v/a]). Here, [·] represents the round operator. When the keypoint coordinates
([u/a], [v/a]) are re-mapped back to the original resolution denoted as (u′, v′), a maximum
error is possibly generated:

εmax =

√
(u − u′)2 + (v − v′)2 =

√
2

2
a (1)

It can be seen that the larger the downsampling scale is, the more possible accuracy
loss of the keypoint position in the heatmap there will be.
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Inspired by the methods of image super-resolution reconstruction, we propose a
super-resolution keypoint detection network (SRKDNet). As shown in Figure 4, SRKDNet
uses HRNet as the backbone network to extract multi-scale feature information in the
images. The preprocessing module extracts shallow features from the input image and
downsamples it. The generated low-resolution feature map is then sent to the core module
of HRNet. Instead of directly sending the feature maps output by the core module to
the 1 × 1 convolution layer for heatmap generation, SRKDNet incorporates a subpixel
convolution layer [15] after the core module to learn the law of resolution recovery of the
downsampled feature maps. In addition, a branch is added to the input side, and the
resolution of the output feature map of the branch is the same as that of the input image
(also called the original resolution). The branch is combined with the resolution-recovered
feature map output by the resolution recovery module through channel fusion processing.
Finally, a 1 × 1 convolutional layer is used for generating the heatmap with the original
resolution.

Figure 4. Structure of the proposed SRKDNet.

Adding a branch at the input side can provide additional shallow image features
for the final heatmap generation. We believe that the combination of shallow and deep
feature information is conducive to keypoint detection. In order to avoid the loss of image
information, the branch consists of only one convolution layer and one batch normalization
layer, with no activation layer involved.

The essence of subpixel convolution is to rearrange the pixels from a low-resolution
image with more channels in a specific way to form a high-resolution image with fewer
channels. As shown in Figure 5, pixels of different channels at the same position on the low-
resolution image with size (r2, H, W) are extracted and composed into small squares with
size (r, r), which together form a high-resolution image with size (1, rH, rW) Realizing the
subpixel convolution requires convoluting the low-resolution feature maps first to expand
the number of image channels. For instance, the low-resolution image in size of (C, H, W)
needs to be expanded to size (r2C, H, W) via convolution before it can be converted to a
high-resolution image in size of (C, rH, rW). In our implementation, r = 2.

 

Figure 5. Subpixel convolution processing.

Since the backbone network HRNet has a strong ability to detect features in multiple
scales, SRKDNet does not adopt a complex super-resolution neural network structure.
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Instead, only a subpixel convolution module is applied to enable the convolutional neural
network to learn the knowledge for generating high-quality and high-resolution heatmaps
from low-resolution information. The subsequent experiments can prove its significant
effects in improving the neural network performance.

2.1.3. Coarse-to-Fine Detection Based on Dual SRKDNets

For collecting the sample data of the robot arm, it is necessary to make the field of view
of the camera completely cover the working space of the robot arm, which is much larger
than the robot arm itself. Therefore, the robot arm occupies only a small region in some
images, while the large background regions have no help in the keypoint detection. To
further improve the detection performance, we propose a coarse-to-fine detection strategy
based on dual SRKDNets. First, an SRKDNet, namely a full-view SRKDNet, is trained by
using the original sample images, as shown in Figure 6a. By using the trained full-view
SRKDNet, the coarse keypoint detection results are obtained (red points in Figure 6b).
Based on the relatively rough detection results, the corresponding region of interest (ROI)
of the robot arm in each image (blue bounding box) is determined, as shown in Figure 6b.
According to the ROI, a new image is cropped from the sample image, as shown in Figure 6c.
Using the cropped new images as the sample data, another SRKDNet, namely close-up
SRKDNet, is trained. The two SRKDNets use the same convolutional neural network
structure, the same training flow and the same setup. For an image to be detected, the
trained full-view SRKDNet is first used for rough detection. The cropped image of the
robot arm ROI is then put into the trained close-up SRKDNet to obtain the final keypoint
detection result, shown as the blue points in Figure 6d. Our experiments have demonstrated
that the detection scheme based on dual SRKDNets can drastically improve the keypoint
detection performance. The details of the experiments can be found in Section 3.

Figure 6. Coarse-to-fine keypoint detection based on dual SRKDNets. (a) Original sample image.
(b) ROI of the robot arm. (c) Cropped image of the robot arm ROI. (d) Keypoint detection result.

2.2. Automatic Sample Generation Based on Virtual Platform
2.2.1. Virtual Platform Construction

The training of a neural network requires a large number of sample data. The predic-
tive effect of the neural model is directly related to the quantity and quality of the sample
data. To make the neural network fully “know” the robot arm to be detected in the image
and make the trained model have a more stable performance, the sample images should
be taken from various perspectives, under various backgrounds and lighting conditions.
Obviously, collecting a large number of diverse sample data in real industrial scenarios will
consume a lot of manpower and time.
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For this paper, a virtual platform in UE4 [20] was established to simulate the working
scene of the UR10 robot arm equipped with a working unit. The color, roughness, high
brightness and metallicity of the appearance of the real robot arm are presented in the
platform as far as possible. The base coordinate system of the UR10 robot arm is set as
the world coordinate system. The robot arm in the zero position is shown in Figure 7a. A
movable skeleton and a parent–child relationship between the adjacent bones are created
according to the structure and kinetic characteristics of the robot arm, as shown in Figure 7b.
Each bone has a head and a tail node. The head node is connected to the parent bone,
and the tail node is connected to the child bone. Each bone can be rotated freely with the
head node as a reference point, and the child bone connected to its tail node moves with it
together. The 3D digital model of each arm segment is bound to the corresponding bone, so
as to drive the articulated arm to move together with the skeleton, as shown in Figure 7c.

Figure 7. Binding of robot arm and skeleton. (a) Robot arm in zero position. (b) Movable skeleton of
the arm. (c) Robot arm moving with the skeleton.

In UE4, the motion posture and speed of the robot arm can be easily set; one or more
virtual cameras can be deployed in the scene; the internal and external parameters of
the cameras, as well as the lighting conditions and the background of the scene, can be
flexibly changed. In this way, we virtually collected a large number of sample data under
various backgrounds and lighting conditions for training the SRKDNets. The background
settings are randomly selected from the images in the COCO dataset [21]. A moving light
source is used in the constructed virtual platform. The position and properties of the light
source keep changing during the sample data collection. Rich background settings and
lighting conditions in the sample data can make the neural network insensitive to the
background/lighting changes and more focused on extracting the features of the robot
arm itself.

After the virtual scene with the robot arm is established, the virtual cameras take
virtual images of the scene to obtain the synthetic image of the robot arm. These virtual
images will serve as the training samples. The attitude parameters of the robot arm, as
well as the internal and external parameters of the virtual cameras corresponding to each
virtual image, are recorded for image labeling, which will be detailed in the next subsection.
Figure 8 shows three typical virtual sample images of the robot arm.

Figure 8. Three synthetic sample images of the robot arm against random backgrounds.
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2.2.2. Automated Generation and Labeling of Virtual Samples

With the virtual platform constructed in Section 2.2.1, we generated a large number of
virtual sample images using a Python program, utilizing the UnrealCV library [22] and the
blueprint script in UE4. The collection process of a single sample is as follows:

1. The rotation angles of each joint of the robot arm, the pose parameters of the virtual
camera, the light intensity and direction, and the background are randomly generated.
They are used to automatically update the virtual sample collecting scene in UE4.

2. A virtual image of the current virtual scene is taken via the virtual camera.
3. For any keypoint Pj on/in the m-th arm segment, its relative coordinate mPj in the

arm segment coordinate system Cm is converted to 0Pj in the robot base coordinate
system C0 according to the successive parent–child transformation relationship of the
bone segments:

0P̃j =
0
mT(θ1, θ2, · · · , θm)

mP̃j (2)

where 0P̃j is the homogeneous form of 0Pj,
mP̃j is the homogeneous form of mPj

and 0
mT(θ1, θ2, θm) ∈ R4×4 is the transformation matrix from Cm to C0, which is

determined by the rotation angles θ1, θ2, θm of the m joints. The coordinate values of
mPj do not change with the movement of the robot arm and can be determined in
advance according to the digital model of the robot arm.

4. According to the internal and external parameters of the virtual camera, the pixel
coordinates of each keypoint on the virtual image are calculated by using the camera
imaging model in Formula (3)

sp̃j = K[R t]0P̃j (3)

where p̃j represents the homogeneous pixel coordinate vector of keypoint Pj in the

virtual image, 0P̃j is the homogeneous form of the 3D coordinates in the robot base
coordinate system C0, R and t are the rotation matrix and translation vector from C0
to the virtual camera coordinate system Cc, K is the intrinsic parameter matrix of the
camera and s is a scalar coefficient.

5. According to the pixel coordinates pj of each keypoint Pj, the heatmap label of the
current virtual image is generated. In the generated heatmap of Pj, the weight is set to
the largest value at pj and gradually decreases around pj with Gaussian distribution.
All the heatmaps of Pj(j = 1, 2, . . . . . . , J) are concatenated as the training label of the
current virtual sample.

In addition, data enhancements, including random image rotation, translation, scaling
and gray changes, are also carried out on the generated sample images to improve the
robustness and generalization of the model.

Using the above process, we automatically collected a large number of virtual sample
data with training labels.

2.3. Attitude Estimation Based on Multi-View Images

In view of the inevitability of the keypoint occlusions and the lack of depth constraints
in a single-view image, we used multi-view images combined with the proposed keypoint
learning algorithm to estimate the attitude of the robot arm and verify its performance on
accuracy and reliability.

2.3.1. Solving Rotation Angles of Robot Arm Joints

As stated in Section 2.2.2, for the keypoint Pj on the m-th arm segments, its 3D
coordinate 0Pj in the base coordinate system C0 under any robot attitude can be calculated
from the 3D coordinate mPj in Cm according to Equation (2). Suppose that L cameras
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are arranged to monitor the robot arm from different perspectives, then by combining
Equations (2) and (3), we have the following:

sjp̃
l
j = Kl

[
Rl tl

]
0
mT(θ1, θ2, · · · , θm)

mP̃j, j = 1, 2, · · · , J; l = 1, 2, · · · , L (4)

where
∼
p

l
j denotes the homogeneous pixel coordinates of the keypoint Pj in the l-th camera’s

image plane; Kl , Rl , tl represent the intrinsic and extrinsic parameters of the l-th camera;
and θm is the rotation angle of the m-th joint. For all the keypoints in the multi-view images,
Formula (4) forms an equation system composed of L × J equations.

In the robot arm attitude monitoring process, the image coordinates pl
j (l = 1, 2, · · · , L)

of the keypoints Pj(j = 1, 2, · · · , J) in the L images are located via the proposed dual SRKD-
Nets; the camera parameters Kl , Rl , tl are known in advance (In the virtual experiments,
the camera parameters can be directly obtained from the settings. In the real experiments,
the intrinsic parameters are determined with the popular calibration method presented
in [23]. The relative geometry relationship between the UR10 robot arm and the cameras
was calibrated in advance with the well-established off-line calibration method presented
in [24,25].); the 3D coordinates of mPj are determined on the 3D digital model of the robot
arm. Therefore, after removing the scale factor sj, the unknowns in the equation system (4)
are only the rotation angles of the joints. The LM (Levenberg–Marquardt) algorithm [26]
can be used to optimize the equation system to obtain the joint angles θ1, θ2, · · · , θm. The
initial values of θ1, θ2, · · · , θm are randomly assigned within their effective ranges.

2.3.2. Keypoint Screening Based on Detection Confidence

Some keypoints, especially those on the first segment or on the flange of the robot
arm, are prone to be occluded by other arm segments in certain perspectives, as shown in
Figure 9. When a keypoint is blocked in the image, the detection reliability of the neural
network will decline, and the error between the predicted position and the real position will
be larger (see Section 3 for the experimental results). The accuracy decline of the keypoint
detection will inevitably increase the attitude estimation error.

Figure 9. Three examples of robot arm with self-occlusion in real images.

However, in the case of monitoring with multi-view images, a keypoint is not likely
to be occluded in all the images. Therefore, we propose a keypoint screening scheme,
which is based on the detection confidence of the keypoint, to improve the attitude estima-
tion accuracy.

As mentioned above, the value of each pixel in the heatmap output by the SRKDNet
represents the probability that the image of the keypoint is located on that pixel. The pixel
with the largest probability value (i.e., the detection confidence) in the heatmap will be
selected as the detection result. For the L images from different perspectives, each keypoint
will have L detection results, whose confidence values are different. The L detection results
are sorted from high to low according to their confidence values. Then, the results with low
confidence scores are discarded, and at least two results with the highest scores are kept.
The screened results with high detection quality are substituted into Formula (4) so that

10
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the attitude of the robot arm can be solved more accurately and reliably. It should be noted
that with this screening scheme, the number of equations in (4) will be less than L × J, but
still far more than the number of unknowns. Therefore, it can ensure robust solutions.

3. Experiments

3.1. Experiments on Virtual Data

The virtual sample acquisition and labeling methods described in Section 2.2 were
used to generate 11,000 labeled sample images with a resolution of 640 × 640. We randomly
selected 9000 virtual samples as the training set and 1000 virtual samples as the validation
set. The validation set was not included in the training and was only used to verify the
effect of the model after each round of training. The other 1000 virtual samples served
as the test set to demonstrate the final effect of the model after all rounds of training. All
the sample images in this study were monochrome. Before the sample images were put
into the convolutional neural network for training, they were reduced to the resolution of
256 × 256. All the experiments in this study were performed on a Dell workstation with an
RTX2080S graphics card and 8 GB video memory.

3.1.1. Loss Function and Model Training Settings

Denote the labels in a sample batch as {Gi(i = 1, 2, · · · , N)} and the heatmap output
by the convolutional neural network as {Hi(i = 1, 2, · · · , N)}, where N represents the
sample number in a batch during the training process. The number of channels, height and
width of the true heatmap corresponding to a sample image are the same as those of the
predicted heatmap, denoted as C, H and W, respectively. The number of channels C equals
the keypoint number, i.e., 20, in this paper.

The mean square error was used as the loss function:

MSE =
1
N

1
C

1
H

1
W

N−1

∑
i=0

C−1

∑
j=0

H−1

∑
h=0

W−1

∑
w=0

[Gi(j, h, w)− Hi(j, h, w)]2 (5)

SHNet [8], HRNet [11] and the proposed SRKDNet were trained with the generated
virtual data for the comparison of the keypoint detection performance among these models.
The PyTorch library was used to build and train the models. In the training of HRNet
and the proposed SRKDNet, the settings in Ref. [11] were adopted: Adam optimizer was
used; the initial learning rate was set to 0.001; the total training epoch was 45; the data
batch size was 8; the learning rate was reduced once every 15 rounds with a reduction
factor of 0.1. The weights of HRNet were obtained from the pre-trained HRNet on the
ImageNet [27] dataset. For the backbone network of the proposed SRKDNet, the same
initial weights and number of intermediate layers as in Ref. [11] were adopted. For SHNet,
two hourglass modules were stacked, and its training followed the settings in Ref. [8]: the
Rmsprop optimizer was used, the learning rate was initially set to 0.00025 and the neural
network was trained from scratch using Pytorch’s default weight initialization.

The resolution of the heatmaps output by both SHNet and HRNet was 64 × 64. The
standard deviation of the Gaussian distribution of the weights on the corresponding ground-
truth heatmap was set to 1 pixel. The resolution of the heatmaps output by SRKDNet
was 256 × 256, and the standard deviation of the Gaussian distribution of the weights on
the corresponding ground-truth heatmap was set to 3 pixels. The channel number of the
highest-resolution branch of HRNet and SRKDNet was 32. The channel number of the
feature maps in the supplementary branch containing shallow image features in SRKDNet
was set to 8.
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3.1.2. Experimental Results on Full-View SRKDNet

A commonly used metric, namely the percentage of correct keypoints (PCK) [18], was
adopted to evaluate the keypoint prediction accuracy of each model. It is defined as shown
in Formula (6):

PCK =
1
A

A

∑
i=1

δ(
ei

enorm
), δ(x) =

{
1, x ≤ τ
0, x > τ

(6)

where A is the total number of predicted results; ei is the pixel distance between the pre-
dicted and the ground-truth positions; enorm is the standard error distance; τ is a specified
threshold to adjust the ratio between the calculated error distance in the experiments and
enorm. If the calculated distance error ei between the predicted and the true positions of
the keypoint is less than enorm × τ , δ equals 1 and the predicted position is considered
correct. The keypoint prediction result of our full-view SRKDNet will be compared with
that of SHNet and HRNet by using PCK as the metric. In our experiment, enorm was
set to 40 pixels and τ was assigned as 0.2, 0.15 or 0.1. Considering that the three neural
networks output heatmaps with different resolutions, but the detected keypoint positions
need to be mapped back to the original sample images to conduct the subsequent robot arm
attitude estimation, we mapped the predicted coordinates of all keypoints to the original
resolution 640 × 640 for comparison. Table 1 lists the PCK values of the three methods,
where PCK@0.2, PCK@0.15 and PCK@0.1 represent the prediction accuracy with τ = 0.2,
τ = 0.15 and τ = 0.1, respectively.

Table 1. Experimental results of keypoint detection on virtual samples.

Methods PCK@0.2 PCK@0.15 PCK@0.1

SHNet 93.17% 87.27% 66.06%
HRNet 94.91% 88.79% 68.14%

full-view SRKDNet 96.23% 94.33% 89.07%

The results in Table 1 show that the trained full-view SRKDNet completely outper-
forms the two comparison models SHNet and HRNet under all three threshold values.
The smaller the threshold is, the more obvious the superiority of the full-view SRKDNet
over the two comparison models is. The reasons for the superiority may lie in two aspects:
(1) Using the heatmaps with a higher resolution (256 × 256) in the training labels can reduce
the negative influence of the downsampling operation. (2) The predictive heatmap with
the trained super-resolution layer can express the detected keypoints more accurately.

Figure 10 shows the detection results of the three keypoint detection networks SHNet,
HRNet and our full-view SRKDNet for the same test image. The green dots are the
real locations of the keypoints, and the blue dots are the predicted locations. The mean
error refers to the average of the pixel distances between the predicted locations and the
real locations of all the keypoints. The mean prediction error of full-view SRKDNet is
significantly lower than that of SHNet and HRNet. We can also intuitively see that most
keypoint locations predicted by the full-view SRKDNet are closer to the real location than
those predicted by the comparison methods.

Figure 10. Comparison of keypoint detection results: (a) SHNet; (b) HRNet; (c) full-view SRKDNet.
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3.1.3. Experiment on Occlusion Effect

A large number of experiments have shown that the detection confidence of the
occluded keypoints in the image is low. In the example shown in Figure 11, keypoint
No. 1 on the end working unit is completely blocked by other arm segments. It turns out
that the maximum confidence of this keypoint in the heatmap is only 0.116. Meanwhile,
keypoint No. 2 on the first arm segment is visible in the image, and its detection confidence
is 0.774, which is much higher than that of keypoint No. 1. It can also be clearly observed
from Figure 11 that the predicted position of keypoint No. 1 deviates a lot from the real
position, while the predicted position of keypoint No. 2 is closely coincident with the real
position. The verified negative influence of self-occlusion on keypoint detection motivated
the screening scheme proposed in Section 2.3.2. Experiments on the screening scheme will
be reported in Section 3.1.5.

 

Figure 11. The influence of self-occlusion on keypoint detection.

The GPU (graphics processing unit) memory occupation of the full-view SRKDNet
was also compared with that of SHNet and HRNet with the batch size set to 8 in the training.
The result is shown in Table 2. The output heatmap resolution of the three convolutional
neural networks is shown in parentheses.

Table 2. Comparison of GPU memory occupation (batch size = 8).

Neural Network Model GPU Occupation

SHNet (64 × 64) 3397 MB
HRNet (64 × 64) 3031 MB

full-view SRKDNet (256 × 256) 3717 MB

Table 2 shows that HRNet occupies the least GPU memory during the training and
outputs heatmaps with a resolution of only 64 × 64. The SRKDNet occupies 22.6% more
GPU memory resources than HRNet. This demonstrates that the proposed full-view
SRKDNet can remarkably improve the detection accuracy (see Table 1) at the expense of a
mild increase in GPU occupation.

For further comparison, we canceled the downsampling operations in the preprocess-
ing stage of HRNet so that HRNet can also output heatmaps with a 256 × 256 resolution,
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which is the same as that of the full-view SRKDNet. However, the maximum batch size
of HRNet can only be set to 2 in this situation, and the experimental results are shown
in Table 3. These results demonstrate that to enable HRNet to output heatmaps with the
same resolution as that of the full-view SRKDNet, the GPU memory resource consumption
will increase sharply. When batch size = 2, the GPU occupation of HRNet exceeds 277.03%
compared with our full-view SRKDNet.

Table 3. Comparison of GPU memory occupation (batch size = 2).

Neural Network Model GPU Occupation

HRNet (256 × 256) 7371 MB
full-view SRKDNet (256 × 256) 1955 MB

3.1.4. Experimental Results on Dual SRDKNets

In this section, we present the results of keypoint detection conducted with dual SRD-
KNets to verify the effect of the coarse-to-fine detection strategy. Based on the detection
results of the full-view SRKDNet in Section 3.1.2 for each virtual sample image, the corre-
sponding region of interest (ROI, i.e., the region within the bounding box of the detected
keypoints) of the robot arm in each image was determined. The close-up SRKDNet was
then trained using the clipped local ROI images.

In the experiments on dual SRDKNets, for any virtual test samples, the trained full-
view SRKDNet was first used to conduct initial keypoint detection. Then, the ROI image
was input to the trained close-up SRKDNet to achieve the final detection results. The
threshold τ was set to 0.15, 0.1 and 0.05, which were more stringent in order to adapt to
the detection accuracy increase. The other settings were consistent with the experiments in
Section 3.1.2.

The keypoint detection results of the full-view SRKDNet and dual SRDKNets are
shown in Table 4. In the “full-view SRKDNet” method, only the trained full-view SRKDNet
was utilized for the keypoint detection. In the “dual SRKDNet” method, the trained
close-up SRKDNet was used following the full-view SRKDNet.

Table 4. Comparison of full-view SRKDNet only and dual SRKDNets.

Method PCK@0.15 PCK@0.1 PCK@0.05

full-view SRKDNet 94.33% 89.07% 62.14%
dual SRKDNet 98.69% 97.66% 93.92%

Table 4 shows that the PCK score of dual SRKDNets is higher than that of the full-view
SRKDNet, which means that the use of the close-up SRKDNet can effectively improve
the keypoint detection accuracy. When a more stringent threshold is set, a more obvious
improvement can be achieved. When τ = 0.05, in other words, when the distance threshold
between the detected and the real keypoint positions was set to 2 pixels, the keypoint
detection accuracy increased from 62.14% to 93.92%. When the threshold was assigned as
0.1, the PCK score of the close-up SRKDNet increased to 97.66%, compared to 89.07% of
the full-view SRKDNet.

The above experimental results demonstrate that the proposed successive working
mechanism of the dual SRKDNets is quite effective. The close-up SRKDNet can further
improve the keypoint detection accuracy by a large margin.

3.1.5. Robot Arm Attitude Estimation Experiments

We used the dual SRKDNets and virtual multi-view images to verify the effect of
robot arm attitude estimation. Specifically, four cameras were arranged in the UE4 virtual
environment, and 1000 sets of four-perspective sample images were collected using the
method in Section 2.2. The setting values of the six joint rotation angles corresponding to
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each of the 1000 sets of images were recorded as the ground-truth values of the 1000 attitude
estimation experiments. The full-view SRKDNet trained as described in Section 3.1.2 and
the close-up SRKDNet trained as described in Section 3.1.4 were used for the coarse-to-fine
keypoint detection.

The comparison experiments of single-view and multi-view attitude estimation, as
well as the comparison of using and not using the confidence-based keypoint screening
scheme, were conducted. The specific keypoint screening method for the four-perspective
sample images adopted in the attitude estimation experiments was as follows: The detection
keypoints with the top three highest confidence values were kept. If the fourth detection
result had a confidence score greater than 0.9, it would also be retained; otherwise, it would
be discarded.

The average error of the estimated rotation angles of the 1000 experiments of each
joint is shown in Table 5. “Single view” means the attitude estimation was performed
based on the information from one single-perspective image (we randomly selected the
1000 sample images collected by the second camera); “four views” means that image
from all four perspectives was used in the attitude estimation; “four views + confidence
screening” means the multi-view keypoint screening scheme was utilized on the basis of
“four-perspective”.

Table 5. Robot arm attitude estimation errors based on virtual images (unit: degree).

Method Joint-1 Joint-2 Joint-3 Joint-4 Joint-5 Joint-6 Average

Single view 0.24 0.42 1.33 5.55 6.72 12.91 4.53
Four views 0.12 0.17 0.30 1.41 1.42 2.95 1.06

Four views + confidence
screening 0.05 0.06 0.13 0.70 0.73 1.72 0.57

The above experimental results demonstrate that the average estimation error of the
joint angles using images from four perspectives was reduced by 76.60% compared with
that using the information from one perspective only. The confidence-based keypoint
screening scheme further reduced the average error of the four-view attitude estimation by
46.23%. The compound accuracy increase reaches nearly an order of magnitude, which
proves that the whole set of methods proposed in this paper is very effective.

3.2. Experiments on Real Robot Arm
3.2.1. Real Data Acquisition

The scene of a real robot arm attitude estimation experiment is shown in Figure 12, in
which three cameras are distributed around a UR10 robot arm. The intrinsic parameters of
the cameras and the transformation matrix of each camera coordinate system relative to the
base coordinate system of the robot arm were calibrated in advance by using well-studied
methods [23–25].

Figure 12. Experiment scene of real robot arm attitude estimation.
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We planned 648 positions for the flange endpoint of the robot arm in its working space
as the sample positions, as shown in Figure 13. Each sample position corresponded to a set
of six joint angles. After the robot arm reached each sample position, the three cameras
collected images synchronously and automatically recorded the current joint angles and
the 3D coordinates of the center endpoint of the flange in the base coordinate system. This
process was repeated until the real sample data collection was completed. A total of 1944
images were captured by the three real cameras.

Figure 13. Sample planning of real robot arm in working space.

The resolution of the industrial camera used in the experiment was 5120 × 5120. To
facilitate the training and prediction of the keypoint detection networks, and to unify
the experimental standards, the resolution of the collected real images was reduced to
640 × 640, which was the same as the resolution of the virtually synthesized images. The
detected keypoint positions were mapped back to the initial images for the robot arm
attitude estimation.

3.2.2. Keypoint Detection Experiment on Real Robot Arm

The real UR10 robot arm is consistent with the digital model in the virtual sampling
platform. Therefore, all the settings in the experiments in Section 3.1, the geometric
parameters of the robot arm, the 3D coordinates of the keypoints in the arm segment
coordinate system and the kinematic model of the robot arm were also applied to the real
robot arm attitude estimation experiments.

When the full-view SRKDNet trained using the virtual samples as described in Sec-
tion 3.1.2 was used to detect the keypoints in the real images, its detection accuracy on
real images was only 34.11%, 20.86% and 7.06% when the threshold τ was set to 0.15, 0.1
and 0.05, respectively. Therefore, we considered using the real sample data to fine-tune the
trained model.

From the 1944 images (648 sets of triple-view real data) obtained in Section 3.2.1, 99 real
sample data (33 sets) were randomly selected as training sets. Another randomly selected
99 real sample data (33 sets) served as the validation sets. The remaining 1746 samples
(582 sets) were used as the test sets to evaluate the performance of keypoint detection and
attitude estimation.

The full-view SRKDNet and the close-up SRKDNet pre-trained with virtual sample
data were both fine-tuned with the training sets. For comparison, we also tried the method
in which the full-view SRKDNet and the close-up SRKDNet were trained not with virtual
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sample data but directly with the real training sets. Since the number of real samples
used for training was very small, the training epoch was set to 300. The learning rate was
reduced once for every 100 epochs with a reduction coefficient of 0.1. The other settings
were consistent with those in Section 3.1.1. The keypoint detection results of the 1746
real test samples with the model trained with these methods are shown in Table 6. The
comparison of all the experimental results was still evaluated at a resolution of 640 × 640.
The first row displays the result of applying only the full-view SRKDNet trained with
the 99 real sample data (training sets) to detect the keypoints. The second row displays
the result of applying only the full-view SRKDNet trained with our virtual datasets and
fine-tuned with the 99 real sample data (training sets) to detect the keypoints. The keypoint
detection results of dual SRKDNets trained with the 99 real sample data (training sets) are
shown in the third row. The last row displays the result of dual SRKDNets trained with
our virtual datasets and fine-tuned with the 99 real sample data (training sets). The initial
weights of the backbone network of these models were obtained from HRNet pre-trained
with the ImageNet dataset.

Table 6. Experimental results of keypoint detection for real robot arm.

Method
Virtual Sample Data

Used in Training
PCK@0.15 PCK@0.1 PCK@0.05

Full-view SRKDNet No 92.01% 83.38% 47.27%
Full-view SRKDNet Yes 95.35% 88.48% 56.26%

Dual SRKDNets No 91.68% 85.72% 66.50%
Dual SRKDNets Yes 96.07% 92.51% 78.07%

Table 6 shows that no matter whether full-view SRKDNet only or dual SRKDNets
were used for the keypoint detection, the model trained with the virtual samples generated
in Section 3.1.2 and fine-tuned with 99 real sample data (training sets) demonstrates much
better detection accuracy on the real test. When the full-view SRKDNet and close-up
SRKDNet were trained with no virtual data but only the 99 real sample data (training sets),
the keypoint detection accuracy values on the real test images were obviously lower. The
results of this experiment verify the following: (1) the virtual samples generated with the
proposed method in Section 2.2 have a significant positive effect on the keypoint detection
of the robot arm in real scenes; (2) small amounts of real samples can efficiently re-train the
model having been trained with virtual samples and achieve high generalization on real
robot arms.

An example of keypoint detection in a realistic scenario is shown in Figure 14, where
the first row shows the situation of using the full-view SRKDNet only, and the second row
shows the situation of using the full-view SRKDNet and the close-up SRKDNet. The first
column in Figure 14 shows the input real images, the second column shows the achieved
heatmaps and the third column illustrates the keypoint detection results.
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Figure 14. Keypoint detection in realistic scenario.

3.2.3. Attitude Estimation Experiment on Real Robot Arm

In this section, we report the real robot arm attitude estimation experiment, which was
carried out based on the keypoint detection method with the highest detection accuracy
in Section 3.2.2, i.e., the last method in Table 6. The confidence-based keypoint screening
scheme was employed in the triple-view attitude estimation process. For each keypoint,
the results with the first and the second highest confidence scores were retained. If the
confidence score of the lowest results was larger than 0.9, it was also retained; otherwise, it
was discarded. The distortion compensation was conducted according to the calibrated
camera parameters to rectify the detected keypoint position.

The average estimation errors of each joint angle on the 582 real test sets collected from
three perspectives are shown in Table 7. The ground-truth values of each joint angle were
obtained from the control center of the robot arm when the sample data were collected.
The error of each joint in the table is the average of 582 estimated results.

Table 7. Experimental results of real robot arm attitude estimation (unit: degree).

Joint No. Joint-1 Joint-2 Joint-3 Joint-4 Joint-5 Joint-6 Average

Average
error 0.15 0.10 0.15 0.55 0.78 1.47 0.53

The experimental results in Table 7 show that the whole set of methods proposed in
this paper can achieve high-precision attitude estimation for the robot arm under realistic
scenarios. The total average error of all of the six joints is only 0.53◦, which is even slightly
better than the average error of 0.57◦ in the attitude estimation for the virtual test samples
in Table 5. Here, we briefly analyze the reasons. When sampling in the virtual environment,
each joint angle and the camera poses were set at random. Therefore, a certain number of
virtual samples are unrealistic, such as interference existing between the arm segments,
and positions of the arm segments being too tight, which results in self-occlusion of some
keypoints in all perspectives. It is hard to estimate the attitude of the robot arm with these
virtual samples. However, in the real scenario, only the normal working attitudes appear
in the sample data, with no extremely strange attitudes for the sake of safety. This may
explain the reason why the attitude estimation accuracy using three-view information in
real scenes is slightly better than that using four-view information in a virtual dataset.

The average joint angle estimation errors of a four-joint robot arm reported in Ref. [17]
and Ref. [18] are 4.81 degrees and 5.49 degrees, respectively, while the average error of the
estimated joint angle of the six-joint UR10 robot arm with our method is only 0.53 degrees,
which is significantly lower. The reasons may lie in three aspects: (1) The SRKDNet
proposed in this paper learns the heatmaps with higher resolution by adding a subpixel
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convolutional layer. In addition, the combination detection scheme based on the full-view
and close-up dual SRKDNets significantly improves the detection accuracy of the keypoints.
(2) The existing methods only use images from one single view, while our method uses
multi-view images, which can effectively alleviate the problems of self-occlusion and depth
ambiguity exhibited in single-view images. Moreover, the negative influence of improper
keypoint detection results can be greatly reduced by using the information redundancy
of the multi-view images and the confidence-based keypoint screening scheme. (3) The
existing methods not only estimate the joint angles of the robot arm but also estimate the
position and attitude of the robot arm relative to the camera, so there are 10 unknowns to
be estimated. Considering that the base of the robot arm is usually fixed in the industrial
scenes, we determine the relative geometry relationship between the robot arm and the
cameras through a well-established off-line calibration process to simplify the problem
to six unknowns. The above aspects of our method together contribute to the significant
accuracy improvements.

We also counted the time consumed in the two stages of keypoint detection and
attitude estimation in the real scene, as shown in Table 8. The total time used for keypoint
detection in the three-perspective images using the dual SRKDNets was 0.28 s. The
resolution of the sample images used for the keypoint detection here was still 640 × 640.
The time required for solving the joint angles of the real robot arm was 0.09 s.

Table 8. Time consumption of each stage (unit: second).

Stage
Triple-View Keypoint

Detection
Robot Arm Attitude

Estimation

Time consumption 0.28 0.09

4. Conclusions

We have proposed a set of methods for accurately estimating the robot arm attitude
based on multi-view images. By incorporating a subpixel convolution layer into the back-
bone neural network, we put forward the SRKDNet to output high-resolution heatmaps
without significantly increasing the computational resource consumption. A virtual sample
generation platform and a keypoint detection mechanism based on dual SRKDNets were
proposed to improve the keypoint detection accuracy. The keypoint prediction accuracy
for the real robot arm is up to 96.07% for PCK@0.15 (i.e., the position deviation between
the predicted and the real keypoints is within 6 pixels). An equation system, involving the
camera imaging model, the robot arm kinematic model, and the keypoints detected with
confidence values, was established and solved to finally obtain the rotation angles of the
joints. The confidence-based keypoint screening scheme makes full use of the information
redundancy of the multi-view images and is proven to be effective in ensuring attitude
estimation. Plenty of experiments on virtual and real robot arm samples were conducted,
and the results show that the proposed method can significantly improve the robot arm
attitude estimation accuracy. The average estimation error of the joint angles of the real
six-joint UR10 robot arm under three views is as low as 0.53 degrees, which is much higher
than that of the comparison methods. The entire proposed method is more suitable for
industrial applications with high precision requirements for robot arm attitude estimation.

In the real triple-view monitoring scenario, a total of 0.37 s was required for the
keypoint detection stage and the attitude-solving stage. The keypoint detection accounted
for the most time. The reason lies in that our method needs to detect keypoints in multi-
view images with dual SRKDNets. Therefore, the efficiency of the proposed method is
lower than that of the single-view-based method.

In this study, we only conducted experiments on one U10 robot arm. In the future, we
will try to extend our method to real industrial scenes with more types of robot arms.
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Abstract: Location awareness is crucial for numerous emerging wireless indoor applications. Deep
learning algorithms have demonstrated the potential for achieving the required level of positioning
accuracy in indoor environments. However, obtaining abundant labels for data-driven machine
learning is costly in practical situations. As an effective solution to alleviating the insufficiency
of labeled data for deep learning-based indoor positioning, deep semi-supervised learning (DSSL)
can be employed to lessen the dependency on labeled data by exploiting potential patterns in
unlabeled samples. In this paper, we propose an Adapted Mean Teacher (AMT) model within the
DSSL paradigm for indoor fingerprint positioning by using a channel impulse response. To enhance
the generalization of the trained model, we design an efficient implicit augmentation scheme for
the training process in the AMT model. Furthermore, we develop a tailored residual network to
efficiently extract location characteristics in the AMT framework. We conduct extensive simulation
experiments for indoor scenarios with heavy non-line-of-sight conditions based on open datasets
to demonstrate the effectiveness of our proposed AMT model. Numerical results indicate that the
AMT model outperforms several consistency regularization methods and the pseudo-label method in
terms of positioning accuracy and lower positioning latency, achieving a mean error of 90 cm when
using a small number of labels.

Keywords: indoor positioning; channel impulse response; heavy non-line-of-sight; deep learning;
semi-supervised learning

1. Introduction

With the emergence of mobile device location-based services, such as the Internet of
Things (IoT) and Machine Type Communication (MTC), location-based services (LBS) have
been attracting intensive attention recently. As one of the most popular wireless positioning
technologies, the Global Navigation Satellite System (GNSS) has achieved great success in
outdoor open-scene positioning. However, GNSS becomes infeasible for indoor scenarios
due to the signal strength attenuation and multi-path effects [1]. Thus, it is imperative
to develop efficient indoor positioning schemes to meet the requirements of numerous
and booming indoor location-aware applications, such as indoor emergency rescue, smart
factory asset management and tracking, mobile medical services, virtual reality games, etc.

Traditional positioning methods can be roughly categorized as geometry-based and
feature-matching-based methods [2]. The geometry-based methods, such as Angle of
Arrival (AOA), Angle of Departure (AOD), Time Difference of Arrival (TDOA), and Multi-
Round Trip Time (Multi-RTT), rely on the measurement of positioning information and
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estimation of the target location. Feature matching-based methods are mainly regarded
as fingerprint recognition methods, which have also received widespread attention in
positioning technology in the era of 5G and beyond [3]. Specifically, the primary approach
of fingerprint recognition is based on the Received Signal Strength (RSS) or Channel State
Information (CSI) [4].

Recently, the 3rd Generation Partnership Project (3GPP) emphasized the importance
of the LBS in 5G networks, and in 3GPP Rel-16, it ultimately established the direction of
5G positioning enhancement [5]. Specifically, the New Radio (NR) specification includes
reference signals introduced for positioning. These signals include the Positioning Refer-
ence Signal (PRS) for the downlink and the Sounding Reference Signal (SRS) for the uplink.
Based on these signals, 3GPP Rel-16 has introduced a number of advanced positioning
schemes suitable for 5G NR, including angle-based positioning schemes based on downlink
AOD or uplink AOA, downlink TDOA, uplink TDOA, and Multi-RTT.

Although these methods can provide high positioning accuracy, they heavily depend
on the availability of line-of-sight (LOS) components [6]. Unfortunately, in many indoor
scenarios, such as the industrial environment, there could be many obstacles that can cause
signal refraction, reflection, and diffraction, which leads to poor performance under some
specific scenarios [7]. Hence, it is imperative to explore efficient techniques to improve the
positioning performance in heavy non-line-of-sight (NLOS) scenarios for the 5G system
and beyond.

In order to achieve higher positioning accuracy, the standardization work of 3GPP Rel-
18 is introducing Carrier Phase Positioning (CPP) technology. The carrier phase information
of a signal contains distance information between the signal receiver and transmitter, which
can be used to accurately calculate the user’s position. CPP technology has been widely
applied in GNSS, enabling centimeter or even millimeter-level positioning accuracy [8].
However, the low power of the GNSS signals can be blocked and discontinuous in indoor
scenarios. Due to the high power of cellular network signals and their resistance to
environmental interference, carrier phase positioning based on cellular signals is not
limited to outdoor environments, and because the carrier phase contains the distance
between the signal receiver and transmitter, it can be used to precisely calculate targets’
position [1]. Compared to satellite-based CPP, using CPP in indoor scenarios can achieve
similar positioning accuracy and lower positioning latency. In the measurement of the
carrier phase from the Positioning Reference Signal (PRS), the estimated value of the
Channel Frequency Response (CFR) is first used to obtain the Channel Impulse Response
(CIR) by an Inverse Discrete Fourier Transform (IDFT). Then, based on certain criteria,
the first path of arrival is determined from the CIR, and the phase is calculated to obtain
the carrier phase measurement value. Therefore, the CIR signal can be considered as the
original information of the carrier phase to distinguish multipath characteristics and can
potentially be used for accurate and pervasive indoor positioning [9]. In addition, CSI can
be also obtained from CFR, which is the sampled version of CFR at the granularity of the
subcarrier level [9].

Meanwhile, in recent years, Artificial Intelligence (AI) has experienced rapid de-
velopment and widespread applications in positioning fields due to their outstanding
performance [10]. 3GPP also studied AI-based positioning enhancement for indoor
scenarios [11]. The AI-based solutions can potentially overcome the limitations and difficul-
ties of traditional positioning methods, and numerical results show that deep supervised
learning with CIR information can greatly improve positioning accuracy compared with
traditional methods [12].

Motivated by the high performance of AI and its wide application, some research
has regarded CSI as image information and finds a mapping from CSI measurements
to the coordinates of the target terminals by using deep learning; these learning-based
methods achieved higher positioning accuracy than traditional positioning methods [13,14].
Meanwhile, In CSI-based or CIR-based fingerprinting approaches, AI models are able
to learn the knowledge of fingerprint features offline based on the dataset of labeled
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fingerprints [4]. However, obtaining a large amount of labeled data is difficult and rather
costly due to the need for experts’ time and experience. Moreover, low-quality labeled data
can adversely affect the performance of deep models. To address these issues, Deep Semi-
Supervised Learning (DSSL) has been recently considered to improve learning performance
by exploring potential patterns from unlabeled samples.

When carefully examining the similarity of image processing and the underlying
indoor location, we can find that both image processing and CIR positioning are based on
feature recognition, thereby realizing the perception and understanding of user location,
and obtaining position features of User Equipments (UEs) in a specific area. They also have
similar feedback mechanisms in the process of model training through generating loss
values when using a neural network. These observations inspire us to exploit an adapted
DSSL method to handle indoor positioning tasks. Although various methods, such as the
Π Model, Temporal Ensembling [15], and Mean Teacher [16], have shown advantages for
image classification, some modifications have to be made based on the data type and target
format for positioning tasks. In this paper, we develop an Adapted Mean Teacher (AMT)
model under the DSSL paradigm for indoor positioning using CIR fingerprints, which is
inspired by the inherent similarity between image processing and indoor positioning, and
the efficiency of the consistency regularization method. Additionally, the 5G Advanced has
set high requirements for future positioning accuracy, aiming to achieve centimeter-level
precision. Based on the scenario of a 5G new radio, we aim to apply the machine learning
method to indoor positioning to meet the development needs of 5G Advanced. The main
contributions of this paper can be summarized as follows:

• We mathematically present the CIR estimation for building a CIR-based fingerprint
dataset according to the 5G NR standard.

• A tailored neural network based on Residual Network (ResNet) is designed to extract
position features of CIR fingerprints to predict the position of users. In a supervised
learning manner with abundant label data, it achieves sub-meter level accuracy with
a mean error of 31 cm.

• We propose efficient implicit random augmentation methods for CIR data by borrow-
ing the idea of data augmentation in image processing tasks. Experiments on adding
augmentation methods in the training process show that our proposed method can
achieve higher accuracy in both supervised and semi-supervised learning methods.

• We propose an AMT model to handle fingerprint indoor positioning tasks and possess
a superior positioning performance than reference algorithms, achieving a sub-meter
level accuracy.

The rest of this paper is organized as follows. Section 2 presents the related works
for positioning methods and existing DSSL methods. Section 3 presents the scenario and
system model. Section 4 elaborates the proposed AMT model, and in Section 5, we provide
a detailed description of the CNN structure. We present simulation results as well as
discussions in Section 6 and finally conclude the paper in Section 7.

2. Related Works

Positioning technology has been developing for decades. During this time, various
location technologies have emerged. To summarize the previous technical work, in this
section, we start by summarizing positioning techniques based on the common metrics of
positioning. We then review recent research advancements in wireless positioning systems,
which contain a detailed explanation of positioning technology for 5G cellular networks
related to the paper’s topic. Additionally, we provide an overview of AI-based indoor
positioning methods and DSSL-based indoor positioning schemes.

2.1. Positioning Techniques Based on Common Measurements

Indoor positioning is a challenging problem that has been extensively investigated, re-
sulting in the development of various technologies such as WiFi, Bluetooth, Ultra-Wideband
(UWB), geomagnetism, sound/ultrasound, or Pedestrian Dead Reckoning (PDR) [8,17].
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Though a number of facilities can be used for positioning, in traditional positioning schemes
for both cellular and non-cellular positioning systems, some universal signal measure-
ments are used. In this section, we introduce positioning methods based on common
measurements such as RSS, AOA, and TDOA.

The RSS-based approach [18] is a simple and commonly used method for indoor
positioning, which involves measuring the strength of the received signal. By using
signal propagation models with the knowledge of the transmission power or power at a
reference point, it is possible to estimate the absolute distance between the two devices
based on the RSS value. In the device-based positioning, RSS positioning requires the use
of trilateration or N-point lateration [19]. This involves using the RSS at the UE to estimate
the precise distance between a UE and three or more signal sources. Subsequently, basic
geometry and trigonometry are applied to determine the location of the device relative to
the reference points.

The AOA-based methods [20] make use of antenna arrays on the receiver side to
determine the angle that the transmitted signal arrives at the receiver. This is achieved by
calculating the TDOA at each element of the antenna array. While AOA can provide an
accurate estimation for short distances between the transmitter and receiver, it requires
more complex hardware and precise calibration compared with RSS techniques. Addi-
tionally, the accuracy of the AOA-based positioning decreases as the distance between the
transmitter and receiver increases, as even a small error in the angle calculation can result
in a significant error in the actual location estimation. Furthermore, in an indoor environ-
ment with multipath effects, obtaining the LOS condition for AOA-based positioning can
be challenging.

The TDOA-based methods [21] use the differences in signal propagation time mea-
sured at the receivers from different transmitters. To accurately determine the location of
the receiver, the TDOAs from at least three transmitters are required. This allows for the
calculation of the receiver’s position as the intersection of three or more hyperboloids [21].
Solving the system of hyperbola equations can be achieved through methods such as linear
regression or by linearizing the equation using Taylor-series expansion.

However, all of the aforementioned existing methods heavily depend on LOS scenarios,
and in other scenarios, such as urban streets and indoor scenarios, the complex signal
propagation paths will lead to unreliable positioning results.

2.2. Wireless Positioning Systems

Wireless positioning technology can be categorized based on the scope of service,
including positioning systems for Wireless Wide Area Network (WWAN) and Wireless
Local Area Network (WLAN)/Personal Area Network (PAN). The WLAN/PAN includes
WiFi positioning systems, Bluetooth positioning systems, and UWB positioning systems,
while the WWAN includes GNSS and cellular network positioning systems.

WiFi-based positioning technologies mainly consist of four types, including position-
ing methods based on RSS, fingerprinting, AOA, and TOA. Different from traditional
RSS-based WiFi positioning systems, the use of deep learning methods has been widely
applied to explore the numerical features of signals in RSSI positioning. Dai et al. [22] used
a multi-layer neural network (MLNN) to provide localization services in RSS-based indoor
localization, which combined the RSS signal-transforming section, raw data-denoising
section, and node-locating section to form a deep architecture. By using the deep architec-
ture, the predicted locations of UE can be attained without using a radio pathloss model
or comparing with a radio map. Hoang et al. [23] emphasized the superiority of RNN in
dealing with location nonlinearly because the mapping from RSS to UE’s location is non-
linear. In this work, the authors provided a complete study of several RNN architectures
for WiFi RSS fingerprint positioning. Research on WiFi fingerprint positioning typically
utilizes the CSI or RSS signals obtained from WiFi signals [24]. The CSI-based method
provides more detailed signal propagation characteristics, resulting in better positioning
accuracy compared to RSS [25]. However, the acquisition of CSI requires the cooperation
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of WiFi access points (APs), which is limited by the practical deployment of devices. To
overcome this obstacle, Gao et al. [26] proposed a CSI fingerprinting-based positioning
approach named CRISLoc, which obtains the packets in the air passively, while a joint
clustering and outlier detection method is used to find altered APs. By applying CRISLoc,
the accuracy of CSI fingerprinting-based localization can reach a sub-meter level. The
RSS-based WiFi fingerprint positioning technology is often heavily influenced by noisy
environments; recent studies have begun to utilize advanced deep-learning models to
address these issues. Chen et al. [27] proposed an LF-DLSTM framework to alleviate the
noise effect and attain stable features from the raw noisy RSS data. Additionally, in tradi-
tional AOA WiFi positioning systems, a limited number of antennas in WiFi devices can
result in limited AOA resolution. In order to achieve more accurate and robust positioning,
recent research has focused on developing new methods. Yang et al. [28] worked out the
relationships among different AoAs of different APs, and proposed a novel co-localization
method between multiple APs to achieve a real-time and accurate localization system. For
TOF-based WiFi positioning, the positioning performance of the TOF-based WiFi system is
largely limited by the WiFi channel bandwidth because of the low resolution of TOF, and
recent research has utilized multipath to increase time resolution [29]. While the use of
WIFI technology for positioning facilities can achieve centimeter-level accuracy in many
studies, the coverage range is limited to a 10 m level, which results in extremely high
deployment costs when attempting to cover large areas.

The Bluetooth positioning system is a common short-distance wireless communication
technology primarily used for PAN. In the latest release of Bluetooth 5.1, the version has
added measurements of AOA and AOD, integrating the results with RSS to provide sub-
meter positioning accuracy [30]. However, Bluetooth positioning faces serious multipath
interference issues. The accuracy of positioning is difficult to further improve, and there
are limitations on coverage range, making it challenging to deploy over large areas [31].

UWB positioning technology is characterized by high positioning accuracy, high rating,
and strong resistance to multipath interference [32]. Current recent research has mainly
focused on how to reduce the impact of non-line-of-sight (NLOS) paths in high NLOS
scenarios when applying UWB positioning to decrease positioning errors. Poulose et al. [33]
applied LSTM networks in UWB localization in indoor scenarios to migrate the negative
effects from both NLOS conditions and TOA errors. Compared to the conventional method,
it can reduce the mean position error to 7 cm. Although UWB has a high positioning
accuracy, the high cost of base stations and tags for UWB positioning makes it not a
universally applicable positioning solution.

For positioning systems in WWAN, Assist-Global Positioning System (A-GPS) tech-
nology is widely used in the location services of smartphones. It leverages cellular mobile
communication networks to broadcast GNSS information and its auxiliary data, thereby as-
sisting UEs in shortening the satellite’s initial search time and improving location accuracy
during satellite navigation [34]. The GNSS signal can be easily blocked, and recent research
has attempted to enhance GPS using the UWB systems. Gao et al. [35] proposed an RCP
scheme that evaluates the positioning performance by generating a dataset in real urban
scenarios. Experimental results show that this scheme can robustly resist adverse effects on
positioning performance.

Positioning technologies in cellular networks have evolved from 2G to 5G, and now
to 5G NR and 5G-Advanced. In 5G NR and 5G-Advanced, the requirement for positioning
accuracy has reached to centimeter level, leading to a significant focus on research based on
CSI and CPP. Meanwhile, some studies have emphasized machine learning and fingerprint
recognition. Zhang et al. [36] developed a novel Attention-Aided Residual Convolutional
Neural Network (AAresCNN) for CSI-based indoor positioning, achieving a state-of-the-art
performance on public datasets. Ruan et al. [37] proposed a novel positioning system,
iPOS, using commercial 5G-NR CSI fingerprints for indoor positioning, incorporating
CSI pre-processing and feature reconstruction modules. In the current development of
5G-Advanced, Tedeschini et al. [38] utilized CIR to extract position-related features and
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enhance positioning accuracy through cooperative deep learning, combined with NLOS
recognition. Unlike other positioning systems, cellular network positioning does not
require additional infrastructures and can achieve centimeter-level accuracy, which signifi-
cantly reduces positioning costs. The use of CSI and CPP as measurement values, along
with machine learning positioning strategies, demonstrates advancements in both 3GPP
standards and recent research.

2.3. DSSL Methods for Indoor Positioning

In recent years, deep learning algorithms have shown great potential in solving
complex positioning problems, and DSSL methods have been emerging as a promising
approach to deal with the challenges of limited labeled data in positioning problems by
leveraging both labeled and unlabeled data to train deep learning models.

The branches of DSSL mainly include pseudo-label methods [39], deep generative
methods [40], graph-based methods [41], consistency regularize methods [15,16] and hybrid
methods [42]. Currently, research on DSSL mainly focuses on the image classification task.

For DSSL methods applied in image classification tasks, each branch has advanced
algorithms capable of achieving high accuracy. Regarding the pseudo-labeling method,
using the high-confidence model’s predictions as pseudo labels for unlabeled samples is a
common approach known as self-training. Ref. [39] proposed a simple and efficient training
framework for neural networks. The model is first trained in a usual supervised manner;
this trained model is used to attain predictions from unlabeled data. The crossentropy
loss is used in the process of obtaining predictions from unlabeled samples, and when we
obtain soft labels, the model’s highest confidence predictions are viewed as pseudo labels.

Consistency regularization is a technique that typically involves using a single model
to make multiple predictions with different input noise or model parameters each time.
It aims to obtain a similar prediction result under different noisy inputs and parameters,
thereby improving the generalization of the model. From certain perspectives, using
consistency regularization can also be observed as generating pseudo-labels. However,
it focuses on obtaining accurate labels by regularizing the distance between outputs and
supervised training, which is fundamentally different from the pseudo-labeling method.
Ref. [15] proposed two training frameworks, named Π Model and Temporal Ensembling,
respectively. During each epoch of training with the Π Model, the same batch of unlabeled
samples is processed by the same model twice after adding random perturbations. Some
inconsistencies in the two predictions will exist because of the different perturbations, so
the Π Model uses a consistency loss function to minimize the disparity between the two
predicted outputs. Temporal Ensembling makes some improvements to the Π Model. Due
to the fact that the Π Model requires two rounds of inference at each step, it slows down
the inference speed. To overcome this defect, the Temporal Ensembling model only needs
one round of inference, while one prediction is obtained by calculating the moving average
of a historical output over a certain period of time. Another prediction is generated by
the current output. By combining the loss items of two predictions as a loss function, the
inconsistency in the two predictions decreases.

Mean Teacher [16] is an improved method for Temporal Ensembling, and it consists of
a teacher model and a student model. The student model resembles the Π Model, while the
teacher model shares the same structure as the student model but incorporates Exponential
Moving Average (EMA) of the student weights. This allows Mean Teacher to enforce a
consistency constraint between the predictions of the student and teacher models. Results
from [16] indicate that Mean Teacher performs superiorly in test accuracy compared to
Temporal Ensembling, while it also allows for training with fewer labels.

DSSL-based indoor positioning is often considered as a regression problem rather
than a classification problem, and previous research on DSSL for indoor positioning mainly
focuses on pseudo-label methods [43], deep generative methods [44], and graph-based
methods [45]. The idea of the pseudo-label method in [43] is to pretrain the initial model
with labeled data and use the trained model to predict unlabeled data, treating the predic-
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tions as pseudo-labels. The advantage of this method is its simplicity and strong operability,
which is needless to deploy additional models. Whereas in actual positioning scenarios, the
target distributions of labeled data and unlabeled data are often inconsistent, and using the
same model parameters directly on different distributed data will reduce the positioning
accuracy. In [44], the author discussed a semi-supervised indoor positioning scenario based
on the Generative Adversarial Network (GAN) by using CSI data, which consists of a
generator and a discriminator and aims to generate new CSI that similar to labeled data.
Results of using GAN for semi-supervised positioning have confirmed its effectiveness
under a few labeled input. However, using explicit data augmentation methods to improve
the performance of positioning may increase the computing power burden of the device
and consume a large amount of memory when facing the massive data demand. Moreover,
when the labeled data are highly resembled, overfitting can be caused by a deep generative
method. Moreover, the consistency regularization method as an effective DSSL method
achieves a good balance between accuracy and memory occupation. In [46], the ladder
network, the first attempt at consistency regularization, was used for indoor positioning
using CSI, which is inspired by a deep denoising AutoEncoder. It predicts whether each
input has noise, using denoising functions and the unsupervised denoising square to gen-
erate consistency loss, and aligns with the supervised learning loss to obtain more accurate
user coordinates.

The advanced consistency regularization methods after the Ladder Network, such as
the Π Model, Temporal Ensembling, and Mean Teacher, have been proposed to improve
accuracy without requiring additional data by regulating the consistency loss between
noisy inputs to reduce overfitting and enhance the generalization of neural networks.
However, these methods have not been really well used yet, and how to efficiently apply
them to the positioning field still remains outstanding.

3. Scenario and System Model

3.1. Scenario Description

We consider the positioning in a general indoor scenario, such as a factory, as shown in
Figure 1. A number of Base Stations (BSs) are deployed on the ceiling of the factory with a
certain area, and each BS consists of one microcell with an omni-directional antenna towards
the ground. The dense clutters are randomly distributed, and heavy NLOS propagations
exist in such complex scenarios. The clutter in the scenario can be considered as machinery,
assembly lines, and storage shelves. UEs are randomly distributed in the factory while
receiving the reference signal, e.g., PRS sent by BSs and process channel estimation for
deriving CIR.

Figure 1. Schematic diagram of indoor positioning scenario.

3.2. Channel Model
We assume a massive multiple-input multiple-output (MIMO) system for presenting

CIR, where each BS is equipped with Nt transmission antennas (Tx), and each UE has Nr
receiving antennas (Rx). In a different environment, the mobile radio propagation link
between BS and UE could be LOS or NLOS. To establish CIR, we use 3D channel models to
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express the channel coefficients between each Tx and Rx according to 3GPP TR 38.901 [47].
For each link, let there be Z clusters, each with M rays. We use m ∈ {1, 2, . . . , M} to denote
the index of a specific ray. For the NLOS case, when cluster ζ belongs to the Z − 2 weakest
clusters represented as ζ ∈ {3, 4, . . . , Z}, the power of different rays in each cluster is
equal. The channel coefficient of ray m in cluster ζ for the receiver and transmitter antenna
element pair u, s can be expressed as

HNLOS
u,s,ζ,m(t) =

√
Pζ

M

[
Frx,u,θ
Frx,u,φ

]T
⎡⎣ ejΦθθ

ζ,m

√
κ−1

ζ,mejΦθφ
ζ,m√

κ−1
ζ,mejΦφθ

ζ,m ejΦφφ
ζ,m

⎤⎦
[

Ftx,s,θ
Ftx,s,φ

]
exp(

j2π(r̂T
rx,ζ,md̄rx,u + r̂T

tx,ζ,md̄tx,s + r̂T
rx,ζ,mv̄t)

λ0
),

(1)

where Pζ stands for the power of the cluster, Frx,u,θ , and Frx,u,φ is the field pattern of u in
the direction of the spherical basis vectors, θ and φ, respectively. Ftx,s,θ and Ftx,s,φ are the
field patterns of s in the direction of θ and φ, respectively. r̂T

tx,ζ,m is the spherical unit vector
with an azimuth arrival angle and elevation arrival angle, and r̂T

rx,ζ,m is the spherical unit
vector with an azimuth departure angle and elevation departure angle. (d̄rx,u, d̄tx,s) is the
location vector of u and s, κζ,m is the cross-polarization power ratio in a linear scale, and
λ0 is the wavelength of the carrier frequency. Φ represents the random initial phase for
different polarization combinations, and v̄ is the velocity vector of the UE.

For the LOS case, the channel coefficient is given by:

HLoS
u,s,1(t) =

[
Frx,u,θ
Frx,u,φ

]T[1 0
0 −1

][
Ftx,s,θ
Ftx,s,φ

]
exp(−j2π

d3D
λ0

)

exp(
−j2π(r̂T

rx,LoSd̄rx,u + r̂T
tx,LoSd̄tx,s + r̂T

rx,LoSv̄t
λ0

),

(2)

where d3D represents the 3D distance between Tx and Rx.

3.3. Estimation of Channel Impulse Response

In order to better capture the characteristics of the natural channel environment, the
two strongest clusters ζ ∈ {1, 2} are spread to three different sub-clusters with fixed delay
offsets. The M rays within a cluster are mapped to sub-clusters ξ ∈ {1, 2, 3}, and are
divided into three groups Rξ , each with a power Rξ /M and delay offset τζ,ξ − τζ for a
NLOS channel. Then, the CIR from s to u in the NLOS case can be expressed as

HNLoS
u,s (τ, t) =

2

∑
ζ=1

3

∑
ξ=1

∑
m∈Rξ

HNLoS
u,s,ζ,m(t)δ(τ − τζ,ξ) +

Z

∑
ζ=3

HNLoS
u,s,ζ (t)δ(τ − τζ), (3)

where HNLoS
u,s,ζ (t) represents the channel coefficient of cluster ζ for the antenna pair u, s,

which is formulated as HNLoS
u,s,ζ (t) = ∑M

m=1 HNLoS
u,s,ζ,m(t). In the LOS case, by adding the LOS

channel coefficient to the CIR in the NLOS case and adjusting the scaling factor γ, we
obtain the CIR, as follows:

HLoS
u,s (τ, t) =

√
1

γ + 1
HNLoS

u,s (τ, t) +
√

γ

γ + 1
HLoS

u,s,1(t)δ(τ − τ1), (4)

where HLoS
u,s,1(t) represents the LOS channel coefficient with the strongest power trans-

mission when cluster ζ = 1, and τ1 symbolizes the minimum delay of arrival. Note
that positioning mainly depends on the CIR in the NLOS case because a heavy NLOS
environment exists in the scenario.
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3.4. Problem Formulation

In the indoor positioning scenario, we represent the UE set as X = {xn}n=1,...,N . The
real global coordinate of UE n in the indoor area is denoted as Pi

true = [Pn
h , Pn

v ], where Pn
h ,

Pn
v represent the horizontal coordinate and vertical coordinate respectively. Assuming that

the coordinate of each UE predicted by the neural network f (·) is valid, the problem can
be restated as finding a way to utilize CIR information, the neural network f (·), and the
true position Ptrue of each UE to approximate the global coordinate.

Let the predicted coordinate for UE n with the position error be denoted as f (θ, xn),
where θ represents the weights of the neural network. The position error is defined as
| f (θ, xn)− Pn

true|. Our optimization objective for a set of N training samples is to minimize
the Mean Squared Error (MSE) value between the predictions and true labels, which can be
expressed as:

min
1
N

N

∑
n=1

( f (θ, xn)− Pn
true)

2. (5)

4. Semi-Supervised Learning Based on Mean Teacher Model

The concept of consistency regularization is that even if the input is perturbed, the
network can still generate an output consistent with the output before perturbating and
punishing inconsistent items. Specifically, consistency is based on the comparison of output
space distributions, which is referred to as an approximate result or an output vector with
a small distance from distribution. Consistency regularization is mainly applied to the
teacher–student structure, with a consistency constraint defined as:

Ex∈XD( fs(θs, ηs, xs), ft(θt, ηt, xt)), (6)

where fs(θs, ηs, xs) is the student’s prediction of input xs, ft(θt, ηt, xt) is the teacher’s pre-
diction of input xt. D(·) is the distance function between two vectors. Different consistency
regularization methods differ in the way they generate consistency constraints. For ex-
ample, the Π Model [15] generates consistency a constraintbetween two predictions of
the same model by adding different noises to inputs, and the Temporal Ensembling [15]
generates constraint between the training prediction of the current epoch and EMA predic-
tion from the last epoch. As for the Mean Teacher, it averages model weights instead of
predictions. Specifically, the teacher model uses the EMA weights of the student model
and then generates a constraint between the teacher model’s prediction and the student
model’s prediction. The consistency constraint of the Mean Teacher can be defined as

Ex,ηs ,ηtD( fs(θ, ηs, x), ft(EMA(θ), ηt, x)), (7)

where ηs, ηt represent different perturbations for input.
There are several techniques to improve the performance of the consistency regular-

ization method. One strategy is to carefully select input perturbations instead of adding
additive or multiplicative noises. Another one is to carefully consider the teacher model
instead of copying the student model [16].

4.1. AMT for Indoor Positioning

The AMT ensembles the teacher and student model, aiming to train a better teacher
model from the student model without additional training. In this paper, the teacher and
student models use the same network structure, which can be considered as a self-ensemble
method. The framework of the proposed AMT is shown in Figure 2.

The labeled data are denoted as XL = {(xl , yl)}L
l=1, where L represents the total

number of labeled samples. The unlabeled data are expressed as XU = {(xu)}N
u=L, where

U represents the total number of unlabeled samples. The total dataset is presented as
X = XL ∪ XU , and X = {xn}N

n=1. The random signal perturbations (data augmentation)
for the teacher and student models are denoted as ηt and ηs, respectively, and the weights
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of the two neural networks are denoted as θt and θs, respectively. Then, the predictions of
the teacher and student models are expressed as f (θt, ηt, x) and f (θs, ηs, x), respectively,
where they use the identical input x with a fixed proportion of labeled and unlabeled data,
and both teacher and student models use the same network structure f (·). We first input
two CIR data streams, and use different random augmentations for each stream, and then
predict UEs’ position using the two models. During training steps, the two models interact,
with the teacher model θk

t using the EMA weights of the student model. In more detail, at
the end of the kth step, the weights of the teacher model θk

t are updated using the EMA
weights of the student model, and the weight update function of the teacher model is
given by

θk
t = αθk−1

t + (1 − α)θk
s , (8)

where α represents the smoothing coefficient hyper-parameter.

Figure 2. The framework of the proposed Adapted Mean Teacher(AMT).

Instead of regulating the consistency loss of the image classification task in the original
Mean Teacher method, we measure the consistency of the users’ predicted coordinates.
Therefore, we set the distance function D(·) as the smooth L1 loss between the batch
outputs of data streams instead of the cross-entropy loss. The advantage of using the
smooth L1 loss is that the loss can be updated more smoothly, and it is the combination
of the L1 and L2 loss with the benefits of both approaches. The specific formula can be
expressed as

SmoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

. (9)

Using the distance Function (9), we define the loss function for the student model,
updating in a minibatch as the weighted sum of the labeled loss of the student model and
the consistency loss, which is namely the distance between student and teacher model’s
prediction. The loss function is

Losss =
L

∑
l=1

SmoothL1( f (θs, ηs, xl)− yl)+

εtw(
T

Tmax
)

N

∑
n=1

SmoothL1( f (θt, ηt, xn)− f (θs, ηs, xn)),

(10)

where T ∈ [0, Tmax] represents the current training epoch, Tmax is a coefficient that repre-
sents the maximum ramp-up length, T/Tmax linearly increases from 0 to 1, and w(T/Tmax)
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is the unsupervised weight ramp-up function that controls the weight of the unsupervised
loss, which increases linearly to 1 over a certain number of epochs. The mild increase in
training is important to assist the model in adapting to the increased training interference
caused by the unlabeled data and prevent any degradation in performance. In this paper,
we use a Gaussian ramp-up function with w(T/Tmax) = e−5(1−T/Tmax)2

. Additionally, εt is
the constant that controls the maximum loss for unsupervised training and is calculated as
εt = wmax × (L/N), where wmax is a coefficient that represents a maximum weight value
for unsupervised training.

At each training step, the student model learns from the teacher model by minimizing
the Losss. Through this approach, we can achieve consistency in regularization.

4.2. Data Augmentation

To help models learn abstract patterns in data without being affected by minor changes,
the concept of implicit data augmentation has been proposed. The model should tend to
provide consistent output for similar data points. In classification tasks, the consistent
output refers to the same classification, while in regression tasks, consistent output refers to
output vectors that are close in distance. To achieve this goal, minor changes are typically
implemented by adding noise or data perturbation. Many regularization techniques rely
on this concept, such as the dropout used in neural network models.

In image classification tasks, consistency regularization methods often add random
noise to the data in the data augmentation process. Some techniques, such as flipping,
resizing, and random cropping can be used to increase the variety of images. The original
Mean Teacher method used random translations and horizontal flips as part of its data
augmentation strategy [16]. The rationale behind these approaches is that the model’s
softmax output usually cannot provide accurate predictions beyond the training data.
To alleviate this problem, noise can be added to the model during the inference time
to generate more accurate predictions. This method is used in the Pseudo-Ensemble
Agreement [48] and has demonstrated excellent performance. Thus, a teacher model
injected with noise can be inferred to generate more precise targets than that not injected
with noise. Therefore, implicit data augmentation, namely data perturbation, aims to
provide accurate predictions by generating new predictions beyond labeled data and
adding randomness to prevent overfitting.

4.2.1. Implicit Data Augmentation for CIR

General positioning methods map geometric information to user positions using
measurement quantities such as power, time, and angle, then estimate user position through
geometric estimation methods. Power, time, and angle features are common physical
measurements, each with varying accessibility, complexity, and accuracy. As shown in
the estimation of Formulas (2) and (3) for CIR, the three types of information can be well
reflected in CIR. Therefore, we infer that power, time, and angle should be extracted as
the main useful positioning features as AI positioning methods for using CIR. However,
precise angle-based positioning typically relies on the angle difference between multiple
antennas on the same device in MIMO communication. In our settings, the number of
sampled antennas is insufficient, so we will mainly focus on the power and time of arrival
features in AI positioning for using CIR. Inspired by the concept of data augmentation in
image classification, we perturb CIR input by adding random noise to critical positioning
features, namely the power and time of arrival.

4.2.2. Random Amplitude Scaling

As RSS-based fingerprint positioning systems are commonly used, their fundamental
limitation is their inability to capture multipath effects [9]. To fully characterize each path,
the wireless communication propagation channel is modeled as a time-linear filter called
CIR. CIR is similar to the RSS sequence, but it has a finer frequency resolution and equally
higher time resolution to distinguish multipath components. Therefore, we can reasonably
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infer that CIR has a high power feature for effective positioning, and augmentation can be
effectively performed by perturbing the power characteristics of CIR.

The received power measured at a fixed frequency is proportional to the amplitude of
the channel frequency response (CFR) [9]. Similarly, in CIR, we infer that the amplitude
information is highly relevant to the received power, and different amplitude represents
different LOS/NLOS environment distributions. Thus, we propose a random amplitude
scaling in training steps to perturb partial LOS/NLOS distribution in the indoor environ-
ment, aiming to provide accurate predictions outside the training data. The amplitude of
the CIR received by antenna u of UE n from transmitter antenna s can be expressed as:

Ampn =
√

Re{Hn
u,s(τ, t)}2 + Im{Hn

u,s(τ, t)}2. (11)

The scaling size is represented as a positive random number μ, where μ ∼ U(0, a),
with a being the maximum scaling size. Then, the random scaling amplitude can be
expressed as An

scale = μAmpn. Note that the same scaling on the time series of CIR should
be performed to ensure that the shape of the amplitude remains unchanged and to avoid
destroying effective positioning features.

4.2.3. Random Temporal Shifting

The time feature is a conventional positioning physical measurement. It can obtain
a highly accurate position under LOS conditions. In the positioning situations, there are
two conventional time-of-arrival estimation techniques based on CIR; one method is to
convert CFR to CIR through the inverse Fourier transform and select the index time of the
first peak as the estimated time of arrival. A series of super-resolution techniques are used
for estimation; the most commonly used technique is MUSIC algorithm [49]. The other
method is based on cross-correlation techniques such as matched filtering [50]. Therefore,
we believe that adding perturbations to the time characteristics can randomly shift the
overall multipath information of CIR forward or backward, thereby perturbing the index
of the first peak. Setting the random perturbation constant as λ, where λ ∼ U(−b, b),
and for the UE n, the continuous CIR information affected by a delay perturbation can be
written as:

Hn
shi f t(τ, t) = Hn

u,s(τ, t) ∗ δ(t − λ) (12)

where ∗ represents the convolution operation, and λ is the translation coefficient with a
maximum translation size of b.

5. Convolutional Neural Network for Indoor Positioning

For CIR samples, the structure and dimension of the CIR input are similar to image
input, so AI methods used for image processing are considered as our positioning schemes.
The most commonly used neural network models for image processing are based on the
CNN and self-attention mechanism. Although the concept of deep neural networks is
stacking neural networks together, which is observed as a simple process, the performance
of these networks can vary greatly due to different network architectures and choices
of hyperparameters.

With regard to the models based on CNN, there are several mainstream network
structures. AlexNet [51] introduced the concept of deep CNNs and addressed the vanishing
gradient problem by utilizing the Rectified Linear Unit (ReLU) activation function while it
employed a dropout regularization to prevent overfitting. GoogLeNet [52] further advances
the field with its inception module architecture, which allows for the simultaneous use
of different-sized convolutional kernels and pooling layers, enabling the extraction of
features at multiple scales. On the other hand, ResNet [53] introduces the concept of
residual learning. It addresses the degradation problem that arises when deep neural
networks suffer from a diminishing performance with increasing depth. By employing
skip connections, ResNet allows for the direct flow of input to the output layer, facilitating
the learning of residual mappings.
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The self-attention mechanism [54] focuses on the correlation of vectors in input se-
quences, and it was first used for semantic comprehension. When applying the self-
attention to image processing tasks, images are divided into small parts and input as
sequences. The most typically used model is the Vision Transformer (ViT) [55]. ViT is an
effective tool for handling large images and complex visual scenes. This model can also
enhance its performance through pre-training.

To effectively extract features for positioning, we consider a ResNet structure as the ba-
sic model for AMT. It is applied in both student and teacher models. The ResNet has several
advantages, including its extremely deep network structure, which enhances the network’s
ability for feature extraction. Additionally, it introduces the residual blocks, which prevent
network degradation, gradient vanishing, or gradient explosion in deeper networks.

5.1. Residual Network

ResNet features two main types of residual blocks: the basic block and the bottleneck
block. The basic block consists of two 3 × 3 convolutional layers and a residual connection
with a stride of 1, while the bottleneck block includes a 1 × 1 convolutional layer, a 3 × 3
convolutional layer, another 1 × 1 convolutional layer, and a residual connection. The 1 × 1
convolutional layer in the bottleneck block is primarily used to decrease the dimension of
the feature map, thereby reducing the computation and parameter count.

In this paper, we consider a basic block of residual blocks. The structure of residual
blocks is shown in Figure 3. The core of ResNet’s residual blocks lies in its residual
connection, which adds the output of the previous layer to the current layer’s output,
enabling the current layer to incorporate information from the previous layer. This design
effectively alleviates the problem of gradients vanishing, making the model easier to train
and optimize.

Figure 3. Structure of a residual block.

The ResNet consists of residual blocks that are based on the convolutional layer. For the
purpose of accelerating the model convergence speed and improving model performance,
we added BN and activation function layers between convolutional layers in the residual
structure of ResNet. The Batch Normalization (BN) layer normalizes the input of each layer
in a deep neural network for each batch, which stabilizes the input distribution of each
layer and accelerates model convergence speed. Assuming the input after augmentation is
x, for a layer with multiple input dimensions, the BN operation [56] for each dimension
can be expressed as:

x̂ =
x − E(x)√
Var(x) + ε

(13)

where E(x) and
√

Var(x) present the expectation and variance of the input mini-batch
respectively, and ε is a small coefficient to prevent the denominator from being zero, which
approximates to 0.

Alternatively, the activation function layer, ReLU function, is used in the structure
due to its simplicity and non-linearity. This function is added after the BN operation to
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effectively mitigate the gradient vanishing problem and enhances the model’s performance.
The activation function can be mathematically presented as

σ(·) = ReLU(x̂) = max(x̂, 0), (14)

5.2. CNN-Based Regression Positioning Method

In the previous research about classification-based fingerprint positioning, the area was
divided into small grids, and the fingerprints were mapped to the reference point (RP) in the
grid [57,58]; however, this approach is not suitable for large areas because of the extensive
number of classes it needs to be divided into, and this will greatly increase the model
complexity in deep learning-based fingerprint positioning. Meanwhile, a straightforward
classification method of fingerprint positioning first defines RPs by collecting features at
different points and then finding the similarity between the target feature and different
RPs. This heavily depends on the number and density of RPs because of the limited
training space; it is hard to reach sub-meter level accuracy in large areas. In contrast, the
regression method can overcome the discontinuity of RPs and has the potential to reach
higher accuracy, while it is also insensitive to the size of areas. From these concerns, we use
the regression method rather than the classification.

6. Simulations

In this section, we conduct simulation experiments based on the open-source dataset
in order to evaluate the positioning performance of our proposed method.

6.1. Simulation Settings

3GPP Technical Report 38.901 [47] has outlined an indoor factory with dense clutter
and a high base station height (InF-DH) scenario with its lower probability of LOS condi-
tions. We evaluate the performance of our proposed AMT method based on the InF-DH
scenario specified by 3GPP.

The indoor factory scenario is a highly intricate industrial environment characterized
by obstacles. As shown in Figure 4, 18 BSs are deployed on the ceiling of the factory
with a length of 120 m and a width of 60 m. The clutters in the scene can be considered
as machinery, assembly lines, and storage shelves, and UEs are uniformly distributed in
the area.

Figure 4. Indoor positioning scenario.

We use an open-source indoor measurement dataset WLI_3_ 1015_InF_DH662_FR1
_drop1_ cir_ rsrp _toa_tdoa from [59], the full parameter settings of the dataset simulation
can be found in the introduction_positioning file, and we list partial parameter setting of
system-level simulation in Table 1. The dataset generated by the system-level simulator is
generated according to the 5G-NR standard of 3GPP [47]. In the system-level simulation,
the clutter’s density, height, and diameter are 60%, 6 m, and 2 m, respectively, which are
used to generate a heavy NLOS indoor scenario. The BS antenna configuration is denoted
by (Ma, Na, P, Ma

g, Na
g), and Ma and Na indicate that a single panel array antenna has an

Ma × Na uniform planar array, where Na is the antenna in each row and Ma is the number
of rows in the vertical dimension. P represents the number of polarization dimensions, Ma

g
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and Na
g illustrate that the antenna system consists of Ma

g vertical panels and Na
g horizontal

panels, and in the parameter setting, we only use one antenna in the receiver/UE side.
Spatial consistency is used to keep the various channel generation steps spatially consistent
for a drop-based simulation, and this process is not used in the simulator. The UE is moving
in a random direction with a fixed speed of 3 km/h, which means the orientation of the
antenna is random.

Table 1. Parameter settings for generating datasets.

Parameters Values

Clutter density, height, size 0.6, 6 m, 2 m
Bandwidth 100 M

TX power of total base station(BS) 24 dBm
BS antenna configuration (Ma, Na, P, Ma

g, Na
g) = (4, 4, 2, 1, 1)

Antenna height of user equipment(UE) 1.5 m
BS height 8 m

Carrier frequency 3.5 GHz
Subcarrier spacing 30 kHz for 100 MHz
Spatial Consistency No

Synchronization between BS and UE Ideal
Penetration loss 0 dB

Number of floors 1
UE mobility 3 km/h

Min BS-UE distance (two dimensional) 0 m

From the settings of the system-level simulation, we can infer that there may exist
some errors in AOA because of the randomness of UEs’ orientation. These errors will
directly affect the phase of CIR by introducing errors in field patterns, which will influence
the measurement of AOA. However, because the useful angle information for the position
estimation contained in CIR exits in the angle difference between antennas and we only
use one antenna for receiving signals, it will not result in many errors in our positioning
scheme. However, when facing the effects of antenna orientation, improvements in the
estimation method of AoA can help increase the estimation accuracy of AoA [60], and
using machine learning methods to assist position calculation using AoA estimation can
also help enhance the positioning accuracy [61]. Also, the number of antennas is proven
to affect the positioning performance by improving the resolution in AoA estimation [62];
therefore, in practical situations, the user devices with more antennas will also benefit the
positioning performance.

We sample CIR data by truncating the first 256 time-domain points based on the first
Tx antenna element and the first Rx antenna element from CIR, and the corresponding
multipath characteristic of CIR is represented in Figure 5. In the dataset, the CIR received by
each UE is represented as a three-dimensional vector of “18× 256× 2”, which represents the
UE received CIRs from 18 BSs, and each CIR contains 256 complex-valued sampling points.

The dataset consists of 80,000 CIRs corresponding to true UE coordinates. A total
of 78,400 data samples are used as the training set while 1600 are used for a test set.
Ignoring the inter-UE correlation changes caused by the reduction in the number of UEs,
we randomly select 3000 or fewer UEs from the training set as labeled data to simulate the
limited labeled data scenario for indoor positioning. We assign a label of 0 to the remaining
data, treating them as unlabeled data. The student and teacher models are trained with a
fixed ratio of 1:1 for unlabeled and labeled data. To maintain the fixed ratio of labeled and
unlabeled data, a two-stream batch sampler is used to obtain a training batch, and a batch
size of 256 is used for each stream. In the augmentation process, we select 5% of labeled data
samples to operate amplitude scaling or temporal shifting and set the maximum scaling
size a as 3 while the maximum translation size b is set to 5. We should keep the perturbed
data as a small portion of the labeled data to ensure that critical positioning features are
not completely destroyed. It should be noted that the perturbation here should operate in
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the training steps of each mini-batch instead of scaling the amplitude for the overall data
first. For the reason that a large learning rate is prone to causing non-convergence or a
gradient explosion phenomenon in the simulation, we carefully select an optimizer and a
small learning rate.

Figure 5. The received channel impulse response(CIR) of a UE from a single BS.

For the parameter setting of AMT, we set the ramp-up length Tmax to 80, which
means that w(T/Tmax) linearly increases to 1 within 80 epochs. To prevent training from
degrading, w(T/Tmax) is set to 0 when the epoch starts from 0. We set the maximum value
of the unsupervised weight wmax to 70. In addition, the smoothing coefficient α of EMA
is fixed at 0.97. The value of α is set to ensure that the teacher model keeps up with the
rapidly evolving student model by promptly disregarding erroneous prior values of the
student model. The performance of the teacher model is considered to be the final result.
The detailed parameter settings of AMT are concluded in Table 2.

Table 2. Parameter settings for AMT training.

Parameters Values

Number of samples 80,000
Number of samples for training 78,400
Number of samples for testing 1600

Network structure f (·) Resnet
Batch sampler Two-stream batch sampler

Batch size 512 (256 for each stream)
wmax 80
Tmax 80

α 0.97
Training epoch 200

Optimizer Stochastic Gradient Descent
Learning rate 0.001

Perturbed proportion of labeled data 5%

In our simulation experiments, positioning accuracy and convergence are used as
the performance metrics of the proposed AMT model. In particular, we adopt 90%, 80%,
67%, and 50% points of the Cumulative Distribution Function (CDF) of the positioning
accuracy to illustrate the performance gain in accordance with the evaluation methodology
in 3GPP TR38.857.

6.2. The ResNet Model for Processing CIR

For the model basic structure f (·), we design a ResNet to extract effective positioning
features from CIR information, which is originally used for processing multi-channel image
information in the field of image processing [53].
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A ResNet structure for feature extraction is shown in Figure 6. It consists of four
reshape layers and six residual blocks, while the reshape operation serves to preprocess the
data and adapt it to the input dimension of the residual block.

Figure 6. Structure of Resnet.

Specifically, in the design, the input data dimension is considered as a 2-channel image
data of size 18 × 256. In the first four layers of the network, the dimension of the input
information increases to 18 × 18 with 64 channels so that it is able to be processed by 3 × 3
convolutional kernels in the residual blocks. Then, the residual blocks are used for training,
with the input being directly added to the output of a residual block, which is known as a
shortcut connection. In terms of a shortcut operation, when a dimension change occurs
between residual blocks, the input propagation between blocks needs to be dimensionally
changed to adapt to the next residual block. This procedure is marked by the dotted line in
Figure 6. After the pooling layer, a linear layer with an output dimension of two is used to
obtain the UE’s two-dimensional coordinates.

6.3. Results and Discussions
6.3.1. Performance Evaluation of the Supervised Learning-Based Method

Before conducting the simulation of the semi-supervised and enhanced indoor po-
sitioning under limited labels, we first evaluate the performance of positioning under a
supervised learning situation, which uses the full labels in the fingerprint dataset and an
original CIR input without augmentation. For an objective comparison, we also use other
fingerprinting methods based on deep learning and a traditional estimation method to test
their positioning accuracy under the heavy NLOS scenario.

The full number of labeled data for input is 80,000. In the supervised learning trial,
we also use the rate of 2% to divide the training set and test set. In CIR-based fingerprint
indoor positioning, we use the ResNet structure mentioned in 5.1 to conduct the simulation.
In the training process, the batch size and learning rate are set to 512 and 0.1 respectively;
the adam optimizer and cosine-annealing scheduler are also used in the training.

Meanwhile, we also process the TOA, TDOA, and RSS fingerprints that are collected
in the same scenario with the same collecting steps to deal with the positioning task using
a learning-based method. The structure of a single datum is 1 × 18, which stands for the
TOA/TDOA/RSS signal received from 18 BSs. These fingerprint datasets are also listed in
WLI_3_1015_InF_DH662_FR1_drop1_ cir_rsrp_toa _tdoa from [59]. To avoid destroying
the dimension of these fingerprints, we applied a Multi-layer Perception(MLP) network
to recognize the features. The MLP structure consists of 4 linear layers with an activation
function ReLU connected to each linear layer and a dropout operation before the last
linear layer.

Additionally, we also apply CHAN, a traditional method that is widely used in
TDOA-based positioning [21]. By utilizing the TDOA fingerprint values and the known
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BS positions to apply the Weighted Least Squares (WLS) algorithm, we can obtain the
calculated position of UEs, noting that the algorithm is under the case of more than three
reference nodes.

The position performance can be reflected by the CDF of positioning errors and Mean
Error (ME), which are shown in Table 3. By comparing the performance of the learning-
based fingerprint positioning and CHAN, we can conclude that AI positioning methods
are superior to the traditional TDOA-based estimation algorithm. In the performance
of learning-based fingerprint positioning, all displayed methods reach the accuracy of
sub-meter level, while the CIR-based method has the best positioning accuracy, which
reaches an ME of 0.31 m.

Table 3. Comparison of position accuracy based on supervised learning

Method for Indoor Positioning
Using Deep Learning

CDF Percentile of Position Errors (m)
ME (m)

50% 67% 80% 90%

CIR-based fingerprint positioning 0.28 0.35 0.45 0.54 0.31
TOA-based fingerprint positioning 0.36 0.46 0.57 0.69 0.40

TDOA-based fingerprint positioning 0.38 0.49 0.60 0.74 0.41
RSS-based fingerprint positioning 0.30 0.41 0.52 0.68 0.38

CHAN 10.35 16.01 22.08 31.14 14.72

After the performance evaluation of CIR-based fingerprint positioning, we can observe
that it outperforms positioning methods based on other measurements collected from the
same scenario; thus, it is more effective to use it as the basic module in our proposed
training framework.

6.3.2. Numerical Results of Semi-Supervised Learning-Based Method

In this simulation, we conducted tests with a very small sample size, specifically using
3000 or fewer samples to evaluate the performance.

On the basis of supervised learning, we first verified the effectiveness of the proposed
data augmentation methods. From Figure 7, it can be observed from four performance
curves with different numbers of labels that the number of samples is positively correlated
with the positioning accuracy. Additionally, from the comparison of Figure 7a–c, it is clear
that both proposed data augmentation methods can effectively improve the positioning
accuracy for all test samples in supervised learning (SL) methods, with the most significant
improvement observed for sample sizes ranging from 500 to 2000. This demonstrates that
our proposed data augmentation methods can adapt to scenarios with very few labeled
data and meet practical needs. In terms of the effectiveness of the two data augmentation
methods, amplitude scaling is significantly better than temporal shifting when the number
of labels is 500, and it also performs slightly better than the temporal shifting for other
sample sizes.

To judge whether the unlabeled data are effective for a performance improvement in
DSSL methods, we obtain the positioning accuracy of AMT to compare with the perfor-
mance of purely supervised learning using a few labeled data to train the model. After
verifying the effectiveness of two data augmentation methods in the SL method, we con-
duct the AMT model by using the two proposed augmentation methods. By comparing
Figure 8a,b to Figure 7b,c), we observe that the performance of AMT significantly im-
proves in four cases compared to purely supervised learning methods, while it applies
two proposed data augmentation techniques. Additionally, similar to purely supervised
learning, the use of the random amplitude scaling augmentation method attains better
performances than random temporal shifting in four cases. Furthermore, the AMT method
in the case of small sample sizes demonstrates more significant improvement, specifically
when the number of labeled samples is less than 2000. A visualization example to show the
performance of AMT using 1000 labeled samples is present in Figure 9.
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(a) (b) (c)

Figure 7. Supervised positioning performance under different samples and augmentation methods.
(a) Performance of supervised learning(SL) method only. (b) Performance of SL method with temporal-
shifting augmentation. (c) Performance of SL method with amplitude-scaling augmentation.

(a) (b)

Figure 8. Performance of AMT with different augmentations. (a) Performance of AMT with temporal-
shifting augmentation. (b) Performance of AMT with amplitude-scaling augmentation.

Figure 9. A visualization form to show the distribution of UEs. The red dots represent the actual user
locations, while the blue dots represent the predicted user locations.

Furthermore, we verify the effectiveness of the proposed AMT model by comparing
it with several reference algorithms under 1000 labeled samples. In order to facilitate
better horizontal comparison, we will use some DSSL methods that have similar training
frameworks and steps to AMT as benchmark algorithms. One reference algorithm is the
Π Model and the other is the Temporal Ensembling. Both two algorithms are advanced
consistency regularization methods, and the same data augmentations are used for the
three approaches. In addition, we also compare the performance of the pseudo label to ver-
ify the effectiveness of our method because it is widely used for positioning. As numerical
results are shown in Table 4, we can observe that the three consistency regularization meth-
ods significantly outperform the pseudo label in positioning accuracy. Moreover, among
the three consistency regularization methods, the AMT model achieves the highest accuracy.
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Meanwhile, we compare the convergence of the four methods and record the tendency
of the positioning error corresponding to 90 percentile CDF. During the training process,
we can observe from Figure 10 that although there is a small difference in the positioning
error of AMT, Π Model and Temporal Ensembling, the convergence of AMT is significantly
faster than the other two methods, while the convergence curve seems to be smoother. This
implies that under the condition of limited training time, the AMT model demonstrates
obvious advantages over the other two referenced consistency regularization methods.

Figure 10. Tendency of position errors.

Table 4. Comparison of position accuracy under 1000 labeled samples.

DSSL Method
for Indoor Positioning

CDF Percentile of Position Errors (m)
ME(m)

50% 67% 80% 90%

Proposed AMT with amplitude scaling 0.79 1.03 1.27 1.63 0.90
Proposed AMT with temporal shifting 1.18 1.53 1.85 2.27 1.29

Temporal Ensembling with amplitude scaling 0.82 1.06 1.33 1.65 0.93
Temporal Ensembling with temporal shifting 1.20 1.54 1.88 2.33 1.31

Π Model with amplitude scaling 0.84 1.10 1.36 1.74 0.96
Π Model with temporal shifting 1.20 1.54 1.89 2.33 1.32

Pseudo label 1.45 1.87 2.29 2.93 1.65
Supervised only 1.71 2.19 2.76 3.33 1.91

During the training process, we also recorded the tendency of positioning error in
Figure 11. The utilization of AMT can be understood through the training curves. The
models with EMA weighting (represented by the orange curves in the bottom row) exhibit
more accurate predictions compared to the student models (represented by the blue curves)
after an initial period.

Figure 11. Positioning errors of teacher and student models under 1000 labeled samples.
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When the EMA-weighted model is employed by the teacher, it leads to enhanced out-
comes in semi-supervised scenarios. A virtuous feedback cycle appears where the teacher
model (orange curve) improves the student model (blue curve) through the application of
consistency cost. Simultaneously, the student model contributes to the improvement of the
teacher model via EMA.

6.3.3. Discussions

To analyze the performance differences between random amplitude scaling and ran-
dom temporal shifting, the amplitude scaling technique performs better than temporal
shifting. In this paper, we consider several possible reasons. First, time-based ranging
typically uses an external signal source and heavily relies on complex signal processing
methods, which means it generally relies on super-resolution methods like the MUSIC
algorithm to obtain the first arrival peak as an arrival time. However, in our CIR training
sets, CIR information is not continuous; it is selected as time intervals, which makes the
time sequence discrete. This decreases the resolution of the time sequence in CIR and
possibly leads to an incorrect recognition for the model. The power-based features vary
over time, but the shape of the peak does not change rapidly between a few sampling points.
Moreover, the entire CIRs’ peaks can be utilized to estimate the location, rather than solely
relying on the arrival time of the first peak. This may be a reason why the power-based
feature is more effective than the time-based feature, and power scaling exhibits a better
performance in augmentation. Meanwhile, the time-based ranging relies highly on the LOS
condition, a positive bias could be induced in NLOS propagation and a larger variance
tends to exist in the NLOS condition [63].

To analyze the performance of methods in Table 4, we re-examine the fundamental
principles of these four methods. The Π Model and Temporal Ensembling only use a
consistency loss for learning while the AMT uses both the weights of the student model
and consistency loss for learning. Interactions in weights can help learn the performance of
supervised training rapidly from the beginning instead of receiving feedback at the end of
each epoch to punish inconsistent items, which greatly reduces time costs. Similarly, like
AMT, the pseudo label also uses the training weights of supervised training, manifesting
as no significant positioning error at the beginning of training. However, due to the small
amount and sparse distribution of labeled data, the pseudo-label method cannot learn
information beyond this sparse distribution, which leads to a limited performance during
training with dense but unlabeled data, and results in a relatively low positioning accuracy.

7. Conclusions

In this paper, we proposed an effective DSSL framework for InF-DH scenarios named
AMT, which solves the problem of inaccurate positioning caused by inadequately labeled
samples for fingerprint positioning. In the DSSL framework, we operate AMT by assigning
the EMA weights of the student model to the teacher model and regularizing the consis-
tency loss of two models. Additionally, we have also proposed novel implicit random
augmentation methods in terms of amplitude and temporal features of CIR data in AMT
to enhance the performance of neural networks. By adding random perturbation to these
critical positioning features in the training process, continuous new data can be generated
artificially from existing data.

From conducting the simulation, we conclude that the deep-learning method has a
superior performance compared with the estimation method in the heavy NLOS scenario,
which can achieve a sub-meter level accuracy, and using CIR for deep learning-based
positioning can achieve a higher positioning accuracy than using other measurements
proposed in the 5G NR standard. By analyzing the performances of the DSSL methods, the
numerical results show that using regularization in consistency loss improves the neural
network’s ability to resist perturbation, which helps learn effective features in unlabeled
data, especially in the case of small samples. Meanwhile, the interaction in model weights
for consistency regularization methods improves the convergence of neural networks.

42



Electronics 2024, 13, 298

Additionally, results also show the robustness of AMT by using different numbers of
labeled data, and its performance gain in the smaller samples is more obvious.

By using AMT, we find the inherent similarity between image processing and indoor
positioning, and we also verify the effectiveness of image processing methods when
applying them to the positioning field. However, the work does not involve using the angle
feature for positioning because of the single receiving antenna set in the dataset. Since
multiple receiving antennas can bring more channel information for positioning, we plan
to explore the generalization of our proposed method in multiple-receiver situations in
future studies.
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Abstract: Accurate retinal vessel segmentation is a crucial step in the clinical diagnosis and treatment
of fundus diseases. Although many efforts have been presented to address the task, the segmentation
performance in challenging regions (e.g., collateral vessels) is still not satisfactory, due to their thin
morphology or the low contrast between foreground and background. In this work, we observe that
an intrinsic appearance exists in the retinal image: among the dendritic vessels there are generous
similar structures, e.g., the main and collateral vessels are all curvilinear, but they have noticeable
scale differences. Based on this observation, we propose a novel cross-scale attention transformer
(CAT) to encourage the segmentation effects in challenging regions. Specifically, CAT consumes
features with different scales to produce their shared attention matrix, and then fully integrates the
beneficial information between them. Such new attention architecture could explore the multi-scale
idea more efficiently, thus realizing mutual learning of similar structures. In addition, a progressive
edge refinement module (ERM) is designed to refine the edges of foreground and background in the
segmentation results. Through the idea of edge decoupling, ERM could suppress the background
feature near the blood vessels while enhancing the foreground feature, so as to segment vessels
accurately. We conduct extensive experiments and discussions on DRIVE and CHASE_DB1 datasets
to verify the proposed framework. Experimental results show that our method has great advantages
in the Se metric, which are 0.88–7.26% and 0.81–7.11% higher than the state-of-the-art methods on
DRIVE and CHASE_DB1, respectively. In addition, the proposed method also outperforms other
methods with 0.17–2.06% in terms of the Dice metric on DRIVE.

Keywords: retinal vessel segmentation; cross-scale attention transformer; progressive edge refinement

MSC: 00A06

1. Introduction

A retinal image is a direct assistance medium for non-invasive diagnosis, and retinal
vessel segmentation is an important basis in the clinical diagnosis of retinal degenerative
disease. The morphological variations in retinal vessels are closely related to various
diseases, including diabetes, hypertension, and so on [1–3]. Manual vessel segmentation is
time-consuming and laborious, and the results are also easily affected by expert experience.
Hence, it is required but challenging for developing automatic vessel segmentation in
clinical medical diagnosis to reduce human labor.

In the past decades, automatic retinal vessel segmentation has become a hot research
task, and numerous methods have been proposed for addressing this problem with promis-
ing performances. These methods can be roughly divided into traditional methods and
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deep-learning-based methods. Traditional methods have been investigated for a long
time, including filtering-based methods [4,5], model-based methods [6,7], tracking-based
methods [8,9], and machine-learning-based methods [10,11]. Mendonca and Campilho [4]
first extract vascular centerlines and apply vessel width related filters for vessel filling.
Similarly, Zhang et al. [5] use hand-crafted filters for vessel enhancement and then per-
form threshold processing to segment vessels. Al-Diri et al. [6] also employ a generalized
morphological order filter on vessel centerlines and utilize an active contour model to
capture vessel edges. And Yang et al. [7] propose an improved region-based level set
model to segment vessels, which consumes gray-scale retinal image and vascular-enhanced
image. With the development of machine learning, support vector machines [10] and the
AdaBoost classifier [11] have been applied in some early supervised methods to achieve
better performance. These methods generally utilize shallow fitting from handcrafted
features for classification/segmentation.

Recently, Convolutional Neural Networks (CNNs) have achieved impressive perfor-
mance on retinal vessel segmentation. They design diverse and ingenious deep networks to
extract high-dimensional features, which further regress the probability that pixels belong
to vessels. These methods either emphasize the discrimination and generalization ability
of the deep model or focus on the morphological characteristics of retinal vessels.

Alom et al. [12] design a recurrent and residual convolutional unit to serve as the
basic block to improve the discrimination of UNet [13], which is one of the most widely
used deep learning frameworks in medical image analysis. To heighten important vascular
features and suppress meaningless background features, Guo et al. [14] replace the deepest
convolution operation of UNet with a spatial attention module for adaptive feature refine-
ment. Additionally, Li et al. [15] leverage a similar idea to strengthen the input features.
Considering the effective performance of spatial and channel attention, Wang et al. [16] and
Mou et al. [17] integrate the dual attention module into their network to extract attention-
aware features. For the morphological analysis, Mou et al. [18] consider the connectivity of
vessels and propose a post-processing algorithm to obtain more complete vascular tree. To
achieve accurate segmentation in the presence of noise, Nazir et al. [19] take advantage of
the deep learning architecture to promote the cervical cytoplasm and nucleus segmentation.
And a denoising variational auto-encoder network is proposed by Araújo et al. [20] to refine
the segmentation results. Furthermore, Shin et al. [21] propose a vessel graph network,
which combines graph neural network and CNN for joint learning to extract both global
and local features.

In addition to the above methods, transformer-based neural networks have recently
attracted great interest in diverse medical imaging tasks. Transformers first achieved huge
success in natural language processing by capturing the long-range dependence of an
input sequence via a self-attention mechanism. Dosovitskiy et al. [22] make it effectively
adapt to vision tasks, which further expand the development of medical image analysis.
Chen et al. [23] propose Trans-UNet to integrate a transformer and U-shaped network for
medical image segmentation. To reduce the computational complexity and improve the
applicability of processing high-resolution images, Liu et al. [24] utilize the shifted window
technique to improve the generalization of transformer. Furthermore, Cao et al. [25] com-
bine shifted window with UNet and construct a pure transformer-based network (i.e., Swin-
UNet). Huang et al. [26] design a global transformer block to preserve detailed information
and a relation transformer block to explore dependencies among lesions and other fundus
tissues. To combine the advantages of the general UNet architecture and transformer,
the transformer-UNet framework is popular in Li et al. [27], Shen et al. [28], Lin et al. [29].
Li et al. [27] significantly reduce the computational cost in vessel segmentation by propos-
ing a grouping structure of convolution and transformer. Shen et al. [28] introduce the
squeeze-excitation transformer into UNet for retinal vessel segmentation. Furthermore,
Lin et al. [29] adopt a dual-branch Swin transformer with UNet architecture to capture the
feature representations of different semantic scales. The great potential of transformer and
the advantages of the transformer-based UNet framework have been presented in these
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methods. By taking these into account, we propose a cross-scale attention transformer into
the Swin-UNet framework. Our network retains the superior feature learning ability of
transformer and promotes the feature fusion of different scales in retinal vessels.

Given an input image, the transformer network first divides it into patches by a
predefined scale, e.g., 4 × 4 pixel grid. Then all patches are flattened into a sequence
and embedded into high-dimensional features with shared weights. Therefore, the self-
attention block can consume the sequence features for correlation learning. In retinal
vessel segmentation, the goal is to accurately segment the foreground, including main and
collateral vessels. Due to their thin morphology or the low contrast between foreground and
background, most approaches are limited in their ability to segment vessels in challenging
regions. We observe a momentous situation that the dendritic vessels have a great number
of similar structures but with different scales. For example, the main and collateral vessels
are both curvilinear, but their widths are significantly different. Therefore, transformer
with one fixed patch scale has natural limitations for retinal vessel segmentation.

In order to better exploit the attention mechanism to aggregate vessel features with
similar structures but different scales, a simple idea is to adopt a multi-scale scheme. Lin
et al. [29] propose a dual-scale transformer UNet for medical image segmentation. They
split the input image into different patches with two sizes, and apply two transformer
encoders to the different scales, respectively. Nevertheless, such a dual-scale scheme with
different encoders is too complex to efficiently fuse features of different scales, resulting in
the inability to fully benefit from similar structures.

Based on the above observations, we propose a Cross-scale Attention Transformer,
noted CAT, to serve as the basis block in the UNet architecture. CAT consumes features
with different patch scales to produce their shared attention matrix and then integrates the
beneficial information between them. Such a design makes full use of the characteristics of
the dendritic structure in retinal images, encouraging the features with different scales to
benefit from each other. Consequently, the proposed CAT can locate and separate more
collateral vessels while maintaining the segmentation effect of main vessels. In addition,
CAT is more lightweight than the dual-scale scheme.

Moreover, there are typically misclassifications in the edge of foreground and back-
ground as the scale differences between main and collateral vessels. To alleviate this
problem, we further propose a progressive edge refinement module, called ERM. We adopt
the deep-supervision scheme in the proposed network and apply ERM in the multiple
supervision layers. Inspired by gradient-based edge detection, we can generate an edge
map from the prediction map in each ERM. And we utilize a simple but effective operation
to decouple the edge map into a foreground edge map and a background edge map. The
decoupled edge maps are then used to suppress background features and enhance ves-
sel features in subsequent layers. Therefore, the ultimate prediction map can be refined
progressively to improve the segmentation effect.

In summary, the main contributions of this work are as follows:

1. Cross-scale Attention Transformer (CAT) is proposed as the basic unit in the transformer
UNet. CAT fully exploits the dense similar structures with different scales in a retinal im-
age and effectively fuses the features to improve the vessel segmentation performance.

2. A progressive edge refinement module (ERM) is designed to refine the edges of fore-
ground and background in the segmentation results. ERM can suppress non-vessel fea-
tures and enhance vessel features, and then progressively refine the prediction mask.

3. Comprehensive experiments and discussions are carried out to verify the effectiveness
of the proposed method. The vessel segmentation performance outperforms the state-
of-the-art methods on public retinal datasets.

The rest of this paper is as follows. We detail our methods in Section 2 and evaluate
the experimental results in Section 3. In Section 4, we further discuss our innovations.
Finally, the conclusion is arranged in Section 5.
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2. Materials and Methods

In this section, we first overview our framework and then expatiate the proposed
cross-scale attention transformer (CAT) and progressive edge refinement module (ERM).
Finally, the detailed configurations of the network are given.

2.1. Framework Overview

The diagram of our method is shown in Figure 1. We denote the input image size as
H × W. As the patch embedding [22] with size 4 × 4 in transformer UNet downsamples
the image size to H

4 × W
4 , directly using a 4× upsampling operator in the decoder will

lose a lot of shallow features [29]. So we first perform two layers of CBR blocks (i.e.,
Convolution, Batch Normalization, and ReLU activation) and one downsampling layer
to obtain the low-level features F1 ∈ RH×W×32 and F2 ∈ R

H
2 ×W

2 ×64 (32 and 64 are the
feature dimensions). In this way, we can utilize CBR blocks also in the decoder to gradually
generate the prediction maps.

C

C

C

C

C

C

C

C

Figure 1. Overview of the proposed method. (a) The detailed network structure, mainly used for
the visualization of cross-scale feature construction. (b) The architecture of transformer UNet, in
which Cross-scale Attention Transformer (CAT) serves as the basic unit. (c) Illustration of the Edge
Refinement Module (ERM), which integrates with the deep-supervision scheme.

For the multi-scale features construction, we find using the outputs of the former CBR
layers can smooth the transition from convolutional layers to transformer layers. Therefore,
we adopt patch embedding with size 4 × 4 on both the features F1 and F2 to produce
different scale features Fs and Fl (the index is omitted here for a better representation). And
we visualize them in the detailed network structure of Figure 1a for intuitive understanding.
Such two scale features are fed into the subsequent CAT blocks for cross-scale feature
learning and interaction.

The proposed transformer UNet framework in Figure 1b is mainly composed of CAT
blocks. In each block, there are multiple CAT layers cascaded together. Maxpooling and
bilinear interpolation serve as the downsampling and upsampling operations, respectively.
The details of CAT are given in a later subsection.
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In the decoder, we can obtain the output features before regressing the prediction
maps. A deep-supervision scheme is adopted here for better semantic learning. Specifically,
the features of the last four layers with sizes of H

8 × W
8 , H

4 × W
4 , H

2 × W
2 , and H × W are

selected for multiple supervisions. As shown in Figure 1a, we introduce ERM into the deep-
supervision layers to refine the edges in the prediction maps. ERM consumes the prediction
map of the higher layer to suppress background features and enhance vessel features to
purify each output representation. So the ultimate output can be refined progressively to
improve the segmentation effect. The details of ERM are given in a later subsection.

2.2. Cross-Scale Attention Transformer

In this subsection, we will elaborate on the proposed CAT for retinal vessel segmenta-
tion. For a clear comparison, we first briefly introduce the native self-attention transformer,
which is referred to as Single-scale Attention Transformer (SAT), and Dual-scale Attention
transformer (DAT).

SAT is widely utilized in the early transformer UNet frameworks [23,24], which
consist of several SAT blocks. In each block, the feature input to ith layer can be denoted as
Fi ∈ RL×C (C is the feature dimension). SAT is mainly composed of Norm, W-MSA, and
MLP with GELU activation. As shown in Figure 2a, SAT can be formalized as

F̂i = W − MSA(Norm(Fi)) + Fi,

Fi+1 = MLP(Norm(F̂i)) + F̂i.
(1)

Figure 2. Comparisons of the proposed CAT with other transformer architectures. SAT, DAT, and
CAT mean Single-scale Attention Transformer, Dual-scale Attention Transformer, and Cross-scale
Attention Transformer, respectively. SAT consists of Layer Normalization (Norm), Window-based
Multi-head Self-attention (W-MSA), and MLP with GELU activation. DAT consists of two SAT layers
and a Cross-Attention Fusion module. CAT is similar to DAT but introduces a newly designed
Window-based Multi-head Cross-scale Attention (W-MCSA) to replace W-MSA and Cross-Attention
Fusion module.

Based on the multi-scale idea, Lin et al. [29] propose DAT to extract the coarse and
fine-grained feature representations of different semantic scales. They first perform patch
embedding with two sizes to yield different scale features, which can be denoted as
Fs ∈ RLs×C (small-scale) and Fl ∈ RLl×C (large-scale). They further apply two naive trans-
former encoders on the features, i.e., Fs and Fl are fed into different SAT layers, respectively.
And a cross-attention fusion (CAF) module is followed to aggregate the features. As shown
in Figure 2b, DAT can be written as

Fi+1 = CAF(SAT(Fs
i ), SAT(FL

i )). (2)

According to previous observation that there are dense similar structures with different
scales in retinal images, multi-scale learning is a natural idea to exploit this characteristic.
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DAT is a simple and feasible scheme for cross-scale learning. However, the scheme that
only performing cross-attention after independent single-scale attention is too complex
to efficiently integrate features of different scales, resulting in the inability to fully benefit
from similar structures. Therefore, we propose CAT in the transformer UNet framework for
retinal vessel segmentation. CAT also consumes features Fs and Fl but achieves attentional
feature aggregation in each transformer layer. This is possible due to the newly designed
W-MCSA, which is utilized to replace the W-MSA in SAT for cross-scale feature interaction.
As shown in Figure 2c, CAT can be written as

F̂s
i , F̂l

i = W − MCSA(Norm(Fs
i ), Norm(Fl

i )),

Fs
i+1 = MLP(Norm(F̂s

i )) + F̂s
i ,

Fl
i+1 = MLP(Norm(F̂l

i )) + F̂l
i .

(3)

Apparently, CAT can conduct cross-scale attention interactions and produce fused
dual-scale features Fs

i+1 and Fl
i+1 in only one transformer layer. So we can cascade multiple

CAT layers to gradually extract high-dimensional representations to take full advantage of
similar structure information at different scales.

The details of W-MCSA are also shown in Figure 2d. For the input dual-scale fea-
tures Fs

in ∈ RLs×C and Fl
in ∈ RLl×C, the traditional way is applying several weight matrices

W ∈ RC×D to transform Fs
in and Fl

in to query, key and value features, respectively. In our
W-MCSA, it only calculates the query and value vectors of the dual-scale features. The
form can be written as

Qs, Vs = Fs
inWs

Q, Fs
inWs

V ,

Ql , Vl = Fl
inWl

Q, Fl
inWl

V .
(4)

Then we skillfully utilize a single attention matrix A ∈ Ls × Ll to formulate the cross-
scale feature similarity. The form can be written as

A =
QsQl



√

D
+ RPB, (5)

where RPB means relative position bias proposed in [24]. Then we perform Softmax
normalization along different dimensions of A to generate attention weights of Fs

in to Fl
in

or Fl
in to Fs

in. Therefore, the calculation of key features can be economized but efficient
cross-attention is also realized. The attentional features can be formalized as

V′
s = So f tmax(A, 1)Vl + Vs,

V′
l = So f tmax(A, 0)
Vs + Vl ,

(6)

where the numbers in Softmax mean the dimensions for normalization. And we also
include their respective value features to keep feature consistency. Finally, projection
matrices are applied to produce the interacted features Fs

out and Fl
out.

It is worth noting that the above cross-attention is applied in a window to balance
the receptive field and efficiency, and the attention calculation adopts the multi-head
scheme. The architectures of W-MCSA and CAT are ingenious and such design cleverly
combines the dual-scale features and attention mechanism. So compared to SAT and
DAT, the proposed CAT is more robust and efficient in fusing cross-scale similar structure
information. We will discuss the impacts in Section 3.5.

2.3. Edge Refinement Module

In this section, we will introduce the proposed ERM for edge refinement. As the
fine-grained foreground of the vessel mask, there is typically misclassifications in the edges
of the segmentation results. Based on the idea of edge decoupling, we further propose
ERM integrated with the deep-supervision scheme.
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As shown in Figure 1c, we select the last four layers in the decoder for multiple su-
pervisions. The features are Fl−3 ∈ R

H
8 ×W

8 ×8C, Fl−2 ∈ R
H
4 ×W

4 ×4C, Fl−1 ∈ R
H
2 ×W

2 ×2C and
Fl ∈ RH×W×C, respectively, and we upsample them to the size of H ×W. In each layer, sev-
eral blocks of strip convolutions, e.g., horizontal, vertical, left diagonal, and right diagonal,
are applied to extract shallow morphology features for better vessel prediction. And dense
connections are performed to aggregate these features to enrich the representations. The
connected and transformed features can be denoted as F′

l−3, F′
l−2, F′

l−1, F′
l ∈ RH×W×C. Edge

refinement is expected before regressing feature F′ to prediction map M ∈ RH×W (index is
omitted here).

Therefore, for the feature F′
l of the lth layer, ERM first generates a soft edge map

El−1 ∈ RH×W based on the prediction map Ml−1 of the adjacent layer. This operation is
implemented through gradient calculation in a 3 × 3 kernel inspired by edge detection. By
analyzing the edge map El−1, we find that the salient pixels in El−1 include not only vessel
pixels but also background pixels. Thus, we further design a simple but effective approach
to excavating the edge map. Specifically, we decouple the edge map El−1 to a foreground
edge map E f g

l−1 and a background edge map Ebg
l−1 through element-wise multiplication

based on Ml−1

E f g
l−1 = Ml−1 · El−1,

Ebg
l−1 = (1 − Ml−1) · El−1.

(7)

Such that E f g
l−1 expresses the vessel pixels near the background, and Ebg

l−1 expresses the
non-vessel pixels near the foreground. An illustration is shown in Figure 3 to clarify the
decoupled edge maps. By doing this, ERM can perform feature repressing and enhancement
accordingly. The form can be expressed as

F̂′
l = BR(Cat(F′

l , F′
l−1)(1 − Ebg

l−1)),

F′′
l = BR(F̂′

l (1 + E f g
l−1)),

(8)

where F′′
l is the refined feature for subsequent vessel prediction, BR means Batch Normal-

ization and ReLU activation. We also concatenate the feature F′
l−1 of the adjacent layer.

After these attentive operations, ERM suppresses the unexpected background edge features
by element-wise subtraction and enhances the foreground edge features by element-wise
addition. The module is cascaded to the adjacent layers in the deep-supervision. So the
ultimate prediction map can be refined progressively to improve the segmentation result.

2.4. Network Details

The proposed CAT and ERM are integrated into the transformer UNet framework. We
implement the network with two CBR blocks and four CAT blocks for feature extraction in
different resolutions. Each CAT block is composed of four CAT layers. The window size of
W-MCSA in CAT is set to 32 × 32 to balance the receptive field and efficiency. As dual-scale
features are produced in the last CAT layer of the decoder, we upsample them to the same
resolution and concatenate them as the input of the latter CNN layers. The last four layers
are conducted for deep supervision with ERM, and the final output prediction map serves
as the vessel segmentation result in the inference stage.
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Figure 3. An illustration to represent edge decoupling on the prediction map M. E, E f g, Ebg are the
edge map, foreground edge map, and background edge map, respectively. Given an input image
patch, the proposed network will generate the prediction maps for multiple supervision. Based on
the prediction map M of the adjacent layer, ERM first generates a soft edge map E. After that, the
edge map E is decoupled into the foreground edge map E f g and the background edge map Ebg.
E f g expresses the vessel pixels near the background, and Ebg expresses the non-vessel pixels near
the foreground.

3. Results

In this section, we perform comprehensive experiments on public datasets to verify
the effectiveness of our method. Then quantitative and qualitative results are presented to
evaluate the segmentation performance of our framework. Finally, we further explore the
effect of our innovations through an ablation study.

3.1. Datasets

This work is evaluated on two widely-used datasets, including DRIVE [30] and
CHASE_DB1 [31]. DRIVE dataset has 40 color retinal images, including seven abnormal
pathology cases. And it is fixedly split into two sets for training and testing, respectively.
The training set contains only one manual segmentation of an ophthalmologist, while
two manual annotations have been applied by two different observers in the testing set.
Following many existing methods [32–34], the manual annotation of the first observer is
used as the ground truth for training and evaluation. The spatial resolution of each image
in the dataset is 584 × 565. And we uniformly crop the training images into patches with a
size of 256 × 256. In addition, the dataset also provides the Field Of View (FOV) masks.

The CHASE_DB1 dataset contains 28 color fundus images from both the left and right
eyes of 14 children. To be consistent with previous methods, the first 20 images are used for
training and the remaining are for testing. Each image has different manual annotations
from two experts. For a fair comparison with other methods, manual annotations of the
first expert are taken as ground truth in the experiments. The spatial resolution of each
image is 999 × 960. Due to the high resolution of the original images in the dataset, we
crop them into patches with a size of 384 × 384 as the network input. The FOV masks of
CHASE_DB1 dataset are not provided, we generate them by a simple threshold filtering
according to Boudegga et al. [35].

3.2. Implementation Details

Regarding the data preprocessing, we first convert color fundus images to gray images.
Then we normalize the gray images to a standard normal distribution and re-scale them to
image space. In addition, Contrast Limited Adaptive Histogram Equalization (CLAHE) [36]
and gamma correction are also employed to enhance image contrast. Finally, we perform
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data augmentation, e.g., image flip, random rotation, and random zoom, to improve the
robustness and prevent overfitting during training.

We adopt the PyTorch framework to conduct all the experiments on a PC with Intel
Xeon E5 CPU, 64GB RAM, and an NVIDIA RTX 3090 GPU. During the training, the initial
learning rate is set to 0.0005 for both DRIVE and CHASE_DB1. To dynamically adjust the
training process, we utilize the multi-step decay strategy to update the learning rate. The
batch size is set to 2, and the maximal epoch is 150. Moreover, we use the Adam algorithm
as the training optimizer.

The loss function of our network is the class-weighted binary cross-entropy loss LBCE,
which is defined as

LBCE = − 1
N

N

∑
j=0

(yjlogy′j + (1 − yj)log(1 − y′j)) (9)

where N denotes the number of pixels of each image. y denotes the ground truth label,
and y′ represent the prediction value. Class weights of 1.5 and 1 are found appropriate for
vessel and non-vessel in our experiments. Since we employ a deep supervision scheme in
the last four layers, Ltotal can be written as:

Ltotal = L(G, Ml−3) + L(G, Ml−2) + L(G, Ml−1) + L(G, Ml) (10)

where L denotes the BCE loss LBCE, G is the ground truth mask, and Mk is the prediction
map of kth layer.

3.3. Evaluation Metrics

To quantitatively compare with the state-of-the-art methods, we use the standard
evaluation metrics, including Accuracy (Acc), Dice, the area under curve (AUC), Sensitiv-
ity (Se), and Specificity (Sp). Acc measures the overall performance of the segmentation
results. Dice (also called F1-score) is to evaluate the network performance in an imbalance
binary segmentation task. For binary segmentation of retinal vessels, positive and negative
are classified as vessel pixels and background pixels, respectively. Therefore, Se and Sp
represent the segmentation accuracy of the vessel and background pixels, respectively. Fur-
thermore, the receiver operating characteristic curve (ROC) reflects the trade-off between
sensitivity and specificity, and the area under the curve (AUC) is used to comprehensively
assess the capability of network classification.

3.4. Results and Comparisons

Compared Methods: To demonstrate the superiority of the proposed method, we
collect many state-of-the-art approaches as competitors, including CNN-based methods
(e.g., SA-UNet [14], CTF-Net [33]) and transformer-based methods (e.g., GT U-Net [27],
GT-DLA-dsHFF [37]). Moreover, we also compare our network against two methods based
on the multi-scale features (i.e., Dual E-Unet [38] and SCS-Net [39]), and two edge-aware
methods (i.e., BEFD-UNet [40], DE-DCGCN-EE [41]). For SA-UNet [14], GT U-Net [27],
Iter-Net [32], CTF-Net [33], CAR-UNet [34], and Genetic U-Net [42], we generate their
segmentation results based on the released codes by the authors. And the results of other
compared methods are directly from the corresponding papers.

Quantitative Comparisons: Tables 1 and 2 report the quantitative results of our
network and compared methods. For the DRIVE dataset, our quantitative results of Acc,
Dice, AUC, Se, and Sp are 97.05%, 83.33%, 98.87%, 84.68%, and 98.26%, respectively.
Compared with all other methods, the proposed model achieves the best results in Dice,
AUC and Se, while producing a comparable score in other metrics. Specifically, SGL [43]
achieves the highest Se among the competitors, but our method is still 0.88% higher than it.
And our result is also 0.17% higher than it in Dice, while maintaining almost the same Acc,
AUC, and Sp. In terms of the metric Sp, although CAR-UNet [34] achieves the highest score
among all the compared methods, its other metrics are all lower than our method, especially

54



Mathematics 2024, 12, 264

for Dice and Se, which are 0.8% and 3.33% lower, respectively. Overall, our method has
great advantages in Dice and Se, which are 0.17–2.06% and 0.88–7.26% higher than other
methods, respectively. As described in the definitions of Dice and Se, these improvements
indicate that our method is more capable of segmenting vessels in challenging regions.
More importantly, our proposed model fulfills such superiority while achieving the best
balance among the evaluation metrics compared to the state-of-the-art methods.

Table 1. Quantitative comparisons on the DRIVE dataset. The bold items are our results and the
underlined items are the best results.

Method Year Acc (%) Dice (%) AUC (%) Se (%) Sp (%)

Dual E-Unet [38] 2019 95.67 82.70 97.72 79.40 98.16
Iter-Net [32] 2020 95.74 82.18 98.13 77.91 98.31
CTF-Net [33] 2020 95.67 82.41 97.88 78.49 98.13
BEFD-UNet [40] 2020 97.01 82.67 98.67 82.15 98.45
HANet [44] 2020 95.81 82.93 98.23 79.91 98.13
SA-UNet [14] 2021 96.98 82.63 98.64 82.12 98.40
GT U-Net [27] 2021 95.46 81.27 96.96 77.42 98.09
SCS-Net [39] 2021 96.97 81.89 98.37 82.89 98.38
CAR-UNet [34] 2021 96.99 82.53 98.52 81.35 98.49
SGL [43] 2021 97.05 83.16 98.86 83.80 98.34
GT-DLA-dsHFF [37] 2022 97.03 82.57 98.63 83.55 98.27
DE-DCGCN-EE [41] 2022 97.05 82.88 98.66 83.59 98.26
Genetic U-Net [42] 2022 97.07 83.14 98.85 83.00 98.43
Ours 2023 97.05 83.33 98.87 84.68 98.26

Table 2. Quantitative comparisons on the CHASE_DB1 dataset. The bold items are our results and
the underlined items are the best results.

Method Year Acc (%) Dice (%) AUC (%) Se (%) Sp (%)

Dual E-Unet [38] 2019 96.61 80.37 98.12 80.74 98.21
Iter-Net [32] 2020 96.55 80.73 98.51 79.70 98.23
CTF-Net [33] 2020 96.48 82.20 98.47 79.48 98.42
HANet [44] 2020 96.73 81.91 98.81 81.86 98.44
SA-UNet [14] 2021 97.55 81.53 99.05 85.73 98.35
CAR-UNet [34] 2021 97.51 80.98 98.98 84.39 98.39
SCS-Net [39] 2021 97.44 - 98.67 83.65 98.39
GT-DLA-dsHFF [37] 2022 97.60 - 98.92 84.40 98.58
DE-DCGCN-EE [41] 2022 97.62 82.61 98.98 84.00 98.56
Ours 2023 97.66 82.36 98.77 86.59 98.42

Regarding the CHASE_DB1 dataset in Table 2, we can find that our method achieves
the best Acc score of 97.66% and the best Se score of 86.59% among all methods. The
most significant improvement is Se, which measures the accuracy of vessel segmentation,
outperforming other methods by at least 0.86%. Thus, it means that our model can correctly
localize and segment more vessel pixels. Since the vessel region occupied less than 10% of
the whole image, Dice which denotes the degree of overlap between the predictions and
the ground truth is more susceptible to the background. Although DE-DCGCN-EE [41]
obtains the optimal Dice, our method takes the second rank and our Dice score (82.36%)
is very close to the best one (82.61%). In contrast, our method has a Se improvement of
2.59% over DE-DCGCN-EE, demonstrating that our model has more ideal performance
in the classification of vessel pixels. SA-UNet [14] adopts a spatial attention module for
adaptive feature refinement, thereby achieving the highest AUC. Nevertheless, compared
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to SA-UNet, our model achieves improvements of 0.86%, 0.83%, 0.11%, 0.07% on Se, Dice,
Acc, and Sp.

Visual Comparisons: Apart from the quantitative results, we also present the visual
comparisons against other methods in Figures 4 and 5. Specifically, we visualize the retinal
vessel segmentation results produced by our network and state-of-the-art methods in terms
of two test cases. As shown in Figure 4, the collateral vessels in the results of Iter-Net [32],
GT U-Net and Genetic U-Net are seriously missing or misclassified. CTF-Net [33] utilizes
deep coarse-to-fine supervision network to refine segmentation and segments more collat-
eral vessels than others. However, there are still broken vessels in CTF-Net. Therefore, the
existing methods have difficulty segmenting the collateral vessels in challenging regions.
The results are either completely without collateral vessels or with segmented broken
vessels. Nevertheless, our predicted segmentation map has the same complete collateral
vessels as the Ground Truth. As visualized in Figure 5, Iter-Net, CTF-Net, and CAR-UNet
have poor segmentation performance at collateral vessels or the intersection of vessels.
Although SA-UNet obtains better vessel probability in the prediction map than Iter-Net,
CTF-Net, and CAR-UNet, it still has the problem of misclassification. However, our pro-
posed model can effectively alleviate this limitation. It means that our model can exactly
locate and segment more collateral vessels while maintaining the segmentation effect of
the main vessels.

Figure 4. Segmentation results of the DRIVE dataset.

Figure 5. Segmentation results of the CHASE_DB1 dataset.

Parameters and FLOPs: For a fair comparison, we also count the network parameters
and the FLOPs when inferring a test retinal image. The results are listed in Table 3. The
method utilizing CNN is lighter, with fewer parameters and FLOPs. Transformer networks
typically contain more parameters than CNNs. Especially since our method introduces
cross-scale learning, we have achieved the maximum number of parameters. However,
thanks to the window-based attention structure [25], our network has FLOPs that are lower
than the other two transformer-based methods.
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Table 3. The network parameters and the FLOPs of the compared methods and ours. The FLOPs are
calculated on a 256 × 256 image patch.

Method Parameters FLOPs

CAR-UNet [34] 1.05 M 2.10 M
Iter-Net [32] 8.24 M 16.48 M
SA-UNet [14] 538.71 K 1.07 G
CTF-Net [33] 1.38 M 3.43 G
Genetic U-Net [42] 272.42 K 8.23 G
GT U-Net [27] 25.89 M 55.32 G
DE-DCGCN-EE [41] 14.11 M 73.62 G
GT-DLA-dsHFF [37] 26.09 M 118.62 G
Ours 291.56 M 71.15 G

3.5. Ablation Study

To further verify the effectiveness of major components of our network, we perform
ablation experiments on the DRIVE dataset. To do so, we first take a U-shaped framework
(denoted as transformer UNet) based on the transformer block as the basic architecture in
this experiment. Then, SAT, DAT, and CAT are respectively used as the transformer block
to compare their segmentation capabilities. Then we add ERM to these three variants to
evaluate the effect of ERM. The experimental results have been summarized in Table 4.
And the visual comparisons of the segmentation results are presented in Figure 6.

Table 4. Ablation results on DRIVE dataset. The underlined items are the best results.

Framework
Transformer Block

ERM
Metrics

SAT DAT CAT Acc (%) Dice (%) AUC (%) Se (%) Sp (%)

Transformer UNet

� 96.90 82.18 98.60 82.09 98.32
� 96.93 82.44 98.66 82.86 98.30

� 97.01 82.99 98.79 83.73 98.30
� � 97.00 82.74 98.74 82.50 98.31

� � 97.01 82.91 98.77 83.39 98.34
� � 97.05 83.33 98.87 84.68 98.26

As shown in Table 4, compared to SAT and DAT, CAT achieves 97.01% on Acc, 82.99%
on Dice, 98.79% on AUC, and 83.73% on Se, which outperforms SAT by an improvement
of 0.11%, 0.81%, 0.19%, and 1.64%, respectively. The most remarkable improvement
is Se, indicating that the CAT can significantly improve the sensitivity of the network
on multi-scale features. Although the Sp of 98.30% in CAT is lower, the disadvantage is
negligible. And in Figure 6c, we can further compare and analyze the difference between the
segmentation results of CAT and SAT through the red part. We find that the segmentation
effect of main vessels in CAT is more complete than in SAT, while more collateral vessels are
segmented. Furthermore, CAT is 0.08%, 0.55%, 0.13%, and 0.87% higher than DAT in terms
of Acc, Dice, AUC, and Se, respectively. The overall improvement means that compared
with DAT, the cross-scale scheme designed in CAT can efficiently fuse the features with
similar structures to improve vessel segmentation performance in challenging regions. As
visualized in Figure 6e, the patches at the top and the bottom prove that CAT is able to
better identify collateral vessels or microvessels in challenging regions. In conclusion, CAT
can segment more collateral vessels or microvessels than SAT and DAT in challenging
regions while maintaining the segmentation effect of the main vessels.
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Figure 6. Segmentation results of different transformer blocks. SAT-CAT and DAT-CAT mark the
differences between their results and ours. The differences are highlighted in red.

To explore the effect of ERM, we conduct the experiments with three different configu-
rations, which are the SAT with ERM, the DAT with ERM, and the CAT with ERM. It can
be observed in Table 4 that SAT with ERM achieves improvements of 0.1%, 0.56%, 0.14%,
0.41% on Acc, Dice, AUC, and Se compared to SAT while showing a comparable score on
Sp. After adding ERM based on the previous experiment of DAT variation, all of the five
performance indicators have been increased. The overall improvement in performance met-
rics proves that the progressive refinement of the prediction map is beneficial to alleviate
the edge-blurring problem. In particular, CAT with ERM produces SOTA results on almost
all metrics. Specifically, it outperforms CAT by an improvement of 0.04%, 0.34%, 0.08%, and
0.95% in terms of Acc, Dice, and Se. Although it is not as good as CAT in Sp, it still produces
close and comparable scores. More importantly, the performance of three experiments of
SAT, DAT, and CAT are improved after adding ERM respectively. It demonstrates that the
proposed ERM can provide supplementary information for high-level features, thereby
further promoting retinal vessel segmentation.

4. Discussion

4.1. The Effect of Input Patch Size

It is a common operation to crop the input image into square patches in a transformer
network. A large patch size leads to faster inference time but more memory consumption.
We adjust the input patch to multiple sizes to explore the performance of our method under
different hardware and demand scenarios. Specifically, we consider five different patch
sizes, and they are 384 × 384, 256 × 256, 192 × 192, 128 × 128, and 96 × 96. The results on
DRIVE dataset are shown in Figure 7.

We can see that the results of Acc and Sp are almost unchanged for different input
patch sizes on the DRIVE dataset. As the patch size becomes larger, Dice and Se gradually
increase. The reason behind this is that small patches ignore rich cross-scale similar
structures. For the Se metric, the highest score is obtained when the patch size is 256 × 256.
Therefore, we empirically select 256 × 256 as the input patch size for the DRIVE dataset.

4.2. The Effect of CAT Layers

In order to verify the ability of cross-scale learning of the proposed CAT, we conduct
experiment with different numbers of CAT layers in each transformer block. Specifically,
our network has four transformer blocks in the encoder, and we consider four settings on
the number of CAT layers in the transformer blocks. The four settings are [4, 4, 8, 8], [4, 4, 4,
4], [2, 2, 4, 4], and [2, 2, 2, 2].

Table 5 reports the quantitative results of our network with different numbers of CAT
layers in the transformer blocks. Apparently, the number of network parameters and
the training time is increased when we use a large number of CAT layers. From these
quantitative results, we can find that the setting with [4, 4, 4, 4] has the largest Acc, Dice,
and Se scores, and its Sp score (98.26%) is also close to the best one (98.27%). Hence, we
empirically set the numbers of CAT layers in the transformer blocks as [4, 4, 4, 4].
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Figure 7. The results of five patch sizes for training and testing. The horizontal axis means the side
length of a square image patch. When the patch size is set to 256 × 256, the best overall results
are obtained.

Table 5. Comparisons with different numbers of CAT layers. The parameters and training time are
also provided. The underlined items are the best results.

CAT Layers Param. Acc (%) Dice (%) Se (%) Sp (%) Training Time

[4, 4, 8, 8] 522.54 M 97.04 83.28 84.45 98.27 10.13 h
[4, 4, 4, 4] 291.56 M 97.05 83.33 84.68 98.26 7.78 h
[2, 2, 4, 4] 284.32 M 97.03 83.23 84.51 98.26 6.93 h
[2, 2, 2, 2] 168.83 M 97.03 83.20 84.41 98.26 6.03 h

4.3. The Effect of Deep-Supervision Layers

Deep-supervision schemes [45] have been widely used to boost the training of in-
termediate layers and mitigate gradient disappearance. Motivated by this, we adopt the
deep-supervision scheme and further integrate ERM into the multiple supervision layers
to progressively refine the prediction map. To evaluate the performance of ERM more
thoroughly, we adjust the number of deep-supervision layers for training to analyze the
effects. Note that the number of ERMs will also change when selecting a different number
of deep-supervision layers.

As shown in Figure 8, there are no obvious performance differences in terms of the
Acc, Dice, and Sp scores when the numbers of deep supervision layers are three, four, five,
and six. Only for the Se metric, we find that the best effect is obtained when the number of
supervision layers is four. Hence, we empirically design four deep-supervision layers with
ERMs in our method.

Figure 8. Comparisons with different deep-supervision layers. The best performance is observed
when the number of deep-supervision layers is four.
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5. Conclusions

The method proposed in this paper has two major innovative components: Cross-
scale Attention Transformer (CAT) and progressive Edge Refinement Module (ERM). CAT
explores a novel cross-scale attention mechanism in transformer UNet to integrate multi-
scale features with similar structures in a retinal image. ERM is designed to decouple
the edge map to enhance vessel features and suppress background features in multiple
supervision layers. These two novel structures encourage the network to enhance the
cross-scale learning ability and refine the vessel edges progressively. Experimental results
on two public datasets have shown the effectiveness of the proposed method and the
superior segmentation performance on collateral vessels.
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Abstract: Industrial-quality inspections, particularly those leveraging AI, require significant amounts
of training data. In fields like injection molding, producing a multitude of defective parts for such
data poses environmental and financial challenges. Synthetic training data emerge as a potential
solution to address these concerns. Although the creation of realistic synthetic 2D images from 3D
models of injection-molded parts involves numerous rendering parameters, the current literature on
the generation and application of synthetic data in industrial-quality inspection scarcely addresses the
impact of these parameters on AI efficacy. In this study, we delve into some of these key parameters,
such as camera position, lighting, and computational noise, to gauge their effect on AI performance.
By utilizing Blender software, we procedurally introduced the “flash” defect on a 3D model sourced
from a CAD file of an injection-molded part. Subsequently, with Blender’s Cycles rendering engine,
we produced datasets for each parameter variation. These datasets were then used to train a pre-
trained EfficientNet-V2 for the binary classification of the “flash” defect. Our results indicate that
while noise is less critical, using a range of noise levels in training can benefit model adaptability and
efficiency. Variability in camera positioning and lighting conditions was found to be more significant,
enhancing model performance even when real-world conditions mirror the controlled synthetic
environment. These findings suggest that incorporating diverse lighting and camera dynamics is
beneficial for AI applications, regardless of the consistency in real-world operational settings.

Keywords: synthetic data; rendering parameter; AI inspection; quality control; defect detection;
blender

1. Introduction

Quality assurance in manufacturing, particularly in injection molding, remains a chal-
lenge due to a variety of error types stemming from machine parameters, environmental
influences, and batch inconsistencies. As these errors can be expensive to produce in
real-world settings, synthetic training data offer a compelling solution for machine learning
models tasked with defect detection. The use of synthetic data for deep learning has been
expanding in various fields in recent years, yet the impact of rendering parameters on the
quality of this data and the subsequent performance of AI models is not well understood.

Recent years have seen an increasing number of publications utilizing synthetic train-
ing image data for diverse applications. These range from medical domains, such as
Schenkenfelder et al.’s [1] generation of virtual images for burn wound detection on human
skin, to civil infrastructure inspection, such as Howells et al.’s [2] work that can be used in
assessing earthquake damage, and even space technology, where Viggh et al. [3] used Unity
to create synthetic data for spacecraft component detection. In industrial contexts, synthetic
data have been employed for tasks including segmenting car parts in the automotive indus-
try [4], training robots for bin-picking chicken fillets in the food industry [5], and detecting
surface defects on machine parts [6–8]. The generation of the synthetic images from 3D
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geometry is often carried out by using Unity [3,4], and sometimes custom solutions are put
into place [7,9], whereas Blender is utilized in the majority of the studies [1,2,5,6,10–19].

A common approach, exemplified by Schmedemann et al. [17], is the randomization
of numerous parameters, including lighting, camera position, texture, and the defect itself.
This is based on the assumption that a greater extent of domain randomization leads to
enhanced domain adaptation and, thus, improved model performance for real images.
While it’s common to alter at least some of the rendering parameters, particularly focusing
on camera position and lighting, beyond this assumption, most studies do not delve deeper
into the specific impacts of these variations [1–7,10,12–15,17–19].

Only a few studies have addressed the intricate details of render parameters. Ruediger-
Flore et al. [16] explored the impact of realistic material properties and background settings,
examining objects rendered at varying levels of detail, from “plain rendered CAD” to
“full scene”. Their findings highlight that increasing scene realism significantly boosts
classification performance, especially when the proper material properties are added. They
also found that mixing different levels of realism and expanding the volume of training
data further improves performance. However, their analysis did not extend to other critical
parameters, such as lighting and camera position. In a different vein, Zhang et al. [20]
compared various illumination models, discovering that the choice of illumination model
substantially affects network performance. Yet, their study did not investigate whether
variation in lighting is better than using any single illumination model, nor did it determine
the characteristics required for one lighting model to excel over another.

This study aims to fill the existing knowledge gap by utilizing the Cycles rendering
engine to procedurally generate a specific type of defect (flash) on 3D models of injection-
molded parts. With this setup for generating synthetic training data, we focus specifically
on empirically evaluating the influence of key rendering parameters—lighting, camera
position, and noise—on the efficacy of an AI model for quality assessment. Guiding our
research are the following key questions:

1. How does variation in lighting affect the accuracy and generalization capabilities of
an AI model trained with synthetic data, as compared to using a static light source?

2. In what ways does changing the camera position impact the accuracy and general-
ization capabilities of an AI model trained with synthetic data, as opposed to a static
camera position?

3. How does the comparison of high versus low noise levels, inherent to the ray tracing
process in rendering, affect the accuracy and generalization capabilities of an AI model
trained with synthetic data?

The remainder of this paper is structured to explore our methodology, present the
experimental results, discuss these results, and conclude with insights aimed at informing
future directions in synthetic data generation for AI-driven quality inspection.

2. Materials and Methods

In order to create our synthetic 2D image dataset, we use Blender, a versatile piece of
open-source 3D graphics software (https://www.blender.org/download/). The integration
of the Cycles rendering engine in Blender, which accurately simulates lighting using ray
tracing, is essential to the creation of photorealistic images. Blender’s advantages also lie
in its rich feature set, which includes 3D modeling and sculpting, texturing, UV mapping,
and rendering, as well as its powerful Python API that enables the automation of rendering
tasks, which is essential for creating large datasets with variable parameters.

Table 1 outlines the variations in the rendering parameters we examined in Blender,
each altered systematically to assess their impact on AI model performance. For instance,
for the high noise data, a 0.1 noise threshold in Blender was used, a 10-fold increase
compared to the low-noise setting. In the table, the Lighting column contrasts a single light
source directly above the object with a high dynamic range imaging (HDRI) background for
varied lighting. The Camera Position column compares a fixed camera directly above the
object to a camera in random positions within a cube above the object, simulating varying
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camera positions. The Noise (the noise parameter is linked to ray tracing, where the
quantity and path of light rays determine each pixel’s color and brightness in the rendered
image) column showcases two scenarios: a high noise scenario with a 0.1 threshold and a
low noise scenario with a 0.01 threshold.

Table 1. Variations of the analyzed cleaning parameters.

Lighting Camera Position Noise

One light source directly above the object Exactly above the object 0.1 Noise threshold

Via the HDRI background Random position in cube above the object 0.01 Noise threshold

2.1. Scene Setup

After the 3D modeling of a real injection molded part—a “mortar bowl”—was con-
verted into a .stl geometry, it can be loaded into the blender scene and placed onto a desk
geometry. For the material of the desk, we used a freely available asset for a wooden table,
meaning the textures for the color, roughness, and normal map are input into the “Princi-
pled BSDF” (bidirectional scattering distribution function) shader. For the bowl, we also
used the Principled BSDF shader and a Subsurface IOR of 1.46, as well as a Transmission of
0.1 and a Roughness of 0.2 as the properties for plastic material. For the images with vari-
able lighting, a high dynamic range image (HDRI) was used as the background. The scene
in Blenders layout view and rendered preview is shown in Figure 1. The reflections of
the light sources generated from the HDRI and their physically correct reflection on the
tabletop are worth noting, as well as the slight noise in darker areas, such as the right side
of the table.

Figure 1. The scene in a rendered preview using ray tracing and a randomly selected HDRI image.

2.2. Defect Creation

The sole focus of our simulation is the “flash” defect, a prevalent issue in plastics
production and one of the most common defects in injection-molded parts. Flash is
characterized by excess material that extends beyond the intended parting line or mold
cavity, with its severity ranging from a barely perceptible thread to a wide rim. This defect
is not only widespread but is also of significant concern in the industry. It can result from
various factors, including improper mold design, inadequate mold maintenance, excessive
injection pressure or speed, and material shrinkage during the molding process.

The defects on the outer edge of the 3D model were created in such a way that they
come as close as possible to those of the real component. In order to do this, the nodes on
the outer edge of the 3D object’s mesh were first added to a collection and then saved (see
Figure 2). Each time a part with a defect is rendered, the defect creation algorithm iterates
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over all the points in the collection of the original model’s geometry, randomly selects a
subset of vertices, and applies a perturbation to their position, followed by a smoothing
process to ensure a natural transition.

Figure 2. Manipulated vertices highlighted.

The algorithm is parameterized by the ’strength’ of perturbation, the ’perturb_fraction’,
which is the fraction of total vertices to be perturbed, and the ’smoothness’, which defines
the number of iterations for smoothing the perturbations to create a realistic defect edge.
Given a mesh with N selected vertices, the algorithm selects a subset of M vertices to
perturb, where M is determined by the perturb fraction:

M = �N · perturb_fraction�. (1)

Each vertex, vi, in this subset is then randomly perturbed by a value, pi, within the range
[0, strength]. In order to ensure a smooth transition and avoid sharp edges, this perturbation
is smoothed over smoothness iterations. During each iteration, the perturbation for a vertex
vi is recalculated as the average of its own value and the perturbations of its immediate
neighbors, giving the smoothed perturbation psmooth

i as

psmooth
i =

pi + ∑j∈neighbors(i) pj

number of neighbors(i) + 1
. (2)

Finally, the vertices are displaced along their normal vectors by the smoothed pertur-
bation amount, updating the position of each vertex vi to a new position v′

i by

v′
i = vi + psmooth

i · ni. (3)

Adjusting the algorithm’s parameters allows for the simulation of defects that align
with the diverse types and severities encountered in actual injection-molded parts. In our
experiments, we determined a smoothness setting of 100 to be universally suitable for the
type of defects we aimed to replicate. We varied the strength of the perturbation within the
range [2.0, 25.0] and the perturb_fraction within [0.01, 0.1]. Both parameters were drawn
from a normal distribution with a mean of 0.055 and a standard deviation of 0.025 for the
perturb_fraction, and a mean of 13.5 with a standard deviation of 5.75 for the strength.
Values falling outside the defined ranges were clamped to the interval’s boundaries.

The strength parameter determines the scale of the defects, affecting their size and the
extent of deformation on the mesh. Conversely, the perturb_fraction sets the occurrence
rate of the defects, which translates to the frequency and variability of the defects’ presen-
tation on the mesh surface. In calibrating these parameters, our objective was to replicate
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defects with a high degree of subtlety. We set the median defect size to be relatively small,
and the lower threshold of the strength parameter was selected such that defects at a
high perturb_fraction are just barely perceptible, and those at the lower end are virtually
invisible to the naked eye without zooming in on the image. This nuanced approach aims
to enhance the AI’s sensitivity to minute irregularities, challenging its detection capabilities.
Figure 3 depicts defects of median and maximum possible sizes, characterized by excess
material on the outer edge (rendered from a top-down camera perspective). The mesh is
displayed to better illustrate the variations in the dimensions of these defects.

(a) (b)

Figure 3. Examples of different defect sizes. (a) Median defect strength and fraction; (b) maximum
defect strength and fraction. Some of the defects at the brim are marked.

2.3. Render Settings

By randomly selecting one variant of each parameter (as depicted in Table 1), we
rendered 10,000 images without defects and 10,000 images with defects, which were
generated using the algorithm described in Section 2.2. This resulted in a total dataset
of 20,000 images for all variations. Each image was rendered with parameters chosen
randomly from those outlined in Table 1, with a 50% probability for each variant. The test
dataset, consisting of 4000 images, was rendered separately with the same settings.

Each image was rendered at a resolution of 1920 × 1080 pixels using the Cycles engine
(without denoising) using the GPU. In every rendering cycle, the material color was varied
randomly among four options: light blue, dark blue, orange, and red. If the part was to
include a defect, it was created by manipulating the object’s geometry with a random size
and shape.

With dependence on the randomly selected variant for each parameter, the following
render settings were configured via the Python API:

Noise: Adaptive sampling was enabled for both variants. For lower noise levels,
the maximum number of samples was set to 500, and the adaptive threshold was set to 0.01.
For higher noise scenarios, the maximum samples were reduced to 50, and the threshold
was increased to 0.1.

Lighting: Depending on the random selection, either variable lighting was used by
selecting an HDRI from 191 available 2 k textures downloaded from Poly Haven [21] or a
disk-shaped area light positioned directly above the object with an energy setting of 5000
was used.

Camera: If the top-view camera was selected, Camera Object 1, located directly above
the bowl, was used. Otherwise, Camera Object 2 was chosen with its position randomly
determined within a cube above the object and oriented towards it.
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2.4. Preliminary Experiments

Choice of classification model: The objective of classification in this research is not
to achieve the highest possible accuracy on test or real-world data but rather to assess the
comparative impact of different rendering parameters on model performance. The chosen
model should not only exhibit good generalization but should also operate efficiently to
accommodate the numerous training and inference iterations required by our experiments.
We evaluated various models, including different variants of EfficientNet [22] and Efficient-
NetV2 [23], to determine whether the size of the input images and the complexity of the
networks significantly influence performance.

Image normalization: The role of image normalization in the training and testing
phases was examined by training the model on a subset of 4000 images randomly selected
from the entire dataset of 20,000. Three different normalization schemes were applied:

(a) ImageNet with mean = [0.485, 0.456, 0.406], and std = [0.229, 0.224, 0.225];
(b) Rendered dataset mean = [0.3320, 0.2324, 0.2056], and std = [0.1839, 0.1681, 0.1932];
(c) No normalization

Dataset size: Rendering a substantial volume of images with accurate light simula-
tion is time-intensive; generating 20,000 images required approximately four and a half
days using our equipment. Consequently, to manage the rendering duration—given that
seven models were to be trained for our studies—without compromising the integrity
of the training data, we evaluated the impact of dataset size on model performance. We
considered datasets of 6000 and 8000 images, selected randomly from the full dataset to
ensure uniform distribution.

2.5. Training EfficientNet

For training the EfficientNetV2-RW-T model, we utilized PyTorch and ensured repro-
ducibility by setting the same seed for all random number generators in torch, numpy,
and CUDA. The batch size was determined by the memory capacity of the graphics card,
with 24 being the maximum number of samples per batch that could be accommodated.
Our dataset was partitioned into an 80/20 split for training and validation. Data loaders
were configured with specific transformations for the training and testing datasets (refer to
Appendices A and B for details). The training process spanned over 40 epochs, utilizing an
initial learning rate of 1 × 10−3.

2.6. Obtaining Real Test Data

For all subsequent evaluations (Sections 3.2 and 3.3), the models were trained and
validated according to the methodology described in Section 2.5. The model with the high-
est validation accuracy after each epoch was selected for further evaluation. We assessed
each model’s performance using the synthetic test set and a dataset of real objects pho-
tographed under varying environmental conditions. These conditions included placing the
object on a wooden workbench and within a specialized inspection device (the inspection
device, provided by SQB GmbH, features a back light, top light, and a segmented ring
light. It is particularly well-suited for experiments involving variations in lighting and
camera parameters, making it an ideal setup for determining optimal image acquisition
configurations and for capturing training data) with both light and dark backgrounds.
For each setup, we captured images in both well-lit and dimly-lit scenarios, taking two
photographs of each object with slight rotations and positional adjustments. Due to the
limited availability of real parts with the specified flash defect, only four were available for
testing. Conversely, five defect-free parts were used to represent the ‘good’ class. (Note
that three of the defective parts are orange, and one is dark blue. For the IO parts, we had
one part of each color available).
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3. Results

3.1. Conclusions from Preliminary Experiments

The following results were obtained from preliminary tests to find a valid experimental
setup, as described in Section 2.4.

Choice of classification model: Initial tests on a subset of 4000 images from our
dataset, encompassing all parameter variations, revealed no significant performance dis-
parities attributable to different input sizes (see Appendix A.1). Consequently, with an
emphasis on reducing model size and expediting training, we opted for a pretrained
version of efficientnetv2_rw_t, which offers a suitable balance between efficiency and
predictive capability.

Image normalization: Confusion matrices, as shown in Table A4, indicate discernible
but modest differences in model performance across the various normalization techniques.
Upon visual examination, images after normalization, especially those with darker back-
grounds, may lose realism and appear overly dark, as can be seen in Figure A1. In light
of these observations and the similar performance metrics of the models tested, we opted
against using normalization. This decision also streamlines the testing process.

Dataset size: Model performance metrics on the test data are documented in Table A5.
The analysis revealed marginal differences among the models, with the model trained on
6000 images (6k) unexpectedly outperforming the one trained on 8000 (8k). Based on these
findings, we opted to render a dataset of 6000 images for each of our experiments, with an
equal split between the defective and nondefective samples.

3.2. Noise

Tables 2 and 3 present the confusion matrices for the classification results of the models
trained on high-noise and low-noise image data, respectively. The left side of each table
displays the results on the rendered test dataset, while the right side presents the findings
on the real data. Figures A2 and A3 depict the receiver operating characteristic curve (ROC)
for the respective noise models when tested against real data. (As a reminder, the area under
the receiver operating characteristic curve (AUC-ROC) provides a quantifiable measure of
a classifier’s accuracy, plotting the true positive rate (sensitivity) against the false positive
rate (1-specificity) at various thresholds. An AUC of 1.0 signifies perfect classification,
while an AUC of 0.5 corresponds to the performance of random guessing (diagonal)).

Table 2. Confusion matrix for a high-noise model.

Synth. Data Real Data
Predicted: G NG G NG

Actual: G 1721 279 60 0
Actual: NG 182 1818 19 29

Table 3. Confusion matrix for a low-noise model.

Synth. Data Real Data
Predicted: G NG G NG

Actual: G 1483 517 53 7
Actual: NG 205 1795 18 30

The overall performance of both models on the test datasets is deemed reasonable.
The model trained on low-noise images demonstrates a marked reduction in performance
on the synthetic test data, suggesting a potential difficulty in generalizing to the high-noise
conditions that are also present in the rendered test set. However, when assessed on real-
world images, the low-noise model exhibits better performance but still does not quite reach
the effectiveness of the high-noise model. It shows comparable proficiency in recognizing
defective objects but tends to misclassify a higher number of nondefective parts.
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The ROC values provide further insight into the classification abilities of the models:
the high-noise model attains an AUC of 0.9469, while the low-noise model reaches an AUC
of 0.8271. Both metrics surpass the baseline of random classification, indicating a significant
ability to discriminate between classes. Notably, the high-noise model shows distinctly
superior performance in accurately classifying real data compared to the low-noise model,
underscoring its robustness in practical settings.

3.3. Camera Position

Tables 4 and 5 show the confusion matrices on the synthetic as well as the real test
data. The respective ROC curves are depicted in Figures A4 and A5.

Table 4. Confusion matrix for the top camera model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 961 1039 51 9
Actual: NG 268 1732 18 30

Table 5. Confusion matrix for the variable camera model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1830 170 60 0
Actual: NG 241 1759 17 31

The comparative analysis of model performance, with respect to camera angles, dis-
closes stark differences. The top camera model erroneously classified over half of the
nondefective objects within the synthetic test dataset, indicating a significant challenge
in generalizing from the training data to varied camera perspectives. In marked contrast,
the variable camera model demonstrated consistent and robust performance across the
entirety of the synthetic test data. Remarkably, in real-world evaluations, the variable
camera model excelled, correctly classifying all nondefective objects—despite the fact that
all real images were captured from a top-down perspective. This performance gap is further
highlighted in the receiver operating characteristic analysis, where the variable camera
model achieved a robust AUC of 0.9448, which is significantly higher than that of the top
camera model, the latter nearing the threshold of random classification efficacy.

3.4. Lighting

Again, Tables 6 and 7 show the confusion matrices on the synthetic as well as the real
test data. The respective ROC curves are depicted in Figures A6 and A7.

Table 6. Confusion matrix for the top light model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1850 150 60 0
Actual: NG 308 1692 31 17

Table 7. Confusion matrix for the HDRI light model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1834 166 60 0
Actual: NG 237 1763 19 29
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The comparative evaluation between models using HDRI versus top light illumination
highlights the subtle yet significant performance variances. On the synthetic tests, the HDRI
model outperforms marginally, as it compensates for misclassifying 16 nondefective units
by correctly identifying an extra 71 defects. For the real images, while both models
accurately classify all nondefective parts, the HDRI model proves superior, detecting
29 out of 48 defects, surpassing the top light’s 17. The AUC metric underlines these
outcomes, with the HDRI model achieving a robust AUC of 0.948, showcasing its strong
discriminative power, which is in contrast to the top light model’s more modest AUC
of 0.7295.

3.5. All Variations

Upon analyzing the images, it was observed that the model trained with varied
rendering parameters predominantly misclassified only those with the smallest flash
defects and suboptimal lighting conditions (the metrics are given in Table 8 and Figure
4). In setups with a dark background, every image was correctly classified, and with
adequate lighting, all images with larger defects were identified accurately regardless of
the background.

Table 8. Confusion matrix for all variations.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1840 160 59 1
Actual: NG 166 1834 14 34

Figure 4. AUC of 0.9233 for the model with all variations using real data.

Illustrations of these observations include a real image with defects incorrectly classi-
fied as nondefective, shown in Figure 5, and an image with the smallest detected defect
classified correctly, presented in Figure 6.
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Figure 5. A real part with a small flash that was classified as good.

Figure 6. A real part with the smallest flash and darkest background was classified correctly.

Consequently, the experiments culminated, albeit unintentionally, in the creation of an
effective classifier, affirming the overall success of the AI training process. This result under-
scores the model’s adeptness at discerning crucial features for precise defect identification.

4. Discussion

In our investigations, we intentionally set the defect parameters to low levels to create
subtle defects, resulting in a substantial number of images without recognizable defects.
This strategy was not geared towards maximizing classification performance but, rather,
was aimed at enabling a meaningful comparative analysis between models trained on
varied datasets. During training, we deliberately refrained from using augmentations that
could alter image noise or brightness to preserve the purity of the data for assessing the
impact of rendering parameters. Universally, the models trained solely on synthetic images
demonstrated admirable adaptability when applied to real image data, thus bridging
the “reality gap” identified by Tobin et al. [24], and they did so without the need for
normalization techniques.

Regarding the noise simulation parameter, the high-noise model remained robust
when applied to real, lower-noise data (e.g.,Table 2), while the low-noise model struggled
to adapt to noisier conditions (e.g., Table 3), suggesting a potential benefit in training with
raytracing at lower sampling rates. Similarly, the models with varied lighting parameters
proved advantageous for classification tasks (e.g., Tables 6 and 7), indicating the effective-
ness of incorporating lighting variation into the training process. The adaptability of models

72



Sensors 2024, 24, 649

to camera position variations also yielded informative outcomes. The models trained with
a static top camera perspective performed poorly when faced with deviations in camera
angle within the synthetic test set (e.g., Table 4), a trend that was unexpectedly mirrored
in real-world scenarios, where the camera positions were consistent, yet the objects were
placed only millimeters apart (e.g., Tables 4 and 5). This leads to our recommendation to
include at least minimal camera position variation in rendering synthetic training data for
inspection tasks to enhance generalization—even if the actual operational setup involves a
fixed camera position.

Our findings also imply the feasibility of prioritizing training with noisy images, which
are not only quicker to render via raytracing but also seem to enhance model performance.
Including a limited selection of low-noise images might suffice to maintain the model’s
ability to generalize.

In our case, the preliminary tests indicated that models without normalization could
match or exceed the performance of normalized counterparts on our test data (e.g., Section 3.1).
Nonetheless, we advise caution in extrapolating this result to other contexts. In situations
where there is significant brightness variation within a dataset, particularly when real
and synthetic data are combined, image normalization could be crucial. This area merits
further investigation to determine the most effective image data preprocessing techniques
for machine learning applications using synthetic data.

5. Conclusions

In this work, we addressed the previously unexplored importance of simulation
parameters in generating synthetic data for enhancing AI performance. Our approach
utilized a binary classification task for defect detection using a single defect type and one 3D
model. The study’s findings underscore the significant impact of varying illumination and
camera positions on AI performance. Specifically, changing camera position led to a 9.26%
(please note that the % sign here and in the following refers to percentage points) increase
in model accuracy and a 21.53% improvement in AUC when tested against real-world
data. Similarly, employing HDRI lighting instead of top lighting resulted in an 11.11%
boost in classification accuracy and a 16.04% increase in AUC. Counterintuitively, we also
discovered that training with higher noise not only aids in model generalization but also
speeds up data generation, showing a dual advantage with a 5.56% rise in accuracy and an
11.98% enhancement in AUC compared to models trained with lower noise levels.

5.1. Limitations

Although this study provides valuable insights into the impact of rendering parame-
ters on AI model performance, it has limitations. Firstly, our investigation into the noise
parameter was limited to only two variations, which may not fully capture the spectrum
of noise levels encountered in real-world scenarios. Secondly, we did not account for
variations in texture in the background, a factor that could significantly influence AI classi-
fication accuracy. While focusing solely on binary classification and the “flash” defect type
might be seen as a limitation, these choices were made to constrain the scope of the study
and manage its complexity.

5.2. Practical Implications

Despite these limitations, the practical implications of our research potentially extend
far beyond the quality inspection of injection-molded parts. Our findings are pertinent to
a broad spectrum of production processes where 3D models are used to algorithmically
simulate defects. Tools like Blender or Unity can be leveraged to generate realistic synthetic
data, which then serve as training material for AI models tasked with detecting these defects
in actual products. Our study demonstrates that manipulating rendering parameters
like lighting, camera position, and noise can significantly boost AI model accuracy and
generalization. This is vital for those using rendered synthetic data for AI training. Notably,
certain parameter variations are more impactful than others, highlighting the importance
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of a targeted approach in their selection. Effectively prioritizing these key parameters and
varying only those that are beneficial can not only streamline the creation of high-quality
synthetic training data but also lead to a dataset that is higher in quality, smaller in size,
and generated in less time.

5.3. Future Research

When looking ahead, several promising research directions emerge. Investigating
whether variations in the base or background of synthetic images can further improve
model accuracy and adaptability is one of those. Another key area is determining the
optimal mix of parameter variations in training data, for instance, understanding if a dataset
comprising 80% images with lighting variations outperforms one with a lower proportion
of such variations. Furthermore, exploring the benefits of a continuous range in variable
parameters, like noise levels, instead of binary high/low levels, might offer more nuanced
generalization capabilities, particularly in scenarios involving different sensor types or
exposure times. These insights pave the way for future research to optimize synthetic data
generation for machine learning applications in quality inspection and beyond.
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Appendix A. Experiment Details

Appendix A.1. Model

As in defect detection tasks, the “not good” (NG) parts are the class of interest we
want to primarily identify; the following naming is used:

True Positive (TP): Defective parts correctly classified as NG.
True Negative (TN): Good parts correctly classified as G.
False Positive (FP): Good parts incorrectly classified as NG.
False Negative (FN): Defective parts incorrectly classified as G.

Appendix A.2. Normalization

The following confusion matrices were the results of training on the 4k images after
40 epochs and inference using the test data.

74



Sensors 2024, 24, 649

Table A1. Confusion matrices for models trained with different architectures. From left to right:
efficientnet-Bb6-ns; efficientnetv2-rw-t; tf_efficientnetv2_m_in21ft1k.

B6-ns V2-rw-t V2_m_in21ft1k
Predicted G NG G NG G NG

Actual: G 1823 177 1974 26 1923 77
Actual: NG 200 1800 297 1703 273 1727

Table A2. Metrics for all models (for NG).

Model Accuracy Precision Recall F1-Score

efficientnet-Bb6-ns 90.58% 91.05% 90.00% 90.52%
efficientnetv2-rw-t 91.93% 98.50% 85.15% 91.34%
tf_efficientnetv2_m_in21ft1k 91.25% 95.73% 86.35% 90.80%

Figure A1. Four examples of rendered images after normalization.

Appendix A.3. Training Dataset Size

We randomly selected 6000 and 8000 images from the rendered complete dataset of
20,000 images and trained three different models (one on each). The resulting confusion
matrices are shown in Table A5.
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Table A3. Performance metrics for models trained using different normalizations (in %).

Metric Dataset ImageNet None

Precision 92.76% 92.3% 98.5%
Accuracy 88.5% 90.7% 92.0%

Recall 91.0% 89.1% 85.1%
F1-Score 90.6% 90.7% 91.3%

Table A4. Confusion matrices for models trained using different normalizations.

Dataset ImageNet None
Predicted G NG G NG G NG

Actual: G 1862 138 1851 149 1974 26
Actual: NG 230 1770 218 1782 297 1703

Table A5. Confusion matrices for models trained using different numbers of images.

6000 Images 8000 Images 20,000 Images
Predicted G NG G NG G NG

Actual: G 1910 90 1770 230 1782 218
Actual: NG 185 1815 164 1836 143 1857

Appendix B. ROC Curves

Appendix B.1. Noise

Figure A2. AUC for the high-noise model: 0.9469.
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Figure A3. AUC for the low-noise model: 0.8271.

Appendix B.2. Camera

Figure A4. AUC for the top camera model: 0.7295.
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Figure A5. AUC for the variable camera model: 0.9448.

Appendix B.3. Lighting

Figure A6. AUC for the top lighting model: 0.8111.
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Figure A7. AUC for the variant lighting via HDRI model: 0.9715.

Appendix C. Code

Listing 1. Train transformation pipeline.

transforms.Compose ([

transforms.Resize (528) ,

transforms.RandomRotation(degrees =(-30, 30)),

transforms.RandomResizedCrop(size =500, scale =(0.8 , 1.0)),

# both equally likely - 0.5 that neither will occur
transforms.RandomHorizontalFlip (0.29289322) ,

transforms.RandomVerticalFlip (0.29289322) ,

transforms.ToTensor (), ])

Listing 2. Validation and test transformation pipeline.

transforms.Compose ([

transforms.Resize (528) ,

transforms.CenterCrop(size =500),

transforms.ToTensor (), ])
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Abstract: This study addresses the need for advanced machine learning-based process monitoring
in smart manufacturing. A methodology is developed for near-real-time part quality prediction
based on process-related data obtained from a CNC turning center. Instead of the manual feature
extraction methods typically employed in signal processing, a novel one-dimensional convolutional
architecture allows the trained model to autonomously extract pertinent features directly from the raw
signals. Several signal channels are utilized, including vibrations, motor speeds, and motor torques.
Three quality indicators—average roughness, peak-to-valley roughness, and diameter deviation—are
monitored using a single model, resulting in a compact and efficient classifier. Training data are
obtained via a small number of experiments designed to induce variability in the quality metrics by
varying feed, cutting speed, and depth of cut. A sliding window technique augments the dataset
and allows the model to seamlessly operate over the entire process. This is further facilitated by the
model’s ability to distinguish between cutting and non-cutting phases. The base model is evaluated
via k-fold cross validation and achieves average F1 scores above 0.97 for all outputs. Consistent
performance is exhibited by additional instances trained under various combinations of design
parameters, validating the robustness of the proposed methodology.

Keywords: industry 4.0; smart manufacturing; process monitoring; signal processing; deep learning;
part quality prediction; CNC machining

1. Introduction

Industry 4.0 is characterized by the integration of digital technologies, including
Big Data, the Internet of Things, Machine Learning (ML), and cyber-physical systems
into manufacturing [1,2]. Cyber-physical systems often appear in the form of Digital
Twins, which typically incorporate advanced ML models for monitoring individual
machines [3,4] or broader systems [5,6]. These models carry out real-time inference
based on data collected from the physical assets, in order to evaluate the monitored
system’s status and even propose corrective actions when needed [7]. CNC machine
tools are prime candidates for integration with such process monitoring models. The
machine tool provides useful process-related data in the form of signals, and the model
uses these signals to predict outcomes, such as quality metrics of the produced parts [8]
and equipment health [9].

Signals have been widely used as model inputs in the domains of machine health
monitoring and predictive maintenance. The typical procedure involves hand-crafted
feature design in the time, frequency, or time–frequency domain, followed by feature
extraction from the signals and model training [10]. This methodology has been employed
in manufacturing for part quality characterization [11,12], chatter identification [13,14], tool
wear prediction [15,16], and tool breakage detection [17]. However, manual feature design
requires deep expert knowledge, is strictly application specific, and can lead to poor model
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performance due to inadequate information representation [18], especially for complex
domains and multi-sensor setups.

Deep Learning (DL) offers powerful modeling technologies to alleviate these issues,
either in combination with traditional techniques or as standalone alternatives [10]. The
most prominent types of DL models are Recurrent Neural Networks (RNNs) and Convolu-
tional Neural Networks (CNNs). RNNs had been the standard for processing sequential
data before Transformers emerged in 2017 [19]. These networks capture the temporal
relationships of the elements in their input and have been successfully applied in tasks
such as time-series classification, prediction, and language processing. However, they face
difficulties with long sequences due to memory limitations and the vanishing or exploding
gradients problem [20]. Long Short-Term Memory networks (LSTMs), a more advanced
form of RNNs, offer improvements but they still struggle with processing high-rate sig-
nals, such as the ones common in industrial applications. For this reason, they must
typically be combined with a feature extraction step [21,22], focusing on learning temporal
dependencies between features instead of the elements of the raw input.

CNNs operate by extracting local information from the input arrays in the form of
feature maps [20,23]. With each successive convolutional layer, these feature maps detect
increasingly complex patterns that underlie the specific characteristics of the input data.
Due to this capability, CNNs have contributed significantly to the Artificial Intelligence
boom of the 2010s. They find diverse applications, from image recognition [24–26] to
state representation in sophisticated reinforcement learning frameworks [27,28].

In process monitoring, CNNs offer the potential to avoid the manual feature design
and extraction steps in favor of adaptive and arbitrarily rich feature representations,
which are integrated in the model itself. Since most CNN architectures were originally
designed for two-dimensional (2D) images, transforming signal data into 2D form was
a logical approach. In CNC turning, Ibarra-Zarate et al. [29] used 2D CNNs on images
of the Mel-Frequency Cepstral Coefficients obtained from acoustic emissions to predict
surface roughness. Kuo et al. [30] applied 2D CNNs on fractional order chaos maps
of vibration data for chatter detection. Hanchate et al. [31] proposed a framework for
predicting average surface roughness in CNC grinding, employing 2D CNNs on time–
frequency spectrogram frames of vibration signals. Furthermore, they implemented
an explainable AI methodology to identify the most pertinent time–frequency bands
influencing the predictions. A similar technique was used by Tran, Liu, and Tran [32] to
detect chatter in CNC milling. They applied 2D CNNs on scalograms of the continuous
wavelet transform of cutting force signals to classify cutting regions as stable, transitive,
or unstable. Kounta et al. [33] focused on chatter prediction via transfer learning. They
developed a classifier by fine-tuning pretrained deep 2D CNNs on the normalized Fast
Fourier Transform (FFT) images of vibration data. Transfer learning was also employed
by Unver and Sener [34] on intrinsic mode functions of cutting force signals. They
proposed a combination of 2D CNNs and analytical solutions of the stability boundary
for chatter detection in shoulder milling.

CNNs, however, are not restricted to 2D inputs. Signals are one-dimensional (1D)
arrays and using 1D convolutions on them removes a preprocessing step while retaining
all feature extraction abilities. Additionally, working with 1D data can result in more
lightweight models that run faster and require less memory. In the industrial domain,
1D CNNs have been successfully applied to fault detection in rotating machinery, either
directly on the raw time-series data [35–38] or on frequency-domain data, obtained after
applying the FFT [39,40].

This approach has recently started gaining traction in manufacturing, predominantly
in CNC milling. Zhang et al. [41] employed CNNs with 1D-adapted inception modules and
residual blocks for chatter identification based on raw cutting force signals. Lu et al. [42]
developed vibration-based 1D CNN models to predict chatter during milling of thin-
walled parts. The CNNs are assisted by an attention mechanism that adaptively identifies
information-rich frequency bands, while reducing noise interference. Huang and Lee [43]

82



Sensors 2024, 24, 1390

applied 1D CNNs to raw vibration, acoustic emission, and spindle current signals to
estimate tool wear and surface roughness development. They trained separate models
for each metric and performed an influential sensor selection analysis, which preserves
estimation accuracy. Lin et al. [44] also developed 1D CNN regression models for surface
roughness and reported the superior performance of CNNs when directly compared with
FFT feature extractors.

From the above analysis, it is evident that in the realm of process monitoring there is
a recent trend to move away from manual feature extraction methods, with deep learning
approaches that employ CNNs showing promising results. Much of the research has
focused on chatter detection and tool wear prediction. In terms of part quality, surface
roughness has garnered considerable interest while there is a lack of attention to other
important quality indicators, such as dimensional accuracy. Regarding implementation,
the majority of classification models are binary, for example, detecting stable or unstable
cut. Regression models can effectively work only when the machine is actively cutting.
To the authors’ best knowledge, all individual models monitor a single metric.

This study addresses the need for part quality prediction in the context of a process
monitoring framework in manufacturing. Recognizing the limitations of traditional
feature extraction methods, the proposed methodology employs 1D CNNs on raw time
series data from a CNC turning center, including vibrations, motor speeds, and motor
torques, see Figure 1. Training data are acquired via a small number of experiments with
varying process conditions to produce variability in the monitored metrics. A sliding
window technique augments the dataset and allows for continuous monitoring of the
entire process. Three quality metrics are selected: arithmetic average roughness (Ra),
average peak-to-valley roughness (Rz) [45], and diameter deviation from the nominal
value. The classification approach allows for the incorporation of labels not necessarily
related to quality assessment. In this case, the model can detect when the machine is
not cutting, eliminating the need for external triggers to initiate the inference process.
All three metrics, including the non-cutting condition, are monitored by a single model,
resulting in an efficient and easily deployable process monitoring framework. Further-
more, several instances of the model are trained for various combinations of design
parameters, validating the robustness of the methodology and network architecture
under various conditions.

The rest of the paper is organized as follows: Section 2 details the equipment and
experimental procedure and presents the experimental data. It also delves into the
mapping between signals and quality measurements. Section 3 analyzes the design of
the classes, the preparation of data for neural network training, and outlines the network
architecture. Section 4 presents and discusses the model’s performance under various
conditions, including multiple combinations of design parameters, reduced input from a
subset of available signal channels, and alternative definitions of classes. A datastream
simulation demonstrates the model’s capability to closely follow a machining process in
near-real-time. Section 5 highlights the main conclusions of the study and ends with a
discussion on potential future work.
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Figure 1. Overview of the proposed methodology: (a) Training phase; (b) Operation phase.

2. Experimental Setup

2.1. Machine Tool and Instrumentation

Machining experiments were conducted on an OkumaTM LB10II turning center,
equipped with an OSP700L controller, as shown in Figure 2. The machine tool has a maxi-
mum turning diameter of 170 mm, a maximum part length of 300 mm, a maximum spindle
speed of 10,000 RPM, and 12 turret positions. It has a serial port with DNC capability,
which is used to load the G-code. The cutting inserts used are Sandvik CoromantTM CNMG
12 04 08-MR 4305, mounted on a Sandvik CoromantTM PCLNR 2020K 12 tool holder.

The machine tool lacks connectivity for providing real-time process data such as
spindle rotational speed (RPM), axes linear velocities, and cutting forces. To address this,
a direct connection was made to the machine controller mainboard, which provides raw
analog signals for motor speeds and torques. The signals for motor speeds correspond to the
spindle’s rotation speed and the linear velocities of the X (radial) and Z (longitudinal) axes.
Motor torques correlate with cutting force components. Connection to the controller pins
was established using hook-type connectors, see Figure 3a. The other ends of the connectors
were soldered to a 10-pin port bolted in a slot that was cut in the machine cover. In essence,
the machine tool was fitted with a custom-created port, facilitating straightforward physical
access to the controller’s raw analog signals for the data acquisition system.
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Figure 2. OKUMA LB10ii turning center.

  
(a) (b) 

Figure 3. (a) Connections to machine controller; (b) DAQ and amplifiers.

For the acquisition of vibration signals, two single-axis accelerometers were used: a
KISTLER Type 8640A50 with a ±50 g range and a KISTLER Type 8704B500 with a ±500 g
range. Ideally, accelerometers would be mounted directly on the tool holder. However,
the presence of a turret, which rotates to change tools, renders this approach unsafe.
Additionally, equipping each potential tool required for a given process scenario with
dedicated accelerometers is prohibitively costly for a practical application. The proposed
solution involves mounting the accelerometers behind the turret using a common magnetic
base, see Figure 4a, aligning their axes of measurement with the axes of the turning center (X
and Z). The exact placement of the accelerometers is not critical. However, it is crucial that
they remain stationary once installed, as moving them would alter the signal characteristics
between runs, impacting both experimental results and operational monitoring. This
placement results in vibrations traveling through a kinematic chain containing multiple
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structural elements of the machine before reaching the sensors. Consequently, the signals
are weakened, and the readings obtained do not correspond exclusively to vibrations on
the expected axis. Instead, the vibrations detected are vectors with components from all
axes, indicating a more complex signal composition. The hypothesis behind this sensor
placement was that crucial process characteristics are retained in the signal, and neural
networks would be capable of discerning them. Successfully training these models should
demonstrate their robustness, even when relying on far from ideal input data.

  

(a) (b) 

Figure 4. (a) Placement of accelerometers behind the machine tool turret; (b) Platform for measure-
ment of surface roughness.

The accelerometers were connected to KISTLER amplifiers (Type 5118B2) using low-
noise coaxial cables to ensure high-quality signal transmission. A 10× gain was selected
for the second, lower sensitivity accelerometer to bring both sets of readings to the same
scale. Accelerometer and motor signals were passed through an ADVANTECH USB DAQ
(Type USB-4711A) as shown in Figure 3b to ensure signal synchronization and to facilitate
connection to a PC gateway via USB port. The DAQNavi software (version 4.0.9.0) was
employed for signal acquisition.

Signals were recorded with a sampling rate of 1 kHz. All types of acquired signals
along with the respective DAQ channels are presented in Table 1.

Table 1. DAQ setup with acquired signals and respective axes.

DAQ channel 2 3 4 5 6 7 8 9

Axis Spindle Spindle Z Z X X X Z

Signal (V) Torque Speed Velocity Torque Velocity Torque Vibration Vibration

Source Machine controller Accelerometers

Part quality measurements were carried out manually using relevant instruments after
each cut and without removing the part from the spindle. Part diameter was measured
with a TesaTM Micromaster digital CAPA μ micrometer. For surface roughness, a Taylor
HobsonTM Surtronic 3+ was employed, mounted on a custom jig with a magnetic base, see
Figure 4b. This setup enabled quick and stable mounting and easy dismounting after each
set of measurements.

2.2. Experimental Procedure

The experimental strategy involves taking longitudinal passes of a specific length on
cylindrical workpieces, using various combinations of process parameters, namely depth of
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cut, feed, and cutting speed, and recording the signals described in Section 2.1. After each
pass, the process is halted, and manual quality measurements are performed at specific
positions along the workpiece. For surface roughness metrics, Ra and Rz are selected. For
dimensional accuracy, the part diameter is measured, which allows for the calculation of
diameter deviation (Ddev) from the nominal value, as specified by the G-code.

The bar stock material is CK45 steel with an initial diameter of 32 mm and a total length
of 75 mm. The machined length is set to 45 mm, allowing for the clamping of the workpiece
to the chuck and providing some leeway for safety. Quality measurements are taken from
three regions, each 15 mm long, denoted as L1, L2, and L3, as shown in Figure 5. These
regions accommodate the stroke length of the Taylor Hobson instrument. The part diameter
is measured at the midpoint of each region. Each individual measurement is repeated three
times at 120-degree angular intervals, and the average of these measurements is taken as
the final value. A python script automatically extracts G-code files for each set of process
parameters. Constant linear cutting speed is employed (G96 command) and pauses for
manual measurements after each pass are specified using the M1 command (optional stop).
The cutting fluid utilized is Premiercut GP Semi-Synthetic Cutting Fluid at a 5% dilution,
in accordance with the manufacturer’s specifications.

 

Figure 5. Machined specimens. L1, L2, and L3 denote measurement regions.

To produce variability in the quality metrics with a limited number of experiments,
an orthogonal array is employed with four levels for each of the three factors, as pre-
sented in Table 2, resulting in a total of 16 experiments (i.e., passes). The spindle speed
is also calculated, due to the G96 command, to ensure that the max rotational spindle
speed of the machine tool is not exceeded. Each set of eight consecutive passes, with
the specific sequence of depths of cut, reduces the initial diameter of the workpiece by
20 mm. Therefore, starting from a diameter of 32 mm, the part is machined down to
a final diameter of 12 mm, at which point a new workpiece is used. For the specified
design, only two parts are required. Taking consecutive passes on the same part ensures
that different diameters are exposed to a variety of process conditions. This effectively
introduces a fourth factor in the experimental design, the slenderness of the part, as
expressed by the Length-to-Diameter ratio (L/D). This variation in stiffness broadens
the coverage of the process input space, potentially leading to greater variation in the
measured quality metrics. Given that the length is constant in this case, the diameter
itself is a representation of this slenderness.
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Table 2. Experimental design.

Experiment
No

Workpiece
Id

Depth of Cut
(mm)

Feed
(mm/rev)

Cutting Speed
(m/min)

Final Diameter
(mm)

Spindle Speed
(RPM)

1

Part 1

0.5 0.2 160 31 1642.89
2 1 0.3 190 29 2085.48
3 1.5 0.4 220 26 2693.39
4 2 0.5 250 22 3617.16
5 0.5 0.3 220 21 3334.67
6 1 0.2 250 19 4188.29
7 1.5 0.5 160 16 3183.1
8 2 0.4 190 12 5039.91

9

Part 2

0.5 0.4 250 31 2567.02
10 1 0.5 220 29 2414.76
11 1.5 0.2 190 26 2326.11
12 2 0.3 160 22 2314.98
13 0.5 0.5 190 21 2879.95
14 1 0.4 160 19 2680.5
15 1.5 0.3 250 16 4973.59
16 2 0.2 220 12 5835.68

2.3. Mapping Signals to Quality Measurements

In the proposed model, signals are inputs and quality metrics, which are expressed
as labels corresponding to specific ranges of these metrics, are outputs. These data need
preprocessing in order to map quality measurements to the appropriate signal segments
so that the input–output pairs can ultimately be constructed. To ensure a continuous
signal history for each of the two specimens, the first step involves merging the signals
from individual passes into a single, continuous signal for each part. This step is required
because the process and data acquisition are paused after each pass to allow for manual
measurements. The continuous signals contain both cutting and non-cutting regions. The
cutting regions, where the tool is engaged with the workpiece, have a direct correspondence
to the measured metrics. Non-cutting regions are a result of the free movement of the axes
as the machine repositions the tool to follow the process plan indicated by the G-code.

The next step is to identify these cutting regions based on information included in
the signals. The most appropriate signal on which to base this segmentation is spindle
speed. This is expected to remain constant at various levels for the duration of a pass. Due
to the usage of G96 (constant linear cutting speed), the smaller the machined diameter, the
higher the spindle speed plateaus, for a given cutting speed. The raw, noisy spindle speed
signal is cleaned by applying a moving average with a window of 100 ms. The cleaned
signal is then numerically differentiated, and the flat regions, where the gradient is below a
threshold of 0.03, are identified. Flat regions shorter than 500 ms are disregarded to exclude
irrelevant periods, such as when the spindle is re-engaged after each pause but operates at
constant RPM for a brief duration before actual cutting starts. Additionally, any flat regions
below a 0.5 V cutoff are also ignored to prevent misidentifying non-cutting regions where
the spindle is stopped, and the spindle speed plateaus near zero. The beginning and end of
the remaining flat regions denote the timestamps for the pure cutting phases. A custom
python script automates the described procedure. The values for the flatness threshold,
the minimum segment length, and the amplitude cutoff are given in Table 3. These were
determined through experimentation involving trial-end-error and are effective across a
wide range of process conditions. From this point forward, the term ‘pass’ will be used to
denote each pure cutting region.
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Table 3. Parameters for identifying cutting regions.

Flatness Threshold Minimum Segment Length Amplitude Cutoff

0.03 500 ms 0.5 V

The resulting segmentation into cutting and non-cutting regions is illustrated in
Figure 6. This figure displays the spindle speed signals, both raw and cleaned, for the entire
history of the first specimen (Part 1). Green dashed lines mark the beginning of each pass,
while red dashed lines indicate the end. Outside of these regions, the machine tool is not
cutting, i.e., the tool is not engaged with the workpiece. The eight passes corresponding
to the first half of the experimental design, which are associated with Part 1, are clearly
identifiable. An additional step is then necessary to further segment each pass into the three
sub-regions (L1, L2, and L3) at which measurements were taken. This requires knowledge
of the measurement strategy, i.e., in our case three equidistant measurements on each pass.
This segmentation is indicated by yellow lines in Figure 6, only for the first pass to avoid
overcrowding the illustration.

 

Figure 6. Segmentation of signals based on flat regions of spindle speed for Part 1.

2.4. Process Signals

Figure 7 illustrates the continuous history of Part 1 for the channels corresponding
to spindle torque and speed, as well as X and Z axis vibrations. The start and end of
individual passes are marked by vertical dashed lines (green for start, red for end). The
pure cutting phases are clearly distinguishable in the vibration signals. Their amplitude
increases significantly during these periods, from near-zero values otherwise, in alignment
with the spindle speed plateaus. This alignment further validates the method of locating
cutting phases based on spindle speed. The spindle torque tends to overshoot, either
positively or negatively, during spindle start-up, shutdown, or changes in RPM. Notably,
within the cutting phases, it stabilizes at a non-zero value, correlating with the tangential
cutting force component.
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Figure 7. Spindle torque and speed, X and Z vibrations for Part 1.

The remaining four signal channels are shown in Figure 8. Rapid G00 movements
outside of cutting phases result in overshooting that is clearly identified in the X and Z
velocity signals. During cutting, the Z velocity takes small negative values corresponding
to the feed parameter. This effect is more pronounced during shorter passes, which
corresponds to higher feed rates. As expected in purely longitudinal turning, the X velocity
remains near zero. Both X and Z torques display inertial readings during axes start and
stop phases. The Z torque exhibits correlation with axial force, taking constant negative
values during cutting phases. The X torque remains near zero, reflecting the minimal radial
force component during cutting.
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Figure 8. X and Z velocities and torques for Part 1.

2.5. Quality Measurements

The manual measurements for all quality metrics of the two specimens are compiled
in Figures 9–11. Classes and their corresponding ranges, as summarized in Table 4, are
indicated with yellow annotations and horizontal lines. The measurement IDs keep track of
the pass number and the specific region for each measurement: L1, L2, and L3. The experi-
mental design produced a satisfactory range of values, providing a suitably large output
space for neural network training. Measurements tend to form triplets, corresponding to
the three length segments of the specimens for a given pass. The data are insufficient to
assess the statistical significance of any observed measurement variations along the length
of the specimen. At this stage, they are considered within measurement uncertainty for
hand-operated instruments.
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Table 4. Labels for all metrics with corresponding ranges.

Metric Label Range (μm)

Roughness
Ra

Class 1 [0, 2.5)
Class 2 [2.5, 4.5)
Class 3 [4.5, 10]

Roughness
Rz

Class 1 [0, 10)
Class 2 [10, 16)
Class 3 [16, 20]

Diameter deviation
Ddev

Class 1 Under [−20, 0)
Class 1 Over [0, 20)
Class 2 Over [20, 80]

All metrics Not Cutting N/A

 

Figure 9. Compilation of Ra measurements with class ranges.

 

Figure 10. Compilation of Rz measurements with class ranges.
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Figure 11. Compilation of Ddev measurements with class ranges.

3. Neural Network Design

3.1. Data Preparation for Neural Network Training

Convolutional Neural Networks have a fixed input length. Furthermore, the devel-
oped model should provide inference during the actual turning process. In order to satisfy
both conditions, a sliding window strategy is employed to create the final input–output
pairs for neural network training.

Firstly, the quality measurements are categorized into specific classes with correspond-
ing labels, as detailed in Table 4. For the two roughness metrics, three classes of increasing
value ranges were created, denoted as Class 1, Class 2, and Class 3. For the diameter
deviation, two tight classes at either side of zero deviation were created: Class 1 Under,
for diameters smaller than the nominal, and Class 1 Over, for diameters larger than the
nominal but within a cutoff that mirrors the negative threshold. A third class, Class 2 Over,
encompasses all other greater positive deviations. Lastly, a common label is introduced to
each metric to denote non-cutting regions. This additional class is crucial for the neural
network’s training, as it includes free axes movements, which are a standard part of any
process plan. Consequently, the network can learn to differentiate between cutting phases
(where a specific quality label is expected) and Not Cutting phases. Thus, each metric ends
up with four classes, leading to an imbalanced multiclass classification problem.

Since there are currently no specifications tied to the quality metrics, the proposed
class definitions were based on the following rationale: for Ra and Rz, class ranges are de-
termined with the intent of delineating ‘good’, ‘normal’ and ‘bad’ quality levels. Of course,
the range and combinations of process parameters correspond to roughing conditions,
meaning that the measured metrics do not dictate the final quality of the part. Thus, within
this context, ‘good’ quality may suggest that more aggressive conditions could be feasible.
Conversely, ‘bad’ quality might indicate roughness so significant that it could adversely
affect a subsequent finishing pass. Although this is speculative and beyond the scope of the
study, it does offer a potential perspective. Consequently, Class 1 is narrow in both range
and representation. Class 2 is deliberately broader to capture the most common range
of measurements. Class 3, equal in representation to Class 1, contains the most extreme
results. A similar thought process is behind the diameter deviation class assignment, with
the additional consideration that negative values are now possible. This fact naturally leads
to two mirrored classes for minor deviations around zero: Class 1 Under and Class 1 Over.
These classes could both represent acceptable deviations, though distinctions between
over and under sizing may be crucial for specific applications, and the model is capable of
making this differentiation. All larger deviations are categorized into Class 2 Over, in order
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to maintain the same number of classes as for the other two metrics. These class definitions
are used in the subsequent results analysis. In Section 4.5, a non-engineered system with
equally distributed classes will also be examined.

Having established the class ranges, the actual values of measurements are trans-
formed into the corresponding labels. These labels are then repeated along the signal
timeline in accordance with the mapping described in Table 4. Outside of the cutting
regions, the label Not Cutting is consistently applied. The final step is to create a sliding
window, characterized by its length and a step size that allows for overlap between succes-
sive window placements. As the window slides along the signals, it generates input–output
pairs for the neural network: the portion of the signals contained within the window serves
as the input, and the dominant label for each metric is assigned as the output. Each of these
pairs constitutes a single data point. Considering the dominant label as the output handles
cases where the window inadvertently spans multiple classes, as is the case, for example,
when transitioning from a non-cutting to a cutting region.

This sliding window technique enables the neural network to function as a process
monitoring tool. Furthermore, it augments the dataset size. Given the 1 kHz sampling rate,
window and step sizes will be expressed in samples, directly corresponding to milliseconds
(1 ms per sample). While the window size determines the input size of the neural network,
the step size is responsible for the magnitude of this augmentation, as shown in Table 5. For
instance, a window size of 500 samples and a step size of 400 samples yield 289 data points
from 16 experiments, reducing the step size to 100 samples results in 1153 data points. Both
window and step sizes should be tailored to the specific characteristics of each application.
In the case presented, a window size of 500 samples and a step size of 100 samples will
be the default, with further exploration detailed in Section 4.3. The crucial point to note is
that this augmentation allows the model to be effectively trained using data from just two
machined parts.

Table 5. Size of dataset for 500 samples window and various step sizes.

Step Size (Samples) Number of Data Points

100 1153
250 461
400 289

3.2. Neural Network Architecture

Typical classification problems have a single output layer. For binary classification,
this layer has one output node with a sigmoid activation function, which outputs values
from 0 to 1, directly corresponding to the probability of the positive class. In a multiclass
problem, the output layer has as many nodes as there are classes, utilizing a single softmax
activation. This function converts the combined output of these nodes into a probability
distribution, representing the likelihood of each class. For the three metrics of interest—Ra,
Rz, and Ddev—three such models could be trained, each monitoring a specific metric.
However, this study adopts a more general approach, creating a multi-output, multiclass
neural network capable of handling all metrics simultaneously. This requires three separate
output layers, each with its own softmax activation. Having a single model predict all
three metrics is more challenging, but it offers a versatile framework which covers the cases
where either one or multiple metrics are of interest. Additionally, this approach simplifies
deployment and enhances inference efficiency, as running a single multi-output model is
more time-efficient than running three separate models.

The proposed neural network architecture is shown in Figure 12. The shape of the
input layer is determined by the window size and the number of signal channels. For
example, for a window size of 500 samples and the eight monitored channels (see Table 1),
a single input instance to the model is an array of shape 500 × 8. Technically, this forms a
tensor of shape N × 500 × 8, where N denotes the batch size. This structure is utilized in
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neural networks both during training and, when feasible, in inference, to process multiple
inputs in parallel.

Figure 12. Neural network architecture for window size of 500 samples and 8 signal channels.

The input is passed through two convolutional layers with kernel sizes 30 and 3, re-
spectively. The first kernel is relatively large in order to smooth out noise and capture more
long-term features in the signals, as suggested by Zhang et al. [35]. The second is of more
typical size and it synthesizes first-order features into more complex representations. After
each convolution, a max pooling layer reduces the spatial dimensionality and enhances
feature robustness by focusing on dominant features. The output from the second max
pooling layer is flattened and passed through a dense layer, followed by a dropout layer.
This mitigates overfitting by not allowing the network to become excessively dependent
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on specific nodes. Lastly, three outputs with softmax activations give the probability dis-
tribution of classes for each of the metrics of interest. The parameters for all layers are
summarized in Table 6. The model was implemented in TensorFlowTM (v2.10.1) using the
Keras API.

Table 6. Neural network layer parameters.

Layer Parameters

Conv1 kernel 30, filters 64, stride 1
MaxPool1 kernel 2, stride 1

Conv2 kernel 3, filters 128, stride 1
MaxPool2 kernel 2, stride 1

Flatten -
Dense size 100

Dropout rate 0.2
Output X3 3 × size 4

Total trainable parameters: ~1.5 M

Depending on the application and the complexity of features in the monitored inputs,
more convolutional layers can easily be added, as well as additional dense layers before
the outputs. Furthermore, the size of the first, large kernel may be adjusted based on the
sampling rate of the signals. For signals sampled in the tens of kilohertz range, it might
need to be larger, and conversely smaller for signals sampled at lower rates. Such an
investigation is outside the scope of this study, which employs a fixed sampling rate of
1 kHz. The architecture shown represents a lightweight and robust baseline model, which
demonstrates strong performance for the task at hand.

3.3. Model Training Parameters

Several instances of the model will be trained to thoroughly examine its performance
under various scenarios. This section establishes the parameters common to all training
instances, unless otherwise specified in the respective sections. These parameters are
summarized in Table 7. The detailed results for each examined scenario are presented in
Section 4.

Table 7. Default model training parameters.

Parameter Value

Window size 500 samples
Step size 100 samples

Optimizer Adam
Learning rate 0.0005

Loss Categorical cross-entropy
Batch size 128

Max epochs 100
Validation split 0.15 of training

Patience 10 epochs
Min delta 0.001
Test split 0.15 of total

Split random state 42

4. Results and Discussion

4.1. K-Fold Cross Validation

Before presenting detailed performance metrics for specific instances of the model,
k-fold cross-validation is employed to validate the modeling approach and the network
architecture. Instead of using the validation/test split of Table 7, the entire dataset is split
into 10 sets. The model is trained 10 times, each time withholding a different set from
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the training process, which is subsequently used for testing the model’s generalization
performance. This strategy mitigates the risk of bias introduced by randomly selecting a
favorable test set. Since there is no explicit validation set, early stopping is not employed,
and each model is trained for 50 epochs. Models are evaluated by their F1 score, which is
the harmonic mean of precision and recall. Results from the cross-validation for all three
quality metrics are summarized in Table 8.

Table 8. k-fold cross validation results (k = 10).

Metric
F1 Macro Average

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Ra 0.94 0.97 0.98 1.00 0.97 0.98 0.99 0.95 1.00 0.98 97.76

Rz 0.98 0.97 0.97 1.00 0.96 0.98 1.00 0.97 1.00 0.99 98.34

Ddev 0.97 0.97 1.00 0.96 0.98 1.00 0.99 0.97 1.00 1.00 98.46

The average F1 score across all folds is above 0.97 for all three metrics. The lowest F1
scores for Ra, Rz, and Ddev are 0.94, 0.96, and 0.96, respectively. While some variation in
the F1 scores is expected, the consistently high scores across all metrics suggest that the
model is robust and performs well on the available data.

4.2. Detailed Performance Metrics

To produce visualizations and detailed metrics for the performance of the model, a
specific instance is trained with explicit validation and test sets, according to Table 7. For
reproducibility, the split random state for the test set is set to 42. Early stopping is activated
with 10 epochs patience for improvement on the validation set and a minimum delta of
0.001. A plot of the training and validation loss is shown in Figure 13. Detailed performance
metrics are summarized in Table 9.

The model exhibits high precision and recall, within the anticipated margins based
on the preceding cross validation. This results in a minimal number of misclassifications,
i.e., only 1 out of 173 total classifications for each class, as illustrated in the corresponding
confusion matrices shown in Figure 14.

 

Figure 13. Training and validation loss.
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Table 9. Model performance metrics.

Metric Label Precision Recall F1-Score Support

Ra

Class 1 1.00 0.97 0.98 30
Class 2 1.00 1.00 1.00 29
Class 3 1.00 1.00 1.00 12

Not Cutting 0.99 1.00 1.00 102

Rz

Class 1 1.00 0.97 0.98 30
Class 2 1.00 1.00 1.00 29
Class 3 1.00 1.00 1.00 12

Not Cutting 0.99 1.00 1.00 102

Ddev

Class 1
Under 1.00 1.00 1.00 21

Class 1 Over 1.00 0.92 0.96 12
Class 2 Over 1.00 1.00 1.00 38
Not Cutting 0.99 1.00 1.00 102

 
(a) (b) (c) 

Figure 14. Confusion matrices: (a) Ra; (b); Rz; (c) Ddev.

4.3. Sliding Window Parameters

The sliding window strategy introduces a form of data augmentation by essentially
duplicating sub-segments of signals for successive data points on the signal timeline. This
may introduce a positive bias in the testing performance, by having specific sub-segments
present in both the training and test sets. On the other hand, increasing the step size reduces
the amount of data available for training and decreases the representation of each label in
testing. Therefore, a comparison of performance for varying step sizes is not straightforward.
To alleviate the diminishing of dataset sizes, validation during training is omitted, and the
corresponding data are used for training instead. The models are then trained for 50 epochs
for various step sizes. To normalize the differences in support during testing, the F1 weighted
average score is utilized, which takes into account the representation of each label in the test
set. The window size is kept at 500 samples. Results are given in Table 10.

Table 10. Model performance for varying step size and window size of 500 samples.

Step Size
F1 Weighted Average Data Points

(Train/Test)Ra Rz Ddev

200 0.99 1.00 0.99 490/87
300 0.97 0.97 0.95 327/58
400 1.00 0.98 0.92 245/44
500 0.91 0.91 0.85 196/35
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There is a noticeable trend that as the step size increases, the F1 scores tend to decrease.
It is inconclusive whether this is due to the smaller training sets, which may not provide
the model with sufficient variability and quantity of data to learn effectively, or to the
reduced overlap of data. However, it is noteworthy that for a step size of 500 samples,
corresponding to zero overlap of data, the model’s performance could still be considered
satisfactory, even with an extremely small training set of less than 200 data points.

To further test the robustness of the model against the sliding window parameters,
several instances are trained for varying window sizes. The step size is kept constant at
100 samples, which results in very similar dataset sizes. Results are summarized in Table 11.
No noticeable trend emerges, the observed variations being within the expected margin for
the inherent randomness in training. Thus, the model exhibits the ability to accommodate
various window sizes, depending on the requirements of a given application. Notably,
for window and step size equal to 100 samples, which again corresponds to zero overlap
of sub-segments but with a sizeable dataset this time, the model’s performance remains
extremely high. Therefore, whether overlap exists or not, it does not appear to have a
significant impact on the model’s performance. As anticipated, the dataset size is a much
more influential factor.

Table 11. Model performance for varying window size and step size of 100 samples.

Window Size
F1 Macro Average Data Points

(Train/Test)Ra Rz Ddev

100 0.98 0.98 0.98 986/175
200 0.98 0.98 0.98 985/174
400 0.97 0.98 0.98 981/174
600 0.99 1.00 0.99 978/173
800 1.00 1.00 0.99 974/173

1000 0.97 0.97 0.99 971/172

4.4. Reduced Input

So far, all eight of the available signal channels were used as inputs to the model.
However, depending on the built-in instrumentation of a given machine tool and the
availability of external sensors, alternate use cases may have access to a subset of process
data. Testing all possible combinations of potential input channels would be impractical,
therefore some logical subsets are tested. Additional interesting combinations arising from
the initial results are also examined, all summarized in Table 12.

Table 12. Model performance for reduced input.

Subset of Channels
F1 Macro Average

Ra Rz Ddev

Only vibrations 0.80 0.76 0.71
Only torques 0.94 0.94 0.96

Only velocities 0.99 0.99 0.93
Only Z velocity 0.89 0.90 0.79

Z velocity and all torques 0.99 0.99 0.98

The worst model performance is observed when relying solely on vibrations. This
can be attributed, to an extent, to the placement of the accelerometers behind the turret,
resulting in a weakened signal with a correspondingly lower signal-to-noise ratio that is
also potentially contaminated with natural frequencies of various machine components
as explained in Section 2.1. The high performance of torques on the diameter deviation
metric can be attributed to their correlation with cutting forces, which are primary factors
for part deflection. On the other hand, the high performance of velocities on roughness
metrics highlights their strong dependence on the feed parameter. To elaborate further,
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since the turning is purely longitudinal, the feed in the z-direction should be the most
critical velocity. Indeed, using only the Z velocity signal yields very good performance,
considering it involves using only one channel, and this performance surpasses that of any
other single channel that was tested. Finally, combining torques and Z velocity provides a
candidate for the best minimum set of inputs, with performance on par with the full set.

4.5. Alternative Definition of Classes

The rationale behind the definition of classes for the quality metrics was discussed in
Section 3.1. In this section, the performance of the model is examined for a less ‘engineered’
class system, which simply has a number of equally distributed classes in the observed
range of measurements for each metric. This offers the chance to test the model with a
different number of classes as well. The results are summarized in Table 13. The ‘+1’ in
the number of classes denotes the common class ‘Not Cutting.’ Both the F1 macro and the
weighted average are reported since as the number of classes increases, some are left with
extremely low support, making the weighted average potentially more descriptive.

Table 13. Model performance for equally distributed classes.

Number of Equally
Distributed Classes

F1 Macro Average F1 Weighted Average

Ra Rz Ddev Ra Rz Ddev

2 + 1 0.97 0.99 0.98 0.98 0.99 0.99
3 + 1 0.91 0.98 0.97 0.95 0.99 0.98
5 + 1 0.79 0.89 0.98 0.94 0.96 0.99
7 + 1 0.74 0.69 0.64 0.97 0.94 0.91
9 + 1 0.78 0.72 0.71 0.95 0.95 0.94

Both F1 scores are extremely high across all metrics for 2 + 1 and 3 + 1 classes. As the
number of classes increases from 5 + 1 and above, the F1 macro scores tend to drop. This is
expected, as the size of the dataset is not large enough to accommodate adequate learning
examples for so many classes. Furthermore, the support for some classes in the testing
set ends up too low, even zero in some cases, leading to ill-defined F1 scores. In cases
like these, a single misclassification can dramatically change the macro average. This is
reflected in the weighted averages, which maintain higher values. The confusion matrices
for the 9 + 1 case are shown in Figure 15. For the two roughness metrics, Classes 2 and 3
have zero instances in the entire dataset, including the training and testing sets, and thus
are not included in the confusion matrices. All 10 classes are represented for diameter
deviation. Despite the large number of classes for the given dataset size, the performance
of the model is deemed very satisfactory.

(a) (b) (c) 

Figure 15. Confusion matrices for 9 + 1 equally distributed classes: (a) Ra; (b) Rz; (c) Ddev.
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4.6. Datastream Simulation

The proposed model is designed to be lightweight in order to run during the actual
turning process. Pure inference times are very low, either on the CPU or GPU of a typical
home PC, clocking at under 20 ms. This inference time does not account for data transfer
from and to memory, which is typically not an issue when performing batch processing,
where data are transferred once, and inference is carried out for the entire batch in the
reported times. During real operation however, the situation is different. Batch processing
is not an option since data are being generated in real time from the machine, therefore
the model needs to process a single data point at a time, which is extremely inefficient
for a neural network. The extra overhead in this case is comparable to the inference time,
resulting in a total processing time for a data point closer to 50 ms.

In order to verify the viability of the model in a realistic operation scenario, a datas-
tream simulation is set up. The signal history of the first specimen is used as input. All data
points are prepared according to the sliding window strategy, but the model is only allowed
to process each of them at specified time intervals, simulating the real data acquisition
procedure with a sampling rate of 1 kHz. First, the model has to wait for 500 ms for the
first 500 samples window to fill. For each subsequent inference step, the wait time is
100 ms, corresponding to the step size of 100 samples. For each inference step, the exact
processing time is calculated and subtracted from the wait time, simulating the continued
data acquisition during model inference. The lag of the model versus the real machining
time is plotted in Figure 16.

 

Figure 16. Simulation of model lag VS real process time.

As anticipated, for a total processing time for each data point less than the step size
of the sliding window, the model does not drift away from the machining process. After
an initial large lag which corresponds to the filling of the first window, the model quickly
settles a few tens of milliseconds behind the real process. Random lag spikes may occur,
due to arbitrary processes running on the test PC (i5 class CPU, 1060-3GB GPU, 16 GB
RAM), however, the model quickly returns to its usual slight delay behind the process. This
is presumed to represent an unfavorable scenario where a single-threaded Python program
is responsible for performing the datastream simulation, including data transfer, time
keeping, and inference. Thus, the model should not drift as long as the sliding window step
size is larger than the average processing time of each inference step. Furthermore, there are
techniques to further minimize processing times in a real application, such as deployment
in optimized hardware environments or using more efficient computing frameworks, which
are out of the scope of the present work.
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5. Conclusions and Future Work

This study presented an innovative application of 1D convolutional neural networks
for raw signal classification in CNC process monitoring. The proposed methodology es-
chews manually engineered feature extraction, typically employed in signal processing,
in favor of temporal pattern identification by the neural network itself. Convolutional
layers identify and synthesize pertinent, process-related information contained in multiple
signal channels acquired from the machine tool, in order to classify the machining process
with respect to its resulting quality. It was shown that with an extremely small number of
experiments, in full compliance to industry expectations, and a sliding window strategy,
a multi-output, multiclass model can be successfully trained to monitor several quality
metrics at once. The performance of the model was investigated under various combina-
tions of design parameters and constraints, and it proved to be a robust base for real-time
monitoring and quality control in CNC machining. Furthermore, this approach provides
a versatile alternative for the classification of high-rate signals across various industrial
domains where such analysis is relevant.

To build upon the presented work, several potential avenues are available. Conducting
more experiments will result in greater coverage of the input space of process conditions, as
well as the output space of quality metrics. Moreover, additional experiments will increase
the raw size of the dataset, which is generally beneficial to model training. Including
finishing conditions in the experimental design will offer a complete view of a typical real
machining application. In this context, it will be interesting to investigate the potential
adverse effects of an aggressive roughing pass on a subsequent finishing pass. This could
be valuable in the context of a process optimization framework, which can suggest efficient
process planning while ensuring final quality. Further considerations relating to tool wear
and the sustainability of the process can also be explored in this light.

Finally, testing the model during real machining operations presents its own set of
challenges, associated with model deployment, establishing communication protocols, and
ensuring seamless integration into the existing workflow. Addressing these challenges is
crucial for the successful application of the model in a live industrial setting.
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Abstract: This study aims to illustrate the design, fabrication, and optimisation of an ultrasonic
welding (UW) machine to join copper wires with non-woven PVC textiles as smart textiles. The
study explicitly evaluates UW parameters’ impact on heat generation, joint strength, and electrical
properties, with a comprehensive understanding of the process dynamics and developing a predictive
model applicable to smart textiles. The methodological approach involved designing and manufac-
turing an ultrasonic piezoelectric transducer using ABAQUS finite element analyses (FEA) software
and constructing a UW machine for the current purpose. The full factorial design (FFD) approach was
employed in experiments to systematically assess the influence of welding time, welding pressure,
and copper wire diameter on the produced joints. Experimental data were meticulously collected,
and a backpropagation neural network (BPNN) model was constructed based on the analysis of
these results. The results of the experimental investigation provided valuable insights into the UW
process, elucidating the intricate relationship between welding parameters and heat generation, joint
strength, and post-welding electrical properties of the copper wires. This dataset served as the basis
for developing a neural network model, showcasing a high level of accuracy in predicting welding
outcomes compared to the FFD model. The neural network model provides a valuable tool for
controlling and optimising the UW process in the realm of smart textile production.

Keywords: ultrasonic welding; smart textiles; copper wire joining; artificial neural network (ANN);
full factorial experimental design (FFD)

1. Introduction

Smart textiles, also known as e-textiles or smart fabrics, are a transformative category
of materials with integrated electronic components that can sense, respond to, and com-
municate data [1]. These textiles have gained increasing importance in various fields due
to their versatility and potential applications [2]. Smart textiles offer many benefits, from
enhancing our daily lives to advancing industries and healthcare [1]. Their applications
encompass wearables that monitor health and fitness, such as heart rate or temperature,
and offer real-time feedback. In the fashion industry, they enable interactive clothing and
accessories that change colour or pattern in response to environmental stimuli. Moreover,
the military and sports industries are adopting smart textiles for improved performance
and safety [3]. In healthcare, smart textiles assist in remote patient monitoring and develop-
ing prosthetics. Furthermore, the automotive and aerospace sectors utilise these materials
to enhance passenger comfort and safety [4]. Smart textiles are also crucial in the Internet
of Things (IoT), facilitating seamless data collection, transmission, and processing in smart
homes, agriculture, and industrial automation [5].

Smart textiles are created through various fabrication methods, each with unique ad-
vantages and disadvantages. Traditional methods include embroidery and weaving, where
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conductive threads are integrated into the textile structure [6,7]. Another method involves
screen printing, where conductive ink is applied to fabric to create conductive patterns [8,9].
Emerging techniques include three-dimensional (3D) knitting and additive manufacturing,
which enable intricate designs and precise integration of electronic components [10,11].
Embroidery and weaving provide durability and flexibility but may lack precision [12].
Screen printing offers cost-effectiveness and scalability but can be limited in conductivity
and washability [13]. At the same time, 3D knitting and additive manufacturing provide
high precision and customisation but may involve complex setups and higher production
costs [10]. The choice of method depends on the specific application requirements, such as
flexibility, conductivity, and production volume.

Therefore, UW stands out as an optimal method for smart textile fabrication due to
its ability to create strong, conductive bonds without the need for adhesives or additional
materials [14]. This technique uses high-frequency vibrations to create localised heat,
securely bonding conductive materials. Unlike traditional methods, UW ensures high
precision and reliability, making it ideal for integrating electronic components into textiles.
Additionally, it offers advantages such as rapid processing, energy efficiency, and minimal
material wastage [15]. UW has emerged as a promising technique for fabricating smart
textiles, offering numerous advantages. However, several challenges exist in applying this
method, which has sparked current research efforts to address these issues.

One primary challenge is achieving strong and reliable bonds between conductive
elements and textile substrates. While UW can provide secure connections, ensuring
consistent conductivity and durability across various textile materials and conductive
elements is non-trivial [16]. Additionally, selecting suitable welding parameters, such as
amplitude, pressure, and time, can be challenging. These parameters greatly affect the
quality of welds, but their optimal values may vary based on the specific materials and
design of the smart textile [17–20]. Another significant challenge is managing the localised
heat generated during the UW process. Excessive heat can damage sensitive electronic
components or the textile substrate itself, reducing the functionality and longevity of the
smart textile. Moreover, ensuring the uniformity of the welds across large textile surfaces
is another pressing challenge, as non-uniformity can lead to weak spots and reduced
performance [21].

Furthermore, achieving flexibility and stretchability in smart textiles while utilising
UW remains an ongoing research endeavour. Smart textiles are intended to conform to the
body or textile structure while retaining functionality. Balancing the demands of strong,
conductive bonds with the need for textile flexibility and comfort presents a challenge and
material optimisation problem [22,23].

The optimisation of UW parameters plays a vital role in achieving high-quality prod-
ucts. It can be optimised through a comprehensive experimental approach, where pressure
and time are systematically tested and analysed to determine the optimal settings for
achieving strong and reliable welds. Backpropagation neural network (BPNN) modelling
is a highly effective method used in artificial intelligence and machine learning for opti-
misation and other objectives [24]. With that approach, one can develop artificial neural
networks whose internal parameters are optimised sequentially by minimising prediction
errors. It starts with an initial model, and then through a process called backpropagation,
the error is calculated and passed backwards; thus, the network can learn itself as a more
complex pattern and predict from the new data [25]. Various fields, such as biomaterials
and manufacturing, have also employed this modelling method [26,27]. This can present
the importance of BPNN as an integral element of most modern machine learning schemes.

From the preceding narratives, it can be concluded that UW offers significant promise
for smart textile fabrication, but several challenges persist in ensuring consistent perfor-
mance, reliability, and comfort. Research efforts are directed toward optimising welding
parameters, developing high-strength wire-fabric connections, and addressing materials
and design challenges. As these challenges are addressed, the potential of smart textiles will
be further unlocked for diverse applications. Therefore, the current investigation attempts
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to fix some previously mentioned barriers concerning optimising the UW parameters to
improve the smart fabrics’ strength and electrical characteristics.

2. Methodology

Firstly, FEA modelling using the ABAQUS 6.14 software package (Dassault Systèmes
Simulia Corp, Johnston, Rhode Island) has been employed to design an ultrasonic piezo-
electric transducer, which acts as the heartbeat of the UW system. The FEA tool enabled the
simulation and optimisation of the transducer’s geometry to ensure efficient and precise
ultrasonic energy generation. Subsequently, the design was fabricated by carefully select-
ing materials that aligned closely with the FEA model. The transducer was designed to
generate consistent ultrasonic vibrations for the experimental work within the study.

After designing the ultrasonic transducer, the effort moved to designing and fabricat-
ing a specialised UW setup. This setup was tailored to the unique requirements of joining
copper wires with non-woven PVC textiles. During the design phase, components such as
the transducer, horn, and fixture were thoughtfully selected and strategically configured
to ensure compatibility with the target materials. Furthermore, the setup was accurately
constructed to allow for precise control of critical welding parameters, including copper
wire diameter in mm, welding time in sec and pressure in bar. Three levels were specified
for each of the three UW parameters as shown in Table 1. This precision became instru-
mental in achieving consistent weld quality and laid the groundwork for the subsequent
comprehensive investigation into the effects of welding process parameters.

Table 1. UW parameters.

Parameters
Levels

−1 0 +1

Wire diameter (mm) 0.2 0.3 0.4
Pressure (bar) 0.4 0.6 0.8

Time (s) 5 8 10

In order to systematically investigate the sophisticated relationship between welding
process parameters and process outcomes, the Design of Experiment (DOE) technique was
utilised to conduct number of experiments using Minitab 16 software (Minitab, LLC, Lock
Haven, PA, US). The full factorial DOE model comprised 3 parameters with 3 levels for each.
A complete combination array consisting of 33 = 27 trials was executed, and the weldability
performance was recorded, as showcased in Table 2. This method proved efficient in
exploring various parameter combinations while minimising the required experimental
runs. The research aimed to collect robust data that could be statistically analysed for
patterns and trends by varying welding parameters such as time, pressure, and copper
wire diameter.

The experimental data obtained from the 27-array design became the foundation
for the next phase. These data were employed to develop an interactive model using
the backpropagation neural network (BPNN) technique. The BPNN model was trained
on the experimental outcomes, transforming it into a predictive tool for process control
and optimisation. Its capacity for learning and generalisation allowed it to offer accurate
predictions regarding the relationships between welding parameters and critical factors,
such as the heat generated (in terms of welding temperature), joint strength (in terms of
peeling force), and post-welding electrical properties (in terms of electrical resistance) of the
copper wires. This methodology, from transducer design to BPNN modelling, forged a path
toward a comprehensive understanding of the UW process, with significant implications
for smart textile applications.
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Table 2. Full 27-parameters array for the main UW input and output responses.

Experiment
No.

Input Welding Parameter Output Response

Diameter Pressure Time
Heat

Generation
Joint

Strength
Electrical
Properties

(mm) (bar) (s) (◦C) (N) (Ohm)

1 0.2 0.4 5 68 19.65 0.02
2 0.2 0.4 8 69 23.02 0.021
3 0.2 0.4 10 79 24.08 0.021
4 0.2 0.6 5 79 23.78 0.024
5 0.2 0.6 8 80 25.08 0.0242
6 0.2 0.6 10 80 25.91 0.0245
7 0.2 0.8 5 79 24.02 0.0252
8 0.2 0.8 8 79 26.08 0.0255
9 0.2 0.8 10 80 27.91 0.0256

10 0.3 0.4 5 73 18 0.04
11 0.3 0.4 8 74 19.6 0.041
12 0.3 0.4 10 74 22.4 0.041
13 0.3 0.6 5 73 20.5 0.044
14 0.3 0.6 8 74 22.1 0.045
15 0.3 0.6 10 77 23.8 0.045
16 0.3 0.8 5 76 20.2 0.048
17 0.3 0.8 8 78 21.53 0.048
18 0.3 0.8 10 78 23 0.05
19 0.4 0.4 5 69 16.32 0.06
20 0.4 0.4 8 70 18.25 0.061
21 0.4 0.4 10 70 19.03 0.061
22 0.4 0.6 5 70 18.95 0.062
23 0.4 0.6 8 71 19.05 0.061
24 0.4 0.6 10 73 20.01 0.061
25 0.4 0.8 5 72 19.95 0.064
26 0.4 0.8 8 73 21.03 0.065
27 0.4 0.8 10 74 22.01 0.065

3. Transducer FEA Modelling and Manufacturing

The first step in constructing the FEA model was to build the geometry of the trans-
ducer parts. Dimensions of each part of the transducer were calculated based on the
acoustic wave equation [28]. After that, the ABAQUS package has been used to build the
model geometry shown in Figure 1a. Initially, the front mass geometry was assumed to
be stepped. The stepped horn was distinguished by the high amplification of vibration
amplitude [28].

 
(a) 

 
(b) 

Figure 1. Transducer model (a) geometry and (b) boundary conditions.

Based on the literature, proper materials have been assigned to each transducer’s parts.
Aluminium has been used for the front and the back masses. Simultaneously, copper and
piezoelectric materials have been allocated for the electrodes and the rings, respectively.

Table 3 presents material properties for defining the materials in the FEA model.
Afterwards, loads and boundary conditions are assigned. The pre-stressed bolt load, esti-
mated based on the recommended piezoelectric stack compression state (around 30 MPa),
is applied at the bolt cross-section between the back mass and the piezoelectric stack.
Boundary conditions (BC) are also used for piezoelectric elements, facilitating electrical
potential propagation from the base state [29,30]. Figure 1b illustrates these load and
boundary conditions.
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Table 3. Physical properties of transducer component materials.

No. Material
Young’s

Modulus
(GPa)

Density

(Kg/m3)
Poisson’s

Ratio
Wave Velocity

(m/s)
Characteristic Acoustic

Impedance (×106 Ns/m3)

1 Aluminium
(5083) 70.3 2660 0.33 5140 13.67

2 Steel (AISI
1045) 200 7870 0.3 5040 39.7

3 Piezoelectric
(PZT) 73 7700 - 3080 23.72

4 Copper (99.97%
pure) 115 8900 0.31 3595 31.9

Regarding the FEA model meshing process, the structure meshing technique is pre-
ferred for such an electromechanical system [29,30]. Moreover, suitable elements for the
different parts of the transducer were selected. All metallic parts were 3D stress quadratic
elements (C3D20R), while the piezoelectric rings were a piezoelectric quadratic element
(C3D20RE).

Concerning the FEA results, Figure 2a,b illustrates displacement distribution and
von Mises stress along the transducer’s axial direction for the longitudinal mode shape
observed at 25.87 kHz. The nodal plane position, which supports the transducer during
experiments, is also presented. A welding horn with a calculated length was attached to
the working end to maximise output amplitude. It should be noted that changes in the
transducer mass can influence the system’s resonance frequency.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Along the axial direction of the transducer are the (a) normalised displacement, (b) von
Mises stress in MPa, (c) normalised displacement transducer with ultrasonic horn, (d) von Mises
stress in MPa transducer with ultrasonic horn, (e) fabricated transducer, and (f) fabricated transducer
with ultrasonic horn.
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Figure 2c,d shows displacement distribution, and von Mises stress along the trans-
ducer’s axial direction for the longitudinal mode shape after adding the welding horn. It
occurred at 28.38 kHz.

4. UW Machine and Experimental Process Design

In the current study, DOE is used to model and analyse the effect of the UW regime
on the heat generation, joint strength, and electrical properties of welded joints for smart
textiles. The general functional relationship can be written as in Equation (1):

Y = f (D, P, t) (1)

where Y represents the dependent variable, while D, P, and t represent the independent
variables of copper wire diameter, welding pressure, and welding time, respectively. The
general functional relationship forms the basis of experimental design, defining factors
and interactions. Analysis of Variance (ANOVA) assesses their significance once data are
collected. Polynomial models, including linear and non-linear components, can be part of
this relationship. This allows for a more flexible and accurate representation of the data,
capturing potential curvature or interaction effects that may exist. ANOVA is crucial for
evaluating these models and identifying statistically significant terms. Together, these tools
enable systematic exploration and optimisation. The general form of the ANOVA model
with polynomial terms can be represented in Equation (2):

Y = β0 + β1X + β2X2 + β3X3 + . . . + βnXn + ε (2)

In this Equation, X represents the independent variable, β0, β1, β2, . . ., βn are the
coefficients associated with each polynomial term, X2, X3, . . ., Xn represent the different
powers of the independent variable, and ε defines the error term.

A prototype vertical UW machine was designed to facilitate the experimental process.
The UW parameters encompass a maximum power rating of 1 kW and a frequency of
28 kHz. To achieve the desired welding of fabric–copper connections, ultrasonic waves are
applied perpendicularly to the surface, transversely engaging with the fabrics. The UW
system comprises essential components, including a power supply, a converter, a booster,
and a horn (Figure 3a).

This system transforms the electrical energy, supplied at a frequency of 50–60 Hz
by the power supply, into mechanical vibration energy oscillating at 28 kHz through the
converter. The resulting frictional heat generated by the vibration is then conveyed to the
junction surface via the horn, facilitating the formation of a bond between the fabric and
copper wire. The welding and holding time can be precisely adjusted within 1.0 s to 10 s,
while the pneumatic pressure applied to the welding area can reach up to 1 MPa.

To make the proper contact point between the fabric and the copper wires, non-woven
fabrics were stripped to about 60 mm in length and 20 mm in width. The polyester fabric
was provided by Kar-tex (Cairo, Egypt) as a material for facemasks, personal protective
clothes, diapers, and medical products in the market. Then, plain annealed stranded copper
wires (99.97% pure) supplied by Elsewedy Electric (New Cairo, Egypt) with different diam-
eters (0.2, 0.3, and 0.4 mm) were inserted, centred, and integrated between the two pieces
of fabric (between 0.05 and 0.08 mm thick each) using an UW machine; the welded sample
is shown in Figure 3b.

After UW, a Scanning Electron Microscope (SEM) model (SU-70), manufactured by
Hitachi High-Tech, Japan, was used to investigate the bonding morphology of the fabric-
copper joint. A peeling test was conducted to determine the mechanical strength of the
joint to analyse the adhesion of electronic interconnectors. Therefore, the self-developed
peeling test is ideal for inspecting joints between copper wires and textiles. The sample
was clamped and fixed on the grips of the Zwick tensile testing machine model (Z010)
manufactured by Zwick\Roell, Germany, with a 10 KN maximum capacity. The force was
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applied to the textile with a 10 mm/min travel speed. The configuration of the peeling test
is illustrated in Figure 4a.

 
(a) (b) 

Figure 3. (a) Design and fabrication of UW machine; (b) produced ultrasonic welded sample for
smart textile.

 
(a) (b)  

Figure 4. (a) Peeling test experimental configuration; (b) schematic of electrical resistance measure-
ment setup.
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A four-wire measuring instrument is used to measure the contact electrical resistance,
as illustrated in Figure 4b. Two of the four contacts provided a current of 1 A. A voltmeter
over the two remaining conductors measured the falling voltage at the resistor. Based on
Ohm’s law, it was possible to calculate the electrical resistance of the contact. The contact
electrical resistances were in the range of only a few milliohms. Finally, an infra gun was
used to measure the temperature through welding time.

5. Development of Feed Forward Back Propagation Network (FFBPN) for Prediction of
Smart Textile Connection Quality

An artificial neural network (ANN) is a computational tool inspired by the complex
neural networks of the human brain. It is excellently tuned to discern intricate patterns,
make data-driven predictions, and quickly resolve complex engineering challenges. ANNs
are adept at accurate outcome prediction and find versatile applications in various engi-
neering domains. ANNs, as computational models, require training to learn and make
predictions or classifications. The training process involves adjusting the neural network’s
internal parameters (weights and biases) based on a dataset to minimise prediction errors.

MATLAB R2020a was used to develop the FFBPN model. The FFBPN model was
developed by taking the three parameters (wire diameter, pressure, and time) from the data
and considering them as inputs. Heat generation, joint strength, and electrical properties
were then taken one at a time as outputs. Three phases of model development were con-
ducted, using 70%, 15%, and 15% of the available data for training, testing, and validation,
respectively. If the model meets the performance criteria established during the training
stage, it is considered successfully developed and validated; then, the model proceeds to the
testing stage. Otherwise, it is recalled for retraining in the first stage. It is deemed validated
once the model passes the testing stage and meets the performance criteria. The following
four steps comprise the backpropagation method’s training algorithm: initialisation of
weights, feed-forward, backpropagation of errors, and updating the weights and biases,
respectively. The proposed network architecture involves three input neurons for each
input parameter, an output layer with one neuron corresponding to one output at a time,
and a single hidden layer of neurons.

The Levenberg–Marquardt (LM) backpropagation algorithm will be used if the model
does not meet the expected values [31]. This allows the procedure to be repeated until it
finds the optimal requirement. When determining the architecture of a backpropagation
neural network (BPNN) using a trial-and-error method, several design criteria can guide
the process illustrated in Table 4.

Table 4. The configurations for the BPNN used for the regression problems.

Parameter Value

Network Type Feed-forward backpropagation

Number of neurons in the hidden layer 4:35, used value was 10

Number of hidden layers 1:5, used value was 1

Training function Trainlm

Transfer function sigmoid function Tansig

Learning Rate 0.05

Performance goal 0.0001

After the input layer receives the signals from the other source, the hidden layer
converts them into a form that the output signal can utilise. This study’s suggested neural
network architecture is 3-10-1, as seen in Figure 5.

In the current investigation, experimental data from the DOE emphasises the devel-
opment of an interactive backpropagation neural network (BPNN) model. This BPNN
model was trained on experimental data to provide a predictive tool for process control
and optimisation.
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Figure 5. Proposed network architecture. The colours represent different types of layers or compo-
nents. Turquoise colour represents input/output data and blue colour represents components of each
layer and its functions like summation and transfer functions. Arrows depict the flow of in-formation,
indicating how data moves from one layer to another. The plus symbol could be used to denote the
addition of bias and weights in the equations that govern the calculations within the network.

6. Results and Discussion

6.1. Preliminary Results of the UW Process

The mechanical peeling tests showed a significant relationship between welding
parameters and joint strength, as illustrated in Figure 6. For instance, with a 0.2 mm
diameter copper wire at 0.4 bar pressure, the peeling force increased from 19.6 N to 24 N
as welding time extended from 5 s to 10 s. This trend was consistent across different
pressure levels, with the highest peeling forces of 26 N and 28 N observed at 0.8 bar
pressure for welding times of 8 s and 10 s. Higher pressure levels enhanced bonding
between the non-woven fabric layers by promoting intermolecular contact and improving
adhesion strength.

(a) (b) 

(c) (d) 

Figure 6. The peeling force for different welding pressures and welding time dependencies for wire
diameter of (a) 0.2 mm, (b) 0.3 mm, (c) 0.4 mm, and (d) peeling force for different pressures.

The positive correlation between peeling force and welding time underscored that
longer welding times facilitate thorough bonding and material interdiffusion, increasing
joint strength. Conversely, increasing copper wire diameter led to a decrease in peeling force.
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This phenomenon was attributed to the wire’s heat dissipation characteristics. A larger wire
diameter resulted in more efficient heat dissipation, weakening the bonding between fibres
due to reduced heat input and diffusion. These findings emphasise the intricate interplay
between welding parameters and joint strength in UW of non-woven fabric. While both
pressure and time are vital, pressure appeared to have a more pronounced impact.

The electrical resistance measurements conducted on the wire joints highlighted the
significant influence of welding parameters on electrical resistance. The electrical resistance
values exhibited variations dependent on both wire diameter and welding conditions.
Specifically, for wire diameters of 0.2, 0.3, and 0.4 mm, the recorded electrical resistance
values were 0.02, 0.04, and 0.06 Ohm, respectively. All measurements were taken on wires
with a fixed length of 60 mm to ensure equitable comparisons.

The electrical resistance data show a slight increase with welding time. For instance,
with a 0.2 mm wire diameter at 0.4 bar pressure, electrical resistance increased from 0.02
to 0.021 Ohm, as depicted in Figure 7. However, a more pronounced rise in electrical
resistance occurred with heightened pressure. At 0.8 bar pressure and a welding duration
of 10 s, electrical resistance reached 0.0256 Ohm. Similar trends materialised with 0.3 and
0.4 mm wire diameters.

(a) (b) (c) 

Figure 7. The electrical resistance for different welding pressures and welding time dependencies for
wire diameter of (a) 0.2 mm, (b) 0.3 mm, and (c) 0.4 mm.

This relationship between wire diameter and electrical resistance can be attributed to
the alterations in cross-sectional area, which led to heightened electrical resistance. While
pressure could potentially deform the wire and influence its cross-section, the predominant
factor affecting electrical resistance was deemed to be the cross-sectional area. These
findings underscore the imperative consideration of welding parameters and wire diameter
concerning electrical resistance measurements. Minimising electrical resistance in welded
joints is critical to avoid electrical losses and inefficiencies.

The observed correlation between wire diameter and electrical resistance can be
attributed to alterations in the weldment area, resulting in elevated electrical resistance. The
increase in electrical resistance is primarily attributed to various defects induced by high
welding pressure as revealed by SEM observation. As expected, the presence of unbonded
regions at the joint interface contributes to an increase in electrical resistance. Consequently,
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during charging cycles, the elevated temperature intensifies the electrical resistance, leading
to overall performance degradation. Furthermore, the diffusion rate of elements appears to
be influenced by welding pressure and time. Previous studies have frequently highlighted
that the excess concentration of vacancies generated through severe plastic deformation
enhances diffusion around the interface during ultrasonic welding [32,33]. As a result, faster
diffusion at the interface with minimal pressure is preferable for achieving a conductive
joint. This interpretation aligns with the observed electrical resistance of the 0.4 mm wire
as both time and pressure increase, as shown in Figure 6c. These findings underscore the
critical importance of considering welding parameters and wire diameter when conducting
electrical resistance measurements. Minimising the electrical resistance of welded joints is
imperative to mitigate electrical losses and enhance overall efficiency.

The temperature measurements during the UW process for a 0.2 mm copper wire
revealed a consistent trend across different time durations and pressures. At a pressure
of 0.4 bar, the temperature increased from 68 ◦C to 79 ◦C as the welding time increased
from 5 s to 10 s, as shown in Figure 8a. This trend was observed consistently across all
tested pressures. The highest temperature recorded was 80 ◦C at a pressure of 0.8 bar and a
welding time of 10 s.

(a) (b) (c) 

Figure 8. The temperature for different welding pressures and welding time-dependent for wire
diameter (a) 0.2 mm, (b) 0.3 mm, and (c) 0.4 mm.

When considering the effect of wire diameter on temperature, it was observed that the
temperature slightly decreased as the wire diameter increased. The minimum temperature
and the highest pressure were recorded at a welding time of 5 s. This observation suggests
that temperature is primarily influenced by the wire diameter, with larger diameters
dissipating welding heat more rapidly Figure 8. Furthermore, the effects of welding time
and pressure increased the temperature for each independent wire diameter. This indicates
that both time and pressure contribute to generating heat during the welding process.

The observed temperature trends can be attributed to the thermal characteristics of the
copper wire and the energy input during UW. As the welding time increases, more energy
is delivered to the wire, resulting in a higher temperature. Similarly, increased pressure can
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increase temperature due to enhanced energy transfer. However, the effect of wire diameter
on temperature is linked to its ability to dissipate heat efficiently. These findings emphasise
optimising welding parameters to achieve the desired temperature range for effective and
reliable bonding. The results suggest that shorter welding times and lower pressures may
help reduce excessive temperature generation, mainly when working with smaller wire
diameters. Additionally, careful consideration of the wire diameter is necessary to ensure
proper heat dissipation and prevent overheating.

Figure 9 shows an SEM of the welded joint under different parameters. The 0.4 mm
copper wire with the highest pressure and time appeared to have an efficient bonding
interface morphology. With increased welding time and fixing other parameters, the wire
was squeezed into the gap regions of the fabrics. The high-frequency vibration caused
friction and subsequent heat, which softened the copper in the bonding. It was then
squeezed into the arc-like movement path. However, if the time was short, the energy
and temperature produced from friction would not be sufficient, and material plastic flow
became more difficult even if the pressure continued to increase. In addition, the wire
diameter played a vital role in transferring the heat produced by friction, as indicated by
Figure 9a,c.

Figure 9. SEM of fabric–copper UW under different parameters. (a) Wire diameter 0.2, Pressure
0.8 bar & Time 10 s. (b) Wire diameter 0.3, Pressure 0.4 bar & Time 10 s. (c) Wire diameter 0.4, Pressure
0.8 bar & Time 10 s. (d) Wire diameter 0.4, Pressure 0.4 bar & Time 5 s.

As per UW analysis, after ultrasonic vibration was activated, the horn directly con-
tacted the fabric layers, squeezed and rubbed it, and a relative sliding motion occurred,
generating heat and bonding through the acoustic softening effect. Firstly, a virtual bond
is formed quickly between the layer’s interfaces. With the increase in welding time, the
virtual bond would tear firstly and join again under the action of the horn pressure and
shear force, and then produce bonding, interlocking to form a robust bond region, which
leads to the increase in the joint bonding strength. However, since the force and relative
sliding required to create a bond between the fabric layers need to be transferred through
the copper wire, there is a certain hysteresis and attenuation, and this makes the time
increase not always the influential parameter (Figure 9c,d).
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6.2. Statistical Modelling of the UW Process Using the Design of the Experiment (DOE)

Regarding the DOE results, for the current investigation, a 95% level of statistical
significance was selected. The determined correlation coefficients R2 are 80.5%, 95.3%, and
99.37% for heat generation, joint strength, and electrical properties of the welded joints,
respectively, showing that the data match the models very well and can be used to derive
it. The models that resulted from the analysis can be expressed as:

T = 40.7 + 81.1 D + 68.0 P + 0.11 t − 105.6 D2 − 26.4 P2 + 0.122 t2 − 50.0 D P − 2.11 D t − 1.23 P t (3)

S = 14.57 − 47.8 D + 33.5 P + 0.886 t + 65.9 D2 − 17.06 P2 + 0.0314 t2 − 7.8 D P − 1.577 D t − 0.482 P t (4)

Ω = −0.02659 + 0.2019 D + 0.01666 P + 0.000229 t − 0.0096 D P − 0.00030 D t + 0.000024 P t (5)

where D, P, and T represent the independent variables of copper wire diameter, welding
pressure, and welding temperature, where t, S, and Ω represent welding time, peeling
force, and electrical resistance, respectively.

The impact of UW parameters on heat generation, joint strength, and electrical prop-
erties are tested experimentally for 33 = 27 combinations involving three variables, and a
statistical approach is used to clarify the relative effects of different process parameters on
the responses. Thus, a three-factor Analysis of Variance (ANOVA) approach is applied to
the collected dataset using the Minitab program to examine the effects of various factors,
including wire diameter, pressure, and time on the produced joints. ANOVA analysis
results are displayed in Table 5 with a confidence level of 0.95. In this study, the degrees of
freedom for single factors were 2, the degrees of freedom for interaction between factors
were 4, and the error number was 8.

Table 5. Analysis of Variance (ANOVA) Test.

Source Degrees of
Freedom (DF)

Adjusted Sums
of Squares
(Adj SS)

Adjusted Mean
Squares

(Adj MS)
F-Value p-Value

Heat generation

Diameter (mm) 2 151.185 75.593 14.93 0.002
Pressure (bar) 2 109.407 54.704 10.80 0.005

Time (s) 2 38.741 19.370 3.82 0.068
Diameter (mm) × Pressure

(bar) 4 41.481 10.370 2.05 0.180

Diameter (mm) × Time (s) 4 8.148 2.037 0.40 0.802
Pressure (bar) × Time (s) 4 7.259 1.815 0.36 0.832

Error 8 40.519 5.065
Total 26 396.741

Joint strength

Diameter (mm) 2 114.759 57.3797 341.37 0.000
Pressure (bar) 2 38.578 19.2892 114.76 0.000

Time (s) 2 39.914 19.9569 118.73 0.000
Diameter (mm) × Pressure

(bar) 4 5.883 1.4706 8.75 0.005

Diameter (mm) × Time (s) 4 2.953 0.7383 4.39 0.036
Pressure (bar) × Time (s) 4 2.361 0.5902 3.51 0.062

Error 8 1.345 0.1681
Total 26 205.793

Electrical
properties

Diameter (mm) 2 0.006787 0.003393 13,278.70 0.000
Pressure (bar) 2 0.000141 0.000070 275.04 0.000

Time (s) 2 0.000003 0.000001 5.33 0.034
Diameter (mm) × Pressure

(bar) 4 0.000020 0.000005 19.43 0.000

Diameter (mm) × Time (s) 4 0.000001 0.000000 0.81 0.551
Pressure (bar) × Time (s) 4 0.000001 0.000000 1.25 0.364

Error 8 0.000002 0.000000
Total 26 0.006954

For temperature, the wire diameter and pressure significantly influence the experi-
mental results when their contributions to the response are 38.11% and 27.58%, respectively.
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Meanwhile, the interaction between factors has no significant influence on temperature.
The wire diameter, welding time, and pressure are the significant single factors that affect
peeling force. The interaction between wire diameter and pressure follows it. According to
the results of ANOVA, wire diameter and pressure are significant single factors followed
by interaction between wire diameter and pressure that affect electrical properties.

The main effect plots show how each factor affects the response characteristic. As
shown in Figure 10a,b, each temperature and peeling force trend decreased by increasing
the diameter and decreasing pressure and time. However, the electrical resistance of
weldment increased by increasing each diameter and pressure, as shown in Figure 10c.
Meanwhile, the change in levels of time from 5 s to 10 s has a slight, almost negligible
impact on electrical resistance.

 
(a) 

 
(b) 

(c) 

Figure 10. Mean effect plot of (a) temperature, (b) joint strength, and (c) electrical resistance.
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Subplots (a), (b), and (c) show a preponderance of the effect of a diameter of 0.4 mm.
From (a) and (b), it is concluded that the optimum combination of each process parameter
for lower heat generation and joint strength is meeting at wire diameter, 0.4 mm; pressure,
0.4 bar; and time, 10 s. Figure 10c shows that the optimum combination of each process
parameter for higher electrical resistance is meeting at wire diameter, 0.4 mm; pressure,
0.8 bar; and time, 5–10 s; this has the same effect.

6.3. Comparison of Experiment, BPNN and FFD Results

A comparison was conducted with experiment results to evaluate the predictive
performance of BPNN and FFD. The performances of developed models via FFD and ANN
of temperature, mechanical peeling force, and electrical resistance of the welded joints
were evaluated using correlation coefficient (R) as shown in Figure 11a–f. Figure 11a,b
show the correlation coefficient diagrams among predicted values of each approach and
the observed values for measured temperature; the R of the FFD model equals 0.862, while
the R of the ANN model equals 0.955. The correlation value for the overall performance
of ANN for peeling force is very close to that of the FFD model, which equals 0.967 and
0.96, respectively, as shown in Figure 11c,d. The correlation coefficient R for both models
resulting from both methods, FFD and ANN, was approximately the same and very close
to 1 when studying electrical resistance, which is equal to 0.997, as shown in Figure 11e,f.

ANN has been found to perform better than FFD or other techniques for non-linear
systems. Meanwhile, many repeated calculations are required because of the resilience of
the ANN model. This technique also obscures the input factors’ contributions and how they
interact. The performances of FFD and BPNN models are tested by statistical criteria such
as the coefficient of correlation (R), which provides the value of proportionality between
the data from the experiment and the estimation, while the accuracy of the estimation
results is measured by mean absolute percentage error (MAPE) which can be calculated by
following the formula, The results are summarised in Table 6.

MAPE =
1
n

n

∑
i=1

∣∣∣∣ya,i − yp.i

ya.i

∣∣∣∣ (6)

where n is the number of experiments, ya,i is the actual value, and yp,i is the predicted value.

Table 6. Comparison of statistical analysis between FFD and ANN models.

Output

Heat Generation Joint Strength Electrical Properties

FFD ANN FFD ANN FFD ANN

R 0.862 0.955 0.96 0.967 0.997 0.997

MAPE 0.018153 0.0078 0.0297 0.021998 0.0257 0.0231

Finally, according to the developed FFD and ANN models, the percentage of overall
error for ANN and FFD for each heat generation, joint strength, and electrical properties
is approximately 3.91%, 6.84%, and 0.49%, respectively, confirming the high accuracy of
the predictive model. The FFD model results in an average error percentage of 4.69%
and 0.7% for joint strength and electrical properties, respectively, while the rate of overall
error of modelling heat generation is 19.52%, which means there may be other variables
affecting the process that have not yet been taken into account which are responsible for
this amount of variation. The results indicate that both the developed models are highly
accurate in predicting the joint strength and electrical properties; however, ANN is more
accurate than FFD in predicting heat generation model. The analysis shows that wire
diameter mainly contributes 38.11%, 55.76%, and 97.59% to heat generation, joint strength,
and electrical properties, respectively. Although the diameter of the wire is considered
the primary variable affecting all output responses, its relatively small contribution rate of
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38.11% in heat generation compared to the other responses, reflects that the levels used in
this experiment were very narrow and reflected in that percentage.

(a) (b) 

 
(c) (d) 

(e) (f) 

Figure 11. Graphical comparison of correlation plots for FFD and ANN Models for weldment
proprieties. (a) Correlation plot of FFD for temperature. (b) Correlation plot of ANN for temper-
ature. (c) Correlation plot of FFD for peeling force. (d) Correlation plot of ANN for peeling force.
(e) Correlation plot of FFD for electrical resistance. (f) Correlation plot of ANN for electrical resistance.

7. Conclusions

This work involves the design of a piezoelectric transducer in parallel with the proto-
type development of a UW machine. This integrated approach aims to explore the impact
of welding parameters, such as time, pressure, and wire diameter, on the joint efficiency of
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smart textiles. The experimental results derived from this endeavour were subsequently
employed in the optimisation process, combining full factorial design (FFD) and artificial
neural networks (ANNs) to enhance and control UW processes. The main insights can be
summed up as follows:

Both pressure and time are vital; pressure appeared to have a more pronounced
impact. The results suggest that an optimal combination of pressure and time can be
determined to achieve the desired joint strength, considering specific wire diameter and
material characteristics.

Reducing wire diameter and controlling pressure becomes instrumental in achieving
lower electrical resistance values and enhancing the overall electrical properties of the joints.

According to experimental research, the minimum heat generation, maximum strength,
and maximum electrical resistance of UW of copper wire and non-woven PVC textiles
can reach 68 ◦C, 27.91 N, and 0.065 Ohm. The wire diameter significantly impacts the
joint strength, electrical properties, and heat generation followed by welding pressure, but
the welding time makes a slightly significant difference. Given the interactions between
factors, the interactions between wire diameter and welding pressure slightly affect FFEAct
responses. However, the interaction between the other two groups has no significant
impact on the experimental results.

The proposed FFD and ANN models accurately predict the UW process’s heat gener-
ation, joint strength, and electrical properties to join copper wires with non-woven PVC
textiles. However, the predictive capability of the FFD model shows a high error percentage
of 19.52% only in the case of heat generation. This reflects the necessity of reconsider-
ing the size of the orthogonal array, which plays a critical role in the efficiency of the
predictive model.

The ANN with a 3-10-1 architecture is an optimum network with a high correlation
coefficient obtained on validation datasets. The model accuracy of ANN was found to
be better than FFD, and the former was found to be statistically robust and accurate in
predicting heat generation. At the same time, they are almost identical in robustness and
accuracy in predicting joint strength and electrical properties.
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Abstract: In the domain of prognosis and health management (PHM) for rotating machinery, the
criticality of ensuring equipment reliability cannot be overstated. With developments in artificial
intelligence (AI) and deep learning, there have been numerous attempts to use those methodologies
in PHM. However, there are challenges to applying them in practice because they require huge
amounts of data. This study explores a novel approach to augment vibration data—a primary
component in traditional PHM methodologies—using a specialized generative model. Recognizing
the limitations of deep learning models, which often fail to capture the intrinsic physical characteristics
vital for vibration analysis, we introduce the bivariate vibration generative adversarial networks
(BiVi-GAN) model. BiVi-GAN incorporates elements of a physics-informed neural network (PINN),
emphasizing the specific vibration characteristics of rotating machinery. We integrate two types
of physical information into our model: order analysis and cross-wavelet transform, which are
crucial for dissecting the vibration characteristics of such machinery. Experimental findings show
the effectiveness of our proposed model. With the incorporation of physics information (PI) input
and PI loss, the BiVi-GAN showed a 70% performance improvement in terms of JS divergence
compared with the baseline biwavelet-GAN model. This study maintains the potential and efficacy
of complementary domain-specific insights with data-driven AI models for more robust and accurate
outcomes in PHM.

Keywords: vibration; rotary machine; deep learning; PINN; GAN

1. Introduction

In industrial areas, numerous dynamic systems operate in an integrated manner,
among which rotating equipment constitutes one of the most utilized types of machinery.
Rotating equipment is predominantly employed in various mechanical conversion devices
such as automobile engines, pumps, wind turbines, power generation systems, and gas
turbines [1,2]. The failure of such equipment can potentially lead to malfunctions in the
associated machinery and a loss of functionality in the overall system. Extensive research
has been conducted on the diagnosis and prediction of the reliability and safety of rotating
equipment [3–6]. Those approaches have evolved into the field of prognosis and health
management (PHM). Particularly, research on artificial intelligence (AI)-based PHM has
been actively conducted, owing to advancements in computer technology [7–10]. In the
realm of AI-based PHM research, in contrast with traditional PHM approaches, which are
structured around physical laws, various forms of data are acquired from the equipment.
This data serves as the foundation for analyzing the equipment’s health and remaining
useful life (RUL). With advancements in deep learning models, analytical methodologies
have been proposed. Several studies are based on models that enable generalized analysis
without the requirement for expert knowledge [11,12]. Such research endeavors utilize
diverse data sources, including thermal images, high-speed camera images, vibration
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data, and noise data, to train AI models. Among these, vibration data have traditionally
been a critical element in the analysis of rotating equipment within conventional PHM
methodologies. Owing to its rich information related to the operation and condition of the
equipment, vibration data are also extensively employed in deep learning studies where
features contained in the data are of significant importance. However, a salient challenge
with these data-driven methodologies is the conflict between the massive volume of data
generally required to train AI models and the limited amount of vibration data that can
realistically be collected in industrial settings.

As the prevalence of data-hungry deep learning models continues to rise, data augmen-
tation techniques have increasingly become a significant issue in the field of AI. Numerous
studies have demonstrated that training AI models on augmented data can help them
outperform those trained on the limited amount of original data that can be collected in
practice [13]. Vibration data have temporal correlations and can thus be classified as time
series data. Studies on methods for augmenting time series data have been vigorously
conducted, reflecting the growing recognition of its importance [14]. In basic approaches,
various techniques such as cropping, flipping, and jittering are employed in the time se-
ries, frequency, and time–frequency domains to artificially augment the data [15]. These
methodologies do not focus on understanding the inherent characteristics of the data;
rather, they augment the data based on specific rules and probabilities. Recently, with the
development of data analytics and learning models, techniques for analyzing the complex
rules and information inherent in data have emerged [16,17]. These include decomposition
methods, statistical generative models, and learning models. Particularly, deep learning-
based generative models such as generative adversarial networks (GANs), variational
autoencoders (VAEs), and diffusion models have high applicability across various domains.
This is because they can extract the nonlinear features inherent in the data in an end-to-end
manner without the requirement for specialized knowledge.

However, the black-box nature of deep learning models poses a challenge, as these
generative models may not adequately capture the key physical characteristics relevant to
vibration analysis [18,19]. Consequently, there are frequent instances where the generated
data fail to reflect the vibration characteristics required for analyzing rotating equipment. To
address these challenges raised from the perspective of field application, physics-informed
neural networks (PINNs) have emerged as a solution aimed at overcoming the limitations
of deep learning models, which are highly dependent on the data themselves [20]. PINNs
employ a structure that guides the neural network to learn physical information and
characteristics that are difficult for AI to extract by itself. This enables the leveraging of
both the advantages of deep learning, which has an excellent ability to extract various
features based on data, and the robust, dimensionless characteristics that can be represented
by physical equations. In this study, we aim to propose a vibration data augmentation
model that incorporates the structure of a PINN. Specifically, the model is designed with a
structure specialized for the vibration characteristics of rotating equipment, thus enabling
efficient consideration of the relevant physical features. The model proposed in this study
has the objective of mapping two types of physical information onto the existing structure
of a bidirectional GAN (Bidirectional GAN) [21]. One of the types of physical information
aims to incorporate order analysis, a key analytical focus in rotating machinery, which
analyzes harmonic frequency components based on the equipment’s rotational speed. The
other type of physical information aims to utilize cross-wavelet transform, a methodology
that analyzes the time–frequency axis correlation between two sets of vibration data.

2. Related Work

2.1. Time Series Data Generation Using Generative Models

Generally, research on methods for generating data to train AI models, particularly
deep learning models, has been consistently conducted. Recently, there has been a prolifera-
tion of studies focused on utilizing deep learning generative models for data creation [22,23].
The most commonly used are VAEs and GANs. Both VAEs and GANs are similar in terms
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of learning the data distribution based on maximum likelihood estimation. However, VAEs
belong to the explicit density model category, approximating the prior distribution of the
model to estimate the data distribution. In contrast, GANs are part of the implicit density
model category, which, instead of explicitly defining the model, iteratively performs sam-
pling to converge to a specific probability distribution. VAEs have the advantage of being
able to generate data similar to a given x by directly calculating the probability of x in the
training set, as shown in Figure 1.

Figure 1. Architecture of VAE.

However, VAEs have the drawback of producing “blurred” generated outputs owing
to the injection of noise and the imperfection of the variational bounds. Consequently, much
of the recent generative research has been based on GAN models. GANs are composed of
two neural networks, commonly referred to as the generator and discriminator, as shown
in Figure 2.

Figure 2. Architecture of GAN.

The generator aims to produce data that are difficult to distinguish from the real data,
while the discriminator’s role is to differentiate between genuine and generated data [24,25].
Although GANs have a more challenging training process compared with VAEs, they are
capable of generating sharper outputs and can cover a broader range of distributions
beyond the specific distributions exhibited by the given input data. These advantages have
led to their widespread use in recent research. The model proposed in this study also aims
to generate vibration data gathered from rotating equipment, leveraging the adversarial
training approach inherent to GANs. In this study, among various GAN models, we utilize
the Bidirectional GAN with a conditional GAN structure as the base model. Conditional
GANs aim to overcome the limitation of the original GAN, which cannot learn different
distributions for multiple labels when only sampling z from the latent space as input. To
address this, conditional GANs incorporate class information along with z as additional
input, enabling the GAN model to learn different distributions for each class. Conditional
GANs have evolved in various directions, from the simple act of adding a condition y to
using the image itself as a condition, as in the case of pix2pix. In this study, the condition is
set to include the presence or absence of defects, as well as the type of defects in the rotating
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equipment. This allows the model to learn the distribution of data that occur under various
conditions.

The Bidirectional GAN not only learns to generate x from z but also incorporates an
additional encoder structure that learns the inverse mapping operation, projecting x back
into the latent space as shown in Figure 3 [21].

Figure 3. Architecture of Bidirectional GAN.

The discriminator is trained using x and z as inputs, undergoing a process to align
pG and pE. The authors claim that this structure can overcome the saddle point problem,
which is a common issue in GANs. Subsequent research has indeed used the BiGAN
structure to synthesize more refined and higher-quality images. In this study, the generator
is required to simultaneously produce both the vibration signal itself and the continuous
wavelet transform (CWT) image. Therefore, a more stable training method is required. We
have configured the model to resolve the saddle point problem and reach a global optimum
by employing the inverse mapping technique proposed in BiGAN.

2.2. Frequency Feature Extraction Using Wavelet

The Fourier transform operates under the assumption that any given signal can be
represented as a sum of sine waves with varying frequencies and amplitudes. It is a method
used to decompose a given signal into its constituent frequency components and intensities,
thereby enabling data analysis in the frequency domain. Inherently designed for frequency
component analysis, the Fourier transform inevitably suffers from the loss of information
along the time axis [26]. To overcome this limitation, the short-time Fourier transform
(STFT) was proposed, as shown in Figure 4 [27]. STFT involves dividing a signal that
changes over time into short time windows and applying the Fourier transform to each
window. This allows for the extraction of frequency components present within each time
segment, which are then accumulated. The results of STFT can be represented as an image
with a time and frequency axis, making it suitable for signal representation. Consequently,
numerous machine and deep learning models have been applied to analyze given vibration
signals through STFT analysis.

The wavelet transform overcome the limitation of STFT, which suffers from a trade-off
between time resolution and frequency resolution owing to its reliance on sine wave-based
frequency decomposition [28]. A wavelet transform involves defining a waveform function
with a limited temporal extent and using it to analyze signals as shown in Figure 5.

This allows for an improved time–frequency resolution trade-off. Consequently, the
wavelet transform offers the advantage of enhancing time resolution for high-frequency
components and frequency resolution for low-frequency components. This enables a more
balanced resolution trade-off based on the nature of the signal’s frequency components.
However, the process of shifting the waveform function and calculating the similarity
for the given input signal in a wavelet transform, while scaling the waveform function,
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results in a significantly higher computational load compared with STFT. Consequently, the
wavelet transform is limited in real-world industrial applications owing to issues related to
real-time processing and memory constraints.

Figure 4. Short-Time Fourier Transform (STFT).

Figure 5. Wavelet Transform.

Certainly, research utilizing similar frequency analysis methods has been conducted
using multivariate time series data as well [29,30]. However, in most studies, each signal is
often treated as an independent entity, applying separate transformations to each signal
and subsequently concatenating them on a channel-by-channel basis [31,32]. Alternatively,
these transformations are applied to multiple received inputs and utilized accordingly. In
this study, in contrast with analyses that conclude with a frequency analysis of individual
signals, the aim is to apply CWT to two signals after performing frequency analysis for
both. This is to subsequently analyze the correlation between the two signals within the
frequency domain. CWT involves applying the same mother wavelet signal and analysis
technique to both signals. Following the transformation, the two values are multiplied
to generate the cross-wavelet spectrum. This spectrum showcases the correlation and
phase difference between the two signals in the time–frequency domain. The input signals
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utilized in this study are vibration data collected from the same vibration source with a
phase difference of 90°. Leveraging the advantages of CWT, which effectively represents
the frequency-based correlation and its strength, the study aims to analyze the bivariate
vibration data and interpret the interactions between them in the frequency domain.

2.3. Learning Physical Characteristics Using PINN

Certainly, AI models, particularly methodologies such as machine learning (ML) and
deep learning (DL), profoundly rely on data-driven approaches. Consequently, the depen-
dence on the additional information inherent in the actual data diminishes. However, in
domains where the underlying physical system is well-understood, leveraging predefined
rules as prior knowledge before training on gathered data can lead to achieving strong
performance with a limited dataset. This approach can also prevent issues arising from the
application of black-box models to hidden data, which is a concern owing to the nature
of such models. Recently, research aiming to combine the advantages of data-driven and
physics-based approaches has gained momentum. This approach is referred to as physics-
informed machine learning (PIML) or PINN. PINN is structured into two main branches,
as shown in Figure 6.

Figure 6. (Left): Physics-informed loss model; (Right): Physics-informed architecture.

One branch involves enforcing known physical information onto the AI model [33–35].
This can be achieved through methodologies such as incorporating the upper and lower
bounds of physics information into the neural network as regularization or utilizing loss
functions that leverage the physics information. The other branch involves the neural
network itself mapping physical information. This is achieved through a “physics-informed
(PI) architecture”, where specific nodes or layers are designed to receive or learn the physical
information [36,37]. In this study, the proposed approach involves incorporating a PI
input that considers frequency characteristics into the Bidirectional GAN-based generative
model. Additionally, the model generates cross-wavelet transform images based on learned
features during data generation. The differences between these images are used as a loss
function, referred to as the PI loss, to leverage PI.

2.4. Bearing Failure Detection via Deep Learning Model

Bearings are one of the critical components of rotating machinery, and the failure of
bearings is so significant that it can lead to the shutdown of the entirety of the equipment.
Accordingly, numerous studies have been conducted with approaches aiming to perform
bearing fault detection. Early research relied on features extracted by experts, utilizing
methods like Artificial Neural Networks (ANN), k-Nearest Neighbor, and Support Vector
Machines (SVM) for classification and anomaly detection. The features were mainly
collected based on frequency domain, including Short-Time Fourier Transform (STFT), Fast
Fourier Transform (FFT), Hilbert Transform (HT), and Wavelet Transform (WT) [38,39].
However, these methodologies have limitations due to the necessity of preceding feature
engineering, due to heavily relying on expert knowledge in selecting feature extraction
techniques, and in determining the structure of models based on these to perform tasks.
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With the development of deep learning, many studies have been conducted to utilize
the capability of deep learning to extract features directly from data. In the field of bearing
fault detection, research utilizing deep learning has been actively conducted [40–42]. Tand
et al. studied a method of visualizing data for the analysis of low-speed rotating equip-
ment [43]. Particularly, there have been many studies utilizing inputs from multiple sensor
data simultaneously, including methods diagnosing bearing status using multiple sensors
and a small number of filters [44], and methods mixing each sensor channel for robust
learning [45].

In this study, we utilize data from two sensors attached to the bearing. We model the
90-degree phase difference between the two sensors as a feature. Additionally, we propose
BiVi-GAN that synthesizes data using the frequency and temporal characteristics obtained,
thereby preserving correlations that cannot be considered in single-sensor data only.

3. Methodology

In this study, we propose a new GAN model, the BiVi-GAN, which employs a Bidirec-
tional GAN architecture combined with PI loss and PI input. The BiVi-GAN, as shown in
Figure 7, comprises three sub-networks: the generator, encoder, and discriminator.

Figure 7. Architecture of BiVi-GAN.

The generator accepts random noise z following a Gaussian distribution and a 1x2x
feature xphy extracted from real vibration data x, producing synthetic vibration data x’ and
synthetic cross-wavelet transform images cwt’. The encoder considers the real data x and
a 1x2x feature zphy extracted from random noise z as inputs and generates an estimated
value z’ for z. The discriminator performs the task of classifying between real and fake
by accepting the following as inputs: random noise z, the set of data generated by the
generator from z as {z, x}’, real data x, and random noise z’ generated by the encoder based
on x, represented as {z’, x}.

The proposed model utilizes two major types of physical information related to vi-
bration. One is the order frequency extracted from the vibration signal x. Order frequency
is a feature commonly used in order analysis, a diagnostic tool extensively employed in
the field of mechanical engineering that signifies frequency values that are multiples of the
equipment’s rotational speed. Numerous studies in the field of mechanical engineering
have demonstrated that order analysis not only distinguishes between the normal and
abnormal states of rotating equipment but also can diagnose the cause and severity of
anomalies. Hence, it’s evident that the order frequency contains substantial physical infor-
mation regarding defects in vibration data. In this study, we extract the 1st and 2nd order
frequency and directly input them into the generator as the physical information for the
given vibration data x. This can be compared to the method of incorporating physical prior
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knowledge, a technique frequently employed in PINN series of models. The generator
is tasked with learning about frequency characteristics of x that are not described by this
prior knowledge, as well as information regarding noises originating both externally and
internally from the system.

The other piece of physical information is the cross-wavelet transform data extracted
from the vibration signal. This study analyzes the condition of equipment based on data
simultaneously collected from two sensors, each with a phase angle of 90°. The phase
difference in sensors collecting data from rotating equipment allows for capturing distinct
vibration characteristics owing to the rotational trajectory made by the equipment’s axis.
The method of diagnosing abnormalities in the axis and bearings of rotating equipment
based on a 90-degree phase difference has been substantiated through numerous prior
studies. In several studies based on rotating equipment, it was common to construct and
analyze an orbit, which represents the trajectory of the rotating axis, based on the vibration
information acquired from two orthogonal sensors. However, in this study, we use wavelet
analysis, which offers richer information than the orbit and simultaneously represents both
the frequency and time domains. Among various wavelet-based analytical methodologies,
we employ CWT to visualize the frequency response correlation between the two vibration
signals. This visualized data are then utilized as the physical information extracted from
the given pair of vibration signals. In this study, we employ a strategy where the generator,
while producing the vibration signal, concurrently generates a CWT image. Through this
strategy, the generator is able to simultaneously learn information in the time domain from
direct analysis of the vibration signals, and information in the time–frequency domain
by comparing the CWT images. Essentially, in the proposed model, the order frequency
information is used as the PI input for both the generator and encoder. To compute the PI
loss, we utilize the CWT image to produce the CWT loss, which in turn is used to train
both the generator and encoder.

3.1. Physics Guided Generator & Encoder

Typically, a GAN considers the distribution of z as input, with the objective of having
the generator learn to produce outputs that closely resemble the desired distribution of
x. The goal is for the discriminator to be unable to distinguish between these generated
outputs and the real data. In this study, instead of learning a direct function from z to x’,
we first extract prominent features from x through order analysis. Using these frequency
characteristics, we generate a baseline for x’ termed xbase. This xbase serves as an inter-
mediate result, constructed solely based on the extracted features. While it may not be
entirely identical to x, it encapsulates prior physical knowledge. Therefore, the BiVi-GAN’s
generator learns the remaining frequency components and noise that xbase fails to represent.
That is, major features that can be clarified physically are utilized as prior knowledge,
while more elusive phenomena and noises are learned using the data. The encoder follows
the structure of BiGAN and is designed to perform a task that is entirely opposite to that
of the generator. The encoder considers the real signal x as input and synthesizes z’. In
this process, similarly to the generator, it also performs the task of extracting the primary
frequency components from z.

While the primary goal of this study is to synthesize vibration data themselves, as an
auxiliary task, it also undertakes the generation of cross-wavelet transform images. One
reason for this is that during the learning process of the cross-wavelet transform, features
are extracted that consider the correlation between the two signals. Consequently, when
generating vibration signals, vibrations that consider these features are produced. Each
signal is recognized not as an independent entity but as data with correlations. This enables
the generation of x’ to produce more realistic data.
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3.2. Theoretical Convergence
3.2.1. BiGAN with Auxiliary Loss

In this section, we will write generator, encoder, and discriminator as G, E, and D,
respectively, and L1 indicates L-1 Loss. The mini-max problem of the conventional BiGAN
structure is expressed in Equation (1) as follows [21]:

min
G,E

max
D

V(D, E, G) =

min
G,E

max
D

E(x,z)∼pEX
[log(D(x, E(x)))]

+E(x,z)∼pGZ
[log(1 − D(G(z), z))]

(1)

The probability distribution of (x, z) follows the distribution, as expressed in Equation (2).

PEX(x, z) = PE(z|x)Px(x)
PGZ(x, z) = PG(x|z)Pz(z)

(2)

3.2.2. Optimal Discriminator

For fixed G and E, we can identify optimal discriminator D. To identify optimal D,
we define D∗ as an optimal D.

Theorem 1. D∗ = pG(x)·pEX(x,z)
pG(x)·pEX(x,z)+pdata(x)·pGZ(x,z) .

Proof of Theorem 1. We can rewrite the mini-max problem of BiVi in Equation (3) as
follows:

min
G,E

max
D

V(D, E, G)

= min
G,E

max
D

Ez∼pzE(x,z)∼pEX
[log(D(x, E(x, z)))]

+Ex∼pdataE(x,z)∼pGZ
[log(1 − D(G(x, z), z))]

+Ex∼pdataE(x,z)∼pGZ
[L1(CWT(x), CWT(G(x, z)))]

(3)

For fixed G and E, we denote the arg max
D

V that maximize V as C(G, E). In this case,

C(G, E) can be expressed as an integral form in Equation (4) as follows:

C(G, E) =
∫

z pz(z)
∫
(x,z) pEX(x, z)

[
log(D(x, z))

]
d(x, z)dz

+
∫

x pdata(x)
∫
(x,z) pGZ(x, z)

×
[

log(1 − D(x, z)) + L1(x, z)
]

d(x, z)dx

(4)

Because distribution of pz(z) is equal to distribution of pG(x), C(G, E), can be simplified in
Equation (5) as follows:

C(G, E) =
∫

x

[
pG(x)

∫
(x,z) pEX(x, z)

[
log(D(x, z))

]
+pdata(x)

∫
(x,z) pGZ(x, z)

[
log(1 − D(x, z))

+L1(x, z)
]]

d(x, z)dx

(5)

To obtain optimal D, we can rewrite the equation for G and E as equation for D in Equa-
tion (6) as follows:

C(G, E) = C′(D)
=
∫ ∫

a · b log(D) + c · d log(1 − D)
+L1dμdφ

(6)
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where, a = pG(x), b = pEX(x, z), c = pdata(x), and d = pGZ(x, z). For the integral to be
maximized, the integrand must be maximal. Let f (D) = a · b log(D) + c · d log(1− D) + L1;
then, via differentiation, f ′(D) = a · b/D + c · d/(1 − D). Because f has maximum value
at f ′ = 0, we can obtain the following result:

D∗ = a·b
a·b+c·d

= pG(x)·pEX(x,z)
pG(x)·pEX(x,z)+pdata(x)·pGZ(x,z)

(7)

Therefore, D has optimal value of 1/2 when pG(x)× pEX(x, z) = pdata(x) · pGZ(x, z).

3.2.3. Convergence of C(G, E)

Theorem 2. C(G, E) has global minimum of PG = Pdata.

Proof of Theorem 2. When rearranging the expression for C(G, E) at the optimal D, it is
as expressed in Equation (8).

C(G, E) =
∫

x

[
pG(x)

∫
(x,z) pEX(x, z)

[
log(D(x, z))

]
+pdata(x)

∫
(x,z) pGZ(x, z)

[
log(1 − D(x, z))

]
+L1(x, z)

]
d(x, z)dx

=
∫

x

∫
(x,z) pG(x)pEX(x, z)

[
log(D∗)

]
+pdata(x)pGZ(x, z)

[
log(1 − D∗)

]
+L1(x, z)

]
d(x, z)dx

(8)

When isolating the L1 portion, it can be expressed in Equation (9) as follows:

L1(x, z) = L1(CWT(x), CWT(x̂)) (9)

The L1 fundamentally approximates the output values by inputting both the original
data and the generated data into the same function. Because the wavelet transformation is
based on convolution operations via FFT, its inverse transformation can be considered. This
indicates that the L1 corresponding to the wavelet transformation operates mathematically
in the same manner as the actual pre-transformation loss, approximating the generated data
to the real data. Consequently, approximation through the L1 has the effect that PG ≈ Pdata.
Via the converge of L1, we can assume that pG(x) ≈ pdata(x) = p(x); then, C(G, E) can be
rewritten as follows in Equation (10).

C(G, E) =
∫

x

∫
(x,z) pG(x)pEX(x, z)

[
log(D∗)

]
+pdata(x)pGZ(x, z)

[
log(1 − D∗)

]
+L1(x, z)d(x, z)dx

=
∫

x p(x)
[ ∫

(x,z) pEX(x, z) log(D∗)

+pGZ(x, z) log(1 − D∗)
]

d(x, z)dx

=
∫

x p(x) · [2JS(PEX ||PGZ)− log 4]dx

(10)

where the L1 converges to 0 and consequently vanishes. The convergence of C(G, E) for
this case has been proven in the previously presented BiGAN paper [21]. The minimum
value for this case is as follows:

2JS(PEX ||PGZ)− log 4 � − log 4
∴ C(G, E) � − log 4 ·

∫
x p(x)dx = − log 4

(11)
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In conclusion, the adversarial loss and L1 for C(G, E) converge simultaneously. Owing
to the properties of the two converging limits, C(G, E) converge to − log 4.

Therefore, the optimal D is 1
2 , and the generated data and the real data are approxi-

mated to have the same distribution as indicated by the above equation.

4. Experiment

4.1. Experiment Setting
4.1.1. Evaluation Method

When two probability distributions, P and Q, exist, KL divergence and JS divergence
are representative quantitative metrics to measure the similarity of the two distributions.
The KL divergence, or Kullback–Leibler divergence, calculates the difference between a
reference probability distribution and a target probability distribution and is defined as
follows [46].

KL(p‖q) =

⎧⎪⎪⎨⎪⎪⎩
∑

i
pi log

pi
qi

= −∑
i

pi log
qi
pi∫

p(x) log
p(x)
q(x)

dx = −
∫

p(x) log
q(x)
p(x)

dx
(12)

where P is the reference distribution and Q is the target distribution. The KL divergence
has two notable characteristics, and one of them indicates that KL divergence cannot be
used as a distance measure between two probability distributions.

KL(p‖q) ≥ 0
KL(p‖q) �= KL(q‖p)

(13)

The inability to use KL divergence as a distance concept is a critical issue when
employing it as an evaluation metric for AI models. This is because different values can
emerge based on how the reference probability distribution is set. That is, the model
performance can be measured differently based on whether the reference probability
distribution is from the distribution of values generated by the model or the actual data
distribution. Therefore, using KL divergence as a metric to measure the performance of an
AI model can be challenging. Consequently, we utilize the Jensen—Shannon divergence,
which expands upon the concept of distance inherent in KL divergence [47].

JS(p‖q) =
1
2

KL(p‖1
2
(p + q)) +

1
2

KL(q‖1
2
(p + q)) (14)

JS divergence is defined as mentioned above, and because it satisfies the commutative
property, it is suitable for representing the distance between two distributions. That is, in
contrast with KL divergence, it outputs the same value regardless of which distribution is
set as the reference point. Therefore, in this study, JS divergence was used as a quantitative
evaluation metric for the proposed model.

4.1.2. Dataset

This study aimed to generate 2D vibration data originating from rotating machinery.
To evaluate the performance of the proposed BiVi-GAN, we conducted training and testing
using the ‘Rotating Machinery Fault Type AI Dataset’ (Ministry of SMEs and Startups,
Korea AI Manufacturing Platform (KAMP), KAIST, 23 December 2022). The dataset, as
shown in Figure 8, was acquired at a rotational speed of 1500 RPM using a rotor testbed.
The specifications of the equipment used for data collection are listed in Table 1.
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Table 1. Rotor testbed setting.

Size 673 mm (W) × 280 mm (D) × 281 mm (H)

Weight 25 kg

Material Aluminum

Bearing 6202ZZ × 2EA

Motor DC 12V × 0.25HP (0.2 W), 0~3000 RPM

Main power 220 VAC

Figure 8. Rotor testbed.

The collected data consisted of four conditions: normal, imbalance, mechanical loose-
ness, and a combination of imbalance and mechanical looseness. Imbalance refers to the
most common cause of vibration in rotating machinery. It signifies a condition where the
center of mass of the motor does not align with the center of its rotational axis. Mechanical
looseness refers to a condition where the equipment is not securely anchored to a flat
surface or ground, causing the misalignment or tilting of the equipment. In this study, the
four conditions were organized into separate classes, and one-hot encoding was applied.
This encoded information was then concatenated with the latent z, forming a class-based
GAN structure.

The original data were collected over 140 s from four sensors with a phase difference
of 90°. It consisted of a total of 3,772,385 points from four channels. For training, a pair of
two sensors with a phase difference of 90° was configured. The window size was set to
1024, and slicing was performed using a stride of 200. In addition to slicing, no other signal
processing or preprocessing techniques were applied. The data were used in their original
state with considerable noise as input to maintain them in as similar as possible a state to
the data collected in a real environment. The training dataset was composed of 7080 slices,
with each class being represented equally. Additionally, a test dataset was formed with
2280 slices.

4.1.3. Implementation

BiVi-GAN was implemented using the PyTorch framework, and experiments were
conducted in the following computing environment. The generator, discriminator, and
encoder of BiVi-GAN were constructed based on one-dimensional convolutional neural
networks (1D-CNN) and implemented using a feature pyramid structure for both the
encoder and discriminator. However, in the generator, the part responsible for generating
cross-wavelet transform images was based on two-dimensional CNN (2D-CNN). It was
structured with a network depth identical to the other networks. The generator, encoder,
and discriminator networks used convolutional networks with a kernel size of four. Only
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the final layer of the discriminator included a sigmoid layer to make a binary discrimination
between real and fake samples.

Training was conducted in batches, with each training iteration using a batch size
of 128. The generator performed the CWT, and, owing to the inherent nature of GANs,
where the generator tended to learn more slowly than the discriminator, there might be a
risk of model collapse owing to differences in learning speeds. To compare and analyze
the performance of the proposed BiVi-GAN, an ablation study was conducted. A total
of six experiments were set up, each consisting of 500 epochs of training and validation
under the same conditions. These experiments varied based on whether the CWT loss was
used, whether the order frequency was used, and how many order features were chosen
to utilize.

4.2. Ablation Study

The proposed BiVi-GAN is built on the foundation of the existing Bidirectional GAN
and introduces two key contributions to advance the model. One of the contributions is
the utilization of the PI input, which extracts the first-order phase information through
order analysis from the input x and incorporates it into the model. The other contribution
involves training the model’s ability to reconstruct the cross-wavelet transform and use it
as an auxiliary task with a PI loss. An ablation study was conducted to assess the impact
of these two methodologies on the model’s performance and determine the improvement
compared with the baseline model. The analysis of the performance variation concerning
the utilization of rotational synchrony components involves three conditions: using only the
1x component, using both the 1x and 2x components, and not using any component, thus
examining the effect of these configurations on the PI input’s performance. Additionally,
by examining the conditions of using and not using the cross-wavelet transform loss, the
performance changes related to PI loss were analyzed. A total of six experiments were
conducted, and the results of each experiment can be quantitatively analyzed using JS
divergence. The JS divergence value approaching zero indicated that the data generated by
the model were similar to the original data, while a value close to one indicated dissimilarity
with the original data. The results of each experiment are listed in Table 2.

Table 2. Ablation study result.

Experiment No. Order Analysis Cross-Wavelet Transform JS Div

1 x o 0.774

2 x x 0.821

3 1x o 0.360

4 1x x 0.474

5 2x o 0.230

6 2x x 0.363

Based on the experimental results, the average JS divergence for the model using the
PI input was 0.35, while the model that did not use it had an average JS divergence of 0.79.
On average, this represents a 55.26% improvement in performance. Particularly, it should
be noted that there was a 47.71% improvement in performance when using only the 1x
component and 62.82% improvement when using both the 1x and 2x components. This
suggests that using the PI input assisted in effectively capturing the vibration characteristics,
contributing to improved performance. Furthermore, when using PI loss with cross-wavelet
transform images, the average JS divergence was 0.45, which is approximately a 17.73%
improvement compared with the model’s average of 0.55 when not using PI loss. Both
sets of results provided experimental evidence that the two contributions proposed in
BiVi-GAN indeed contributed to improved performance. Finally, when both PI input and
PI loss are applied in BiVi-GAN, it achieves a JS divergence of 0.23. This represents a
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70% improvement compared with the baseline model, Bidirectional GAN, which had a JS
divergence of 0.77. It is evident that applying domain-specific expertise to data-driven deep
learning models yielded significantly better performance compared with only using data.

4.3. Validation of GAN Data via Training

To verify whether the vibration data generated through the proposed BiV-GAN are
effective as input data for actual learning-based methodologies, experiments were con-
ducted to train one of the most representative deep learning models used in data analysis
methodologies based on deep learning. The deep learning model used in the experiment
utilizes a CNN model consisting of 3 Conv layers and 1 FC layer. The data were trained
in the same learning environment, using the same model and the same hyperparameters
as outlined in the following Table 3. The performance of the proposed methodology was
validated using the learning dataset by training under three different dataset environments
and performing tests on real data to evaluate the performance of the trained model.

Table 3. Train parameter setting.

Parameter Setting

o 0.774

x 0.821

o 0.360

x 0.474

o 0.230

x 0.363

In the first training, the learning was conducted using only the data actually acquired.
In the second training, learning was performed using only the data generated through the
proposed methodology, and in the final experiment, both the generated data and the actual
data were utilized for the training. A classification task was carried out for a total of four
classes (normal, imbalance, mechanical looseness, and a combination of imbalance and
mechanical looseness), and to evaluate the quantitative performance, Precision, Recall, and
F1 score were used. Precision represents the ratio of actual positives among the positive
judgments made by the model, while Recall represents the ratio of positives correctly
identified by the model out of the actual positives. The F1 score is obtained through the
harmonic mean of Precision and Recall, with all three indicators having values between
0 and 1, where values closer to 1 indicate better model performance. The results of the
experiments are listed in Table 4.

Table 4. Data validation experiment result.

Experiment No. Train Data Precision Recall F1 Score

1 Real Only 0.728 0.715 0.722

2 Generated Only 0.681 0.685 0.683

3 Real + Generated 0.815 0.816 0.816

According to the experimental results, training with only real data resulted in an F1
score of 0.722, while training with only generated data achieved an F1 score of 0.683. When
both types of data were used for training, an F1 score of 0.816 was achieved, resulting
in an approximate 13-percent improvement in performance, marking the highest perfor-
mance achieved. These results demonstrate that in cases where there is insufficient or a
lack of diversity in the available data, using the proposed BiVi model to synthesize data
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and incorporating it into the training can be beneficial, especially for utilizing bearing
vibration data.

5. Conclusions

In this study, we proposed BiVi-GAN for generating vibration data in rotating ma-
chinery. Our proposed model leveraged the strengths of deep learning in capturing data
characteristics and combined them with the physical knowledge of PINN. Consequently,
we were able to generate data that closely resembled real-world data. Using the cross-
wavelet transform as PI loss and order-analysis results as PI input, we observed a dramatic
improvement in performance, particularly when applying PI input. In the future, we aim
to conduct a study on methodologies that allow the application of physical information to
other tasks. We intend to explore how expertise in machine engineering, where substantial
physical knowledge is required, can be effectively complemented by AI technologies.
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Simple Summary: This review examines the latest technologies using machine learning (ML) meth-
ods, including the use of convolutional neural networks, decision trees, and generative adversarial
networks to solve problems concerning cancer recognition, planning optimal treatment strategies, as
well as predicting the likelihood of patient survival. The authors also discuss the prospects of using
machine learning technologies in medicine. In addition, the authors emphasize the need to address
issues such as the anonymization of data received from patients.

Abstract: The role of machine learning (a part of artificial intelligence—AI) in the diagnosis and
treatment of various types of oncology is steadily increasing. It is expected that the use of AI in
oncology will speed up both diagnostic and treatment planning processes. This review describes
recent applications of machine learning in oncology, including medical image analysis, treatment
planning, patient survival prognosis, and the synthesis of drugs at the point of care. The fast
and reliable analysis of medical images is of great importance in the case of fast-flowing forms
of cancer. The introduction of ML for the analysis of constantly growing volumes of big data
makes it possible to improve the quality of prescribed treatment and patient care. Thus, ML is
expected to become an essential technology for medical specialists. The ML model has already
improved prognostic prediction for patients compared to traditional staging algorithms. The direct
synthesis of the necessary medical substances (small molecule mixtures) at the point of care could
also seriously benefit from the application of ML. We further review the main trends in the use of
artificial intelligence-based technologies in modern oncology. This review demonstrates the future
prospects of using ML tools to make progress in cancer research, as well as in other areas of medicine.
Despite growing interest in the use of modern computer technologies in medical practice, a number
of unresolved ethical and legal problems remain. In this review, we also discuss the most relevant
issues among them.

Keywords: artificial intelligence; machine learning; oncology; radiomics; PET/CT

1. Introduction

Cancer is one of the most common diseases in the world. In 2022, 1,930,000 cases of
this disease were detected worldwide. Lung cancer is the leader in regard to the number
of deaths. Using computer-aided diagnosis (CAD) can significantly speed up the process
of cancer diagnosis. In order to use medical images as input data for CAD, it is necessary
to find a way to effectively identify features in images. Using machine learning in CAD
systems can improve the accuracy of histopathological diagnoses. Over the past 5 years, AI
has demonstrated unprecedented progress in the field of computer vision (CV). Methods
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of extracting dependencies from data, implemented with the help of AI, represent great
potential for cancer diagnostics. AI technologies are beginning to be widely used in
screening, diagnosis, predicting future outcomes, disease monitoring, treatment planning,
and clinical oncology research in general. An important novel direction is the development
of computer-driven systems for personalized medicine, namely the individual synthesis of
the necessary medical substances directly at the bedside. Thus, this approach could be of
great importance for the future success of medicine.

2. Diagnostics

Radiomics is the subdiscipline of AI dealing with the computation, identification,
and extraction of image features, as well as the generation of prognostic or predictive
mathematical models. It is a novel, developing, supplementary source of diagnostic
information used for analyzing clinical data based on ML [1]. It is a non-invasive method.
In silico research needs data to make a breakthrough for this clinical approach. It is possible
to identify various parameter correlations. It only requires the data to be available for
a representative sample of patients. This is the reason why the benefits of using AI
are extensive.

One of the problems in radiation oncology today is the uncertainty in creating medical
diagnostic image descriptions, which directly affect the model for predicting treatment
and patient care. This is often expressed by the large variability in the definition of images,
represented by the structural marks made by the doctor. In a prior study [2], W.C. Sleeman
et al. proposed an approach to change the description of images according to the American
Association of Physicists in Medicine’s (AAPM) Task Group 263 (TG- 263). Scientists
selected datasets with diagnostic images for the first 709 patients with lung cancer and
752 patients with prostate cancer from 40 medical centers. Training datasets were collected
as part of the Radiation Oncology Quality Surveillance Program (VAROQS). A comparative
analysis was carried out on the Apache Spark platform using machine learning algorithms,
such as Naive Bayes (NB), Random Forest (RF), Gradient Boost Tree (GBT), Multilayer
Perceptron (MLP), and Support Vector Machine (SVM) techniques. The authors constructed
signs of a bony anatomy that were used as additional vectors for the comparative analysis.
The optimization of the learning process was performed by reducing the dimension of
these features using the singular value decomposition (SVD), which gave an error within
0.1% at a higher speed, in contrast to the traditional principal component analysis (PCA).
The data from 50 lung cancer patients and 50 prostate cancer patients, provided by Virginia
Commonwealth University (VCU), were used as test datasets for validating the pre-trained
models. The best result was demonstrated by the RF algorithm at 98.77 for lung cancer
and 95.06 for prostate cancer. In general, using the prepared data, all the methods showed
accuracy at the level of 90%, except for NB, and using the clinical data, the results was
comparable to the Virginia Commonwealth University (VCU) external test dataset, and
here MLP showed itself to be the best of all. The presence of signs of a bony anatomy in
all cases increased the accuracy of the measurements, so even when using clinical kits, the
results were 95% for lung cancer and 91% for prostate cancer.

An indicator of normal or pathogenic biological processes in the body or reactions to
therapeutic intervention is a biomarker. F. Klauschen et al., in a prior study [3], describe how
a qualitative analysis of a new intracranial formation plays a crucial role in diagnosis and
can determine whether a confirmatory biopsy or resection should be performed in clinical
practice. Their research in the field of image analysis is aimed at extracting information
from a set of image data for further creation of biomarkers, the schematic diagram of which
is shown in Figure 1.

There are several phases of radiomics: image preprocessing, feature evaluation, feature
selection, classification, and evaluation. An important part of the study is preprocessing:
correction of intensity, unevenness, as well as noise reduction. The ML methods can be
successfully used to solve the problems described above. This review describes the studies
aimed at visualizing biomarkers for monitoring human responses to treatment, as well as
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for diagnosis and prognosis. The use of the imaging method would make it possible to dis-
tinguish patients with true progression from patients with pseudo-progression. This would
make it possible to change the treatment strategy and prevent ineffective treatment. As a
result of the selection of signs, 600,000 positron emission tomography (PET) clusters based
on three classes were obtained, and the accuracy of the diagnosis of pseudo-progression
and tumor progression was 90%. It was proved that in several types of cancer, the number
of tumor-infiltrating lymphocytes (TILs), along with other biomarkers, is a marker of
the response to immune checkpoint therapy. In their paper, A. Klauschen et al. discuss
automated approaches to calculate the number of TILs. Both classical approaches and
non-traditional approaches were considered. Explicable ML allows medical specialists
to interpret the result for patients. The ability to scan the whole slide images (WSIs) and
the availability of solutions that can process the WSIs are attracting much attention to
digital pathology. Breast cancer is an example where TIL scoring is important. The article
discusses various predictors of the body’s response to therapy. The authors consider seg-
mentation and direct classification methods. Classical segmentation methods require small
amounts of input data. Among them, threshold segmentation, the watershed method, and
segmentation based on morphology are considered. The main issue in applying the direct
approach is that the typical size of the input image for the deepest neural networks (NNs)
is 300 × 300 pixels. Currently, the WSIs have dimensions up to 10,000 × 10,000 pixels. The
authors discuss other approaches in which restrictive frames are displayed around the
cells as an alternative to segmentation. Examples of such methods include Fast-R-CNN,
Faster R-CNN, and others. In such methods, a sliding window is used, which moves
around the image and transmits location information if the window falls into a certain
cell. The result and its reliability are not always easy for a specialist to interpret. There are
several approaches that are used to explain the prediction result, such as Guided Backprop,
sensitivity analysis, integrated gradients, and DeepLIFT. These methods work in different
ways. For example, a gradient-based method shows which regions make the greatest con-
tribution to the prediction. The authors note that in order to use ML approaches in cancer
diagnosis everywhere, it is necessary to develop clear criteria and evaluation standards
using benchmark datasets.

 

Figure 1. Diagnosis of oncology using computer technology.

Big data phenomena give new opportunities in radiation oncology as well. However,
the problem of effectively processing big data retrieved from multiple sources and different
locations for radiation oncology clinics remains unsolved. J. Kazmierska et al., in their
work [4], tried to identify the barriers and limitations of big data adoption in the clinical
data science community in radiation oncology. Multisource big data in radiation oncology
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clinics arise from constantly increasing data flows, including electronic health records,
patients’ laboratory measures, output data, medical images (PET, computed tomography
(CT), cone-beam computed tomography (CBCT), magnetic resonance imaging (MRI)), and
the features extracted from images. The authors noticed that the clinicians themselves were
not able to process such huge datasets without clear rules, and the AI approaches coupled
with AI/ML could be really beneficial for scientists.

In [5], R. Seifert et al. discuss in detail the application of AI in various fields of nuclear
medicine imaging and the directions of advanced scientific developments. The authors
provide examples of applying AI for image analysis, pre- and post-processing of images, as
well as for predicting the success of treatment and psychotherapy.

Although the use of AI in nuclear medicine imaging is at an early stage of its develop-
ment, there is great scientific potential for the use of imaging systems in clinical practice.
There are several ways to use image analysis as a part of AI for the segmentation of tumor
PETs and for the quantification of a whole-body tumor volume. Currently AI is being used
to improve fade correction of PET images, image capture and recovery, automated disease
classification, and automated metastatic detection. The authors of the study emphasize
three approaches to using image analysis in nuclear medicine. First, ML is employed for
the specification of body subregions. Second, AI is employed to quantify the whole-body
tumor volume in PET acquisitions. Finally, AI for pathological accumulation segmentation
is commonly used in a variety of cancer research, like prostate-specific membrane antigen
(PSMA)-PET, bone scintigraphy, or fluorodeoxyglucose (FDG-PET). ML imagining is car-
ried out in nuclear cardiology to determine whether surgical intervention is necessary for
the patient. PET and SPECT usually combine imaging scans with CT. The study analyzed
the data from 713 patients who underwent myocardial perfusion scintigraphy and received
cardiac catheterization. Based on these results, the data parameters that represented in-
formation gain were selected from 33 total parameters and a prediction model was then
trained. The algorithm showed the results comparable or superior to human operators in
predicting the need for surgical intervention. The application of ML makes it possible to
integrate many variables that a person is not able to supervise. AI and ML are also actively
used in dealing with benign diseases. In addition to classification, AI effectively correlates
the dependence of various clinical factors with treatment options.

Individual processing can also be performed by AI, this is especially important in
time-consuming processes such as complete image reconstruction. This leads to a decrease
in the number of indicators used and prevents the need for simultaneous acquisition of CT,
which results in a decrease in radiation exposure. The data collection time is also reduced,
which increases the number of studies.

One of the main promising directions of the ML development for cancer diagnostics is
the separation of a metastatic tumor in the body, taking into account various parameters
of metastases and tumors, the accurate determination of changes in the volume of each
metastasis, the study of the tumor for lesions in vivo, the analysis and processing of
dynamic PET data, and automatic image noise reduction.

The confidentiality of patient data while organizing the general access to medical
diagnostic data for solving specialized problems is an important issue for the healthcare
sector in terms of progress and innovation development. The study in [6] presents a dis-
tributed structure of Personal Health Train (PHT) based on the FAIR data model (Findable,
Accessible, Interoperable, Reusable), which allows ML and data mining in a decentralized
manner while maintaining patient privacy. T.M. Deist et al. used the total data coverage at
eight medical organizations in five countries, which made it possible to provide information
on 23,203 clinical cases. The authors trained the ML Logistic Regression (LR) model on
14,810 patients (treated from 1978 to 2011) and confirmed it on 8393 patients treated from
2012 to 2015. As a result, a comparative analysis has been conducted with an alternative
platform for distributed data analysis and ML DataSHIELD. The possible weak points of
PHT are also highlighted.
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Modern clinical diagnostic studies in medical institutions generate a large amount
of heterogeneous data. Precision medicine methods such as next-generation sequencing
involve evaluating tens of thousands of parameters when diagnosing one patient. In [7],
J.-E. Bibault et al. provided an evidence base for the effectiveness of using Big Data
technology for the digital support of modern radiation oncology. A summary analysis of
the advantages and disadvantages of the ML algorithms was performed. The considered
ML models included Decision Tree (DT), NB, k-means (kM), SVM, NN and deep learning
(DL). Scientists have considered various possibilities for obtaining high-quality data when
creating predictive models. Discussing the advantages of using the DT algorithm, it can be
noted that it is fast and accessible for the user to understand the mechanism of its operation.
Nevertheless, for its successful application, it is necessary to observe the rule of mutually
exclusive classes and determine a clear order of attribute selection. In addition, there is a
risk of retraining. Numeric attributes must comply with the law of normal distribution.
The same limitations exist for the NB and k-NN algorithms, but the k-NN algorithm has
a significant advantage; it is resistant to possible misplaced values in the dataset and to
noise. Scientists note that the k-NN algorithm can be applied to nonlinear classification,
and its model is robust. Discussing the SVM and NN models, it is impossible not to note
the long time spent on training and operating the models, the risk of retraining, and the
difficulties often encountered in interpreting the results. The search for the optimal network
architecture often takes place through a series of tests. Nevertheless, these models are
resistant to noise and missed dates, limit the risk of error, and can be used to solve both
regression and classification problems. These and many other advantages are the reason
for their popularity in solving problems of recognizing malignant tumors and predicting
the probability of patient survival.

The data regimentation and registration on new cancer cases require a lot of human
resources. To solve this problem and to provide the automated input of data on the new
cases of pathologies of prostate adenocarcinoma, the authors of [8] proposed a pre-trained
ML model based on the SVM method. The data collection for the study took place at the Bas-
Rhin registry in two stages. First, 982 cases of pathologies in 2014 were analyzed to build
predictions for 785 cases filed in 2015. Then, 2089 cases in 2014–2015 were analyzed, and
926 possible pathologies were presented in 2016. The overall accuracy for the interventions
was about 97%, the SVM method was well-demonstrated on the unstructured reports of
pathologies, and the main errors were associated with the patients’ place of residence.
To achieve the results obtained and reduce the number of pathology reports, the authors
performed a preliminary analysis of all incoming data. This approach consisted of searching
the keyword “simple” in the patient’s history, as well as the exclusion of uninformative
records and the removal of unnecessary characters. The R software (version 3.5) and rWeka
package https://cran.r-project.org/web/packages/RWeka/index.html (accessed on 12
December 2023) were used as the tools for the implementation of the developed algorithms.

Every year, more than 600,000 cases of colon cancer are detected in the world. One
of the main aims of applying ML in medicine is to build and improve the accuracy of
predictive models for the development of the disease, the effectiveness of the prescribed
treatment, or the occurrence of postoperative complications and re-hospitalization. In [9],
the authors applied DL methods to diagnose six types of colonic mucosal lesions using
convolutional neural networks (CNNs). Scientists used pre-trained deep CNN of the
ResNet and EfficientNet architectures to develop an algorithm for automatic segmentation
of WSI colon biopsies. The authors compared several methods and approaches for solving
the classification problem and concluded that the multiple-label approach was preferable
because some WSI fixes may belong to more than one class or none of them. As a result,
they achieved an area under the receiver operator characteristic (ROC) (AUC) curve of up
to 0.96.

In [10], E.L. Barber et al. proposed improving the accuracy of such methods based
on the use of natural language processing (NLP) on unstructured data. They collected a
set of medical reports with preoperative CT in women with ovarian cancer to isolate addi-
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tional sign vectors. To form the required datasets, the Northwestern Medicine Enterprise
(NM-EDW) repositories were used, in which patients were over the age of 18 years old
and underwent surgery between 2011 and 2017. The authors reported that all language
deviations had been removed to extract the target functions during data preprocessing.
Unigrams and bigrams were chosen as the form of extraction since they showed the best
results. Further, the authors formed three sets of NLP functions, where in the first case,
a token dictionary was used together with LR using the LASSO method to reduce the
dimension. The second set used all non-zero coefficients from the first case, applying
principal component analysis. For the final set of functions, word2vec was used to generate
patient vectors for the dictionary matrix tokens. The authors implemented two models of
outcomes according to the degree of postoperative complications. For verification, 5-fold
cross-validation was implemented. This reportedly resulted in a slight increase in AUC of
0.01 on average for both cases. The transfer of the obtained results into the final prediction
model made it possible to achieve a 20–25% increase in the accuracy of predictions.

It is possible to predict a pathological response in gene overexpression from cancer
patients receiving neoadjuvant chemotherapy (NAC). Research was carried out on breast
cancer, evaluating intratumor HER2 gene expression [11]. The final model had high
sensitivity of 99.3%, specificity of 81.3%, positive predictive value (PPV) of 97.9%, negative
predictive value (NPV) of 92.9%, and diagnostic accuracy of 96.4%. The results show that
this model may be helpful in clinical decision making. In terms of successful validation in
larger multi-institutional studies, these results could be used to better select those patients
who could benefit from anti-HER2 treatment.

In [12], Hsiao-Yu Yang et al. built ML prediction models for breast cancer using the
breath biopsy principle. This principle helps to make decisions both during treatment and
during surgery. The implemented breath biopsy system uses a sensor array to determine
the structure of biomarkers and supervised machine learning methods. A carbon dioxide
(CO2) monitoring system receives the purest alveolar air, excluding eating, oral, and
smoking contaminations. If the exhaled breath from the lungs has a high enough dose
of specific volatile metabolites (or volatile organic compounds, VOCs) to be detected by
the sensor array, then those features can serve as biomarkers. In this study, the collected
air was analyzed by the Cyranose electronic nose (E-nose) 320, a chemical vapor sensing
instrument consisting of 32 chemical sensors based on nanotubes in the standard array
which converts some VOCs in the breath to a sensor resistance response. Technically, gas
chromatography in combination with mass spectrometric analysis is performed by the
E-nose, and the analysis of respiration biomarkers with specific VOCs is collected into
datasets. For example, the breast cancer pattern contains pentane VOCs as a disease marker
and can be detected by the E-nose with reasonable accuracy of 90% and higher. The datasets
were collected for two years (2016–2018), and a total of 899 subjects were screened and
estimated. The ML model and parameters consist of the following algorithms: k-nearest
neighbors (k-NN), NB, DT, NN, SVM with linear, radial, and polynomial kernels, and
RF. The authors reported that the RF model surpassed the others, having the following
parameters. The prediction accuracy of breast cancer in the dataset was 91%, and the
AUC was 0.99 on a 95% confidence interval (CI) of ROC. PPV and NPV were the same, at
97%, respectively.

It is a well-known fact that early diagnosis of lung cancer increases the patient’s
chances for recovery, as well as social and labor adaptation. The analysis of metabolomic
biomarkers and changes in a metabolite pattern at an early stage provides an informative
approach to the assessment of tumor progression and plays a crucial role in distinguishing
the tumor stages. Such an analysis has a different degree of sensitivity, which indicates
different stages of lung cancer. As a rule, if metabolomic biomarkers are detected as part
of the early diagnosis, additional examination is prescribed. The process of discover-
ing and identifying metabolites as promising biomarkers is implemented in the study of
Ying Xie [13]. According to the study, six ML techniques were applied to 110 lung tumor
patients at stage I and 43 healthy individuals; the best AUC value achieved was 0.923
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(95% CI: 0.871–0.975), with a sensitivity of 79.6% and specificity of 93.0%. The data prepara-
tion in this study began with the metabolomic chromatographic separation of the collected
assays, then liquid chromatography–mass spectrometry (LC-MS) analysis was performed
using a Waters ACQUITY UPLC coupled with a 4000 Q-TRAP mass spectrometer. All
LC-MS data were preprocessed and normalized (AB Analyst Software package version
1.6.2), multivariate statistical analysis (SIMCA-p14 package (Umetrics AB, Umeå, Sweden))
was applied, and principal component analysis (PCA) was selected for dimensionality
reduction problem solving. Based on 46 influential metabolomic biomarkers with statistical
significance for stage I lung tumor patients, the top 10 metabolic biomarkers with higher di-
agnostic value (AUC > 0.800) were chosen. These 10 biomarkers made it possible to clearly
separate patients with stage I lung cancer from healthy persons. These data composed a
training set for the k-NN, NB, AdaBoost, SVM, RF, and NN ML techniques. The authors
reported that the NB, RF, SVM, and NN models showed the best prediction quality (AUC
was 1.000), and the sensitivity of these models was from 0.909 to 1.000, which is enough to
recognize the early lung tumor stage and appropriate for diagnosis.

Prostate cancer can be identified by investigating a specific gene, prostate cancer gene
3 (PCA3). PCA3 observation shows the overexpression of this gene in tumor tissues in 95%
of cases, and thus it is an essential biomarker candidate. The authors of [14] used their orig-
inal low-cost biosensors for PCA3 detection to avoid complex, specialized approaches that
require polymerase chain reaction, optical changes measurement in the emission of light
and fluorescence emission methods, and transcription-mediated amplification. The biosen-
sors were fabricated using multi-walled carbon nanotubes and layer-by-layer (LbL) films
of chitosan with interdigitated gold electrodes. Then, the PCA3 ssDNA probe equipped
with incorporated gold nanoparticles was investigated by electrochemical impedance
spectroscopy (using a PGSTAT 204, Autolab system) and UV–vis spectroscopy (using a
Hitachi U-2001 spectrophotometer). The spectroscopy measurements were mapped into 2D
spectrum plots by applying the interactive document mapping technique while preserving
the similarity of the spectral objects in projected space. Next, a digital scanning microscope
was used and a dataset for the ML training was acquired. As the training dataset contained
a relatively small number of samples, the data augmentation procedure was implemented,
and an eight-class classification task was formulated. Before the classification, texture
feature extraction was implemented with the following techniques: Gray Level Difference
Matrix (GLDM), Fourier descriptors, Complex Network Texture Descriptor (CNTD), Fractal
descriptors, Adaptative Hybrid Pattern (AHP), Local Binary Patterns (LBP), Complex Net-
work, Randomized Neural Network (CNRNN), and Local Complex Features and Neural
Network (LCFNN). Three types of classifiers were used: SVM with linear kernel; Linear
Discriminant Analysis (LDA); and 1-Nearest Neighborhood (1-NN). The authors reported
that the maximum accuracy was 99.9 (0.3) using the LCFNN descriptor with SVM and LDA
classifiers in the binary classification.

Genomic lesions involve in a variety of morphologic abnormalities, and morphologic
evaluation of blood and marrow cells serves as an essential and general approach to study-
ing myelodysplastic syndrome pathogenesis. The diagnosis of myelodysplasia (MDS) is
rather difficult due to the large variety of chromosome lesions, diversity of epigenetic
alterations, and complexity of processes when the blood-forming cells in the bone marrow
experience sufficient transformations and become abnormal. Improving diagnosis and
prognosis of MDS can be achieved with modern AI/ML models and statistical and bioinfor-
matics tools applied to large genomic and morphologic data, according to Y. Nagata et al.
in [15]. They analyzed bone marrow morphologic alterations in 1079 MDS patients and
identified a total of 1929 somatic mutations with whole-exome sequencing (Illumina HiSeq
2000 device). Sequencing errors were reduced and targeted sequencing was performed. To
improve data quality, the authors used ANNOVAR sample annotation and compared them
with sequenced controls and mutation databases (including dbSNP138, 1000 Genomes,
ESP 6500, and Exome Aggregation Consortium (ExAC) databases), in addition to filtering.
Using the Consensus Cluster Plus and radomForestSRC packages in R, the authors deter-
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mined that the most frequently mutated genes were TET2 (20%), ASXL1 (17%), SF3B1 (13%),
SRSF2 (11%), DNMT3A (11%), and RUNX1 (10%). Based on this result and the Bayesian
ML procedure, there were eight genetic signatures identified: a DT of eight subtypes for
the LR MDS patients (LR-SA through LR-SH). The total accuracy of this approach for the
detection of somatic mutations is up to 98.7%.

With the advent of the Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-associated protein 9 (Cas9), it has become possible to use computer technologies
to edit genes for further use in hematology and oncology. In [16], Han Zhang and Nami
McCarthy describe the prospects of using the CRISPR system for genome editing to treat
hematological diseases such as lymphoma, myeloma, leukemia, etc. The conducted studies
have shown that the use of the CRISPR system makes it possible to identify the potential
therapeutic effects of using various drugs in the treatment of lymphomas. Thus, in [17], a
target gene for the therapeutic activity of NUTLIN3 was discovered. The use of CRISPR
in the suppression of the oncogenic transmembrane protein MUC1-C made it easier to
create knockout agents for the treatment of multiple myeloma (MM). However, there is
a lot of clinical practice ahead to prove the effectiveness of this method. Therefore, aa
team of scientists at Sichuan University in Chengdu working under the guidance of the
oncologist Lu You [18] received permission from the ethics commission, and in 2016, for
the first time, injected human cells whose genes were modified using the CRISPR/Cas9
technology. The rapidly increasing popularity of this method for the treatment of cancer
provides a great number of ways to integrate CRISPR and ML to identify the CRISPR
arrays using ML algorithms. In [19], the authors proposed an approach for separating the
true CRISPR data arrays from false ones based on the developed CRISPRidentify tool. The
developed pipeline consists of two stages: the detection and generation of candidate arrays
and universal evaluation of arrays to increase sensitivity and specificity. A. Mitrofanov et al.
in [19] identified new training sets, based on which they then trained a classifier to evaluate
candidate arrays. Six different datasets were used. A feature vector was generated for each
candidate array, which was used to evaluate the pipeline. The Extra Trees classifier from
the Python Scikit-learn package https://scikit-learn.org/stable/ (accessed on 12 December
2023), which was integrated into the pipeline, was used to conduct the assessment. As a
result of a number of tests, the Extra Trees method surpassed the classifiers based on NB,
SVM, k-NN, etc., with a median accuracy of 0.91. In the conducted test, CRISPRidentify
was able to detect 147 previously annotated arrays. The developed tool is able to detect the
arrays with a limited number of repeating separators, as well as to create dynamic filtering
criteria based on the data received during training.

The molecular genetic somatic mutation research in cancer plays an essential role and
the presence of mutated genes that belong to the Ras subfamily (e.g., KRAS, NRAS, HRAS)
allows for the detection of several cancer types. The Ras subfamily genes can normally exist
in the inactive form and encode a cytoplasmic protein involved in intracellular signaling
from growth factor receptors. For example, in the vast majority of cases, constant activation
of KRAS and NRAS genes leads to malignant mutation of the cells and activates the EGFR-
RAS-RAF pathway. This pathway signals tumors in such primary cases as pancreatic
adenocarcinoma, lung adenocarcinoma, thyroid carcinoma, and skin cutaneous melanoma.
In [20], Way et al. proposed a method of classification and prognosis of Ras activation
in cancer using ML and the Pan-Cancer Atlas data. At that time, the data in The Cancer
Genome Atlas (TCGA) Pan-Cancer Atlas included 9075 tumors across 33 different cancer
types, but now the number of tumor cases included in the Atlas is over 11,000. The data
for the ML model training were collected from three sources: the GISTIC2.0 source, cancer
cell lines, and Illumina RNA sequencing. The ML model was trained on those data after
preprocessing and filtering. The model is elastic net LR with penalties. The elastic net is
a regularized regression algorithm that combines both the LASSO and Ridge techniques
to improve regularization through removing weak variables altogether, as with LASSO,
or reducing them closer to zero as with Ridge. The authors reported high performance of
their ML model, with 84% AUC, in predicting Ras pathway activation metrics.
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Recent years have witnessed the success of CNNs, driven by the development of DL,
dramatically increased computing power of GPUs, and the emergence of large volumes of
labeled datasets in visual recognition problems. As a result, DL and CNN have become
increasingly popular in CV in various fields [21], including diagnostics and medicine. The
most common examples include classification of skin lesions [22], histological classification
of breast cancer [23], and mortality assessment by chest radiographs (lung cancer). ML is
increasingly used to solve the problems of segmentation and classification of cancer cells in
various locations in the body; new systems are being developed and improved that can
detect the presence of pathological cells and classify them using a loaded image of scanned
glass with histology [24–28].

One of the examples of using the ML models to solve the problem of skin cancer recog-
nition was the development of the “SkinVision” medical service https://www.skinvision.
com (accessed on 5 February 2024). The developed application combines AI technologies
and the experience of highly qualified oncologists in order to provide recommendations for
the prevention of skin cancer and timely detection of diseases. Among the assessed signs
are the shape, texture, and color of skin formations. It has been proven that the use of the
algorithm in 95% of cases makes it possible to detect the disease at an early stage, but the
control of a human specialist is still a prerequisite.

An important application of the ML methods is the study of attenuation correction
and image restoration in PET. In [29], Tonghe Wang et al. confirm that in PET, an accurate
quantitative assessment of the absorption of indicators is of great clinical interest. Incorrect
solution of the problems of inaccurate attenuation and scattering of photons can lead to a
deterioration in the accuracy of the PET diagnostics. The authors claim that in recent years,
sharing Magnetic Resonance (MR) with PET has become a promising alternative to PET/CT
due to the excellent anatomical visualization of soft tissues without ionizing radiation. The
automatic classification and manually drawn contour methods are limited by the inaccurate
prediction of air and bone. These methods have been replaced by other techniques, such as
warped atlases of the MR images labeled with known attenuation factors to the patient-
specific MR images. Their effectiveness strongly depends on the registration algorithms.
The authors emphasized that image post-preprocessing and the use of noise regularization
during reconstruction allowed them to compensate for the differences between neighboring
pixels to reduce the noise level in the image. The study suggests two solutions, depending
on whether only a PET scanner was used or PET/MR images were obtained. In the second
case, the authors analyze the advantages of using the convolutional auto-encoder (CAE) to
generate CT tissue labels from the source images. In addition, an RF method is considered
for training a set of decision trees. These methods have proven their effectiveness. The
MR images are not available in the PET scanner. The most common networks used for
processing PET data are GAN and U-Net. The authors consider using the cycle-constant
GAN (CycleGAN) method, which showed excellent performance in most of the evaluated
indicators and less bias in defeats. In addition, high-resolution PET can be used to visualize
and accurately measure the concentration of a radioactive indicator in small structures.

Endometrial cancer (EC) is the most common gynecologic cancer in industrialized
countries. About 15% of patients develop recurrence with limited treatment options and
poor survival. To improve patient survival and to choose between the most invasive
surgical procedures or drug therapy, the reliable identification of patients from different
risk groups is required. To minimize the risks of cancer recurrence, new methods of image
analysis are needed.

In [30], E. Hodneland reviewed a fully automated approach to primary tumor seg-
mentation in endometrial cancer using three-dimensional CNNs. With this approach, the
estimates of tumor volume and the accuracy of CNN-based segmentation are comparable
to the segmentation results obtained by radiologists. Automated and accurate CNN tumor
segmentation provides new opportunities for full-scale operational radioma tumor profil-
ing, allowing for prognostic markers, which makes oncology treatment more personalized
for each patient.
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Preoperative MRI in patients with endometrial cancer provides information about
the spread of the tumor, which is necessary for the choice of a surgical procedure and
drug therapy. In addition, the full range of tumor MRI can provide the radioma signatures
of the tumor, which are important for the selection of the optimal treatment regimen for
a particular patient. The sample for the CNN training consisted of 139 patients, while
expert physicians significantly disagreed on the placement of the primary tumor in 14%
of cases. CNN allows for the automatic extraction of tumor volume and tumor texture
characteristics, which makes it possible to obtain better prognosis and individualization of
therapeutic strategies for endometrial cancer. The results obtained were comparable to the
human expert level, which was confirmed during the Wilcoxon signed rank test. Manual
segmentation of the tumor to calculate the volume and study the textural characteristics
of the tumor is a time-consuming process. E. Hodneland et al. demonstrate the use of
two-dimensional U-Net convolutional networks to solve the segmentation tumor issues.
There are many powerful frameworks and platforms that allow specialists to implement
DL in 3D medical imaging. The automatic segmentation method has the potential to detect
systematic changes in tumor volume in response to various treatment strategies. Such
potential has high value in clinical drug trials. There were no significant differences in the
conducted Intraclass Correlation (ICC) estimates. This suggests that the network performs
functions at a level comparable to radiologists.

CV development in medicine has recently opened up many new avenues for solving
problems in the field of cardiovascular diseases, where echocardiography is uniquely suited
to DL as a simple and effective method for collecting and interpreting data [31]. DL helps
pathologists to conduct histological analysis of tissue samples, which is subjective in nature,
and different perceptions of pathologists can lead to misdiagnoses [32]. The latest advances
in technology have made it possible to create new scanners that capture histological
specimens with high resolution and obtain WSIs [33]. This, combined with advances in
AI, has led to the research and commercialization of AI-based digital histopathology [34].
James T. Grist et al. describe the methods of RF, l-NN, and AdaBoost, which were used
to create the model [35]. The univariate classifier obtained 85% accuracy with AdaBoost.
Using the SVM method had the highest precision in discriminating between high- and
low-grade tumors. The study showed that the combination of the multiparameter MRI,
the ML methods, as well as single-factor analysis can be used to distinguish both highly
differentiated and low-differentiated brain tumors in children, as well as to classify tumor
types with a high accuracy of about 85%.

The study [33] by Evans et al. provides examples of medical data visualization in
cardiology, dermatology, and pathology. The authors note that CV enables solving medical
problems such as screening, segmentation of pathologies, predicting outcomes, as well
as disease monitoring. The most important DL technique used to solve these problems is
CNN. It hardcodes the key feature of images—invariance. The study of medical data is
associated with specific problems. Various methods are used to solve them. The authors
describe the use of supervised learning, which uses data points and data labels.

Glioma is one of the most common primary brain tumors. ML is used to visualize
gliomas and can act as a non-invasive assessment of the molecular characteristics of gliomas.
After such an assessment, the data are sent to the laboratory for further clinical trials. It is
also noted that the segmentation of tumor volumes in PET can be automated by implement-
ing CNN. Specialists face difficulties in diagnosing children’s brain cancer, because the MR
scanning method is ineffective in the brain areas with poor magnetic field homogeneity
and small lesions. T.C. Booth et al. [36] discuss the methods of diffusion-weighted imaging
(DWI) and dynamic susceptibility contrast imaging (DSC), which are used in children brain
tumor diagnostics. DWI creates images weighted by the water velocity in a given voxel.
DSC displays the dynamics of contrast media using rapid imaging techniques (EPI and
PRESTO). Supervised machine learning utilizes mean apparent diffusion coefficient (ADC)
or mean cerebral blood volume (CBV) data features and high and low grade of tumor
types as classes for mathematical algorithm training and assigning datasets to classes.
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The applications of supervised learning to oncological medical imaging have commonly
utilized single measures of the tumor microenvironment between tumor types. F-statistics
were used to evaluate the discriminant ability of classifiers. The authors in [36] conducted
controlled ML using the Orange toolbox in Python (version 3.6) and a single NN.

The Wisconsin diagnostic breast cancer dataset (WDBC) has remained in demand for
many years. It consists of a total of 569 records classified into two categories: malignant
(212) and benign (357) tumor cell cases. A detailed description of WDCB that contains
10 essential real-valued features (radius, texture, perimeter, etc.) computed for each cell
nucleus makes this dataset an excellent candidate for ML model training and estimation.
P. Gupta and S. Garg, in their study [37], applied six different models to WDBC, including
k-NN, LR, DT, RF, SVM, and deep learning ANN (DL_ANN). They estimated statistical
metrics for the above-mentioned models and reported on the following results. All six ML
models trained on WDBC had high accuracy of over 95%, but in this case, the preferred ML
model was the DL_ANN model, having an accuracy of 98.24%, and the precision, recall,
and F1-score for this model were over 98%, too.

R.T. Lewinson et al. developed an ML neural network prediction model for the pre-
diction of cutaneous immune-related adverse events (irAEs) from anti-PD-1 therapy [38].
This model was trained on the dataset of 143 metastatic melanoma and 339 non-small
cell lung cancer patients treated with anti-PD-1 therapy. The authors used a three-layer
fully connected feed-forward neural network, then trained it with 85% of the collected
dataset and tested it with the remaining 15% of the dataset. The model showed promising
predictive results, including an AUC of 76.5% and overall accuracy of 78.1%. It was con-
cluded that ML models could be applied to the identification of at-risk patients for early
dermatologic interventions.

A.M. Bur et al. [39] proposed models for predicting pathological nodal metastasis in
oral cavity squamous cell carcinoma. The datasets for the ML models were extracted from
the National Cancer Database, totaling 1961 cases with confirmed tumors and 71 patients
treated at a single institute. The former dataset was split into two parts of 1570 training
cases and 391 testing cases, respectively. The latter dataset was split into a {51:49} percentage
proportion. The authors developed several ML models for processing those datasets to
predict pathologic lymph node metastasis. The following ML models were implemented:
LR, DF, kernel SVM, and Gradient Boosting Machine (GBM) algorithms. The best result for
the NCDB dataset was the DF classification model, with an AUC of 0.712 (sensitivity of
0.753 and specificity of 0.492), and the best result for the SI dataset was the DF classification
model, with an AUC of 0.840 (sensitivity of 0.917 and specificity of 0.576).

R. L. Gullo et al. [40] provided an overview of the early prediction of response to NAC
with an ML model. One can consider NAC as a potential standard that is widely used
to treat several subtypes of breast cancer. Generally, early identification and prediction
of breast cancer demonstrate decreasing patient mortality, and MRI is the most applied
technique for this purpose. Owing to a great number of such features as texture, shape,
color gradings, and others, the MRI images could be one of the essential candidates for the
so-called radiomics signature. Along with proper labeling of MRI images in the radiomics
signature, ML approaches could be applied to the classification and prediction of tumor
changes and patients’ health parameters. The authors considered specific ML classifiers
for the prediction of residual cancer burden, recurrence-free survival, and disease-specific
survival, namely linear SVM, LDA, LR, RF, SGD, DT, AdaBoost, and extreme gradient
boosting (XGBoost). The variables between integrated clinical and MRI data frequently
have latent and non-linear relationships. Thus, the ML algorithms are supplemented
by statistical methods, for example, Bayesian LR. When clinical and MRI features are
combined, they demonstrated a better accuracy of 0.86 (95% CI 0.71–0.96) with a sensitivity
of 0.88 (95% CI 0.71–1) and a specificity of 0.82 (95% CI 0.56–1). Predictive response to
NAC is usually improved when one of the DL techniques is applied. The most used DL
architecture is CNN consisting of convolutional, fully connected, dropout, max pooling,
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and classifier layers. The accuracy of the three-class prediction of NAC can reach up to
87.7% ± 0.6% with a specificity of 95.1% ± 3.1%, and a sensitivity of 73.9% ± 4.5%.

The balance between prognostic biomarkers of adenocarcinoma and squamous cell
carcinoma (SqCC) is not in favor of the latter, since SqCC biomarkers have been studied less
intensively. In the study by Y. Koike et al. [41], a total of 135 peripheral SqCC confirmed
cases were analyzed to develop ML models for classifying and determining tumor, stroma,
and necrosis areas. They used an ML approach to the prognosis of the stroma component
significance in the histomorphometric analysis of patients suffering from lung SqCC. The
dataset was prepared by converting ematoxylineosin tissue glass slides into high-resolution
digital data using the Hamamatsu Photonics NanoZoomer 2.0 system, and then the images
were processed with color-based segmentation through kM clustering implemented by
MATLAB. As a result, the described approach provided the exact calculation area of the
cancer cell component, the cancer cell necrosis component, and the stromal cell component.
The authors reported that the ML approach confirmed the prognostic significance of the
ratio of stromal cells in the prognosis of lung SqCC.

PET coupled with CT can serve as an integrated tool providing holistic quantification
of tumor metabolic activity with tissue density and structural property description. The
resulting image radiomics biomarkers and volumes of interest of images are essential quan-
titative predictors for high-risk human papillomavirus (HPV) infection and were studied by
S.P. Haider in [42]. A complete set of PET/CT features accounting for 1317 PET and 1317 CT
features per lesion of a total of 190 patients with HPV-associated oropharyngeal squamous
cell carcinomas was screened. The authors developed the locoregional progression model
as the ML method and utilized the combined set of radiomics and PET/CT features as a
predictor for prognosis. The study reported that the developed ML predictor had median
(interquartile range) C-index of 0.76 (0.66–0.81; p = 0.01).

3. Treatment Planning

Cancer treatment planning is a difficult issue. The treatment for various types of
cancer is not only specific, but often has a number of side effects. In addition, assistance
in the treatment of cancer requires a multidisciplinary approach and the involvement of
various specialists: surgeons and radiologists, persons caring for patients during their
rehabilitation, etc. Moreover, the emergence of new scientific discoveries in the field of
oncology research leads to a change in existing paradigms of disease treatment. Finally, the
types of cancer treatment assistance are divided into initial, curative, supportive care, and
help with cancer relapses, as shown in Figure 2. All of the above points create significant
difficulties in using AI for cancer treatment.

Figure 2. Treatment planning.
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On the other hand, the application of ML in healthcare is proving its worth and validity
every day. Constantly growing volumes of data, reducing resource costs, improving
the quality of prescribed treatment and patient care, timely diagnosis of diseases, and
other advantages allow one to gain a positive effect from the introduction of ML and
Big Data analysis as essential technologies for helping medical specialists. However,
such integrations require highly skilled computer scientists, making it difficult to deploy
such support systems everywhere. Moreover, healthcare professionals often lack ML
skills. J. Waring et al., in their review paper [43], consider automated ML (AutoML) and
a comparative analysis of existing solutions and platforms. The overview is based on
101 sources in AutoML and highlights the major limitation of this technology; it is not
efficient enough to work with large-scale data. Both individual elements of AutoML
optimization and solutions that allow tracing the entire cycle are considered. The pivot
tables of automated function design tools, the AutoML Pipeline optimizers, are presented,
and the performance of Neural Architecture Search (NAS) algorithms based on CIFAR- 10
is evaluated.

The use of AI in precision oncology allows for the analysis of tumor genomic data,
providing information about potentially effective options in next-generation tumor se-
quencing assays. It has become possible to predict the type of tumor based on the targeted
panel of DNA sequence data. This, in turn, allows specialists to optimize the patient’s
treatment strategy.

Genomic screening makes it possible to more correctly organize the treatment of
patients based on their genetic factors. The investigation of individual genetic factors
is enabled by the advent of next-generation sequencing (NGS) technology. A detailed
review of NGS and the possibility of its integration with Big Data technologies, ML, and
visualization of medical diagnostic data has been conducted in [44]. Timely qualitative
analysis of large data sequencing provides early diagnosis of diseases. This is enabled by
the accurate forecast model, the Rowan biomarkers, and the identifiers for drug discovery,
which specify the strategy for effective cancer treatment for each patient individually. The
authors present an overview of the existing NGS platforms with the estimation of the
output data amount and the cost of the study, which makes it possible to reflect the trend in
the development of precision medicine methods in the field of DNA and RNA sequencing.
One of the important components of their research is the expression of medical imaging as
a useful tool for detecting, monitoring, and predicting the development of cancer. They
conclude that the integration of existing strategies with AI algorithms could significantly
expand the capabilities of healthcare.

The paper in [45] discusses the possibility of using ML and DL in matters modulat-
ing pharmacological agents to treat cancerous diseases. This article reveals the current
potential in solving the problems of developing new and using existing drugs. The im-
portance of in silico structural methods for expanding the possibilities for the synthesis
of new drugs is emphasized, among which molecular docking stands out, predicting and
assessing priorities in the interaction of a target and a drug. This method is integrated
with ML and DL technologies and can significantly improve the accuracy of molecular
docking. In addition, the treated and other structural virtual screening techniques have
been processed, such as cheminformatics modeling-based ligands using machine learning
and proteochemometrics simulation with the use of ML. N.T. Issa et al. analyzed ML
capabilities to predict drug–phenotype associations and indicated the applications of large-
scale transcriptomics datasets. Based on current advances in natural language processing,
Electronic Health Record (EHR) datasets have been evaluated to predict the potential side
effects of medication. The paper provides recommendations on the use of ML and AI
methods for repurposing drugs. In conclusion, the authors noted the possibilities for the
integrated use of AI to solve fundamental problems in creating new and using existing
drugs for new types of cancer.
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Molecular profiling of tumors is an intensively developing approach that allows
targetable identification of malignant somatic alterations and gives rise to a set of diverse
strategies in precision oncology. Precision oncology uses genome-scale omics data and
next-generation sequencing molecular analysis in addition to the data from large-scale
pharmacogenetic screening cell lines and patient-derived xenografts to discover molecular
targeting drugs affecting targeted mutated genes. Nevertheless, the problem of targeted
drug development remains complex and non-trivial. R. Miao et al. [46] proposed a tumor
drug and drug sensitivity prediction model based on the precision oncology approach
combined with statistical and ML models. Their approach includes the following steps.
The first step was collection from gene expression libraries (Genomics of Drug Sensitivity
in Cancer Project, Affymetrix CEL files), the Cancer Cell Line Encyclopedia, and the data
from the cancer drug-sensitive genomics pharmacogenomics studies. Next, the data were
preprocessed to extract genomic state markers as targets for molecule-specific drugs. A total
of 140 drug sensitivity experiments were analyzed in 624 cell lines with 71 gene mutation
status and 22,215 probe expression values. The second step was preprocessing the dataset
by Robust Multi-Array Averaging, converting the data with two logarithmic operations and
single peak testing of the selected gene points on the data. This operation showed that the
collected data had a bimodal distribution and were statistically significant in representing
a large number of gene variations. After this test, the initial 22,215 probes were reduced
to 1595 probes with significant multimodal characteristics and selected as the features for
predicting the drug sensitivity. Screened potential genes allowed for choosing targeted
drugs, and only 10 of the 53 candidates were approved for clinical application in genomic
test instructions and mutation detection of BRCA1/2, EGFR, ERBB2, ALK, and BCR-ABL.
The authors experimented with five ML models (RF, Elastic Net, Linear-SVM, PLOY-SVM,
and RBF-SVM) and reported that the best result was the RF ML model, which had an
average sensitivity of 0.98 and an average specificity of 0.97, and an average accuracy of
0.978. The others had no values mentioned exceeding 0.74.

ML techniques can be successfully applied for prostate low-dose-rate brachytherapy
planning instead of the manual conventional planning procedures. In the study by A.
Nicolae et al. [47], the authors collected a large dataset with high-quality postoperative
prostate images at day 30. After feature extraction from the DICOM file format, the new
contours allowed for the application of reinforcement learning, and the initial model
was adjusted to improve its performance and accuracy. The developed prostate implant
planning algorithm was tested on 41 consecutive patients who underwent I-125 LDR
monotherapy and showed high sensitivity to excluding overdose or underdose therapy.

Radiation oncology supplies techniques that must be carefully planned to avoid
side effects for patients. Stereotactic body radiation therapy (SBRT) is among them. The
treatment planning should be fractioned, dosed, and assessed through a patient’s full dose–
volume histogram (DVH) profile. X. Pan et al. [48] applied advanced ML techniques for
planning prostate SBRT with reduced treatment-related toxicity. They involved 86 patients
who underwent prostate SBRT, utilized ensemble ML algorithms, and verified selected
models on 26 external cases as the test models. The authors used boosting (Gradient Boosted
DT and Adaptive AdaBoost) and RF ensemble learning technologies. The investigation of
the three abovementioned ML models showed that the Gradient Boosted DT outperformed
the others for each of the urinary and rectal domains at 3 and 12 months after SBRT. The
authors reported that the best AUC results were for the gradient boosting decision tree
(GDBT), with a cumulative DVH (urinary irritation) of 0.79, cumulative DVH (urinary
incontinence) of 0.87, and rectal toxicity of 0.64.

Z. Yang et al. [49] developed a DL framework and complementary statistical methods
to predict the relationship between prostate radiation therapy and patients’ quality of
life. The life quality data were collected after prostate cancer radiation therapy with a
14-question survey with added computed tomography images in de-identified form for
a group of 52 patients. Then the dataset was augmented with the curvature-based image
registration technique implemented in MATLAB and amounted to 1326 images. The
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image regions that had high radiation dosage were marked and outlined. The authors
developed a deep NN with three-convolution-layer architecture, exponential linear units,
and SoftMax classification layer to classify images of patients with or without symptoms
of high radiation dosage. Due to relatively small training (39 cases) and testing (13 cases)
datasets, overfitting was noticed. Thus, transfer learning was implemented to improve
classification performance with autoencoder implementation to pre-train the CNN on the
augmented unlabeled data. The CNN results were compared with statistical methods,
including t-test, ANOVA, and LR. They reported that the best accuracy of the developed
prediction model was 84% for the rectum model and in the range of 23–53% with a median
accuracy of 38%.

An ML-based approach for predictive values of gene expression profiles in formalin-
fixed paraffin-embedded tumor biopsies was proposed by M. Wiesweg et al. in [50]. The
authors performed digital expression gene analysis on 30 potential reference genes using
the NanoString nCounter platform and the PanCancer Immune Profiling panel consisting
of 770 genes involved in an immune response. The authors performed digital expression
gene analysis on potential reference genes (CYLD, CXCL11, MYD88, PRPF38A, HLA-E,
STAT6, CD59, and STAT2) using the NanoString nCounter platform and the PanCancer
Immune Profiling panel consisting of 770 genes involved in an immune response. A total
of 127 patients were screened, and then 55 generated admissible nCounter reads were
collected in the training cohort. This dataset underwent RNA feature selection using an
ensemble approach with random subsampling and regularized with LASSO/L1 regression.
The following ML models were implemented in the Python language: SVM (scikit-learn
SVC for classification and SVR for regression), RF (scikit-learn RandomForestClassifier
and RandomForestRegressor), LR (scikit-learn LogisticRegression for classification and
ElasticNet for regression), and GB (xgboost XGBClassifier and XGBRegressor). It was
concluded that ML models could be useful for predicting the positive identification of a
group of patients benefitting the immunotherapy.

4. Patient Survival Prognosis

Modern technological advances in computer science include artificial intelligence and
promote the use of ML algorithms in medical diagnostic and research, which is a strategic
direction in the development of decision support systems in oncology, as shown in Figure 3.

 
Figure 3. Patient survival prognosis.

This integration can help detect and classify pathologies, create or modify diagnostic
test descriptions, and predict disease progression and patient response to therapy. Nev-
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ertheless, it is fraught with several problems and limitations in the actual application of
the technology in a clinical setting. For a qualitative assessment of possible applications in
the study of R. Cuocolo et al. [51], a review of modern literature was carried out, including
90 relevant sources. The summary tables of the ML algorithms are presented. They are used
to assess the risks of oncological disease detection, and create descriptions of pathologies,
as well as classify and predict types and stages of diseases, indicating a specific goal and
type of oncological pathology. All indicated data were accompanied by reduced accuracy,
specificity, and sensitivity of the models used. For each of the cases, the limitations for real
application were given, and the statistics of the application of ML methods on the training
and test dataset were shown, indicating the quantitative and qualitative characteristics
of the latter. The possibility of constructing predictive models of patient survival based
on ML methods was assessed, as well as the use of AI to develop targeted methods of
treating cancer. The data in [51] have a clear understandable structure, giving comprehen-
sive explanations of the current state of the art on the application of ML in oncology in a
clinical setting.

Radiomics can also be used to develop a robust radiomics-based classifier that is
capable of accurately predicting the overall survival of renal cell carcinoma patients for the
prognosis of clear cell renal cell carcinoma. This signature may aid in the identification of
high-risk patients who need additional treatment and follow-up regimens. For this model,
the AUC, accuracy, sensitivity, and specificity with a 95 percent confidence interval were
0.95–0.98, 0.93–0.98, 0.93–0.96, and 1.0, respectively [52].

One of the determining factors of surgical intervention and the degree of resection
in meningioma is the preoperative determination of its consistency. Thus, the study of
S. Cepeda [53] aims to develop a predictive model for determining the parameters of
meningioma consistency based on preoperative medical diagnostic studies, including MRI
and ultrasound elastography (IOUS-E) using ML classifiers. The data from 18 patients
operated on in the period 2018–2020 were selected as the initial dataset. All cases were
followed by IOUS-E and T 1 WC MRI diagnostics. Preliminary processing of the diagnostic
data consisted of the decomposition of the DICOM electrogram format into hue–saturation–
brightness (HSB) with subsequent manual tumor segmentation, as well as the removal of
MRI radioma signs using the open-source LifEx version 6.0 software and the subsequent
automatic segmentation using ITK-SNAP. The softness meningiomas performed value
average tissue elasticity (MTE) was chosen as the reference value. As a predictive model,
a DT was used, which determined the threshold value based on the generated groups
of intraoperative MTE characteristics and made it possible to determine the consistency
of the meningioma, where Range version 3.26 was used to optimize the algorithm. The
classification system was based on six different ML algorithms, including LR, NB, kM,
RF, SVM, and MLP. The models were evaluated using the AUC and reached values from
0.699 to 0.974, with an accuracy of 61–94% and a precision of 60–95% on each algorithm
used. The best results were demonstrated by the combination of the Information Gain and
ReliefF filters with the NB model, in which the AUC was 0.961, with an accuracy of 95%,
corresponding to a classification accuracy of 94%.

The great advantage of using ML in processing data is its ability to evaluate the impact
of possible surgical intervention and potential risks of developing distant metastasis. It
can provide biological information that cannot be determined from conventional MRI
characteristics. Using a retrospective dataset, researchers [54] investigated an ML model
based on radiomics, which is favorable for predicting the likelihood of distant metastasis
from soft-tissue sarcoma. It was shown that the AUC in the validation set of patients with
soft-tumor sarcoma with distant metastasis may be 0.9510. That means that the probability
that the mechanism will rank an instance as a true positive is higher than the false positive
rate. This may help with clinical decision making to lower the burden of costs from follow-
up examinations and anxiety related to false positive results by understanding the most
common organs of distant metastasis.
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Radiomics has emerged as a promising clinical tool for a variety of clinical problems,
including drug development, clinical diagnosis, treatment selection and implementation,
and prognosis. Nowadays, radiomics is primarily used to calculate progression-free sur-
vival or overall survival, predict tumor sensitivity to treatment, and perform classification
tasks that do not fall into one of the above categories. These techniques have the poten-
tial to improve patient care in future AI-based radiotherapy workflows by developing
personalized medicine and prescribing personalized doses [55].

Radiation therapy coupled with chemotherapy is frequently complemented by radical
surgery in gastric cancer treatment. Nevertheless, the question of the toxicity and dosage of
radiation therapy constantly arises. In this regard, there is an increasing interest in the use of
AI technologies and ML for the prediction and evaluation of the overall survival of patients
who undergo radical surgery, radiation therapy, and chemotherapy. M. Akcay et al. [56]
assessed the applicability of several ML algorithms to predict the overall survivability
of patients with confirmed gastric cancer, peritoneal recurrence patterns, and distant
metastasis after treatment. The authors involved several ML algorithms, including LR,
MLP, XGBoost, SVM, RF, and Gaussian Naive Bayes (GNB). The dataset was collected
from the data of 75 cases of patients with gastric cancer undergoing radiation therapy and
chemotherapy at the Department of Radiation Oncology of Eskisehir Osmangazi University
Faculty of Medicine (Turkey). The authors avoided an imbalance in the collected dataset
and applied the synthetic minority resampling (SMOTE) technique. The ML algorithms
and statistical functions were implemented using the Python and Scikit-Learn library. The
authors reported that the best prediction performances of overall survivability, distant
metastases, and peritoneal metastases were obtained with GNB, with an accuracy of 81%
(95% CI, 0.65–0.97, AUC = 0.89), XGBoost, with an accuracy of 86% (95% CI, 0.74–0.97,
AUC = 0.86), and RF, with an accuracy of 97% (95% CI, 0.92–1.00, AUC = 0.97), respectively.

ML-based MRI radiomics can be used to improve the accuracy of a prediction model.
Using various datasets, the researchers tested a model that was aimed at distinguishing
aggressive from non-aggressive papillary thyroid carcinoma. In the testing cohort, a
prediction model using only clinical characteristics achieved an AUC of 0.56, which is
low and close to a random result. The AUC of the ML-based MRI radiomics was 0.92,
indicating improved performance over the clinical characteristics model. A new model that
combined clinical characteristics and radiomic features was similar to the model that only
used radiomic features. This finding is promising for a non-invasive method of assessing
cancer aggressiveness. Assessing the aggressiveness of papillary thyroid carcinoma before
surgery may assist clinicians in planning a surgical approach, such as lobectomy, subtotal
thyroidectomy, or total thyroidectomy, with or without neck dissection [57].

The main strategy for using ML to solve the problems of radiation oncology in most
works published on this topic is to simplify and reduce the problems to the form of a
binary classification, which can cause unreliable research results. In addition, there are
several problems that can be solved in terms of multiclass classification. In the study by
A. Chatterjee et al. [58], the authors provided the facts that enabled them to evaluate the
results for several studied classes reliably and the possibility of using surrogate markers in
a clinical setting. The authors reported that, unlike binary classification, the AUC and the
correlation coefficient could not serve as reliable indicators of performance for multiclass
classification in a clinical setting. The validity of their arguments was confirmed using
the Monte Carlo model (MC), which showed that the capacity prediction characteristics
decreased with the amounts and classes of outcomes. In the second part of the study,
devoted to the use of surrogate markers in real conditions, the MC analysis was performed
by calculating five scale factors and adding noise to the surrogate marker for each patient
from five cohorts with different prescribed treatments. The results were obtained with
the statistical differences, separating groups of patients when using a surrogate marker
according to the criterion rank-sum Wilcoxon (p < 0.001).

Feature-based and DL-based radiomics is being increasingly evaluated in neuro-
oncology [1]. AI can be useful for the differentiation of treatment-related changes from
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tumor progression in patients with gliomas and brain metastases (AUC of 0.73–0.96),
which is a critical clinical question. The addition of molecular markers to histology is
recommended to define brain tumor entities but it damages the tissue, and the core biopsy
specimen cannot be taken very often. A noninvasive method is a good solution when tissue
samples are not accessible. It is possible to predict the isocitrate dehydrogenase (IDH)
genotype (AUC of 80–96), loss of heterozygosity of the 1p/19q chromosome arms (AUC of
67–96), and the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation
status (AUC of 80–95). It is molecular markers on which treatment strategies are based.
Furthermore, it was demonstrated that the expression levels of the tumor cell proliferation
marker (Ki-67) can be used to calculate or predict proliferative activity in gliomas (AUC
of 76–92). Aside from that, several studies since 2016 have evaluated radiomics for the
determination of grades from the World Health Organization (WHO) classification of
central nervous system tumors (AUC of 87–97).

Methylation of the MGMT promoter could also be used to predict overall survival.
It has been shown that the age and MGMT methylation index are the most important
factors for predicting overall survival in the chosen models. Radiomic features provide
additional information beyond the scope of human visual perception, which is considered
to be valuable in the prediction of glioblastoma OS and progression-free survival, and there
is relatively limited literature on this topic [59].

One significant advantage of in silico studies is that researchers have no restrictions on
the parameters or features they can use to find correlations. A radiomics study identified
optimal ML methods for the radiomics-based prediction of local failure and distant failure
in advanced nasopharyngeal carcinoma [60]. They tested different parameters and features
in combination to divide patients into three groups: those who experienced local failure,
those who experienced distant failure, and those who did not experience either local or
distant failure during the follow-up period. It helped to identify new parameters that are
representative enough in this issue to become new imaging biomarkers to assist clinical
decision making. Quantitative radiomics has the potential to significantly improve cancer
care by facilitating the implementation of personalized medicine.

Neuro-oncology is gradually expanding its field of knowledge using ML models. C.A.
Sarkiss and I.M. Germano presented a systematic review [61] devoted to using ML-based
algorithms in neuro-oncology. They extracted some information about ML application from
29 studies and the data on a total of 5346 patients who were screened for neuro-oncology
diseases, such as glioma, glioblastoma, brain metastases, etc. The studies mentioned
above reported on a set of ML algorithms including SVM, RF, Gaussian NB, LDA, DT,
gradient boosting (GB), and adaptive GB. Then, the ML algorithms were clustered by
the task and application into three categories: outcome predictors, image analysis, and
gene expression. The authors reported that the outcome prediction was used in 12 of
29 studies with a sensitivity range of 78–98% and specificity range of 76–95%. The image
analysis was conducted in four studies. Finally, the remaining studies were devoted to
ML-based gene expression analysis and had an accuracy ranging from 80% to 93%. The
study in [62] examined automatic contour scoring using fit indices and supervised machine
learning. The issue is relevant because the peer review of the target volume (TV) and organ
at risk (OAR) contours during radiation therapy planning is conducted visually and can
be time-consuming, and the result can vary greatly among observers. The best result was
obtained for stomach images with an overall prediction accuracy of 96% (using the Vector
Machine and Ensemble models); the worst result was shown by LR—76% for liver images.
The considered method of automatic contour estimation makes it possible to reduce the
review time, eliminate gross errors in contour determination, and can also be used for
training doctors.

R.O. Alabi et al. [63] compared the nomogram technique with several ML algorithms
to estimate the performance of such approaches in the prediction of tongue cancer survival
outcomes. They obtained the dataset from the National Cancer Institute through the
Surveillance, Epidemiology, and End Results Program of the National Institutes of Health,
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including 7649 cases where patients were diagnosed with positive histologically confirmed
tongue cancer. Then the dataset was used for labeling and predicting nomogram building.
The nomogram accuracy with surgical treatment was 66% and the nomogram accuracy
with radiotherapy was 60.4%. The sensitivity and specificity were 1 and 0.62 for the first
case and 1 and 0.55 accordingly for the second case. The authors trained seven ML models
(LR, NB, SVM, ANN, Boosted Decision Tree, Decision Forest, Decision Jungle) in Microsoft
Azure ML Studio 2019 to predict an overall survival month using 5-fold cross-validation,
splitting the dataset in {80:20} percentage proportion for training and validation. The
best accuracy of 83.1% was achieved with the ML model of Boosted Decision Tree, with
an AUC of 0.9. The authors reported that the comparative performance metrics of the
ML algorithms were higher than the nomogram approach, and the accuracy, sensitivity,
specificity, and F1-score were 88.7%, 1, 0.87, and 0.66, respectively.

In [64], A.V. Karhade et al. demonstrated the applicability of ML techniques to prog-
nosticating survivability with confirmed rare tumors. One of them is spinal chordoma, and
due to the rareness and relatively slow change of this tumor type, long-term prediction is
not a trivial task. The authors obtained statistics for a long period of time (over 15 years),
and estimated survivability for 265 patients, showing a mean value for 5-year survival of
67.5%. Then, the conventional statistics operations were compared with four ML mod-
els, including BDT, SVM, Bayes Point Machine, and NN. These algorithms were trained,
assessed by a 10-fold cross-validation technique, and a web application using Microsoft
Azure (Microsoft Corporation, Redmond, WA, USA), R Studio (version 1.0.153), and Ana-
conda with the Python distribution (Anaconda, Inc., Austin, TX, USA) was implemented.
A.V. Karhade et al. concluded that the Bayes Point Machine showed the best predictive
capability, having AUC = 0.801. They also pointed out that the ML models in long-term
survival predictions had high potential, but a weak explanatory ability.

It is challenging to avoid subjective risk estimation in patients’ mortality from can-
cers while receiving febrile neutropenia chemotherapy, but the inpatient mortality risk
prediction is much harder. X. Du et al. showed in [65] that ML models could provide
a non-subjective prognosis in mortality risk prediction. They used a dataset from the
HCUP’s National Inpatient Sample and Nationwide Inpatient Sample on the patients with
diagnosed cancer and picked the data with febrile neutropenia, totaling 126,013 adult ad-
missions. These data were complemented with in-hospital information, and the descriptive
statistics were calculated. Then, the authors developed two groups of models: linear mod-
els including Ridge LR and linear SVM, and non-linear models including GBT and six-layer
NN models. After the model tuning and three-fold cross-validation process, the models
demonstrated surprisingly the same AUC, sensitivity, specificity, precision, recall, and
F1-score. Those parameters were 0.92, 0.81, 0.88, 0.84, 0.70, and 0.74, respectively. The GBT
model was slightly different from the others, but it was no more than one hundredth better.

A prognostic system for endometrial cancer using ML was proposed by A.M. Praiss
et al., utilizing the Surveillance, Epidemiology, and End Results (SEER) database and
Ensemble Algorithm for Clustering Cancer Data (EACCD) for their research [66]. ECCD
made it possible to determine dissimilarities in defining and computing on the SEER data
and then applying the hierarchical clustering analysis while visualizing the relationship
between survival and prognostic factors. The ML algorithms were trained on data totaling
46,773 patients with endometrial cancer. As a result, this ML model generated a visual
prognosis in the dendrogram format classifying patients into several groups according to
five-year survival rates. The authors reported that this ML model improved prognostic
prediction for patients with endometrial cancer compared to traditional staging algorithms.
The scientists used the EACD ML algorithm for endometrial cancer and demonstrated an
improved ability to recognize survival compared to the traditional TNM stage. A number
of positive changes in prognostic ability were noted based on the classification of existing
pathological variables, as well as the inclusion of other factors in the model, such as age
and tumor degree.
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5. Existing Barriers

Despite the prospects of using ML to solve oncology problems, a number of challenges
remain, in particular, the task of data collection and management; the lack of reliable
reporting standards; the task of standardizing data; bias inherent in a set of training data;
the relative lack of prospective clinical trials. The Existing Minimal Common Oncology
Data Elements (mCODE) Initiative is aimed at solving the problem of data collection
standardization [67]. To identify signs of patient distress, some institutions are beginning
to use a patient-reported outcome measures (PROM) mechanism [68]. Another important
problem is the bias of the data on which the models are trained. One of the reasons is
the underrepresentation of some population groups (adolescents, women, etc.) during
clinical trials, based on which the datasets are formed. The lack of training data for some
groups of people can lead to erroneous predictions of the ML model, which is unacceptable
for further transfer to clinical practice. It is necessary to ensure a wider inclusion of
underrepresented population groups in the training data, which will take a significant
amount of time. In addition, the modification of existing solutions will be required, which
will mitigate possible systematic errors in datasets [69]. The problem of establishing a
standard for reporting on the ongoing research in AI is associated with the high sensitivity
of DL methods to source data and difficulties in reproducibility, which may limit the
widespread use of AI in oncology. Another problem that has not been fully solved is the
insufficient number of studies that compare traditional methods of treating diseases with
the methods used with the help of AI. Conducting randomized controlled trials (RCTs) is
necessary despite its high cost. Regulatory and legal problems arising with the application
of ML methods in medicine have been the subject of discussion for many years. The lack of
case law significantly limits the resolution of medical liability issues. In the vast majority
of cases, AI implementation in medical practice is used not as a decision-making tool, but
as a confirmation of a decision made by a human specialist. Reaching consensus on the
regulatory framework for AI-based tools, developing clear standards for evaluating the
effectiveness of AI-based disease treatment tools, and conducting new research on the
introduction of these tools into medical practice are necessary actions to address the many
challenges that limit the potential of using AI in oncology and medicine in general.

6. Conclusions

We analyzed 70 papers describing the use of ML methods for the diagnosis of cancer,
prediction of the degree of survival, as well as correction and treatment planning. ML is
used to deal with various types of cancer, such as carcinoma, glioma, endometrial cancer,
prostate cancer, etc. AI finds its application in such modern areas as genomic screening,
precision oncology, medicine personalization, and targeted drug delivery. This shows that
the progress in the use of AI in medicine is growing rapidly. Various ML models for solving
different challenges were considered, such as DT, k-NN, NB, etc., and the results were
analyzed. The peculiarities of using various ML models influencing the choice of a specific
algorithm for solving each specific task were emphasized. We discussed the prospects of
using ML in oncology as a full-fledged tool for the diagnosis and localization of malignant
tumors. However, there are a number of barriers that arise when using AI in medicine,
related to local, regulatory, and ethical foundations. In this review, we highlighted the
importance of solving these issues.
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Abstract: Sensing data from vessel operations are of great importance in reflecting operational
performance and facilitating proper decision-making. In this paper, statistical analyses of vessel
operational data are first conducted to compare manual noon reports and autolog data from sensors.
Then, new indicators to identify data aberrations are proposed, which are the errors between the
reported values from operational data and the expected values of different parameters based on
baseline models and relevant sailing conditions. A method to detect aberrations based on the new
indicators in terms of the reported power is then investigated, as there are two independent measured
power values. In this method, a sliding window that moves forward along time is implemented,
and the coefficient of variation (CV) is calculated for comparison. Case studies are carried out to
detect aberrations in autolog and noon data from a commercial vessel using the new indicator. An
analysis to explore the source of the deviation is also conducted, aiming to find the most reliable
value in operations. The method is shown to be effective for practical use in detecting aberrations,
having been initially tested on both autolog and noon report from four different commercial vessels in
14 vessel years. Approximately one triggered period per vessel per year with a conclusive deviation
source is diagnosed by the proposed method. The investigation of this research will facilitate a better
evaluation of operational performance, which is beneficial to both the vessel operators and crew.

Keywords: ship operations; data analysis; noon reports; autolog data

1. Introduction

The operational data that come from vessels are one of the most important sources
with practical usage. Among others, in the pre-fixture stage of voyage planning, these data
facilitate shipping companies finding the most navigated routes [1], which optimizes the
sailing distance calculation and budget estimation. In addition, these data are normally
adopted to monitor and evaluate vessel sailing performance by shipping companies [2].

In the endeavors of the shipping industry to meet the Paris agreement [3] for the
improvement of its environmental footprint, vessel performance has become an essential
issue that needs to be further optimized. Generally, the differences between practical
vessel performance and a predefined baseline (defining ideal ship performance) should
be minimized. Therefore, such operational data should be reliable enough for a proper
ship performance estimation. However, they are normally subject to many sources of
uncertainty, including faulty sensors, manual data collection, and even deliberate data
manipulation, resulting in large deviations for the estimation of true ship performance.
In this work, the period of recorded data variation that deviates from expected variations
is defined as the aberration. To discover proper insights from such error-prone data and
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reap benefits, it is necessary to develop practical methods to detect aberrations and work
towards automatic sources and, eventually, root cause identification.

In shipping, there exist various ways to collect operational data from vessels. One
is the noon report, which is filled out daily by the vessel crew. With the advancement of
sensing and sensor technologies, autolog systems are utilized to automatically collect data
onboard from various sensors [4–6]. Such operational data can be used to better under-
stand and optimize navigation, energy consumption, emissions, and maintenance [7,8].
With the rapid development of new technology, including the Internet of Things (IoT),
real-time connectivity, and artificial intelligence (AI) [9,10], looking at operational data and
performance monitoring brings focus on quality diagnostics and root cause analysis, with
the aim of the sustainable operation of shipping in the near future. The direct utilization of
operational data is still limited due to the lack of standardized and reliable data sources.
The application and implementation of machine learning (ML) is challenging due to the
above-mentioned issues and other data quality problems. Hence, there is a necessity to
further diagnose these phenomena.

Recent years have witnessed a considerable amount of research on vessel operational
data. Cai et al. [1] developed voyage routes from automatic identification system (AIS)
data based on clustering methods. Cai and Lützen [11] applied a sliding window to detect
pattern changes in specific fuel oil consumption (SFOC) in noon reports. Dalheim and
Steen [12] developed a method to monitor the change-point of vessel operational data from
sensors based on hypothesis testing of samples inside a moving window, assuming that
the underlying samples can be modeled by a deterministic linear trend model. The same
authors in [13] proposed a stepwise framework to deal with the possible quality problems
that occur in sensors and device data from vessel operations. Similar research and utiliza-
tion of vessel operational data can also be found in Shelmerdine [14], Le Tixerant et al. [15],
and Han and Yang [16].

However, there is still a lack of research on the identification of aberrations, as defined
above, and especially a lack of effective methods to reveal the corresponding underlying
reasons. These aberrations should be flagged, and the sources should be identified auto-
matically in order to facilitate vessel operations. Therefore, the objective of this research is
to investigate a practical method to identify aberrations in vessel operation based on both
manual and sensor data that is capable of triggering alerts and, subsequently, concluding
the underlying sources of such aberrations.

This paper is organized as follows: In Section 2, operational data are described, and the
data of two vessels from the container shipping company Hapag-Lloyd [17] are compared.
In Section 3, the methodology to identify data aberrations in vessel operations is elaborated
upon, including baseline models and traditional indicators for ship performance, new
proposed indicators, and the sliding window method. Section 4 contains the results of a case
study applying the proposed method to the new indicator using data from a commercial
vessel. In Section 5, the discussion and method limitations are further presented. Finally,
the conclusions are drawn in Section 6.

2. Data Sources: Noon Reports and Autolog Data

In this section, the two types of data sources in vessel operations, noon reports and
autolog data, are first described. Both of them will be used for the identification of data
aberrations in Section 3. The statistical characteristics of the two data sources recording the
same operational process are compared based on two vessels from the container operator
Hapag-Lloyd. The results provide a glimpse of data source differences in practice. However,
generic results cannot be derived due to the limited number of cases. The effect of using
different data sources on the accuracy of the method is not studied in this paper.

Operational information from a vessel is recorded in different ways for regulatory
and monitoring purposes. The noon report is one of the classical ways to record data.
A noon report summarizes relevant sailing information and is manually prepared by
vessel crew approximately every 24 h and shared with onshore offices. The noon report
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includes information such as sailing time, sailed distance, course, engine run time, power
produced, total fuel consumption, and weather conditions. These values are used in various
performance analyses, for example, to monitor the degradation of vessel performance or to
measure emissions.

Another method of collecting vessel operational data is using autolog systems that
record information automatically through in-service monitoring systems and sensors
deployed onboard. Autolog data from sensors and equipment onboard have, over the
past few years, become more popular in the area of digital ship operations [2]. During a
voyage, the operational data can be constantly logged at a high frequency, thereby capturing
instantaneous variations in different parameters. The autolog system has been gradually
improved and embraced by industry with the development of IoT technology, and it
is expected to provide more reliable and accurate data than noon reports. The sample
frequency of autolog data is flexible and normally set to be in minutes. However, the data
are prone to be erroneous due to factors such as malfunctioning, unexpected sensor shifting,
and asynchronization.

For comparison of the two data sources, the traditional performance indicator SFOC
(see Section 3.1.1) is used. Note that the frequency of the autolog dataset has been down-
sampled to hours (between 1 and 2 h) for better comparison, while the frequency of the
noon report is roughly 1 day. Figures 1 and 2 show the results of the SFOC variations from
noon and autolog data for vessel A and vessel B, respectively. The SFOC values in each
sample are normalized by the SFOC baseline from shop tests performed by the engine man-
ufacturers. Figures 3 and 4 illustrate the statistical distribution of the different operational
data sources. Results show that, for vessel A, the noon report has a lower median value
(from 99.2% to 105.2%) and a similar standard deviation (from 7.41% to 7.06%) compared
to the autolog data. A simple hypothesis test is conducted as well, which is to test if the two
mean values (here we use the mean value of the SFOC percentage: 100.83% and 106.0% for
the noon report and autolog, respectively) are statistically equal with the null hypothesis
as H0 : μ = μ0, where μ is the mean value of the SFOC from the noon report and μ0 is the
expected mean value of the SFOC from the autolog data. Since the population standard
deviation is unknown, the sample standard deviation value is used, which is 7.41% in this
case. The number of recorded data is 734. Thus, the t value is calculated as −18.9. If the
level of significance (α) is selected as 0.05, the significant value (tα/2) can be then estimated
from the student’s t-distribution table, which is 1.963. Obviously, such an assumption is
rejected, which means that the mean values of the two recorded datasets from vessel A
cannot be considered the same statistically.

Figure 1. Comparison of the SFOC variation (in percent) of vessel A between noon report and autolog
data in a given time period.
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Figure 2. Comparison of the SFOC variation (in percent) of vessel B between noon report and autolog
data in a given time period.

For vessel B, the noon report has a lower standard deviation (from 8.2% to 9.7%) and a
nearly identical median value (from 98% to 98.3%) compared to the autolog data. More
unexpected spikes are observed in the noon reports than in the autolog data for both vessels.
The statistical distribution also shows that autolog data have a larger spread between the
sample minimum and sample maximum but with fewer outliers, as indicated by the much
longer whiskers in the left diagrams of both Figures 3 and 4. The same hypothesis test
conducted for vessel A is conducted for vessel B to test if the mean values of the SFOC
percentage are the same. Surprisingly, the calculated t value is 0.26, and the null hypothesis
can be accepted, which means that the mean values recorded from the two datasets can be
considered the same statistically.

Figure 3. Statistical distribution of vessel A in the given time period.

It can be concluded that the two data sources represent similar vessel operational
behavior but with statistical discrepancies due to different data acquisition methods and
many uncertainties, such as sensor derivations under extreme environments and human
errors. In the case of noon reports, e.g., vessel A, human factors may be much larger, causing
more outliers, higher spikes, and statistical differences between mean values. The smaller
standard deviation indicates that noon reports cannot sufficiently represent operational
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details due to the 24 h time interval. The autolog data have higher variation, so they are
capable of capturing realistic operational details with fewer outliers and fewer spikes but
introduce more noise. It should be noted that the frequency effect has not been investigated,
which may introduce other discrepancies.

Figure 4. Statistical distribution of vessel B in the given time period.

3. Methodology

In this section, the practical method for data aberrations is proposed. The model
can be applied to operational datasets from either noon reports or autolog data. Note
that, in the following work, if there is no explicit indication, both types of operation data
are applicable. In order to better introduce this method, the baselines for performance
analysis and relevant traditional indicators in operations are first introduced, as seen in
Section 3.1. Then, new indicators for data aberrations are developed in Section 3.2, which
are the parameter errors calculated by our Trinity model (see Section 3.1.2). Using these
new indicators, the sliding windows are applied to identify data aberrations, as illustrated
in Section 3.3.

3.1. Performance Baselines and Traditional Indicators

When analyzing performance from vessels, traditional indicators, such as RPM, power,
speed, SFOC, and resistance, are usually adopted, and the baseline models for them are
vital to mutually defining ideal performance in operation, given different factors such as
sea states, draft, and fouling levels. These models are normally determined by physical
laws and binding data such as shop tests from the engine manufacturer and sea trials
delivered by the shipyard. The baseline models used in this analysis and the relevant
indicators are elaborated below.

3.1.1. Engine Baselines

The indicator SFOC is the measure of the mass of fuel consumed by the engine per
unit time to produce a unit of power. It is unit-engine-specific, and normally given as
the function of the engine load in the percentage of maximum continuous rating (MCR).
Figure 5 shows an example of the main engine SFOC of vessel C’s model from the tanker
shipping company TORM [18]. The main engine SFOC model is an important baseline that
can be used to estimate excess fuel consumption and evaluate engine power based on the
fuel consumed in operations.
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Figure 5. An example of SFOC diagram of the main engine from vessel C obtained from shop test [18].

Figure 6 shows another baseline model, which is the main engine load diagram,
presenting the RPM–power limits of the engine of vessel A. BL_continuous denotes the
continuous running condition of the engine when ample air is present in the combustion
chamber to secure acceptable combustion and the maximum allowable loads are not
exceeded. The BL_overload represents the overload operation limit of the engine, which
is possible only for limited periods (e.g., 1 h per 12 h or when required in an emergency
situation) [19]. The BL_heavy_propeller baseline represents the ideal power for continuous
operation. The light propeller curve BL_light_propeller is the relation of power and RPM
for the propeller with a clean hull and in calm weather. This curve shifts towards the
BL_heavy_propeller because of heavy weather and a fouled hull, and the distance between
these two curves is given by the light running margin (LRM). Details regarding the LRM
are elaborated upon in Section 3.1.2.

Figure 6. An example of the main engine load diagram from vessel A with validation points from
operation [18].

The RPM–power baseline can be used to estimate vessel performance with the
recorded power values in operations. However, in practice, there are two different methods
to measure vessel power: one is the calculated value based on the measured fuel consump-
tion from the fuel flow meter and the engine SFOC (the red dots in Figure 6), and the other
is the direct measurement from torsion meters deployed on the shaft line (to measure the
torque) and the RPM (the green dots in Figure 6). The problem is which one people should
choose for a better estimation. Ideally, the powers obtained from these two methods should
be the same since they reflect the same vessel operational process. However, there exist
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deviations in reality, as described previously, resulting in different estimates of the vessel
performance. Hence, one source must be a more consistently reliable measurement than
the other, and the choice of the right source will further affect the evaluation accuracy of
operational performance.

3.1.2. Speed–Power–RPM Baselines

According to the physical laws and specific designs of vessels, there is a fixed relation
between speed, power, and RPM, which will form the basis of the new proposed indicators
(seen in Section 3.2) in this work. This speed–power–RPM baseline of the vessel is, hereafter,
referred to as the Trinity model. Note that the Trinity model is vessel design-specific
and is determined based on several factors, including the principal dimensions of the
vessel, the design speed, power, and RPM, and, most importantly, the vessel’s own sea
trial performance. In addition, the baseline models are only for vessels with a fixed-pitch
propeller. These curves form the basis of the calculation of expected relations (speed–power–
RPM) accounting for specific loading conditions, draft, and weather during operations.

The process of developing this model is briefly explained here. The Trinity model
estimate starts with the evaluation of the power (P) required by vessels to maintain the
sailing speed (V) given the resistance (RT) of the vessel, as seen in Equation (1).

P = RT · V (1)

In practice, the vessel resistance is normally estimated by semi-empirical methods
that are widely used in the literature since they are relatively simple and reasonably
accurate [20–22]. Equation (2) expresses the semi-empirical equation of vessel resistance,
where S is the hull-wetted surface area at the draft, ρ is the density of sea water, V is the
measured speed, and CT is the total resistance coefficient, which can be influenced by
factors such as wind, wave, current, types of propeller, water depth, and hull biofouling.
Therefore, if the estimated resistance is provided, the expected power can be estimated
(Equation (1)).

RT =
1
2
· CT · ρ · S · V2 (2)

To build the relation between power and RPM at the design point, the LRM is used,
which can be expressed as Equation (3) [19], where RPMlight and RPMheavy are the propeller
RPM at the light and heavy load conditions, respectively. The relation of the power and
RPM is constructed by the relation P∝(LRM · RPM)3 according to the so-called “cubic law”
based on hydrodynamic principles [23].

LRM =
RPMlight − RPMheavy

RPMheavy
· 100 (3)

In this fashion, the speed–power–RPM Trinity model of the newly built vessel in calm
sea conditions is constructed as a baseline. This model can easily be calibrated to different
weather conditions and degrees of hull and propeller fouling. Due to confidentiality
requirements from the shipping company, we cannot provide further information on
specific resistance coefficients, hull degradation due to fouling, or other relevant factors.
Therefore, the “expected” value of the different parameters can be estimated based on the
Trinity model with different input subsets in vessel operations. Note that, in this analysis,
the vessel sea trial performance is used as the baseline of evaluating hull degradation over
time. Figure 7 shows an example of the speed–power and speed–RPM plots for vessel A at
the draft of 14.5 m.
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Figure 7. Baselines of the vessel A for speed, power, and RPM.

3.2. New Indicators for Data Aberrations
3.2.1. Motivation

As previously described in Section 3.1.1, there exist two measured power values: one
based on the fuel consumption and the other based on the torsion meter. The proper choice
of recorded power will further affect the accuracy of performance estimation. Meanwhile,
operational data are subject to many sources of uncertainty, such as faulty sensors and
manual data collection, introducing even more challenges to accurately estimate ship
performance from the data-driven standpoint. Therefore, one big motivation is to propose
new indicators to counteract such uncertainties, which will, in turn, facilitate the selection of
the more accurate parameters for performance estimation, such as the more accurate power
value, and thereby diagnose which of the two measured values can better represent the
actual performance of vessels. In this work, the new proposed indicator is the error between
the reported values from operational data and the expected values based on baseline models
and relevant sailing conditions, which is furthered explained in the next section.

3.2.2. Process to Develop New Indicators

The specific procedure of calculating the new indicator is given in Figure 8. For each
data sample in an operation, the expected vessel resistance and the expected power are
first calculated through Equation (2) and Equation (1), respectively. The Trinity model is
calibrated accounting for the reported weather conditions, in terms of wind speed, wave
height, and currents, and the assumed hull deterioration [24]. Note that it is necessary
to assume such hull deterioration, otherwise the performance loss of the vessel will be
always determined by the reported power values. The assumed deterioration is statistically
estimated based on the trend of hull performance in the previous reports, taking into
account possible noise. Thus, the expected speed–power–RPM curves are obtained for
each sample in the operational dataset. All errors of speed, RPM, and power should be
evaluated, as all these errors are used for the final source identification. Using these curves,
a look-up of expected value (speed, power, and RPM) can be conducted through linear
interpolation using the corresponding operational measurements. For instance, based on
the measured RPM value, the expected speed and power values can be looked up from the
Trinity model. Note that one parameter is always assumed to be correct when the expected
values of the other two are estimated. In this fashion, the errors of the speed, power, and
RPM for each sample in the dataset can be calculated.

For brevity reasons, the power value based on the measured fuel consumption from
the fuel flow meter and the engine performance baseline SFOC (Figure 5) is defined as
the fuel-consumption-based estimation method, denoted as the FC method. The power
that is the direct measurement from torsion meters using the torque and RPM is the
torsion-meter-based estimation method, denoted as TM method.
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Figure 8. Flowchart of the procedure for the new indicators (parameter errors).

As there are two estimates of hull deterioration based on the different measured
value of power, there are two sets of calibrated curves for each record. Therefore, for the
calculation of errors of each parameter, there are two corresponding values when using
the two different hull deterioration values. Using the proposed procedure as mentioned
above (Figure 8), all the parameter errors can be calculated (see the flowchat in Figure 9).
Therefore, it will produce twelve (or six pairs of) errors in total, as seen in Table 1. The same
pattern of notation for all parameter errors will be used in this research, for instance,
ER_RPM_Speed_TM denotes the calculated RPM error with the given value of speed using
the performance deterioration from the TM method.

Figure 9. Flowchart of the parameter errors (speed, RPM, and power) calculated from two different
power sources (FC and TM) using the new process (Figure 8, Table 1, Section 4).

Since it is not known which of the two signals is better, neither stand-alone error
(either with power from TM or with power from FC) can be used to diagnose a faulty
signal; instead, we adopt the pair of calculated errors for further analysis. The sliding
CV [11] method (see Section 3.3) is applied to detect data aberrations from the error
pairs. For instance, the two power errors with given RPM (ER_Power_RPM_FC and
ER_Power_RPM_TM) are further analyzed to identify pattern changes and come up with
conclusive results.
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Table 1. All possible errors based on the new procedure under two different power sources (FC or TM).

Power Source Error Given Parameter

Power error RPM
Power error Speed

FC or TM RPM error Power
RPM error Speed
Speed error RPM
Speed error Power

3.3. The Method to Identify Aberrations

In our previous research [11], an original sliding method was proposed to identify
unstable periods for a single data variation. In this method, historical CV values of
performance indicators bounded by a sliding window with a fixed width and steps were
used for the identification of unstable periods. In this study, the same concept is used but
with a focus on the detection of aberrations based on a pair of new indicators that can be
applied to both noon reports and autolog data. The CV values are calculated within each
sliding window to trace changes.

3.3.1. Sliding Window

Figure 10 illustrates the sliding window along the timeline of samples with a window
width of n and a step size. In this example, the width of five samples is used, and every
time it moves forward by two samples, so that there is an overlapping of each sliding
window. In practice, the determination of the window width and the step size should
be conducted by a sensitivity study for each vessel based on the historical variation in
operational data. According to our previous study [11], for most of the vessels from the
shipping company TORM [18], a width of thirty samples and a step size of one sample
have been adequate. In each sliding window, the CV value is calculated, expressed as the
ratio of the standard deviation to the mean value, denoting the extent of data variability
around the mean. This method is quite straightforward and the application is simple,
as shown in Figure 11. The CV values of the two power errors (denoted as CV_error_FC
and CV_error_TM) are directly calculated. The discrepancy of two corresponding CVs in
absolute format is then compared, which will trigger alarms when it is violated by a given
threshold. Sources can be found by analysis, and crew feedback will be signalled in the
operational system (see Section 4.3).

Figure 10. Illustration of the sliding window along the time series data samples.

This method can be applied to time series data in different sample frequencies for both
online and offline pattern changes identification. Since the sliding window has a width
of n samples, the length of dataset (N) should have at least n samples, N > n, so that the
change along the timeline can be seen and the historical data can be used to determine the
threshold and window width for each vessel. When a sample is added, a new calculation
is conducted with the moving forward of a sliding window. In this way, the shift can be
detected, accounting for the effect of the past n samples. In this regard, a time delay equal to
the width of the sliding window may be introduced before a source and the feedback have
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been given due to triggered alarms. This method is generic in application, i.e., independent
of the types of operational data sources such as noon reports or autolog data from sensors.

Figure 11. Flowchart of the application of the practical method on the new indicators from two
power models.

4. Case Studies and Results

To assess the effectiveness of the proposed method and the new indicators, the time
series data from vessel A are selected, and the new indicators in terms of power errors are
used for analysis. A sensitivity study is first carried out to determine the effect of value
signs when performing CV calculations.

4.1. Sensitivity Study

By nature, the new indicators (Section 3.2) can take negative values when expected
values are smaller than measured values. This largely affects the CV in a sliding window
and the application of the practical method. Figure 12 shows an example of the absolute
power errors with given RPM from both autolog and noon report data, calculated by the
FC method and the TM method, respectively. As shown, the power errors are unequally
distributed on both sides of the X-axis. An exceptional case would be that the denominator
(mean value) of the CVs approaches zero since the original values are equally distributed on
both sides of the X-axis. As a consequence, the corresponding CV would approach infinite.
As demonstrated in Figure 13, the CVs with signs are visualized, and spikes of CVs are
observed due to infinite values. Therefore, before applying the method, a pre-processing of
the power errors needs to be performed, which transforms all values into positives so as to
rescale the CVs in a reasonable range for the proposed identification method.

When applying the practical method, another sensitivity study is necessary to deter-
mine the proper width and the moving step of the sliding windows, as already illustrated in
Section 3.3.1. In our previous study [11], an example has been made of the vessels from the
shipping company TORM, where a width of thirty samples and a step size of one sample
are selected. Therefore, similar work is not repeated in this paper but the same results are
adopted for a further case study. Note that, for different ships, the recommendation is to
perform such a sensitivity analysis before utilizing the method.
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Figure 12. Comparisons of the power errors with signs from FC method and TM method, respectively,
for vessel A.

Figure 13. CV of the power errors with signs from FC method and TM method, respectively,
for vessel A.

4.2. Identified Aberration Periods

The operational data in vessel A from Hapag-Lloyd are used to identify aberrations by
the proposed method. The absolute power errors given the RPM in the two ways for autolog
data are presented. Figure 14 illustrates the CV variation in the power errors given the RPM
for the period between February and July in 2019. Here, the orange curve denotes the new
indicator values calculated by the TM method and the blue curve denotes values by the FC
method. Since it is expected that both indicators follow the same trend, any remarkable
deviation in the values implies a change or shift in the pattern of the values. The discrepancy
between the CV for the two methods can be clearly visualized at a proper scale, and the
periods violating a set threshold are highlighted. An alarm will be automatically triggered
in this situation. Note that the threshold value is based on the observation of historical data
variation and industry experience, which may introduce subjective bias. Periods where
the difference between the CV is above threshold indicate that one of the values is not so
reliable. The isolation of the source of the deviation is explained in the next section, which
will facilitate the selection of more accurate power values.
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Figure 14. Application of the practical method on power errors (absolute values) for vessel A.

4.3. Deviation Source Analysis

Once an aberration period has been identified, the sources for the identified changes
can be further analyzed using baselines (Section 3). For this purpose, the aberrant period
from 18 April to 20 May in 2019 (see Figure 14) is selected for detailed analysis.

Figure 15 shows the calculated RPM errors in the detected aberration period estimated
by the procedure in Section 3.2. The two horizontal lines in the images are the mean values
of the indicator in the given period. The TM method has a lower mean error in the RPM
value compared to the FC method, which suggests that the reported power value measured
by the torsion meter is more aligned to the previously reported power values from the
torsion meter in the source report than those from the fuel flow meter. As presented in
this figure, the mean error of RPM based on the speed estimated from the FC method is
2.58 rpm, while the one from the TM method is 1.51 rpm. The mean error of the RPM
based on the power estimated from the FC method is 1.77 rpm, while the one from the TM
method is 0.30 rpm. Hence, further verification is needed of the fuel consumption values in
reports in this period.

Figure 15. Comparisons of RPM errors from FC method and TM method, respectively, for vessel A.

Figure 16 is the comparison of the last 10 measured samples from the end of the
aberration period in vessel A, which further demonstrates the above conclusion. The speed–
RPM dimension is used, as the speed–RPM values for each sample are identical for the two
ways and are reliable. The black curve is the original speed–RPM baseline from the light
propeller curve, while the blue and the red curves denote the calibrated baselines using
FC and TM methods for the last sample, respectively. The measured samples fit better
to the curve calibrated by the TM method. The overall analysis thus indicates that the
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power measured by the torsion meter is more reliable in this identified period and the fuel
consumption value has a higher discrepancy and is less reliable to use. Note that the source
analysis for the identified aberration periods in this paper is only a demonstration case that
was manually conducted to find more reliable values in operations. It is case-dependent
for individual vessels. In another vessel, it might be the fuel meter that is more reliable or
some errors may occur in either the fuel meters or torsion meters. Thus, extensive domain
knowledge in shipping is needed to conduct such an analysis, which limits its industry
application. Further work is needed to generalize different aberration periods so that the
data aberration source can be automatically identified.

Figure 16. Comparisons between baselines and the last 10 measured samples from the pattern change
in vessel A.

5. Discussion

The practical method has been tested on both autolog and noon report data from
four different commercial vessels belonging to Hapag-Lloyd, covering 14 vessel years.
For confidential reasons, only the final results are summarized here. There are 76 aberration
periods found in the case of autolog data and 17 for the noon data based on the new
indicators and sliding CV method. Deeper analyses were carried out for all detected
periods, where 15.3% of all identified aberrations in autolog data were found to have a
conclusive source, with 28.6% in the case of noon reports. This implies that, out of the
76 identified aberration periods for autolog data, 9 were found to have a conclusive source
of deviation from either the fuel consumption or the torsion meter. In the case of the
noon reports, 4 out of the 17 had a conclusive deviation source. The remainder of the
aberration periods were inconclusive due to ambiguity and contradictory conclusions
from the methods or too short aberration periods. It is considered that the detection of
an aberration period is an important finding as these findings help the selection of more
accurate operational parameters for a performance estimation.

To put it into practical terms, there are approximately five aberration periods detected
per vessel per year, and there is approximately one triggered period per vessel per year
with a conclusive deviation source diagnosed by the proposed method. As no or very
little research has been conducted in this field by the shipping industry so far, to the best
knowledge of the authors, this is believed to be a significant result. The effectiveness of
the proposed method to identify such deviations is of great interest as a start. The derived
results in this research are advantageous to implement in diagnostic tools, and the results
would be beneficial to facilitate vessel operators and crew in real-time operations.

However, limitations exist for this method and the investigation of sources. The Trinity
model may have errors and implicit biases, which need to be kept in mind. In the sliding
CV method, the threshold value to trigger alarms is manually defined based on experience
and historical data variation, which may introduce subjective bias. A sensitivity study is
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needed for each vessel or for the same type of vessels to determine the width of the sliding
window, which requires manual effort. The method adopts the moving average concept,
which means that data quality issues, such as spikes, outliers, and missing values, will
have considerable influence on its effectiveness. The sliding CV method is better suited to
diagnose a shift or jump but cannot easily identify constant offset values. Finally, the effect
of data source differences on the accuracy of the method has not been analyzed, and needs to
be further studied. For instance, over a long period of vessel sailing, possible deviations of
onboard sensors, such as sensor drift, sensor offset, sensor sensitivity, and sensor hysteresis,
may bring uncertainties to the investigation of sources of identified aberrations.

6. Conclusions

The comparison between the noon reports and autolog data concludes that the
two data sources reflect similar vessel operational behavior but with statistical discrepan-
cies. A practical method to identify aberrations in the time series data from ship operations
based on new indicators is presented using the sliding window and CV values. This can
be applied for various types of operational data, including noon reports and autolog data.
Case studies have been conducted using data from commercial vessels that show how
this method can be utilized. Source identification analysis has been performed to discover
reasons for the triggered changes. The major contributions of this paper are summarized,
as shown in the following.

• The noon report and autolog data represent similar vessel operational behavior but with
statistical discrepancies due to different data acquisition methods and many uncertainties,
such as sensor derivations under extreme environments and human errors.

• New indicators are proposed from the Trinity model of speed, power, and RPM, where
weather and hull deterioration during operation is considered.

• The practical method based on the proposed new indicators can be applied to identify
data aberrations.

• Despite its time-consuming and manual conduction, the practical deviation source
analysis method provides an effective way to select more accurate parameters for
ship performance estimation in the complex maritime environment, especially with
so many sources of uncertainty during operational data recording.

There are still many deviations that cannot be explicitly explained because of ambigu-
ity, variation tendencies, and noise, which is another big challenge. Further research that
focuses on these limitations and drawbacks of the practical method is needed. Applying the
method on data—both historical and real-time—can reveal consistent aberration periods
that earlier would have been overlooked as noise. The awareness of this shift is a valuable
asset to vessel operators and crew, who have better access to analyze the cause of the shift.
It has also been demonstrated that the method can be used to isolate the source of the shift
in selected cases. Keeping in mind the call for responsible and environmentally sustainable
shipping practices, such tools may be immensely powerful in improving performance anal-
yses in the near future. Additionally, this diagnostic tool could facilitate data verification
organizations in implementing stricter validation rules for submitted data. Such practical
methods in this research are the first step towards bringing a clearer view into the nuances
of vessel operational data.
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Abstract: The era of Industry 4.0 is gradually transforming our society into a data-driven one,
which can help us uncover valuable information from accumulated data, thereby improving the
level of social governance. The detection of anomalies, is crucial for maintaining societal trust and
fairness, yet it poses significant challenges due to the ubiquity of anomalies and the difficulty in
identifying them accurately. This paper aims to enhance the performance of the current Graph
Convolutional Network (GCN)-based Graph Anomaly Detection (GAD) algorithm on datasets with
extremely low proportions of anomalous labels. This goal is achieved through modifying the GCN
network structure and conducting feature extraction, thus fully utilizing three types of information
in the graph: node label information, node feature information, and edge information. Firstly,
we theoretically demonstrate the relationship between label propagation and feature convolution,
indicating that the Label Propagation Algorithm (LPA) can serve as a regularization penalty term for
GCN, aiding in training and enabling learnable edge weights, providing a basis for incorporating
node label information into GCN networks. Secondly, we introduce a method to aggregate node
and edge features, thereby incorporating edge information into GCN networks. Finally, we design
different GCN trainable weights for node features and co-embedding features. This design allows
different features to be projected into different spaces, greatly enhancing model expressiveness.
Experimental results on the DGraph dataset demonstrate superior AUC performance compared to
baseline models, highlighting the feasibility and efficacy of the proposed approach in addressing
GAD tasks in the scene with extremely low proportions of anomalous data.

Keywords: graph anomaly detection; label propagation; graph convolutional neural networks;
semi-supervised learning

1. Introduction

In real-world settings, anomalies are both ubiquitous and potentially detrimental,
yet challenging to identify. Fraudulent activities pose significant threats to the robust
functioning of society, not only in economic terms but also by adversely impacting societal
trust and fairness. Anomaly detection, also referred to as fraud detection, is assuming an
increasingly crucial role in contemporary society. Its applications range from detecting fake
news [1] to identifying fraudulent reviews [2].

In academia, “anomaly” is commonly abstracted as a set of data that deviates from the
majority [3]. Despite the development of numerous techniques in recent years for uncover-
ing outliers and anomalies in unstructured sets of multi-dimensional points, the scarcity of
anomalous behavior, high labeling costs, and privacy protection policies result in a paucity
of data samples labeled as anomalous [3].
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We observe that graphs in the current graph anomaly detection domain mainly exhibit
the following three characteristics.

1. Nodes are Labeled as well as Featured. Nodes in graphs often possess both label and
feature properties. Node labels can propagate and aggregate along the edges of the
graph, while node features can propagate along the edges and undergo transforma-
tions through neural network layers. Both label and feature propagation are beneficial
for predicting node behavior. The effective combination of these two propagation
aspects warrants attention.

2. Edges Contain Rich Information. In the field of GAD, the topology and structure of the
graph contain a wealth of information. The attributes and directions of edges imply
that even in isomorphic graphs, there are multiple types of connections (i.e., edges)
between different nodes. For instance, relationships between users may include
transfer and recipient relationships, loan and borrower relationships, as well as
familial relationships. This information can assist in better classification, thereby
identifying anomalous nodes. However, this information is often overlooked by
other methods.

3. The Proportion of Anomalous Data is Extremely Low. While fraud incidents do
occur, the majority of users in reality are normal users. The proportion of fraudulent
users is significantly smaller than that of normal users, making fraud detection a
classic example of imbalanced data. In machine learning model training, achieving
a relatively balanced distribution of various sample classes is crucial for optimal
performance. When there is a substantial difference in the proportions of different
classes, the trained model tends to exhibit characteristics more aligned with the
majority class, thereby neglecting features associated with minority class samples.

The inherent suitability of graph structures for analyzing relationships and connec-
tivity patterns in networks has propelled GAD to the forefront. GAD abstracts traditional
streaming data into graph structures, where nodes represent entities and edges signify
relationships between entities. The interconnected nodes form edges that convey structural
information about the graph, information that can be stored using an adjacency matrix [4].
GAD aims to detect anomalies by leveraging the structural information inherent in the
network, combining it with classic anomaly detection approaches. Considering fraud sce-
narios, fraudulent activities often exhibit associations and collaboration. The connections
between fraud groups are typically closer than those between normal users, and the behav-
iors demonstrate a certain level of similarity. This also explains why graph analysis can be
employed to detect anomalous behaviors in practical scenarios. According to the different
basic graph algorithms, GAD algorithms can be classified into several types, including
community detection, feature discovery, pattern mining, and GCN. This paper focuses on
the GCN-based GAD algorithm.

Due to divergent definitions of “anomaly” in academic and industrial contexts, cou-
pled with the variability in identifying anomalous data across different scenarios, the pre-
cise characterization of what constitutes an “anomaly” proves challenging [3]. This paper
abstains from delving into the root cause behind the classification of specific data as anoma-
lous or enumerating the features that render data anomalous. Instead, our focus remains
exclusively on the handling of datasets with anomaly ground-truth. Leveraging informa-
tion from node features, edge features, and graph structures, we seek to infer potential label
values for unlabeled nodes based on existing positive and negative labels. The objective is
to simplify the model into a semi-supervised learning classification task rooted in graph
neural networks, and the main task is to determine whether a node on the graph is an
anomaly or not. This classification approach is also often employed in GAD tasks [5].

We propose a unified model capable of addressing the aforementioned three challenges in
graphs to make full use of the information in the nodes and edges to improve the performance
of the algorithm. The primary contributions of this paper include the following.
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1. We analyzed the theoretical relationship between the feature convolution process
of GCN and the label propagation process of LPA, demonstrating that using LPA
as an auxiliary regularization term in the GCN loss function can train edge weights
and thereby improve GCN performance. Building on this theoretical analysis, we
introduced a learnable edge weight into GCN and trained it using LPA. This method
modifies the convolution process of GCN, making full use of node labels.

2. Considering the heterogeneity of edges, we analyzed the impact of edge information
on GAD tasks. Firstly, we embedded edge direction and attribute information to
generate edge features. Then, we aggregated these edge features with node features
to generate co-embedding. This method conducted feature extraction, fully utilizing
the information on edges.

3. Based on the co-embedding, we designed separate trainable GCN weights for node
features and co-embedding features, projecting them into different feature spaces,
greatly enhancing the model’s generalization ability.

We conducted experiments on the publicly available DGraph [6] dataset, selecting MLP,
Node2Vec [7], LPA [8], GCN [9], GAT [10], GATv2 [11], GraphSAGE [12], and UniMP [13]
as baseline models, with AUC serving as the evaluation metric, which refers to the area
under the ROC curve. The ROC (Receiver Operating Characteristic) curve is a graphical
visualization that provides an intuitive representation of a model’s performance. As a
numeric value, the AUC can directly and intuitively exhibit the goodness or poorness of
a model’s performance. The results indicate that our proposed method outperforms the
baselines in terms of AUC. Our model proves feasible in addressing GAD tasks, providing
valuable insights for applications in scenarios with scarce data.

The remaining sections of this paper are organized as follows. Section 2 discusses
related work in the field of anomaly detection. Section 3 defines the mathematical model of
the problem, analyzing the theoretical connection between GCN’s convolution on node
features and LPA’s propagation on node labels, providing a mathematical basis for in-
corporating node labels into the GCN model. Section 4 introduces our GCN-based GAD
model, which is achieved through three enhancements to the GCN network. Section 5
presents experimental results on public datasets, comparing the performance with baseline
models, indicating that our method exhibits the best AUC performance on datasets with
extremely low proportions of anomalous nodes. Finally, in Section 6, we summarize the
key contributions of this paper, as well as directions for future improvement.

2. Related Work

Anomaly detection algorithms typically view the task as a node classification prob-
lem, where data are categorized into normal and abnormal classes [3–5]. Our algorithm
conceptually relates to semi-supervised methods in graph-based learning and aligns with
recent advancements in applying convolutional neural networks to graph-structured data.

2.1. Limitations Encountered by Current Algorithms

Traditional anomaly detection methods can be divided into rule-based methods and
probability-based methods. Rule-based methods aim to formalize expert knowledge rules
and replicate them through computational means, while probability-based methods rely
on statistical knowledge and assume that data distribution conforms to certain statistical
distributions. Traditional anomaly detection methods are highly interpretable, but they
need to design different detection rules for different scenarios, which requires the introduc-
tion of a large amount of expert knowledge. This method has high time and labor costs,
and the generalization of the method is weak.

2.2. Anomaly Detection Based on Semi-Supervised Methods

Machine learning anomaly detection methods can be categorized into supervised,
semi-supervised, and unsupervised learning. In cases where the number of negative
samples is small, resulting in a large disparity between positive and negative sample
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proportions, and the patterns of negative samples are difficult to learn, supervised learning
methods are not applicable. Unsupervised learning does not require considering prior
knowledge and is suitable for most cases where most objects are normal. However, due to
insufficient input information, unsupervised learning is prone to the curse of dimensionality,
leading to low accuracy and high false-positive rates in existing patterns.

Semi-supervised learning does not rely on external interaction and automatically
leverages unlabeled samples to enhance learning based on a training set composed entirely
of normal data [14,15]. It allows for joint learning between a small number of labeled
samples and a large number of unlabeled samples [16], leading to improved learning
performance and generalization ability [17,18]. By better capturing data distribution char-
acteristics, it is particularly suitable for scenarios with limited labeled data and expensive
manual annotation. Specifically, semi-supervised learning can be categorized into inductive
learning (or pure semi-supervised learning) and transductive learning [14]. In the former,
the assumption is that the unlabeled samples in the training data do not represent the
data to be tested, while in the latter, the unlabeled samples considered during the learning
process are precisely the ones to be predicted [17].

In the mentioned methods, LPA and GNN methods are the focal points of our attention,
they can be summarized in Table 1. From the table, we observe that LPA is typically
associated with transductive learning, implying its inability to generalize to new nodes;
instead, it solely classifies the remaining nodes in the original graph. This is because, during
the model learning process, nodes with unknown labels in the original graph may also be
utilized for training. In other words, certain unlabeled data obtain their label information
from other unlabeled data. GNN is associated with inductive learning [19]. Additionally,
GNNs can leverage node features and support graph embedding, whereas LPA cannot.
LPA, however, can make full use of node label information, which GNNs may not fully
exploit. Consequently, both algorithms alone may not effectively utilize the information
present in the nodes of the graph. Our primary research goal is to cleverly combine these
two algorithms.

Table 1. Comparison of semi-supervised anomaly detection methods.

Label Propagation Graph Neural Network

Graph Embedding no yes
Representation Learning no yes

Use Features no yes
Use Labels yes no

Transductive yes yes
Inductive no yes/no

LPA was initially proposed by Zhu and Ghahramani [8], and implemented using
bipartite graphs. Several anomaly detection algorithms have been proposed based on LPA.
Li et al. [20] used adaptive label propagation for group anomaly detection in networks.
Wang et al. [21] introduced a collaborative multi-label propagation strategy, leveraging a
user-item interaction graph for acceleration. Wang et al. [22] improves graph-based label
propagation algorithm with group partition for fraud detection.

With GNN algorithms, numerous effective anomaly detection algorithms have also
been proposed. Building upon the dynamic heterogeneous graph, Zhang et al. [23] in-
troduced the hierarchical multi-modal fusion GNN (HMF-GNN), which was applied to
the detection of health insurance claim records. This model addresses the challenge of
lost neighbor information. DAGAD [24] provides a promising solution to alleviating the
problem of GAD with anomalous sample scarcity and class imbalance.

However, the aforementioned methods have not been able to fully integrate the
information provided by node features and labels.
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2.3. Anomaly Detection Based on Graph Convolutional Networks

According to whether the node attributes in the graph are multivariate, graphs can
be classified into homogeneous and heterogeneous graphs [25], this paper exclusively
discusses homogeneous graphs. For graph data, anomalies can be considered as elements
such as nodes, edges, subgraphs, etc., that differ from the majority of objects in the graph.
We can categorize GAD into different types based on the properties of the graph (static
graph, static attribute graph, and dynamic graph), and the nature of anomalies (node-
based, edge-based, and graph-based) [4,26]. The focus of this paper is on the detection
of anomalous nodes in static attribute graphs. In attribute graphs, besides the structural
information between nodes, each node also encompasses attribute information [27]. These
attribute details aid in uncovering hidden features of nodes, thereby enhancing the accuracy
of node anomaly detection.

Our approach is primarily inspired by GCN-based algorithms. Kipf and Welling [9]
introduced the concept of convolution to graph structures, proposing GCN. Building on
the work of GCN, Hamilton et al. [12] improved the mean aggregation method and intro-
duced GraphSAGE, a method for inductive representation learning, enabling algorithmic
application to large-scale graphs through minibatch sampling. However, GAD algorithms
constructed based on the above methods, such as GEM [28] and DualFraud [29], have not
taken into consideration the benefits brought by node labels.

Other methods, like GCN-LPA [30], and UniMP [13], cleverly combine GCN with
LPA. Huang et al. [19] demonstrated that this combination can avoid excessive smoothing,
thereby enhancing the performance of GCN. However, the aforementioned methods have
not fully utilized the information embedded in edges.

Research on combining GCN with LPA for recommender systems (RS) has proven the
feasibility of this approach in graph node classification [30–32]. Li et al. [33] combined LPA
with GNN and proposed a GAD method applicable to e-commerce shopping networks.

3. Problem Formulation

We start with some notation. Assume that there is a graph, directed or undirected,
G = (V, E), in which V = {v1, . . . , vI} denote the sets of subjects to be detected. Each node
has a P-dimensional feature, the i-th node’s feature is represented by xi. The arrangement
of all features in a row by node orders the results in the feature matrix X ∈ RI×P. A ∈
{0, 1}I×I is the binary adjacency matrix, the ij-th entry aij ∈ {0, 1} of A means whether
there is an edge from vi to vj, and vice versa. Number the elements of A from the first
row to the n-th row as 1, 2, . . . , n + 1, n + 2, . . . , nn − 1, nn; therefore, A can be flattened
into a two-dimensional array A ∈ N2×c, called the edge index matrix, where the first row
represents the source node and the second row represents the target node. c is the number
of non-zero elements in the matrix A, as well as the number of edges in the graph. Partition
A into two triangular matrices, Aupper and Alower. For an undirected graph, the first c/2
elements of A, correspond to the ith non-zero element in Aupper; the last c/2 elements of
A correspond to the i-th non-zero element in Alower. D is the diagonal degree matrix, and
S = D−1/2 AD−1/2 is the normalized adjacency matrix.

For graph G, each edge comprises two elements: edge direction and attribution.
Matrices E and Z, are organized based on the corresponding order of edges. That is to
say, E and Z shares the same topology as A. The matrix E ∈ {0, 1}1×c stores the directions
of the edges, where 0 and 1 represent incoming edges and outgoing edges. The matrix
Z ∈ {1, . . . , n}1×c stores the attributes of the edges, where different values of element Zi
represent different attributes of the edges. Figure 1 shows the process of mapping the
adjacency matrix A to the edge index matrix A, as well as the construction of the edge
direction matrix E and the edge attribution matrix Z. In (a), the first non-zero element
in A is read, which is located in the first row and third column. Therefore, it represents
that the corresponding edge has a source node of index 1 and a target node of index 3.
Consequently, the first column of the edge index matrix A, denoted as A1, has 1 in the
row above (representing the source node) and 3 in the row below (representing the target
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node). For the edge direction matrix, since this element is located in the upper triangular
matrix Aupper, the first element of the edge direction matrix E1 is 0, indicating an incoming
edge. The first element of the edge attribution matrix Z1 stores attribute 3 of this edge.
Following this procedure, we iterate through the other non-zero elements in A to construct
A, E, and Z.

(a) (b) (c)
Figure 1. The process of mapping the adjacency matrix A to the edge index matrix A, as well as the
construction of E and Z. (a) The first non-zero element in A is mapped to A. (b) The second non-zero
element in A is mapped to A. (c) The remaining non-zero elements in A are mapped to A.

We can transform the directed graph G into an undirected graph UG through a
simple symmetric operation. This involves processing the elements in matrices A with the

transformation aij or aji =

{
aji or aij, if aij or aji �= 0
0, otherwise.

Consequently, A becomes symmetric matrices.
In GAD tasks, the node set V is divided into a disjoint set of unlabeled nodes and

labeled nodes, while only the first m nodes (m � n) have labels from a label set L = {1, 2}.
Here, 1 represents normal nodes, and 2 represents anomalous nodes. The label is stored by
a one-hot-encoding matrix Y = [y1, . . . , yn]

T .
Finally, V is divided into three sets in proportion: training set Vtrain, validation set

Vvalid, and test set Vtest. Our objective is to learn the features of nodes with labels, propagate
their labels, and then infer the labels of the remaining nodes, given G, X, Y. Training is
performed on Vtrain, validation is conducted on Vvalid, and testing is carried out on Vtest.

Table 2 summarizes the symbols used in this paper along with their correspond-
ing meanings.

Table 2. Symbols used in this paper.

Symbols Meanings Symbols Meanings

G graph A edge index matrix
V node matrix E edge direction matrix
vi the i-th node Z edge attribution matrix
Y label matrix H representation of nodes
yi the i-th label Θ GCN trainable weight
A adjacency matrix W learnable edge weight
aij edge from vi to vj I f feature influence
D diagonal degree matrix Il label influence
S normalized adjacency matrix

3.1. Label Propagation Algorithm

LPA is based on the assumption that two connected nodes are correlated because of
the homophily and influence. LPA utilizes node labels as its input.

We construct a one-hot-encoding label matrix Y(k) =
[
y(k)1 , . . . , y(k)n

]T
to store labels.

The i-th row y(k)Ti stores the predicted label of node yi after k times label propagation. The label

matrix Y(0) is initialized with the rule y(0)i =

{
yi i ≤ m, labeled nodes
zero − vector m < i ≤ n, unlabeled nodes

.
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In the label propagation process during the k-th iteration, all nodes propagate their labels
to neighboring nodes with Equation (1). From the perspective of nodes, node vi will choose
the community of its neighbor with the highest membership count as its new community:

Y(k+1) = D−1 AY(k). (1)

Labels are propagated from each other nodes through a normalized adjacency matrix
D−1 A. Subsequently, all nodes are reset back to their initial labels y(0)i , before proceeding
to the (k + 1)-th iteration:

y(k+1)
i = y(0)i , ∀i ≤ m. (2)

LPA is an iterative computation process and does not guarantee convergence. Approx-
imately five iterations are often sufficient to achieve convergence [8], striking a balance
between accuracy and performance. This will be the chosen number of iterations in our
study. Consequently, for node v, the probability of category l is calculated as:

P(Yv = c) =
1

∑e(v,u) Av,u
∑

e(v,u)
Av,uP(Yu = c), (3)

where e(v, u) ∈ E represents the edge from v to its neighbor u. Figure 2 illustrates an LPA
process executed on an unweighted, undirected graph.

(a) (b) (c)

(d) (e) (f)
Figure 2. Label propagation process in three iterations: a demo. In the first iteration, the algorithm
starts computation from the first unlabeled node (i.e., node 2). For node 2, N2 = {1, 3}. Here, Ni

represents the neighboring nodes of node i. The next unlabeled node is then computed (i.e., node 3),
using the updated value of node 2. After the first iteration, all nodes are reset back to their initial
labels according to Equation (2). After multiple iterations (three iterations are shown here), some node
values will approach convergence, representing the final label probabilities for nodes. (a) Initial state.
(b) Update for node 2 in the 1st iteration. (c) Update for node 3 in the 1st iteration. (d) After a round
of updates for all unlabeled nodes (iteration 1). (e) After iteration 2. (f) After iteration 3.

In case of an undirected graph, the final representation of node i is the weighted
average of its neighboring nodes j ∈ N(i), represented by y∞

i = ∑j∈N(i) aijy∞
j .

3.2. Graph Convolutional Neural Networks

GCN [9] is one of the most popular GAD models based on the Laplacian smoothing
assumption. GCN utilizes node features as its input. In general, GCN employs a sum ag-
gregator as an aggregation function, the discussions in this paper are based on it. We begin
our derivation from the spatial representation of GCN. (The connection between LPA and
GCN is observed in their spatial representations, both of which have the form of AHΘ. The
original derivation of GCN starts from the spectral domain of graph convolution, and the
spatial representation of GCN is an approximation using Weisfeiler-Lehman on the spectral
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domain of graph convolution. However, for LPA, the original paper directly provides a
spatial representation without a spectral domain expression. Reference [34] introduces
energy to represent information propagation and then considers energy Laplacian, but its
form differs significantly from the spectral domain expression of GCN.)

The feature propagation scheme of GCN in layer l can be formulaed as:

H(l+1) = σ
(

S̃H(l)Θ(l)
)

(4)

where σ is an non-linear activation function, Θ(l) denotes the GCN trainable weight in the l-
th layer, and H(l) is the l-th layer representations of nodes with H(l) = X for the input layer.
To avoid neglecting the node’s own features, self-loops are added when updating the node
itself. This involves combining the node’s own features with the features of its neighbors
during the node update process. The normalized adjacency matrix will be S̃ = D̃− 1

2 ÃD̃− 1
2 ,

where Ã = A + I, and D̃ is the diagonal degree matrix for Ã with entries D̃ii = ∑j Ãij.
Of particular note is the adjacency matrix S̃, which here remains fixed, and depends on the
topological structure of the constructed graph. Meanwhile, the weight Θ mentioned is the
trainable weight of GCN, which is different from our learnable edge weight.

By stacking GCN, features for nodes in an l-dimensional space can be obtained.
In GAD tasks, the final layer of GCN is set to an output dimension of 2, allowing for the
classification of all nodes into normal/abnormal binary categories. Generally, stacking two
layers of GCN already yields satisfactory results [9], and this will be the number of GCN
layers used in this paper. At this point, the features of nodes after two layers of GCN are
represented as:

H(2) = σ
(

S̃σ
(

S̃XΘ(0)
)

Θ(1)
)

(5)

Similar to LPA, in the case of an undirected graph and sum aggregator, the final repre-
sentation of a node i is the weighted sum of its neighboring nodes j ∈ N(i), represented by
h∞

i = ∑j∈N(i) aijx∞
j .

3.3. Relationship between LPA and GCN

According to analysis before, on the label side L, LPA can propagate and aggregate
node labels along edges; along feature side V, GCN can convolute and transform node
features along edges. We can also observe that Equations (1) and 4 share similarities in
their forms. In this section, we attempt to answer two questions: What is the relationship
between the label propagation of LPA and the feature convolution of GCN? Why can LPA
serve as edge weights for training GCN?

Consider two nodes v1 and v2 in a graph; v1 is unlabeled while v2 is labeled. We
study the relationship between LPA and GCN from the perspective of label influence and
feature influence. Especially, if the initial label (feature) of v2 changes, how does the output
label (feature) of v1 change. The label (feature) influence can be measured by the gradient
(Jacobian) of the output label (feature) of v1 with respect to the initial label (feature) of
v2 [35,36]. The label influence of v2 on v1 after k iterations of LPA is:

Il(v1, v1; k) =
∂y(k)1
∂y1

. (6)

Due to the iterative nature of the LPA algorithm, the influence of x2 on x1 accumulates,
and can eventually be expressed as:

Il(v1, v2; k) =
k−1

∑
j=0

∂y(k)1

∂y(j)
2

. (7)
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On the other hand, denote x(k)1 as the k-th layer embedding of v1 in GCN, and x2
represents the initial embedding of v2. The feature influence of v2 on v1 after k-layers of
GCN is the L1-norm of the expected Jacobian matrix [30], as:

I f (v1, v2; k) =

∥∥∥∥∥EΘ(·)

[
∂x

(k)
1

∂x2

]∥∥∥∥∥
1

, (8)

where the expectation is taken under the transformation matrix Θ(·). The feature influence
should be normalized as:

Ĩ f (v1, v2; k) =
I f (va, vb; k)

∑vi∈V If (v1, vi; k)
. (9)

Assume that the ReLU function serves as the activation function σ of GCN, and β
denotes the fraction of unlabeled nodes. Consequently, the relationship between the label
propagation of LPA and the feature convolution of GCN can be concluded, which can be
expressed as:

EΘ(·) [Il(v1, v2; k)] =
k−1

∑
j=0

βj Ĩ f (v1, v2; j). (10)

The details of the proof for Equation (10) can be found in Reference [30]. With this,
the first question posed in this section is answered: the relationship between label propaga-
tion and feature convolution is that if the label of node v2 has a sufficiently large influence
on the label of node v1, then the initial features of node v2 will also have an equally large
impact on the output features of node v1. In other words, the influence of all nodes labeled
as c on the label of node v1, i.e.,

∑
∀v2, label of v2 is c

Il(v1, v2; k) (11)

is proportional to the probability of node v1 being classified as c by LPA as Equation (3), i.e.,

P
(

ŷ1
lpa = c

)
. (12)

From the above derivation, we can conclude that label influence can serve as a sub-
stitute for feature influence, which is the answer to the second question. This provides
a theoretical basis for us to use LPA to assist in training edge weights for GCN and to
establish a GCN model where edge weights are learnable.

4. Our Unified GCN-Based GAD Model

This section will introduce our unified GCN-based GAD model, primarily consisting of
three clever enhancements built upon the GCN network: learnable edge weights, edge-node
co-embedding, and separate trainable GCN weight. Learnable edge weights introduce node
label information through LPA, edge-node co-embedding incorporates information from
edges, and separate trainable GCN weights enhance the model’s expressive ability. We aim
to leverage the improvements mentioned above to fully utilize node feature information,
node label information, and edge information in the GAD graph, thereby enhancing
the algorithm’s performance in scenarios with extremely low proportions of anomalous
data. Figure 3 illustrates the overall architecture of our unified GCN-based GAD model.
In contrast, Figure 4 illustrates the structure of a classical GCN network.
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Figure 3. Overall architecture of our unified Graph Convolutional Network (GCN)-based Graph
Anomaly Detection (GAD) model.

Figure 4. Architecture of classical Graph Convolutional Network (GCN).

4.1. Learnable Edge Weight

To ensure narrative coherence, we first introduce the concept of learnable edge weights.
Building upon traditional GCN networks, as in Equation (4), a learnable edge weight

parameter W(l) is introduced. With this addition, the GCN network can be rewritten as:

H(l+1) = σ
(

D̃− 1
2 W(l) ◦ ÃD̃− 1

2 H(l)Θ(l)
)

, (13)

where W(l) represents the edge weight parameter for layer l, ◦ is the symbol of the
Hadamard product. It is important to note that the matrix Ã in the equation is constant and
solely dependent on the adjacency relations of the input nodes, with its values remaining
unchanged throughout the training process. Θ represents the weights of the graph neural
network (not our learnable edge weight). Figure 5 illustrates our first improvement, which
is introducing node label information by adding learnable edge weights. The number of
columns in the GCN trainable weight layer, denoted as C, is variable. It is set to 2 in the
final GCN layer (meeting the binary classification requirements of our GAD task), while in
other layers, it is set to the number of hidden units.
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Figure 5. First improvement: Introducing node label information by adding learnable edge weights
(only one layer of Graph Convolutional Network (GCN) is displayed).

The next question becomes how to train the weight matrix W ◦ Ã to optimize its
performance. Combining Equations (11) and (12), we can conclude that when the loss
function of LPA LLPA(W ◦ Ã) is minimized, the optimal edge weight ˆW ◦ Ã is achieved, as:

ˆW ◦ Ã = arg min
W◦Ã

LLPA(W ◦ Ã). (14)

Cross entropy can measure the distance between predicted values ŷlpa
1 and ground

truth y1. Therefore, the above expression can be rewritten as:

ˆW ◦ Ã = arg min
W◦Ã

1
number of labeled nodes ∑

labeled nodes v1

J
(

ŷlpa
1 , y1

)
, (15)

where J is the cross entropy loss.
As a GAD task, as analyzed in Section 1, fraudulent activities exhibit correlations and

organizational characteristics. Fraudulent groups often have close connections, and their
behaviors show certain similarities. This implies that neighboring nodes in the graph often
have the same labels, and their feature vectors are also similar (as the node feature vectors
in the GAD task are derived from real user behavior). Given that neighboring nodes have
similar labels and feature vectors, cross entropy can effectively encourage adjacent nodes to
be similar, learning an effective mapping from feature vectors to labels. Therefore, the loss
function for traditional GCN is defined as follows: cross entropy is also used to compute
the distance, and the loss of predicted labels by GCN J

(
ŷgcn

1 , y1

)
minimized to learn the

optimal transformation matrix Θ∗ in the GCN:

Θ∗ = arg min
Θ

1
number of labeled nodes ∑

labeled nodes v1

J
(

ŷgcn
1 , y1

)
. (16)

The final question is how to determine the loss function for the unified model. For a
graph semi-supervised learning task, we can utilize both node features and graph structure
information. Therefore, we can optimize both loss functions together and incorporate L2
regularization [9]:

L = Llabeled + λLreg + γ‖ω‖2
2, (17)

where Llabeled represents the loss function based on labeled data, Lreg represents the loss
function based on graph structure information, ‖ω‖2

2 is the L2 regularizer, and λ and γ are
hyperparameters that respectively adjust the relative importance of Lreg and ‖ω‖2

2. Data
loss Llabeled considers the distance between the predicted values and the ground truth,
which is the supervised loss. As a regularization penalty term, Lreg only considers the loss
induced by the weight coefficients Θ.
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As per Section 3.3, it is evident that LPA has the ability to replace GCN in training
edge weights. Therefore, the loss of LPA (Equation (15)) can replace the regularization
penalty term Lreg in Equation (17) for training, thereby updating W (Equation (13)), which
is the proposed learnable edge weight. The data loss in Equation (17) is composed of the
loss of traditional GCN (Equation (16)). Ultimately, the loss function can be written as:

L =
1
m ∑

labeled nodes
J(ŷgcn, y) + λ

(
1
m ∑

labeled nodes
J
(

ŷlpa, y
))

+ γ‖ω‖2
2, (18)

where m is the number of labeled nodes in the graph. The first term corresponds to the
segment of GCN that learns the edge weights W and the trainable matrix Θ. Meanwhile,
the second term corresponds to the label propagation segment, which can be seen as impos-
ing constraints on the edge weights W. The second term can be viewed as a regularization
on W to assist GCN in learning edge weights.

The above process is implemented using Algorithm 1. First, we initialize a trainable
edge weight matrix W(0) as a matrix of ones (line 2). Then, we utilize GCN to perform
feature convolution, setting the output dimension of the last GCN layer to 2 for binary clas-
sification, obtaining the GCN’s label predictions ŷgcn (lines 4–8). The computation of LPA
is similar to GCN, resulting in the LPA’s label predictions ŷlpa (lines 9–12). Subsequently,
the cross-entropy losses between ŷgcn and ground truth y are calculated, as well as ŷgcn and
y, to obtain the total loss L (line 13). Finally, the GCN training weights Θ and the learnable
edge weight W are updated using gradient descent.

Algorithm 1 Learnable edge weight.

Input: Graph G(V, E); adjacency matrix A; label matrix Y; degree matrix D;
number of GCN layers L; number of LPA iterations K;
square matrix W, with the size equal to the number of edges in E, where all elements
are ones.

Output: Predicted abnormal nodes out.
1: for i = 1 to number of edges in E do

2: Set W(0)[i] to 1
3: end for
4: for l = 1 to L do
5: H(1) ← X
6: H(l) ← GCN convolution with Equation (4);
7: end for
8: ŷgcn ← Set output dimension of GCN to 2;
9: for k = 1 to K do

10: Y(1) ← Y
11: ŷlpa ← LPA propagation with Equations (1) and (2);
12: end for
13: L ←Calculated loss with Equation (18);
14: Backpropagation;
15: Update Θ and W
16: return out

4.2. Co-Embedding of Edge and Node Features

This section will focus on constructing edge embeddings and aggregating them with
node embeddings. The amount of information contained in H directly determines the
feature influence of a node on its neighboring nodes (as described in Equation (9)). We
start by considering increasing the information contained in H. By adding the embeddings
of edge direction and properties and generating edge features, we introduce a method to
aggregate node features and edge features into a co-embedding feature.
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As discussed in Section 3, each edge consists of two elements: edge direction and
attribution. Reiterating the definition provided, matrix E ∈ {0, 1}1×c stores the direction of
the edges, and matrix Z ∈ {1, . . . , n}1×c stores the attribution of the edges.

Once the edge direction and edge attributes are defined as matrices, they can be aggre-
gated using an additive approach for propagation [37]. Although this simple aggregation
calculation is computationally efficient, it fails to capture dependencies between different
relationships and interactions between node and edge features [38].

To ensure uniform dimensions between node feature matrices and edge feature matri-
ces, while also reflecting the relationship between node and edge features, incorporating
edge features into node features is needed. This involves performing aggregation opera-
tions on both node features and edge features.

First, we map the high-dimensional discrete features E and Z to continuous low-
dimensional vector spaces, obtaining dense vectors, which enables the model to better
handle information from E and Z. The embedding layer maps each node with values
(both e and z) to a d-dimensional dense vector representation, denoted as Eemb and Zemb.
The calculation process of the embedding layer can be expressed as:

E [E] = Eemb, (19)

E [Z] = Zemb, (20)

where E ∈ Rv×d is the weight matrix of the embedding layer. For the edge direction matrix
and edge attribute matrix, v is 2 and n, respectively, representing the dimensionality of the
input space for the embedding layer. Now, we have obtained matrices Eemb ∈ Rc×d and
Zemb ∈ Rc×d after the embedding operation, and perform matrix addition to obtain the
edge features:

F = Eemb + Zemb, (21)

where F ∈ Rc×d.
Secondly, we expand the node feature matrix X to X̂. We index the node feature vector

based on the elements stored in the first row A1 (source node) of the edge index matrix A.
The elements in A correspond to the row numbers in X. Since the same element value may
appear multiple times in A (because the out-degree of a specific node may be greater than
one, i.e., it may act as a source node multiple times), there will be duplicate rows in the
extended node feature matrix X̂. Each row in the extended node feature matrix X̂ is a copy
of the corresponding row in the node feature matrix X. For example, if element 2 appears
twice in A, then the row corresponding to X2 will also appear twice in X̂. Ultimately,
X ∈ RI×P is expanded to X̂ ∈ Rc×P, where c is the number of edges in the graph and P is
the dimensionality of the node features.

Thirdly, concatenate F with X̂ to obtain the aggregated feature matrix F̂, where c is
the number of edges in the graph, and P + d is the sum of the dimensions of the edge
embedding and the extended node feature.

Finally, F̂ is scattered to transform edge features into node features. F̂ is set as the
input tensor, and scatter indices are specified at target node positions from the second row
of A. We specify the output tensor size as the number of nodes (the dimension of adjacency
matrix A, denoted by I), and aggregate the data using the sum method. Ultimately, we
obtain the co-embedding matrix concat(Hnode, Hedge) ∈ RI×(P+d) of node features and edge
features. Figure 6 illustrates the process of generating co-embeddings by embedding edge
direction and edge attributes, combining them with extended node features to generate
aggregated features, and then scattering to obtain edge-node co-embeddings.
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Figure 6. Second improvement: Introducing information from edges through edge-node co-embedding.

4.3. Separate Trainable GCN Weights

In this section, we design separate trainable GCN weights for node features and
co-embedding features. The term “separate trainable GCN weights” refers to splitting the
original trainable weight Θ in GCN into two weights, Θ1 and Θ2. These weights are used
to transform node embeddings and co-embeddings in their respective feature spaces before
combining them through weighted summation.

In theory, our method extracts high-dimensional information from the neighborhood of
graph nodes by dimensionality reduction into dense vector embeddings. These embeddings
can be provided to downstream machine learning systems to accomplish the GAD task.
In graph analysis tasks, edge embeddings have been proven to be highly useful as input
features for GAD [39].

Our discussion still starts with the traditional GCN. For the sake of simplicity in
exposition, we rewrite Equation (4) in a more concise form:

H′
node = HnodeΘ. (22)

In the above equation, the activation function σ and normalized adjacency matrix S̃ are
omitted, and only one layer of GCN is considered, which does not affect the construction
of our aggregation function. The equation can be seen as the transformation of node
embeddings H to obtain new embeddings H′ through trainable weight Θ, where H(0)

node = X.
To cleverly combine node embedding Hnode and co-embedding concat(Hnode, Hedge),

we designed different Θ for Hnode and concat(Hnode, Hedge), projecting them into different
feature spaces. This helps enhance the model’s expressive ability, which can be written
as follows:

H′ = HnodeΘ1 + φ · concat(Hnode, Hedge)Θ2, (23)

here, W is the learnable edge weight discussed in Section 4.1, which is incorporated into
the edge embedding network, φ is a hyperparameter that adjusts the relative importance.

By substituting the co-embeddings into Equation (23), Θ1 and Θ2 can be trained
separately. Figure 7 illustrates our third improvement, which is designing separate GCN
trainable weights to enhance the model’s expressive power, and Algorithm 2 outlines the
process of our co-embedding and separate training algorithm. First, we perform embedding
operations separately on the directional and attribute information of the edges (lines 1–2).
Then, we add the obtained embedding matrices to obtain the edge feature matrix (line 3).
We redistribute the node feature matrix to obtain the extended node feature matrix (line 4).
Next, we aggregate the edge feature matrix and the node feature matrix (line 5), and obtain
the edge-node co-embedding through scatter operations (line 6). Finally, we project node
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features and edge-node co-embedding into different spaces using different GCN trainable
weights (line 7).

Figure 7. Third improvement: Designing separate Graph Convolutional Network (GCN) trainable
weights to enhance the model’s expressive power (only one layer of GCN is displayed).

Algorithm 2 Node-edge co-embedding and separate training.

Input: Graph G; edge direction E; edge attribution Z; edge index A; node feature X.
Output: Predicted Abnormal Nodes out.

1: Eemb ← Embed edge direction with Equation (19);
2: Zemb ← Embed edge attribution with Equation (20);
3: F ← Eemb + Zemb;
4: X̂ ← Redistribute the rows of X according to A1;
5: F̂ ← concat(F, X̂);
6: concat(Hnode, Hedge) ← scatter(F̂);
7: Convolute with Equation (23) using Algorithm 1
8: return out

5. Experiments

5.1. Datasets

We selected the publicly available dataset, DGraph [6], a real-world GAD graph in the
finance domain, as our test sample. This dataset comprises a directed, unweighted graph
that represents a social network among users. In this graph, each node represents a user,
and the node features, derived from basic personal profiles, consist of a 17-dimensional
vector. Each dimension corresponds to a different element of the individual’s profile,
primarily including the following aspects: (1) basic personal information, such as age,
gender, and location; (2) past borrowing behavior, including agreed-upon repayment due
dates and actual repayment dates; (3) emergency contact-related information, such as the
existence of emergency contacts. An edge from one user to another signifies a different
type of connection, with a total of 12 distinct types of connections. It is noteworthy that
DGraph is highly sparse, containing approximately 3 million nodes and 4 million edges.
The number of nodes in DGraph is 17.1 times that of Elliptic [40], making it the largest
publicly available dataset in the GAD domain to date.

As a financial dataset, DGraph originates from real-world borrowing and lending
behaviors. The determination of whether a node is classified as normal or anomalous
depends on its borrowing and lending activities, summarized briefly as follows. All labeled
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nodes in DGraph have engaged in borrowing or lending at least once. Nodes that are
registered but have not engaged in borrowing or lending are classified as unlabeled nodes.
Among the labeled nodes, those classified as anomalous are users who have failed to
repay their loans for a considerable period after the loan’s due date, disregarding repeated
reminders from the platform. According to the aforementioned criteria, 15,509 users are
classified as anomalous. Among these nodes, normal users account for 22.07% (nodes
labeled as 0), while abnormal users account for 0.26%. The ratio of positive to negative
samples is approximately 85:1, indicating a significant class imbalance in the dataset.
The nodes are randomly split into training/validation/test sets with a ratio of 70:15:15.
Table 3 lists the key parameters of DGraph.

Table 3. Key parameters of DGraph.

Parameters Value

# Nodes 3,700,550
# Node features 17-dimensional anonymous features
# Edges 4,300,999
Edge information edge direction, edge attribution
Normal-to-anomaly ratio 85:1
Proportion of missing feature values 56.37%
-for normal nodes 39%
-for anomaly nodes 67%
Average node degree 1.22

Table 4 summarizes the comparison of parameters between DGraph and mainstream
anomaly detection datasets. Compared to other datasets, DGraph is closer to real-world
applications because it has a minimum percentage of anomalous nodes and a diluted
network, which is a common phenomenon in real GAD task. At the same time, the label
data proportion in DGraph is also very low. Compared to DGraph, YelpChi is constructed
using a Yelp Review Filter [41], making it not the real ground truth. The ratio of edges to
nodes (in other words, the degree of the nodes) in the Amazon dataset is approximately
368:1, creating a graph that is too dense to be common in the GAD field. Elliptic is the
closest to our scenario, but it treats edges as homogeneous, meaning that edges do not
have attributes. In real GAD scenarios, however, the connections between users are diverse.
Excessive features also reduce the usability of Elliptic. This is the reason why DGraph was
chosen as the dataset for this study.

Table 4. Comparison of parameters between DGraph and mainstream Graph Anomaly Detection
(GAD) datasets.

Dateset # Nodes # Edges # Labeled Nodes # Anomalous Nodes # Features

YelpChi [2] 45954 3846979 45954 14.50% 32
Amazon [2] 11944 4398392 11944 9.50% 25
Elliptic [40] 203769 234355 46564 9.80% 166
DGraph [6] 3700550 4300999 1225601 1.17% 17

It is important to note that, for privacy protection purposes, the features of the nodes
in DGraph are anonymously provided and not ordered by importance. This anonymity
of features prevents this paper from visualizing the dataset in the same manner as other
datasets, where the first two features are typically chosen for the x-axis and y-axis in plots.
The anonymous provision of features also limits our ability to further explain which features
contribute more significantly to node anomalies. (The DGraph provider anonymizes users
by removing personal identifiers and randomizing transaction details, making it impossible
to trace back to user IDs. Furthermore, since user features are not unique, users cannot be
identified from the dataset, ensuring DGraph’s anonymity.)

Figure 8 lists the distribution of node out-degrees and in-degrees. There is a significant
difference in the distributions of out-degrees and in-degrees for the two types of nodes.
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According to the definition of DGraph, each node represents a user. The out-degree
represents the completeness of information for a user, where the higher out-degree indicates
higher information completeness. The in-degree represents the trust relationship of a user,
where a higher in-degree indicates higher trust from other users. The out-degree of a node is
determined by the user, while the in-degree is not. The significant difference between node
out-degrees and in-degrees provides a basis for our edge direction embedding. The edge
direction treats the out-degree and in-degree of nodes differently, accurately distinguishing
between the two types of nodes.

(a) (b)
Figure 8. Distribution of node out-degrees and in-degrees. (a) Out-degree distribution of nodes.
(b) In-degree distribution of nodes.

Background nodes are an important attribute of the DGraph dataset. [6] These nodes
refer to entities that lack borrowing and lending activities, are not the target of anomaly
detection, but play a crucial role in maintaining the connectivity of DGraph. Throughout
our experiments, we adhere to the following assumption: retain all background nodes but
only perform anomaly detection on labeled nodes (normal or anomalous).

5.2. Baselines

We have selected eight methods as our baseline approaches, comprising one baseline
method (MLP), two generic graph methods (Node2Vec and LPA), and five GCN-based
methods (GCN, GAT, GATv2, GraphSAGE, and UniMP). We adopt AUC as the evaluation
metric, which is extremely useful in the scenario of data imbalance where abnormal data
sets are scarce while normal data sets are extremely abundant. The higher the AUC
value, the better the model’s performance. For example, in DGraph, abnormal users
only account for 1.16% of the dataset. Therefore, even if the model predicts all samples
as normal, the accuracy would still be as high as 99%. However, it is evident that the
model’s predictive performance is poor. Moreover, in GAD scenarios, the losses incurred
by predicting fraudulent users as normal would be far greater than predicting normal users
as fraudulent. Hence, for our GAD task, AUC is more crucial.

5.3. Experimental Setup

The experimental environment for all experiments remained consistent. The GPU
utilized was an NVIDIA V100 (32 GB NVLink memory, single GPU with 5120 CUDA
Cores), the CPU consisted of 12 Intel Xeon processors (Platinum 8163 (Skylake) @2.50 GHz),
and the system had 92 GB of RAM. For each method, five runs were executed, with each
run comprising 500 epochs, and the best-performing value was selected. Unless otherwise
specified, all experiments are conducted on undirected graphs.

In implementing all algorithms, we utilized PyTorch Geometric. During the implemen-
tation process, we employed one trick: we replaced the storage of the matrix containing
the source and target nodes of edges with a sparse adjacency matrix. This significantly
accelerated computation speed, except for GAT, GATv2, and co-embedding, as they require
explicit edge propagation.

All the hyper-parameters are listed below:
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• Hidden layer size: 40;
• GCN layers: 2;
• LPA iteration: 5;
• Edge direction and attribution embedding size: 10;
• L2 weight: 5 × 10−5;
• Dropout rate: 0.3;
• Learning rate: 0.05.

5.4. Comparison with Baselines

Table 5 presents the results of the comparison between our unified model and the
baseline algorithms in terms of the AUC metric. The hyperparameters used here are: LPA
weight λ = 1 and co-embedding weight φ = 1. In the table, “WL” refers to the first
improvement module, which is the edge weight learnable module in our model; “CE”
refers to the second improvement module, which is the edge-node co-embedding module.

Table 5. Comparison between our unified model and the baseline algorithms (with λ = 1, φ = 1).
T.T. means average training time per epoch.

Methods
AUC

T.T.
Valid Test

Baseline MLP 71.74% 72.31% 0.412 s

Generic Graph Methods
LPA [8] 50.89% 50.95% N/A

Node2Vec [7] 62.61% 62.92% N/A

GCN-based Methods

GCN [9] 70.78% 72.32% 0.608 s
GAT [10] 72.33% 73.31% 0.798 s

GATv2 [11] (ICLR 2022) 75.26% 76.24% 0.901 s
GraphSAGE [12] 75.48% 76.21% 0.671 s

UniMP [13] (IJCAI 2021) 77.17% 78.38% 0.641 s

Our model
GCN-WL 73.01% 73.82% 0.625 s

GCN-WL+CE 78.52% 79.45% 0.998 s

From Table 5, we observe that the MLP baseline, which does not utilize any graph
information, achieved good results. Among the generic graph methods, Node2Vec, which
only utilizes graph structure, and LPA, which only utilizes node labels, did not achieve
high AUC scores. This suggests that in the GAD task on DGraph, the primary information
lies within the node features. Among the GCN-based models, classical GCN and GAT per-
formed similarly, while GraphSAGE showed significant improvement in performance. This
is because GraphSAGE designs different trainable features for neighboring nodes. GATv2
improves upon GAT and exhibits noticeable performance gains. UniMP, incorporating
attention mechanisms into GCN models, achieved very significant improvements.

Our edge-weight-learnable method, which is an improvement of GCN utilizing LPA
to incorporate node labels, achieved higher AUC compared to traditional GCN. This
demonstrates that both node features and node labels contain rich information, and LPA
can act as a regularization penalty to aid training.

In terms of model training time, the general graph methods LPA and Node2Vec do
not involve explicit “training” and therefore do not have training time. The MLP model,
being the smallest in scale and simplest in architecture, naturally has the shortest training
time. Among the methods employing the sparse matrix trick, our edge weight learnable
method has the second shortest training time, only slightly longer than the classical GCN
method. This is because our edge weight learnable method does not increase the model’s
dimensionality; it only introduces node labels (which are also used in traditional GCN-
based methods) and achieves a good trade-off between time and performance. Methods
that do not use the sparse matrix trick—such as GAT, GATv2, and our co-embedding
method—require significantly longer training times. This is because the edge information
needs to be explicitly propagated along the edges and cannot be represented using sparse
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matrices to reduce computation. Additionally, extracting edge features and the growth in
model size both require more time. It is worth noting that both GraphSAGE and GAT have
corresponding mini-batch methods, which can reduce the size of each batch to improve
speed. However, for the sake of fairness, we did not use mini-batch training in this study.

The method incorporating edge-node co-embedding and improving the convolution
operator achieved significant progress in performance. This indicates that the direction
and attributes of edges are helpful in enhancing the ability of GAD to detect anomalies.
Additionally, designing different trainable weights for node features and co-embedding
features contributes to improving algorithm expressiveness.

5.5. Infuence of LPA Regularization

To study the effectiveness of LPA regularization, we varied the LPA weight λ from 0
to 5 in the weight-learnable algorithm, without adding co-embedding. We observed the
performance changes, as shown in Table 6.

Table 6. The variation of Area Under the Curve (AUC) values due to different Label Propagation
Algorithm (LPA) weights λ (without incorporating co-embedding).

λ
0

(Classical GCN)
0.01 0.1 0.5 1 5

AUC 72.32% 72.53% 72.99% 73.26% 73.82% 73.24%

From the table, it can be observed that when λ is non-zero (i.e., after adding learnable
weight), the performance is better than before adding learnable weight. This demonstrates
the effectiveness of our LPA regularization strategy. However, when λ is too large, the term
Lreg in Equation (17) becomes greater than the term Llabeled. In the computation of the
loss, the loss function based on labeled data Llabeled is more important, as it determines
the direction of gradient descent, while the regularization penalty Lreg serves as an auxil-
iary factor.

5.6. Impact of Edge and Node Co-Embedding

To investigate the influence of co-embedding, we fixed λ to 1 and varied the weight
φ of the co-embedding term from 0 to 2, observing the performance changes. Table 7
reflects this variation. It can be seen from the table that the inclusion of edge directionality
and attribute information leads to significant performance improvements, despite the fact
that there are only two types of directional information and 12 types of edge attribute
information. This demonstrates the effectiveness of our co-embedding method. Addition-
ally, designing different trainable weights for node features and co-embedding features,
projecting different features into different feature spaces, greatly enhances the model’s
expressive ability. However, overly large φ values can lead to performance degradation.
We believe this is because most of the information in the graph is contained within the node
features, and the fundamental purpose of the GCN algorithm is to find neighboring nodes
based on the similarity of node features, with edge information serving as an auxiliary.

Including reverse edges can increase the density of edges and provide more directional
information, which can greatly improve performance when edge information is required for
co-embedding. To demonstrate this, we fixed λ to 1 and tested the performance under the
same conditions on a directed graph (i.e., without adding reverse edges). Table 7 reflects this
variation. It can be observed that as the co-embedding weight φ increases, the performance
gain from reverse edges decreases. We believe that when the co-embedding weight is low,
the information contained in the graph’s topological structure is more prominent, while
undirected graphs contain more topological structures. However, as the co-embedding
weight increases, the directional and attribute information carried by the edges becomes
more important.
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Table 7. The variation of Area Under the Curve (AUC) values due to different co-embedding weights
φ on directed and undirected graphs (with Label Propagation Algorithm (LPA) weights λ = 1).

φ
0

(Just WL, No CE)
0.01 0.1 0.5 1 2

AUC
Directed 66.51% 72.90% 75.31% 76.77% 77.37% 76.69%

Undirected 73.82% 74.54% 77.26% 79.30% 79.45% 73.23%

To demonstrate the effectiveness of the learnable edge weight strategy, we fixed φ to 1
and removed the learnable edge weight on an undirected graph; the AUC decreased from
79.45% to 79.03%. This demonstrates that although the second term concat(Hnode, Hedge) in
Equation (23) is composed of node features Hnode and edge features Hedge co-embedded, it
is still a feature matrix aggregated based on node dimensions. Therefore, using the loss
term from the LPA algorithm instead of the regularization penalty in GCN, as derived in
Equation (18), still improves the algorithm’s performance.

6. Conclusions

This research contributes to advancing the field of graph anomaly detection, offering
a robust framework for future studies and applications.

Firstly, by establishing the relationship between label propagation and feature convo-
lution, we have shown that the LPA can function as a regularization penalty term for GCN,
thereby facilitating training and enabling the learning of edge weights. Secondly, our node
and edge feature co-embedding method fully utilizes the directional and attribute infor-
mation inherent in the edges, increasing the spatial dimensionality of the model. Finally,
we employ separate trainable GCN weights to handle node features and co-embedding
features, enabling the projection of different features into separate feature spaces, greatly
enhancing the model’s generalization capability.

Experimental results on the DGraph dataset have demonstrated superior AUC perfor-
mance compared to baseline models, underscoring the feasibility and effectiveness of our
proposed approach in tackling GAD tasks.

The method proposed in this paper currently incurs relatively high time and memory
costs, requiring significant computational resources. This limitation hinders the application
of the proposed method in larger-scale scenarios. Future work includes exploring tech-
niques such as downsampling to reduce time and memory overhead while maintaining
algorithm performance, making it more responsive to the rapid growth of data brought
about by the Industry 4.0 era.
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Abbreviations

The following abbreviations are used in this manuscript:

LPA Label Propagation Algorithm
GCN Graph Convolutional Network
MLP Multilayer Perceptron
GAT Graph Attention Network
GNN Graph Neural Network
GAD Graph Anomaly Detection
ROC Receiver Operating Characteristic Curve
AUC Area Under ROC Curve
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Abstract: Unmanned aerial vehicle (UAV) image stitching refers to the process of combining multiple
UAV images into a single large-format, wide-field image, and the stitched image often contains
large irregular boundaries and multiple stitching seams. Usually, irregular boundaries are addressed
using grid-constrained methods, while seams are optimized through the design of energy functions
and penalty terms applied to the pixels at the seams. The above-mentioned two solutions can only
address one of the two issues individually and are often limited to pairwise stitching of images. To
the best of our knowledge, there is no unified approach that can handle both seams and irregular
boundaries in the context of multi-image stitching for UAV images. Considering that addressing
irregular boundaries involves completing missing information for regularization and that mitigating
seams involves generating images near the stitching seams, both of these challenges can be viewed as
instances of a mask-based image completion problem. This paper proposes a UAV image stitching
method based on a diffusion model. This method uniformly designs masks for irregular boundaries
and stitching seams, and the unconditional score function of the diffusion model is then utilized
to reverse the process. Additional manifold gradient constraints are applied to restore masked
images, eliminating both irregular boundaries and stitching seams and resulting in higher perceptual
quality. The restoration maintains high consistency in texture and semantics. This method not only
simultaneously addresses irregular boundaries and stitching seams but also is unaffected by factors
such as the number of stitched images, the shape of irregular boundaries, and the distribution of
stitching seams, demonstrating its robustness.

Keywords: UAV image; diffusion model; image stitching; irregular boundaries; stitching seams

1. Introduction

To obtain images with a broader field of view, image stitching is a necessary pre-
processing step in unmanned aerial vehicle (UAV) remote sensing applications [1]. The
common issues involved in stitched images include irregular boundaries and stitching
seams due to the inability to achieve perfect alignment of multiple images. For UAV image
stitching, accumulations of stitching seams and irregular boundaries often occur because
more than two images are required to be stitched through multiple stitching processes, and
these two phenonmena can be clearly seen in Figure 1.

Existing image stitching methods often optimize global or local geometric distortions
to enhance alignment between different images, while irregular boundaries and stitching
seams still exist [2–5]. For the UAV image stitching task, Guo et al. [6] combined shape-
preserving with global alignment, achieving higher alignment accuracy when compared
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with many advanced methods. Cui et al. [7] proposed a strategy to fully utilize features
extracted by transformers for point matching, which can reduce positional errors when
stitching images containing inconspicuous features, such as forests, bare land, and rivers,
thus achieving promising performance. Lin et al. [8] introduced an image stitching method
based on Vector Shape Preserving (VSP) deformation, which can achieve high-precision
alignment. Although the above-mentioned methods have achieved much better image
stitching performance, they still cannot ensure smooth transitions between the overlapping
image regions, and they also suffer irregular boundaries. Recently, methods have been
proposed to address irregular boundaries such as rectangular cropping of stitched images,
resulting in significant loss of field of view. Some pioneer researchers employed the
two-stage grid deformation method based on grid search and grid optimization [9–11].
Although this type of method can preserve linear structures, they often introduce serious
distortions in nonlinear structures.

To tackle the irregular boundary problem, an intuitive method is the use of image
completion, which requires the design of masks to guide the completion of missing regions.
This idea has not been adopted for this task up to now. For stitching seams, there are two
main types of methods. One type of method involves designing various energy functions
and introducing penalty terms to achieve a natural transition of the overlap region’s
boundaries [12–17]. The other type of method defines a seam loss, aiming to find the
optimal image alignment transformation by minimizing this loss [18–21]. These methods
have strict requirements on the geometric features of the images, and a lack of sufficient
geometric features may seriously degrade their performance and even lead to failure in
some cases.

To the best of our knowledge, there is no unified method that can simultaneously
address irregular boundaries and stitching seams. If one wants to eliminate both stitching
seams and irregular boundaries, an intuitive and straightforward method is to handle
the two problems in parallel or in series. This cannot guarantee the optimal performance
because these two problems are solved independently without joint optimization. After
considering that irregular boundaries can be solved by image completion and that seams
can be eliminated by generating images near the stitching seams, these two problems can
be unified into one problem, i.e., the mask-based image completion problem. Accordingly,
this paper proposes a unified method that treats both irregular boundaries and stitching
seams as image completion problems. The proposed method is expected to prevent the
introduction of cumulative errors, achieve smooth transitions in overlapping regions, and
generate completely rectangular images.

The goal of image completion is to fill in missing areas of an image. These repaired
regions need to coordinate consistently with other parts of the image and maintain se-
mantic consistency; thus, the image completion task often requires a powerful generative
model. Inspired by non-equilibrium thermodynamics in deep unsupervised learning [22],
a generative model called the diffusion model [23,24] is introduced, and Dhariwal et al. [25]
have demonstrated its superior image generation capabilities compared with many state-
of-the-art GAN (Generative Adversarial Network)-based methods. Most existing image
completion methods focus on training for specific mask distributions, limiting their gener-
alization ability to different tasks such as image stitching for UAV images. Some pioneering
studies [26–28] have shown the impressive performance of the diffusion model in mask-
based image restoration tasks.

This study provides the first attempt to adopt the diffusion model into the image
stitching task to address both irregular boundaries and stitching seams. There exist two
main steps in the proposed method. Firstly, we generate a unified mask for irregular bound-
aries and stitching seams when stitching multiple images. Secondly, during the inverse
process of the trained diffusion model, we introduce the constraint of manifold gradients.
This method utilizes the unconditional score function and applies additional constraints to
achieve high-quality image restoration with good generalization capabilities [28]. Addition-
ally, when considering that the diffusion model can only handle fixed-size input–output
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situations and that the size of stitched images is often uncertain, we further introduce the
local implicit image function (LIIF) method proposed by Chen et al. [29] to address these
issues. By doing so, the proposed method can represent images continuously to obtain
results for arbitrary resolutions, and we can then adjust the size of the stitched images to
match the diffusion model in an arbitrary way. Compared with other state-of-the-art meth-
ods,the proposed method treats stitching seams and irregular boundaries as one unified
problem. This allows us to handle irregular boundaries and seams of arbitrary distribution,
and the final restoration quality is less affected by low-level semantic features such as geo-
metric structures in the image restoration region, indicating the more versatile and robust
performance of the proposed method when compared with many state-of-the-art methods.

Experimental results show that the proposed method can effectively eliminate stitch-
ing seams and irregular boundaries, improving the visual effects of the stitched images and
demonstrating promising generalization. Our contributions are summarized as follows:
Firstly, a specially designed mask for irregular boundaries and stitching seams is proposed
for the diffusion model to improve the quality of stitched UAV images. Secondly, by design-
ing suitable masks, we treat the two problems of stitching seams and irregular boundaries
as one unified problem, avoiding the use of two different methods to separately address
these two problems, thereby reducing potential uncertainties and cumulative errors.

Figure 1. Irregular boundaries and stitching seams are present in the stitched images of the unmanned
aerial vehicle. In the (a,b) results, the areas enclosed by the red and yellow boxes, respectively,
represent portions of stitching seams and irregular boundaries.

2. Related Work

2.1. Image Rectangling and Seam Cutting

The pioneering method for obtaining rectangular stitched images involves optimizing
linear grid deformation [9], while its energy function can only preserve linear structures.
Considering the potential existence of nonlinear structures in image stitching, Li et al. [10]
later refined the energy term from preserving straight lines to preserving geodesic lines.
It is well known that geodesic lines are difficult to directly detect from stitched images;
thus, its application in image stitching is limited. Zhang et al. [11] integrated rectification
and image stitching into a unified optimization process, aiming to reduce distortion in
the stitched rectangular images. They relaxed the constraints on rectangular shapes and
adopted segmented rectangular boundaries. Nie et al. [30] proposed a grid-based deep
learning method for rectification, establishing probably the first deep learning approach
and achieving state-of-the-art performance. However, for UAV image stitching scenarios,
the above-mentioned methods still cannot fully rectify the stitched images and fail to solve
the unnatural transitions caused by imperfect alignment as depicted in Figure 2b.

Typically, seam cutting is regarded as a post-processing step in image stitching. Tradi-
tional methods can be categorized into two types: One involves introducing penalty terms
by defining a generalized energy function to handle seams. These penalty terms include
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Euclidean color difference [12], gradient difference [15,16], motion and exposure-aware
differences [17], saliency differences, and so on. By minimizing these energy functions,
seam fusion is performed at the seams using graph-cut optimization. The second type
defines seam losses and aims to find the best image alignment warping by minimizing these
losses [18–21]. Nie et al. [31] synthesized stitched images at seams through unsupervised
learning of seam-driven composite masks, achieving state-of-the-art performance with
perfect transitions at seams. It seems that the stitched images still exhibit many irregular
boundaries as depicted in Figure 2c.

Figure 2. Comparison of different solutions: (a) Raw stitched image; (b) Nie et al.’s retangling [30]:
most areas are rectangularized, but this method cannot completely eliminate irregular boundaries;
(c) Nie et al.’s UDIS++ [31]: this method can achieve perfect transitions at seams but exhibits large
irregular boundaries; (d) our method: the proposed method provides perfect transitions at seams
and completely eliminates irregular boundaries.

2.2. Denoising Diffusion Probabilistic Models

Inspired by non-equilibrium thermodynamics, a generative model known as the diffu-
sion model is proposed [22]. Building upon this, a denoising diffusion probability model
has been demonstrated to be effective for high-quality image generation [23]. In this paper,
we introduce diffusion models [23] as a generative method. Similar to other generative
models, the denoising diffusion probability model (DDPM) learns the distribution of im-
ages given a training dataset. The inference process includes sampling a random noise
vector xT and progressively denoising it until a high-quality output image x0 is achieved.
During the training process, the DDPM method has a diffusion process, transforming the
image x0 into white Gaussian noise having a mean of zero and a standard deviation of one,
i.e., xT ∼ N (0, 1), over T time steps. Each step in the forward direction is given by,

q(x1|x0) =
T

∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βt I), (1)
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where the sample xt is obtained by adding i.i.d. Gaussian noise with variance βt at time
step t and scaling the previous sample xt−1 using

√
1 − βt based on the variance table.

The DDPM is trained to reverse the process presented in Equation (1). The inverse
process is modeled by a neural network, which predicts the parameters μθ(xt, t) and
variance ∑θ(xt, t) of a Gaussian distribution, given by

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1; μθ(xt, t), ∑θ(xt, t)). (2)

The learning objective of the model is derived through the variational lower bound
on the log-likelihood between the reverse process and the diffusion process. This involves
the use of variational inference to establish an objective function that the model aims to
maximize during the learning process, which can be described as

E = [−log pθ ] ≤ Eq[−log
pθ(x0:T)

q(x1:T |x0)
]

= Eq[−log (xT)− ∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
] = L.

(3)

Equation (3) has been reformulated by Ho et al. [23], which can be written as

Eq[DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸
LT

+ ∑
t>1

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

−log pθ(x0|x1)︸ ︷︷ ︸
L0

].
(4)

As pointed out by Ho et al. [23], the optimal approach for the parameterized model is
to predict the cumulative noise added to the current image xt, and for the predicted mean
μθ(xt, t), it can be given by

μθ(xt, t) =
1√
at

(
xt −

βt√
1 − āt

εθ(xt, t)
)

. (5)

With Lt−1 in Equation (4), a simplified training objective function was derived by
Ho et al. [23], which can be given by

Lsimple(θ) = Et,x0,ε[‖ε − εθ(xt, t)‖2, (6)

where ε ∼ N (0, I) is the white Gaussian noise added to the image through random sam-
pling. εθ represents the parameters of the model undergoing training, which is responsible
for predicting the noise level of the image sample xt at time step t. Therefore, we can effi-
ciently train the model using data and generate image data that conform to the distribution
of interest through the process of reverse sampling.

3. Methods

For a set of UAV images I1 . . . In, the target of stitching is to obtain a broader field of
view. As mentioned above, irregular boundaries and stitching seams can adversely affect
the visual perception of the result. This section presents the proposed method that can
stitch a set of images, addressing irregular boundaries and stitching seams simultaneously.
The overall diagram of the proposed method is illustrated in Figure 3. The proposed
method has the following three main parts:

(1) Compute masks for irregular boundaries and stitching seams that occur during image
stitching, determining the areas that need to be repaired;

(2) Adjust the input and output image sizes in an adaptive way to match the input and
output dimensions of the diffusion model;
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(3) Employ the diffusion model to perform inverse diffusion on the stitched image with
masks, repairing the masked regions.

Figure 3. The overall diagram of the proposed method. The framework consists of two stages:
stitching and restoration. In the stitching stage, the boundary and seam masks for each stitched
image are also computed. In the restoration stage, the inverse process of the pre-trained diffusion
model is used to restore the raw stitched image with the help of the masks computed in the stitching
stage.

3.1. UAV Image Stitching and Mask Computation

To handle the irregular boundaries and stitching seams in the stitched images, this
paper designs an efficient method for computing masks. Using this method allows us to
obtain masks for stitching seams and irregular boundaries simultaneously for the UAV
image stitching task.

The process of computing the mask corresponding to stitching seams involves trans-
forming each target image through its corresponding cumulative matrix. By calculating
the lines between the transformed rectangular vertices, the position of the stitching seam
mask can be determined. The process of calculating the mask for irregular boundaries
involves determining the minimum rectangle of the overlaid image on the source image
based on the positions of the transformed rectangular vertices. The irregular boundary is
then the complement of the overlaid image within this minimum rectangle. Through these
steps, a unified mask computation scheme for irregular boundaries and seams is obtained
to facilitate the repairment task. The following two parts introduce the two important
steps of the proposed method in detail: UAV image alignment and calculation of masks for
stitched images.

3.1.1. UAV Image Alignment

In order to obtain stable feature points, this paper utilizes the Scale-Invariant Feature
Transform (SIFT) method [32] to extract features from pairs of images with overlapping
regions, resulting in feature description vectors D and keypoint position vectors P. After
that, the paper calculates the feature points for the matching image pairs Ij and Ij−1. To
achieve sufficient accuracy with less time consumption, the Hierarchical Navigable Small
World (HNSW) method [33] is employed to build and search the graph of feature vectors.
Based on the relationship between feature vectors and keypoints, RANSAC is utilized to
calculate a convergent homography matrix Hj for the transformation from image Ij to Ij−1.
The overall process is shown in Figure 4.
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Figure 4. Stitching process. The first UAV image is used to initialize input 1, and the remaining UAV
images I2 to In are used in order as input 2. After stitching the two images, i.e., input 1 and input 2,
there are two ouputs: One is output 1 indicating the stitched image, and the other output is the masks.
Ouput 1 is repeatedly used as input 1 until all UAV images are used in the image stitching stage.
Accordingly, the final output consists of the stitched image and the masks for irregular boundaries
and seams.

3.1.2. Computation of Masks for Stitched Images

To transform Ij onto Ij−1 and simultaneously calculate the corresponding positions
for irregular boundaries and seams to generate masks, the cumulative matrix H∗

j needs to
be computed from Ij to Ij−1 , which is

H∗
j = Hj Hj−1 . . . H2. (7)

Simultaneously, to obtain the smallest possible irregular boundary while maintaining
the integrity of the range of the stitched image, we define a translation matrix Htrans, which
can be given by

Htrans =

⎡⎣1 0 −minx
0 1 −miny
0 0 1

⎤⎦ (8)

where minx and miny are the minimum values between the vertices after transforming
the target image and the source image vertex coordinates. The translation matrix is then
superimposed on the cumulative matrix to obtain the final transformation from Ij and Ij−1.

The position of the seams is calculated by determining the location of the vertices
after transforming the image through the cumulative matrix, and a mask is generated
accordingly. To ensure consistency between the designed masks and the stitched images,
each time the stitching occurs, the target image is placed on top of the source image.
Accordingly, when each target image undergoes transformation, a mask of the same size as
the target image is generated. This mask undergoes the same transformation as the target
image to determine the range that needs to be placed on top of the image. The specific
steps are summarized in Algorithm 1.
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Algorithm 1 Stitching and Mask Calculation

Input: UAV images I1, I2, . . . In, and its corresponding blank mask mask1, mask2, . . . maskn
Output: Stitched image and masks of seam and irregular boundary

1: Extracting feature points using SIFT for each image Pj, Dj ← SIFT(Ij)
2: Using HNSW and RANSAC for feature point matching and mismatch elimination to

obtain the homography matrix Hj warping Ij to Ij−1
3: for j = 2 to N do
4: Compute the cumulative matrix H∗

j ← Hj Hj−1 . . . H2

5: Compute the the positions of vertices using the cumulative matrix V∗
j ← VjH∗

j
6: Compute the minimum coordinate values minx, miny ← x, y ∈ V∗

j ∪V∗
j−1 ∪ · · · ∪V1;

7: Compute the translation matrix Htrans based on minx, miny;
8: Compute the warp of Ij and its mask I∗j , mask∗j ← Htrans H∗

j (Ij, maskj)

9: Compute the warp of Ij−1 and its mask I∗j−1, mask∗j−1 ← Htrans(Ij−1, maskj−1)

10: Compute the stitched result Ij ← (I∗j−1 � mask∗j ) + I∗j
11: Compute the mask of seam maskseam ← Line(V∗

j )

12: Compute the overall mask maskj ← mask∗j−1 + mask∗j + maskseam

13: end for

3.2. Irregular Boundaries and Stitching Seam Repairment with a Diffusion Model

For a forward diffusion process xt ∈ Rn, t ∈ [0, n], we set x0 ∼ p0(x) = pdata where
pdata represents the data distribution of the image of interest and xn ∼ pn(x) with pn(x)
approximates a completely Gaussian distribution without data information. The process
can be defined by the following stochastic differential equation (SDE) [34]:

dx = f̄ (x, t)dt + ḡ(t)dw, (9)

where f̄ is the linear drift function, ḡ(t) is a scalar diffusion coefficient, and w denotes the
standard Wiener process. The forward SDE is coupled with the following reverse SDE:

dx = [ f̄ (x, t)− ḡ(t)2∇xlog pt(x)]dt + ḡ(t)dw̄, (10)

where dt denotes the infinitesimal negative time step and w̄ defines the standard Wiener
process running backward in time. The reverse SDE defines the generation process through
the score function ∇xlog pt(x). When the parameters of the score function’s parametric
model sθ(xt ,t) are estimated, it can be substituted into the score function in Equation (10),
enabling the solution of the reverse SDE. This can be expressed as follows:

xi−1 = f (xi, sθ) + g(xi)z, z ∼ N (0, I). (11)

As reported by Ho et al. [23], the optimal approach is to predict the cumulative noise
added to the current image, as described in Equation (5). However, unlike unconditional
generation, our goal is to recover unknown pixels x ∈ Rn from known observational
values y ∈ Rm:

y = Hx + ε, H ∈ R
m×n, (12)

where H is the mask matrix having m rows and n columns and ε is the noise in the
observed values.

The inverse problem that we aim to solve is to recover the image x at the masked
positions of the stitched image with masks y. According to Bayesian theorem, we should
replace the score function in Equation (10) with ∇xlog pt(x|y). However, this would lead to
the need for retraining the score function because the conditions change, making it unable
to generalize for masks with different distributions in stitched images. Recent studies on
conditional diffusion models [28,34,35] have utilized unconditional score functions, but
they often only rely on a projection-based measurement constraint to impose the conditions.
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The Manifold Gradient Constraint (MCG) [28] has demonstrated much better performance
in image recovery, which can be expressed as

x′i−1 = f (xi, sθ)− α
∂

∂xi
‖W(y − Hxi)‖2

2 + g(xi)z, z ∼ N (0, I), (13)

where α and W depend on the noise covariance. The specific form of the Manifold Gradient
Constraint is expressed as follows:

∂

∂xi
‖W(y − Hxi)‖2

2 = −2JT
Qi

HTWTW(y − Hx̂0), (14)

where Qi denotes the local projection mapping of xi onto the manifold and J f denotes
the Jacobian matrix of the vector f . We pre-train the diffusion model using the UAV
image dataset. For any stitched images, applying the Manifold Gradient Constraint (MCG)
during its inverse diffusion allows obtaining high-quality restoration images. The process
is illustrated in Figure 5.

Figure 5. The inverse process of the diffusion model for restoration: � The initial sampling of inverse
diffusion; � performing inverse iteration using the manifold gradient constraint; � taking the orthog-
onal complement with the mask; � sampling from p(yi|y) and adding to the orthogonal complement.

3.3. Image Dimension Adaptation

Due to varying spatial correspondences between images, different image stitching
may result in generating images with different sizes. The diffusion model is trained using
images having a specific size, making a single diffusion model ineffective for handling
images having multiple different sizes. Training models separately for all possible sizes
of stitched results is extremely difficult if not impossible. This requires the adaptation of
images to match the demanded size of the model before using the diffusion model.

Directly resizing images using interpolation methods is one solution, while such
methods may result in some information loss. In contrast, deep learning-based methods
can achieve better reconstruction quality. However, most of such methods are trained
only for fixed magnification mapping, making it unable to handle cases where images
need arbitrary resolution scaling. To address this issue, Chen et al. [29] proposed the Local
Implicit Image Function (LIIF). This method trains an EDSR encoder and a shared function
fθ using a neural network. The EDSR encoder maps the image to a two-dimensional feature
Mi ∈ RH×W×C, as shown in Figure 6.

The shared function can be queried to obtain the pixel value for any continuous
coordinate in the image, which enables arbitrary resolution adjustment of the image,
producing high-quality results while minimizing potential information loss associated with
interpolation methods. The shared function can be given by

I(xq) = fθ(z∗, xq − v∗), (15)
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where z∗ and v∗, respectively, represent the neighboring encoding and coordinates in the
feature Mi. Each latent code z in Mi represents a local segment of the continuous image. It
is responsible for predicting the signal for a set of coordinates closest to itself.

Figure 6. LIIF representation with local ensemble.

The pixel-based representation of LIIF is plotted in Figure 7. In this figure, xhr repre-
sents the central coordinates of the pixel to be queried, and spred is the obtained RGB value
from the query. Due to the different aspect ratios between stitched images and the diffusion
model, directly resizing stitched images may cause stretching and deformation. To avoid
this problem, before adjusting the image size, padding is applied to adjust the ratio of the
length and width of the stitched images to match the trained diffusion model, which is

Hstitched
Wstitched

=
Hdi f f usion

Hdi f f usion
, λ =

Hdi f f usion

Hstitched
. (16)

Figure 7. Pixel-based representation of LIIF.

The padded image is then used to calculate the central coordinates of each pixel with
a scaling factor λ. LIIF is employed for querying to achieve adjustment to match the
size of the diffusion model. For the results after restoration through the diffusion model,
the size is similarly restored using LIIF, and the padded areas are cropped to obtain the
restored image.

4. Experiment

4.1. Data Preparation

We conducted on-site aerial photography using a UAV, capturing a total of 1008 images
at a resolution of 6000 × 4000 pixels. From these, 48 images were set aside as a validation
set denoted as dataset 3. Each set of 6 images within this validation set was designated as a
stitching object, resulting in a total of 8 groups. Due to the significant difference in data
dimensions compared to the diffusion model, we downsampled the images to a resolution
of 480 × 320 pixels. The remaining 960 images were cropped into squares, downsampled
to 256 × 256 pixels, and subjected to random flips or exchanges, resulting in 1920 images
to form the training dataset denoted as dataset 1 for the diffusion model. The original
high-resolution dataset denoted as dataset 2 was utilized as the training dataset for the
Learning-based Inpainting with Fourier Features (LIIF) model.
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4.2. Model Training Details
4.2.1. Diffusion Model Training

The network model used in this paper is a U-Net model with temporal injection, as
shown in Figure 8. The backbone network is a residual network with attention layers. To
enable the model to learn sufficient details for image restoration, we set the channels of the
residual block to 256. Within the same-scale module of the U-Net, the number of residual
blocks was set to 2, and the number of heads in the attention module was set to 64. This
paper compares the restoration results of two models trained on ImageNet 256 × 256 and
our dataset 1 of UAV images, respectively. The goal is to investigate the generalization and
fitting of the models in the restoration task. We conducted training on an NVIDIA RTX 3090
GPU (Santa Clara, CA, USA) with a batch size of 1. As shown in Figure 9, the model trained
on the ImageNet dataset for 500k epochs occasionally produced counterintuitive images
when the mask proportion was high. In contrast, the model trained solely on our dataset
1 for 180k epochs demonstrated excellent inference capabilities, consistently generating
high-quality images.

Figure 8. U-Net model with time injection. Each layer of the U-Net consists of a ResNet with
different sizes.

Figure 9. Comparison of the model trained on ImageNet and that trained on dataset 1 in terms of
perceptual quality: (a) model trained on ImageNet with two patching errors (red boxes); (b) model
trained on dataset 1.

4.2.2. LIIF Training

This part compares the performance of a pre-trained model [29] with a model fine-
tuned with our dataset. Although using this pre-trained model for image size adjustment
directly has shown significant improvement when compared with direct interpolation
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methods, some features such as the direction of roof tiles are still over smoothed. We
fine-tuned the pre-trained model with our dataset (dataset 2) and compared the final results
with the pre-trained model. One can observe that, at the adjustment of ×23 in image size
for downsampling and upsampling, using the pre-trained model directly leads to the loss
of many texture details. After fine-tuning the pre-trained model with our dataset, the model
exhibits richer texture details, as shown in Figure 10. If only at a smaller scale adjustment,
such as 2.3×, the difference in image details is difficult to observe when compared with the
ground truth, as shown in Figure 11.

Figure 10. Comparison of the details of LIIF after data augmentation under large-scale adjustment.
(a) Ground truth data; (b) details of the image at 23.4× downsampling and upsampling using
the pre-trained model; (c) details of the image at 23.4× downsampling and upsampling using the
fine-tuned model.

Figure 11. Comparison of the details under small-scale adjustments after model enhancement.
(a) Ground truth data, (b) details of downsampling and upsampling by ×2.3 with the enhanced model.

4.3. UAV Image Stitching Results and Analysis
4.3.1. Overall Results Comparison

We evaluated the performance of many stitching and restoration methods using the
UAV images taken from dataset 3. The proposed method was compared with AANAP [36],
UDIS++ [31], and Deep Rectangling [30]. The comparison results are shown in Figure 12.
From this figure, it is obvious that the proposed method performs better than the competing
methods in terms of both image completeness and transition smoothness.

4.3.2. Seam Repairment Details

We compared the repairment details at the image seams in our results, as shown in
Figure 13. It can be observed that, although high-quality repairment results were achieved,
some small textures at the seams were altered.

Furthermore, we compared the results of repairing seams with different widths of
masks for the same degree of misalignment as shown in Figure 14. We can observe
that when using the red mask, which cannot completely cover the misaligned area, the
repairment result is relatively poor. On the other hand, when using the yellow mask,
which can entirely cover the entire misaligned area, the repairment effect is promising but
comes with the trade-off of accepting some changes in fine textures within the masked
region when compared with the ground truth. Through experiments conducted on the
training dataset as the preliminary experiments, we found that setting the mask width
to be between 1/60 and 1/80 of the total pixels can achieve a balanced performance. For
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practical applications, adjustments can be made based on the actual displacement at the
seams, which is out of the scope of this paper.

Figure 12. Comparison of the final results from different methods.

Figure 13. Comparison of seam repairment details with and without the proposed seam repairment
method. (a) The first example, (b) the second example. The images with and without the proposed
method for each example are placed on the left and right parts, repsectively.
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Figure 14. Comparison of the repair effects of different width masks on the same seam. (patch a)
Solving the seam with the red mask, the transition is natural, but misalignment still exists. (patch b)
Solving the seam with the yellow mask, misalignment and seam repair are good, but it may introduce
unrealistic changes.

For the repairment of irregular boundaries, we captured additional images from a
perspective roughly similar to the stitched result. We identified corresponding content for
some irregular boundaries in these images and used them as ground truth for comparison
with our repair results. The repair outcomes exhibit a consistent alignment with the ground
truth in terms of both texture extension and semantics, as depicted in Figure 15.

Figure 15. Comparison between repaired values and ground truth for irregular boundaries.

4.4. Quantitative Evaluation

Due to the difficulty in obtaining globally accurate reference values for the repaired
images, we manually selected image patches as the ground truth for comparison with
the results before and after restoration. This allows us to assess the overall quality of
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the images. In this study, we used the SSIM and PSNR metrics to compare the similarity
between the images before and after restoration and the reference values. We manually
selected image regions from the stitched images as reference values and calculated the
average similarity scores before and after restoration using the above-mentioned metrics.
The results are presented in Table 1. The similarity scores after restoration showed a
significant improvement, attributed to the high level of agreement between the repaired
generated images and the reference values in terms of texture and semantics.

Table 1. Measurement of similarity between images with and without the proposed restoration
method and the reference image.

Method SSIM↑ PSNR↑

Origin 0.361 12.724
Restore 0.434 17.011

Due to the limited comparison conducted in certain regions of the images and the
absence of the global ground-truth reference, we further compared the quality of the
images in an intuitive way. Our results repaired the texture at seams, making transitions
smooth, and eliminated large irregular boundaries. However, due to the upsampling
and downsampling during the restoration process, resolution could be decreased, which
adversely affects the evaluation of our restored results. We further employed a non-
intrusive perceptual image quality assessment tool, e.g., PaQ-2-PiQ [37], to solve the
problem of the absence of the global ground-truth reference. It should be mentioned that
PaQ-2-PiQ utilizes a large subjective quality database for training and can infer globally
to locally and locally to globally, and it focuses more on the overall subjective perception
of images rather than just sharpness. It also provides more consistent evaluation results
with human perception, especially for “more blurred but more visually pleasing” images.
When using PaQ-2-PiQ to evaluate different methods, the proposed method was compared
with UDIS++, AANAP, and Deep Rectangling. The PaQ-2-PiQ scores are summarized in
Table 2. The quantitative results double confirm that the proposed method outperforms
many existing SOTA methods in terms of perceptual quality, which is consistent with the
visual results presented in Figure 12. For methods that require multiple stitching operations,
such as AANAP and UDIS++, numerous cumulative errors might be inevitably introduced
during repeating the stitching process several times, resulting in their scores being even
lower than the original stitched results.

Table 2. Comparison of PaQ-2-PiQ before and after restoration.

Method PaQ-2-PiQ↑

Stitched image 0.741
AANAP 0.684
UDIS++ 0.734

Deep Rectangling 0.743
Ours 0.766

4.5. Ablation Studies

To demonstrate the effectiveness of using the combined mask including the boundary
and seam masks, we compared the three restoration results: using only the irregular
boundary mask, only the seam mask, and the two masks combined.

Boundary Mask. If masks are only computed for dealing with irregular boundaries,
the proposed method can only be expected to reduce the irregular boundaries, while the
seams cannot be solved. In this case, there might be unnatural transitions at the junctions
between irregular boundaries and image edges, as indicated by the arrows in Figure 16a–c.

Seam mask. If masks are computed only for seams, the proposed method can only
be expected to reduce the seams, while it is unable to achieve promising results with a
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rectangular field of view, and nonlinear distortion still occurs at the edges of irregular
boundaries as shown in Figure 16d–f.

When using the combination of the boundary and seam masks, it is expected that
the proposed method can reduce both the irregualr boundaries and seams. This is the
case that can be seen from Figure 16g–i. From Figure 16, we can conclude that if we
separately compute masks for irregular boundaries and seams, unnatural transitions and
nonlinear distortions often occur at some edges of the image. Moreover, if we repair the
remaining parts continuously, the masks calculated earlier cannot accurately correspond to
the repaired results.

Figure 16. The ablation study using different masks. (a–c) show the importance of using boundary
masks; (d–f) show the importance of using seam masks; (g–i) show the importance of using both
boundary and seam masks.

5. Conclusions

We addressed the irregular boundaries and stitching seams for the UAV image stitch-
ing task by devising a method to generate masks during image stitching, and a processing
framework based on the diffusion model was developed, in which the unconditional score
function of the diffusion model is ultilized during the inverse process. We also applied
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additional manifold gradient constraints to repair masked images, aiming to eliminate
irregular boundaries and stitching seams, resulting in improved perceptual quality.

Unlike those often-used methods based on grids or energy minimization functions, our
proposed method is data-driven, considering the overall distribution of pixels. It does not
strictly require specific geometric structures or texture features near irregular boundaries
and stitching seams. Therefore, even in challenging scenarios with complex shapes of
irregular boundaries, multiple seams, and insufficient geometric and texture features, our
proposed method can still achieve high-quality results. Moreover, due to the powerful
learning and inference capabilities of the diffusion model for data distribution, training
on a small dataset of UAV images can obtain a high-quality model for the restoration of
stitched images, facilitating its potential applications.

Note that our proposed method may introduce some perceptually acceptable but
“unrealistic” or artificial noise locally into the mask. In scenarios where strict authenticity
requirements for data are essential, such as in ultra-high-resolution map drawing, intro-
ducing small unrealistic/artificial noise may be intolerable. Yet, for scenarios with a higher
tolerance for realism, such as VR/AR applications, our proposed method may provide an
alternative way to improve the quality of the stitched images. Evaluating and quantifying
the introduced unrealistic noise as well as determining its acceptability still lack quanti-
tative analysis tools. Future research can focus on how to quantitatively evaluate these
introduced unrealistic noise components and solve this problem in an efficient way.
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Abstract: Considering the requirements of the actual production scheduling process, the utilization
of the genetic programming hyper-heuristic (GPHH) approach to automatically design dispatching
rules (DRs) has recently emerged as a popular optimization approach. However, the decision objects
and decision environments for routing and sequencing decisions are different in the dynamic flexible
job shop scheduling problem (DFJSSP), leading to different required feature information. Traditional
algorithms that allow these two types of scheduling decisions to share one common feature set are
not conducive to the further optimization of the evolved DRs, but instead introduce redundant and
unnecessary search attempts for algorithm optimization. To address this, some related studies have
focused on customizing the feature sets for both routing and sequencing decisions through feature
selection when solving single-objective problems. While being effective in reducing the search space,
the selected feature sets also diminish the diversity of the obtained DRs, ultimately impacting the
optimization performance. Consequently, this paper proposes an improved GPHH with dual feature
weight sets for the multi-objective energy-efficient DFJSSP, which includes two novel feature weight
measures and one novel hybrid population adjustment strategy. Instead of selecting suitable features,
the proposed algorithm assigns appropriate weights to the features based on their multi-objective
contribution, which could provide directional guidance to the GPHH while ensuring the search space.
Experimental results demonstrate that, compared to existing studies, the proposed algorithm can
significantly enhance the optimization performance and interpretability of energy-efficient DRs.

Keywords: dynamic flexible job shop; genetic programming; dispatching rule; dual feature weight
sets; energy-efficient

MSC: 90-08

1. Introduction

With the vigorous development of manufacturing technology and artificial intelligence
technology, intelligent manufacturing has become one of the mainstream directions of the
manufacturing industry [1,2]. So far, artificial intelligence technology has been effectively
applied in many directions and fields of the manufacturing industry. In terms of the opera-
tion research and management aspect, it mainly focuses on using intelligent optimization
algorithms to solve the job shop scheduling problem (JSSP) [3].

JSSP entails the efficient allocation of production resources for a decomposable process-
ing task under certain constraints to optimize performance metrics, such as total processing
time, flow time, and tardiness [4]. The flexible job shop scheduling problem (FJSSP) allows
for more flexible use of machine resources compared to the JSSP, where each operation
of a job can be processed on multiple candidate machines, better reflecting real-world
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situations [5–7]. Therefore, it is essential to first assign jobs to suitable machines (i.e., the
routing decisions) in the FJSSP and then sequence the jobs in the waiting queue of each
machine for processing (i.e., the sequencing decisions).

The JSSP and the FJSSP, as typical NP-hard problems, have garnered widespread
attention and thorough research from experts and scholars due to their extensive ap-
plication and complexity in the manufacturing domain. For small-scale problems,
researchers tend to utilize exact methods, such as mathematical programming [8] and
branch-and-bound [9]. These methods can solve the problem effectively while ensuring
the accuracy and optimality of the obtained solutions, but they also suffer from the
drawbacks of being computationally intensive and time-consuming. On the other hand,
to tackle large-scale problems and tighter time constraints, meta-heuristic algorithms
have been viewed as prominent choices. Meta-heuristic algorithms, such as the ge-
netic algorithm [10], the Tabu Search algorithm [11], particle swarm optimization [12],
teaching–learning-based optimization [13], and simulated annealing [14], etc., can find
approximate optimal solutions in a relatively short time, offering acceptable solutions
for decision-making in practical production scenarios.

However, the actual manufacturing environment is usually dynamic, which means
that unexpected random events (such as the arrival of new jobs, machine failures, re-
working of jobs, etc.) often occur in the dynamic flexible job shop scheduling problem
(DFJSSP) [15]. Traditional meta-heuristic methods typically use rescheduling mechanisms
to tackle these dynamic events, but these approaches present challenges in terms of in-
creased computational complexity and stability issues [16,17].

As another promising approach, dispatching rules (DRs) demonstrate their effective-
ness as a heuristic strategy for solving the DFJSSP due to their scalability, reusability, and
rapid response to dynamic events [18–20]. In essence, DRs are priority functions that
consist of features containing job shop-related information and mathematical operators.
At each routing and sequencing decision point, DRs compute priority values for each
scheduling object (such as waiting operations and candidate machines) and choose the
most prioritized one for the next processing action. In the past few decades, numerous
types of features (e.g., processing time of each operation, idle time of each machine, etc.)
and manually designed DRs (e.g., first in, first out, etc.) have been proposed to address
various job shop scenarios and optimization objectives [21].

However, it is exceedingly challenging and perhaps even infeasible to depend solely
on workers’ expertise to clarify potential correlations among different features and to
design effective DRs. This is due to the intricate interactive interconnection of various
production components in the job shop, as well as the distinct decision environment and
information requirements associated with different scheduling decisions in the DFJSSP.
In this case, the application of a genetic programming hyper-heuristic (GPHH) for the
automated design and generation of appropriate DRs has become a widely used method
for effectively addressing the DFJSSP. Numerous studies have demonstrated that using
GPHH could automatically evolve DRs that outperform manually designed ones [22,23].

GPHH has the ability to autonomously generate efficient DRs without extensive
domain-specific knowledge. This is achieved by continuously adapting the combination
of features and mathematical operators in the DRs during evolutionary iterations with
predetermined algorithmic parameters (e.g., maximum depth of the tree, function set,
feature set, etc.) and genetic operators (e.g., crossover, mutation, etc.). In comparison to
most meta-heuristic algorithms for solving the JSSP, GPHH has the advantages of flexible
encoding representation, powerful search capability, and easier application to real-world
environments. Hence, DRs produced by GPHH are naturally suitable for solving the
large-scale DFJSSP. In solving the JSSP, GPHH first uses a set of features (corresponding
to leaf nodes) representing the states of jobs, machines, and job shops, as well as a set of
mathematical functions (corresponding to non-leaf nodes) to generate DRs automatically
and iteratively through off-line training. When scheduling online, the generated DRs are
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directly used to make scheduling decisions without repeated training by GPHH, thus
realizing real-time scheduling [24].

Previous works have shown that the maximum depth of DRs, the function set, and
the feature set were the three main factors that could determine the diversity of DRs and
the search space of GPHH [25]. If the maximum depth of the DRs is d, and the DRs are
generated using the “full method” (i.e., full growth method), the size of the GPHH search

space is |F |2d−1 × |T |2d
, where F and T denote the function set and feature set, respectively.

However, the number of effective DRs is much smaller than the above theoretical value,
which indicates that finding solutions through GPHH is still a difficult task.

Therefore, reducing the number of features is a viable approach to narrow the search
space of GPHH and enhance its searching efficiency [26,27]. The feature set of GPHH can
encompass numerous features describing various aspects and forms of information per-
taining to the job shop scheduling process, including system-related, machine-related, and
job-related features. However, not all of these features contribute positively to scheduling
decisions. For instance, the due date of a job is usually considered to be an irrelevant feature
for optimizing the mean flow time [26]. In addition, there are correlations between many
features, which can cause some of the same information to be double-counted. Therefore,
by integrating feature selection techniques with GPHH, it is possible to eliminate irrelevant
and redundant features, allowing the algorithm to purposefully explore regions containing
more promising DRs and then improve algorithm efficiency.

As far as we know, the research on feature selection methods for GPHH and its varia-
tions is still limited and primarily focuses on single-objective problems. The initial studies
emphasized measuring the importance of features by calculating the frequency of their oc-
currence in the best DRs [28]. Mei et al. [29] were the first to propose a metric to measure the
feature importance based on the contribution of features to the fitness values of individuals.
Compared to feature frequency, this metric could avoid the negative influence brought
by redundant features and offer better accuracy. However, these methods were mainly
explored in the context of the DFJSSP, considering only sequencing rules. Zhang et al. [30]
were pioneers in applying feature selection methods to the DFJSSP, involving two feature
sets for both routing and sequencing decisions, respectively. Additionally, in their subse-
quent work [31], they further developed a continuous two-stage GPHH framework to fully
utilize excellent individuals during the feature selection process. However, although these
methods could reduce the dimensionality of the feature set and enhance the interpretability
of generated DRs through feature selection, they did not lead to an improvement in the
optimization performance of GPHH.

Although feature selection has been successfully applied to single-objective problems,
no feasible methods have been found for the multi-objective DFJSSP. The main challenge
is that calculating the feature importance in multi-objective problems takes into account
not only the performance indexes themselves, but also the correlation and non-domination
relationships among these indexes. As a result, the existing feature importance measures
based on fitness values for single-objective problems are no longer applicable, especially
considering that the objectives in multi-objective problems are usually interrelated, and
a feature may bring positive effects in one objective but may lead to negative effects in
another. Therefore, it becomes very difficult to design an effective feature importance
measure for multi-objective problems. In addition, the result of feature selection is heavily
dependent on manually set parameters. For instance, the condition for features to be
selected in the previous studies [29–31] is that the feature weight value is greater than or
equal to half of the total weight value. Such a parameter setting is too rigid, lacking not
only fault tolerance and flexibility, but also sufficient adaptability for different scheduling
problem scenarios.

Aiming at the limitations of the aforementioned feature selection methods, this paper
proposes an improved GPHH with dual feature weight sets to automatically design energy-
efficient DRs. In this proposed GPHH, two novel feature weight measures are proposed for
calculating the feature weights in the multi-objective DFJSSP and forming the dual feature
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weight sets. Additionally, a novel hybrid population adjustment strategy is also presented
to use the obtained dual feature weight sets to guide the algorithm. The main difference
between the proposed feature weight measures and the existing feature selection methods
is that the proposed feature weight measures do not select the features but rather assign
proper weights to the features according to their contribution/importance to multi-objective
problems, which serve as the probabilities of the features being selected in subsequent
iterations. This way, the influence of manually set parameters on the feature set and the
optimization performance of obtained DRs can be avoided, and the directional guidance for
the searching process of GPHH can be provided while ensuring the diversity of generated
DRs and the search space of GPHH. In this case, more excellent DRs can be obtained. The
main contributions and innovations of this paper are as follows:

1. An improved GPHH algorithm based on dual feature weight sets is designed to guide
the exploration of GPHH through measured feature weights, thereby improving the
searching efficiency of the algorithm and automatically generating more promising
and understandable DRs.

2. In order to measure feature weights (i.e., feature importance) more accurately in the
multi-objective DFJSSP, two feature weight measures are proposed: one based on the
fitness values of DRs and another based on the diversity of the Pareto front. Based on
these two feature weight measures, the feature set for GPHH can be separated as dual
feature weight sets for routing and sequencing decisions, respectively.

3. In order to use the obtained dual feature weight sets more effectively, a novel hybrid
population adjustment strategy is also given in this paper. This strategy can adjust
and refine the current population based on the feature weights so that the irrelevant
and redundant features can be eliminated.

4. By considering total energy consumption and mean tardiness as two optimization
objectives [32,33], the effectiveness of the proposed GPHH is demonstrated on an
energy-efficient DFJSSP by comparing them with the existing related algorithms.
Additionally, the specific behaviors and associated impacts of the dual feature weight
sets in the scheduling process are also comprehensively analyzed.

2. Background

This section gives a brief description of the energy-efficient DFJSSP considered in this
paper and the basic idea of GPHH.

2.1. Mathematical Description of the Energy-Efficient DFJSSP

The energy-efficient DFJSSP presents as a typical combinatorial optimization problem [33].
Its mathematical description is as follows. There are m machines M = {M1, · · · , Mm} utilized
for processing jobs. Each machine has a designated standby power MPk in this job shop. New
jobs J = {J1, · · · , Jn} randomly arrive over time, and their related information is allocated after
their arrival, including arrival time (ati), due date (ddi), and the specified operation sequence{

Pi1, · · · , Pini

}
(where ni represents the number of operations for processing job Ji). Each

operation Pij has a designated candidate machine set Mij, and this operation can be processed
by any machine Mk ∈ Mij. In this case, the corresponding processing time is PTijk, and the
corresponding energy consumption is ECijk. Considering the real production situations, the
DFJSSP must adhere to the following constraints:

1. Before jobs arrive at the shop floor, the job-related information is unknown and
therefore not taken into consideration during the current machining process.

2. Jobs can only be processed upon reaching the job shop, and all operations must be
processed in the order given. Each operation can be performed on only one machine
selected from its candidate machine set.

3. Machines can process only one job/operation at a time, and the process cannot be
interrupted. Additionally, they are in a standby state when not processing, and they
consume energy with standby power.
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In this paper, we simultaneously optimize two production objectives in the DFJSSP:
Mean Tardiness (MT) and Total Energy Consumption (TEC) [33,34], whose mathematical
expressions are shown in Equations (1) and (2). Here, MT is used to ensure that considered
jobs can be finished in time, while TEC responds to the energy consumption of the whole
job shop, which mainly consists of two parts: energy consumption for machining and
energy consumption for being on standby.

min MT =
1
n

n

∑
i=1

max{ci − ddi, 0}, (1)

min TEC =
m

∑
k=1

(
cmax −

n

∑
i=1

ni

∑
j=1

PTijk

)
MPk +

n

∑
i=1

ni

∑
j=1

m

∑
k=1

ECijk, (2)

where ci is the completion time of the job Ji, and cmax = maxi={1,...,n} ci is the completion
time of the last job.

2.2. Solving the DFJSSP Based on GPHH

As a well-known optimization approach, GPHH has been widely used in all kinds
of optimization problems, especially the combinatorial optimization problem represented
by the JSSP [7,35]. As a hyper-heuristic method, GPHH does not directly find a specific
solution to the problem but iteratively generates a set of heuristic rules to guide the solution
generation. In the JSSP, GPHH generates DRs, which are used to make scheduling decisions
to generate a specific scheduling scheme for solving the JSSP, rather than the scheduling
scheme itself like meta-heuristic algorithms do [36,37]. For solving the energy-efficient
DFJSSP mentioned in Section 2.1, the DRs generated by GPHH in this paper contain two
rules: a routing rule and a sequencing rule, which are used to handle the routing decisions
and sequencing decisions, respectively.

The DRs generated by GPHH are usually represented as a tree-based structure, as
shown in Figure 1. Such a tree-based structure can help GPHH perform genetic operators,
such as replication, crossover, and mutation, to generate new DRs. Figure 1 illustrates an
example of the DR with two rules. The leaf nodes at the bottom of the tree are constants or
features that represent job shop-related information, such as PT standing for the processing
time of the current operation, WIQ standing for the total processing time of all the opera-
tions in the waiting queue of a machine, etc. The non-leaf nodes are connected by function
operators such as {+, −, ×, / }, etc.

PT

+

WIQ

2 PT

SL

×

/ -

WKR EC MP

+

+

PT+WIQ  2PT+[(SL/WKR)+(EC-MP)]

(a) routing rule (b) sequencing rule

Figure 1. An example of the DR with routing and sequencing rules.

In this paper, only one dynamic event is considered, i.e., random job arrivals, and their
related information is unknown until the jobs arrive at the shop floor. A typical scheduling
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decision-making process for how to use generated DRs to solve the DFJSSP in real time is
given in Figure 2. At each decision point, priority values are computed for each scheduling
object (i.e., candidate machines for routing decisions or waiting operations in the machines’
queues for sequencing decisions) using DRs, and the scheduling object with the minimum
priority value is chosen as the decision output. As shown in Figure 2, when a new job
arrives, its related information becomes known, and it enters the waiting area. The routing
decision, guided by the routing rule, assigns a machine from the corresponding candidate
machine set for the current operation of the job. When the machine is machining, the job
will be placed into the queue of this chosen machine. The sequencing decision uses the
sequencing rule to designate the next job/operation being processed from the machine’s
queue immediately after it completes one operation. For instance, in the figure, after the
operation P12, which means the second operation of job J1, is processed on machine M3
based on routing and sequencing decisions, its next operation P13 will be assigned to the
queue of machine M2, waiting for machining. This process continues until all operations
are completed, leading to the output of the finished job. Routing and sequencing decisions
work together to create a scheduling scheme that adheres to constraints and optimizes
production objectives.

New jobs arrive 

Routing decision Sequencing decision

Waiting queues of machines

P12 P92P24

P71 P62P53

P82 P34P45
P82

P12

P53

P13

Ready operations

M1

M2

M3

Finished

jobs

Dynamic flexible job shop

Assign related 

information

Figure 2. A typical scheduling decision-making process based on DRs.

2.3. Difference between Feature Selection and Feature Weights

It has been proven that features in GPHH are not of equal importance [26]. In fact,
including irrelevant features in the feature set could reduce the optimization performance
of GPHH. Existing feature selection methods for GPHH focus more on using fewer features
to obtain more compact and understandable DRs than on improving their effectiveness. For
instance, in previous work [31], more interpretable DRs were evolved by applying feature
selection methods in GPHH to only select useful features. However, since the results of
feature selection are overly dependent on human-set thresholds, it is easy to mistakenly
remove both irrelevant and redundant features and features that are useful to the DFJSSP.
In this case, GPHH fails to get enough valid information when generating DRs, which
ultimately affects the performance of the algorithm.

In addition, different objectives need different features when solving the multi-
objective DFJSSP. It is more difficult to measure the contribution and importance of features
in such a situation, which further increases the difficulty of feature selection because
existing feature selection methods focus mainly on single-objective problems [31].

Therefore, compared to the feature selection methods, this paper proposes two novel
feature weight measures for the multi-objective DFJSSP. These measures assign appropri-
ate weight values to features based on their importance and contribution to solving and
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optimizing multi-objective DFJSSP. In doing so, they can effectively avoid the heavy depen-
dence on human-set thresholds in the selection methods. Additionally, feature weights can
provide guidance for the evolutionary process of GPHH while ensuring the algorithm’s
search space. This characteristic could improve the search efficiency of the algorithm so
that higher-quality and more interpretable DRs can be generated.

In summary, the improved GPHH with dual feature weight sets proposed in this
paper retains the advantages of the feature selection methods (i.e., improving the search
efficiency of GPHH and the interpretability of the generated DRs) while avoiding the
negative impact of feature selection on the algorithm performance (i.e., guaranteeing the
search space of GPHH).

3. GPHH Based on Dual Feature Weight Sets

3.1. Framework of the Proposed GPHH

This paper considers the diversity of decision information needs for routing and
sequencing decisions and introduces the concept of dual feature weight sets into GPHH,
which essentially generates two different feature weight sets for the routing and sequencing
DRs. For this goal, two novel feature weight measures and a hybrid population adjustment
strategy are presented to more effectively utilize the useful information from outstanding
individuals during the iterative process, thus producing superior DRs.

Figure 3 depicts the overall framework of our proposed GPHH in detail. Compared
with traditional GPHH, Figure 3 highlights the proposed feature weight measure module
and feature weight utilization module (including the hybrid population adjustment strategy
and the mutation operator in Stage 2) in red.

Initialization

Initial population

(seen DRs as individuals)

Evaluate population

Elitist strategy

New population

Select the final Pareto front as 

a set of excellent individuals

Feature weight measure module

Routing 

feature set

Sequencig 

feature set 

Measure the voting 

weights of individuals 

Replace the original 

unweighted feature sets with 

the newly obtained dual 

feature weight sets

Hybrid population 

adjustment strategy based 

on the feature weights

Yes

No
Individuals vote for each 

feature based on its 

contribution/importance.

Generation=51

Evolve population

Evaluate population

Generation=100

New population

End
Yes

No

The weighted voting values of 

the features are seen as their 

final weightsGenetic operators 

(replication,

 crossover, 

mutation) 

Elitist strategy

Evolve population

Genetic operators 

(replication, 

crossover, 

mutation) 

Stage 1

(evolve population with 

unweighted feature sets)

Stage 2

(evolve population with 

dual  feature weight sets)

Figure 3. The overall framework of the proposed GPHH with dual feature weight sets.

There are two stages shown in Figure 3. In Stage 1, the algorithm utilizes an un-
weighted feature set for both routing and sequencing decisions in the initial 50 generations,
essentially following the steps of the traditional GPHH. The goal of this stage is to generate
a set of high-quality individuals for precise feature weight assessment.

After this, the feature weight measure module calculates the contributions and sig-
nificance of each feature for two different scheduling decisions, hence forming the rout-
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ing/sequencing feature weight set (i.e., the dual feature weight sets). Notably, the Pareto
front generated from Stage 1 is directly chosen as a set of excellent and diverse individuals
in the feature weight measure modules due to the nature of the multi-objective optimization
problem. Here, the feature weight measure module only performs one time during the
entire iteration of the improved GPHH for the sake of efficiency, as shown in Figure 3.

The resulting new dual feature weight sets are then applied in Stage 2 of our algorithm
for 50 additional generations. Specifically, these sets aid in refining the population from
Stage 1 by eliminating irrelevant features, which is called population adjustment in Figure 3.
Additionally, the dual feature weight sets can also guide the search and evolution direction
of the improved algorithm. Features with higher weights, indicating their importance in
optimization performance, are more likely to be selected by genetic operators, enhancing
the performance of individuals in the subsequent 50 generations of evolution (i.e., Stage 2).
Conversely, features with lower weights, having minimal impact on performance, are less
likely to be chosen, also leading to the improved optimization performance of individuals.
This kind of mechanism can enhance the effectiveness and interpretability of the proposed
GPHH without altering the algorithm’s search space.

3.2. Feature Weight Measures for the Multi-Objective DFJSSP

As shown in Figure 3, accurately measuring the weights of features is crucial for guid-
ing GPHH to generate outstanding DRs. This is because the accuracy of measured feature
weights will directly affect the subsequent population adjustment strategy and mutation
operator, which in turn affects the search direction of the whole algorithm. For this reason,
this paper proposes two different feature weight measures suitable for multi-objective
optimization problems: fitness-based and diversity-based feature weight measures.

3.2.1. Fitness-Based Feature Weight Measure

Mei et al. [26] presented a feature selection method for GPHH to tackle the single-
objective JSSP and pointed out that the importance of each feature was determined by
both individuals’ fitness values and the contribution of the features themselves. Following
this idea, our study focuses on the non-dominated relationships among individuals in the
multi-objective DFJSSP and presents a fitness-based weight measure suitable for solving
multi-objective problems.

Algorithm 1 gives the pseudo-code of the proposed fitness-based feature weight mea-
sure, which essentially is a weighted voting process. First, the Pareto front R obtained from
the 50th generation (viewed as a group of outstanding individuals) and the unweighted
feature sets used in the first 50 generations are utilized as inputs. Then, each feature is
evaluated one by one for its contribution to the fitness of the individuals in R. If a feature
contributes to the fitness value of that individual, the individual will vote for it. Eventually,
each feature accumulates all the obtained voting weights as its own weight value, which
is used to measure the importance of this feature. Note that the dual feature weight sets
mentioned in this paper indicate that the feature weight sets for routing and sequencing
decisions are different.

Equation (3) is used to determine the voting weight w f it(r) of an individual r, where
there are m objectives, and f iti(r) represents the fitness value of the DR r for the ith objective.
The goal of this study is to minimize the objective values; hence, the lower the fitness value
of an individual, the higher its voting weight.

w f it(r) =
m

∑
i=1

max{ f iti(r) | r ∈ R}− f iti(r)
max{ f iti(r) | r ∈ R}− min{ f iti(r) | r ∈ R} (3)

Equation (4) defines the contribution of a feature f to an individual r. Here, when a
feature is set to 1, it is analogous to removing this feature from the individual. For instance,
(PT + WIQ|PT = 1) = 1 + WIQ. The contribution of a feature to an individual is determined
by the result in the numerator of Equation (4). If the final Con( f , r) > 0, it indicates that
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this feature has a positive contribution to the individual, and the individual will vote for
this feature.

Con( f , r) =
m

∑
i=1

f iti(r | f = 1)− f iti(r)
max{ f iti(r) | r ∈ R}− min{ f iti(r) | r ∈ R} (4)

Algorithm 1 Fitness-Based Feature Weight Measure

Require: the Pareto front R obtained from the 50th generation and the unweighted feature
sets Fw

Ensure: the dual feature weight sets F∗
w

1: for all feature f ∈ Fw do
2: vote( f ) ← 0
3: for all individual/DR r ∈ R do
4: calculate the voting weight w f it(r) of this individual r using Equation (3)
5: calculate the contribution Con( f , r) of this feature f to this individual r using

Equation (4)
6: if Con( f , r) > 0 then
7: vote( f ) ← vote( f ) + w f it(r)
8: end if
9: end for

10: end for � Each feature has been assigned a weight value.

11: F∗
w ← normalized feature weights for all f ∈ Fw

12: return F∗
w

3.2.2. Sparsity-Based Feature Weight Measure

Considering that the goal of solving multi-objective problems is to obtain a more
widely distributed and diverse Pareto front, in addition to the above proposed fitness-
based feature weight measure, this paper also proposes a feature weight measure based on
the sparsity of the Pareto front to evaluate the importance/contribution of features. This
method pays more attention to the contribution of both features and individuals to the
entire Pareto front, whose pseudo-code is given in Algorithm 2.

Algorithm 2 Sparsity-Based Feature Weight Measure

Require: the Pareto front R obtained from the 50th generation and the unweighted feature
sets Fw

Ensure: the dual feature weight sets F∗
w

1: for all feature f ∈ Fw do
2: vote( f ) ← 0
3: for all individual/DR r ∈ R do
4: calculate the voting weight wspa(r) of this individual r using Equation (5)
5: set feature f to 1 in individual r, denoted as r | f = 1, and calculate f iti(r | f = 1)
6: if there exists an individual/DR in R dominating r | f = 1, then
7: Con( f , r) = 1
8: else
9: Con( f , r) = 0

10: end if
11: if Con( f , r) > 0 then
12: vote( f ) ← vote( f ) + wspar(r)
13: end if
14: end for
15: end for � Each feature has been assigned a weight value.

16: F∗
w ← normalized feature weights for all f ∈ Fw

17: return F∗
w
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Equation (5) describes the sparsity of an individual as its voting weight, where
f iti(r + 1)− f iti(r − 1) represents the difference in fitness values between two individuals
adjacent to the individual r. The advantage of this feature weight measure is that it can
more evenly assign voting weights to all individuals in the Pareto front, helping to enhance
the optimization performance of multi-objective problems considering the non-dominance
relationship. Hence, small voting weights are given to individuals that are clustered too
close in a very small region, thus ensuring that the final individuals obtained in the Pareto
front are uniformly distributed.

wspa(r) =
m

∑
i=1

| f iti(r + 1)− f iti(r − 1) |
max{ f iti(r) | r ∈ R}− min{ f iti(r) | r ∈ R} (5)

When calculating the contribution Con( f , r) of a feature f to an individual r, the first
step is to compute f iti(r | f = 1). If r | f = 1 is dominated by any existing individual in the
Pareto front, the feature f is considered to have a positive contribution to the individual r.
The condition for domination is defined as: for ∀i ∈ {1, 2, · · · , m}, f iti(r) ≤ f iti(r | f = 1),
and there exists at least one i ∈ {1, 2, · · · , m}, such that f iti(r) < f iti(r | f = 1).

3.3. Hybrid Population Adjustment Strategy Based on Feature Weights

After completing the measure of feature weights, less important features will be as-
signed lower weight values. If a feature is given a weight of zero, it can be identified as
an irrelevant feature to the problem. Although GPHH itself has the inherent ability to
select suitable features during the iteration, it is still challenging to effectively eliminate
these irrelevant features solely through genetic operators such as crossover and mutation.
Allowing these irrelevant features to persist in individuals will lead to the contamina-
tion of the whole population, resulting in more individuals with redundant, duplicated,
and unnecessary features. This hinders the further evolution of the population and the
optimization performance of generated DRs.

To this end, the existing studies focusing on feature selection methods propose the
following three population adjustment strategies [31], which remove unselected features
from the current population and improve the interpretability of the resulting DRs based on
the selected feature set.

1. Simply replace each unselected feature with a constant of 1. This strategy is pro-
posed based on the above calculation of the feature contribution Con( f , r), which can
maximally retain the structure and performance of the current good individuals.

2. Replace unselected features with other selected features. However, such random
substitution may change the behavior of good individuals in some aspects, affecting
their final optimization performance.

3. Directly use the resulting selected feature set to randomly initialize the population.
This way, the effective information of good individuals in the current population will
be lost.

Related studies using feature selection methods to solve single-objective problems [31] have
shown that the first strategy can better improve the performance of the algorithm compared with
the third strategy. In addition, Section 3.2 of this paper also adopts the basic idea of calculating
the feature contribution Con( f , r) in the first strategy as the basis of the proposed feature weight
measures. Hence, this method not only helps to eliminate redundant information and retain
the individuals’ structure, but also may improve the performance of these individuals.

Therefore, on the basis of the above existing work, this paper proposes a novel hybrid
population adjustment strategy based on the obtained dual feature weight sets. In this hy-
brid strategy, the first and third strategies are both applied to adjust the current population
so that the irrelevant features (whose weights are zero) can be removed and the search
efficiency can be enhanced.

Algorithm 3 gives the pseudo-code of this hybrid population adjustment strategy.
Specifically, Algorithm 3 only removes irrelevant features from the top 20% of individuals
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using the first strategy to retain the valid information of good individuals. For the remaining
80% of non-excellent individuals, they are directly deleted and regenerated based on the
obtained dual feature weight sets using the third strategy to improve the diversity of
individuals in the population while deleting irrelevant features.

Algorithm 3 Hybrid Population Adjustment Strategy Based on Feature Weights

Require: the population P generated from the 50th generation and the obtained dual
feature weight sets F∗

w
Ensure: the new population P∗

1: sort individuals by the non-dominated rank and crowding distance
2: for all individual/DR r ∈ P do
3: if r is the top 20% of all the individuals in P then
4: for all feature f ∈ F∗

w do
5: if weight( f ) < 0.0001 then
6: replace feature f with a constant of 1
7: � This is the first strategy.

8: end if
9: end for

10: else
11: use F∗

w to randomly generate a new individual and replace the old one
12: � This is the third strategy.

13: end if
14: end for
15: return P∗

4. Experimental Design

4.1. Simulation Model Design

The configuration of the energy-efficient DFJSSP simulation model adopted in this pa-
per is shown in Table 1, which has been extensively employed in previous research [30,33,38].

Table 1. Configuration of the energy-efficient DFJSSP simulation model.

Parameter Setting

Number of machines m 10
Number of arrived jobs n 2000
Number of warm-up jobs 500
Number of operations per job discrete U(1, 10)
Available machines per operation discrete U(1, 10)
Job arrival process Poisson process
Utilization level u 0.85, 0.95
Due date factor α 2, 4, 6
Mean processing time PTij discrete U(1, 99)
Mean energy consumption ECij discrete U(1, 99)

Standby power MPk
{10, 12.5, 4.5, 3.6, 7.0,
1.5, 8.5, 2.2, 22.9, 6.4}

According to existing research [35,39], the machine utilization level u and the due date
factor α are the primary factors defining the workload of different job shop environments.
Therefore, this paper considers two machine utilization levels {0.85, 0.95} and three due
date factors {2, 4, 6}, resulting in a total of 2 × 3 = 6 different production scenarios. During
the training phase, the GPHH reruns independently 30 times under each scenario using
different random seeds. To evaluate the effectiveness of the generated DRs, the results
of each run undergo 100 independent tests. The average of these 100 test results is then
taken as the final fitness value of the obtained DRs, thereby validating their real generality
and applicability.
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4.2. Parameter Settings of GPHH

Table 2 presents the initial feature set of GPHH in this paper, consisting of 28 features
related to the JSSP. These features are commonly utilized in existing research [33] and
encompass various aspects such as information related to jobs, machines, and the job
shop itself.

Table 2. Feature set of the GPHH.

No. Feature Description

1 PT Processing time PTijk of operation Pij on Mk
2 SL Slack of the job Ji
3 OWT Waiting time of operation Pij since ready
4 NPT Processing time of the next operation Pij+1
5 WKR Work remaining for the job Ji
6 TIS Time of the job Ji in job shop
7 WIQ Workload in the queue of the machine Mk
8 MWT Waiting time of the machine Mk since ready
9 DD Due date of the job Ji
10 MRT Ready time of the machine Mk
11 ORT Ready time of the operation Pij
12 WINQ Workload in the queue of the next machine
13 AT Arrival time of the job Ji
14 NRT Ready time of the next machine
15 EC Energy consumption ECijk of operation Pij on Mk
16 NEC Energy consumption of the next operation Pij+1
17 ECR Energy consumption remaining for the job Ji
18 EIQ Total energy consumption of all operations in the queue

of the next machine Mk
19 EINQ Total energy consumption of all operations in the queue

of machine Mk
20 MP Standby power of machine Mk
21 NOR Number of remaining operations of the job Ji
22 NOS Number of optional machines for the operation Pij
23 NIQ Number of operations in the queue of machine Mk
24 NINQ Number of operations in the queue of next machine
25 NOPS Number of operations of the job Ji

26 RPT Relative processing time =
PTijk

min{PTijk | k=1,...,|Mij|}
27 REC Relative energy consumption =

ECijk

min{ECijk | k=1,...,|Mij|}
28 RMP Relative standby power = MPk

min{MPk | k=1,...,m}

The function set includes {+, −, ×, /, max, min} [27,33], where the division returns one
if divided by zero. Additionally, max/min are functions that take two inputs and return
their maximum/minimum values, respectively.

Table 3 shows the parameter setting of the GPHH in this section [27,33]. The feature
weights are measured at the 51st generation, and this process is executed only once in the
whole algorithm.
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Table 3. Parameter settings of GPHH.

Parameter Setting

Initialization Ramped half-and-half
Population size 600
Maximum depth of DRs 8
Crossover rates 80%
Mutation rates 15%
Reproduction rates 5%
Parent selection Tournament selection with size 7
Elitism 10 best individuals
Number of generations 101
Feature weight measure At the 51st generation
Population adjustment strategy See Algorithm 3

4.3. Comparison Design

In order to effectively analyze the performance of our proposed GPHH with dual
feature sets, which considers feature weights during the iterations, three existing algorithms
are compared in this section. In this way, a total of five improved GPHH algorithms are
compared in this section as follows.

1. GPLWT [40] (i.e., GPHH-LWT) uses the Least Waiting Time (LWT) as its routing rule,
and the sequencing rule is generated by GPHH. In other words, this algorithm only
automatically evolves sequencing rules via GPHH while its routing rule is fixed. In
this section, it is considered as the baseline for solving the energy-efficient DFJSSP.

2. GPDR [33] (i.e., GPHH-Delayed-Routing) is one of the current state-of-the-art algo-
rithms, which adopts both multi-tree representation [39] to generate routing and
sequencing rules simultaneously and a delayed routing strategy to ensure the timeli-
ness of the feature information at the decision-making point. In this paper, GPDR is
used as the basic algorithm, in which the proposed feature weight measures and the
hybrid population adjustment strategy are introduced.

3. GPFS [31] (i.e., GPHH-Feature-Selection) is the GPHH algorithm that incorporates a
feature selection method. In their work, GPFS is only used to solve single-objective
problems. It is applied to multi-objective problems based on the linear weighting
method in this section so that its performance can be analyzed.

4. GPFW(fit) (i.e., GPHH-Feature-Weight based on fitness) is the GPDR with dual feature
sets that adopts the feature weight measure based on fitness values of individuals (see
Section 3.2.1) and the hybrid population adjustment strategy proposed in Section 3.3.

5. GPFW(spa) (i.e., GPHH-Feature-Weight based on sparsity) is the GPDR with dual
feature sets that adopts the feature weight measure based on sparsity of the Pareto
front (see Section 3.2.2) and the hybrid population adjustment strategy proposed in
Section 3.3.

4.4. Performance Measures for Comparison

When assessing the quality of the Pareto front obtained by the algorithms, this pa-
per employs two commonly used performance metrics for multi-objective optimization
problems: Hyper-Volume (HV) and Inverted Generational Distance (IGD) [41,42]. Their
calculation formulas are as follows:

HV =
nPF⋃
i=1

vi, (6)

IGD =
1

nAPF

(
nAPF

∑
i=1

di

)
, (7)
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where nPF is the number of individuals in the Pareto front, vi is the hyper-volume formed
by individuals in the Pareto front and a reference point, nAPF is the number of individuals
in the true Pareto front, and di is the minimum Euclidean distance from individuals in the
true Pareto front to the Pareto front obtained by algorithms.

An outstanding algorithm is expected to have a higher HV value and a lower IGD
value, indicating that the Pareto front generated by this algorithm is closer to the true
Pareto front and more evenly distributed. Normalization is essential when computing
HV and IGD. As the true Pareto front is unknown in our energy-efficient DFJSSP, the
results from all algorithms in this paper are amalgamated, and the resulting Pareto front is
utilized as an approximate true Pareto front. HV also necessitates a reference point, set as
1+ 1/(nAPF − 1) [43], where nAPF represents the number of individuals in the approximate
true Pareto front.

5. Experimental Results Analysis

5.1. Overall Performance Analysis of the Algorithms

Tables 4 and 5 show the mean and standard deviation of the HV and IGD values
obtained by the different algorithms after 30 independent runs for optimizing both MT
and TEC in six different scenarios. Additionally, Wilcoxon rank-sum tests were conducted
(at a 5% confidence level) to further analyze the significance of their optimization perfor-
mance [44]. Here, GPFW(fit) and GPFW(spa) are compared with three existing algorithms
(i.e., GPLWT, GPDR, and GPFS). If the p-value of the Wilcoxon rank-sum test is less than
0.05 for all of them, the significant differences are marked in bold in the tables.

Table 4. Mean (standard deviation) of HV values for different algorithms in six scenarios.

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 0.324 (0.001) 0.549 (0.000) 0.602 (0.000) 0.392 (0.001) 0.578 (0.001) 0.668 (0.001)
GPDR 0.977 (0.010) 1.000 (0.007) 1.024 (0.005) 0.970 (0.009) 1.005 (0.005) 1.027 (0.006)
GPFS 0.923 (0.101) 0.996 (0.018) 1.024 (0.004) 0.957 (0.033) 0.994 (0.024) 1.017 (0.019)

GPFW(fit) 0.985 (0.008) 1.002 (0.005) 1.024 (0.005) 0.982 (0.010) 1.011 (0.006) 1.029 (0.005)
GPFW(spa) 0.984 (0.009) 1.002 (0.006) 1.024 (0.005) 0.983 (0.012) 1.012 (0.006) 1.029 (0.005)

Under the Wilcoxon rank-sum test with the significance level of 0.05, the significantly better results are marked
in bold.

Table 5. Mean (standard deviation) of IGD values for different algorithms in six scenarios.

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 0.538 (0.001) 0.420 (0.000) 0.398 (0.000) 0.457 (0.001) 0.372 (0.001) 0.325 (0.001)
GPDR 0.014 (0.005) 0.025 (0.006) 0.047 (0.010) 0.025 (0.006) 0.044 (0.013) 0.032 (0.007)
GPFS 0.044 (0.074) 0.025 (0.012) 0.045 (0.010) 0.034 (0.021) 0.045 (0.020) 0.036 (0.012)

GPFW(fit) 0.009 (0.006) 0.024 (0.005) 0.046 (0.008) 0.019 (0.006) 0.037 (0.014) 0.031 (0.007)
GPFW(spa) 0.009 (0.005) 0.023 (0.006) 0.047 (0.008) 0.018 (0.005) 0.040 (0.010) 0.030 (0.005)

Under the Wilcoxon rank-sum test with the significance level of 0.05, the significantly better results are marked
in bold.

Overall, one can see that GPLWT is the worst among the five algorithms. Of the three
existing algorithms, GPDR performs the best. As for the two algorithms proposed in this
paper, GPFW(fit) and GPFW(spa) both show better optimization performance when the
problem is difficult (see scenarios <0.85–2> and <0.95–2> in Tables 4 and 5).

From these tables, it can be observed that the performance of all algorithms is sig-
nificantly better than GPLWT, indicating that using routing rules generated by GPHH
is more effective than using a fixed LWT rule. This is because GPHH can generate ap-
propriate routing rules based on the current job shop state for routing decisions, thereby
creating more rational waiting queues for the machines and enhancing the following
sequencing decisions.
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Among the three existing GPHH algorithms, GPDR and GPFS are both the current
state-of-the-art algorithms that consider the influence of GPHH’s feature sets. It is pointed
out that GPFS can filter out insignificant features in single-objective problems, making
the generated DRs more interpretable and similar performance-wise to traditional GPHH
by utilizing fewer features [31]. In this section, GPFS is applied to multi-objective prob-
lems using the linear weighting method. The results shown in Tables 4 and 5 indicate
that the performance of GPFS is inferior to GPDR, with a notably higher standard de-
viation in most scenarios, especially in situations with a tighter due date factor such as
<0.85–2> and <0.95–2>. This suggests that a simple transfer of the GPFS to multi-objective
problems through the linear weighting method is not appropriate. The selected features
cannot satisfy the requirements of multi-objective optimization well, thus impacting the
algorithm’s optimization performance and stability.

When comparing the two algorithms proposed in this paper with three existing al-
gorithms, especially GPDR, it can be seen that the proposed algorithms are better than
the other algorithms overall, especially in the scenarios of <0.85–2> and <0.95–2>, which
show significant advantages. This phenomenon suggests that the proposed fitness-based
and sparsity-based feature weight measures can more accurately calculate the impor-
tance/contribution of each feature to solving the multi-objective optimization problem,
which further improves the algorithm’s search efficiency and optimization performance.
Tables 4 and 5 also show that the proposed algorithm has limited performance improve-
ment relative to the basic algorithm (i.e., GPDR), especially in the case of easier problems.
This is due to the fact that the GPHH itself has a certain function of feature selection,
because the performance of the DRs that incorporate irrelevant and non-essential fea-
tures is not good, and thus it will be eliminated by the GPHH in the process of iterative
evolution. Therefore, even with the introduction of the dual feature weight sets, the
improved GPFWs (i.e., GPFW(fit) and GPFW(spa)) will not have a significantly larger
performance improvement.

The comparison between GPFW(fit) and GPFW(spa) reveals that their results are very
close to each other, with no statistically significant differences. In theory, the sparsity-based
feature weight measure may be slightly better than the fitness-based method, as the former
takes into account the non-dominated relationships between individuals. This suggests
that the Pareto front obtained after 50 iterations of GPHH is good enough to be used to
accurately measure the feature weights.

5.2. Comparison of Training and Testing Time

Training and testing time are two important measures of the efficiency of an algorithm.
Hence, the average training time for 30 independent runs of all five algorithms is given
in Table 6. One can see that GPLWT has the shortest training time because it uses a fixed
routing rule (i.e., LWT) and is less computationally intensive. Although GPFS, GPFW(fit),
and GPFW(spa) all need extra steps to select features or measure feature weights, there
is no significant difference between these algorithms and GPDR. This indicates that the
introduction of the feature selection module or feature weight measure module does not
bring too much additional computation cost and time to the algorithms, and the overall
training time consumed is still acceptable.

Table 6. Mean training time of 30 independent runs for all five algorithms (s).

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 5124 4988 5032 4587 4602 4495
GPDR 11,745 11,568 11,814 10,656 11,948 12,530
GPFS 12,670 11,923 11,086 9657 9502 10,183
GPFW(fit) 13,029 12,383 13,441 10,122 10,590 10,097
GPFW(spa) 10,741 10,375 13,697 11,638 13,791 12,864
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Table 7 gives the average testing time of the DRs obtained by different algorithms after
testing. It can be observed that these DRs take only about 20 ms (or less) to complete all the
scheduling decisions in one single simulation. In this case, the decision time spent by these
DRs will be even less for each decision point, thus meeting the requirement of real-time
decision-making.

Table 7. Mean testing time for DRs obtained by different algorithms (ms).

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 3.90 3.00 3.00 4.40 4.04 3.43
GPDR 14.36 15.58 16.17 14.34 16.93 16.50
GPFS 11.31 15.08 13.26 12.99 13.74 13.95
GPFW(fit) 21.00 20.95 23.02 19.45 22.10 25.04
GPFW(spa) 15.03 15.90 14.45 14.88 16.73 17.42

6. Behavior Analysis of the Proposed Algorithms

6.1. Analysis of the Number of Unique Features

The number of unique features refers to the quantity of different types of features
included in the DRs [31,45]. In this study, the quantity of unique features existing in
the final population is analyzed, which should positively contribute to the performance
of the proposed algorithms. The specific calculation involves examining the number of
different types of features present in the final population. A lower number of unique
features indicates that the DRs formed by these features are more concise, possess better
interpretability, and are consequently more comprehensible to humans.

Figure 4 illustrates the mean and standard deviation of the number of unique features
in the DRs generated by different algorithms over six scenarios. Since GPLWT only evolves
sequencing rules, it is excluded from the analysis in this section. In this context, GPFS
demonstrates a relatively lower number of unique features due to its aim of generating
high-quality DRs using a smaller feature set. The number of unique features of GPFS is
mainly determined by the threshold value set during the feature selection, where features
are selected if their voting weight is greater than half of the total voting weight [31].
Consequently, features with weights below half of the total voting weight are removed,
leading to a significant reduction in the number of feature types. However, this reduction
also results in a decrease in the optimization performance of the algorithm.

In contrast, our proposed feature weight measures do not directly remove features
like GPFS does. Only irrelevant features with a weight of zero are completely removed
in the hybrid population adjustment strategy. Additionally, the obtained dual feature
weight sets can guide the evolutionary direction of GPHH, as less important features may
not appear in the final population. This also contributes to a reduction in the number
of unique features. Therefore, the results in Figure 4 suggest that the proposed GPFWs
with dual feature weight sets can effectively decrease the number of unique features in
generated DRs and even improve the performance of GPHH. This reduction contributes
to the evolution of more readable and interpretable energy-efficient DRs. Furthermore, it
underscores the rationale and effectiveness of introducing feature weights into the GPHH,
since the algorithm does benefit a lot, even in complex multi-objective environments.

Additionally, it can be observed from Figure 4 that the number of unique features
for sequencing rules is optimized more easily. One possible reason is that sequencing
decisions require relatively less decision information. Sequencing decisions are typically
more concerned with job/operation-related information, since the scheduling objects
of a sequencing decision are the job/operations in the machines’ queues. In contrast,
routing rules need to determine which candidate machine is suitable for processing the
current job/operation, taking into account the availability of the machine, the status of the
processing queue, and other factors in addition to the characteristics of the job/operation
itself. This makes the routing rules require more complex decision information (i.e., a
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greater number of unique features) to assist in decision-making. Hence, the number
of unique features for routing rules is relatively higher, making more complex routing
decisions.

Figure 4. The numbers of unique features of both routing and sequencing rules obtained by
different algorithms.

6.2. Analysis of the Rule Sizes of DRs

Rule size is another key indicator that describes the readability and interpretability of
DRs. Typically, the smaller the rule size, the lower the depth of the rule, the simpler the
structure of the rule, and the easier it is understand.

Figure 5 gives the rule sizes of the DRs obtained by each algorithm. Overall, the rule
sizes of DRS generated by these algorithms are not significantly different. Through the
introduction of feature selection methods or feature weight measures, the rule sizes of DRs
obtained from GPFS and the proposed GPFWs are not significantly reduced, and they only
show advantages in a few scenarios, e.g., <0.95–6>.

Figure 5. The rule sizes of both routing and sequencing rules obtained by different algorithms.

This result is also expected because what really reduces the rule size is the initializa-
tion method (i.e., the third strategy) within the population adjustment strategy. The top
20% of outstanding individuals, although inheriting the valid information from the first
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50 generations, also have relatively large rule sizes and are more likely to be selected by
genetic operators in the next 50 generations, thus leading to a rise in the rule size of other
individuals in the population.

6.3. Conjoint Analysis of Feature Weights and Feature Frequencies

In order to gain insight into the importance/contribution of different features in the
evolutionary process of GPHH, this section takes the examples of GPFW(fit) and GPFW(spa)
to conduct a conjoint analysis of feature weights and feature frequencies. Figures 6 and 7
present the feature weights and frequencies of routing/sequencing rules, respectively, in
six scenarios using these two algorithms, and the statistics are the average of the results of
30 independent runs.

1. Gen50 counts the frequency of each feature in the individuals from the Pareto front
that GPFW(fit) and GPFW(spa) have iterated to the 50th generation. Because the first
50 generations are the same for these two algorithms, the same results are obtained.

2. Gen51(fit) and Gen51(spa) denote the feature weights obtained by the fitness-based
and sparsity-based feature weight measures, respectively, at generation 51.

3. Gen100(fit) and Gen100(spa) denote the frequency of each feature in the individ-
uals from the final obtained Pareto front after 100 generations of GPFW(fit) and
GPFW(spa), respectively.

Figures 6 and 7 unambiguously demonstrate that the results of Gen50, Gen51(fit),
Gen51(spa), Gen100(fit), and Gen100(spa) are generally congruent, indicating the correla-
tion between feature weights and feature frequencies. The feature frequencies in Gen50
align well with the feature weights obtained in Gen51(fit) and Gen51(spa), suggesting
that feature frequencies can also, to some extent, measure the importance of features. On
the other hand, this indirectly implies that GPHH itself has the feature selection ability.
The Pareto front achieved after 50 generations is excellent enough to serve as a set of
outstanding individuals for feature weight measures.

The minor difference between the results of Gen51(fit) and Gen51(spa) suggests a
strong correlation between them, offering diverse viewpoints on the importance of features
in solving multi-objective problems. This conclusion is consistent with the findings in
Tables 4 and 5, suggesting that, when the results of feature weight measures are similar, the
final optimization performance also tends to be similar.

When contrasted with the feature frequencies in Gen50, the results in Gen100(fit) and
Gen100(spa) show that features with higher weights have higher frequencies, while lower-
weighted features have lower frequencies. This implies that the obtained dual feature
weight sets indeed guide the algorithm’s search direction in the latter 50 generations.
The proposed hybrid population adjustment strategy based on feature weights aids the
algorithm in mitigating the negative effects of irrelevant features.

Another observation from Figures 6 and 7 is that the results of most features’ weights
and frequencies are quite similar in all scenarios. Specifically, features such as PT, MP,
and their respective related features RPT, RMP, and WIQ, MWT, NIQ, etc., demonstrate
a high level of importance in the generation of routing rules. This aligns with the actual
situation, as PT, MP, RPT, and RMP play critical roles in optimizing both MT and TEC.
Combining them with features like WIQ, MWT, and NIQ enables a more effective and
rational allocation of machine resources, leading to increased speed in job processing. This
also ensures that jobs are scheduled on machines with higher MP, thereby reducing their
energy consumption from being idle.

From the perspective of sequencing rules, PT, SL, and WKR are three important
features. Previous studies [26,27] have demonstrated their significant role in optimizing
MT. Xu et al.’s research [33] also highlights the importance of these features in optimizing
energy consumption related objectives. An interesting observation is that WKR (i.e., the
remaining work of the job) and NOR (i.e., the remaining number of jobs) are functionally
correlated, both related to the remaining work of jobs. The results reveal a competitive
relationship between these two features: when the weight/frequency of WKR is high,
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the weight/frequency of NOR is low, and vice versa, though they can also both be high
simultaneously. This implies inherent correlations among different features, emphasizing
the necessity of introducing the feature weight measures in this study.

Figure 6. The feature weights and frequencies of routing rules in six scenarios.
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Figure 7. The feature weights and frequencies of sequencing rules in six scenarios.

7. Comprehensive Discussion of the Experimental Results

As numerous experimental results have been presented in Sections 5 and 6, this section
offers a comprehensive discussion of the results.
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First of all, the experimental results in Sections 5.1 and 5.2 point out that our improved
GPHH algorithms (i.e., GPFW(fit) and GPFW(spa)) outperform existing methods (i.e.,
GPLWT, GPDR, and GPFS) with slightly longer training and testing times. This indicates
that using feature weights to guide the evolutionary process of GPHH does benefit the
optimization performance when compared to GPDR and surpasses the feature selection
method proposed in existing work [31], which focuses more on single-objective problems.
Additionally, if we take the experimental results for the number of unique features (in
Section 6.1) and the rule size (in Section 6.2) into consideration, one can see that our
algorithms not only perform better but also produce more interpretable DRs. This is
because the improved GPHH generates DRs with fewer unique features and smaller
rule sizes after eliminating irrelevant and redundant features, making the DRs easier
to understand.

Considering that the occurrence frequency of each feature in a rule can reflect to
some extent the importance or contribution of the feature to the optimization objective,
a conjoint analysis of feature weights and feature frequencies is also given in Section 6.3.
From the experimental results, one can see that feature frequencies and computed feature
weights mostly align. This is because features useful for the optimization objective have
larger contributions in individuals/DRs and also occur more frequently. However, feature
frequencies can be influenced by irrelevant and redundant features in individuals, limiting
the rationality of the results.

In summary, all the above experiments demonstrate that the proposed feature weight
measures can more effectively and rationally calculate the significance or contribution
of features in the multi-objective DFJSSP compared to existing methods. Hence, they
can effectively improve the optimization performance of GPHH and the interpretation
of generated DRs by removing irrelevant and redundant features and increasing the
occurrence frequencies of high-weight features. Further experiments also point out that the
proposed feature weights, in contrast to feature frequencies, better capture the importance
and contribution of each feature to the optimization objectives. This is because the feature
weights take into account the validity of both individuals and features for the Pareto front.

8. Conclusions and Future Work

This paper addresses the negative impact of irrelevant features on scheduling
decisions made by GPHH when generating scheduling rules, as well as the different
demands of routing and sequencing scheduling decisions on different feature informa-
tion. An improved GPHH with dual feature weight sets is proposed and applied to the
energy-efficient multi-objective DFJSSP so that high-quality and understandable DRs
can be automatically developed.

Specifically, this paper investigates the importance/contribution of different features
in solving multi-objective problems and evolving high-quality routing and sequencing
rules with GPHH. Then, an improved GPHH with dual feature weight sets is proposed.
During the iteration of the population, the importance/contribution of each feature is
evaluated based on the fitness of individuals or the sparsity of the Pareto front. In this
way, different weights are assigned to the features, which form two different feature
weight sets for both routing and sequencing decisions. After this, a hybrid population
adjustment strategy is also proposed to genetically update the population based on these
newly obtained dual feature weight sets. Experimental results indicate that the proposed
improved GPHH with dual feature weight sets surpasses existing related GPHH algorithms
and their feature selection methods. The DRs generated by our proposed GPFWs can
achieve better optimization performance and interpretability when dealing with multi-
objective problems.

In future work, it will be worthwhile to explore the impact of mutation probability on
the optimization performance of this proposed GPFW, extend the proposed feature weight
measures to many-objective problems, and further improve the population adjustment
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strategy. These directions could provide valuable exploration for enhancing the algorithm’s
performance and broader applications.
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Abstract: With the increasing complexity of the grid meter dial, precise feature extraction is becoming
more and more difficult. Many automatic recognition solutions have been proposed for grid meter
readings. However, traditional inspection methods cannot guarantee detection accuracy in complex
environments. So, deep-learning methods are combined with grid meter recognition. Existing
recognition systems that utilize segmentation models exhibit very high computation. It is challenging
to ensure high real-time performance in edge computing devices. Therefore, an improved meter
recognition model based on YOLOv7 is proposed in this paper. Partial convolution (PConv) is
introduced into YOLOv7 to create a lighter network. Different PConv introduction locations on the
base module have been used in order to find the optimal approach for reducing the parameters and
floating point of operations (FLOPs). Meanwhile, the dynamic head (DyHead) module is utilized to
enhance the attention mechanism for the YOLOv7 model. It can improve the detection accuracy of
striped objects. As a result, this paper achieves mAPval

50 of 97.87% and mAPval
50:90 of 62.4% with only

5.37 M parameters. The improved model’s inference speed can reach 108 frames per second (FPS). It
enables detection accuracy that can reach ±0.1 degrees in the grid meter.

Keywords: yolov7; meter-sensor reading; real-time detection; deep learning

1. Introduction

As grid industrial automation advances, intelligent inspections are repeatedly pro-
pelled into the spotlight. Automating the inspection of various old-fashioned instruments
is challenging in grid meter detection. A single medium-sized substation may be equipped
with as many as 800 to 1000 pointer-type meters. High-frequency manual inspections in-
evitably result in an increased error rate. Therefore, it is imperative to propose an effective
and intelligent solution to alleviate this repetitive and burdensome work.

Currently, there has been much research in automatic grid meter recognition. In
the past, traditional computer vision and digital image processing were commonly used
for reading meter data. Zhang et al. [1] improved the visual saliency of pointer meter
regions by establishing the localized pixel inhomogeneity factor (LPIF) model. And, Hough
transform [2] was utilized to recognize the meter readings. Meng et al. [3] employed
segmentation of pointers through thresholding and the area growth method. They used the
Bresenham algorithm to calculate the deflection angle between the center line of the pointer
and the zero scale. This method incorporates dynamic thresholding and pixel restoration
mechanisms into the recognition process. This can cause it to be robust. However, in some
environments with significant lighting changes, reflections of the meter dial face can affect
the recognition of the pointer features.

Because of the proliferation of deep learning, numerous methods have emerged.
He et al. [4] utilized the Mask R-CNN [5] for grid meter detection. Target detection was
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employed to locate the dial, followed by semantic segmentation to delineate the pointer
region. Principal Component Analysis (PCA) was used to fit the slope of the pointer,
and accurate meter readings were achieved. Advanced deep-learning techniques were
used in this method for accurate detection. However, the high computing overhead of
the semantic segmentation model results in it being difficult to deploy on edge devices,
resulting in a low real-time performance. Fan et al. [6] improved YOLOv5 based on the
Global Context (GC) [7] module. The meter was located through target detection. The
U-net [8] was employed for pointer segmentation and keypoint detection. They also used
PCA to fit the slope of the pointer. This approach can adapt to a certain level of complexity
in the environment. However, it requires two separate model inferences—the YOLOv5
target detection and U-net semantic segmentation. It results in significant computational
overhead and longer processing time. Therefore, a grid pointer recognizer that combines
high accuracy and robustness with real-time performance is still needed.

Regarding the problem mentioned above, an improved model based on YOLOv7 [9] is
implemented that combines Partial Convolution (PConv) [10] and Dynamic Head (DyHead)
[11] for grid meter detection. Additionally, an adaptive calibration algorithm has been
incorporated for pointer reading calculation. This paper achieves relatively accurate
readings in complex environments while maintaining a high real-time performance and
lower parameters. Meanwhile, it demonstrates stable recognition when detecting pointers
in dark, blurry, and small target scenarios.

Over 1000 photographs of grid pointer meters were utilized as datasets. These were
collected at a substation, as shown in Figure 1. The datasets comprised images of meters
under various working conditions, including shots taken at different angles and periods
for the same meters. Data augmentation was also performed in varying degrees. These
practices enriched the diversity of the dataset features, enabling the model to learn more
generalized characteristics. It also helped reduce the risk of overfitting and improved
overall model performance.

Figure 1. Overview of images in the dataset with different noise conditions.
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The main contributions of our work are as follows:

(1) In grid meter detection, PConv was introduced into the base module of YOLOv7 and
it obtained a relatively optimal replacement structure through multiple experiments,
reducing the model’s FLOPs and parameters.

(2) An adaptive calibration algorithm was proposed for pointer reading calculation, which
exhibited a relatively high robustness and good detection accuracy.

(3) DyHead was integrated into YOLOv7, incorporating an attention mechanism that
boosted the accuracy when detecting small target features.

The remainder of this paper is organized as follows: Section 2 provides the develop-
ment of the critical technologies. Section 3 discusses the main technical improvements. The
results of the experiments and ablation experiments are presented in Section 4. Finally,
Sections 5 and 6 summarize the paper, offering insights into the approach’s merits and
outlining directions for future work.

2. Related Work

2.1. Real-Time Object Detection

Currently, there are two-stage detectors with a high detection accuracy, such as Fast
R-CNN [12] and Faster R-CNN [13]. There are also high real-time one-stage object detec-
tors, such as SSD [14] and the YOLO [15] series. Similarly, there are excellent semantic
segmentation models like Mask R-CNN [5], which integrates the achievements of deep
learning in computer vision.

The real-time performance becomes increasingly important as deep-learning vision
models are implemented into industrial production. Typically, techniques such as pruning,
quantization, and knowledge distillation [16] can be employed to reduce the model’s
complexity. This can improve the inference speed and enhance the real-time performance.
Additionally, improved convolution modules can also be applied to reduce the model’s
parameters and FLOPs, such as depthwise convolution (DWConv) [17] and PConv. These
modules can reduce the parameters, accelerate the model’s inference performance, and
enhance the real-time capabilities to some extent.

2.2. Pointer Meter Reading

Past researchers have achieved substantial work in the grid meter reading field. Some
researchers have employed traditional visual solutions in their work. They have utilized
feature extraction methods to detect the pointer meter. Others have adopted deep learning,
detecting meters through object detection and using semantic segmentation to delineate the
regions of the pointers. Our team has accumulated a wealth of experience in meter reading.
Past works have attempted to use image classification by detecting meters through sliding
windows. Feature point detection has also been used to calibrate the dial to achieve meter
readings. However, these methods could achieve a better real-time performance.

In this paper, PConv is introduced into the base module of the YOLOv7 backbone,
replacing regular convolutions to reduce the computational load and increase the frames
per second (FPS). Eisting work such as Sun et al. [18] has introduced PConv into the YOLO
series networks. However, this work does not provide details on how the integration is
performed, the number of replacements, and crucial aspects like the replacement positions.
Therefore, our work experiments with various replacement approaches in the base module
of the YOLOv7 backbone and identifies the most effective replacement through experimen-
tation. Moreover, DyHead with an attention mechanism is added to the detection head of
YOLOv7 to enhance the model’s performance in strip object recognition.

3. Methods

The algorithmic process is illustrated in Figure 2. The meter image is initially captured
and fed into the improved YOLOV7tiny object detector to detect relevant elements in the
meter dial. YOLOv7 is used to extract the positions of the short pointers and the regions
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corresponding to the left and right starting points of the instrument’s scale. The area of the
detected pointer is cropped from object detection.

Figure 2. The entire algorithmic process.

The detected pointer region and key point coordinates are input into the adaptive
calibration program for pointer reading. As the linear features of the pointer are very
distinct in the cropped image, the adaptive calibration algorithm is used to estimate the
slope of the pointer relative to the dial center coordinate system.

The meter reading can be calculated through a proportional relationship using the
pointer’s slope (k), dial center coordinate (xc, yc), and dual boundary location (xb1, yb1),
(xb2, yb2).

The direction vector of the pointer is

�P = (1, k) (1)

The vector of the dual boundary location to the center is

�Vle f t = (xb1 − xc, yb1 − yc)

�Vright = (xb2 − xc, yb2 − yc)
(2)

So, the angle from the pointer to the nearest boundary of the dial range can be calcu-
lated as

Angle = min(arccos(
�P · �Vle f t

|�P| · |�Vle f t|
), arccos(

�P · �Vright

|�P| · |�Vright|
)) (3)

Using this angle, the meter’s reading can be calculated through the proportional relation-
ship.

The entire reading process is typically faster compared with using semantic segmenta-
tion, and it also exhibits a strong adaptability to different environments.
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3.1. Data Augmentation

The pointer dataset for this paper was manually collected by team members at the
substation, including meter images from various shooting angles, different periods, diverse
lighting conditions, and varying pointer angles. Approximately 1000 images were anno-
tated. The meter images were captured at distances ranging from 0.5 m to 2 m, showcasing
a multi-scale characteristics.

Different levels of data augmentation techniques were incorporated into the meter
datasets. Salt-and-pepper noise and random region blur were added to the meter images.
Also, stains and old meters were simulated to enhance the network’s ability to generalize
such patterns. Random region blur is a technique used to increase the variety of a dataset.
It calculates a value by multiplying the shorter side of the image and a specific ratio. This
value is used as the length and width of a square region. The square is randomly applied
to a particular area of the image, and a large-kernel mean filter is employed within this
region, resulting in an image with region blur. The number of squares is generally limited
to three or fewer per image, and the ratio is typically selected from a range of 0.2 to 0.3.
Experiments have shown this data augmentation technique has a specific positive impact
on the detection of striped objects. Different angles and various aspect ratios of pointer
meters were stimulated by applying perspective transformation and random rotation.
Additionally, the diversity of the datasets was enhanced by randomly adjusting the images’
color space, brightness, and saturation within predefined ranges.

3.2. ELAN-PConv

The original YOLOv7 base module was structured according to the ELAN module,
as depicted in Figure 3. The entire backbone underwent hierarchical feature extraction
through four layers of ELAN modules. The number of image channels progressed from 128
to 256, then to 512, and finally to 1024. 1 × 1 and 3 × 3 standard convolutions were utilized
in each ELAN module. So, in each computation step, a large number of convolutional
kernel operations were required. Taking the example of the ELAN module with an output
channel of 256, a single computation between the two 3 × 3 convolutional layers utilized
4096 convolutional kernels. This undoubtedly imposed a significant computational burden,
particularly for the edge devices. This resulted in a substantial computation overhead.

Figure 3. ELAN module structure in YOLOv7.
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Inspired by the PConv proposed in FasterNet [10], Partial Convolution (PConv) rep-
resented a recent improvement in standard convolution. Its primary design goal was to
reduce memory access and computational redundancy. The use of PConv was motivated
by the observation that feature maps exhibited a high similarity across different channels,
indicating a significant redundancy between channels. Therefore, leveraging the redun-
dancy of the feature maps, PConv selectively applied standard convolution on a subset
of channels while keeping the remaining channels unchanged, as shown in Figure 4. This
reduced the computational complexity and contributed to realizing a fast and efficient
neural network.

Figure 4. PConv computation diagram.

PConv was introduced at different positions in this paper to replace the standard
convolutions in the ELAN modules. Validations were conducted to determine the best
approach for introducing PConv in the Experiments Section.

PConv typically selects a certain proportion of channels for standard convolution,
usually with r = 1

4 . When the channel numbers of input and output are the same, the FLOPs
for using PConv are

h × w × k2 × c2
p. (4)

When r = 1
4 , PConv is simply 1

16 of the standard convolution, it requires less memory
accesses. The memory accesses for using PConv are

h × w × 2cp + k2 × c2
p ≈ h × w × 2cp, (5)

where h and w represent the feature map’s width and height, respectively, and k represents
the size of the convolution kernel. cp refers to a subset of the feature channels.

When r = 1
4 , memory access is only 1

4 of the standard convolution.
To integrate the feature information from different channels more effectively, PConv is

typically followed by a Point-Wise Convolution (PWConv) [10] connection.

3.3. Change to DyHead

The IDetect module [9] of YOLOV7 was improved in this paper. IDetect is the pre-
diction head of the YOLOV7 network, and is responsible for classification and regression.
In the experiments of pointer detection in YOLOv7, the pointer scale and aspect ratio in
each meter varied greatly. The performance was suboptimal for some relatively short and
thin pointers. The features learned by the model were scattered, leading to a certain degree
of deviation in the regression prediction boxes. So, DyHead was added before IDetect to
enhance its perception of the scale and space, as shown in Figure 5.
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Figure 5. Dyhead added position in YOLOv7.

Dynamic Head (DyHead) is a dynamic target detection head, as shown in Figure 6.
It unified scale awareness, spatial awareness, and task-aware attention, constructing a
self-attention mechanism. After feature extraction by the backbone network of YOLOV7,
the obtained feature pyramids at three different scales were fed into DyHead. This involved
utilizing a self-attention mechanism for spatial, scale, and task perception. The outputs
were provided to IDetect for the classification and regression. This approach benefited the
network by paying more attention to small objects or objects with significant aspect ratio
differences. It enhanced the detection the performance of pointers.

Figure 6. The internal structure of a single DyHead block.

The heatmap displayed in Figure 7 shows that DyHead’s multi-layer stacking enabled
the feature layers to gradually converge onto the pointers without interference from the
other dial components. Therefore, incorporating an attention mechanism into the model
could enhance its ability to detect pointers with significant variations in spatial scales and
aspect ratios, thereby improving its detection capability in complex environments.

3.4. Adaptive Calibration Pointer

After object detection, the region and key points of the pointer were input into the
adaptive calibration program for meter reading. The detected key points mainly included
the start and end positions on both sides of the meter range. This paper achieved this by
cropping and duplicating a portion of the pointer region and applying Gaussian smoothing
for noise reduction. The maximum interclass variance method (OTSU’s method) [19] was
used to segment the pixels of the pointer. This is an adaptive threshold segmentation
method. As short and thin pointers are typically in small regions on the dial face, the
complexity of the dial face does not significantly impact the accurate segmentation of the
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pointer from the background. Moreover, OTSU’s method performs segmentation based
on interclass variance and it is not influenced by image brightness and contrast. When
obtaining the segmented image, we employed Canny edge detection [20], resulting in two
distinct edges on the pointer. Hough line transform was applied to obtain the equations of
these two lines. The complete process of extracting the pointer is schematized in Figure 8.

Figure 7. Stacking different numbers of DyHead blocks results in the heatmap.

If the two lines are parallel, the program can arbitrarily select one as the fitted slope
for the pointer. In the case of a sharp-tipped pointer, the average of the slopes of these two
lines can be calculated and used as the fitted slope. The meter reading can be determined
through proportional relationships by using the key points on both sides and the slope of
the pointer.

Figure 8. Process of extracting pointer features and fitting the slope.
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4. Experiments

4.1. Experimental Setup

Experiments were conducted on Ubuntu 20.04. The software stack was configured
with Python 3.8 and PyTorch 1.13.1. For hardware, training was performed on a Tesla
P100 GPU. In the inference, the RTX 3060 Laptop was used to simulate the computational
capabilities of the edge devices. The training code was based on the YOLOv7 project, which
WongKinYiu opens sources on GitHub.

Regarding the model training parameter settings, Stochastic Gradient Descent (SGD)
is the optimizer with an initial learning rate of 0.01, momentum of 0.937, and weight decay
of 0.0005. The training was conducted on a batch size of 64 for 500 epochs of the dataset.
Additionally, pre-trained weights were not utilized for a fair performance comparison
between the different networks.

Mean Average Precision (mAP) was utilized as the accuracy evaluation metric. It is
computed as the average precision (AP) average across all categories. Specifically, mAPval

50
calculates the average precision when the Intersection over Union (IoU) threshold is 50%.

mAP =
1
C

C

∑
c=1

APc (6)

where C represents the number of categories and c represents the specific category.
Using this evaluation metric helps better reflect the model’s accuracy in recognizing

features.

4.2. Ablation Study
4.2.1. PConv Replacement Position in ELAN

Because of the characteristics of PConv, only a subset of channels underwent convo-
lution, while the rest remained unchanged. Therefore, the position of replacing standard
convolutions with PConv in the ELAN module was bound to affect the network’s perfor-
mance. Figure 9 shows four replaceable convolution positions for the ELAN structure. Five
replacement structures are shown in Table 1.

YOLOv7tiny + PConv-x refers to a different replacement position for PConv in the
YOLOv7 ELAN module. Comparative experiments were conducted on different positions
and quantities of PConv introduction and identified the most effective positional structure.
The PConv module was configured to default to connecting a PWConv for feature fusion
and channel transformation. All of the YOLOv7tiny + PConv-x experiments were conducted
directly on the original YOLOv7tiny model.

Figure 9. Location of the four Conv (standard convolutions) in the ELAN module of YOLOv7tiny.
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Table 1. PConv replacement position (“�” means this Conv in Figure 9 will be replaced).

Model Conv1 Conv2 Conv3 Conv4

YOLOv7tiny + PConv-1 � � � �
YOLOv7tiny + PConv-2 � �
YOLOv7tiny + PConv-3 � �
YOLOv7tiny + PConv-4 � �
YOLOv7tiny + PConv-5 � � �

Through experiments, YOLOv7tiny + PConv-1 was found to have fewer parameters
and FLOPs, as shown in Table 2. This is because all the Conv1-4 were replaced standard
convolutions with PConv. This implies that only a subset of channels underwent convolu-
tion, resulting in fewer convolutional kernels. However, as the 3 × 3 convolution in ELAN
was the primary feature extraction layer, replacing it may have led to insufficient feature
extraction in some cases.

Table 2. Comparison of model complexity based on different PConv replacements.

Model Params(Net) Params(Block) FLOPs

YOLOv7tiny 6.02 M 1.31 M 13.2 G
YOLOv7tiny + PConv-1 4.73 M 0.41 M 10.5 G
YOLOv7tiny + PConv-2 6.12 M 1.38 M 13.6 G
YOLOv7tiny + PConv-3 4.83 M 0.33 M 10.1 G
YOLOv7tiny + PConv-4 5.35 M 0.86 M 11.9 G
YOLOv7tiny + PConv-5 4.78 M 0.37 M 10.3 G

From Table 3, it is observed that YOLOv7tiny + PConv-1 had the lowest mAPval
50 ,

demonstrating insufficient feature extraction due to the reduction in the number of convo-
lutional kernels. YOLOv7tiny + PConv-4 exhibited the greatesr down inference time with a
batch size 32, and it achieved a good mAPval

50:95. It was mainly replaced with PConv in the
Conv2 and Conv4 positions.

Table 3. Performance comparison based on different PConv replacements.

Model Infer(b32) FPS mAPval
50 mAPval

50:95

YOLOv7tiny 7.6 ms 104 97.13% 60.33%
YOLOv7tiny + PConv-1 6.2 ms 109 97.09% 59.61%
YOLOv7tiny + PConv-2 5.9 ms 114 98.12% 59.23%
YOLOv7tiny + PConv-3 7.1 ms 104 98.27% 59.05%
YOLOv7tiny + PConv-4 6.5 ms 108 97.75% 60.48%

YOLOv7tiny + PConv-5 6.1 ms 110 97.55% 59.34%

4.2.2. Module Ablation Study

Ablation experiments were conducted on the selected improved modules, as shown in
Table 4. YOLOv7tiny-based PConv-1 had the most minor net parameters, and YOLOv7tiny-
based PConv-4 had the relatively best mAPval

50:95. So, experiments were conducted by adding
Dyhead to the YOLOv7tiny + PConv-1 and YOLOv7tiny + PConv-4 to determine which
structure was more suitable.

From the experimental results, it can be observed that YOLOv7tiny + PConv-4 +
DyHead demonstrated a better performance than the other improved models. Despite the
increase in parameters with the addition of DyHead, there was a reduction in FLOPs. The
mAP also reached a relatively superior level.

253



Sensors 2024, 24, 3549

Table 4. Ablation experiments of the network improvement modules.

Model Params FLOPs FPS mAPval
50 mAPval

50:95

YOLOv7tiny 6.02 M 13.2 G 104 97.13% 60.33%
YOLOv7tiny + Dyhead 5.96 M 13.0 G 106 97.83% 62.43%
YOLOv7tiny + Pconv-1 4.73 M 10.5 G 109 97.09% 59.61%
YOLOv7tiny + Pconv-4 5.35 M 11.9 G 108 97.75% 60.48%
YOLOv7tiny + Pconv-1 + Dyhead 4.77 M 10.5 G 110 97.80% 60.96%
YOLOv7tiny + Pconv-4 + Dyhead 5.37 M 11.8 G 108 97.87% 62.67%

4.2.3. Meter Reading Comparison

The meter reading errors using different YOLO models were compared. The pointer
and keypoint features extracted by each YOLO model were fed into the reading program
to calculate the meter value. The error was calculated by comparing the predicted meter
values with the ground truth. This experiment processed all images in the test set to obtain
each model’s average error and inference speed, as shown in Figure 10.

Figure 10. Comparison of meter reading with different models for feature extraction.

The models that were closer to the bottom-left corner were considered better. Com-
pared with the YOLOv8n model, the original YOLOv7-tiny model had a higher accuracy,
while YOLOv8n was faster. However, through field testing, our team concluded that
accuracy was of a higher priority at the same parameter level. Therefore, we chose YOLOv7
as the base model.

5. Discussion

YOLOv7tiny + PConv-4 + DyHead was validated as being more suitable for meter
datasets, providing a relatively optimal improvement structure through multiple experiments.

The improved network achieved a relatively optimal performance in mAP values
compared with the other networks, as shown in Table 5. The mAPval

50 reached 97.87% and
mAPval

50:95 reached 62.67%. Meanwhile, the parameters and FLOPs were maintained at a
low level. This demonstrates the effectiveness of reducing the network volume through
PConv and enhancing the feature perception with DyHead for meter detection.
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Table 5. Comparison of real-time model performances.

Model Params FLOPs mAPval
50 mAPval

50:95

YOLOv7tiny 6.02 M 13.2 G 97.13% 60.33%
YOLOv7tiny + Pconv-1 + Dyhead 4.77 M 10.5 G 97.80% 60.96%
YOLOv7tiny + Pconv-4 + Dyhead 5.37 M 11.8 G 97.87% 62.67%

YOLOv3tiny 12.1 M 19.0 G 95.38% 55.78%

YOLOv5n 1.7 M 4.2 G 96.62% 59.32%
YOLOv5n6 3.1 M 4.3 G 96.72% 58.94%
YOLOv5s 7.2 M 17.0 G 97.18% 59.35%

YOLOv6n 4.2 M 11.9 G 96.77% 59.51%
YOLOv8n 3.0 M 8.2 G 96.51% 59.73%

6. Conclusions

Nowadays, numerous methods in grid meter reading are being used. However, these
methods could be better in terms of both real-time performance and accuracy. This paper
enhanced the speed and accuracy of grid meter detection in the improved YOLOv7 model.
The ELAN module replaced the Standard convolutions with PConv to reduce the network’s
parameters and FLOPs, enhancing the real-time inference on the edge devices. In addition,
an attention mechanism was introduced by incorporating the DyHead Block into the neck
output of YOLOv7 IDetect. It improved the network’s recognition of pointers and enhanced
the meter detection accuracy. The mAPval

50 reached 97.87% and the mAPval
50:95 reached 62.67%

in the improved model. The improved model took 6.4 ms to infer a single image, achieving
a frames-per-second (FPS) rate of 108. It exhibited an excellent performance in terms of
both accuracy and real-time capabilities.

In future work, our team will further explore the challenges in grid meter detection.
Lighter-weight networks will be investigated to expand the applicability of our work. We
will explore how to achieve simple visual detection of meters on microcontrollers such as
STM32H7 or MCX N Series. Our team will continue to advance the construction of indus-
trial intelligence in the future, striving towards comprehensive intelligent manufacturing
and intelligent inspection (Figure 11).

Figure 11. Actual industrial application examples of meter reading in the grid industry.
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Abstract: The digitization of production systems has revolutionized industrial monitoring. Analyzing
real-time bottom-up data enables the dynamic monitoring of industrial processes. Data are collected
in various types, like video frames and time signals. This article focuses on leveraging images
from a vision system to monitor the manufacturing process on a computer numerical control (CNC)
lathe machine. We propose a method for designing and integrating these video modules on the
edge of a production line. This approach detects the presence of raw parts, measures process
parameters, assesses tool status, and checks roughness in real time using image processing techniques.
The efficiency is evaluated by checking the deployment, the accuracy, the responsiveness, and the
limitations. Finally, a perspective is offered to use the metadata off the edge in a more complex
artificial-intelligence (AI) method for predictive maintenance.

Keywords: video analytics; digitization; data deviation; detection; machine; visual; industry 4.0

1. Introduction

The framework of Industry 4.0 focuses on deploying three computing approaches:
edge, fog, and cloud. These structures enable the integration of image analysis studies
on the shop floor, as seen in Figure 1. Edge computing includes all modules, servers,
or desktops situated on the operation technology (OT) network. Fog computing allows
the usage of the information technology (IT) network, offering better performance due
to high-performance equipment. Cloud computing is considered an open configuration
platform, providing fast response and preconfigured processing blocks.

Figure 1. Computing architectures inside the framework of Industry 4.0.
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1.1. Industrial Data

Data mining is fundamental in modern industrial sectors, aiming to optimize and
adjust operations, as explained by Tambare et al. (2022) [1]. However, essential chal-
lenges such as system integration, communication, and collaboration must be tackled.
The goal is to maintain a continuous production cycle, preventing unexpected machine
breakdowns. This objective aligns with smart supervision and edge computing, where data
are contextualized into performance indicators, expanding system monitoring.

Several studies have explored the potential of operational images to extract metadata
from isolated systems. Various image-based methods allow the measurement of operational
and environmental data from system operations. However, image processing requires pa-
rameter tuning and stable lighting, as presented by Mirbod et al. (2022) [2]. Simultaneously,
AI approaches facilitate metadata prediction if a sufficient, unbiased dataset is available, as
illustrated by Caggiano et al. (2019) [3].

1.2. Video Analytics in Edge Computing

Considering the objective of Industry 4.0, Bazhenov et Korzun (2019) discusses the
application of event-driven video services for monitoring in edge-centric Internet of Things
(IoT) environments [4]. It emphasizes that video analytics in IoT environments should not
rely on transferring raw video data to a central processing center (like cloud-based sys-
tems). Instead, it proposes a model where multiple edge video capture devices process data
streams locally for event detection. These events can be simple occurrences within a single
video stream or complex events derived by correlating events across multiple streams and
incorporating contextual information from the IoT environment. The authors highlight the
importance of microservice architecture, event-driven models, and context-based mecha-
nisms in constructing these video services. They also present a demo implementation of a
video service for personnel recognition around production equipment, showcasing its use
in digital monitoring for smart manufacturing processes.

Simultaneously, Kim et al. (2019) present a novel monitoring approach for small and
medium-sized enterprises (SMEs) called KEM (keep an eye on your machine) [5]. The
system uses a low-cost vision device like a webcam and open-source technologies to collect
and process operational data from computer numerical control (CNC) machine tools. A
prototype was tested with a 3-axis CNC milling machine, and the results showed that
the system was easy to integrate and could be applied to legacy machine tools without
significant changes or cost barriers. The authors believe that this approach can change
monitoring operations, reduce operational time and energy consumption, and lessen the
environmental impact of sustainable production in SMEs.

These two applications present initial roadmaps for video analytics. Bazhenov et
Korzun (2019) [4] suggest that their event-driven model, which is a key element of their
overall concept, can be extended to other applications beyond manufacturing, such as
object recognition and recognition of interaction between people and physical objects. On
the other hand, Kim et al. (2019) [5] consider the application of their approach with other
manufacturing equipment, such as turning centers, parts feeders, and 3D printers.

1.3. Scope

This paper aims to reinforce the models of Bazhenov et al. (2019) and Kim et al.
(2019) [4,5]. This reinforcement consists of optimizing the processing power for the edge
module by preventing data latency, machine reconfiguration, and security risks. Section 2
highlights some video analytics in manufacturing, considering the limitations, the structural
implementation, and the accuracy of the algorithm. The approach is tested on a CNC lathe
machine by contextualizing video frames into operational data.

2. Image Processing and AI Vision

Image processing is based on filters and pixel calculations, while AI vision is a modern
analysis technique that learns pixel deviations and correlates unseen images with pre-
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trained ones. Both techniques are considered artificial intelligence (AI) methods. Presently,
they are used in manufacturing processes to contextualize video data, such as operative
parameters and process faults.

An investigation of 11 research studies shows the importance of video analytics in
manufacturing processes according to five criteria, as seen in Table 1.

Table 1. A comparative review of image-based studies.

Study Process Algorithm Network Accuracy Gap

Mazumder (2015) [6] AM * SVM *
PCA * Edge/Fog <80% Nonsufficient

Abid Hasan et Ko (2016) [7] Detection Canny Edge >95% Applicability in
manufacturing

Nuchitprasitchai et al. (2017) [8] AM * SIFT *
RANSAC * Edge >90% Code modification

Ceruti et al. (2017) [9] AM * SURF * Edge >90% Refine error
Delli et Chang (2018) [10] AM * SVM * Edge/Fog 90% Add checkpoints
Caggiano et al. (2019) [3] AM * DCNN * Fog/Cloud 99.4% Single process

Kalbasi et Nikmehr (2020) [11] Detection Canny Edge -- Applicability in
manufacturing

Giusti et al. (2020) [12] SM * CNN * Fog/Cloud 98% Apply in situ
automatic control

Cai et al. (2021) [13] Detection PNGAN * Fog/Cloud >95% Applicability in
manufacturing

Wang et al. (2022) [14] AM * CNN *
DCNN * Fog/Cloud 98% Include more

capabilities

Halawi Ghoson et al. (2023) [15] SM * Mask Edge 99% Nonadopted for
online monitor

* AM—additive manufacturing; SM—subtractive manufacturing; SVM—support vector machine; PCA—principal
component analysis; SIFT—scale invariant feature transform; RANSAC—random sample consensus;
SURF—speed up robust features; CNN—convolutive neural network; PNGAN—pixel-level noise-aware genera-
tive adversarial network; DCNN—deconvolutional neural network.

2.1. Additive and Subtractive Manufacturing

The study by Mazumder (2015) proposed a design for a metal additive manufacturing
machine [6]. They incorporated a video sensor for constant defect monitoring. While
suitable for zero-point design, the approach did not discuss advanced image analysis,
achieving less than 80% efficiency due to limitations in integrating reliable measurements
using edge computing.

Feature point localization is also an image processing technique. Nuchitprasitchai
et al. (2017) used the RANSAC and SIFT algorithms to identify key points between a
3D-printed part and its virtual representation [8]. This method controlled printing accuracy
and ensured continuous operation without faults, but it slowed down printing by a factor
of four.

Augmented reality (AR) is another technology for assessing printing faults. Ceruti et al.
(2017) implemented an innovative approach using AR technology [9]. They projected a
simulation from the CAD file onto the printing bed, detecting 1-mm deviations and running
filament defects between the projected and real product. However, integration failed when
not enough feature points were recognized between real and simulated products using the
SURF algorithm.

In addition to classical recognition, AI algorithms predict data. Delli et Chang (2018)
trained an SVM, a machine learning method trained to detect running filaments and fault
prints during the process [10]. They installed a camera with an adapted graphic card,
achieving 90% accuracy and less than 1 s response time, but reproducing the work required,
including print pauses and high-performance servers.

Caggiano et al. (2019) developed an approach to transform images from a selective
laser-melting (SLM) printer into operational data [3]. Points, such as the applicability of
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other machines and overfitting probability, were not discussed. Simultaneously, train-
ing and deployment required computational resources, making it only applicable to an
integrated fog or cloud network.

Along with additive manufacturing, Wang et al. (2022) used existing methodologies
to implement a robot welding process [14]. They utilized deep learning methods, like CNN
and DCNN, to measure operational parameters: welding speed, current, and torch angle.
Surface measurement for the welded area was necessary to calculate process parameters
using the DCNN, requiring fog or cloud computing for optimized training and deployment.

AM presents only one type of creation of new products from 3D CAD files. In
industry, these manufacturing machines are not always deployed due to uncertainty in
final production. Thus, a discussion about SM is fundamental to understanding video
analytics’ applicability in the field.

Video analysis on SM machines focuses on a detection model for the machining context,
such as parameters, clipping angle, etc. A deeper investigation is crucial to understand the
requirements for integration with real production data. Currently, AI vision approaches are
not often deployed due to biased datasets. For example, Giusti et al. (2020) trained a CNN
model to predict the surface roughness (Ra) of a manufactured product [12]. The model
was trained on publicly available datasets like W300, ASP, STAVAX, and V720, achieving
98% accuracy. However, the authors noted that Ra and binary quality classification are
insufficient for quality control. Future work aims to extend this model to predict more
measurements about product surface quality.

With low computational hardware, it is possible to manipulate a manufacturing
machine, as demonstrated by Halawi Ghoson et al. (2023) [15]. They used an embedded
vision sensor on a robot to manipulate a 3-axis milling machine. The robot initiated a
production cycle with only the smart-mounted camera, using image processing approaches.
Unlike Wang et al. (2022) [14], this application had limitations due to lighting effects and
machine security.

2.2. Dataset Creation

Training AI methods require non-biased datasets. Cai et al. (2021) proposed a genera-
tive noisy image model [13]. Their objective was to train a model that adds random noise
to an image to augment the dataset, making it more suitable for training. Simultaneously,
an operator cannot distinguish if the generated image presents an environmental issue or a
process issue. Hence, it is necessary to develop an online edge computing device capable of
extracting relevant parameters to create datasets. These datasets might serve as references
to enhance AI models since they are based on real images and contextual data.

2.3. Edge Detection

Edge detection is considered an old-fashioned recognition method. It depends on fil-
ters like Sobel, Prewitt, etc. The common approach is the Canny edge detector. Abid Hasan
et Ko (2016) proposed a method for segmentation using 3D measurement technologies
and the Canny edge detector [7]. Images are passed through erosion and dilation filters to
remove noise before being processed by the Canny detector. The detector measures edges
inside the image, creating a depth map that segments the image into sections correspond-
ing to the tool, part, and machine interior. This technique is under evolution due to false
predictions from unwanted random noises, addressed in a detailed study by Kalbasi et
Nikmehr (2020) [11]. They developed an adaptable Canny edge detector, increasing contour
detection even with noisy images. These results suggest researching a technique using the
Canny detector instead of more sophisticated and complex SIFT, SURF, and AI algorithms.

In conclusion, video analytics have the potential to integrate smart manufacturing.
According to the studies, three conditions are required: effective edge computing modules,
performance devices, and stable lighting. A general expansion method is proposed to allow
machine data extraction using classical recognition algorithms. This method is then tested
on an SM machine, presenting critical aspects for data measurement in a production line.
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3. Proposed Methodology

The review explores the conditions for building an effective image data contextualiza-
tion method. One requirement is data measurement using edge computing modules.

The data of a non-connected CNC machine are enclosed within the control loop,
requiring a generic method to measure essential characteristics. A methodology is proposed
to extract relevant information. It is a 4-stage phase, starting with the specific needs, refer
to Figure 2.

Figure 2. Proposed methodology for an edge computing module.

3.1. Specific Needs

Initially, it is essential to specify the data to identify. This objective depends on each
system, as they differ in shape, software, and operational data. Based on these needs, a
vision system is investigated. For example, one camera is not sufficient for 3D printer
supervision, so two cameras are required to supervise the printed product. The vision
module also assesses tool quality or raw part presence.

An optimal place is chosen to mount the camera without affecting the process or data
collection. The camera’s view angle must prioritize capturing the process. As a result, the
machine presents several constraints requiring technical implementations.

3.2. Constraints

Machine constraints play a role in finding the operational data. These constraints
are examined to prevent false installations that might affect the supervision device. It is
beneficial to correlate between the needs and the constraints. For example, vibration is an
important parameter to monitor during manufacturing. As a result, the camera is placed
in front of the process to detect the chatter of the workpiece. Additionally, noisy images
are prevented by mounting the module on a rigid body. Finally, cable management is also
crucial to prevent interference with the production process.

3.3. Camera Specifications

The aim is to ensure data measurement using only a camera and edge detection. Thus,
a suitable camera is essential for monitoring a machine and communicating the metadata
to the supervision level. Industrial vision systems are often not accessible due to budget or
technical support constraints.

The design of a custom vision sensor should fit industry standards. For example,
Costa (2018) has identified the Raspberry Pi with its camera as a customizable system [16].
Additionally, this vision module satisfies working-area constraints, according to Kumar
et al. (2018) [17]. The module is sized 65 × 56 × 12.5 mm, making it possible to add support
or fix it to the walls of a machine without perturbing the process.
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Moreover, the literature review points out that lighting has a major effect on images.
Thus, it is important to overexpose the scene, ensuring good image quality with no noise [8].

A final condition is the capturing rate. Using the image acquisition ratio (IAR), it is
possible to understand the camera’s capability to capture subsections of a process. IAR
represents the proportionality between the camera’s sampling frequency and the machine’s
working speed (refer to Equation (1)).

IAR =
FPScamera( f rame per second)

Speedmachine(rotation per second)
(1)

3.4. Video Analytics

The algorithmic configuration varies between low-level analysis and AI vision. The
focus is on low-level analysis, integrating the concepts of edge detection.

For a manufacturing machine, several properties are required. Data contextualization
is either on the edge or on remote servers. This approach introduces edge integration. Edge
computing is then configured on the vision module using a low computational algorithm,
like the Canny detector.

The Canny edge detector is a multi-stage algorithm that combines several techniques
to detect edges in images:

1. Noise reduction with Gaussian Blur

A Gaussian filter is applied to smooth the image and reduce noise. The filter kernel is
defined by the Gaussian function

G(x, y) =
(

1
2πσ2

)
∗ e

−(x2+y2)
2σ2 (2)

where sigma controls the degree of smoothing. A larger sigma results in more blurring.

2. Gradient calculation using Sobel filters

Sobel filters are applied to calculate the intensity gradient of the image. Two filters
are used, one for the horizontal gradient (Gx) and one for the vertical gradient (Gy). The
gradient magnitude (G) and direction (θ) are then calculated:

G =

√(
G2

x + G2
y

)
(3)

θ = arctan
(

Gy

Gx

)
(4)

3. Non-maxima suppression

Thinning of edges by suppressing non-maximum gradient magnitudes. Only pixels
where the gradient magnitude is a local maximum in the direction of the gradient are kept.

4. Double thresholding

Two thresholds are used—a high threshold (threshhigh) and a low threshold (threshlow).
Strong edges (G above threshhigh) are marked as definite edges. Weak edges (C

between threshlow and threshhigh) are potential edges.

5. Edge tracking by hysteresis

Weak edges are connected to strong edges to form continuous contours. Weak edges
not connected to strong edges are discarded.

Binary images reveal a strong ratio for object detection and recognition. Additionally,
it serves as a refined image for the Canny detector, refer to Figure 3. In the end, these
contextual data are relatively small packets, making it advantageous to use the MQTT
protocol for transmission.
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Figure 3. Image flow to extract contextual data.

Some calculations are presented in the next section since these techniques are based
on the needs and the parameters to monitor. It is important to validate that the obtained
data responds to the identified needs.

The deployment focuses on the CNC lathe machine, which generates noisy images due
to environmental disturbances. These machines are commonly deployed in manufacturing
lines because they produce products faster.

4. Experimentation

The experimentation is conducted on a pedagogic platform to develop technolog-
ical bricks for the Industry 4.0 framework. The focus is on the CNC lathe machine of
this platform.

4.1. Objectives and Constraints

The methodology is tested on a lathe machine. It treats the case of how to properly
integrate the vision system.

First, this machine is an automated unit designed to operate by an operator without
the ability to make external connections. The data are enclosed inside the internal closed
control loop. This concept applies to many machines used throughout the industrial
manufacturing lines. Thus, it is relevant to have external monitoring units, like a vision
system, to track the process and ensure its integration within the Industry 4.0 framework.
The metadata aids in scheduling maintenance operations, minimizing machine breakdown,
and enhancing supervision. Therefore, the vision module must:

• Measure the process parameters
• Assess the quality of the tool
• Check the roughness
• Detect part presence

These needs are common and require an adapted analytical approach. To proceed
with sensor configuration, machine constraints are exploited in Table 2.

The edge module is placed inside the machine to guarantee a continuous view of the
process. It also prevents missing out on important scenes due to the turret displacement.
Figure 4 resumes the general conception where the essential mechanical systems, like the
spindle speed and the turret, are presented.
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Table 2. Constraints for physical integration of vision system.

Type of Constraint Description Resolution

GEOMETRICAL • Machine compact design.
• Little space for operator manipulation.

• Camera facing process.
• See machine Figure 4.
• Minimal distance 30 cm.

ENERGY • Input power is 220Vac.
• Vision modules require 5Vdc with 1.5Adc.

• Adapter with a rating of 5Vdc and 2 A

CABLE MANAGEMENT • High magnetic field causing errors in data. • Wi-Fi connection.
• Only power supply.

AIR PRESSURE • Air pressure to clean the product.
• Vibration errors on camera.

• Use a rigid support to fix the
camera module.

ACCESS • Security door closed during manufacturing. • Camera placed inside the machine.
• Refer to Figure 4.

Figure 4. Geometrical constraints of CNC lathe machine from TORMACH, Madison, WI, USA.

4.2. Camera Selection and Validation

A 2-dimensional analysis with one camera is sufficient for a lathe machine. The
camera selection, introduced in Section 3.4, defines the sampling frequency and the ability
to process the image. The ratio is found by looking at the highest machining parameters
of the lathe. In our case, it is 2500 rotations per minute (RPM). For an adequate sampling
frequency, IAR should be greater than 1.1, allowing the capturing of an image every rotation
(refer to Equation (2)).

IAR =
FPScamera

Speedmachine
(5)

IAR = 1.1 =
FPScamera

2500(rpm) ∗ 1
60

=
FPScamera

41.66(rotation/second)
(6)

FPScamera = 1.1 ∗ 41.66 = 45.825 f ps (7)

As a result, the selected camera should be rated at least 46 fps. According to Costa
(2018), the pi-camera of Raspberry Pi achieves a sampling rate of 60 fps.

After considering the constraints of Table 2 and selecting the Raspberry Pi 4 with its
camera module, the installation is realized, as shown in Figure 5.
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Figure 5. Hardware integration on the lathe machine.

This implementation achieves a sampling frequency of 60 Hz with a control processing
unit (CPU) usage of 40%. This means that the potential is not fully used, and the board
can handle some video analytics. Simultaneously, the operating system, Raspbian, is fully
customizable and adaptable for multi-threading with its 4 cores and 4 Gigabytes (GB) of
random-access memory (RAM).

At this stage, the initial steps of the approach are well integrated for the supervision
of a lathe machine. The next phase is to define the data treatment flow, allowing the
investigation of the process parameters.

4.3. Video Analytics

According to the objective in Section 4.1, a data flow is created to visualize and ensure
valid data extraction (refer to Figure 6).

 

Figure 6. Objectives of video analytics for the lathe machine.

The expected outputs of the detection sequence are summarized in Table 3. These
outputs are transferred to the supervisory control level in text format to facilitate the
operator’s interpretations.
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Table 3. Output characterization for video analytics.

Output Positive Detection Alternative Detection

OUT 1 Raw part detected Manufactured part detected
OUT 2 Material right alignment Misalignment detected
OUT 3 Good tool quality Bad tool quality
OUT 4 Cutting speed; Depth of cut; Feed rate No landmarks detected
OUT 5 Acceptable roughness Too many surface glitches

4.3.1. Object Presence

Detecting objects in the chuck allows verification if the automatic feeding system has
performed its task correctly or if the workpiece has been ejected during the production
process. This detection permits the control unit to stop the machine, preventing unwanted
time loss and potential malfunctions.

The described studies are based on CNN for object detection. However, they require
high-performance servers to turn efficiently, which is not available in most manufacturing
machines. A less computational approach is to use the black-to-white ratio (BWR), defined
as follows:

BWR =
black pixels
white pixels

(8)

This ratio is only applicable to binary images. The original image is transformed into
grayscale and then converted to a binary image. This approach efficiently detects material
presence with a total computational time of 10 milliseconds per frame (refer to Figure 7).

Figure 7. Analytics to detect object presence and manufactured parts. * B—black pixels; W—white
pixels; BWR—black-to-white ratio; N1—number of pixels for segment 1; N2—number of pixels
for segment 2; L1—length of segment 1; L2—length of segment 2; pxs—abbreviation for pixels;
cm—abbreviation for centimeters.

If the BWR is lower than 0.80, it means a product is detected inside the chuck. Oth-
erwise, no material is detected. Correlating this result with a start operation button en-
hances machine intelligence by alerting any material conditions and object ejection during
the process.

Simultaneously, the transformation from pixel to centimeter is given using the theorem
of Thales, explained in Figure 8.
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Figure 8. Length proportionality between real object and image.

This diagram shows the detection of lengths L1 and L2; see Figure 7. Using the
theorem of Thales, it is given:

f
D

=
l
L

(9)

L =
l ∗ D

f
= l ∗ 30

3.04 ∗ 10−1

To obtain L in cm, it is crucial to know the camera specifications about the pixel size.
It allows the transformation of the length measured in pixels into micrometers. In this case,
it is around 1.12 μm.

4.3.2. Clamping

Clamping issues affect the final product quality. Therefore, detecting any misalignment
of the raw part before manufacturing is advantageous. Clamping is detected using the
Hough transform and geometric formulas. The Hough transform involves five steps
successive steps:

• Step 1: edge detection using the optimized Canny detector algorithm.
• Step 2: extract the line parameters from the edge image by creating a voting function.
• Step 3: select the thresholds to consider true lines and omit false positives.
• Step 4: apply the threshold to the extracted lines and obtain the true positives.
• Step 5: draw the line on the image and save it locally.

The presence of a part indicates that the horizontal surface of the raw material receives
the most votes as a line. Simultaneously, it is crucial to know the object’s presence to avoid
algorithm misinterpretation.

Applying the transform to the video stream, five lines are detected: three horizontals
and two verticals (refer to Figure 9). The vertical lines showcase a well-placed part, while
the horizontal lines highlight a 3◦ deviation. The algorithm sends a warning to the operator
to consider adjustments.

Additional experiments are conducted to detect the tolerance, which is around ±0.14◦

on average. The angle order is validated to prevent misinterpretation. The measurement is
deployed at two thresholds, 50 and 80, for accurate identification. The total response time
is found to be 2 milliseconds.
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Figure 9. Analytics to part position and orientation.

Based on the lighting effects, it is possible to tune the thresholds of the Hough trans-
form. In this use case, we overexposed the scene. Then, the algorithm is parameterized by
setting the threshold of votes, where a line is defined as a true line.

4.3.3. Tool Control

Tool supervision is the capability to predict whether a tool performs machining well.
In AI vision, the Siamese Neural Network (SNN) compares a reference tool state and the
current tool state to verify tool wear. However, it is possible to perform edge detection
combined with the Hough transform to find the tool angle and deduce the tool wear. For
example, the tools of a lathe machine have specific geometric reference profiles. If the tool
sustains damage, the angle will vary drastically; see Figure 10.

Figure 10. Analytical approach to measure the tool angle. * Initial process is only launched once to
validate the position of angles extracted from Features 1.

For the detection of the tool angle, it is essential to validate the output angle order.
Another experiment focuses on the detection of the tool and detecting the angle. The
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measured angle is found to be always the last one predicted by the essential algorithm. The
detection time is measured around 1.5 milliseconds.

4.3.4. Cutting Parameters

Measuring machine parameters is crucial since the machine does not allow external
communication. The lathe machine has three parameters: spindle rotation, cutting speed,
and depth of cut.

A blue landmark is placed to detect the tool. The vision module detects the blue color
based on specified masks. The cutting speed is measured by detecting the tool displacement
in the image. For example, at time T1, the tool is at position P2; at time T2, the tool moved
to position P2′ (refer to Figure 11).

Figure 11. Analytical approach to measure the operational parameters.

The cutting speed is found:

cutting speed =
distance

time
in PPS

(
pixels
second

)
(10)

where
distance =

√
(xP2′ − xP2)

2 + (yP2′ − yP2)
2 in pixels (11)

time = T2 − T1 in seconds

The unit does not conform to the physical value. Based on the camera configuration,
mapping allows the discovery of the speed of rotation per minute.

The machine’s rotational speed is measured using the chuck’s diameter and the time
for one rotation. With an IAR greater than 1, one image is captured per turn. A red
landmark is placed on it to detect the spindle. The vision module measures the rotation by
timing the red circle’s exact position in the image.

Finally, the depth of cut is found by evaluating the pixel difference between two
consecutive horizontal passes. In this case, it is found to be 2 pixels equivalent to 1 mm.

4.3.5. Quality Control

Quality control is a critical evaluation that presents a wide study area to automate
the process. Giusti et al. (2020) used CNN models to find the roughness [12]. However,
deploying it on an edge device reduces performance drastically. The Hough transform

270



Sensors 2024, 24, 4239

method detects lines in an image, representing deviations from the final surface (refer to
Figure 12).

Figure 12. Analytical approach to measuring the quality of the surface. * Expert evaluation is still
done manually since the detection of stripes is being researched as a future extension.

The detection sequence is divided into idle and production states. Figures 7–12 sum-
marize the detection approaches during these phases. The data measured are contextual
and require a total time of 100 milliseconds per image. The following section investigates
the importance of the approach relative to other studies.

5. Discussion

The proposed method augments data communication for unconnected CNC machines,
evaluating camera integration limitations. Additionally, a suitable edge algorithm responds
to the defined needs.

Our setup detects the chuck holding a partially machined product with an incorrect
clamping angle. The machine tool is then examined, and a notice is sent to the machinist
about its lifecycle. This preprocess analysis serves as initialization before manufacturing.
During the process, the camera measures the cutting parameters, validating correct execu-
tion. Finally, the system assesses product quality, detecting possible surface imperfections
and estimating roughness based on expert opinion.

The proposed approach responds to the five identified needs for machine supervision.
The algorithm has a total timespan of 100 milliseconds, ensuring real-time response and
data contextualization. Compared to other approaches like SIFT, SURF, RANSAC, and
CNN, our model performs better on an edge device with limited resources. Table 4
summarizes the comparison between literature methods and our approach.

271



Sensors 2024, 24, 4239

Table 4. A comparison between recent studies and our approach.

Approach Reference Hardware Time Accuracy

SIFT + RANSAC [8] CPU @ 1.5 GHz
4 Gb RAM 900 ms 81%

CNN [9] CPU @ 1.5 GHz
4 Gb RAM 2 s 98%

SURF [10] CPU @ 1.5 GHz
4 Gb RAM 800 ms 82%

Our approach -- CPU @ 1.5 GHz
4 Gb RAM 100 ms 95%

The properties are obtained by reimplementing their methods on our machine with
the Raspberry Pi of CPU @1.5 GHz and 4 GB RAM. The accuracy for feature point detection
is low, with an execution time near 1 s. With AI vision, the controller heated up, presenting
an execution time of 2 s. Our approach is suitable for the edge setup and is known to have
low computational power.

6. Limitations

The algorithm can fail to assess machine parameters without scene overexposure.
Additionally, some algorithm glitches occur during angle measurements and quality as-
sessment. These deviations are avoided by considering all environmental constraints, such
as lighting, shadows, noise, and offsets.

Another major limitation occurs when the manufacturing machine’s shape changes.
Since the camera extracts features from a 2D process considering the symmetrical shape
of products, for a 3-axis milling machine, we require updating the 5-stage algorithm to fit
geometrical specifications.

The transition toward Industry 4.0 is limited by the lack of data availability from old
manufacturing machines. Our approach proves the concept of data extraction from such a
system, helping industries achieve a smoother transition with less financial burden.

7. Conclusions

The paper aimed to define an approach to improve the integration of video analytics
in manufacturing. We were able to implement a 4-stage method that allows the digitization
of any non-connected machine. This scope is defined by the Reference Architecture Model
Interface 4.0 (RAMI 4.0). Thus, it was possible to transfer essential data to the supervisory
control level of a production line. These data serve to remotely monitor machines and
automate critical scenarios.

The implementation focuses on precisely defining the objective to prevent over-
calculation. In addition, it is optimized to use the full potential of a low-cost edge computing
device. In short, the Raspberry Pi turned with a total computational power of 75% and
near real-time processing with 100 milliseconds per image. The standards of the industry
are also considered, so the MQTT protocol is applied for data transfer.

In conclusion, the external smart vision system upgrades closed control systems like
CNC machines. We explained the deployment of a vision system, extracting metadata.
In our use case, the lathe machine is now equipped with an advanced monitoring device
describing object presence, clamping, tool state, operational parameters, and surface rough-
ness. With the wireless edge device, the machine becomes interoperable, transforming it
into a CPS. This approach allows a gradual evolution toward a digitalized version with
adequate communication and data processing.

8. Perspectives

Using the data extracted from a CNC machine, a data pool is created in real time. This
data pool serves as a reference to train more advanced approaches, like CNN and DCNN,
which help to reorchestrate the manufacturing process. These approaches require fog and
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cloud computing. Simultaneously, more complex AI models can be trained to refine the
quality control procedure.
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Abstract: Surface cracks are alluded to as one of the early signs of potential damage to infrastructures.
In the same vein, their detection is an imperative task to preserve the structural health and safety of
bridges. Human-based visual inspection is acknowledged as the most prevalent means of assessing
infrastructures’ performance conditions. Nonetheless, it is unreliable, tedious, hazardous, and labor-
intensive. This state of affairs calls for the development of a novel YOLOv8-AFPN-MPD-IoU model
for instance segmentation and quantification of bridge surface cracks. Firstly, YOLOv8s-Seg is selected
as the backbone network to carry out instance segmentation. In addition, an asymptotic feature
pyramid network (AFPN) is incorporated to ameliorate feature fusion and overall performance.
Thirdly, the minimum point distance (MPD) is introduced as a loss function as a way to better explore
the geometric features of surface cracks. Finally, the middle aisle transformation is amalgamated with
Euclidean distance to compute the length and width of segmented cracks. Analytical comparisons
reveal that this developed deep learning network surpasses several contemporary models, including
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and Mask-RCNN. The YOLOv8s + AFPN + MPDIoU
model attains a precision rate of 90.7%, a recall of 70.4%, an F1-score of 79.27%, mAP50 of 75.3%, and
mAP75 of 74.80%. In contrast to alternative models, our proposed approach exhibits enhancements
across performance metrics, with the F1-score, mAP50, and mAP75 increasing by a minimum of
0.46%, 1.3%, and 1.4%, respectively. The margin of error in the measurement model calculations is
maintained at or below 5%. Therefore, the developed model can serve as a useful tool for the accurate
characterization and quantification of different types of bridge surface cracks.

Keywords: surface cracks; bridges; YOLOv8s-Seg; asymptotic feature pyramid network; minimum
point distance; middle aisle transformation

1. Introduction

Hong Kong has emerged as one of the most economically advanced regions in the
past five decades due to its unique cultural heritage and strategic location. This remarkable
progress has been accompanied by significant improvements in urban infrastructure and
facilities, including the construction of bridges and roads [1]. While urban development
has undeniably brought convenience to the lives of citizens, it has also given rise to a
pressing issue—the maintenance of bridges. In our daily lives, numerous factors, such
as cyclic loading, fatigue stresses, and adverse long-term environmental conditions, have
hastened the deterioration of bridge surfaces, resulting in problems like cracks, ruts, and
potholes [2]. Among these concerns, cracks hold particular significance due to their direct
impact on concrete structures’ safety, functionality, and durability [3]. Cracks provide an
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entry point for corrosive chemicals within the concrete, allowing water and de-icing salts
to penetrate bridge decks, potentially causing damage to superstructures and aesthetic
elements [4]. Since cracks are a critical indicator of a structure’s condition, they play a
pivotal role in structural health monitoring [5]. Consequently, conducting a rigorous study
to assess the extent and severity of cracks is essential for evaluating the condition of bridges
and maintaining a comprehensive database for long-term bridge inspections and analysis.
As a result, numerous countries have established comprehensive maintenance plans for
their bridges. For example, the United States mandates biennial bridge inspections in
compliance with American Association of State Highway and Transportation Officials
(AASHTO) requirements [6]. In the United Kingdom, bridge inspections occur every one
to three years in accordance with established standards [7]. In China, specific standards
dictate the detection and quantification of bridge cracks wider than 0.2 mm [8].

In practical terms, due to its simplicity, human visual inspection remains the predominant
method for monitoring bridge health [9]. However, this method heavily relies on expertise,
experience, and subjectivity, which can result in imprecise and unreliable assessment out-
comes [10,11]. Furthermore, visual inspection is often impractical for inaccessible areas of
a bridge, such as columns and intersections [12]. In such cases, bridge inspectors resort to
deploying inspection vehicles as manual operation platforms to measure the size of bridge
cracks. Nevertheless, this approach has its own set of limitations, including traffic disruptions,
time consumption, and high maintenance costs [13]. The advent of computer vision models
has paved the way for automatic inspection technologies, offering enhanced efficiency and
precision in contrast to manual measurements, which are susceptible to inaccuracies and
subjectivity [14,15].

However, the application of these technologies presents various challenges and limita-
tions. Firstly, many studies in this field focus on crack detection under ideal conditions,
often on surfaces consisting entirely of concrete or asphalt. In real-world scenarios, crack
detection tasks frequently entail complex backgrounds with diverse elements, such as
tree leaves and varying lighting conditions, rendering the accurate distinction of cracks
challenging [16]. Furthermore, traditional bridge distress inspection commonly involves
image processing techniques employing edge detection and image thresholding. Cracks
are identified based on changes in edge gradients derived from the intensity difference
relative to the background and are extracted through threshold segmentation [17]. How-
ever, this method is significantly affected by environmental factors during image collection,
including variations in lighting conditions and the presence of oil stains [3]. The current
study introduces an integrated framework tailored explicitly for the segmentation of road
cracks and the quantification of surface features, with a particular emphasis on addressing
the challenges posed by complex backgrounds. In contrast to existing research in the same
domain, our study presents several noteworthy contributions:

(1) We provide a comprehensive literature review that delves into the realms of bridge
crack detection and segmentation, offering a thorough understanding of the existing body
of knowledge in this field.

(2) To enrich the research landscape, we have meticulously curated a new bridge crack
dataset customized to the distinctive context of Hong Kong. This dataset encompasses
a diverse array of crack samples, faithfully representing the complexities encountered in
real-world scenarios, including various crack sizes and intricate crack backgrounds.

(3) Our study pioneers the development of a novel YOLOv8-AFPN-MPD-IoU, an
advanced approach facilitating precise and timely detection and segmentation of cracks
within Hong Kong’s bridges with complex backgrounds, thus enhancing process efficiency.
The AFPN is incorporated into the YOLOv8 neck, effectively reducing information gaps
between non-adjacent layers and facilitating improved feature fusion. The MPD-IoU (mini-
mum point distance intersection over union) loss function is deployed to solve the problem
that the predicted bounding box possesses the same aspect ratio as the ground-truth bound-
ing. In terms of recognition precision, model size, and reference times, the proposed model
emerges as the optimal choice for deploying portable devices in practical applications.
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(4) Furthermore, we employ a distance transform method (DTM) to accurately measure the
length and width of segmented road cracks at the pixel level. This approach enhances precision
and minimizes the impact of varying lighting conditions, a crucial aspect of our methodology.

2. Literature Review

Crack identification is mainly divided into traditional methods based on digital image
processing and methods based on deep learning. Digital image processing methods based on
edge detection and threshold segmentation are highly susceptible to ambient environmental
conditions and image quality requirements. Additionally, these techniques may fail when
encountered with real-world scenarios such as tree leaves and varying lighting conditions [18].
Likewise, they remain highly dependent on the design of feature descriptors, and therefore,
they are difficult to be generalized [19–21]. In this respect, some previous research attempts
relied on the use of threshold segmentation [22], Otsu [23], improved Otsu [24–26], edge
detectors [27,28], improved watersheds [29], artificial neural networks [30,31], hybrid artificial
neural networks [32], and support vector machines [33–35] for crack detection and assessment.

Aside from data dependence, deep learning addresses the limitations inherent in the
typical machine learning models mentioned above. The advancement of graphical processing
units (GPUs) has significantly accelerated image processing on computers. Consequently,
deep learning techniques can now be effectively employed for tasks such as image object
detection and segmentation, including the management of building construction [36]. Convo-
lutional neural networks (CNNs) are among the popular techniques used to extract category
and location information from images in object detection tasks. However, the process of gen-
erating region proposals using selective search remains slow and exhibits limited accuracy for
two-stage detectors [37]. Rosso et al. [38] presented a ResNet-50-based framework for defect
classification in ground penetrating radar profiles. The authors implemented bi-dimensional
Fourier transform as a preprocessing convolution operation, and vision transformer architec-
ture was incorporated, resulting in better localization of defects. In another research effort,
Park et al. [39] introduced a machine-learning-based model for predicting depths of concrete
cracks in thermal images. The four machine learning models included AdaBoost, gradient
boosting, random forest, and multilayer perceptron. The AdaBoost model demonstrated the
highest prediction accuracy with a determination coefficient and mean absolute percentage
error of 98.96% and 0.6%, respectively. They also showed that the combination of principal
component analysis with AdaBoost or gradient could properly detect microcracks.

Among the bounding box detection models, Zhang et al. [40] created a single-stage
detector based on you only look once (YOLOv3) to locate bridge surface defects like cracks,
spalling, pop-outs, and exposed rebar. In another study, Deng et al. [41] utilized YOLOv2 to
locate cracks in real-world images contaminated with handwriting scripts. In a third study,
Teng et al. [42] investigated the use of 11 pre-trained deep learning networks to be lever-
aged as feature extractors of YOLOv2. Among them, there were Alex Net, VGG16, VGG19,
ResNet50, ResNet101, Google Net, etc. They deduced that the integration of ResNet18
and YOLOv2 was deemed appropriate in terms of computational accuracy and efficiency.
Similarly, Qiu and Lau [43] elucidated that ResNet50-based YOLOv2 and YOLOv4-tiny
demonstrate exceptional accuracy, fast processing speed, and notable proficiency in detect-
ing small cracks in tiled sidewalks for crack detection. Xiang et al. [44] addressed various
challenges encountered by UAV-based crack detection networks, including low efficiency
and accuracy stemming from road noise such as shadows, occlusions, and low contrast.
Consequently, the YOLO architecture is recognized for its capability to identify cracks
amidst complex backgrounds.

However, the bounding box outcomes provided by crack recognition lack the potential
for further quantitative analysis, thereby rendering crack recognition less suitable as a crack
measurement algorithm [11]. The task of object segmentation evolves from object detection,
requiring a comprehensive understanding of the image scene at the pixel level. In crack seg-
mentation tasks, the input image typically contains only cracks and background. The resulting
output consists of binary values of 1 and 0, representing crack pixels and background pixels,
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respectively [45]. As a result, the outcomes of crack segmentation can facilitate subsequent
geometric calculations of crack length and width. The human brain rapidly processes distinct
shapes and irregular contours present in objects, similar to an objective segmentation task.
Consequently, creating a detection frame outside the target object is deemed unnecessary
and incongruent with human visual interpretations [46]. Therefore, the utilization of the
YOLOv8-seg model in bridge inspection endeavors represents a promising initiative.

3. Research Methodology

This research study comprises three distinct phases within its framework: a systematic
review, data collection, and crack measurement. Illustrated in Figure 1, this framework de-
lineates a structured approach to bridge crack segmentation and measurement. The model
developed is grounded in a conceptualization revolving around three essential modules.
The initial module involves a comprehensive examination of existing models for detecting
and quantifying surface cracks on bridge decks. This critical review not only identified
research gaps, future research directions, and clear objectives but also prompted the uti-
lization of a publicly available database to augment the diversity and complexity of image
scenarios used in experimental settings. However, currently, the images provided lack suf-
ficient power to fully capture the complex diversity of real-world scenes. Therefore, a set
of supplementary images featuring various bridge defects was curated specifically for this
purpose, utilizing data augmentation—an extensively employed method to mitigate overfit-
ting in deep learning models while enhancing their diversity and generalizability [47]. The
images were captured at various locations across Hong Kong, encompassing a diverse array
of environmental factors. These include variations in sunlight conditions, diverse surface
textures, different bridge locations, instances of graffiti, and occurrences of water damage.
Various transformations, such as lighting adjustments, random element addition, noise in-
troduction, flipping, and image bounding box manipulation, were applied to augment the
Hong Kong dataset. At this juncture, the integrated dataset combines the publicly accessible
benchmark dataset of bridge surface cracks (BSD) sourced from [48] alongside the Hong Kong
bridge crack dataset (HKBCD). The third module of this study focuses on developing a novel
YOLOv8-AFPN-MPDIoU model for surface crack segmentation, complemented by the uti-
lization of the distance transform method (DTM) for precise calculation of bridge crack width
and length.

Figure 1. Framework of the developed YOLOv8-APF-MPDIOU model for crack instance segmentation.
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4. Model Development

This section delineates the basic components of the developed YOLOv8-AFPN-MPDIoU
model.

4.1. Basics of YOLOv8-Segmentation

Architecture of the developed YOLOv8-AFPN-MPDIoU model is depicted in Figure 2.
Its distinctive features lie in the following:

1. The YOLOv8 network offers support for object detection, tracking, and various
additional tasks, including instance segmentation, image classification, and key-point
detection. Similar to YOLOv5, YOLOv8 presents five distinct scales of models (n, s,
m, l, x) with increasing depth and width from left to right [49].

2. In alignment with the efficient layer aggregation network (ELAN) design philosophy,
YOLOv8 replaces the C3 structure within the YOLOv5 backbone network with a C2f
structure. This modification enables YOLOv8 to retain its lightweight characteristics
while enhancing the flow of gradients [50]. In comparison to YOLOv5, YOLOv8
demonstrates more pronounced disparities in its head section due to the integration
of the widely adopted decoupled head structure.

3. YOLOv8 adopts the Task-Aligned-Assigner strategy for positive sample assignment
in loss function calculation [51]. Additionally, it introduces the distribution focal loss
(DFL). During training, the strategy of disabling mosaic augmentation in the final ten
epochs is incorporated, as inspired by YOLOX, to effectively enhance precision in the
data augmentation process.

4. YOLOv8s-Seg is an extension of the YOLOv8 object detection model specifically
tailored for performing segmentation tasks. This network draws upon the principles
of the YOLACT network to achieve real-time instance segmentation of objects while
maintaining a high segment mean average precision [52]. The structural overview of
the YOLACT network is presented in Figure 3.

5. The YOLOv8-Seg network, version ultralytics 8.0.201, comprises three primary com-
ponents: the backbone, the neck, and the head. In the associated GitHub repository,
five distinct scale models of the network are available, specifically YOLOv8n-Seg,
YOLOv8s-Seg, YOLOv8m-Seg, YOLOv8l-Seg, and YOLOv8x-Seg. In this study, ex-
periments were conducted using YOLOv8-Seg models at various scales to assess the
segment mAP50 and model size. Given the minimal presence of cracks in each image,
the first four scales of models were utilized to identify the most suitable scale.

Figure 2. Architecture of the developed YOLOv8-AFPN-MPDIoU model.
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Figure 3. Structure of YOLACT network.

4.2. Asymptotic Feature Pyramid Network

In tasks related to object detection and segmentation, the multi-scale feature extraction
process plays a key role in object encoding and scale change processing. A common
approach is to utilize well-established top-down or bottom-up feature pyramid networks.
However, these methods are susceptible to the problem of feature information loss and
deterioration, which in turn adversely affects the integration of information between
two non-adjacent layers. Within the prevailing architectures of feature pyramids, the
challenge lies in the necessity for high-level features located at the pinnacle of the pyramid
to traverse multiple intermediate scales and engage with features at these intermediate
levels before finally fusing with the low-level features at the base. Throughout this process
of propagation and interaction, there is a risk of the semantic information contained within
the high-level features being lost or compromised. In contrast, the bottom-up pathway of
the PAFPN (pyramid attention feature pyramid network) introduces a converse challenge:
the detailed information originating from the lower-level features could potentially suffer
loss or deterioration during the process of propagation and interaction.

4.2.1. Asymptotic Architecture

To address this challenge, the asymptotic feature pyramid network (AFPN) was
developed by Yang et al. [53]. The issue stems from the substantial semantic gap between
non-adjacent hierarchical features, which is especially pronounced between the lowest- and
highest-level features. This gap hinders the effective fusion of non-adjacent hierarchical
features. However, the AFPN architecture is designed to be asymptotic, resulting in a closer
alignment of semantic information across different hierarchical feature levels during the
asymptotic fusion process. This, in turn, mitigates the aforementioned issues. As illustrated
in Figure 4, during the bottom-up feature extraction process of the backbone network,
the AFPN gradually integrates low-level features, followed by intermediate-level features,
before culminating in the fusion with the highest-level feature, which is the most abstract.
Black arrows denote convolutions, while blue arrows indicate adaptive spatial fusion. In
this proposed model, the AFPN is incorporated into the YOLOv8 neck, effectively reducing
information gaps between non-adjacent layers and facilitating improved feature fusion.
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Figure 4. Architecture of the proposed asymptotic feature pyramid network.

4.2.2. Adaptive Spatial Fusion

The ASFF technique is utilized to assign variable spatial weights to different feature
levels during multi-level feature fusion, enhancing the importance of critical levels while
minimizing the impact of conflicting information from diverse objects. Illustrated in
Figure 5, features from three different levels are combined. This Figure serves as an
illustration of feature fusion at three different levels, but we can adapt the method as
needed for cases with more or fewer levels. Representing the feature vector transitioning
from level n to level l at position (i, j) as xn→l

ij , the resultant feature vector yl
ij is attained

through adaptive spatial fusion, formally defined as the linear combination of feature
vectors x1→l

ij , x2→l
ij , and x3→l

ij (refer to Equation (1)).

yl
ij = αl

ij · x1→l
ij + βl

ij · x2→l
ij + γl

ij · x3→l
ij (1)

Figure 5. Adaptive spatial fusion operation.

At level αl
ij, βl

ij and γl
ij represent the spatial weights of the features across the three levels,

with the constraint αl
ij + βl

ij + γl
ij = 1. Due to variations in the number of fused features at

each stage of the AFPN, we introduce stage-specific adaptive spatial fusion modules [54].
The adaptive spatial fusion operation is shown in Figure 5.
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4.3. Minimum Point Distance-IoU Loss Function

The optimization process of the YOLOv8 model occurs across two dimensions: clas-
sification and regression. While the classification loss continues to employ binary cross-
entropy loss (BCEL), the regression component integrates focal distribution loss (DFL) and
bounding box regression loss (BBRL). Equation (2) comprehensively represents the loss
function:

fLoss = λ1 fBCEL + λ2 fDFL + λ3 fBBRL (2)

Here, fLoss denotes the total loss; λ1, λ2, and λ3 represent the weighting factors as-
signed to each loss term; and fBCEL, fDFL, and fBBRL are individual loss functions for
binary cross-entropy, focal distribution loss, and bounding box regression loss, respec-
tively. BCEL loss is utilized for classification, assessing the dissimilarity between predicted
class probabilities and ground-truth labels. DFL is applied for regression, considering
the distribution of predicted bounding box values and focusing on challenging samples.
Meanwhile, BBRL aims to minimize the difference between predicted and ground-truth
bounding box coordinates.

Bounding box regression (BBR) has established itself as a crucial component in object
detection and instance segmentation, serving as a pivotal step in precise object localization.
Nevertheless, a substantial limitation of most prevailing loss functions for bounding box
regression lies in their inability to be effectively optimized when the predicted bounding
box possesses the same aspect ratio as the ground-truth bounding box but exhibits distinct
width and height values. To address these aforementioned challenges, we conducted a
comprehensive exploration of the geometric attributes associated with horizontal rectangles.
Consequently, we introduce a novel bounding box similarity comparison metric, denoted
as MPD-IoU (minimum point distance intersection over union), which encapsulates all
the relevant factors considered in existing loss functions. This includes considerations
such as the overlapping or non-overlapping area, the distance between central points, and
variations in width and height, while concurrently simplifying the computational process.

In contrast to the complete intersection over union loss function (C-IoU loss function)
employed in YOLOv8, the minimum point distance-IoU loss function (MPD-IoU loss func-
tion) is employed for comparison against other loss functions based on IoU [55]. Figure 6
demonstrates a visual presentation of the proposed MPD-IoU loss function. Figure 7 pro-
vides visual examples of predicted bounding boxes and ground-truth bounding boxes.
They share the same aspect ratio but differ in width and height, where k > 1 and k ∈ R. In
these visualizations, the yellow box signifies the ground-truth bounding box, while the
red box and black box represent the predicted bounding boxes. Mathematically, the key
components of the MPD-IoU metric are defined using Equations (3)–(8).
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(
xprd

1 − xgt
1

)2
+
(

yprd
1 − ygt

1

)2
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(
xprd

2 − xgt
2

)2
+
(

yprd
2 − ygt

2

)2
(4)
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2 − xgt

1 , hgt = ygt
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1 , wprd = xprd
2 − xprd

1 , hprd = yprd
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MPD − IoU = IoU − d2
1

h2
gt + w2

gt
− d2

2
h2

prd + w2
prd

(6)

LMPDIoU = 1 − MPD − IoU (7)

fLoss = λ1 fBCEL + λ2 fDFL + λ3 fMPD−IoU (8)
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where, the overall loss function, denoted as fLoss, is assigned weights (λ1, λ2, λ3) to balance
the contributions of binary cross-entropy loss fBCEL, distance-based focal loss ( fDFL), and
the proposed MPD-IoU-based loss ( fMPD−IoU). Here, (xgt

c , ygt
c ) and (xprd

c , yprd
c ) denote

the coordinates of the central points of the ground-truth bounding box and the predicted
bounding box, respectively. Similarly, wgt and hgt represent the width and height of
the ground-truth bounding box, while wprd and hprd denote the width and height of the
predicted bounding box.

Figure 6. Visual illustration of the proposed LMPDIoU.

Figure 7. Visual presentation of predicted bounding boxes and ground-truth bounding boxes.

The expressiveness of our MPD − IoU metric is underscored by the fact that all the
factors considered in existing loss functions can be determined by the coordinates of the
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top-left and bottom-right points, encompassing the non-overlapping area, central point
distance, and deviations in width and height. As a result, our proposed MPD − IoU metric
not only offers a comprehensive consideration of these factors but also streamlines the
calculation process. It is worth noting that when the aspect ratio of the predicted bounding
box matches that of the ground-truth bounding box, the MPD − IoU metric ensures that
the predicted bounding box’s value is lower when it is contained within the ground-truth
bounding box, compared to cases where the predicted bounding box extends beyond the
boundaries of the ground-truth bounding box. This unique characteristic enhances the
precision of bounding box regression, ultimately reducing redundancy in the predicted
bounding boxes.

4.4. Crack Skeleton Extraction and Measurement

The extraction of crack skeletons serves as a crucial step in deriving geometric proper-
ties from segmented crack images, encompassing measurements such as length, width, and
area. In this investigation, we employ the medial axis transformation (MAT) method to
delineate the outline of the target crack based on binary images [56]. This process involves
selecting a point Pt within the interior region (A) of any crack and identifying the point
(P′

t ) on the crack boundary (AC) that is closest to Pt. If multiple P′
t points are found, Pt is

designated as the skeleton point of the crack. The search for P′
t is formalized in Equation (9):

dt

(
Pt, AC

)
= in f

{
d(Pt, z) | z ∈ AC

}
(9)

where in f denotes the lower bound, dt and d represent Euclidean distances, and z repre-
sents any point on AC. Points with multiple neighbors are excluded from consideration.
Subsequently, a distance transformation is executed from all foreground pixels to the back-
ground, with “1” representing the foreground and “0” denoting the background. This
process is illustrated in Figure 8. Finally, the target is reduced to a skeleton based on the
outcomes of the distance transformation. Essentially, this process mirrors the boundary
erosion process.

Figure 8. Representation of the incorporated distance transform. (a) Before applying distance
transform and (b) After applying distance transform.

To describe MAT clearly, a diagram is used to explain how the algorithm calculates
crack width and length. The coordinate system is shown in Figure 9. Each pixel in the crack
image is our coordinate [57]. Therefore, a pixel coordinate system is established with red
and yellow line segments representing the boundaries of the crack. The black line segment
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in the middle is the crack skeleton, calculated based on the central skeleton algorithm, and
W(x) is the calculated average width of the crack. Part is dl. Within the scope of this study,
the width of each crack in the workpiece is represented by pixel values. Thus, each pixel
represents the width or length, making it easy to calculate the number of pixels contained
in the crack. The calculation formula for determining the crack length (L) is shown in
Formula (10).

L =
∫

c f (x, y)dl ∼= ∑ f (x, y)dl (10)

Figure 9. Schematic diagram of calculation method of crack length, width.

The function f (x, y) acts as a geometric calibration index, aligning the detected dis-
placements of points within the image. Simultaneously, dl denotes the finite length of each
skeleton unit. c represents the path of the crack skeleton. The crack skeleton is a central
line that traces the main path of the crack through the image. This skeleton is derived from
the central skeleton algorithm, which identifies the midline of the crack. Integration or
summation along the crack skeleton accumulates the lengths of small segments dl corrected
by f (x, y).

The pixel-level crack width value is computed by the pixel distance calculation be-
tween the crack pixel (1) and the intact pixel (0) using the Euclidean distance transform
(EDT) algorithm. The Euclidean distance (d) of the two pixels, Pt and P′

t , is expressed by
Equation (11) [58].

(Pt, P′
t ) =

√(
xPt − xP′

t

)2
+
(

yPt − yP′
t

)2(
Pt ∈ A, P′

t ∈ AC
)

(11)

where t is an indexing variable used to uniquely identify each pixel within the respective
sets A and AC to calculate the Euclidean distance between a cracked pixel and an intact
pixel. A is the set of green pixels represented by 1 in Figure 8, and AC is the white pixel,
complement of the green pixel set, A.

4.5. Performance Evaluation

The selection of suitable evaluation metrics holds paramount importance when as-
sessing various segmentation models. While accuracy remains a prominent benchmark for
existing instance segmentation models, the advent of real-time and lightweight models has
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introduced new considerations for practical deployment on equipment. Consequently, our
proposed model shall undergo evaluation with a multifaceted approach, scrutinizing not
only its accuracy but also its runtime performance and model complexity to ascertain its
suitability for practical applications.

4.5.1. Accuracy

In this study, we conducted a comprehensive evaluation of the enhanced YOLOv8s-
Seg model, employing a range of performance metrics, including precision, recall, F1-score,
and segment mAP at both 50% and 75% intersection over union (IoU) thresholds [59–61].
Our assessment focused on two distinct aspects: the accuracy of crack detection, which
was quantified using precision, recall, and F1-score, and the quality of the segmentation
results, which were appraised through segment mAP.

precision =
TP

(TP + FP)
× 100% (12)

recall =
TP

(TP + FN)
× 100% (13)

F1 = 2 × precision × recall
precision + recall

(14)

segmAP = ∑c
i=1

AP(i)
C

(15)

Here, TP represents true positive samples, which are actual positive instances correctly
predicted as such. FP indicates false positive samples, signifying actual negative instances
erroneously identified as positive, while FN stands for false negatives, representing actual
positive instances wrongly classified as negative. AP(i) corresponds to the average precision
for each segmentation category, and C represents the total number of segmentation cate-
gories. Notably, the segmentation model’s performance is directly linked to the cumulative
AP score, and a higher AP score is indicative of improved segmentation quality.

4.5.2. Computational Time

In the realm of model evaluation, two critical indicators to gauge efficiency are training
times and inference times. Training time denotes the duration required for a model to
converge during the training process, while inference time signifies the time taken to process
an image, thereby reflecting the model’s suitability for practical industrial applications.
To streamline the assessment process, the use of FPS (frames per second) has become a
prevalent metric for evaluating the efficiency of instance segmentation methods. This
metric offers a straightforward means for researchers to identify and select faster inference
models when operating under comparable conditions [62,63].

4.5.3. Model Complexity

Model complexity plays a crucial role in evaluating the practical usability of a model,
as it directly influences storage requirements and computational demands. In our study, it
specifically refers to the storage needs linked to model parameters, a factor closely tied to
the implementation of algorithms on mobile devices.

5. Model Implementation

This section addresses data collection and analysis of bridge surface cracks.

5.1. Data Collection

The model training was conducted on a high-performance computing workstation
equipped with specific hardware, including GPUs (GeForce RTX 3090, NVIDIA, Santa Clara,
CA, USA), a CPU (Intel(R) Core (TM) i9-10900 CPU @ 2.80 GHz, Intel, Santa Clara, CA,
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USA), and 22.6 GB of RAM. The system operated on Windows 10 and utilized PyTorch 2.0.0
as the deep learning framework, with the software environment incorporating CUDA 11.7
and Python 3.8. Detailed specifications of the hardware and software setups are provided
in the accompanying table. The data collection and processing methodologies for this
study are detailed in Figure 10. The dataset comprises a total of 1600 cases, meticulously
annotated for accuracy. Among these, 240 images were sourced from Hong Kong bridges
and their associated data enhancements, with the remaining 1360 images obtained from the
publicly available database of BSD. The latter subset of 1360 bridge crack images, each sized
224 × 224 pixels, was randomly selected from the BSD dataset. It encompasses images with
cracks of variable size and width, stains, shadows, complex backgrounds, and non-uniform
illumination. The selected images contain instances of transverse cracks, diagonal cracks,
and reticular cracks.

 

Figure 10. The procedures of crack image capture and preprocessing.

Additionally, 60 crack images were captured from bridges near the Hong Kong Poly-
technic University. The images in the Hong Kong bridge crack dataset (HKBCD) were
obtained using an iPhone 14 Pro and a FLIR thermal camera capable of producing RGB
images. The Hong Kong subset used in this study was collected from two distinct loca-
tions: the footbridge surrounding the Hong Kong Polytechnic University campus and the
K74 flyover bridge at Pik Wan road, depicted in Figure 11. To enrich the diversity of the
dataset, images were captured under a variety of conditions, encompassing different crack
shapes, backgrounds, brightness levels, and noise settings. As illustrated in Figure 12,
images (a)–(d) showcase four types of cracks: transversal, longitudinal, diagonal, and
reticular. Images (e)–(h) depict cracks on different bridge materials, including concrete
and asphalt. Images (i)–(l) display bridge cracks under varying light intensities. Images
(m)-(p) are influenced by different types of noise, such as graffiti, water stains, moss, and
other obstructions. By incorporating these variations, the dataset ensures a comprehensive
representation of real-world scenarios, enhancing the robustness and generalizability of the
analysis. The augmentation of the HKBCD added an additional 240 crack images, bringing
the total compiled dataset to 1600 images. This dataset was then divided into training,
validation, and test sets in a 7:1:2 ratio, resulting in 1120 training images, 160 validation
images, and 320 test images for the crack segmentation task. Further details on the dataset
partitioning are provided in Table 1. Notably, the dataset encompasses various types of
concrete cracks, categorized as follows: approximately 20% of the images depict reticular
cracks, 40% feature diagonal cracks, and the remaining 40% display linear cracks. Reticular
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cracks form a mesh-like pattern and are often attributed to concrete shrinkage or restrained
thermal movements. Diagonal cracks appear diagonally across concrete surfaces and are
commonly caused by structural overloading or differential settlement. Transverse cracks
run perpendicular to the direction of tensile stress and are frequently associated with
drying shrinkage, thermal contraction, or excessive applied loads.

  
(a) (b) 

Figure 11. Sources of the HKBCD dataset. (a) Footbridge across the Hong Kong Polytechnic Univer-
sity; (b) flyover bridge at Pik Wan road.

Figure 12. Sample of images from HKBCD datasets. (a–d) Different Types of cracks, (e–h) Different
types of bridge materials, (i–l) Different lighting conditions and (m–p) Different types of noises.
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Table 1. Partitioning of bridge crack dataset.

Task Dataset Training Validation Testing Total Number

Segmentation
BSD 952 136 272 1360
ours 168 24 48 240

New dataset 1120 160 320 1600

Four data augmentation techniques were implemented to bolster the model’s general-
ization capacity, encompassing adjustments in brightness, panning, mirroring, and rotation.
It is worth noting that the level of added noise was meticulously regulated to prevent
adverse effects on the model’s output. Consequently, a total of 240 crack images were
generated for the dataset. The EIseg software 1.1.1 was employed to annotate this dataset.
The results of the data augmentation techniques are presented in Figure 13, illustrating four
methods: brightness, panning, mirroring, and rotation. The developed YOLOv8-AFPN-
MPD-IoU model underwent training using the following hyperparameters: a learning rate
of 0.01, momentum of 0.937, weight decay of 0.0005, and a batch size of 8. A stochastic
gradient descent (SGD) optimizer was utilized for training the model over 300 epochs in
total. Hardware and software requirements for this research study are detailed in Table 2.

Table 2. Hardware and software specifications.

Hardware Information Software Information

GPUs GeForce RTX 3090 Operating System Windows 10 (Version 23H2)
CPU Intel(R) Core (TM) i9-10900 CPU @ 2.80 GHz Deep Learning Framework PyTorch
RAM 22.6 GB CUDA Version 11.7

Python Version 3.8

 
Figure 13. Samples of data augmentation, adjustments in brightness, panning, mirroring,
and rotation.

5.2. Performance Comparison of YOLOv8 Architectures

In this research study, we conducted a series of experiments employing YOLOv8-Seg
models at various scales with the objective of evaluating segment mAP50 and model
size. Given the limited occurrence of cracks within each image, the initial four scales of
models were examined to determine the most suitable scale. Similar to YOLOv5, YOLOv8
incorporates an early stopping mechanism to prevent model overfitting, whereby train-
ing is terminated if no significant improvement is observed over a specified number of
epochs. The “patience” parameter is indicative of the number of epochs for which no
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discernible progress is tolerated before training halts. In our case, “patience” was set at
50 epochs, and the “fitness” criterion was defined as a weighted combination of metrics,
with (0.1 × mAP50 + 0.9 × mAP50-95) utilized to assess the performance of the CNNs
model. Following 300 epochs of training, YOLOv8s exhibited its best performance when
the model depth was a multiple of 0.33, width was a multiple of 0.5, and the maximum
number of channels was set to 1024. The results of these experiments are presented in
Table 3, with YOLOv8s outperforming the other three models, achieving the highest mAP50
at 74% and the highest fitness score at 37.64%. Consequently, YOLOv8s was selected as the
baseline model for further analysis.

Table 3. Performance comparison of YOLOv8 architectures based on test dataset.

Model Epoch Size Running Time P R mAP50 mAP75 Map50-95 F1 Model Fitness

YOLOv8n 300 6.43 M 4.028 h 88.80% 71.10% 72.60% 71.60% 32.90% 78.97% 0.3687
YOLOv8s 300 22.7 M 3.385 h 92.60% 68.60% 74.00% 73.40% 33.60% 78.81% 0.3764
YOLOv8m 300 67.8 M 3.783 h 90.20% 68.10% 71.30% 70.40% 32.40% 77.61% 0.3629
YOLOv8l 300 151 M 6.164 h 88.90% 70.20% 73.70% 73.20% 33.50% 78.45% 0.3752

5.3. Performance Comparison of Different Loss Functions

To assess the superiority of the MPD-IoU loss function in the recognition of the entire
crack dataset, we conducted a comparative analysis involving three different loss functions:
C-IoU, W-IoU, and MPD-IoU, all within the YOLOv8s framework. These experiments
entailed an examination of three distinct bounding box regression loss functions, while
maintaining identical network structures across all three schemes, with the sole variation
being the choice of loss function. Furthermore, all three schemes were trained using
the same parameters. In the context of image segmentation, “recall” signifies the model’s
capability to accurately detect target objects, representing the proportion of pixels effectively
identified by the model as true targets. Conversely, “precision” quantifies the proportion
of pixels within the model’s segmentation output that are accurately classified as target
objects. The relationship between recall and precision in image segmentation often involves
a trade-off, necessitating the introduction of the F1-score to strike a balance between these
two metrics. Enhancing the model’s sensitivity to target objects (improving recall) may
lead to the inclusion of more target regions in the segmentation results but can also result
in an increase in false positives. Hence, reducing false positives (enhancing precision) may
lower recall as the model adopts a more conservative approach, becoming less inclined to
classify boundary regions as target objects.

Table 4 reports a performance comparative analysis based on the test dataset. Notably,
in the specific context of bridge crack detection, the ramifications of false negatives can be
exceedingly detrimental, potentially causing significant financial losses and even posing
risks to human safety. Therefore, when their F1-scores are approximately equal, prioritizing
recall over precision is advisable during bridge inspection. As a result, the “YOLOv8s +
AFPN + MPDIoU” combination emerges as the preferred choice. Furthermore, it exhibits
improvements of 1.3% in terms of mAP50 and mAP75 when compared to “YOLOv8s +
AFPN + CIOU” on the test dataset, as well as enhancements of 0.3% and 0.8% in mAP50
and mAP75 compared to “YOLOv8s + AFPN + WIOU” on the same test dataset.

Table 4. Performance comparison of loss functions based on testing dataset.

Model Epoch Model Size Running Time P R mAP50 mAP75 F1

YOLOv8s + AFPN + CIoU 300 23.7 MB 3.596 h 0.935 0.694 0.74 0.735 79.69%
YOLOv8s + AFPN + MPDIoU 300 22.7 MB 3.661 h 0.907 0.704 0.753 0.748 79.27%

YOLOv8s + AFPN + WIoU 300 23.7 MB 3.575 h 0.936 0.677 0.75 0.74 78.57%

5.4. Performance Comparison of Instance Segmentation Models

To assess the effectiveness of the proposed YOLOv8s + AFPN + MPDIoU model, we
conducted a comprehensive comparative analysis alongside three established instance
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segmentation models, with a focus on key performance metrics including precision, recall,
F1-score, mAP50, and mAP75. Results of the conducted performance comparative analysis
are given in Table 5. They highlight the superiority of the YOLOv8s + AFPN + MPDIoU
model, which achieved a precision rate of 90.7%, a recall of 70.4%, an F1-score of 79.27%,
mAP50 of 75.3%, and mAP75 of 74.80%. In comparison to the YOLOv8s model, our
proposed model exhibited a minor decrease in precision but demonstrated improvements
in other performance indicators, with recall, F1-score, mAP50, and mAP75 increasing by
1.8%, 0.46%, 1.3%, and 1.4%, respectively. Regarding model complexity, the proposed
model has a relatively compact size, requiring only 22.7 M of computer storage, making
it larger only than the YOLOv5s-seg model. This compact size facilitates the installation
of the model on portable equipment for practical bridge inspections. Notably, Mask-
RCNN, being a two-stage instance segmentation model with the most parameters in
comparison to other models in this study, consumes the highest amount of computer
storage at 335 M. Additionally, for the YOLOv8-seg model, an increase in channel width and
depth corresponds to an escalation in model size, with YOLOv8s-seg at 22.7 M, YOLOv8m-
seg at 67.8 M, and YOLOv8l-seg at 151 M. Moreover, the model size also influences training
and inference times. The most complex model, Mask-RCNN, requires the longest training
time (approximately 11.5 h) and inference time (36 ms per image). In contrast, our model,
YOLOv8s + AFPN + MPDIoU, takes the second place in terms of model complexity and
requires 12.2 ms to recognize bridge cracks in an image. Consequently, YOLOv8s + AFPN
+ MPDIoU emerges as the optimal choice, effectively balancing precision, time efficiency,
and ease of installation.

Table 5. Performance comparison of instance segmentation models based on testing dataset.

Model Epoch Model Size Inference Time Running Time
MASK

P R F1 mAP50 mAP75

YOLOv5s-seg 282 18.79 M 11.5 ms 2.397 h 90.50% 68.80% 78.17% 72.30% 70.60%
YOLOv8s-seg 300 22.7 M 8.9 ms 3.385 h 92.60% 68.60% 78.81% 74.00% 73.40%
YOLOv8m-seg 300 67.8 M 12.5 ms 3.783 h 90.20% 68.10% 77.61% 71.30% 70.40%
YOLOv8l-seg 300 151 M 12.5 ms 6.164 h 88.90% 70.20% 78.45% 73.70% 73.20%
Mask-RCNN 300 335 M 36 ms 11.5 h 49.82% 26.10% 34.25% 49.80% 7.60%

YOLOv8s + AFPN +
MPDIoU (ours) 300 22.7 MB 12.2 ms 3.661 h 90.70% 70.40% 79.27% 75.30% 74.80%

5.5. Crack Measurement Performance

In the final section, the proposed model effectively segmented various types of cracks
in diverse structural and environmental contexts (see Figure 14). To further augment its
functionality, we introduced a width measurement module designed to quantitatively as-
sess the segmentation outcomes. While the geometric characteristics of cracks are typically
described in pixel terms, determining the actual width of a crack necessitates the conversion
of pixel measurements into internationally recognized standard units of measurement. Fur-
thermore, potential correction factors, such as accounting for the angle between the camera
and the photographed surface, must be taken into consideration to ensure precise width
measurements. These considerations will be a focal point in our future research endeavors,
aimed at refining and enhancing the model’s measurement capabilities. As observed in
Table 6, it is clear that the discrepancy between the actual values and the segmentation
results is quite minimal for the majority of diagonal and transverse cracks. However, owing
to their intricate nature, the model frequently generates misidentifications and incorrect
predictions when dealing with reticular bridges. This highlights the imperative need for
further refinement in enhancing the model’s accuracy in the detection and prediction of
reticular cracks within bridge structures. Tackling this specific challenge will be a primary
focus of our forthcoming research and development endeavors, with the ultimate aim of
bolstering the model’s capabilities and ensuring precise segmentation outcomes across all
types of cracks, even within complex structures such as reticular bridges.

290



Sensors 2024, 24, 4288

1 

   

2 

   

3 

    

4 

   

5 

   

 (a) (b) (c) (d) 

Figure 14. Samples of the crack measurement. (a) Original crack images; (b) manually segmented
crack images; (c) segmented crack images with original background; and (d) segmented crack images.
1: Diagonal crack, 2–4: Linear cracks and 5: eticular crack.

Table 6. Comparison of manually measured and segmentation.

Ground Truth Segmentation Error

Image Number Type Max Length Max Width Max Length Max Width Max Length Max Width

1 Diagonal 254.00 23.75 259.00 24.83 −1.97% −4.56%
2 Diagonal 225.00 7.64 229.00 7.64 −1.78% 0.00%
3 Transverse 230.00 21.08 225.00 21.01 2.17% 0.33%
4 Transverse 227.00 19.93 228.00 18.02 −0.44% 5.31%
5 Reticular 4568.00 40.11 4513.00 39.03 1.20% 2.70%

Figure 15 expounds another portion of segmented images by the developed YOLOv8-
AFPN-MPD-IoU model. Through comprehensive analysis of the results from the test
dataset, the proposed model demonstrated robust generalization capabilities across var-
ious environmental conditions. Specifically, the model effectively identified cracks un-
der different lighting scenarios (e.g., low light, direct sunlight) and weather conditions
(e.g., cloudy day, clear skies), as illustrated in Figure 15a–c. Moreover, the model exhibited
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strong anti-interference capabilities, accurately distinguishing cracks from external objects
such as water stains, graffiti, and shadows, as shown in Figure 15d–f. The model performed
well in detecting single horizontal and vertical cracks, as well as simple branched cracks
(Figure 15g–i). Overall, these results indicate that the model can generalize well across vari-
ous environmental conditions, enhancing its applicability in real-world scenarios, where
such variability is common.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 15. Samples of the segmented images with (a–c) different lighting conditions, (d–f) stains, and
(g–i) reticular cracks.

6. Conclusions

This study introduced a novel computer vision model aimed at effectively segmenting
bridge cracks and deriving precise geographic information from the segmented crack
images at the pixel level. The traditional method of human visual inspection is not only time-
consuming and subjective but also poses risks such as falls and injuries. Although existing
object detection models have mitigated these issues, they primarily rely on qualitative
analyses for crack evaluation. In contrast, our proposed model offers a groundbreaking
quantitative analysis, empowering bridge inspectors to make informed decisions. The
superiority of the developed YOLOv8s + AFPN + MPDIoU model lies in the following:

1. Balanced accuracy and speed: By employing a one-stage instance model, we strike a
crucial balance between segmentation accuracy and processing speed. This approach
avoids the limitations of two-stage methods that may not comprehensively capture the
interplay between detection and segmentation. Multi-stage methods, often associated
with extended processing times, are circumvented, enabling real-time segmentation.

2. Innovative feature fusion: The incorporation of an asymptotic feature pyramid net-
work in the YOLOv8-seg model replaces conventional top-down or bottom-up feature
pyramid networks. This innovative choice addresses the loss and deterioration of
feature information between non-adjacent layers, facilitating improved feature fusion
and enhancing the overall model performance.

3. Specialized loss function: The introduction of the minimum point distance-IoU loss
function tackles issues arising when the predicted bounding box possesses the same
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aspect ratio as the ground-truth bounding box but exhibits distinct width and height
values. This tailored loss function ensures a more accurate and reliable model.

4. Quantitative measurement method: The combination of the middle aisle transfor-
mation method and Euclidean distance method to calculate the length and width of
bridge cracks in segmented images provides a quantitative basis for maintenance
suggestions. This method enhances the precision of crack assessment.

Furthermore, in terms of the loss function selection, the MPD-IoU loss function
emerges as the optimal choice, achieving the highest recall score. Given that every crack
poses a potential threat to bridge health, this selection is crucial. Comparative analysis with
other instance models reveals that the YOLOv8s + AFPN + MPDIoU model outperforms
others in terms of model size, inference time, and mAP50, making it the optimal choice for
practical industry applications. Additionally, the evaluation of max width and length errors
between manual inspection and segmented crack results indicates a minimal discrepancy
of around 5%, significantly smaller than the errors associated with visual inspection. This
underscores the reliability and precision of our proposed model in assessing bridge cracks.
In summary, our computer vision model stands out as an innovative, efficient, and reliable
solution for bridge inspection and maintenance in the industry.
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Abstract: With its formidable nonlinear mapping capabilities, deep learning has been widely applied
in bearing remaining useful life (RUL) prediction. Given that equipment in actual work is subject
to numerous disturbances, the collected data tends to exhibit random missing values. Furthermore,
due to the dynamic nature of wind turbine environments, LSTM models relying on manually set
parameters exhibit certain limitations. Considering these factors can lead to issues with the accuracy
of predictive models when forecasting the remaining useful life (RUL) of wind turbine bearings. In
light of this issue, a novel strategy for predicting the remaining life of wind turbine bearings under
data scarcity conditions is proposed. Firstly, the average similarity (AS) is introduced to reconstruct
the discriminator of the Generative Adversarial Imputation Nets (GAIN), and the adversarial process
between the generative module and the discriminant is strengthened. Based on this, the dung beetle
algorithm (DBO) is used to optimize multiple parameters of the long-term and short-term memory
network (LSTM), and the complete data after filling is used as the input data of the optimized LSTM
to realize the prediction of the remaining life of the wind power bearing. The effectiveness of the
proposed method is verified by the full-life data test of bearings. The results show that, under the
condition of missing data, the new strategy of AS-GAIN-LSTM is used to predict the RUL of wind
turbine bearings, which has a more stable prediction performance.

Keywords: wind power bearing; remaining useful life prediction; data missing; average similarity

MSC: 68T07

1. Introduction

Wind power is a crucial area of development in the modern world, with wind turbines
serving as the primary means of harnessing this renewable energy source [1]. Among
the core components of wind turbines, wind turbine bearings play a pivotal role in their
operation. However, they are vulnerable to various failure modes due to environmental
uncertainties and other factors, which can negatively impact the stability and safety of
the turbine equipment. In severe cases, this may result in irreparable financial losses and
personnel casualties [2]. Therefore, there is an urgent need and significant importance
in conducting predictive maintenance research based on real-time wind turbine bearing
monitoring data.

Currently, there are three types of methods for predicting the remaining life of rolling
bearings: those based on failure mechanism models [3,4], those based on statistical mod-
els [5,6], and those based on machine-learning techniques [7–9]. Among these, methods
based on failure mechanism models may have difficulty describing the damage mech-
anisms of complex mechanical systems. Statistical models may not be able to capture
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nonlinear information, which makes it challenging to match the current complex and
variable operating conditions. Most machine-learning approaches cannot deeply analyze
and process state signals [10].

Due to its adaptability to diverse and complex scenarios, deep learning [11] has been
extensively applied in the field of predicting the remaining life of bearings. Based on a
Recursive Neural Network (RNN), Guo et al. [12] constructed a comprehensive health
index RNN-HI considering the monotonicity and correlation of features, which solved
the problem that the fault threshold was challenging to determine. They completed the
RUL prediction of wind turbine generator bearings through a particle filter algorithm.
Chen et al. [13] proposed a model based on the combination of RNN and autoencoder that
realized the intelligent extraction of features, the construction of a complete end-to-end
model of health indicators, and life prediction. Xiang et al. [14] proposed a lightweight
regression operator based on RNN to balance the accuracy and simplicity of the model.
Finally, the RUL prediction of aero-engine bearings was realized by using the deep learning
framework model based on RNN.

Considering the correlation between bearing degradation process and time, Long
Short-Term Memory (LSTM) has been favored by researchers because of its powerful time
series processing ability [15]. Li et al. [16] used the Gorilla Troops Optimizer (GTO) to
improve the prediction performance of the combined model of the Convolutional Neural
Network (CNN) and LSTM. The vibration signal of the bearing was transformed into a
frequency domain amplitude signal. The CNN was used to automatically extract feature
information, and the deep features were introduced into the LSTM to predict the bearing
RUL. Combining the advantages of LSTM and statistical process analysis, Liu et al. [17]
proposed a LSS prediction model. Firstly, the time characteristics of aero-engine bearing
vibration signals are extracted by statistical process analysis. Then, the multi-stage signals
are input into LSS to complete the prediction of RUL. In order to enhance the model’s ability
to learn features, L. Magadá et al. [18] proposed a combined model of Stacked Variational
Denoising Autoencoder (SVDAE) to construct health indicators and Bidirectional Long
Short-Term Memory (Bi-LSTM) for bearing RUL prediction. The experimental results
show that the model has relatively stable performance. The parameters of LSTM typically
consist of those in the input layer, hidden layer, output layer, and memory cells. These
parameters play a crucial role in the training process of deep learning models. By adjusting
these parameters, one can influence the model’s performance, prediction accuracy, and
generalization capacity. Li et al. [19] proposed a predictive model based on Bayesian
optimization (BO), Spatial-Temporal Attention (STA), and LSTM. This model adjusts the
parameters of the LSTM through Bayesian optimization and applies it to building energy
consumption prediction. Results showed that Bayesian optimization alone improved the
model’s performance by 0.0717. Li et al. [20] used the Peafowl Optimization Algorithm
(POA) to optimize the parameters of LSTM and built a POA-LSTM regression prediction
model. Through experimental verification, the optimized model demonstrated higher
accuracy.

At present, the construction of RUL prediction models is mostly based on the assump-
tion that data acquisition is normal and that data is continuous and uniform. However, at
the data acquisition site, due to operator errors, sensor failures, etc. [21], data loss or an
uneven data interval may occur in the same equipment data acquisition cycle. Scholars
have proposed some feasible data filling methods in terms of missing data. Rădulescu
et al. [22] proposed the mean imputation model, which is a statistical method used for data
interpolation. For numerical type data, the missing part of the column is interpolated by
the average of all the existing values in the missing attribute column, so that the missing
sequence becomes a complete sequence. Yang et al. [23] proposed a regression interpolation
method. Firstly, a regression model is constructed based on the degree of correlation be-
tween different attribute elements. Then, the specific parameters of the constructed model
are obtained according to the complete sample records in the data set. Finally, the missing
values are filled by the model. Han et al. [24] used weighted K-Nearest Neighbor (KNN)
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to obtain globally similar instances and capture fluctuations in local regions, completed
the filling of missing values under the two-cycle mechanism related to the ranking of
missing variables and missing instances, and obtained better filling results on the sewage
treatment plant dataset. Liu et al. [25] proposed an incomplete data filling method based
on perceptual CNN, which was successfully applied to the prediction of power generation
and improved the prediction performance. Wind turbines are usually installed in areas
with large amounts of dust, severe sunshine, or high humidity. The working environment
is very harsh, and the load range, temperature, and humidity are large [26], which makes it
more prone to data loss. However, the above missing value filling method still needs to be
improved when dealing with a complex data with high missing rate.

Based on this, a residual life prediction method for wind power bearing based on
deep learning is proposed under the condition that data is missing. Aiming at the problem
of missing data, in order to describe the correlation before and after missing as much as
possible and improve the reliability of the filled values, an improved filling model based
on Generative Adversarial Imputation Nets (GAIN) [27] is proposed. This model fills the
missing data according to the characteristics of historical data and reduces the distance
between the filled value and the actual value through the mutual confrontation process
between the generator (G) and the discriminator (D) to train a more accurate generator.
Aiming at the problem of poor prediction accuracy of LSTM, an optimization method
with fast convergence speed and strong optimization ability is proposed, which greatly
improves the prediction accuracy of LSTM. The effectiveness of the proposed method in
predicting the life of rolling bearings under the condition of missing data is verified by a
full-life cycle test example.

2. Data Imputation and RUL Prediction

2.1. GAIN

GAIN is a data-filling method proposed by Jinsung Yoon et al. [27] based on the
Generative Adversarial Network (GAN) structure. Formally, it is not an improvement
of GAN but an application of GAN in the direction of missing value processing. In
GAIN, the goal of the G is to accurately fill in the missing data, and the goal of the D is to
accurately distinguish the authenticity of the data, so the discriminator should minimize the
classification error and the generator should maximize the discriminator’s discrimination
error, so that the two are in a process of mutual confrontation. In order to ensure that the
disc D forces the G to learn the required distribution, GAIN will provide some additional
information to D in the form of a hint vector H. In order to ensure that the D forces the G to
learn the required distribution, GAIN will provide some additional information to D in the
form of a prompt vector H. This hint reveals some information about the missing value of
the original sample to D, which D uses to focus on the interpolation quality of a specific
missing value. This hint reveals some information about the missing value of the original
sample to D, which D uses to focus on the interpolation quality of a specific missing value.

2.1.1. Generator

The G takes a Data matrix (X̃), a Random matrix (Z), and a Mask matrix (M) as inputs
and outputs X. X̃ is a d-dimensional random variable sampled from the original data X; the
size of d is determined by the sampling space; Z is a noise matrix with the same dimension
of X̃; and M is a d-dimensional marker matrix that reveals which element of X̃ is the actual
value. The definition of M is shown in Formula (1):

Mi =

{
0,

.
Xi = null

1, otherwise
(1)

In the formula,
.

Xi is the element corresponding to X̃ in the original data X.
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M and X̃ can be mutually verified by the values of their respective elements. M is
similar to an encryption operation that makes X̃ more vivid. The definition of X̃ is as
shown in Formula (2):

X̃i =

{ .
Xi, Mi = 1
0, otherwise

(2)

X is the output of the G, defined as shown in Formula (3):

X = G(X̃, M, (1 − M)⊗ Z) (3)

In the formula, ⊗ represents the matrix by element multiplication, and G(·) is the
generator function, which is expressed formally as: X̃ ⊗ {0, 1}d ⊗ [0, 1]d, {0, 1}d is a matrix
with the same dimension (d-dimension) as X̃ and contains only 0 and 1, [0, 1]d is a matrix
with the same dimension as X̃ and all elements in (0, 1). Specifically, when GAIN is trained,
this is equivalent to G replacing the real value with 0, and filling the missing value with the
value in the noise matrix Z, thus generating a new matrix X. X does not contain any value
in the original data X, G will generate a fill value for each position, even if the position does
not exist and is missing.

2.1.2. Discriminator

In GAIN, the discriminator D functions similarly to a standard GAN, serving as an
adversary to train the generator G. However, unlike a standard GAN, where the generator
produces entirely genuine or entirely fake outputs, the generator of GAIN produces results
that are partly genuine and partly interpolated. The discriminator’s role is not to discern
the veracity of the entire vector but rather to distinguish between genuine values and
interpolated ones. This is similar to predicting the value in M, rather than determining
the authenticity of the entire output. Formally, the discriminator function can be defined
as: D(·) : A, A ∈ [0, 1]d. The hint vector H actively provides additional information to D,
which affects the output of the discriminator and strengthens the confrontation process
between G and D. Therefore, a new discriminator can be defined as: D(·) : A ⊗ H, where
H ∈ [0, 1]d. After redefining discriminator, the probability of discriminator misjudging
X̂ can be reduced by adjusting H, forcing the output of generator G to be closer to the
actual value.

2.1.3. Antagonism Target

In order to make the output of G closer to the actual value, GAIN trains D by maximiz-
ing the probability of correctly predicting M and trains G by minimizing the probability that
D can correctly predict M. Similar to GAN, the objective function is defined as Formula (4):

V(D, G) = θX̂,M,H [M
T log D(X̂, S) + (1 − M)T log(1 − D(X̂, S))] (4)

Therefore, the training objectives of GAIN are shown in Formula (5):

min
G

max
D

V(D, G) (5)

For the discriminator, its working mode belongs to a binary classification problem, so
the cross entropy is used to define the loss function. The loss function is as shown in (6):

�(a, b) =
d

∑
i=1

[ai log(bi) + (1 − ai) log(1 − bi)] (6)

In the formula, ai denotes the element in the D, which is predicted in the result matrix,
bi denotes the element in M corresponding to ai. Let M̂ = D(X̂, S), then the training
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target is converted into a function of whether D can accurately predict M, as shown in
Formula (7):

min
G

max
D

θ[�(M, M̂)] (7)

2.2. LSTM

In order to overcome the defect that RNN cannot learn the remote dependence of long
time series due to the disappearance of gradient, LSTM improves the model’s ability to
capture long time series sample information by adding three control units on the basis
of RNN [28]: the forgetting gate ft, the input gate it, and the output gate ot. The basic
structure of LSTM is shown in Figure 1.

Figure 1. The basic architecture of LSTM.

The three control units of LSTM have different functions: the input gate determines
how much information is retained in the memory unit, the output gate controls the output
information of the current unit, and the forgetting gate determines the degree of forgetting
of the information at the previous time point (memory degree). The three control unit
vector calculation formulas are shown in (8):⎧⎨⎩

ft = σ(Wf · [ht−1, xt] + b f )
it = σ(Wi · [ht−1, xt] + bi)
ot = σ(Wo · [ht−1, xt] + bo)

(8)

In the formula, σ is the sigmoid function, and the value generated determines whether
the information at the previous moment is retained or partially retained; Wf , Wi, and Wo
are the weight matrix of forgetting gate, input gate, and output gate; b f , bi, and bo are the
bias terms of the three.

Ct, C̃t, and ht are the memory state, input state and output state after updating at time
t, respectively. The calculation formula is shown in (9):⎧⎨⎩

Ct = ft ∗ Ct−1 + it ∗ C̃t

C̃t = tanh(WC · [ht−1, xt] + bC)
ht = ot ∗ tanh(Ct)

(9)

In the formula, xt is the input at time t: tanh is a hyperbolic tangent activation function,
which can scale the output state to (−1, 1).

The number of hidden layer neurons, learning rate, regularization coefficient, and
training epochs are key parameters that define an LSTM model and directly affect its pre-
dictive performance. Therefore, optimizing these parameters should be the primary goal.
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3. Prediction Model under the Condition of Missing Data

In order to solve the problem that the random missing values of the wind turbine
bearing vibration signal affect the accuracy of RUL prediction, a new strategy is proposed:
AS-GAIN-LSTM. Firstly, the missing values in X̃ are accurately interpolated, and then the
optimized LSTM is used for RUL prediction. The overall flow chart is shown in Figure 2.

Figure 2. Flowchart for AS-GAIN-LSTM.

The AS-GAIN architecture is shown in Figure 3, and the DBO-LSTM optimization
process is shown in Figure 4.

Figure 3. Architecture diagram of AS-GAIN.
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Figure 4. Flowchart for optimizing LSTM with DBO.

3.1. AS-GAIN

In GAIN, the hint vector H enhances the adversarial process between the generator G
and the discriminator D. However, it is limited by its definition, providing D with only a
limited amount of information. Moreover, the elements of H require manual setting, which
increases uncertainty in model performance. To address these issues, this paper introduces
average similarity as an augmentation to GAIN’s adversarial process, known as AS-GAIN.
In the process of model training, the average similarity matrix (AS) between the filling
value in the filling matrix X̂ and its grouping elements is constructed, and the average
similarity matrix S and the filling matrix X̂ are used as the two inputs of the discriminator.
The discriminator outputs a probability matrix about the filling matrix, and its elements
describe the probability that the value of the corresponding filling matrix is the actual value.
The X̂ refers to the complete data vector after filling, which observes the local information
of X̃, and then replaces the position of the corresponding value 0 in X̃ with the filling value
in X. The definition of X̂ is shown in Formula (10):

X̂ = M ⊗ X̃ + (1 − M)⊗ X (10)

The introduction of mean similarity in the discriminator aims to primarily enhance
its ability to capture information regarding the filled-in values, thereby overcoming the
uncertainty of H and enabling the generator G to obtain more precise results during
adversarial training. Average similarity describes the similarity between the imputed values
and the actual values in each feature dimension, which indirectly reflects the reliability
of the imputed values in an adversarial process. Upon receiving this information, the
discriminator immediately provides feedback to the generator, allowing G to generate more
realistic values for missing data in different locations. The discriminator function D(·) is
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redefined as: A ⊗ S, S ∈ [0, 1]d, S is the average similarity matrix with the same dimension
as X̂. The definition of S is shown in Formula (11):

S = [S1, S2, · · · , Sn]
T (11)

Si = [si1, si2, · · · , sim], i = 1, 2, . . . n (12)

sij =

⎧⎨⎩
1 , m̂ij = 1
m
∑

j=1
(1 −

√
(x̂m̂ij=0 − x̂ij)

2/max)/m, m̂ij = 0 (13)

In the formula, n is the number of groups of X̂, m is the number of elements contained
in each group of data, m̂ is the label matrix of X̂, and the max is the maximum Euclidean
distance related to the filling value (x̂m̂ij=0).

Assuming the minimum batch size for input of AS-Gain is 1 × 5, with a single missing
value, we can generate a matrix of size 1 × 5 through generator D. This matrix can be
transformed (using Formula (10)) to obtain a filled matrix of size 1 × 5. The similarity
matrix S can then be computed using Formulas (11)–(13), as depicted in Figure 5.

 

Figure 5. The calculation process diagram of S.

In Figure 5, d represents the Euclidean distance between two elements. AS-GAIN
provides an average similarity based on the minimum batch size for each missing value,
which reveals the implicit association between the values generated by G in one training
round and the ground truth. This association is then fused into D, thereby enhancing its
discrimination capabilities. It should be noted that the minimum batch size may vary
depending on the type of data and different features within the same type. Suppose the
minimum batch size is excessively large. In that case, it can weaken the connection between
the imputed value and the actual value, thereby affecting the generation and discrimination
capabilities of G and D. Conversely, if the minimum batch size is too small, it can incorrectly
describe the relationship between the imputed value and the actual value, thus degrading
the performance of G and D. During testing, we found that the smallest batch size that best
suits the characteristics of the experimental data employed in Section 5.1 is between 13
and 18.
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By improving the discriminator D, AS-GAIN is obtained on the basis of GAIN, and its
architecture is shown in Figure 3.

3.2. LSTM Is Optimized by DBO

The LSTM model consists of multiple neurons, connections, and memory units, each
incorporating multiple gate mechanisms. Additionally, the model’s parameter space is
typically vast, encompassing numerous weights and biases. These factors directly impact
the model’s feature extraction performance, prediction accuracy, and memory overhead.
Manual tuning of model parameters requires multiple trials and adjustments, resulting
in lower efficiency and unsatisfactory outcomes. To address this issue, a proposal was
made to optimize LSTM’s key parameters using the Ant Colony Optimization algorithm.
The Dung Beetle Optimizer (DBO), operating within the parameter space, can search for
the optimal parameter combination that minimizes the loss function or maximizes model
performance metrics. Based on this, the design of the LSTM model presented in this paper
is shown in Table 1.

Table 1. The setting of parameters for LSTM.

Parameters Setting

input size 2375 × 1
Execution environment CUP
Learn rate drop period 400

Number of layers 3
Learn rate drop factor 0.2

Step length of prediction 8
Activation function sigmoid

Mini batch size 64
Number of neurons Optimized by DBO
Initial learning rate Optimized by DBO

Number of trainings Optimized by DBO
L2 regularization Optimized by DBO

The last four primary parameters in Table 1 were optimized through DBO.DBO is a
new optimization algorithm [29], inspired by the foraging behavior of the Dung Beetle. It
combines the strategies of global search and local development to achieve fast convergence
and high accuracy optimization. The population of the dung beetle optimization algorithm
is composed of four representative individuals: the ball-rolling dung beetle, the hatching
dung beetle, the small dung beetle, and the thief dung beetle. Each individual represents
a potential solution. They interact and collaborate to obtain the optimal solution by
simulating the behavior and information exchange of dung beetles. The detailed process is
showcased in Section 5.3 of this article.

In order to simulate the process of dung beetles pushing the dung ball and using the
antenna to identify the direction of the straight line, the target point is allowed to move in
the search space in accordance with the specified direction. Considering the sensitivity of
dung beetles to light, the position change of dung beetles during the forward process is
shown in Formula (14):

xi(t) = xi(t − 1) + λ · k · xi(t − 2) + μ · Δx (14)

Δx =|xi(t − 2)− xw| (15)

In the formula, t represents the current number of iterations; xi(t) describes the
position of the t-th iteration of the i-th dung beetle; k is the perturbation factor, and the
value range is (0, 0.2); λ and μ are fixed value parameters: Δx describes the intensity of
light, and the calculation formula is shown in Formula (15): xw is the worst local position
of the dung beetle.
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When the dung beetle encounters obstacles in the process of advancement, it is
necessary to re-formulate the route and update the position calculation formula of the dung
beetle, as shown in Formula (16):

xi(t) = xi(t − 1) + tan θ·|xi(t − 1)− xi(t)| (16)

In the formula, θ is the size of the perturbation, and the value range is (0, π).
Reproduction is an important behavior in the dung beetle population. The spawning

area of female dung beetles should be set within a safe range. The boundary definition is
shown in Formula (17): {

bL
∗ = max(xb(1 − ρ), bL)

bU
∗ = min(xb(1 + ρ), bU)

(17)

ρ = 1 − t/Tmax (18)

In the formula, bL
∗ and bU

∗ are the lower and upper bounds of the safe spawning
area; bL and bU are the lower and upper bounds of the optimization problem; xb is the local
optimal position of the dung beetle: ρ is the boundary dynamic adjustment range, and the
calculation process is as follows (18): Tmax is the maximum number of iterations.

After determining the spawning area of the female dung beetle, the position of the
egg ball will change. The formula for calculating the position of the egg ball is updated as
shown in Formula (19):

Bi(t) = xb + b1 · (Bi(t − 1)− bL
∗) + b2 · (Bi(t − 1)− bU

∗) (19)

In the formula, Bi(t) describes the position of the t-th iteration of the i-th egg ball;
b1 and b2 are two independent vectors of 1 × N, N is the dimension of the optimization
problem.

In order to simulate the foraging behavior of small dung beetles in the population, the
foraging area is first defined as shown in Formula (20):{

bL
• = max(xb

∗(1 − ρ), bL)
bU

• = min(xb
∗(1 − ρ), bU)

(20)

In the formula, bL
• and bU

• are the lower and upper bounds of the optimal foraging
region, xb

∗ is the global optimal position of the dung beetle.
Secondly, the position of the small dung beetle foraging is updated, and the calculation

formula is shown in Formula (21):

Ci(t) = xb + c1 · (Ci(t − 1)− bL
•) + c2 · (Ci(t − 1)− bU

•) (21)

In the formula, Ci(t) describes the position of the t-th iteration of the i-th dung beetle,
c1 is a random number that obeys the normal distribution, and c2 is a random number in
(0, 1).

There are food contenders in the dung beetle population. Assuming that the optimal
competition location is, the position update of the i-th thief at the t-th iteration is shown in
Formula (22):

Di(t) = xsp + d1 · d2 · (
∣∣Di(t − 1)− xb

∣∣+∣∣Di(t − 1)− xsp
∣∣) (22)

In the formula, d1 is a random vector that obeys normal distribution and has a size of
1 × N, and d2 is a fixed constant.

The dung beetle algorithm optimization LSTM flow chart is shown in Figure 4.
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3.3. Model-Evaluation Index

The AS-GAIN evaluation index uses root mean square error (RMSE) and mean abso-
lute error (MAE). The DBO-LSTM evaluation index uses RMSE, MAE, and mean absolute
percentage error (MAPE). The calculation methods are shown in Formula (23) [30]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RMSE =

√
1
n

n
∑

i=1
(ŷi − yi)

2

MAE =
1
n

n
∑

i=1
|ŷi − yi|

MAPE =
100%

n

n
∑

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
(23)

In the formula, n is the number of samples; yi is the actual value; ŷi is the predicted
value (filled value by AS-GAIN).

4. Experiment Setting

The bearing life data set provided by the PHM2012 data challenge [31] is used to verify
the effectiveness of the proposed method. The vibration data includes the axial and radial
signals collected by two vibration sensors. The stop threshold of signal acquisition is 20 g,
the sampling frequency is 25.6 kHz, and the sampling time is 0.1 s. The data acquisition
device is shown in Figure 6, and the working condition is divided in Table 2.

 

Figure 6. The device for collecting experimental data.

Table 2. Operating condition of the datasets.

Working Condition Load/N Speed/(r·min−1)

1 4000 1800
2 4200 1650
3 4500 1500

In this study, the ball bearings being investigated share a similar construction principle
as those found in other sizeable rotating machinery components. Additionally, monitoring
data for wind turbine equipment parts as they approach failure is currently scarce or
nonexistent [32]. This accurately predicts the lifespan of wind turbine bearings using
publicly available datasets covering the entire life cycle of the bearings. Bearing 1_3 under
condition 1 exhibits an evident degradation trend that aligns with the degradation trajectory
of wind turbine bearings. Therefore, it serves as experimental data for validating DBO-
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LSTM and AS-GAIN-LSTM. Due to the significant differences in data volume and features
between bearing 1_3 and bearing 2_3, the latter is used as an experimental subject for
validating AS-GAIN. Firstly, bearing 1–3 and bearing 2–3 data are used to simulate the
working conditions with missing data to verify the AS-GAIN filling performance. Secondly,
the prediction performance of DBO-LSTM is verified by bearing 1–3 degradation stage
data. Finally, the degradation stage data after bearing 1–3 filling is used to verify the
comprehensive performance of AS-GAIN-LSTM under the condition of missing data.

The life cycle of rolling bearings can be divided into two stages: the health stage and
the degradation stage. Due to the large proportion of the healthy stage and the relatively
stable signal, selecting this stage to train the model and perform life prediction has a great
influence on the prediction accuracy of the model. Therefore, selecting the first point
of degradation (FPD) and determining the degradation stage is particularly important.
WANG et al. [5] assumed that the degradation amount of the healthy stage obeys the 3
rule proposed by the normal distribution. According to this criterion, the degradation
interval of the whole life cycle of the rolling bearing is determined, and the RUL prediction
experiment is carried out.

The root mean square (RMS) can be employed to gauge the degradation of bear-
ings [33], thus treating the RMS of vibration signals as experimental objects (with every
2560 original data points constituting a sample point), with a training set-to-test set ratio of
7:3. To validate the performance of DBO-LSTM and AS-GAIN-LSTM, five experimental
schemes were designed, as shown in Table 3. The parameters of some parts in GAIN and
AS-GAIN are set as shown in Table 4.

Table 3. Design of the experimental plans.

Prediction Plan Missing Proportion Imputer Prediction Model

Plan A 0% DBO-LSTM
Plan B 0% LSTM
Plan C 0% SSA-LSTM
Plan D 0% RNN
Plan E 10% AS-GAIN DBO-LSTM
Plan F 20% AS-GAIN DBO-LSTM

Table 4. Set of parameters for GAIN and AS-GAIN.

Parameters GAIN AS-GAIN

Mini batch size 16 16
Hyperparameter 15 15

Iteration 1000 1000
Missing rate 0.1~0.8 0.1~0.8

Hint rate 1
The size of Si 1 × 25

5. Experimental Analysis

5.1. Performance Verification of AS-GAIN

To validate the performance of AS-GAIN in filling in missing data, experiments em-
ployed the full-life cycle data of bearing 1_3 and bearing 2_3. Figure 7a,b separately
simulate the original signal diagrams for bearing 1_3 and bearing 2_3 under missing com-
pletely at random (MCAR) with a missing rate of 10%. It should be noted that in the absence
of MAR or MNAR patterns, the probability of missing values may be related to the charac-
teristics of other observed values or the nature of the missing value itself. In such cases,
the occurrence of missing data can introduce bias into the dataset, which would weaken
the influence of the average similarity matrix S in AS-GAIN. How AS-GAIN can adapt to
these two missing pattern scenarios remains an open question. Figure 8 depicts the missing
value distribution pattern based on the original signal in Figure 7, with each missing value

307



Mathematics 2024, 12, 2119

position corresponding to the RMS of bearing 1_3 and bearing 2_3 (bearing 1_3 and bearing
2_3 refer to the RMS of bearing 1_3 and the RMS of Bearing 2_3, respectively). As depicted
in Figure 8, under this MCAR missing pattern, all intervals essentially contain the missing
parts; however, there exist some differences in the distribution of missing values for bearing
1_3 and bearing 2_3: severe missing in bearing 1_3 is evenly distributed throughout the
entire interval, whereas in bearing 2_3, it mainly occurs between data points 480 and 720.
Suppose there is a disproportionate concentration of missing values in a particular region.
In that case, the accuracy of the relationship captured by matrix S may be compromised
when using AS-GAIN to fill in these values. This could result in suboptimal outcomes not
only for AS-GAIN but also for other filling algorithms. In addition, when the missing rate
is 10%, the number of missing values for bearing 2_3 is significantly lower than that for
bearing 1_3. This is due to the inherent differences in magnitude between the two sets
of original data. Each data point carries with it distinct characteristics of its original data,
resulting in entirely different traits exhibited by the two sets. This will serve as a test for
the stability and reliability of the model.

(a) (b)

Figure 7. The distribution of missing data in the original signal. (a) The original signal for bearing
1_3. (b) The original signal for bearing 2_3. (The red flag indicates the missing value).

(a) (b) 

Figure 8. Distribution of different bearings with 10% missing values. (a) Bearing 1_3 with 10%
missing values. (b) Bearing 2_3 with 10% missing values.

For bearing 1_3, Figure 9a,b show the RMSE and MAE of different filling models under
different missing rates and evaluate the filling performance of different models through
these two indicators. From Figure 7a,b, it can be seen that with the increase in bearing
1_3 missing rate, the performance of each filling model gradually decreases. However,
compared with other models, the performance of AS-GAIN is still the best under the same
missing rate. Moreover, with the increase in the missing rate, the growth rate of the RMSE
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and MAE of AS-GAIN is also the lowest, which indicates that AS-GAIN has better stability.
Especially in scenarios with a high missing rate (>80%), AS-GAIN has obvious advantages.
When the missing rate is 80%, the RMSE of AS-GAIN is 15%, 35%, 40%, and 60% lower
than that of GAIN, KNN, MissForest, and MeanImputer, respectively. Compared with
GAIN, KNN, MissForest, and MeanImputer, MAE decreased by more than 20%, 40%, 30%,
and 60%, respectively.

  
(a) (b)

Figure 9. Different evaluation metrics for bearing 1_3 at different missing rates. (a) RMSE of
bearing1_3 at different missing rates. (b) MAE of bearing 1_3 at different missing rates.

For bearing 2_3, Figure 10a,b show the RMSE and MAE of different imputation models
under different missing rates. Compared with Figure 9a,b, the differences of each model
under different missing rates are smaller, and the values of RMSE and MAE are also smaller.
This is because the sample size of bearing 2_3 is smaller and the data itself has a higher
similarity. Among the five filling models, the comprehensive index performance of AS-
GAIN is still optimal. Especially when the missing rate is 80%, the RMSE of AS-GAIN is
better than that of GAIN, KNN, MissForest, and MeanImputer by 8%, 20%, 25%, and 30%,
respectively. Compared with GAIN, KNN, MissForest, and MeanImputer, MAE decreased
by more than 2%, 15%, 15%, and 35%, respectively. This verifies that AS-GAIN has a good
filling effect when dealing with different missing rates and different missing data.

 
(a) (b)

Figure 10. Different evaluation metrics of bearing 2_3 at different missing rates. (a) RMSE of bearing
2_3 at different missing rates. (b) MAE of bearing 2_3 at different missing rates.

As shown in Figures 9 and 10, as the missing rate gradually increases, imputation
errors also increase for different models. This is due to the fact that missing values contain
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information about the original data’s characteristics, which, when lost, can cause a decrease
in the accuracy of prediction models. As the number of missing values increases, the loss
of reliable information becomes more significant, resulting in a decline in model prediction
accuracy. Based on the trend of the evaluation indicators, it can be observed that the
performance decline of AS-GAIN is the most gradual.

5.2. Performance Verification of DBO-LSTM

In order to verify the prediction performance of DBO-LSTM, experiments were carried
out using Plans A, B, C, and D. According to the 3 rule, the FPD was determined to be
the 1633th data point position, and the degradation interval was [1633, 2375]. Figure 11
describes the health stage and degradation stage of the full-life cycle of bearing 1_3.

Figure 11. The FPD of bearing 1_3 under the 3 criterion.

In order to improve the generalization ability of the model, MAPE is used as the
objective function, Adam0 is used as the optimizer, and the critical parameters of LSTM are
optimized based on DBO. In order to give full play to the ability of DBO optimization, the
parameters of LSTM are searched 120 times, and the search range of the number of hidden
layer neurons is set to 50~150 according to the size of the training set. In order to improve
the convergence speed of the prediction model, the initial learning rate search range is
set to 0.001~0.01. In order to prevent over-fitting of the prediction model, the training
times and regularization coefficients are set to 25~100 and 1 × 10−10~1 × 10−3, respectively.
The DBO optimization process is shown in Figure 12. It can be seen from Figure 12a that
the objective function value tends to be stable and reaches the minimum value after the
number of iterations reaches 66. It can be seen from Figure 12b that the minimum value
of the objective function is reduced from 0.09503 to 0.0558 in the optimization process.
In comparison to other optimization algorithms, it is evident that for the data utilized in
this paper, DBO demonstrates a swifter convergence rate and also identifies the optimal
solution prior to the cessation of iterations.

The parameter combination corresponding to the minimum value of the optimized
objective function is the optimal parameter combination. The DBO optimization results
are shown in Table 5. According to Table 5, the optimization parameters of the number
of hidden layer neurons, the initial learning rate, the number of training times, and the
regularization coefficient are 118, 0.006623, 93, and 1 × 10−10, respectively. This set of
optimization parameters will be used to construct the LSTM model.
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(a) (b)

Figure 12. Optimization process of different algorithms for LSTM. (a) Objective function and iteration.
(b) The minimum value and iteration.

Table 5. The parameters of LSTM optimized by DBO.

Parameters Optimized Scope Optimized Results

Number of neurons 50~150 118
Initial learning rate 0.001~0.01 0.006623

Number of trainings 25~100 93
L2 regularization 1 × 10−10~1 × 10−3 1 × 10−10

Figure 13 is the comparison chart between the predicted results and the actual values
of Plans A, B, C, and D. As shown in Figure 13, it is evident that Plan D exhibits the most
significant deviation from the actual values in terms of prediction results. This indicates
that, among the various prediction models, LSTM demonstrates superior predictive ability.
Furthermore, the prediction outcomes of Plan A surpass those of Plan B and C, suggesting
that employing DBO to optimize LSTM is a feasible approach for enhancing its predictive
performance.

Figure 13. Comparison of the predictions of different plans of bearing 1_3.

Table 6 shows the prediction errors of A, B, and C Plans. It can be seen from Table 5
that the MAE, RMSE, and MAPE of Plan A are 5.78%, 21.06%, and 18.06% lower than those
of Plan C, respectively. The MAE, RMSE, and MAPE of Plan A were 44.17%, 40.40%, and
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53.85% lower than those of Plan B, respectively. The MAE, RMSE, and MAPE of Plan A
were 67.45%, 59.30%, and 71.86% lower than those of Plan D, respectively. When comparing
Model B and Model D individually, Model B shows a reduction in the MAE, RMSE, and
MAPE of Model D by 41.70%, 31.72%, and 39.03%, respectively. These results sufficiently
demonstrate that DBO-LSTM can more accurately describe the degradation trajectory of
rolling bearings compared to LSTM and SSA-LSTM. Additionally, LSTM shows better
predictive performance compared to RNN.

Table 6. Different plans were used to evaluate the prediction of bearing 1_3.

Plans MAE RMSE MAPE (%)

Plan A 0.4450 1.4794 5.5800
Plan B 0.7971 2.4821 12.090
Plan C 0.4698 1.8742 6.8100
Plan D 1.3673 3.6352 19.831

In order to better emphasize the predictive capability of LSTM, Table 7 presents
the runtime of various models under identical conditions (CPU: i5-1240P, RAM: 32 GB,
Operating System: Windows 11) and the same experimental data (Data Size: 2375 × 1).
As evidenced by the table, LSTM has the shortest runtime, as it does not factor in the
optimization algorithm’s runtime. In comparison to the RNN model, LSTM also possesses
the ability to complete prediction tasks more quickly. When these models are executed
with superior devices or alternative data, shorter runtimes may be attained.

Table 7. Running time of different models.

Models Running Time (s)

DBO-LSTM 2850 ± 53
LSTM 1500 ± 25

SSA-LSTM 2940 ± 15
RNN 3840 ± 45

5.3. Performance Verification of AS-GAIN-LSTM

To validate the efficacy of the AS-GAIN-LSTM approach, experiments were carried out
with Plans A, E, and F. Initially, bearing 1_3’s missing rates in the degradation interval (data
after FPD in Figure 11) were set at 10% and 20% under the MCAR condition. The missing
data simulated from the original signal are illustrated in Figure 14a,b. The corresponding
RMS missing distribution of bearing 1_3 is depicted in Figure 15a,b.

(a) (b)

Figure 14. Distribution of different numbers of missing values under bearing 1_3. (a) The missing
rate is 10%. (b) The missing rate is 20%. (The red flag indicates the missing value).
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(a) (b)

Figure 15. Distribution of bearing 1_3 with different missing rates. (a) The missing rate is 10%.
(b) The missing rate is 20%.

When comparing two different scenarios of random missing data, with missing rates of
10% and 20%, the missing values are distributed evenly in both the training and testing sets.
The amount of missing data can potentially impact the performance of AS-GAIN-LSTM,
and the subsequent sections will provide a more detailed explanation of the results.

Figure 16 is a comparison chart of the actual results of RUL prediction after the
proposed prediction model is used to fill the degradation interval data with missing ratios
of 0%, 10% and 20%, respectively. The missing value filling method adopts AS-GAIN. The
corresponding missing ratios of Plan A, E, and F were 0%, 10%, and 20%, respectively.
Based on the depicted graph, it seems that the prediction from Plan A provides the most
accurate approximation to the actual value. Initially, both Plan E and Plan F demonstrated
more significant discrepancies with the actual values in comparison to later forecasts. This
could potentially be attributed to some shared missing values in Figure 15a,b.

Figure 16. Comparison of the predictions of different plans of bearing 1_3 with missing data conditions.

After AS-GAIN fills the data with three missing ratios (0%, 10%, and 20%), DBO-LSTM
is used to predict the RUL of the filled-in complete data. The prediction error is shown in
Table 8. It can be seen from the Table that when there are 10% missing values in the data,
the MAE, RMSE, and MAPE of using AS-GAIN for data filling and DBO-LSTM for RUL
prediction are only 1.75%, 1.89%, and 8.31% higher than those of using DBO-LSTM for life
prediction of the original complete data. When there are 20% missing values in the data,
the MAE, RMSE, and MAPE of the AS-GAIN-filled and DBO-LSTM-based RUL predictions
are only 3.28%, 3.30%, and 12.72% higher than those of the original complete data using
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DBO-LSTM for life prediction. It can be seen that when there are missing values in the
rolling bearing data, it is feasible to use the AS-GAIN-LSTM strategy for the prediction
of RUL.

Table 8. Different plans were used to evaluate the prediction of bearing 1_3 with different missing
conditions.

Plans MAE RMSE MAPE (%)

Plan A 0.4450 1.4794 5.5800
Plan E 0.4527 1.5073 6.0435
Plan F 0.4596 1.5282 6.2898

As shown in Figure 16 and Table 8, when inputting missing rate data with varying
degrees of incompleteness into DBO-LSTM, the prediction errors corresponding to high-
missing-rate data were slightly higher than those associated with low-missing-rate data.
According to the principle outlined in Section 3.1, matrix S calculates the Euclidean distance
between the filled values of G within the same minimum batch and their actual counterparts,
including the Euclidean distance between the filled values of G themselves. However, the
G imputation value itself carries an error when compared to the actual value. As more
missing values exist in the data, it is inevitable that S will contain more errors, which would
lower its discriminatory power for distinguishing D. This, in turn, reduces the reliability of
the information contained within the generated data. During LSTM training, the model
analyzes the depth features of the data. When the data itself contains errors, it is inevitable
that these will negatively impact the model, thereby reducing its predictive capabilities.

6. Conclusions

1. In the data preprocessing stage, aiming at the problem of random missing data in
the process of signal acquisition of wind power bearings, AS-GAIN can be used
to fill the missing values to obtain more accurate filling values because AS-GAIN
can better describe the difference between the filling value and the actual value.
In the process of confrontation between the generator and the discriminator, the
information about the average similarity of the filled values is integrated into the
discriminator, so that the generator pays more attention to the filling effect of the
missing values. After many confrontation training sessions, a generator with excellent
filling effects can be obtained. The experimental results show that the performance
of AS-GAIN in processing the working condition data mentioned in this paper has
obvious advantages compared with other models.

2. In the RUL prediction stage, the number of hidden layer neurons, learning rate,
regularization coefficient, and training times of LSTM are optimized by using the
characteristics of fast convergence and strong optimization ability of the dung beetle
algorithm, so that LSTM has better prediction performance in dealing with the pre-
diction problem of long time series. The experimental results show that compared
with LSTM and SSA-LSTM, the MAE of DBO-LSTM is reduced by 5.78% and 44.17%,
respectively; RMSE is reduced by 21.06% and 40.40% respectively; and MAPE is
reduced by 18.06% and 53.85%, respectively.

3. AS-GAIN-LSTM is adopted to solve the problem that the wind power bearing data
cannot be predicted by RUL that the accuracy of RUL prediction is low due to the
presence of missing values. Firstly, AS-GAIN is used to accurately fill in the missing
values, and then DBO-LSTM is used to predict RUL. The experimental results show
that when there are missing values in the data, the prediction error using AS-GAIN-
LSTM is only slightly improved compared with the prediction error using DBO-LSTM
for complete data. AS-GAIN-LSTM gives full play to its filling ability and prediction
ability, making it more excellent in dealing with such time series prediction problems
with missing values.
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Abstract: Combustion optimization is an effective way to improve the efficiency of thermal power
generation and reduce carbon and NOx emissions. Real-time and precise NOx emission prediction is
the basis for combustion optimization control of thermal power plants. To construct an accurate NOx
concentration prediction model, a novel just-in-time learning (JITL) method based on random forest
(RF) is proposed in the present work. With this method, first, an improved permutation importance
algorithm is proposed to extract important variables. In addition, a similarity index that incorporates
temporal and spatial measures is defined to select a local training set representative of the process
data. Moreover, considering the influence of model parameters on prediction performance under
different working conditions, a process monitoring method based on a moving window (MW) is used
to monitor the change in working conditions and guide online updating. The experimental results
show that the proposed method has excellent prediction accuracy, with a coefficient of determination
of 0.9319, a root-mean-square error of 3.6960 mg/m3, and an average absolute error of 2.7718 mg/m3

on the test set, making it superior to other traditional methods.

Keywords: just-in-time learning; sample selection; random forest; thermal power plant; soft sensor; NOx

1. Introduction

With the increasing attention paid to environmental protection, determining how
to reduce carbon and toxic gas emissions in flue gas while improving boiler efficiency
is an important and urgent problem to address in thermal power plants [1–4]. Over
recent decades, the reliability of power grid supply has predominantly relied on thermal
power generation, with coal-fired thermal power plants contributing approximately 60%
of national electricity in China [5]. Furthermore, the integration of intermittent renewable
energy sources like wind power into the grid hinges upon the peak-regulating capabilities
of thermal power units [6]. Consequently, thermal power generation is poised to maintain
its pivotal role over the long term. Coal combustion produces substantial quantities
of toxic gases, notably NOx, a primary contributor to atmospheric pollution [7,8]. As
stringent environmental regulations continue to be enacted, coal-fired power plants face
progressively stringent NOx emission standards for flue gases. Currently, China’s laws
stipulate that NOx emissions in flue gas should not exceed 50 mg/m3 [9], which poses a
great challenge to the optimal control of power plant boilers and flue gas systems.

Accurate real-time detection of NOx concentration directly affects the amount of am-
monia injected into the denitrification device, which is crucial for improving the efficiency
of the selective catalytic reduction (SCR) and is the basis for boiler combustion optimization
control [10]. The main chemical reaction equations of the denitration process are shown in
Equations (1) and (2) [11].

NO + NO2 + 2 NH3 → 2 N2 + 3 H2O (1)

Sensors 2024, 24, 4442. https://doi.org/10.3390/s24144442 https://www.mdpi.com/journal/sensors317
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4 NO + 4 NH3 + O2 → 4 N2 + 6 H2O (2)

As illustrated, insufficient ammonia injection can cause ammonia or NOx to escape,
whereas excessive injection results in resource wastage. To deal with such problems, CEMS
is widely used to track and monitor NOx concentration. Unfortunately, CEMS is greatly
affected by environmental disturbances, resulting in inadequate detection accuracy and con-
siderable lag [12]. In view of this challenge, the construction of a high-precision real-time NOx
prediction model is a necessary supplement to existing detection methods [13]. Prediction
strategies for NOx concentration mainly include model-based and data-based methods. The
first method has better interpretation ability but requires a large amount of expert knowledge.
The combustion process of thermal power plant boilers is highly complicated, making it
difficult to establish accurate models for describing the process [14]. With the rapid develop-
ment and application of distributed control systems (DCSs) in recent years, large amounts
of industrial process data can be collected. As a result, data-driven methods have gradually
emerged as a viable alternative. Compared with model-based methods, data-driven strate-
gies bypass the need to solve complex conservation equations, resulting in faster and more
reliable model responses; hence, they have received widespread attention. For example,
Wang et al. [15] employed deep belief networks to extract data features and constructed net-
works consisting of an extreme learning machine (ELM), a backpropagation neural network
(BPNN), and a radial basis function to predict NOx concentration. Jacob et al. [16] developed a
combustion optimization system based on neural networks and particle swarm optimization,
which effectively reduced the emission of NOx from power plants. Yang et al. [17] established
a NOx prediction model based on a long short-term memory (LSTM) neural network, which
exhibited better performance than least-squares support vector machine (LSSVM) and recur-
rent neural network models. Yuan et al. [18] proposed a NOx emission prediction method
using linear regression as the metamodel and adopted BPNN, support vector regression, and
decision tree as the basic models. The proposed stacked-generalization ensemble method
demonstrated strong robustness and generalization capability. Li et al. [19] proposed a novel
model architecture composed of a convolutional neural network and an effective channel
attention module, which demonstrated good performance in predicting NOx emissions. Timo
Korpela et al. [20] compared the performance of three nonlinear methods—multilayer
perceptron, support vector regression, and fuzzy inference system—in predicting NOx con-
centration in natural gas boilers. Xie et al. [21] applied the sequence-to-sequence structure
from the field of natural language processing to the LSTM model, achieving simultaneous
prediction of NOx emissions at multiple time points. In addition, to reduce the impact of
redundant variables on the performance of the prediction model, many variable selection
methods have been incorporated. Xing et al. [22] utilized partial least squares (PLS) for
variable selection and established an extreme gradient boosting ensemble model to predict
the NOx emission concentration of coal-fired boilers. Tang et al. [23] employed mutual
information combined with autoencoders and an ELM to deeply explore the relationship
between NOx emission concentration and features. Wang et al. [24] utilized random forest
(RF) to calculate the importance of variables and select the important process variables.
Based on neural networks, Zhang et al. [25] employed the mean impact value to select
variables and achieved multiobjective prediction of boiler thermal efficiency and NOx emis-
sion coupling. Tang et al. [12] utilized the LASSO and relief feature selection algorithms
to select the important variables. They proposed an error correction strategy and estab-
lished an ELM model, which can accurately predict NOx concentration at the boiler outlet.
LSSVM [26,27], convolutional neural networks [28–32], and ensemble learning
methods [33–36] have also been widely used by scholars in NOx concentration prediction.

Although the above studies achieved enhanced results under certain scenarios, they
hardly meet the need for timely updates in online applications [3,37]. To address this issue,
Lv et al. [38] improved LSSVM and updated the model based on an incremental strategy.
Li et al. [14] proposed a variable exponentially weighted MWPLS method, which can
be adaptively updated by adjusting the window size. Lara F. A. [39] used the T2 and Q
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statistics of principal component analysis (PCA) to determine whether a model needs to
be recalibrated. Lv et al. [40] proposed an adaptive strategy by updating the operating
dataset when the model’s performance deteriorates. The above methods have achieved
good results in addressing specific problems. However, the model parameters are difficult
to adjust. Consequently, they are difficult to directly apply to the real-time prediction
of NOx concentration in thermal power plants. Recently, just-in-time learning (JITL)
[41,42] has seen widespread adoption due to its intrinsic characteristics favoring online
implementation. Instead of building a global model, JITL creates a local model based on the
similarity between input and output samples in real time. By using the current measured
input data, similar samples in the database are collected for modeling. Considering the
advantages of JITL, an improved scheme based on JITL for online prediction of NOx
emissions is proposed in this work. With the proposed strategy, a supervised similarity
distance measurement method is defined to adaptively select important training samples
from the original dataset. RF regression is adopted to establish a prediction model, and an
active updating strategy is proposed to maintain the model online. Moreover, to establish a
robust model, a variable selection method is proposed that enables the robust selection of
important variables. The industrial application results show that the presented strategy
can provide good prediction accuracy and is suitable for long-term industrial applications.

This paper is organized as follows. Preliminaries about JITL and RF are provided
in Section 2. Section 3 describes the target boiler in this work. Section 4 presents the
proposed modeling method. Section 5 discusses the experiments and results obtained
using real-world data. Finally, the conclusions are provided in Section 6.

2. Preliminaries

The key to predicting NOx concentration is to establish a learner f (·) with historical
data. Subsequently, the auxiliary variable Xq is substituted into the formula �y = f (Xq) + εq
to obtain the prediction value. In this work, JITL and RF are combined to develop a
local prediction model. To elucidate the proposed approach, this section outlines the
foundational principles of JITL and RF.

2.1. JITL Method

JITL is a dynamic modeling framework in which all historical data are stored in a
database, and a model is built in real time by searching the database for the samples
most relevant to the query sample Xq by a certain similarity index. After prediction, the
established model is discarded. For the regression problem, the most common metric
used to measure the similarity between Xq and the historical sample Xi is the Mahalanobis
distance, which is defined as follows [43]:

dM(Xi, Xq) =
√
(Xi − Xq)∑ −1(Xi − Xq)

−1 (3)

where X ∈ Rn×m = {X1, . . . , Xi, . . . Xn}, i = 1, 2, . . . , n denotes the sample number in the
historical database and ∑ is the covariance matrix of X. Based on the Mahalanobis distance
values, the similarity between Xq and each sample in the historical data can be calculated
using the Gaussian kernel function, as follows:

Si,q = exp(−d2
M(Xi, Xq)

2σ2 ) (4)

where σ is the kernel width. In accordance with Si,q, the first l samples with high similarity
are selected from the historical data to construct the local training set. Then, the output
prediction of the query sample Xq is given by:

�yq = f (Xq, Θ) (5)

where Θ is the hyperparameter of the model f (·).
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2.2. RF Regression

RF is an ensemble learning algorithm capable of generating numerous decision trees
that serve as regression learners. The final prediction result of RF is derived from the mean
value of all trees. The structure of RF is shown in Figure 1. Classification and regression
tree (CART) is commonly employed as a decision tree for RF. Given a single output dataset
D = {Xtrain, Ytrain}, where Xtrain = (X1, X2, . . . , XN) ∈ RN×M, Ytrain = (y1, y2, . . . , yN) ∈ RN×1,
and N is the number of samples, along with the decision tree algorithm Γ and the number
of base learners T, the steps for constructing a regression model using RF are as follows:

Decision Tree 1

Decision Tree 2

Decision Tree nDecision Tree n

Randomization
bagging and 
random 

subspace

Training
Dataset 1
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Figure 1. Schematic of RF regression modeling.

Step 1: For each decision tree t, n samples are randomly collected from D to construct
a subtraining set Dt using the bagging method, where t ∈ [1, T].

Step 2: The tth learner ht = Γ(Dt) is trained using Dt. During the training process, for
each node, m(m < M) features are selected. Then, the optimal partition is selected from
these m features to divide the molecular tree.

Step 3: During the formation of the decision tree, each node should be split in accor-
dance with Step 2. The decision tree is trained with this subset until it is no longer possible
to split, and the tree is not pruned.

Step 4: In accordance with Steps 1–3, a series of decision trees are established until T
trees are trained.

During the application stage, the test samples are sent to each decision tree for regres-
sion prediction, and the prediction results of all decision trees for the same sample are
counted. The average value of all results is used as the final predicted value, which can be
expressed as follows:

H =
1
T

T

∑
t=1

ht(X) (6)

The RF algorithm is well suited for modeling complex processes due to its effective
utilization of randomness, which reduces inter-tree correlations. Therefore, in this work,
RF regression is adopted as the basic modeling method.

3. Proposed Method

Generally, the representativeness of auxiliary variables determines the upper limit of
model performance. Selecting important variables helps prevent dimensionality disasters
and mitigate overfitting. With RF, important variables are typically identified using permu-
tation importance. The basic idea of permutation importance is as follows: for each variable
xj, j ∈ [1, M]. The sequence of variables xj in out-of-bag (OOB) data is disrupted, and the
corresponding relationship between auxiliary and output variables is broken. Subsequently,
CART performs regression predictions on OOB data both before and after shuffling, calcu-
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lating the mean square errors (MSEs) for each decision tree, which collectively determine
the variable importance index xj.

Given an RF with T decision trees H = {h1, h2, . . . , ht, . . . , hT}, where t ∈ [1, T], the
variable importance of xj is defined as follows:

MSE =
1
n

n

∑
i=1

(yi −
�yi)

2
(7)

D̄j =
1
T

T

∑
t=1

(MSEOOB
t − MSEOOB

t,v ) (8)

where MSEOOB
t and MSEOOB

t,v are the MSEs of the OOB data on tree t before and after inter-
ference, respectively, and D̄j is the variable importance of xj. The permutation importance
algorithm of RF is presented in Algorithm 1.

Algorithm 1: The permutation importance algorithm of RF
Input: {Xtrain, Ytrain}
Output: VIj

RF
1 for j = 1 : m do

2 for t = 1 : T do

3 Calculate the mean square error MSEt using MSE = 1
n

n
∑

i=1
(yi −

�yi)
2

4 For each OOBt dataset, random interactions are performed on the features
in the xj dimension of the sample;

5 Calculate the mean square error MSEj
t

6 Calculate vij
t using vij

t = MSEj
t − MSEt

7 end

8 Calculate the total influence factor VIj
RF using VIj

RF = 1
T

T
∑

t=1
vij

t

9 end

Based on the above permutation importance algorithm, determining the number
of crucial variables to retain is not straightforward. In practice, threshold values are
frequently empirically determined to facilitate variable selection, rendering the process
notably subjective. To deal with this problem, this work proposes an iterative selection
strategy, which determines the variable set to be retained by counting the frequency of
selected variables in multiple runs. The specific steps of the improved variable selection
method based on permutation importance are as follows:

Step 1: A regression model is established using each decision tree ht, the value of the
corresponding OOB data is predicted, and MSEt is output.

Step 2: For each OOBt set, the order of variable xj, j ∈ [1, M], is shuffled to obtain a
new set; then, MSEj

t is calculated using the model established in Step 1.
Step 3: The prediction influence factor of xj on tree ht is calculated using the follow-

ing equation:
vij

t = MSEj
t − MSEt (9)

Step 4: All decision trees are traversed, and Steps 1–3 are repeated. Afterward, the
influence factors of xj on all decision trees are obtained.

Step 5: The total influence factor of xj on the RF is calculated as follows:

VIj
RF =

1
T

T

∑
t=1

vij
t (10)
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Step 6: All variables in Xtrain are traversed, and Steps 1–5 are repeated to acquire the
influence factors VIRF of all variables.

Step 7: The variables are sorted in accordance with the value of VIj
RF.

Step 8: Steps 1–7 are repeated � times, and the variables with the highest frequency in
the top K are saved.

Step 9: The variable with the lowest frequency of 10% is eliminated each time, and the
corresponding OOB error after removing the variables is calculated.

Step 10: The subset of variables corresponding to the minimum OOB error is selected.

3.1. Strategy for Local Training Sample Selection

In JITL, a crucial initial task involves identifying local training samples that closely
resemble the query sample. To implement this operation, the distance dMi between the
query sample Xq and the ith historical sample Xi is defined first, and then local training
samples are selected based on dMi . As mentioned above, the Mahalanobis distance is
generally used to define the similarity for regression modeling. The Mahalanobis distance
considers the spatial characteristics of auxiliary variables but ignores the relationship
between dependent variables.

Due to the strong time sequence characteristics inherent in thermal power plant
process data, a more representative similarity index can be constructed by introducing the
dependent variable information of the adjacent time-domain samples. Accordingly, we
propose an improved similarity index by simultaneously considering the temporal and
spatial characteristics of the independent and dependent variables.

Using the proposed scheme, the Mahalanobis distance dMi between Xi and Xq is
calculated. The similarity index of all samples in the historical dataset is obtained. The
average value of the NOx concentration of the sample in the preceding Mw time window
of Xq is calculated. The distance of the dependent variable is calculated as follows:

dy(yi, ȳlocal) =

√
(yi − ȳlocal)

2 (11)

where yi is the concentration of NOx in the historical data and ȳlocal is the average concen-
tration within the Mw time scale.

In this way, the distance dM defined by the independent variable and the distance dy
defined by the temporal data and dependent variables are obtained. The final similarity
can be calculated through the following equations:

dsim(Xi, Xq) = λdM + (1 − λ)dy (12)

Si,q = exp(−d2
sim(Xi, Xq)

2σ2 ) (13)

where 0 ≤ λ ≤ 1 is a conversion factor; when λ = 1, the similarity degenerates to a method
based solely on the Mahalanobis distance.

In accordance with the above method, L samples with high similarity can be selected
from the historical data to construct a local training set Dl . Given that the local training
set selected using the above method still has high leverage points, the existence of such
samples reduces the performance of the constructed prediction model. At the end of sample
selection, we use an F distribution to eliminate sample points with low confidence. The
specific operations are described below.

The mean value of the independent variables in Dl is calculated using Equation (14). If
dM(Xl , u) > Fα(M, L), then the sample {Xl , Yl} is deleted from Dl , where α is the quantile;
M and L are the number of independent variables and the number of samples in Dl ,
respectively. For ease of description, the final selected local sample set is still represented
by Dl .

u = mean(Xlocal) (14)
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The pseudocode for local training sample selection based on the proposed similarity
definition method is shown in Algorithm 2.

Algorithm 2: The algorithm for local training sample selection
Input: Xq, {Xtrain, Ytrain}
Output: {Xlocal , Ylocal}

1 if time < Mw then

2 ȳlocal =
ii=time

∑
ii=1

yii

3 else

4 ȳlocal =
time−1

∑
ii=time−Mw

yii

5 end

6 for i = 1 : n do

7 Calculate dMi (Xi, Xq)
8 dsim(Xi, Xq) = λdM + (1 − λ)dy

9 end

10 Sort Si,q in descending order then
11 Select the first lth samples Dl = {Xlocal,Ylocal} from D
12 for l = 1 : L do

13 Calculate dM(Xl , u), where u = mean(Xlocal)
14 end

15 if dM(Xl , u) > Fα(M, L) then

16 Delete {Xl , Yl}
17 end

3.2. Process Condition Monitoring and Parameter Updating Strategy

The thermal power generation process has typical multicondition characteristics. Un-
der the same working conditions, a high-performance prediction model can be constructed
using JITL. However, the local training set constructed according to Equation (12) may
drift in its representation of the process conditions after switching conditions. To address
this problem, MWPCA is adopted to monitor the production process. Then, λ is updated
timely in accordance with the monitoring results. The specific process of the algorithm is
described below.

The moving window length is denoted as L, and the corresponding data matrix within
the window at time t is denoted as MatrixI: Xt = (xt−L+1, xt−L+2, . . . , xt−1, xt)T ∈ RL×M.
At time t + 1, the corresponding data matrix within the window is denoted as MatrixI I I:
Xt+1 = (xt−L+2, xt−L+3, . . . , xt, xt+1)

T ∈ RL×M, and the data matrix corresponding to the
transition window is denoted as MatrixI I: X̃t,t+1 = (xt−L+2, xt−L+3, . . . , xt−1, xt)T ∈ R(L−1)×M.
The specific steps are as follows:

Step 1: Transition from MatrixI to MatrixI I:
μt ∈ RM×1 and Ct ∈ RM×M are set as the mean vector and covariance matrix of

MatrixI, respectively. The mean vector μ̃t,t+1 and standard deviation δi
t,t+1(i = 1, 2, . . . , M)

of the variables for MatrixI I can be determined using Equations (15) and (16), respectively.

μ̃t,t+1 =
L

L − 1
μt −

1
L − 1

xt−L+1 (15)

(δi
t,t+1)

2 =
L − 1
L − 2

(δi
t)

2 − L − 1
L − 2

(μi
t − μ̃i

t,t+1)
2 − 1

L − 2
‖ xi

t−L+1 − μi
t‖2 (16)

∑t,t+1 = diag(δ1
t,t+1, δ2

t,t+1, . . . , δM
t,t+1) (17)
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The covariance matrix C̃t,t+1 ∈ RM×M of MatrixI I can be derived from the above
formula and is shown below:

C̃t,t+1 =
L − 1
L − 2

(Ct −
1

L − 1
xT

t−L+1xt−L+1 − ∑−1
t (μt − μ̃t,t+1)(μt − μ̃t,t+1)

T ∑−1
t ) (18)

where ∑t = diag(δ1
t , δ2

t , . . . , δM
t ) is the diagonal matrix composed of the standard deviations

of each variable in MatrixI.
Step 2: Transition from MatrixI I to MatrixI I I:
Similar to Step 1, here, the mean vector μt+1 of MatrixI I I and the standard deviation

δi
t+1(i = 1, 2, . . . , M) of each variable can be recursively calculated.

μt+1 =
L − 1

L
μ̃t,t+1 +

1
L

xk+1 (19)

(δi
t+1)

2 =
L − 2
L − 1

(δi
t,t+1)

2 + (μi
t+1 − μ̃i

t,t+1)
2 − 1

L − 1
‖ xi

t+1 − μi
t+1‖2 (20)

∑t+1 = diag(δ1
t+1, δ2

t+1, . . . , δM
t+1) (21)

The new samples are standardized as follows:

xt+1 = ∑−1
t+1 (xt+1 − μt+1) (22)

The covariance matrix Ct+1 ∈ RM×M of MatrixI I I can be derived from the above formula.

Ct+1 =
L − 2
L − 1

C̃t,t+1 +
1

L − 1
xT

t+1xt+1 + ∑−1
t+1 (μt+1 − μ̃t,t+1)(μt+1 − μ̃t,t+1)

T ∑−1
t+1 (23)

Substituting Equation (18) into Equation (23) yields the expression for transitioning
from MatrixI to MatrixI I I as follows:

Ct+1 = Ct − ∑−1
t (μt−μ̃t,t+1)(μt − μ̃t,t+1)

T ∑−1
t

− 1
L − 1

xt−L+1xT
t−L+1 +

1
L − 1

xt+1xT
t+1

+∑−1
t+1 (μt+1−μ̃t,t+1)(μt+1 − μ̃t,t+1)

T ∑−1
t+1

(24)

After the covariance matrix of the data in the new window is obtained, the correspond-
ing principal component model can be obtained through singular value decomposition of
the covariance matrix Ct+1. The statistic T2 and the control limit for T2 with confidence
level α can be determined using Equations (25) and (26), respectively.

T2 = xT PΛ−1PTx (25)

T2
α =

A(L2 − 1)
L(L − A)

FA,L−a;α (26)

where Λ ∈ RA×A is the diagonal matrix composed of the first A eigenvalues of the
covariance matrix Ct+1 and FA,L−a;α is the critical value of the F distribution with A and
L − A degrees of freedom and a significance level of α.

When the T2 corresponding to the query sample is greater than the monitoring thresh-
old, a working condition switch has occurred. If the monitoring statistic of the query sample
does not exceed the monitoring threshold, the historical data in the moving window have
characterized the current process well. In this case, λ can take a slightly smaller value, and
vice versa.
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3.3. Overall Flow of the Proposed Modeling Strategy

Following the aforementioned variable selection and local training sample selection
methods, the overall flow of the NOx prediction model based on JITL is presented in
Figure 2, and the corresponding pseudocode is shown in Algorithm 3.

Historical data

No

Input variable selection

Parameters tuning

Query sample     is available

Whether it is 
a new condition?

Similarity calculation 

qX

Establish local RF model

  Output predicted value qyyy

           available?1qX

      Set 1 1Mw Mw 2 2Mw Mw

Yes

Yes

Wait for new query sample
No

Figure 2. Basic concept of the proposed JIT-RF modeling framework.

Algorithm 3: Just-in-time RF
Input: Xq

Output:
�yq

1 Historical data collection and parameter tuning.
Construct training dataset D = {Xtrain ∈ Rn×m, Ytrain ∈ Rn×1}
Tune the parameters Mw, λ, nLea f , nTree based on D.

2 Obtain query sample Xq from the process online.
3 Monitor the process conditions using MW-PCA;
4 if alarm is triggered by MW-PCA then

5 Mw = Mw2, λ = λ2
6 else

7 Mw = Mw1, λ = λ1
8 end

9 Similarity calculation
10 for i = 1 : n do

11 Calculate the similarity between Xq and Xi ∈ Xtrain
12 end

13 Select local training data using Algorithm 2.
14 RF modeling

The prediction model is established with the collected local training dataset.
Then, �yq is provided.
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4. Boiler System and Data Preparation

4.1. Description of the Boiler System

In this work, the direct current boiler of a 1030 MW ultra-supercritical coal-fired unit
is adopted as the target object. The object is a π-type boiler, featuring balanced ventilation,
ultra-supercritical parameters, primary reheat, a spiral furnace, solid slag discharge, and
an open-air arrangement. The pulverizing system employs a medium-speed coal mill with
positive-pressure direct cooling primary air. The combustion unit adopts a front and rear
wall hedge combustion mode, featuring low-NOx double adjustable air swirl burners and
nozzles. The furnace dimensions are 64,500 mm in height, 33,128.7 mm in cross-sectional
width, and 16,308.7 mm in depth. A flue gas-regulating baffle device is arranged at the
bottom of the flue passage to distribute the flue gas, maintaining the reheat steam outlet
temperature within the control load range. The flue gas is collected by the regulating
baffle and then introduced into the SCR denitration device through the two tail flues. After
denitration, the flue gas enters the air preheater. Figure 3 shows the overall structure of the
boiler and SCR denitrification.

Control System

Air preheater

SCR         CEMS

Mixer
Force draft fan

 NOx at SCR inlet

  NOx at SCR outlet

Ammonia Tank

Boiler

ESP

Primary air fan

Economizer

Figure 3. Process flow of SCR denitrification.

4.2. Data Description

The historical data used in this work were obtained from DCS, and a total of 5184 groups
of 72 h data were collected at a sampling interval of 50 s. The abnormal samples were
eliminated using the 3σ rule (Equation (27)), and 5174 groups of data were retained.

ȳ − 3σ ≤ y ≤ ȳ + 3σ (27)

where σ and ȳ represent the standard deviation and mean value of NOx concentration,
respectively. Among these data, 30% were randomly selected to construct the training set,
about 60% were used as the test set, and the remaining 10% were utilized to construct the
verification set. The original data contained 390 auxiliary variables, which were normalized
as follows:

x =
x − x̄

ϕ
(28)

where x̄ and ϕ represent the mean and standard deviation values, respectively.
To assess the performance of the mentioned models, three indices—root-mean-square

error (RMSE), coefficient of determination (R2), and mean absolute error (MAE)—were
adopted. Generally, the smaller the values of the RMSE and MAE, the higher the accuracy
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of the model. R2 describes the explanatory ability; the closer its value to 1, the greater the
explanatory ability of the model.

RMSE =

√
1
n

n

∑
i=1

(yi −
�yi)

2
(29)

R2 = 1 −

n
∑

i=1
(yi −

�yi)
2

n
∑

i=1
(yi − ȳ)2

(30)

MAE =
1
n

n

∑
i=1

∣∣∣yi −
�yi

∣∣∣ (31)

where n is the number of test samples; yi and �yi represent the actual and predicted values,
respectively; and ȳ denotes the mean value.

5. Case Study

5.1. Parameter Tuning

Two parameters should be adjusted when constructing a model using RF: the number
of leaf nodes, i.e., nLea f , and the number of decision trees, i.e., nTree. In this work, these
parameters are adjusted based on the OOB error on the training set. The numbers of
leaf nodes and decision trees that minimize the OOB error are regarded as the optimal
parameters. As illustrated in Figure 4, when nLea f is 2, the corresponding MSE curve is
the lowest. After the number of decision trees is increased to more than 50, the MSE of the
OOB samples hardly decreases. Therefore, in this work, the values of nLea f and nTree are
set to 2 and 50, respectively.

Figure 4. OOB error curves with varying values of nLea f and nTree.

5.2. Results and Discussion

In accordance with the variable selection method mentioned above, with � = 100 and
K = 50, the RF model was run 100 times independently. Subsequently, variables that most
frequently entered the top 50 based on their importance index were tallied. Finally, a total
of 38 sets of variables were selected. Figure 5 shows the selection results.
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Figure 5. Variable selection results.

To improve adaptability to the multicondition process, MW-PCA was employed to
determine whether the parameter λ needed to be updated. Experimentally, the window
size was set to Mw = 200 and monitored for 20 consecutive times. When the T2 control
limit was exceeded 15 times or more, an alarm signal was generated. This signal indicated
that the process conditions had changed, and the parameter λ had to be updated. Figure 6
illustrates the monitoring results of MWPCA on the test set (the thick red line represents
the T2 control limit for each window, the blue line represents the calculated T2 and the red
circle represents the update time of the model).

Figure 6. MW-PCA monitoring results.

As illustrated in Figure 6, a total of 228 changes were detected. The alarm occurred
frequently— four times. These alarm messages were concentrated in periods of significant
fluctuation in NOx concentration. The greater the fluctuation in NOx concentration, the
more alarms occurred. These periods corresponded to transitional conditions before and
after process changes. When the process condition was switched, ȳlocal in Equation (11)
was insufficient as a representative for the query sample yq. Therefore, λ should take a
slightly larger value to ensure that the similarity calculated using Equation (12) maintains
good accuracy.
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Figure 7a presents the errors between the measured and predicted values of NOx,
predominantly concentrated within the range of ±10 mg/m3. This indicates that the model
demonstrates excellent stability and accuracy. Figure 7b intuitively shows the situation
between the predicted and actual values. The model generally tracked NOx concentration
variations well, albeit with large errors when the NOx concentration fluctuated significantly.
These moments generally corresponded to transitional stages of changes in the operating
conditions. This finding is consistent with Figure 6, where the model exhibited significant
errors during changes in the operating conditions. Subsequent updates incorporating the
latest operational data resulted in improved and sustained model accuracy.

Figure 7. Prediction and error curves of the proposed method. (a) The prediction error of the
proposed method on the test set. (b) The predicted results of the proposed method on test set.

Figure 8a shows the scatter plot of the predictions. The predicted and measured values
are closely distributed near the perfect straight line, with small deviation and variance,
demonstrating the excellent predictive performance of the model. Figure 8b indicates that
the model prediction errors are primarily concentrated within the range of −5 mg/m3 to
5 mg/m3, with 99.71% of samples exhibiting an absolute error within 15 mg/m3.

Figure 8. Scatter plot and error distribution diagram of the proposed model. (a) The scatter plot of
actual measured and predicted values. (b) The distribution map of prediction error.

To validate the superiority of the proposed method, the traditional PLS and RF models,
the MW-PLS and MW-RF models incorporating the MW strategy, and the JIT-PLS and JIT-
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RF models with the JITL strategy were adopted as comparison methods. Table 1 presents
the results of the three evaluation metrics for the six models and the proportion of samples
with an absolute error within 15 mg/m3.

Table 1. Prediction results of different models.

Method R2 RMSE MAE
Proportion with Absolute
Error Less than 15 mg/m3

JIT-PLS 0.8473 5.5345 3.7936 97.29%
PLS 0.7879 6.5226 4.5792 96.23%
MW-PLS 0.6222 8.7057 6.1037 92.48%
RF 0.9197 4.0138 2.9939 99.58%
MW-RF 0.7095 7.6345 5.1912 93.94%
JIT-RF 0.9252 3.8727 2.9018 99.68%
Proposed method 0.9319 3.6960 2.7718 99.71%

The R2, RMSE, and MAE values of the proposed model on the test set were 0.9319,
3.6960 mg/m3, and 2.7718 mg/m3, respectively, surpassing those of the other models in
both prediction accuracy and error distribution. The predictive performance of the RF
model was superior to that of the PLS model, which indicates that the RF model holds
a greater advantage in predicting NOx concentration. The predictive performance of
the PLS and RF models with the addition of the MW strategy was inferior to that of the
traditional PLS and RF models, possibly due to information loss caused by the fixed length
of MW. Specifically, the R2, RMSE, and MAE of the PLS model on the test set were 0.7879,
6.5226 mg/m3, and 4.5792 mg/m3, respectively. The R2, RMSE, and MAE of the JIT-PLS
model on the test set were 0.8473, 5.5345 mg/m3, and 3.7936 mg/m3, respectively. A
comparison of the performance of the PLS and JIT-PLS models indicates that the PLS model
incorporating the JITL strategy exhibited better predictive performance compared to the
traditional PLS model, which proves the effectiveness and applicability of the JITL strategy.
The performance results of the JIT-RF model on the test set were 0.9252, 3.8727 mg/m3,
and 2.9018 mg/m3. Incorporating the model update strategy into the JIT-RF model leads
to further improvements in prediction performance.

Figures 9 and 10 show the error distributions of the six comparative algorithms on
the test set, illustrating that the RF model exhibited more stable prediction performance
compared to the PLS model, with the JIT-RF model demonstrating the highest prediction
accuracy. The incorporation of the JITL strategy into both the PLS and RF models resulted in
a significant reduction in prediction errors. The range of error fluctuation also significantly
improved, indicating the effectiveness of the JITL strategy. Conversely, the inclusion of
the MW strategy led to a notable increase in prediction errors and the fluctuation range of
errors. Thus, the addition of the MW strategy results in decreased accuracy due to the loss
of input information and increased instability in prediction.

Figures 11–13 present the error statistics and scatter plots. In Figure 12b, the NOx
concentration predicted by the JIT-RF model and the actual measured values approximately
follow the diagonal line. In contrast, Figure 13a demonstrates that the sample points
predicted by the MW-PLS model deviate significantly from the perfect line. MW-PLS
exhibited the worst and most unstable predictive performance, whereas the JIT-RF model
had better predictive accuracy than the other models. After the addition of the MW strategy,
the predictive performance of the MW-PLS and MW-RF models decreased (Figure 13),
possibly due to the incomplete information in the training set caused by the MW strategy.
After the JITL strategy was incorporated into the PLS and RF models, the sample points
became closer to the perfect line (Figures 11b and 12b), indicating that the prediction
performance of the model improved and demonstrating the advantages of the JITL strategy.
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Figure 9. Error curves of the PLS algorithm.

Figure 10. Error curves of the RF algorithm.
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Figure 11. Predictive scatter plots for PLS and JIT-PLS models.

Figure 12. Predictive scatter plots for RF and JIT-RF models.

Figure 13. Predictive scatter plots for MW-PLS and MW-RF models.
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The above analysis indicates that the proposed method outperforms traditional
approaches and is particularly suited for the online prediction of the concentration of
NOx emissions.

6. Conclusions

In this work, an improved JITL-based prediction method is proposed to predict the
concentration of NOx emissions in a coal-fired power plant. A supervised similarity
distance measurement method is defined, and local training samples can be effectively
selected. To establish a robust model, a variable selection method is also proposed that
enables the robust selection of important variables. Several comparative experiments on
a real-world industrial dataset are presented. The experiments show that the proposed
method has good accuracy. Therefore, it is suitable for the long-term prediction of NOx
emissions. With the development of industrial information technology, the acquisition
of multisource process data has become increasingly convenient. Based on multisource
data, such as audio and images, building a large prediction model will be beneficial to
improving the accuracy and real-time performance of NOx emission prediction, which
will be our future research focus.
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Abstract: Objective: Motivated by Health Care 4.0, this study aims to reducing the dimensionality
of traditional EEG features based on manual extracted features, including statistical features in
the time and frequency domains. Methods: A total of 22 multi-scale features were extracted from
the UNM and Iowa datasets using a 4th order Butterworth filter and wavelet packet transform.
Based on single-channel validation, 29 channels with the highest R2 scores were selected from a
pool of 59 common channels. The proposed channel selection scheme was validated on the UNM
dataset and tested on the Iowa dataset to compare its generalizability against models trained without
channel selection. Results: The experimental results demonstrate that the proposed model achieves
an optimal classification accuracy of 100%. Additionally, the generalization capability of the channel
selection method is validated through out-of-sample testing based on the Iowa dataset Conclusions:
Using single-channel validation, we proposed a channel selection scheme based on traditional
statistical features, resulting in a selection of 29 channels. This scheme significantly reduced the
dimensionality of EEG feature vectors related to Parkinson’s disease by 50%. Remarkably, this
approach demonstrated considerable classification performance on both the UNM and Iowa datasets.
For the closed-eye state, the highest classification accuracy achieved was 100%, while for the open-eye
state, the highest accuracy reached 93.75%.

Keywords: machine learning; Parkinson’s disease; EEG; channel selection; wavelet packet transform

1. Introduction

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder that
affects millions of people worldwide [1]. It is characterized by various motor and non-motor
symptoms, thus making it a complex condition to diagnose and manage. The cardinal
motor symptoms of Parkinson’s disease include bradykinesia (slowness of movement),
rigidity (stiffness of muscles), tremors, and postural instability. However, PD is not solely
a motor disorder. Patients may also experience a wide range of non-motor symptoms,
such as depression, anxiety, sleep disturbances, cognitive impairment, and autonomic
dysfunction, as well as some non-motor symptoms, such as sleep disturbances, may
appear in the early stage of PD [1,2]. To date, the diagnosis of PD is mainly based on
clinical assessment and the presence of specific motor symptoms. There is no definitive
diagnostic test for PD, so healthcare professionals must carefully evaluate the patient’s
history, perform a thorough physical examination, and rule out other conditions that
may mimic PD symptoms. Motivated by Health Care 4.0, which is a new era of health
care propelled by the advent of Industry 4.0 [3], numerous researchers have explored
the potential of utilizing wearable sensors signal [4] for the computer-based diagnosis of
Parkinson’s disease, such as using an accelerometer [5,6] and EEG. EEG testing, a non-
invasive and cost-effective technique widely available in medical centers that captures the
electrical and magnetic field signals generated by neuronal activity on the scalp at specific
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frequencies [7], has demonstrated effectiveness in diagnosing and predicting various
neurological disorders, including epileptic seizures, the development of biomarkers for
Alzheimer’s disease, and the detection of abnormalities in schizophrenia [8–10].

Nevertheless, EEG signals present two main challenges for analysis: their stochastic
nature and low signal-to-noise ratio (SNR) [11]. The low SNR indicates a high noise level
within EEG signals, thus complicating pre-processing efforts, as current algorithms partially
filter out the signal while attempting to remove noise. This adversely impacts classification
model performance. Moreover, the inherent randomness of EEG signals demands the
use of sophisticated nonlinear and dynamic models for effective feature extraction and
classification, leading to considerable computational time and resource requirements.
To address the low SNR issue, several advanced pre-processing algorithms have been
developed. For example, the research by [12] provided evidence of the effectiveness of their
Artifact Subspace Reconstruction (ASR) as an automate method for removing artifacts. This
study suggested that a cutoff parameter between 20 and 30 is preferable, as opposed to the
previously suggested and default values of 5 to 7, which resulted in excessive removal of
brain activities. And it also revealed that ASR enhances the quality of ICA decomposition,
as indicated by an increased number of dipolar independent components. Gu et al. [13]
have also proposed an automatic ocular artifact removal (AOAR) method for EEG signals,
which outperformed the other methods in terms of the root mean square error, SNR, and
correlation coefficient, particularly in cases with lower SNR levels. Islam et al. [14] made a
good review of those studies in this field.

Considering that the classification models remain complex due to the high dimension-
ality of the feature vector, three approaches are commonly employed to reduce dimension-
ality: feature selection, frequency band analysis, and channel selection. Feature selection
primarily relies on methods such as single-factor analysis of variance or chi-square analysis,
thereby often employing p-value calculations [15,16]. Alternatively, deep learning tech-
niques can be employed to fuse the feature matrix [17]. Frequency band analysis focuses
on examining different frequency rhythms to identify more informative patterns. Similar
to the aforementioned methods, channel selection aims to identify the most informative
EEG channels to reduce the dimensionality of the feature vector at the channel level.

To reduce the dimensionality of traditional EEG features based on manual extraction
(such as statistical features in the time and frequency domains), we propose a channel selec-
tion approach using single-channel classification, thus building upon previous research [18].
We selected a common set of 29 channels for our analysis based on the montage utilized in
two publicly available datasets used in the referenced study. The specific contributions are
outlined as follows:

• A Parkinson’s disease EEG classification model depending on the public UNM and
Iowa datasets has been proposed, which uses multi-scale features: a time domain,
frequency domain features extracted by band-pass filter and wavelet packet transform,
and an entropy feature (Section 3);

• We introduced a channel selection method consisting of 29 channels, which achieved a
remarkable recognition accuracy of 100% on the UNM training dataset. Furthermore,
the model successfully passed the out-of-sample testing on the Iowa dataset, thus
demonstrating its generalizability. (Sections 4 and 5);

This paper follows the below structure: In Section 2, several state-of-the-art studies
relevant to the domain of this paper will be discussed. In Section 3, we will discuss
the detailed implementation processes and methods for the dataset, data pre-processing,
and feature engineering. In Section 4, we will delve into the channel selection based on
single-channel classification. In Sections 5 and 6, we will present the classification results,
including the validation of the proposed channel selection method on the training dataset
and the out-of-sample testing, as well as a comparison of the classification performance
before and after channel selection.

337



Sensors 2024, 24, 4634

2. Related Works

Gulay et al. [19] introduced a hybrid feature extraction method called EEMD VAR
for EEG signals, thus integrating the EEMD and VAR techniques. Empirical comparisons
were made between the EEMD VAR method, Hjorth parameters, and the AR model.
The proposed algorithm achieved a maximum classification accuracy of 100%, thereby
significantly outperforming the maximum accuracy of 72% attained by the AR method
and Hjorth parameters. This highlights the potential of the EEMD VAR method to provide
robust classification performance. Furthermore, the results show superior overall diagnostic
accuracy, sensitivity, specificity, and AUC values for subjects with Parkinson’s disease (PD).
Among the classification algorithms evaluated, the ANN stands out as the most prominent
based on all performance evaluation metrics considered in this study. One limitation of
this study lies in the lack of discussion or exploration of channel selection for EEG signals.
The researchers did not explain the reason for the channel selection and running of the
out-of-sampling test, which raises concerns about the reliability of their channel selection
approach. The use of the ANN significantly increases the computational costs associated
with feature extraction and model training as well.

The study of Coelho et al. [20] examined the effectiveness of Hjorth features extracted
from electroencephalographic (EEG) signals as potential biomarkers for Parkinson’s disease
(PD). Biomarkers are measurable indicators of some biological state or condition. For
Parkinson’s disease, typical examples include α-synuclein, uric acid levels, mutations in
relevant genes such as LRRK2 or GBA, and brain MRI, which have been widely applied in
Parkinson’s disease risk assessment and symptom diagnosis [21]. Currently, the research
on AI-based Parkinson’s disease diagnosis using EEG is still exploring the use of machine
learning features as potential biomarkers. The focus has primarily narrowed to EEG
frequency bands associated with Parkinson’s disease symptoms, such as alpha, theta, and
beta bands [22–24]. Notably, the prominent role of the beta band in diagnosing resting
tremors suggests that features related to the beta band could serve as new PD biomarkers.
Their analysis utilized EEG data from PD patients exposed to auditory stimuli, which were
obtained from the publicly available database known as The Patient Repository for EEG
Data + Computational Tools (PRED + CT). The investigation revealed notable differences
in the proposed biomarkers across various brain lobes, including parietal, frontal, central,
and occipital regions, as well as between healthy individuals and those with PD. Support
Vector Machine (SVM), Random Forest, and K-Nearest Neighbors (KNN) algorithms
were employed for the classification task, along with a five-fold cross-validation process.
The proposed method achieved a high accuracy of 89.56% in distinguishing PD patients
from healthy individuals using an SVM classifier. However, the study lacks research on
channel selection, because although it identified some channels that exhibited outstanding
performance on different features, it did not further conduct training and validation for
channel selection.

Smrdel [25] employed both common spatial patterns (CSPs) and a Laplacian mask
to facilitate robust selection and feature extraction in their study. They utilized the CSP
whitening matrix to identify the channels that exhibited the greatest potential for distin-
guishing between EEG signals from healthy individuals and those with PD. By leveraging
the selected features obtained through CSPs, they achieved a classification accuracy of 85%
when categorizing EEG records into groups of healthy controls and PD patients. Further-
more, using features extracted via the Laplacian operator, they achieved a classification
accuracy of 90%; however, their research lacks validation of the channel selection approach.
Although they identified some channels with the highest information content, they failed to
demonstrate whether this channel selection approach can prevent overfitting when applied
to datasets beyond their own.

Dar et al. [26] introduced a novel architecture, 1D-CRNN-ELM, which merges an
Extreme Learning Machine (ELM) with a one-dimensional Convolutional Recurrent Neural
Network (1D-CRNN) for emotion detection in patients with Parkinson’s disease (PD). This
hybrid approach leverages the strengths of both neural networks to enhance the feature
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extraction and classification of EEG data. This framework is designed to handle various
emotions and experimental conditions, thus enabling cross-dataset learning. After pre-
processing the EEG data, the CRNN serves as a feature extractor, while the ELM functions
as the classifier. The CRNN can be fine-tuned with additional datasets to learn new emotion
sets. The study utilizes cross-dataset learning by training on PD patient data and fine-
tuning with publicly available datasets and vice versa. Using an 80:20 train–test data split,
the model achieved high accuracy values. Using the SEED-IV dataset to fine-tune the
architecture resulted in an accuracy of 92.5%. Leave-one-out cross-validation yielded high
mean accuracy values for all datasets in the experiment. The study also demonstrated that
high-performance emotion detection is feasible using only 1-second EEG segments from
14 channels. However, the CRNN’s computational costs remain high, and despite extensive
validation within their dataset, cross-dataset validation is still lacking. Additionally, the
reliability of the ELM is questionable.

Numerous studies have been conducted on the publicly available New Mexico and
Iowa datasets, some of which serve as the foundation for this research. A new LEAPD index
was created by Anjum et al. [27], which effectively and quickly distinguishes individuals
with Parkinson’s disease (PD) from control subjects. The LEAPD method encodes the
power spectral density (PSD) using a limited number of parameters and holds promise
for generating PD diagnostics or enhancing control algorithms for real-time applications.
Moreover, it has the potential to improve the accuracy of predicting motor progression
and refining classifications of PD-related sub-types. The utilization of the LEAPD index
can contribute to the development of cost-effective diagnostic tools and real-time control
signals for Parkinson’s disease and other neurodegenerative conditions. Levodopa is a
medication commonly used for the treatment of Parkinson’s disease [4,28]. However, it
remains unclear whether the channel selection method based on the LEAPD feature would
be effective when applied to traditional multi-scale features. Furthermore, the study did not
explore the channel selection scheme based on these traditional features within the dataset.
In our study, we employed single-channel evaluation for channel selection. Another study
focusing on the detection of abnormal EEG signals has provided insights into the extraction
of sub-band wavelet coefficients and the calculation of statistical characteristics using the
Discrete Wavelet Transform (DWT) [29]. This study extracted six statistical features from
the wavelet coefficients of each sub-band. Additionally, this study has addressed the issue
of feature redundancy in multi-scale feature extraction through the utilization of ensemble
learning techniques.

3. Machine Learning-Based Classification Model for Parkinson’s Disease Patients’
EEG Signal

The classification model was developed based on the UNM dataset and tested on the
UNM dataset and Iowa dataset. The implementation structure of this model is illustrated
in Figure 1. The UNM dataset was divided into a training set and a validation set, while
the Iowa dataset was utilized as an external validation data source. After undergoing
pre-processing, all data were subjected to two feature extraction approaches, thus resulting
in the generation of 13 and 9 distinct features, respectively. These 22 features constituted the
feature vector used to train six commonly used machine learning models. The model’s clas-
sification performance and the reliability of the channel selection approach were evaluated
based on the obtained results.
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Figure 1. The implementation structure of the proposed EEG classification model.

3.1. Datasets

We utilized electroencephalogram (EEG) recordings obtained from two separate stud-
ies conducted at the University of New Mexico (UNM) in Albuquerque, New Mexico, and
the University of Iowa (UI) in Iowa City, Iowa [22,27,30]. The UNM dataset consisted of
EEG recordings from 27 patients diagnosed with Parkinson’s disease (PD) and 27 control
participants (a control record was excluded from the current study due to its insufficient
duration), while the UI dataset included EEG recordings from 14 PD patients and 14 control
participants. For the PD patients from the UNM dataset, EEG recordings were obtained
during the OFF medication sessions, specifically in the defined OFF levodopa period, which
occurred 12 h after the last dose of dopaminergic medication.

As discussed by Anjum et al. [27], the control participants were carefully matched
with the PD patients in terms of age and sex, and there were no significant differences in
education or pre-morbid intelligence measurements between the two groups. Parkinson’s
disease patients underwent neuropsychological and questionnaire assessments in their
ON state, with a neurologist administering the United Parkinson’s Disease Rating Scale
(UPDRS) motor scores. Resting state EEG recordings were acquired from UNM subjects in
both eyes-open and eyes-closed conditions, while EEG data from the 28 Iowa subjects were
recorded solely in the eyes-open condition. The details are shown in Table 1.

Table 1. PD and Control Participant Demographics.

Dataset UNM Iowa

Condition PD Control PD Control

Sex 17M 10F 17M 10F 6M 8F 6M 8F
Age 69.5 ± 8.7 69.5 ± 9.3 70.5 ± 8.7 70.5 ± 8.7

MMSE 28.7 ± 1 28.8 ± 1 - -
MOCA - - 25.9 ± 2.7 27.2 ± 1.7
UPDRS 22.2 ± 10.3 - 13.4 ± 6.6 -

Year since Dx 5.7 ± 4.2 - 5.6 ± 3.2 -
EEG recording (min) 3.59 ± 1 3.63 ± 1.8 3.11 ± 1.2 3.17 ± 0.9

BDI 7.6 ± 5.3 4.8 ± 4.8 - -
Year of Ed 17.3 ± 3.3 16.6 ± 3.1 16.6 ± 3.7 16.6 ± 2.8

Year of Ed (Parents) 12.5 ± 3.8 12.5 ± 3.1 - -
LED (mg) 707.4 ± 448.6 - 796 ± 409 -

NAART 45.2 ± 10.3 47.1 ± 7.5 - -

3.2. Pre-Processing

The EEG signals underwent a filtering process ranging from 0.1 Hz to 100 Hz, with a
sampling rate of 500 Hz, using two different 64-channel montages. In the UNM dataset,
the online reference was set to channel CPz, while in the Iowa dataset, it was set to channel
Pz. Consequently, after removing channels that exhibited differences across those two
montages, 59 channels were utilized for subsequent feature extraction and classification.
To address artifacts caused by eye blinks, independent component analysis (ICA) was
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employed, thus resulting in the extraction of 56 independent components [31,32]. Addi-
tionally, a 60 Hz notch filter was applied to eliminate interference from the power line.

For the UNM dataset, each EEG recording comprised two distinct sessions: one
with eyes closed and another with eyes open. Following the feature extraction process,
the features corresponding to these two events were identified and segregated into two
separate datasets.

The two events, namely eyes closed and eyes open, had a duration of 60 s each,
thus resulting in 30,000 samples for each event within a single recording. To facilitate
further analysis, both events were divided into 15 segments, with each segment containing
2000 samples. Within each segment, we extracted six sub-bands to enable additional feature
engineering. These sub-bands included delta (1–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz),
alpha2 (10–13 Hz), alpha (8–13 Hz), and beta (13–30 Hz). The boundary frequencies were
treated as separate sub-bands. To separate these sub-bands, we employed two methods: a
4th order Butterworth IIR filter and Wavelet Package Transform. From each sub-band, we
extracted multi-scale features, thus capturing diverse aspects of the EEG signal.

3.3. Feature Extraction

In order to extract multi-scale features from the aforementioned six sub-bands, both IIR
filtering and Wavelet Packet Transform were applied to extract the corresponding frequency
ranges from the original signal, as shown in Figure 2. We employed a 4th Butterworth IIR
filter as a band-pass filter and a notch filter to generate sub-bands and extract 13 features.
The purpose of the notch filter was to eliminate noise from the power frequency signals
at 60 Hz and 180 Hz. Next, we extracted the six sub-bands mentioned earlier from each
pre-processed segment by utilizing the IIR filter as six corresponding bandpass filters. From
each sub-band, we extracted a total of 13 features, thus consisting of 9 time domain features,
three frequency-domain features, and one entropy feature, as shown in Table 2, where
MAD represents for the mean value of the signal’s absolute deviation, which is expressed
as below:

MAD =
1
m

m

∑
i
|xi − u| i = 1, 2, · · · , m (1)

where xi represents the ith data point in the sequence, while u represents the arithmetic
mean value of the sequence. RMAV represents for the ratio of the absolute mean value be-
tween two sub-bands. To derive the remaining nine features, we employed Wavelet Packet
Transform using the db5 wavelet. For each segment, we utilized the pre-processed signal
without any resampling. In order to generate the 6 sub-bands, we set the decomposition
level to six, thus taking into consideration the Sampling Theorem. Specifically, we selected
six coefficients: AAAAAA6, AAAAAD6, AAAADA6, AAAADD6, AAAAD5, and AAAD4,
as illustrated in Figure. From these coefficients, we calculated nine features, as outlined in
Table 3.

As was mentioned before, there are two kinds of eye state in UNM dataset: eyes
open and eyes closed. Considering the significant differences in data collected based on
these two eye conditions and the non-parallel nature of the data collection process, we
applied our feature engineering separately to these two types of data, thus resulting in
corresponding feature sets, as shown in Table 4. For each participant with one eye state
and one feature extraction method, the dimensionality of the feature vector came out to
59 × 15 × 6 × 9 or 13. Here, 59 represents the common number of channels, 15 denotes the
number of segments, 6 indicates the number of sub-bands extracted, and 9 or 13 signifies
the number of extracted features depending on different feature extraction methods.
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Figure 2. Feature engineering structure for one segment signal, where features obtained from different
methods are stored separately.

Table 2. Features extracted from sub-bands generated by band-pass filter.

Scales Feature Types

Time domain Mean, Absolute Mean, Power Mean, Standard Deviation, Kurtosis, Skew-
ness, MAD, Interquartile Range for every Sub-Band and RMAV for Adja-
cent Sub-Bands.

Frequency domain Freqeuncy Center, Mean Value of Frequency and Root Mean Square of
the Frequency for Every Sub-Bands.

Entropy Sample Entropy for every Sub-Band.

Table 3. Features extracted from sub-bands generated using Wavelet Packet Transform.

Scales Feature Types

Coefficient Mean, Absolute Mean, Power Mean, Standard Deviation, Kurtosis, Skew-
ness, MAD, Interquartile Range of the Coefficients for every Sub-Band
and RMAV for Adjacent Sub-Bands.

Table 4. Dimensionality of the feature vectors in different feature datasets for one participant.

Eye States Feature Extraction Methods Dimensionality

Eyes Closed IIR 69,030
Wavelet 47,790

Eyes Open IIR 69,030
Wavelet 47,790

4. Channel Selection

Channel selection is one of the main contributions of this study. Our channel selection
was based on the UNM dataset, where the training set was used to train a simple SVM
model, and the validation set was used to evaluate the classification performance of each
channel. Figures 3 and 4 demonstrate the classification performance of each channel
after feature extraction using Wavelet Packet Decomposition. It is worth noting that
some channels shown in the images do not exist in the Iowa dataset and were ignored in
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subsequent testing. The evaluation metric for assessing the classification performance of
individual channels is the R2 score, and we set the threshold for channel selection at 0.7,
thus meaning that channels with an R2 score below 0.7 were not accepted. Following this
criterion, a total of 29 channels that met the requirement were selected based on the two
feature extraction methods. For the feature set derived from the 4th Butterworth IIR filter,
11 channels were selected: ‘Oz’, ‘F4’, ‘P8’, ‘CP2’, ‘Cz’, ‘Fp2’, ‘P2’, ‘FC5’, ‘T7’, ‘O1’, and ‘FC6’.
For the feature set derived from Wavelet Packet Decomposition, 22 channels were selected:
‘TP7’, ‘TP9’, ‘TP10’, ‘FC3’, ‘FC4’, ‘FC5’, ‘PO7’, ‘PO8’, ‘CP3’, ‘CP5’, ‘P1’, ‘P3’, ‘P4’, ‘P5’, ‘P6’,
‘P8’, ‘AF3’, ‘C4’, ‘F5’, ‘Oz’, ‘O1’, and ‘O2’. That is, 29 channels were selected in total. Figure 5
shows an example of the relationship between 20 selected channels’ feature values and
model outputs. In order to visualize this relationship into a 2D figure, we simply took the
average value of all feature values for each channel, as the shown feature value. SHAP
(SHapley Additive exPlanations), which is a method rooted in game theory that elucidates
the results of machine learning models, was applied by using a SHAP Python tool to
describe the impact on model output for every feature value in this figure [33]. Therefore,
positive correlation in this diagram can be observed as high feature values accompanied
by positive SHAP values, and all these 20 channels showed a positive correlation with the
model output.

Figure 3. Single-channel evaluation R2 score result for eyes-closed (a) and eyes-open (b) feature
dataset extracted by Wavelet Packet Transform.

Figure 4. Single-channel evaluation brain maps for eyes-closed (a) and eyes-open (b) feature dataset
extracted by Wavelet Packet Transform. The color bar refers to the R2 score, and high R2 score means
high single-channel classification performance.
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Figure 5. Relationship between channel feature value and the model output.

5. Results

In the multi-channel classification task, six machine learning models were employed:
Logistic Regression (LR), KNN, SVM, AdaBoost, XGBoost, and Random Forest. Logistic
Regression had a maximum iterate number of 5000, while KNN used seven neighbors.
The linear kernel was applied to SVM, just like in the single-channel evaluation task. The
learning rates for AdaBoost and XGBoost 1.5.1 were both set to 0.01. AdaBoost terminated
boosting at a maximum of 50 estimators, while XGBoost had a gamma value of 0.05. The
Random Forest model had a default setting of 100 trees. Considering the objectives of this
study, as well as the complexity and limited interpretability inherent in deep learning, we
have not devised a comprehensive deep learning EEG classification framework. Instead, a
simple neural network with two fully connected (FC) layers with layer sizes of 512 and 1
was employed as a classifier. The dropout rate was set to 0.2 after the first FC layer, and we
chose binary cross entropy as the loss function; the optimizer was Adam, as usual. All the
parameters were selected by applying a grid search. For training and testing, data with
features from all channels and the best channels were used separately. The results were
presented and compared in our previous study [18]. In this session, we will briefly give
the overall evaluation results on the UNM dataset, which are shown in Table 5 and mainly
focus on the channel selection results and the out-of-sample testing.
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Table 5. Overall accuracy results with all 22 features on two eyes states with different numbers
of channels.

State

Models

LR KNN SVM AdaBoost
XGBoost

RF ANN
Tree Linear

Eyes 29 best channels 93.75% 93.75% 100% 75% 87.5% 93.75% 87.5% 93.75%
closed All 59 channels 93.75% 87.5% 93.75% 81.25% 87.5% 81.25% 87.5% 62.5%

Eyes 29 best channels 87.5% 62.5% 81.25% 75% 75% 81.25% 81.25% 93.75%
open All 59 channels 81.25% 62.5% 81.25% 81.25% 75% 75% 75% 62.5%

We conducted testing on the evaluation set of the UNM dataset and calculated the
R2 score, which is shown in Figure 6. The possibility of selecting fewer channels to
significantly reduce the dimensionality of the features was also evaluated by comparing the
classification performance of two feature extraction methods, along with their respective
channel selection schemes and the intersection of these schemes. The experimental results,
presented in Figure 7, provide insights into the assessment of selecting fewer channels to
achieve a greater reduction in feature dimensionality.

Figure 6. R2 score comparison on eyes-closed evaluation set.

Due to the availability of only open-eye state data in the Iowa dataset, we designed
two training schemes for out-of-sample testing: one using only open-eye state data from the
UNM dataset as the training set and the other using both eye states from the UNM dataset.
Both schemes utilized the Iowa dataset as the test set, and the results are presented in
Table 6. When using the UNM (open-eye) dataset as the training set and the Iowa (open-eye)
dataset as the test set, the LR model performed the best, thus correctly classifying 24 out of
28 samples, followed by the SVM and other models, with 23 out of 28 samples correctly
classified. All models showed better performance compared to the results obtained from
testing within the UNM dataset, with an average increase in accuracy of approximately
0.03 and a negligible average decrease in the R2 score of less than 0.01.
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Figure 7. Comparison between different channel selection schemes on eyes-closed dataset.

Table 6. Out-of-sample Test Results.

Score Type Eye State LR KNN SVM AdaBoost XGBoost-Tree XGBoost-Linear RF ANN Mean

Accuracy
eyes open 0.857 0.714 0.821 0.821 0.821 0.821 0.786 0.821 0.808

eyes open & closed 0.857 0.786 0.857 0.821 0.821 0.786 0.786 0.929 0.829

Sensitivity
eyes open 0.786 0.714 0.714 0.929 1.0 0.714 0.643 0.786 0.786

eyes open & closed 0.714 0.623 0.714 0.929 0.929 0.642 0.571 0.929 0.754

Specificity
eyes open 0.929 0.714 0.929 0.714 0.643 0.929 0.929 0.857 0.830

eyes open & closed 1.0 0.929 1.0 0.714 0.714 0.929 1.0 0.929 0.901

AUC_ROC
eyes open 0.841 0.783 0.832 0.796 0.827 0.821 0.849 0.821 0.821

eyes open & closed 0.827 0.855 0.852 0.816 0.841 0.786 0.867 0.929 0.845

R2 Score
eyes open 0.714 0.678 0.786 0.714 0.75 0.75 0.679 0.286 0.676

eyes open & closed 0.786 0.786 0.75 0.786 0.714 0.679 0.714 0.714 0.742

Furthermore, the results obtained by combining open-eye and closed-eye samples
from the UNM dataset for training showed improvements compared to using only open-eye
data. The average increase in accuracy was approximately 0.01, while the average decrease
in sensitivity was around 0.05. On the other hand, the average increase in specificity was
approximately 0.07, and the average increase in the area under the curve (AUC) was around
0.01. Additionally, the average increase in the R2 score was approximately 0.02.

6. Discussion

Our findings, as shown in Figure 6, indicate that the dataset with channel selection
achieved a higher average R2 score compared to the dataset with all channels for the
seven classifiers examined. Specifically, the KNN, XGBoost-linear, and Random Forest
models showed improvements, while the AdaBoost and XGBoost-Tree models exhibited
noticeable decreases in performance. However, when considering the overall picture, the
classification models without the application of channel selection demonstrated a relatively
poorer fit on the test set but showed better fit on the training set. This suggests that the
utilization of all channels during training led to the occurrence of overfitting, thus resulting
in inferior performance on the test set. These findings also demonstrate the successful
implementation of our channel selection approach, which effectively balances the need for
excellent classification performance (accuracy, sensitivity, precision, etc.) while mitigating
the overfitting associated with involving all channels in the classification process.
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Considering further selection of the chosen channels, we took the intersection (4 chan-
nels) and union (29 channels) of the channel selection results based on traditional multi-
scale features (11 channels) and statistical features of the wavelet coefficients (22 channels).
We then performed cross-validation on the training set to obtain the average R2 score
and compared it with the R2 score on the test set. According to Figures 7 and 8, it was
observed that using the 11 channels effectively reduced the R2 score on the training set
while maintaining a better accuracy and R2 score on the test set, whereas the 22 channels
did not exhibit the same behavior. Subsequently, testing the intersection (four channels)
revealed a significant decrease in the R2 score on the training set, but the accuracy, sensitiv-
ity, and R2 score on the test set exhibited excellent performance, thus averaging above 0.9.
This demonstrates that among the chosen 29 channels, the four channels ‘Oz’, ‘P8’, ‘FC5’,
and ‘O1’ primarily contributed to the observed effects (although the 11-channel scheme
exhibited better classification accuracy on the test set). The accuracy and R2 score reflect
the classification performance and fitting degree on the respective test sets, and higher
values indicate better model performance. According to Figure 8, it is evident that the
29-channel selection scheme remains the most reliable, with the majority of results concen-
trated above an R2 score of 0.7 and an accuracy of 0.8. Moreover, the R2 score exhibited
minimal fluctuations in the high accuracy (0.9) region, thus consistently hovering around
0.8 and 0.9 and indicating good generalization ability of this scheme. Further testing can be
conducted on out-of-sample data. In contrast, the four-channel selection scheme clearly
exhibited severe overfitting, and therefore, this scheme was not considered for subsequent
out-of-sample validation. It is worth noting that the 11-channel scheme showed similar
performance, with an R2 score above 0.6 and an accuracy above 0.7. Although it is not as
outstanding as the 29-channel scheme, it can be considered as an alternative depending on
the specific application. However, it showed a larger fluctuation range in the high accuracy
(0.9) region, thus indicating poorer generalization ability.

Figure 8. Comparison of 10 rounds of three-fold cross-validation results between different channel
selection schemes on eyes-closed dataset.

From our out-of-sample testing results, it is evident that the proposed channel se-
lection scheme has passed the external testing phase and exhibited comparable or even
better performance than the original internal testing conducted on the dataset. Moreover,
we observed that incorporating both open-eye and closed-eye samples in the training set
was beneficial for classifying EEG signals under the open-eye state. We speculate that this
improvement can be attributed to the fact that EEG signals recorded during the closed-eye
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state are purer, with less noise compared to signals obtained during the open-eye state.
Participants also experience less interference during the closed-eye state, thus making
the signals closer to the theoretically pathological original signals and more valuable as
references. In other words, training the machine learning model with a combination of
closed-eye and open-eye datasets helps the model consider the features of both scenar-
ios comprehensively and adjust the confidence intervals to approach the real range of
Parkinson’s disease onset. This, in turn, improves the classification of signals under the
eyes-open condition.

7. Conclusions

EEG has proven to assist in the clinical diagnosis of Parkinson’s disease. However, the
computational costs associated with feature engineering and machine learning training
on EEG signals are substantial, which hinders the monitoring and assisted diagnosis of
Parkinson’s disease in uncontrolled environments such as homes. Numerous studies have
been conducted in this direction. In this paper, we conducted a study utilizing the publicly
available UNM dataset and proposed a Parkinson’s disease EEG classification model
based on machine learning and traditional feature extraction techniques. We effectively
reduced the feature dimensionality by employing a single-channel selection approach, thus
theoretically reducing it by more than half. The proposed channel selection scheme not
only achieved a maximum classification accuracy of 100% within the UNM dataset but also
demonstrated its generalization capability through out-of-sample testing using the Iowa
dataset. This verifies the effectiveness and generalizability of our channel selection method.
In the future, we aim to develop an automated EEG channel selection model utilizing deep
learning techniques based on our current methods. This model is designed to provide
tailored channel selection schemes for individual Parkinson’s patients. Additionally, we
anticipate extending this approach to other EEG-related tasks, such as epilepsy diagnosis
and emotion recognition, thereby enhancing its applicability and utility in various clinical
and research settings. We believe that this channel selection approach can provide valuable
insights for future research in related fields.
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Abstract: In order to improve the efficiency and accuracy of the modeling and design work of the
sluice gate project, this paper proposes an automatic generation template of the sluice gate project
with customized semantics and project layout scheme, aiming at realizing the rapid assembling of
all kinds of components of the sluice gate project. In the construction process, this paper first starts
from basic parametric modeling and proposes constraints as the basis of modeling. Subsequently,
a template library framework is developed based on the constraints to ensure that the generated
templates have a high degree of standardization and consistency. Finally, an efficient and flexible
template library is successfully constructed by using the customized classes and functions of Revit
API, which provides powerful technical support for the modeling and design work of sluice gate
engineering. This achievement helps to promote the informationization and intelligent development
of the water conservancy engineering industry, and its versatility and scalability also make it have a
wide range of application prospects in other water conservancy engineering fields.

Keywords: sluice gate engineering; Revit API; parameterized family; template library

1. Introduction

With the rapid development of information technology and the increasingly com-
plicated construction of water conservancy projects, the traditional design, construction,
and management of water conservancy projects have been difficult to meet the actual
needs of modern water conservancy projects. In this context, BIM (building information
modeling) technology came into being and has shown great application potential in the
field of hydraulic engineering. The core advantage of BIM technology is that it integrates a
three-dimensional digital model of multi-stage information such as design, construction,
and operation and maintenance. This model not only accurately expresses the physical
form of hydraulic engineering, but also deeply integrates its functional characteristics,
material properties, construction processes, and even operation and maintenance manage-
ment and other all-round information. For water conservancy projects, BIM of information
integration shows great potential and value, which promotes the improvement in de-
sign efficiency, the optimization of construction management, and the improvement in
cooperation ability [1–3]. Although in water conservancy projects, BIM technology has
shown some potential for application, it also faces a series of challenges and limitations,
such as information exchange and sharing between multiple specialties, which cannot
ensure the consistency and accuracy of data. Complex topography and dynamic water
flow conditions increase the difficulty and accuracy of model construction. In addition, the
non-uniformity of data interaction standards also hinders the smooth flow and utilization
of information [4,5]. Due to the complexity and specificity of water conservancy projects, it
often takes a lot of time and effort to optimize and integrate the model building process.
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Individual parametric models are relatively simple to build, but the real challenge lies in
the later integration process. The connection between each independent model is intricate
and complex, and it is necessary to accurately match the connection relationship between
terrain and structure. In addition, software operation, cutting, merging, and other fine
adjustments not only require superior skills but also bring a heavy workload, as each step
needs to be meticulous to ensure that the overall model exhibits seamless and efficient
operation. This paper focuses on considering the problems and solutions encountered in
the parametric modeling and integration process of complex buildings, the core reason for
which is that the application of BIM technology or the practice of the digital twin concept
cannot be separated from the most basic model parameterization and accuracy. Parametric
modeling is the core of BIM technology which defines components and elements in a
parametric way and establishes the relationship between parameters and models [6–8]. The
fusion of parametric models and parameter rationality, which together ensure the efficient
and accurate combination of components to form a complete and consistent model, is also
an important aspect in the application of BIM technology.

The sluice gate project is a class of low-head hydraulic structures built on rivers, lakes,
channels, seawalls, or reservoir banks [9,10]. Multiple studies have shown that it is now
possible to create parametric drive models of buildings related to sluice gate engineer-
ing in Revit 2020 software and effectively perform complete stitching of resources and
models [11–16]. The earliest study by Ren et al. [11] proposed a system of BIM integrated
into a design solution by taking a small pump gate project as an example, applying BIM
technology to realize the modules of modeling, collaboration, collision, drawings, and
reports in the design stage. Jiang et al. [12] performed parametric modeling of a sluice
gate, ad extraction of the model’s quantities, and preparation of project estimates by means
of secondary development, which further confirmed the practicality and applicability of
BIM technology. Jiang et al. [13] showed that combined with the characteristics of dif-
ferent cross-section types of farmland channels, the Revit API interface is used to carry
out the secondary development of Revit software, and intelligent modeling and three-
dimensional reinforcement methods for farmland channels are proposed. Yuan et al. [14]
analyzed the deficiencies in the construction safety process using BIM technology and a
safety knowledge base for several hydraulic buildings. In addition, there are studies on
similar buildings, such as Zhang et al. [17]. A new geological model building method was
proposed by adopting a topological geometry modeling strategy and using parametric
modeling. Geng et al. [18] established a water conservancy project construction progress
management system based on building information modeling and GIS, which provides
a three-dimensional dynamic visualization environment for water conservancy projects,
and fine control of a water conservancy project’s volume and progress plan management.
Zhang et al. [19], with the combination of BIM technology and WebGIS, proposed an ex-
tended IFC export method for hydropower projects and a data exchange method between
extended IFC and batch 3D Tiles, and the validity of the method was verified through a case
of design modification of a crushed concrete gravity dam. Gong et al. [20] developed an
automated assembly program that can be used for tunnel tube sheets, which also involves
different levels of parametric framework construction and application. From most of the
literature, it can be seen that at present, the fully parametric sluice model is basically solved,
and even the accuracy of the model has reached a high degree, but the research on the
accurate construction and automated assembly for the complex constraint relationship
between models is still insufficient; complex buildings still take a lot of time to assemble,
and some of the models may lose the comparative advantage of efficiency compared to
two-dimensional modeling due to collision problems. In particular, how to efficiently and
accurately define the physical, geometric, and functional constraints between different
model components in sluice gate engineering, as well as how to realize the intelligent
and automated assembly and integration of these models, is still a challenge to be solved.
Therefore, it is necessary to study the efficient integration method of the model and explore
new ways to effectively improve modeling efficiency and quality. Taking a sluice gate
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project as a case study, this paper aims to reveal the parametric modeling and efficient
integration of the sluice gate model, and with the help of Revit’s secondary development
means, it further proposes the parameter semantics of each component and an automation
arrangement scheme to simplify the modeling process and improve the efficiency of model-
ing, so as to meet the urgent needs of the water conservancy engineering field for efficient
and accurate modeling.

2. Revit Secondary Development Technology

2.1. Revit API Toolkit

Revit software is a series of software designed for building information modeling
(BIM) developed by Autodesk, through which Revit can effectively solve the problem of
model-driven design and improve the efficiency and quality of design [7,21]. In order
to meet specific project requirements, the functionality of Revit software needs to be
extended and customized, usually by using Revit API for in-depth development or writing
Revit built-in scripts for automation. Also, to simplify repetitive tasks, the Revit macro
editor is utilized. The majority of Revit external applications in use today are installed
on the platform through a variety of secondary development routes that provide a wide
range of customization options and enhancements [22,23]. Among them, Revit API, as
the most direct and powerful development tool, provides developers with the ability to
interact with Revit’s core functionality in depth and is the preferred method to achieve
customized functionality extensions [24,25]. Revit API contains a rich set of namespaces,
classes, and their functions and attributes, which are resources that provide strong support
for secondary development and greatly reduce the difficulty of development, enabling
developers to extend and customize the functionality of Revit software more efficiently.
In the development of the template library, a variety of Revit API built-in functions and
classes are used, such as using the methods in the Document class to create, delete, or
modify elements, and using the Transaction class to encapsulate changes to ensure that
they are executed in a single transaction. For view manipulation, the View class and
its subclasses are used to obtain, create, or modify views. While built-in functions can
address the implementation of basic functionality, they are not designed to be “plug and
play” solutions for specific applications or template libraries. Therefore, when developing
template libraries for automated family assembly, custom classes or functions are often
needed to meet specific functionality requirements to support automated family alignment
and accurate model placement. Table 1 shows the main Revit API custom functions or
classes used to build template libraries.

Table 1. Main functions or classes of template library.

Name Clarification

TemplateArrangeView Template layout view

TemplateArrangeVm Template layout view model

DrawingCanvas Customized drawing boards

TemplateConfigView Template setting view

WindowPlaceBottomPlate Placing the baseboard window

PlaceBottomPlateVm Placement of the base plate view model

IPlaceLockChamberBottomPlate Docking board interface

WindowPlaceWingWall Placement of wing wall windows

PlaceWingWallVm Placement of wing wall view model

Revit API provides two ways to extend its functionality: one is the IExternal Command
interface, which is used to define external commands, in which the user clicks on the added
command button to launch the corresponding command generated by the secondary
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development; and the other way, the IExternal Application interface, is used to create
an external application, i.e., to add menus or toolbars, which is automatically executed
when Revit starts and shuts down. Since IExternal Application provides a higher level
of extensibility, it is common to use IExternal Application to overload OnStartup( ) and
OnShutdown( ) functions to realize the development of functions.

2.2. Interface Development

WPF (Windows Presentation Foundation) is a Microsoft graphical presentation system
based on the .NET Framework that provides a rich set of controls and layout options that
enable developers to easily create beautiful and easy-to-use user interfaces [26,27]. WPF
introduces data-driven core concepts such as DataDriven, DataBinding, and the XAML
language which significantly separate the user interface (UI) design from the underlying
logic. At the same time, WPF utilizes the DirectX underlying interface, its powerful graphics
vector-rendering engine compared to the previous generation of CDI/GDI + programming
model, to achieve a qualitative leap. Therefore, WPF in the field of interface development
has occupied a significant position. The MVVM design pattern is a software architecture
pattern for developing GUI applications that separates the user interface (View) from
the business logic (Model) and introduces an intermediate layer, called ViewModel, to
coordinate the interactions between View and Model [13,28]. The MVVM pattern makes
full use of the XAML in WPF and the DataBinding features, layered to achieve functional
modularity and reduce the coupling between individual modules, so that the program’s
architecture is clear and the functionality is clear, while facilitating collaborative team
development. When developing a Revit API-based automatic family template library in
MVVM mode, the ViewModel layer calls Revit API to realize the interaction with BIM,
performs the reading, modification, and updating of BIM model, and ensures that the
application logic is seamlessly integrated with the Revit environment. The View layer is
responsible for the display and interaction of the user interface through rich interactive
elements and collects user input feedback to be processed by the ViewModel layer so
as to realize a clear separation of user interactions and business logic. The Model layer
manages business data and logic, organizes and manages data, stores core information
such as template configuration and parameter settings, and provides solid data support for
the template library. The three work together to realize the functional requirements and
ensure the effective separation of interface design and business logic. The use of MVVM
mode needs to be fully understood and prepared for the development environment and
the need to call the Revit API classes or functions to ensure that the development process
can efficiently use the API to achieve the operational requirements of BIM. The specific
development process is shown in Figure 1.

 

Figure 1. Revit software customization development process based on MVVM pattern.
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3. Sluice Engineering Template Library Creation

3.1. Revit Parametric Design Routine Flow

Parametric design, which is based on a set of predefined parameters to create, modify,
and control a design model, represents a more intelligent and efficient way of thinking
about design [29,30]. The set parameters can be geometric dimensions, material properties,
mechanical properties, etc., which together define the characteristics and behavior of the
model. By adjusting the parameters, the model can be rapidly iterated and optimized to
meet different design requirements and constraints. In parametric design, the dimensional
parameter-driven process is a core concept implying precise control by tuning specific
dimensional parameters [31,32]. Figure 2 shows the conceptual flowchart of conventional
parametric design, which shows that the first step is to preset the basic parameter frame-
work of the model and then achieve the flexible modification of model dimensions and
attributes by continuously adjusting these parameters. This process is repeated until the
model fully meets the requirements, which also reflects the advantages of efficient iteration
and precise control of parametric design. For the modeling of Revit-driven models of
conventional hydraulic buildings, one can refer to a study written by the authors [16]. In
this study, the core of parametric modeling focuses mainly on the 3D semantics of sluice
gate engineering components and the definition of their constraints.

 

Figure 2. Conceptual flowchart of parametric design.

3.2. Definition of Constraints

In the process of parametric modeling of the sluice gate project using Revit, given that
the overall model is pieced together by multiple families of components, it is necessary to
determine the constraints between the components before building to ensure precise articu-
lation between the components. By determining the constraint relationships, the modeling
sequence of the components can be further judged and optimized. Subsequently, models
or auxiliary graphics such as geometries, reference planes, and dimensional annotations
are created. Next, the key step of model parameterization is carried out by associating the
reference plane with the model boundary and closely associating the dimension annotation
with the parameters. For example, for the gate pier model, according to the spatial location
of the relationship between the components and the need for structural stability, the bottom
of the gate pier must be strictly constrained in the elevation of the base plate and the use of
fixed constraints must be fixed. Therefore, when building the gate pier model, parameter
adjustment of the height of the gate pier should be limited to the upward extension, and its
bottom elevation should be kept constant, as any change may affect the accurate position
of the base plate. Through the above analysis of the gate pier, it can be argued that the
components need to be set between the rigorous articulation relationship in order to ensure
the accuracy of model construction while achieving the flexibility of the adjustment of
parameterization. Figure 3 is a schematic diagram of the main constraints between the
components of the sluice gate project.

Special attention should be paid to the fact that, according to the constraint relationship
of each component, in order to facilitate the overall layout and avoid constraint conflicts,
it is necessary to build the model from the most constrained component first. The order
of building components should not only consider the articulation between components,
but also consider the stability and integrity of the overall structure. As shown in Figure 3,
the gate pier, as the most constrained component, should be built first. On this basis,
the bottom plate and gate can be further parameterized through modeling to ensure that
they are smoothly connected with the gate pier. After completing the modeling of the
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bottom plate and gate, the dissipative pool, cover, wing wall, and other parts are gradually
modeled to ensure that the entire model construction process is orderly and efficient.

Figure 3. Schematic diagram of main constraints of each member of sluice project.

3.3. Custom Semantics and Project Layout Scheme Definition

Before the development of the template library, the original abstract project layout is
constructed by humans, using the data storage technology to achieve its concretization,
and then the “custom semantics and project layout” is created. Therefore, the essence of
the sluice gate project template library is the “custom semantics and project layout plan”
for automated modification, saving, and transfer. “Customized semantics and project
layout” are based on JSON format, which is used to record component information and
layout. In this project, each individual component of the lock project is abstracted into
the class TemplateArrangeData, which contains six generic pieces of information, namely
name, location, size, whether it is slit or not, load family, and load family type. For
specific components, such as base plates, in addition to the generalized data, several
pieces of information are included in the dimensions, such as length, thickness, width,
bedding thickness, toothed wall thickness, toothed wall angle, etc., with different types of
dimensions defined for each component. The parameters of the main setup semantics are
shown in Table 2. The semantic representation of specific constructs is as follows:

public class TemplateArrangeData : BaseViewModel
{//Name
public BuiltInCType Name { get; set; }
//Location
public Point Location { get; set; } = new Size(152.36);
//Size
public Size Size { get; set; } = new Size(4000,500,3200,100,300,30,100,300,30);
//HasParting
public bool HasParting { get; set; }
//Family Name
public string Family { get; set; }
FamilySymbol Name.
public string FamilySymbol { get; set; }}.
In the preliminary parametric modeling process, the constraints and articulation

conditions between the components were studied in detail, and a set of construction
sequences were developed, which are, in order, gate piers, bottom plates, gates, dissipative
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pools, decks, wing walls, etc. The components were then serialized into JSON files with the
file extension “proj”. After these components were set up through the human–computer
interface, they were serialized into JSON files with the suffix “proj”. Each project layout
plan contains a Name field, which is named by the user when saving. At the same time,
the “Data” field records the TemplateArrangeData array and records the content of the
project layout.

Table 2. Setting of main parameters of each component.

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6

gate pier length height height depth of Tank 1 length of Tank 1 distance of Tank 1
from upstream

base plate height length height thickness bedding thickness angle of tooth
wall 1

sluice gate height height thickness border width rib width rib thickness

dissipative pool length height thickness plane
diffusion angle downslope Height height of tooth

wall No 1

wing wall front width of
base plate

thickness of
base plate

back width
of base plate wall width wall height wall chamfer

width

3.4. Module Development

Based on the “custom semantics and project layout scheme”, the process of realizing
the rapid assembly of the template library can be divided into two steps. In the first
step, on the basis of the three-dimensional model of the sluice gate, the three-dimensional
semantic model and the plane pre-arrangement design plan are imported to generate the
project layout plan file (*.proj), and the second step is to instantiate the model in the project
space according to the file and assemble the model of the whole project. The instantiation
operation is generally a step-by-step operation, according to the modeler’s modeling habits
of step-by-step instantiation, and each step can modify the parameters of the components
according to the needs of the gradual assembly of the model. The template library is fully
compliant with the “custom semantics and project layout scheme” file, and instantiation is
performed silently. In this form, the system automatically reads the semantic information
and completes model instantiation according to the preset rules and parameters. The
entire process requires no manual intervention from the user, which greatly improves work
efficiency. The generated “custom semantics and project layout scheme” file will be saved
in the data folder of the platform root directory, which can be modified and reassembled
after engineering optimization. Therefore, the function of the template library is mainly
centered on four core aspects, which are as follows: (1) Support for floor plan layout
pre-design. After defining the data semantics and business logic in the Model layer, it is
in the View layer so that the user can carry out preliminary layout planning. (2) Support
step-by-step assembly. Define the adjustment parameter mechanism in the Model layer
to allow users to modify the parameters of building blocks in each step to meet specific
needs. (3) Support silent assembly. Define instantiated interaction logic in the Model layer
to provide the automated assembling process. (4) JSON-based persistence of the project
layout scheme. Support importing/exporting JSON configuration files to load/save the
project layout scheme, which facilitates the sharing and reusing of the design results.

4. Project Case

4.1. Project Overview

The Xingou River Extension and Dredging Project is a project approved by the State
Council for the comprehensive improvement in the water environment in the Taihu Lake
Basin, and is also one of the key projects for the implementation of the flooding of the basin
to the north of the Yangtze River in the Taihu Lake Basin Flood Control Plan. The object
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of this study is the construction of a sectional gate with two holes of a net width of 12 m
and a gate bottom plate with a top elevation of −0.12 m, using a reinforced concrete dock
structure, with a rising horizontal plane steel gate. Figure 4 shows the main structural
diagram of the sluice gate, which shows the bottom plate and mat structure with toothed
walls, and the dissipation pond is also set with multiple toothed walls and is indented on
the left and right sides. The upstream wing wall structure has a curved shape, while the
upper part of the gate pier is skillfully designed with construction details that are closely
connected with the working bridge and the gate chamber; so, the overall structure of the
sluice gate is relatively more complicated. The main building level of the gate is level 3, the
secondary building is level 4, the peak acceleration of ground vibration is 0.1 g, and the
basic intensity of any corresponding earthquake is degree V.

   
(a) pier (b) working bridge center pier (c) sluice gate 

   
(d) wing wall (e) berms (f) dissipation pool 

Figure 4. Partially parameterized family models.

4.2. Parametric Modeling

The sluice gate consists of several components, and in order to ensure that the model
can be efficiently spliced and maintain the integrity of the whole structure, the main
model is divided into three partitions, namely the gate chamber section, the upstream
connecting section, and the downstream connecting section, to create the model. Through
the constraint framework system set up in the previous stage, the geometry, reference
planes, and parameters were created in detail, and the association between parameters and
annotations, reference planes, and models was realized. A total of 42 parameterized custom
families were created without counting the system families, and each family was carefully
designed and optimized to meet the complex needs of the sluice model, and the specific
families created are shown in Table 3. Among them, the construction of the handrail arc
wing wall family is relatively complex, as each wing wall family is a combination of the
wing wall as well as the main body, handrail array model, triangular angle, trapezoidal
tooth chop, wave protection wall, bedding and other ancillary components. The wing wall
families use adaptive conventional model templates, and adaptive points can be created
by modifying the reference points. The geometry drawn by capturing the adaptive points
will produce adaptive components. During the construction process, for model flexibility,
the wing wall body is divided into two parts: the base plate and the vertical wall. The
base plate is further divided into the front toe plate and the back toe plate, but there is no
dividing line in the middle, and the height and width of the divided model are used as the
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reference variables. The handrail array is a model made up of a single handrail arrayed on
a segmentation path and controlled by parameters such as upper and lower bottom widths,
width, and height. The other families of models are usually relatively simple to model, and
the parameter settings and controls are more intuitive and easier, so they are not described
in detail. Figure 4 shows a partially created parametric family model.

Table 3. A parameterized family breakdown of the Shiyan sluice gate.

Triangular shear model Triangular stiffening rib based
on circular arc (right) Linear cavities Center pier

Pedestrian bridge Triangular stiffening rib based
on circular arc (left) Circular toothed curb Center pier trim

Gate chamber base plate Triangular stiffener rib based
on straight line (right) Concrete berm (upstream) Working bridge center pier

Arc handrail Triangular stiffening rib based
on straight line (left) Concrete berm (downstream) Side piers

Waveguard De-stressing pool Elevation gate Side pier trim
Circular wing wall Cow leg Wing wall shear model Working bridge side piers

Circular wing wall bedding Straight line bedding toothed
cantilever Footbridge Upstream

Rounded corners Straight line handrail Side pedestrian bridge Downstream

Straight corners Linear waveguard Drainage holes (surface-based,
cross-alignment) Rounded steel parapet (right)

Straight wing walls Chamfering of linear
waveguards Straight steel parapet Rounded steel parapet (left)

Straight wing wall bedding Concrete bottom protection

4.3. Application of the Template Library

The template library mainly realizes the extension of the functional area through the
external application (IExternal Application) and invokes the external command to display
the interactive window for each model parameter input. Therefore, on the basis of the
“custom semantics and project layout scheme”, relying on the Visual Studio platform,
combined with the NET Framework, using C# programming language, and combined with
the above mentioned several custom classes and functions, we can build and extend the
functionality of the template library to achieve richer and more efficient family splicing and
management. Here, we take two representative complex components, the wing wall and
base plate, as our main focus to elaborate on the specific implementation of the template
library. TemplateArrangeView is an XAML file of a template layout page which is rendered
directly into a template layout view. Based on the MVVM programming model, the view
has a unique corresponding view model TemplateArrangeVm, and also contains a custom
control DrawingCanvas. The TemplateArrangeVm view model covers the template layout
view of the save, import, view, list, delete, add, edit, etc., operations. Therefore, through
the cooperative work of TemplateArrangeView and TemplateArrangeVm, it can realize
the efficient display of the template layout interface and the user interaction functions.
DrawingCanvas, as a custom control in TemplateArrangeView, rewrites the Canvas control
in the WPF standard, adds mouse operation functions, and is a special element in View.
DrawingCanvas provides important APIs such as ClearCanvas, DeleteVisual, AddVisual,
ReDraw, CenterVisuals, and so on, which are available to TemplateArrangeView, and
provides powerful dynamic management functions for the TemplateConfigView, which is
also a special element in View that can change the river direction and the number of sluice
holes, and pre-read the “*.proj” custom project layout file to quickly load and configure the
existing template layout. This saves time and effort in setting up the project from scratch.
On the basis of the template layout and operation functions, WindowPlaceBottomPlate is
used to place window templates, make further changes to labels and view models, and
provide an interface for inputting calculation parameters. For bottom plate members,
the properties of width and length can be regulated through the PlaceBottomPlateVm
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view model. PlaceBottomPlateVm is a component of the ViewModel layer. During the
instantiation process, IPlaceLockChamberBottomPlate placement logic is used to create
elevations (LevelSet) for the bottom plate model, read model parameters entered by the user,
locate operations, call the view window, place the model, and perform a series of operations.
IPlaceLockChamberBottomPlate and the processing logic of the other classes is similar. For
the wing wall component, WindowPlaceWingWall is the xaml file for placing the window of
the wing wall. Since the wing wall is constructed by the self-adaptive conventional model,
the placing window is a little bit more complicated, but it also provides a human–machine
interface for inputting the parameters of the calculation. PlaceWingWallVm is the view
model for placing the window of the wing wall. DrawWingWallVmParameter contains
the path information (straight line, circular arc) and style information (cantilever, handrail,
empty box) of the wing wall, and WingWallModelCurveCopyOptions indicates the copying
method of the wing wall. Through the effective realization of the above functions, a
complete and accurate overall model of the sluice gate can finally be flexibly pieced
together, thus greatly improving the efficiency and accuracy of water conservancy project
design. Figure 5 shows the specific assembly process diagram of the sluice gate.

  
  

  

Figure 5. A diagram of the assembling process of the sluice gate.

The custom-developed template library is a set of procedures developed to solve the
problems induced by model assembly, mainly through the “custom semantics and project
layout scheme”, achieving the intelligent assembly of sluice gate projects so as to solve the
complexity and uncertainty of the interface between models. Therefore, it can be considered
that on the basis of parametric family modeling, making full use of the Revit API function
and combining this with the MVVM development mode, the automatic assembly process
of sluice gate project models can be realized quickly.

5. Conclusions

The complex process of the parametric modeling and integration of sluice gate en-
gineering is explored in depth, and an efficient and reliable solution for sluice gate en-
gineering design is provided through the introduction of inter-model constraints and
an automatic assembly template library based on Revit API. The outcome is specifically
summarized in the following two aspects:

(1) Parametric modeling steps that consider constraints between components. The build-
ing sequence is determined based on the constraints, which ensures the reasonableness
of the model assembly, and moreover, it improves the model’s precision at the source
and enhances the accuracy of the model’s construction.
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(2) The development of a template library for sluice modeling for automated assembly.
Based on the development of Revit API, a template library for the automatic assembly
of each component of the sluice project was created, which greatly simplifies the
process of model construction and improves work efficiency. The template library
for automated modeling not only solves the cumbersome procedures and model
errors induced by model assembly, but also provides a strong tool support for future
water conservancy project design. The template library is not only a revolutionary
simplification of the traditional modeling process, but also a far-reaching layout for
future water conservancy engineering design practice.
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Abstract: In Mobile Crowdsensing (MCS), sensing tasks have different impacts and contributions to
the whole system or specific targets, so the importance of the tasks is different. Since resources for
performing tasks are usually limited, prioritizing the allocation of resources to more important tasks
can ensure that key data or information can be collected promptly and accurately, thus improving
overall efficiency and performance. Therefore, it is very important to consider the importance of tasks
in the task selection and allocation of MCS. In this paper, a task queue is established, the importance
of tasks, the ability of participants to perform tasks, and the stability of the task queue are considered,
and a novel task selection and allocation scheme (TSAS) in the MCS system is designed. This scheme
introduces the Lyapunov optimization method, which can be used to dynamically keep the task
queue stable, balance the execution ability of participants and the system load, and perform more
important tasks in different system states, even when the participants are limited. In addition, the
Double Deep Q-Network (DDQN) method is introduced to improve on the traditional solution of
the Lyapunov optimization problem, so this scheme has a certain predictive ability and foresight on
the impact of future system states. This paper also proposes action-masking and iterative training
methods for the MCS system, which can accelerate the training process of the neural network in the
DDQN and improve the training effect. Experiments show that the TSAS based on the Lyapunov
optimization method and DDQN performs better than other algorithms, considering the long-term
stability of the queue, the number and importance of tasks to be executed, and the congestion degree
of tasks.

Keywords: mobile crowdsensing; task importance; Lyapunov optimization; double deep Q-network;
action mask

MSC: 60K25; 68M20; 90C15

1. Introduction

Mobile Crowdsensing (MCS) [1] introduces a novel sensing methodology by leverag-
ing intelligent devices embedded with a variety of sensors to gather sensory information.
In comparison to traditional static sensor networks, MCS eliminates the prerequisite of
pre-deploying a substantial sensor infrastructure, thereby offering significant benefits,
including reduced costs, scalability, real-time capabilities, and enhanced efficiency. Conse-
quently, MCS has found widespread application in domains such as smart city management,
environmental surveillance, and data acquisition [2–5].

Typically, an MCS system architecture, as illustrated in Figure 1, encompasses a central
platform collaborating with a multitude of participant devices [6]. The process is initiated
when external applications requiring data transmit sensing tasks to the platform. The
platform assumes the pivotal role of task mediation, meticulously evaluating both the
specific requirements of the tasks and the current state of the participants. By undertaking

Mathematics 2024, 12, 2471. https://doi.org/10.3390/math12162471 https://www.mdpi.com/journal/mathematics363



Mathematics 2024, 12, 2471

a comprehensive analysis, it formulates a strategic task allocation scheme to match tasks
with the most suitable participants [7].

 

Figure 1. The composition of the MCS system.

Participants undertake the assigned tasks and subsequently forward the accumulated
data back to the platform. Here, the platform undertakes the tasks of securely storing
and processing the data and subsequently transmitting them to the requesting external
applications and generating revenue. Thus, MCS effectively integrates the sensing capacity
of participants with the diverse demands of data-reliant applications [8,9].

In Mobile Crowdsensing (MCS), tasks vary in their impacts and contributions to the
overall system or specific objectives, leading to a differentiation in their levels of importance.
Take environmental monitoring [10] as an illustration: detecting hazardous gas leaks may
hold greater importance than routine air quality monitoring, given its direct implications
for public safety. By identifying and prioritizing tasks that pose higher risks or possess
greater importance, potential hazards and losses can be mitigated while enhancing the
system’s responsiveness and crisis management capacities.

Similarly, in military strategizing, the prioritization and importance of tasks exert a
direct influence on higher-level decision-making processes. Tasks deemed highly important
may demand data of superior quality or a higher completion rate. The gathering of vital
data can arm decision-makers with timely and crucial information, thereby facilitating
more efficacious decision-making [11,12].

Consequently, considering the importance of tasks during the task selection and
allocation phases within MCS is of great significance. Given the usual constraints of finite
resources, such as participant availability, energy, time, and financial budgets, prioritizing
these resources for more crucial tasks ensures the prompt and precise collection of vital
data. This strategic allocation enhances the overall effectiveness and performance of the
MCS system.

In many studies concerning task allocation, the importance of the tasks is consistently
recognized as an indispensable factor.

To guarantee the timely execution of urgent tasks, ref. [13] introduced a new multi-
objective optimization problem based on the quality of service of urgent task-aware cloud
manufacturing service composition. It gives a higher importance to urgent tasks in the
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production process. It proposes two service composition methods based on vertical col-
laboration and speed selection to speed up task completion. Ref. [14] proposed a radar
task selection method based on task importance. The method first sorts tasks according to
their dwell times and priorities and defines a set of reward values according to the initial
ranking. Then, the priority of the tasks is changed iteratively according to the reward and
punishment strategy. Finally, the optimal sequencing is determined to schedule tasks. This
method significantly improves the performance of task scheduling and shortens the time
for task selection and allocation. Ref. [15] ranked different nodes in wireless rechargeable
sensor networks through the importance of data transmission so as to distinguish the
priority of node charging. The importance of data transmission is mainly determined by
the deadlines of the tasks and the penalty values of the tasks. In order to minimize data loss,
charging tasks are divided into early tasks and delayed tasks. Nodes with high importance
and short deadlines are included in early tasks. Ref. [16] proposed a scheduling scheme that
can be directly applied to actual wind turbine maintenance tasks. The authors considered
the type of maintenance tasks, the importance of the maintenance tasks, the remaining
time, the task maintenance time, and the waiting time before maintenance; determined
the priority of different maintenance tasks; and constructed a scheduling model based on
task priority.

To address the problem of multiple permanent node failures in multicore real-time
systems, ref. [17] proposed two protocols based on task importance: a recovery time
distribution protocol and a graceful degradation protocol. These two protocols are based
on the importance of the tasks. For single-node failure and multiple-node failures, the task
is delayed or discarded after the importance is degraded. Based on a cloud computing
platform, ref. [18] proposed a new deadline allocation strategy with level importance. The
task level importance is obtained by calculating the proportion of a task level in all task
levels. Based on the level importance, the authors proposed a heuristic task scheduling
method. This method can minimize the execution cost by effectively scheduling tasks
under deadline constraints. Ref. [19] studied the relationship between the processing time
of task execution and the importance of the task in mobile edge computing. The authors
distinguish the importance of the tasks according to the processing time of task execution.
The corresponding task priority is given according to the average processing time of task
execution. Then, the tasks with different priorities are weighted to allocate computing
resources to ensure that the high-priority tasks can obtain sufficient computing resources.
Ref. [20] summarized the factors related to the importance of tasks in industrial software
into three aspects: intrinsic importance, the longest time that processing can be delayed, and
whether it is on the critical path. The importance of tasks is negatively correlated with the
longest processing time and positively correlated with the other two factors. The authors
proposed an online task scheduling algorithm based on task importance. The algorithm
sorts and schedules all tasks in descending order of importance. In addition, this paper also
establishes resource reservation, preemptive scheduling, and online adaptive adjustment
methods, which further improve the efficiency and adaptability of the algorithm.

Currently, research on the significance of tasks in task selection and allocation within
MCS remains scarce.

Ref. [21] set a weight for each task according to the importance of the task. The
higher the weight, the more important the corresponding task. In this paper, the revenue
obtained by the data requester is defined as the total weighted quality of all sensing data.
By designing a reasonable task allocation scheme, the revenue of the data requester is
maximized under the constraint of a limited budget. It should be noted that the weight
in this paper is a relative value, which refers to the importance of a task relative to other
tasks when the set of all tasks is determined. However, in practical applications, the arrival
of tasks is asynchronous and uninterrupted, and the system cannot predict all tasks in
advance. Therefore, this method is not suitable for long-term and online dynamic task
allocation in the MCS system.

365



Mathematics 2024, 12, 2471

In the participatory MCS system, the allocation and management of some tasks are
based on auctions. In auctions, there will be untruthful bidding and malicious participants,
which will lead to the redundant assignment of tasks; that is, a task is assigned to multiple
participants. This will not only waste resources but also reduce the actual execution rate
of tasks. In order to solve this problem, ref. [22] associated the importance of tasks with
the number of bidders. Unpopular tasks, that is, tasks with fewer bidders, will be given
higher importance and will be assigned and executed first, thus significantly improving
the completion rate of tasks. But, the author did not distinguish the importance of the
task itself.

The assumption underlying this prior research is premised on having adequate par-
ticipants ready to undertake tasks. Nevertheless, in practical deployments, MCS systems
diverge from other task allocation frameworks, such as those in edge computing systems
or industrial manufacturing systems. Unlike these, the participants in MCS systems are
autonomous, free to engage or exit from the system at their discretion. This autonomy may
result in scenarios where certain areas or periods face a lack of participants, consequently
leading to a backlog of pending tasks. In addition, the current research mainly determines
task selection and allocation methods based on the current state, without considering the
impact of future arrival tasks on current decisions. Hence, this paper focuses on devising a
forward-looking and long-term task selection and allocation scheme based on the impor-
tance of tasks when the tasks and participants are unknown. The main contributions of
this paper encompass the following:

1. A task queue is established, and the Lyapunov optimization method is introduced to
propose the task selection and allocation scheme (TSAS) in the MCS system. When
there are many tasks but not enough participants, participants mainly perform tasks
of high importance and stabilize the task queue by controlling the number of tasks
entering the queue; when the number of tasks is small but participants are sufficient,
participants can perform the backlog tasks in the queue. So, tasks of lower importance
can also be executed, which not only improves the completion of tasks but also
improves the utilization of resources. Therefore, the TSAS is a long-term and online
scheme that can dynamically balance the relationship between the execution ability of
participants, the stability of the task queue, and the importance of tasks.

2. According to different system states, namely, the length of the task queue, the number
of participants, and the number of tasks arriving at the platform, the TSAS is dynam-
ically determined. This scheme has certain predictive power and foresight on the
influence of future states.

3. The traditional solution of the Lyapunov optimization problem is improved, the
DDQN method is introduced, and action mask, iterative training, and other methods
are proposed to accelerate the training process and improve the training effect.

The rest of this paper is organized as follows. Section 2 introduces the system model
and objective function. Section 3 develops the TSAS and solves the problem based on Lya-
punov optimization and the DDQN. Section 4 presents a series of experiments to evaluate
the performance of the TSAS and compares it with the Classical Lyapunov optimization
algorithm, QPA algorithm, and offline task selection and allocation algorithm. Finally,
Section 5 concludes this article.

2. System Model and Problem Formulation

2.1. System Model

In order to facilitate the management and scheduling of the system and ensure the
synchronization and consistency of data collection, continuous time is discretized into discrete
equal time slots t. t ∈ {0, 1, 2, . . .}. The number of tasks arriving at the platform in each time
slot is different. As shown in Figure 2, O(t) represents the number of tasks arriving at the
platform in time slot t. O(t) is i.i.d. over slots with E{O(t)} = λ, 0 ≤ O(t) ≤ Omax. Oj(t)
refers to the jth task arriving at the platform.
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Figure 2. Schematic diagram of task queue of MCS system.

In order to establish a long-term task management method that can dynamically
balance the number of participants and tasks, this paper designs a task queue to store the
tasks to be performed. Q(t) indicates the length of the task queue in the platform in time
slot t. Each task has its own importance value. Fs(t) refers to the importance of the sth task,
which is determined by the data requester when generating the task. The larger the Fs(t),
the higher the importance of the task.

Task management includes task selection and task allocation. Task selection refers
to the platform determining the tasks that can enter the task queue and be executed
based on the state and number of participants in the previous time slot. Therefore, not
all arriving tasks can enter the platform. When a task is dropped without entering the
task queue, it indicates that the MCS system has a heavy load, a long task queue, and
insufficient participants. The discarded tasks will be executed by other systems. This can
ensure the stability of the task queue in the MCS system and avoid long waiting times for
tasks. o(t) represents the number of tasks entering the sensing platform in time slot t, and
0 ≤ o(t) ≤ O(t). Because the importance of tasks is different, in order to make full use
of the limited sensing resources, the platform should select tasks to enter the task queue
according to the importance of the task.

Task allocation refers to the scheme in which a platform assigns tasks from a queue to
participants who execute them. Task allocation is not based on the order in which tasks
enter the task queue, but rather, tasks are selectively assigned based on their importance.

i denotes different participants, i ∈ {1, . . . , N}. x(t) = {xsi(t)|s ∈ {1, 2, · · · , Q(t)} ,
i ∈ {1, 2, · · · , N}} indicates the task allocation scheme, that is, whether task s in the queue
is allocated to participant i in time slot t. If xsi(t) = 1, participant i performs task s. If
xsi(t) = 0, participant i does not perform task s. In each time slot, the same participant can
only perform a single task. r(t) is the number of tasks s that can be performed in time slot t:

r(t) =
Q(t)

∑
s=1

N

∑
i=1

xsi(t) (1)

0 ≤
N

∑
i=1

xsi(t) ≤ 1 (2)

0 ≤
Q(t)

∑
s=1

xsi(t) ≤ 1 (3)

0 ≤ r(t) ≤ N (4)

At the end of time slot t, the remaining unexecuted tasks in the task queue will wait
to be executed in the future. New tasks will arrive at the platform in the next time slot,
and the platform will make the task selection decision again to select the number of tasks
entering the queue. The dynamic change in Q(t) follows the following formula:

Q(t + 1) = max[Q(t)− r(t), 0] + o(t) (5)
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where Q(t) ≥ 0. Q(0) = 0; that is, in the initial time slot, the length of the task queue is 0.
If Q(t) satisfies

lim
t→+∞

E{Q(t)}
t

= 0 (6)

then Q(t) is stable; that is, the task queue length is bounded. Therefore, the MCS system
is stable.

2.2. System Utility

If the MCS system is stable, tasks that enter the queue can be executed. U(t) represents
the system utility in time slot t, which depends on the number of sensing tasks entering the
task queue,

U(t) = βo(t) (7)

where β represents the utility that the platform can obtain by performing unit tasks. β is a
positive constant. The larger the U(t), the more tasks that enter the task queue. A large
U(t) may cause the queue to continuously grow and become unstable. If U(t) is too small,
it may cause resource waste, meaning that some participants have no tasks to execute
and remain idle. Therefore, the development of task selection plans needs to balance the
stability of the task queue and the execution ability of participants.

2.3. Importance Level of the Tasks Being Executed

As mentioned earlier, when resources are limited, important tasks should be priori-
tized. I(t) represents the total importance of all performed tasks in time slot t:

I(t) =
Q(t)

∑
s=1

N

∑
i=1

Fs(t)xsi(t) (8)

The larger the I(t), the more meaningful the task selection and allocation scheme of
the system. Therefore, the development of a task selection and allocation scheme needs to
prioritize tasks with higher importance.

2.4. Problem Formulation

The problem to be solved in this paper is to maximize the overall system utility and
the importance of the executed tasks through task selection and task allocation schemes
while satisfying the stability of the task queue. Due to the long-term operation, dynamism,
uncertainty, and nonlinearity of the MCS system studied in this paper, it is transformed into
an optimization problem of system efficiency and task importance under time-averaged
constraints. The objective function of this problem is as follows:

min
o(t)

U = min
o(t)

lim
t→+∞

1
t

t−1

∑
τ=0

E{U(τ)} (9)

max
xsi(t)

I = max
xsi(t)

lim
t→+∞

1
t

t−1

∑
τ=0

E{I(τ)} (10)

s.t. (1)(5)(6)(7)

3. Task Selection and Allocation Scheme

3.1. Lyapunov Optimization

In order to solve the optimization problem (9)–(10), this paper introduces queuing
theory and Lyapunov optimization theory, which greatly reduces the difficulty of the
problem. Lyapunov optimization theory [23] is about stochastic network optimization. The
research of Professor Neely and his team on Lyapunov optimization is relatively mature
and has been applied in many fields. Different from other static optimization algorithms,
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the algorithm based on Lyapunov optimization theory is an online, dynamic, and adaptive
algorithm. When the system state changes, there is no need for manual adjustment. The
algorithm has a certain self-learning ability and can maintain progressive optimality. In
addition, the algorithm based on Lyapunov optimization theory is simpler to implement,
requires less prior knowledge, and has a certain decoupling ability, which can greatly
reduce the complexity of the algorithm.

First, the Lyapunov function is defined as follows:

L(t) � Q(t)2

2
(11)

L(t) is the measure of task queue congestion. L(t) ≥ 0. Generally, we cannot directly
guarantee that the Lyapunov function is bounded, but we can design a method to keep
the task queue backlog within a certain range so as to effectively control the congestion
degree of the task queue and ensure the stability of the queue. Therefore, the Lyapunov
drift function is defined as follows:

Δ(Q(t)) � E{L(t + 1)− L(t)|Q(t)} (12)

The Lyapunov drift function represents the change in the Lyapunov function with
time. Because the system is dynamic and uncertain, the Lyapunov drift function is defined
as a conditional expectation in this paper. The expectation depends on the task selection
scheme of the MCS system and is related to the system state.

The utility function is added as a penalty to the above drift function to obtain the
drift-plus-penalty function:

Δv(Q(t)) � E{L(t + 1)− L(t)|(Q(t))} − VE{U(t)|(Q(t))} (13)

V is a non-negative constant. By adjusting the value of V, the proportional relationship
between queue stability and system utility can be controlled.

In order to ensure the stability of the queue and maximize system utility and the
total importance of performed tasks, task selection decision o(t) and task allocation deci-
sion x(t) should be designed to minimize the drift-plus-penalty function. The objective
Functions (6) and (9) is converted into

minΔv(Q(t)) = min E{L(t + 1)− L(t)|(Q(t))} − VE{U(t)|(Q(t))} (14)

The classical solution of (14) is the mainstream and general solution for solving task
selection and assignment problems in MCS at present. Because of the complexity of
the Lyapunov optimization problem, it is difficult to obtain the minimum value of the
drift-plus-penalty function directly. The classical solution of the Lyapunov optimization
algorithm is to minimize the supremum of the drift-plus-penalty function so as to minimize
the drift-plus-penalty function. However, in practical problems, the direct calculation of
the supremum of the drift-plus-penalty function may be very complicated, sometimes even
impractical. Generally, the accuracy and computational complexity will be balanced, and
the problem will be solved by minimizing one of the upper bounds through appropriate
scaling methods. This approximate solution to the drift-plus-penalty function can only
obtain the approximate optimal solution, which is not the optimal task selection and
allocation scheme and may even cause high task queue congestion. In addition, this
method does not consider the impact of future states on the task selection scheme of the
current time slot. Therefore, this paper introduces deep reinforcement learning to improve
the defects in the classical solution of the Lyapunov optimization algorithm.

Reinforcement learning [24] is an important branch of machine learning. Reinforce-
ment learning systems are usually composed of agents and environments. Agents can
observe and interact with the environment, generate empirical data, and self-learn to maxi-
mize long-term returns so as to solve problems in different fields. In reinforcement learning,
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data are generated in the process of agent interactions with the environment, which is
unmarked data. When an agent executes an action in a certain state of the environment, it
receives a reward from the environment to judge whether the action is good or bad; the
state of the environment changes accordingly. In the next interaction, the agent makes
decisions and acts according to the new state of the environment. But, the goal of the
reinforcement learning problem is long-term; that is, the goal is to maximize the sum of
long-term rewards, so agents cannot simply obtain the optimal action through a single
reward. In general, empirical data are generated iteratively during the training process of
agents. Data generation and agent training alternate. Agents obtain optimal strategies in
different states through long-term training.

The Q-learning algorithm is a common reinforcement learning algorithm, which is
usually calculated in table form. In the Q-learning algorithm, first, a table needs to be
established to store the Q values of each action in different states, then collect training data
during the interaction between agents and the environment, and then update the Q values
in the table with experience playback. Obviously, this method is suitable for the case of a
small state space and action space. When the state or action space is large, the table is not
convenient for recording the Q value of each state and action, so it is more reasonable to
use the function fitting method to estimate the Q value. The Deep Q-Network (DQN) [25]
is based on the idea of function fitting and uses the powerful expression ability of neural
networks to fit and estimate the Q value. The Double Deep Q-Network (DDQN) [26,27] is
improved on the basis of the DQN. By separating action selection and value evaluation,
the DDQN reduces the risk of overestimation and improves learning stability and final
performance. These improvements make the DDQN a powerful tool for dealing with
high-dimensional state space and complex decision problems. Because the environment
in the system model in this paper is unknown and unpredictable, and the state space is
large, it is difficult to use the traditional table-based reinforcement learning method to
solve the problem. Therefore, the DDQN is used in the task selection stage, and a task
selection decision algorithm based on Lyapunov optimization and the DDQN is proposed.
The Lyapunov optimization method based on deep reinforcement learning no longer scales
a certain upper bound of the drift-plus-penalty function but directly optimizes the task
selection decision scheme through a reward function.

The DDQN-based MCS system is composed of the agent and the environment. The
agent refers to the MCS platform. The environment not only includes the real physical
object, namely, participants, but also includes the working mechanism and operating
rules of MCS. The interaction process between the agent and the environment refers to
the interaction process between the platform and participants. When tasks arrive at the
platform, the platform determines which tasks can enter the platform, that is, makes the
task selection decision, so as to minimize the drift-plus-penalty function. Then, the task
allocation scheme is determined according to o(t), Q(t), and Fs(t) to maximize the objective
Function (10), which assigns the task to the participants. The participants complete tasks
and upload data to the platform. At this time, an interaction between the agent and
the environment is completed, and experience data are generated for the agent to learn
and train.

Therefore, the objective Functions (9) and (10) is solved in two stages:

1. In the task selection stage, the goal is mainly to solve the problem below:

min
o(t)

Δv(Q(t)) = min
o(t)

E{L(t + 1)− L(t)|(Q(t))} − VE{U(t)|(Q(t))}

s.t. Q(t + 1) = max[Q(t)− r(t), 0] + o(t)

r(t) =
Q(t)

∑
s=1

N

∑
i=1

xsi(t)
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U(t) = βo(t)

2. In the task allocation stage, the goal is mainly to solve the problem below:

max
xsi(t)

I(t) = max
xsi(t)

Q(t)

∑
s=1

N

∑
i=1

Fs(t)xsi(t)

The working mechanism of the task selection stage and allocation stage in the MCS
system based on Lyapunov optimization and deep reinforcement learning is shown in
Figure 3. The specific algorithm is introduced in the below sections.

Figure 3. The working mechanism of the task selection and allocation scheme in MCS.

3.2. Task Selection Stage

In the task selection stage, the DDQN and Lyapunov optimization are used to make
the task selection decision. The action-value network calculates all the action values in
different states so as to obtain the optimal actions, that is, to determine the number of tasks
entering the task queue. The state, action, reward function of the algorithm, and parameter
update mechanism of the action-value network are introduced in detail below.

3.2.1. State S(t)

The determination of state S(t) mainly considers the factors that affect the action value
in the MCS system, including the number of tasks reaching the platform O(t), the length of
task queue Q(t), and the number of participants N(t). S(t) = [O(t), Q(t), N(t)]. There are
different states in different time slots. The state space is denoted by S � {S(t)}.

S(t) is dynamic and uncertain. On the one hand, the action decided by the agent is
uncertain. When the agent decides the action and acts on the environment, the state of the
environment may also change. On the other hand, the next state is usually determined
by the current state and action, but the next state cannot be completely predicted and
determined. Obviously, O(t), Q(t), and N(t) are dynamic and uncertain. The state space S
is very large. The traditional reinforcement learning method in the form of tables cannot
solve this problem, so the DDQN is suitable for the platform to make decisions.

3.2.2. Action a(t)

Action a(t) refers to the number of tasks entering the task queue, which is the task
selection decision made by the agent in time slot t. a(t) = o(t). 0 ≤ a(t) ≤ O(t). The action
space is denoted by A � {a(t)}. Action values are different in different states. The optimal
action is the action with the greatest value, that is, the optimal solution of the objective
Function (14).
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3.2.3. Reward Re(t)

As shown in Figure 4, after action a(t) is executed in time slot t, the environment
returns a reward to the platform, which is determined by the reward function, Re(t). The
sum of current and future rewards is the return. The goal of the DDQN is to find a strategy
to maximize the expectation of the return. Therefore, the reward function directly affects
the results of reinforcement learning.

S(t)

O(t)

Q(t)

N(t)

S(t+1)

O(t+1)

Q(t+1)

N(t+1)

S(t-1)

O(t-1)

Q(t-1)

N(t-1)

Re(t)Re(t-1)

a(t+1)

Re(t+1)

a(t)

Figure 4. Flow chart of state, action, and reward.

The objective Function (14) is to maximize the system utility and stabilize the task
queue. Therefore, the reward function is defined as follows, namely, the weighted sum of
the Lyapunov drift function and system benefits:

Re(t) = −
(

Q(t + 1)2

2
− Q(t)2

2
− Vβo(t)

)
(15)

3.2.4. Action-Value Network Training and Parameter-Updating Mechanism

The action-value network is a neural network composed of an input layer, a hidden
layer, and an output layer. The network parameter is ω. The input layer has three nodes,
which input three variables of state S(t), namely, O(t), Q(t), and N(t). The network output
is the values of all actions in state S(t).

The red line in Figure 3 shows the training process of the neural networks. The
task allocation algorithm based on the DDQN is different from the supervised machine
learning process. The algorithm has no prior knowledge. In order to enable the neural
network to produce reliable and accurate action values, the experience data generated
by the interaction between the agent and the environment are stored for the training
of the neural network. In Figure 3, state S(t), action a(t), reward Re(t), and the next
state S(t + 1) are the experience data generated in time slot t, which will be stored in the
replay buffer. During training, experience replay is used to randomly sample training data
tuples (S(t), a(t), Re(t), S(t + 1)) in the buffer for the gradient descent training of neural
networks. The experience replay not only can maintain the independence between training
data but also makes it possible to use samples many times, improving the efficiency of
experience data.

The network parameters of the DDQN are mainly updated through Temporal Difference
learning (TD learning). In order to prevent the overestimation of the action value caused by
bootstrapping using the same neural network, the DDQN sets up two networks to calculate
action values, namely, the target net and evaluation net, as shown in Figure 5. They have
the same network structure, but the network parameters are not identical. qtarg(S(t), a(t))
represents the value of a(t) calculated by the target network in state S(t). qeval(S(t), a(t))
represents the value of a(t) calculated by the evaluation network in state s(t).
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Figure 5. Training process of action-value network.

The TD target q̂(t) is

q̂(t) = Re(t) + γ·maxa′qtarg
(
S(t + 1), a′

)
(16)

The TD error δ(t) is
δ(t) = qeval(S(t), a(t))− q̂(t) (17)

The loss function is defined as

Loss =
1

batch

batch

∑
t=1

δ(t)2 (18)

The gradient descent method is used to minimize the loss of the evaluation network,
and its parameters are updated. The parameters of the target network will remain relatively
fixed. After the evaluation network has been trained a certain number of times, the
parameters of the target network will be directly replaced with the parameters of the
evaluation network for updating.

3.2.5. Iterative Training

In order to increase the state experience with small Q(t) in the replay buffer, this paper
designs iterative training for the infinite Markov decision problem.

In deep reinforcement learning, Markov decision problems are divided into finite
periods and infinite periods, and their neural network training methods are different.
When training the evaluation network of the Markov decision problem with a limited
period, it is usually based on an episode for iterative training, so different states will
be stored in the replay buffer and will appear repeatedly during training. But, the task
selection and allocation problem in MCS is an infinite Markov decision process, and there
is no termination state for one episode. Therefore, training is usually performed within
an episode and stops after reaching the specified times. In the Lyapunov optimization
problem, when the task queue reaches a stable state, it can no longer enter the unstable
state of Q(t). Since the experience data in the replay buffer are constantly updated during
the training process, the amount of experience data after the queue is stable is far more
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than the amount of data before stabilization. Such a lack of experience in the replay buffer
will lead to the unsatisfactory performance of the TSAS before the task queue is stabilized.

Therefore, this paper designs an iterative training method that conforms to the Lya-
punov optimization problem. The specific method is as follows: The training time is
divided into three stages. The first stage is from the beginning of training until the loss is
small enough, when the task queue is stable. In the second stage, the system state is reset
to the initial state, that is, Q(0) = 0. When the queue reaches the stable state, it will be
reset to the initial state again, which will be repeated many times with iterative training
so as to fully train the queue state before stabilization. After several instances of resetting
the system state and iterative training, the third stage is started; that is, the stable state is
trained again until the end of the training. The training results are shown in Section 4.1.

3.2.6. Priority Experience Replay and Importance Sampling Weight

In order to further improve the training efficiency, this paper also introduces priority
experience replay and importance sampling weights. In DRL, the traditional experience
replay method stores the experience generated by agent interaction with the environment
in the replay buffer and then randomly samples these experiences during the training.
With the training of the evaluation network, Q(t) gradually increases, resulting in an
uneven distribution of states in the replay buffer. This random sampling may lead to
some important experiences being ignored; for example, states with small Q(t) cannot
be fully trained, but some less important experiences are frequently sampled, resulting
in a poor training effect. Priority experience playback solves this problem by assigning
different priorities to experiences. These priorities are calculated based on the TD error,
which represents the gap between the current estimated action value and the target action
value. Experiences with high TD errors mean that they differ greatly from the expected
returns, so they are considered more important and should be sampled more for training.
Therefore, in priority experience replay, experiences are not sampled with equal probability
but sampled according to their priority. High-priority experiences will be selected more
frequently, but if they are completely relied on, the learning results may be biased toward
the local optimal solution.

The sampling bias needs to be corrected by importance sampling weights; that is,
when calculating the gradient, an importance weight is used to weight the loss of each
sample to correct the bias. If an experience should occur more frequently under the target
strategy, it will be given more weight during training; otherwise, it will be given less
weight. The importance sampling weight helps balance the learning of different types
of experiences by adjusting the contribution of each sampling experience so as to ensure
that the learning process pays attention to both important experiences and low-priority
experiences that may contain key information.

3.2.7. Action Mask

Action masking [28] is an important training skill in DRL. It improves the learning
efficiency and performance by limiting the action selection of the agent and also simplifies
the action selection. The action space is huge in the task selection and allocation of MCS,
but only some of the actions are feasible in the current state. Without an action mask, agents
may choose invalid actions, which will not only waste resources but also lead to instability
in the training process. By action masking, agents will focus on feasible actions rather
than invalid actions so as to reduce the time spent exploring invalid actions, improve the
training efficiency, and speed up the training process.

The action mask method is designed as follows:

mask(a(S(t))) = mask(argmaxa(q(S(t), a))) =
{

q(S(t), a), a is valid in S(t)
0, otherwise

(19)

a(t) = argmaxa(mask(a(S(t)))) (20)
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An action mask is usually used in policy gradient learning. It makes the gradient
corresponding to the logarithm of invalid actions zero so as to prevent the network from
selecting invalid actions. The DDQN belongs to value function gradient learning. In the
above action mask method, the gradient of invalid actions will not change. However,
the action mask method still works for the following reasons: in the DDQN, each time
a tuple (S(t), a(t), Re(t), S(t + 1)) is taken from the replay buffer, the parameters of the
action-value network are updated in the following ways:

ωnew ← ωnow − α·δ(t)·∇ωQ(S(t), a(t); ωnow) (21)

where δ(t) is obtained from Equation (17). It can be seen from the above formula that when
the state is S(t), only the value function of action a(t) selected by Formula (16) will be
updated, and its action value will gradually increase. While the invalid action is shielded
by the action mask method, its value function will not be updated, so the value of the
invalid action will be significantly lower than other effective actions and will not be selected
by the evaluation network.

3.3. Task Allocation Stage

In the objective Functions (9) and (10), the optimization goal of Formula (10) is to
maximize the total importance of all tasks being performed. This is mainly realized through
two aspects.

On the one hand, on the condition of maintaining the stability of the queue, we can
maximize the number of tasks to be performed in the task queue and improve the utilization
of idle participants. As the number of tasks being performed increases, the sum of task
importance also increases. By selecting tasks with higher importance to enter the queue, the
importance of performed tasks is further increased. This has been realized in Section 3.2.

On the other hand, we can maximize the importance by formulating a reasonable task
allocation scheme xsi(t). This is achieved in the task allocation stage.

In the task allocation stage, the platform allocates tasks in the task queue to participants
to perform. Due to the limited number of participants, when the number of tasks is large,
some tasks in the task queue cannot be allocated and performed immediately. The order
of tasks to be performed is mainly determined by the importance of the tasks. Tasks with
high importance will be assigned to execute first, while tasks with low importance need to
wait for execution. The sum of the importance of all the tasks performed in Formula (10)
is converted into the sum of the importance of the tasks performed in each time slot as
following, which greatly reduces the difficulty and complexity of the problem, namely,

max
xsi(t)

I(t) = max
xsi(t)

Q(t)

∑
s=1

N

∑
i=1

Fs(t)xsi(t)

The above optimization problems can be solved by simple task importance ranking
and selection methods.

It should be noted that, in fact, when training the action-value network of the DDQN,
experience data need to be obtained after the above two stages. In state S(t), the MCS
system selects, assigns, and executes tasks and receives rewards Re(t) and a new task queue
Q(t + 1). When a new task O(t + 1) arrives in the next slot, the number of participants
who can perform the task N(t + 1) is updated, and then the next state S(t + 1) is obtained.
Therefore, the above two stages are a whole and are carried out simultaneously. Without
the task allocation stage, the action-value network would not be able to obtain sufficient
experience data and complete training.

Based on all of the above, the design of the TSAS for MCS is as follows (Algorithms 1 and 2).
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Algorithm 1. TSAS based on Lyapunov optimization and DDQN

1 Initialize the evaluation network Qω with random network parameters ω.
2 Copy the same parameters ω′ ← ω to initialize the target network Qω′ .
3 Initialize Replay bu f f er.

4
Input: environment state S(t): the number of tasks reaching the platform O(t), the length of
the task queue Q(t), and the number of participants N(t).

5 Output: the number of tasks entering the task queue a(t) and task allocation scheme x(t).
6 Set Q(0) = 0.
7 for episode e = 1 → E do:
8 Obtain environment state S(t).

9
Input s(t) into the evaluation network, output the action value qeval(S(t), a), and select
action a(t) with the ε-greedy policy.

10 Execute a(t) in S(t), and determine the tasks to enter the task queue according to Fs(t).
11 Determine the task allocation and execution scheme according to Fs(t): x(t) = {xsi(t)}.
12 After the tasks are completed, obtain the next state S(t + 1) and reward Re(t).
13 Store the experience data tuple {S(t), a(t), Re(t), S(t + 1)} in the Replay bu f f er.
14 If learn = True:
15 Execute Algorithm 2: train the evaluation network, and update the parameters ω.
16 If replace_target = True:
17 Update target network parameters Qω′ : ω′ ← ω .
18 end

Algorithm 2. Training and parameter update of action-value network

1 Sample N groups of data from the replay buffer: {(S(i), a(i), Re(i), S(i + 1))}i=1, ··· , N
2 for i = 1 → N do:
3 Input S(i) into the evaluation network to calculate the action value: qeval(S(i), a(i));

4
Input S(i + 1) into the target network to calculate the action value:
q̂(i) = Re(i) + γ·maxa′qtarg(S(i + 1), a′);

5 Calculate the error: δ(i) = qeval(S(i), a(i))− q̂(i).
6 end

7
Update the parameters ω of the evaluation network Qω to minimize the Loss:
Loss = 1

N ∑N
i=1 δ(i)2.

18 end

4. Experimental Validation and Performance Evaluation

Simulation experiments were conducted to evaluate the performance of the TSAS.

4.1. Training Performance

The MCS system was simulated, which consists of an MCS platform and participants.
The number of participants N(t) in each time slot follows a Poisson distribution of λ = 5.
The number of tasks arriving at the platform O(t) follows a Poisson distribution of λ = 10,
O(t)ε[0, 20]. The importance of arriving tasks F(t) follows a Gaussian distribution with a
mean of 20 and a variance of 10, task_sigε(0, 40). Set V = 1000, β = 1.

In the experiments, an evaluation network and a target network were set up. The two
neural networks have the same structure and are composed of an input layer, two hidden
layers, and an output layer, which contain 3, 32, 16, and 21 nodes, respectively. Algorithm 1
is run to obtain experience data, which are stored in the replay buffer. The storage capacity
of the replay buffer is 20,000. To enrich experience data, the ε-greedy strategy is adopted to
select actions. ε = 0.1 + 0.0001 ∗ Training times, with a maximum of 0.9. The experiment
runs 100,000 times. Each time the experiment runs, experience data are stored in the replay
buffer. When the parameters of the evaluation network are updated 200 times, the target
network updates its parameters once. Both the evaluation network and the target network
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use the action mask method to reduce the feasible range of actions. The action mask is set
as follows:

mask(a(S(t))) = mask(argmaxa(q(S(t), a))) =
{

q(S(t), a), a ≤ O(t)
0, otherwise

(22)

a(t) = argmaxa(mask(a(S(t)))) (23)

In order to observe the impact of iterative training methods, two training methods
were adopted. Firstly, the network was trained 80,000 times using ordinary training
methods without iterative training, and the training results are shown in Figure 6.

 
(a) (b) 

 
(c) (d) 

Figure 6. Training results of action-value network without iterative training: (a) task queue Q(t),
(b) the number of tasks that can enter the task queue o(t), (c) Loss, (d) reward Re(t).

Then, the iterative training method was used to continue training the network
100,000 times. The specific steps are as follows: First, the evaluation network runs to
generate 10,000 experiences and stores them in the replay buffer; second, the evaluation
network starts to be trained. Every 1000 runs of the evaluation network, the system state is
initialized, so the states before queue stabilization are iteratively trained; third, after the
evaluation network runs 50,000 times, ordinary training is resumed, and the states after the
queue is stable are trained again until the system runs a total of 100,000 times. The training
results are shown in Figure 7.
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(a) (b) 

 
(c) (d) 

Figure 7. Training results of action-value network with iterative training: (a) task queue Q(t), (b) the
number of tasks that can enter the task queue o(t), (c) Loss, (d) reward Re(t).

In Figure 6, it can be seen that as the model continuously learns and optimizes, the
task queue Q(t) eventually tends to stabilize, and the loss decreases. This proves that the
TSAS is feasible and can keep the task queue stable.

In Figure 6a, when t ∈ [0, 41, 000), Q(t) fluctuates around smaller values; when
t ∈ [41, 000, 50, 000], Q(t) significantly increases and tends to stabilize. Below is an analysis
of the experimental results. When t ∈ [0, 20000], the replay buffer is accumulating training
data, and the evaluation network has not yet started training. The system adopts the
ε-greedy strategy to select actions and randomly generates numbers in the interval [0, 1).
When the random number is less than ε, the evaluation network calculates the number
of tasks that can enter the task queue o(t). When the random number is greater than ε,
o(t) is generated in the interval [0, O(t)] randomly. Therefore, within t ∈ [0, 20, 000], Q(t)
is small, and o(t) fluctuates within [0, O(t)]. When t ∈ [20, 001, 41, 000), the evaluation
network starts training, and ε gradually increases from 0.1 to 0.9. o(t) is more calculated
by the untrained evaluation network, so o(t) in Figure 6b decreases. Due to the storage
of experience data generated by untrained networks in the replay buffer, the Loss is large,
and Q(t) is small. When t ∈ [41, 001, 100, 000], as the evaluation network is trained and
optimized, o(t) continues to increase, and Q(t) also increases and tends to stabilize, thereby
maximizing the expected value of the reward.

In Figure 6c, it can be seen that the Loss gradually decreases with training. Q(t) is
relatively large and stable. In order to investigate whether states before queue stabilization,
that is, states with a small value of Q(t), have been trained, this paper continues to train the
network using the iterative training method. The results are shown in the following figures.

In Figure 7a, it can be seen that the model trained 80,000 times can quickly make Q(t)
reach stability. When t ∈ [10, 000, 60, 000], the state is initialized every 1000 times, so Q(t)
is reset to 0, and then Q(t) quickly reaches stability again.

In Figure 7c, it can be seen that the Loss increases sharply and then gradually decreases
with the training of the model. This is because, in classic training, as shown in Figure 6,
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although the queue is stable and the loss gradually decreases and converges after training
80,000 times, the states before the queue is stable have not been fully trained. Therefore,
when Q(t) is small, the loss is still very large. After iterative training, regardless of whether
the task queue is stable, that is, regardless of the size of Q(t), the evaluation network can
solve the objective function.

4.2. Comparison Experiment of Different Algorithms

In order to verify the performance of the TSAS, this paper compares the TSAS
that has been trained according to Section 4.1 with three algorithms: the Classical Lya-
punov optimization algorithm, the QPA algorithm [29], and the offline task selection and
allocation algorithm.

Classical Lyapunov optimization algorithm: As described in Section 3.1, this algorithm
is the mainstream and general solution for solving task allocation problems in MCS at
present. In the drift-plus-penalty functions, there are unknown variables, which cannot
be predicted before executing the tasks. Therefore, the Classical Lyapunov optimization
algorithm solves the problem by eliminating unknown variables and minimizing one of
the upper bounds of the drift-plus-penalty function through appropriate scaling methods.

QPA algorithm: This algorithm maximizes the importance of the tasks performed by
controlling o(t). In the QPA algorithm, all tasks can enter the platform and tasks that have
not been executed will be stored in the task queue, waiting to be executed later.

Offline task selection and allocation algorithm: In order to compare the difference
between the online task allocation method TSAS and the offline task allocation method, this
paper also presents comparative experiments on the offline task selection and allocation
algorithm. This algorithm selects and allocates tasks according to the system status of the
current time slot and does not set the task queue.

The experiment runs for a total of 1000 time slots. tε{0, 1, · · · , 999}. In reality, O(t)
varies at different time slots. Usually, there are more tasks that arrive during the day and
fewer at night. Therefore, in order to simulate the changes in O(t) more realistically, this
experiment sets O(t) in different time slots as follows: when 0 < t < 600, O(t) follows a
Poisson distribution of λ = 10; when 600 < t < 1000, O(t) follows a Poisson distribution of
λ = 5. O(t)ε[0, 20]. The importance of arriving tasks F(t) follows a Gaussian distribution
with an average of 20 and a variance of 10. F(t)ε(0, 40).

Comparison experiments were conducted on different algorithms using the following
evaluation metrics:

1. Q(t) refers to the number of tasks waiting to be performed in the task queue.

Q(t + 1) = max[Q(t)− r(t), 0] + o(t)

The size of Q(t) depends on the number of o(t) and r(t). Maintaining the stability
of the task queue is an important goal of the online and long-term task allocation
problem of the MCS system. By observing the change in Q(t), we can intuitively
judge whether the task queue has reached a stable state. The result of the comparison
experiment on Q(t) is shown in Figure 8.

2. o(t) refers to the number of tasks entering the queue. o(t) is an important part of the
task selection and allocation method, which directly determines the queue length
and its stability, system efficiency, and the importance of the tasks performed. When
there are few participants, the system should reduce o(t) in order to maintain the
stability of the queue. When there are many participants, the system should increase
o(t) while maintaining queue stability in order to maximize the system utility and
the performed task importance. Therefore, by observing o(t), we can evaluate the
advantages and disadvantages of different algorithms. The result of the comparison
experiment on o(t) is shown in Figure 9.
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3. The Return represents the total rewards:

Return =
1000

∑
t=0

Re(t)

The larger the Return, the smaller the drift-plus-penalty function, and the closer to the
optimization goal. The result of the comparison experiment on the Return is shown
in Figure 10a.

4. U_sum represents the total utility of the system. The more tasks that entered the
queue, the greater the total utility.

U_sum =
1000

∑
t=0

β·o(t)

U_sum is not “the bigger, the better”. Due to the limited number of participants and
ability to execute tasks, when there are too many tasks in the queue, although U_sum
is large, the queue congestion is serious, resulting in a large delay before the task is
executed. The result of the comparison experiment on U_sum is shown in Figure 10b.

5. P_sum represents the total number of tasks actually executed:

P_sum =
1000

∑
t=0

r(t)

When the number of participants and their ability to perform tasks are limited, P_sum
is largely constrained by their ability to perform tasks. The result of the comparison
experiment on P_sum is shown in Figure 10c.

6. I_sum indicates the total importance of the tasks performed.

I_sum =
1000

∑
t=0

I(t) =
1000

∑
t=0

Q(t)

∑
s=1

N

∑
i=1

Fs(t)xsi(t)

The larger I_sum is, the more important the tasks performed are. The result of the
comparison experiment on I_sum is shown in Figure 10d.

Figure 8. Variation in Q(t) under different algorithms.

380



Mathematics 2024, 12, 2471

Figure 9. Variation in o(t) under different algorithms.

  
(a) (b) 

  
(c) (d) 

Figure 10. Comparison of different indicators under different algorithms: (a) Return comparison.
(b) U_sum comparison. (c) P_sum comparison. (d) I_sum comparison.

Figure 8 shows the variation in Q(t) under different algorithms. The following can be
seen: (1) The Q(t) of the offline task selection and allocation algorithm is always 0. (2) When
0 < t < 600, the queue of the Classical Lyapunov optimization algorithm and TSAS can
gradually stabilize, while the queue of the QPA algorithm keeps growing and cannot reach
a stable state. (3) When 600 < t < 1000, the queue of the Classical Lyapunov optimization
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algorithm and TSAS gradually decreases, while the queue of the QPA algorithm no longer
grows and appears to remain stable.

The reasons for the above result are as follows:

1. The offline task selection and allocation algorithm makes decisions based on O(t) and
N(t) in order to maximize the number of tasks to be executed. There is no backlog
of queued tasks, so the queue length is always 0. It is precisely for this reason that
some participants will be idle when the number of tasks decreases, but the number of
participants increases, so the number of tasks executed by the offline task selection
and allocation algorithm is lower than that executed by other online task selection
and allocation algorithms, as shown in Figure 10.

2. When 0 < t < 600, O(t) follows a Poisson distribution of λ = 10, meaning that O(t) is
greater than N(t), resulting in a backlog of queued tasks. The QPA algorithm seeks to
maximize U(t) greedily without limiting the queue length, so Q(t) continues to grow
and cannot stabilize. Q(t) of the Classical Lyapunov optimization algorithm tends to
stabilize at around 1000, while TSAS tends to stabilize at around 500. Q(t) of the TSAS
is significantly smaller than that of the Classical Lyapunov optimization algorithm.
This is because the TSAS and the Classical Lyapunov optimization algorithm are both
based on the Lyapunov optimization algorithm to maintain the stability of the task
queue and pursue utility. The difference between the two algorithms lies in their
solution. The Classical Lyapunov optimization algorithm approximates the unknown
variable, minimizes an upper bound of the drift-plus-penalty function, and obtains
an approximate optimal solution, thus causing high queue congestion. The TSAS
can directly obtain the optimal solution of the drift-plus-penalty function, improving
the defects of the Classical Lyapunov optimization algorithm. It can be seen that the
TSAS can control the queue backlog and reduce the delay in task execution, which
has important practical significance.

3. When 600 < t < 1000, O(t) follows a Poisson distribution of λ = 5. The QPA
algorithm greedily pursues the maximization of U(t); therefore, Q(t) of QPA is equal
to the average value of N(t). At this point, the queue tends to stabilize. In fact, once
O(t) increases, Q(t) will continue to grow, so the QPA algorithm cannot maintain
the stability of the task queue. Due to the decrease in O(t), the o(t) of the Classical
Lyapunov optimization algorithm and TSAS is reduced. The number of tasks executed
is greater than the number of new tasks added to the queue, and the backlog of tasks
in the queue is constantly being executed, so Q(t) begins to decrease. Tasks that have
not been executed are stored in the task queue instead of being directly discarded.
Therefore, when participants have free time, the backlog of tasks in the queue will be
executed. This increases the execution rate of tasks while also increasing the system’s
utility and improving the utilization of idle participants.

Figure 9 shows the selection decision o(t) of the MCS system under different algo-
rithms. (1) The o(t) of the offline task selection and allocation algorithm is always consistent
with the number of participants. (2) The o(t) of the QPA algorithm is always consistent
with O(t). (3) When 0 < t < 600, the TSAS and the Classical Lyapunov optimization
algorithm both choose to enter the platform with some tasks instead of all tasks. However,
the o(t) of the Classical Lyapunov optimization algorithm fluctuates greatly, while the o(t)
of the TSAS has a small fluctuation interval. (4) When 600 < t < 1000, the o(t) of the TSAS
and the Classical Lyapunov optimization algorithm is consistent with O(t).

The reasons for the above results are as follows:

(1) The offline task selection and allocation algorithm does not consider the long-term
utility of the system. As the O(t) set in the experiment is greater than or equivalent to
the number of participants, in order to maximize the number of tasks performed, o(t)
is consistent with the number of participants subject to the task execution capability
of the system.

(2) The QPA algorithm pursues the maximization of system benefits U(t) greedily with-
out considering the stability of task queues. All tasks arriving at the platform enter the
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task queue. Therefore, its o(t) is consistent with O(t). When 0 < t < 600, O(t) is large,
and o(t) is also large, which is greater than in other algorithms; when 600 < t < 1000,
it is consistent with the TSAS and the Classical Lyapunov optimization algorithm.
O(t) decreases, and o(t) also decreases.

(3) When 0 < t < 600, O(t) is relatively large. In order to maintain the stability of the
queue, the TSAS and the Classical Lyapunov optimization algorithm both choose
to enter the platform with some tasks instead of all tasks. In addition, the o(t) of
the Classical Lyapunov optimization algorithm is obtained by solving the drift-plus-
penalty function based on the classic solution, as mentioned before, which mainly
depends on the current state S(t), so o(t) fluctuates greatly; the TSAS is based on
the DDQN to solve Formula (14), so it not only depends on the current state S(t)
but also takes into account the future states in advance, so the fluctuation range
of o(t) is relatively small. In Figure 10, it can be seen that the fluctuation of o(t)
causes a difference in the total importance of tasks being performed, as detailed in the
following analysis.

(4) When 600 < t < 1000, O(t) is equal to the number of participants. In order to
maximize the system utility and the importance of performed tasks, the TSAS and the
Classical Lyapunov optimization algorithm put all arriving tasks into the task queue,
so their o(t) is consistent with O(t).

Due to the complexity of the actual situation, it is impossible to judge the merits of
the algorithm by a single indicator. In the experiment, it is necessary to comprehensively
consider the following four indicators to evaluate different algorithms.

In Figure 10, it can be seen that (1) U_sum, P_sum, and I_sum of the offline task se-
lection and allocation algorithm are lower than those of the other three algorithms, and
the Return is 0. (2) U_sum and I_sum of the QPA algorithm are the highest. P_sum is
equal to the values of the Classical Lyapunov optimization algorithm and TSAS. The
Return is negative, far less than that of the Classical Lyapunov optimization algorithm and
TSAS. (3) The Return and I_sum of the TSAS are both higher than those of the Classical
Lyapunov optimization algorithm, P_sum is equal to that of the Classical Lyapunov opti-
mization algorithm, and only U_sum is slightly lower than that of the Classical Lyapunov
optimization algorithm.

(1) Due to the offline task selection and allocation algorithm not considering long-
term task allocation and having no backlog of queued tasks, when the number of tasks
decreases and the number of participants increases, some participants will be idle. There-
fore, its performance is lower than the other three long-term task allocation algorithms.
The offline task selection and allocation algorithm makes decisions based on the current
system state; Return has no meaning in this algorithm, so its Return was not calculated in
this experiment.

(2) The QPA algorithm focuses on achieving optimal long-term utility, with all O(t)
entering the task queue for execution. Therefore, U_sum and I_sum are the highest. Due to
the limitation of N(t), P_sum is equal to the values of the Classical Lyapunov optimization
algorithm and the TSAS. However, its Return is negative, far less than that of the Classical
Lyapunov optimization algorithm and the TSAS, and the optimal solution cannot be
obtained. This is because QPA cannot control the growth of the queue, and its task
queue cannot reach stability. Therefore, it is not suitable for long-term task selection and
allocation problems.

(3) Since Return is closely related to the objective Function (14), the larger the Return,
the closer the solution is to the optimal solution. The TSAS can directly obtain the optimal
solution of the objective function, so its Return is the largest. It can be seen in Figure 9
that, due to the fact that o(t) of the TSAS tends to be more stable than that of the Classical
Lyapunov optimization algorithm, the TSAS can select more important tasks to enter the
queue. For the Classic Lyapunov optimization algorithm, in order to maintain stability
of the queue, o(t) is set to 0 in many time slots, so important tasks cannot be selected
to enter the queue, resulting in I_sum being lower than that of the TSAS. Due to the
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small number of participants, P_sum is mainly restricted by the number of participants.
In order to maximize the system utility, the two algorithms enable all participants to
perform tasks, so their P_sum values are the same. The U_sum of the Classic Lyapunov
optimization algorithm is bigger than that of the TSAS, which leads to a large queue backlog
for the Classic Lyapunov optimization algorithm. Thus, the TSAS is better than the Classic
Lyapunov algorithm.

In summary, the TSAS based on the DDQN is more suitable for solving the drift-plus-
penalty function in Lyapunov optimization. It dynamically adjusts the system’s action to
optimize performance as much as possible while maintaining system stability. Therefore, it
can balance the system stability and utility in the drift-plus-penalty function.

4.3. Impact of V on TSAS

In order to study the impact of V on the TSAS, we set V = 100, V = 500, V = 1000,
and V = 2000. Experiments were conducted on the TSAS. The experiments were run for a
total of 1000 time slots. tε{0, 1, · · · , 999}.

Figure 11a shows the variation in Q(t) under different V. As V increases, the stable
value of Q(t) also increases. This is determined by the objective function (14). It can
be seen that when O(t) is determined, due to the fact that o(t) ≤ O(t), the larger the V,
the longer the time required for Q(t) to reach stability, and the larger the stable value of
Q(t). Figure 11b shows the changes in o(t) with different V. It can be seen that the larger
the V, the larger the o(t), and its fluctuation range is also larger. The larger the V, the
greater the weight of system utility. Therefore, It can be concluded that as V increases,
the TSAS maximizes the Return by increasing o(t), while the fluctuation range of o(t) is
also increased.

 
(a) (b) 

Figure 11. (a) Variation in Q(t) with different V. (b) Variation in o(t) with different V.

Figure 12 shows the variation in Reward, U_sum, and P_sum with different V. As V
increases, Return and U_sum gradually increase, but P_sum is the same. This is determined
by Formula (15). When V increases, it is obvious that the Return will also increase. V
determines the size of the utility’s weight in the drift-plus-penalty function, so when V is
large, U_sum is high. Due to the fact that O(t) is larger than N(t), P_sum is limited to N(t).
When V increases, P_sum cannot increase accordingly.

From above, it can be seen that, in practical applications, V should be determined
based on O(t) and N(t) in order to balance the queue length and system utility. Although
a large V can increase system utility, it can also lead to an excessive queue backlog and the
delayed execution of some tasks. When N(t) is determined and V is high, that is, when the
weight of system utility is high, the system utility is high. However, the stable value of Q(t)
also increases, resulting in the delayed execution of some low-importance tasks. When V is
small, the weight of system utility decreases, and U(t) decreases while the stable value of
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Q(t) decreases; thus, the delay in performing tasks is shortened. Therefore, comprehensive
consideration should be given to the length of the queue backlog and system utility.

   
(a) (b) (c) 

Figure 12. (a) Variation in Return with different V. (b) Variation in P_sum with different V.
(c) Variation in U_sum with different V.

Further analysis reveals that there are two methods that can reduce the backlog of
queued tasks. On the one hand, a backlog is caused by a large V and a large number of
o(t). Therefore, as mentioned above, V can be appropriately reduced to reduce the backlog.
On the other hand, the ability of the system to perform tasks can be improved by recruiting
more participants, thereby reducing the backlog.

5. Conclusions

This paper proposes the TSAS based on Lyapunov optimization and the DDQN,
which divides the task assignment in the MCS system into a task selection stage and a
task allocation stage. The TSAS is a long-term and online task allocation scheme that
dynamically balances the execution ability of participants, the number of tasks, and the
importance of the tasks, thus not only improving the completion of tasks but also improving
the utilization of participants. The DDQN is used to improve on the traditional solution
of the Lyapunov optimization problem so that the impact of future system states can be
predicted. In addition, in order to accelerate the training process of the neural networks in
the DDQN, this paper also proposes action-masking and iterative training methods, which
are proved to be feasible.

In future research, there are still the following areas to be further explored. First, aim-
ing at different application fields and different influencing factors, such as communication
resources, participants’ energy, task timeliness, etc., targeted research can be conducted on
task selection and allocation in MCS. Second, in terms of the solutions of task selection and
allocation problems, most of the current methods focus on obtaining analytical solutions or
using heuristic algorithms to obtain approximate optimal solutions. Machine learning, deep
reinforcement learning, or a combination of the two methods can be used to replace the
traditional methods to solve some task allocation problems in MCS. In addition, although
the focus of this paper is on centralized task allocation problems, distributed task allocation
problems, which are rarely studied, are an important area for future exploration.
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Abstract: In this work, we enhanced the U-shaped network and proposed a method for detecting
scratches on metal surfaces based on the Metal Surface Defect Detection U-Net (MSDD-UNet).
Initially, we integrated a downsampling approach using a Space-To-Depth module and a lightweight
channel attention module to address the loss of contextual information in feature maps that results
from multiple convolution and pooling operations. Building on this, we developed an improved
attention module that utilizes image frequency decomposition and cross-channel self-attention
mechanisms, as well as the strengths of convolutional encoders and self-attention blocks. Additionally,
this attention module was integrated into the skip connections between the encoder and decoder.
The purpose was to capture dense contextual information, highlight small and fine target areas, and
assist in localizing micro and fine scratch defects. In response to the severe foreground–background
class imbalance in scratch images, a hybrid loss function combining focal loss and Dice loss was put
forward to train the model for precise scratch segmentation. Finally, experiments were conducted on
two surface defect datasets. The results reveal that our proposed method is more advantageous than
other state-of-the-art scratch segmentation methods.

Keywords: defect detection; attention mechanism; hybrid loss; U-Net; SPD module; semantic
segmentation

1. Introduction

Metals and metal products are indispensable in modern industrial manufacturing.
However, defects such as scratches are often unavoidable on their surfaces due to limita-
tions in production processes, tool and equipment wear, careless operation, or collisions
and compression during transportation. These scratch defects negatively affect the aes-
thetic appeal of such products, making them difficult to clean and significantly reducing
important properties such as their dimensional stability, surface roughness, and fatigue
limits. Therefore, the timely repair of scratches is crucial to ensure the performance of
downstream products. Manufacturers can take a series of measures, such as recoating or
applying surface treatment techniques, to enhance the aesthetics and durability of metals
and metal products. However, before proceeding with a repair, a crucial and indispensable
step is detecting the quality of the metal.

Accurate metal defect detection is crucial for modern industrial production. The de-
tection results can be used for the precise quality assessment of products, raw materials,
etc., and serve as a basis for making maintenance decisions. In recent years, deep learning
methods have significantly improved the performance of the detection of metal surface
scratch defects. To achieve high-precision defect detection, large and complex deep learning
models are typically designed. However, these models require substantial computational
resources and have lengthy training and inference times, making it challenging to achieve
the high defect detection efficiency required in industrial production. Moreover, the accu-
rate detection of scratch defects remains challenging due to the inherent class imbalance
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between the foreground and background in metal surface scratch defect data, as well as
complex factors such as small or elongated targets. To address these issues, this paper
proposes a downsampling mode based on a Space-To-Depth (SPD) [1] module and a
lightweight channel attention module (LCAM) and enhances the self-attention mechanism
used. Based on this, an algorithm is proposed for localizing metal scratch defects at the
pixel level for defect segmentation (refer to Figure 1). The main component of the proposed
model is an enhanced U-shaped network (U-Net) designed to accurately segment scratches
of different sizes from a metal surface image. The primary contributions of this paper are
as follows:

(1) A downsampling convolutional block is proposed based on an SPD module and
LCAM. It is embedded into the U-Net to acquire more information and mitigate the loss of
contextual information in feature maps after multiple convolution and pooling operations
in the encoder.

(2) Building upon the above contribution, a lightweight anti-redundant self-attention
module is designed to address the geometric features of scratches, such as their direction,
thickness, and inherent high-frequency components, by integrating refined edge informa-
tion. This module is embedded into the skip connections between the encoder and decoder,
serving as a precursor for encoding–decoding feature fusion.

(3) Furthermore, a hybrid loss function that combines the focal loss [2] and Dice loss [3]
functions is introduced to deal with the inherent foreground–background class imbalance
in metal surface scratch defect data. By leveraging their respective unique advantages,
the proposed function is utilized to train a model for precise scratch segmentation.

Figure 1. Architecture of the proposed segmentation network. We incorporate an enhanced self-
attention block into the feature fusion of these encoding–decoding stages, which acts as the prelimi-
nary process of feature fusion. In the encoding process, we utilized an efficient downsampling method
based on SPD and LCAM, replacing the traditional max pooling operation, as illustrated by the light
green arrow in the figure. Additionally, the red arrow in the figure indicates the upsampling operation,
which uses bilinear interpolation, while the orange arrow indicates the Up-Convolution operation.

2. Relevant Works

2.1. Traditional Methods

Early methods of metal defect detection include liquid penetrant testing [4], laser scan-
ning detection, eddy current testing, ultrasonic testing, and magnetic particle inspection.
Manual defect detection was once a common method, but it is labour-intensive. With the
rapid advancement of the modern manufacturing industry, this manual method is no
longer sufficient to meet the demand for efficient and high-precision defect detection in
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contemporary industrial production. This is due to its vulnerability to errors and omissions,
low efficiency, and excessive reliance on work experience.

2.2. Digital Signal Processing Methods

With the advancement of automation technology, many researchers and technologists
have made significant contributions to defect detection which primarily involve traditional
digital signal processing methods and deep learning methods.

Regarding over-detection on defect-free surfaces, H. Ono et al. [5] reported a twin
illumination and subtraction technique. They developed a prototype system that can detect
defects by capturing two images with a slight time difference. Their system is based on
strobe lighting and a dual CCD camera. It utilizes a decision tree judgment function that
analyses the light/dark patterns of concave defect features. Liu et al. [6] introduced a
hardware and software system for online visual inspection. The hardware comprises an
upper optical module and a lower optical module. The defect detection algorithm includes
an automatic search of the regions of interest (ROI) and defect detection based on the Sobel
algorithm. For large steel roll surface defects with fuzzy boundaries, uneven intensity,
and complex background textures, Yang et al. [7] proposed a machine vision system based
on an edgeless active contour model. This system can accurately segment blurry and
non-uniform defects and typically requires less computation time.

Compared to early purely manual detection methods, the above-mentioned ap-
proaches utilize traditional image processing and machine learning algorithms for digital
signal processing, offering advantages such as objective results and high computational
efficiency. However, these approaches rely on specific signal acquisition tools and demon-
strate high detection precision only for specific defects, lacking strong generalization ability.
Additionally, these approaches require manual feature design, which requires technicians
to have specialized prior knowledge of the detection object’s properties, such as the metal’s
acoustic conductivity, as well as its optical refractivity and reflectivity.

2.3. Deep Learning Methods

Compared to digital signal processing methods, deep learning methods, such as
convolutional neural networks (CNNs), can automatically extract deep representative
features end-to-end from data [8]. In the past decade, deep learning and neural networks
have been widely applied in the field of computer vision [9–12] due to their powerful
feature extraction capabilities and ability to generalize [13]. This progress has been greatly
supported by high-performance graphics cards, cloud computing power, and big data.
These advancements have enabled real-time and efficient defect detection in modern
industrial production.

In the field of image segmentation, Fully Convolutional Networks (FCNs) [10] and
U-Net [11] have provided models for extracting features from segmentation targets more
precisely and efficiently. Specifically, U-Net utilizes an encoder–decoder structure with skip
connections, enabling the merging and blending of feature maps across different network
levels. This process helps the decoder reconstruct feature maps to their original image size,
significantly enhancing the ability of a fully convolutional model to preserve details and
segment accurately.

Over the past few years, researchers in related fields have made significant progress
in utilizing deep learning models to address various challenges encountered in defect
segmentation and anomaly detection [14–24]. Ref. [14] proposed a composite vision system
to enable simultaneous the 3D depth and 2D grey imaging of the bead surface. This system
is designed to detect typical surface defects on aluminium alloy weld beads. Ashkan
Moosavian et al. [15] collected a dataset comprising 400 experimental images of crankshafts
with structural defects, such as scratches, pitting, and grinding. They simultaneously
applied the DexiNed edge detection filter to the training set images and trained a model
based on MobileNet to detect these defects accurately. In the detection of scratch defects
on curved metal surfaces, inevitable halos often obscure the defects’ features. To address
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this issue, He et al. [16] used a multiple high-frequency projection illumination imag-
ing method to generate high-contrast images of metal part surfaces. They utilized this
method to create a dataset named RMSSC, which includes 50 images of reflective metal
surface scratches. Subsequently, they developed a defect detection neural network and
enhanced its generalization performance through inverse transfer learning. In response to
the need for accurate manual data annotation in supervised training, Ref. [17] proposed
a semi-supervised method. This method combines the predictions of an object detector
with the segmentation of a zero-shot model, eliminating the need to label a dataset for
semantic segmentation.

Currently, deep learning methods have achieved good performances in surface defect
detection. The aforementioned works have undoubtedly made significant contributions to
defect detection methods based on deep learning. However, efficient and high-precision
defect detection still faces certain challenges due to the varying sizes of defects in images,
complex production environments affecting data sampling, and the inherent foreground–
background class imbalance in metal surface defect data.

3. The Proposed Segmentation Network

In this study, we developed an image segmentation network to localize scratch defects.
The backbone network, attention module, and loss function of the proposed network are
described in the following section.

3.1. Outline of the Model

Inspired by the U-Net segmentation network, we established a scratch defect segmen-
tation system for metal surface data (Figure 1). This system consists of five components:
a backbone network based on encoder–decoder architecture, a downsampling module,
an attention module, skip connections, and feature fusion.

The backbone network is a modified version of the basic U-Net model. Initially, a new
downsampling approach was proposed, based on LCAM and SPD modules, to capture
more information. Subsequently, an improved self-attention module was developed based
on image frequency decomposition, leading to the design of a lightweight attention module.
This lightweight attention module has been integrated into the skip connections between
the encoder and decoder to capture dense global contextual information, emphasize defect
areas, and assign weights to each channel. The specific modules, methods, and the loss
function will be detailed below.

3.2. Basic Framework

U-Net performs well in most image segmentation applications. Therefore, we im-
proved the U-Net model and utilized it as the fundamental backbone network architecture
for our proposed method.

The U-Net segmentation network is composed of an encoder and a decoder. In its
enhanced basic architecture, each block in the encoder comprises two convolutional layers,
batch normalization modules (Batch Normalize), leaky rectified linear units (Leaky ReLUs),
and a downsampling module that reduces the feature maps to 1/4 of their original scale.
The decoder part upsamples the feature maps using a deconvolutional layer and two
convolutional layers, followed by batch normalization modules and Leaky ReLU functions.
To reduce the information loss caused by pooling operations, the blocks corresponding
to the encoder and decoder paths are used to splice the feature maps together via skip
connections. This integration combines coarse semantic information from each section of
the encoder with fine semantic information from each section of the decoder.

Thus, the shallow layers of the encoder focus on low-level features such as image
contours, textures, and colours, while the deep layers of the encoder, with a large receptive
field, learn high-level features. Moreover, skip connections help to recover lost edge infor-
mation as much as possible, enabling the U-Net to retain high-level semantic information
from the encoder while maintaining detailed information from the decoder.
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3.3. Improved Self-Attention Module

To enhance the accuracy and robustness of the segmentation results, the DeepLabV2
model [13] included an Atrous Spatial Pyramid Pooling (ASPP) module with multi-scale
atrous convolutions. However, this approach falls short in capturing dense contextual
information, as it only collects contextual details from a limited number of points sur-
rounding each pixel through atrous convolutions. To address this limitation and establish
connections between pairs of pixels, Alexey Dosovitskiy et al. [12] incorporated a self-
attention mechanism into computer vision. Traditional semantic segmentation models face
challenges in fully utilizing the global information of an image due to the local receptive
field constraint of convolutional encoders. To address this issue, Danpei Zhao et al. [25]
introduced the RSANet, a regional self-attention-based network. This network enhances
the model’s logical understanding of image content by examining point-to-point relation-
ships between pixels and surrounding regional pixels, thereby improving segmentation
accuracy. However, in a convolutional neural network, neighbouring elements in the
feature maps of convolutional layers share semantic information spatially. Golnaz Ghi-
asi et al. [26] pointed out that even if neurons are killed, convolutional neural networks
can still obtain the semantic information of a pixel point according to its neighbouring
pixels. Similarly, in traditional self-attention modules, the pairwise dependencies between
pixels are typically computed repeatedly. Therefore, the self-attention module must be
lightweight and anti-redundant because the global feature maps obtained by traditional
self-attention modules often contain redundant information.

The wavelet transform is a powerful extension of the Fourier transform, renowned
for its ability to capture the instantaneous characteristics of a signal by utilizing local infor-
mation in both time and frequency domains. In the field of image processing, especially
for tasks with local mutable objectives, the wavelet transform is commonly employed to
decompose the input image into low-frequency components and high-frequency compo-
nents in vertical, horizontal, and diagonal directions. The high-frequency components
contain local detailed information, especially edge information. On the other hand, the low-
frequency components represent the global information of the image layer, such as colour.
Consequently, high-frequency components often require local and detailed processing,
while low-frequency components require global structural processing.

Attention(X) = Vso f tmax(QTK) + X (1)

Q = WQX (2)

K = WKX (3)

V = WV X (4)

As depicted in Figure 2, the feature map generated by the convolutional encoder
was a combination of high- and low-frequency features. To prepare for the merging of
encoding–decoding features, the encoder’s extracted feature map was implicitly divided
into low-frequency and high-frequency components by introducing a pair of convolutions
with a kernel size of (1, 1). Subsequently, the low-frequency components were fed into
the self-attention module to extract their overall features. These overall features were
then combined with the high-frequency components into a decoder feature map. This
methodology draws inspiration from octave convolution [27] and CSP [28] modules. In the
self-attention module, calculations were conducted across channel dimensions, as shown
in Equation (1), instead of across spatial dimensions. This adjustment aimed to reduce the
computational burden of the self-attention mechanism and implicitly encode global infor-
mation. Consequently, this approach prevented the self-attention block from generating
redundant information while establishing relationships among the pixels of low-frequency
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components, resulting in the extraction of efficient global features and the creation of dense
contextual information. Simultaneously, the high-frequency components highlighted the
target areas, aiding in the localization of scratch defect areas and improving the module’s
ability to segment minor and fine defects.

Figure 2. Network structure of the attention module.

3.4. Efficient Downsampling Module

Relying solely on skip connections for feature fusion between the encoder and de-
coder is far from sufficient for recovering lost features, especially in the initial stage of
network training. Before training and evaluating AlexNet, VGGNet16, and ResNet-50,
Koziarski et al. [29] reduced the size of the input image in the luminance channel and
then filled it again using the bilateral interpolation method. They found that when the
resolution of the images used for ResNet-50 training was reduced to 1/5 and 1/8 of its
original resolution, the classification accuracy of ResNet-50 dropped to 75% and 50% of its
original accuracy, respectively.

To address this issue, Chen et al. [30] proposed a global context-aware progressive
aggregation network based on the U-Net framework. This network consists of four mod-
ules: Feature Interweaving Aggregation (FIA), Self-Refinement (SR), Head Attention (HA),
and Global Context Flow (GCF). These modules interweave and fuse the global contex-
tual information, low-level detail information, and high-level semantic information of the
U-Net, obtaining richer feature information. Zhao et al. [31] proposed an edge-guided net-
work (EGNet) for salient object detection, which progressively integrates and complements
local edge information and global position information to extract prominent edge features.
However, we believe that these approaches do not tackle the core issue; instead, the focus
should be on alleviating the loss of detailed information at the source.

In this paper, a downsampling convolution block based on an SPD module and a
lightweight channel attention module was proposed and embedded into the encoder to
reduce the contextual information loss caused by the multiple convolutions and pool-
ing operations conducted in the encoder. This approach prevented the loss of valuable
information at its source, thereby capturing more information.

3.4.1. Space-to-Depth Module

A feature map X with dimensions (S, S, C1) is sliced as follows, and as displayed in
Figure 3:
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Figure 3. Framework of the downsampling module.

f0,0 = X[0 : S : scale, 0 : S : scale],
f1,0 = X[1 : S : scale, 0 : S : scale],
fscale−1,0 = X[scale − 1 : S : scale, 0 : S : scale];
f0,1 = X[1 : S : scale, 0 : S : scale],
f1,1 = ...,
fscale−1,1 = X[scale − 1 : S : scale, 1 : S : scale];
f0,scale−1 = X[0 : S : scale, scale − 1 : S : scale],
f1,scale−1 = ...,
fscale−1,scale−1 = X[scale − 1 : S : scale, scale − 1 : S : scale];

3.4.2. Lightweight Channel Attention Module

On feature maps, each channel corresponds to the extraction result of a specialized
feature extractor. However, not all channels have features of the same importance. Each
channel needs to be assigned a weight. Generally, for an input, its channel weight is
determined based on Equation (5), where MLP represents a multi-layer perceptron with
shared weights, and GAP and GMP represent the global average pooling and global max
pooling, respectively.

To downsample efficiently, the channel attention module must be lightweight. There-
fore, an MLP was designed with a single hidden layer containing only one neuron,
and pointwise convolution layers were used instead of fully connected layers. The structure
of this module is illustrated in Figure 4.

W = σ{MLP[GAP(x)]⊕ MLP[GMP(x)]} (5)

Figure 4. Framework of the LCAM.
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3.4.3. Our Downsampling Module

Based on the two preceding modules, we have designed an efficient downsampling
module, as detailed in Figure 3. For the input feature map, first, its size is reduced to 1/4
of its original while quadrupling the depth (i.e., the number of channels) using the SPD
module, as detailed in the previous section. Subsequently, the LCAM assigns weights to
each channel of the feature map, as illustrated in Figure 4. Finally, a convolution block with
a kernel size of (1, 1) is utilized to restore the depth of the feature map to its original size.

As shown in Figure 1, we have integrated our downsampling module into our model.
Specifically, it is designed to efficiently downsample the feature map during the encoding
process, thereby replacing the max pooling layer used in the original U-Net model. Notably,
in Figure 1, we have represented the downsampling process with the light green arrows.

3.5. Hybrid Loss Function

In deep learning segmentation tasks, the loss function is used to measure the discrep-
ancy between the predicted segmentation result and the ground truth mask. Its purpose is
to guide the model to effectively learn from the data during training, enabling the model to
predict segmentation results that closely resemble the true masks. To achieve efficient and
accurate defect segmentation, an effective loss function is crucial. Binary Cross-Entropy
(BCE) is widely used as an efficient loss function in computer vision tasks such as image
classification [32]. Its expression is as follows:

LBCE = − ∑−(1 − ti)log(1 − p̂i) + tilogp̂i (6)

where pi and ti represent the predicted value and the true value, respectively.
In contrast to most segmentation tasks, a scratch defect pixel area accounts for a very

low proportion of a full image’s pixels. The segmentation of scratch defects on a metal
surface presents a typical foreground–background class imbalance challenge. The loss for
the entire sample is expressed as follows:

Loss = ∑N
i=1 L(yi, p̂i)

N
(7)

For the binary classification of metal scratches, the loss expression is presented as
follows:

Loss =
∑m

i=1 −log( p̂) + ∑n
i=0 −log(1 − p̂)

N
(8)

where N = m + n represents the total number of samples, with m and n denoting the
numbers of positive and negative samples, respectively. When m � n (namely, when
negative samples dominate), this indicates that the model tends to learn from the class with
more samples, severely impacting its ability to recognize the class with fewer samples.

As such, the BCE is severely affected by class imbalance issues. Therefore, we adopted
the focal loss function, as displayed in Equation (9), to train the model for improved
classification performance.

L f ocal = −(1 − pt)
γlog(pt) (9)

where pt =

{
p̂ , i f y = 1

1 − p̂ , otherwise
In Equation (9), when γ > 0, samples difficult to identify are weighted and treated

as hyperparameters. When γ is set to 0, L f ocal is degraded into the original CE (Cross-
Entropy) loss function. (1− pt)γ can reduce the weights of samples that are easy to identify
and increase the weights of samples that are difficult to identify, thereby addressing class
imbalance issues [2].

395



Electronics 2024, 13, 3241

For a segmentation model, it is necessary to evaluate the similarity between the
areas segmented by the model and the true scratch areas, in addition to measuring the
classification effect of the model using a loss function. Hence, we introduced the Dice loss
function to assess the similarity between the areas segmented by the model and the ground
truth masks [3], thus supervising the segmentation network’s learning effect. The Dice loss
function is defined as follows:

LDice =
2 ∑N

i=1 piti

∑N
i=1 p2

i + ∑N
i=1 t2

i
(10)

where N is the total number of pixels, pi is the value of the i-th pixel in the result segmented
by the model, and ti is the value of the i-th pixel in the ground truth scratch mask.

To train the model to segment metal scratches more efficiently, we introduced a hybrid
loss function that combines the characteristics of both the focal and Dice loss functions.
By weighting and summing these two losses, their respective strengths were effectively
leveraged. The hybrid loss function was finalized and expressed as follows:

Total Loss = αL f ocal + LDice (11)

where α serves as a hyperparameter and is used to balance the focal loss and Dice loss.
As such, the hybrid loss function possesses the sensitivity of BCE towards pixel misclas-
sification, the sensitivity of Dice loss towards the discrepancy between segmented results
and true scratch areas, and the feature of focal loss to weight samples that are difficult
to classify.

4. Experiment and Analysis

4.1. Experimental Environment

The proposed network was implemented using PyTorch 1.13.1 and the OpenCV
4.8.1.78 extension library. The GPU utilized was the NVIDIA GeForce RTX 3050 Laptop,
and the CPU was the AMD Ryzen 7 5800H with Radeon Graphics. The initial settings were
as follows: a learning rate of 0.01, a decay of 0.001, a momentum of 0.88, a batch size of 32,
and a maximum of 150 iterations. Additionally, the weight α for the focal function in the
hybrid loss function was set to 0.5, and the γ factor in the focal loss function was set to 2.0.

4.2. Dataset

Our work aims to enhance the segmentation capabilities of the model with respect to
fine and micro targets. In this study, MSDD-UNet is employed to detect scratches on metal
surfaces, addressing issues such as the inherent foreground–background imbalance in the
scratch segmentation dataset. To this end, we specifically created a dataset for segmenting
fine and micro scratches. In total, we collected 1575 metal surface images and extracted the
sections containing scratch defects (see Figure 5 for a sample of these images).

As shown in Figure 5, the dataset comprises images of scratches on various metal
surfaces captured under different lighting conditions. The scratches exhibit a range of
shapes and colours and are predominantly elongated, with some shorter ones as well.
Recognizing and segmenting scratches in such a dataset proves challenging for the model,
as it faces several difficulties:

(1) The scratches vary in colour and shape, and the surface features of different metals
are quite different.

(2) The images contain elongated scratches, which makes it difficult for the model to
accurately segment the tips of these targets.

(3) The dataset includes various metals with diverse surface textures. These textures
may lead the model to misidentify them as scratches, causing disturbances.

(4) The scratch segmentation dataset inherently suffers from an imbalance between
foreground and background, with scratch pixels constituting a relatively small proportion
of the overall image.
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After preprocessing, the images were uniformly resized to 96 × 96 × 3. We used
LabelMe to annotate scratch defects and generate corresponding mask labels. The dataset
was split into a training set and a test set at an 8:2 ratio, with the training set comprising
1260 images and the test set comprising 315 images. Before initiating training, we randomly
subjected the training set to horizontal, vertical, and combined horizontal and vertical flips
to augment the data.

Figure 5. Examples of metal surface defects. This figure displays some of the metal surfaces and
scratches of different shapes and colours present in the dataset. Notably, we have specifically
highlighted some shorter scratches alongside some elongated ones. Additionally, some metallic
surface textures can also be observed in the figure.

4.3. Indicator Assessment

During this assessment, the following four types of samples may be generated:

(1) TP (True Positive): this is used to represent the pixels that are labelled as scratch
defects and detected as scratch defects by the model.

(2) TN (True Negative): this is used to represent the pixels that are labelled as non-scratch
defects and detected as non-scratch defects by the model.

(3) FP (False Positive): this is used to represent the pixels that are labelled as non-scratch
defects but detected as scratch defects by the model, indicating a false detection.

(4) FN (False Negative): this is used to represent the pixels that are labelled as scratch
defects but detected as non-scratch defects by the model, indicating a missed detection.

In the experiments, we utilized the Intersection over Union (IoU) as the primary
performance indicator to evaluate the proposed method. The calculation formula for the
IoU is shown below:

IoU =
TP

TP + FP + FN
(12)

In addition, the model assessment also involved the following three indicators for
supplementary evaluations:

(1) Precision: This refers to the proportion of samples labelled as scratch defects among all
scratch defect samples segmented by the model. A higher precision value indicates a
more precise and reliable segmentation of scratch defects by the model. The expression
of this indicator is as follows:

Precision =
TP

TP + FP
(13)
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(2) Recall: This refers to the proportion of pixels detected as scratch defects by the model
among the pixels labelled as scratch defects in the samples. A higher recall value
indicates that scratch defects were segmented more comprehensively by the model.
The formula for this metric is provided below:

Recall =
TP

TP + FN
(14)

(3) F1 Score: This takes into account both the precision and recall of the model, defined as
their harmonic mean. The calculation formula is as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(15)

4.4. Ablation Experiment

To validate the effects of the loss functions and modules used in this method on the
U-Net model, ablation experiments were conducted. The experimental setup and results
are listed in Table 1.

Table 1. By comparing precision, recall, F1 score, and IoU, we demonstrate the benefits of each step
in our model improvement.

Ablations Metrics

Experiment Hybrid Loss Our Downsampling Our Attention Precision Recall F1 Score IoU

NO.1 0.8332 0.8990 0.8649 0.7501
NO.2 � 0.8587 0.8642 0.8614 0.7665
NO.3 � � 0.8776 0.8796 0.8786 0.7934
NO.4 � � 0.8717 0.9012 0.8862 0.8027
NO.5 � � � 0.8740 0.9046 0.8890 0.8039

In Experiment 1, the original U-Net model was trained on the metal scratch dataset
150 times. In Experiment 2, the proposed hybrid loss function was introduced in addition
to the steps of Experiment 1. Comparatively, Experiment 2 showed a slight improvement
in both precision and IoU. Notably, the IoU increased by 1.64%.

Based on Experiment 2, Experiment 3 incorporated our downsampling module. This
module was based on SPD, fundamentally mitigating the loss of edge information caused
by convolutions and pooling operations. Subsequently, a lightweight channel attention
module computed the channel weights, followed by convolutions with a kernel size of
1× 1 for the final processing. According to the experimental data, Experiment 3 maintained
the recall as much as possible while improving the precision. Therefore, when compared
to Experiment 1 and Experiment 2, the model from Experiment 3 achieved a higher F1
score, reaching 0.8786. Compared to Experiment 2, which only added the loss function,
Experiment 3 achieved a further 2.69% increase in the IoU.

In Experiment 4, we integrated our attention mechanism into the skip connections
between the encoder and decoder, in addition to the procedures outlined in Experiment 2.
Based on frequency decomposition and lightweight self-attention, this approach largely
preserved useful and detailed information and encoded global features implicitly. Com-
pared to Experiments 1 and 2, Experiment 4 not only improved the precision and IoU but
also exhibited a significant increase in recall. In terms of F1 score, it reached above 0.88 for
the first time, specifically 0.8862. Meanwhile, the IoU was improved by 3.62% from that
obtained in Experiment 2.

In Experiment 5, both the downsampling module and attention module were incor-
porated into the model while the steps of Experiment 2 were conducted. As a result,
the model ensured high precision while achieving the highest defect recall among the five
experiments, reaching the highest F1 score. Moreover, the IoU achieved in Experiment 5
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reached the highest among all five experiments, presenting a 3.74% improvement from
Experiment 2 and a 5.38% improvement from Experiment 1. These results demonstrate
that our proposed method is an effective algorithm for enhancing the U-Net.

4.5. Contrast Experiment
4.5.1. Contrast Experiment on Scratch Data

To further validate the effects of the U-Net improvement in our proposed method on
segmenting metal scratch defects, we compared this model with several common semantic
segmentation models. The experimental results are provided in Table 2, with parameters,
Multiply-Adds (MAdds), and floating-point operations (FLOPs) included as additional
assessment indicators.

Table 2. This table presents a comparison of four selected models from the U-Net series and our
model, demonstrating the superiority of our model in terms of its computational efficiency and IoU,
among other factors.

Model Params MAdds FLOPs IoU

U-Net 1.97 G 3.93 G 1.97 G 0.7501
U-Net++ [33] 4.87 G 9.72 G 4.87 G 0.7834

U-Net with CBAM 8,599,178 5.03 G 2.52 G 0.7829
U-Net with Self-Attention 8,850,850 5.03 G 2.52 G 0.7940

Ours 8,502,210 4.95 G 2.48 G 0.8039

As shown in Table 2, our proposed model improved the IoU by 5.38% compared
to the classic U-Net model, by 2.05% compared to the dense connection-based U-Net++,
by 2.10% compared to the U-Net model fused with a Convolutional Block Attention
Module (CBAM), and by 0.99% compared to the U-Net model fused with traditional
self-attention mechanisms. Additionally, our proposed model was not only lightweight
but also surpassed the U-Net model with traditional self-attention alone in its scratch
segmentation IoU.

The IoU–epoch curves and loss–epoch curves generated by each model during training
are illustrated in Figure 6. It is evident that our model consistently outperformed U-Net
and U-Net++ in IoU throughout the training process. Due to foreground–background
class imbalance and similar issues, all models exhibited low IoU values at the beginning of
their training, but the loss–epoch curves show the faster convergence of our model. The U-
Net fused with traditional self-attention began to overfit after the IoU reached its peak.
However, our model incorporated a series of design improvements such as lightweighting
the self-attention mechanism. Additionally, in the loss function, we applied weighted
adjustments to hard-to-train samples. As a result, our model did not exhibit significant
signs of overfitting in the later stages of training.

Figure 7(1) depicts the precision-recall curves of each model. As observed, our model
yielded a higher precision in detecting defects than the other four models at a high recall.
At a high recall, our model not only maintained a high precision but also experienced less
precision decay than the other models, which is obvious in Figure 7(1). The experimental
results combining Figure 7(1) and Table 2 indicate that the proposed improved U-Net
model can achieve a higher IoU, recall, and precision.

Figure 7(2) provides the IoU–epoch curves generated during the training of our pro-
posed model using BCE, Dice loss, and our hybrid loss function, respectively. Notably,
the model trained with the hybrid loss function achieved the best training performance
in terms of the IoU. The BCE focuses solely on pixel classification errors, regardless of the
discrepancy between the model’s segmentation results and the true scratches. Therefore, it
is necessary to introduce the Dice loss function [2]. Additionally, as implied in Figure 7(2)
and Table 1, it is essential to apply weighting to the difficult-to-classify samples when train-
ing the model, even though the Dice function is less susceptible to foreground–background
class imbalance.
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Figure 6. IoU and loss curve.
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Figure 7. P-R curve and comparison of loss functions.

4.5.2. Contrast Experiment on Hot-Rolled Steel Strip Surface Defect Data

To further validate the segmentation capability of our model, we compared it with
five of the most commonly used models in image segmentation. We utilized the NEU-Seg
dataset [34] to evaluate the segmentation abilities of each model. The NEU-Seg dataset is a
public segmentation dataset of surface defects in hot-rolled steel strips [34]. Compared to
our dataset, the NEU-Seg dataset features a wider variety of targets, enabling us to assess
whether our model’s ability to segment targets extends beyond just scratches. This dataset
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comprises three types of defects, with 300 examples of each type given. In our experiment,
we did not differentiate among the three types of defects. That is to say, we considered the
three types of defects as 1, and non-defective areas as 0.

We selected UNet, UNet++, DeepLabv3+ [35], and PSPNet [36] to conduct a compara-
tive experiment with our proposed model. Prior to the experiment, the models underwent
a 100-epoch pretraining phase utilizing our dataset of metal surface scratch defects. The ex-
perimental results are shown in Table 3. Notably, DeepLabv3+(1) denotes the use of Mo-
bileNetV2 [37] as its backbone, whereas DeepLabv3+(2) denotes the use of ResNet101 [38]
as its backbone. As shown in Table 3, our model achieves the highest IoU compared to
other segmentation methods, without requiring extensive hardware resources or high
computational power. The segmentation IoU of our model is significantly higher than that
of UNet and UNet++. Compared with DeepLabv3+(1), which uses MobileNetV2 as its
backbone, our model achieves a 4.98% higher IoU score. In comparison to DeepLabv3+(2),
which has ResNet101 as its backbone, our model consumes fewer hardware resources, has
lower computational complexity, and achieves a higher IoU. When compared to PSPNet,
our model utilizes 70% of its hardware resources and only 1/3 of its computation, resulting
in a segmentation IoU that is 1.14 percent higher.

Table 3. Based on the NEU-Seg dataset, we compared our model to the five most commonly used
models to further verify the advantages of our model in terms of computational efficiency and IoU.
This table shows the results of the experiment.

Model Memory FLOPs IoU

U-Net 28.09 MB 1.97 G 0.6991
U-Net++ 56.78 MB 4.87 G 0.7082

DeepLabv3+(1) 22.10 MB 629.65 M 0.7097
DeepLabv3+(2) 35.18 MB 2.79 G 0.7392

PSPNet 48.16 MB 7.14 G 0.7481
Ours 34.45 MB 2.48 G 0.7595

To sum up, our proposed MSDD-UNet demonstrated a competitive performance in
metal scratch segmentation and other similar segmentation tasks. The proposed down-
sampling module, attention mechanism, and loss functions can also be utilized in similar
segmentation tasks, facilitating the development of an end-to-end segmentation network.

5. Conclusions

On account of metal surface scratch datasets containing class imbalance, this paper
proposes an MSDD-UNet-based scratch defect localization algorithm for pixel-level seg-
mentation. Extensive analyses and contrast experiments validated that our proposed
segmentation network can accurately identify and localize scratch defects that contain
class imbalance. The main contributions of this paper are as follows: (1) a downsampling
mode based on an SPD module and LCAM is proposed to overcome the loss of contextual
information after multiple convolutions and pooling operations; (2) based on image fre-
quency decomposition and a lightweight self-attention module, the attention module is
improved and then integrated into the skip connections to improve the model’s precision
in localizing scratch defects; (3) to address the foreground–background class imbalance
problem in scratches, a hybrid loss function integrating the advantages of both the focal
and Dice functions is introduced to realize precise segmentation training.
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Abstract: In order to extract the line-spectrum features of underwater acoustic targets in complex
environments, an auditory convolutional neural network (ACNN) with the ability of frequency
component perception, timbre perception and critical information perception is proposed in this
paper inspired by the human auditory perception mechanism. This model first uses a gammatone
filter bank that mimics the cochlear basilar membrane excitation response to decompose the input
time-domain signal into a number of sub-bands, which guides the network to perceive the line-
spectrum frequency information of the underwater acoustic target. A sequence of convolution layers
is then used to filter out interfering noise and enhance the line-spectrum components of each sub-band
by simulating the process of calculating the energy distribution features, after which the improved
channel attention module is connected to select line spectra that are more critical for recognition,
and in this module, a new global pooling method is proposed and applied in order to better extract
the intrinsic properties. Finally, the sub-band information is fused using a combination layer and a
single-channel convolution layer to generate a vector with the same dimensions as the input signal at
the output layer. A decision module with a Softmax classifier is added behind the auditory neural
network and used to recognize the five classes of vessel targets in the ShipsEar dataset, achieving a
recognition accuracy of 99.8%, which is improved by 2.7% compared to the last proposed DRACNN
method, and there are different degrees of improvement over the other eight compared methods. The
visualization results show that the model can significantly suppress the interfering noise intensity
and selectively enhance the radiated noise line-spectrum energy of underwater acoustic targets.

Keywords: gammatone filter bank; attention mechanism; line spectrum; auditory convolutional
neural network; global energy pooling; underwater acoustic target recognition

1. Introduction

Underwater acoustic target recognition (UATR) is a research hotspot in the field of
passive sonar and an internationally recognized technical difficulty in underwater acoustic
signal processing, which has a significant demand in harbor and waterway monitoring
and other aspects. Affected by sound scattering, ocean background noise, and the complex
underwater environment, the UATR technology is meeting great challenges [1]. In recent
years, with the rapid development of artificial intelligence technology, deep learning has
been gradually replacing traditional classification methods and is widely used in UATR
with remarkable achievements.

Compared with other deep learning models such as deep neural networks, recurrent
neural networks, and deep belief networks, a convolutional neural network (CNN) is the
most widely used in UATR due to its powerful deep feature extraction capability [2–4]. Re-
searchers usually transform underwater acoustic target-radiated noise time-domain signals
into time-frequency maps, such as the LOFAR spectrum [5], DEMON spectrum [6], and
Meier spectrum [7], and then refer to the computer vision method to achieve UATR using
two-dimensional (2d) CNN such as MobileNet [8], ResNet [9], VGG [10], DensNet [11], etc.
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In order to suppress the background noise interference and extract the critical features of the
target, attention mechanisms, including a channel attention mechanism, spatial attention
mechanism, and self-attention mechanism, are added in the CNN model to select the deep
features adaptively according to different weights [12–14], which effectively improves the
accuracy of target recognition. In order to downscale the scale of model parameters to
reduce the amount of computation, some scholars have improved the classical models
structurally by introducing advanced structures such as depth-separable convolutional
layers and global average pooling layers to give many new deep learning models for
UATR [15]. However, there are very few samples currently available for UATR model
training, which leads to serious model over-fitting. To address this problem, a generative
adversarial network (GAN) is used for underwater acoustic target data augmentation prior
to UATR, which utilizes mutual confrontation between the generator and the discriminator
to generate a large number of new samples similar to the real data, thus enlarging the size
of the underwater acoustic target sample set [16–18].

The process of converting time-domain signals into time-frequency maps will lose
part of the feature information, which may reduce the accuracy of target recognition. For
this reason, some end-to-end recognition methods based on time-domain signals and a
1d CNN model are proposed and proved to be effective [19–21]. Compared with the 2d
CNN, the 1d CNN usually has fewer model parameters and has the advantages of low
computational cost and high stability. In addition, the 1d CNN has a shorter duration
of input data, which means that more samples can be generated from the same dataset,
and therefore the model can be trained more adequately [22], resulting in better UATR
performance. In addition, a flexible combination of convolutional kernels with different
sizes is used to extract multi-scale features of underwater acoustic signals to enhance the
representation of target characteristics. Due to the current insufficient human knowledge
of the underwater acoustic target’s inherent properties, researchers are overly concerned
with accuracy improvement, but pay little attention to the interpretability of the features
extracted by deep learning, which leads to poor model generalization and low recognition
accuracy in complex environments [23]. It is no exaggeration to say that the recognition
performance of all current deep learning models is far from that of sonarmen.

Neuroscience researchers have found that the human ear is very sensitive to different
sounds and has a masking effect that allows humans to distinguish acoustic targets through
slight differences and perceive critical information about specific timbres in noisy envi-
ronments [24]. This phenomenon provides inspiration for using deep learning to mimic
sonarmen processing hydroacoustic signals. In this paper, the characteristics of underwater
acoustic targets are analyzed based on LOFAR spectrum from real data and elucidate the
specific sources of line spectra on different frequency bands. The timbre feature extraction
mechanisms of the human auditory system are summarized, and an end-to-end deep
learning model is proposed for UATR: Auditory Convolutional Neural Network (ACNN).
It realizes line-spectrum frequency perception, line-spectrum energy enlargement, critical
line-spectrum selecting, and line-spectrum features fusion, and thus realizes timbre feature
extraction from audio signals. Secondly, a new method of constructing the channel atten-
tion mechanism is proposed in designing the network model to globally pool the feature
map using the sub-band energy based on the underwater acoustic target signal characteris-
tics, which has a clearer physical meaning compared to the global average pooling (GAP)
and global maximum pooling (GMP). Finally, simulating the information processing and
decision-making functions on the brain, a one-dimensional deep convolutional network
is used to extract deep abstract features of different targets and predict the categories of
underwater acoustic targets.

This paper is organized as follows: The underwater acoustic target line-spectrum
characteristics are explained in Section 2. Section 3 introduces the human auditory mecha-
nism, gives a detailed introduction to the structure and design ideas of the ACNN model,
and provides a new UATR method based on ACNN. The experiment details, including an
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experimental dataset, experimental process and experimental results are shown in Section 4.
An overall discussion is concluded in Section 5.

2. Line Spectra of Underwater Acoustic Targets

Underwater acoustic target-radiated noise is a kind of strong periodic and non-smooth
signal consisting of mechanical noise, propeller noise and hydrodynamic noise, whose
power spectrum is composed of line spectra and continuous spectra. Line spectra are
frequency components with higher energy than continuous spectra and a stable amplitude
over a period of time, and they are mainly generated by mechanical operation (both
reciprocating and rotating) and structural vibration. The frequency of the line spectra is
related to the vibration frequency or operating speed. Time-frequency line spectra diagrams
of four typical underwater acoustic targets are shown in Figure 1.
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Figure 1. Time-frequency line-spectra diagrams. (a) Time-frequency diagram of the small boat.
(b) Time-frequency diagram of the test vessel in a stationary state with only auxiliary machinery
operation. (c) Time-frequency diagram of the fishing vessel with shaft system failure. (d) Time-
frequency diagram of the motor boat-radiated noise when its propeller is rotating at a high speed.

The time-frequency diagram of the small boat is shown in Figure 1a. This boat has
a diesel engine with four cylinders and a speed of 2500 revolutions per minute (rpm)
when the radiated noise is measured in experiments, which means that each cylinder fires
20.8 times per second, so there are four strong line spectra at 20.8 Hz, 41.6 Hz, 62.4 Hz,
and 83.2 Hz. It is easy to see that the fundamental frequency value and the number of line
spectra correspond to the rotational speed of the motor and the number of its cylinders,
respectively, which are the essential properties of underwater acoustic targets. Since the
engine noise intensity is unsteady over long periods of time, there are several harmonic
line spectra in the time-frequency diagram with a fundamental frequency of 20.8 Hz and
an order greater than four, but the maximum frequency of line spectra generated by diesel
engine is generally not greater than 300 Hz.

The time-frequency diagram of the test vessel in a stationary state with only auxiliary
machinery operation is shown in Figure 1b. It can be seen that there is a very strong
line spectrum at 50 Hz, which has the same frequency with the current output from the
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diesel generator. In addition, pumps and other auxiliary machines produce a very large
number of line spectra below 500 Hz, and these components are easily drowned by the
main engine noise during ship navigation but are very significant in the radiated noise of
non-diesel-powered ships.

The time-frequency diagram of the fishing vessel with shaft system failure is shown in
Figure 1c. The bearing periodically collides and fricates with the base during rotation, thus
generating rhythmic radiated noise with an intensive line-spectrum cluster normally in the
range of 300 to 1000 Hz, while the center frequency of this vessel is 560 Hz. The frequency
difference between any two adjacent line spectra in the cluster is approximately equal and
equal to the propeller shaft frequency. This is a frequency-accompanying phenomenon
resulting from the coupling of the line spectra, reflecting the vibration frequency of the
ship structure and the line spectra reflecting the rotational speed of the shaft, which is a
common characteristic of civilian ships.

The time-frequency diagram of the motor boat-radiated noise when its propeller
rotates at a high speed is shown in Figure 1d. Along with the propeller rapidly cutting
the water, its blades resonate and produce radiated noise with some high-frequency line
spectra, and the frequencies of these line spectra are generally more than 1000 Hz, and the
highest frequency even up to 8000 Hz. This motor boat has line spectra, respectively, at
6500 Hz and 7500 Hz, which are typical features significantly different from other classes
of targets.

3. ACNN

3.1. Auditory Mechanisms

Listeners usually distinguish different sounds containing similar frequency compo-
nents and the same loudness by their timbre, which can be simply represented by the
structure of the energy distribution of a sound in terms of frequency [25]. For underwater
acoustic targets, mechanical noise, propeller noise, bearing noise, and structure vibration
noise each have characteristic line spectra. Different targets have similar line-spectra fre-
quency bands, but the frequency energy distribution structures are different, thus being
an important feature for distinguishing them. Sonarmen recognize different underwater
acoustic targets mainly by sensing their timbre features.

The human auditory system is a multilevel complex system with the ability to per-
ceive sound information, which is mainly composed of the cochlea, auditory midbrain,
auditory thalamus and auditory cortex. When the auditory system perceives sound, the
cochlea basilar membrane first breaks down the sound into different frequency components
based on a specific excitation response, and then neurons in the primary auditory cortex
that correspond to the frequencies are activated by the complex frequency components
contained in the sound, which have a specific sensitivity and are connected with each
other to form a frequency topology [26]. After that, different frequency components from
the activation mode of the primary auditory cortex are integrated and processed by the
secondary auditory cortex to get the timbre information of the sound. When people focus
on hearing a certain timbre in a noisy environment, in accordance with the masking effect,
the primary auditory cortex allows all frequency information to pass through, but in the
secondary auditory cortex, only the neurons related to this timbre can be activated [27]. In
addition, as the sound intensity changes over time, the activation mode of auditory cortical
neurons also changes with the change of signal timbre energy [28]; that means the auditory
cortex is more sensitive to transient and mutant audio signals. Finally, the higher cerebral
cortex extracts deep features of all the timbre information integrated by the auditory cortex
for final recognition.

According to the above research results in the field of neuroscience, the human audi-
tory perception mechanism can be simply summarized into the following three aspects:
(1) decomposing the acoustic signal into different frequency bands; (2) extracting timbre
features and focusing on important information; and (3) using deep features to recognize
acoustic targets.
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3.2. Model Structure and Theory

Inspired by auditory mechanisms, this paper attempts to simulate the process of
human auditory perception with deep learning algorithms and proposes a model for under-
water acoustic target recognition, ACNN, which is composed of a frequency-component
perception module, timbre perception module, and critical-information perception model.
The model approximately emulates the whole process of acoustic signals being perceived
by the auditory system, and its structure is shown in Figure 2.

Figure 2. ACNN model structure.

3.2.1. Frequency Perception Module

In order to give the ACNN model initial guidance to extract timbre features of un-
derwater acoustic targets and achieve signal decomposition, the gammatone filter bank
with a similar excitation response to that of the cochlear basilar membrane is used in the
frequency perception module, which is shown in Equation (1).

g(t) = atn−1e−2πbtcos(2π f t + ϕ) (1)

where a is amplitude, n is filter’s order, t is time in second, B is bandwidth in Hz, ϕ is phase
of the carrier in radians, and f is center frequency in Hz. f and B are set according to an
equivalent rectangular bandwidth (ERB) filter bank cochlea model in Equations (2) and (3).

ERB( f ) = 24.7(4.37 f /1000 + 1) (2)

B = 1.019 × ERB( f ) (3)

In this module, according to the line-spectrum frequency distribution characteristics
of underwater acoustic targets, 128 gammatone filter channels are generated for sensing
frequency information with center frequencies ranging from 10 Hz to 10 kHz, and the
frequency magnitude responses of the gammatone filter bank are shown in Figure 3.

It can be seen in Figure 3 that the center frequency structures of the gammatone
filter bank are approximately linearly distributed in the frequency band of 10~300 Hz,
and the difference between two adjacent center frequencies is about 10 Hz, which shows
a good frequency resolution performance of the low-frequency line spectra generated
by mechanical noise. Moreover, in the frequency band higher than 300 Hz, the center
frequency interval and finite bandwidth of the gammatone filter bank are increasing, so
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that the high-frequency line spectra generated by bearing friction and propeller resonance
can be detected efficiently with less computational cost.

Figure 3. The frequency magnitude responses of the gammatone filter bank.

3.2.2. Timbre Perception Module

In the timber perception module, a convolutional block consisting of four 1d convolu-
tional layers is connected after one of the gammatone filter output channels. The first three
convolutional layers all have 16 channels with a convolutional kernel size of 5 × 1, which
are used to extract line-spectrum energy distribution features in different frequency bands
and also to filter the marine ambient noise. The fourth convolutional layer has only one
channel with a convolutional kernel size of 1 × 1, which is used to change the shape of its
input data and fully fuse underwater acoustic target timber features. In this module, the
combination of two different-sized convolutional kernels also enables multi-scale feature
extraction, allowing the model to better adapt to the effects of target velocity variations.
Each gammatone filter channel has a convolutional block connected to it and the operation
of the convolutional blocks can be described as follows.

yn = h(wnxn + bn), yn ∈ Rl×1, n = 1, 2, · · · , N (4)

where xn is the output of the nth gammatone filter channel, yn, wn and bn are the output,
weights matrix, and bias matrix of the nth convolutional block, respectively, h is the tanh
activation function which limits the output value of the convolutional block to a range
of −1 to 1, so as to ensure that the numerical range of the output data is the same as the
numerical range of the original signal, and it is expressed as

tanh(α) =
eα − e−α

eα + e−α
(5)

Compared to the commonly used Relu function, the tanh function better preserves the
original information of the input signal while introducing nonlinear operations. Driven by
a large amount of underwater acoustic target-radiated noise data, the kernel parameters of
convolutional blocks are optimized, so that interfering noise unrelated to target characteris-
tics is eliminated and the line-spectrum components of underwater acoustic targets will be
strongly enhanced.

3.2.3. Critical Information Perception Module

In this module, a concatenate layer is first used to concatenate the outputs of every
convolutional block, obtaining a feature map Y with N channels, which is shown in
Equation (6).

Y = concatenate(y1, y2, · · · , yN), Y ∈ Rl×1×N (6)

It is worth mentioning that, unlike the feature map output from convolutional layers,
the feature map here has practical significance, as each channel corresponds to a different
frequency band. On this basis, the channel attention (CA) [12] module whose structure
is shown in Figure 4 is cleverly used to generate a weight vector, weighting all frequency
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channels in order to select a combination of frequency bands that is more critical to the
target recognition task, achieving secondary extraction of timbre features. This operation is
represented as

ZC = Yσ =

⎡⎢⎢⎢⎣
y1
y2
...

yN

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
σ1
σ2
...

σN

⎤⎥⎥⎥⎦ (7)

where σ is the weight vector generated by the CA module, ρ ∈ Rl×1, and ZS is the output
of the CA module, ZS ∈ Rl×1×N . It can be seen from Figure 4 that the weight matrix σ
is derived from the input feature map Y through the computation of the global pooling
layer, the dense connectivity layer and the nonlinear activation layer. As the most critical
step of the channel attention mechanism, the global pooling operation is currently divided
into two types: GAP and GMP, and their role is to downscale the high-dimensional feature
maps along the channel axes to obtain a set of one-dimensional vectors with dimensions
equal to the number of channels, which is shown in Figure 5.

Figure 4. Channel attention mechanism.

Figure 5. Structure of the global pooling layer.

GAP and GMP are obtained by averaging and maximizing the feature maps along the
channel axes, respectively, and these two pooling methods are widely used in the image
processing field due to their excellent feature abstraction capabilities. However, in this
paper, unlike traditional image processing, the feature maps are three-dimensional vectors
with actual physical meaning, and each layer corresponds to the component of the original
signal in a certain frequency band, so GAP and GMP are not applicable here. The specific
reasons are as follows:

(1) The underwater acoustic target-radiated noise signal can be viewed as a superposition
of simple harmonic components, and the average value of any sub-band signal is
roughly 0. Therefore, sub-band features cannot be effectively extracted using global
average pooling.

(2) Although the maximum value of each sub-band signal can characterize the properties
of the target, the result of the maximum pooling operation is highly random due to
the interference of ambient noise.

In this paper, a new weight matrix calculation method called a global energy pooling
(GEP) layer is proposed in the channel attention module to achieve the operation of
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dimension reduction in feature maps by replacing the mean and maximum computation
with normalized energy computation. The output value of GEP is represented as

ρn =
y2

n(1) + y2
n(2) + · · ·+ y2

n(l) + · · ·+ y2
n(L)

L
, n = 1, 2, · · · , N (8)

Then, the GEP layer output vector is processed through two dense layers and activated
by a sigmoid function to obtain a weight vector taking values between 0 and 1. Equation (9)
is the expression of the sigmoid activation function.

sigmoid(α) =
1

1 + e−α
(9)

After that, the feature map output from the CA module with a dimension of l × 1 × N
is input into a one-dimensional convolutional layer whose channel number is 1 and kernel
size is 1 × 1 to achieve data compression, obtaining the output of the ACNN model after
the tanh function activation.

3.3. ACNN_DRACNN

In Ref. [12], an UATR method based on a deep residual attention convolutional
neural network (DRACNN) was proposed by our team in July 2023, which achieved 97.1%
recognition accuracy on the ShipsEar dataset [16] and had excellent generalization on the
DeepShip dataset with a recognition accuracy of 89.2% [17]. The DRACNN model consists
of five residual attention convolution blocks (RACB) connected in series, and it has the
same input data dimensions as the ACNN output data dimensions, which ensures the
connectivity of data transfer between the auditory and decision models. In this paper,
the DRACNN model is used to simulate the process of abstract feature extraction and
decision-making in the human cerebral cortex, and it is connected behind the ACNN model
which is used to simulate the human auditory perception mechanism to obtain a new model
called ACNN_DRACNN, finally achieving UATR by a Softmax classifier. The structure of
the ACNN_DRACNN model is shown in Figure 6.

Input 
layer

ACNN
model

DRACNN
model

Softmax

Figure 6. ACNN_DRACNN model structure.

The input shape of the ACNN_DRACNN model is set to 4096 × 1; thus, the number
of parameters and floating-point operations are 0.61 million (M) and 1.30 M, respectively. It
should be noted that the number of parameters and floating-point operations of the ACNN
model are 0.35 M and 0.69 M, respectively.

4. UATR Experiment

4.1. Introduction to the Dataset

In this paper, performances of the ACNN model in line-spectrum feature extraction
and target recognition are validated on the ShipsEar dataset, which is available at the
web address http://atlanttic.uvigo.es/underwaternoise/ (accessed on 15 March 2023).
The ShipsEar dataset was selected from audio recordings collected under different sea
conditions in Vigo Harbor, Spain. This dataset covers test data from the fall of 2012 through
the summer of 2013, and contains 91 sound recordings of 11 vessel types including fishing
boats, ocean liners, trawlers, mussel boats, tugboats, dredgers, etc., and one background
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noise class. The recordings were made with autonomous acoustic digitalHyd SR-1 recorders,
with a total duration of 3 h and 10 min and a sampling rate of 52,734 Hz. As shown in
Table 1, ship targets in this dataset were categorized into five categories by vessel length.

Table 1. ShipsEar data recognition details (Duration in seconds).

Category Type of Vessel Files Duration

A Fishing boats, trawlers, mussel boats,
tugboats, dredgers 17 1880

B Motor boats, pilot boats, sailboats 19 1567
C Passenger ferries 30 4276
D Ocean liners, ro-ro vessels 12 2460
E Background noise recordings 12 1145

4.2. Experiments and Analysis of Results

Firstly, the data in the ShipsEar dataset are resampled to 20 kHz, which effectively
retains the line-spectrum information below 10 kHz and doubly increases the duration of
the signal at a certain sampling point number. Then, all the data in the ShipsEar dataset are
divided into frames according to 4096 points per frame, and 2048 points overlap between
two adjacent frames, so the sample duration of each frame is about 0.2 s. After each sample
is zero-averaged and normalized, which is described in (10), a sample set containing
16,537 samples is obtained. Next, 80% of all samples are randomly selected as the training
set and the remaining 20% as the test set, so there are 13,230 samples in the training set
and 3307 samples in the test set, and it can be seen that this sample set is unbalanced from
Table 2.

p(n) =

s(n)− 1
4096

4096
∑

j=1
s(j)

max

(∣∣∣∣∣s(n)− 1
4096

4096
∑

j=1
s(j)

∣∣∣∣∣
) , n = 1, 2, · · · , 4096 (10)

Table 2. Recognition results of each class.

Category Accuracy (%) Precision (%) Recall (%) F1-Score (%)

A 99.83 99.83 99.83 99.83
B 99.82 99.99 99.82 99.91
C 99.99 99.72 99.99 99.86
D 99.87 99.87 99.87 99.87
E 99.85 99.99 99.85 99.92

Average 99.87 99.88 99.87 99.88

The ACNN_DRACNN model proposed in this paper is built in a deep learning de-
velopment environment with the Windows 10 operating system, Python-3.6.5, Keras-2.2.4,
TensorFlow-1.14.0, Cuda-10.0.130 and trained on a workstation equipped with NVIDIA
RTX2080Ti GPU, Intel Xeon silver 4214R CPU, and 32 GB RAM. The parameters of the
ACNN_DRACNN model are initialized with random numbers satisfying a Gaussian dis-
tribution before model training, with the optimizer set to Adam, the learning rate initial
value set to 0.001, the batch-size sequentially set to 8, 16, 32, 64, and the epoch set to
100. This model is trained based on the multi-classification cross-entropy cost function as
Equation (11), and the cost function curve of four times experiments with different batch
sizes is shown in Figure 7.

J = −
C−1

∑
i=0

yi log(pi) (11)
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Figure 7. Training curves of ACNN_DRACNN model.

The training and validation curves in Figure 7 show that the ACNN_DRACNN model
has good convergence on the ShipsEar dataset as the model iterates, and among four sets
of experiments, the best convergence effect is achieved when the batch size is set to 64, at
which time the recognition accuracy on the validation set is 99.87%. The confusion matrix
of the recognition results is shown in Figure 8. It can be seen that the recognition error
mainly stems from the model’s confusion between class A and class D targets. This is due
to the fact that fishing vessels in class A targets and ro-ro vessels in class D targets have
similar mechanical structures and working conditions, and their underwater radiated noise
is also similar.

Figure 8. Confusion matrix for recognizing results when batch size is 64.

In the display of identification experiment results, recall, accuracy, precision, and
F1-score are adopted to evaluate the recognition performance of the ACNN_DRACNN
model. The formulas for each indicator are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)
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Recall =
TP

TP + FN
(14)

F1_score =
2 × Precision × Recall

Precision + Recall
(15)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
The recognition experiment results are shown in Table 2.

Then, in order to investigate the effect of the gammatone filter number and the global
pooling layer of the CA module on the model recognition performance, the ablation
experiments are carried out on the test set while other parameters are kept constant, with
the number of filters setting to 8, 16, 32, and 64, respectively, and the global pooling setting
to GAP, GMP and GEP, respectively. The recognition results are shown in Figures 9 and 10.
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Figure 9. Cost function value of the model on validation dataset.
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Figure 10. Recognition accuracy of the model on the validation dataset.

With the same number of gammatone filter channels, the ACNN model using the GEP
layer proposed in this paper has a higher recognition accuracy and smaller cost function
value compared to the model using the GAP layer or the GMP layer, which indicates that
the GEP layer improves the model recognition performance and makes it have higher
confidence in the recognition results. In addition, as the number of channels increases,
the original signal is decomposed more finely, resulting in more explicit line-spectrum
components carried by each sub-band signal, so the model recognition accuracy increases
and the value of the cost function decreases. It is worth mentioning that the increase in
channel number leads to a significant increase in the model parameters and computation,
which needs to be weighed against the two factors for channel number selection. Next, the
ACNN_DRACNN proposed in this paper is compared with other state-of-the-art models
on the same sample set, and the results are shown in Table 3.
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Table 3. Recognition performance comparison of this method with other state-of-the-art methods.

No. Model Accuracy (%) Params (M) Flops (G)

1 DenseNet [29] 90.15 6.96 0.610
2 DarkNet [30] 96.68 40.59 1.930
3 RepVGG [31] 97.05 7.83 0.420
4 CRNN [32] 91.44 3.88 0.110
5 Auto-encoder [20] 93.32 0.18 0.410
6 ResNet [13] 94.97 0.33 0.110
7 A-ResNet [14] 98.19 9.47 1.460
8 MobileNet [8] 94.02 2.23 0.140
9 DRACNN [12] 97.10 0.26 0.005

10 ACNN_DRACNN 99.87 0.61 0.013

Benefitting from the excellent line-spectrum feature extraction capability of the ACNN
model, on the ShipsEar dataset, the ACNN_DRACNN model proposed in this paper
reaches a target recognition accuracy of 99.8%, which achieves an improvement of 2.7%
compared to the DRACNN model proposed by our team last year, and the recognition
accuracy is improved to different degrees compared to several other state-of-the-art models.
More importantly, the parameters of the ACNN_DRACNN model is only 0.61 M, which is
about 1/15th that of the A-ResNet model, and it has only 13 M floating-point computations,
which is about 1/100th of the A-ResNet model. In comparison, the model proposed in
this paper has fewer parameters and fewer floating-point calculations, which means that
less memory and computational resources are required to run the model, facilitating the
deployment of the model on a minicomputer system and the fast implementation of target
recognition. On our computer, model training process consumes 23 ms per sample, and
recognition consumes 2 ms per sample.

The signal-to-noise ratio of the radiated noise signals from underwater acoustic targets
in the ShipsEar dataset is high due to the close proximity between the target and the
hydrophone. The model recognition performance was tested after adding Gaussian noise
with different signal-to-noise ratios to the original data, and the results are shown in Table 4.
It can be seen that the target recognition accuracy increases with the increase in SNR. When
the SNR is −20 dB, the average recognition accuracy of the model is 66.3%, and when the
SNR is greater than −5 dB, the average recognition accuracy of our method achieves more
than 85%. In addition, the ability of the model to detect environmental noise is significantly
enhanced by adding noise.

Table 4. Recognition accuracy at different signal-to-noise ratios (%).

SNR (dB) −20 −15 −10 −5 0 5 10

A 63.7 78.5 75.5 84.9 95.1 98.8 99.5
B 65.9 79.6 80.3 85.0 97.4 99.1 99.4
C 68.2 73.7 79.4 86.2 97.1 99.0 99.6
D 52.5 67.0 77.8 84.8 96.9 98.5 99.6
E 81.2 92.1 94.3 97.2 98.4 99.0 99.9

Average 66.3 78.2 81.5 87.6 97.0 98.9 99.6

4.3. Visualization of Features

In the previous section, the auditory neural network model has been trained by
samples from the ShipsEar dataset, establishing a data-driven mapping from the original
signal to the output layer. In this section, the validation set samples are input into the
trained model, and the output layer data is transformed to the frequency domain using the
Fourier function. A segment of data in each of the five categories is selected for analysis
and comparison, as shown in Figure 11. For the five types of targets, a comparison of the
ACNN model output data power spectrum with the input data power spectrum shows that
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the energy of the output signals is suppressed or enhanced to different degrees in different
frequency bands, and the continuous spectrum intensity of the output signal decreases by
about 20 dB compared with that of the input signal, which implies that the line spectra are
enhanced to the same degree.

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 11. Power spectrum of input data and output data. (a) Sample of category A. (b) Sample of
category B. (c) Sample of category C. (d) Sample of category D. (e) Sample of category E.

Under the constraint of the cross-entropy loss function, the model parameters are
continuously updated by an error back-propagation algorithm to extract features from
the original signal that can distinguish the five types of targets. It should be emphasized
that not all the information in the original signal is valid for identifying the target, so this
paper uses an improved channel attention mechanism to select the frequency bands that
better reflect the differences between the five types of targets, and therefore the larger the
attention weights are, the better they reflect the essential target characteristics. According to
Figure 12, the power spectra of the five types of targets are augmented in certain frequency
bands, and the common denominator is the presence of line spectra in these bands, which
suggests that the main feature relied upon by the model proposed in this paper to recognize
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targets is the combination of underwater radiated-noise line spectra. The dimensions of
the ACNN model input data and output data are reduced from 4096 to 2 by the TSNE
algorithm for visualization in feature space, as feature 12.

  
(a) (b) 

Figure 12. Data visualization by TSNE. (a) Raw signals of ShipsEar dataset. (b) Output data of the
ACNN model.

The raw signals of underwater acoustic targets are disordered in the feature space,
and it is almost impossible to find any information that can distinguish the targets from
Figure 12a, while from Figure 12b, we can see that the distinguishability of the auditory
domain line-spectrum features extracted from the ACNN model output layer is obviously
improved, which indicates that the ACNN model proposed in this paper contributes to the
improvement of the performance of the UATR and that the features extracted by the model
are interpretable.

5. Conclusions

In this paper, an auditory neural network model with the ability of line-spectrum
feature extraction of underwater acoustic targets is designed by simulating the human
hearing mechanism and combined with the DRACNN model for UATR. On this basis, the
main contributions of this article are as follows:

(1) The design idea of the model is inspired by the human hearing mechanism, the feature
extraction process is very interpretable, and the data processing results show that
the finer the decomposition of the original signal, the higher the target recognition
accuracy that can be achieved.

(2) In this paper, a new global pooling method called a GEP layer is proposed, which
integrates traditional features with deep learning, and can provide higher recognition
accuracy and recognition result confidence for the network model compared with
global maximum pooling and global average pooling.

(3) The ACNN_DRACNN model achieves 99.8% recognition accuracy on the ShipsEar
dataset, which is a 2.7% improvement over the DRACNN model, and it has better-
integrated performance than DarkNet, MobileNet, CRNN and other current state-of-
the-art methods.

At the same time, there are still many issues worth studying based on our work,
such as:

(1) Expanding the dataset using simulation data or data augmentation, to improve the
recognition and generalization ability under sample imbalance and missing data for
typical operating conditions.

(2) Mining the time-correlation features and transient working condition features in the
original signal to improve the ability of portraying the essential characteristics of
underwater acoustic targets.
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Abbreviations

Abbreviation Full Name

UATR Underwater acoustic target recognition
CNN Convolutional neural network
GAN Generative adversarial network
ACNN Auditory convolutional neural network
DEMON Detection of envelope modulation on noise
LOFAR Low frequency analysis and recording
GAP Global average pooling
GMP Global maximum pooling
GEP Global energy pooling
CA Channel attention
DRACNN Deep residual attention convolutional neural networks
RACB Residual attention convolution blocks
ERB Equivalent rectangular bandwidth
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Abstract: The current study aims to evaluate the performance of the ultrasonic vibration-assisted
milling (USVAM) process when machining two different materials with high deviations in mechanical
properties, specifically 7075 aluminium alloy and Ti-6Al-4V titanium alloy. Additionally, this study
seeks to develop an AI-based model to predict the process performance based on experimental data
for the different workpiece characteristics. In this regard, an ultrasonic vibratory setup was designed
to provide vibration oscillations at 28 kHz frequency and 8 μm amplitude in the cutting feed direction
for the two characterised materials of 7075 aluminium alloy (150 BHN) and Ti-6Al-4V titanium alloy
(350 BHN) workpieces. A series of slotting experiments were conducted using both conventional
milling (CM) and USVAM techniques. The axial cutting force and machined slot surface roughness
were evaluated for each method. Subsequently, Support Vector Regression (SVR) and artificial neural
network (ANN) models were built, tested and compared. AI-based models were developed to
analyse the experimental results and predict the process performance for both workpieces. The
experiments demonstrated a significant reduction in cutting force by up to 30% and an improvement
in surface roughness by approximately four times when using USVAM compared to CM for both
materials. Validated by the experimental findings, the ANN model accurately and better predicted
the performance metrics with RMSE = 0.11 μm and 0.12 N for Al surface roughness and cutting
force. Regarding Ti, surface roughness and cutting force were predicted with RMSE of 0.12 μm and
0.14 N, respectively. The results indicate that USVAM significantly enhances milling performance
in terms of a reduced cutting force and improved surface roughness for both 7075 aluminium alloy
and Ti-6Al-4V titanium alloy. The ANN model proved to be an effective tool for predicting the
outcomes of the USVAM process, offering valuable insights for optimising milling operations across
different materials.

Keywords: artificial intelligence; support vector regression; neural network; ultrasonic; vibration
assisted cutting; milling; titanium; aluminium

1. Introduction

There is an increasing demand for precise, miniaturised products with tight tolerances
and high-quality surface finishes across various industries. Titanium alloys, particularly
Ti-6Al-4V, are extensively used in aerospace, automotive and medical sectors due to their
exceptional strength, lightweight nature, corrosion resistance and biocompatibility [1–3].
However, their high strength, low thermal conductivity and reactive chemical proper-
ties can lead to significant tool wear during machining under thermal stress. In contrast,
aluminium alloys such as Al7075 are widely employed in aerospace, automotive, machin-
ery and medical fields. While Al7075 is valued for its superior strength and corrosion
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resistance [4,5], it presents machinability challenges, including surface roughness and geo-
metrical accuracy compared to other aluminium alloys, complicating the manufacturing
process [6,7]. Ultrasonic vibration-assisted milling (USVAM) is an advanced machining
technique that combines conventional milling (CM) with ultrasonic vibrations, significantly
improving surface quality [8,9]. The ultrasonic-assisted milling (USAM) process builds
on this by enhancing machining performance in several critical areas. It improves surface
accuracy, reduces surface roughness, minimises wear and thermal stress and extends tool
life. These advancements lead to better quality finishes and reduced operational costs,
making USVAM a valuable technique in advanced manufacturing [10,11]. As a result,
there has been increased interest in developing and optimising VAM techniques to further
enhance machining efficiency and process parameters.

Hu et al. [12] carried out experiments comparing ultrasonic-assisted milling (UAM)
to CM of titanium alloy. Their findings showed that UAM greatly reduced chip adhesion
during cutting, which led to less burr formation and improved surface integrity. Addi-
tionally, UAM achieved a surface roughness of 96 nm, a 46.7% improvement over the
180 nm roughness observed with CM [12]. Liu et al. [13] compared CM and UVM re-
garding their effects on chip formation and machining quality. Their tests demonstrated
that the UVM improves shear slip and chip evacuation, resulting in a smaller chip curl
angle. Engelking et al. [14] optimised surface residual stress in additively manufactured Ni
alloy components using UAM. Their results indicated that CM primarily induced tensile
residual stress, while UAM generated compressive residual stress on the machined surface.
Furthermore, their study showed that UAM significantly improved Ni alloy components’
processability and surface integrity, especially at lower cutting speeds. Fang et al. [15]
investigated the impact of conventional micro-milling and one-dimensional ultrasonic-
assisted vibration micro-milling (UVAMM) on the surface quality of workpieces. Their
findings indicated that UVAMM reduced the cutting forces in the three principal directions,
Fx, Fy and Fz, by 7.6%, 11.5% and 1.3%, respectively. Additionally, when the per tooth
feed rate (fz) was set to 5 μm, the burr-inhibition effect was most pronounced, with the
minimum burr sizes measuring 50.23 μm on the down-milling side and 36.57 μm on the
up-milling side. Zhang et al. [10] investigated the impacts of CM and UAM on titanium
alloy’s surface and subsurface characteristics. They discovered that UAM produced a
consistent micro-texture on the surface but resulted in higher surface roughness compared
to CM. Additionally, UAM was found to intensify changes in the subsurface structure and
cause greater plastic deformation. Xu et al. [16] applied longitudinal-torsional ultrasonic
vibration milling (LTUVM) to address subsurface damage and severe burr formation in
the production of CFRP materials. They developed the first numerical model for cutting
aramid fibre-reinforced polymer (AFRP). Their tests demonstrated that LTUVM reduced
burr length by 23–38%. The most significant improvement in burr length, up to 38%,
occurred at a cutting speed of 4000 rpm. Additionally, at a speed of 2800 rpm, the cutting
force reduction rate was approximately 48%.

Wang et al. [17] analysed the impact of ultrasound-assisted dry spiral milling process-
ing parameters on CFRP delamination damage. Their experimental results revealed that
the influence of ultrasound amplitude was relatively minor, accounting for only 18.1% of
the overall effect. Amini and Bayat [18] investigated the impact of axial ultrasonic-assisted
milling (UAM) on the distortion of aluminium alloy parts. Their study compared the
effects of CM and UAM on distortion and milling force. The experiments demonstrated
that UAM significantly reduces milling force and distortion compared to CM, showing
a 29% reduction in cutting force and a 21% reduction in distortion. This improvement
has crucial implications for enhancing the flatness tolerance of workpieces, resulting in
components free from waves and warpages. El-Hofy and Ali [19] studied the effect of
vibration-assisted helical milling (VAHM) on machining 7075 aluminium alloy. Their ex-
periments showed that applying axial ultrasonic vibrations improved the surface finishing
performance. The optimal conditions were a rotational speed of 5000 rpm, a tangential
feed of 100 mm/min and a helical pitch of 0.1 mm/rev. Under these conditions, VAHM

422



Sensors 2024, 24, 5509

reduced axial cutting forces and diameter deviation, enhancing overall milling performance.
Haddad et al. [20] studied USVAM on AISI 1045 steel and 7075 aluminium, using resonant
frequencies of 19,840 and 19,757 Hz, respectively, and increasing ultrasonic intensity from
15 to 22.5 W/cm2 improved surface roughness (Rz) by 70% and smoothness (Ra) by 72%
for aluminium. For steel, 22.5 W/cm2 vibrations enhanced surface smoothness by 53%
(average) and 45% (maximum), while 30 W/cm2 vibrations increased smoothness by 35%
and 25% on face-milled surfaces. Baraya et al. [21] developed a vibratory system for slotting
using ultrasonic vibrations at 34.7 kHz and 10 μm amplitude on Al 7075 alloy. Their experi-
ments showed up to a 50% reduction in cutting force and improved surface roughness with
ultrasonic vibrations, which also reduced slot width error compared to conventional milling.
Their developed statistical model accurately predicted process performance, confirming
the technique’s effectiveness for high-precision manufacturing.

The implementation of artificial intelligence (AI) based machine learning (ML) algo-
rithms in milling processes has significantly advanced the monitoring and prediction of
factors like tool wear, failure and process optimisation—areas where conventional methods
often fall short [22]. Commonly used ML algorithms include Support Vector Machine
(SVM) [23], artificial neural networks (ANN) [24] and Decision Trees, with specific sub-
types like Probabilistic Neural Networks (PNN) [25] and Random Forest (RF) also being
prevalent [26]. These algorithms have been particularly effective in tool condition monitor-
ing, process parameter optimisation and enhancing product quality by predicting surface
roughness, cutting force and workpiece deformation [22]. In the field of ultrasonic-assisted
milling, which involves costly tools and time-consuming experiments, AI methods, particu-
larly ANNs, offer a practical alternative for predicting the effects of various parameters on
cutting processes. ANNs have a strong track record in manufacturing for tasks like process
optimisation and tool condition monitoring, making them a reliable choice for modelling
ultrasonic-assisted milling (UAM) processes [27]. The ANN model has demonstrated
high accuracy in predicting surface roughness for CNC face milling components, and its
application in the design of experiments for various machining operations further validates
its effectiveness [28]. Concerning the use of AI and machine learning for the prediction and
evaluation of milling process performance, Zerti et al. [29] analysed the effectiveness of
response surface methodology (RSM) versus artificial neural networks (ANN) in predicting
outcomes. Their findings revealed that the ANN model achieved a prediction accuracy of
99.9% for surface roughness and cutting forces.

In contrast, the RSM model provided an accuracy of 87.31% for surface roughness and
98.03% for cutting force values. Karabulut [30] investigated the optimisation of cutting
forces and surface roughness in AA7039/Al2O3 metal matrix composites milling using
an ANN model. The study’s results indicated that the ANN model was highly effective,
achieving prediction accuracies of 97.75% for surface roughness and 93.34% for cutting
forces. Pourmostaghimi et al. [31] devised an advanced methodology utilising ANN to esti-
mate machining parameters in the turning process of AISI D2. Their findings demonstrated
that this approach could predict machining time with high accuracy.

This study explores the performance analysis and predictive capabilities of artificial
neural networks (ANN) in ultrasonic-assisted milling (UAM) across various material
properties. This research addresses the limitations of traditional milling processes by
aiming to improve machining precision. An innovative USVAM system was designed to
introduce ultrasonic vibrations to the workpiece along the feed direction. Subsequently,
a statistical model was developed to predict the responses of the USVAM process, which
was validated through additional experimental trials. The resulting ANN model is a
tool for effectively controlling the USVAM process, considering the applied vibrations
and machining parameters. This advancement demonstrates significant applicability in
manufacturing industries that demand precision and high accuracy.
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2. Methods

2.1. FEA Model Construction and Ultrasonic Vibratory Transducer Design

Finite Element Analysis (FEA) is pivotal in accurately simulating the behaviour of
complex manufacturing systems [32,33]. Its ability to model intricate geometries and
material properties is advantageous for analysing ultrasonic vibratory transducers. FEA
allows for detailed simulations of complex vibratory behaviours, enabling the optimisation
of transducer performance before building the physical parts without extensive physical
prototyping. This approach helps identify potential issues and refine designs early in
development, reducing costs and time. Additionally, FEA can accurately predict the effects
of different materials and geometries, ensuring the transducer meets specific performance
criteria [34]. The FEA’s role in this study was to verify and refine the proposed design.
Following this, the components of the finalised design were manufactured. Additionally,
FEA was employed to assess the nodal plan within the workpiece. This position was
crucial for workpiece fixation during milling, as the wrong fixing position degenerates the
vibration waves.

The initial step in developing this study’s FEA model involved creating the transducer
components’ geometry. The dimensions for each component were determined according
to the methodology outlined by Baraya et al. [35]. The ABAQUS 13.1 software package
(Dassault Systèmes, Vélizy-Villacoublay, France) was employed to construct the model
geometry, as illustrated in Figure 1. Notably, the innovative approach of using FEA allows
for precise analysis of the piezoelectric transducer components (front mass, piezoelectric
rings, electrodes, back mass and steel bolt), depicted in Figure 1a, which are assembled and
held together through a compressive pre-load using a steel bolt.

Figure 1. (a) Transducer components: (1) front mass, (2) piezoelectric rings, (3) electrodes, (4) back
mass, (5) steel bolt and (b) Assembled transducer.

Following the literature [35], appropriate materials were designated for each of the
transducer parts. Aluminium was selected for both the front and back masses due to its
lightweight and strength properties. Copper was chosen for the electrodes because of its
excellent electrical conductivity. Piezoelectric materials were used for the rings to efficiently
transform electrical energy into mechanical energy. Tables 1 and 2 were used to define the
characteristics of these materials in the FEA model. Subsequently, loads and boundary
conditions were applied. A pre-stressed bolt load, calculated based on the recommended
compression state of the piezoelectric stack (approximately 30 MPa), was applied between
the back mass and the piezoelectric stack at the bolt cross-section [35]. Additionally, the
boundary conditions (BC) are applied to the piezoelectric elements, where the electrical
potential starts from the initial state at the surfaces between the piezoelectric rings them-
selves and between the piezoelectric rings and the neighbouring metal masses [36,37]. A
depiction of these load and boundary conditions can be observed in Figure 2a.
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Table 1. Properties of the piezoelectric elements.

Item Code BJUPR

Dimensions (mm) 35 × 15 × 5

Density (Kg/m3) 7.7

capacity (p Farad) 1720

Piezoelectricity (10−12 Coulomb/Newton) D33 = 240, d31 = −95, d15 = 380

Dielectricity (ε0 = 8.85 × 10−12 Farad/meter) ε33
S /ε0 = 540, ε11

S/ε0 = 800

Elastic compliance (10−12 meter2/Newton) S11
E = 11.4, S33

E = 13.7

Table 2. Physical properties of transducer component materials.

No. Material
Young’s

Modulus
(GPa)

Density
(Kg/m3)

Poisson’s
Ratio

Wave Velocity
(m/s)

Characteristic Acoustic
Impedance (106·Ns/m3)

1 Aluminium (5083) 70.3 2660 0.33 5140 13.67

2 Steel (AISI 1045) 200 7870 0.3 5040 39.7

3 Piezoelectric 73 7700 - 3080 23.72

4 Copper 115 8900 0.31 3595 31.9

Figure 2. (a) Load and boundary conditions and (b) von Mises equivalent stress results from finite
element static analysis for the transducer.

The FEA mesh design for ultrasonic transducers involved careful selection of mesh
elements to precisely capture each component’s physical behaviour. All metallic parts
were meshed using 3D stress quadratic elements (C3D20R) to ensure detailed stress dis-
tribution and deformation characteristics. Piezoelectric quadratic elements (C3D20RE)
were chosen for the piezoelectric rings. This selection allows for accurately simulating the
electromechanical coupling effects inherent in piezoelectric materials.

2.2. FEA Model Outcome

The FEA results, depicted in Figure 2b, verified that the applied bolt torque does not in-
duce high-stress levels that could fail transducer components. This verification ensures the
structural integrity and reliability of the transducer under operational conditions. Therefore,
the design is robust against the applied torque, safeguarding the transducer’s performance.

The choice of C3D20R elements in Abaqus for metallic parts was successful, as 20-node
quadratic brick elements accurately capture curved geometries and stress gradients. Their
reduced integration helps avoid common numerical issues, making them more efficient
and less computationally intensive. C3D20R elements also perform well in nonlinear
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analyses, efficiently handling large deformations and complex material behaviours. Their
higher-order interpolation improves convergence, meaning fewer iterations for the solver
and quicker results. The piezoelectric ring C3D20RE elements enhanced hourglass control
and improved numerical stability and accuracy. They excel in nonlinear analyses, capturing
deformations and dynamic behaviours essential for optimising transducer performance.

Given that the design frequency was 28 kHz, the frequency analysis was conducted
over a 26–30 kHz frequency range. Figure 3 depicts the transducer operating in the
longitudinal vibration mode, wherein each particle’s displacement occurs in the axial
direction. The measured resonance frequency, at which the transducer naturally oscillates,
was 25,866 Hz, which deviates by approximately 7.62% from the design frequency, thus
confirming the accuracy of the design. Figure 3a,b present the von Mises stress and
displacement distributions at longitudinal mode shape, respectively. These figures illustrate
the variations in displacement and stress, highlighting regions of maximum intensity.
Notably, the maximum stress was observed at the nodal point (Figure 3a), which was
critical for the transducer’s performance during experiments. In contrast, the maximum
displacement was recorded at the front-end face of the transducer, Figure 3a,b.

Figure 3. Longitudinal mode shape of the transducer, (a) normalised displacement, (b) and von
Mises stress.

Figure 4a,b displays the von Mises stress and displacement distributions along the
transducer’s axial direction for the longitudinal mode shape after incorporating the horn
and workpiece. The resonance frequency for this configuration was measured at 26.387 kHz,
which deviates by approximately 5.76% from the design frequency for the Al7075 work-
piece, thus further validating the accuracy of the design. Additionally, the resonance
frequency for the Ti-6Al-4V titanium workpiece was measured at 26.328 kHz, which de-
viates by approximately 6% from the design frequency. The frequency error ratio of a
transducer refers to the difference between the designed resonant frequency and the ac-
tual resonant frequency during operation. This ratio ensures the transducer performs as
intended, especially in applications requiring precise ultrasonic frequencies. The error was
due to practical constraints and operational tolerances in this case. Cost considerations and
empirical data supporting acceptable performance at this error level validate its use.

A secure connection was essential for effectively transmitting stress waves from
the transducer to the workpiece through the ultrasonic vibration-assisted milling device.
Figure 5a depicts the longitudinal path, including the workpiece and device, as analysed
through FEA methods to evaluate the mechanical behaviour at the horn-workpiece fixation
point. Stress waves are continuously transmitted from the horn to the workpiece, facili-
tating the identification of the optimal fixation point with maximum stress and minimal
displacement, as illustrated in Figure 5a,b. The propagation speed c and wavelength λ of
the stress waves, which are influenced by material properties [35], guide this identification.
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Figure 4. Longitudinal mode shape of the workpiece under the influence of an ultrasonic vibration-
assisted milling device. (a,b) von Mises stress and normalised displacement, respectively, for the
Al 7075 alloy workpiece. (c,d) von Mises stress and normalised displacement, respectively, for the
Ti-6Al-4V titanium workpiece.

(a) 

 

Figure 5. Cont.

427



Sensors 2024, 24, 5509

Figure 5. (a) A longitudinal path through the workpiece and the ultrasonic vibration-assisted
milling device, (b) von Mises stress distribution along the path (Al 7075 workpiece), (c) normalised
displacement distribution along the path (Al 7075 workpiece), (d) von Mises stress distribution
along the path (Ti-6Al-4V workpiece) and (e) normalised displacement distribution along the path
(Ti-6Al-4V workpiece).

2.3. FEA Model Validation

The experimental measurements of the vibration amplitude and the validation of the
FEA results by checking resonance frequency and nodal plan position were performed
according to a technique proposed by Baraya et al. [35]. The transducer components,
including the stepped horn, were manufactured and assembled for experimental validation.
The workpiece was attached to the transducer through the designed connector. Then, the
transducer was connected to the ultrasonic generator, and iron powder was distributed
along the workpiece, as shown in Figure 6a.

(a) (b) 

Figure 6. (a) Iron powder distributed along the workpiece in the initial position and (b) iron powder
concentrated at the nodal plane after applying vibration.

The nodal plane location was validated using the iron powder, as depicted in
Figure 5c,e. When the ultrasonic generator started to send the vibration waves to the
transducer, the iron powder moved along the workpiece, responding to the vibration
waves except at the nodal position, as shown in Figure 6b. This experimental observation
confirmed that the nodal plane location corresponded closely with the predictions from
the FEA.

3. Experimental Setup

In the current study, two workpiece materials were used: Al 7075, measuring
15 mm × 50 mm × 12 mm and Ti-6Al-4V titanium alloy, measuring 15 mm × 50 mm × 10 mm.
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These materials were subjected to CM and USVAM. Two different cutting tools were used:
(S822) a 4 mm diameter carbide endmill with two flutes was used for Al 7075 workpieces,
while (S260) a 4 mm diameter carbide endmill with four flutes was used for Ti-6Al-4V
workpieces (Dormer Pramet, Sumperk, Olomoucky kraj, Czech Republic). The chemical
and mechanical properties of the workpieces are listed in Tables 3 and 4, respectively.

Table 3. Chemical composition (wt.%) of Al-7075 and Ti-6Al-4V [38,39].

Al-7075

Element Zn Mg Cu Si Mn Cr Fe Ti Al

wt.% 3.25 1.9 1.8 0.5 0.4 0. 2 0.5 0.15 Balanced

Ti-6Al-4V

Element Al V Fe C N H O Ti

wt.% 5.5~6.8 3.5~4.5 ≤0.30 ≤0.08 ≤0.05 ≤0.015 ≤0.20 Balanced

Table 4. Mechanical properties of Al-7075 and Ti-6Al-4V [39–42].

Property Elongation (%) Hardness (HV)
Tensile Strength

(MPa)
Elastic Modulus

(GPa)
Yield Strength

(MPa)
Poisson

Ratio

Al-7075 11 175 570 72 505 0.33

Ti-6Al-4V 14.5 350 1150 125 950 0.342

The experimental work was conducted using an Extron Vertical Milling Centre ma-
chine (CENTROID, Howard, PA 16841 USA). The vibration generation system was com-
prised of an ultrasonic generator unit with maximum power rating of 1 kW operating at
a frequency of 28 kHz, a piezoelectric transducer and a booster to amplify the vibration
amplitude. Vibration waves were transmitted to the workpiece through this setup during
the cutting process.

During the machining experiments, the axial cutting force was measured using a
Wagezellen load cell model 102, measuring forces up to a capacity of 500 N. The me-
chanical loads were converted into an electrical charge by a piezoelectric sensor. This
electrical charge was processed and recorded as force units by a programmed Arduino Uno
(Somerville, Somerville, MA, US), as shown in Figure 7b. Arduino Uno interfaced with the
sensor and converted analogue signals into digital formats for accurate force measurement
and data recording. The surface roughness of the machined slots was assessed in order
to compare the slotting process performance in CM and USM. During this process, the
average roughness (Ra) and average maximum height of the profile (Rz) values were
measured using a Surface Roughness Tester TR-200 (Bowers Group, Albany Court, Albany
Park, Camberley, UK).

In this context, the Ra surface roughness unit was micrometres (μm), where Ra stands
for “arithmetic average roughness” and measures the average deviation of the surface
profile from the mean line over a specified length. Rz in micrometres represented the
average maximum height of the profile and was calculated by taking the average of the
vertical distance between the highest peak and the lowest valley in each sampling length
and then averaging these values.

For each slot, three measurements were taken along a 4 mm segment of the slot length
to ensure accuracy and consistency in the roughness evaluation. This method provided a
detailed comparison of the surface finish quality achieved by each milling technique.

429



Sensors 2024, 24, 5509

 

 

 

(a) (b) (c) 

Figure 7. (a) Vibration system equipment, (b) complete setup with force-measurement system and
ultrasonic components and (c) vibration direction during the milling process.

3.1. Experimental Design Methodologies

The experimental study aimed to optimise the milling process by investigating various
input parameters. The input parameters examined were the depth of cut (mm), feed motion
(mm/min) and spindle speed (rpm). Preliminary experiments were conducted to establish
suitable upper and lower levels for these parameters. Based on the results of these prelimi-
nary tests and data from the literature, the parameter levels for the comprehensive set of
experiments were determined. The total number of tests conducted was 18 experiments
with 3 replications for each workpiece. The selected milling parameters and their levels are
listed in Table 5. All experiments were performed under dry-cutting conditions.

Table 5. Experimental parameters for Al 7075 and Ti-6Al-4V titanium alloy workpieces.

Levels

Machining Condition

Depth of Cut (mm) Feed (mm/min)
Spindle Speed

(rpm)
Ultrasonic
Vibration

1 0.05 10 1000 ON/OFF

2 0.1 20 2000 ON/OFF

3 0.2 30 3000 ON/OFF

3.2. SVR Model Construction

Support Vector Regression (SVR) is a Support Vector Machine (SVM) tailored to predict
continuous values rather than classify data. While using SVR, the goal was to find a function
that predicts surface roughness and cutting force from depth of cut, cutting and feed speeds
with controlled assisted vibration within the smallest margin of error while keeping the
model simple. As the most effective way to compare the performance of different AI-based
algorithms is to cross-validate them, SVR was initially tested in the current study following
a random 70%, 15% and 15% data partition strategy for training, validation and testing.
Fifty-four data points were used in building the SVR model for each material (Al and Ti).
It is crucial in this context to refer to the randomisation selection used for the training,
validation and testing data as “pseudo-random selection” or “deterministic selection”, as
the seed was fixed to a single value of 42 that controlled the random value generator. This
value was selected after running that model with multiple seeds and identifying the seed
that gave the best average accuracy across all AI models. A fixed seed approach was used
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across the study to ensure reproducibility and comparability among the results, which
means that while the selection mimics randomness, the results can be exactly replicated in
subsequent runs.

The SVR model was built and trained to predict the output variables, employing a
Gaussian kernel using the MATLAB Deep Learning Toolbox “fitrsvm” function. The Gaus-
sian function was selected as a kernel for its capability to capture nonlinear relationships
between inputs and outputs. The kernel scale was set to “auto”, which automatically
adjusted the kernel function’s influence by its width (3.0932 in this case, with 26 itera-
tions), and the input values were standardised before training, ensuring that each value
contributes equally to the prediction process. After being trained, the SVR model predicted
the two outputs. The accuracy of these predictions was evaluated using two key metrics:
Root Mean Square Error (RMSE) and Mean Squared Error (MSE). The RMSE provided an
average measure of the prediction error magnitude. At the same time, the MSE offered
insight into the model precision by averaging the squared differences between the predicted
and true values.

3.3. ANN Model Construction

This section describes the implementation of an ANN in MATLAB Deep Learning
Toolbox for predicting target variables (surface roughness and cutting force) from input fea-
tures (depth of cut, cutting and feed speeds in addition to on/off assisted vibration). Once
more, a subtotal of 54 data points was used for each material, with 108 total data points.

The process started with data preparation, where the input features and target vari-
ables were rearranged to match the required dimensions for the ANN and stored as ANN
inputs and outputs. Then, a feedforward ANN with 10 neurons in its 2 hidden layers was
created using the “fitnet” function. This setup was chosen to balance network complexity
and performance. The training parameters procedure was achieved by setting the network
configuration for 100 epochs with a learning rate of 0.01, optimising the training process
using the Levenberg–Marquardt algorithm handled by the “train” function. The activation
function used was the sigmoid function “tansig” in the hidden layers and a linear function
“purelin” in the output layer.

The number of hidden layers was set by starting with a single hidden layer and pro-
gressively increasing the number of hidden layers to five while evaluating the performance
through the overall sum of Root Mean Squared error (RMSE) values. The outcome of this
process indicated that two hidden layers were the best choice, as the lowest overall RMSE
was recorded with them. The overfitting error was observed when more layers were tested
(Figure 8); hence, the ANN model was structured as in Figure 9.

The dataset was randomly divided into 70% for training, 15% for validation and 15%
for testing, ensuring a good mix and preventing overfitting. The network was trained
using the prepared inputs and outputs, adjusting weights to minimise prediction errors.
After training, the network was used to predict outputs based on the input data. In this
case, prediction errors for the first and second output components, which were surface
roughness and cutting force, were calculated. Finally, the RMSE was computed for each
to evaluate network performance. RMSE was used to assess performance as it measures
the average prediction error magnitude, reflecting variance and bias. RMSE is sensitive to
large errors, making it an effective metric for identifying weighty prediction deviations.
Additionally, its straightforward interpretation as the average deviation from actual values
facilitates comparison across different models.
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Figure 8. The process for selecting the number of hidden ANN layers was based on the overall RMSE
error minimisation, where two layers were the best.

 

Figure 9. A simplified representation of the architecture of the ANN was built within the current
study. Input neurons are coloured red, output neurons are green, and hidden layer neurons are blue.
For simplicity, this figure does not display weights, bias or the activation function.

4. Results and Discussion

This section presents the outcomes of the slotting experiments conducted on the
7075 aluminium alloy and Ti-6Al-4V titanium alloy using CM and USVAM techniques. The
focus was on the axial cutting force and the surface roughness of the slot button area.
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4.1. Axial Cutting Force

The axial cutting force data collected from the experiments reveal intriguing insights
into the influence of USVAM on machining performance. Figure 10 summarises the average
cutting forces recorded for the two investigated materials and milling techniques.

 
Figure 10. Average axial milling force verses (a) DoC (N = 1000 rpm, f = 10 mm/min), (b) cutting
feed (N = 3000 rpm, DoC = 0.1 mm) and (c) cutting speed (DoC = 0.1 mm, f = 10 mm/min).

The results indicate a noticeable reduction in the axial force when US vibration is
introduced for the Ti-6Al-4V alloy. Remarkably, no significant reduction was found for
the Al 7075 alloy under any conditions. This phenomenon is likely attributed to the
highly plastic nature of Al 7075 alloy, causing a large amount of vibration to be damped
by the workpiece itself [43]. Hence, the interrupted cutting mechanism is not employed
as expected. Increasing depth of cut (DoC) and cutting feed rates led to a rising trend
in the axial force (see Figure 10a,b) as higher DoC and cutting feed causes an increase
in the contact area between tool/workpiece interface, causing higher exerted force even
when applying USM. Additionally, for the Ti-6Al-4V alloy, it could be seen that the axial
force was reduced significantly by around 25% (at N = 1000 rpm, f = 10 mm/min and
DoC = 0.2 mm) and by slightly more than one-third (at N = 3000 rpm, f = 20 mm/min and
DoC = 0.1 mm). Figure 10c depicts a declining behaviour as the cutting speed increases;
this occurs as higher cutting speed causes higher linear cutting velocity and hence higher
shear rate as well as heat generation, which causes a thermal softening for the material [44]
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and decreases its shear strength, leading to a lower exerted force that USM can even
reduce by nearly one third (at N = 2000 rpm, f = 10 mm/min and DoC = 0.1 mm) for the
Ti-6Al-4V alloy.

4.2. Surface Roughness

Surface roughness is a critical factor in determining product quality. The average
surface roughness values measured for the slot bottom area of both materials and both
milling techniques are summarised in Figure 11. Generally, applying US vibration led
to an improvement in the surface roughness for both investigated materials. Figure 11a
shows a rising trend of surface roughness as DoC increases either with or without US
vibration; additionally, it could be seen that the US effect is higher as DoC increases to
reach around 50% and 80% surface roughness reduction (at N = 1000 rpm, f = 10 mm/min
and DoC = 0.2 mm) for the titanium and aluminium alloys, respectively. On the other side,
higher cutting feed reduces the machining time and the friction time between the tool and
the workpiece, leading to a better surface quality. According to Figure 11b, introducing
vibrations improves the surface roughness at a lower cutting feed rate. However, this
impact is decreased by increasing the cutting feed. The reason for this is that the application
of USM at high levels of cutting feed does not lead to the interrupted cutting mechanism
rather than additional applied cutting forces due to an extra contact between the cutting
tool and the workpiece resulting from the application of vibration [45] (see the rising trend
in Figure 4b). Similarly, based on Figure 11c, the reduction in surface roughness was
significant for both materials as it reached a peak value for Ti-6Al-4V by nearly 100% (at
N = 1000 rpm, f = 10 mm/min and DoC = 0.1 mm) and for Al 7075 by approximately
4 times (at N = 3000 rpm, f = 10 mm/min and DoC = 0.1 mm).

4.3. Tool Wear

Tool wear criteria such as flank wear, tool edge radius and tool diameter are crucial
in assessing tool life. These criteria depend on several factors and significantly influence
cutting forces, surface quality and burr formation. This study used a two-flute end mill to
machinate the Al 7075 alloy, while a four-flute end mill was employed for the Ti-6Al-4V
alloy. As shown in Figure 12, tool wear is more pronounced in conventional milling (CM)
than in USVAM for both aluminium and titanium workpieces.

To evaluate tool wear, the geometry of the end mills was examined three times across
cutting lengths up to 300 mm using a scanning electron microscope (SEM) (Figure 13a).
The cutting edge radius was measured as a wear criterion for both materials, with each
value measured three times to minimise error. The tools were also cleaned through a puff
of compressed air before inspection after each cutting condition. The results, shown in
Figure 13b, indicate that the cutting-edge radius increases in both CM and USM. However,
when vibration was applied, the wear rate of the cutting-edge radius slowed down. For
aluminium under CM, the edge radius increased from 4.5 to 5.8 μm as the cutting length
extended from 100 to 300 mm. With vibration applied, this value decreased to 5 μm at the
maximum cutting length, representing a reduction of approximately 16%. A similar trend
was observed for titanium, with a lower reduction rate of 8% after vibration was applied.
This suggests that vibration-assisted milling suppresses the blunting of the cutting edge,
leading to longer tool life. The benefits of ultrasonic-assisted machining can be attributed
to the enhanced material shear slip and the effective inhibition of chip sticking during chip
separation, particularly in titanium [46]. This process not only facilitates more efficient chip
discharge but also requires less cutting force, resulting in lower temperatures.
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Figure 11. Average surface roughness verses (a) DoC (N = 1000 rpm, f = 10 mm/min), (b) cutting
feed (N = 3000 rpm, DoC = 0.1 mm) and (c) cutting speed (DoC = 0.1 mm, f = 10 mm/min).

4.4. AI-Based Models Performance

Obtaining the correct cutting parameters in metalworking is essential for making the
process efficient and ensuring high-quality results. Traditionally, finding comprehensive
ranges of these parameters involves a lot of trial and error and extensive experimental
testing, which can be both time-consuming and expensive. However, with the advent of
ML, there was an innovative way to tackle this challenge. This is accomplished by running
a limited number of well-designed experiments and predicting the broad feasible range of
parameters through AI-based algorithms like SVR or ANN.

Table 6 presents a comparative analysis of the results of using two AI-based ML
algorithms, ANN and SVR, in predicting surface roughness and cutting force for Al and Ti.
The evaluation metrics used to assess model performance are RMSE and MSE.
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Figure 12. Optical microscope images for the cutting tool at its original state, after USM and after
CM for aluminium and titanium alloys.

 

 
(a) (b) 

Figure 13. The measurement method of the tool edge radius (a,b) tool edge radius variation under
different milling conditions and cutting lengths for aluminium and titanium alloys.

Table 6. Comparison of AI-based model performances.

Roughness Roughness Cutting Force Cutting Force

Material AI-Based Model RMSE (μm) MSE (μm) RMSE (N) MSE (N)

Al SVR 0.32 0.1 0.94 0.89
Al ANN 0.11 0.01 0.12 0.01
Ti SVR 0.32 0.1 0.94 0.89
Ti ANN 0.12 0.01 0.14 0.02
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Regarding the AI-based models’ performances on Al, the ANN model significantly out-
performed the SVR model when predicting surface roughness for Al (see Figures 14a and 15a).
The ANN achieved an RMSE of 0.11 μm and an MSE of 0.01 μm, indicating a high level
of accuracy and minimal error in its predictions. In contrast, the SVR model exhibited a
notably higher RMSE of 0.32 μm and an MSE of 0.1 μm, suggesting that it struggled to
capture the underlying patterns in the data as effectively as the ANN.

(a) (b) 

Figure 14. SVR model for predicting Al (a) surface roughness and (b) cutting force.

(a) (b) 

Figure 15. ANN model for predicting Al (a) surface roughness and (b) cutting force.
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Similarly, the ANN model again demonstrated superior performance for predicting
cutting force (see Figures 14b and 15b), with an RMSE of 0.12 N and an MSE of 0.01 N.
The SVR model, however, showed a significant drop in accuracy, with an RMSE of 0.94 N
and an MSE of 0.89 N. These results highlight the ANN’s ability to make more precise
predictions than the SVR model, particularly for the Al dataset.

The performance trends observed with Al were also evident in the Ti dataset regarding
the AI-based models’ performances on Ti. The ANN model maintained its advantage,
producing an RMSE of 0.12 μm and an MSE of 0.01 μm for roughness prediction, compared
to the SVR model’s RMSE of 0.32 μm and MSE of 0.1 μm (see Figures 16a and 17a). For
cutting force prediction, the ANN achieved an RMSE of 0.14 N and an MSE of 0.02 N, while
the SVR again performed less favourably with an RMSE of 0.94 N and an MSE of 0.89 N
(see Figures 16b and 17b).

(a) (b) 

Figure 16. SVR model for predicting Ti (a) surface roughness and (b) cutting force.

Validated by the experimental findings, the ANN consistently outperformed the
SVR model across materials and prediction tasks. The lower RMSE and MSE values
associated with the ANN indicated that it was better suited to capturing the complex
relationships within the data, resulting in more accurate and reliable predictions. In
contrast, while capable of making predictions, the SVR model did so with considerably
more error, particularly in predicting cutting force. This comparison underscored the
effectiveness of ANN in tasks requiring high precision. It suggested that ANN was a
more robust choice for predicting material properties like roughness and cutting force in
manufacturing processes.
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(a) (b) 

Figure 17. ANN model for predicting Ti (a) surface roughness and (b) cutting force.

5. Conclusions

The results of this study underscore the potential of ultrasonic vibration-assisted
milling as a practical approach for enhancing machining efficiency and product quality.
The reduction in cutting forces and improvements in surface finish indicate the technique’s
viability in both brittle and ductile material scenarios. This research contributes to the
broader understanding of advanced machining technologies and offers a foundation for
further exploration and implementation.

The introduction of ultrasonic waves causes a noticeable decrease in the axial cutting
force by up to 30% in the case of Ti-6Al-4V alloy. However, the application of ultrasonic
machining to the Al 7075 alloy did not significantly impact the axial cutting force, likely
due to the high plasticity of the aluminium alloy, which causes vibration damping. Surface
roughness was enhanced for both materials with the application of ultrasonic waves,
with a maximum reduction of approximately 50% for Ti-6Al-4V and 40% for Al 7075.
Additionally, increasing the feed rate resulted in a less rough surface in the case of USM, as
applying ultrasonic waves at high cutting feed rates does not lead to an interrupted cutting
mechanism but instead increases the applied cutting forces. Furthermore, cutting tools for
both materials experienced higher wear in CM than USM.

Like most studies in vibration-assessed cutting, the current study also had experimen-
tal and numerical limitations. Experimentally, since the ultrasonic generator has a limited
frequency range, this study used a single resonance amplitude of 8 μm, the maximum pos-
sible amplitude at the resonance. Numerically, a proper randomisation process in selecting
AI training, validation and testing data was not practical as it makes the results irrepro-
ducible. Therefore, a MATLAB pseudo-random number generator was employed after
running all models with multiple seeds and selecting the one that gave the best accuracy.

Considering the consumed time and the high cost of experimental testing for a wide
range of metal cutting parameters, advanced methods, such as AI-based algorithms, are
needed to accurately predict the effect of different cutting parameters and their companions
with a limited experimental range of testing. Compared to SVR, the ANN has proven
effective in predicting cutting patterns and relationships, making it perfect for applica-
tions in metal cutting assisted by vibration. This study explored how a well-structured
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ANN can better predict important cutting parameters such as the cutting force and surface
roughness than SVR. The ANN outperformed SVR because it better captured the nonlinear
relationships between the machining parameters and outcomes. The ANN’s flexible struc-
ture allowed it to model these interactions accurately, while SVR struggled. Additionally,
ANN’s ability to generalise across different conditions made it a good choice for predicting
outcomes in ultrasonic vibration-assisted milling.

In conclusion, by utilising experimental data and advanced methods, AI-based ANNs
provide accurate forecasts without requiring extensive full-ranged resolution physical
experimentations, saving time and costs while optimising the metal-cutting process for
better efficiency.
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Abstract: In this study, we describe a deep learning (DL)-based workflow for the three-dimensional
(3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection
between a 3D resistivity model and the surface-observed electric/magnetic field response by using a
fully connected neural network framework (U-Net). Limited by computer hardware functionality, the
resistivity models were generated by using a random walk technique to enlarge the generalization
coverage of the neural network model, and 15,000 paired datasets were utilized to train and validate
it. Grid search was used to select the optimal configuration parameters. With the optimal model
framework from the parameter tuning phase, the metrics showed stable convergence during model
training/validation. In the test period, the trained model was applied to predict the resistivity
distribution by using both the simulated synthetic and the real MT data from the Mount Meager area,
British Columbia. The reliability of the model prediction was verified with noised input data from
the synthetic model. The calculated results can be used to reconstruct the position and shape trends
of bodies with anomalous resistivity, which verifies the stability and performance of the DL-based 3D
inversion algorithm and showcases its potential practical applications.

Keywords: deep learning; neural network; inversion problem; magnetotelluric; Mount Meager

1. Introduction

Geophysical survey methods, such as reflection seismic, electromagnetic (EM) and
potential fields, have been widely used in exploration for natural resources and funda-
mental research on deep geological structures [1–3]. Inversion is a popular technique in
geophysical data analysis that produces models of the subsurface physical properties and
is a reversed process based on a physical law system [4]. The essential step during the
inversion process involves the iterative optimization of a created objective function. The
advantages of traditional iterative inversion methods include obtaining better details of the
subsurface physical structure and their suitability for large survey areas. However, iterative
inversion techniques face some challenges, such as the need for an acceptable reference
model, the non-uniqueness of the calculated model, and the large time consumption of
the calculations.

Although regularization stabilizers and weight matrices have been employed to
improve the accuracy of inverse solutions, further techniques are needed to improve pre-
diction. An alternative inversion technique and computer hardware improvements have
permitted the emergence of a data-driven deep neural network framework to predict
subsurface physical models from several different geophysical methods [5,6]. Das et al. [7]
proposed a convolutional neural network-based inversion framework for obtaining elastic
models from full-waveform seismograms. This application of the DL algorithm demon-
strates that it has great potential in predicting reservoir properties directly. Puzyrev [8] and
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Moghadas [9] presented 1D inversion results of electromagnetic induction (CSEM and TEM
survey) data with convolutional neural network frameworks. Guo et al. [10] employed a
supervised descent method (SDM) for 2D MT data inversion to reduce uncertainty and
involved the design of a general training set from prior knowledge of the survey field to
balance the computation time and accuracy of the machine learning inversion procedure.
For potential field inversion with deep learning, previous researchers have presented grav-
ity and magnetic inversion with a deep learning approach [11,12]. All these studies have
demonstrated the potential applicability of DL-based inversion for different geophysical
methods.

Because of the output uncertainty and large computational requirements, the use of
traditional 3D inversion processes is always a challenging task. To overcome the drawbacks
of the high computational needs and unstable output of traditional iterative inversion
methods, employing DL architectures to retrieve unknown 3D geo-electric structures can
be considered. Based on the previous study of one-dimensional (1D) magnetotelluric (MT)
inversion [13], here, the neural network model is extended to solve a 3D inversion problem.
In this work, we propose MT 3D inversion based on the 3D U-Net network. U-Net is a fully
convolutional neural network which was originally used for image segmentation and object
detection [14–16] and has been used in different DL practical applications [13,16]. The 3D
U-Net framework can also be used in inversion workflows by building a mathematical
connection between a 3D resistivity model and the observed MT response with optimized
weight parameters. The common challenge in 3D inversion is the large amount of forward
modelling, which requires powerful computational hardware. DL inversion needs a large
amount of modelling computation for generating training/validation datasets. Further-
more, the datasets need to show a wider coverage for neural network models. To balance
these factors, one main difference in this study is that we developed random walk for
data generation to enlarge the coverage of model generalization with smaller datasets,
which reduces the computation time of model training. Compared with traditional iterative
inversion methods, the main advantages of this inversion method are the instant prediction
after the neural network is created and the relative reliability of the output to different
noise levels.

In this paper, we start by summarizing the MT method, as well as its inversion,
and then describe the deep learning (DL)-based 3D inversion workflow for MT data
analysis. We present evidence of data generation with a random walk generator, model
training/validation and parameter tuning, followed by practical testing with synthetic
models and real MT data from the Mount Meager volcanic area in British Columbia, Canada.
This area is of interest due to its potential for geothermal energy. Related Python codes
were developed to realize the algorithm workflow, and independent MT datasets were
created to validate the trained neural network model.

2. Methods

2.1. Magnetotelluric Method

The MT method is a passive electromagnetic (EM) technique that uses natural EM
signals to image the subsurface resistivity distribution. The EM signal is assumed to be
generated outside the Earth (solar wind and lightning), and it includes a time-varying
magnetic field (H) and its induced orthogonal secondary electric field (E) (Figure 1). As
small fraction of EM signal travels into the Earth and induces electrical currents, the
measured EM field at the Earth’s surface contains electrical resistivity information of
the subsurface. Magnetotelluric has been used extensively in mineral and geothermal
exploration by analyzing the retrieved subsurface resistivity distribution (e.g., [1,2]). During
an MT survey, the electric field and magnetic fields are collected in the time domain,
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and they are then converted into the frequency domain. The electromagnetic induction
phenomenon can be described by Maxwell equations [1,4,17], as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇·E = ρ
ε0

∇·B = 0
∇× E = − ∂B

∂t
∇× B = μJ + με ∂E

∂t

, (1)

where B is the magnetic flux density, B = μH, μ is the magnetic permeability, J = σE is the
electric current density, σ is the electrical conductivity, ε is the permittivity and ρ is the total
electric charge density.

Figure 1. Diagram illustrating the principles of an MT survey (Ex and Ey: electric fields; Hx, Hy and
Hz are magnetic fields).

For a 3D structure in the subsurface, the electric and magnetic fields can be obtained
by solving a discrete Maxwell equation (Equation (1)) with boundary conditions. The
recorded time-series signal of the electric and magnetic fields at the Earth’s surface can be
converted into the frequency domain, with their ratio being expressed as an impedance
tensor, Z = E

H and tipper T. The tensors can be written in Cartesian coordinates as[
Zxx Zxy
Zyx Zyy

]
=

[
Ex
Ey

][
Hx Hy

]−1, (2)

Hz =
[
Tx Ty

][Hx
Hy

]
. (3)

Impedance is associated with amplitude and phase, and is related to the apparent
resistivity ρa and phase ϕ of each frequency. The vertical transfer function T can be used to
define the induction vectors to understand the lateral conductivity variation [18].

An understanding of the traditional inverse problem and computational procedure
will assist in designing the workflow of the deep learning inversion. In general, the
MT data inversion process aims to predict the resistivity of the Earth’s interior from
observed data [13,19–21]. The data values (impedance or apparent resistivity) depend on
the subsurface resistivity distribution. Mathematically, the traditional inversion technique
conducts iterative operations to minimize the parametric function, which includes both a
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misfit functional and a stabilizing functional. The objective function Pα can be defined as
follows (Equation (4)):

Pα(m, d) = f (m, d) + αs(m), (4)

where f (m, d) is a parametric objective function and s(m) is a model-stabilizing functional;
α is a regularization parameter; m is the unknown model parameter (resistivity in this case);
and d represents the observed response data. The objective function can be given by

f (m, d) = ‖Wd(A(m)− d)‖2. (5)

Based on the least squares criterion, the model-stabilizing functional can be simplified
as follows:

s(m) = ∑N
i=1

(
Wm

(
mi − mapr

i

))2
, (6)

where is Wd and Wm are the data weighting matrix and model weight matrix, respectively;
A(m) is an operator of the theoretical data from the model parameters; mapr is the reference
model; and N is total number of model parameters.

There are different inversion optimization methods that minimize the objective func-
tional (Equation (4)), such as least squares, Gauss–Newton and nonlinear conjugate gradi-
ent. These techniques and software have been developed and applied on MT inversion in
the past decades [4,21,22], e.g., the Occam and ModEM open-source packages. Here, we
use the ModEM (version 1.2.0) package to conduct 3D forward modelling for calculating
the impedance of the MT response.

2.2. Deep Learning-Based 3D Inversion Workflow

The fundamental workflow of DL-based 3D inversion is similar to a 1D CNN [13].
The main differences are the neural network structure, the feature types of the input
dataset and the number of training/validation datasets required. This DL-based inversion
algorithm builds a relationship between the observed data and a physical model, which
can be expressed as m = Net(d; θ) [12]. Net(.) is a neural network, and θ represents
the parameters in the network. The physical property is predicted with a trained neural
network model by minimizing the objective function O(.), which is similar to Equation (4)
of the traditional inversion, written as the optimization of the neural network parameters
∼
θ = min(O(m, Net(d; θ))).

2.2.1. Neural Network Architecture

Based on the previous U-Net architecture [15,23], a 3D network structure was re-
designed for conducting the inversion procedure, which connects the observed response
data (input) and the physical property model (output). This U-Net architecture (Figure 2)
shows feature extraction and output shape reconstruction, which include an encoding path
to extract feature information and a decoding path to restore the extracted information. The
output data are reconstructed through a combination of convolutions and up-sampling.

Similar to the standard 2D U-Net, the 3D network contains data analysis and a
synthesis path, each with four layers defined by setting different kernel sizes. In the 3D
U-Net, the number of filters denoted at the bottom of the box increases from 32 to 128. The
increased number of filters allows the neural network to propagate contextual information
to complex layers for a better understanding of the features. Each layer contains two
3 × 3 × 3 filters in convolutional operators, followed by a rectified linear unit (ReLU)
activation function, f (x) = max(0, x). Compared with the sigmoid function, ReLU shows
its advantage of overcoming the vanishing gradient problem. A residual block is added
into each layer to make the network deeper. A 2 × 2 × 2 max pooling with strides of two in
each dimension is added between layers, which is followed by 0.3 dropout (Figure 2). The
stride is a parameter to control the filter movement; the max-pooling layer is a method to
down-sample features by calculating the maximum value for each patch of a feature, and
the dropout layer is a regularization method that randomly sets some hidden layer neurons
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to zero during each epoch. In the last output layer, expansive features are concatenated
into one interpretation as a fully connected layer, and a 1 × 1 × 1 convolutional operator is
added to reset the dimensionality of the output channels to the output size. More details of
this network framework can be found in Long [14], Ronneberger et al. [15], Chen et al. [16],
Çiçek et al. [23], Hochreiter [24] and Zhou et al. [25].

Figure 2. A schematic of the 3D U-Net architecture, consisting of an encoder analysis path and a
decoder synthesis path.

2.2.2. Dataset Preparation

The generation of the dataset is an essential step in supervised learning that decides
if the coverage of a trained network model is generalized. In DL-based inversion, the
geophysical data are collected as normal on the Earth’s surface and are then used as input
for neural network training. The subsurface resistivity of a study area is used as the mask
of the neural network output. Unlike the 1D deep learning inversion, the training datasets
for the 3D model cannot be generated randomly in the entire solution space because of the
heavy computational cost. To save computation time, and to enhance the representativeness
of the dataset’s general distribution characteristics, a random walk method was used for
data generation [12]. This sets a maximum of four cells randomly and then extends the
resistivity values to the surrounding cubic area (Figure 3). The resistivity value of cells in
the random paths are assigned in the range (1–1000 Ωm) in common logarithmic space,
and the surrounding values are interpolated. Different anomaly combinations are included
to improve dataset diversity.

Based on the distribution of the MT stations, synthetic resistivity models are generated,
and the impedance responses are simulated. For this synthetic model study, the physical
model is gridded with 17 × 17 × 25 cells, the thickness of the layers is fixed throughout the
model and starts from 20 m at the top and increases with an index to 3500 m in the bottom
layer. The number of stations is 49 (Figure 4), with 32 frequency points ranging from 0.001
to 100 Hz for data generation. A total of 15,000 pairs of model samples and responses are
generated for this synthetic case study.
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Figure 3. A sample of the resistivity model from the random walk generator (the color represents
resistivity values in common logarithmic space).

Figure 4. Plane (left) and vertical (right) views of the synthetic model mesh grid with MT stations
indicated (blue dots).

The ModEM forward package is used to simulate the surface response of each physical
model and to build the datasets for model training. The data format for the DL algorithm
is the same as the input and output of the MTpy package [26]. The pairs of input (real
and imaginary impedance) and output (resistivity model) are created for optimizing the
neural network parameters. To prevent an unbalanced range of input features affecting
model stability, the data are standardized before being input into model training. The
common logarithmic resistivity is set as the target parameter, and the input X is scaled to

448



Remote Sens. 2024, 16, 3400

∼
X with mean μ and standard deviation σ of the feature values during the model training/
validation process.

∼
X =

X − μ

σ
. (7)

2.2.3. Loss Function

Similar to traditional inversion, the neural network training process needs to define a
loss function as a metric to evaluate the model’s predictive performance. A loss function is
used to compare the model’s predicted values and the true values so that the weights can
be updated to reduce the metrics during evaluation. For the inversion regression problem,
the popular loss functions are mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), and their combinations (Equation (8)).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MAE = 1
N ∑N

1

∣∣∣ypre
i − ymod

i

∣∣∣
MSE = 1

N ∑N
1

(
ypre

i − ymod
i

)2

RMSE =

√
1
N ∑N

1

(
ypre

i − ymod
i

)2

, (8)

where ypre
i is the predicted value, ymod

i is the input model and N is the total number of
output data.

In order to select an optimal loss function, the proposed neural network and generated
training datasets are used to discover the influence of different loss functions for a 3D
inversion workflow. Figure 5 shows the convergence curves of different loss functions
(MAE, MSE and RMSE). In general, both the training and validation curves of the loss
functions converge stably. The convergence of RMSE and MAE decreases rapidly in the
early training stage. Comparing the curves of MAE and RMSE, RMSE is relatively stable
in the later period of epochs. The magnitude of oscillations of RMSE is smaller than that
of MAE. The MSE curve shows much smoother convergence, but the difference between
training and validation loss is relatively large at the beginning, since it effectively penalizes
larger errors more severely. The minimum metric values of validation are 0.05883, 0.01418
and 0.09238 during 150 epochs.

Figure 5. The convergence curves of model training and validation with different loss functions
((a) MAE, (b) MSE and (c) RMSE).

Based on the comparison in Figure 5, RMSE is chosen as the loss function metric
for network training. The adaptive moment estimation optimizer (Adam) is used to
stabilize the training process and converge the objective function [27]; it is an optimization
algorithm commonly used in deep learning. During parameter testing, the initial learning
rate is 0.0001 and is decreased linearly to a smaller value with a ratio of 0.8 if there is no
improvement in the metric over 5 consecutive epochs.
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2.2.4. Hyperparameters Tuning

During network model training, parameter selection affects the convergence of the loss
function. Inappropriate parameters lead an objective function to land on the local minima,
giving rise to low prediction performance. Finding optimal hyperparameters is a significant
step in stabilizing model training and obtaining an accurate prediction [12]. Popular search
approaches are grid search and random search, where the two major tuning parameters
are learning rate and batch size. In this test, the grid search method is employed to search
for all possible configurations and identify the set of the best parameters. Because of the
limited computational capacity, the two-dimensional case is tested, and the parameter
range is chosen based on previous model training experience.

The range of values (0.000001, 0.01) was considered for the learning rate, and training
processing was conducted to check for convergence within 10 epochs as the learning rate
increased. Based on Figure 6, the optimal range of the learning rate was assumed to be
(4 × 10−5, 4 × 10−4). The learning rates selected were 0.00001, 0.00005, 0.0001 and 0.0005,
and the batch sizes were set to 8, 16, 24 and 32. Each position of the grid was then
searched to optimize these hyperparameter values based on the convergence loss function.
A computer with a 16-core CPU, 128 G of memory and one Nvidia Quadro-RTX 5000 GPU
was used for conducting the grid search calculation. Figure 7 displays the minimum value
distribution of the metrics. The region in yellow represents the best area for choosing a
learning rate and a batch size for model training. Based on the scores, the final optimal
hyperparameters chosen were 0.00005 and 32 (purple ellipse area). During model training
and validation, the weights with the best validation metrics were saved for prediction. The
maximum epoch was set to 150, with an early-stopping parameter of 30.

Figure 6. Learning rate search showing the metric curves of minimized loss function vs. learning
rates ((a) training and (b) validation; the green double arrows display the optimal range of the
learning rate).

Figure 7. The grid search layout results showing the distribution contour and minimized metric
values, where (a) model training and (b) model validation.
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2.2.5. Inversion Process

The process of DL-based 3D inversion is illustrated in Figure 8. It includes the com-
ponents of deep learning network and convolutional neural network architecture of MT
3D inversion, which includes three main stages: dataset preparation, model training and
validation, and prediction. The process is as follows: (1) The random resistivity mod-
els are generated by 3D random seeds and by forward modelling the surface response
with ModEM, with data engineering to exaggerate the datasets and data standardizing
normalization pre-processing to ensure uniformity of the input feature values, and the
data are split into training and validation groups in a 80/20 ratio. (2) A neural network
model is created, and the initial network parameters and training parameters are set, for
example, filter number, kernel size, a batch size of 32, a learning rate of 0.00005, a kernel
size of 3 × 3 × 3, etc. (3) The weight of the neural network is calculated based on the
loss function by using the Adam algorithm, and the network optimizes the end-to-end
mapping relationship by batch iteration. (4) The parameters are reset, and a grid search for
better predicted results is performed, selecting the optimal parameters with a minimum
verification metric and saving the final weight values. (5) The results are predicted with
synthetic test datasets and comparison with the true models, and the resistivity distribution
model is reconstructed for interpretation. Model training/validation took about 35 h of
computation time with one Nvidia Quadro-RTX 5000 GPU. Compared with the ModEM
iterative inversion, the training period took a similar amount of time, but the model predic-
tion step was instantaneous. More GPUs can speed up the model training process. Python
and related libraries (e.g., Scikit-learn, Tensorflow and Keras), were used to conduct this 3D
DL inversion procedure [28,29]. MTpy and ModEM open-source packages were selected to
create resistivity models and generate forward response datasets [26,30].

Figure 8. The schematic workflow of DL-based 3D inversion, including dataset preparation, parame-
ter tuning and model training/validation/testing.
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3. Results

3.1. Synthetic Model

In order to test the reliability and quantitative functionality of the proposed inversion
framework, three different styles of synthetic models were created to verify the trained
model. Three-dimensional MT modelling processing (ModEM) was used to compute the
impedance and the tipper. The same grid parameters were used for synthetic and forward
modelling, which included 49 stations (as in Figure 4). A cut-off was used to disregard
the background resistivity value to make the comparison more intuitive. The first model
was a dipping dike as a single anomaly body (Figure 9a), where the resistivity of the
surrounding background was 400.0 Ωm and the resistivity of the anomaly was 30.0 Ωm.
For forward modelling, the same station geometric distribution and frequency range were
used. Figure 9b illustrates the predicted result with a resistivity cut-off of 30.0 Ωm. The
predicted anomalous center reconstructed the true model, and the depth of the anomalies
showed a similar range as the true model.

Figure 9. Three-dimensional view of single slipped dike synthetic model ((a) true model; (b) predicted
model).

For verifying the capability of the trained model to identify conductors and resistors,
the second model was a T-shaped anomaly with different anomalous resistivity. The
resistivity of the conductor and resistor of the T-shaped anomaly were 30.0 Ωm and
795.0 Ωm, respectively, with a background resistivity of 400.0 Ωm (Figure 10a,b). For
comparison, the cut-offs of 30.0 Ωm and 795.0 Ωm were used to display the anomalies
clearly. We can see that the predicted results (Figure 10c,d) generally reconstruct the shape
of anomalies. Although the model shape and anomalous resistivity affected the predicted
results, which led to some false structures at the bottom and side boundaries, the trained
inversion model could produce a reasonable resistivity distribution image of the subsurface.

The third model comprised two anomalous bodies. Two different resistivity distribu-
tion styles were created (Figure 11) for checking the potential interactive effect between two
bodies. The first one (a, b) displayed double conductor anomalies (30.0 Ωm) and inversion
result with the DL model; the second one (c, d) was the model with one conductor (30.0 Ωm)
and one resistor (795.0 Ωm). A cut-off (less than 30.0 Ωm and greater than 795.0 Ωm) was
used to disregard the background value of the model and display the resistivity anomalies
for easier comparison. From the predicted results on the right side of the figure, one can
see that both anomalies can be created in a general overview and that the depth of the
two bodies corresponds to the true model. Although the resistivity values in some areas
are lower than the true model, the cut-off anomalous values of the prediction can display
the trend and central position and the edges of the anomalies. In general, the output can
retrieve real values with an acceptable level of accuracy. For a qualitative comparison, the
calculated RMSE values were 0.046 and 0.0595, which verifies that the predicted model by
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the neural network is reliable and can reconstruct true structures accurately for different
anomaly types.

Figure 10. The model sensitivity testing with synthetic models including an anomaly with the same
shape and different resistivity ((a,b) conductor anomaly model and prediction; (c,d) resistor anomaly
model and prediction).

Figure 11. Synthetic models of two anomalies at different depths and the DL 3D inversion results
((a,c) true models; (b,d) predicted results).
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During synthetic model testing (Figure 11), forward modelling was conducted to
calculate the impedance from the true and predicted models. Figure 12 shows the response
(real and imaginary parts) contours of real data and forwarded by the predicted model
with all MT stations at frequencies of 3.5 Hz (a, c) and 0.0044 Hz (b, d). One can see that
the impedance distribution values are slightly biased by lower values than the real data;
however, it still effectively displays the trend of impedance variation. This indicates that
the proposed DL method can yield inversion results with acceptable accuracy.

Figure 12. The comparison of simulated impedance at two different frequencies from the true model
and the predicted results of the two-body synthetic model ((a,b) real part; (c,d) imaginary part;
(a,c) 3.5 Hz; (b,d) 0.0044 Hz).

3.2. Noise Test

For real world geophysical data, the noise level is a significant factor in deciding if the
inverted physical parameters and interpretation of subsurface features are meaningful. In
this study, we used noise-free datasets to train and validate the CNN model. To check the
stability and performance of the network model prediction in the presence of noise, input
datasets with different noise levels were tested. One model with two anomalies at the same
depth was used (Figure 13), and different levels (0%, 5% and 10%) of random white noise
with a normal Gaussian distribution were added to the impedance tensor before applying
it to the input layer.
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Figure 13. The synthetic model containing two anomalous conductors at the same depth.

Figure 14 displays the horizontal slice of DL inversion resistivities with the noised
data. Notably, one can see that the predicted results all show the trend of the true model
resistivity variations, which verifies that the effect of noise is minimal. Table 1 lists the
noise effect on the final predicted output. The RMSE and correlation coefficient varied with
different noise levels. Overall, the predicted results are acceptable. The network model
could still predict the anomaly locations with 10% added noise. The RMSE was 0.04384,
slightly higher than results with 0% noise, which demonstrates the limited effect of noise to
the trained model prediction. Although the higher RMSE had lower R2 with the increase in
the noise level (Table 1), the trained network model could still produce stable results.

Figure 14. The horizontal slice of model and predicted results with different noise levels (0%, 5%
and 10%).

Table 1. RMSE and R2 of predicted model with different noise levels.

Noise Level 0% 5% 10%

RMSE 0.04200 0.04266 0.04384
R2 0.89892 0.89593 0.89291
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3.3. Real-Data Application

A field-data application of this 3D DL-based inversion algorithm was implemented to
validate its reliability. MT data were acquired from the Mount Meager volcanic area, British
Columbia, Canada, in 2019 and 2020; this area is part of a geothermal energy assessment
project aimed at improving our understanding of the magmatic and hydrothermal conduit
system beneath Mount Meager (see Figure 15) [2,3]. The purpose of the MT survey was to
comprehend the basic geological structure of the surroundings and to locate the conductive
zones that are related to either the magma chamber or upwelling conductive thermal fluids.
The MT field data were acquired with a Phoenix MTU-5A system to record variations in the
geomagnetic field and its induced electric field. The broadband magnetotelluric (BBMT)
time-series data were processed into the frequency domain by using a robust estimation of
the geomagnetic transfer functions [3,18].

Figure 15. MT site distribution with cross section B-B’ location in Mount Meager study area, British
Columbia, Canada.

The calculated impedance components and tipper data from 35 stations with a fre-
quency range of 100–0.001 Hz were used in model testing. These stations are marked with
blue pins in Figure 15. The 3D resistivity model in this area was 19 × 19 × 25 with a 2.0 km
cell size horizontally. The vertical cell size of the top grid was 20 m, and the size increased
layer by layer to a total depth of about 30 km. The same hyperparameters were used for
model training and validation, and the model training process took about 40 h. Based on
the 3D inversion results with the trained DL model, the resistivity model was sliced into
profiles which crossed the main structure of the study area. Figure 16 shows horizontal
slices at different depths, which reveal a resistivity anomaly (purple dashed-line square)
in the depth range 5.0 to 8.0 km and display the trend of the conductor interpreted as a
potential magma body. In general, the prediction of DL inversion is consistent with the
ModEM inversion result in a previous study [3].
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Figure 16. Horizontal sliced iso-resistivity maps at different depths between 0.5 and 10 km (the
purple dashed line indicates the main resistivity anomaly).

For a further comparison with iterative inversion, the plots in Figure 17a,c,e display
both the horizontal profiles (depths of 6.0 and 7.0 km) and a vertical profile (along B-B’
in Figure 15) of the predicted 3D resistivity model. This inversion determines the high
conductive zone below 5.0 km, which shows satisfactory results and is in good agreement
with the 3D iterative inversion method (Figure 17b,d,f). The identified shallow conductive
features with both inversion methods (Figure 17e,f) are interpreted as a hydrothermal
system, where the deep conductive zone is interpreted as a magma body [31]. Despite
a larger cell size being used to decrease computation time in the DL model and forward
modelling, without topography, the predicted results still reflect the position and trend of
the conductive body. Due to the effect of data noise and topography, one can see a shift in
the anomaly center and an artifact in the near-surface area by making a comparison with
the results of the traditional iterative inversion. Overall, the DL inversion results show the
location of the conductivity anomalies, and the retrieved resistivity distribution represents
an actual case for geological interpretation, which displays similar interpretated structures
at Mount Meager [2]. Because this study is focused on methodological development and
experience and some real MT data in the Meager Creek area are not available, further
detailed geological interpretation and analysis cannot be provided here.
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Figure 17. Slices of the inversion results with DL-based inversion and ModEM iterative inversion.
(a–d) Horizontal slices at depths of 6.0 and 7.0 km; (e,f) vertical slices along profile B-B’ in Figure 15;
(a,c,e) 3D DL-based inversion; (b,d,f) ModEM iterative inversion.

4. Discussion

The computation time of the MT 3D CNN inversion workflow is mainly attributed to
generating the synthetic datasets and training/validating the model weight parameters.
Compared with traditional inversion methods, this algorithm needs data pairs for model
training, which is costly in terms of time. However, the prediction period is short once a
neural network model is created. In general, data generation with random walk improves
the generalized coverage of the trained model, so using relatively fewer datasets can still
produce a stable model, which reduces the computation time for a 3D inversion problem.
Only one GPU is available for data preparation and model training in this study. Multiple
GPUs will speed up dataset generation and model training, which will make forward
modelling with a fine-mesh grid possible.

The metric contour map from the grid search with two parameters displays a minimum
area for choosing the optimized parameters. The applications of synthetic models and
real field data demonstrated the accountability of calculating the resistivity distribution,
displaying the advantage of this method. Noise testing further verified the reliability of
the proposed method (Figure 14). As a data-driven mathematical method, the overall
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test results of this study demonstrate that the CNN architecture can be used to simulate
physical laws and simplify the MT inversion procedure.

Despite the advantages of deep learning in geophysical MT inversion, some limitations
and challenges need to be noted.

Firstly, there is the biased coverage of the generated training datasets. Even when a
random walk generator was used for creating training datasets, the number of resistivity
models and their simulated response was limited by the computational capacity. This
limits the minimum cell size and the total number of mesh grids, which leads to potential
inaccuracies in model training and prediction. In this study, we could only test a mesh
grid of 19 × 19 × 25. Generating more diversified training datasets by combining a prior-
information-based generator will improve the model prediction, but this method will
reduce the generalization of the trained neural network.

The second limitation is the complexity of the neural network model. Although
U-Net has been popularly used in image segmentation, model complexity is still not
enough in physical law simulation. The available datasets and computational power, e.g.,
#GPUs, need be considered when designing a complex neural network model. Additional
investigation by testing a deeper complex neural network framework is necessary.

The third limitation is stability with topographic real noised data. For real data, adding
topography to forward modelling is operationally possible. The computational capacity
limits the mesh gridding of the topography. With the current hardware capacity, adding
the topography effect to the simulation might lead to simulated response bias and model
prediction inaccuracies. Obtaining a better resistivity range based on different sources,
e.g., core analysis and well logs, will make the predicted result more comparable with
iterative inversion.

These limitations mean that DL-based inversion lacks the capability to recover the
same level of detail as ModEM inversion. Further research on optimizing this proposed
inversion algorithm will enhance the reliability and performance of the convolutional
neural network application in MT data inversion. Increasing model generalization and
enhancing the noise tolerance capability of the model are crucial to ensuring the inversion
model’s applicability.

5. Conclusions

Geophysical inversion is a significant and challenging step in deriving an interpretable
physical model. The main purpose of this study is to improve and verify the performance
of DL-based 3D inversion for MT data. The optimal parameters of a neural network
framework were investigated to establish connections between MT impedance data and
subsurface resistivity properties. The 3D U-Net framework displays its advantage in
simulating physical laws. By using the random walk technique for data generation, we
can create relative fewer datasets for model training and validation, which decreases
computational cost and maintains the stability of the network model. By comparing the
effect of model training parameters, the best optimal neural network parameters can be
selected via parameter tuning for optimizing the weight parameters. This experience
demonstrated that parameter tuning is an essential step to obtain a set of optimized
parameters for model training. Lastly, the practical application of the 3D inversion method
for MT synthetic and real data verified its reliability and potential. In future research,
the topographic effect needs be considered with a smaller-cell-size model, and parameter
tuning will be performed with a higher-dimensional search of multiple network parameters.
This will produce integrated hyperparameters to improve the prediction accuracy of the
trained network model.
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Abstract: Emerging deep learning-based fault diagnosis methods have advanced in the current
industrial scenarios of various working conditions. However, the prerequisite of obtaining target
data in advance limits the application of these models to practical engineering scenarios. To address
the challenge of fault diagnosis under unseen working conditions, a domain generation framework
for unseen conditions fault diagnosis is proposed, which consists of an Adaptive Feature Fusion
Domain Generation Network (AFFN) and a Mix-up Augmentation Method (MAM) for both the data
and domain spaces. AFFN is utilized to fuse domain-invariant and domain-specific representations
to improve the model’s generalization performance. MAM enhances the model’s exploration ability
for unseen domain boundaries. The diagnostic framework with AFFN and MAM can effectively
learn more discriminative features from multiple source domains to perform different generalization
tasks for unseen working loads and machines. The feasibility of the proposed unseen conditions
diagnostic framework is validated on the SDUST and PU datasets and achieved peak diagnostic
accuracies of 94.15% and 93.27%, respectively.

Keywords: intelligence fault diagnosis; domain generation; unseen working conditions; feature fu-
sion
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1. Introduction

As industry progresses towards informatization and intelligence, advanced intelli-
gent fault diagnosis (IFD) models have garnered more attention [1]. Currently, various
IFD models have demonstrated satisfactory performance, helping to reduce unplanned
downtime and enable predictive maintenance [2]. These models are highly appreciated
for their autonomy and high accuracy, which greatly enhance the efficiency of equipment
maintenance and management [3].

However, there can be limitations on the use of intelligent methods for practical
industrial applications. In order to achieve a high accuracy of fault diagnosis, these
traditional IFD methods often require a large number of labeled data which have the
same distribution as the testing data [4,5]. Owing to variations in operational conditions
and interference from environmental noise, rotating machines frequently operate under
diverse working scenarios, significantly altering the distribution of collected data. Conse-
quently, when confronted with practical industrial issues, there is often an insufficiency
of labeled data to fulfill the model’s training requirements [6]. Furthermore, given the
high cost of human labor, it is impractical to gather a vast amount of fault samples
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and generate corresponding ground-truth labels under all potential working conditions
for model training [7]. Hence, cross-domain diagnosis poses a significant challenge in
developing reliable and precise IFD methods.

Recently, significant efforts have been invested in developing domain adaptation (DA)
models that strive to overcome the domain shift issues stemming from diverse conditions
and foster the successful deployment of IFD models with limited labeled data. The central
concept of DA methodologies revolves around harnessing the discrepancy between the
training source domain and the testing target domain by aligning the distributions of
fault features in a higher-dimensional space and extracting domain-invariant features for
diagnostic purposes [8]. The differences between traditional data-driven fault diagnosis
and cross-domain intelligent fault diagnosis are shown in Figure 1a,b [9]. These models
aim to generalize the knowledge learned from the limited data collected from a single
machine (referred to as the source domain) to enable cross-domain fault diagnosis on
varying machines or the same machine operating under differing conditions (designated
as the target domain). Lu et al. [10] first applied a model-based learning technique to solve
DA issues for fault diagnosis under different working conditions. Shao et al. [11] proposed
an adversarial domain adaption method based on deep transfer learning for rolling el-
ements bearing insufficient labeled data issues. Xiong et al. [12] utilized a Wasserstein
gradient-penalty generative adversarial network with a deep auto-encoder for intelligent
fault diagnosis. Zhao and Shen [13] implemented a local class cluster module to explore the
domain-invariant representation space and obtain discriminative representation structures
to enhance the model’s generation ability. Xu et al. [14] used Support Vector Data De-
scription (SVDD) as the unknown fault identification method, and optimized the relevant
parameters using a Particle Swarm Optimization (PSO) algorithm. Liao et al. [8] constructed
a deep semi-supervised domain generalization network (DSDGN) which employed causal
learning techniques to acquire causal invariant fault information across different machines.
Despite the potential of DA-based IFD models, there persist obstacles in their application
to contemporary industrial processes. The core purpose of these models is to minimize the
divergence between training and testing data through techniques such as distance metrics
and subspace alignment. It is evident that obtaining adequate data from the target domain
is crucial for guiding the distribution adaptation process and enabling effective knowledge
transfer during model training [15]. However, in many industrial scenarios, acquiring data
from target machines or operating conditions prior to their occurrence is not feasible.

Figure 1. Illustration of (a) traditional data-driven fault diagnosis and (b) cross-domain intelligent
fault diagnosis. The values inside the symbols denote the class label for each sample. (c) Domain
adaption problem definition and (d) domain generation problem definition.

Domain generation (DG) is a method of transfer learning which endeavors to gen-
eralize a trained model, leveraging a diverse array of source datasets, to accommodate
unseen target domains. It focuses on extracting key domain-invariant feature representa-
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tions from specific source domains that are both discriminative across various classes and
resilient to domain shifts, thereby enhancing the robustness and adaptability of data-driven
approaches to varying conditions [16]. Domain generation-based models can be catego-
rized as data manipulation [17], representation learning [18], and learning strategies [19].
Li et al. [20] pioneeringly integrated domain generalization into the realm of intelligent
fault diagnosis, leveraging adversarial training and metric learning techniques to extract
generalized features that transcend specific domains. In a parallel effort, Han, et al. [21]
advocated minimizing the triplet loss as a means to foster intra-class cohesion and inter-
class discernibility, thereby bolstering the generalization prowess of fault diagnosis models.
Chen et al. [22] devised an innovative domain-regressive framework that centered around
learning domain-agnostic representations, tailored specifically for rotating machinery fault
diagnosis. Zheng et al. [23] innovatively fused prior diagnostic knowledge with a deep
domain generalization network, augmenting it with an instance-based discriminative loss.
This integration yielded a robust framework capable of performing cross-domain fault
diagnosis across disparate bearing datasets, showcasing remarkable adaptability and gen-
eralization. Although these DG methods do not require prior knowledge of the target
domain, one significant limitation persists which is that DG methods require a massive and
varied collection of samples from multiple source domains.

In practical industrial applications, acquiring useful samples from varying working
conditions can be challenging, often restricting utilization to data sampled under a single
working condition. Meanwhile, the absence of target data during the training phase
inherently elevates the likelihood of overfitting to the source data, posing a significant
challenge. Consequently, DG-powered IFD models ought to prioritize strategies that
enhance the integration of data acquired under diverse operational conditions into a
cohesive, unified representation. This approach aims to mitigate the risk of overfitting and
enhance the models’ ability to generalize across varying scenarios.

To this end, we proposed a novel domain generation framework for unseen condition
fault diagnosis which comprises an Adaptive Feature Fusion Domain Generation Network
(AFFN) and a Mix-Up Augmentation Method (MAM). The key of the AFFN and MAM is
to learn both domain-specific representation and domain-invariant representation and fuse
them dynamically in a unified deep neural network. The main contributions of this study
are summarized as follows:

1. A domain generation-based fault diagnosis framework for unseen conditions is pro-
posed to complement the online health management operations of industrial applica-
tions for robust and generalized fault recognition.

2. A novel domain generation network, the Adaptive Feature Fusion Domain Generation
Network (AFFN), is proposed, which can learn both domain-invariant and domain-
specific deep representations to enhance the generalization capability of the framework.

3. A well-designed data Mix-up Augmentation Method (MAM) is integrated into the
framework, which fully utilizes the existing data to extend the model’s exploration
and learning boundaries to improve the fit of the unseen domain.

The organization of the remainder of this paper is outlined as follows: Section 2
provides an introduction to pertinent techniques and background knowledge. Section 3
delves into the structure and specifics of the proposed diagnostic framework for unseen
conditions. Section 4 presents the experimental validation and real-world application in
detail. Finally, Section 5 brings this paper to a conclusion.

2. Preliminaries

2.1. Domain Generalization Problem Definition

The unseen domain diagnostic targeted to be solved in this paper can be regarded as
a cross-domain classification; with this in mind, the utilization of DG has emerged as a
prominent research trend. As depicted in Figure 1c,d, the training of the DG diagnostic
model utilizes multiple source domain datasets and involves subsequently applying it
directly to target diagnostic tasks. In research manuscripts detailing the deposition of
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extensive datasets into publicly accessible databases, it is imperative to clearly indicate the
repository where the data reside and furnish the corresponding accession numbers. If, at
the point of submission, the accession numbers are yet to be secured, authors should make
a note of their intention to provide these details during the review process. Ultimately, it is
mandatory that these numbers are made available prior to the manuscript’s publication,
ensuring transparency and accessibility for the scientific community.

Let x = {x1, x2, . . . , xn} be a set of observations from the feature space X and
y = {y1, y2, . . . , yn} be a set of n corresponding class labels from the output space Y ,
with PXY denoting the joint distributions. Herein, the source component is denoted as
“S” and the target component is donated as “T”. The M source domain is defined as

DS =
{
DS

m
}M

m=1, where DS
m =

{(
xS,m

i , yS,m
i

)}Ns,m

i=1
denotes the mth domain and the labeled

observations in all source domains are sufficiently available for model training. The joint
distribution of the source domain is different, which is Pm1

XY �= Pm2
XY [6]. Similarly, the unseen

and unlabeled target domain in the training stage is denoted as DT =
{
DT

m
}M

m=1; appar-
ently, the joint distribution of the target domain is different from any other source domain,
namely PT

XY �= PS,m
XY . Hence, the goal of domain generalization is to learn a robust and

generalizable predictive function 〈 : X → Y from M training source domains to achieve a
minimum prediction error on an unseen test domain DT,test(i.e., DT,test cannot be accessed
in training).

min
h

E(x,y)∈DT,test [�(〈(X ),Y)] (1)

where E is the expectation and �(·, ·) is the loss function.

2.2. Data Augmentation

It is widely recognized that by increasing the variety and volume of training data, the
generalization performance of intelligent models can be enhanced. When dealing with
a finite set of training data, data augmentation stands as one of the most prevalent and
straightforward methods to enrich the diversity of the training dataset.

When carrying out classification tasks, it is common practice to define the neigh-
borhood or vicinity of a sample as the set encompassing its horizontal reflections or
linear transformations. Notably, data augmentation has consistently demonstrated
its ability to enhance the generalization capabilities of models. Zhang et al. [24] intro-
duced a mix-up learning methodology that involves combining two observations in a
linear fashion, smoothing the transition between decision boundaries. This approach
involves training a neural network on convex combinations of pairs of examples and
their corresponding labels.

μ
(∼

x,
∼
y
)
=

1
n

n

∑
j
Eλ

[
δ
(∼

x = ϕ
(

xi, xj
)
,
∼
y = ϕ

(
yi, yj

))]
(2)

where ϕ(a, b) = λa + (1 − λ)b, and λ ∼ Beta(α, α) for α ∈ (0, ∞). δ
(∼

x,
∼
y
)

is a Dirac

mass centered at
(∼

x,
∼
y
)

. The mix-up hyper-parameter α controls the strength of inter-
polation between feature–target pairs. Also, the mix-up reduces the memorization of
corrupt labels, increases the robustness to unseen examples, and stabilizes the training
of generalization networks.

3. Methods

3.1. Unseen Conditions Diagnostic Framework

The proposed unseen conditions diagnostic framework is as depicted in Figure 2,
and mainly consists of three parts: data augmentation, adaptive feature network training,
and online diagnostic application. The utilized MAM method is for data and feature
augmentation, including feature augmentation, label fusion, and domain mix-up. The
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constructed adaptive feature network aims to is to learn both domain-specific representation
and domain-invariant representation and fuse them.

Input Conv.
Max
Pooling

Conv. Max
Pooling

Figure 2. Structure of the proposed unseen conditions diagnostic framework.

3.1.1. Data Augmentation and Fusion

The mix-up method was proposed by Zhang et al. [24] to generate a new feature–label
pair based on the weighted sum of features and the corresponding one-hot label vector.
However, the origin proposed data augmentation method only takes the data level into
consideration, resulting in limited volume and features. In this paper, the mix-up method
has been extended to label the space and domain space. Thus, the lack of information on
different fault classes and domains is compensated for and the diversity of the category
and domain space is increased.

As defined previously, 0 xi is the observations from the feature space X , yi is the
corresponding fault classes in the label domain Y , and di is the domain labels in D. For all
the samples in the source domain (i.e., D =

{
DS

m
}M

m=1), data augmentation can be realized
by the following equations: ⎧⎨⎩

xg
i = λxj + (1 − λ)xk

yg
i = λyj + (1 − λ)yk

dg
i = λdj + (1 − λ)dk

(3)

where λ∼Beta(α, α) for α ∈ (0, ∞), and the original xj and xk are randomly selected form
the overall set of source domains; moreover, the class label yg

i and domain label dg
i are no

longer one-hot vectors. The normalized distribution of Beta(α, α) is generally expressed as

Beta(λ | a, b) =
Γ(2α)

2Γ(α)
[λ (1 − λ)]α−1 (4)

In the domain and label fusion process, the empirical distribution is utilized to measure
augmentation quality, which can be expressed as

Pδ(x, y, d) =
1
n

n

∑
i=1

δ(x = xi, y = yi, d = di) (5)
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where δ(x = xi, y = yi, d = di) is the Dirac mass centered at (xi, yi, di), and n is the number
of all augmented samples. Hence, in order to achieve the goal of label fusion and domain
mix-up, the expectation of the extended generalization can be concluded as⎧⎨⎩min Eλ

[
δ
(

xg
i = ϕ

(
xj, xk, λ

)
, yg

i = ϕ
(
yj, yk, λ

))]
max Eλ

[
δ
(

xg
i = ϕ

(
xj, xk, λ

)
, dg

i = ϕ
(
dj, dk, λ

))] (6)

where ϕ(a, b, λ) = λa + (1 − λ)b, and λ ∼ Beta(α, α); the equation above indicates that, at
the minimum discrepancy of augmented features for fault features, fault labels can be well
fitted, and at the maximum of domain discrepancy for unseen domain exploration, domain
boundaries can be fused and extended.

3.1.2. Adaptive Feature Fusion Network

The Adaptive Feature Fusion Network (AFFN) excels in its capacity to concurrently
harness both domain-invariant and domain-specific features, marking a pivotal advance-
ment. In contrast, the domain-specific representation learning module delves into capturing
the unique nuances and distinguishing attributes of each source domain, thereby augment-
ing the network’s generalization prowess. Conceptually, the AFFN is meticulously crafted
with four distinct yet interconnected modules: the feature extraction module (embodied by
orange blocks), the fault classification module (represented by blue blocks), the domain-
specific representation learning module (highlighted in yellow), and the domain-invariant
learning module (depicted in green), as elegantly illustrated in Figure 2.

The learning objective of AFFN can be expressed as follows:

L = Lcls + βLdsr + γLdir (7)

where Lcls is the classification loss, Ldsr is the loss of domain-specific representation
learning, and Ldir is the loss of domain-invariant representation learning. β and γ are the
tradeoff hyperparameters.

(1) The feature extraction module serves the purpose of distilling features from the row
sensor data. Two CNN layers accompanied by max-pooling operations are employed
to extract these features. Notably, these layers are designed to be shared across all
training domains, thus minimizing the number of parameters. For classification, the
cross-entropy is taken as the classification loss:

Lcls = − 1
N

N

∑
i=1

yilogP(yi | xi) (8)

where N = ∑K
k=1,nk is the number of samples from all the training domains.

(2) The domain-specific representation learning module specializes in acquiring features
that are tailored to each domain; hence, it is not shared and remains unique to each
domain. Following feature extraction, K fully connected (FC) layers are implemented
for each domain. Additionally, a weighting function has been devised to integrate
the specific information of each domain. Given new test data x, their feature z is
formulated as

z =
K

∑
k=1

wk fk( fe(x)) (9)

where wk (wk > 0 and ∑K
k=1 wk = 1) is the weight on domain Dk, indicating the

similarity between the data in domain Dk and the input data under unseen condi-
tions. fk is the feature learning function of domain Dk and fe is the shared feature
extraction function.

The combination of fk and fe guarantees that the initial layers tend to acquire general
features, whereas the later layers gravitate toward domain-tailored features. During the

467



Mathematics 2024, 12, 2865

training phase, the domain label dk ≡ k for each sample is known beforehand, thus allowing
for the computation of the domain-specific loss for each domain k to be concluded as

Lk
dsr =

1
nk

nk

∑
i=1

�( fd( fe(xi)), dk) (10)

Then, the total domain-specific loss can be obtained by averaging the losses on all domains:

Ldsr =
1

K × nk

K

∑
k=1

nk

∑
i=1

�( fd( fe(xi)), dk) (11)

3.2. Training and Application

During training, the data augmentation and fusion method enrich the data, label,
and domain spaces. The feature extractor captures lower-level features and feeds them to
domain-specific branches. The domain classifier uses these features to fuse domain-specific
characteristics and learns domain-invariant representations. These fused features then
enable activity classification.

For application, the model parameters are fixed, and domain-specific and invariant
representations are derived for an unseen target domain. Without knowing the target
domain’s label, the domain classifier’s output indicates the similarity between the target
and source domains. The label loss in the source domain and the domain fusion loss are
calculated as in every epoch. The optimizer Adam is utilized to optimize the parameters
of the feature extractor and, as part of the parameters of domain classifiers, the learning
rate is set as 0.001. The explicit steps of adversarial transfer learning are shown in Table 1.
The Learning Rate Schedule is set as decreasing by a factor of 0.1 every 20 epochs. The
Adam optimizer is used in the neural network optimization process. The Adam optimizer
combines the advantages of Adagrad’s goodness in dealing with sparse gradients and
RMSprop’s goodness in dealing with non-smooth objectives, and is able to automatically
adjust the learning rate, converge faster, and perform better in complex networks. Consid-
ering the amount of data in each training batch as a proportion of the overall amount of
data, and the savings in training time, the batch size is set as 128 and the training epochs is
set as 100.

The complete learning process of the whole framework for unseen faults is summa-
rized in Algorithm 1.

Algorithm 1: MAM-AFFN for unseen fault diagnosis.

Input: K source domains DS
1 , . . . ,DS

K for training, training steps � and β, γ.
Output: Classification results on test domain DT.

Data, label, and domain
(
X ,Y ,D

∣∣∣{DS
1 , . . . ,DS

K

}
) augmented by MAM;

Randomly initialize the model parameters θ, i = 0;
while i < � do

1. Sample a batch B = {B1, . . . ,BK} from K domains;
2. Extract the lower-level features fe(x) by the feature extractor;
3. Extract the domain-specific features fk( fe(x)) by K domain-specific fully connected layers;
4. Calculate the domain-specific loss Ldsr and output the weight for each source branch;
5. Calculate the domain-invariant loss Ldir.
6. Fuse the domain-specific weight according to Equation (9).
7. Calculate the total loss of AFFN according to Equation (7).
8. Update the model parameter θ, using AdamW.

end while

Application on the target data of unseen domain DT.
return Classification results of unseen domain DT.
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Table 1. Case 1: diagnostic cases from the SDUST dataset.

Diagnostic Cases Seen Domain Condition Unseen Domain Condition

T1 1500 r/min, 2000 r/min, 2500 r/min 1000 r/min
T2 1000 r/min, 2000 r/min, 2500 r/min 1500 r/min
T3 1000 r/min, 1500 r/min, 2500 r/min 2000 r/min
T4 1000 r/min, 1500 r/min, 2000 r/min 2500 r/min

4. Experiments

Without compromising on generality, we delve into the challenging yet crucial task
of fault diagnosis for rotating bearings, where the fault characteristics exhibit periodicity
and regularity. To assess the effectiveness of the general framework, we undertook two
experimental case studies leveraging test rigs from SDUST [25] and the Paderborn Uni-
versity bearing dataset (PU dataset) [26] for bearing fault diagnosis, as shown in Figure 3.
Within these datasets, we designated a specific working condition or machine as the un-
seen target domain, serving as the benchmark for evaluating the model’s performance.
The normalized method was utilized for data preprocessing, which keeps the data size
within the same interval to ensure effective convergence of the model. The number of each
dataset of training categories was controlled as 150 for data balancing. Meanwhile, the data
pertaining to the remaining conditions were utilized for model training. The first scenario
involved a constant domain shift where the rig operated at varying but constant speeds,
whereas the second scenario scrutinized a constant domain shift where the rig functioned
under numerous conditions with varying rotational speeds and loads. These experiments
validated the efficacy of the MAM-AFFN method, which employs domain generalization
principles, for demanding industrial applications.

 
Figure 3. Illustration of (a) the SDUST experimental platform and (b) the PU bearing test-rig.

4.1. Experiment Setting
4.1.1. Description of SDUST Dataset and Case 1

The SDUST dataset comprised a motor, a shaft coupling, a rotor, a testing bearing, a
gearbox, and a brake. Specifically, the bearing type used was N205EU (manufactured
by SKF Co., Goteborg, Sweden), and data were gathered under four distinct health
conditions: normal (NOR), inner ring fault (I), rolling element fault (B), and outer
ring fault (O). Additionally, four varying working conditions were examined at speeds
of 1000, 1500, 2000, and 2500 rpm. The experimental setup included four diagnostic
scenarios for unseen working conditions across domains, namely T1000, T1500, T2000,
and T2500, as shown in Table 1.

4.1.2. Description of PU Dataset and Case 2

The PU dataset’s test rig was a comprehensive assembly, primarily encompassing a
motor, a torque measurement shaft, a dedicated bearing test module, a flywheel, and a load
motor. This setup facilitates the evaluation of seven distinct health conditions, including the
baseline normal (N) state, three levels of inner-race faults (IF1, IF2, IF3) that progressively
escalate in severity, two grades of outer-race faults (OF1, OF2) showcasing varying degrees

469



Mathematics 2024, 12, 2865

of damage, and a complex compound fault (CF) scenario, which integrates both inner and
outer race faults (IF and OF).

Bearings exhibiting genuine damage were sourced from an accelerated lifetime testing
procedure, ensuring the authenticity of fault conditions. Vibration signals were meticu-
lously captured under four diverse operational scenarios, each characterized by specific
rotational frequencies (Hz), load torques (Nm), and radial forces (N). The data acquisition
was performed at a high sampling frequency of 64 kHz, ensuring precision and accuracy in
capturing the dynamic behavior of the bearings. These operational scenarios collectively
defined four distinct domains: P1, P2, P3, and P4, leading to four diagnosis cases, as
outlined in Table 2. Each category in unseen working conditions comprises 2000 samples.

Table 2. Case 2: diagnostic cases from the PU dataset.

Domain Rotational Frequency Load Cases Seen Domain Unseen Domain

p1 25 Hz 1000 N R1 p2, p3, p4 p1
p2 15 Hz 400 N R2 p1, p3, p4 p2
p3 15 Hz 1000 N R3 p1, p2, p4 p3
p4 25 Hz 400 N R4 p1, p2, p3 p4

4.1.3. Optimization and Compared Methods Description

The optimization methodology was tailored to maximize performance on the vali-
dation set during training. For deep generalization (DG) tasks, we employed a 10-fold
cross-validation approach, dividing the data into 70% training and 30% validation subsets
randomly. Balancing computational efficiency and resource utilization, we adopted a
batch size of 128. To combat overfitting, we incorporated an early stopping criterion with
a patience threshold of 10 epochs. Our training routine limited the maximum number
of epochs to 50, leveraging Stochastic Gradient Descent (SGD) with an initial learning
rate (LR) of 0.001. A dropout rate of 0.5 was employed for regularization. Furthermore,
to guarantee model convergence, we employed an exponentially decaying learning rate
schedule, commencing at 0.001 and adaptively adjusting as training progressed.

lr = initial_lr · (ε·epoch + 1)γ (12)

where initial_lr is the initial learning rate, epoch is the completed training epochs. ε and γ

are two parameters that control the rate of LR’s change.
For comparative analysis, several cutting-edge techniques for domain generaliza-

tion (DG) were evaluated, encompassing MLDG [27], ANDMask [25], and CORAL [16].
Additionally, drawing inspiration from Matsuura and Harada [28], we devised a deep
model incorporating adversarial and entropy losses, referred to as DAE, and another deep
model without generalization capabilities, labeled DeepNG. The integration of Mixup and
DAE within an MDAE model aimed to demonstrate the effectiveness of the domain-based
discrepancy metric module.

4.2. Experimental Results
4.2.1. Performance Comparisons

The experimental results of the proposed method and the comparison methods under
eight tasks in Case 1 (SDUST dataset) and Case 2 (PU dataset) are shown in Figure 4. The
details are further listed in Table 3.

A few conclusions that can be drawn from the analysis are as follows: Firstly, the
baseline DeepNG approach achieved significantly lower average test accuracies of 76.46%
and 80.63% in the two scenarios, respectively. This suggests that there was interference
among the data distributions during training, which negatively impacted the model’s
generalization capabilities. Moreover, DG methods employing MLDG, ANDMask, and
CORAL demonstrated improvements over the basic DAE and MADAE models. Specifically,
in Case 1, they achieved average accuracy gains of 1.57%, 12.06%, and 10.05%, respectively,
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while in Case 2, the gains were 4.04%, 5.27%, and 3.49%. These methods were designed to
mitigate distributional discrepancies between source domains and learn representations
that are invariant to domain shifts. Finally, the proposed method exhibited the best
diagnostic performance in nearly all DG tasks, achieving peak average accuracies of 94.15%
and 93.27% in both experimental cases.

Figure 4. Classification accuracy of the different diagnostic tasks of Case 1 and Case 2.

Table 3. Diagnostic accuracy (%) of Case 1 and Case 2.

Tasks DeepNG DAE MLDG ANDMask CORAL MADAE Proposed

Case1

T1 59.73 ± 1.43 59.85 ± 2.48 65.8 ± 3.05 66.51 ± 2.2 73.75 ± 1.91 73.27 ± 3.64 93.03 ± 2.17
T2 84.65 ± 2.72 83.14 ± 1.28 94.95 ± 2.9 94.81 ± 3.27 95.19 ± 1.52 94.48 ± 2.86 95.6 ± 2.64
T3 86.28 ± 2.47 89.51 ± 3.21 96.28 ± 1.98 96.76 ± 1.8 98.35 ± 0.84 97.27 ± 0.74 98.06 ± 1.42
T4 83.19 ± 3.89 83.62 ± 4.67 84.98 ± 6.26 83.96 ± 3.6 90.42 ± 0.76 86.06 ± 2.49 91.37 ± 2.94

Average 76.46 ± 2.63 78.03 ± 4.66 88.52 ± 3.55 86.51 ± 2.72 88.42 ± 1.26 88.77 ± 2.93 94.15 ± 2.54

Case2

R1 75.92 ± 1.38 92.75 ± 0.69 90.26 ± 2.87 85.86 ± 1.59 90.61 ± 2.17 91.73 ± 1.26 97.6 ± 0.92
R2 83.26 ± 2.42 72.64 ± 3.57 70.19 ± 4.15 82.47 ± 3.73 83.74 ± 3.33 77.54 ± 3.89 92.36 ± 3.02
R3 87.33 ± 3.07 90.59 ± 2.26 92.57 ± 3.42 93.52 ± 1.24 84.98 ± 0.94 96.02 ± 1.96 97.29 ± 1.55
R4 72.04 ± 1.53 78.73 ± 2.59 60.61 ± 4.11 65.73 ± 3.97 86.17 ± 3.12 79.39 ± 2.78 89.81 ± 3.31

Average 80.63 ± 2.10 84.67 ± 2.27 79.41 ± 3.64 85.89 ± 2.63 87.38 ± 2.39 87.17± 2.47 93.27 ± 2.21

Furthermore, the model demonstrated superior stability compared to other compar-
ison methods in most tasks. Figure 4 illustrates the classification accuracy of various
diagnostic tasks for Case 1 and Case 2, providing a visual aid for comparing the diagnostic
results. Figure 5 illustrates the confusion matrix of proposed methods in four diagnostic
tasks of Case 1. A plausible explanation for this finding is that the data distribution without
loads differs significantly from that with loads, thereby exacerbating the issue of distribu-
tion shift. Furthermore, the proposed MAM model surpasses other models in terms of both
average accuracy across all tasks. In essence, the empirical findings validate the viability
and efficacy of the proposed model.

To mitigate the potential bias stemming from the unique characteristics of training
samples, the final analysis presents the mean and variance of five independent experiments.
As evident from the graphical representation, our proposed method consistently outper-
forms others in diagnosing the seven distinct bearing failure scenarios, underscoring its
effectiveness and robustness.
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Figure 5. The diagnostic accuracies under four unseen working conditions in Case 1 utilizing the
proposed method.

4.2.2. Feature Visualization and Analysis

For an intuitive and detailed comparison, the t-SNE technique [29,30] was adopted
on one trial of Task T1. Four key methodologies—DeepNG, DAE, ANDMask, and
CORAL—were selected for a visual assessment of their feature representations. As
depicted in Figure 6a–e, the visualizations reveal distinct insights. DeepNG (Figure 6a)
exhibits weak inter-class separation, indicating a potential for misdiagnosis due to
category confusion. Both DAE (Figure 6b) and ANDMask (Figure 6c) show improved
inter-class separation but struggle with intra-class clustering, evidenced by fragmented
clusters within the same class across domains. This can lead to misclassification near
decision boundaries. In contrast, our proposed approach exhibits remarkable harmony
in feature distribution, significantly enhancing both inter- and intra-class coherence.
This improvement can be attributed to two possibilities: significant variations between
Task T1 and other conditions, or the subtle characteristics of I04 and R2 samples in T1,
making them prone to misclassification.

Figure 6. Visualization of the t-SNE embeddings under unseen target working conditions:
(a) DeepNG, (b) DAE, (c) ANDMask, (d) CORAL, (e) the proposed method.
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Drawing from the aforementioned analysis, we propose integrating fault mechanism
and signal processing expertise as a promising avenue to further refine our approach, a
direction we aim to explore in our forthcoming endeavors. Notably, our current method
has demonstrated its prowess in extracting domain-invariant feature representations across
diverse distributions, elucidating its exceptional generalization capabilities from Table 1.

4.2.3. Hyperparameter Sensitivity Analysis

The performance of the proposed MAM-AFFN model depends on the hyperparam-
eters β and γ in the combined loss function as shown in Equation (7). These parameters
strike a delicate balance between domain-specific and domain-invariant modules, pivotal
for maintaining diagnostic accuracy amidst intricate engineering scenarios. Given the sub-
stantial data volume, we resorted to the grid search approach for parameter optimization
to search β and γ from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5,10,50} and {0.01, 0.05, 0.1, 0.5, 1,
5, 10, 50, 100, 500}, respectively; the values of γ selected were ten times those of β due to
domain-invariant representation being more ambiguous and difficult to access. The weight
coefficients were chosen from the 100 possible combinations of the two sets, utilizing the
accuracy index as the benchmark to identify the optimal pairing. We provide a detailed
account of this process using the SDUST dataset as an example.

Figure 7 illustrates the MAM-AFFN’s accuracy across varying hyperparameter com-
binations. Notably, the accuracy experiences significant fluctuations with alterations in
γ, while β exerts a more subtle and consistent effect. This outcome suggests that the
domain-based discrepancy metric module associated with γ holds a pivotal role in the
framework, outweighing the influence of the module corresponding to β. Therefore, we
adopted the optimal combination (β, γ) = (5, 300) in this experiment for the relatively best
results.

Figure 7. Diagnosis accuracy obtained using different values of the hyperparameters γ and β.

The hyperparameter α in the data augmentation module regulates the extent of
interpolation between original feature vector pairs. The coefficient λ, derived from the Beta
(α, α) distribution, as shown in Equation (4), remains constant for each minibatch, after
which the mix-up method is implemented on the shuffled minibatch. Consequently, we
explored the influence of gradually varying α from 0.1 to 1 on cross-domain diagnostic
performance. For comparison, we also considered fixed λ values ranging from 0.1 to 1.
Figure 8 depicts the findings on the SDUST dataset, revealing a superior average accuracy
achieved by the ten value settings in the fixed α group compared to the fixed λ group.
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This outcome is attributed to the fact that diverse λ values sampled from the Beta (α, α)
distribution with a constant α enhance the variability of the original data, subsequently
enhancing the model’s generalization capabilities. As a result, α = 0.7, which yielded the
highest accuracy, was selected for this study.

Figure 8. The strength of interpolation between data pairs significantly impacts the diagnosis performance.

5. Conclusions

In this paper, a new DG model, MAM-AFFN, is proposed to solve the problem of
poor domain generalization ability under unseen working conditions in extreme real
industrial applications. A domain generation framework is introduced for fault diagnosis
in unseen conditions, encompassing an Adaptive Feature Fusion Domain Generation
Network (AFFN) and a Mix-up Augmentation Method (MAM) that applies to both data
and domain spaces. The framework incorporates thoughtfully designed modules for data
augmentation, domain discriminators, and domain-based discrepancy metrics, resulting in
a well-integrated domain generation diagnosis application for unseen domain conditions.
The feasibility of MAM-AFFN was successfully demonstrated through a range of fault
diagnosis generalization tasks conducted on two publicly available datasets as well as a
practical real-world scenario. Based on the comprehensive experimental results, several
significant conclusions can be inferred:

(1) A thoughtfully crafted data Mix-up Augmentation Method (MAM) is integrated
within the framework, effectively leveraging the available data to broaden the
model’s exploration and learning horizons, ultimately enhancing its adaptability to
unseen domains.

(2) The comparison results with the six other methods prove the superiority of MAM-
AFFN for extracting both domain-invariant and domain-specific deep representations
to enhance the generalization capability of the unseen fault diagnosis.

(3) The experimental results in eight cases of bearing diagnosis experiments from
two bearings public datasets demonstrate the reliability and generalization of the
proposed method, as the proposed MAM-AFFN produces higher classification
accuracy compared with the traditional model and some other state-of-the-art
DG-based IFD methods.

In essence, the proposed MAM-AFFN model adeptly addresses domain shift chal-
lenges stemming from varying workloads and even disparate machines, accurately ex-
ecuting IFD tasks under unseen conditions. Furthermore, the model’s flexibility allows
operators to customize adjustable thresholds, achieving a practical balance between perfor-
mance and computing resources for real-world applications.
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Abstract: Precisely identifying interior decoration styles holds substantial significance in directing
interior decoration practices. Nevertheless, constructing accurate models for the automatic classi-
fication of interior decoration styles remains challenging due to the scarcity of expert annotations.
To address this problem, we propose a novel pseudo-label-guided contrastive mutual learning
framework (PCML) for semi-supervised interior decoration style classification by harnessing large
amounts of unlabeled data. Specifically, PCML introduces two distinct subnetworks and selectively
utilizes the diversified pseudo-labels generated by each for mutual supervision, thereby mitigating
the issue of confirmation bias. For labeled images, the inconsistent pseudo-labels generated by the
two subnetworks are employed to identify images that are prone to misclassification. We then devise
an inconsistency-aware relearning (ICR) regularization model to perform a review training process.
For unlabeled images, we introduce a class-aware contrastive learning (CCL) regularization to learn
their discriminative feature representations using the corresponding pseudo-labels. Since the use of
distinct subnetworks reduces the risk of both models producing identical erroneous pseudo-labels,
CCL can reduce the possibility of noise data sampling to enhance the effectiveness of contrastive
learning. The performance of PCML is evaluated on five interior decoration style image datasets. For
the average AUC, accuracy, sensitivity, specificity, precision, and F1 scores, PCML obtains improve-
ments of 1.67%, 1.72%, 3.65%, 1.0%, 4.61%, and 4.66% in comparison with the state-of-the-art method,
demonstrating the superiority of our method.

Keywords: semi-supervised learning; contrastive learning; interior decoration style
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1. Introduction

With the progressive improvement of living standards, there is an increasing focus
on the aesthetic and functional aspects of interior decoration. Accordingly, the precise
identification of interior decoration styles is of great significance for the guidance and
instruction of interior design practice [1–3]. To date, many supervised learning methods
based on deep neural networks have achieved great performances in interior design prac-
tice, such as interior decoration style (e.g., four images from different types of interior
decoration styles in Figure 1) recognition [4,5], interior decoration style colorization [6],
and interior decoration style design [7]. The success of deep learning models in this field is
predominantly attributed to the availability of large amounts of labeled interior decoration
images. Nevertheless, it is difficult to obtain a large number of labeled interior decora-
tion images due to the requirements of professional knowledge and time consumption
on labeling. Semi-supervised learning paradigm enables models leverage both limited
labeled data and extensive unlabeled data, which significantly reduces the dependence
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on annotations and progressively emerges as the mainstream paradigm for the interior
decoration style recognition.

Figure 1. Examples of four types of interior decoration styles: (a) country style, (b) Chinese style,
(c) European style, and (d) simple style.

The semi-supervised learning (SSL) paradigm aims to explore and leverage the in-
ternal knowledge underlying unlabeled data to enhance the performance of the model.
To date, consistency learning [8] and pseudo-labeling [9] are two mainstream techniques
that can be used for exploiting unlabeled data. The consistency-learning-based SSL meth-
ods enforce the model to generate consistent predictions for the same input under small
perturbations [10]. The pseudo-labeling-based SSL methods generate pseudo-labels for un-
labeled data, which are subsequently integrated with labeled data to retrain the model [11].
Furthermore, some other SSL methods attempt to integrate both consistency learning and
pseudo-labeling techniques to boost the learning performance [12–14].

Although SSL methods based on above techniques have achieved promising results,
several challenges significantly affect their robustness and may result in the degradation
of model performance. First of all, most of consistency-learning-based SSL methods
are based on the self-ensemble framework, which usually takes two subnetworks with
identical architecture and enforces their predictions to be consistent. For instance, the mean
teacher (MT) framework [15] is a typical consistency-learning-based SSL method which
has a teacher subnetwork and a student subnetwork. Generally, the MT method and its
extensions possess the following three characteristics: (1) the student and teacher networks
share the same architecture; (2) the parameters of the teacher network are updated as
the exponential moving average of those of the student network; and (3) consistency
learning regularization is employed to ensure consistent predictions between the student
and teacher networks. It is evident that the shared architecture leads to the homogenization
of subnetworks. The model parameters of teacher network is a weighted mixture of the
historical states of the student network; that means that the predictions of the teacher
network are constrained by those of the student network. In addition, the consistency
learning regularization enforces the consensus predictions of student and teacher networks,
further limiting the diversity of the predictions of them. In summary, the coupling issue
constrains MT-like SSL methods from generating diverse predictions, making the models
prone to trapping confirmation bias and meaning that it is difficult for them to self-correct.

The second challenge arises from the unreliable pseudo-labels. In practice, unlabeled
images usually cover different equipment and environments, thereby increasing the risk of
the model making unreliable predictions. Potentially inaccurate pseudo-labels make the
SSL’s training and labeling loop collapse and degrade the performance of SSL methods.
Furthermore, the inaccurate pseudo-labels will adversely affect the learning of internal
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correlations among unlabeled images. The supervised contrastive learning strategy [16]
has been demonstrated to have a superior performance in the discriminative feature learn-
ing of images. The core principle of supervised contrastive learning is that representations
of similar samples should be closely aligned, while representations of different types of
samples should be distinct. For unlabeled images, the pseudo-labels are usually employed
to determine their categories. For instance, the authors of [17] leveraged the spatial consis-
tency of weakly augmented images to generate similar samples, while dissimilar samples
were constructed using a straightforward cross-image and pseudo-label weighting heuristic.
However, utilizing pseudo-labels to generate samples may not align with actual semantic
categories, potentially resulting in noisy sampling in contrastive learning. Due to the
unreliability of predictions of unlabeled images, the use of self-generated pseudo-labels
disrupts model training, leading to a progressive deterioration of model performance.

To tackle the aforementioned challenges, we propose a novel pseudo-label-guided con-
trastive mutual learning (PCML) framework for semi-supervised interior decoration style
classification. Specifically, PCML employs two subnetworks with different architectures,
thus directing the model generate diverse predictions. For labeled images, the inconsistent
pseudo-labels generated by the two subnetworks are employed to identify images that are
prone to misclassification. We then devise an inconsistency-aware relearning (ICR) regular-
ization to perform a review training for these images. For unlabeled images, we introduce
a class-aware contrastive learning (CCL) regularization to learn their discriminative feature
representations using the corresponding pseudo-labels. Since the use of distinct subnet-
works reduces the risk of both models producing identical erroneous pseudo-labels, CCL
can reduce the possibility of noise data sampling to enhance the effectiveness of contrastive
learning. We introduce a weighting module to CCL that emphasizes learning from highly
probable samples within the same category while reducing the impact of unreliable noisy
samples. The synergistic learning among the mutual learning framework, ICR regular-
ization, and CCL regularization during the training process enables each subnetwork to
selectively incorporate the reliable knowledge imparted by the other subnetwork, thereby
mitigating the issue of confirmation bias. The primary contributions of this work can be
summarized as follows:

• We propose a novel PCML framework to facilitate semi-supervised interior deco-
ration style classification by exploiting the diversified pseudo-labels generated by
distinct subnetworks.

• PCML integrates two novel modules: ICR regularization to direct the subnetworks
review the labeled imaged with inconsistent predictions, and CCL regularization to
learn discriminative feature representations of unlabeled images.

• The synergistic learning among the distinct subnetworks, ICR regularization, and CCL
regularization helps the model overcome confirmation bias. Extensive experimental
results demonstrate the superiority of PCML.

2. Related Works

2.1. Semi-Supervised Learning

By leveraging a large amount of unlabeled data, SSL methods can significantly improve
the model performance. Current SSL approaches mainly focus on the consistency learning
paradigm, the pseudo-labeling paradigm, or a combination of both to effectively exploit
the extensive unlabeled data. Consistency-learning-based SSL methods [8,10,12–15,18–21]
encourage the model to generate consistent predictions for the same input under small
perturbations, such as input perturbations [8], feature perturbations [19], or network
perturbations [14]. For instance, the π model presented in [16] directly uses the network’s
predictions of the same input under stochastic augmentation and dropout perturbations as
the consistency targets. Based on [16], MT model introduces an additional teacher network
with the same architecture. In [22], a sample relation consistency regularization is proposed
to be integrated into the MT framework, which enables the model to capture the additional
internal correlation information between unlabeled data. In addition, the local and global
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structural consistencies [21] were developed to jointly learn spatial and geometric structural
information, thereby enhancing the generalization capability of the MT model. In [14],
three types of perturbations, i.e., input data, network, and feature perturbations, were
employed to enhance model training and further improve the generalization of consistency
learning. Despite the advancements, consistency-learning-based SSL methods typically
employ two subnetworks with identical architectures and encourage consensus in their
predictions, making the models prone to falling into confirmation bias and making it so
that they find it difficult to self-correct.

Pseudo-labeling-based SSL methods follow the self-training [23] and pseudo-labeling [24]
techniques to generate the pseudo-labels for unlabeled data by leveraging the model trained
on labeled data. Subsequently, these pseudo-labels are incorporated into the labeled dataset
to retrain the model [9,24–27]. To filter out the low quality pseudo-labels, most current SSL
methods simply employ a predefined confidence threshold (e.g., 0.95) to discard potentially
unreliable pseudo-labels with low confidence [24]. However, it is difficult to determine a
reasonable confidence threshold for filtering out all the unreliable pseudo-labels. To address
this, an entropy-based module [28] was designed to enable the model to generate low-
entropy predictions for unlabeled data. In addition, a curriculum pseudo-labeling method
was developed to adjust thresholds for different classes, thereby filtering out unreliable
pseudo-labels [29]. Another SSL method introduced an uncertainty-aware pseudo-label
selection strategy [30], which accounts for the effects of inadequate network calibration.

Some SSL methods integrated consistency learning and pseudo-labeling techniques.
For example, [8] selected partially reliable pseudo-labels and guided the student network
to learn from these reliable targets. The authors of [31] developed a cycled pseudo-label
scheme to promote mutual consistency for challenging unlabeled data, thereby minimizing
uncertain predictions. Despite the notable success of these SSL methods, most of them
utilize subnetworks with identical architectures, thereby resulting in the homogenization
problem. In view of this, some studies employed distinct subnetworks to enhance the
diversity between them. For instance, the authors of [32] proposed the use of a convolu-
tional neural network and a transformer as subnetworks. In addition, the authors of [33]
developed a mutual correction framework utilizing two structurally distinct subnets with
independent parameter updates for semi-supervised learning.

2.2. Contrastive Learning

The contrastive learning technique significantly advanced self-supervised representation
learning [34–37]. The fundamental concept of contrastive learning is to draw together an
anchor and a “positive” sample within the embedding space while simultaneously pushing
the anchor away from the “negative” samples. In SSL, contrastive learning can fully leverage
unlabeled data to learn discriminative visual representations. For example, a pseudo group
contrast method [38] was developed to automatically rectify incorrect pseudo-labels. Based
on [38], a reliability-aware contrastive self-ensemble framework [39] was proposed to select
in-distribution unlabeled data to exploit the reliable internal correlation information, thereby
enhancing the robustness of the SSL method. In addition, contrastive learning [40] was used
to model pairwise similarities according to their pseudo-labels, which is beneficial for better
prediction and avoids being trapped in local minimum. In [41], a graph-based contrastive
learning scheme was developed to regularize the structure of the embeddings by using
pseudo-labels of unlabeled data. Furthermore, contrastive learning regularization [42] was
also used to improve the classification performance of the consistency regularization by well-
clustered features of unlabeled data. In this paper, we extend the unsupervised contrastive
learning technique to supervised scenarios [16] by using the diverse predictions generated
from two distinct subnetworks, thereby facilitating the learning from samples within the same
category while reducing the impact of unreliable noisy samples.
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3. Pseudo-Label-Guided Contrastive Mutual Learning Framework

In this section, we first briefly introduce our pseudo-label-guided contrastive mutual
learning framework. Subsequently, we elaborate on the techniques of inconsistency-aware
re-learning and category-aware contrastive learning to enhance the semi-supervised interior
decoration style classification performance, respectively.

3.1. Architecture Overview

We firstly introduce the basic formulations of SSL for interior decoration style clas-
sification. We have a set of training dataset D, which contains N fully labeled images

Dl =
{(

xl
i , yl

i

)}N

i=1
and M unlabeled images Du =

{
xu

i
}N+M

i=N+1. In practice, we have

N � M. xl
i ∈ X denotes the i-th training image in Dl and yl

i ∈ Y={1, 2, · · · , C} denotes
the corresponding one-hot ground-truth label of xl

i .
In PCML, we employ two networks with different architectures, i.e., subnetwork

A ( fA(·)) and subnetwork B ( fB(·) ). We denote θA and θB as the model parameters of
subnetworks A and B, respectively. The subnetwork f can be decomposed into a feature
extractor h(·) : X → Z and a classifier g(·) : Z → Y , parameterized by θh and θg,
respectively. Here, Z ⊂ RZ represents the feature space of dimension. For subnetwork A,
we have fA = gA ◦ hA and θA =

{
θ

g
A, θh

A

}
. For subnetwork B, we have fB = gB ◦ hB with

θB =
{

θ
g
B, θh

B

}
. Our goal is to accurately predict the style of interior decoration images by

using training dataset D.
The overall framework of the proposed PCML is shown in Figure 2. PCML employs

subnetwork A and subnetwork B with different architectures to direct the model gener-
ate diverse predictions, thereby mitigating the homogenization problem. Utilizing the
diverse predictions, PCML takes ICR regularization to conduct review training on labeled
images that are prone to misprediction. For unlabeled images, PCML introduces CCL
regularization to learn their discriminative feature representations using the corresponding
pseudo-labels. Since the diverse predictions reduce the risk of both models producing
identical erroneous pseudo-labels, CCL can reduce the possibility of noise data sampling to
enhance the effectiveness of contrastive learning. Below, we introduce the main components
of PCML, i.e., ICR regularization, and CCL regularization.

Figure 2. The architecture of PCML for medical image segmentation. A mini-batch input containing
labeled data and unlabeled images are fed into subnetwork A and subnetwork B, respectively.
The predictions Pl

A and Pl
B are used to calculate the ICR regularization and cross-entropy loss,

respectively. The predictions Pu
A and Pu

B are used to calculated the CPS loss and the class-aware
matrix, which is then used to guide the calculation of the CCL regularization.
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3.2. Inconsistency-Aware Relearning

Assume that the input min-batch of data M contains N samples xM, comprising
labeled image xl randomly sampled from Dl and unlabeled image xu randomly sampled
from Du. The input min-batch of images xM are fed into feature extractors hA(·) and hB(·),
respectively. Then, we can obtain the feature representations as follows:

zl
A, zu

A = hA

(
xM, θh

A

)
, (1)

zl
B, zu

B = hB

(
xM, θh

B

)
. (2)

For labeled images, the probability outputs of subnetworks A and B can be obtained
by using softmax function σ(·), which can be formulated as follows:

pl
A = σ

(
gA

(
zl

A, θ
g
A

))
, (3)

pl
B = σ

(
gB

(
zl

B, θ
g
B

))
. (4)

Since Pl
A and Pl

B originate from two different subnetworks, their consistency suggests
that the corresponding pseudo-labels are highly accurate. If the two subnetworks yield
different predictions for the same image, it indicates that at least one of the predictions
is incorrect. As a result, we use the inconsistent predictions as indicators to identify the
images that are prone to misclassification. Consequently, the subnetworks need to relearn
these images to fully leverage the knowledge within the limited labeled data.

To this end, we propose an ICR regularization approach to selectively leverage the
images with inconsistent predictions to retrain the two subnetworks. Specifically, the pre-
dicted one-hot label of annotated images obtained from subnetwork A and subnetwork B
can be expressed as follows:

yl
A = One-hot

(
pl

A

)
, yl

B = One-hot
(

pl
B

)
, (5)

where One-hot(·) transforms the predictions pl
A and pl

B to the responding hard labels yl
A

and yl
B. The indexes of images with inconsistent predictions can be expressed as follows:

IN = I

(
yl

A �= yl
B

)
. (6)

Here, I(·) is the indicator function. Thus, the predictions corresponding to these images
obtained from subnetworks A and B can be identified using operation F(·):

P̂l
A = F

(
IN, Pl

A

)
, P̂l

B = F
(

IN, Pl
B

)
. (7)

Similarly, the truth labels corresponding to these images can be expressed as follows:

ŷl = F
(

IN, yl
)

. (8)

To facilitate the relearning of samples prone to misprediction, we introduce the ICR
regularization, which directs the two subnetworks to focus more on these images. Thus,
the ICR regularization employed for subnetworks A and B can be expressed as follows:

LA
ICR = MSE

(
P̂l

A, ŷl
)

, LB
ICR = MSE

(
P̂l

B, ŷl
)

. (9)

where MSE(·) denotes the mean squared error loss.
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3.3. Class-Aware Contrastive Learning

In the SSL paradigm, supervised contrastive learning [40,41] is often employed to
guide the model to focus on the pairwise similarities of unlabeled data based on their
pseudo-labels, thereby facilitating discriminative feature learning. Although this is ef-
fective, it is difficult to use it to guarantee the reliability of self-generated pseudo-labels,
which can adversely affect the performance of semi-supervised classification. In view of
this, we propose a class-aware contrastive learning (CCL) scheme to learn discriminative
feature representations of unlabeled images by selectively leveraging reliable pseudo-labels.
Different from [43], we employ two subnetworks with distinct architectures which can help
the model reduce the risk of producing identical erroneous pseudo-labels and dispose of
confirmation bias. Hence, CCL can reduce the possibility of noise data sampling to enhance
the effectiveness of contrastive learning.

Specifically, the objective of classical supervised contrastive learning can be mathemat-
ically expressed as follows:

LSCL = −∑
i

1
J + 1 ∑

p∈P(i)
log

exp
(

ẑu
A,i · ẑu

B,p

/
τ
)

∑N
j=1 Ii �=j exp

(
ẑu

A,i · ẑu
B,j

/
τ
) . (10)

Here, ẑu
A,i and ẑu

B,j, ∀i, j = 1, 2, · · · , N represent the normalized embeddings output by the

projection networks pA(·) and pB(·), respectively. Thus, we have ẑu
A,i = pA

(
zu

A,i

)
and

ẑu
B,i = pB

(
zu

B,i

)
. P(i) is the set of indices of all positives according to their pseudo-labels. τ

is a hyper-parameter for temperature scaling.
In practice, unlabeled images usually come different equipment and environments,

thereby increasing the risk of the model making unreliable predictions. The positive sam-
ples identified by pseudo-labels in Equation (10) may be inaccurate due to their incorrect
predictions. In view of this, we introduce CCL regularization for supervised contrastive
learning among the reliable unlabeled images. Specifically, the probability outputs of
unlabeled images from subnetwork A and subnetwork B can be expressed as follows:

pu
A = σ

(
gA

(
zu

A, θ
g
A

))
, (11)

pu
B = σ

(
gB

(
zu

B, θ
g
B

))
. (12)

We then use a threshold T to filter out some potentially unreliable unlabeled images. If pu
A,i > T,

we assume the i-th unlabeled image has a high probability to be a reliable data and should
be pulled closer with the same class. To achieve this, we define a class-aware matrix M,
each element of which can be formulated as follows:

mij =

⎧⎪⎪⎨⎪⎪⎩
1, if i = j
1, if yzu

A,i
= yzu

B,j
and pu

A,i, pu
B,j > T

0, otherwise

(13)

where yzu
A,i

and yzu
B,j

denote the self-generated pseudo-labels. Although use class-aware
matrix M can filter out most of unreliable samples, the predictions of unlabeled images
above threshold T still might be wrong. In view of this, we propose to reweigh these
potentially unreliable unlabeled images to minimize the impact of them and maximize
the utilization of their valuable information. Specifically, we direct the model to focus on
high-confidence unlabeled images while diminishing the potential bias originating from
unreliable ones. Thus, the class-aware matrix M can be reformulated as M̂ through simply
multiply their probability outputs. Each element m̂ij of M̂ can be defined as follows:
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m̂ij =

{
pu

A,i · pu
B,j · mij, if i �= j

mij, otherwise
(14)

Thus, the CCL regularization can be obtained by combining the class-aware matrix M̂

and supervised contrastive learning scheme, which can be formulated as follows:

LA
CCL = −∑

i

1
J + 1 ∑

p∈P(i)
log

m̂ij · exp
(

ẑu
A,i · ẑu

B,p

/
τ
)

∑N
j=1 Ii �=j exp

(
ẑu

A,i · ẑu
B,j

/
τ
) , (15)

LB
CCL = −∑

i

1
J + 1 ∑

p∈P(i)
log

m̂ij · exp
(

ẑu
B,i · ẑu

A,p

/
τ
)

∑N
j=1 Ii �=j exp

(
ẑu

B,i · ẑu
A,j

/
τ
) . (16)

3.4. Objective Function

Overall, the total objective function of subnetworks in PCML can be formulated
as follows:

LA = LA
sup + LA

unsup, LB = LB
sup + LB

unsup (17)

where LA
sup, LB

sup, and LA
unsup, LB

unsup denote the supervised loss and the unsupervised loss
for subnetwork A or subnetwork B, respectively. The supervised losses for subnetwork A
and subnetwork B can be expressed as follows:

LA
sup = CE

(
Pl

A, y
)
+ LA

ICR, (18)

LB
sup = CE

(
Pl

B, y
)
+ LB

ICR. (19)

where CE(·) denotes the cross-entropy loss. The unsupervised losses for subnetwork A
and subnetwork B can be formulated as follows:

LA
unsup = λu · LA

CPS + λc · LA
CCL, (20)

LB
unsup = λu · LB

CPS + λc · LB
CCL. (21)

Here, LA
CPS and LB

CPS denote the cross pseudo supervision (CPS) losses, e.g., LA
CPS =

CE
(
Pu

A, yu
B
)
. λu and λc are hyper-parameters to balance the cross pseudo supervision loss

and CCL regularization.
Compared with regular optimization of a single network, PCML needs to jointly opti-

mize two different subnetworks. Therefore, compared with the regular training procedures
of network backbone, PCML needs approximately 2 × training time. Finally, we summarize
the thorough optimization process of PCML framework in Algorithm 1.
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Algorithm 1: Optimization of PCML Framework

Input: Labeled dataset Dl , unlabeled dataset Du, trade-off coefficients λu and λc,
max iteration IT, batch size.

Output: Parameters θT
A and θT

B of subnetworks A and B.
1 Initialize: Parameters θ0

A and θ0
B

2 for t = 0 to T − 1 do

3 for each mini-batch M, do

4 Compute zl
A, zu

A, zl
B and zu

B using Equations (1) and (2);
5 Compute Pl

A and Pl
B using Equations (3) and (4);

6 Compute yl
A, yl

B and IN using Equations (5) and (6);
7 Compute P̂l

A, P̂l
B and ŷl using Equations (7) and (8);

8 Compute LA
ICR and LB

ICR using Equation (9);
9 Compute pu

A and pu
B using Equations (11) and (12);

10 Compute matrix M̂ using Equation (14);
11 Compute ẑu

A,i and ẑu
B,i, ∀i;

12 Compute LA
CCL and LB

CCL using Equations (15) and (16);
// Optimize model parameter for subnetwork A

13 ;

14 Compute supervised loss LA
sup with LA

ICR and CE
(

Pl
A, Yl

)
using

Equation (18);
15 Compute unsupervised loss LA

unsup using Equation (20);
16 Optimize θt

A using Equation (17);
// Optimize model parameter for subnetwork B

17 Compute supervised loss LB
sup with LB

ICR and CE
(

Pl
B, Yl

)
using

Equation (19);
18 Compute unsupervised loss LB

unsup using Equation (21);
19 Optimize θt

B using Equation (17).
20 end

21 end

4. Experiments

In this section, we evaluate PCML using five real-world interior decoration style
image datasets: (1) TV background wall, (2) chandelier, (3) living room, (4) dining room,
and (5) bedroom (shown in Figure 3). First of all, we provide descriptions of the five
datasets. Subsequently, we outline the comparison methods and offer the implementation
details of the experiments. Finally, we present and analyze the experimental results.

4.1. Datasets and Pre-Processing

(1) TV background wall dataset: The available training dataset contains 1643 images of in-
terior decoration style, labeled by four different types of styles (country style, Chinese style,
European style, and simple style). Each type has 250, 270, 322, and 801 images, respectively,
with each image having a resolution of 900 × 700 pixels. (2) Chandelier dataset: This dataset
consists of 969 interior decoration style images. It contains 295, 169, 351, and 154 images for
four types of styles, respectively. (3) Living room dataset: This dataset consists of 1489 interior
decoration style images, involving 138 country style images, 248 Chinese style images, 523
European style images, and 580 simple style images, respectively. (4) Dining room dataset:
This dataset consists of 520 images, involving 91 country style images, 98 Chinese style
images, 178 European style images, and 153 simple style images, respectively. (5) Bedroom
dataset: This dataset contains 643 interior decoration style images, involving 149 country
style images, 119 Chinese style images, 191 European style images, and 184 simple style
images, respectively.
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Figure 3. Images from five datasets: (a) TV background wall, (b) chandelier, (c) living room, (d) dining
room, and (e) bedroom. The first to the fourth rows denote the country style, Chinese style, European
style, and simple style, respectively.

In the experiment, each dataset was randomly partitioned into three subsets: 70% for
training, 10% for validation, and 20% for testing.

4.2. Experimental Setup

To validate the effectiveness of the proposed SSL framework for medical image seg-
mentation, we conducted a comparison between our PCML and state-of-the-art SSL meth-
ods. The comparison methods include the following: (1) ResNet [44]; (2) DenseNet121 [45];
(3) MixMatch [26]; (4) ReMixMatch [46]; (5) CoMatch [41]; (6) FixMatch [27]; (7) MT
model [15]; (8) SRC-MT [22]; (9) the proposed PCML.

In the experiment, we re-implemented all comparison methods using open-source
code. We used DenseNet as the network backbone for the comparison methods Mix-
Match, ReMixMatch, CoMatch, FixMatch, MT, and SRC-MT, due to its superior perfor-
mance. For the proposed PCML, we employed ResNet and DenseNet as subnetwork
A and subnetwork B, respectively. For pseudo-labeling-based SSL comparison methods
MixMatch, ReMixMatch, CoMatch, FixMatch, we applied a weak augmentation and a
strong augmentation on the input data, respectively. For consistency-learning-based SSL
methods MT and SRC-MT, the input image perturbation and random transformations,
i.e., rotation, translation, horizontal flips, were applied to each image [22]. For pseudo-
labeling-based SSL methods, we set the confidence threshold to 0.95 to keep consistency
with other pseudo-labeling-based SSL comparison methods [27,29,30,32,38]. In addition,
for consistency-learning-based SSL methods, the smoothing parameter exponential moving
average was set to 0.99. All other settings of the comparison methods remained consistent
with the original work. For the proposed PCML, the projection network contains two linear
layers with 2048 and 64 hidden neurons. The trade-off coefficients λu and λc were set to 0.5
and 0.1 for all datasets. In addition, the threshold was set to 0.9 for living room dataset,
and 0.8 for the rest datasets. For the used five datasets, subnetworks were trained by Adam
optimizer for 10K iterations, with the fixed learning rate 0.0001. The batch size was set
to 24, comprising 12 labeled image and 12 unlabeled images. The implementation of the
proposed PCML framework was performed using PyTorch 2.4.1 on a two RTX 4090 GPUs.

We adopted AUC, accuracy (ACC), sensitivity (SEN), specificity (SPE), precision
(PREC), and F1 score (F1) as the evaluation metrics to comprehensively evaluate the
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classification performance of all comparison methods. The higher values of these metrics
indicate better performance of the model.

4.3. Comparison with State-of-the-Art Methods

Tables 1–5 present the classification performance of all SSL comparison methods using
20% labeled images and 80% unlabeled images in training set on five image datasets. In our
experiment, the classification results obtained by training the fully supervised models,
i.e., ResNet and DenseNet, with 100% labeled data, are regarded as the upper-bound per-
formance. Meanwhile, the classification results achieved by ResNet and DenseNet trained
with only 20% labeled images serve as the baseline performance. The best classification
results for each evaluation metric were highlighted in bold. Additionally, we listed the
performance improvements achieved by all SSL methods relative to the better baseline
method, DenseNet, with these enhancements presented in parentheses. Based on the
experimental results provided in Tables 1–5, the following observations can be obtained.

Table 1. Performance comparison with different semi-supervised learning methods on TV back-
ground wall dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 97.44 94.04 86.12 95.09 86.18 86.08
ResNet [44] 100% 0 97.30 93.73 85.47 95.30 83.55 84.23

DenseNet [45] 20% 0 93.76 88.53 73.84 91.45 72.73 72.90
ResNet [44] 20% 0 93.31 89.30 76.39 91.22 75.50 75.58

MixMatch [26] 20% 80% 94.77 (1.01) 90.83 (2.29) 78.98 (5.14) 91.81 (0.36) 80.85 (8.12) 79.48 (6.58)
ReMixMatch [46] 20% 80% 95.48 (1.72) 90.52 (1.99) 76.11 (2.27) 92.10 (0.65) 80.42 (7.69) 77.55 (4.65)

CoMatch [41] 20% 80% 95.43 (1.67) 91.28 (2.75) 78.67 (4.48) 92.53 (1.08) 82.05 (9.32) 79.85 (6.95)
FixMatch [27] 20% 80% 95.29 (1.53) 89.76 (1.22) 77.26 (3.42) 91.81 (0.36) 77.19 (4.46) 76.90 (4.00)

MT [15] 20% 80% 95.55 (1.79) 90.06 (1.53) 74.03 (0.20) 91.51 (0.06) 81.07 (8.34) 75.98 (3.08)
SRC-MT [22] 20% 80% 95.84 (2.08) 91.36 (2.83) 80.11 (6.27) 93.08 (1.63) 81.33 (8.60) 79.76 (6.86)
PCML (Ours) 20% 80% 96.82 (3.06) 93.58 (5.05) 84.12 (10.3) 94.48 (3.03) 87.27 (14.5) 85.36 (12.5)

Table 2. Performance comparison with different semi-supervised learning methods on chandelier dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 99.61 97.28 95.58 97.91 93.85 94.61
ResNet [44] 100% 0 99.33 96.11 92.39 97.11 92.37 92.34

DenseNet [45] 20% 0 93.96 87.69 78.75 91.09 77.72 76.53
ResNet [44] 20% 0 93.71 86.92 75.01 90.37 75.97 73.51

MixMatch [26] 20% 80% 95.75 (1.79) 91.58 (3.89) 84.72 (5.97) 93.55 (2.47) 83.14 (5.42) 83.63 (7.10)
ReMixMatch [46] 20% 80% 96.51 (2.55) 92.10 (4.40) 86.13 (7.37) 93.86 (2.78) 85.22 (7.50) 85.03 (8.50)

CoMatch [41] 20% 80% 97.57 (3.61) 92.75 (5.05) 86.55 (7.80) 94.42 (3.33) 85.90 (8.18) 85.85 (9.32)
FixMatch [27] 20% 80% 97.66 (3.70) 93.39 (5.70) 86.86 (8.10) 95.07 (3.98) 85.54 (7.82) 86.11 (9.58)

MT [15] 20% 80% 96.38 (2.42) 92.75 (5.05) 87.45 (8.70) 94.55 (3.46) 86.38 (8.66) 86.70 (10.2)
SRC-MT [22] 20% 80% 97.35 (3.39) 92.49 (4.79) 88.66 (9.91) 94.42 (3.33) 84.50 (6.77) 84.07 (7.54)
PCML (Ours) 20% 80% 98.25 (4.29) 95.21 (7.51) 90.88 (12.1) 96.65 (5.56) 90.47 (12.8) 90.55 (14.0)

Table 3. Performance comparison with different semi-supervised learning methods on living
room dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 94.31 92.42 83.30 94.26 83.91 83.52
ResNet [44] 100% 0 94.86 92.09 81.81 93.90 84.50 82.52

DenseNet [45] 20% 0 89.74 86.95 69.34 89.78 69.45 67.28
ResNet [44] 20% 0 91.06 87.88 70.41 90.89 68.94 67.81

MixMatch [26] 20% 80% 91.26 (1.53) 88.89 (1.94) 72.91 (3.57) 91.63 (1.85) 77.07 (7.62) 73.36 (6.07)
ReMixMatch [46] 20% 80% 92.12 (2.38) 89.39 (2.44) 72.91 (3.57) 92.19 (2.41) 74.09 (4.64) 75.81 (8.53)

CoMatch [41] 20% 80% 91.58 (1.84) 89.65 (2.69) 74.69 (5.36) 92.17 (2.38) 77.54 (8.08) 74.06 (6.77)
FixMatch [27] 20% 80% 92.53 (2.80) 88.72 (1.77) 70.55 (1.21) 91.63 (1.85) 76.60 (7.15) 69.57 (2.29)

MT [15] 20% 80% 91.91 (2.17) 87.96 (1.01) 71.77 (2.44) 91.16 (1.38) 73.74 (4.29) 69.70 (2.42)
SRC-MT [22] 20% 80% 92.41 (2.67) 88.22 (1.26) 71.98 (2.64) 91.07 (1.29) 74.23 (4.78) 70.43 (3.15)
PCML (Ours) 20% 80% 93.92 (4.19) 91.25 (4.29) 77.27 (7.93) 93.33 (3.55) 79.74 (10.3) 76.74 (9.46)
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Table 4. Performance comparison with different semi-supervised learning methods on dining
room dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 98.03 94.71 91.66 95.67 89.27 90.2
ResNet [44] 100% 0 97.87 93.75 89.48 95.12 86.94 88.06

DenseNet [45] 20% 0 91.89 87.26 76.37 89.71 74.64 75.24
ResNet [44] 20% 0 91.29 83.89 72.65 87.08 68.83 69.04

MixMatch [26] 20% 80% 95.20 (3.31) 89.18 (1.92) 79.68 (3.31) 90.46 (0.75) 80.20 (5.55) 78.60 (3.37)
ReMixMatch [46] 20% 80% 95.89 (4.00) 91.11 (3.85) 82.60 (6.23) 92.82 (3.11) 78.12 (3.48) 80.27 (5.03)

CoMatch [41] 20% 80% 96.08 (4.18) 89.66 (2.40) 82.20 (5.83) 91.93 (2.22) 75.89 (1.24) 76.62 (1.38)
FixMatch [27] 20% 80% 94.93 (3.04) 89.90 (2.64) 83.21 (6.85) 91.74 (2.03) 82.01 (7.36) 81.72 (6.48)

MT [15] 20% 80% 93.97 (2.08) 88.46 (1.20) 81.76 (5.39) 91.92 (2.21) 76.00 (1.36) 77.65 (2.41)
SRC-MT [22] 20% 80% 95.45 (3.56) 91.11 (3.85) 85.17 (8.80) 94.09 (4.39) 77.86 (3.22) 79.53 (4.29)
PCML (Ours) 20% 80% 97.23 (5.34) 93.51 (6.25) 88.96 (12.6) 94.75 (5.05) 86.35 (11.7) 87.59 (12.4)

Table 5. Performance comparison with different semi-supervised learning methods on bed-
room dataset.

Methods
Percentage Metrics

Labeled Unlabeled AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

DenseNet [45] 100% 0 88.40 85.74 72.55 89.59 72.35 71.95
ResNet [44] 100% 0 88.57 85.16 72.58 89.03 71.12 70.68

DenseNet [45] 20% 0 81.35 78.71 57.78 84.75 59.35 56.82
ResNet [44] 20% 0 82.45 78.32 57.60 84.86 61.64 56.12

MixMatch [26] 20% 80% 84.04 (2.69) 81.84 (3.13) 65.42 (7.64) 86.67 (1.92) 63.59 (4.24) 64.01 (7.20)
ReMixMatch [46] 20% 80% 85.23 (3.88) 81.25 (2.54) 63.51 (5.74) 86.34 (1.58) 62.17 (2.82) 62.11 (5.30)

CoMatch [41] 20% 80% 85.20 (3.85) 80.86 (2.15) 65.62 (7.84) 86.32 (1.56) 62.25 (2.90) 62.25 (5.43)
FixMatch [27] 20% 80% 84.96 (3.61) 81.45 (2.73) 67.54 (9.77) 86.34 (1.58) 63.89 (4.54) 63.97 (7.16)

MT [15] 20% 80% 84.44 (3.09) 80.86 (2.15) 64.05 (6.27) 86.67 (1.92) 61.37 (2.02) 61.67 (4.86)
SRC-MT [22] 20% 80% 86.01 (4.66) 80.08 (1.37) 60.23 (2.46) 86.60 (1.84) 61.64 (2.29) 60.04 (3.23)
PCML (Ours) 20% 80% 86.71 (5.36) 82.42 (3.71) 69.26 (11.5) 86.80 (2.05) 65.10 (5.75) 66.52 (9.71)

In general, SSL methods consistently achieved improved classification performance
compared to the baseline methods ResNet and DenseNet by leveraging unlabeled images.
This verifies the efficacy of exploring the internal knowledge underlying unlabeled data.
The proposed PCML framework exhibits superior classification results com-pared to other
SSL methods across all evaluative metrics. These results confirm the effectiveness of
integrating ICR regularization, which directs the two subnetworks to review labeled images
with inconsistent predictions, and CCL regularization, which facilitates the learning of
discriminative feature representations for unlabeled images in the training procedure.

The proposed method PCML exhibits promising classification results across five real-
world interior decoration style image datasets. Compared to the baseline method DenseNet,
it demonstrates average improvements of 4.45%, 5.36%, 10.9%, 3.85%, 11.0%, and 11.6%
on AUC, ACC, SEN, SPE, PREC, and F1, respectively. Specifically, PCML can achieve
consistent improvements over all the comparison methods across all metrics on the five
image datasets. For the TV background wall dataset, PCML surpasses the classification
performance of the most competitive method SRC-MT by 0.98%, 2.22%, 4.01%, 1.4%, 5.94%,
and 5.6% on AUC, ACC, SEN, SPE, PREC, and F1, respectively. For the chandelier dataset,
compared to the most competitive method FixMatch, PCML achieved the improvements of
0.59%, 1.82%, 4.02%, 1.58%, 4.93%, and 4.44%, respectively. For the living room dataset,
PCML surpasses the classification performance of the most competitive method CoMatch
by 2.34%, 1.6%, 2.58%, 1.16%, 2.2%, and 2.68% on AUC, ACC, SEN, SPE, PREC, and F1,
respectively. For the dining room dataset, compared to the most competitive method
SRC-MT, PCML achieved the improvements of 1.78%, 2.4%, 3.78%, 0.66%, 8.49%, and
8.06%, respectively. In addition, for the bedroom dataset, PCML surpasses the classification
performance of the most competitive method MixMatch by 2.67%, 0.58%, 3.84%, 0.13%,
1.51%, and 2.51% on AUC, ACC, SEN, SPE, PREC, and F1, respectively. It is noteworthy
to observe that the classification performance of our PCML surpasses the upper-bound
performance on some evaluative metrics. For example, on TV background wall dataset,
PCML outperforms the fully supervised DenseNet with 100% labeled data in terms of
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PREC metric. In addition, the classification results of PCML closely approaches the upper-
bound performance. The disparities between certain metrics are minimal, with less than
1% differences, such as the SPE and F1 classification metrics for the TV background wall
dataset. This observation further validates the advantages gained by reviewing the labeled
imaged with inconsistent predictions and learning discriminative feature representations
of unlabeled images, which also explains our significant performance gains.

4.4. Analysis of the Proposed PCML Framework
4.4.1. Efficacy of Different Components

To obtain a better insight into the performance of the proposed PCML method, we
conducted an ablation study to investigate the impact of different components in PCML.
We listed the classification results of ablation study on the TV background wall dataset
and the living room dataset, as shown in Tables 6 and 7. The ablation study includes
the following models: (a) backbone network ResNet (Baseline 1); (b) backbone network
DenseNet (Baseline 2); (c) subnetworks ResNet and DenseNet with CPS regularization
(Scenario 1); (d) subnetworks ResNet and DenseNet with CPS and ICR regularizations
(Scenario 2); (e) subnetworks ResNet and DenseNet with ICR and CCL regularizations
(Scenario 3, PCML).

Table 6. Ablation study of different components on the segmentation performance of the TV back-
ground wall dataset.

ResNet DenseNet CPS ICR CCL
TV Background Wall Dataset

AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

� 93.31 89.30 76.39 91.22 75.50 75.58
� 93.76 88.53 73.84 91.45 72.73 72.90

� � � 96.17 91.44 79.42 93.00 81.84 79.52
� � � � 96.40 92.28 83.15 93.29 81.94 82.40
� � � � � 96.82 93.58 84.12 94.48 87.27 85.36

Table 7. Ablation study of different components on the segmentation performance of the living
room dataset.

ResNet DenseNet CPS ICR CCL
TV Background Wall Dataset

AUC (%)↑ ACC (%)↑ SEN (%)↑ SPE (%)↑ PREC (%)↑ F1 (%)↑

� 91.06 87.88 70.41 90.89 68.94 67.81
� 89.74 86.95 69.34 89.78 69.45 67.28

� � � 92.35 88.97 70.71 91.88 78.68 68.26
� � � � 93.91 88.64 72.41 90.90 79.50 72.33
� � � � � 93.92 91.25 77.27 93.33 79.74 76.74

As shown in Tables 6 and 7, Scenario 1 yields better classification performance than
Baseline 1 and Baseline 2, which demonstrates the effectiveness of different subnetworks
with CPS regularization. The architecture of different subnetworks can promote the di-
versified predictions, thereby preventing the two subnetworks from collapsing into each
other. Scenario 2 can obtain better classification performance than Scenario 1, which verifies
ICR regularization can conduct review training on the potential mis-predicted labeled
images that enables the SSL model to leverage the limited reliable knowledge underlying
labeled images. Moreover, compared to Scenario 2, Scenario 3 (PCML) demonstrates fur-
ther enhancement in classification performance. These results underscore the importance
of selectively utilizing more reliable unlabeled images for contrastive learning, which
contributes to the overall robustness of the model.

In addition, we used Gradient Weighted Class Activation Mapping (Grad-CAM) [47]
to visualize and localize the salient image regions that exert a substantial influence on the
model’s prediction score for a given class. To provide better interpretability of the proposed
framework, we visualized Grad-CAMs of Scenario 1, Scenario 2, and PCML. As illustrated
in Figures 4 and 5, the first row represents the Chinese style in the TV background wall
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dataset and the living room dataset, respectively. The second row represents the European
style in the TV background wall dataset and the living room dataset, respectively. We
listed the original images in Figures 4a and 5a. In addition, Figures 4b and 5b display
the Grad-CAM visualizations of Scenario 1. Figures 4c and 5c display the Grad-CAM
visualizations of Scenario 2. Figures 4d and 5d display the Grad-CAM visualizations of
PCML. The visualizations show that the proposed PCML method can learn the features of
salient regions exhibiting style changes and focuses on the distinctive features associated
with specific decoration style.

Figure 4. Grad-CAMs visualization of interior decoration style image attention regions from the TV
background wall dataset: (a) original images; (b) Scenario 1; (c) Scenario 2; (d) Scenario 3. The first
row denotes Chinese style and the second row denotes European style.

Figure 5. Grad-CAMs visualization of interior decoration style image attention regions from the
Living room dataset: (a) Original images; (b) Scenario 1; (c) Scenario 2; (d) Scenario 3. The first row
denotes Chinese style and the second row denotes European style.

4.4.2. Impact of Hyper-Parameters

We further investigated the influence of hyper-parameters on the classification per-
formance of the proposed PCML. PCML contains three hyper-parameters—T, λu, and
λc—where T is used to filter out the noise unlabeled images, λu is the weight for cross
pseudo supervision loss, and λc is the weight for CCL regularization. In the experiment,
we fixed two of the parameters and varied the other parameter to observe the classification
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performance of PCML. The classification results were given in Table 8. The threshold T
was used to filter out some potentially unreliable unlabeled images with low confidence.
When λu = 0.5, λc = 0.1, with the increase in T, the classification performance is improved
accordingly, demonstrating that threshold T can effectively filter out unreliable unlabeled
images. As T keeps increasing, the classification performance degrades, which means
that some reliable unlabeled images were excluded. In addition, for parameters λu and
λc, we can observe the similar phenomena, as shown in Table 8. In total, PCML exhibits
stable predictions despite variations in both parameters λu and λc, which demonstrates the
effectiveness of the proposed pseudo-label-guided contrastive mutual learning framework.

Table 8. Sensitivity of trade-off coefficients on the classification performance (%) of the TV background
wall dataset.

λu = 0.5 Metrics

λc = 0.1 AUC ACC SEN SPE PREC F1

T = 0.5 96.24 91.28 78.46 92.58 82.79 79.37
T = 0.6 96.12 91.97 82.01 92.58 82.55 81.71
T = 0.7 96.50 91.97 80.21 92.89 84.75 81.86
T = 0.8 96.82 93.58 84.12 94.48 87.27 85.36
T = 0.9 96.51 91.67 81.17 93.00 82.19 80.74

T = 0.8 Metrics

λc = 0.1 AUC ACC SEN SPE PREC F1

λu = 0.05 95.31 90.37 78.91 91.62 78.53 78.23
λu = 0.1 95.59 91.67 81.53 92.18 82.20 81.46
λu = 0.3 96.50 92.81 82.24 93.88 84.80 82.79
λu = 0.5 96.82 93.58 84.12 94.48 87.27 85.36
λu = 0.7 95.94 92.97 82.06 94.44 83.84 82.34

T = 0.8 Metrics

λu = 0.5 AUC ACC SEN SPE PREC F1

λc = 0.05 96.30 92.28 80.61 93.18 85.32 82.11
λc = 0.1 96.82 93.58 84.12 94.48 87.27 85.36
λc = 0.3 96.51 92.58 82.24 93.87 82.91 82.26
λc = 0.5 95.23 91.82 81.19 93.70 81.03 80.61
λc = 0.7 94.95 90.67 79.40 92.97 78.49 78.05

4.4.3. Impact of Input Noise

To evaluate the influence of noise on the classification performance of the proposed
PCML framework, we utilize different kinds of input image perturbations as input noise to
evaluate the performance of our PCML. Specifically, random transformations including
rotation, translation, and horizontal flips were applied to each input image. The rotation
angle was randomly set in the range of −10 to 10 degrees. Horizontal and vertical transla-
tions for pixels were applied within a range of −2% to 2% of the image width. Additionally,
the input image was randomly flipped horizontally and vertically with a probability of
50%. We use the above input noise into one subnetwork and two subnetworks to evaluate
the performance of the proposed method. It includes the following scenarios: (a) without
input noise (setting 1); (b) with input noise to one subnetwork (setting 2); (c) with input
noise to two subnetworks (setting 3). As illustrated in Table 9, the experimental results
across different settings show minimal variation, which indicates that the proposed PCML
is robust to the input perturbation noise.
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Table 9. Impact of input perturbation noise on the classification results (%) obtained by PCML.

Settings
TV Background Wall

AUC ACC SEN SPE PREC F1

1 96.82 93.58 84.12 94.48 87.27 85.36
2 96.24 92.13 80.82 93.47 82.63 81.02
3 96.09 91.67 81.93 93.26 80.11 80.64

Settings
Chandelier

AUC ACC SEN SPE PREC F1

1 98.25 95.21 90.88 96.65 90.47 90.55
2 97.96 94.43 89.38 96.29 89.63 89.11
3 98.90 95.47 91.73 96.71 90.16 90.78

Settings
Living Room

AUC ACC SEN SPE PREC F1

1 93.92 91.25 77.27 93.33 79.74 76.74
2 93.34 90.91 78.47 93.03 79.02 77.58
3 93.16 91.25 79.19 93.12 79.07 78.26

Settings
Dining Room

AUC ACC SEN SPE PREC F1

1 97.23 93.51 88.96 94.75 86.35 87.59

2 97.84 94.71 88.08 95.46 89.71 88.68

3 98.15 93.99 85.16 94.30 87.59 85.86

Settings
Bedroom

AUC ACC SEN SPE PREC F1

1 86.71 82.42 69.26 86.80 65.10 66.52

2 87.68 82.03 67.81 87.7 70.43 63.14

3 88.32 82.23 68.81 86.98 70.58 64.37

5. Conclusions

In this paper, we propose a pseudo-label-guided contrastive mutual learning frame-
work, named PCML, to facilitate semi-supervised interior decoration style classification
by harnessing reliable knowledge within limited labeled data and selectively utilizing the
reliable unlabeled data for learning discriminative feature representations. The framework
employs two subnetworks with different architectures, and integrates two novel mod-
ules: inconsistency-aware relearning regularization, and class-aware contrastive learning
regularization. The different subnetworks can direct the model generate diverse predic-
tions. Thus, inconsistency-aware relearning regularization to can perform a review training
for these images with different predictions. In addition, class-aware contrastive learning
regularization can learn the discriminative feature representations of unlabeled images
using the corresponding reliable pseudo-labels. More importantly, the synergistic learning
among the mutual learning framework, inconsistency-aware relearning regularization,
and class-aware contrastive learning regularization during the training process enables
each subnetwork to selectively incorporate the reliable knowledge imparted by the other
subnetwork, thereby mitigating the issue of confirmation bias. The comprehensive perfor-
mance evaluations on multiple interior decoration style image datasets demonstrate the
superiority of the proposed PCML over existing SSL methods. In future work, we plan to
further comprehensively evaluate our PCML on more complex interior decoration tasks.
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Abstract: An event camera is a neuromimetic sensor inspired by the human retinal imaging prin-
ciple, which has the advantages of high dynamic range, high temporal resolution, and low power
consumption. Due to the interference of hardware and software and other factors, the event stream
output from the event camera usually contains a large amount of noise, and traditional denoising
algorithms cannot be applied to the event stream. To better deal with different kinds of noise and
enhance the robustness of the denoising algorithm, based on the spatio-temporal distribution charac-
teristics of effective events and noise, an event stream noise reduction and visualization algorithm is
proposed. The event stream enters fine filtering after filtering the BA noise based on spatio-temporal
density. The fine filtering performs time sequence analysis on the event pixels and the neighboring
pixels to filter out hot noise. The proposed visualization algorithm adaptively overlaps the events
of the previous frame according to the event density difference to obtain clear and coherent event
frames. We conducted denoising and visualization experiments on real scenes and public datasets,
respectively, and the experiments show that our algorithm is effective in filtering noise and obtaining
clear and coherent event frames under different event stream densities and noise backgrounds.

Keywords: event camera; event stream visualization; denoising

1. Introduction

An event camera is an emerging bio-visual sensor that records data based on light
intensity changes at each pixel point [1,2]. When the light intensity change exceeds a preset
threshold, the event camera asynchronously outputs the pixel address and timestamp to
form the event stream data. In scenarios such as strenuous motion, changing lighting
conditions, or platform power constraints, the motion blur and exposure problems faced
by traditional frame cameras can significantly reduce the detection of valid feature points,
thus decreasing the reliability of the visual information, while event cameras can effectively
compensate for these shortcomings and provide more stable and reliable visual data. The
unique nature of event cameras allows them to show significant advantages in several
fields, such as image reconstruction [3–7], 3D reconstruction [8–12], optical flow [13–16],
and target tracking [17–20]. In addition, event cameras show potential applications in
visual navigation and localization [21–23].

There are many challenges faced by event cameras in practical applications. For
example, changes in the camera motion state and in the scene mean the event stream is
not uniformly distributed over different periods, making it difficult to obtain clear and
informative coherent event frames with traditional event stream visualization methods.
Due to the high sensitivity of event cameras to changes in ambient brightness and junction
leakage currents, there is an output even if there is no change in light intensity, called
background activity (BA) [24], which affects the image quality, wastes communication
bandwidth, and consumes unnecessary computational power. In high-speed operating
environments and long exposures, event cameras experience hot pixels similar to conven-
tional image sensors [25], where some pixels produce abnormal signals or offsets, which
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can cause these pixels to fail to reset correctly and continue to output events, called hot
noise. Asynchronous events in an event camera capturing a rapidly changing scene are
subject to a large amount of noise, which degrades the quality of the event data, blurs the
event information in the event stream, and may even mask the true event signals. Tradi-
tional graph and video denoising methods are difficult to directly apply to event stream
denoising, so there is an urgent need for efficient and feasible event stream denoising
methods. Figure 1 shows the spatio-temporal visualization of the hot pixel noise and the
background activity noise in a stream of events, with the X and Y axes representing the
horizontal and vertical coordinates of the events, and the Taxis coordinates corresponding
to the timestamps of the events. From the figure, it can be seen that the hot noise is parallel
to the time axis and occurs continuously at a single pixel; the BA noise distribution is more
random and sparser from the visualization.

Figure 1. Random distribution for BA noise and a straight line over time for hot noise.

Although event cameras work differently from traditional frame cameras, event stream
data are still affected by various noises, such as sensor noise, ambient light changes, motion
blur, etc. Therefore, event stream denoising is still a challenging problem.

In this paper, we propose an event stream denoising method based on spatio-temporal
correlation differences. The design philosophy of the proposed method is as follows. The
regular motion of objects generates a large number of events in the event camera, which
are regarded as real events. However, due to the impact of the event camera hardware
and other factors, a significant amount of noise is also present in the event stream. This
noise can be categorized into BA noise and hot noise based on their spatio-temporal
distribution characteristics. We propose a cascade filtering method for denoising these
two types of noise based on their spatio-temporal distribution properties. Firstly, the
event stream undergoes coarse filtering based on spatio-temporal density to remove BA
noise, which exhibits sparsity in the spatiotemporal domain, and then proceeds to fine
filtering. Secondly, leveraging the high temporal resolution of the event camera, we treat
the event stream generated by each pixel within each time segment as a time series. To
address the characteristic of hot noise, which exhibits a fixed high-frequency pattern in the
spatiotemporal domain, we propose a time sequence analysis method to filter out hot noise.
Our method primarily aims to enhance the robustness of denoising across various noise
environments. Therefore, in the fine filtering stage, we also consider the impact of residual
BA noise. Furthermore, we propose an adaptive overlap-based event stream visualization
method, which adjusts the number of events from the previous frame that are overlapped
onto the current frame based on the overlapping strategy. The main contributions of this
work can be summarized as follows.

• An event stream denoising method based on spatio-temporal density and temporal
sequence analysis is proposed. The denoising process is divided into coarse filter-
ing and fine filtering, and after establishing the spatio-temporal neighborhood of
events, the noise is removed sequentially according to the spatio-temporal distribution
characteristics of different noises.

• An adaptive overlap-based event stream visualization method is proposed for the
event stream density change over time, which dynamically adjusts the overlap time
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according to the change of the event density of neighboring frames, and obtains clear
and information-coherent event frames for further event camera-based research.

2. Related Work

In this section, we present and discuss the classical event stream noise reduction
methods and event stream visualization methods.

2.1. Existing Event Stream Noise Reduction Algorithms

In recent years, a large number of scholars have conducted in-depth research on
event camera denoising, and the event stream denoising method based on spatio-temporal
correlation is one of the main research directions, which removes noise by targeting the
regular difference between noise and real events in time and space. Wu et al. [26] introduced
a denoising method based on a probabilistic undirected graph model, proposed a priori
knowledge based on the working principle of DVS and the object motion law, constructed
a probabilistic undirected graph model, transformed the event stream denoising problem
into a model energy minimization optimization problem, and optimized the model by
using the improved ICM to obtain the denoised event stream. The model is built based on
the distribution characteristics of BA noise, which does not take into account the influence
of hot noise. Feng et al. [27] proposed a denoising method based on event density. Firstly,
spatio-temporal neighborhood and event density matrices are built using coarse filtering,
and the BA noise is removed by calculating the L1 paradigm number of the matrix. The
valid events are stored in the coarse filtering results, then the event density matrices are
established and the scintillation noise judgment is used to filter out the hot noise using the
flicker noise determination value R.

Khodamorad et al. [28] proposed a novel spatio-temporal filter with memory com-
plexity that stores fewer timestamps in a specific way based on the sparse random nature
of BA noise. This allocates two memory cells per row and column to store the latest event
in the whole row or column, and if two events are captured in the same but different rows
in a short window of time, the most recent event overwrites the old event in memory. The
complexity of the filter created based on the new storage approach is reduced from O(N2)
to O(N), which improves memory utilization. However, it is difficult to remove dense
noise using a single spatio-temporal filter.

To better utilize the spatio-temporal features, some scholars introduced neural net-
works to improve the event stream denoising performance. Event-denoising neural net-
works can be categorized into three types according to their input: 3D vector input, image
input, and asynchronous event input. Ryumin et al. [29] proposed a research method-
ology for audio-visual speech recognition (AVSR) in driver assistance systems. Their
spatio-temporal fusion strategy leverages contextual information from both the spatial and
temporal domains, preserving the contextual integrity of both modalities while ensuring
their synchronization. Arindam et al. [30] proposed a new spike neural network-based
method NN2 for filtering noise events from data captured by asynchronous time-based im-
age sensors on the IBM TrueNorth neural synapse system, a neural morphology processor.
Fang et al. [31] proposed an event-based deep learning approach for the event denoising
method AEDNet, which directly utilizes the raw DVS data from the event stream without
destroying the inherent spatio-temporal correlation. The temporal and spatial information
is processed separately using temporal window and spatial feature embedding modules,
which decompose the events into temporal correlation and spatial affinity and process
these two parts separately to remove the noise. In addition, the event frames obtained
from the transformation of asynchronous event streams are denoised using a conventional
image-denoising algorithm. Xie et al. proposed an image-based denoising method by
visualizing the event stream to obtain event frames, which are subsequently denoised using
traditional K-SVD [32], but this method loses the temporal attributes of the data, which
seriously affects the high-speed characteristics of the event camera.
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Overall, most existing event stream denoising methods only focus on filtering out
random noise, ignoring the impact of hot noise or not considering the robustness of
denoising algorithms in dense noise environments. Although simple algorithm designs
may improve denoising efficiency, the accuracy of denoising may decrease, seriously
affecting the further use of event streams.

2.2. Existing Approaches to Event Stream Visualization

Asynchronous event stream information form is difficult to process, and a single event
contains too little information, so the processing needs to aggregate events for processing.
In addition, the event stream information is not intuitive for human eyes to observe,
so it needs to be visualized to advance to the next step. Related work based on event
camera visualization can be briefly divided into two categories: 1. For the event stream
itself, through a fixed time window and other ways to obtain the event frame, which is
convenient for further observation and application processing; and 2. image reconstruction
of the event stream information, to obtain the estimated intensity of the image to achieve
the effect of visualization. Xie et al. [33] proposed an overlap accumulation-based method
to convert events with periods from 0 ms to 30 ms to frame 0 and events with periods from
10 ms to 40 ms to frame 1, as shown in Figure 2a. Although it makes the event information
very rich, it also brings the problem of information redundancy or incoherent information
in event frames, which is not conducive to real-time detection and monitoring. Chen
et al. [34] proposed an event stream visualization scheme to achieve high and low frame
rate adjustment and verified its effectiveness on the FPGA platform. However, the method
reduces the amount of information contained in the event frames at high frame rates, and
the information obtained during smooth motion is too little for further processing. In
addition, the traditional fixed time interval approach divides the event stream into multiple
sub-segments according to a fixed time window starting from the timestamp of the first
event, and all events within each sub-segment are accumulated and projected to the event
frame at the end of that sub-segment as shown in Figure 2b. The fixed number of events
approach divides the event stream into multiple sub-segments by counting every N event
starting from the first event, and all events within each sub-segment are accumulated and
projected to the event frame at the end of the sub-segment, as shown in Figure 2c.

 
(a) 

 
(b) 

 
(c) 

Figure 2. Event stream visualization methods for (a) overlapping accumulation, (b) fixed time
intervals, and (c) fixed number of events.
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3. Event Stream Denoising and Visualization Method

We proposed an event stream noise reduction and visualization algorithm. Based on
the noise distribution characteristics, the event stream noise is categorized into BA noise
and hot noise, and the event stream is sequentially coarse filtered and fine filtered. In this
paper, we pay more attention to the optimization and improvement of the robustness of
the denoising algorithm, so the parameter selection and the influence of the residual BA
noise are taken into account in different filtering stages. The spatio-temporal neighborhood
regularization and the free choice of threshold make our algorithm applicable to various
noise environments. The visualization algorithm adaptively overlaps the events of the
previous frame according to the change in event density.

3.1. Representation of Event Data

Event cameras asynchronously generate data that exhibits a sparse distribution in
space. Typically, the event camera outputs events containing the pixel address, time, and
type of event. The event stream is defined as {ei}, where each event ei = (ti, xi, yi, pi)
contains the coordinates of the event’s position on the pixel plane (xi, yi), the timestamp of
the event’s occurrence ti, and the polarity of the event pi.

The polarity of an event is determined by the change in light intensity. If at time
ti, the luminance of a pixel point increases compared to the previous moment and this
increase exceeds a predetermined threshold, the event is recorded as a positive polarity
event pi = +1; conversely, if the luminance decreases and exceeds the threshold, it is
recorded as a negative polarity event pi = −1. The polarity of an event can be defined by
the following mathematical expression:

p =

{
+1, log I(x, y, t + Δt)− log I(x, y, t) > ΔI
−1, log I(x, y, t + Δt)− log I(x, y, t) < ΔI

(1)

where log I(x, y, t) represents the logarithmic light intensity of the pixel with coordinate
(x, y) at moment t, and ΔI represents the light intensity change threshold.

3.2. Event Stream Denoising Based on Spatio-Temporal Density and Temporal Analysis

Valid events are usually triggered by the motion of an object or by a change in lighting.
Most of these activated pixels are adjacent to each other. Due to the handshake circuit
design of the DVS, events in the same row of pixels have the same timestamp, while
the difference in event times between pixels in neighboring rows is very small, usually
measured in nanoseconds. The number of events generated by background activity (BA) in
a given spatio-temporal region is usually much lower than the number of events generated
by actual object motion. Since hot pixels are continuously activated and output events due
to their inability to be properly reset, the location of occurrence is random, and thus the
number of events occurring on hot pixels is usually much higher than that on neighboring
pixels within a given spatio-temporal region. Based on the analysis of BA noise and hot
pixel noise generation principle and spatio-temporal distribution characteristics, we are
more concerned about how to target the removal of different noises. Figure 3 shows the
framework of the denoising algorithm.
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Figure 3. Proposed event stream denoising framework based on spatio-temporal density and time
sequence analysis, where Em represents the unprocessed event stream, Ef represents the event stream
that enters fine filtering after coarse filtering, and Ec represents the processed event stream. Blue for
newly arrived events, yellow for their spatial neighborhoods, and red for pixels activated.

3.2.1. Spatio-Temporal Density-Based Denoising of Event Stream

To improve the performance and robustness of the denoising algorithm, the infor-
mation of temporal and spatial neighborhoods is comprehensively utilized in the coarse
filtering stage to maximize the extraction of useful information and the suppression of
noise, to make it more suitable for applications in various complex scenarios. The temporal
and spatial neighborhoods are set for each event. The red region in Figure 4 is the newly
arrived event em, which is located in the center of the spatial neighborhood of size L1 × L1
(L1 is an odd number), the temporal neighborhood is (t1 − Δt1, t1), and Nlocal denotes the
number of events in the spatial and temporal neighborhoods ΩL1

Δt1
. The yellow region is

the spatial neighborhood of em.

Figure 4. Spatio-temporal neighborhood of em.

All events in the spatio-temporal neighborhood are counted, and the density of the
spatio-temporal neighborhood is calculated. If the event spatio-temporal density is greater
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than a threshold, it is considered a valid event; if it is less than the threshold, it will be
considered noise. The spatio-temporal density is defined as follows:

D(em) =
Nlocal(em)

L1
2 · Δt1

(2)

where Nlocal(em) is the total number of events in the spatio-temporal neighborhood of em.
The noise identification formula of em is as follows:

em =

{
Noise, i f D(em) < DT
Vaild, i f D(em) ≥ DT

(3)

where DT is a preset threshold for distinguishing BA noise from valid events.
DT can be dynamically adjusted to adapt to different noise environments according

to the characteristics of the actual scene. The regularization of the number of events is
achieved by dividing the number of events in the neighborhood by the volume of the
neighborhood. This means that the density value reflects the level of event activity per
unit volume regardless of the size of the neighborhood. Evaluating event densities from
a relative perspective prevents the results from being unfairly affected by changes in
neighborhood size. Comparing the spatio-temporal density of each event with the density
threshold effectively filters out the BA noise and retains the valid events in the coarse
filtering results for fine filtering.

3.2.2. Event Stream Denoising Based on Timing Analysis

Event cameras upload a fixed format event when the brightness value of a pixel at
a location changes, so pixels can be categorized into active and inactive states during
operation. A hot pixel is continuously activated at a fixed location and there may be real
events or BA noise in the neighboring pixels. The spatio-temporal density approach does
not provide effective removal of hot noise. Therefore, it is necessary to fine filter the event
stream after coarse filtering. The hot noise filtering method used by Feng assumes that in
an ideal environment, there is no BA noise in the hot noise spatio-temporal neighborhood,
or only a very small amount of noise exists. In the experimental process of Section 4, it
is found that all BA noise often cannot be effectively filtered out in a very dense noise
environment, and at this time the accuracy of the denoising algorithm for hot noise will
show a significant decrease. Therefore, we use the denoising algorithm based on time
sequence analysis to remove hot noise.

For the coarsely filtered events, a new spatio-temporal neighborhood ΩL2
Δt2

is con-
structed. The working states of the event pixels as well as the neighboring pixels are
sampled within Δt2, with 1 representing a pixel activated and 0 representing a pixel in-
active, and a Boolean time series is obtained at the end of the sampling. The working
state S ∈ {1, 0} of the pixel is recorded at the sampling time point tk, then the event
pixel is obtained as a time sequence

{
Si(t0), Si(t1), Si(t2), · · ··, Si

(
t f ·Δt2−1

)}
. For each

spatial neighborhood pixel of pixel i, the corresponding time series can be obtained{
Sj(t0), Sj(t1), Sj(t2), · · ··, Sj

(
t f ·Δt2−1

)}
, j ∈ N(i), f is the sampling frequency.

Hot pixels exhibit persistent activation states, and neighboring pixels usually have a
much lower proportion of activated states than hot pixels. The DC component of a time
series after discrete Fourier transform indicates the average level of the time series, and
for Boolean time series, this value reflects the proportion of 1 states in the time series. Hot
noise is removed by comparing the DC component of an event stream pixel DCi with the
average DC component of its neighboring pixels DCj. Although a certain amount of hot
noise can be filtered out by directly comparing the values of DCi and of DCj, in order to
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enable the noise reduction algorithm to be more flexible, a threshold value is introduced θ.
The noise identification formula of em is as follows.

em =

{
Noise, i f DCi ≥ DCj + θ

Vaild, i f DCi < DCj + θ
(4)

In the fine filtering algorithm, the choice of threshold θ is very important and de-
termines the sensitivity and specificity of the determination. A threshold that is too low
may result in too many valid events being misclassified as noise, while a threshold that
is too high may result in failure to detect true hot noise. Therefore, it may be necessary
to experiment and analyze specific data to adjust the threshold value to achieve the best
denoising performance.

3.3. An Adaptive Overlap-Based Event Stream Visualization Method

Motion state changes and scene variations during event camera operation can lead
to an uneven amount of event information per unit of time. Compared with visualization
methods that simply fix the number of events or a fixed time window, the overlapping
cumulative event stream visualization method optimizes the visual presentation of a
dynamic scene by sharing events between consecutive frames and achieves an increase in
the information richness of each frame while maintaining a high frame rate. This, to some
extent, enables the event frames to ensure the continuity of event information despite the
uneven amount of event information. However, the fixed overlap parameter is difficult to
apply to various complex scenes.

In this paper, an adaptive overlap time strategy is proposed to dynamically adjust the
overlap time according to the change in event density. The adaptive strategy can make it
possible to increase the overlap to capture more details when the scene changes faster and
decrease the overlap to reduce redundancy when the scene changes slower. A baseline
event density threshold is defined, the number of events in the i-th time slice is counted,
and the time at which the i+1-th time slice overlaps the previous frame is determined by
Equation (5). Since the dynamic scene changes in different degrees, it is difficult to use
a fixed step size to adjust the overlap time, so the step size value is based on the event
density difference. Define the time slice length and overlap time O. The expression for
adaptive overlap of events is as follows.

Oi+1 = O + sign(d − Di) · (k · |d − Di|) (5)

where Di is the number of events in the i-th time-slice length, k is the step adjustment factor,
and Oi+1 is the time at which the i+1-th time-slice overlaps the previous frame.

The noise processing and visualization process is shown in Figure 5. A set of event
streams with uneven density distribution are filtered by coarse fine filtering, and then clear
and coherent event frames are obtained based on the adaptive overlapping method. The
event stream’s color represents the events’ density (black is the densest, and white is the
sparsest). Different colors represent the events mapped to each event frame. The adaptive
overlap method ensures flexible event quantity mapping and event overlap for each
event frame.
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Figure 5. Denoising and visualization process, The event stream passes through the cascaded filter,
filtering out n-m events. Three color boxes represent three event frames. The overlapping areas
between the boxes represent the events that overlap with the previous frame.

4. Experiment and Evaluation

The experiments in this chapter are divided into three sections. Section 4.1 captures
a real scene using the Davis346 event camera and denoises the dataset using different
denoising algorithms. Section 4.2 adds random noise to multiple public AER datasets and
compares the denoising results of different denoising algorithms. Section 4.3 evaluates the
visualization algorithms. Sections 4.1 and 4.2 use the filters of NN2, Khodamoradi, and
Feng for comparison with our algorithm. The computer processor is an Intel(R) Core(TM)
i7-9700 CPU at 3.3 GHz, 8 GB of RAM, and the operating system is Windows 10 64-bit.

4.1. Event Stream Denoising Experiments in Real Scenes

In this experimental phase, we use a Davis346 with a spatial resolution of 346 × 260.
Because event cameras are very good at capturing fast-moving objects, in Scene I we use
it to capture a fast-moving soccer ball, which goes from slow to fast until it is completely
thrown. In Scene II, we use Davis346 to record a black and white disk rotating at high
speed, and the rotation speed of the disk changes from fast to slow with time. Due to the
experimental scene with more factors interfering, the event stream output by Davis346
contains a lot of noise.

Since there is no base truth value of comparable events from real-world data, NIR
(Noise in Real) and RIN (Real in Noise) are used to evaluate the denoising performance
of different algorithms in real-world scenarios [25]. NIR measures the number of noisy
events that are erroneously retained after denoising, and smaller NIR values indicate that
the denoising algorithm is more effective in removing noise.

NIR = ∑ δ(x − xi, y − yi, t − ti) ei(xi, yi, ti) ∈ ΛPE and Pei ≤ PARE (6)

where ΛPE is the set of events delivered during the cycle, and PARE is the average true
event probability of the BA computed over events with no target motion region.

RIN measures the number of real events that were mistakenly deleted; smaller RIN
values mean that more real and valid events were retained while removing noise.

RIN = ∑ δ(x − xi, y − yi, t − ti) ei(xi, yi, ti) ∈ ΛPE and Pei > PARE (7)

where ΛFE is the set of filtered events in the cycle.
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In the proposed algorithm, we have multiple parameters and calibrate some of them
based on the data used. The values of the parameters should vary depending on the
application field and be minimized to achieve more accurate denoising. The method used
in this paper uses the parameters L1/Δt1 = 7/3 ms, L2/Δt2 = 5/6 ms, DT = 10, and
θ = 15. The parameter in the Feng filter is set to L/Δt = 5/5 ms, and the parameter in the
Khodamoradi filter is set to 2 ms. It should be noted that in the algorithm proposed in this
paper, there is a minimum spatio-temporal neighborhood setting L/Δt = 3/1 ms. This
parameter implies the strictest noise discrimination, although this does not apply to the
vast majority of scenarios. We adjusted the parameters with the minimum spatio-temporal
neighborhood as a benchmark, so the choice of algorithmic parameters for each scenario is
based on the results of multiple experiments. Moreover, in the choice of parameters for
the three comparative algorithms, we used the default parameters provided in the paper.
Figure 6 shows the denoising results of the different algorithms for two scenarios, Table 1
shows the change in the number of events before and after denoising for both scenarios, as
well as the noise evaluation based on RIN and NIR.

In the denoising results shown in Figure 6 and Table 1, our algorithm filters out 19.09%
of the events in Scene I, which is higher than 17.34% for NN2, 14.87% for the Feng filter, and
8.66% for the Khodamoradi filter. In scene II, our algorithm filters out 19.04% of the events,
higher than 16.09% for NN2, 13.9% for the Feng filter, and 9.57% for the Khodamoradi filter.
The RIN and NIR values of this paper’s algorithm in Scene I do not show a significant
advantage due to the discontinuous and irregular distribution of the background noise
region, but the 2D plots and spatio-temporal images show that our algorithm filters out
more noise compared to other algorithms. This suggests that the reliability of RIN and NIR
denoising assessment based on manual selection of background noise regions still needs to
be enhanced.

Figure 6. Cont.
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Figure 6. Event denoising results. The first row is the output of the frame-based camera, and the
second and third rows are the 2D maps and spatio-temporal images of the original event stream and
the event stream after denoising by different methods.

Table 1. Noise evaluation of Scene I and Scene II.

Scene Index Raw Data Khodmradi NN2 Feng Ours

I
Number of events 196,232 179,243 162,203 167,043 158,882

RIN / 7029 5330 5208 5294
NIR / 29,445 8401 8790 8328

II
Number of events 731,014 661,027 609,112 629,428 591,840

RIN / 12,936 6230 8979 5022
NIR / 134,502 49,389 72,103 32,357

4.2. Denoising the AER Datasets

Denoising the event stream output by the event camera as a preprocessing method
can facilitate the subsequent obtaining of clearer event frames. To verify the denoising
performance of our proposed algorithm in different noise environments, we designed the
following experiments. Events in the original AER dataset are treated as valid events, and a
certain percentage (10%, 20%, 50%, 100%, 150%, and 200%) of noise (BA noise and hot noise)
is added. In the denoising experiments of the AER dataset, we use the event denoising
precision (EDP) and the event Signal to Noise Ratio (ESNR) to measure the accuracy of the
denoising algorithm in removing noise [26]. EDP is a measure of whether the denoising
algorithm effectively filters out the noise in the event stream, and the larger the value, the
better the denoising effect. ESNR is a measure of the quality of the event stream, and a
high ESNR value denotes a lower noise level and a higher quality of the event stream.

EDP =
Ne f f ective

Ntotal
(8)

where Neffective is the total number of valid events in the event stream and Ntotal is the total
number of events in the event stream.

ESNR = 10lg
(

Nnoise
Neffective

)
(9)
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where Nnoise is the total number of noise events in the event stream.
Experiments were performed on the public AER datasets N-MNIST [35], CIFAR10-

DVS [36], and MNIST-DVS [37]. The MNIST-DVS dataset was zoomed from the original
MNIST dataset image to three scales (Scale 4, Scale 8, and Scale 16) and displayed in slow
motion on an LCD monitor. Event-based sensors were then used to record the number
of movements. The MNIST-DVS dataset with a scale of 4 was used in the experiments.
CIFAR10-DVS is an event dataset for object classification. The 10,000 frame-based im-
ages from CIFAR-10 are converted into 10,000 event streams by DVS with a resolution of
128 × 128 pixels, and the conversion is achieved by using Repetitive Closed Loop Smooth-
ing (RCLS) motion on the frame-based images. The N-MNIST dataset is a spiked version
of the MNIST dataset, containing the same samples as the original MNIST dataset and
captured at the same visual scale (28 × 28 pixels) as the original MNIST dataset. The
N-MNIST dataset is captured by mounting the ATIS sensor on a motorized gimbal and
causing the sensor to move while viewing the MNIST example on the LCD monitor.

In this section of experiments, the method of this paper uses the parameters
L1/Δt1 = 7/3 ms, L2/Δt2 = 5/6 ms, DT = 10, and θ = 15. The parameter in the Feng filter
is set to L/Δt = 7/5 ms and the Khodamoradi filter parameter is set to 2 ms. Figures 7 and 8
show the ESNR vs. EDP for the three datasets N-MNIST, CIFAR10-DVS, and MNIST-DVS.

(a) (b) (c) 

Figure 7. EDP comparison of filter algorithm and our algorithm on different datasets. (a) CIFAR10-
DVS; (b) MNIST-DVS; (c) N-MNIST.

(a) (b) (c) 

Figure 8. ESNR comparison of filter algorithm and our algorithm on different datasets. (a) CIFAR10-
DVS; (b) MNIST-DVS; (c) N-MNIST.

As shown in Figures 7 and 8, when the noise is sparser, the denoising methods may
be more likely to accurately restore the true event distribution, when the difference in the
denoising effect of different algorithms is small. However, when the noise is denser, the
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denoising methods may be more challenged, and the EDP and ESNR values show a larger
magnitude decrease.

As can be seen from Tables 2 and 3, there is a positive correlation between EDP and
ESNR, indicating that ESNR and EDP can reflect the quality of the event stream well. The
performance of Feng’s filter shows a significant degradation after the addition of dense
noise, which is because, in a dense noise environment, BA noise may show some spatial-
temporal correlation between them, and BA noise may also show some spatial-temporal
correlation between them and the real events, and at this time, it is difficult to discriminate
the noise, a lot of BA noise is retained after coarse filtering, which affects the denoising
accuracy of the fine filtering. The Khodamorad filter can efficiently filter out most of the
noise according to the spatio-temporal correlation in a sparse noise environment, and when
the noise is denser, the denoising accuracy decreases seriously and the hot noise is not
effectively removed. The denoising effect of NN2 shows better robustness in a more dense
noise environment. However, NN2 cannot effectively remove hot noise, because hot noise
has a certain spatial-temporal correlation and the db value is higher than BA noise, so it is
difficult to distinguish it from real events during testing.

Table 2. Comparison of the performance of different denoising algorithms on EDP.

Dataset Algorithm
Noise Ratios

10% 20% 50% 100% 150% 200%

CIFAR10-DVS

Raw 90.95 83.33 66.67 50 39.99 33.33
Khodamorad 93.92 90.76 85.88 68.05 57.13 35.82

NN2 93.76 91.99 88.21 77.02 67.45 51.3
Feng 94.21 91.29 87.33 75.09 62.35 40.32
Ours 94.73 92.69 89.03 82.41 75.57 62.51

MNIST-DVS

Raw 90.92 83.27 66.27 50 39.76 33.03
Khodamorad 94.02 90.35 82.37 72.12 58.96 38.32

NN2 96.96 91.75 86.63 78.02 66.34 51.94
Feng 96.43 92.17 85.2 74.48 62.33 45.99
Ours 97.47 95.34 92.04 82.79 69.01 56.53

N-MNIST

Raw 90.74 83.31 66.61 50 39.96 33.33
Khodamorad 98.22 95.16 90.26 77.34 63.11 43.69

NN2 98.95 97.46 93.26 84.32 78.45 63.44
Feng 98.23 96.93 92.46 81.03 71.69 58.37
Ours 99.44 98.31 96.15 88.36 82.45 72.39

Our algorithm shows advantages in EDP and ESNR metrics, and it is noteworthy that
the reduction in EDP and ESLR is the same in different proportions of noise environments,
and there are no problems with significant reduction due to dense noise environments.
Due to the regularization of the spatio-temporal neighborhood in the coarse filtering, the
spatio-temporal density is not unfairly affected by the variation of the neighborhood size,
and the vast majority of BA noise is filtered out in the coarse filtering stage. This avoids
the drawback of counting the number of events in the dense noise environments based
on the spatio-temporal correlation theory, and the method based on the temporal analysis
in the fine filtering ensures that the thermal noise can be accurately filtered out even in
the presence of the BA noise. However, more complex algorithms imply that they will
occupy more memory and require more computation. In our experiments, we found that
our proposed algorithm does not show an advantage in time, which is due to the fact that
in fine filtering, the computation is increased due to the temporal analysis of the pixels
where each event is located.
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Table 3. Comparison of the performance of different denoising algorithms on ESNR.

Dataset Algorithm
Noise Ratios

10% 20% 50% 100% 150% 200%

CIFAR10-DVS

Raw 10 6.98 3.01 0 −1.72 −3.02
Khodamorad 11.72 8.68 5.7 3.12 0.94 −1.6

NN2 13.74 11.12 10.92 8.06 6.93 3.04
Feng 13.85 10.88 7.09 5.41 2.34 0.86
Ours 15.26 13.64 10.92 8.06 6.93 3.04

MNIST-DVS

Raw 10 6.98 3.01 0 −1.72 −3.02
Khodamorad 11.02 9.68 4.7 2.12 0.94 −2.06

NN2 14.49 11.46 7.34 5.11 2.84 1.02
Feng 13.25 10.88 6.09 4.01 1.94 −0.86
Ours 15.7 12.64 8.2 6.06 4.03 2.14

N-MNIST

Raw 10 6.98 3.01 0 −1.72 −3.02
Khodamorad 12.02 9.68 7.45 4.49 0.34 −1.16

NN2 15.33 12.91 10.01 7.55 4.21 2.44
Feng 14.25 11.88 9.09 6.81 2.34 0.86
Ours 17.7 14.12 11.56 8.72 6.59 4.3

4.3. Event Stream Visualization

To verify and analyze the effect of event stream visualization, this section experiments
on a real dataset as well as a public dataset. The real dataset uses the fast-rotating black-
and-white turntable recorded in Section 4.1. As shown in Figure 9, the turntable rotates at
a slower speed in Scene 1, and the event stream is sparse. The turntable rotates faster in
Scene 2. The time stream is denser. The public event dataset was acquired by the Sensor
Laboratory at ETH Zurich using a DAVIS 240C model event camera [38], with the urban
part as the scene for the experiment as shown in Figure 10. In Scene 1, the motion state
of the camera is smoother and the event stream is sparse. In Scene 2, the camera motion
state is more violent and the event stream is denser. Table 4 shows the number of events
in different scenes as well as time. The experiments compare four event frame formation
methods: adaptive overlapping, fixed time window (FW), fixed number of events (FN),
and overlapping accumulation (OA). The frame rate, the average number of events, and the
variance of the number of events obtained by different visualization methods can reflect to
a certain extent the uniformity of the information contained in the event frames, regardless
of the intensity or slowness of the operation. Therefore, we use the above three indicators
to evaluate the event frames obtained by different methods, as shown in Tables 5 and 6.

In this section of experiments, the method of this paper uses the parameters O = 5 ms,
k = 0.001. The results of the event flow visualization are shown in Figures 9 and 10, where
black represents negative events and white represents positive events.

Since scene changes as well as motion state changes lead to uneven distribution of
events in time, accumulating events according to a fixed time window results in event
frames containing different amounts of information, blurring of event edges when motion
is smooth, and severe shadowing of object edges due to event accumulation when motion
is violent. The overlapping accumulation method can both increase the frame frequency
and ensure the same amount of event information as that of a fixed time window. However,
when the density of the event stream changes, a single overlapping strategy can lead to
redundant or incoherent information. Fixing the number of events ensures a consistent
amount of information, but when the motion is very smooth, it leads to long output frames
containing a large number of outdated events, thus losing the low-latency advantage of
event cameras. As shown in Tables 5 and 6, the fixed time window method has a fixed
output frame rate and the largest event variance. A fixed output frame rate implies a stable
number of output frames, but a large event variance indicates a large difference in the
amount of information between frames. The overlapping accumulation method has the
largest output frame rate and the second-largest event variance. The maximum output
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frame rate means that more motion details can be captured, but it also contains a large
amount of duplicate content. On the other hand, the fixed number of events method has the
smallest event variance, but also the lowest frame rate. The adaptive overlapping approach
did not show a clear advantage in one metric or the other but ensured a higher frame rate
output while avoiding too much information variance between frames.

Figure 9. Visualization results for black and white turntable. The time window is 10 ms, and the
number of events are 8000, O = 5 ms, and k = 0.001.

Figure 10. Visualization results for urban dataset. The time window is 10 ms, and the number of
events are 12,000, O = 5 ms, and k = 0.001.

Table 4. Parameters for different scenes.

Dataset Scene Event Number Time (s)

Turntable
1 184,402 1.2
2 284,125 1.15

Urban
1 384,246 0.9
2 620,143 1.1
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Table 5. Performance comparison of four visualization methods for black and white turntable dataset.

Algorithm

Evaluation Metrics

Frame Rate
(fps)

Average
Number of

Events
Variance

Scene 1

FW 199.97 2234.2 1,523,975.02
FN 44.61 7993.11 1973.29
OA 322.94 3749.12 1,493,276.06

Ours 157.49 7319.86 1,052,987.34

Scene 2

FW 196.32 7294.32 1,347,349.45
FN 54.13 7998.21 447.96
OA 380.17 1492.21 1,283,601.73

Ours 165.49 6971.13 923,839.03

Table 6. Performance comparison of four visualization methods for urban dataset.

Algorithm

Evaluation Metrics

Frame Rate
(fps)

Average
Number of

Events
Variance

Scene 1

FW 195.38 5825.63 3,413,492.31
FN 40.22 11,982.33 4216.03
OA 375.94 11,049.12 3,013,484.39

Ours 169.49 9932.36 2,269,272.26

Scene 2

FW 192.91 13,438.93 5,312,380.2
FN 49.43 11,970.21 10,235.27
OA 417.68 10,492.75 4,526,249.37

Ours 201.33 9523.19 3,028,346.12

5. Conclusions

In this paper, an event stream denoising method based on spatio-temporal density
and temporal sequence analysis is proposed. Based on the working principle of the event
camera and the noise distribution characteristics, the noise is categorized into BA noise and
hot noise, and the event stream is sequentially coarse filtered and fine filtered. We pay more
attention to the optimization and improvement of the robustness of the denoising algorithm,
so the parameter selection and the influence of the residual BA noise are taken into account
in different filtering stages. The spatio-temporal neighborhood regularization and the free
choice of threshold make our algorithm applicable to various noise environments. We use
EDP and ESNR to evaluate the denoising effect of the AER dataset, and NIR and RIN to
evaluate the denoising effect of the real scene. In addition, an event stream visualization
method based on adaptive overlapping is proposed to validate the visualization algorithm
by selecting some scenes in two datasets based on adaptive overlapping events of camera
motion state changes or scene changes.

In future research and development work, we will continue to optimize our algorithm,
focusing on further reducing the complexity of our algorithm so that it can be used in tight
resource environments, and we will explore ways to integrate denoising techniques into
real-time systems.
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Abstract: The Wazwaz–Benjamin–Bona–Mahony (WBBM) equation is a well-known regularized long-
wave model that examines the propagation kinematics of water waves. The current work employs an
effective approach, called the Riccati Modified Extended Simple Equation Method (RMESEM), to
effectively and precisely derive the propagating soliton solutions to the (3+1)-dimensional WBBM
equation. By using this upgraded approach, we are able to find a greater diversity of families of
propagating soliton solutions for the WBBM model in the form of exponential, rational, hyperbolic,
periodic, and rational hyperbolic functions. To further graphically represent the propagating behavior
of acquired solitons, we additionally provide 3D, 2D, and contour graphics which clearly demonstrate
the presence of kink solitons, including solitary kink, anti-kink, twinning kink, bright kink, bifurcated
kink, lump-like kink, and other multiple kinks in the realm of WBBM. Furthermore, by producing new
and precise propagating soliton solutions, our RMESEM demonstrates its significance in revealing
important details about the model behavior and provides indications regarding possible applications
in the field of water waves.

Keywords: nonlinear partial differential equations; (3+1)-dimensional Wazwaz–Benjamin–Bona–
Mahony equation; Riccati modified extended simple equation method; kink solitons; long waves
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1. Introduction

Nonlinear Partial Differential Equations (NPDEs) possess applications in numerous
fields of mathematics, engineering and physics. These frameworks efficiently explain a
broad range of phenomena, including thermal conductivity, the dispersion of organic com-
pounds, fluid mechanics, wave bending, magnetism, quantum field theory, hydrodynamics,
and oceanic wave propagation. These NPDEs include renowned models such as Burgers’
equation, the Fisher equation, the Boussinesq equation, the advection equation, and other
coupled nonlinear equations [1–5].

Among the aforementioned nonlinear models, several well-known equations have
been studied in detail in relation to NPDEs, including the regularized long-wave model, the
modified Korteweg–de Vries (KdV) model and the Boussinesq model [6,7]. Benjamin, Bona,
and Mahony initially presented the KdV model in 1972 to characterize wave motion below
the surface in a homogeneous channel. This led to the development of the normalized KdV
model known as the Benjamin–Bona–Mahony (BBM) model, which focuses on shallow
wave propagation. The BBM model is used to analyse drifting waves and Rossby waves in
rotating fluid systems [8–10]. The BBM model is provided as [11]

Qt + Qx + QnQx − Qxxt = 0, (1)
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while the KdV model is articulated as [12]

Qt + Qx + QQx + Qxxx = 0, (2)

where the function Q = Q(x, t) expresses the displacement of the surface of a fluid from its
rest state or wave height. Moreover, the linear terms account for the propagation of wave,
the Qxxt and Qxxx signify the dispersive terms, and the nonlinear term QnQx represents
wave interaction. A variety of waves, including surface pulses in water, prolonged signals
in acoustic energy in periodic pebbles, nonlinear diffraction workflows, magnetic hydrody-
namic waves in erythrocytes, and reverberating waves in compressible fluids, are modeled
using the BBM equation and the KdV equation [13]. However, there are several notable
differences between these two equations. The BBM equation and the KdV equation are
equivalent only when low-frequency waves are considered, and the findings they yield
about waves diverge. While the BBM equation is categorized as a regularity equation,
the KdV equation serves as an existence equation [14]. The theory of the BBM model,
including its uniqueness, stability, and consistency, is investigated in [15,16]. The BBM
model has additionally been the focus of a great deal of research in recent years. There
is general agreement that the BBM model is much simpler to solve than the KdV model;
nonetheless, both equations possess stable solutions for single waves [17,18]. Sometimes
the long-wave equation is used instead of the BBM equation. When n = 2, the BBM
equation in Equation (1) changes to the modified BBM equation. Ref. [19] investigated the
solutions to a number of issues, including the modified BBM model starting values.

A novel equation for describing the three-dimensional kinematics of water waves was
proposed by Wazwaz in 2017 [20]. A variation of the Benjamin–Bona–Mahony equation is the
WBBM equation. Consequently, Wazwaz assessed the subsequent manufacturer equations:

Qt + Qx + Q2Qy − Qxzt = 0,

Qt + Qz + Q2Qx − Qxyt = 0,

Qt + Qy + Q2Qz − Qxxt = 0,

(3)

where Q = Q(t, x, y, z) is the differentiable functions that represent the amplitude of the
wave function in the equation. The three-dimensional WBBM model, which is expressed as
follows, is the main topic of this study:

Qt + Qx + (Q3)y − Qxzt = 0. (4)

In the literature, a plethora of numerical and analytical methods have been developed
to address NPDEs. Despite the availability of numerical tools, analysts often opt for analyt-
ical methods because they may offer a comprehensive grasp of the underlying physical
processes and accurate insights into the system’s behavior. Analytical solutions for NPDEs
are, nevertheless, hard to find. Consequently, research into creating analytical treatments
for NPDEs is still crucial. Various analytical techniques have been developed to address this
problem. The Khater method [21], Adomian decomposition method [22], (G’/G)-expansion
method [23], variable separable method [24], Exp-function method [25], integral transforms
method [26], homotopy perturbation method [27], differential transform method [28],
Extended Direct Algebraic Method (EDAM) [29], and numerous others [30–32] are a few
of these approaches. This method involves converting the NPDEs into Nonlinear Ordi-
nary Differential Equations (NODEs) using variable transformation. Next, the NODEs
are assumed to have a closed-form solution and are converted into systems of algebraic
equations. The resulting system of algebraic equations may be solved to provide the soliton
solutions for the appropriate NPDEs. The soliton solutions generated by RMESEM can aid
in our comprehension of the system’s behavior and underlying physical processes.

This work utilizes the strategic RMESEM for swiftly and correctly obtaining propa-
gating soliton solutions to the (3+1)-dimensional WBBM problem. By using this updated
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approach, we are able to find a large number of families of propagating soliton solutions
for the WBBM model in the form of exponential, rational, hyperbolic, periodic, and rational
hyperbolic functions. We also offer 3D, 2D, and contour graphics to further graphically
depict the propagating behavior of the acquired solitons. These graphics clearly show
the existence of kink solitons, such as anti-kink, twinning kink, bright kink, bifurcated
kink, lump-like kink, and other multiple kinks in the context of WBBM. Furthermore,
by producing new and accurate propagating soliton solutions, our employed RMESEM
demonstrates its value in revealing important details about the equation dynamics and
provides indications regarding possible applications in the field of water waves.

The remaining paperwork is organized as follows: The working mechanism of the
RMESEM is explained in Section 2, the WBBM model is addressed in Section 3 to create new
soliton solutions, the propagating behavior of kink solitons is visually shown in Section 4,
the results are summarized in Section 5, and the final section presents Appendix A.

2. The Methodical Strategy of RMESEM

The literature has established a wide range of analytical methods to study soliton
occurrences in nonlinear models [33–35]. In this part, we describe the operation mechanism
of the improved RMESEM [36]. Examining the upcoming NLPDE,

F(Q, Qt, Qτ1 , Qτ2 , QQτ1 , . . .) = 0, (5)

where Q = Q(t, τ1, τ2, τ3, . . . , τr).
Equation (5) is to be solved using the following steps:
1. First, a variable-form wave transformation Q(t, τ1, τ2, τ3, . . . , τr) = P(φ) is carried

out. There are several definitions to represent φ. Through this transformation, Equation (5)
is modified to obtain the following NODE:

G(P, P′P, P′, . . . ) = 0, (6)

where P′ = dP
dφ . On occasion, the NODE may be made to comply with the homogeneous

balance requirement by using integrating Equation (6).
2. Next, we suppose a series-based solution with the help of the solution to the

extended Riccati ODE to solve the NODE in (6) [36]:

P(φ) =
p

∑
m=0

mj

(
Υ′(φ)
Υ(φ)

)j

+
p−1

∑
j=0

sj

(
Υ′(φ)
Υ(φ)

)j

·
(

1
Υ(φ)

)
. (7)

Here, the solution to the resultant extended Riccati ODE is denoted by Υ(φ) [36], and
the unknown constants that need to be found later are represented by the parameters
mj(j = 0, ..., p) and sj(j = 0, ..., p − 1).

Υ′(φ) = J + KΥ(φ) + L(Υ(φ))2, (8)

where J, K and L are constants.
3. The positive integer p needed in Equation (7) is obtained by homogeneously

balancing the highest-order derivative term and the largest nonlinear term in Equation (6).
4. Afterwards, all the terms with the same powers of Υ(φ) are combined when (7)

is substituted into (6) or in the equation that emerges from the integration of (6). This
procedure results in an equation in terms of Υ(φ). By setting the coefficients in this
equation to zero, we generate an algebraic system of equations representing the parameters
mj(j = 0, ..., p) and sj(j = 0, ..., p − 1) along with the further associated parameters.

5. Using MAPLE, an analytical treatment of the resultant set of nonlinear algebraic
equations is carried out.

6. Afterwards, analytical soliton solutions for (5) are produced by computing and
entering the unknown values in Equation (7) together with Υ(φ) (Equation (8) solution).
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Several families of soliton solutions may be derived by using the general solution of (8).
These are displayed in Table 1 [36].

Table 1. The particular solutions Υ(φ) of the Riccati equation in (8) and the formation of
(

Υ′(φ)
Υ(φ)

)
,

where n1, n2 ∈ R, � = K2 − 4LJ and ζ = cosh
(

1
4
√

�φ
)

sinh
(

1
4
√

�φ
)

.

S. No. Family Constraint(s) Υ(φ)

(
Υ′(φ)
Υ(φ)

)
1 Trigonometric Solutions � < 0, L �= 0

− K
2L +

√−� tan( 1
2

√−�φ)
2L , −

�
(

1+(tan( 1
2

√−�φ))
2
)

2(−K+
√−� tan( 1

2

√−�φ))
,

− K
2L −

√−� cot( 1
2

√−�φ)
2L ,

(
1+(cot( 1

2

√−�φ))
2
)

�

2(K+
√−� cot( 1

2

√−�φ))
,

− K
2L +√−�(tan(

√−�φ)+(sec(
√−�φ)))

2L ,

−� (1+sin(
√−�φ)) sec(

√−�φ)
−K cos(

√−�φ)+
√−� sin(

√−�φ)+
√−�

,

− K
2L +√−�(tan(

√−�φ)−(sec(
√−�φ)))

2L .

� (sin(
√−�φ)−1) sec(

√−�φ)
−K cos(

√−�φ)+
√−� sin(

√−�φ)−
√−�

.

2 Hyperbolic
Solutions

� > 0, L �= 0

− K
2L −

√
� tanh( 1

2

√
�φ)

2L , −
(
−1+(tanh( 1

2

√
�φ))

2
)

�

2(K+
√

� tanh( 1
2

√
�φ))

,

− K
2L −√
�(tanh(

√
�φ)+i(sech(

√
�φ)))

2L ,

−� (−1+i sinh(
√

�φ))sech(
√

�φ)
K cosh(

√
�φ)+

√
� sinh(

√
�φ)+i

√
�

,

− K
2L −√
�(tanh(

√
�φ)−i(sech(

√
�φ)))

2L ,

−� (1+i sinh(
√

�φ))sech(
√

�φ)
−K cosh(

√
�φ)−

√
� sinh(

√
�φ)+i

√
�

,

− K
2L −√
�(coth(

√
�φ)+(csch(

√
�φ)))

2L .
−

�
(

2 (cosh( 1
4

√
�φ))

2−1
)

4ζ(−2 Kζ+
√

�)
.

3 Rational
Solutions � = 0 −2J(Kφ+2)

K2φ
, −2

φ (Kφ+2) ,

� = 0, & K = L = 0 φ J, 1
φ ,

� = 0, & K = J = 0 − 1
φ L . − 1

φ .

4 Exponential
Solutions L = 0, & K = ε, J = κε eε φ − κ, ε eε φ

eε φ−κ
,

J = 0, & K = ε, L = κε eε φ

1−κeεφ . − ε
−1+κeε φ .

5 Rational-
Hyperbolic
Solutions

J = 0, & K �= 0, L �= 0 − K n1
L(cosh(Kφ)−sinh(Kφ)+n2)

, K(sinh(Kφ)−cosh(Kφ))
− cosh(Kφ)+sinh(Kφ)−n2

,

− K(cosh(Kφ)+sinh(Kφ))
L(cosh(Kφ)+sinh(Kφ)+n2)

. Kn2
cosh(Kφ)+sinh(Kφ)+n2

.

3. The Construction of Kink Soliton Solutions for WBBM

In this section, we apply our suggested approach, RMESEM, to acquire families
of the soliton solutions for WBBM given in (4). We begin with the application of the
transformation that follows:

Q(t, x, y, z) = P(φ), where φ = λx + μy + νz − ωt. (9)

By appending (9) to it, (4) now becomes

(λ − ω)P′ + μ(P3)′ + νλωP′′′ = 0, (10)
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where P′ = dP
dφ . According to the homogeneous balancing principle, p = 1 is suggested by

balancing the greatest derivative νλωP′′′ and the largest nonlinear term μ(P3)′. Putting
p = 1 in (7) yields the following solution for (10):

P(φ) =
1

∑
m=0

mj

(
Υ′(φ)
Υ(φ)

)j

+ s0

(
1

Υ(φ)

)
, (11)

where the constants s1, m0, and m1 are unknown. When we insert (11) into (10), we
obtain an expression in Υ(φ). An algebraic system of seven equations may be obtained by
gathering all terms with the same powers of Υ(φ) and setting the coefficient of each term
to zero. We solve the system with Maple. And as a result, the system of algebraic equations
yields the following five cases of results.
Case. 1

m0 =
s0K
2J

, m1 = 0, s0 = s0, λ = λ, μ =
−4J2(−ω + λ)

� s02 , ν =
2(λ − ω)

λ ω �
, ω = ω. (12)

Case. 2

m0 = m0, m1 = m1, s0 = s0, λ = ω, μ = 0, ν = 0, ω = ω. (13)

Case. 3

m0 = −m1K
2

, m1 = m1, s0 = 0, λ = λ, μ =
−4(λ − ω)

(8 JL + K2)m1
2 , ν =

2(λ − ω)

λ ω (8 JL + K2)
, ω = ω. (14)

Case. 4

m0 = −m1K
2

, m1 = m1, s0 = −m1 J, λ = λ, μ =
−4(λ − ω)

� m1
2 , ν =

2(λ − ω)

λ ω �
, ω = ω. (15)

Taking into consideration Case. 1 and utilizing (9) and (11) with the corresponding
solution of (8), we acquire the ensuing families of kink soliton solutions for (4):
Family. 1.1: When � < 0 L �= 0,

Q1,1(t, x, y, z) =
s0K
2J

+ s0

⎛⎝− K
2L

+

√−� tan
(

1
2
√−�φ

)
2L

⎞⎠−1

, (16)

Q1,2(t, x, y, z) =
s0K
2J

+ s0

⎛⎝− K
2L

−
√−� cot

(
1
2
√−�φ

)
2L

⎞⎠−1

, (17)

Q1,3(t, x, y, z) =
s0K
2J

+ s0

(
− K

2L
+

√−�
(
tan
(√−�φ

)
+ sec

(√−�φ
))

2L

)−1

, (18)

and

Q1,4(t, x, y, z) =
s0K
2J

+ s0

(
− K

2L
+

√−�
(
tan
(√−�φ

)
− sec

(√−�φ
))

2L

)−1

. (19)
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Family. 1.2: When � > 0 L �= 0,

Q1,5(t, x, y, z) =
s0K
2J

+ s0

⎛⎝− K
2L

−
√

� tanh
(

1
2
√

�φ
)

2L

⎞⎠−1

, (20)

Q1,6(t, x, y, z) =
s0K
2J

+ s0

(
− K

2L
−

√
�
(
tanh

(√
�φ
)
+ isech

(√
�φ
))

2L

)−1

, (21)

Q1,7(t, x, y, z) =
s0K
2J

+ s0

(
− K

2L
−

√
�
(
tanh

(√
�φ
)
− isech

(√
�φ
))

2L

)−1

, (22)

and

Q1,8(t, x, y, z) =
s0K
2J

+ s0

⎛⎝− K
2L

−
√

�
(

tanh
(

1
4
√

�φ
)
− coth

(
1
4
√

�φ
))

4L

⎞⎠−1

. (23)

Family. 1.3: When K = ε, J = κε(κ �= 0) and L = 0,

Q1,9(t, x, y, z) =
s0

2κ
+

s0

eε φ − κ
. (24)

In the above kink soliton solutions, φ = λx + ( J2(−4(λ−ω))
� s0

2 )y + ( 2(λ−ω)
λ ω � )z − ωt.

Taking into consideration Case. 2 and utilizing (9) and (11) with the corresponding
solution of (8), we acquire the ensuing families of kink soliton solutions for (4):
Family. 2.1: When � < 0 L �= 0,

Q2,1(t, x, y, z) = m0 +

m1�

(
1 +

(
tan
(

1
2
√−�φ

))2
)

2(K −√−� tan
(

1
2
√−�φ

)
)

+ s0

⎛⎝− K
2L

+

√−� tan
(

1
2
√−�φ

)
2L

⎞⎠−1

, (25)

Q2,2(t, x, y, z) = m0 +

m1�

(
1 +

(
tan
(

1
2
√−�φ

))2
)

2(K −√−� tan
(

1
2
√−�φ

)
)

+ s0

⎛⎝− K
2L

+

√−� tan
(

1
2
√−�φ

)
2L

⎞⎠−1

, (26)

Q2,3(t, x, y, z) =
m1�

(
1 + sin

(√−�φ
))

cos
(√−�φ

)(
K cos

(√−�φ
)
−√−� sin

(√−�φ
)
−√−�

)
+ s0

(
− K

2L
+

√−�
(
tan
(√−�φ

)
+ sec

(√−�φ
))

2L

)−1

+ m0,

(27)

and

Q2,4(t, x, y, z) =− m1�
(
sin
(√−�φ

)
− 1
)

cos
(√−�φ

)(
K cos

(√−�φ
)
−√−� sin

(√−�φ
)
+
√−�

)
+ s0

(
− K

2L
+

√−�
(
tan
(√−�φ

)
− sec

(√−�φ
))

2L

)−1

+ m0.

(28)
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Family. 2.2: When � > 0 L �= 0,

Q2,5(t, x, y, z) = m0 −
1
2

m1�

(
−1 +

(
tanh

(
1
2
√

�φ
))2

)
K +

√
� tanh

(
1
2
√

�φ
) + s0

⎛⎝− K
2L

−
√

� tanh
(

1
2
√

�φ
)

2L

⎞⎠−1

, (29)

Q2,6(t, x, y, z) =− m1�
(
−1 + i sinh

(√
�φ
))

cosh
(√

�φ
)(

K cosh
(√

�φ
)
+
√

� sinh
(√

�φ
)
+ i

√
�
)

+ s0

(
− K

2L
−

√
�
(
tanh

(√
�φ
)
+ isech

(√
�φ
))

2L

)−1

+ m0,

(30)

Q2,7(t, x, y, z) =
m1�

(
1 + i sinh

(√
�φ
))

cosh
(√

�φ
)(

K cosh
(√

�φ
)
+
√

� sinh
(√

�φ
)
− i

√
�
)

+ s0

(
− K

2L
−

√
�
(
tanh

(√
�φ
)
− isech

(√
�φ
))

2L

)−1

+ m0,

(31)

and

Q2,8(t, x, y, z) =
1
4

m1�

(
2
(

cosh
(

1
4
√

�φ
))2

− 1
)

cosh
(

1
4
√

�φ
)

sinh
(

1
4
√

�φ
)(

2 K cosh
(

1
4
√

�φ
)

sinh
(

1
4
√

�φ
)
−
√

�
)

+ s0

⎛⎝− K
2L

−
√

�
(

tanh
(

1
4
√

�φ
)
− coth

(
1
4
√

�φ
))

4L

⎞⎠−1

+ m0.

(32)

Family. 2.3: When � = 0, K �= 0,

Q2,9(t, x, y, z) = m0 −
2m1

φ (Kφ + 2)
− s0K2φ

2J(Kφ + 2)
. (33)

Family. 2.4: When � = 0, in case when K = L = 0,

Q2,10(t, x, y, z) = m0 +
m1

φ
+

s0

Jφ
. (34)

Family. 2.5: When � = 0, in case when K = J = 0,

Q2,11(t, x, y, z) = m0 −
m1

φ
− s0Lφ. (35)

Family. 2.6: When K = ε, J = κε(κ �= 0) and L = 0,

Q2,12(t, x, y, z) = m0 +
m1ε eε φ

eε φ − κ
+

s0

eε φ − κ
. (36)

Family. 2.7: When K = ε, L = κε(κ �= 0) and J = 0,

Q2,13(t, x, y, z) = m0 −
m1ε

−1 + κ eε φ +
s0
(
1 − κ eε φ

)
eε φ . (37)
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Family. 2.8: When J = 0, L �= 0 and K �= 0,

Q2,14(t, x, y, z) = m0 +
m1K(sinh(Kφ)− cosh(Kφ))

− cosh(Kφ) + sinh(Kφ)− n2
− s0L(cosh(Kφ)− sinh(Kφ) + n2)

n1K
, (38)

and

Q2,15(t, x, y, z) = m0 +
m1Kn2

cosh(Kφ) + sinh(Kφ) + n2
− s0L(cosh(Kφ) + sinh(Kφ) + n2)

K(cosh(Kφ) + sinh(Kφ))
. (39)

In the above kink soliton solutions, φ = λ(x − t).
Taking into consideration Case. 3 and utilizing (9) and (11) with the corresponding

solution of (8), we acquire the ensuing families of kink soliton solutions for (4):
Family. 3.1: When � < 0 L �= 0,

Q3,1(t, x, y, z) = −m1K
2

+

m1�

(
1 +

(
tan
(

1
2
√−�φ

))2
)

2(K −√−� tan
(

1
2
√−�φ

)
)

, (40)

Q3,2(t, x, y, z) = −m1K
2

+

m1�

(
1 +

(
cot
(

1
2
√−�φ

))2
)

2(K +
√−� cot

(
1
2
√−�φ

)
)

, (41)

Q3,3(t, x, y, z) = −m1K
2

+
m1�

(
1 + sin

(√−�φ
))

cos
(√−�φ

)(
K cos

(√−�φ
)
−√−� sin

(√−�φ
)
−√−�

) , (42)

and

Q3,4(t, x, y, z) = −m1K
2

− m1�
(
sin
(√−�φ

)
− 1
)

cos
(√−�φ

)(
K cos

(√−�φ
)
−√−� sin

(√−�φ
)
+
√−�

) . (43)

Family. 3.2: When � > 0 L �= 0,

Q3,5(t, x, y, z) = −m1K
2

−
m1�

(
−1 +

(
tanh

(
1
2
√

�φ
))2

)
2(K +

√
� tanh

(
1
2
√

�φ
)
)

, (44)

Q3,6(t, x, y, z) = −m1K
2

− m1�
(
−1 + i sinh

(√
�φ
))

cosh
(√

�φ
)(

K cosh
(√

�φ
)
+
√

� sinh
(√

�φ
)
+ i

√
�
) , (45)

Q3,7(t, x, y, z) = −m1K
2

+
m1�

(
1 + i sinh

(√
�φ
))

cosh
(√

�φ
)(

K cosh
(√

�φ
)
+
√

� sinh
(√

�φ
)
− i

√
�
) , (46)
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and

Q3,8(t, x, y, z) = −m1K
2

+

m1�

(
2
(

cosh
(

1
4
√

�φ
))2

− 1
)

4(cosh
(

1
4
√

�φ
)

sinh
(

1
4
√

�φ
)(

2 K cosh
(

1
4
√

�φ
)

sinh
(

1
4
√

�φ
)
−
√

�
)
)

.
(47)

Family. 3.3: When � = 0, K �= 0,

Q3,9(t, x, y, z) = −m1K
2

− 2
m1

φ (Kφ + 2)
. (48)

Family. 3.4: When � = 0, in case when K = L = 0,

Q3,10(t, x, y, z) =
m1

φ
. (49)

Family. 3.5: When � = 0, in case when K = J = 0,

Q3,11(t, x, y, z) = −m1

φ
. (50)

Family. 3.6: When K = ε, J = κε(κ �= 0) and L = 0,

Q3,12(t, x, y, z) = −m1ε

2
+

m1ε eε φ

eε φ − κ
. (51)

Family. 3.7: When K = ε, L = κε(κ �= 0) and J = 0,

Q3,13(t, x, y, z) = −m1ε

2
− m1ε

−1 + κ eε φ . (52)

Family. 3.8: When J = 0, L �= 0 and K �= 0,

Q3,14(t, x, y, z) = −m1K
2

+
m1K(sinh(Kφ)− cosh(Kφ))

− cosh(Kφ) + sinh(Kφ)− n2
, (53)

and

Q3,15(t, x, y, z) = −m1K
2

+
m1Kn2

cosh(Kφ) + sinh(Kφ) + n2
. (54)

In the above kink soliton solutions, φ = λx + ( −4(λ−ω)
(8 JL+K2)m1

2 )y + ( 2(λ−ω)
λ ω (8 JL+K2)

)z − ωt.
Taking into consideration Case. 4 and utilizing (9) and (11) with the corresponding

solution of (8), we acquire the ensuing families of kink soliton solutions for (4):
Family. 4.1: When � < 0 L �= 0,

Q4,1(t, x, y, z) = −m1K
2

+

m1�

(
1 +

(
tan
(

1
2
√−�φ

))2
)

2(K −√−� tan
(

1
2
√−�φ

)
)

−m1 J

⎛⎝− K
2L

+

√−� tan
(

1
2
√−�φ

)
2L

⎞⎠−1

,

(55)
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Q4,2(t, x, y, z) = −m1K
2

+

m1�

(
1 +

(
cot
(

1
2
√−�φ

))2
)

2(K +
√−� cot

(
1
2
√−�φ

)
)

−m1 J

⎛⎝− K
2L

−
√−� cot

(
1
2
√−�φ

)
2L

⎞⎠−1

,

(56)

Q4,3(t, x, y, z) =
m1�

(
1 + sin

(√−�φ
))

cos
(√−�φ

)(
K cos

(√−�φ
)
−√−� sin

(√−�φ
)
−√−�

)
− m1 J

(
− K

2L
+

√−�
(
tan
(√−�φ

)
+ sec

(√−�φ
))

2L

)−1

− m1K
2

,

(57)

and

Q4,4(t, x, y, z) =− m1�
(
sin
(√−�φ

)
− 1
)

cos
(√−�φ

)(
K cos

(√−�φ
)
−√−� sin

(√−�φ
)
+
√−�

)
− m1 J

(
− K

2L
+

√−�
(
tan
(√−�φ

)
− sec

(√−�φ
))

2L

)−1

− m1K
2

.

(58)

Family. 4.2: When � > 0 L �= 0,

Q4,5(t, x, y, z) = −m1K
2

−
m1�

(
−1 +

(
tanh

(
1
2
√

�φ
))2

)
2(K +

√
� tanh

(
1
2
√

�φ
)
)

−m1 J

⎛⎝− K
2L

−
√

� tanh
(

1
2
√

�φ
)

2L

⎞⎠−1

,

(59)

Q4,6(t, x, y, z) =− m1�
(
−1 + i sinh

(√
�φ
))

cosh
(√

�φ
)(

K cosh
(√

�φ
)
+
√

� sinh
(√

�φ
)
+ i

√
�
)

− m1 J

(
− K

2L
−

√
�
(
tanh

(√
�φ
)
+ isech

(√
�φ
))

2L

)−1

− m1K
2

,

(60)

Q4,7(t, x, y, z) =
m1�

(
1 + i sinh

(√
�φ
))

cosh
(√

�φ
)(

K cosh
(√

�φ
)
+
√

� sinh
(√

�φ
)
− i

√
�
)

− m1 J

(
− K

2L
−

√
�
(
tanh

(√
�φ
)
− isech

(√
�φ
))

2L

)−1

− m1K
2

,

(61)

and
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Q4,8(t, x, y, z) =
m1�

(
2
(

cosh
(

1
4
√

�φ
))2

− 1
)

4(cosh
(

1
4
√

�φ
)

sinh
(

1
4
√

�φ
)(

2 K cosh
(

1
4
√

�φ
)

sinh
(

1
4
√

�φ
)
−
√

�
)
)

− m1 J

⎛⎝− K
2L

−
√

�
(

tanh
(

1
4
√

�φ
)
− coth

(
1
4
√

�φ
))

4L

⎞⎠−1

− m1K
2

.

(62)

Family. 4.3: When K = ε, J = κε(κ �= 0) and L = 0,

Q4,9(t, x, y, z) = −m1ε

2
+

m1ε eε φ

eε φ − κ
− m1κε

eε φ − κ
. (63)

Family. 4.4: When K = ε, L = κε(κ �= 0) and J = 0,

Q4,10(t, x, y, z) = −m1ε

2
− m1ε

−1 + κ eε φ . (64)

Family. 4.5: When J = 0, L �= 0 and K �= 0,

Q4,11(t, x, y, z) = −m1K
2

+
m1K(sinh(Kφ)− cosh(Kφ))

− cosh(Kφ) + sinh(Kφ)− n2
, (65)

and

Q4,12(t, x, y, z) = −m1K
2

+
m1Kn2

cosh(Kφ) + sinh(Kφ) + n2
. (66)

In the above kink soliton solutions, φ = λx + ( −4(λ−ω)
� m1

2 )y + ( 2(λ−ω)
λ ω � )z − ωt.

4. Results and Discussion

In this section, numerous traveling soliton structures discovered in the model under
investigation are visually displayed. In the framework of WBBM, we use the innovative
RMESEM to extract and depict a number of wave structures in 3D, 2D, and contour forms,
exposing the presence of multiple kink solitons, including anti-kink, twinning kink, bright
kink, bifurcated kink, lump-like kink, and other multiple kinks. Traveling wave solutions
such as soliton types are crucial for understanding the dynamic behavior of many physical
systems modeled by NPDEs. Self-reinforcing solitary waves, or soliton waves, are able
to maintain their form during propagation. Their localized character and stability set
them apart.

Prominently, we obtain kink solitons such as solitary kink, anti-kink, twinning kink,
bright kink, bifurcated kink, lump-like kink and other multiple kinks in the realm of WBBM.
A single, localized wave that keeps its form while moving at a steady pace is called a solitary
kink. It symbolizes a single, steady crest or depression that travels across the water surface
without altering shape in water ripples. A reversed version of an isolated kink, an anti-kink
symbolizes a falling wave in a situation where a solitary kink represents a rising wave.
It shows a depression or dip that moves steadily across the surface in the case of water
surges. When two kinks move in tandem, they form a twinning kink, which frequently
takes the form of two linked waves. This is a representation of two parallel troughs and
crests moving across the surface of the water. A localized wave that is larger in frequency
than the medium it surrounds is called a bright kink. It denotes a prominent, bright crest
that moves with noticeable movement in surges of water. As it spreads, a bifurcated kink
divides into multiple tendrils. When it comes to water crests, it is a situation in which an
individual wave peak or depression splits, resulting in many wave fronts or pathways. A
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localized wave which looks a lump and bump, frequently in a three-dimensional in nature
situation, is called a lump-like kink. This is an additional curved localized rise or dip in
the waves of water as opposed to the crispness of a single kink. Finally, a sequence of kink
oscillations engaging or passing through a medium is referred to as many kinks. When
it comes to water gestures, they symbolize a complicated arrangement of several cresting
and crashing points that move in tandem to form a complex waveform formation. Each of
these kinds of waves demonstrates the many kinetics of the water propagation of waves
and shows how the WBBM model may be used to predict and comprehend a wide range of
complicated and diverse wave behaviors. Moreover, the graph for Q1,5 in (20) displays the
profile of the solitary kink soliton as seen in Figure 1. The graph for Q1,9 in (24) is shown in
Figure 2, which displays a bright kink soliton profile. Similarly, the graph for Q2,5 given in
(29) is displayed in Figure 3, which shows the anti-kink soliton profile. The graph for Q2,11
given in (35) is displayed in Figure 4, which exhibits the bifurcated kink soliton profile.
Figure 5 represents the graph for Q2,14 shown in (38), which displays the soliton profile of a
solitary kink. Likewise, Figure 6 shows the graph for Q3,3 reported in (42), which displays
a lump-like kink soliton profile. The graph for Q3,8, which is a bright kink soliton profile,
is shown in Figure 7. The graph of the twinning kink soliton profile is shown in Figure 8
for Q3,9 as reported in (48). Figure 9 is plotted for Q4,5 articulated in (59), which shows
a solitary kink soliton profile. Finally, the graph for Q4,10 given in (64) displays the kink
soliton profile in Figure 10.

Figure 1. (a–c) The 3D, contour, and 2D (when x = 1) graphs for the solitary kink soliton solution
Q1,5 stated in (20) are plotted for J = 2, K = 5, L = 2, λ = 0.005, ω = 0.025, s0 = 1, t = 0, y = 1.

Figure 2. (a–c) The 3D, contour, and 2D (when x = 2) graphs for the bright kink soliton solution Q1,9

stated in (24) are plotted for J = 9, K = 3, L = 0, λ = 0.015, ω = 0.35, s0 = 2, t = 1, y = 5, κ = 3, ε = 3.
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Figure 3. (a–c) The 3D, contour, and 2D (when t = 1) graphs for the anti-kink soliton solution Q2,5

stated in (29) are plotted for J = 8, K = 10, L = 2, λ = 50, ω = 15, s0 = 5, m0 = 2, m1 = 3.

Figure 4. (a–c) The 3D, contour, and 2D (when t = 1) graphs for the bifurcated kink soliton solution
Q2,11 stated in (35) are plotted for J = 0, K = 0, L = 1, λ = 0.335, ω = 0.215, s0 = 10, m0 = 4, m1 = 5.
In this profile, the kink interacts with shock wave.

Figure 5. (a–c) The 3D, contour, and 2D (when t = 10) graphs for the solitary kink soliton solution
Q2,14 stated in (38) are plotted for J = 0, K = 5, L = 0, λ = 0.75, ω = 0.85, s0 = 15, m0 = 2, m1 =

2, n1 = 0.5, n2 = 0.10.
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Figure 6. (a–c) The 3D, contour, and 2D (when y = 0) graphs for the lump-type kink soliton solution
Q3,3 stated in (42) are plotted for J = 1, K =

√
(7), L = 4, λ = 0.545, ω = 0.235, m1 = 5, t = 10, z = 0.5.

Figure 7. (a–c) The 3D, contour, and 2D (when y = 20) graphs for the bright kink soliton solution
Q3,8 stated in (47) are plotted for J = 3, K = 13, L = 12, λ = 0.221, ω = 0.345, m1 = 2, t = 20, z = 1.

Figure 8. (a–c) The 3D, contour, and 2D (when y = 0) graphs for the twinning kink soliton solution
Q3,9 stated in (48) are plotted for J = 1, K = 2, L = 1, λ = 0.315, ω = 0.115, m1 = 12, t = 10, z = 5.
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Figure 9. (a–c) The 3D, contour, and 2D (when y = 10) graphs for the multiple kink soliton solution
Q4,5 stated in (59) are plotted for J = 4, K = 10, L = 4, λ = 5, ω = 1, m1 = 1, t = 20, z = 10.

Figure 10. (a–c) The 3D, contour, and 2D (when y = 30) graphs for the kink soliton solution Q4,10

stated in (64) are plotted for J = 0, K = 10, L = 20, λ = 1, ω = 2, m1 = 2, t = 10, z = 2, ε = 10, κ = 2.

5. Conclusions

In conclusion, an innovative technique known as RMESEM is utilized in this study
to produce and evaluate precise families of soliton solutions for the (3+1)-dimensional
WBBM. The propagating behavior of acquired solitons is graphically represented by the
3D, 2D, and contour graphics, which clearly demonstrated the existence of several types
of kink solitons in the setting of WBBM, including anti-kink, twinning kink, bright kink,
bifurcated kink, lump-like kink, and other multiple kinks. The obtained soliton solutions
provide insightful information on the WBBM model behavior. Moreover, it is demonstrated
that solving NPDEs with the RMESEM approach is a flexible and effective strategy. Our
understanding of the underlying physical processes and the relationships between different
wave phenomena in a nonlinear setting are advanced by its ability to create a range of
soliton families. Understanding the stability, interactions, and soliton dispersion aspects
of the WBBM model is further made easier with the help of the derived soliton solutions.
Nonetheless, the approach fails when the highest derivative term and nonlinear terms
are not homogeneously balanced. Notwithstanding this limitation, the present investiga-
tion demonstrates that the methodology employed in this work is highly portable and
efficacious for nonlinear problems in a variety of scientific domains. Moreover, further
exploration into the stability analysis of solitons as well as the inclusion and effects of
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fractional derivatives on solitons within the context of targeted model is the future objective
of this study.
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Appendix A

Appendix A.1. Comparison with Other Analytical Methods

The findings of the other analytical procedures can be derived from our method. For
example, setting m1 = 0 in (11) results in

P(φ) = s0

(
1

Υ(φ)

)
. (A1)

This displays the EDAM closed-form solution’s structure [29]. Thus, by setting m1 = 0
from our findings, the results obtained by EDAM may also be achieved. For example, if
we put m0 = a0, s0 = b1, J = Ω, K = 0, and L = 1 as shown in (8), we receive some of the
findings from our results gained under Case. 1 that Shafqat-Ur-Rahman [37] achieved. In a
similar manner, we obtain (11) if we set s0 = 0:

P(φ) =
1

∑
m=0

mj

(
Υ′(φ)
Υ(φ)

)j

, (A2)

which, using the Riccati-NODE, is the closed-form solution given by the (G’/G)-expansion
technique [38]. Therefore, the results of EDAM and the (G’/G)-expansion approach may
be more broadly obtained from the generalized results in our study.

Appendix A.2. Fractional Generalization

We may generalize our findings to the fractional form. As an example, let us consider
the (4) with conformable derivatives of δ-order, i.e.,

Dδ
t Q + Dδ

xQ + Dδ
yQ3 − D3δ

xztQ = 0, (A3)

then, all of our solutions are also those of Conformable WBBM (CWBBM) in (A3), where φ
is defined as follows:

φ =
λxδ

δ
+

μyδ

δ
+

νzδ

δ
− ωtδ

δ
. (A4)
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Abstract: This work employs the Extended Direct Algebraic Method (EDAM) to solve quadratic
and cubic nonlinear Klein–Gordon Equations (KGEs), which are standard models in particle and
quantum physics that describe the dynamics of scaler particles with spin zero in the framework of
Einstein’s theory of relativity. By applying variables-based wave transformations, the targeted KGEs
are converted into Nonlinear Ordinary Differential Equations (NODEs). The resultant NODEs are
subsequently reduced to a set of nonlinear algebraic equations through the assumption of series-
based solutions for them. New families of soliton solutions are obtained in the form of hyperbolic,
trigonometric, exponential and rational functions when these systems are solved using Maple. A few
soliton solutions are considered for certain values of the given parameters with the help of contour
and 3D plots, which indicate that the solitons exist in the form of dark kink, hump kink, lump-like
kink, bright kink and cuspon kink solitons. These soliton solutions are relevant to actual physics,
for instance, in the context of particle physics and theories of quantum fields. These solutions are
useful also for the enhancement of our understanding of the basic particle interactions and wave
dynamics at all levels of physics, including but not limited to cosmology, compact matter physics
and nonlinear optics.

Keywords: Klein–Gordon equations; nonlinear partial differential equations; extended direct
algebraic method; kink solitons; explicit solutions

MSC: 33B15; 34A34; 35A20; 35A22; 44A10

1. Introduction

A more generalised form of the nonlinear Klein–Gordon Equation (KGE) with different
nonlinearities can be articulated as follows:

utt − νuxx + P′(u) = 0, (1)

where u = u(x, t), ν is a constant and P(u) is a suitable nonlinear function that is fre-
quently selected as the potential energy [1]. Choosing P′(u) results in the generation of
a number of equations that can be used to simulate a wide range of physical processes,
from quantum physics to wave motion, including sine-Gordon, Landau–Ginzburg–Higgs,
PHI-4 and reaction Duffing equations [2]. Kragh discusses the KGE’s inception, stating
that prominent physicists such as Klein, Fock and Schrödinger were involved in revealing
the connection between general relativity theory and some of the older forms of the KGE,
which is one of the most significant equations, from which the canonical version of the
nonlinear Schrödinger equation can be derived [3,4]. Galehouse [5] used suitable gauge
transformations to obtain the KGE geometrically. Moreover, Schechter provided proof
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of the scattering theory for the more general form of the KGE [6]. The KGE’s equivalent
theory is created by adhering to the traditional process comprising a comparable equation
in a certain finite-energy normed Hilbert space that contains first-order time [7]. In this
article, Weder also provided evidence for the invariance principle, interweaving relations
and the existence and completeness of the wave operators. Thus, similar eigenfunction
expansions can be applied to a certain field case in order to construct the spectral and
scattering theory of the KGE, and the strong results are similar to the Schrödinger case [8].
Tsukanov discusses the translation motion of a KGE in an external field [9].

Since its introduction, the KGE has yielded a wide range of solutions that describe
many physical phenomena, including kinks and solitary waves. Tariq et al., in [10], devel-
oped a new plethora of exact solutions such as bright and dark solitary wave solutions,
kink solitary wave solutions, anti-kink solitary wave solutions, periodic solitary wave
solutions and hyperbolic function solutions using the Sardar sub-equation and extended
Fan sub-equation methods with stability analysis of the observed solutions. Onyenegecha
constructed analytical solutions of a D-dimensional KGE with modified Mobius squared
potential [11]. By using the reduced differential transform method, Belayeh et al. found
approximate analytic solutions to a two-dimensional nonlinear KGE [12]. Ahmadov et
al. used the Nikiforov–Uvarov method to construct analytical solutions for the KGE
with combined exponential-type and ring-shaped potentials [13]. Abdeljabbar et al. ex-
plored bright and dark soliton solutions in the realm of quadratic KGEs [14]. Applying
the extended first kind elliptic sub-equation approach, certain bell- and kink-type soli-
tary wave solutions produced by applying some hyperbolic functions for the KGE were
constructed [15]. Using the modified simple equation method, Akter and Akbar derived
similar solutions [16]. Adomian applied the decomposition technique to the KGE’s initial
boundary value problems [17]. Kudryavtsev [18] studied the interaction of two solitons
that are weakly oscillatory, self-localised and damped for a specific form of the KGE. In
addition to the analytical solutions previously outlined, a range of numerical techniques
have been used to solve KGE-related problems. A few difficulties based on the KGE
were resolved by Strauss and Vazquez [19] using the most straightforward central second
difference approach. The energy-saving scheme is better suited to model the long-term
behaviour of the solutions than the other two, according to the numerical integration
of the problem using four explicit finite-difference methods [20]. Another way to solve
the KGE numerically is via a collocation method based on radial basis functions of thin
plate splines [21]. Integrated radial basis function network methods and multi-quadratic
quasi-interpolation are used to approximate the solutions of the non-homogenous version
of the KGE [22]. In order to generate numerical solutions of the KGE, classical polynomial
cubic B-spline functions have also been adapted for the collocation method [23–27].

Motivated by the ongoing research on KGEs, in this work, we use the EDAM to
construct and analyse new families of kink soliton solutions for two KGEs, i.e., the quadratic
KGE and the cubic KGE. These models are articulated as follows:

a. When ν = 1 and P′(u) = mu − nu2 are substituted into (1), where m and n are
non-zero constants, then the quadratic KGE takes the following shape [28]:

utt − uxx + mu − nu2 = 0. (2)

b. When P′(u) = mu − nu3 is substituted into (1), then the cubic KGE takes the
following shape [29]:

utt − νuxx + mu − nu3 = 0. (3)

KGEs are prominent models in particle and quantum physics which articulate the
dynamics of scaler particles (particles with spin zero) in the context of special relativity.
The unfinished task of the current study is to use the EDAM to generate kink soliton
solutions for (2) and (3). The KGEs are converted into NODEs using variables-based wave
transformation. From the resultant NODEs, numerous soliton solutions can be obtained
by further reducing them into an assortment of nonlinear algebraic equations under the
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presumption that they have a series-based solution. With the use of illustrated contour
and 3D graphs, the dynamics of a few soliton solutions are investigated for certain values
of the supplied parameters. This shows that the solitons take on the structures of several
kink wave types, including dark, hump, lump-like, bright and cuspon kink solitons. These
graphics also confirm the presence of kink waves in both KGE models. The found soliton
solutions have significant physical implications, especially in the context of quantum field
theories and particle physics.

The format of the rest of the article is as follows: The Section 2 goes into further detail
about the EDAM’s methodology. For its induction to the KGEs, we present Section 3.
In Section 4, we provide illustrations of particular kink soliton solutions along with an
explanation, while the Section 5 summarises our investigation.

2. The Working Methodology of EDAM

In this section, we present a general description of the EDAM [30–32]. Look into the
general Nonlinear Partial Differential Equation (NPDE) in the following form:

E(�, �t, �σ1 , �σ2 , ��σ1 , . . .) = 0, (4)

where � = �(t, σ1, σ2, σ3, . . . , σn). In order to solve Equation (4), the following steps are
followed:

Step 1. Equation (4) is first subjected to a variable transformation of the form
�(t, σ1, σ2, σ3, ,̇σn) = Π(η), where η = η(t, σ1, σ2, σ3, ,̇σn), which may be expressed in a
many ways. This transformation converts (4) into an NODE with the following structure:

F(Π, Π′, Π Π′, . . . ) = 0, (5)

where Π′ = dΠ
dη .

Step 2. Next, we suppose the subsequent series-based solution for (5):

Π(η) =
N

∑
m=0

Cm(G(η))m or Π(η) =
N

∑
m=−N

Cm(G(η))m. (6)

Here, Cm symbolises parameters which need to be estimated, while G(η) satisfies the
Ricatti equation of the following form:

G′(η) = p + qG(η) + r(G(η))2, (7)

where p, q, r are constants.

Step 3. We obtain a positive integer N (as expressed in Equation (6)) whenever we try
to find a homogeneous balance between the dominant nonlinear term and highest-order
derivative in Equation (5). By using the ensuing formulae, we obtain the balance number
N more precisely:

N + s = Nζ + r(s + N),

such that

D(
dηΠ
dηs ) = N + s,

D(Πζ(
dsΠ
dηs )

r) = Nζ + r(s + N),

where D shows the degree of Π(η) and s, ζ and r are positive integers.
Step 4. We then substitute (6) into (5) or integrate (5), developing the equation, and

place all the terms in order of G(η) to form a polynomial in G(η). When all the coefficients
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of the derived polynomial are set to zero, an algebraic system of equations for Cms and
other parameters are generated.

Step 5. Then, Maple is utilised to solve this system of nonlinear algebraic equations.

Step 6. The travelling wave solutions, which can be obtained from Equation (4), are
found by solving for the unknown parameters and substituting the resultant solution into
Equation (5) together with the appropriate G(η) solution from Equation (7). Using the
general solution of Equation (7), we can generate the families of travelling soliton solutions
shown below:

Family 1. For Λ < 0 and r �= 0,

G1(η) = − q
2r

+

√
−Λ tan

(
1
2

√
−Λη

)
2r

,

G2(η) = − q
2r

−
√
−Λ cot

(
1
2

√
−Λη

)
2r

,

G3(η) = − q
2r

+

√
−Λ

(
tan
(√

−Λη
)
+
(

sec
(√

−Λη
)))

2r
,

G4(η) = − q
2r

−
√
−Λ

(
cot
(√

−Λη
)
+
(

csc
(√

−Λη
)))

2r
,

and

G5(η) = − q
2r

+

√
−Λ

(
tan
(

1
4

√
−Λη

)
− cot

(
1
4

√
−Λη

))
4r

.

Family 2. For Λ > 0 and r �= 0,

G6(η) = − q
2r

−
√

Λ tanh
(

1
2

√
Λη
)

2r
,

G7(η) = − q
2r

−
√

Λ coth
(

1
2

√
Λη
)

2r
,

G8(η) = − q
2r

−
√

Λ
(

tanh
(√

Λη
)
+ i
(

sech
(√

Λη
)))

2r
,

G9(η) = − q
2r

−
√

Λ
(

coth
(√

Λη
)
+
(

csch
(√

Λη
)))

2r
,

and

G10(η) = − q
2r

−
√

Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

4r
.

Family 3. For pr > 0 and q = 0,

G11(η) =

√
p
r

tan(
√

prη),

G12(η) = −
√

p
r

cot(
√

prη),

G13(η) =

√
p
r
(tan(2

√
prη) + (sec(2

√
prη))),
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G14(η) = −
√

p
r

(
cot
(

2
√

d f η
)
+ (csc(2

√
prη))

)
,

and

G15(η) =
1
2

√
p
r

(
tan
(

1
2
√

prη

)
− cot

(
1
2
√

prη

))
.

Family 4. For pr < 0 and q = 0,

G16(η) = −
√
− p

r
tanh

(√
−prη

)
,

G17(η) = −
√
− p

r
coth

(√
−prη

)
,

G18(η) = −
√
− p

r
(
tanh

(
2
√
−prη

)
+
(
isech

(
2
√
−prη

)))
,

G19(η) = −
√
− p

r
(
coth

(
2
√
−prη

)
+
(
csch

(
2
√
−prη

)))
,

and

G20(η) = −1
2

√
− p

r

(
tanh

(
1
2
√

prη

)
+ coth

(
1
2
√
−prη

))
.

Family 5. For r = p and q = 0,
G21(η) = tan(pη),

G22(η) = − cot(pη),

G23(η) = tan(2 pη) + (sec(2 pη)),

G24(η) = − cot(2 pη) + (csc(2 pη)),

and

G25(η) =
1
2

tan
(

1
2

pη

)
− 1

2
cot
(

1
2

pη

)
.

Family 6. For r = −p and q = 0,

G26(η) = − tanh(pη),

G27(η) = − coth(pη),

G28(η) = − tanh(2 pη) + (isech(2 pη)),

G29(η) = − coth(2 pη) + (csch(2 pη)),

and

G30(η) = −1
2

tanh
(

1
2

pη

)
− 1

2
coth

(
1
2

pη

)
.

Family 7. For Λ = 0,

G31(η) = −2
p(qη + 2)

q2η
.

Family 8. For r = 0, q = λ and d = sλ (with s �= 0),

G32(η) = eλη − s.

Family 9. For q = r = 0,
G33(η) = pη.
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Family 10. For q = p = 0,

G34(η) = − 1
rη

.

Family 11. For q �= 0, r �= 0 and p = 0,

G35(η) = − q
r(cosh(qη)− sinh(qη) + 1)

,

and

G36(η) = − q(cosh(qη) + sinh(qη))

r(cosh(qη) + sinh(qη) + 1)
.

Family 12. For q = λ, r = sλ (with s �= 0) and p = 0,

G37(η) =
eλη

1 − seλη
.

In the above solutions, Λ = q2 − 4rp.

3. Construction of Soliton Solutions for KGEs

In this section, we evaluate soliton solutions using the EDAM for the nonlinear KGEs.

3.1. Example 1

First, we evaluate soliton solutions for the quadratic KGE stated in (2) as follows:

utt − uxx + mu − nu2 = 0. (8)

Taking the travelling wave transformation of the form

u(x, t) = U(η), η = bx − at, (9)

where a and b denote non-zero constants, we obtain the following by the chain rule:

ut(x, t) =
∂

∂t
U(η) = U′(η)

∂

∂t
η = −aU′(η),

utt(x, t) =
∂

∂t
(−aU′(η)) = −aU′′(η)

∂

∂t
η = a2U′′(η),

ux(x, t) =
∂

∂x
U(η) = U′(η)

∂

∂x
η = bU′(η),

uxx(x, t) =
∂

∂x
(bU′(η)) = bU′′(η)

∂

∂x
η = b2U′′(η).

Equation (2) can be transformed into the following NODE:

(a2 − b2)U′′ + mU − nU2 = 0. (10)

To find the balance number N presented in (7), we balance the highest-order derivative
term U′′ with the highest-power nonlinear term U2 in the above equation, which determines
N + 2 = 2N. Thus, N = 2. Putting N = 2 into (7), starting from N = 0, suggests the
following closed-form solution for (10):

U(η) = C0 + C1G(η) + C2(G(η))2. (11)

The arbitrary constants C0, C1 and C2 are placeholders that need to be found. A substi-
tution of (11) with (10) yields an expression in G(η). After gathering terms with the same
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powers of G(η) and equating the coefficients to zero, we obtain the following system of
nonlinear algebraic equations:

− b2C1qp − 2 b2C2 p2 + mC0 − nC0
2 + a2C1qp + 2 a2C2 p2 = 0,

a2C1q2 + mC1 − b2C1q2 − 6 b2C2 pq + 2 a2C1rp + 6 a2C2 pq − 2 b2C1rp − 2 nC0C1 = 0,

3 a2C1qr − 4 b2C2q2 + 4 a2C2q2 + 8 a2C2 pr − 8 b2C2 pr − 3 b2C1qr − 2 nC0C2 + mC2 − nC1
2 = 0,

− 10 b2C2qr − 2 nC1C2 + 2 a2C1r2 + 10 a2C2qr − 2 b2C1r2 = 0,

and

− nC2
2 − 6 b2C2r2 + 6 a2C2r2 = 0.

When this system is solved using the Maple tool, it leads to the following three cases
of solutions:

Case 1.

C0 = C0, C1 =
C0q

p
, C2 =

C0r
p

, a = a, b = b, m = (b2 − a2)Λ, n = 6
r
(
a2 − b2)p

C0
. (12)

Case 2.

C0 =
1
6

C2
(
q2 + 2 pr

)
r2 , C1 =

C2q
r

, C2 = C2, a = a, b = b, m = (a2 − b2)Λ, n = 6
r2(a2 − b2)

C2
. (13)

Case 3.

C0 = C0, C1 = C1, C2 = C2, a = ±b, b = b, m = 0, n = 0. (14)

Considering Case 1 and utilizing Equations (11), (9) and the corresponding general
solution of (7), we construct the ensuing families of soliton solutions for the quadratic KGE
in (2):

Family 13. For Λ < 0 and r �= 0,

u1,1,1(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠+
C0r

p

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠2

, (15)

u1,1,2(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠+
C0r

p

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠2

, (16)

u1,1,3(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠
+

C0r
p

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠2

,

(17)
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u1,1,4(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
− 1

2

√
−Λ

(
cot
(√

−Λη
)
+ csc

(√
−Λη

))
r

⎞⎠
+

C0r
p

⎛⎝−1
2

q
r
− 1

2

√
−Λ

(
cot
(√

−Λη
)
+ csc

(√
−Λη

))
r

⎞⎠2

,

(18)

u1,1,5(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
4

√
−Λη

)
− cot

(
1
4

√
−Λη

))
r

⎞⎠
+

C0r
p

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
4

√
−Λη

)
+ cot

(
1
4

√
−Λη

))
r

⎞⎠2

.

(19)

Family 14. For Λ > 0 and r �= 0,

u1,1,6(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(
1
2

√
Λη
)

r

⎞⎠+
C0r

p

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(
1
2

√
Λη
)

r

⎞⎠2

, (20)

u1,1,7(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠+
C0r

p

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠2

, (21)

u1,1,8(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠
+

C0r
p

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠2

,

(22)

u1,1,9(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠
+

C0r
p

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠2

,

(23)

u1,1,10(x, t) =C0 +
C0q

p

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠
+

C0r
p

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠2

.

(24)

Family 15. For pr > 0 and q = 0,

u1,1,11(x, t) = C0 + C0(tan(
√

rpη))2, (25)

u1,1,12(x, t) = C0 + C0(cot(
√

prη))2, (26)

u1,1,13(x, t) = C0 + C0(tan(2
√

prη) + sec(2
√

prη))2, (27)

u1,1,14(x, t) = C0 + C0(cot(2
√

prη) + csc(2
√

prη))2, (28)
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u1,1,15(x, t) = C0 +
1
4

C0

(
tan
(

1
2
√

prη

)
− cot

(
1
2
√

prη

))2
. (29)

Family 16. For pr < 0 and q = 0,

u1,1,16(x, t) = C0 − C0(tan(
√

rpη))2, (30)

u1,1,17(x, t) = C0 − C0(coth(
√

rpη))2, (31)

u1,1,18(x, t) = C0 − C0
(
tanh

(
2
√
−prη

)
+
(
isech

(
2
√
−prη

)))2, (32)

u1,1,19(x, t) = C0 − C0
(
coth

(
2
√
−prη

)
+
(
csch

(
2
√
−prη

)))2, (33)

u1,1,20(x, t) = C0 −
1
4

C0

(
1
2

tanh
(√

−rpη
)
+

1
2

coth
(√

−rpη
))2

. (34)

Family 17. For r = p and q = 0,

u1,1,21(x, t) = C0 + C0(tan(pη))2, (35)

u1,1,22(x, t) = C0 + C0(cot(pη))2, (36)

u1,1,23(x, t) = C0 + C0(tan(2 pη) + sec(2 pη))2, (37)

u1,1,24(x, t) = C0 + C0(− cot(2 pη) + csc(2 pη))2, (38)

u1,1,25(x, t) = C0 + C0

(
1
2

tan
(

1
2

pη

)
− 1

2
cot
(

1
2

pη

))2
. (39)

Family 18. For r = −p and q = 0,

u1,1,26(x, t) = C0 − C0(tanh(pη))2, (40)

u1,1,27(x, t) = C0 − C0(coth(pη))2, (41)

u1,1,28(x, t) = C0 − C0(− tanh(2 pη) + i sech(2 pη))2, (42)

u1,1,29(x, t) = C0 − C0(− coth(2 pη) + csch(2 pη))2, (43)

u1,1,30(x, t) = C0 − C0

(
−1

2
tanh

(
1
2

pη

)
− 1

2
coth

(
1
2

pη

))2
. (44)

Family 19. For Λ = 0,

u1,1,31(x, t) = C0 − 2
C0 p(qη + 2)

qrη
+ 4

C0rp(qη + 2)2

q4η2 . (45)

Family 20. For r = 0, q = λ and p = sλ(s �== 0),

u1,1,32(x, t) = C0 +
C0(eλη − s)

s
. (46)

In the above solutions, η = bx − at.
Considering Case 2 and utilizing Equations (11), (9) and the corresponding general

solution of (7), we construct the ensuing families of soliton solutions for the quadratic KGE
in (2):

Family 21. For Λ < 0 and r �= 0,
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u1,2,1(x, t) =
C2q

r

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠+ C2

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 , (47)

u1,2,2(x, t) =
C2q

r

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠+ C2

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 , (48)

u1,2,3(x, t) =
C2q

r

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠
+ C2

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 ,

(49)

u1,2,4(x, t) =
C2q

r

⎛⎝−1
2

q
r
− 1

2

√
−Λ

(
cot
(√

−Λη
)
+ csc

(√
−Λη

))
r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

2

√
−Λ

(
cot
(√

−Λη
)
+ csc

(√
−Λη

))
r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 ,

(50)

u1,2,5(x, t) =
C2q

r

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
4

√
−Λη

)
− cot

(
1
4

√
−Λη

))
r

⎞⎠
+ C2

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
2

√
−Λη

)
− cot

(
1
4

√
−Λη

))
r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 .

(51)

Family 22. For Λ > 0 and r �= 0,

u1,2,6(x, t) =
C2q

r

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(
1
2

√
Λη
)

r

⎞⎠+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(
1
2

√
Λη
)

r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 , (52)

u1,2,7(x, t) =
C2q

r

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 , (53)

u1,2,8(x, t) =
C2q

r

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 ,

(54)

u1,2,9(x, t) =
C2q

r

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 ,

(55)
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u1,2,10(x, t) =
C2q

r

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠2

+
1
6

C2
(
q2 + 2 pr

)
r2 .

(56)

Family 23. For pr > 0 and q = 0,

u1,2,11(x, t) =
1
3

C2 p
r

+
C2 p

(
tan
(√

prη
))2

r
, (57)

u1,2,12(x, t) =
1
3

C2 p
r

+
C2 p

(
cot
(√

prη
))2

r
, (58)

u1,2,13(x, t) =
1
3

C2 p
r

+
C2 p

(
tan
(
2
√

prη
)
+ sec

(
2
√

rpη
))2

r
(59)

u1,2,14(x, t) =
1
3

C2 p
r

+
C2 p

(
cot
(
2
√

prη
)
+ csc

(
2
√

prη
))2

r
, (60)

u1,2,15(x, t) =
1
3

C2 p
r

+
1
4

C2 p
(

tan
(
1/2

√
prη
)
− cot

(
1
2
√

prη
))2

r
. (61)

Family 24. For pr < 0 and q = 0,

u1,2,16(x, t) =
1
3

C2 p
r

− C2 p(tanh(
√−prη))2

r
, (62)

u1,2,17(x, t) =
1
3

C2 p
r

− C2 p(coth(
√−prη))2

r
, (63)

u1,2,18(x, t) =
1
3

C2 p
r

− C2 p(coth(2
√−prη) + csch(2

√−prη))2

r
, (64)

u1,2,19(x, t) =
1
3

C2 p
r

− C2 p(tanh(2
√−prη) + i sech(2

√−prη))2

r
, (65)

u1,2,20(x, t) =
1
3

C2 p
r

− 1
4

C2 p
(

tanh
(

1
2
√−prη

)
+ coth

(
1
2
√−prη

))2

r
. (66)

Family 25. For r = p and q = 0,

u1,2,21(x, t) =
1
3

C2 + C2(tan(rη))2, (67)

u1,2,22(x, t) =
1
3

C2 + C2(cot(rη))2, (68)

u1,2,23(x, t) =
1
3

C2 + C2(tan(2 rη) + sec(2 rη))2, (69)

u1,2,24(x, t) =
1
3

C2 + C2(− cot(2 rη) + csc(2 rη))2, (70)

u1,2,25(x, t) =
1
3

C2 + C2

(
1
2

tan
(

1
2

rη

)
− 1

2
cot
(

1
2

rη

))2
. (71)
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Family 26. For r = −p and q = 0,

u1,2,26(x, t) = −1
3

C2 + C2(tanh(pη))2, (72)

u1,2,27(x, t) = −1
3

C2 + C2(coth(pη))2, (73)

u1,2,28(x, t) = −1
3

C2 + C2(− tanh(2 pη) + i sech(2 pη))2, (74)

u1,2,29(x, t) = −1
3

C2 + C2(− coth(2 pη) + csch(2 pη))2, (75)

u1,2,30(x, t) = −1
3

C2 + C2

(
−1

2
tanh

(
1
2

pη

)
− 1

2
coth

(
1
2

pη

))2
. (76)

Family 27. For Λ = 0,

u1,2,31(x, t) =
1
6

C2
(
q2 + 2 pr

)
r2 +

C2q
r

(
−2

p(qη + 2)
q2η

)
+ C2

(
−2

p(qη + 2)
q2η

)2
. (77)

Family 28. For q = p = 0,

u1,2,32(x, t) =
C2

r2η2 . (78)

Family 29. For q �= 0, r �= 0 and p = 0,

u1,2,33(x, t) =
1
6

C2q2

r2 − C2q2

r2(cosh(qη)− sinh(qη) + 1)
+

C2q2

r2(cosh(qη)− sinh(qη) + 1)2 . (79)

and

u1,2,34(x, t) =
1
6

C2q2

r2 +
C2q

r

(
− q(cosh(qη) + sinh(qη))

r(cosh(qη) + sinh(qη) + 1)

)
+ C2

(
− q(cosh(qη) + sinh(qη))

r(cosh(qη) + sinh(qη) + 1)

)2
. (80)

Family 30. For q = λ, r = sλ (with s �= 0) and p = 0,

u1,2,35(x, t) =
1
6

C2λ2

sλ2 +
C2λ eλ η

sλ
(
1 − seλ η

) + C2
(
eλ η

)2(
1 − seλ η

)2 . (81)

In the above solutions, η = bx − at.
Considering Case 3 and utilizing Equations (11), (9) and the corresponding general

solution of (7), we construct the ensuing families of soliton solutions for the quadratic KGE
in (2):

Family 31. For Λ < 0 and r �= 0,

u1,3,1(x, t) =C0 + C1

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠+ C2

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠2

, (82)

u1,3,2(x, t) =C0 + C1

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠+ C2

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠2

, (83)
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u1,3,3(x, t) =C0 + C1

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠
+ C2

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠2

,

(84)

u1,3,4(x, t) =C0 + C1

⎛⎝−1
2

q
r
− 1

2

√
−Λ

(
cot
(√

−Λη
)
+ csc

(√
−Λη

))
r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

2

√
−Λ

(
cot
(√

−Λη
)
+ csc

(√
−Λη

))
r

⎞⎠2

,

(85)

u1,3,5(x, t) =C0 + C1

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
4

√
−Λη

)
− cot

(
1
4

√
−Λη

))
r

⎞⎠
+ C2

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
4

√
−Λη

)
− cot

(
1
4

√
−Λη

))
r

⎞⎠2

.

(86)

Family 32. For Λ > 0 and r �= 0,

u1,3,6(x, t) = C0 + C1

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(√
Λη
)

r

⎞⎠+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(√
Λη
)

r

⎞⎠2

, (87)

u1,3,7(x, t) = C0 + C1

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠2

, (88)

u1,3,8(x, t) =C0 + C1

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠2

,

(89)

u1,3,9(x, t) =C0 + C1

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠2

,

(90)

u1,3,10(x, t) =C0 + C1

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠
+ C2

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠2

.

(91)

Family 33. For pr > 0 and q = 0,
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u1,3,11(x, t) = C0 + C1

√
p
r

tan(
√

rpη) +
C2 p

(
tan
(√

rpη
))2

r
, (92)

u1,3,12(x, t) = C0 − C1

√
p
r

cot(
√

rpη) +
C2 p

(
cot
(√

rpη
))2

r
, (93)

u1,3,13(x, t) = C0 + C1

√
p
r
(
tan(2

√
rpη) + sec

(
2
√

rpη
))

+
C2 p

(
tan
(
2
√

rpη
)
+ sec

(
2
√

rpη
))2

r
, (94)

u1,3,14(x, t) = C0 − C1

√
p
r
(cot(2

√
rpη) + csc(2

√
rpη)) +

C2 p
(
cot
(
2
√

rpη
)
+ csc

(
2
√

rpη
))2

r
, (95)

u1,3,15(x, t) =C0 +
1
2

C1

√
p
r

(
tan
(

1
2
√

rpη

)
− cot

(
1
2
√

rpη

))
+

1
4

C2 p
(

tan
(

1
2
√

rpη
)
− cot

(
1
2
√

rpη
))2

r
. (96)

Family 34. For pr < 0 and q = 0,

u1,3,16(x, t) = C0 − C1

√
− p

r
tanh

(√
−rpη

)
− C2 p(tanh(

√−rpη))2

r
, (97)

u1,3,17(x, t) = C0 − C1

√
− p

r
coth

(√
−rpη

)
− C2 p(coth(

√−rpη))2

r
(98)

u1,3,18(x, t) =C0 − C1

√
− p

r
(
tanh

(
2
√
−prη

)
+ isech

(
2
√
−prη

))
− C2 p(tanh(2

√−prη) + isech(2
√−prη))2

r
,

(99)

u1,3,19(x, t) =C0 − C1

√
− p

r
(
coth

(
2
√
−rpη

)
+ csch

(
2
√
−prη

))
− C2 p(coth(2

√−rpη) + csch(2
√−prη))2

r
,

(100)

u1,3,20(x, t) =C0 −
1
2

C1

√
− p

r

(
tanh

(
1
2
√
−prη

)
+ coth

(
1
2
√
−prη

))

− 1
4

C2 p
(

tanh
(

1
2
√−prη

)
+ coth

(
1
2
√−prη

))2

r
.

(101)

Family 35. For r = p and q = 0,

u1,3,21(x, t) = C0 + C1 tan(rη) + C2(tan(rη))2, (102)

u1,3,22(x, t) = C0 − C1 cot(rη) + C2(cot(rη))2, (103)

u1,3,23(x, t) = C0 + C1(tan(2 rη) + sec(2 rη)) + C2(tan(2 rη) + sec(2 rη))2, (104)

u1,3,24(x, t) = C0 + C1(− cot(2 rη) + csc(2 rη)) + C2(− cot(2 rη) + csc(2 rη))2, (105)

u1,3,25(x, t) = C0 + C1

(
1
2

tan
(

1
2

rη

)
− 1

2
cot
(

1
2

rη

))
+ C2

(
1
2

tan
(

1
2

rη

)
− 1

2
cot
(

1
2

rη

))2
. (106)

Family 36. For r = −p and q = 0,

u1,3,26(x, t) = C0 − C1 tanh(pη) + C2(tanh(pη))2, (107)
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u1,3,27(x, t) = C0 − C1 coth(pη) + C2(coth(pη))2, (108)

u1,3,28(x, t) = C0 + C1(− tanh(2 pη) + i sech(2 pη)) + C2(− tanh(2 pη) + i sech(2 pη))2, (109)

u1,3,29(x, t) = C0 + C1(− coth(2 pη) + csch(2 pη)) + C2(− coth(2 pη) + csch(2 pη))2, (110)

u1,3,30(x, t) =C0 + C1

(
−1

2
tanh

(
1
2

pη

)
− 1

2
coth

(
1
2

pη

))
+ C2

(
−1

2
tanh

(
1
2

pη

)
− 1

2
coth

(
1
2

pη

))2
. (111)

Family 37. For r = 0, q = λ and p = sλ (with s �= 0),

u1,3,31(x, t) = C0 + C1

(
− 2

p(qη + 2)
q2η

)
+ C2

(
− 2

p(qη + 2)
q2η

)2

. (112)

Family 38. For r = 0, q = λ and p = sλ (with s �= 0),

u1,3,32(x, t) = C0 + C1

(
eλ Λ − s

)
+ C2

(
eλ Λ − s

)2
. (113)

Family 39. For q = r = 0,

u1,3,33(x, t) = C0 + C1 pη + C2 p2η2. (114)

Family 40. For q = p = 0,

u1,3,34(x, t) = C0 −
C1

rη
+

C2

r2η2 . (115)

Family 41. For q �= 0, r �= 0 and p = 0,

u1,3,35(x, t) = C0 −
C1q

r(cosh(qη)− sinh(qη) + 1)
+

C2q2

r2(cosh(qη)− sinh(qη) + 1)2 , (116)

and

u1,3,36(x, t) = C0 −
C1q

r

(
− (cosh(qη) + sinh(qη))

(cosh(qη) + sinh(qη) + 1)

)
+

C2q2

r2

(
− (cosh(qη) + sinh(qη))

(cosh(qη) + sinh(qη) + 1)

)2
. (117)

Family 42. For q = λ, r = sλ (with s �= 0) and p = 0,

u1,3,37(x, t) = C0 +
C1eλ η

1 − seλ η
+

C2
(
eλ η

)2(
1 − seλ η

)2 . (118)

In the above solutions, η = b(x ∓ t).

3.2. Example 2

Now, we evaluate the soliton solutions for the cubic KGE stated in (3) as follows:

utt − νuxx + mu − nu3 = 0. (119)

Taking the travelling wave transformation of the form

u(x, t) = uη, η = x + ωt, (120)
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where ω is a non-zero constant, we obtain the following by the chain rule:

ut(x, t) =
∂

∂t
U(η) = U′(η)

∂

∂t
η = ωU′(η),

utt(x, t) =
∂

∂t
(ωU′(η)) = ωU′′(η)

∂

∂t
η = ω2U′′(η),

ux(x, t) =
∂

∂x
U(η) = U′(η)

∂

∂x
η = U′(η),

uxx(x, t) =
∂

∂x
(U′(η)) = U′′(η)

∂

∂x
η = U′′(η).

The above transformation reduces (3) to the ensuing nonlinear NODE:

(ω2 − ν)U′′ + mU − nU3 = 0. (121)

To find the balance number N presented in (7), we balance the highest-order derivative
term U′′ with the highest-power nonlinear term U3 in the above equation. Putting N = 1
into (7), starting from N = −1, suggests the following closed-form solution for (121):

U(η) = C−1G(η)−1 + C0 + C1G(η). (122)

The arbitrary constants C−1, C0 and C1 are placeholders that need to be found. The
substitution of (122) into (121) yields an expression in G(η). After gathering terms with the
same powers of G(η) and equating the coefficients to zero, we obtain the following system
of nonlinear algebraic equations:

− nC1
3 − 2 ν C1r2 + 2 ω2C1r2 = 0,

3 ω2C1qr − 3 ν C1qr − 3 nC0C1
2 = 0,

− 3 nC0
2C1 + mC1 − 3 nC−1C1

2 − 2 ν C1rp − ν C1q2 + 2 ω2C1rp + ω2C1q2 = 0,

− 6 nC−1C0C1 − ν C1qp + ω2C−1qr − ν C−1qr + ω2C1qp − nC0
3 + mC0 = 0,

2 ω2C−1 pr − 3 nC−1
2C1 − 2 ν C−1 pr + ω2C−1q2 − 3 nC−1C0

2 − ν C−1q2 + mC−1 = 0,

− 3 nC−1
2C0 − 3 ν C−1 pq + 3 ω2C−1 pq = 0,

and

− 2 ν C−1 p2 − nC−1
3 + 2 ω2C−1 p2 = 0.

When this system is solved using the Maple tool, it leads to the following two cases of
solutions:

Case 4.

C−1 = 0, C0 =
1
2

C1q
r

, C1 = C1, ω = ω, ν =
−ω2Λ + 2 m

−Λ
, n = −4

mr2

(−Λ)C1
2 . (123)

Case 5.

C−1 = C−1, C0 =
1
2

qC−1

p
, C1 = 0, ω = ω, ν =

−ω2Λ + 2 m
−Λ

, n = −4
mp2

(−Λ)C−1
2 . (124)

Considering Case 4 and utilizing Equations (120), (122) and the corresponding general
solution of (7) we construct the ensuing families of soliton solutions for the cubic KGE in
(3):
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Family 43. For Λ < 0 and r �= 0,

u2,1,1(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠, (125)

u2,1,2(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠, (126)

u2,1,3(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠, (127)

u2,1,4(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
− 1

2

√
−Λ

(
cot
(√

−Λη
)
+ csc

(√
−Λη

))
r

⎞⎠, (128)

u2,1,5(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
4

√
−Λη

)
− cot

(
1
4

√
−Λη

))
r

⎞⎠. (129)

Family 44. For Λ > 0 and r �= 0,

u2,1,6(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(
1
2

√
Λη
)

r

⎞⎠, (130)

u2,1,7(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠, (131)

u2,1,8(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠, (132)

u2,1,9(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠, (133)

u2,1,10(x, t) =
1
2

C1q
r

+ C1

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠. (134)

Family 45. For pr > 0 and q = 0,

u2,1,11(x, t) = C1

√
p
r

tan(
√

rpη), (135)

u2,1,12(x, t) = C1

√
p
r
(cot(

√
prη))2, (136)

u2,1,13(x, t) = C1

√
p
r
(
tan(2

√
rpη) + sec

(
2
√

rpη
))

, (137)

u2,1,14(x, t) = −C1

√
p
r
(cot(2

√
rpη) + csc(2

√
rpη)), (138)

u2,1,15(x, t) =
1
2

C1

√
p
r

(
tan
(

1
2
√

rpη

)
− cot

(
1
2
√

rpη

))
. (139)

566



Mathematics 2024, 12, 3433

Family 46. For pr < 0 and q = 0,

u2,1,16(x, t) = −C1

√
− p

r
tanh

(√
−rpη

)
, (140)

u2,1,17(x, t) = −C1

√
− p

r
coth

(√
−rpη

)
, (141)

u2,1,18(x, t) = −C1

√
− p

r
(
tanh

(
2
√
−rpη

)
+ i sech

(
2
√
−rpη

))
, (142)

u2,1,19(x, t) = −C1

√
− p

r
(
coth

(
2
√
−rpη

)
+ csch

(
2
√
−rpη

))
, (143)

u2,1,20(x, t) = −1
2

C1

√
− p

r

(
tanh

(
1
2
√
−rpη

)
+ coth

(
1
2
√
−rpη

))
. (144)

Family 47. For r = p and q = 0,

u2,1,21(x, t) = C1 tan(rη), (145)

u2,1,22(x, t) = −C1 cot(rη), (146)

u2,1,23(x, t) = C1(tan(2 rη) + sec(2 rη)), (147)

u2,1,24(x, t) = C1(− cot(2 rη) + csc(2 rη)), (148)

u2,1,25(x, t) = C1

(
1
2

tan
(

1
2

rη

)
− 1

2
cot
(

1
2

rη

))
. (149)

Family 48. For r = −p and q = 0,

u2,1,26(x, t) = −C1 tanh(pη), (150)

u2,1,27(x, t) = −C1 coth(pη), (151)

u2,1,28(x, t) = C1(− tanh(2 pη) + i sech(2 pη)), (152)

u2,1,29(x, t) = C1(− coth(2 pη) + csch(2 pη)), (153)

u2,1,30(x, t) = C1

(
−1

2
tanh

(
1
2

pη

)
− 1

2
coth

(
1
2

pη

))
. (154)

Family 49. For q �= 0, r �= 0 and p = 0,

u2,1,31(x, t) =
1
2

C1q
r

− C1q
r(cosh(qη)− sinh(qη) + 1)

, (155)

and

u2,1,32(x, t) =
1
2

C1q
r

− C1q
r

(
(cosh(qη) + sinh(qη))

(cosh(qη) + sinh(qη) + 1)

)
. (156)

Family 50. For q = λ, r = sλ (with s �= 0) and p = 0,

u2,1,33(x, t) =
1
2

C1

s
+

C1eλ η

1 − seλ η
. (157)
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In the above solutions, η = x + ωt.
Considering Case 5 and utilizing Equations (120), (122) and the corresponding general

solution of (7) we construct the ensuing families of soliton solutions for the cubic KGE in
(3):

Family 51. For Λ < 0 and r �= 0,

u2,2,1(x, t) = C−1

⎛⎝−1
2

q
r
+

1
2

√
−Λ tan

(
1
2

√
−Λη

)
r

⎞⎠−1

+
1
2

qC−1

p
, (158)

u2,2,2(x, t) = C−1

⎛⎝−1
2

q
r
− 1

2

√
−Λ cot

(
1
2

√
−Λη

)
r

⎞⎠−1

+
1
2

qC−1

p
, (159)

u2,2,3(x, t) = C−1

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠−1

+
1
2

qC−1

p
, (160)

u2,2,4(x, t) = C−1

⎛⎝−1
2

q
r
+

1
2

√
−Λ

(
tan
(√

−Λη
)
+ sec

(√
−Λη

))
r

⎞⎠−1

+
1
2

qC−1

p
, (161)

u2,2,5(x, t) = C−1

⎛⎝−1
2

q
r
+

1
4

√
−Λ

(
tan
(

1
4

√
−Λη

)
− cot

(
1
4

√
−Λη

))
r

⎞⎠−1

+
1
2

qC−1

p
. (162)

Family 52. For Λ > 0 and r �= 0,

u2,2,6(x, t) = C−1

⎛⎝−1
2

q
r
− 1

2

√
Λ tanh

(
1
2

√
Λη
)

r

⎞⎠−1

+
1
2

qC−1

p
, (163)

u2,2,7(x, t) = C−1

⎛⎝−1
2

q
r
− 1

2

√
Λ coth

(
1
2

√
Λη
)

r

⎞⎠−1

+
1
2

qC−1

p
, (164)

u2,2,8(x, t) = C−1

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

tanh
(√

Λη
)
+ i sech

(√
Λη
))

r

⎞⎠−1

+
1
2

qC−1

p
, (165)

u2,2,9(x, t) = C−1

⎛⎝−1
2

q
r
− 1

2

√
Λ
(

coth
(√

Λη
)
+ csch

(√
Λη
))

r

⎞⎠−1

+
1
2

qC−1

p
, (166)

u2,2,10(x, t) = C−1

⎛⎝−1
2

q
r
− 1

4

√
Λ
(

tanh
(

1
4

√
Λη
)
− coth

(
1
4

√
Λη
))

r

⎞⎠−1

+
1
2

qC−1

p
. (167)

Family 53. For pr > 0 and q = 0,

u2,2,11(x, t) = C−1

√
r
p
(tan(

√
rpη))−1, (168)

u2,2,12(x, t) = −C−1

√
r
p
(cot(

√
rpη))−1, (169)
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u2,2,13(x, t) = C−1

√
r
p
(
tan(2

√
rpη) + sec

(
2
√

rpη
))−1, (170)

u2,2,14(x, t) = −C−1

√
r
p
(cot(2

√
rpη) + csc(2

√
rpη))−1, (171)

u2,2,15(x, t) = 2 C−1

√
r
p

(
tan
(

1
2
√

rpη

)
− cot

(
1
2
√

rpη

))−1
. (172)

Family 54. For pr < 0 and q = 0,

u2,2,16(x, t) = −C−1

√
− r

p
(
tanh

(√
−rpη

))−1, (173)

u2,2,17(x, t) = −C−1

√
− r

p
(
coth

(√
−rpη

))−1, (174)

u2,2,18(x, t) =− C−1

√
− r

p
(
2 tanh(

√
−rpη) + 2 isech (

√
−rpη)

)−1
(175)

u2,2,19(x, t) = −C−1

√
− r

p
(
coth

(
2
√
−rpη

)
+ csch

(
2
√
−rpη

))−1, (176)

u2,2,20(x, t) = −2 C−1

√
− r

p

(
tanh

(
1
2
√
−rpη

)
+ coth

(
1
2
√
−rpη

))−1
. (177)

Family 55. For r = p and q = 0,

u2,2,21(x, t) =
C−1

tan(rη)
, (178)

u2,2,22(x, t) =
C−1

− cot(rη)
, (179)

u2,2,23(x, t) =
C−1

tan(2 rη) + sec(2 rη)
, (180)

u2,2,24(x, t) =
C−1

− cot(2 rη) + csc(2 rη)
, (181)

u2,2,25(x, t) =
C−1

1
2 tan

(
1
2 rη

)
− 1

2 cot
(

1
2 rη

) , (182)

Family 56. For r = −p and q = 0,

u2,2,26(x, t) = − C−1

tanh(pη)
, (183)

u2,2,27(x, t) = − C−1

coth(pη)
, (184)

u2,2,28(x, t) =
C−1

− tanh(2 pη) + i sech(2 pη)
, (185)

u2,2,29(x, t) =
C−1

− coth(2 pη) + csch(2 pη)
, (186)

u2,2,30(x, t) =
C−1

− 1
2 tanh

(
1
2 pη

)
− 1

2 coth
(

1
2 pη

) . (187)
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Family 57. For r = 0, q = λ and d = sλ (with s �= 0),

u2,2,31(x, t) =
C−1

eλ Λ − s
+

1
2

C−1

s
. (188)

In the above solutions, η = x + ωt.

4. Discussion and Graphs

In this section, numerous kink soliton structures discovered in the framework of the
two KGEs under investigation are visually displayed. Using the EDAM, we were able to
identify and then demonstrate wave patterns in contour as well as in three-dimensional
plots. The soliton solutions developed for the cubic and quadratic KGEs mostly include
kink soliton profiles. When studying NPDEs associated with fluid dynamics, quantum
field theory and optics, it is beneficial to examine solitons which are travelling waves that
keep moving at a constant speed and formation. Such waveforms explain how scalar
fields act within relativistic quantum physics when the KGEs are considered, like in
vacuum state transition, kink solitons and sharp interfaces delineating fields with stable
boundaries within scalar zones of different phases or amplitudes. By researching solitons
to the KGEs, one is able to understand the basic characteristics of relativistic quantum
mechanical systems and particles and the features of vacuums. Figure 1, The 3D and
contour graphics of the bell-shaped dark soliton solution u1,1,6 given in (20) are plotted
for q := 5, p := 1, r := 4, C0 := 10, a := 2 and b := 4. Figure 2, The 3D and contour
graphics of the bright kink soliton solution u1,1,17 given in (31) are plotted for q := 0,
p := −0.003, r := 0.005, C0 := 0.001, a := 0.00005 and b := 0.00007. Figure 3, The 3D and
contour graphics of the bell-shaped kink soliton solution u1,2,16 given in (62) are plotted
for q := 0, p := 4, r := −1, C2 := 10, a := 0.005 and b := 0.005. Figure 4, The 3D and
contour graphics of the bright kink soliton solution u1,2,31 given in (77) are plotted for
q := 2, p := 1, r := 1, C2 := 70, a := 50 and b := 100. Figure 5, The 3D and contour
graphics of the bright kink soliton solution u1,3,11 given in (92) are plotted for q := 0,
p := 1, r := 4, C0 := 10, C1 := 7, C2 := 8, a := 2 and b := −2. Kink soliton solutions,
such as bright, dark, bell-shaped, cuspon and lump-like kink solutions, indicate different
localised solutions or stimulations that result from nonlinear field concepts, corresponding
to phenomena like topological deformity or particle-like structures in the context of KGEs
and related fields like quantum field theory and quantum mechanics. Dark kinks show a
localised dip in their profile, possibly signifying robust soliton-like features, whereas bright
kinks show peaks or humps in their profile, possibly suggesting transitory or meta-stable
excitations. Lump-type kinks compress on the field in pliable zones like lumps, whereas
cuspon kinks have sharp cusp-like structures and frequently exhibit interesting dynamical
behaviour. Bell-shaped kinks feature bell-like curves and can exhibit a range of behaviours
depending on the circumstances. Such kinks are fascinating because of their ability to
build robust or meta-stable localised frameworks, offer insight into the theory of field
dynamics and play a role in breaking symmetry and phase shifts. Ultimately, these kinks
will aid in our understanding of field theory, nonlinear interactions and the behaviour of
physical systems in both the classical and quantum realms. Figure 6, The 3D and contour
graphics of the twinning bright kink soliton solution u1,3,27 given in (108) are plotted for
q := 0, p := 10, r := −10, C0 := 5, C1 := 0.8, C2 := 0.100, a := 0.0080, b := 0.00110. Figure 7,
The 3D and contour graphics of the lump-like kink soliton solution u2,1,3 given in (127) are
plotted for q := 1, p := 2, r := 3, C1 := 0.25 and ω := 0.0010. Figure 8, The 3D and contour
graphics of the bright kink soliton solution u2,1,10 given in (134) are plotted for q := 4,
p := 1, r := 1, C1 := 0.40 and ω := 0.020. Figure 9, The 3D and contour graphics of the kink
soliton solution u2,2,9 given in (166) are plotted for q := 5, p := 2, r := 2, C−1 := 40 and
ω := 10. Figure 10, The 3D and contour graphics of the cuspon kink soliton solution u2,2,31
given in (188) are plotted for q := 5, p := 10, r := 0, C−1 := 4, ω := 20, s := 2, λ := 5.

Furthermore, several analytical methods have been established in the literature to
study soliton phenomena in nonlinear phenomena [33–37]. It is crucial to acknowledge that,
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while these approaches greatly advance our comprehension of soliton dynamics and assist
in linking them to the theories that explain phenomena, they may also have limitations
and shortcomings (like the seven common mistakes) [38,39]. Moreover, several methods
of this kind depend on the Riccati equation [40,41]. A general class of exact solutions to
the Riccati equation (7) was systematically presented by [42]. Moreover, expression (6), for
determining travelling waves, is precisely a rational function of the solution to the Riccati
equation. Thus, the entire solution procedure of the study exemplifies the application
of the transformed rational function method [43]. While there exist solitary solutions
for the Riccati equation, these techniques are useful for examining soliton occurrences
in nonlinear models [44]. Motivated by the above applications of the Riccati hypothesis,
the present study used the EDAM, which incorporates the Riccati equation, to build and
investigate soliton dynamics in two KGEs. This incorporation is helpful since it produces
a large number of additional kink soliton solutions in five families of solutions, periodic,
hyperbolic, rational, rational-hyperbolic and exponential, for the selected models. The
solutions proposed here greatly expand our knowledge of soliton dynamics and allow us
to relate the phenomena in the focused model to the underlying theories.

Figure 1. The 3D and contour graphics of the bell-shaped dark soliton solution u1,1,6 given in (20) are
plotted for q := 5, p := 1, r := 4, C0 := 10, a := 2 and b := 4.
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Figure 2. The 3D and contour graphics of the bright kink soliton solution u1,1,17 given in (31) are
plotted for q := 0, p := −0.003, r := 0.005, C0 := 0.001, a := 0.00005 and b := 0.00007.

Figure 3. The 3D and contour graphics of the bell-shaped kink soliton solution u1,2,16 given in (62)
are plotted for q := 0, p := 4, r := −1, C2 := 10, a := 0.005 and b := 0.005.
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Figure 4. The 3D and contour graphics of the bright kink soliton solution u1,2,31 given in (77) are
plotted for q := 2, p := 1, r := 1, C2 := 70, a := 50 and b := 100.

Figure 5. The 3D and contour graphics of the bright kink soliton solution u1,3,11 given in (92) are
plotted for q := 0, p := 1, r := 4, C0 := 10, C1 := 7, C2 := 8, a := 2 and b := −2.
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Figure 6. The 3D and contour graphics of the twinning bright kink soliton solution u1,3,27 given
in (108) are plotted for q := 0, p := 10, r := −10, C0 := 5, C1 := 0.8, C2 := 0.100, a := 0.0080, b :=
0.00110.

Figure 7. The 3D and contour graphics of the lump-like kink soliton solution u2,1,3 given in (127) are
plotted for q := 1, p := 2, r := 3, C1 := 0.25 and ω := 0.0010.
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Figure 8. The 3D and contour graphics of the bright kink soliton solution u2,1,10 given in (134) are
plotted for q := 4, p := 1, r := 1, C1 := 0.40 and ω := 0.020.

Figure 9. The 3D and contour graphics of the kink soliton solution u2,2,9 given in (166) are plotted for
q := 5, p := 2, r := 2, C−1 := 40 and ω := 10.
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Figure 10. The 3D and contour graphics of the cuspon kink soliton solution u2,2,31 given in (188) are
plotted for q := 5, p := 10, r := 0, C−1 := 4, ω := 20, s := 2, λ := 5.

5. Conclusions

We employed the proposed EDAM to construct and analyse the transmission of kink
solitons within the quadratic and cubic KGEs, two models that are frequently used in
solid-state physics, nonlinear optics and quantum field theory. Several soliton solutions
such as the dark kink, hump kink, lump-like kink, bright kink and cuspon kink soliton
solutions were obtained in terms of trigonometric, hyperbolic, exponential and rational
functions by converting the targeted models into NODEs under the circumstance where
solutions are assumed to be of closed form. The contour and 3D plots helped us compre-
hend the behaviour of the transmitting soliton processes along with various kink soliton
solutions. These graphs are directly linked to areas associated with the models discussed.
As a result, these results enhanced our comprehension of nonlinear dynamics and tem-
poral evolution processes and have implications for the comprehension of some related
physical phenomena. While the EDAM contributed significantly to our comprehension of
soliton dynamics and their linking with the targeted models, it is important to state that
the proposed method fails when the greatest derivative and the nonlinear terms are not
homogenously balanced. Despite this limitation, the present research demonstrates that the
method employed in this study is very effective, adaptable and useful for nonlinear models
across a variety of scientific fields. Furthermore, the future goal of this study is to delve
into the stability analysis of solitons and the incorporation and impact of the fractional
derivatives on solitons in the realm of targeted models.
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Abstract: In today’s industrial landscape, optimizing energy consumption, reducing pro-
duction times, and maintaining quality standards are critical challenges, particularly in
energy-intensive processes like resistance spot welding (RSW). This study introduces an
intelligent decision support system designed to optimize the RSW process for steel rein-
forcement bars. By creating robust machine learning models trained on limited datasets,
the system generates interactive heat maps that provide real-time guidance to production
engineers or intelligent systems, enabling dynamic adaptation to changing conditions
and external factors such as fluctuating energy costs. These heat maps serve as a flexible
and intuitive tool for identifying robust operational points that balance quality, energy
efficiency, and productivity. The proposed methodology advances decision-making in
welding processes by combining robust predictive modeling with innovative visualiza-
tion techniques, offering a versatile solution for multiobjective optimization in real-world
industrial applications.

Keywords: energy-sustainable decision; resistance spot welding; intelligent welding;
machine learning; artificial intelligence (AI)

1. Introduction

Welding is a fundamental process in manufacturing [1], critical for constructing
durable and high-strength structures. With the advent of Industry 4.0, many manufacturing
companies have successfully implemented automated systems for monitoring and control-
ling welding processes, effectively closing the loop from creation to quality control [2,3].
These advancements have leveraged historical data from a variety of processes to develop
artificial intelligence (AI) techniques aimed at enhancing productivity and minimizing
production costs. Within this context, machine learning (ML) has become an essential tool,
enabling the creation of intelligent models that can predict outcomes, define setpoints,
plan, control, and even identify defects in real time. Despite the growing use of AI in
Industry 4.0, sustainability concerns—particularly energy efficiency and environmental
impact—remain a secondary consideration [4]. Consequently, many companies still rely
on manual or semi-automated welding, highlighting the need to fully automate these
processes to achieve both sustainability and productivity gains.

Sensors 2025, 25, 28 https://doi.org/10.3390/s25010028
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Among the various welding techniques available, resistance spot welding (RSW) is
particularly economical and productive for joining steel in reinforced concrete structures, as
it forms a strong and durable hidden joint within a short processing time [5]. RSW is widely
preferred for high-production-rate applications, but it poses technical challenges due to
the need for precise control of parameters like current, pressure, and time. Additionally,
the high energy demands of RSW increase operational costs and impact environmental
sustainability, making the optimization of energy consumption while maintaining quality
and productivity a key priority for manufacturers [6].

In this study, we focus on assembly welding for reinforced steel used in concrete
structures, which is critical for ensuring structural integrity and durability. This RSW
process involves applying pressure and electrical current to overlapping steel bars, forming
a solid-state bond. Typical configurations require welding bars of different diameters to
ensure joint integrity. The equipment used in this study, PRAXAIR MPH Digital Pneumatic,
allows precise parameter control, but optimization is critical to balance quality, cost, and
sustainability. Two key indicators, deformation limitation and strength, were selected
to evaluate the process. Deformation limitation helps mitigate damage from residual
stresses, while strength ensures overall reliability. These metrics are essential for meeting
structural standards.

The aim of this work is to develop an intelligent decision support system to optimize
the RSW process for steel reinforcement welding. This system integrates machine learning
models trained on experimental data to generate intelligent heat maps. These heat maps
provide real-time guidance, enabling operators to identify robust operational points that
satisfy constraints related to quality, energy consumption, and production time. The main
contributions of this study are twofold:

• The development of machine learning models to estimate optimal welding parameters
despite the small dataset available [7]. The proposed machine learning approach
accurately predicts ideal parameters and remains robust under varying conditions.

• The introduction of intelligent heat maps as a visual and flexible tool that enables pro-
duction engineers to address the challenge of balancing welding quality, production
time, and energy savings while adapting to dynamic constraints and external factors
like energy costs. Unlike traditional optimization methods, heat maps allow engineers
to dynamically identify optimal operating points and robust regions where process
parameters remain stable. These maps can also be integrated into intelligent sys-
tems for automated decision-making, providing a versatile solution for multiobjective
optimization in welding and similar industrial processes.

In Section 2, Section 2.1 presents related works on RSW. Section 2.2 outlines the main
issues encountered when working with small datasets, as well as background on ML
techniques relevant to this research. Section 2.3 provides a detailed description of the
dataset underlying this study, including the experimental procedures and methodologies
employed in its collection and development. Section 2.4 explains the proposed approach.
Section 3 presents the experimental results and a discussion of these findings. Finally,
Section 4 concludes this paper by summarizing the main contributions and suggesting
future research directions.

2. Materials and Methods

2.1. The Resistance Spot Welding Process

Artificial intelligence (AI) has significantly advanced the understanding and opti-
mization of the resistance spot welding (RSW) process [8,9]. Techniques such as neural
networks [3,10] and adaptive neuro-fuzzy inference systems (ANFISs) [9] have been em-
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ployed to predict weld strength in steel sheets with high accuracy. Additionally, carbon
emissions from welding processes have been modeled to assess environmental impacts [11].

The recent surge in manufacturing data has facilitated the application of machine
learning (ML) in welding quality prediction. For instance, logistic regression models have
been utilized to predict defects in electric resistance welded tubes, yielding satisfactory
results and enabling the estimation of safe operating ranges for process variables [12]. Sup-
port vector regression has also been applied to predict quality in electron beam welding [13].
Furthermore, feature engineering-based ML approaches have been proposed for quality
prediction in RSW of steel sheets, combining engineering and data science perspectives
to provide insights into welding data and account for the dynamic nature of RSW due to
factors like cooling time and electrode wear [14].

In recent years, there has been a growing interest in integrating AI with sensor data
to enhance RSW processes. For example, a study developed a machine learning tool to
predict the effect of electrode wear on weld quality, achieving an accuracy of 90% [15].
Another research utilized a convolutional neural network (CNN) combined with a long
short-term memory (LSTM) network and an attention mechanism to detect welding quality
online, achieving a detection accuracy of 98.5% [16]. Additionally, AI-driven interpretation
of ultrasonic data has been explored for real-time quality assessment in RSW, highlighting
the potential of adaptive welding using ultrasonic process monitoring backed by AI-based
data interpretation [17].

Despite these advancements, the application of AI in the RSW of reinforcement bars
(rebar) remains underexplored. Moreover, existing studies primarily focus on predictive
modeling and do not incorporate visualization techniques to facilitate sustainable decision-
making beyond the outputs of ML models. This gap underscores the need for research
that integrates AI-driven predictive models with intuitive visualization tools to support
informed and sustainable decisions in RSW processes.

2.2. Machine Learning-Based Strategy for Small Datasets

Automating complex industrial processes, such as resistance spot welding (RSW),
often encounters the challenge of limited data availability during initial implementation
phases. In many cases, comprehensive process data are scarce, necessitating the acquisition
of information through meticulously designed experiments that span the entire operational
state space. Typically, these datasets consist of process conditions as inputs and correspond-
ing weld quality parameters as outputs. Machine learning (ML) models can be developed
from this data to predict optimal setpoints based on predefined requirements. However,
constructing and deploying these models is particularly challenging when relying on
experimental datasets, primarily due to their limited size and scope.

The high economic and time costs associated with experimental data collection of-
ten result in datasets that are insufficiently large to capture the full spectrum of process
variability. This limitation can lead to the development of overfitted models—models that
have learned the training data too well and, consequently, fail to generalize to new, unseen
conditions [18]. Overfitting is a common issue in models with high complexity, such as deep
neural networks with numerous parameters or extensive regression trees, where the model
effectively ’memorizes’ the training data rather than learning the underlying patterns.

Conversely, employing less flexible algorithms, such as simple linear regression,
may yield models with inadequate accuracy, rendering them unsuitable for capturing the
complexities of the process. Therefore, selecting an appropriate algorithm and meticulously
tuning its parameters are critical steps in developing accurate ML models, especially when
dealing with small datasets [19]. Robustness is a key consideration to ensure that the

581



Sensors 2025, 25, 28

setpoints derived from these models remain reliable and stable, even in the presence of
input perturbations.

Recent studies have explored various strategies to address the challenges associated
with small datasets in ML applications. Techniques such as data augmentation, transfer
learning, and the use of ensemble methods have been investigated to enhance model
performance and generalization capabilities [20]. Additionally, the integration of domain
knowledge into the modeling process has been shown to improve the reliability of pre-
dictions, particularly in industrial applications where expert insights can compensate for
limited data [21].

In summary, effectively managing the constraints of small datasets requires a balanced
approach that combines careful algorithm selection, parameter tuning, and the incorpora-
tion of domain expertise. Such strategies are essential to develop robust and accurate ML
models capable of supporting automation in industrial processes like RSW.

2.2.1. The Strategy in this Study

The primary task in developing a machine learning (ML)-based decision support
system involves testing various models and optimizing their hyperparameters. When
working with large datasets and numerous hyperparameters, it is common practice to limit
the number of models tested and use grid search for hyperparameter optimization due to
the substantial computational cost of each experiment.

In this study, however, the dataset is relatively small (298 rows with five input variables
and two target variables). This smaller dataset size has three key implications:

• There is an elevated risk of overfitting.
• The limited dataset size necessitates additional experimental trials.
• Feature selection is unnecessary, as there are only five input variables.

To mitigate the risk of overfitting in training, we employ a nested cross-validation
approach. Given the small dataset size, this method is repeated multiple times to enhance
the robustness of the results. Additionally, hyperparameter optimization is performed using
Bayesian optimization rather than the more conventional grid search, which improves
efficiency and allows for more refined parameter tuning.

Beyond traditional models like random forest (RF) and multilayer perceptron (MLP),
we also evaluate a powerful AutoML tool, Autogluon, to further streamline and enhance
the modeling process.

2.2.2. Bayesian Optimization

Bayesian optimization [22] is a popular algorithm for hyperparameter optimization in
machine learning models. While alternative methods like evolutionary algorithms [23] and
particle swarm optimization [24] exist, they are typically more computationally expensive
and often require numerous evaluations.

In Bayesian optimization, a probabilistic model of the objective function is iteratively
updated to guide the selection of hyperparameters. This process involves evaluating
the model with selected hyperparameters, updating the probabilistic model based on
performance, and repeating until an optimal set of hyperparameters is identified. By
leveraging past iterations, Bayesian optimization focuses the search on promising regions
of the hyperparameter space.

Compared with standard methods like grid and random search, Bayesian optimization
provides a more efficient exploration of the hyperparameter space. Unlike grid search,
which examines a fixed set of points and may miss key regions, Bayesian optimization uses
its probabilistic model to adaptively explore high-potential areas, even in the presence of
non-convex or noisy objective functions. This adaptability helps it avoid local optima and
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manage evaluation noise more effectively. However, since Bayesian optimization relies on
iterative learning from previous evaluations, it tends to have higher computational costs
per iteration.

2.2.3. Nested Cross-Validation

Cross-validation (CV) is essential when developing machine learning models, as it
provides a reliable estimate of model performance on unseen data and helps mitigate
overfitting. The core idea of cross-validation is to split the dataset into training and testing
sets multiple times. The model is trained on each training set and evaluated on the corre-
sponding testing set. Repeating this process across different data splits yields a more robust
estimate of the model’s performance. The most common method, k-fold cross-validation,
divides the dataset into k equally sized folds. The model is trained on k − 1 folds and tested
on the remaining fold. This process is repeated k times, so each fold is used once for testing.

The development of AI/ML systems is prone to errors, especially related to model biases
and dataset shifts [25]. Model biases often stem from improper training procedures, leading
to skewed inference results. Dataset shifts, on the other hand, arise from mismatches
between training and testing data distributions. These issues are particularly challenging
with small datasets, where the limited data volume amplifies the risk of overfitting and
makes mistakes more likely.

Nested cross-validation is a technique designed to evaluate both the generalization
error of a machine learning model and its hyperparameters. It is an extension of the k-
fold cross-validation approach and is particularly beneficial when working with small
datasets and models with numerous hyperparameters to tune [26]. Algorithm 1 presents a
pseudo-code version of the process.

Algorithm 1 Pseudo-code for nested cross-validation

1: Split the data into k outer folds.
2: for each outer fold do
3: Split the outer training set into k − 1 inner folds and one inner validation fold.
4: for each combination of hyperparameters do
5: Train the model on the k − 1 inner folds.
6: Evaluate the model on the inner validation fold.
7: end for
8: Select the hyperparameters that yielded the best performance on the inner validation

folds.
9: Retrain the model on the full outer training set (using all inner folds) with the

selected hyperparameters.
10: Evaluate the model on the outer test fold.
11: end for
12: return Average performance of the model across all outer test folds.

The key concept in nested cross-validation is the use of two nested loops of cross-
validation:

1. Outer loop: The outer loop splits the data into training and testing sets, similar to
standard cross-validation. However, rather than using the same hyperparameters
across all folds, a unique set of hyperparameters is selected for each fold.

2. Inner loop: The inner loop is dedicated to hyperparameter selection. It performs
cross-validation on the training set to assess the model’s performance with various
hyperparameter configurations. The set of hyperparameters that performs best in the
inner loop is then used to train the model on the full training set in the outer loop.

Considering the scalability challenges of nested cross-validation with large datasets,
it is noted that for fully automated systems capable of generating extensive data, stan-
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dard cross-validation may provide a more computationally efficient alternative while
maintaining robust performance metrics, a point explicitly addressed in this study.

2.3. The RSW Process Dataset

This study utilizes a dataset on the strength of resistance spot welding (RSW), created
through controlled welding experiments and described in detail by Ferreiro-Cabello et al. [7].
The following lines summarize the process of creating the dataset and expand on its main
features, incorporating additional context and methodology details.

The dataset includes welding tests on rebar of structural steel B500-S, specifically in
diameters commonly used in reinforced concrete structures: 8, 10, 12, and 16 mm.

This study focuses on assembly welding, specifically the fabrication of reinforcement
steel (ferralla), which does not have a structural purpose.

These diameters were selected to represent a range of joint thicknesses between
16 mm and 32 mm, as shown in Table 1. For each combination, the test configuration
consisted of welding three bars of diameter B to one of diameter A, as illustrated in
Figure 1. This configuration ensured that the dataset would include the most frequently
used joint dimensions in the production of electro-welded meshes.

Figure 1. (a) Fusion welding of reinforcement bars. (b) Test bar configuration and weld strength
failure (S).

Table 1. Combinations of diameters for joint Thickness.

Diameter A (mm) Diameter B (mm) Joint Thickness (mm)

8 8 16

8 10 18

8 12 20

10 12 22

12 12 24

10 16 26

12 16 28

16 16 32

The welding experiments were conducted using a PRAXAIR MPH Digital Pneumatic
welder, equipped with a maximum power output of 50 kVA. This equipment enabled
precise adjustments of key welding parameters, including time (t), current intensity (I), and
pressure (p). Welding time was controlled by a digital system, which allowed for cycles
of up to 2 s, split into different active time percentages to match the joint thickness. Three
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discrete values of pressure (5, 6, and 7 bars) were used, and current intensity varied from
40% to 80% of the maximum power, as shown in Figure 2.

Figure 2. Active welding time according to joint thickness, represented on a 0–100 scale.

A total of 2160 welds were performed, corresponding to 360 combinations of t-I-p for
each joint thickness. For each parameter combination, two sets of six welded bars were
prepared to assess both strength and deformation characteristics. The welding parameter
commands are shown in Table 2.

Table 2. The welding parameter commands for the A-t-p equipment.

Joint Thickness (mm) Equipment Parameters No. Specimen
Phase-1 (Contact) Phase-2 (Welding)

16 A*0.5 40–50–60–70–80% 45
t*1/3 25–35–45
5_6_7 5_6_7

18 A*0.5 40–50–60–70–80% 45
t*1/3 29–40–51
5_6_7 5_6_7

20 A*0.5 40–50–60–70–80% 45
t*1/3 32–44–57
5_6_7 5_6_7

22 A*0.5 40–50–60–70–80% 45
t*1/3 35–49–62
5_6_7 5_6_7

24 A*0.5 40–50–60–70–80% 45
t*1/3 38–53–68
5_6_7 5_6_7

26 A*0.5 40–50–60–70–80% 45
t*1/3 41–57–74
5_6_7 5_6_7

28 A*0.5 40–50–60–70–80% 45
t*1/3 44–62–79
5_6_7 5_6_7

32 A*0.5 40–50–60–70–80% 45
t*1/3 50–70–90
5_6_7 5_6_7
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To evaluate joint deformation, the contact area thickness was measured after welding.
This measurement was conducted using a Palmer micrometer to ensure non-destructive
sampling accuracy. The deformation (D) was calculated as

D = 1 −
∑6

n=1 en
6

A + B
% (1)

where en represents the individual thickness measurements. An acceptable weld was
defined by minimum values of S = 3500 N and D = 0.85(A + B), filtering out any outliers
due to test errors.

In addition to thickness measurements, weld strength was tested using destructive
shear (τ) and tensile (σ) tests with a Servosis ME-420/20 machine. For each combination,
the mean values of shear (τ̄) and tensile (σ̄) strength were calculated. The combined strength
(S) was computed using

S =
√

σ̄2 + τ̄2 (2)

as illustrated in Figure 1. This comprehensive testing provided reliable data on joint
performance across various conditions.

Finally, the dataset consists of five input variables (diameters A and B, t, I, and p) and
two output variables (S and D). Extreme outliers were removed, resulting in a final dataset
of 298 rows, each representing a unique welding condition.

Figure 3 shows the distribution of joint thickness across experiments, confirming
the dataset’s balanced coverage for different joint thicknesses. This balance ensures that
the dataset represents a diverse range of welding conditions applicable to industrial
RSW processes.

Figure 3. Distribution of experiments according to the total joint thickness, thickness = A + B.

2.4. Methodology

The proposed methodology involves a series of steps designed to optimize the machine
learning (ML) models, ensure their robustness, and facilitate sustainable decision-making.
The steps are as follows:

1. Selection of ML algorithms: Choosing the most appropriate algorithms based on the
nature of the problem and the limited dataset size.

2. Model training and evaluation: Implementing nested cross-validation combined
with Bayesian optimization for hyperparameter tuning to enhance model performance
and prevent overfitting.
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3. Robustness analysis: Assessing model robustness to ensure reliable performance
across various data conditions.

4. Heat map generation: Developing interactive heat maps to support sustainable
decision-making by visualizing optimal operational regions.

2.4.1. Selection of the ML Algorithms

The main goal was to develop machine learning (ML) models capable of making
robust and accurate predictions of S (strength) in Newtons (N) and D (deformation) as a
percentage (%). As described in Section 2.3, the dataset consists of 298 experimental cases
with five input variables representing each test configuration: A-B-t-I-p, along with two
output target variables: S (strength) and D (deformation).

To enhance model training, the distribution of the target variables was improved by
applying a square root transformation. This adjustment aimed to reduce skewness and
improve the stability of the predictions. Finally, the entire dataset was normalized to ensure
uniformity in the input scale across all variables.

The following algorithms were selected for experimentation due to their suitability
for small datasets: ridge regression (Ridge), kernel ridge regression (KRidge), decision
tree regressor (DTR), random forest regressor (RF), support vector regression (SVR), and
multilayer perceptron (MLP). All of these algorithms are available in the scikit-learn

Python library and are well suited for the dataset size and structure. Table 3 summarizes
the hyperparameter optimization ranges for each model.

In addition to these established ML models, the AutoGluon AutoML tool was also
included in the experiments to explore potential performance gains through automated
model selection and tuning. Other algorithms, such as Lasso regression, K-Nearest Neigh-
bors regression, and Gaussian process regression, were excluded from the final experiments
due to suboptimal performance with this dataset.

Table 3. ML models and ranges of the optimization of each hyperparameter.

Algorithm Tuning Hyperparameters

Ridge alpha = 10[−7,3]

Kridge alpha = 10[−7,0]

gamma = 10[−7,0]

kernel = rbf
DTR max_depth ∈ [1, 30]

min_imp ∈ [0, 1]
RF max_depth ∈ [1, 30]

n_estimators ∈ [1, 50]
min_imp ∈ [0, 1]

SVR C = 10[−7,3]

gamma = 10[−7,0]

kernel = rbf
MLP hidden_size ∈ [1, 25]

alpha = 10[−7,0]

activation = logistic

2.4.2. Training and Evaluation

Once the models were selected, we proceeded with their training and evaluation.
Given the small dataset size, which increases the risk of overfitting but allows for multiple
experimental trials, we incorporated two advanced techniques: Bayesian optimization and
nested cross-validation. Although widely recognized, these techniques are not typically
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part of standard AI model development, where simpler approaches such as grid search
and basic cross-validation are more common.

Bayesian optimization was particularly suited to this problem due to its balance
between performance and computational efficiency, making it ideal for the dataset size and
the need for a robust cross-validation scheme.

For model validation, we employed a repeated k-fold nested cross-validation to ensure
both accurate hyperparameter tuning and reliable performance estimation. Specifically,
we performed a 10-times repeated 10-fold nested cross-validation. In each repetition, the
outer loop ran 10 times, creating 10 unique test sets. For each iteration of the outer loop
(i.e., with a fixed test set), we conducted a 9-fold cross-validation within the inner loop,
using Bayesian optimization with 200 iterations to fine-tune the hyperparameters. In the
inner loop, the non-test data were divided into 9 parts: 8 for training and 1 for validation.
This inner cross-validation process was repeated 9 times, and the best hyperparameters
identified were used to retrain the model on the combined training and validation sets
before evaluating it on the test set. Predictions on the test set were stored for subsequent
analysis. Figure 4 illustrates an example of the inner loop in one iteration of the outer loop.
This process resulted in a total of 100 different training, validation, and testing partitions.

Figure 4. Example of the inner loop within one iteration of the nested cross-validation process. The
model is optimized using Bayesian optimization over 9 folds, while the test set remains untouched
during this stage. The final model is evaluated on the test fold.

Overall, this nested cross-validation process was repeated 10 times, leading to
900 executions of the inner loop for hyperparameter optimization and 100 executions
of the outer loop. The final predictive performance was reported as the mean Root Mean
Square Error (RMSE) obtained from the 100 outer loop iterations.

2.4.3. Robustness Analysis

Robustness analysis is crucial in machine learning (ML) applications within the indus-
trial sector, as it ensures models are reliable, accurate, and compliant, thereby mitigating
risks associated with incorrect predictions. Sensitivity analysis serves as a key tool in as-
sessing the robustness of ML models by examining how variations in input data influence
model outputs. By systematically altering input variables and observing the resulting
changes in predictions, one can identify scenarios where the model may underperform and
evaluate its reliability under diverse conditions.

Several methods are commonly employed for conducting sensitivity analysis in ma-
chine learning:

1. One-at-a-time (OAT) method: This approach involves altering one input variable
at a time while keeping all other inputs constant to observe the effect on the
model’s output.

2. Morris method [27]: This technique systematically and randomly varies each input
variable to generate a set of samples. Statistical methods are then applied to determine
the importance of each input variable.
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3. Sobol method [28]: A more sophisticated approach that utilizes sequences of or-
thogonal arrays to systematically vary input variables, enabling the identification of
significant input variables and their interactions.

In our approach, we leverage predictions obtained from the testing set using the best-
performing algorithms for targets S (strength) and D (deformation). For a given pressure
(P) and thickness (t), along with specific values of A and B, we present figures displaying
the mean predicted values and their 95% confidence intervals for each pair of current (I)
and time (t) values. These intervals are compared with actual observed values; if the actual
value falls within the prediction interval, it indicates the model’s robustness for those
input parameters. See Figures 5–9.

2.4.4. Creation of Heat Maps

Finally, a strategy was developed to utilize the ML models in a way that facilitates
multicriteria decision-making, incorporating welding quality, production time, and energy
savings. As previously explained, weld quality is defined by its strength S, provided it does
not exceed an acceptable deformation value D. Additionally, another important objective
is to reduce the time required for each weld (t) to maximize production. Lastly, minimizing
energy costs, which are proportional to the product C = It, serves as another key criterion.
Depending on the specific production requirements, these priorities may vary; for example,
sometimes the primary goal is to ensure high-quality welds, while in other cases, reducing
energy usage to cut costs may take precedence. The importance of this last factor has
increased substantially due to recent surges in electricity prices.

At first glance, optimizing the resistance spot welding process to balance energy
consumption, efficiency, and quality appears to be a multiobjective optimization problem.
However, in practice, different circumstances may require prioritizing one objective over
the others. This is why we considered heat maps as a valuable tool to aid in selecting
the most suitable settings at any given time. Although ML models can be employed for
fully automated production, production engineers often need to ensure that the process
operates within a stable region that meets predefined standards for time, quality, and
energy efficiency. Thus, the proposed decision support system (DSS) utilizes heat maps
generated from ML model predictions to identify, based on joint thickness, the optimal
operating points according to weld quality criteria, limited by a maximum deformation
Dmax and a minimum strength Smin.

As discussed in Section 2, relying exclusively on heat maps may sometimes be re-
strictive, as additional information or multiple visualization techniques are often required.
To address this, we propose an enhanced method that overlays additional data onto the
heat maps, aiding decision-making without overwhelming the viewer. Specifically, our
approach involves generating heat maps for a given thickness, with intensity (I) and time
(t) represented on the axes. The colors on the heat map depict the strength, predicted by
the AI models. To further enhance decision robustness, the color values correspond to the
lower bound of the 95% confidence interval (CI95min) for S, and the upper bound (CI95max)
for D is shown as region borders within the heat map. This design allows decision-makers
to quickly interpret the data and make informed choices. By combining heat maps with
AI model predictions and confidence intervals, this approach provides a comprehensive
solution for visualizing data and selecting optimal values for time and intensity, taking into
account required strength, confidence, risk of disturbances, and energy costs. An example
heat map is shown in Section 3.

The heat map construction follows these steps:

1. Using the previously selected algorithm, the entire dataset is utilized to search for
optimal hyperparameters via Bayesian optimization with 10-fold cross-validation.
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2. Once the hyperparameters that minimize the cross-validation error are obtained,
3000 iterations are conducted to create a series of training datasets through random
sampling with replacement. In each iteration, a test dataset is also generated with
multiple random pairs of I and t, constrained within plausible physical ranges for a
specific thickness and pressure. At the end of the 3000 iterations, a sufficiently large
prediction dataset is generated, containing multiple predictions for each combination
of input features by aggregating all test predictions.

3. With this dataset, and once thickness and p are set, heat maps can be created with
matrices of CI95min for S and CI95max for D across the full range of possible values
for I and t.

Figure 5. Boxplots of the RMSE obtained with each algorithm for predicting weld strength.

Figure 6. Comparison of the RMSE distribution obtained with the MLP and Autogluon algorithms
for weld strength.
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Figure 7. Boxplots of the RMSE obtained with each algorithm for predicting weld deformation.

Figure 8. Prediction of S with p = 6 for each pair (I, t) and six thickness values. The dashed lines
indicate a 95% confidence interval and the continuous line is the average value. The red dashed line
corresponds to the real value for each pair of values (I, t). The values of I and t correspond to the %
of the maximum intensity and % of the maximum time in 2 s.
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Figure 9. Prediction of D with p = 6 for each pair (I, t) and six thickness values. The dashed lines
indicate a 95% confidence interval and the continuous line is the average value. The red dashed line
corresponds to the real value for each pair of values (I, t). The values of I and t correspond to the %
of the maximum intensity and % of the maximum time in 2 s.

3. Results and Discussion

This section presents the evaluation of the proposed methodology, focusing on its
ability to optimize resistance spot welding (RSW) processes for steel reinforcement bars. The
main objective is to balance three critical factors—weld quality, production efficiency, and
energy consumption—by leveraging machine learning models and heat maps as decision
support tools. The approach includes selecting robust predictive models, validating their
generalization across different welding conditions, and utilizing interactive visualizations
to aid decision-making. The results are discussed in terms of the accuracy, robustness, and
practical applicability of the models, as well as the insights provided by the heat maps for
multiobjective optimization.
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It is worth emphasizing that the dataset used in this study comprised the typical
thicknesses commonly employed in reinforcement fabrication. During the dataset creation
process, certain thickness combinations failed to meet the minimum quality criteria due
to weak or failed joints. Consequently, fewer viable records were available for extreme
thickness combinations, which were limited to specific welding conditions. To overcome
this limitation, a robust model selection strategy based on nested cross-validation was
implemented, significantly improving the generalization capabilities of the machine learn-
ing models. The effectiveness of this approach across the entire range of thicknesses is
demonstrated in Figures 8 and 9.

3.1. Search of the Best Algorithm for S and D

The first step, as outlined in the methodology, involved selecting the best ML algo-
rithms and conducting the training and validation of the models (Steps 1 and 2 of the
methodology).

Tables 4 and 5 present the error metrics for the best models obtained with each algo-
rithm, ordered from lowest to highest Root Mean Square Error (RMSE). These tables also
include the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) for
each model. The last column details the hyperparameters optimized through Bayesian
optimization. Reported values correspond to the mean and standard deviation (in paren-
theses) of 100 measurements, collected from each iteration of the outer loop in a 10-repeated
10-fold nested cross-validation. Additionally, Figures 5 and 7 show comparative box plots
for both target variables.

The selection of the best algorithm was based on a combined analysis of the mean and
variance of RMSE. For S, the multilayer perceptron (MLP) was chosen, as it demonstrated
a favorable balance between accuracy and robustness. Although AutoGluon achieved
a slightly lower mean RMSE than MLP (2085.5 vs. 2104.3), the MLP model exhibited a
significantly lower standard deviation (363.7 vs. 462.6), and none of the MLP predictions
exceeded an RMSE of 3000, as shown in Figure 6. This indicates that MLP models not only
achieved high accuracy but were also more robust, with considerably lower variability.
Similar patterns were observed for MAE and MAPE, reinforcing the robustness of the
MLP model.

Table 4. Errors and best hyperparameters for S. Values are the average and the standard deviation
(between parentheses) obtained with each algorithm and a 10-repeated 10-fold nested cross-validation
(100 measures).

Algorithm RMSE MAE MAPE Hyperparameters

Autogluon 2085.5 (462.6) 1486.9 (291.2) 16.2 (3.2) presets = best_quality
time_limit = 5 min

MLP 2104.3 (363.7) 1546.0 (263.6) 17.5 (2.7) hidden_size = 7.20 (3.99)
alpha = 10−1.673 (100.513)
activation = logistic

RF 2275.1 (486.1) 1623.6 (320.1) 17.3 (3.4) max_depth = 17.97 (6.48)
n_estimators = 30.82 (11.74)
min_imp = 2.8 × 10−5 (2 × 10−4)

KRidge 2350.2 (497.0) 1671.5 (311.2) 19.1 (3.5) alpha = 10−1.296 (100.198)
gamma = 10−0.623 (100.138)
kernel = rbf

SVR 2351.4 (472.6) 1644.9 (299.0) 18.8 (3.4) C = 100.769 (100.362)
gamma = 10−0.665 (100.175)
kernel = rbf

DTR 2502.6 (510.6) 1840.3 (356.3) 19.7 (3.9) max_depth = 14.72 (6.90)
min_imp = 6.8 × 10−4 (7.1 × 10−4)

Ridge 3381.8 (770.4) 2366.8 (440.1) 25.6 (4.9) alpha = 10−6.062 (102.246)
tol = 1.0 × 10−4
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Table 5. Errors and best hyperparameters for D. Values are the average and the standard deviation
(between parentheses) obtained with each algorithm and a 10-repeated 10-fold nested cross-validation
(100 measures).

Algorithm RMSE MAE MAPE Hyperparameters

MLP 0.0109 (0.0036) 0.0077 (0.0016) 30.91 (10.09) hidden_size = 4.42 (2.50)
alpha = 10−2.269 (101.266)
activation = logistic

Autogluon 0.0114 (0.0048) 0.0077 (0.0018) 32.09 (11.81) presets = best_quality
time_limit = 5 min

RF 0.0117 (0.0035) 0.0083 (0.0016) 33.15 (12.60) max_depth = 18.78 (6.35)
n_estimators = 32.43 (10.94)
min_imp = 5.9 × 10−6 (4.2 × 10−5)

KRidge 0.0121 (0.0049) 0.0082 (0.0018) 32.25 (11.49) alpha = 10−3.856 (101.172)
gamma = 10−2.037 (100.456)
kernel = rbf

SVR 0.0125 (0.0055) 0.0083 (0.0020) 32.35 (11.28) C=102.729 (100.378)
gamma = 10−1.789 (100.207)
kernel = rbf

DTR 0.0133 (0.0044) 0.0097 (0.0018) 40.93 (15.02) max_depth = 17.64 (7.18)
min_imp = 5.5 × 10−4 (8.0 × 10−4)

Ridge 0.0198 (0.0099) 0.0114 (0.0033) 34.81 (8.37) alpha = 100.148 (100.784)
tol = 1.0 × 10−4

For D, the MLP obtained the lowest mean RMSE (0.0109) and a standard deviation
value of 0.0036, very close to that achieved with RF. MLP also obtained the best MAE
and MAPE.

3.2. Model Robustness Analysis

After selecting the best models and evaluating their performance, the next step was to
analyze their behavior and variability in response to changes in input variables.

Figures 8 and 9 present examples of the combined models’ predictions for S (strength)
and D (deformation), respectively, across different combinations of I (intensity) and t (time)
with p = 6 and for six of the seven thickness levels in the dataset. Note that I and t values
are expressed as percentages of the welding machine’s maximum intensity and a maximum
welding time of 2 s, respectively. The cases are ordered first by increasing electrical intensity
(I), and within each intensity level, by increasing t. Consequently, cases located further to
the right correspond to higher energy levels, as energy is proportional to the product of I
and t. The solid blue line represents the mean prediction for each group of cases defined
by I and t, while the dashed lines show the 95% confidence interval (CI95) of the estimate.
The red line indicates the average actual value for each case.

These graphs demonstrate that, for each thickness, an appropriate selection of I and t
enables a balance between achieving adequate weld strength and maintaining quality. For
S, the lower bound of the CI95 (CI95min) is the critical value to examine, as it represents
the most conservative prediction for strength. Conversely, for D, the upper bound of the
CI95 (CI95max) is of interest, as it reflects the worst-case scenario for deformation.

The results indicate that the models exhibit robust behavior, as evidenced by narrow
confidence intervals, with the red line (actual values) generally falling within these intervals.
However, for the 18 mm thickness, particularly at high energy levels (i.e., high I and t
values), the confidence intervals widen, indicating increased uncertainty in predictions
for these conditions. Thus, caution is advised when operating with 18 mm thicknesses at
elevated energy levels.

Similar patterns were observed for pressure settings of p = 5 and p = 7.

3.3. Heat Maps for Decision-Making

Figures 10 and 11 present two examples of heat maps incorporating I (intensity) and t
(time) to estimate the values of S (strength) and D (deformation).
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To enhance the understanding of these figures, Table 6 provides a detailed description
and interpretation of the variables depicted.

To support multicriteria decision-making, the CI95min of S and CI95max of D are
superimposed on these figures. The colored regions represent the CI95min values of S, while
solid lines indicate the CI95max boundaries for D. Specifically, the green line corresponds to
CI95max = 0.05 for D, the yellow line to CI95max = 0.10, and the red line to CI95max = 0.15.

Figure 10 shows the heat map for thickness = 18 and p = 6. The area between the
green and yellow lines represents a CI95max range of D between 0.05 and 0.10. If a maxi-
mum D of 0.10 is required, position 1 (t = 33% and I = 64%) would be appropriate, as it
ensures a CI95min of S within 10,000–12,000N. However, this decision could be reconsidered
if the objective is to further reduce time and energy consumption, albeit with a potential
reduction in weld quality. For instance, position 2 represents an alternative operating point
with shorter times, at the expense of reducing the S range to 8000–10,000N.

(t=18%, I=77%)
Strength=10k-12k
       3

Deformation (CI95max) = 0.05 - 0.10

Deformation (CI95max) = 0.10-0.15

Deformation (CI95max) > 0.15

(t=33%, I=64%)
Strength=10k-12k
                1

(t=29%, I=72%)
Strength=12k-14k
        4

(t=23%, I=67%)
Strength=8k-10k
             2

Figure 10. Heat map showing the CI95min value of S and CI95max of D for each combination of I and
t, with thickness = 18 and p = 6. The multicolored vertical strip represents the CI95min value of S,
while the green, yellow, and red contour lines indicate CI95max values of D at levels of 0.05, 0.10, and
0.15, respectively. The values of I and t correspond to the percentage of the maximum intensity and
the percentage of the maximum time (2 s), respectively.
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Figure 11. Heat map displaying the CI95min value of S and CI95max of D for each combination of I
and t, with thickness = 26 and p = 7. The multicolored vertical strip represents the CI95min value of
S, while the green, yellow, and red contour lines denote CI95max values of D at levels of 0.05, 0.10,
and 0.15, respectively. The values of I and t are expressed as percentages of the maximum intensity
and maximum time (2 s) of the welding machine.

Point 3 maintains the same S range as Point 1 but halves the value of t, with a trade-off:
higher energy consumption and reduced weld quality, as it falls within the CI95max range of
D between 0.10 and 0.15. Lastly, Point 4 increases the S range to 12,000–14,000N, although
it lies within a smaller, isolated region of stability.

Another example is shown in Figure 11 for thickness = 26 and p = 7. In this case, a
viable option is position 1, with t = 81% and I = 70%, resulting in an S range between
20,000 and 22,000 N. Alternatively, other operating points may be chosen to increase S: for
instance, position 2 achieves a range of 22,000–24,000 N with a reduction in t to 50% but an
increase in I by 10%. Lastly, position 3 extends the time parameter, raising the S range to
24,000–26,000 N, though with deformation values between 0.10 and 0.15.
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Table 6. Description and interpretation of variables included in the heat maps.

Variable Description Interpretation in Heat Maps

t (Time) Represents the welding time, expressed as a percentage
of the maximum welding time of 2 s.

Displayed along one axis of the heat maps, t influences
the energy applied during the welding process.

I (Intensity)
The electrical current intensity used during welding,
expressed as a percentage of the welding machine’s
maximum intensity.

Shown along one axis of the heat maps, I contributes to
the energy applied during the welding process.

S (Strength) Represents the weld strength, calculated as a
combination of shear and tensile strength.

The heat maps show the lower bound of the 95%
confidence interval (CI95min) for S, representing the
most conservative prediction for weld strength.

D (Deformation) Describes the deformation of the weld, expressed as a
percentage of the total thickness of the joint.

The heat maps display the upper bound of the 95%
confidence interval (CI95max) for D, reflecting the
worst-case scenario for deformation.

CI95min The lower bound of the 95% confidence interval for S.

Indicates the most conservative prediction for weld
strength, used to assess the reliability of strength
predictions. The multicolored vertical strip represents
this variable.

CI95max The upper bound of the 95% confidence interval for D.

Indicates the worst-case scenario for weld deformation,
guiding decisions to minimize deformation. The green,
yellow, and red contour lines denote values of this
variable at levels of 0.05, 0.10, and 0.15, respectively.

3.4. Trade-Offs Between Quality, Efficiency, and Energy for thickness = 18 and p = 6

Table 7 presents the key parameters for quality, production time, and energy consump-
tion in the welding process with thickness = 18 and p = 6 (Figure 10). This table highlights
critical insights into process performance at different operational points, emphasizing
the trade-offs between production efficiency, energy savings, and weld quality. Values
highlighted in red indicate the most unfavorable conditions, while those in bold black
represent the optimal values.

Table 7. Quality, production times, and consumed energy corresponding to the points in Figure 10 of
a process with thickness = 18 and p = 6.. The bold values correspond to the best results obtained for
each variable

Quality Time Energy

Point S (kN) D (%) t (%) t (s) Inc. Prod (%) I (%) P (kVA) E (kJ) Reduc. E (%)

1 10–12 5–10 33 0.66 0.0 64 32.00 675.84 10.1
2 8–10 5–10 23 0.46 8.2 67 33.50 516.235 31.3
3 10–12 10–15 18 0.36 12.8 77 38.50 533.61 29.0
4 12–14 10–15 29 0.58 3.1 72 36.00 751.68 0.0

In the time-related parameters, the column Inc. Prod (%) quantifies the production
increase relative to the most unfavorable case, which corresponds to the longest welding
time (Point 1). For these calculations, it is assumed that 25% of the total production cycle
corresponds to welding operations. The percentage increment in production is calculated
using the following formula:

Inc. Prod(%) =
tmax − t

3tmax + t
× 100%, (3)

where tmax represents the longest welding time and t is the welding time for the specific
operational point. This metric provides a quantitative comparison of production efficiency
gains achieved under different process conditions.

In the energy-related parameters, the column P (kVA) is derived based on the welding
machine’s maximum power output of 50 kVA, while the column Reduc. E (%) represents
the percentage reduction in energy consumption relative to the most unfavorable case
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(Point 4), where energy consumption is at its maximum. This reduction is determined
using the following formula:

Dec. E(%) =
Emax − E

Emax
× 100%, (4)

where Emax is the energy consumption at Point 4, and E corresponds to the energy con-
sumption at the respective point. This metric highlights the potential energy savings
achievable through optimized process parameters.

Overall, Table 7 provides a comprehensive view of the trade-offs between weld qual-
ity, production efficiency, and energy consumption. Depending on production objectives
and energy costs at a given time, different points can be selected. For example, Point 4
corresponds to a weld with excellent quality (S maximum), although it incurs a high energy
cost and achieves only a 3.1% increase in production. In contrast, if quality requirements
are not stringent but energy cost reduction is critical, Point 2 can be selected, offering an
energy reduction of 31.3%. However, this comes at the expense of having the lowest weld
strength (S) in the dataset. Point 3, on the other hand, increases production by 12.8% while
achieving an energy cost reduction similar to Point 2. If the quality objectives related to S
and D are sufficient, it could represent a balanced choice.

Based on the results obtained, it can be concluded that the selected machine learning
models exhibit remarkable robustness under varying input conditions, maintaining stability
even when operational parameters fluctuate. This reliability is further enhanced by the
confidence intervals visualized in the heat maps, which provide critical guidance for
production decisions. These visualizations ensure that decisions are not only optimal but
also resilient to disturbances, thereby guaranteeing consistent weld quality and sustained
operational efficiency.

Overall, the integration of machine learning models with interactive heat maps effec-
tively addresses the key challenges in optimizing resistance spot welding processes for steel
reinforcement bars. This approach enables the identification of stable operational zones
tailored to different production priorities, such as energy efficiency, weld quality, or pro-
duction speed, while also enhancing adaptability to dynamic scenarios. In conclusion, the
combination of robust predictive tools with dynamic visualizations highlights the practical
value of this methodology, offering a flexible and reliable framework for decision-making
in industrial contexts.

4. Conclusions

This study introduces an innovative machine learning-based methodology to optimize
resistance spot welding (RSW) processes for steel reinforcement bars, addressing critical
challenges in balancing weld quality, energy efficiency, and productivity. By leveraging
advanced predictive models and interactive visualization tools, the proposed system
empowers production engineers to make adaptive and data-driven decisions, even under
dynamic industrial conditions.

The novelty of this approach lies in its integration of predictive modeling with in-
teractive heat maps as user-friendly visualization techniques, significantly enhancing its
practical value. By enabling users to pinpoint optimal parameters that align with priori-
ties such as quality, efficiency, or processing time, this methodology facilitates adaptive
decision-making in diverse industrial contexts.

Future research could explore real-time sensor integration and adaptive control sys-
tems to further enhance its applicability in complex environments. Additionally, developing
advanced visualization techniques tailored to high-dimensional data could open up new
possibilities for intuitive decision-making.
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In conclusion, this study highlights the transformative potential of AI-driven decision
support systems in industrial automation, presenting a robust and scalable framework
for developing reliable machine learning models, even in data-constrained scenarios. By
incorporating intuitive graphical tools for parameter optimization, this approach not only
addresses key challenges in sustainability and operational efficiency but also paves the
way for smarter and more sustainable manufacturing practices.
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Abstract: Time series data are prevalent in diverse fields such as manufacturing and sensor-
based human activity recognition. In real-world applications, these data are often collected
with variable sample lengths, which can pose challenges for classification models that
typically require fixed-length inputs. Existing approaches either employ models designed
to handle variable input sizes or standardize sample lengths before applying models;
however, we contend that these approaches may compromise data integrity and ultimately
reduce model performance. To address this issue, we propose Time series Into Pixels
(TIP), an intuitive yet strong method that maps each time series data point into a pixel in
2D representation, where the vertical axis represents time steps and the horizontal axis
captures the value at each timestamp. To evaluate our representation without relying
on a powerful vision model as a backbone, we employ a straightforward LeNet-like 2D
CNN model. Through extensive evaluations against 10 baseline models across 11 real-
world benchmarks, TIP achieves 2–5% higher accuracy and 10–25% higher macro average
precision. We also demonstrate that TIP performs comparably on complex multivariate
data, with ablation studies underscoring the potential hazard of length normalization
techniques in variable-length scenarios. We believe this method provides a significant
advancement for handling variable-length time series data in real-world applications. The
code is publicly available.

Keywords: time series classification (TSC); variable-length time series

1. Introduction

Time series data are ubiquitous and appear across various domains, from trajecto-
ries [1] and sensor-based human action recognition [2] to monitoring data from facilities
and machines in manufacturing systems [3]. Time series data collected from the real-world
often have heterogeneous traits, such as variable length—the lengths of the series sample
are diverse [4]. Given the prevalence of variable-length time series data in real-world
scenarios [5], finding effective ways to handle such data is crucial. Previous studies have
preprocessed variable-length time series data to make their lengths uniform by sliding
a fixed-size window [6], resampling, or introducing artificial values [7]. However, the
best method for managing variable-length time series data and their effectiveness are still
unclear, with many recent studies having highlighted it as a future research question in
TSC [4,8–10].

This issue is even more pronounced for time series data collected by sensors, one of the
most widely used tools to gather real-world time series data [11]. Such data often contain
consistent noise [12], thus making it critical to capture key local patterns—the patterns or
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subsequences that best explain inter-class variability [13] (e.g., time series data from walking
versus sitting classes, or normal versus anomalous data in machine monitoring, may each
have distinct key local patterns). To capture key local patterns for TSC, 1D-CNN methods are
traditionally employed due to their success in detecting local patterns [14]. One-dimensional
CNNs apply filters along the time dimension, enabling the network to identify local patterns
that distinguish between classes. Additionally, CNNs can detect features regardless of their
position within the time series, which is particularly advantageous in TSC, where the location
of key local patterns can vary across instances [15–17].

However, capturing key local patterns in variable-length time series presents a signif-
icant challenge for 1D CNNs. These models require a fixed input size for batch process-
ing, necessitating length uniformization techniques such as truncation, interpolation, or
padding. While these methods enable the use of a 1D CNN architecture, they can introduce
noise and distort critical information, including key local patterns, in the original data.
This may negatively affect model performance by interfering with the capture of key local
patterns, eventually leading to suboptimal results. Figure 1 illustrates this phenomenon.

Figure 1. (a) Toy example illustrations of variable-length time series data. (b–d) Common techniques
to uniformize the variable-length time series data. (b) Truncation cuts off parts of the series to fit
a predetermined length, potentially removing crucial information. (c) Interpolation inserts data
points to adjust the series to a standard length, distorting true temporal dynamics. (d) Padding adds
repeating values at the end, creating misleading patterns and forcing 1D convolutional filters to
process both actual and invalid data indiscriminately.

Although alternatives to 1D CNNs are viable for handling data heterogeneity and
are frequently used in various domains [4], their ability to capture features for TSC is
questionable. Specifically, for non-deep learning-based methods, the separation of feature
extraction and downstream tasks can constrain their performance. While RNN-based and
transformer-based approaches can preserve data integrity by using mask layers to avoid
padding effects, their processing architecture may struggle to capture the often position-
variant key local patterns in TSC. This creates an unresolved trade-off between capturing
key local patterns and preserving the data integrity of variable-length time series.

Motivated by these limitations, we focus on one primary question: “How can we effec-
tively capture the key local pattern for TSC while preserving the original representation of
variable-length time series?”

To address this question, we introduce TIP (Time series Into Pixels), which directly
maps each value at each time step into a pixel in a 2D image, where the vertical axis
represents time steps and the horizontal axis represents the value at each time step. By
converting 1D time series data into a 2D format, TIP enables the use of CNNs to capture
key local patterns while preserving data integrity for variable-length TSC.

To evaluate our method, we conduct extensive experiments, comparing TIP to 10 base-
line methods across 11 real-world benchmarks. Without relying on a powerful vision
model as a backbone, we use a straightforward LeNet-like 2D CNN model. Through
these experiments, TIP consistently outperforms existing methods, showing 2–5% higher
accuracy and 10–25% higher macro average precision, demonstrating the effectiveness of
our method for variable-length time series classification. Furthermore, we show that TIP
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performs comparably in complex multivariate scenarios. Finally, through an ablation study,
we confirm that length uniformization techniques for handling variable-length data can
lead to performance degradation.

Our contributions are twofold:

1. We introduce TIP, a simple yet robust method that converts variable-length time series
into a 2D pixel-based format, mapping time steps to the vertical axis and values to the
horizontal. This representation enables vision models, including CNNs, to capture
key local patterns effectively while preserving data integrity.

2. We validate TIP by employing a straightforward LeNet-like CNN, demonstrating
that its performance gains arise from the data representation itself rather than the
complexity or power of the vision model.

2. Existing Solutions for Variable-Length TSC

In this section, we review existing methods and potential solutions not yet explored
in the literature for variable-length TSC. We categorize these solutions into three groups:
non-deep learning-based solutions, masking-based solutions, and 1D-CNN-based solutions
with preprocessing. We exclude single-batch-sized solutions from deep learning-based
methods; although technically feasible, they are impractical due to high variance in batch
loss, resulting in unstable and prolonged training. Additionally, this approach underutilizes
GPU resources. We organized the main differences between previous methods and our
method in Table 1.

Table 1. Comparison of existing solutions and our proposed method for variable-length TSC.

Aspect
Non-Deep Learning-Based

(Section 2.1)
Masking-Based

(Section 2.2)
1D CNN-Based

(Section 2.3)
Ours

End-to-end learning × � � �
Effective feature extraction for TSC � × � �
Preserving original data integrity � � × �

We include early classification methods within the scope of non-deep learning-based
solutions. Although they could fit other categories depending on the classifier, recent
studies employ SVMs, so we include them in this category.

2.1. Non-Deep Learning-Based Solutions

Before the emergence of deep learning in TSC, non-deep learning or machine learning
models were primarily used. These models configured the feature space by measuring
distances between samples or identifying key local patterns or shapelets essential for
classification. With flexible feature extraction approaches, many of these models do not
require fixed-size inputs, making them suitable for variable-length TSC problems. For
example, DTW-1NN [18], a go-to method in TSC [19], handles variable-length time series
data using dynamic time warping (DTW) distance, capturing time series characteristics like
variations in speed and duration without modifying the series. Similarly, shapelet-based
methods extract key local patterns by sampling subsequences or shapelets and selecting
the ones that best characterize each class, supporting variable-length TSC without uniform
length conversion. Early classification methods further address variable-length TSC by
making confident predictions on partial data through adaptive thresholding or window-
based segmentation, thus enabling efficient classification without full sequence input.

While these methods are effective, with some performing comparably to state-of-the-
art models [8], they deviate from deep learning’s end-to-end approach. The separation
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between feature extraction and classification can limit their ability to optimize the feature
space for identifying key local patterns.

2.2. Masking-Based Solutions

RNN-based models were initially the primary choice in deep learning for time series
analysis due to their ability to capture temporal dependencies, making them widely used
in TSC across various domains. More recently, transformers have gained popularity in
time series analysis, particularly for handling variable-length sequences. Having proven
their success in NLP, where sentence lengths vary, they manage sequence variability
with padding, masking, and selective computation. RNNs handle padded sequences
by excluding artificial values from loss calculations through element-wise summation,
while transformers use attention mechanisms, assigning large negative values to padding
elements, which reduces their softmax attention scores to zero.

While RNNs and transformers perform well in time series tasks like long-term fore-
casting and imputation, they have limited application in TSC. Apart from other issues
detailed in [14], one key limitation is their tendency to capture global dependencies rather
than local ones. This poses challenges in identifying key local patterns essential for classifi-
cation, especially given common variations in these patterns (e.g., phase, warping, offset)
in time series data [20,21]. Some approaches utilize RNNs to address variable-length TSC
by embedding series into fixed-size latent representations and applying a classifier, similar
to a seq2seq architecture [22]. However, this approach underperforms due to ineffective
feature extraction, especially when compared with non-deep learning methods and 1D
CNN-based deep learning methods, which will be discussed next.

2.3. 1D CNN-Based with Preprocessing Solutions

One-dimensional CNN-based methods have become a gold standard in TSC thanks
to their robust feature extraction capabilities [19]. By employing 1D convolutional filters,
these models effectively capture various local patterns—including phase shifts, warping,
and offsets—regardless of where they appear along the temporal axis. Despite these
strengths, 1D CNNs typically require fixed-length inputs, posing challenges for TSC tasks
with variable-length sequences.

A common workaround is to uniformly extend each time series in a dataset to the
maximum sequence length via padding. Unfortunately, this practice can degrade data
integrity by mixing valid observations with synthetic zeros, thereby obscuring the true
signal. In 1D CNNs, convolutional filters then process both real and padded values
together, generating noisy feature maps that struggle to differentiate between authentic
and invalid data.

This issue is compounded by z-normalization, a widely recognized preprocessing
step in TSC that scales each time series to zero mean and unit variance [19,23,24]. Used
extensively across the TSC domain—including many state-of-the-art methods such as
InceptionTime [25]—z-normalization promotes stable training and consistent input scaling.
However, once normalized, zero-padding can become statistically indistinguishable from
genuinely low-value data points, making it even harder for CNN filters to separate signals
from padding. This often leads to uniform, non-informative activations in the padded
regions, ultimately diluting or biasing the model’s learned features.

While z-normalization helps stabilize training by standardizing each series’ distribu-
tion, it can inadvertently cause padded zeros to appear as legitimate (low-valued) data.
Consequently, in variable-length TSC settings—where padding is unavoidable—the model
may treat spurious regions as meaningful, obscuring true temporal patterns and impairing
overall classification performance.
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In certain controlled scenarios—such as when zero is a valid and meaningful mea-
surement that naturally appears in the data—padding with zeros may still convey some
structural information about sequence length. However, if zero values are frequent or hold
no meaningful semantics in a given domain, padding risks merging authentic signals with
artificially introduced noise, hindering the network’s ability to differentiate between real
observations and placeholders.

These findings highlight the need for careful consideration when applying padding
and z-normalization together, especially for sequences of differing lengths. Despite the
recognized benefits of z-normalization in accelerating convergence and promoting stable
training, practitioners should remain mindful that zero-padding can confound learned
feature representations—ultimately hindering the performance of 1D CNN-based TSC
models such as InceptionTime [25]. See Figure 2.

Figure 2. Illustration of the convolution operation with padding in a 1D CNN. Padding extends the
series to the maximum length Lmax, introducing artificial values that can affect the feature maps and
the performance of the CNN.

In addition to padding, other length uniformization techniques, such as interpolation
and truncation, distort the data’s inherent properties (Figure 1a,b). Interpolation can
alter event timing within the series, and truncation may remove essential information.
Although these techniques enable deep learning models to handle variable-length TSC,
they compromise the integrity of the original time series representation, limiting the model’s
ability to capture critical characteristics.

While some modified 1D CNN architectures attempt to handle variable-length inputs
through masking layers [26,27], these approaches remain limited in scope and are typically
evaluated only against older baselines like DTW. Such masking-based strategies assume a
certain level of temporal correlation between short and long sequences, which can lead to
misrepresentations. In contrast, our method transforms time series data into a 2D represen-
tation and applies a two-dimensional CNN (2D-CNN), allowing convolutional models to
capture key local patterns with inherent variability while preserving data integrity. Addi-
tionally, we compare our method to 10 baselines across 11 real-world benchmark datasets,
positioning our approach as an accurate and effective solution for variable-length TSC.

3. Proposed Method

3.1. Preliminaries: Variable-Length TSC Problem Formulation

Let D = {(X ,Y)} be our dataset, where X = {x
(1:Ln)
n }N

n=1 consists of variable-length

time series data, with each series x
(1:Ln)
n := (xt

n)
Ln
t=1 = (x1

n, ..., xLn
n ). Each element xt

n within
a series lies in Rd, where Ln denotes the length of the n-th series and d represents the
number of variables or variates measured at each time point. We characterize X as a set
of variable-length time series if there exist distinct indices i, j ∈ {1, . . . , N} ⊂ N+ such
that Li �= Lj. For simplicity in notation, we will initially focus on the univariate case
(d = 1), where xt

n is simplified to xt
n ∈ R. The primary objective of variable-length TSC is to
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develop a model that assigns each variable-length times series x
(1:Ln)
n to one of the possible

classes yn ∈ Y .

3.2. TIP: Time Series Into Pixels

To preserve original data from information distortion in variable-length time series
classification (TSC), we introduce a transformation method called Time series Into Pixels
(TIP). In this method, each time series value is mapped to a corresponding pixel using a
binary mask: pixels representing the original data values are set to 1, while all other pixels
are set to 0. Each time step in the series is mapped to its respective pixel by finding the
appropriate horizontal axis index, with the vertical axis representing the time axis.

By transforming the time series into pixels, it eliminates the need to handle invalid
values for variable-length time series, thereby preserving the original data representation
while possessing the effective feature extraction capabilities of CNNs. The procedure is
detailed in Algorithm 1.

Algorithm 1 TIP: Time series Into Pixels

Input: Variable-length time series x(1:Ln)
n

Input: Maximum length Lmax
Output: Transformed variable-length time series In
Parameter: Boundary constants β−, β+

1: Set the boundary constants to fit the time series data x(1:Ln)
n in [β−, β+]

2: In ← 0Lmax×Lmax � Initialize image matrix
3: for each time step column index i = 0, ..., Lmax − 1 do
4: Find the corresponding row j using Equation (2)
5: Set In[i, j] = 1 � Mark the corresponding pixel
6: end for
7: (optional): For very long sequences, resize In with certain ratio
8: (optional): For multivariate case, repeat from step 1 to 6 by each variate and stack
9: return In

First, we scale the time series values to fit in the image; all time series data xt
n for each

time step t ∈ [1, Ln] fit to the range [β−, β+], where β−, β+ are boundary constants. This
approach ensures that every time series value is effectively mapped to a corresponding
position within the 2D representation, preserving the full range of the original data [28–30].
Then, we construct an image matrix In with dimensions Lmax × Lmax. Each column of In

corresponds to a time step in the time series, and each row corresponds to a value of xt
n. To

map the time series value to a corresponding row index j ∈ {0, . . . , Lmax − 1}, the range
[β−, β+] is divided into Lmax bins, each covering an interval [β− + jΔ, β− + (j + 1)Δ]. The

incremental amount is calculated as Δ = β+−β−
Lmax

. This discretization can be represented as:

[β−, β+] → {[β−, β− + Δ], . . . , [β− + jΔ, β− + (j + 1)Δ], . . . , [β+ − Δ, β+]} (1)

Thus, the value at each time step xt
n is mapped to a specific pixel in In according to:

xt
n  → In[i, j] where xt

n ∈ [β−+ jΔ, β−+(j+ 1)Δ], i = t− 1, and j ∈ [0, Lmax − 1] ⊂ N0 (2)

One of the notable strengths of our method is its dynamic adjustment of the repre-
sentation of the original time series data through the hyperparameters β−, β+. Since the

incremental value Δ = β+−β−
Lmax

between each discretized interval [β− + jΔ, β− + (j + 1)Δ]

=
[

β− + j
(

β+−β−
Lmax

)
, β− + (j + 1)

(
β+−β−

Lmax

)]
is derived from β−, β+, a higher value of the

range [β−, β+] results in a wider range for each discretized interval, whereas a lower value
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means a narrower range. This enables dynamic adjustments to the representation of time
series data, allowing models to consider the appropriate scale or shape of it.

Unlike traditional techniques that rely on padding, interpolation, or truncation,
our Time series Into Pixels (TIP) method transforms a variable-length time series into
a two-dimensional binary pixel representation without distorting the underlying signal.
Unlike existing variable-length TSC solutions that typically rely on one-dimensional ar-
chitectures with masking layers or manual temporal alignment, TIP directly maps each
original time series value to a unique pixel, effectively preserving the original timing, scale,
and structure of the data. This representation simultaneously enables the use of vision
models such as 2D-CNNs, which are known to be effective in capturing local patterns across
spatial dimensions. Thus, TIP departs from prior approaches that often either compromise
data integrity or require specialized modules to handle variable-length inputs.

3.3. 2D-CNN Backbone

To verify the effectiveness of our 2D representation without relying on the performance
of a strong backbone model, we employed a very straightforward 2D CNN model similar
to LeNet [31], the primitive CNN model. Like LeNet, our model consists of standard
convolutional layers, pooling layers, and a fully connected layer. The primary differences
between our model and LeNet are the inclusion of dropout layers and a global pooling layer,
which are now commonly used to improve model robustness with lower computational cost.
See Figure 3.

Figure 3. Illustration of our simple 2D CNN backbone. Detailed settings (e.g., kernel size, dense
units) are provided in the Appendix A.

We used two baselines for TIP: Not-Refined TIP and Refined TIP. Not-Refined TIP
uses the same architecture and hyperparameters (i.e., batch size, learning rate, β = 4)
across all datasets, hence the name. Refined TIP, on the other hand, involves tuning β and
all hyperparameters of the simple backbone model, such as the number of convolutional
layers and the units within specific ranges. Despite these refinements, it retains only the
basic features of LeNet, including convolutional layers, pooling layers, and dense layers.
Detailed explanations of our backbone are provided in Appendix A.

4. Experiment

4.1. Datasets and Metrics

To evaluate the effectiveness of our method on real-world datasets, we conducted
experiments on 11 variable-length time series datasets from the UCR Time Series Classi-
fication Archive (https://www.cs.ucr.edu/~eamonn/time_series_data_2018/, accessed
on 10 July 2024), one of the most widely used benchmarks in the TSC domain. For evalua-
tion metrics, we used accuracy and macro average precision (MAP) since all datasets are
class-balanced. Detailed descriptions of the datasets are available in Appendix A.

4.2. Baselines for Comparison

We compared our method with the leading existing solutions for variable-length TSC,
as introduced in Section 2. We selected the top-performing methods from each category.
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Below is a brief description of the methods used in our comparison and how each method
handles variable-length inputs:

4.2.1. Non-DL Methods

• ED-1NN: A simple distance-based baseline using Euclidean distance for classification.
Often used as a reference due to its simplicity. To handle variable-length sequences,
ED-1NN typically requires padding or truncation of time series to a fixed length. We
chose zero-padding here.

• DTW-1NN [18]: Long considered the gold standard for TSC, DTW-1NN excels at
handling misaligned time series and has remained difficult to surpass [32]. DTW
inherently handles variable-length sequences by allowing elastic shifts in the time
axis, effectively aligning sequences of different lengths without the need for padding.

• TEASER [33]: An early classifier that efficiently handles variable-length inputs with-
out extensive preprocessing. TEASER efficiently processes variable-length time series
data by identifying critical patterns early in the sequence, without being influenced by
the overall sequence length.

• RDST [34]: A shapelet-based method known for extracting key local patterns, provid-
ing one of the state-of-the-art performances on TSC [8]. RDST manages variable-length
sequences by identifying and utilizing shapelets of different lengths, allowing it to
flexibly match and classify time series without requiring uniform sequence lengths.

4.2.2. Masking Methods

• Vanilla RNN [35]: A basic recurrent model using masking to handle variable-length
sequences, though surpassed by more advanced architectures. Masking involves
padding shorter sequences and using a mask to indicate the actual length, ensuring
that the RNN processes only the valid time steps during training and inference.

• BiLSTM [36]: Bidirectional LSTM, leveraging masking and bidirectional process-
ing, and offering more robust results than RNN. Similar to vanilla RNN, BiLSTM
uses masking to manage variable-length inputs, allowing the model to capture de-
pendencies in both forward and backward directions without being affected by the
padded values.

• TST [37]: A transformer-based model using masking, with competitive performance
across diverse time series datasets. In TST, masking is employed to handle variable-
length sequences by padding shorter sequences and applying attention masks to
prevent the model from attending to padded positions, thereby maintaining the
integrity of the actual data.

4.2.3. 1D-CNN Methods

• FCN [38]: A fully convolutional model that efficiently extracts spatial patterns, widely
used for TSC tasks. To handle variable-length sequences, FCN typically applies
preprocessing steps such as padding, truncation, or interpolation to convert all input
time series to a fixed length.

• ResNet [38]: A deep architecture adapted from image classification, known for its
strong results in TSC [39]. Like FCN, ResNet also manages variable-length time series
by incorporating preprocessing steps like padding, truncation, or interpolation to
standardize input lengths.

• InceptionTime [25]: A top-performing deep learning model for TSC, consistently
demonstrating superior performance with its multi-scale architecture, as highlighted
in recent reviews [8]. We selected this baseline for its robustness, though variants
like LITETime [40] offer reduced computation time while maintaining the same per-
formance as the original. InceptionTime handles variable-length inputs by utilizing
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preprocessing techniques such as padding, truncation, or interpolation to achieve a
fixed input size.

As evaluated in a recent review [8], other methods such as [41–43] have also demon-
strated strong performance in TSC. However, we excluded these methods because, when
compared to the baselines we selected, the performance differences were negligible, and
they were either computationally too expensive or not applicable to variable-length TSC
due to fixed size input constraint.

4.3. Implementation Details

Following prior publications [18,25] and the recommendations from the UCR
Archive [19,24], all experiments used the default training and test splits provided by the
UCR Archive, and each series was z-normalized. We implemented the best architectures re-
ported in the literature, such as using five classifiers in the ensemble for InceptionTime [25]
and 10,000 shapelets for RDST [34].

Since few studies adopt RNN-based models for TSC, we developed the vanilla RNN
and BiLSTM in-house. We provide the detailed implementations of the two models in
Appendix A. In addition to these models, we used implementations available in aeon (https:
//www.aeon-toolkit.org, accessed on 10 July 2024) and tsai (https://timeseriesai.github.
io/tsai, accessed on 10 July 2024), the popular third-party libraries in time series analysis.

For 1D-CNN methods, we applied various length uniformization techniques, includ-
ing truncation (TC), interpolation (IP), and padding (PD). For the most powerful 1D-CNN-
based method, InceptionTime, we applied all three length uniformization techniques, while
for other 1D-CNN baselines, we used only padding, as it yielded the best performance.

For all deep learning-based baselines, we added an early-stopping strategy and a
plateau learning rate scheduler to avoid overfitting and getting stuck in local optima. These
strategies are often omitted in the related literature despite their importance. By imple-
menting these strategies and fine-tuning the batch size and learning rate over sufficient
trials, we achieved improved performance for the baselines compared to their reported
results. Additional implementation details, including the search space for fine-tuning
and training strategy, are provided in Appendix A. All models were trained using the
TensorFlow framework on a single NVIDIA RTX 2080 Ti GPU (NVIDIA Corporation, Santa
Clara, CA, USA). We have made the complete source code available.

4.4. Results

As demonstrated in Figure 4, our approach consistently achieves the best or second-
best results in both accuracy and MAP. Specifically, non-DL methods exhibited inferior
performance due to the separation between configuring the feature space and the down-
stream classification task. In particular, ED-1NN recorded significantly lower performance
than DTW-1NN because it failed to capture key aspects of variable-length sequences, such
as speed variation. Although TEASER and RDST showed relatively decent performance,
the aforementioned two-step learning process hindered the optimal configuration of the
feature space for classification.

Similarly, recurrent models and transformers also demonstrated subpar performance.
While these models maintain data integrity through the use of masking, their classification
performance remains low. Beyond the traditional reasons for their low performance in
TSC [14], their forward structures are inadequate for classification tasks where key local
patterns are often position-variant, making it difficult to effectively capture the underlying
dynamics. Although TST outperformed both recurrent models and transformers, it still
lagged behind 1D-CNN-based methods and our convolutional model-based method, TIP,
which excel at learning local patterns.
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(a) Comparison with non-DL methods (accuracy) (b) Comparison with masking methods (accuracy) (c) Comparison with 1D-CNN methods (accuracy)

(d) Comparison with non-DL methods (MAP) (e) Comparison with masking methods (MAP) (f) Comparison with 1D-CNN methods (MAP)

Figure 4. Comparison to existing variable-length TSC solutions on 11 UCR real-world benchmarks,
evaluated by (a–c) Accuracy (%) and (d–f) Macro Average Precision (MAP), with standard deviations
computed across five seeds.

Lastly, 1D-CNN-based models generally performed well; however, our method, TIP,
outperformed them across most datasets. Notably, InceptionTime, which employs trunca-
tion as a preprocessing step, achieved the lowest performance despite being the latest and
ostensibly the best-performing algorithm in its category. This result indicates that trunca-
tion as a preprocessing method significantly distorts the original data information. When
padding, instead of truncation, was applied, InceptionTime, ResNet, and FCN showed
progressively higher performance. This improvement can be attributed to their complex
structures: InceptionTime utilizes ensemble techniques and inception blocks, which are
modern feature extraction methods; ResNet incorporates residual connections; and FCN
consists solely of convolutional layers. Additionally, padding generally outperformed
interpolation, likely because interpolation excessively alters the temporal dynamics of the
original data. However, overall, these imputation methods using artificial values resulted in
lower performance compared to our method, which preserves data integrity by employing
a straightforward vision model with a 2D-CNN backbone.

5. Additional Analysis

5.1. What About in Multivariate Setting?

To evaluate the effectiveness of our method in multivariate setting, we con-
ducted experiments on variable-length and multivariate real-world benchmark datasets
from the UCI Archive [44]: JapaneseVowels and CharacterTrajectories. For this anal-
ysis, each variate time series data was converted into an image and then stacked
(i.e., three variates = three-channel images). Note that we continued to utilize the sim-
ple 2D CNN as a backbone for this analysis. Unlike other baselines, this model does not
capture the relationships between variables, which is crucial in multivariate TSC.

As shown in Table 2, our method achieves performance comparable to other methods,
despite lacking features specifically designed to capture spatial patterns between variables.
While InceptionTime, the current state-of-the-art TSC integrated with length uniformization
techniques, achieved the highest accuracy, our method delivered a comparable accuracy
score and outperformed it in MAP. Nevertheless, our approach may face computational
challenges when scaling to extremely large datasets or handling high-dimensional mul-
tivariate settings. This is primarily because each variate is treated as a separate channel
and stacked, which could increase memory and processing demands. However, our results
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suggest that even under these constraints, the method remains effective in maintaining
high performance and robustness for complex multivariate TSC problem.

Table 2. A performance comparison with existing solutions for variable-length TSC in multivariate
settings. Best results are highlighted in bold. Note that our backbone lacks the ability to capture
spatial patterns and the relationships between variables.

Dataset JapaneseVowels CharacterTrajectories

# Variates 12 3
Lengths [7,29] [60,182]
Train/Test 270/370 1422/1436

Metrics Accuracy MAP Accuracy MAP

DTW-1NN 96.93 94.01 66.22 48.46
Vanilla RNN 25.52 ± 0.50 22.44 ± 0.24 22.76 ± 3.48 20.99 ± 0.58
FCN (PD) 95.10 ± 1.36 90.43 ± 2.47 76.43 ± 1.87 61.53 ± 2.11
ResNet (PD) 98.75 ± 0.16 97.44 ± 0.33 78.38 ± 2.03 65.20 ± 1.81
InceptionTime (IP) 99.21 ± 0.03 98.40 ± 0.06 82.81 ± 0.40 69.28 ± 0.45
InceptionTime (PD) 99.39 ± 0.05 98.73 ± 0.10 82.43 ± 0.34 68.67 ± 0.55
Not Refined TIP 98.43 ± 0.07 99.66 ± 0.03 55.30 ± 2.99 58.74 ± 2.60
Refined TIP 98.64 ± 0.23 99.69 ± 0.05 78.11 ± 1.18 83.35 ± 0.83

5.2. Is Preserving the Original Representation Really a Matter in Variable-Length TSC?

To investigate the impact of information distortion caused by length uniformization
techniques in variable-length TSC, we conducted an ablation study of our method. We
assessed performance on the PGWZ dataset using Not-Refined TIP with four different
strategies for length uniformization: zero-padding, interpolation, truncation, and no ad-
justment (Default), which is our approach.

As shown in Table 3, the performance in terms of accuracy and MAP significantly
dropped when using truncation, interpolation, and padding compared to no length uni-
formization techniques. This demonstrates that distorting the representation of time series
data has a critical impact on model performance.

Table 3. An ablation study comparing three length uniformization techniques—truncation (TC),
interpolation (IP), and padding (PD)—and their impact on information distortion in the original
representation, as opposed to our technique, which introduces no information distortion.

Strategy Accuracy MAP

TIP (TC) 46.80 ± 1.60 58.13 ± 0.91
TIP (IP) 72.80 ± 2.04 82.81 ± 3.40
TIP (PD) 78.00 ± 2.83 85.78 ± 1.96

TIP (Default) 80.00 ± 2.19 88.57 ± 0.36

6. Conclusions and Discussion

This work highlights the challenges inherent in applying current deep learning meth-
ods to the variable-length TSC problem. To address these challenges, we propose TIP, a
novel approach that directly maps time series data into 2D image representations. We
believe our findings contribute significantly to advancing the handling of variable-length
time series, which represent the most natural form of time series data encountered in
real-world applications.

While our results in variable-length TSC are promising, several issues remain unre-
solved. One notable concern is the potential for information loss when resizing series,
particularly for long sequences—a challenge that is pervasive and yet unresolved in current
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TSC methods. Furthermore, our method treats each variate as a separate channel, which
could pose challenges when dealing with high-dimensional data or sparse datasets. Such
scenarios may result in computational inefficiencies or difficulty capturing the complex
interdependencies between variates. To address these challenges, future research could
explore methods to better preserve interdependencies in multivariate time series. For exam-
ple, instead of treating each variate as a distinct channel, randomly positioning multivariate
images into a shared channel stack could allow the backbone vision model to capture
intricate relationships between variables more effectively. Alternatively, incorporating
feature extraction or attention mechanisms tailored to multivariate data may enhance both
computational efficiency and performance. Resolving these limitations remains an open
area for further investigation, which we aim to address in future work.
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Appendix A. Experimental Details

Appendix A.1. Datasets Description

The datasets used in this study are from the UCR Time Series Archive [15], a widely
utilized resource in time series research. Originally introduced in 2002 with 16 datasets,
the archive has grown to encompass 128 datasets, making it a critical benchmark in the
field. Among these, 11 datasets are specifically designed for variable-length time series,
presenting unique challenges for classification methods. A detailed description of these
datasets can be found in Table A1.

One example of such a dataset is GesturePebble, which showcases the variability in
time series lengths. The data is derived from the z-axis readings of a 3-axis accelerometer
in Pebble smartwatches, worn on participants’ wrists as they perform six distinct gestures.
The dataset consists of 304 gestures, with lengths varying naturally due to differences in
individual movements. Two versions of the dataset were created:

• GesturePebbleZ1: The training set contains data from all participants in the first
session, while the test set contains data from the second session.

• GesturePebbleZ2: Participants are split between the training and testing sets, making
it more challenging due to the distinctiveness of individual gaits and movements.

For evaluation, we adhered to preprocessing methods, including z-normalization,
as described in [25]. To ensure consistency with previous research, we used the default
train/test splits provided by the UCR archive, following standard practices in the field.
Additionally, each split was resampled using five random seeds to evaluate robustness.
Table A1 provides an overview of the datasets used in this study.
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Table A1. Descriptions of 11 UCR Benchmark Univariate Datasets with Variable Lengths.

Dataset Train/Test Range of Series Length Class

PGWZ (PickupGestureWiimoteZ) 50/50 [29, 361] 10
SGWZ (ShakeGestureWiimoteZ) 50/50 [40, 385] 10
GPZ1 (GesturePebbleZ1) 132/172 [100, 455] 6
GPZ2 (GesturePebbleZ2) 146/158 [100, 455] 6
GMAD1 (GestureMidAirD1) 208/130 [80, 360] 26
GMAD2 (GestureMidAirD2) 208/130 [80, 360] 26
GMAD3 (GestureMidAirD3) 208/130 [80, 360] 26
ADWX (AllGestureWiimoteX) 300/700 [2, 385] 10
ADWY (AllGestureWiimoteY) 300/700 [2, 385] 10
ADWZ (AllGestureWiimoteZ) 300/700 [2, 385] 10
PLAID 537/537 [100, 1344] 11

Appendix A.2. Implementing Baselines

Although most baselines were primarily adapted from aeon and tsai, well-known
third-party libraries for time series analysis, we developed the vanilla RNN and BiLSTM
baselines from scratch. These RNN-based solutions are rarely explored in TSC due to their
suboptimal feature extraction capabilities.

To address the padding issue, we utilized a mask layer to differentiate the padded
parts. We padded with a high random integer and set it as the mask value, allowing us to
exclude padded elements from computation. For the model architecture, we stacked RNN
layers for the vanilla RNN and bidirectional LSTM layers for the BiLSTM, followed by two
dense layers. We used the Adam optimizer [45] and treated the number of hidden layers
and units in dense layers as hyperparameters, allowing the model to adjust its complexity
based on the dataset.

Appendix A.3. Hyperparameter Settings

To ensure a fair comparison between baselines, we fine-tuned each deep learning
baseline (except Not-Refined TIP) with 30 trials. Given our limited computational resources,
we used the best architectures reported in the related literature (e.g., using five classifiers
for the ensemble in InceptionTime [25], and 10,000 shapelets for RDST [34]). For all deep
learning baselines, we fine-tuned their batch size and learning rate for each dataset, with
the batch size increasing in powers of two starting from 4, and setting the maximum batch
size to 32. For the learning rate, we used float numbers between 1 × 10−5 and 1 × 10−3

with logarithmic scaling.
For RNN-based methods, we additionally fine-tuned the number of units in dense lay-

ers, choosing from 64, 128, and 256, and the number of hidden layers, ranging from 2 to 5.
For the Not-Refined TIP model, no hyperparameter fine-tuning was performed. The

specific hyperparameters used are as follows: β = 4, batch size = 32, learning rate = 0.0001,
dense units = 256, dropout rate = 0.5, number of Conv2D layers = 5, number of Conv2D
filters = 64, kernel size = 9 × 9, pooling type = MaxPooling2D, and global pooling
type = GlobalMaxPooling2D.

In contrast, for the Refined TIP model, we fine-tuned all hyperparameters. The range
for β was set between 3 and 6. The dense units were fine-tuned with values of 64, 128, and
256. The number of Conv2D layers was adjusted between 3 and 7, while the number of
filters was chosen from 16, 32, and 64. The filter size was varied from 3 × 3 to 11 × 11 (odd
numbers). The pooling type was selected between MaxPooling and AveragePooling. The
batch size and learning rate were fine-tuned within the same ranges as the other compared
baselines. We include all hyperparameters for every dataset in the code.
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Using a simple 2D CNN model as the backbone, these refinements were found to be
acceptable. As mentioned in the main text, apart from the inclusion of global pooling layers
and dropout to enhance model robustness with reduced computational cost, no advanced
techniques were incorporated into our 2D CNN backbone model beyond those derived
from LeNet.

Appendix A.4. Training Strategy

Since the UCR archive provides default splits for the training and test sets, and prior
publications follow this convention, we ensured consistency by using the same default
splits. We used the test sets, instead of splitting the training set into a validation set, to
refine each deep learning baseline, applying this method identically to all baselines. This
approach is acceptable for comparative purposes.

For the deep learning baselines, we implemented an early-stopping strategy and a
plateau learning rate scheduler across all methods, a detail often omitted in the related
literature. We set the patience for early stopping at 50 epochs and for the plateau learning
rate scheduler at 15 epochs, with a reduction factor of 0.8 and a minimum learning rate
of 1 × 10−8. We set the maximum number of epochs for both fine-tuning and evaluation
at 1000, and confirmed that all baselines converged in fewer than 1000 epochs. Notably,
our implementation of these methods and extensive trials resulted in higher performance
scores than those reported in the related literature. The entire training procedures for each
baseline are provided in our code.

Table A2. Comparison to non-DL solutions on 11 UCR real-world benchmarks, evaluated by accuracy,
with standard deviations computed across five seeds. The highest-performing results are emphasized
in bold, while the second-highest are underlined. “NA” indicates that the corresponding method is
not applicable on this dataset.

Dataset ED-1NN DTW-1NN RDST TEASER Not Refined TIP Refined TIP

PGWZ 26.00 68.00 69.20 ± 0.98 65.20 ± 1.79 80.00 ± 2.22 84.40 ± 3.20
SGWZ 21.75 84.00 86.40 ± 0.80 87.60 ± 0.89 88.57 ± 1.13 92.80 ± 1.94
GPZ1 68.60 68.60 90.00 ± 0.77 86.16 ± 2.71 98.60 ± 0.28 97.21 ± 0.44
GPZ2 67.09 67.09 92.41 ± 0.57 77.22 ± 0.45 88.61 ± 3.61 95.32 ± 3.42
GMAD1 60.77 60.77 76.15 ± 0.96 70.00 ± 0.54 98.66 ± 0.45 98.66 ± 0.41
GMAD2 49.23 49.23 63.23 ± 0.58 58.62 ± 0.34 65.85 ± 2.34 70.62 ± 2.25
GMAD3 22.31 22.31 44.77 ± 0.58 43.85 45.54 ± 2.94 52.62 ± 2.94
ADWX 64.00 64.00 NA 58.43 ± 0.74 67.03 ± 1.42 69.49 ± 1.42
ADWY 65.86 65.86 NA 68.23 ± 0.13 73.36 ± 0.61 75.40 ± 0.72
ADWZ 57.86 57.86 NA 59.83 81.04 ± 0.98 84.94 ± 0.94
PLAID 80.45 80.45 92.59 ± 0.22 82.79 ± 0.47 82.75 ± 0.67 86.32 ± 0.69

Appendix A.5. Comparison to Existing Variable-Length TSC Solutions on 11 UCR
Real-World Benchmarks

Here, we included the quantitative details for the contents in Figure 4. for
better comparison.

Table A3. Comparison to non-DL solution on 11 UCR real-world benchmarks, evaluated by mean av-
erage precision (MAP), with standard deviations computed across five seeds. The highest-performing

results are emphasized in bold, while the second-highest are underlined. “NA” indicates that the
corresponding method is not applicable on this dataset.

Dataset ED-1NN DTW-1NN RDST TEASER Not Refined TIP Refined TIP

PGWZ 18.00 53.88 54.39 ± 1.16 50.71 ± 2.42 88.57 ± 0.36 89.10 ± 1.94
SGWZ 15.75 74.96 78.09 ± 1.16 79.83 ± 1.47 96.28 ± 2.44 97.48 ± 1.81
GPZ1 53.41 53.41 89.76 ± 0.80 77.07 ± 4.14 98.55 ± 0.41 99.77 ± 0.14
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Table A3. Cont.

Dataset ED-1NN DTW-1NN RDST TEASER Not Refined TIP Refined TIP

GPZ2 52.96 52.96 87.01 ± 0.85 64.59 ± 0.67 98.66 ± 0.45 98.68 ± 0.41
GMAD1 45.19 45.19 63.50 ± 1.08 55.55 ± 0.68 86.87 ± 1.82 86.87 ± 1.82
GMAD2 33.36 33.36 45.52 ± 0.51 41.30 ± 0.13 75.57 ± 1.30 78.51 ± 0.93
GMAD3 12.68 12.68 27.00 ± 0.53 28.50 ± 0.02 51.64 ± 2.40 58.76 ± 1.20
ADWX 46.26 46.26 NA 42.18 ± 0.51 73.36 ± 1.07 75.55 ± 1.95
ADWY 48.20 48.20 NA 50.82 ± 0.23 78.24 ± 0.90 81.79 ± 0.43
ADWZ 39.08 39.08 NA 42.05 82.75 ± 1.30 75.55 ± 1.95
PLAID 62.84 62.84 80.94 ± 0.80 62.28 ± 0.91 82.75 ± 1.00 86.32 ± 0.99

Table A4. Comparison to existing masking-based solutions on 11 UCR real-world benchmarks,
evaluated by accuracy, with standard deviations computed across five seeds. The highest-performing

results are emphasized in bold, while the second-highest are underlined. “NA” indicates that the
corresponding method is not applicable on this dataset.

Dataset VanillaRNN BiLSTM TST Not Refined TIP Refined TIP

PGWZ 40.40 ± 3.44 43.20 ± 4.31 57.60 ± 2.76 80.00 ± 2.22 84.40 ± 3.20
SGWZ 54.40 ± 2.81 53.60 ± 3.45 67.60 ± 3.78 88.57 ± 1.13 92.80 ± 1.94
GPZ1 31.16 ± 2.69 29.07 ± 2.57 65.70 ± 9.20 98.60 ± 0.28 97.21 ± 0.44
GPZ2 38.61 ± 3.89 37.59 ± 2.21 71.14 ± 5.40 88.61 ± 3.61 95.32 ± 3.42
GMAD1 19.85 ± 3.98 20.77 ± 2.56 60.00 ± 6.83 98.66 ± 0.45 98.66 ± 0.41
GMAD2 22.92 ± 3.89 23.38 ± 1.98 48.15 ± 3.00 65.85 ± 2.34 70.62 ± 2.25
GMAD3 22.62 ± 3.98 22.62 ± 1.43 42.77 ± 3.75 45.54 ± 2.94 52.62 ± 2.94
ADWX 19.63 ± 1.04 17.60 ± 1.37 25.43 ± 1.95 67.03 ± 1.42 69.49 ± 1.42
ADWY 16.03 ± 1.14 16.11 ± 1.14 37.29 ± 2.93 73.36 ± 0.61 75.40 ± 0.72
ADWZ 19.46 ± 1.65 19.46 ± 1.65 14.54 ± 1.67 81.04 ± 0.98 84.94 ± 0.94
PLAID 28.08 ± 1.65 27.78 ± 1.83 55.12 ± 7.84 82.75 ± 0.67 86.32 ± 0.69

Table A5. Comparison to existing masking-based solutions on 11 UCR real-world benchmarks,
evaluated by mean average precision (MAP), with standard deviations computed across five seeds.
The highest-performing results are emphasized in bold, while the second-highest are underlined.
“NA” indicates that the corresponding method is not applicable on this dataset.

Dataset VanillaRNN BiLSTM TST Not Refined TIP Refined TIP

PGWZ 48.43 ± 0.90 53.04 ± 2.91 64.88 ± 3.26 88.57 ± 0.36 89.10 ± 1.94
SGWZ 58.48 ± 2.73 61.68 ± 3.45 78.21 ± 2.31 96.28 ± 2.44 97.48 ± 1.81
GPZ1 34.82 ± 1.40 32.88 ± 1.67 71.51 ± 9.80 98.55 ± 0.41 99.77 ± 0.14
GPZ2 38.68 ± 0.80 38.41 ± 1.44 75.90 ± 3.44 98.66 ± 0.45 98.68 ± 0.41
GMAD1 27.47 ± 1.37 26.64 ± 0.98 65.78 ± 4.56 86.87 ± 1.82 86.87 ± 1.82
GMAD2 24.41 ± 0.82 28.11 ± 0.79 57.05 ± 1.83 75.57 ± 1.30 78.51 ± 0.93
GMAD3 27.73 ± 1.41 28.38 ± 1.28 48.14 ± 1.35 51.64 ± 2.40 58.76 ± 1.20
ADWX 16.45 ± 0.48 15.72 ± 0.52 26.00 ± 1.06 73.36 ± 1.07 75.55 ± 1.95
ADWY 14.90 ± 0.29 15.35 ± 0.34 36.39 ± 1.84 78.24 ± 0.90 81.79 ± 0.43
ADWZ 16.03 ± 0.37 16.93 ± 0.48 18.60 ± 2.34 82.75 ± 1.30 75.55 ± 1.95
PLAID 25.07 ± 2.78 22.77 ± 0.32 36.18 ± 5.01 82.75 ± 1.00 86.32 ± 0.99
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Table A6. Comparison to 1D-CNN-based with preprocssing solutions on 11 UCR real-world bench-
marks, evaluated by accuracy, with standard deviations computed across five seeds. The highest-

performing results are emphasized in bold, while the second-highest are underlined. “NA” indicates
that the corresponding method is not applicable on this dataset.

Dataset FCN (PD) ResNet (PD) InceptionTime (TC) InceptionTime (PD) InceptionTime (IP) Not Refined TIP Refined TIP

PGWZ 63.60 ± 2.65 55.60 ± 2.05 62.00 ± 0.23 79.20 ± 3.25 79.60 ± 3.25 80.00 ± 2.22 84.40 ± 3.20
SGWZ 86.00 ± 2.19 87.00 ± 1.79 72.40 ± 0.80 90.00 ± 1.13 92.00 ± 1.79 88.57 ± 1.13 92.80 ± 1.94
GPZ1 88.26 ± 1.70 93.02 ± 2.96 68.60 ± 1.10 95.60 ± 0.44 98.60 ± 0.28 98.60 ± 0.28 97.21 ± 0.44
GPZ2 76.20 ± 2.56 87.22 ± 0.74 69.11 ± 1.23 92.41 ± 1.69 88.61 ± 1.80 88.61 ± 3.61 95.32 ± 3.42
GMAD1 69.23 ± 2.68 73.38 ± 0.45 59.85 ± 1.49 87.61 ± 0.65 76.15 ± 0.58 98.66 ± 0.45 98.66 ± 0.41
GMAD2 63.23 ± 2.48 58.57 ± 2.09 48.15 ± 2.51 69.54 ± 1.84 62.92 ± 1.79 65.85 ± 2.34 70.62 ± 2.25
GMAD3 13.72 ± 1.72 42.77 ± 3.43 35.69 ± 0.62 48.15 ± 1.34 37.08 ± 1.75 45.54 ± 2.94 52.62 ± 2.94
ADWX 57.63 ± 2.34 61.57 ± 3.05 19.94 ± 0.87 74.69 ± 0.67 69.46 ± 0.67 67.03 ± 1.42 69.49 ± 1.42
ADWY 62.57 ± 2.21 66.83 ± 3.79 27.74 ± 0.44 80.37 ± 0.72 75.20 ± 0.50 73.36 ± 0.61 75.40 ± 0.72
ADWZ 59.48 ± 1.94 62.37 ± 2.35 23.34 ± 0.47 78.11 ± 0.56 69.86 ± 0.49 81.04 ± 0.98 84.94 ± 0.94
PLAID 81.75 ± 1.64 82.16 ± 1.85 82.35 ± 0.25 77.71 ± 0.67 85.52 ± 0.55 82.75 ± 0.67 86.32 ± 0.69

Table A7. Comparison to 1D-CNN-based with preprocssing solutions on 11 UCR real-world bench-
marks, evaluated by mean average precision (MAP), with standard deviations computed across
five seeds. The highest-performing results are emphasized in bold, while the second-highest are
underlined. “NA” indicates that the corresponding method is not applicable on this dataset.

Dataset FCN (PD) ResNet (PD) InceptionTime (TC) InceptionTime (PD) InceptionTime (IP) Not Refined TIP Refined TIP

PGWZ 48.32 ± 2.67 44.43 ± 15.77 47.75 ± 1.36 68.15 ± 4.13 68.80 ± 4.30 88.57 ± 0.36 89.10 ± 1.94
SGWZ 77.21 ± 3.27 82.59 ± 3.04 58.04 ± 0.85 84.09 ± 1.93 86.57 ± 2.03 96.28 ± 2.44 97.48 ± 1.81
GPZ1 80.50 ± 2.37 87.81 ± 4.79 55.16 ± 0.85 90.34 ± 0.73 97.42 ± 0.51 98.55 ± 0.41 99.77 ± 0.14
GPZ2 63.61 ± 9.93 78.49 ± 1.45 53.97 ± 1.54 87.16 ± 1.09 82.16 ± 1.09 98.66 ± 0.45 98.68 ± 0.41
GMAD1 56.29 ± 2.68 61.62 ± 3.50 42.80 ± 1.85 67.82 ± 1.24 62.14 ± 1.00 86.87 ± 1.82 86.87 ± 1.82
GMAD2 35.29 ± 5.54 41.89 ± 2.31 29.92 ± 2.69 54.60 ± 2.26 45.62 ± 1.79 75.57 ± 1.30 78.51 ± 0.93
GMAD3 13.72 ± 5.61 26.18 ± 2.49 18.68 ± 0.32 30.56 ± 1.12 19.69 ± 0.76 51.64 ± 2.40 58.76 ± 1.20
ADWX 41.89 ± 1.82 45.78 ± 3.22 12.62 ± 0.33 60.92 ± 0.94 53.80 ± 0.98 73.36 ± 1.07 75.55 ± 1.95
ADWY 45.77 ± 3.67 50.33 ± 3.79 15.70 ± 0.17 67.81 ± 0.58 60.15 ± 0.68 78.24 ± 0.90 81.79 ± 0.43
ADWZ 41.51 ± 1.16 45.64 ± 1.98 13.42 ± 0.19 64.81 ± 0.68 53.35 ± 0.66 82.75 ± 1.30 75.55 ± 1.95
PLAID 65.64 ± 1.93 64.99 ± 2.97 64.47 ± 0.64 77.71 ± 0.67 75.55 ± 1.95 82.75 ± 1.00 86.32 ± 0.99
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Abstract: The refinement of acquired well logs has traditionally relied on predefined rock
physics models, albeit with their inherent limitations and assumptions. As an alternative,
effective yet less explicit machine learning (ML) techniques have emerged. The integration
of these two methodologies presents a promising new avenue. In our study, we used four
ML algorithms: Random Forests (RF), Gradient Boosting Decision Trees (GBDT), Multi-
layer Perceptrons (MLP), and Linear Regression (LR), to predict porosity and clay volume
fraction from well logs. Throughout the entire workflow, from feature engineering to
outcome interpretation, our predictions are guided by rock physics principles, particularly
the Gardner relations and the Larionov relations. Remarkably, while the predictions them-
selves are satisfactory, SHapley Additive exPlanations (SHAP) analysis uncovers consistent
patterns across the four algorithms, irrespective of their distinct underlying structures.
By juxtaposing the SHAP explanations with rock physics concepts, we discover that all
four algorithms align closely with rock physics principles, adhering to its cause–effect
relationships. Nonetheless, even after intentionally excluding crucial controlling input
features that would inherently compromise prediction accuracy, all four ML algorithms and
the SHAP analysis continue to operate, albeit in a manner that seems irrational and starkly
contradicts the fundamental principles of rock physics. This integration strategy facilitates
a transition from solely mathematical explanations to a more philosophical interpretation
of ML-based predictions, effectively dismantling the traditional black box nature of these
ML models.

Keywords: machine learning; well logs; rock physics; SHapley Additive exPlanations
(SHAP); explainable artificial intelligence (XAI)

1. Introduction

Well logs are capable of capturing a diverse array of geophysical parameters within
the penetrated formations, encompassing caliper measurements, acoustic velocity, gamma-
ray radioactivity, neutron density, spontaneous potential, resistivity, nuclear magnetic
resonance, and more. These vast well logging datasets are extensively employed in com-
prehensively analyzing the physical attributes of the target strata, offering indispensable
insights into the geological composition and potential of hydrocarbon reservoirs [1,2].

Rock physics models are typically employed in the refinement of initially acquired
well logs, aimed at correcting inaccuracies or predicting missing data segments [3,4]. These
models bridge the gap between macroscopic measured seismic properties and micro-
scopic rock features, such as porosity, resistivity, mineralogy, fluid saturation, and pore
pressure [5–7].These models can be broadly categorized into two types: empirical and
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physically based [8]. Physically grounded models, such as Gassmann’s equation, often
hinge on certain assumptions, thus restricting their scope of application [9–12]. In contrast,
empirical models, exemplified here by the Gardner relations and the Larionov relations, are
founded on experimental data and stem from straightforward regression analyses [13–17].
Despite their simplicity, these empirical models have demonstrated remarkable practicality
and widespread applicability in the petroleum industry [18,19].

Alternatively, machine learning (ML) algorithms offer a solution for correcting errors
or filling in gaps in well logs [20,21]. In recent years, the application of ML technology
has experienced a dramatic surge in popularity and adoption across the logging industry,
marking a significant leap in technological progress [22–25]. While rock physics relies
on explicit knowledge gained through extensive experience and experimentation, ML
algorithms depend on data training [26,27]. This often renders ML a black box with limited
interpretability, significantly reducing its perceived enhanced value and credibility within
the industry [28–31]. Explainable artificial intelligence (XAI) serves as an umbrella term,
encompassing the incorporation of human expertise into ML workflows [32–35]. This
integration spans a wide spectrum, from precisely defined equations (PINN) where human
knowledge is explicit [36–38], to more implicit and less readily articulated experience that
individuals possess [39,40]

In this study, we propose to integrate the SHapley Additive exPlanations (SHAP)
framework and rock physics into the workflow for predicting well logs, leveraging four
distinct ML algorithms. This approach strives to dismantle the traditional opacity of
ML models, thereby fostering unprecedented transparency. Specifically, SHAP allows
us to quantify, on a localized level, the precise impact of each input feature on indi-
vidual predictions, while also presenting a holistic, global overview across the entire
dataset [41–43]. Furthermore, rock physics serves as a pivotal guide, quality guardian, and
reference point throughout the ML-based workflow, spanning from feature engineering to
results interpretation. By leveraging this integration, we aim to not only bolster the accu-
racy but also elevate the interpretability of ML-based well log predictions, thus propelling
the field forward towards more reliable and intelligible outcomes.

2. Methodology

2.1. Rock Physics

To describe the dependency between bulk density and compressional velocity, a set of
relations were formulated as [16]

ρb = aVp
b (1)

where ρb is bulk density in g cm−3, Vp is the P-wave velocity in ft s−1, and a and b are
lithology-specific constant coefficients that vary across different rock types.

In this study, the Gardner relations were initially used to calibrate the correlation
between acoustic logs and density logs. Subsequently, these relations were used to generate
density logs in cases of suspicion or inaccuracies. It is noteworthy that, besides acoustic data,
density can also correlate with shear wave velocity, neutron porosity, or gamma ray [44].
Therefore, in addition to the Gardner relations, a machine learning-driven approach can be
implemented to generate density logs from a diverse range of inputs.

To describe the clay volume fraction in a rock, the gamma index, Ic, was
introduced [14], which is simply a normalized representation of the recorded nature gamma
logs. Specifically,

Ic =
GR − GRmin

GRmax − GRmin
(2)

where GR is the measured value of gamma logs expressed in American Petroleum In-
stitute (API) units, and GRmax and GRmin are the respective maximum and minimum
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values encountered in shales and sands, with these thresholds herein specified as 140 and
20 API units.

Since the gamma index tends to exceed the actual clay volume fraction, Vc, alternative
modified equations are often employed [14]:

Vc = 0.083
(

23.7Ic − 1
)

(3)

The formula holds applicability for both the Tertiary period and more recent geological
epochs. The gamma logs capture the natural gamma radiation emanating from radioactive
elements such potassium (K), uranium (U), and thorium (Th), which are primarily present in
clays. However, it is worth noting that non-shale radioactive mineral like Sylvite, feldspars,
and micas can also contribute to gamma logs, potentially introducing inaccuracies [45–48].
Therefore, for specific geological problems, the above equations may be further modified
or machine learning algorithms can be employed, using either gamma logs alone or a
combination of multivariate inputs including gamma logs, density, P-wave velocity, and
acoustic impedance, among others.

2.2. Data

Nestled in the southern North Sea basin, the F3 block (54.8669◦ N, 4.8131◦ E) in the
Dutch sector lies atop the Central Graben, bordered by the Ringkøbing-Fyn High to the
east and the Mid-North Sea High to the west. Geologically, the Mid-Miocene Unconformity
(MMU) serves as a demarcation line, separating the Cenozoic into the underlying Paleogene
units and the overlying Neogene units [49]. The Paleogene units beneath have been
structurally influenced by the syn-depositional halokinetic movements of the underlying
Zechstein evaporates, manifesting in the formation of faults and drapes. In contrast, the
Neogene units overlaying them consist primarily of coarse-grained prograding sediments
with an overall high porosity of 22–30%. These sediments have formed immense polycyclic
fluvio-deltaic systems, a direct response to high-frequency relative sea-level cycles [50].
Evidence of these cycles can be seen in large-scale sigmoidal beddings of truncations, with
onlaps onto them to the east, and downlaps to the west [51,52]. Within this geological
context, our study focuses specifically on a select interval of log data (FS2–FS6) obtained
from four wells within the F3 block, providing insights into a subset of these remarkable
fluvio-deltaic systems.

The 3D seismic data and log data for this study originate from the F3 block, with the
seismic data acquired in 1987 by NAM for petroleum exploration purposes [53]. dGB Earth
Sciences has kindly provided the upper segment of the seismic data, encompassing a time
range of 0 to 1.848 s. The inline range ranges from 100 to 750, while the crossline range
extends from 300 to 1250, both with a 25 m line spacing, covering a total area of 386.93 km2.
An inline is shown in Figure 1b. Four vertical wells inside the survey are provided: F02-1,
F06-1, F03-2, and F03-4, all measured by NLOG. These wells are equipped with sonic and
gamma ray logs. However, it is noteworthy that according to dGB’s records, only F02-1
and F03-2 have density logs available. For F03-4 and F06-1, density logs were predicted
using a neural network model trained on data from the first two wells, using sonic and
gamma logs as input. Additionally, the original porosity logs for all wells were calculated
from density data based on a linear formula [3,13]:

φ =
ρma − ρb
ρma − ρfl

(4)

where φ is porosity, and ρma and ρfl are the densities of the matrix and mud filtrate
respectively, with ρma set to 2.65 g cm−3 and ρfl set to 1.05 g cm−3. Furthermore,
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for this study, the clay volume fraction was calculated from gamma logs using the
Larionov relations.

 
Figure 1. Geology setting of the F3 block. (a) Structural setting of the North Sea basin. The location
of the F3 block is highlighted by a blue rectangle. (b) Seismic section of the F3 block (Inline 362). The
geological periods of strata are annotated. The green line is the Truncation horizon. The inset is the
Truncation horizon in 3D, with the four wells and the prograding direction annotated. The red line
serves as the intersection between the horizon and the seismic section.

Figure 2 gives a comprehensive overview of the seven logs corresponding to the four
distinct wells. For each well, a specific interval ranging from FS2 to FS6 is selected and
presented. In comparison to F03-2 and F03-4, the depths recorded for F02-1 and F06-1 are
notably deeper and shorter. This difference is due to their geographic position, which lies in
the southwestern periphery of the survey area, precisely at the foreland of the prograding
delta, as depicted in Figure 1.

Figure 2. Log data obtained from the four wells. From left to right: acoustic, bulk density, acoustic
impedance, P-wave velocity, porosity, gamma, clay volume. The top of each interval in each well is
denoted using the same color as the line of the logs.

2.3. Machine Learning

Four different popular ML algorithms were used, comprising Linear Regression (LR),
Multi-Layer Perceptron (MLP), Random Forests (RF), and Gradient Boosting Decision Tree
(GBDT). LR, without any regularization, as the first type of regression analysis to undergo
rigorous study and extensive practical application, is widely used owing to its simplic-
ity, interpretability, and ease of implementation [54]. MLP, a commonly applied artificial
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neural network model, boasts robust expressive and generalization capabilities, enabling
it to tackle non-linear problems and high-dimensional data [55–57]. Both GBDT and RF
are ensemble learning techniques rooted in decision trees. GBDT sequentially constructs
multiple decision trees, with each subsequent tree aiming to correct the prediction errors of
its predecessor, optimizing predictive performance by gradually minimizing residuals [58].
Conversely, RF concurrently builds numerous decision trees, utilizing averaging for re-
gression and voting for classification, thereby mitigating the risk of overfitting and often
yielding more stable and accurate predictions [59].

Due to the limited availability of only four well logs, we opted to utilize three of
them for training the ML algorithms, reserving the remaining well for validating the pre-
dictions of the trained models. However, in scenarios where there were suspicions of
inaccuracies in these logs, we relied on rock physics principles to calibrate and recon-
struct the logs as replacements. As detailed in the Data section, we were able to generate
density logs employing the Gardner relations, while Vc logs were derived utilizing the
Larionov relations.

Standard scaling was applied to the input features for MLP and LR, whereas it was
omitted for the two tree-based algorithms. The coefficient of determination (R2) and root
mean squared error (RMSE) were used as metrics to evaluate the accuracy of predictions
made by ML algorithms. Furthermore, to interpret the mathematical principles of how
these ML algorithms operate, both locally and globally, we used the SHapley Additive
exPlanations (SHAP) framework [41]. Based on the solid theoretical foundation of coopera-
tive game theory and the utilization of Shapley values, SHAP offers quantitative insights
into the specific contributions of each feature to individual predictions, as well as their
collective influence across the entire dataset [60,61]. This approach not only facilitates the
assessment of ML algorithm performance but also serves as a valuable guide for feature
selection and model design optimization.

The Python scripts used in this study for ML and SHAP analysis were based on the
Scikit-learn and SHAP libraries [62,63].

Our primary objective is to elucidate the mathematical frameworks that underpin
ML algorithms and interpret the causality behind their predictions within the context
of rock physics. As such, we prefer to use standard and straightforward ML methods
to facilitate their explanations and to derive conclusions that are broadly applicable. In
interpreting SHAP, it is crucial to concentrate solely on the influence of input features by
maintaining the consistency of the ML models. Our benchmarks, detailed in Appendix A,
reveal that optimizing the models’ hyperparameters did not significantly improve their
performance compared to using fixed settings (Tables A1 and A2), but it did lead to notable
changes in SHAP explanations (Figure A1). Therefore, we consistently avoid making any
modifications based on optimization outcomes.

To address variability from random initialization, we tested 40 random seeds and
found consistent results within each stochastic model, except for the MLP which showed
significant fluctuations. This is shown in Figure A2.

3. Results and Discussions

3.1. Porosity

First, we show the results of ML-based prediction of porosity logs.
Figure 3 shows the density logs of the four wells, before and after correction using

the Gardner relations. The original density of F02-1 is significantly lower than the other
three wells. Since density logs were calculated from measured acoustic logs, we used the
Gardner relations to fit the density of the three wells, where in the exponential function we

623



Sensors 2025, 25, 836

optimized the coefficient to be 0.1018 and the index to be 0.3445. Relying on the Gardner
relations, density logs of F02-1 were corrected using acoustic logs as inputs.

Figure 3. Density logs of the four wells before and after correction using the Gardner relations.

To gain a deeper understanding, we compiled a crossplot that illustrates the inter-
relationships among the seven log data sets, as shown in Figure 4. Notably, we have
incorporated an additional well, F02-1Cor, which is a corrected version of F02-1. In this
updated version, the density was fine-tuned using the Gardner relations, leading to a subse-
quent recalculation of the porosity. As observed in the crossplot comparing ρb and AC, the
data points of F02-1 stand out conspicuously, indicating the need for further scrutiny. The
corrected F02-1Cor, however, exhibits a seamless alignment with the other wells, demon-
strating the effectiveness of the corrections. Moreover, we recalculated Vp as the reciprocal
of AC, and consequently, AI was recalculated as the product of ρb and Vp. This corrected
well, and F02-1Cor, exhibits an exceptional correlation across all seven logs, testament to
the rigor and reliability of our findings. However, as Figure 4 indicates, the correlations
are poor between gamma logs (and consequently Vc) and elastic logs, including AC, Vp,
ρb, AI, and φ. This incongruence in characteristics could potentially influence ML-based
predictions, and its implications will be discussed in the next section.

Figure 5 presents a comparative analysis of the ML-based prediction of porosity logs,
highlighting the difference between the pre- and post-correction states of density logs.
In this process, four parallel ML algorithms were used, specifically RF, GBDT, MLP, and
LR. The training of these ML algorithms encompassed data from three wells, whereas the
remaining well served as the testing ground. Notably, the problematic density logs from
F02-1 posed a challenge.
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Figure 4. Crossplot of the seven logs of the four wells and F02-1Cor. From left to right, AC, ρb, AI,
Vp, φ, GR and Vc.

In the pre-correction scenarios, two distinct approaches were adopted for ML training
and testing: either including F02-1 in the training set or reserving it for testing. Given that
porosity measurements were not readily available for all wells and were instead estimated
from density logs using a linear formula, density itself was excluded as an input variable
for ML training. Similarly, Vp and AI were also excluded, leaving only the measured logs,
comprising AC and GR, as the input features.

Remarkably, for all four ML algorithms, the prediction accuracy of pre-correction states
was deemed unsatisfactory. However, an interesting trend emerged when the problematic
F02-1 was included in the training dataset, resulting in improved prediction performance
compared to when it served as the testing well. Furthermore, the prediction accuracy of all
four algorithms underwent a significant enhancement when both acoustic and gamma logs
were used as inputs, surpassing the accuracy achieved by relying solely on acoustic logs.
Despite the fact that gamma logs display a notably feeble correlation with porosity, as depicted
in Figure 5, their integration with acoustic logs contributes to a more precise prediction.

After the correction of density logs, however, the prediction accuracy for all four ML
algorithms experienced a substantial surge, achieving exceptionally high levels of accuracy,
with R2 values approaching 1 for each algorithm. This trend was observed when F03-4
served as the testing well, and the corrected F02-1 was incorporated into the training dataset,
as shown in Figure 5c. It is crucial to emphasize that the achieved optimal performance
hinges critically on the establishment of the ideal dataset setting, where the porosity data
is systematically derived from the measured acoustic data through the application of a
distinct and carefully calibrated formula. This underscores the paramount importance of a
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rigorous and systematic approach to data processing and model training, which is essential
for attaining predictions of both high fidelity and precision.

Figure 5. Prediction of porosity logs with original and corrected density logs using four ML algo-
rithms. (a) F02-1 as the testing well. (b) F03-4 as the testing well. F02-1 was included in the training
dataset. (c) F03-4 as the testing well. F02-1Cor was included in the training dataset. (d) SHAP
explanation for these predictions. Top, for cases in both (a) and the cases where F02-1Cor served as
the testing well. Middle, for cases in (b). Bottom, for cases in (c).

To gain a deeper insight into the mechanisms underlying ML-based predictions, global
SHAP values were calculated to interpret the results. These analyses consistently pointed
to acoustic logs as having an overarching influence on predicting porosity, regardless of
the ML algorithm, training and testing scenarios, or prediction accuracy, as summarized in
Figure 5d. Conversely, the other input logs, namely gamma logs, were largely disregarded,
with the exception of one instance when the problematic F02-1 log was incorporated as
an input. In this particular scenario, the inclusion of gamma logs resulted in a marginal
improvement in prediction accuracy. This interpretation aligns with the weak correlation
exhibited between gamma logs and porosity logs, as illustrated in Figure 4. Generally, MLP
exhibits a greater reliance on gamma logs compared to the other three algorithms.

3.2. Clay Volume Fraction

Here we present the outcomes of ML-based prediction of clay volume fraction (Vc)
logs and their interpretations.

Typically, Vc is derived from gamma logs, which records the natural gamma radiation
emitted from radioactive elements present in clays. In this study, the Larionov relations
were used to calculate Vc from the measured gamma logs. As depicted in Figure 4,
Vc theoretically exhibits a strong correlation with gamma logs, but it correlates weakly
with acoustic logs and other logs derived from acoustic logs, such as density, acoustic
impedance, P-wave velocity, and porosity. Figure 6c shows the prediction of Vc for F03-4
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when the inputs for training the ML algorithms included logs that correlate poorly with Vc.
Specifically, the ML algorithm used was RF. The training data originated from the other
three wells, spanning the interval between FS2 and FS4. As anticipated, the prediction
performance was unsatisfactory. However, when gamma logs were incorporated into the
training process, the prediction accuracy was improved significantly, as shown in Figure 6c.
Similar results were observed when F03-2 served as the testing well and the other three
wells as the training well, as shown in Figure 6e. Nonetheless, there were sections of the Vc

logs for both F03-4 and F03-2 that remained inaccurately predicted.

Figure 6. Prediction of clay volume fraction using RF and the SHAP explanations. (a) Prediction for
F03-4 where gamma logs were excluded as inputs. (b) Feature importance for (a) as explained by
SHAP summary plot and decision plot. (c) Prediction for F03-4 where gamma logs were incorporated
as inputs. (d) SHAP explanations for (c). (e) Prediction for F03-2 where gamma logs were incorporated
as inputs. (f) SHAP explanations for (e). Arrows indicate unpredictable samples.

To gain a more comprehensive understanding of the prediction’s performance using
RF and the other three ML algorithms, we calculated both global and local SHAP values
for each individual prediction. In the case of predicting Vc for F03-4 using RF, gamma
logs emerged as the predominant input feature, as explained by both the SHAP summary
plot and decision plot (comparing Figure 6b with Figure 6d). This finding aligns with
the anticipation based on human knowledge, as gamma logs are the physical trigger for
the effect, namely Vc. Meanwhile, the impact of the other four input features is minimal.
However, in scenarios where gamma logs are absent from the training dataset, the accuracy
of Vc predictions declines significantly, rendering the importance of the four remaining
input features indispensable. In such a situation, irrespective of the prediction inaccuracy,
and regardless of the weak correlation between the input features and the prediction target,
the ML algorithm relies heavily on the provided inputs, as it lacks alternative data sources.
When assessing the impact on the inaccurate prediction results, the four input features
are approximately of equal significance. This trend is observed across the other three
algorithms, as shown in Figure 7b. However, if a ranking is necessary, acoustic logs emerge
as the most crucial input except for LR, likely attributed to their status as the only measured
feature among the inputs.
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Figure 7. Accuracy and feature importance in predicting clay volume fraction for F03-4 as explained
by SHAP summary plot for four ML algorithms. (a) Predicted Vc logs under three different scenarios.
In contrast to a standard scenario, two variations were tested: one excluded GR in training, and the
other employed a noise-robust training and testing approach with an SNR of 30. (b) Both local and
global SHAP explanations for these three different prediction scenarios. For each algorithm: Top,
training without GR. Middle, standard training and testing with GR. Bottom, noise-robust training
and testing.

The interpretation of the significance of various features across all four ML algorithms
is summarized in Figure 7. Notably, although MLP initially failed to prioritize gamma
logs as the primary input feature, it regained its rationality after undergoing a noise-robust
training procedure. This can be observed in Figure 7b for MLP, which demonstrates
the algorithm’s adaptability. Within this noise-robust training paradigm, the predictions
attained satisfactory levels, albeit with a notable decline in MLP’s performance due to
a relatively low signal-to-noise ratio (SNR) of 30, as evident in Figure 7a for MLP. The
SHAP analysis revealed consistent patterns among all four algorithms, regardless of their
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varied underlying architectures—whether tree-based, neutron network-driven, or linear
regression-oriented. By comparing the SHAP explanations with rock physics principles, we
observed a close alignment of the four algorithms with the fundamentals of rock physics,
indicating adherence to its cause relationships.

To interpret the sections of the Vc logs that exhibited unpredictable patterns at a
depth of approximately −960 m, a review of the training and the testing dataset was
undertaken. Specifically, considering the scenario where F03-4 serves as the testing well
and the other three wells as the training well, we note that the Vc range for the other
three wells ranges from 0.050 to 0.300, whereas the Vc range for F03-4 to be predicted is
0.025 to 0.200. Therefore, the predicted lowest values of Vc for F03-4 exceed the bounds
of the training dataset, which is indicative of an Independent and Identically Distributed
(IID) issue. Analogously, reversing the roles of the testing and training well also leads to an
inaccurate prediction of the higher Vc values in F03-2. The lowest and highest unpredictable
Vc values are positioned at the periphery of both the SHAP summary plot and the decision
plot, as indicated by the grey arrows in Figure 6c,d, and the yellow arrows in Figure 6e,f.

To further elaborate on the intricacies of the IID problem and explain the inability to
make accurate predictions, we employed a straightforward binary logarithm function of
y = log2x, with the range of x set from 1 to 11. We subjected the prediction of y to a rigorous
test using four different ML algorithms, contrasting the results against those obtained from
cubic spline interpolation and the ground truth. As shown in Figure 8a at x = 2.4, where
the true value of y is denoted by black crosses along the black line, RF predicted y = 1.291,
marked by a black dot, exceeding the actual value. From x = 2.0 to 2.8, the predictions
either exceeded or fell below the true values, as evident in the lower inset. Notably, as
we incrementally removed one or two neighboring labels from the training dataset, the
predicted values rose significantly, depicted by blue dots. Conversely, the predicted values
decreased progressively when one or two labels to the right were eliminated. A comparison
with the ground truth is illustrated in the upper inset. Similar trends were observed for
the x range from 9.0 to 9.8, as shown in Figure 8b. The performance of the remaining three
algorithms is presented in Figure 8c–e. Despite the remarkable success ML has achieved
owing to its numerous advantages, the predictions generated by the four ML algorithms
can still trail behind the accuracy of cubic spline interpolation, even with a substantially
vast training dataset.

Figure 8. ML-based prediction of the binary logarithm function. (a) For x range from 2.0 to 2.8. Black
line, theoretical line. Black crosses, theoretical values. Dots, ML-based predictions. Upper inset,
predictions versus truth as neighboring samples eliminated from training. Lower inset, prediction
errors at each testing point. (b) For x range from 9.0 to 9.8. (c) For GBDT. Left, x = 2.4. Right, x = 9.4.
(d) For MLP. (e) For LR.
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These findings underscore the sensitivity of ML-based predictions to the training
dataset. Furthermore, as neighboring samples are gradually removed, the IID assump-
tion becomes invalid, leading to an out-of-distribution (OOD) problem that ultimately
compromises the predictive accuracy.

4. Conclusions

We have integrated SHAP and rock physics into the ML-based approach for predicting
well logs, specifically targeting porosity and clay volume fraction. While ML excels in
handling complex, nonlinear challenges that involve diverse input features and extensive
datasets, its operational mechanisms are often less mathematically transparent compared
to traditional algorithms such as least squares and Bayesian methods. Conversely, rock
physics, with its clear and intuitive foundations, faces constraints in its applicability due
to the numerous inherent assumptions, hampering its capacity to address ambiguous or
uncertain scenarios.

The union of these two methodologies has yielded significant advantages in our
study. Rock physics has played a pivotal role in feature engineering, selection, algorithm
comparison, and the comprehensive evaluation of four distinct algorithms: RF, GBDT,
MLP, and LR. Despite their varied architectures—tree-based, neutron network-driven,
or linear regression-oriented—the SHAP analysis has uncovered consistent operational
patterns across these algorithms in noise-robust training and testing scenarios. Moreover,
the SHAP explanations closely align with the causal relationships outlined in rock physics
principles. However, when crucial controlling input features were intentionally omitted,
affecting prediction accuracy, all four ML algorithms and the SHAP analysis continued
to operate in a seemingly irrational manner, starkly contrasting with the fundamental
principles of rock physics. By comparing SHAP explanations with rock physics concepts,
we have established parallels and contrasts with human knowledge, inherently rooted in
causal relationships. The invaluable guidance provided by rock physics has empowered
us to intervene in ML-based predictions, not only enhancing our comprehension of the
strengths and limitations of ML models but also potentially paving the way for optimizing
the performance of these workflows. This approach has propelled a transition from purely
mathematical explanations to a more philosophical interpretation of ML-based predictions,
effectively dismantling the traditional black-box nature of ML models.
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Appendix A

In this appendix, we provide a comprehensive account of the execution of the ML and
SHAP methodologies.

To assess the effectiveness of hyperparameter optimization, two comprehensive benchmark
tests were conducted for the three stochastic models, RF, GBDT and MLP. One test, termed
case-φ (corresponding to Figure 5c), evaluated the porosity prediction with exceptional accuracy
across all four algorithms. The other test, termed case-Vc (corresponding to Figure 6a), evaluated
the Vc prediction and found significantly lower accuracy for all four algorithms.

Table A1 summarizes all hyperparameters and their respective final values for each
model. Table A2 provides a detailed description of the hyperparameter tuning process,
which utilized random search and k-fold cross-validation.

The benchmark tests indicate that optimizing the models’ hyperparameters does not
yield a substantial improvement in their performance metrics, specifically R2 and RMSE,
compared to using fixed settings. Furthermore, as illustrated in Figure A1, while optimization
has a negligible effect, it significantly modifies the SHAP explanations for case-Vc. Both the
magnitude and the relative importance of input features exhibit notable variations.

To assess the effect of random initialization on the performance of the three stochastic
models with fixed hyperparameter settings, we conducted experiments using 40 different
random seeds. Our findings indicated that the results were generally consistent for each
model for case-φ. Random initialization exhibits minimal influence on the performance of
all three models. Nevertheless, for case-Vc, there are substantial fluctuations in prediction
accuracy, especially for MLP, as illustrated in Figure A2.

Figure A1. Global SHAP explanations for the two benchmark tests. (a) case-φ and (b) case-Vc. Model
hyperparameters are fixed (blue) and optimized (grey).

Figure A2. Performance of the three stochastic models’ initialization randomly with 40 different
seeds for the fixed hyperparameter settings. (a) case-φ. (b) case-Vc.
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Table A2. Optimization of model hyperparameters via random search (200 iterations) with k-fold
cross-validation, using RMSE as the performance metric.

K-Fold (n_Folds = 5)
Testing: F03-4

Models
Training: F02-1, F06-1, F03-2

Mean_R2 Mean_RMSE R2 RMSE

RF
case-φ 0.999910 0.000186 0.999977 0.000068

case-Vc 0.020244 0.046256 −1.110164 0.049144

GBDT
case-φ 0.999965 0.000114 0.999992 0.000039

case-Vc 0.110894 0.044113 −0.823654 0.045686

MLP
case-φ 0.999084 0.000615 0.998986 0.000451

case-Vc 0.122800 0.043823 −0.883199 0.046426
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